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Summary 

The aim of this thesis is to develop quantitative analysis methods to validate MRI 

and improve the detection of tumour infiltration. The major components include 

a description of the development the quantitative methods to better validate 

imaging biomarkers and detect of infiltration of tumour cells into normal tissue, 

which were then applied to a mouse model of glioblastoma invasion. To do this, a 

new histology model, called Stacked In-plane Histology (SIH), was developed to 

allow a quantitative analysis of MRI. 

Validating imaging biomarkers for glioblastoma infiltration 

Cancer can be defined as a disease in which a group of abnormal cells grow 

uncontrollably, often with fatal outcomes. According to (Cancer research UK, 

2019), there are more than 363,000 new cancer cases in the UK every year, an 

increase from the 990 cases reported daily in 2014-2016, with only half of all 

patients recovering.  

Glioblastoma (GB) is the most frequent and malignant form of primary brain 

tumours with a very poor prognosis. Even with the development of modern 

diagnostic strategies and new therapies, the five-year survival rate is just 5%, with 

the median survival time only 14 months. 

Unfortunately, glioblastoma can affect patients at any age, including young 

children, but has a peak occurrence between the ages of 65 and 75 years. The 

standard treatment for GB consists of surgical resection, followed by radiotherapy 

and chemotherapy. However, the infiltration of GB cells into healthy adjacent 

brain tissue is a major obstacle for successful treatment, making complete 

removal of a tumour by surgery a difficult task, with the potential for tumour 

recurrence. 

Magnetic Resonance Imaging (MRI) is a non-invasive, multipurpose imaging tool 

used for the diagnosis and monitoring of cancerous tumours. It can provide 

morphological, physiological, and metabolic information about the tumour. 

Currently, MRI is the standard diagnostic tool for GB before the pathological 

examination of tissue from surgical resection or biopsy specimens. The standard 
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MRI sequences used for diagnosis of GB include T2-Weighted (T2W), T1-Weighted 

(T1W), Fluid-Attenuated Inversion Recovery (FLAIR), and Contrast Enhance T1 

gadolinium (CE-T1) scans. These conventional scans are used to localize the 

tumour, in addition to associated oedema and necrosis. Although these scans can 

identify the bulk of the tumour, it is known that they do not detect regions 

infiltrated by GB cells. 

The MRI signal depends upon many physical parameters including water content, 

local structure, tumbling rates, diffusion, and hypoxia (Dominietto, 2014). There 

has been considerable interest in identifying whether such biologically indirect 

image contrasts can be used as non-invasive imaging biomarkers, either for normal 

biological functions, pathogenic processes or pharmacological responses to 

therapeutic interventions (Atkinson et al., 2001). In fact, when new MRI methods 

are proposed as imaging biomarkers of particular diseases, it is crucial that they 

are validated against histopathology. In humans, such validation is limited to a 

biopsy, which is the gold standard of diagnosis for most types of cancer. Some 

types of biopsies can take an image-guided approach using MRI, Computed 

Tomography (CT) or Ultrasound (US). However, a biopsy may miss the most 

malignant region of the tumour and is difficult to repeat. Biomarker validation can 

be performed in preclinical disease models, where the animal can be terminated 

immediately after imaging for histological analysis. Here, in principle, co-

registration of the biomarker images with the histopathology would allow for 

direct validation. However, in practice, most preclinical validation studies have 

been limited to using simple visual comparisons to assess the correlation between 

the imaging biomarker and underlying histopathology. 

First objective (Chapter 5): Histopathology is the gold standard for assessing non-

invasive imaging biomarkers, with most validation approaches involving a 

qualitative visual inspection. To allow a more quantitative analysis, previous 

studies have attempted to co-register MRI with histology. However, these studies 

have focused on developing better algorithms to deal with the distortions common 

in histology sections. By contrast, we have taken an approach to improve the 

quality of the histological processing and analysis, for example, by taking into 

account the imaging slice orientation and thickness. Multiple histology sections 

were cut in the MR imaging plane to produce a Stacked In-plane Histology (SIH) 

map. This approach, which is applied to the next two objectives, creates a 
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histopathology map which can be used as the gold standard to quantitatively 

validate imaging biomarkers. 

Second objective (Chapter 6): Glioblastoma is the most malignant form of 

primary brain tumour and recurrence following treatment is common. Non-

invasive MR imaging is an important component of brain tumour diagnosis and 

treatment planning. Unfortunately, clinic MRI (T1W, T2W, CE-T1, and FLAIR) fails 

to detect regions of glioblastoma cell infiltration beyond the solid tumour region 

identified by contrast enhanced T1 scans. However, advanced MRI techniques such 

as Arterial Spin Labelling (ASL) could provide us with extra information (perfusion) 

which may allow better detection of infiltration. In order to assess whether local 

perfusion perturbation could provide a useful biomarker for glioblastoma cell 

infiltration, we quantitatively analysed the correlation between perfusion MRI 

(ASL) and stacked in-plane histology. This work used a mouse model of 

glioblastoma that mimics the infiltrative behaviour found in human patients. The 

results demonstrate the ability of perfusion imaging to probe regions of low 

tumour cell infiltration, while confirming the sensitivity limitations of clinic 

imaging modalities.  

Third objective (Chapter 7): It is widely hypothesised that Multiparametric MRI 

(mpMRI), can extract more information than is obtained from the constituent 

individual MR images, by reconstructing a single map that contains complementary 

information. Using the MRI and histology dataset from objective 2, we used a 

multi-regression algorithm to reconstruct a single map which was highly correlated 

(r>0.6) with histology. The results are promising, showing that mpMRI can better 

predict the whole tumour region, including the region of tumour cell infiltration.   



V 
 

Table of Contents 

 
Chapter 1: General introduction to imaging and treatment of brain tumours 

1.1 Background to cancer                                                                                                            2 

1.2 The brain anatomy                                                                                                           2 

1.3 Brain tumours                                                                                                2 

1.4         Glioma 3 

1.5 Glioblastoma                                                                                                4 

1.6 Medical imaging of GB                                                                              5 

1.7 Treatment of glioblastoma                                                                                                     7 

      1.7.1 Surgery                                                                                                  7 

      1.7.2 Radiotherapy                                                                                                  8 

      1.7.3 Chemotherapy                                                                                       9 

1.8 Preclinical GB models                                                                               10 

 
Chapter 2: The theory of magnetic resonance imaging 

2.1 Background of MRI                                                                                     13 

2.2 MRI principle                                                                                                13 

       2.2.1 Resonance                                                                                                16 

       2.2.2 RF pulse                                                                                                17 

2.3 Relaxation                                                                                               17 

      2.3.1 T1 relaxation                                                                                     18 

      2.3.2 T2 relaxation                                                                                     19 

      2.3.3 T2 * relaxation                                                                                     19 

2.4 Gradients                                                                                                    20 

2.5 Gradient and spin echo sequences                                                                                      22 

2.6 MR signal                                                                                                   24 

2.7 k-space                                                                                                      25 

2.8 Main parts of MRI scanner                                                                          27 

2.9 Applications of relaxation                                                                          28 

      2.9.1 T1 Weighted imaging                                                                29 

      2.9.2 T2 Weighted imaging                                                                                                                   29 

2.10 Diffusion                                                                                                     30 

      2.10.1 Diffusion encoