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Abstract

Image formation is one of the most important aspect of our everyday life. Conventional optical

Imaging (and Sensing) exploits light, reaching the detection system from a target or a scene of

interest, mainly unscattered. However, there are many practical situations in which unscattered

light may be undetectable, insufficient or mispresented. Nonetheless, if the considered system

allows it, it could be still possible to exploit scattered light in order to extract relevant informa-

tion. Problems arise from the fact that, in these cases, light propagation may undergo severe

alterations, thus leading to challenging, and sometimes ill-posed, problems.

In this thesis, two main scenarios involving scattered light are studied and addressed by means

of artificial neural networks. Over the last period, these powerful data-driven algorithms have

been extensively employed in many scientific contexts for their ability to solve even complex

problems implicitly. Precisely this characteristic is exploited, in the present work, in a non-

line-of-sight scenario in order to simultaneously locate and identify people hidden behind a

corner. Moreover, a complex-valued neural network algorithm is implemented and applied to

the problem of transmission of images through a multimode fibre, demonstrating high-speed and

high-resolution image restoration even without the need for any phase measurements. Finally,

due to its formulation based on the physics of multimode fibres, a direct comparison is proposed

between the same algorithm and a more standard approach.
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Introduction

Recently, the technology advancements and the development of novel mathematical optimi-

sation methods have revitalized the interest towards artificial neural networks. Thus, current

computer performances allow to explore a new route for the investigation of physical reality: no

longer exclusively based on the formulation of explicit mathematical laws, but on the identifi-

cation of statistical correlations among the data that represent a certain phenomenon of interest.

In a sense, a network is programmed to “make sense” of the observed data by formulating an

internal, and mostly inaccessible, representation of the phenomenon itself. Typically, this makes

the possibility to draw a reliable interpretation for the results delivered, and for the procedure

followed to obtain them, more complicated.

The work presented in this thesis aims to contribute to the research area of imaging and sensing

in presence of scattered light by employing artificial neural network algorithms. The general

approach followed here is to rely on neural networks aided by the physics involved in the prob-

lems addressed. In this sense, the attempt is to improve, on the one side, the performances of the

network itself and, on the other one, the chances to verify the physical relevance of the obtained

results, whenever applicable. In the following outline I will indicate, chapter by chapter, every

subject matter.

0.1 Thesis Outline

In Chapter 1, I will offer an introduction to artificial neural network algorithms. Firstly, I will

retrace the history of the development of these algorithms. Then I will illustrate the basic prin-

ciples of artificial neural networks, how these are structured and what the relevant elements are

(for the purposes of this thesis in particular). Another section, in this way, will be dedicated

to how to implement them on a computer, relying on the programming language “Python”. Fi-

nally, I will emphasize the importance of this powerful tool in the scientific panorama, with a

short overview focused on neural networks applied to Science and Imaging in particular, thus

describing the general context of this thesis.

In Chapter 2, I will apply neural network algorithms to the non-line-of-sight imaging context.

Prior art techniques will be reported and, within this context, a method for identifying people
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hidden behind corners will be proposed. Here, the idea is to study single temporal signals, i.e.

histograms built collecting, from a wall, the pulsed light back-scattered from the bodies, using

a neural network for classification purposes. Thus, this experiment will provide an implicit so-

lution to a problem for which an explicit forward model (and its respective inversion) would

require a far too sophisticated description.

In Chapter 3, another ill-posed problem is considered switching from the temporal domain to the

spatial domain. The problem addressed will be the transmission of images through a multimode

fibre, without any phase measurements involved. As it will be shown in the introduction to the

physics of multimode fibres, since the propagating light field is complex, phase information is

typically essential to control light at the output of a fibre or for image restoration. Nonetheless,

the approach proposed here will still be able to retrieve the input images at high speed (limited

by the light modulator device) and high resolution. This result is made possible thanks to a

complex-valued neural network.

Chapeter 4 will investigate further on multimode fibre imaging, by comparing the introduced

complex-valued network to a commonly adopted technique for complex media, i.e. the transmis-

sion matrix. In this case, phase measurements will be required and will be acquired thanks to a

phase-shifting interferometry method. This will also give the opportunity to study the behaviour

of the complex-valued algorithm when trained with full complex field input. As a result, I will

report the comparison between the performances of three different approaches: transmission

matrix inversion, complex-valued network trained with full-complex field and complex-valued

network trained with amplitude-only measurements (analogous to the ones used in Chapter 3).

Furthermore, the singular value decomposition will be considered as a tool for extracting pos-

sible physical information from the transmission matrix and the complex-valued network ap-

proach.

Finally, Chapter 5 will draw the conclusion to this thesis leaving the possibility also to discuss

possible interesting directions for future research. In Appendix A, the code of the neural network

employed in Chapter 2 will be presented. In Appendix B, the first approach followed for the

restoration of images transmitted through a multimode fibre, employing the complex-valued

neural network method and relying on intensity-only images, will be reported. Finally, Appendix

C will describe how to implement the complex-valued neural network used in this thesis.



Chapter 1

A whole data-driven world

Artificial Intelligence (AI) is shaping and deeply changing modern society along with the way

we acknowledge reality. From common tools that we use in our daily life, like apps for calculat-

ing the best route to reach a certain destination, or “suggestions” offered by social media, to the

ability to predict things like weather or market trends: nowadays many tasks and services are

generally assigned to AI algorithms. Recently, the general excitement around the possibilities

opened up by AI, along with all its achievements, has pushed many major companies around

the world to heavily invest in this technology and, therefore, has contributed to AI’s momentous

development. In a sense, as it has been said, “AI is the new electricity” [5], such that juridi-

cal, international, political, and philosophical implication have started to be seriously taken into

consideration.

Yet, it is not straightforward to formulate a precise definition of what AI is. A broad definition

could be “using a computer to mimic human behavior in some way” [6]. Generally speaking,

AI could be subdivided into two main categories: “model-driven” and “data-driven”. In the first

case, the approach is to explicitly define models and rules to gain knowledge related to a certain

task. In regards to the second, assignments are solved implicitly by letting the system learn from

a large amount of data.

Consider the following example: if a person is playing the piano and wants to compose a melody,

on what basis should this person press a certain key instead of another? One might consider two

possible ways, which are opposite to one another. For the first option, the subject could listen to

a huge amount of related compositions and, by playing them, could develop a sense of right and

wrong to be applied to every note to be played in the future. For the second, the person could rely

on, or develop, some explicit musical knowledge such as harmony or scales, so that the action

of pressing a certain key is guided by the “environment” that the person is exploring. In the first

case, the person would be relying on a very well trained pitch to compose the melody. Whereas,

in the second case, the person is relying on a musical theory. Although it is not impossible to

think to compose complex pieces using the former way, it is evident that in this case, the latter

one is preferable. Thus, this simple example serves to indicate why a model-driven approach is
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preferred when a fair amount of decisions, related to a certain environment, needs to be taken.

On the other hand, there are situations for which it is difficult to indicate few formal rules that

should help us with a decision. For example, consider an image representing a cat and another

one representing a dog. There are a set of possible features that characterises the two animals

which can be specified in order to distinguish them: eyes, ears, etc. However, by adding more

animals, other features will be required: each one with an appropriate mathematical formula-

tion. Therefore, with many practical cases, adding exceptions or rules would not be the best

strategy. On the contrary, one might build a data-driven algorithm that learns to develop its own

features by looking at a large number of related samples. As has been demonstrated, the best

strategy depends on the particular task at hand. However, it may be misleading to characterise

these strategies as strictly separated. In fact, there are scientific studies [7] that provide evidence

of how both the approaches can run and be exploited in parallel by our brain.

Currently, data-driven AI is receiving most of the attention for two main reasons: the unprece-

dented huge amount of available data and the rapid growth of computing power. In fact, many

of the concepts underlying data-driven algorithms have already been implemented in the past

decades. However, it is only with the recent explosion of modern computer graphic cards

(GPU), which allow for powerful parallel calculations, that some data-driven algorithms can

now be processed in a reasonable time frame. On the other hand, this modern digital era is

indeed an extraordinary source of data. The term “big data” is not an exaggeration. The esti-

mated worldwide daily data production is around 2.5 quintillion bytes [8]. Furthermore, it has

increased the availability of “structured data”, meaning the data is organized in some, possibly

open source, databases or formatted repositories. Typical examples are the MNIST database [9]

containing 60000 training images and 10000 testing images of hand-written digits, from “0” to

“9”, that come with the appropriate labels, or very large repository of images like ImageNet [10].

Structured data plays an important role in so-called “supervised” and “unsupervised” algorithms

where, for the former, the learning process is shaped by a continuous interaction between the

algorithm prediction and the ground truth (e.g., a label for classification tasks). Whereas, for the

latter, it is not constrained by a specific output.

For the purpose of this thesis, I will be focusing on a specific area of data-driven AI: the artificial

neural network (ANN) algorithms. In this chapter, I will introduce the basic concepts of artificial

neural networks, underlying the parts that are more inherent to the development of the original

work reported. I will show examples of usage of these algorithms on a computer through the

Python programming language and, in addition, the impact of the neural networks on the scien-

tific research. The aim of the following sections is not to provide a comprehensive description

of the history of ANNs. Instead, I would like to shed a light on the key elements and challenges

addressed by ANNs. Many of these concepts are indeed fundamental for the comprehension of
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the neural networks implemented in this thesis.

1.1 Neural network principles and architectures

Artificial neural networks were born with the idea of mimicking the biological brain. The start-

ing point was to introduce a model for the “units” which compose the brain, the neurons. Back

in 1943, McMulloch and Pitts [11] proposed a simplified mathematical model for the neuron.

This was built in order to receive binary inputs and produce a single binary output. Moreover,

this system was demonstrated to be able to perform some basic logic operations. The reason

why input and output are binarized is because of the observation that the output of biological

neurons are, typically, spikes. Therefore, in this representation, neurons can only fire or not.

During 1958, an evolution to this model was proposed by Rosenblatt [12] and is known as the

“perceptron”. Here, the idea was to allow the neuron to learn the function that maps inputs into

output (e.g. logic operations for the previous model) instead of implementing them explicitly.

Before introducing this learning process, I show in Fig. 1.1 a representation of an “artificial

neuron” and how this relates to its biological counterpart. This representation is merely a raw

approximation of a neuron cell which, in nature, can appear in a number of different varieties. In

this model, a neuron receives the sample input information x, with xi indicating the i-th element

of the vector x, from the connected neurons by way of their axons. I will refer to the j-th sample

with the superscript x( j) . The synapses contain the weights wi to be applied to the inputs. Then,

thanks to the dendrites, all the contributions from different inputs are fed to the cell body where

the weighted sum of the inputs is performed (typically a bias value b is added). Finally, the “ac-

tivation” function f , which for Rosenblatt was a simple step-function, is applied to the weighted

sum in order to produce the binary output. I will refer to this output as ȳ and to the ground truth

as y (both are scalars).

Output axon

Synapse

Dendrite

Axon

Neuron body

Figure 1.1: Representation of the perceptron that highlights the concepts taken from biology in order to

build a model of a neuron. During the learning process, after each epoch the weights are updated with a

correction related to the error estimated between output and ground truth.
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The learning algorithm can be summarised in four points:

1. initialise the weights to random numbers (or to 0).

2. Calculate the output ȳ( j) of each input sample x( j).

3. For each sample, simultaneously update the weights.

4. Repeat steps 2-3 until there are no mistakes.

The weights are updated through: wi =wi+∆wi, where ∆wi is defined by the perceptron learning

rule. For the j-th sample, we will have:

∆wi = η(y( j)− ȳ( j))x
( j)
i (1.1)

with η being the learning rate. To give an idea of how 1.1 works, it can be noticed that when

y( j) = ȳ( j) then the increment is 0, as the prediction is correct. Whereas, whenever the predic-

tion is incorrect the weight receives a contribution directed toward the ground truth (positive or

negative), proportional to x
( j)
i .

One of the main problems of this algorithm lies with point 4. In fact, it was demonstrated that

the perceptron is able to perform operations like AND or OR, but not XOR, as pointed out by

Minsky and Papert [13]. It turns out that the perceptron can subdivide correctly the samples in

two classes only if they are linearly separable. Therefore, when this condition is not verified, the

system will remain stuck in a never-ending updating loop.

Interestingly, Minsky and Papert indicated a possible solution to tackle the XOR problem: a

network with multiple layers of perceptrons. However, here the limits of the perceptron arise.

In fact, the learning rule puts in relationship the weights applied to the input array directly to the

output value, with no information about possible intermediate layers. Thus, if there happened to

be more than one layer, how could the weights from all the layers have been modified?

1.1.1 The road toward multiple-layers neural network

As was previously shown, the first problem, when trying to build up a multiple-layers network of

perceptrons, is to provide a novel and more appropriate learning rule. From this point of view,

the ADAptive LInear NEuron (Adaline) [14] model is useful as it allows me to introduce the

concept of “cost function” for a neural network. In Fig. 1.2, the main difference with respect to

the perceptron model can be appreciated: the activation step-function is replaced by a first linear

activation function, f (s) = s with s = ∑i wixi, and a quantizer , i.e. a step-function. Thus, in this

case the error could be calculated on a continuous function (before the quantizer produces the

binary output). If the activation function is not only continuous but also differentiable, then the
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Output

bias
Activation

function QuantizerInput sum

Figure 1.2: Scheme of the Adaline model. This evolution of the perceptron differentiates from its

predecessor as the error is estimated before the step-function (quantizer), used to binarize. In fact, it is

applied to the activation function that in this case is just linear: f (s) = s.

cost function could be defined as:

J(w) =
1

2
∑

j

(
y( j)− f (s( j))

)2

. (1.2)

Basically, this is the sum of square error (SSE) between the ground truths and the predictions

from the activation function. Here, w is the vector of the weights wi. The basic idea is to

minimize this cost function, i.e., the prediction must be as close as possible to the ground truth.

Since this function is typically convex, and differentiable because of how the activation function

has been defined, one might resort to the “gradient descent” algorithm in order to calculate the

set of weights that minimize the cost function. Using convexity, one would aim to move in the

opposite direction of ∇J(w), therefore, the increment to w will be defined as:

∆w =−η∇J(w) (1.3)

But since f (s) is linear, it can be easily calculated that:

∆wi =−η ∑
j

∂

∂xi
J(w) = η ∑

j

(
y( j)− f (s( j))

)
xi. (1.4)

As it can be observed, this learning rule looks pretty much similar to the perceptron one. More-

over, also in this case all the weights are updated simultaneously. However, I would like to

remark that in (1.4) f (s( j)) is a real number and, moreover, the updates ∆wi are not calculated

after each training sample x( j), but rather with respect to the whole training set.

Since this rule could become quite computing-intensive when dealing with a large amount of

data, other methods have been proposed such as the “stochastic gradient descent”. This could

be considered an approximation of the gradient descent. In fact, the learning rule is analogous

but it is now calculated after each sample:
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∆w = η
(

y( j)− f (s( j))
)

x( j). (1.5)

Since the weights are updated “on-line”, usually input samples x( j) are shuffled after each epoch

of the training process in order to avoid getting this process stuck. On the other hand, the con-

tinuous update of the weights is advantageous because it leads to a faster convergence for the

algorithm. Moreover, the learning rate η is typically varied dynamically. However, since the

cost function trend over the epochs is usually quite irregular, there is another popular variation

in between the two techniques, called “mini-batch” which allows for the calculation of that gra-

dient over a series of subsets of the total sample dataset.

What is the advantage with this new learning approach? The fundamental characteristic I have

been looking for is the possibility to let all the weights, from each layer of the network, be cor-

rected by the learning rule. Consider the scheme in Fig. 1.3: here, the first hidden layer could

be written as f (W1 ·XT +B1), the second one as f (W2 · ( f (W1 ·XT +B1))+B2), and so on -

note that in this case W is a matrix, as there is more than one neuron in each layer. Thus, since

the methods I have just defined allow the error of every single weight to be calculated thanks to

a partial derivative, the chain rule can be finally applied. There are a number of techniques that

can implement this type of calculation efficiently. However, the most popular is called “back-

propagation” [15]. As the name suggests, the idea is to propagate the error backwards, thus

preferring to implement less-expensive matrix-vector multiplications, starting from the output

vector, than matrix-matrix multiplication, starting from the input.

It might be noticed that the network, built in this way, is not strictly composed by layers of per-

ceptrons. Rather, it makes use purely of activation functions, passing from one layer to another,

whereas the quantizer is employed just at the very end, when it is required. Since every neuron

in each layer is connected to each neuron of the following layer, this kind of architecture takes

the name “fully-connected” or, more simply-stated, “dense”.

It can be easily demonstrated that when using a linear activation function hidden layers are re-

dundant, as this would result in a series of linear operations. This introduces the need for a non

linear activation function whenever hidden layers are required. Generally speaking, the choice

could fall on any non linear derivable function. On the other hand, following up from the bi-

ological neuron insights concerning how neurons communicate (i.e. typically with spikes), a

function similar to the step-function would be preferred, such as the sigmoid or the hyperbolic

tangent. Addressing the problem of a multiclass classification (i.e. classification for a network

with multiple outputs such as the one outlined in Fig. 1.3), the so called “softmax” activation

function [16] - a sigmoid-like function - is the preferred one as it maps the output in a probabil-

ity distribution, thus avoiding negative numbers. Whenever a sigmoid-like activation function

6



Input

Output

Hidden layer 2

Hidden layer 1

X

B1 B2 B3

W1

W2 W3

Figure 1.3: Example of multi-layer network. In particular this network presents two hidden layer and all

the neurons (units) belonging to a specific layer fully connected with all the neurons of the neighbouring

layers. The three output units allow a non-binarized output. Moreover, the error can be propagated

through the network because, using continuous and derivable activation functions, the chain rule can be

applied by expressing every layer as a function of the layer before.

is employed, cost functions such as SSE or mean squared error (MSE) should not be used be-

cause they would typically lead to a non-convex function with many local minima, thus causing

difficulties for gradient descent techniques. For these situations, the choice usually falls on the

so-call “cross-entropy” [17], which could be “binary” whenever considering just two classes or

“categorical” for multi-class prediction.

Finally, a typical problem related to neural networks is overfitting, i.e. the incapacity of the

identified representation, calculated through the leaning process ability and which might per-

form well on the training dataset, to generalise the result to unseen data. To overcome this,

one possibility is to add a regularisation term to the cost function. For example, the norm l2:

L (w) = (1/2)λ ||w||2. In this case, the idea is to help the system to learn small weights when

the parameter λ is large, or, vice versa, to prefer the minimization of the cost function for small

λ .

To summarise, I have retraced the development of neural networks starting from the single

neuron model, the perceptron. The limits related to this model have been appreciated and the
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concept of cost function, which broadens the possibilities of the learning process, has been

introduced, thus paving the way to more complex networks with multiple layers of neurons.

Networks with more than one hidden layer take the name of “deep neural networks” (DNNs), in

this case the term “deep learning” is usually adopted.

1.1.2 Convolutional layer

In this section I will introduce another popular kind of layer, especially for DNNs, referred to as

“convolutional”. As the name suggests, the idea is to learn some features by convolving a series

of filters to the input sample. Obviously, the size of the filters has to be smaller than the size

of the sample itself. Referring to Fig 1.4, I will indicate the result of the convolution of each

filter as a “feature map”. After being calculated, these features maps are stacked along the depth

dimension. Each element of this output volume is therefore connected to a small portion of the

input sample, defined by the size of the filters. Interestingly, this concept of local connectivity is

borrowed also from Biology, in particular, the architecture of the visual cortex of monkeys [18].

Figure 1.4: Representation of a convolutional layer operation. The input image is convolved with a series

of filters. The output volume contains the resulting feature maps arranged along the depth dimension,

whose size is determined by the number of filters.

Because of the different local information stored on different neurons, the network can now

valorize the parameters relative to specific spatial points in the input. In fact, these types of layers

are used specifically for finding features independently of scaling factors or position, which is

exactly what one should be looking for in order to allow the network to gain “vision”. On

the contrary, fully-connected networks employed for the classification of images, for example,

require images to be centered. Finally, since the convolution operation is essentially sliding the

same filter to obtain one “slice” of the output volume, then the slices share the same filter weights

for each position. It is precisely this characteristic which reduces the number of parameters,

therefore improving the efficiency of the algorithm. To further reduce the number of parameters,

“pooling” (or “subsampling”) layers are typically employed between two convolutional layers.
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Indeed, the job of the pooling layer is to sub-sample the convolutional output (i.e. it compresses

the extracted features). This operation could be obtained by saving the maximum of each sub-

sampled zone of the original layer, referred to as max pooling, which is the most popular of the

techniques, or by calculating the average.

This type of architecture takes the name of “convolutional neural network” (CNN) and it is

a typical example of a deep learning algorithm. Because of all the reductions of parameters

involved, this deep neural network is typically lighter than the fully connected one. Finally, in

Fig. 1.5, an example of image classification with a convolutional architecture is shown (credits

to [19]), which is the task for which these kinds of networks became particularly famous [20].

Figure 1.5: Example of classification for speed limit traffic signs. This deep network exploits a number

of convolutional layers typically followed by a pooling layer in order to subsample. Figure source [19].

1.2 Using Python for neural networks

Python has been one of the main programming languages for implementing and developing neu-

ral networks. Generally speaking, a number of libraries and toolkits tailored for building and

training neural networks can be easily found. Basic libraries are available, such as PyBrain [21]

and Scikit-learn [22], which can provide the fundamental ANN elements introduced in the pre-

vious sections or basic ready-to-use layers and networks. However, I will be focusing on those

that rely on AI frameworks created for the purpose of high performance numerical computation.

The idea here is to exploit parallel computation to speed up the training process. As a matter

of fact, ANNs simply imply a series of similar and repetitive operations. Indeed, Graphical

Processing Units (GPUs) are built in such a way that makes it particularly easy to perform this

kind of calculation, since the architecture is structured in a large number of simple cores and

can easily run simultaneous threads. Therefore, with the recent rise of GPUs, frameworks were

developed in order to optimise mathematical expressions when dealing with operations on large
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and multi-dimensional arrays.

That being said, I opted for the library “Keras” [23] which is probably the most diffused option

for artificial neural networks. Keras can be run on both frameworks Theano [24] and Tensorflow

[25], although Theano is currently mostly abandoned. Throughout this thesis I used Tensorflow,

which can also be imported in Python as a library. Both of the frameworks allow to run the

calculation either on CPU or GPU, nonetheless, for the work of this thesis, a GPU card was used

exclusively. More specifically a Nvidia GeForce 1080Ti with 11 Gb of RAM memory. Actually,

RAM is one of the main limitations when dealing with neural networks as it turns out that it

is not very difficult to fill the memory when, for example, using large fully-connected layers.

Indeed, the considered GPU is just a gaming graphic card, although still one of the best around.

Other GPU architectures tailored for high performance calculation can be found and typically

come within appropriate computers, but at high prices. Another way to extend the RAM mem-

ory is to employ multiple GPUs. However, it is not trivial to parallelize calculation for neural

network on multiple GPUs. This is also true for Keras, which just recently started allowing this

kind of approach.

Keras exploits the object-oriented nature of Python allowing the user to interface with stan-

dalone modules each one implementing a different part of the neural network: layers, activation

functions and so on. These blocks are easy to configure and link, so that an entire complex

ANN model can be written compactly in a few lines of code. If, for example, I am willing to

implement the neural network shown in Fig. 1.3 and supposing I am dealing with a supervised

classification task, having X_Train as a training dataset and y_Train as the corresponding

set of labels, I could write:

Listing 1.1: Example of keras implementation for the network in Fig. 1.3

from keras.layers import Input, Dense

from keras.models import Model

from keras import regularisers

# paramenters

n_epochs = 500

lambd = 0.03

learning_rate = 0.001

# model

input_v = Input(shape = (X_Train.shape[1],))
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x1 = Dense(3, kernel_regulariser =

regularisers.l2(lambd))(input_v)

x1 = Activation('sigmoid')(x1)

x2 = Dense(2, kernel_regulariser = regularisers.l2(lambd))(x1)

x2 = Activation('sigmoid')(x2)

x3 = Dense(3, activation = 'softmax',

kernel_regulariser = regularisers.l2(lambd))(x2)

model = Model(inputs = input_v, outputs = x3)

sgd = SGD(lr = learning_rate)

model.compile(loss = 'categorical_crossentropy',

optimizer = sgd)

model.fit(x = X_Train, y = y_Train, epochs = n_epochs)

# prediction

pred_test = model.predict(x_Test)

Starting from the beginning, I firstly must import from the Keras library the modules in which

I am interested. Then, some parameters are defined, such as the number of training epochs.

Consequently, I build up and train the model. Tensorflow works with tensors only, thus I first

call Input to define the input tensor input_v. A layer can just operate on a tensor and gives

another tensor, therefore I have to make explicit that the first Dense layer has to operate on

input_v. The result of this operation is tensor x1 which is composed by 3 neurons (units). In

addition, another argument is passed in order to add the relative regularisation term (in this case,

the norm l2 is added for all three layers) and one more argument in order to choose the activation

function. In accordance with what I discussed in the previous sections, the activation function

must be non-linear for a multilayer network. In this way, the choice falls on the sigmoid acti-

vation function for the first two layer and softmax for the third (output) layer. The reason why

softmax should be preferred lies in the fact that I was dealing with a multi-class classification

task. In the same way, one should resort to an adequate cost function, in this case categorical

cross-entropy, which is implemented in model.compile. This last call, as the name suggests,

compiles our model which has been defined before with the call Model, that takes as arguments

the input and output tensors. Finally, the stochastic gradient descent (SGD in the code) is used

to minimize the cost function. At this point, after the training process is complete, the neural

network can be tested on unseen data X_Test and compare the results to the original labels
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y_Test.

In this example, only fully-connected layers were employed. However, many other kinds of lay-

ers are available. As an example, for convolutional layers one could use the call Convoluti

on1D( filters, kernel_size, padding = 'same', input_shape)(inpu

t_v) in the 1D case, Convolution2D in the 2D case, and so on. The arguments that convolu-

tional layers take must include the way in which the convolution is to be implemented including:

the number of filters, the window size of these filters (i.e. kernel_size) and padding on the

borders. Whenever a layer is not available, there is still the possibility to implement a custom

one, as was done in this thesis. Furthermore, it is also possible to customize modules and dif-

ferent arguments to be passed to the layers, as for custom layer-initialisation and so on. Finally,

a number of different types information can be extracted from these models. For example it is

possible to visualise the cost function trend, over the training epochs, and the weights of the

network can be saved along with the model itself.

To conclude, I would like to further stress the remarkable compactness and readability of a

neural network model written with keras. As mentioned before, the Tensorflow framework is

implicitly imported and exploited using keras. This means that if one is willing to exploit GPUs,

as with Nvidias graphic cards, there is the possibility to program powerful parallel calculations

for ANNs without the need to explicitly use a much more advanced language like “CUDA”, built

to program on GPUs, nor the Tensorflow language itself that works also on top of CUDA.

1.3 Neural networks in Science

Thus far, AI and in particular ANNs have had a tremendous impact on Science. One of the

reasons for this is provided by the fact that there are many scientific fields for which there is

an increasing amount of available data to such an extent that it is not possible for the scientists

to keep up with all this information. For example, in Astronomy, this is the case with data

collected by some telescopes or radioscopes. Therefore, on the whole the idea is to let these

algorithms spot correlations that we are unable to highlight. In this sense, the range of possible

applications is immense and crosses many different scientific areas. Particle Physics seems to

be one of the first fields to which neural network were applied. Here, most of the experiments

dealt with particle detectors recording a huge quantity of signals generated by different particles.

Therefore, it is vital to recognize the signal of interest from the background. In this context, the

clear advantage is that ANNs could lead to highly non-linear outputs, thus overcoming common

approaches in terms of event selection. Firstly, ANNs were used in High-energy Physics for

tracking reconstruction in some experiments [26][27]. Later, they started to be applied also to

offline data analysis, as for example to the decay of Z boson [28], or the direct measurement
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of the top quark mass [29]. In particular, LHC has heavily invested on ANN, with fundamental

results obtained by extracting information from high-dimensionality data [30].

Biology is another field in which there is an abundance of data, with databases mainly focused

on amino acids and nucleic acids. ANNs were successfully applied to predicting molecular char-

acteristics from DNA sequences [31][32]. Once again, the non linear nature of these algorithms,

such as DNNs, has provided more complete representations for some biological phenomena.

Another advantage is that in many cases they can be applied directly onto the data without

the need for pre-processing them in order to extract relevant features manually. Remarkably,

DNNs, and in particular the ones involving convolutional layers, found fertile ground with bi-

ological image analysis. For example, they were successfully employed to detect and locate

cells in microscopic images [33], remove noise from neural circuitry images [34] and classify

non-membrane versus membrane pixels for neuronal structures [35].

Another relevant scientific contribution of ANNs is related to the ability to predict the evolu-

tion of certain systems. Kevin Schawinski et al. [36] exploited a “generative” neural network

method, that had been previously implemented to guess the change in human faces aging over

time, in order to study the properties of galaxies turning from belonging to a low-density region

to being satellite galaxies. In the same context, but using a different method, Yoo-Geun Ham et

al. [37] proposed a CNN architecture tailored to forecasting, with an ability to predict El Niño

up to 18 months in advance.

Certainly, several papers in every scientific area - Chemistry, Neuroscience, etc. - could be

found with tasks and achievements similar to the ones reported in the examples cited in this

section. However, it is beyond the scope of this overview to review every type of ANN imple-

mentation within the Sciences. On the contrary, the idea was to shed light on why ANNs are

growing in importance and playing a key role in modern Science. Nonetheless, it must be said

that many scientists have welcomed these algorithms with caution. The reason for this poten-

tial controversy comes from the fact that even when ANNs lead to good predictions, and even

when they outperform common techniques, the question around the impenetrability of the re-

sults remains. The recurrent term that is often heard in this environment is “black box”. More

specifically, an ANN cannot give an explanation of the procedure undertaken to reach a certain

result. I avoid philosophical conjectures about black-box similarity with some aspects of our

own brain. Instead, I underline the fact that, generally speaking, the only way to evaluate the

job of a trained ANN is to examine the answer on the basis of the questions asked. Typically,

explicit information underlying the generated function that maps input into output, such as an

abstract formulation of a model or a procedure, are not accessible.

Interestingly, there are some architectures designed on purpose to directly learn an empirical

model that describes a phenomenon of interest. These fall under the larger context of so-called

“data-driven modeling” (DDM). A good example comes within physical dynamical systems [38]
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[39], where ANNs help to discover the dynamical model that describes the system itself. What

is remarkable with this kind of approach is the possibility to corroborate, either experimentally

or using simulations, the physical validity of the obtained models. In this case, as well, the

“procedure” to obtain a certain model is unknown, however, there might be room for an external

verification. Quoting the authors: “With this explosion of interest [in DNNs applied to Science],

it is imperative that we as a community seek machine learning models that favor interpretabil-

ity and promote physical insight and intuition”. Finally, in the same context, I would like to

report the work from Raban Iten et al. [40]. Here, a neural network method is employed to

discover physical concept from relatively easy (and known) physical systems. For example, the

parameters that describes the pendulum motion or the conservation laws for particle collisions.

1.3.1 Imaging applications

The development of ANNs has been highly influenced by the possibility to solve tasks related

to images. As a matter of fact, one of the first challenges was to provide a correct classification

of hand-written digits. Moreover, it has been observed how the concept of vision in some an-

imals has inspired the idea and realisation of convolutional layers. As a natural consequence,

when these algorithms were made popular, thanks to the novel computational technology, they

started to be successfully applied to many imaging problems. Indeed, possible applications

have already been shown, within this section, when I highlighted the importance of ANNs for

biological image analysis. Typical assignments, within fields like Biology, Neuroscience, and

Medicine, are location and classification. For example, to evidence certain structures of interest

for large amounts of images, or generally to improve the quality of images obtained with certain

imaging techniques such as denoising or enhancing resolution.

With the advent of modern technology, imaging has become more and more dependent on elec-

tronics (i.e. cameras, devices to control illumination, etc.) to such an extent that nowadays it

would sound bizarre to distinguish them separately. For this reason, computation has become of

fundamental importance in order to conjugate and exploit all the factors constituting an Imag-

ing experiment. In general, scientists refer to this evolution as “computational imaging” [41],

beginning in the 1990’s. In this area, the main goal is to optimise or maximize, with respect to

some parameters of interest, the information that can be extracted from a designed experiment.

Thus, computation could be particularly useful whenever it is not possible to achieve a certain

result with common means, or in case a problem is ill-posed or whenever solutions could be

found with less expensive means.

Within this context, a detailed review about the key role played by ANNs for computational

imaging, in Optics, has been offered by Barbastatis et al. in [42]. Here, a schematic representa-

tion of a generic problem of computational imaging is introduced first. As reported in Fig. 1.6,
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Figure 1.6: A generic computational imaging system, using a neural network to tackle the image re-

construction. The essential components are an illumination system, an object of interest, a collecting

system that produces a raw image and a neural network algorithm. This could take contributions deriving

from the operators relative to the illumination and collection processes, or prior knowledge about the

considered system.

this is simply composed of an object of interest, an illumination system, a collecting system and

the computation process that finally delivers the image, in this case a neural network. This illus-

tration shows how the network takes as input the raw images (or signals for Sensing) in order

to predict the image of the object. Therefore, the algorithm is typically trying to approximate

the inverse problem. Moreover, the training process could progress in a continuous compari-

son between prediction and ground truth whenever an appropriate large input-output database is

available. Finally, information about the system, such as illumination and collection operators,

or prior knowledge, could be wisely exploited in order to shape the network in accordance to

some physical and electronics aspects of the experiment, thus helping the system with finding a

more convenient and realistic function that will map input into output.

Four main classes of possible applications, where ANNs have provided a crucial contribution,

are identified:

• super-resolution;

• low-photon and strong noise imaging;

• retrieval of full-complex field;

• scattered light-based imaging.

Super-resolution comes into play for those ill-posed situations such as image upsampling or
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deblurring (examples of ANNs related works are [43][44]). In addition, ANNs have led to im-

portant results for Imaging in dark scenes, or with a high-level of noise, where deconvolution

techniques tends to struggle. Examples for low-photon imaging and denoising can be found in

[45][46]. With respect to the third class, there is a whole set of different techniques that aims to

restore the complex field on a certain plane of the system from a raw intensity image. However,

for many practical cases, the non-linearity of certain ANNs architecture could deeply improve

the reconstruction (i.e. whenever convenient assumptions on the system cannot be adopted).

For instance, this is the case in digital holography techniques [47] or retrieval of a phase object

(encoded on laser beam, propagated through air and collected with a camera) [48].

Finally, the fourth class includes all those systems that involve multiple light scattering, or sim-

ply strong scattering. Examples include complex media such as diffusive opaque materials or

multimode fibres (due to imperfections, bending or other external agents). In these cases, the

typical signature is a strong interference process (or a deviation from its ideal behaviour) that

light undergoes propagating through them, sometimes leading to randomisation. Nowadays,

these systems are widely studied because of their possibility to shape light at the output, trans-

port information to not-easily accessible areas or exploit some correlation properties such as the

memory effect. Recently, the interest to this field has grown progressively, particularly in the

past few years, as a number of related papers that exploit ANN algorithms have been published

[49][50]. Furthermore, there are other relevant scattering techniques such as the non-line-of-

sight techniques (NLOS), where information about objects hidden behind a wall or around a

corner is retrieved. A vast literature could be found on these approaches too, especially in re-

cent times thanks to the crucial technological contribution of high-speed cameras. On the neural

network side, the work of Satat et al. [51] exploits a CNN to classify human poses through a

scattering material from time resolved measurement.

The fourth class also coincides to the part of computational imaging on which this thesis is

based. In the next chapter I will introduce and discuss contributions of this work to this imaging

field.
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Chapter 2

Neural network algorithm for identifying

and locating people hidden behind a corner

Obtaining information on objects of interest that do not fall within the visual field of view, be-

cause of the presence of obstructions, is an important challenge that has attracted the attention of

many scientists over the course of time. Indeed, the demand for possible insights on such hidden

objects or scenes is guided by, and might find application in, particular real-life situations such

as rescue operations, self-driving cars, and surveillance. This particular field takes the name of

Non-Line-of-Sight (NLOS) imaging or sensing, where the distinction imaging/sensing typically

indicates what kind of information is extracted from the data, i.e. whether it is attempted to build

specifically an image or not.

NLOS techniques could be basically subdivided in two main categories: looking behind the wall

and looking around the corner. In practical terms, the main difference lies in the radiation em-

ployed. In fact, in order to overcome a wall the radio wavelength-range is required. However,

this limits strongly the spatial resolution. Nonetheless, imaging or sensing through a wall has

been demonstrated, for example in [52][53][54] .

In this sense, most of the research has been focused on looking around the corners. Even though

detection is possible also through radio or acoustic waves, like with radar and sonar techniques,

in this case there are no limitations related to the wavelength, such as for looking behind a wall.

Thus, a better spatial resolution is in principle achievable, for example using visible light. How-

ever, electromagnetic radiation comes with the highest speed possible in nature. This might not

be an issue when working with large wavelengths and thus with low spatial resolutions that cor-

respond to easily accessible temporal scales; on the other hand, the ability to capture the motion

of light, propagating through a medium, on the centimetre scale requires ultrafast detection sys-

tems with temporal resolutions of about 100 picoseconds.

Within the next sections, I will offer, firstly, a short overview of the most common detection
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systems that can work at these high speeds. Then, possible phenomena and applications that

have been studied thanks to the development of these powerful means will be introduced as well.

In particular, the field that I will be considering takes the name of “light-in-flight” imaging, i.e.

techniques where the motion of light is captured and exploited in order to extract information

about the propagation itself or an illuminated object. In this way, the general context for the

original work presented in this chapter will be illustrated, focusing on the specific problem of

looking around corners, in order to better appreciate the novelty of the addressed challenge.

2.1 High-speed detection systems

When dealing with recording phenomena in the picosecond range, it is evident that no electronic

or mechanical shutter can really work. Thus, it is necessary to rely on other acquisition tech-

niques. Over the last three decades, but in particular over the last one, many different methods

have been developed. A first distinction that might be highlighted is between “gating” methods

and “continuous acquisition” methods [55]. For the former, some of the light is discarded in

order to obtain a temporal sequence; for the latter, ideally all the light is collected and used for

reconstructing the observed event.

There are a number of ways for creating an ultrafast shutter or gate. One way consists in creating

a gating method that works in intensity. In this case, the high-speed element in the system is just

the one selecting the right temporal intervals, whereas the resulting light is recorded by a low-

speed imaging or sensor element. This introduces the need for a system that shifts, in time, the

pulsed illumination respect to the selected temporal intervals. By scanning, the event of interest

can be reconstructed. Even though these techniques are not generally efficient, in terms of the

amount of light collected, it is possible to reach high temporal resolution.

Intensity gating has been achieved in different ways, for example through optical non-linearity,

by time-stretching a spectrum-encoded image or resorting to a quick signal amplifier. Non-linear

solutions were the first to be introduced in 1967 [56]. The light-matter interaction, for some

particular material, can be exploited to create techniques able to achieve temporal resolutions of

the order of picoseconds or even dozens of femtoseconds, for example by taking advantage of

phenomena such as transient birefringence [57] or second harmonic generation [58].

Considering time-stretching approaches, the spatial information of an image is firstly encoded in

the spectral domain; consequently, a dispersive medium is used to stretch the signal temporally

in order to allow the detecting device to resolve this time-dispersed information. The idea of

temporally dispersing the original signal was firstly introduced by Han et al. in [59]. Later, it

was exploited for 1D and 2D imaging as well [60] [61]. In particular, the 2D imaging technique

takes the name of “Serial Time-Encoded Amplified Imaging” (STEAM) and employs a fibre as

dispersive medium. The same fibre is used to amplify the signal as well, allowing the capture
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of a frame through just a single pulse. This is particularly important whenever dealing with

non-repetitive events. For this approach, the temporal window achieved was of 440 ps, with a

163 ns frame rate. Another similar single-shot technique is the “Sequentially Timed All-optical

Mapping Photography” (STAMP) [62], where the temporal resolution is significantly higher,

4.4 trillion frames per second, but limited to few frames. This method relies on separating the

backscattered pulses, encoded with different wavelengths, spatially.

Amplified gating approaches resort to the introduction of a system able to amplify, selectively

in time, a signal in order to achieve ultrafast acquisition. Surely, the intensified-CCD camera

(iCCD) is the most common example of such imaging devices. Referring to Fig. 2.2, the

iCCD presents two main components: the intensifier tube and the cooled CCD. Within the

intensifier tube, a collected light photon (shown in red) is firstly converted into a photoelectron.

Between the photocathode and the phosphor screen the photoelectrons are accelerated thanks to

a potential gradient. Furthermore, the signal can be enhanced using a microchannel plate (MCP)

by up to 6 orders of magnitude [63]. Then, photoelectrons are converted back to photons that

can finally be collected by the CCD detector. ICCD models like PicoStar by LaVision have

at their disposal gates of the order of hundreds of picoseconds. By varying and scanning the

trigger delay between laser and camera one can easily achieve temporal resolutions on the order

of dozens of picoseconds.

Intensifier tube
Cooled CCD

Phosphor

Screen MCP &

Gain Voltage Photocathode

Figure 2.1: Schematic representation of an intensified CCD camera. Inside the main component of the

camera, the intensifier tube, the collected photons (represented in red) are converted into photoelectrons

(represented in blue) and accelerated by an electric field. The resulting signal is amplified and finally

converted back into photons. Then, an image is formed on the CCD.

Gating methods have been realised by taking advantage of the coherence property of light as
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well. For example, “white light interferometry” provides short temporal gates by exploiting the

interference between an illuminating beam and a reference beam. In this case, the gating window

coincides with the temporal window in which the two beams can actually interfere. Moreover,

the shortness of this window is provided by the low coherence length of the two beams. This

technique has been able to deliver a 100 fs temporal resolution [64].

Other coherence gating approaches rely on holographic methodologies, as for the one proposed

by Abramson in 1978 [65]. In this case, coherent short pulses are employed to illuminate both

the scene and a holographic plate, as a reference. By choosing an appropriate angle for this

reference beam, the light reflected by the scene of interest interferes with the reference beam in

different points on the holographic plate. This means that different zones of the plate contain

different temporal information of the scene. Furthermore, short-gating is induced once again by

the low coherence length. In fact, the two beams can interfere only if the distance they covered

is the same.

Continuous acquisition approaches do not fragment temporally the observed event (by means of

shutter or gates), on the contrary, as the name suggests, they attempt to collect the light scattered

from the object of interest continually. In this case, the three main technologies are: Photon

Mixer Devices (PMDs), streak camera and Time Correlated Single Photon Counting (TCSPC).

The idea to avoid discarding part of the light implies that these methods are typically more effi-

cient then the gated ones.

The approaches that exploit the PMD sensors [66] are probably the most inexpensive along

with the coherent gating ones. These methods aim at inferring the time of flight of the photons

bounced back from an object which has been illuminated with a modulated continuous wave

light beam. To do so, multiple acquisitions are required - 2 in the absence of background light,

more otherwise -, each of which corresponds to a different phase shift applied to the illuminat-

ing beam. Apart being cheap, these devices are commercially available - used for example for

videogames - and can provide very high efficiencies; on the other hand, the limited sensitivity,

because of the photodiode technology employed, limits its range of application to a few meters.

As reported in [67], the temporal resolution can reach up to 70 picoseconds.

The components of a streak camera are similar to the ones of an iCCD. In fact, also in this case

the camera disposes of a photocathode, a microchannel plate and a phosphor screen that, respec-

tively, convert the photons into electrons, amplify the signal and converts is back to photons.

Furthermore, a CCD or CMOS device captures the light after the phosphor screen. The differ-

ence lies in the fact that a slit allows only a line of the imaged scene to reach the photocathode,

and, moreover, a field is applied to spatially deflect the generated electrons, before they reach

the MCP. The idea is to keep the dimension parallel to the slit for the spatial information and

the other axes for the temporal information. In this way, the deflections can be analysed in order

to reconstruct the observed scene at ultrafast speed. Nowadays, this is the method with the best
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Figure 2.2: Streak camera internal scheme. This camera allows in just a line - horizontal in this example

- of the total photons (indicated in red) employed to image a scene of interest. The photons are converted

to electrons (indicated in blue) and deflected along the vertical axes by a field that induces a time-varying

deflection on these electrons. The signal is then amplified and converted back to photons to be imaged

on the sensor. Studying the deflections of the electrons it is possible to achieve impressive temporal

resolutions.

performance in terms of temporal resolution. Commercially available cameras can reach a reso-

lution of hundreds of femtoseconds, but, in principle, this is extendable to the attosecond domain

[68]. Issues with the streak camera are related to portability, cost, and to the need for scanning

one line at the time. However, different ways for circumventing this scanning issue have been

proposed. It is worthy to mention the Compressed Ultrafast Photography (CUP) method [69].

Here, single-shot 2D acquisition is realised by resorting to compressive sensing techniques.

Finally, the last method I will overview is TCSPC. The aim of this technique is to provide a

measurement of the arrival time of detected photons. A complete review of this method, its

history and the related technologies, advancements and applications can be found in [70]. In

order to implement photon counting one needs a trigger signal, as a reference to evaluate the

time of arrival, and a collecting device able to convert a photon into a readable electronic sig-

nal. TCSPC technology works electronically, therefore the trigger signal must be electronic too

(might be provided internally by the laser or it needs to be converted externally by a photodi-

ode). Furthermore, photoelectric conversion of single photons typically provides a signal that

is hardly detectable. To circumvent this issue, electron multiplications methods were imple-

mented. Firstly, TCSPC was demonstrated employing the PhotoMultiplier Tube (PMT) [71].

Most recently, TCSPC has been relying on Single Photon Avalanche Diodes (SPADs) or super-

conducting detectors [72].

A PMT is a vacuum phototube commonly adopted for high-sensitivity, low-noise, ultrafast pho-
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ton detection. On one side, these devices typically possess a large collection area; on the other

one, they need to be used in a dark environment and tend to be small-sized. Single-photon

detectors based on superconducting nanowires are devices that have recently attracted the atten-

tion of many scientists. The working wavelength range is typically near-infrared. In this range,

superconducting detectors have demonstrated highefficiency and excellent temporal resolution.

Clearly, they require an appropriate cooling system.

I will now briefly focus on the SPAD detectors, since these are the ones employed for the origi-

nal work reported in this chapter. SPADs are semiconductive photodiodes that exploit the short-

duration avalanche current triggered by a single photoelectric event. This current is generated

by the fact that the diode is set close to its breakdown voltage. To achieve this, the p-n junction

is used in reverse biased mode. As a result, the current can be now detected, and the initial

condition needs to be restored in order to repeat the process again. This happens during the

so-called “dead time”, i.e. when the system is unable to detect any other incoming photon. The

restoring process happens thanks to a quenching circuit that stops the avalanche by changing the

voltage applied to the diode itself; this process takes around hundreds of nanoseconds.

In Fig. 2.3(a), a schematic representation of a TCSPC measurement is reported. A pulsed laser

is used to illuminate a scene and to trigger the TCSPC electronic board. This could be external

to the detector, for example when using a single-pixel SPAD or PMT, or integrated on the device

electronic board, as for the particular example shown of a SPAD camera. Typically, the temporal

window for the observation of the event of interest is set, or limited, by the repetition rate of the

Figure 2.3: Scheme of a general TCSPC measurement. Experiments that involve measurements of the

time of arrival of single photons require synchronization between the detector and the laser for the TCSPC

electronics (internal to the SPAD camera for the example in (a)) to allocate correctly in time the counted

photon. In (b), an example of IRF for a SPAD sensor is reported (obtained measuring a femtosecond

pulsed laser beam). The red points represent the actual measure, whereas the blue is showing the fitting

curve (function described in [73]).
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laser. Once this window is defined, the TCSPC subdivides it into a fixed number of time bins.

In order to populate these time-bins, the time of arrival of a single count is estimated comparing

the trigger signal to the time of the recorded single photon event. After having repeated this op-

eration over a number of iterations, an histogram like the one reported in Fig. 2.3(b) is obtained.

The resulting Impulse Response Function (IRF) is affected by different factors: electronic jitter,

the wavelength-dependent absorption coefficient and the absorption characteristics due to the

design of the detector itself (size of the sensor with respect to the total pixel-size, position of the

sensor etc...). The FWHM of the IRF can reach around 40 ps for the most recent SPADs and 20

ps for PMTs. Moreover, a discrete number or counts must be considered, typically around 102 to

104 photons, in order to build good temporal histograms. However, because of the presence of a

dead time, the possibility to achieve a reliable distribution depends on the photon-counts-over-

laser-pulses ratio. The goal is the so-called “starved regime”, i.e. around 1% of laser pulses

should contribute to a single count. Under these conditions, the probability distribution for a

single photon count is uniform over the whole temporal window. This introduces the need for

a large number of iterations. In practice, to accommodate this need one can resort to a high-

repetition-rate, and sufficiently powerful, pulsed laser.

The TCSPC-related sensors analysed so far were single-pixel detectors. To achieve 2D acqui-

sitions, one solution is to resort to a scanning system either for the illuminating or the reflected

light. Another approach is to directly build a 2D detector as the previously mentioned SPAD

camera. In this particular case, each pixel is a SPAD detector composed of both the semiconduc-

tive diode and the TCSPC electronics. This makes the camera, or SPAD array, easily portable.

Currently, efficiency is strongly limited by the fact that the sensitive part of the pixel is rela-

tively small. The IRFs of these detectors are analogous to the ones in the example reported

in Fig. 2.3(a), with FWHM ∼ 120 ps. Typically, Commercially available SPAD arrays have a

pixel-resolution of 32×32 or 64×64.

2.2 Light-in-flight and related applications

“Light-in-flight” is a term introduced by Abramson, when he attempted to record the motion of

light with his (previously mentioned) holographic technique [65]. Generally speaking, it refers

to a set of techniques that exploit the ability to observe the propagation of light at the picosecond

scale. Historically, the first reason for developing ultrafast optical detection methods, as the ones

presented in the previous section, was simply to display the video of light in motion itself. Light-

in-flight photography was first shown by means of non-linear light-matter interaction: creating

a standing wave inside a particular solution of organic molecules and observing the resulting

fluorescent pattern [56] (1967), and using a shutter based on the Kerr effect in order to observe

the light scattered by the propagation of a light beam through milky solution [74] (1969).
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Later, holographic approaches were considered, starting from the one of Abramson during 1978

[65] [75] and followed by white-light interferometry [64]. Differently from all the other tech-

niques, coherence gating methods do not measure the intensity of the scattered light, but its

coherent amplitude field. Some of the light-in-flight photography results can now be appre-

ciated on Youtube, because of the artistic and educational relevance of these videos [76][77];

others are displayed in Museums as well [78]. Probably the most impressive is the one obtained

through the streak camera in [79][80]. Here, the video is recorded at one trillion frame per

second having the light propagating through a solution that improves scattering. The first time

the motion of light was recorded whilst propagating through air, therefore without resorting to

another scattering medium, was thanks to a SPAD array [81]. In this case, pulses of 500 ps were

observed on a simple optical path in which the light was reflected by two mirrors.

Light-in-flight photography can be used to observe different interesting phenomena. Firstly, to

visualise the propagation of light in different media such as fibres and slow-light media. For

example, a SPAD camera has been used to study the supercontinuum generation derived from

the propagation of light pulses in a photonic crystal fibre [82]. In order to record this broad-

spectrum event, a set of different filters were put in front of the camera, each one for a different

wavelength. In this way, it was also possible to investigate the chromatic dispersion of this fibre

[83].

Other dispersive media considered for light-in-flight photography were the slow-light ones, i.e.

media that can induce very low group velocities to the light propagating in it [84]. In particular,

SPAD detectors were applied to situations where sensitivity of single photons was required [85].

The fact of dealing with the light on a scale in which it cannot be considered to be propagating

at infinite speed can raise interesting distortion imaging effects. In fact, whenever attempting to

image an object at relativistic speed one must take into account the actual time in which the light

reaches the camera, since this will be now comparable to the temporal scale of the motion of

the object itself. Two main distortions have been studied: “shearing” and “temporal inversion”.

The shearing effect was firstly introduced and studied by Duguay and Mattick in 1971 [57]. As

an example, it is possible to give the illusion that two pulses that are reflected at two different

depths, from an observed scene, will arrive in the same exact time just by accurately adjusting

the position of the sources of the two pulses in such a way that these pulses will share the same

optical path length. In the same way, objects propagating transversely with respect to the cam-

era, but at different depths, will not appear overlapped because of the additional time that the

light of the more distant object takes to reach the camera.

Time inversion, at these speeds, can be generated using appropriate geometries [86]. In this

work, the authors were able to demonstrate also an apparent superluminal propagation and to

show transition from superluminal to subluminal propagation. This transition led to the obser-
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vation of image pair creation and annihilation.

The principle of light-in-flight photography can be used to image repetitive ultrafast events dis-

tinct from the propagation of light itself. Thanks to the high-speed cameras, it has been possible

to image the effect of focusing a femtosecond laser pulse, thus generating an ionised plasma at

the focus [81] using a SPAD camera or observing light filamentation effects [87] by means of a

streak camera.

2.2.1 Looking around the corner

I will now focus on one of the main applications of light-in-flight: looking around the corner.

As already mentioned in the introduction to this chapter, looking around the corner is part of a

larger context, NLOS, that aims at retrieving information about objects that are not in the direct

line of sight, such as targets hidden behind a corner or a wall. Nonetheless, here I will dis-

cuss those specific scenarios in which the presence of an obstacle is overcome by resorting to

multiple-scattered light. Generally speaking, this might apply also to seeing-behind-walls sce-

narios. However, seeing-behind-walls typically refer to those techniques that rely on radiation

that can directly bypass the obstacle (wall). Furthermore, since the wavefront of a laser pulse

bouncing off a wall can be considered approximately spherical, the more scattering events the

less detectable and more complex the resulting signal will be (because the intensity decreases

with distance, and due to possible scattered-light superpositions [88]).

In Fig. 2.4, a typical looking-around-the-corner layout is illustrated. Generally, a pulsed laser,

such as the one reported in the scheme, is employed for this kind of experiments. In order to

overcome the obstacle, the pulsed laser beam is pointed towards a wall; in this way, the light is

now scattered in all directions and thus can illuminate also the hidden object. Another scatter-

ing event occurs when the light hits the object. Part of the resulting backscattered light will be

directed towards the camera field of view and can therefore be collected.

How to exploit the information encoded on the back-scattered light depends on the experimental

conditions and the final goal. In this sense, research has evolved in two main directions: 3D re-

construction and object-tracking. Full-3D reconstruction typically relies on bulky cameras and

time-consuming algorithms. However, there are many practical situations, such as locating the

position of a hidden target, for which a 3D reconstruction is not required. In these cases, the

information carried by the back-scattered light can be aptly reduced. Thus, the way in which

data are collected and analysed may be very different for the two methods.

Looking-around-corners 3D reconstruction is based on finding the inversion of the operator that

maps the 3D geometry of the hidden scene into the data measured by the camera. Clearly, know-

ing the scene and the condition under which it is illuminated, it is relatively easy to simulate the
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temporal distribution of the light propagated and then collected by the camera. On the contrary,

solving the inverse problem is more demanding. The first to attempt to estimate this inverse

operator were Velten et al. in [89]. Their algorithm consisted of a filtered backprojection. In

particular, the projection method exploited the assumption of three scattering events in order

to simplify the problem, whereas the filtering operation was focused on extracting surface fea-

tures. Using a streak camera, they were able to provide an effective IRF of 15 ps and, in this

way, demonstrate 3D reconstruction, with a 1 cm lateral spatial resolution, of objects with size

of dozens of centimetres. Further feature extractions were performed in [90] by the same group.

Later, Heide et al. proposed a method that could provide 3D reconstruction relying on a less

bulky detection system, the PMD, and an algorithm based on convex optimisation [91]. SPAD

detectors were introduced into looking-around-corners by Buttafava et al. [92]. In the work of

O’Toole et al. [93], a single-pixel SPAD detector, exploited in a confocal scanning configura-

tion, was employed to retrieve the 3D geometry of hidden objects at relatively high speed. This

convenient solution could provide fast high-resolution reconstructions thanks to a lighter com-

putational approach. On the other hand, the object to be imaged required a sufficient reflectivity

with respect to the background.

Object tracking was first performed with a streak camera in [94]. In this case, it was possible to

Laser

Object

Camera

Figure 2.4: A typical looking-around-the-corner setup. A pulsed laser illuminates the hidden target ex-

ploiting the scattering that occurs on the wall. The light that bounces back undergoes a second scattering

on the wall and, in this way, can be collected by the camera. Therefore, a minimum of three scattering

events must occur for recording information about hidden targets using this technique. A top-view section

of the ellipsoid (orange line), representing all the points that share the same time-of-flight of the light that

propagates from the laser to the camera (green line) illuminating a specific point on the hidden object, is

shown.
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retrieve both size and direction of hidden objects by subtracting consecutive frames in order to

isolate the targets from the background. Gariepy et al. introduced two new elements to locate

an object in real time [88]: SPAD detectors and a triangulation algorithm. In fact, focusing on

the position only, a simplified and quick algorithm can be considered. Referring to Fig. 2.4, it

is evident that the symmetry of the problem implies that the signal reaching the detector can lie

on an ellipsoid defined, in particular, by the position of “A” and “B” on the wall (in other words,

the points belonging to this ellipsoid will share the same time-of-flight). To isolate the correct

position, the authors employed more single-pixel detectors by resorting to a 32× 32 SPAD ar-

ray. In fact, since each pixel looks at a slightly different zone on the wall, triangulation can

be achieved by intersecting the different ellipsoids obtained from the different pixel-detectors.

Allowing enough distance between the single-pixel detectors can also help the triangulation cal-

culation. Furthermore, it was shown that two detectors are enough to identify the position of

certain targets when some prior knowledge about the shape of these targets is provided. SPAD

detectors turned out to be particularly useful because of the poor intensity of the backscattered

signal typical of this experiment. In [95], the authors achieved long range location and tracking

of human targets, for distances of ∼ 50 m. Moreover, these measurements were performed with

an infrared laser in an environment with daylight (using an appropriate filter), thus demonstrat-

ing the applicability of such techniques in a more realistic context.

Interestingly, looking-around-the-corner was also demonstrated without the need of a pulsed

laser [96]. In this case, the illumination of the hidden scene was provided by a continuous wave

laser and the backscattered light recorded with a common CCD camera. The authors could

achieve object tracking by developing an algorithm able to compare the simulation of the mul-

tiple scattering event to the measured field by exploiting prior knowledge about the shape of the

hidden object.

The original work presented within this chapter proposes a different approach to the looking

around the corner problem. Considering a situation with experimental conditions analogous to

the one reported in Fig. 2.4 and employing just a single-pixel SPAD detector to collect the light,

one could ask: what is the amount of information contained in a temporal histogram measured

with such a single-pixel detector? What kind of information can be extracted or exploited?

Clearly, under these conditions it is extremely difficult to provide a forward model that could ac-

curately describe this multiple-scattering problem, having 3D spatial information encoded on a

1D temporal histogram. In this work, a neural network algorithm is proposed in order to extract

specific information from the single-pixel histogram without the need for solving explicitly the

problem. In particular, is it possible to both locate and identify a human hidden target? Gener-

ally, looking around the corner techniques are demonstrated on targets of a relatively small size.

The idea of using human individuals poses the challenge within a more realistic and unexplored

scenario.
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2.3 Experimental layout & procedure

The experimental layout is represented in Fig. 2.5(a). The scheme is designed as a typical

looking around the corner setup. A pulsed laser source (with a repetition rate = 80 MHz and

λ = 808 nm) is pointed toward a wall where a first scattering occurs. Part of the light can reach

the hidden target. Thus, the light backscattered from the hidden target can be captured by the

detection system.

As was mentioned earlier, the hidden targets are human individuals shown in Fig. 2.5(b)(c) (d),

with relative heights 1.68 m, 1.57 m and 1.87 m. I will refer to them, respectively, as individuals

“n.1”, “n.2” and “n.3”. The measurements are performed both with different clothing, shown in

Fig. 2.5(b)(c)(d), and with the same clothing, reported in Fig. 2.5(e) (for simplicity, in this case

it is only reported for the individual “n.3”).

Furthermore, the subjects were placed in 7 different positions (“A”, “B”, “C”, “D”,“Db”, “Df”,

“E” and “F”), as displayed on the floor in Fig. 2.5(a). The 5 positions “A”, “B”, “C”, “D” and

“E” are located in such a way that the recorded photon-time-of-flights are similar. In practice,

once the position of the target, laser and detection system are fixed, the time of arrival of the

photons depends only on the location of the two points where the light is scattered from the

wall. As for the triangulation example, the locations that share the same time-of-flight lie on an

ellipsoid. The closer the two points on the wall, the more the ellipsoid collapses into a sphere.

Therefore, these two points are kept reasonably close to each other, such that the target positions

are easy to locate on the right ellipsoid. In contrast, “Df” and “Db” are put in front and behind

“D” along the ideal “radial” direction.

As previously explained, this experiment aims at extracting information about position and iden-

tity of different hidden targets using just a single-pixel detector. However, the idea of relying on

a neural network algorithm to achieve this goal implies the need for a sufficiently large amount

of (single-pixel) measurements, i.e. temporal histograms, in order to train the network itself. To

accommodate this need, a SPAD array is employed. As a matter of fact, the SPAD array con-

sidered in the experiment consists of 32×32 independent single-pixel detectors, each one with

an IRF of ∼ 120 ps. An objective is used to set the field of view of this array on the wall. The

choice of the actual size of the field of view is driven by the need for a homogeneous training

dataset. Since the IRF corresponds to a depth resolution of 3.6 cm, in order to avoid an exces-

sive variability among the detected histograms the size of the field of view must be comparable

to this value. Indeed, it has been experimentally observed that an optimal solution for the size

of field of view is 3× 3 cm2. A smaller size would have led to a poor variability among the

dataset. To synchronize the SPAD and the laser pulse, I made use of an external trigger (Becker

& Hickl OCF-401 ), omitted for simplicity in Fig. 2.5, which is illuminated by a small fraction

of the light at the laser output. The acquisition of a single measurement takes 2 s, thus relying

on 160×106 laser pulses.
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Figure 2.5: Representation of the experimental layout. Pulsed laser light, λ = 808 nm and rep. rate = 80

MHz, is scattered in all directions after hitting the wall. The hidden human target is thus illuminated,

and the light backscattered is collected by means of a SPAD camera. Simultaneously, 800 temporal

histograms are obtained on an area with size ∼ 3× 3 cm2. 5 measurements have been taken for each of

the three individuals reported in (b) “n.1”, (c) “n.2.” and (d) “n.3”, in each of the seven positions drawn

on the floor. The same procedure is repeated also with the individuals wearing the clothing shown in (e).

Figure adapted from [1].

Once the “hot-pixels” (pixel reporting incorrect photon-counts) are discarded, 800 histograms

are obtained from each SPAD array shot. In Fig. 2.6, examples of these temporal histograms,

collected in a single take, are reported. In particular, Fig. 2.6(a) shows 6× 6 samples from a

single take (or measurement) with the target “n.1.” in position “C”. Moreover, in Fig. 2.6(b)

single histograms from the same pixel of the three individuals, wearing the same cloths, in po-

sition “C” are presented. The time binning for each histogram is 55 ps. As can be observed, on

one side a consistent variability among the histograms of a single take can be appreciated; on

the other one, the difference between the histograms of the three individuals is made evident.

Nonetheless, it can be observed that there is no prior information about the individuals that can
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easily address and determine these differences. As a matter of fact, the targets share similar

heights, widths and photon counts. Moreover, it is not evident how these and other more subtle

features will contribute to the final measured histogram. In this sense, the idea of having most

of the positions sharing a similar time-of-flight - by lying on the ellipsoid - is to allow the net-

work to focus on those features and determine an internal representation for this classification

problem based more on the shape of the peak with respect to its temporal position.
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Figure 2.6: Examples of 6× 6 histograms from a single measurement for individual “n.1” in position

“C”, reported in (a). In (b), comparison between histograms of the three individuals, same position “C”,

taken from the same pixel. Time binning is 55 ps for all the histograms. Figure reprinted from [1].

Five measurements (800 pixels each) are acquired for each individual in each position. The

procedure is as follows: fixing a position, three measurements are taken by alternating the three

individuals (facing the wall along the ideal radial direction); then, the same operation is repeated

for the remaining 6 positions; finally, these steps are repeated four other times, thus obtaining

the five different measurements. Furthermore, the same procedure is repeated for two different

cases: same clothing and different clothing. An initial background measurement is obtained

and subtracted from each other measurement. This operation is undertaken to help identify the

peak. However, on one hand, it has been demonstrated in other papers [88] that the background

can be easily calculated by averaging over many frames when capturing the motion of a hidden

object; on the other hand, the network can, in principle, learn to isolate the actual signal from

the background on its own. Nonetheless, it was judged to be beyond the scope of this project to

provide an in-depth verification and analysis of these aspects.
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2.4 Method

A non-linear neural network classifier is employed in order to distinguish the histograms with

respect to location and identity of the corresponding hidden target. In this sense, the features

that indicate the presence of a certain individual in a certain position are not found thanks to

an explicit mathematical model. Instead, these are identified implicitly by the ANN algorithm

as a result of a learning process based on observing a large number of histograms. In particu-

lar, in this experiment the algorithm used was characterised as supervised training. Therefore,

individuals and positions are treated as classes and the network is built in such a way that the

predictions about identity and location of the input histograms can be compared to the ground

truth class-labels during the training process. More precisely, the classes have been encoded

thanks to an “one-hot” representation [17] with Ni = 3 binary outputs for the individuals and

Np = 7 binary outputs for the positions.

The aim of the network is to provide a simultaneous classification of both location and iden-

tity. Therefore, the cost function to be minimized is defined as the junction of two distinct cost

functions, one for the positions and one for the people. In particular, the single cost functions

are both categorical cross-entropy losses. As described in Chapter 1, where this type of cost

function has been introduced, this is a typical choice when dealing with a multi-class classifi-

cation task. For the α-th input sample, being yi
α, j the predicted output for the j-th individual

and yi
α, j the respective ground truth class label, the loss function for the classes of individuals is

expressed as:

L
i

α =
Ni

∑
j=1

(
yi

α, j lnyi
α, j +(1− yi

α, j) ln(1− yi
α, j)

)
.

In the same way, for location, indicating with y
p
α,k and y

p
α,k the predicted position and the ground

truth for the k-th position, the cross-entropy loss is

L
p

α =
Np

∑
k=1

(
y

p
α,k lny

p
α,k +(1− y

p
α,k) ln(1− y

p
α,k)

)
.

Therefore, the complete cost function L to be minimised over the M samples of the training

dataset is:

L =− 1

M

M

∑
α=1

(
L

i
α +L

p
α

)
.

The architecture of the network is built allowing the input histograms to be processed in parallel

by two different type of layers: fully-connected (or dense) and convolutional. The basic idea is

to exploit the translation invariant and scale-free nature of the convolutional layers to focus on

those features that can be extracted from the shape of the histogram peak despite its temporal

location. On the contrary, the dense layer can alternatively provide more information related to
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the distance as well.
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Figure 2.7: Schematical representation of the ANN architecture. Input histograms are processed in

parallel using a fully-connected layer and convolutional layers (100 filters). The resulting outputs are

concatenated and another pair of fully-connected layer produces the final outputs, thus obtaining, simul-

taneously, both position and identity. Figure reprinted from [1].

A schematic overview of the network is available in Fig. 2.7. As it can be observed the input

histogram is fed, in parallel, to both groups of layers. Here, the convolutional side consists of

a series of convolutional layers, normalised by batch normalisation layers [97] and followed by

max-pooling layers in order to down-sample the output of each convolutional layer, apart from

the last one. The convolution is mono-dimensional, having the size of filters for the first two

layers 10×1 and 5×1 for the other ones. The number of filters is 100. The output of this group

of layers is concatenated to the fully-connected layer. This fully-connected layer has also been

batch normalised. Furthermore, dropout layers are used after each fully-connected layer in the

network in order to help the generalisation of the result. All the activation functions used up to

this point of the network are the non-linear “ReLu” [98]. Finally, two fully-connected layers are

applied separately to the result of the concatenation. These layers produce the output predictions

on location (Np outputs) and identity (Ni outputs). In this case, the softmax activation function

is applied to these layers, as for usual classification tasks. Moreover, the cost function, that

compares the predicted class labels to the ground truth ones, is minimized using the stochastic

gradient descent, with learning rate = 0.001 and Nesterov momentum [99].
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The neural network has been implemented in Python resorting to the Keras library. In Appendix

A, an example of the code is reported.

2.5 Results

After having acquired the data and defined the network model, the algorithm is ready to be tested.

A “leave-one-out” cross-validation process is employed: having at its disposal 5 measurements

(800 histograms each) for each individual in each position, the network is trained with only 4

out of these 5 measurements and the remaining one is left for the testing process. Then, the same

procedure is repeated for all 5 of the permutations and the results are averaged.

First, the case of the three individuals wearing different clothing is considered. The results,

reported in Fig. 2.8, are visualised by means of the so-called confusion matrices, one for the

location and one for the identity, that compare the correct class-labels (“truth” on the vertical

axes) versus the ones predicted by the neural network (“prediction” on the horizontal axes).

Thus, a good classification implies a strong diagonal (with a maximum of 1). For each of the 5

permutations a confusion matrix is obtained. Therefore, the matrices shown in Fig. 2.8 are the

average of the 5 matrices with relative standard deviation.

Figure 2.8: Results for the “different-clothing” case. Confusion matrices are used to help visualise the

data. On the vertical axes. the ground truth classes are reported, and, on the horizontal axes, the network

predictions. The results are averaged over the 5 measurement-permutation predictions. Two matrices are

shown: (a) location and (b) identity. Figure reprinted from [1].

The location matrix in Fig. 2.8 (a) confirms that the two positions with different time-of-flight

with respect to the other positions (i.e. “Db” and “Df”) are the easiest to be classified correctly.
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Clearly, this happens because of an evident temporal shift for the peak. The network perfor-

mance decreases slightly for all other positions. However, it can be observed that, the highest

percentages still lie on the diagonal and the largest misclassifications (a maximum of 26%),

occur only for contiguous positions. Among the positions that share similar time-of-flight, the

easiest to be classified seems to be position “A”. A possible explanation for this might be related

to the fact that the real wavefront, generated by the scattering on the wall, could be not entirely

spherical and present some preferred direction. Thus, since “A” is the closest position to the

wall, this might introduce a further element of distinction for the relative histograms by influ-

encing the way in which this position is illuminated.

Figure 2.9: Results for the “same-clothing” case. Data are reported with the same approach employed

for Fig. 2.8. Figure reprinted from [1].

Considering Fig. 2.8 (b), the classification for the individuals is almost perfect. Indeed, the

different reflectivity properties of the clothing that the individuals are wearing might play a key

role. To verify whether the network is still able to correctly distinguish among the individuals

when these are sharing a similar reflectivity, the same experiment is repeated with the targets

wearing the same clothing (shown in Fig. 2.5(e)). The results for this second case are reported

in Fig. 2.9. It can be observed that the predictions for the positions are basically unaltered

and consistent with the ones from the different-clothing case. On the other hand, the results for

the identification of the targets present now a small misclassification between individual “n.1”

and individual “n.2”, reaching about 10%. Because of the similar reflectivity, the neural net-

work should be now focusing more on aspects related to the overall shape of the hidden targets.

Seemingly, the network is spotting the difference in height between the first two individuals and

individual “n.3”. The classification performance for “n.1” and “n.2” is nonetheless surprising,
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especially taking into account that the 120 ps temporal resolution of the SPAD detector is insuf-

ficient to provide 3D facial details in these conditions.

A different approach for visualising these results is proposed and applied to the same-clothing

case. The idea is to report the classification percentages for each of the 5 measurements, and

thus not averaging as in the previous case, in order to gain more insights about possible sources

of misclassification. As shown for the example in Fig. 2.10, the results for the individuals are

reported within a 7× 3 grid. The columns represent the ground truth positions, whereas the

rows represent the ground truth individuals. The percentages are obtained over the 800 pixels of

a single measurement.

As expected from Fig. 2.9, most of the misclassifications happens between the individuals “n.1”

and “n.2”. However, it is noteworthy that the majority of the measurements have a classification

percentage close to 100%. Instead, typically just one measurement out of the five has a largely

incorrect prediction. This non-uniform distribution of results suggests that misclassification

should be related to a limited capacity, of the ANN, to interpret the differences between the

different measurements. In this sense, errors related to the repeatability of the camera (possible

differences in target-poses or illumination, etc.) might introduce a variability that has not been

fully captured in this dataset.
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Figure 2.10: Classification percentage results for individuals visualised for each measurement-

permutation. Columns and rows represent the different ground truth labels for individuals and positions,

respectively. Each element shows the individual prediction for the 5 measurements. Figure reprinted

from [1].
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2.5.1 Alternative architectures

A number of different neural network architectures have been proposed and tested on the same-

clothing data. In particular:

• a simplified version of the algorithm reported in Fig. 2.7 (with less convolutional filters);

• a network with only fully-connected layers (i.e. excluding the convolutional layers group);

• two separated classifiers (fully-connected networks) for position and identity.

Furthermore, these different architectures have been considered with either a Gaussian noise

layer included or not. The idea of applying a Gaussian noise layer - directly to the input his-

tograms - is to help the algorithm to overcome a possible broad variability among the pixels due

to the different noise realisations among the detectors.

With respect to the model reported in Fig. 2.7, the convolutional simplified version presents a

reduced number of filters (from 100 to 32) with size 5× 1 for each layer. Moreover, the max-

pooling is now replaced by average-pooling and batch-normalisation layers are removed.
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Figure 2.11: Comparison of the results for the different architectures. (a) the model presented in Fig.

2.7; (b) model (a) with added Gaussian noise layer; (c) simplified version of model (a) with less filters

(32) of size 5× 1 per layer; (d) model (c) with added Gaussian noise; (e) only fully-connected layer;

(f) model (e) with Gaussian noise layer; (g) fully-connected models applied separately for identity and

position. Figure reprinted from [1].
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In Fig. 2.11, the results for these different approaches are shown. The models have been tested

through the same leave-one-out cross-validation approach (i.e. averaging over the results of the

5 measurement-permutations) although only the correct classifications are now being reported.

It is noteworthy that the performances of the different approaches are similar. Indeed, the fact

that no main improvements are observed by changing the network model might be related once

again to an insufficient representation of the variability of the data, thus indicating the need for a

more controllable or larger dataset. On the other hand, Fig. 2.11(g) seems to indicate that learn-

ing simultaneously both location and identity might improve the overall classification. Possibly,

this is related to a deeper capacity of the network to build a more realistic representation of the

observed scene when dealing with both the location and identity classes.

In conclusion, the quest for an ultrafast optical detection system has paved the way for excit-

ing and novel techniques related to the capacity of freezing light at the centimetre scale. In

particular, SPAD detectors have demonstrated a single-photon sensibility in conjunction with

short response functions. In the experiment proposed, a single-pixel SPAD detector has been

employed for retrieving information about human targets hidden behind a corner by exploiting

multiple light scattering. Since 3D spatial information is encoded in a single temporal histogram,

the complexity of the problem does not allow to resort to a simple forward model. Nonetheless,

a neural network algorithm has been used to provide correct classification of these histograms

with respect to 7 designed positions and 3 individuals. Results have shown that the network

predictions are in good agreement with the ground truth for both the cases of individuals sharing

a similar reflectivity or not. Unfortunately, for this supervised network it is not possible to pro-

vide results for individuals or positions that do not belong to the training dataset. Furthermore,

the idea of dealing with a more realistic scenario, thus having real human targets as opposed to

small size objects commonly adopted for NLOS techniques, might introduce further elements of

variability that have been not entirely captured by the proposed training dataset. Other sources

of misclassification might be related to the sensor itself, which exploits multiple single-pixel

detectors in parallel. In this sense, future work will be focused on the reproducibility of these

results in a more controlled environment and the possibility to test this method on more chal-

lenging situations (for example with more individuals, different poses). Nonetheless, this work

has served as a proof of concept with the possibility of extracting information about hidden

targets in an ill-posed situation such as a 3D information collapsed into a 1D histogram. This

might open up the possibility of further unsupervised methods with the ability to determine the

2D location of a hidden target on a not-prearranged set of position, for example exploiting 2D

polar coordinates.
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Chapter 3

Complex-valued network for transmission

of natural scenes through multimode fibre

3.1 The need for optical fibres

The ability to transport light has always been of paramount interest in order to exchange infor-

mation and interact with hardly accessible or distant places. Medicine, Neuroscience, Commu-

nication: the demand for reliable optical means to guide light is essential within this modern

era, with applications ranging from channelling huge amounts of data to providing good quality

in-vivo images.

Most commonly used within this context, the optical fibre is a type of waveguide which typi-

cally presents a cylindrical symmetry. The fibre internal core is encircled by the cladding that

consists of a material with a different refractive index with respect to the core (the cladding

refractive index is lower). It is exactly this gap in the refractive index that forces the light to

propagate within the core, thanks to total internal reflection. The reason why these waveguides

are so widely used is because of their flexibility, which makes them particularly easy to handle.

Nonetheless, whenever a wave is confined, its propagation ceases to be free and, on the other

hand, has to satisfy precise mathematical relationships, defined by the geometry of the confining

medium and by the characteristics of the wave propagating in it, named “modes”.

If the diameter of the core of the fibre is particularly small (typically around 8µm), there is the

possibility that the fibre will allow just a single mode. Indeed, the term generally adopted in this

case is “single-mode” fibre. This fibre is preferred for communication over very long distances

because of the reduced power losses relative to an electric cable or a fibre with more modes. For

example, considering the fibres that transmit high-speed internet inside cities, the information

is encoded in the shape of a temporal signal, as a matter of fact, a single-mode fibre can only

allow the transmission of a single mode (two if the polarization is considered as well) with an

approximately Gaussian spatial profile [100]. As a consequence, it is not possible to transmit

a more complex spatially-shaped signal, such as an image. The only alternative to temporally
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encoding the information is to exploit a large number of single-mode fibres in parallel, each one

carrying a different part of the original wavefront. This takes the name “fibre bundle” and it

is the technology commonly adopted for endoscopes in Medicine or other fields. Nonetheless,

this bundle presents strong limitations, in fact, whenever coherent light is used a strong coupling

effect might arise if the single-mode fibres are too close, thus corrupting the image or signal. On

the other hand, if the fibres are kept too far from each other, a pixelation effect will take place

[101]. This poses a severe constraint on the use of fibre bundles for high-resolution imaging,

where a large number of pixels is involved.

An alternative approach is to resort to “multimode” fibres. In this case, an image could be simul-

taneously coupled onto the multiplicity of modes allowed by the fibre. Furthermore, it can be

demonstrated, through simple considerations, that the number of modes per unit of area could

be up to a hundred times greater relative to fibre bundles [102]. Despite this evident advantage,

the multimode fibre is characterised by a strong distortion that affects the signal at the output.

This is the result of the interference between the different modes, excited inside the fibre, each

one traveling with a different speed. The scrambled pattern takes the name of “speckle pattern”,

or simply speckle. In Fig. 3.1, an example of speckle patterns measured at the output of a fibre,

with the respective coupled inputs (amplitude encoded patterns), is shown. This happens when

the light is coherent, otherwise the modes are incoherently mixed (resulting in a uniform blob).

Figure 3.1: Example of distortion of an input pattern after being propagated through a multimode fibre.

In this case a 28×28 amplitude image is coupled into the fibre. By changing the illuminated input pixel

the output presents a completely different speckle pattern. Figure adapted from [3].

From a theoretical point of view, once the fibre is perfectly characterised, i.e. knowing length,
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core diameter and refractive index profile, along with the radiation properties, the speckle field

could be unscrambled in order to recover the original image or, similarly, the propagation of

the light inside the fibre could be simulated. As a matter of fact, by assuming no losses, the

system is linear and the propagation of the modes can be easily predicted. However, this is no

longer true in practice. In a real fibre, imperfections, bending and temperature gradients can

vary the refractive index locally and thus introduce coupling between modes. This represents a

serious issue because, for example, internal imperfections cannot be characterised a-priori nor

measured. As a consequence, for many years multimodes fibres were largely treated as random

objects, i.e. as completely disordered media.

(a)

(b)

(c)

Figure 3.2: Schematic representation of three different optical fibres: (a) single-mode fibre, (b) step-

index multimode fibre and (c) graded-index multimode fibre. The propagation is visualised in the form of

light rays. In (a) just a single mode is allowed. In (b) different modes follow different paths thus leading

to dispersion. The step-index profile is shown too. In (c) the parabolic-like refractive index profile

minimises the dispersion with respect to (b), as the modes are periodically focused. The acceptance cone,

indicating the possible angles of incidence allowed for the input light rays, is shown in gray. d indicates

the diameter of the core. Typically, single mode fibres have a step-index profile, but they can be found

also with graded one.

Referring to Fig. 3.2, commercially available multimode fibre can be distinguished into two

main categories based on their refractive index profile: “step-index” or “graded-index” (GRIN).

Considering a geometric-Optics approximation, modes can be associated to light rays. In the

step-index case, the difference between the two refractive indices, core and cladding, forces

total internal reflection of some light rays because of the Snell law, thus trapping the light.

This defines a maximum angle of incidence above which the light is no longer reflected but
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refracted. The numerical aperture (NA) is commonly used to indicate the sine of this maximum

angle. Since different modes follow different paths they will be spread in time (apart from the

symmetrical ones relative to the cylindrical geometry), as said before. This phenomenon takes

the name of “modal dispersion”. In the case of a graded-index profile, the light beams follow

sinusoidal paths because of the particular continuous change of index of refraction along the

radius. Ideally its profile, as represented in Fig. 3.2(c), is parabolic. A precise definition of the

NA is debatable for a GRIN fibre; sometimes it is estimated in a similar way to the step-index

case. Finally, the number of modes can be roughly calculated for both the types of multimode

fibres.

3.2 Imaging through a multimode fibre

Early attempts to employ multimode fibres as imaging means include image encoding/decoding

and optical phase conjugation. In the first case, transmission of images was demonstrated by

means of spectral and spatial encoding in [103], a technique limited to a few meters range, and

wavelength-time encoding [104]. Phase conjugation has been a long-standing research tech-

nique that aims to heal possible distortions that might affect a propagating wave by considering

its phase-conjugated wave, i.e. a wave with the same complex field propagating in the oppo-

site direction. In the context of multimode fibre, this was demonstrated firstly using different

holographic approaches [105] [106]. During the past few years, an alternative was proposed in

order to remove the holographic material, called “digital phase conjugation”, that was applied

to multimode fibres, both in order to focus and scan a spot at the output [107]. This was made

possible thanks to the introduction of devices that could vary the phase of a laser beam, such as

the spatial light modulator (SLM).

In parallel, another method to compensate the distortion was introduced under the name “trans-

mission matrix” (TM). This approach, although it might be defined in different ways, cuts across

different disciplines such as acoustic, seismology or communication, because it could be used for

scattering problems due to propagation through disordered media or for interference phenom-

ena for antennas communication. Within these contexts, basically it states that the propagation

between two arrays, input and output, can be described by a single matrix T . This approxi-

mation of the propagation just makes sense if the system can be considered effectively linear

and deterministic. Indeed, this corresponds to the present case as well, taking into account the

description of multimode fibres previously proposed. Thus, the relationship that maps the input

x of the output y could be simply written as y = T x, or more explicitly as yi = ∑ j Tjix j. In order

to empirically measure T , the first step is to define a base for the input and a base for the output.

In this way, by propagating each of the input-base elements and measuring the relative outputs,

the transmission matrix T can be completely described. As can be noticed, supposing that the

propagating field is complex, control of both amplitude and phase for both input and output is
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required to obtain the complex TM. This request can be easily matched for acoustic and electro-

magnetic waves where commonly available point-like emitters and receivers work both in phase

and amplitude. However, this is not the case in Optics, where it is more problematic to shape

the illuminating field. Furthermore, obtaining the output phase requires dedicated techniques,

usually interference with an external beam.

On the other hand, early attempts to control light at the input of a disordered medium in order to

unscramble its output field can be found around ten years ago. With the developement of wave-

front shaping devices some “brute-force” methodology, i.e. direct search of the best input-phase

pixel-configuration in order to focus the beam in specific points, was applied to both complex

media and multimode fibres [108][109]. The measurement of the empirical transmission matrix

represents an extension of this technique as it aims to provide a complete or more general de-

scription of the input-output relation and, therefore, of the transmission matrix itself that in the

previous approaches was treated as an unknown.

The transmission matrix was firstly measured by Popoff et al. for an opaque material and was

used for both focusing [110] and retrieval of a transmitted image [111]. In both the cases, the

idea was to collect the speckle patterns resulting from the self-interactions between an internal

reference beam, in order to avoid stability issues, and the different elements of the Hadamard

base [112]. In the same period, other approaches were proposed in order to obtain the transmis-

sion matrix, as scanning the angle of incidence of the input beam [113]. Instead, Cizmar et al.

where the first applying their own optimisation method [114] also to multimode fibre [115][116]

using input beamlets generated by an SLM as input and providing control over the full complex

field, polarization included.

A number of papers have been exploring the possibility of enabling the utilization of multimode

fibres as endoscopes, with techniques that involve measuring the transmission matrix [102] [117]

or rely on digital phase conjugation [118].

Furthermore, a major effort was carried out by Cizmar’s group [119] to demonstrate that not only

the input-output relationship can be measured for multimode fibres, a deterministic system, but

also the internal propagation can be predicted and controlled. This was made possible by consid-

ering the cylindrical symmetry of the system and thus developing a complex model taking into

account possible practical-theoretical system differences and contribution from internal imper-

fections. This result strongly differentiates a multimode fibre from a complex fully-disordered

medium. On the other hand, despite the surprising results achieved, such as allowing bending in

a controlled environment, this technique could only work with fibres up to 30 cm long. Regard-

ing bending, another work investigated an analogous but much simpler model made possible by

switching from a (commonly used) step-index multimode fibre to a parabolic-index, or quasi-

parabolic-index fibre as the GRIN one [120].

In conclusion, it is important to note that all the approaches seen so far were experimentally
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enabled by the introduction of control over phase in the system. This might represent a problem

in particular for the output of the system where phase-measurement techniques might involve

interferometry approaches, leading to possible stability issues. Furthermore, it has been appreci-

ated how the two most common techniques, digital phase conjugation and transmission matrix,

differ in the amount of measurements required, the digital phase conjugation being a single-shot

technique. On the other side, TM requires a minimum of measurements dictated by the number

of elements of the input base (the output base is typically larger or has the same size) but grants a

more complete description of the input-output relation. For practical use, a paper demonstrated

that the resolution of a multimode fibre, exploited for imaging, is not limited to the number of

input modes defined by the user, as is the case for TM, but instead could reach up to four times

the number of modes propagating into the fibre [121]. Finally, the SLM refresh rate has been one

of the main factors limiting the speed of these techniques, in particular if scanning is involved

or a large amount of measurements need to be collected for characterising the system. Another

slowing factor might be the presence of demanding calculations for encoding information to

the SLM holograms. In order to speed up the experiments, one option is to move from a SLM

to a digital micromirror device (DMD) [122] [123] [117], i.e. arrays of micromirrors that can

quickly switch between two “on/off” positions, which, on the other side, complicates the con-

trol over the full complex field. Another option is to rely on GPUs whenever high-performance

operations are involved [124] [125].

3.2.1 Neural networks for multimode fibre Imaging

A different route is to rely on artificial neural network algorithms. As previously discussed in

section 1.3.1, this approach has been introduced by Tanida’s group in 2016 for scattering media

(in particular resin plates) in [49]. One year later, they applied different data-driven algorithm,

including an ANN as well, to distinguish between two classes of images, containing a face or

not, encoded on a laser beam by a phase-SLM and propagated through a multimode fibre [126].

Remarkably, no use is made of any knowledge about possible mathematical model describing

the system. During the last two years, this paved the way to further neural network approaches,

resorting to deep learning, that aimed to go beyond simple classification in order to unscramble

the speckle patterns and thus retrieve the original images. Firstly, in [127] reconstruction of

phase-encoded images from the relative output intensity speckle pattern was demonstrated for

multimode fibre up to 1 km long. This result is remarkable because the transmission matrix of

the system, for that fibre-length, is continuously varied by temperature variations and even small

mechanical vibrations, even providing a good isolation. The same group explored the possibil-

ity to reconstruct, from intensity-only detection of the speckles (camera measurements), images

encoded on amplitude or phase, in [128]. Interestingly, they proposed a method to measure the

TM and verify its validity by projecting patterns at the output of the fibre. Moreover, Fan et al.

[129] proposed a neural network approach to deal with a fibre subjected to bending. Similarly
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to [127], also in this case the TM is dramatically modified because of changes in local refractive

index along the fibre. However, in this case the system can be controlled better as the bending

configuration of the fibre is known.

On the other hand, most of these works made use of a restricted class of images: the hand-

written digits - taken from MNIST database (28× 28 pixels images), which has been already

introduced in chapter 1 -. As a consequence, the images that are meant to be reconstructed must

belong to the same, or perhaps very similar, class of images. In this sense, a first step towards

generalisation of the retrieval process was shown in [127] although limited to almost-binary and

stylized simple images, such as an heart or the symbol “plus”. However circumscribed, this

result opened up the possibility for a broader application of ANN to generic imaging.

Finally, a paper by Turpin et al. [130] explored the possibility given by ANN algorithms for

focusing through a complex medium and a multimode fibre. In this case, both single layer and

deep neural network were tested. Moreover, they demonstrated that it is possible to relate trans-

mitted and reflected patterns with an ANN. Once a first ANN has learnt the mapping between

transmitted and reflected speckles, the appropriate holograms that control the illumination of the

system, in order to freely focus a desired pattern at the output, can be predicted just by training

a second ANN with the reflected speckles.

Within this context a novel approach is being proposed, in this thesis, which could take advan-

tage of some physical insights related to the fibre in order to approximate the inverse of the

transmission matrix. As a result, the present method has proved to be able to transmit images

characterised by an unprecedented high-resolution and at high frame rates, even without involv-

ing any phase measurement. This was made possible thanks to a non-deep neural network by

resorting, instead, on a single but complex-valued layer (because of the complex-valued nature

of the light propagating within the fibre).

After having offered an introduction to the background of imaging through a multimode fibre, I

will present in the next sections of this chapter the novel complex-valued approach starting from

the experimental layout, then moving to the method and results.

3.3 Experimental layout and data

The layout with which the experiment is carried out is shown in Fig. 3.3. A laser beam, wave-

length λ = 532 nm, is modulated by means of a phase-only SLM (refreshing rate ∼ 20 fps) in

conjunction with a polarizing beam splitter and a half-wave plate. In this way, grayscale inten-

sity images (with values ranging from 0 to 100) are imprinted on the laser beam. The resulting

images are coupled into a multimode fibre using an objective with NA = 0.26 and focal length

f = 34 mm. The multimode fibre is characterised by a step refractive index profile and diameter
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d = 105 µm. The number of modes allowed in these conditions is around 9000. Furthermore,

two different fibres are employed with same characteristics but different lengths: 1 m and 10 m,

both wrapped in a loose coil lying on the optical table. Another identical objective along with

an imaging lens are used to image the resulting speckles at the output of the fibre on a CMOS

camera. The images are collected at 350×350-pixel resolution with 255 grayscale levels.

Figure 3.3: Scheme of the experimental layout. A phase only SLM is used to encode amplitude images

on a laser beam thanks to the polarizing beam splitter (PBS) and the half-wave plate (λ/2). The laser is a

CW laser with wavelength λ = 532 nm. The resulting images are coupled into a multimode fibre using an

objective (NA = 0.26, focal length f = 34 mm). The speckle patterns are coupled out with an analogous

objective and imaged on a camera by means of an imaging lens. The fibres employed are step-index,

d = 105 µm, with lengths 1 m and 10 m. Figure adapted from [2].

In Fig. 3.4, different examples of input-output pairs are reported. The size of the input grayscale

images is 28× 28. The shown examples belong to four different categories of images: hand-

written digits from the MNIST database, cloths from the Fashion-MNIST database [131], el-

ements belonging to the Hadamard base and random patterns. Fashion-MNIST is a database

developed by Zalando consisting of 60000 training images and 10000 testing images grouped

into 10 different classes of cloths (shoes, jumpers, trousers etc...), with relative labels provided .

Along this chapter, other classes of employed images are: samples from the Muybridge col-

lection, images from the ImageNet database and examples of natural scenes. Muybridge iconic

works, that dates back to 1870s, pioneered modern cinematographic techniques by showing pro-

jections of pictures in motion [132]. He was particularly interested on representing the motion

of animals, such as horses or birds, and humans. In the present case, the samples have been

scaled to the required resolution. In the same way, the ImageNet database, previously intro-

duced in chapter 1, along with other examples of natural scenes have been resized specifically

for high-resolution image transmission. Since generic images from the ImageNet database are

not square, a random selection of almost square images was considered and resized in order to

obtain square images. All the data used can be found following the DOI link [133].
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Figure 3.4: Examples of input patterns and output speckles relative to the introduced setup. Input images

pixel-resolution is 28× 28, with 100 grayscale levels. Output speckles are recorded at 350× 350 pixels

with 255 grayscale levels. Figure reprinted from [3].

3.4 Method

There are two possible ways to restore an image after being propagated through a multimode fi-

bre, and thus distorted. On the one hand, an operator that maps the input image into the distorted

one could be defined, measured and then inverted. On the other hand, the inverted operator could

be directly determined. The approach introduced in this chapter considers this second route by

inferring statistically, on the basis of the large amount of images employed, the relationship that

maps output speckles into input patterns.

In order to achieve this, a single complex-valued fully-connected layer, mimicking the inverted

transmission matrix itself, is employed. As a matter of fact, on one side the physical transmission

matrix of a real fibre is complex-valued, on the other side the operation of the fully-connected

layer, linking input to output, coincides with a matrix multiplication. Considering in particular

Fig. 3.1, one could point out that local-approaches, as for example convolutional layers and

max-pooling, and therefore any deep convolutional neural networks, should be avoided because

of the system property of connecting a single input point to the whole output. For this reason,

the choice felt on the fully-connected layer, opening up to possible challenges related to GPU

RAM memory. On top of that, in the present experiment the phase of the speckle patterns is not

collected. As a result, the addressed problem is severely underconstrained.

The idea of using neural network with complex values has been around for many years. Takeda

and Kishigam, back in 1992, presented a pioneering neural network that could vary both ampli-

tude and phase [134]. As pointed out by Hirose [135], complex-valued ANN are of paramount

interest for real physical phenomena such as the ones involving wave propagation. In fact,

the possibility to work directly with amplitude and phase, i.e. working with complex-related
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operations, already imposes a constraint on the learning process related to the nature of the sys-

tem; clearly, this is different from considering neural networks dealing with unrelated double-

dimensional real numbers. Within the work of Hirose an overview of the results achieved by

complex-valued ANN is offered as well. Furthermore, different works have explored the pos-

sibility to build deep neural network with complex values. In particular, Trabelsi et al. made

a solid contribution to this context [136] providing the main components for a complex-valued

DNN, such as complex activation function, complex convolutions and so on.

In Fig. 3.5 a representation of the complex-valued ANN method is proposed. As mentioned

earlier, the output of the multimode fibre, i.e. the speckle field, is now the input of the neural

network, as the inverse problem is directly addressed. Since just the intensity of the speckles is

measured, no phase information is present in the input. On the other hand, the fully-connected

layer is complex valued, therefore the input-phase will left blank. As reported in the figure, a

model respecting faithfully the physical nature of the system should map the input complex field

into the output complex field, and therefore should be considering the amplitude as input. This

is effectively the approach that has been followed within this very chapter, when dealing with

high-resolution images. However, at first it has been explored the possibility to work directly

with intensity field, both for input and output. This work has been reported in Appendix B.1; in

Figure 3.5: Schematic overview of the inverse problem method. A single complex-valued fully-

connected layer W is used to map the input, the speckle field x, into the output image. In fact, fully-

connected simply operates as Wx, which is used to approximate the inverse of the transmission matrix.

The learning process consists in allowing the network to see several input-output pairs. In this way, the

weights are modified in such a way that the distance between predicted images and ground truth image

reaches a minimum. In other to achieve this, a cost function ζ is introduced with a metric (MSE) to quan-

tify this distance. The partial derivatives of the cost function respect to the elements of W are calculated

in order to apply stochastic gradient descent, which pushes the cost function to a minimum value. This

iterative process is repeated for all the training images and for a certain number of epochs in order to

assure convergence. Figure adapted from [2].
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this case other measures has been employed to deal with possible non-linearity involved.

In contrast, the model reported in Fig. 3.5 is entirely linear. Here, the amplitude of the input

speckle x, i.e. the square root of the intensity acquired on the camera, along with the left-

blank phase, is passed through the fully-connected complex-valued layer W . This operation

coincides with the matrix multiplication: Wx. Furthermore, to preserve linearity the activation

function is just linear (since the layer is complex, the activation function works separately on

real and imaginary part). Subsequently, the cost function ζ is built comparing the amplitude of

the output |Wx| to the amplitude of the original image (ground truth). Similarly, the square of

the output |Wx|2 could be compared directly to the intensity of the original image, since this

was encoded on the beam as an intensity image, as reported in Fig. 3.5. The metric used to

compare the prediction of the network to the ground truth is the mean square error (MSE). At

this point, to calculate the corrections to be applied to the weights composing W , the derivatives

∂ζ/∂wi j with respect to the i, j elements of W are first calculated. Then, the elements of W are

varied, applying small changes in order to minimize the cost function. This is realised using the

stochastic gradient descent approach. This process is repeated for all the speckle and ground

truth image pairs of the training dataset and iterated over a fixed number of epochs in order to

allow ζ to converge to a minimum value. The regularisation applied to ζ is the l2 norm. In

Appendix B, it is discussed how this was implemented for the present complex-valued network.

To ensure that the system has effectively learnt an approximation to the inverse problem, the

network is tested with unseen speckle and ground truth image pairs, i.e. the testing dataset.

Keras library and Tensorflow are employed to implement the network. In particular, the complex

layer W is built as a custom layer. The code is provided and explained in Appendix C.

3.5 Results - Transmission of natural scenes

In this section, I will present the results for the linear model previously introduced. The aim is

to reconstruct generic images such as pictures of everyday life, hence “natural scenes”. In this

way, this challenge poses itself on a different level of complexity relative to the ones addressed

so far with ANN approaches. In fact, these techniques were demonstrated and could work ex-

clusively on limited classes of images, such as hand-written digits. However, in these cases, the

network could be working mainly as a classifier. If this is the case, it can be shown, for example

considering hand-written digits, that the classification task can be easily solved using a common

real-valued fully-connected network (see Fig. 3.6).

The training dataset, considered for the complex-valued method, is composed by a selection of

50000 images belonging to the ImageNet database. The size of the images is 92× 92, which

is comparable to the number of modes propagating into the fibre. The speckle field images
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Figure 3.6: Confusion matrix representing the retrieval performance of a real-valued fully-connected

network on images taken from the hand-written digits MNIST database (with pixel-resolution 28× 28),

encoded in amplitude (as shown in 3.3) and propagated through a 1m-long multimode fibre. The network

is trained with 5000 speckle patterns (350× 350-resolution) and test on 1000 speckles patterns. Figure

reprinted from [4].

are collected at the resolution of 350× 350 pixels but resized to 120× 120 pixels in order to

avoid GPU memory issues. As previously mentioned, both the speckle images, collected with

the camera, and the fibre input patterns, encoded on the beam, are intensity fields. However,

the linear complex transmission matrix operates on the input and output full complex fields

(amplitude and phase). Thus, the square root of these intensity fields will be extracted and

employed for the corresponding input and output amplitude fields of the network; whereas, the

phase fields will be left blank.

Once the model is defined, the network is trained, using the training dataset, over 850 iterations.

This process took around 48h on the employed GPU (Nvidia GeForce GTX 1080 Ti). After this

operation, it can be verified whether the network has learnt a good approximation to the inverted

transmission matrix using images belonging to a different database, different from that used for

training, as a test set, by comparing the predictions to the ground truth images. Fig. 3.7 reports

the performance of the complex-valued linear approach for different Muybridge videos for the

1 m-long fibre. In particular, a running horse, i.e. one of the most characteristic Muybridge’s

subjects, a jumping cat, a flying parrot and a “punching” man. The amplitude speckle field

is shown along with the intensity ground truth image and prediction, i.e. the square of the

amplitude reconstructed image.

In order to quantify the quality of the reconstructed images, two different metrics are employed:

the Pearson Correlation Coefficient (PCC) and the Structural Similarity Index (SSIM) [137].
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Figure 3.7: Muybridge videos reconstruction. The frames are transmitted independently through a 1-m

long fibre at 4 fps. Image pixel resolution is 92× 92. Speckle resolution is 120× 120. Here, a single

frame, from the full videos (available at [133]), is shown for, respectively: a) running horse, b) jumping

cat, c) flying parrot, d) punching man. From left to right, the columns show the ground truth images,

reported as intensity, the amplitude speckle field and respective intensity reconstruction (square of the

amplitude prediction). Figure reprinted from [2].

Considering two images U and V , the PCC is defined as follows:

PCC(U,V ) =
∑i(ui −Ū)(vi −V̄ )√

∑i(ui −Ū)2 ∑i(vi −V̄ )2
, (3.1)

having the sum operator ∑ iterating over the index i, which refers to the i-th pixel of the consid-

ered image: respectively, ui for U and vi for V . The operator ·̄ indicates the average of the image.
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The values of the PCC parameter ranges between +1, in case of a perfect positive correlation,

and −1, in case of a negative correlation. For the 0-value, there is no correlation.

The formula describing the structural similarity index is

SSIM(U,V ) =
(2ŪV̄ +C1)(2σUV +C2)

(Ū2 +V̄ 2 +C1)(σ
2
U +σ2

V +C2)
, (3.2)

σUV being the covariance of U and Y , σ2
U the variance of U and σ2

V the variance of V . The

parameters C1 and C2 are defined as follows: C1 = (K1L)2 and C1 = (K2L)2, where K1 = 0.01

and K2 = 0.03. L is the range defined by the difference between the maximum and minimum

values that the image pixels can assume (also called dynamic range). The maximum value that

the SSIM can reach is +1 as well, and its range is once again between +1 and −1. Typically,

SSIM is adopted to focus the comparison between images more on visual similarities.

Figure 3.8: Full-color video reconstruction. Single frames are reported for RGB videos of (a) a rotating

Jupiter and (b) Earth. The full videos are available at [133]. RGB channels are transmitted and restored

separately, then recombined. The fibre employed is the 1m-long one. The inverted transmission matrix

W is the same learnt on grayscale ImageNet samples. Figure reprinted from [2].

Fig. 3.8 shows the reconstruction of full-color images, transmitted by encoding separately the 3

“RGB” channels. Examples of a rotating Earth and Jupiter are presented. The training database

and procedure are the same used for Fig. 3.7 (also in this case for the 1m-long fibre). Then, the

estimated complex-valued W is employed to retrieve independently the three grayscale channels.

The full-color image reconstruction is obtained simply by recombining the three channels. As it
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can be observed, remarkable characteristics of the Earth and Jupyter can still be spotted, such as

the african desert areas or the Red Spot.

Additional examples are shown in Fig. 3.9 and Fig. 3.10. The former figure presents examples

of everyday-life natural scenes representing the University of Glasgow in full-color RGB format.

A result for the 10m-long fibre is reported as well: the transmission of a panda picture. Other

10m-long reconstruction will be shown subsequently in section 3.5.2. The latter figure shows the

performance of the present algorithm on selected images extracted from the ImageNet database

but not employed for the training process itself.

Figure 3.9: Further natural scenes examples. Full colour photographs of the University of Glasgow are

presented in (a)-(b). In the left column, the original images are shown. The right column shows images

reconstruction after propagation through a a 1m-long fibre. Whereas, for the case of a multimode fibre

with length = 10 m the image of a grayscale panda is shown in (c). In both the cases, the respective

networks have been trained with 50000 samples from the ImageNet database. Figure reprinted from [2].
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Figure 3.10: Reconstruction of images selected from the ImageNet database. This samples are not used

for the training process. Once again, the left column shows the ground truth, the center the speckle field

and the right the prediction. Figure reprinted from [2].
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3.5.1 Generalisation

As has been shown, the complex-valued ANN approach has provided a solid reconstruction of

transmitted images that do not belong to the same database as the one used for the training

process. However, a further confirmation for the generalising capacity of the present method is

here provided by relying on what I will indicate as a more “agnostic” approach. The basic idea

is to train the network with a completely “not-informed” training dataset. Thus, it made use of

50000 random grayscale patterns, i.e. no assumption is made on the class of the transmitted

images. On the other hand, in order to simplify the problem, the ground truth patterns are

reduced to 28× 28-pixels, thus avoiding possible memory issues (related to the RAM of the

GPU). Nonetheless, the results in Fig. 3.11 show how the network is still able to restore the

images, although with less quality. Moreover, reconstructions are provided for both the 1 m and

10 m fibres, demonstrating once again that this approach does not strictly depend on the length

of the fibre.

Figure 3.11: “Agnostic” approach results. Here, the network is trained with 50000 grayscale random

patterns. Nonetheless, the algorithm is still able to restore an input pattern transmitted through both the

1-m and 10-m long fibres. On the left column is shown the fibre input pattern encoded on the beam, on

the central one the speckle and on the right one the reconstruction. Figure reprinted from [2].

3.5.2 Impact of different focusing input configurations

In this section, the effect of varying the image size at the input of the fibre is studied. The same

experiment proposed so far is repeated for three different focusing configuration. In particular,

the input images are demagnified by factors 1×, 1.5× and 4×. This is realised by means of a
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telescope used after the SLM. Thus, three different approximations to the inverted transmission

matrix W are estimated by training the ANN with the usual ImageNet database (the 1m-long

fibre was used in this case) and employing these different configurations. The resulting perfor-

mances are compared in Fig. 3.12.

As the image at the input of the objective is decreased in size, respectively 10 mm, 7.5 mm

and 2.6 mm, the focusing angular spread is meant to decrease as well. As a consequence, the

“resolving power” achieved by the objective will differ for the three distinct cases. This phe-

nomena can be quantitatively addressed by considering the effective numerical aperture NAe f f ,

which can be calculated knowing the objective focal length ( f = 34 mm). For the demagnifying

factors 1×, 1.5× and 4×, the respective effective NAs are NAe f f = 0.22, NAe f f = 0.16 and

NAe f f = 0.05. As it can be observed in Fig. 3.12, the experimental results indicate how the

complexity of the speckle field increases for a larger effective NA, in fact the number of the

speckles is increased and their size reduced. This is a signature of the amount of modes excited

within the fibre. Since in the present experimental conditions the pixel-resolution of an input

image (92×92) is comparable to the number of modes of the fibre, clearly the greater the num-

ber of modes to which the image is coupled the better the final reconstruction.

Figure 3.12: Effect of different focusing configurations. From left to right, the same experiment is

repeated, on a 1 m-long fibre, varying the image size at the input of the objective, which couples the light

into the fibre. As a result, by increasing NAe f f the speckle field presents a deeper complexity, signature

of the excitement of more modes (when retaining similar experimental conditions). Evidently, encoding

the information on many modes leads to a better reconstruction. In fact, in this particular experiment the

pixel resolution is comparable with the number of modes allowed by the fibre. Figure reprinted from [2].

It can be observed that there are two other different aspects that can add complexity to the output

speckle field. On one side, by considering Fig. 3.11, it can be noticed how the increase in length
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typically generates thinner speckles. In fact, for longer fibres the number of manufactoring

imperfections are increased. Moreover, there could be more bent segments for the fibre (in the

present case, the fibres are just loosely rolled up). Consequently, the starting information could

be coupled on more modes while propagating. Therefore, in this case thinner speckles do not

immediately indicate an increase in the amount of modes excited at the fibre input. However,

as it can be appreciated in Appendix B.2.1, this could potentially lead to issues related to the

resolution of the speckle images. For example, it might happen that in a particular experiment

the speckles are so small that the required resolution will not fit the GPU RAM memory.

On the other side, it has been experimentally observed that the placement of the focused beam

onto the fibre input has an important role regarding the modes on which an image is coupled.

As a matter of fact, if the focused beam is placed on a very central position the image tends to

couple to relatively few modes with circular symmetry. This phenomenon is highlighted by the

fact that the speckles tend to accumulate in the centre of the output and ring-like structures start

to appear (signature of few high modes), as stated also in [107]. However, to address the need

for the excitation of many modes, the beam is displaced slightly with respect to the center. In

this way, it is possible to find a configuration that allows high-resolution image reconstruction.

3.5.3 Time degradation

Finally, another important aspect is explored: the degradation of the reconstruction over time.

As is well known, a multimode fibre can be subjected to different situations, such as bending

or temperature gradients, that can alter locally the refractive index. Whenever this happens, the

transmission matrix will be dramatically modified as a result. In this way, a good question is

whether the system is able to restore correctly the transmitted ground truth images even after

some time has passed after the training process. This question is particularly important respect

to the fact the neural network takes a certain amount of time to learn the input-to-output mapping

function. In the present experiment the neural network is trained for 48h.

As a proof of the robustness of the present method with time, the performances of the neural

network at different times are compared. The first step is to train the complex-valued neural net-

work with the ImageNet database, thus obtaining W (i.e. the approximation to the transmission

matrix). Then, the operator W is employed to restore the video of the rotating earth, shown in

the example reported in Fig. 3.13, transmitted at 4 different times after the transmission of the

training dataset: 1h, 16h, 40h and 52h. The multimode fibre used here is the 10 m-long one.

Quantitative analysis is reported, using the SSIM metric. As a result, it can be observed how the

correlation between the speckle fields and speckle field used as a reference, namely the 1h one,

still remains high; the same applies to the single-channel retrieval reported in Fig. 3.13 (b). It is

interesting to note that the experiment has been carried out with the multimode fibre wrapped in

a loose coil and placed on the optical table. Therefore, the present method proved to be robust
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even in absence of a specific controlled environment.

Figure 3.13: Time degradation. Individual frames extracted from the video of a full-color rotating Earth

transmitted through a 10 m-long fibre. The reconstruction provided by the matrix W , calculated through

the ANN algorithm, is tested for the same ground-truth image transmitted at different times (1 hour,

16 hours, 40 hours and 52 hours after the transmission of the training dataset). In (a), the full-color

reconstruction after 1h and 52h is shown. In (b), it is provided a quantitative analysis (using the SSIM

parameter) of the temporal degradation of the speckle field and the restored images with respect to the 1h

ones (green channel). In (c), the same image predictions shown in (b) are compared to the relative ground

truth. This result demonstrates a certain robustness to time degradation even if the fibre is not placed in a

controlled environment. Figure reprinted from [2].
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In conclusion, an alternative approach for restoring images transmitted through a multimode

fibre has been proposed and demonstrated. The present method is based on solving directly the

inverse problem even without any phase control of the output of the system. A complex-valued

single layer neural network is employed for approximating the inverse of the matrix that maps

the input field into the output field. In this way, it has been possible to demonstrate transmis-

sion of high-resolution images, with the number of pixels comparable to the number of modes

propagating in the fibre, at high speed. As a matter of fact, this is a single shot technique and,

thus, is basically limited just by the refresh rate of the device used to imprint the images on the

beam (in the present layout an SLM). The speed of the present approach allows the transmission

of full-color (RGB) images, possibly at video-rate, by separately reconstructing the single-shot-

transmitted channels. Not only has this method has provided good reconstructions for fibres

with different lengths (1 m and 10 m), but it has also shown a solid robustness with respect to

time degradation, which typically affects imaging through a multimode fibre.

For future work, an interesting point to investigate could be the possibility to physically inform

ANN algorithms in order to deal specifically with those factors that deteriorate the reconstruc-

tions in time, such as possible bending or temperature gradients. In contrast to other deep neural

network approaches, the present method has shown important results related to the problem of

generalisation. As a matter of fact, the ANN algorithms employed so far have been limited to the

retrieval of images belonging to the same, or very similar, classes of the training dataset samples.

Instead, considering the results reported in chapter, the ANN could reconstruct the ground-truth

images even when trained with uninformed patterns (random patterns). Finally, the impact of

different input-focusing configurations has been studied in relation to the ability to retrieve the

transmitted information.

Main limitations are related to the commercially-available GPU RAM memories, as a matter of

fact a fully-connected layer, as the one here employed, scales with the size of input and output

images, as O(R2
i R2

o), where Ri is the input pixel resolution and Ro the output pixel resolution.
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Chapter 4

A comparison of techniques: transmission

matrix and complex-valued network

In the previous chapter, the problem of imaging through multiple scattering media has been in-

troduced and addressed through a novel approach based on a complex-valued neural network

algorithm. In particular, this method has been applied to a multimode fibre but, in principle, it

might be extended to every scenario in which the information is propagated through a number of

transmission channels. Indeed, the idea behind this technique is simply to identify the operator

that maps an input field to the output. Moreover, as opposed to most of the ANN approaches

that typically rely on a number of real-valued hidden layers, in this case the algorithm consists

of a single, but complex-valued, fully-connected layer. As explained previously, this solution is

driven by the physics involved in the problem. In fact, the operator is expected to be linear - the

fully-connected layer corresponds to a matrix multiplication - and complex-valued.

Formulated in this way, the definition of the problem seems analogous to the one of the trans-

mission matrix approach. As a matter of fact, recalling the review offered in Chapter 3, the aim

of this technique is exactly to provide an empirical matrix describing the input-output math-

ematical relationship. Of course, the problem is once again linear and complex valued, thus

requiring a method to acquire the output phase - in an optical context, most of the approaches

that provide phase-measurements are based on interferometry techniques, which, in turn, might

lead to stability issues.

The procedure for measuring the transmission matrix consists simply in defining both an input

and an output base and measure, for each element of the input base (N pixels-resolution), the

relative output (M pixels-resolution). Thus, the transmission matrix, expressed in the previously-

defined input and output basis, is built simply arranging the measured outputs in columns, so

that a N ×M matrix is obtained. Given an input pattern x, the output distorted pattern y and the

transmission matrix T , the mathematical expression will be

59



y = T x. (4.1)

I will refer to this as the forward problem.

In contrast, the complex-valued ANN approach aims at restoring the input pattern from the

relative output, finding the matrix V that solves directly the inverse problem:

x =V y. (4.2)

As opposed to the transmission matrix approach, here the matrix of interest is inferred statis-

tically by letting the algorithm learn the transformation by analysing a number of input-output

training samples. Moreover, the measurement of the transmission matrix provides a solution for

the forward problem, thus requiring a matrix inversion in order to solve the inverse problem. As

is well known, in the presence of noise this matrix inversion might be non-trivial. Nonetheless,

a solution was provided, in Optics, by Popoff et al. in [110]. Their method was tested on an

opaque scattering material and provided the inverted matrix T inv for solving

x = T invy. (4.3)

Given the analogies between these two techniques, one might ask how they compare to each

other. In fact, the complex-valued ANN approach is the only method, among the ANN methods

introduced in the previous chapter, that identifies a single complex-valued matrix, V in (4.2),

that solves the exact same mathematical complex-valued expression reported in (4.3). On the

other hand, how could the two matrices V and T inv be compared? Since there is not a reference

matrix, no metric can provide a sense of the distance between these two matrices. In this sense,

the idea of this chapter is to perform this comparison in two different ways:

• comparing the performance of the two matrices on the same measured data y;

• comparing the effect of each matrix to the expected physical behaviour.

This will offer the possibility to explore the transmission matrix approach proposed by Popoff et

al. and its physical implications, perform this method on a multimode fibre - instead of a opaque

scattering material -, test the complex-valued ANN on a complete complex-valued input field

- up to now this has been applied just on amplitude-only data - and finally study the physical

relevance of the matrix obtained with this neural network algorithm.
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4.1 A transmission matrix inversion approach for complex

optical media

As reported in Chapter 3, the transmission matrix technique can be broadly applied to many

fields of Physics and Engeneering. In Optics, compared to other areas of research, the difficul-

ties related to the ability to control and detect phase delayed the introduction of this approach.

As has been said, in 2010 Popoff et al. [111] successfully demonstrated the transmission matrix

technique to solve the forward problem for an opaque material. Their method involved an inter-

nal reference beam to determine the output phase. Shortly thereafter, they provided the solution

for the inverse problem [110]. Furthermore, in 2015, the same group proposed an alternative

approach in order to allow the characterisation of the full complex-valued transmission matrix

by means of intensity-only measurements [138].

In this section, I will shortly discuss the methodologies and the results related to the first two

papers. This will serve to build the comparison with the complex-valued ANN approach by

introducing the procedures that have been employed to acquire data, calculate the transmission

matrix and its inverse and analyse the transmission properties of the matrix. This approach has

been considered for the possibility to operate also with the full-complex output field, i.e. full-

complex ANN input.

In order to study the physical properties of a transmission matrix, the “singular value decompo-

sition” is employed. This states that a generic p×q matrix G can be decomposed into

G =UΣV †, (4.4)

where U and V are two unitary matrices that represent, respectively, the set of left and right

“singular eigenvectors”, i.e. the eigenvectors for GG† and G†G. The relative eigenvalues, for

both the matrices, are the squares of the elements on the diagonal of Σ that are also called “sin-

gular values”. These elements are real and non-negative, whereas the matrix is zero everywhere

else. The number of singular values is dictated by the minimum between p and q. Basically, the

singular values might be visualised as coefficients for the transmission channels (or eigenchan-

nels) that map each input mode into one and only one output mode. In Optics, considering a

transmission matrix that links the input and output electric fields, each singular value indicates

the intensity transmission coefficient related to a particular channel.

A schematic representation of the layout of the experiments is reported in Fig. 4.1. Here, a SLM

is employed to imprint patterns on the phase of a laser beam. As it can be observed from the

cross-section of the beam as it entres the objective “Obj1”, part of the beam is fixed and used as

an internal reference, whereas the other part is dedicated to controlling the input pattern x. A set

61



of two objectives, “Obj1” and “Obj2”, are employed to focus the beam on the scattering opaque

material and to image the distorted output pattern on a camera.

Laser

SLM

Obj1Obj2

Complex

mediumCamera

Reference

Phase 

image

Figure 4.1: Scheme of the layout used for measuring the transmission matrix for a multiple-scattering

medium. A laser beam is modulated in phase by means of an SLM, leaving part of the modulated beam as

a reference. The phase pattern is focused on the material and the resulting speckle is imaged on a camera

thanks to the two objectives. Beam cross-section as light entres Obj1 is also shown.

The full complex electric output field is calculated by means of the “four phase method” [139].

This is an interferometry technique which states that shifting in phase an input pattern x by eiγ

with γ = 0, π/2, π and 3π/2, and measuring the relative intensity outputs Iγ , the electric field y

at the output is described by the equation:

y =
1

4

(
(I0 − Iπ)+ i(I3π/2 − Iπ/2)

)
. (4.5)

The transmission matrix T provides the transformation that maps the N input modes into the

M output modes. Considering the setup in Fig. 4.1, the number of elements of the input and

output basis are fixed by the choice of the relative pixel-resolutions. In this sense, regardless of

the actual optical propagation inside the medium, the transmission matrix is basically a pixel-to-

pixel transformation. Both in [111] and [110], the choice for the input base fell on the Hadamard

patterns, which is easy to implement on a SLM and which, compared to the canonical base,

achieves a better signal-to-noise ratio - in the canonical base each element has only one non-

zero pixel. For each element of the Hadamard base, xn, four measurements are collected to
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obtain the output ym. In this way, the transmission matrix is defined through the equation

ym =
N

∑
n=1

Tmnxn. (4.6)

It must be noticed that the two vectors xn and yn are expressed in two different bases, i.e. respec-

tively Hadamard base and canonical base (since the output has been measured with the camera).

Thus, a change of base is required if one is willing to have both the vectors expressed in the

canonical base. The advantage of this system lies in the fact that it makes use of a single camera

and does not rely on an external reference beam, which can reduce the stability of the system.

Because of the interference with the reference beam, it can be easily shown that the measured

matrix T does not coincide with the real matrix, which I will denote as T , but presents an added

contribution from the reference beam, that I will indicate with R, so that T = T ·R.

Using the time reversal operator T †, the authors of [111] and [110] were able to calculate the

input patterns to be applied to the SLM in order to achieve focusing on one or more spots at

the output, showing the dependence of the ratio between the single intensity focused spot and

the averaged intensity elsewhere, from the input degrees of freedom (upper boundary for the

ideal case). Moreover, they demonstrated that the time reversal operator can be employed for

the reconstruction of simple input patterns, e.g. single or multiple dots.

4.1.1 Inverse operator

As mentioned earlier, the retrieval of an arbitrary image was achieved shortly afterwards, in

[110], by proposing a different operator for the inverse problem. From an experimental point of

view, the main issue with matrix inversion is related to the presence of noise. Considering the

inverse operator T−1, defined through T−1T = I with I indicating the identity, or equivalently

the pseudo-inverse operator [T †T ]−1T †, in case N 6= M, since the singular values of T−1 corre-

spond to the inverse of the singular values of T , the strongest contributions will be provided by

the lowest singular values. Those below the noise level threshold will thus corrupt the retrieval

process.

An alternative is the time reversal operator previously used for focusing. This operator has been

extensively studied in Acoustics [140] (this thesis considers the monochromatic case). Time re-

versal tends to favour the strongest channels, thus is more robust with respect to noise. However,

the relative reconstructions are degraded when the elements outside the diagonal of T †T are not

null.

A possible solution is to resort to “zeroth-order Tikhonov regularisation” for the problem in
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(4.1). It defines the operator:

K = [T †T +λ I]−1T †. (4.7)

Interestingly, this solution lies between the time reversal and the inverse operator. In fact, look-

ing at the two limit behaviours of the parameter λ in (4.7): for λ = 0 the operator collapses into

the matrix inverse, whereas for λ →∞ into the time reversal. In this sense, the application of this

operator can be viewed as a way to balance the contributions from strong and weak transmission

channels for the inverse problem. In particular, it can be shown [141] that, indicating with σi the

singular value of T , the effect on the inverse solution is to apply “filter factors”:

fi =
σ2

i

σ2
i +λ

(4.8)

that modulate the contributions from each singular value. As it can be appreciated, for σ2
i ≪ λ

fi ∼ 0, thus avoiding aberrated strong contributions.

By averaging over a certain number of disorder realisations, the authors of [111] and [110] re-

ported the restoration of an input image with N = 32×32 pixels, distorted after being propagated

through the opaque multi-scattering material, in good accordance with the ground truth. More-

over, they compared the results for the operator K and the pseudo-inverse varying the output

pixel resolution M = γN, with γ ≥ 1. Increasing the ratio γ , it can be observed that the distri-

bution of the singular values - which will be discussed extensively in the next section - tends to

be concentrated around a certain (non-zero) value. In doing so, the value of the lowest non-null

singular value must increase as well. Remarkably, the authors demonstrated that when there are

no singular values below the noise level anymore, the pseudo-inverse becomes equivalent to the

operator K.

4.1.2 Random matrix theory

The statistical properties of the transmission matrix can be analysed in order to extract possible

relevant information about the physical nature of the material and the propagation within it. In

Acoustics, different works have exploited the singular value decomposition to study the wave

propagation through media composed of point-like scatterers. For a small number of these scat-

terers (< N) and neglecting multiple scattering, it can be demonstrated that there is an almost

one-to-one relationship between the scatterers and singular values of the transmission matrix

[142]. In the opposite case, a large number of scatterers randomly disposed might lead to an

overall propagation that can be considered random [143]. For these chaotic media, the distribu-

tion of the singular values of the transmission matrix can be associated to the statistics of some

random matrices. This is the basic assumption of the so-called “Random Matrix Theory” (RMT)

[144], which has been applied to different fields in Physics [145][146].
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In particular, considering the normalised singular values

σ̃i =
σi√

∑
N
j=1 σ2

j

, (4.9)

the Marcenko–Pastur law [147] affirms that, under certain conditions (such as elements uni-

formly distributed in [−1,1] and mean equal to zero), the distribution ρ(σ̃) of the normalised

singular values of a N ×M (with M = γN) random matrix can be described by the expression

ρ(σ̃) =
γ

2πσ̃

√
(σ̃2

max − σ̃2)(σ̃2 − σ̃2
min), (4.10)

for all the σ̃ in the interval [σ̃min, σ̃max], having σ̃min = (1−
√

1/γ) and σ̃max = (1+
√

1/γ). In

Fig. 4.2, the distributions of the singular values for a random matrix, for varying γ , are reported

along with the theoretical curve. The particular case of γ = 1 (Fig. 4.2(a)) takes the name

of “quarter-cycle law”. As mentioned earlier, the effect of increasing γ leaves the system the

possibility to explore and exploit transmission channels with similar normalised singular values

(the distribution tends to converge toward σ̃ = 1).

(a) (b)

(c) (d)

Figure 4.2: Examples of distribution of singular values for a N ×M random matrix, with N = 1000

and M = γN. Histograms for the density of singular values and the respective curves predicted by the

Marcenko–Pastur law are reported for the following different cases: (a) γ = 1, (b) γ = 5, (b) γ = 9, (b)

γ = 14.

Popoff et al. were able to demonstrate experimentally singular value distributions in good agree-

ment with the expected behaviour indicated by the equation (4.10). However, in order to avoid
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spurious correlations, they had to follow essentially two main steps: removing the reference

beam contribution and avoiding neighbouring pixel correlations. For the former, the effect of

the reference R on the transmission matrix can be expressed explicitly as

Tmn = TmnRmm, (4.11)

with T indicating the real transmission matrix and T the one measured. Since the reference is

the same for every input, the contributions will be the same along each one of the M lines (every

output pixel receive the same reference contribution from each input element). In this sense,

the amplitude of the Rmm can be determined by calculating the standard deviation of T on every

line:

√
〈|Tmn|2〉n =

√
〈|Tmn|2〉n|Rmm|. (4.12)

Dividing the equation (4.11) by the equation (4.12), a new filtered transmission matrix T f il is

obtained where the contributions from the reference have amplitude equal to 1. Thus, it can be

demonstrated that the singular values for T f il and T are the same.

Considering the neighbouring-pixel correlations, the authors of [111] and [110] removed one

out of two consecutive elements for each column and row of the matrix, creating a N/2×M/2

truncated matrix, in order to avoid possible short range correlations (possibly due to the instru-

mentation itself). However, increasing γ , the authors noticed that the singular values distribution

tends to show a relatively small deviation from the behaviour predicted by the RMT theory. This

is probably caused by short range pixel correlations whose results are more difficult to suppress.

4.2 Technique comparison: experimental layout

The experimental layout, employed to compare the transmission matrix and the complex-valued

neural network techniques, is illustrated in Fig. 4.3. The system is analogous to the one used in

Chapter 3, however, the SLM is now replaced by a DMD for an overall quicker data acquisition,

input patterns are phase-encoded and data are recorded according to the four-phase method.

Phase-only patterns are imprinted on a CW laser beam (wavelength = 532 nm) by means of

the DMD. Since the DMD consists of an array of micromirrors that can only work in a binary

“on-off” configuration, thus reflecting the light in two possible directions, phase modulation is

achieved by means of a particular approach named “Lee Holography” [148] [122]. This ap-

proach involves the generation of appropriate amplitude patterns to be filtered in the Fourier

plane (i.e. a grating is programmed ensuring that the light pattern at the first diffraction order

contains the desired phase and amplitude distribution). In the proposed layout this filtering oper-

ation is realised by means of a telescope (with lenses L1 and L2) and a pin-hole (PN). Moreover,

the binarised nature of the DMD imposes a level of approximation that must be compensated
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Figure 4.3: Experimental setup for the technique comparison. A laser beam (wavelength = 532 nm) is

modulated in phase by means of a DMD. The field needs to be filtered with a pin hole (PN) placed in the

Fourier plane of a telescope realised with the two lenses L1 and L2. Then, a first objective (focal length

= 34 mm, NA = 0.26) is used to couple the phase-only pattern, like the “7” image (whose expected

field has been reported in the figure), in the multimode fibre (step-index, length = 1 m, d = 105 µm).

A second objective (identical to the first) and a lens (L3) are used to image the output onto the camera.

The reference, part of the image 4.1, has been omitted for simplicity. Examples for the phase-shifting

technique are reported: 4 speckle images acquired to obtain the full-complex output field.

by resorting to macro-pixels, i.e. mapping each single pixel of the amplitude pattern on a larger

square composed of many DMD-pixels. In this way, phase-only binary input patterns can be

easily generated, as in the example shown in Fig. 4.3, and then coupled into the multimode fibre

(MMF) thanks to an objective (OBJ1: NA = 0.26, focal length f = 34 mm). In particular, the

pixel resolution of the input patterns is 28× 28; the multimode fibre has a step-index profile

with an inner-core diameter d = 105 µm, and is 1 m-long. The resulting distorted pattern at the

output of the fibre is imaged onto a camera (recorded at a 192×192 pixel-resolution) thanks to

a second objective (OBJ2 with same characteristics as OBJ1) and a lens (L3).

The need for input phase-encoding is dictated by the way the interferometry method, employed

to record the full-complex output field, has been formulated in the previous section. In fact,

the four-phase method relies on recording four different intensity speckle images for the same

input pattern, each one corresponding to a different phase-shift, stepping π/2, applied to the

input patterns. As an example, in Fig. 4.3 the four intensity images relative to the input “7”

phase-image are reported along with the full complex field calculated through equation (4.5).

Once the patterns are loaded into the memory of the DMD, limited to about 80K patterns, the
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images are displayed at a frequency of 1 KHz. As for the setup shown in Fig. 4.1, part of the

DMD (surrounding the input pattern) is used to encode the internal reference beam, but is not

shown for simplicity.

The datasets used for the input images are: hand-written digits (MNIST), clothing (Fashion-

MNIST), Hadamard base and random patterns. All these patterns have been binarised (having

for 0, phase = π/2, and for 1, phase = 3π/2) and share the same 28×28-pixels resolution. As a

consequence, the Hadamard base has 28×28 elements. The output speckle images are recorded

as grayscale images with 256 levels.

4.3 Method

In this section, the two methods considered for the solution of the inverse problem are pre-

sented. Since both the approaches have been previously introduced, in Chapter 3 and in the

present chapter, here I will just highlight the most relevant aspects and differences related to the

analysis reported in this work.

The complex-valued neural network algorithm is an approach able to directly solve the inverse

problem, thus without any need for a matrix inversion technique. The main element of this

algorithm is the single but complex-valued, fully-connected layer. Formally, the application of a

fully-connected layer corresponds to a matrix multiplication reproducing the problem described

in equation (4.2). As illustrated in Fig. 4.4, the input of the neural network is the speckle field

recorded at the output of the multimode fibre. However, in contrast to Chapter 3, where only

the amplitude was recorded, in this case the full-complex field can be accessed (thanks to the

four-phase method). Furthermore, the patterns that are coupled at the input of the fibre are now

encoded on the phase of the beam, therefore not on the amplitude as done in the experiment

presented in Chapter 3. Thus, the final output layer, this time, must extract the phase from the

result of the complex valued multiplication, as Fig. 4.4 shows. In this way, the cost function -

that will be minimised - compares this phase pattern to the respective ground truth pattern. I will

refer to this method as the “full-complex” network approach.

The code is essentially equivalent to the one presented in Appendix C, with a small number of

modifications related to the changes explained within this section.

Alternatively, the same network can be employed with amplitude-only input speckle patterns,

as for the experiment reported in the previous chapter. This can be achieved by selecting just

one out of the four speckle patterns recorded by means of the four-phase method (since these

are intensity images, the square root is extracted), i.e. fixing a particular input phase-shift. I will

refer to this approach as the “single-shot” network, as it relies on a single camera acquisition.
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Figure 4.4: Schematic representation for the complex-valued neural network. The algorithm is analo-

gous to the one in Fig. 3.5, however, in this case full-complex input field is used. Moreover, the phase is

extracted at the output and compared to the ground truth image to be retrieved.

Finally, the transmission matrix approach is considered. As has been described, the transmission

matrix T , which characterises the forward problem, is acquired relying on the Hadamard base.

Then, the matrix is inverted exploiting the Tikhonov regularisation, i.e. the operator K is defined

as expressed in the equation (4.7). This leaves the freedom to determine the parameter λ which

balances the operator K between the pseudo-inverse operator and the time reversal operator. A

possible estimation for λ can be obtained, for example, just by looking at the singular values of

T . In fact, referring to equation (4.7), to make the two terms T †T and λ I comparable, λ must

be comparable to the singular values of T †T , i.e. to the square of the singular values of T .

Another approach to determine the parameter λ is through the experiment itself, i.e. employing

a correlation coefficient to compare the retrieval performances of K to the parameter λ , for

different values of λ . Once the transmission matrix has been acquired, the operator K can be

applied to different testing images in order to build a statistic. In Fig. 4.5, the Pearson correlation

coefficient, already introduced in section 3.5, is employed to evaluate the reconstructions of 800

MNIST and 800 Fashion-MNIST phase-only patterns propagated through the multimode fibre

and recorded both in amplitude and phase. The plot shows the behaviour of the averaged results

for the Pearson correlation coefficient to varying the square root of λ , for the two test sets. Thus,

the value of λ for best retrieval performance is estimated by averaging the two λ s relative to the

maxima of the two respective test datasets.
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Figure 4.5: Evaluation of the Tikhonov-regularisation inverse operator K to varying the parameter
√

λ .

The operator K is tested on 800 MNIST and 800 Fashion-MNIST patterns propagated into the fibre in

the same experimental conditions. In this way, the parameter λ for best retrieval performances can be

obtained.

Moreover, Fig. 4.5 can help visualising the performances for the pseudo-inverse operator (in

the limit λ → 0) and the time reversal operator (in the limit λ → ∞) as well. As has been

discussed in section 4.1.1, by increasing the ratio between the controllable output modes and

the input modes, the system starts to rely on less small-valued singular values. Consequently,

noise has less influence on the final reconstruction (in fact, as it can be observed in Fig. 4.5 the

inverse operator leads to good reconstructions). A direct comparison with Popoff et al.’s results

for a random medium is not considered because, as I will show later, the measured singular

values distribution differs from the RMT expected behaviour. Regarding possible sources of

noise, instabilities might arise in this experiment from the laser, external perturbation applied

to the multimode fibre, or amplitude and phase distortions relative to the DMD generated input

patterns and imperfect coupling at the input of the fibre.

To summarise, both the approaches leads to a matrix with size M ×N, complex-valued, that

solves the same inverse problem. In case the network input data y are the same as those used for

the inverse transmission matrix K, the two problems are formally identical.

4.4 Results

In Fig. 4.6, a comparison between the performances of different neural network models and the

transmission matrix inversion operator K is shown. As for Fig. 4.5, the different methods are

tested on two datasets: 800 images of handwritten digits from the MNIST database and 800 im-

ages of clothing from the Fashion-MNIST database. Referring to the neural network algorithms,
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these testing data are not included in the training process. Moreover, once again the Pearson cor-

relation coefficient is employed to evaluate the goodness of each retrieval process. In this way,

for each method average and standard deviation of the resulting coefficients are calculated, over

the two testing datasets, and reported in the bar plot.

The presented methods can be subdivided into three main categories:

• single-shot neural network: single-shot amplitude-only speckle measurements;

• full-complex neural network: full complex field speckle measurements;

• transmission matrix inverse operator K.

The neural network approaches are thus differentiated by the input y of the inverse problem.

Instead, the full-complex ANN and the transmission matrix (TM) inversion approaches share

the same input which is obtained through the phase-shifting method presented. For the input of

the single-shot ANN, the first out of the four intensity images, obtained through the four-phase

method, is selected and the square root is extracted. Inside each category, the datasets and the

amount of data employed for calculating the respective matrices are reported for each method.

As it can be observed, in Fig. 4.6, the best results are achieved by the network trained with

full complex field samples consisting of 5000 random patterns, 5000 MNIST images and 5000

Fashion-MNIST. Moreover, to demonstrate that the network can generalise and properly re-

construct images from datasets that are not present in the training process, the results for the

full-complex ANNs trained with random patterns are reported. In this case, the networks are

trained with a different amount of samples - 5000, 2500 and 1000 - in order to observe the

impact of the amount of training data on the retrieval process. Interestingly, when considering

the full-complex samples, the network seems unable to retrieve the images if the phase is ex-

cluded, i.e. with amplitude-only samples (training with 5000 random patterns). On the contrary,

the respective phase-only case, in the same conditions, leads to good reconstructions. For the

single-shot neural network, results are reported when training the network with MNIST and

Fashion-MNIST databases, with a total of 1000 samples or 3000 samples.

The reported bar plot allows also a direct comparison of the performances of the transmission

matrix inversion operator K, already observed in Fig. 4.5, relative to the full-complex neural

network trained with the same data, i.e. the Hadamard base. In this case the TM inversion

method seems to outperform the relative neural network. Thus, one might wonder if there is any

case in which the neural network could provide better reconstructions relative to the TM having

at its disposal an equal or smaller number of training data. Referring to Fig. 4.6, this happens

for the single-shot network trained with a total of 3000 samples (MNIST and Fashion-MNIST),

respect to the 784×4 measurements (Hadamard) required for the TM (4 acquisitions are needed

71



Figure 4.6: Comparison of the performances of different methods for the reconstruction of the input

pattern. The performances are calculate in terms of Pearson correlation coefficient (PCC). As for Fig.

4.5 (c), the test images are 800 MNIST and 800 Fashion-MNIST and are not part of the training process.

Three different categories of approaches are presented, from the bottom: TM inversion technique, ANN

with complex speckle input field and ANN with “single-shot" data as input (therefore just amplitude).

The datasets used for training the networks and calculating the TM inverse are kisted. The symbol (x4)

indicates that the data are acquired by means of the four-phase method (therefore there is a x4 factor

respect to the single-shot acquisition).

for a single full-complex sample).

Examples of the restored images are shown in Fig. 4.7. Overall, the quality of the images pro-

vided by the two full-complex ANN methods is better better that that of the images obtained

through the TM inversion and the single-shot ANN approaches. Once again, the best results are

achieved by the full-complex network with the larger training dataset (5000 samples for each

one of the MNIST, fashion-MNIST and random pattern datasets). In particular, this network
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seems to have removed the noisy parts that appear on the image reconstructions of the TM in-

version approach and on the network trained with random patterns, and that could indicate the

presence of reflections or possible interferences with other orders produced by the Lee hologram

technique in the Fourier plane. To allow a fairer comparison, these parts have been not taken in

considerations when calculating the Pearson correlation coefficient for Fig. 4.6.

Another important aspect is generalisation. As has been discussed, the single-shot method

presents an overall better performance respect to the TM inversion approach, having at its dis-

posal the same amount of experimental measurements. However, when reconstructing patterns

from different databases, with respect to the ones used for the training process, such as the

“walking man” and the “running horse” (Fig. 4.7), the single-shot method achieves poor results.

Therefore, the application of the single-shot ANN must remain restricted to images that are sim-

ilar to the ones used for training the network, whenever considering a small training dataset. On

the other hand, as already demonstrated in Chapter 3, this restrictions could be avoided by train-

ing a network with a larger amount of random patterns (20000 for the case reported in Chapter

3).

4.4.1 Singular value decomposition analysis

Within the context of transmission of information through complex media, since the wave prop-

agation is generally too complicated to be described by a theoretical model, the verification

of the validity of an empiric model is typically based on the evaluation of its experimental

performances and on the analysis of its physical behaviour. Thus, after having examined the

reconstruction ability of the two proposed methods, I will also investigate their transmission

properties by means of the singular value decomposition. As mentioned earlier, this technique

allows access to the transmission eigenchannels and their respective intensity transmission co-

efficients (also referred as transmittance), i.e. the singular values.

Firstly, this analysis is applied to the experimental N ×M transmission matrix T , having M =

96×96 and N = 28×28. Following the procedure described in section 4.1.2, the transmission

matrix is normalised - to remove the reference contribution - and then reduced in size by skip-

ping one out of two elements for each row and column - in order to avoid neighbouring pixel

correlations. The normalisation is performed in the Hadamard (input) base before converting

the transmission matrix to the canonical base. In Fig. 4.8(a), the square of the singular values

σ of T , i.e. the singular values of T †T , normalised by σ2
max are reported in descending order.

Whereas, the distribution of the singular values, normalised according to the equation (4.9), is

shown in Fig. 4.8(b).

The plot presented in Fig. 4.8(a) is in line with the experimental results obtained in [149] [150].

In particular, a comparison between the expected behaviour of an ideal fibre and the experi-

mental curve is shown in [149]. In this case, the authors demonstrated that the rapid decline
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Figure 4.7: Examples of reconstructed images. The results from different approaches are reported for 4

different test sets: MNIST, Fashion-MNIST, “walking man" and “running horse”. As it can be observed,

the best results are achieved by the full-complex ANN, similarly to Fig. 4.6. Moreover, the ANN trained

with 5000 random patterns shows a good generalisation ability by reconstructing images from databases

on which has not been trained. In contrast, this seems to be no longer true for the “single-shot" approach,

as it can be noticed from the “walking man" and “running horse” results.

of the measured singular values, visible also in Fig. 4.8(a), is due to the losses experienced by

the higher-order modes. On the other hand, Fig. 4.8(b) reveals a distribution that, in addition

to the presence of strong isolated singular values, evidently differs from the Marcenko–Pastur

law (solid blue line). Indeed, despite the possible presence of spurious correlations, the nature

of the propagation of the light inside a multimode fibre differs from the propagation through a

complex medium, such as an opaque material. As has been demonstrated by Cizmar’s group

in [119], the multimode fibre must not be considered a chaotic medium. On the contrary, they

were able to experimentally address the deviations from the ideal model for lengths up to 300

mm (they also declared to expect no main randomisation process for fibres with lengths in the

order of several meters). Thus, it is reasonable to observe a single value distribution that differs

from the behaviour expected by a chaotic medium. However, it must be underlined once more

that a deviation from the random matrix theory simply indicates the presence of some sort of

correlation. In this sense, a proper theoretical model or simulation is necessary to validate any

measured singular value distribution related to a non-chaotic medium. Interestingly, Chiara-
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Figure 4.8: Analysis of the singular values for the experimental transmission matrix (normalised and

truncated). In (a), the normalised squared singular values are reported, showing the typical drop due to

the losses of higher-modes losses. In (b), the distribution of the singular values (normalised according to

the equation (4.9)) indicates the presence of correlations, by differing from the RMT prediction.

wongse et al. proposed a model for the scattering process in a multimode fibre in [151]. This

involves an accurate description for the mode-dependent losses and polarisation mixing that are

not controlled in the setup reported in this chapter. Thus, a dedicated experiment and analysis

are required (the authors validated their model through simulations and experiments on a 52

modes-fibre) in order to proceed in this direction. However, these have been judged beyond the

scope of the present chapter.

The singular value decomposition analysis for the Tikhonov regularisation inverse operator K is

not taken into consideration for this work. As a matter of fact, this operator is determined by the

arbitrary choice of the parameter λ that, as has been discussed in section 4.1.1, deeply modifies

the nature of the singular values itself. Unfortunately, in the absence of an accurate reference

model, no physical significance can be ascribed to the singular value distribution obtained from

this operator.
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In Fig. 4.9 the singular values distributions of the M × N matrices obtained from different

complex-valued ANN models (but sharing the same training dataset, i.e. 5000 random patterns),

with M = 96×96 and N = 28×28, are reported. The idea is to study how the distribution is af-

fected by the way in which the network is modelled and, since the analysis of the statistics of the

inverse model has been excluded, build a loose comparison with the result from the transmission

matrix T . However, it must be stated that the statistics of the inverse and forward operators are

equivalent just for the unitary case, i.e. when the two matrices share the same singular values

distribution.

(a)

(c)

(b)

(d)

Figure 4.9: Distributions of singular values for three different ANN models. Data used for the training

process are the same for (a),(b) and (c), i.e. 5000 random patterns (full-complex case). In (a), the

network relies on a the l2 regularisation; in (b), it relics on the unitary regularisation. In (c) the network

is equivalent to (a) but it is initialised with a constant for both real and imaginary part (therefore, not

with randomly distributed numbers). Finally, (d) shares the initialisation of (c), but uses the unitary

regularisation

Firstly, the case of the l2 norm regularisation is considered (see Fig. 4.9(a)). This norm is the

same one that has been applied to all the results shown previously. It is interesting to note that in

this case the histogram shows, apart for the usual isolated high singular values, a perfectly ran-

dom statistics (regardless on the training dataset). Instead, by employing a unitary regularisation

(see Fig. 4.9(b)), as the one introduced in section B.1, the distribution starts assuming a shape

that recalls more the one in Fig. 4.9(b). Indeed, a similar result is obtained considering two

networks with a non-random weight initialisation (a flat constant for both real and imaginary
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part: the former using the l2 regularisation (see Fig. 4.9(c)) and the latter relying the unitary

regularisation (see Fig. 4.9(c)). In fact, the neural networks are typically initialised with random

numbers, implying that the algorithm is starting from a specific suggestion, i.e. no correlations.

In contrast, when a physical constraint (unitarity) or a non-random starting guess are taken into

consideration the system starts to show evidence of correlations. In this sense, apart from iden-

tifying an accessible simulation method or theoretical model, an interesting future step would

be to investigate if this physical constraint leads to a better representation of the experimental

phenomenon: as an example, a perfect unitary transmission matrix implies a better focusing

ability. Regarding the input retrieval performance, instead, no main qualitative improvement is

found for this experiment.

To summarise, in the present chapter a comparison has been proposed between two different

approaches that aim at restoring patterns (encoded on a coherent laser beam) that have been

distorted after being propagated through a multiple scattering medium. On the one hand, the

transmission matrix approach describes empirically the forward model, thus requiring a further

step to provide a solution for the inverse problem. On the other hand, the complex-valued neu-

ral network approach, introduced in Chapter 3, is implemented for solving directly the inverse

problem. Both the techniques identify a single complex-valued matrix - since the physical phe-

nomenon can be considered linear - with same dimensions. Interestingly, the proposed ANN

method is the only one, built so far, that allows a formulation of the problem analogous to the

one defined by the transmission matrix approach. In this sense, I have investigated the possi-

bility to compare the two obtained matrices in terms of performances and statistical behaviour,

performing an experiment with a multimode fibre. Overall, the ANN models have provided

better retrieval performances with respect to the transmission matrix approach. However, con-

sidering a relatively small amount of measurements, the latter tends to prevail in terms of gen-

eralisation capacity. Analysing the statistical properties of the transmission matrix, a deviation

from the expected random matrix theory is observed. Moreover, the roles of regularisation and

weights initialisation, for the ANN, have been studied respect to their influence on the statistics

of the singular values. In a sense, the distributions obtained from the two methods can be put

in comparison. However, the possibility to extract accurate physical contents remains related

to the validation of these results through a theoretical model or a simulation approach (which

require an accurate in-depth study). Nonetheless, the results of the reported analysis indicates

the complex-valued ANN as an interesting candidate for the study of imaging in complex media

and its possible applications within this context. In this sense, two interesting future directions

might be related to the ability to improve focusing at the output of the media, through a unitary

regularisation, or a direct comparison with the forward model obtained through the transmission

matrix technique.
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Chapter 5

Conclusion

The research presented in this thesis aims to implement and demonstrate novel paradigm mod-

els for the study of imaging problems in the presence of light scattering. The nature of these

scenarios is such that specific techniques are required in order to address complex and possibly

underconstrained challenges.

Over the past few years, more and more attention has been drawn towards artificial neural net-

works and their peculiar capacity to find solutions to specific problems even in the absence of

an explicit mathematical model. In fact, this approach is based on inferring statistically the re-

lationship that links the defined input and output (at least considering a supervised approach) of

a certain system, by analysing a large amount of data. As a downside, it is not usually straight-

forward to gain insights on the internal representation found by the network and its procedure to

arrive at the output.

The general purpose of this thesis is to explore the possibilities given by these algorithms, for the

solution of specific imaging problems involving scattered light, by taking advantage of possible

physical insights related to the problems addressed. Overall, the experimental results indicate

that the implemented networks are particularly effective for the proposed challenges. Moreover,

whenever possible, the possibility to extract relevant physical information from the networks

has been investigated.

The first problem addressed (Chapter 2) is the simultaneous identification and location of human

targets hidden behind a corner. In the context of non-line-of-sight-imaging, or sensing, multiply

scattered light is employed to obtain information about an hidden target. However, 3D recon-

struction typically requires long-time acquisition and calculation, large amounts of data and high

temporal resolutions. In an attempt to relax these constraints, a single-pixel temporal histogram,

built collecting the light backscattered from the hidden 3D target, is considered. With this poor

representation, the idea is to treat identity and position as classes to be distinguished by a neural

network supervised classification algorithm. A SPAD array is used to obtain simultaneously

800 histograms (IRF = 120 ps), in order to train the network. In this way, the system was able
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to correctly classify the single-pixel histograms among 3 different individuals and 7 different

positions, for two different cases: same clothing and different clothing. The main limitations are

related to the presence of variability among the data that is not easily representable in these ex-

perimental conditions. As a consequence, different neural network architectures lead to similar

results. Nonetheless, this proof of principle opens up interesting future directions, for example

the use of complex-valued networks for classification-free 2D location or the implementation

of 3D reconstructions from similar setup configurations. In this direction, Turpin et al. have

considered the possibility to retrieve, in a lidar configuration, the 3D image of a target from a

single-pixel histogram [152].

The main part of this thesis is Chapter 3. Here, the problem of transmission of images through

a multimode fibre is studied. Considering real fibres, the presence of impurities, bending and

temperature gradient can dramatically alter the ideal propagation of the light within these waveg-

uides. Notwithstanding the complexity of the propagation, a complex-valued network with a sin-

gle fully-connected layer is implemented in order to represent the physical linear (and complex-

valued) relationship that connects the input field to the output field. As a result, even without any

phase measurements, thus facing an ill-posed problem, the network is still able to provide im-

age restoration at relatively high-resolution (96×96 pixels) and high-speed (limited just by the

refreshing rate of the device used to imprint the images on a coherent laser beam). Remarkably,

compared to other artificial neural network methods implemented to perform an analogous task,

the complex-valued architecture shows a strong generalisation capacity - meaning that the image

retrieval process is not limited to the specific classes represented during the network training.

This method is fundamentally limited by the GPU RAM memory. For example, the complex-

valued matrix created with 96×96 input pixel-resolution and 120×120 output pixel-resolution

is fitting basically the whole 11 GB memory of the graphic card used for this experiment. With

these settings, the training process takes around 2 days. On the other hand, it is shown that the

network is able to address temporal degradation. This work paves the way for exciting future

prospectives, such as the possibility to include other physical insights in order to address alter-

ations due to bending or temperature gradients. Another important aspect is the fact that this

network has a mathematical formulation analogous to the one of the transmission matrix, i.e. a

technique commonly adopted to study and exploit the propagation through random media and

multimode fibres. In this way, in Chapter 4, the possibility to compare these two techniques is

investigated.

The transmission matrix method is a technique that, under the assumption of a linear and de-

terministic system, expresses the propagation inside a complex medium through a single matrix

which can be measured empirically. This matrix relates the complex field at the input of the

fibre to the complex field at the output, thus describing the forward model. In order to com-
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pare this method to the complex-valued network proposed in Chapter 3, that solves directly the

inverse problem, the matrix requires an inversion, which in presence of noise is not always a

trivial operation. Furthermore, following the four-phase method, 4 measurements are required

to obtain the full-complex field. Having at one’s disposal the full-complex speckle field allows

to test the complex-valued network with a complete (amplitude and phase) input. The matrices

obtained from the two different methods are compared both in terms of performance and sta-

tistical behaviour, i.e. analysing their singular value distribution. As a result, the performances

of the neural network models typically overcome the one of the inverted transmission matrix.

However, by limiting the amount of measurements to the ones required by the transmission ma-

trix approach, the network leads to better performances, compared to the transmission matrix,

just by decreasing the capacity to generalise the result. The statistical behaviour of the mea-

sured transmission matrix differs from what expected for a random medium. Unfortunately, in

the absence of a proper simulation or theoretical model it is not possible to verify if this is a

sign of the fact that the multimode fibre is not a chaotic medium or if indicates the presence of

other sources of correlations. The same applies to the singular value distributions observed for

the neural networks, thus indicating the need for an external reliable model as a possible future

direction. Interestingly, the weight initialisation and the regularisation have an impact on the

final distribution. Thus, another possible future direction is to verify experimentally if a certain

Physics-inspired assumption, such as applying the unitary regularisation, can lead to a better ca-

pacity to control the setup (for example improving the ability to focus at the output of the fibre).

Personally, I think that neural networks are a tool as exciting as they are bizarre. Evidently their

performance capacity is considerable. On the other hand, Physics is probably one of the few

fields in which a realistic interpretation for the obtained results can be proposed and verified.

In this sense, to provide inputs and constraints related to the physics of a system of interest

could represent a first step towards this direction, helping to gain a better control of the system,

improve the performance and facilitate the comparison with an external physical model. In other

words, helping to build a constructive dialogue with these algorithms.

In the end, science is made by women and men. No machine will ever spare us from the task

of acknowledging the meaning of the results; in the same way as the VAR, or any technological

advancement, will never ultimately substitute a football referee. This is the beautiful drama of

being a scientist.
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Appendix A

Neural network Python Code for

identification and location of hidden

targets

This code has been implemented to correctly distinguish location and identity of hidden human

targets through a neural network algorithm. In particular, the reported model represents a non

linear classifier that processes the input temporal histograms in parallel through a series of con-

volutional layers and a fully connected layer. The function, here presented, allows to use this

classifier in a “leave-one-out” cross-validation scheme over 5 measurement-permutations. Keras

library [23] and Tensorflow [25] has been used to built this code on Python 3.6.5.

Listing A.1: Looking-around-the-corner neural network model

def setup_model_default(units, X_TR, l2_value, useConv, onlyClass,

Ntr, ep_value, y_TRonehot, X_TE, y_TEonehot, y_TRLonehot,

y_TELonehot):

# X_TR and X_TE are the training and testing temporal histograms

respectively.

# y_TRonehot and y_TEonehot are the person labels for each histogram

respectively.

# y_TRLonehot and y_TELonehot are the location labels for each

histogram respectively.

# l2_value is the l2 weight decay constant.

# Ntr is the number of training inputs.

# ep_value is the number of training epochs.

print('Model: Default')
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regConst = l2_value

input_vec = Input(shape=(X_TR.shape[1],))

input_vec2 = ExpandInput()(input_vec)

xd = Dense(units, kernel_regularizer=l2(regConst),

input_shape=(X_TR.shape[1],))(input_vec)

xd = BatchNormalization()(xd)

x = Dropout(0.5)(xd)

xd = Activation('relu')(xd)

if useConv:

x = Convolution1D(units, 10, padding='same',

kernel_regularizer=l2(regConst), input_shape =

(X_TR.shape[0],X_TR.shape[1],1))(input_vec2)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = MaxPooling1D()(x)

x = Convolution1D(units, 10, padding='same',

kernel_regularizer=l2(regConst))(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = MaxPooling1D()(x)

x = Convolution1D(units, 5,

padding='same',activation='relu',

kernel_regularizer=l2(regConst))(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = MaxPooling1D()(x)

x = Convolution1D(units, 5,

padding='same',activation='relu',

kernel_regularizer=l2(regConst))(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Flatten()(x)

x = layers.concatenate([x, xd], axis=1)

else:

x = xd
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x = Dense(units, kernel_regularizer=l2(regConst))(x)

x = Dropout(0.3)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Dense(units, kernel_regularizer=l2(regConst))(x)

x = Dropout(0.2)(x)

x = BatchNormalization()(x)

x1 = Activation('relu')(x)

xC = Dense(3,activation='softmax',

kernel_regularizer=l2(regConst))(x1)

xL = Dense(7,activation='softmax',

kernel_regularizer=l2(regConst))(x1)

if onlyClass:

model = Model(input_vec, outputs=xC)

else:

model = Model(input_vec, outputs=[xC,xL])

# randomly change order of inputs.

order= np.random.permutation(Ntr)

# train the model using SGD + momentum.

batch_size = 32

nb_epoch = ep_value

learning_rate = 0.001

decay_rate = 0.0

sgd = SGD(lr=learning_rate, decay=decay_rate , momentum=0.9,

nesterov=True)

if onlyClass:

model.compile(loss='categorical_crossentropy',

metrics=['accuracy'], optimizer=sgd)

hist_conv = model.fit(x=X_TR[order,:],

y=y_TRonehot[order,:],

batch_size=batch_size, epochs=nb_epoch,

validation_data=(X_TE, y_TEonehot),

verbose=2)

else:

model.compile(loss=['categorical_crossentropy',

'categorical_crossentropy'], metrics=['accuracy'],
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optimizer=sgd)

hist_conv = model.fit(x=X_TR[order,:],

y=[y_TRonehot[order,:],y_TRLonehot[order,:]],

batch_size=batch_size, epochs=nb_epoch,

validation_data=(X_TE,

[y_TEonehot,y_TELonehot]), verbose=2)

return model, hist_conv
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Appendix B

Intensity-to-intensity approach for

restoring images propagated through a

multimode fibre

In Chapter 3, the problem of imaging through a multimode fibre has been introduced. In order

to address this problem, a neural network with a single complex-valued fully-connected layer

approach has been proposed. This choice reflects the physical nature of the problem that can be

described by a single complex-valued matrix that connects an input base to an output base. In

other words, the system is linear and puts in relationship the input complex field (amplitude and

phase) to the output one. However, in a first instance, the attempt was to find the transforma-

tion that could map directly input intensity into output intensity. In this appendix, the approach

proposed to address this particular case will be discussed, along with the results obtained. Fur-

thermore, the regularisations employed for the cost function ζ will be introduced.

The intensity-to-intensity relationship introduces a non-linearity that is here addressed by adopt-

ing a non linear activation function, after having extracted the amplitude |Wx| (referring to nota-

tion adopted in section 3.4), and an Hadamard multiplication layer. In other words, in this case

the only assumption considered is that the input-output intensity relationship implies a com-

Speckle Image Reconstructed Image 

Complex Dense
Layer

Hadamard
Multiplication

Figure B.1: Schematic overview of the intensity input and intensity output model. The complex-valued

fully-connected layer is followed by PReLU activation function, applied to the amplitude of the predicted

image and an Hadamard multiplication layer that serves to represent a possible not uniformity of the

beam and correct scaling issues.
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plex matrix multiplication. The non-linear activation function is named Parametric Rectified

Linear Unit (PReLU) [153] - basically a continuous function formed by the conjunction of two

half-lines in 0 (where it is not differentiable) -. Instead, the Hadamard layer is applied to the

predicted image, as showed in Fig. B.1, in order to learn eventual spatial intensity differences

and correcting scaling issues.

B.1 Weight regularisations

Two types of regularisation are considered: unitary regularisation and the l2 norm. The former,

unitary regularisation, is motivated by the fact that the modes of the fibre are expected to be

orthogonal. A similar approach was introduced by Brock et al. in [154] , where the authors

attempted to find an orthogonal representation for a layer of interest. In this case, the regulari-

sation is extended to the complex domain implementing:

Lunitary(W ) = ‖WW † − I‖1 for W ∈ C
m×n, (B.1)

with W † representing the conjugate transpose of W . In this way, the matrix W is pushed toward

semi-unitary.

The latter has been already introduced in Chapter 1. However, in this case the network is

complex-valued. Thus, the regularisation should be applied to both amplitude and phase:

L (W,αr,αφ ) = ∑
i

αr|Wi|2 +αφ Wi (B.2)

where the operator · indicates the phase extraction, Wi the i-th element of the matrix W , αr

and αφ the parameters for, respectively, amplitude and phase. However, since no phase in this

experiment is used, αφ is set to zero. As a consequence, the remaining term is equivalent to a

l2 norm applied separately to the real (ℜ{·}) and imaginary (ℑ{·}) channels, with which W is

represented in the actual code:

L (W,αr) = ∑
i

αr(ℜ{Wi}2 +ℑ{Wi}2), (B.3)

which makes it particularly easy to implement.

B.2 Results

The results relative to the intensity-to-intensity model are here reported. In this case, the train-

ing dataset is composed by patterns taken from the databases already shown in Fig. 3.4: hand-

written digits, cloths from the Fashion-MNIST database, Hadamard patterns and random pat-
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terns. In particular, the amount of pattern used for each dataset are, respectively: 12000, 12000,

784 and 20000. The size of this patterns is 28×28 pixels (which defines the number of elements

of the Hadamard base). Instead, the size of the speckles is 112×112. Firstly, the performances

of the model for three different cases are compared: without any regularisation, with l2 regu-

larisation (λ = 0.03) and with unitary regularisation. The fibre used for this experiment is the

1m-long. The neural network is tested on 3000 MNIST and 3000 Fashion-MNIST patterns. As

it can be noticed from Fig. B.2, the reconstructions are in good accordance with the ground

truth patterns. However, for this particular experiment there is not a strong evidence of a better

performance due to a particular regularisation employed.

(a) No regularisation (b) l2 weight regularisation (c) Unitary regularisation

Figure B.2: Complex-valued neural network reconstruction of unseen patterns for three different type

of regularisation: (a) no regularisation, (b) l2 norm and (c) unitary regularisation. This experiment was

conducted on the 1m-long fibre. The size of the input speckles is 112×112. The resolution of the images

in the figure is 28×28.

This is confirmed also considering the MSE metric applied to the test images (comparing re-

trieved and ground truth images). In Table B.1, a comparison between three different regu-

larisation options, in terms of MSE, is reported. Furthermore, the complex-valued network is

compared to a common real-valued fully-connected layer (therefore just one channel, i.e. half of

the parameter to be tuned) with l2 regularisation and without. As it can be observed, once again

the different regularisations lead to similar results. On the other hand, complex-valued networks

Table B.1: Model comparison for real-valued and complex-valued network with different regularisation.

Speckle resolution is 112×112, 1m-long fibre. MSE is used as metrix on the whole test dataset.

Model

Name Regularisation MSE

Real-valued l2 weight regularisation 1034.62

Real-valued None 1025.96

Complex Unitary regularisation 989.28

Complex l2 weight regularisation 962.33

Complex None 960.31

87



present an overall better performance.

In Fig. B.3, the complex-valued network, after undergoing the same training process, using

the l2 regularisation, is tested on a sample taken from the Muybridge collection, therefore on

an image not belonging to any of the classes composing the training datasets. In this way, a

comparison is proposed between the results for a 1m-long fibre and for a 10-m long fibre. As

it can be noticed, the results are qualitatively similar even if the size and the number of the

speckles vary between the two different cases. This is a signature of a deeper mode-coupling

phenomena. In fact, the longer the fibre the greater the possibility for bending, imperfections

or temperature gradient to locally modify the index of refraction. Thus, the role of the speckle

resolution will be investigated in the next section.

Figure B.3: Muybridge’s sample reconstruction for fibres with length equal to 1 m (a) and 10 m (b).

On the left column, it is reported the ground truth image (28× 28 pixels); on the central column, the

speckle pattern (112×112); on the the right column, the predicted image (28×28 pixels). The different

speckle complexity between (a) and (b) arises from the propagation through a longer fibre, therefore an

enhancement of modes-coupling due to imperfections or external agents.

B.2.1 Impact of speckle resolution

In the same experimental condition, the impact of the resolution of the speckles, i.e. the input of

the network, on the final reconstruction is evaluated. A 28×28 ground truth image to be restored

is fixed. Then, the speckle size is varied from 14×14 to 224×224. As it can be observed, the

network is still able to provide an approximate reconstruction even starting from a 14 speckle

pixel-resolution. Clearly, by increasing this resolution the predicted image improves. On the

other hand, the step between 112×112 and 224×224 does not show any major improvement.

Evidently, when the speckles are well resolved there is no need to consider a larger resolution.
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This information is particularly relevant to identify an optimal minimum resolution that allows to

save precious RAM memory. As a matter of fact, the memory requirement scales with O(R2
i R2

o),

where Ri and Ro indicate, respectively, the pixel resolution of the input and output image.

Figure B.4: Comparison between reconstructed images for different speckle resolution. (a) Ground

truth image; (b) speckle pattern; (c) predicted image. The speckle side-resolution is varied over the

values 14, 28, 56, 112, and 224. As it can be observed, the more the speckle are resolved, the better the

reconstruction. However, no major improvement is shown when the speckles are already well resolved.
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Appendix C

Complex-valued neural network Python

code

In this appendix, the code used to implement the complex-valued neural network is reported.

This code can be downloaded following the The DOI link [133]. The Python version employed

is the “3.6.5”. Moreover, the Keras library [23] and the Tensorflow framework [25] are necessary

to run this code. Finally, some of the results shown in Chapter 3 can be reproduced by means of

the data provided at the same DOI link (for the 1 m-long fibre).

C.1 Defining the model

The present approach relies on a single complex-valued fully-connected layer. This is imple-

mented as a customer layer for Keras, under the name of “ComplexDense”. The complex

weights format is complex64, stored on two separated matrices one for the real part and one

for the imaginary part, each one with format “float32”. The weight initialisation follows a uni-

form random distribution between ±0.002. The hyperparamenters includes the input and output

resolution, the λ parameter for the l2 norm, the number of epochs and the batch size. The l2

norm is implemented as described in Appendix B.1.

Listing C.1: Hyperparameters and model specification

speckle_dim = 120

out_dim = 92

lamb = 0.03

ep = 850

bs = 16

inp = Input(shape=(speckle_dim**2,2))

comp = ComplexDense(out_dim**2, use_bias=False,
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kernel_initializer=RandomUniform(-.002, .002),

kernel_regularizer=regularizers.l2(lamb))(inp)

amp = Amplitude()(comp)

model = Model(inputs=inp, outputs=amp)

Here the “ComplexDense” class is defined. Essentially, it performs a simple but complex-valued

matrix multiplication.

Listing C.2: Custom ComplexDense Layer

class ComplexDense(Layer):

def __init__(self, output_dim,

activation=None,

use_bias=True,

kernel_initializer='glorot_uniform',

bias_initializer='zeros',

kernel_regularizer=None,

**kwargs):

super(ComplexDense, self).__init__(**kwargs)

self.output_dim = output_dim

self.activation = activations.get(activation)

self.use_bias = use_bias

self.kernel_initializer = initializers.get(kernel_initializer)

self.bias_initializer = initializers.get(bias_initializer)

self.kernel_regularizer = regularizers.get(kernel_regularizer)

def build(self, input_shape):

self.kernel = self.add_weight(name='kernel',

shape=(input_shape[1],

self.output_dim, 2),

initializer=self.kernel_initializer,

regularizer=self.kernel_regularizer,

trainable=True)

if self.use_bias:

self.bias = self.add_weight(name='bias',

shape=(self.output_dim, 2),

initializer=self.bias_initializer,

trainable=True)
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else:

self.bias = None

super(ComplexDense, self).build(input_shape)

def call(self, X):

# True Complex Multiplication (by channel combination)

complex_X = channels_to_complex(X)

complex_W = channels_to_complex(self.kernel)

complex_res = complex_X @ complex_W

if self.use_bias:

complex_b = channels_to_complex(self.bias)

= K.bias_add(complex_res, complex_b)

output = complex_to_channels(complex_res)

if self.activation is not None:

output = self.activation(output)

return output

def compute_output_shape(self, input_shape):

return (input_shape[0], self.output_dim, 2)

def get_config(self):

config = {'output_dim': self.output_dim,

'use_bias': self.use_bias,

'kernel_initializer':

initializers.serialize(self.kernel_initializer),

'bias_initializer':

initializers.serialize(self.bias_initializer),

'kernel_regularizer':

regularizers.serialize(self.kernel_regularizer)

}

base_config = super(ComplexDense, self).get_config()

return dict(list(base_config.items()) + list(config.items()))
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C.2 Parameter optimisation

Stochastic gradient descent and the MSE metric are employed for the cost function. Thus, the

model is now ready to be fitted. x_train, y_train, x_val, y_val, x_test and x_test

refer to the training, validation and test datasets. In particular, x_ indicates the speckle images

and y_ the ground truth images. The training datasets is composed by 45,000 samples, the

validation one by 5,000.

Listing C.3: Compile and optimise parameters

model.compile(optimizer=SGD(lr=1e-5), loss='mse', metrics=['mse'])

model_chk = ModelCheckpoint(weights_filepath, monitor='mse',

verbose=0,

save_best_only=False,

save_weights_only=False, mode='auto',

period=1)

reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=2,

min_lr=lr/1e3, verbose=1,)

early_stop = EarlyStopping(monitor='loss', min_delta=0.0001,

patience=8)

model.fit(x_train, y_train, validation_data = (x_val, y_val),

epochs = ep, batch_size = bs,

callbacks = [model_chk, reduce_lr, early_stop], shuffle =

True)

The number of epochs (iterations) is 850. The training process takes around 2 days on a GPU

Nvidia GeForce GTX 1080 Ti. Once the network is trained a reconstructed image (or more) can

be obtained using:

pred_test = model.predict(x_test)**2

In this case, the amplitude is predicted, therefore the square operator needs to be applied to

restore a ground truth image (encoded as an intensity image).
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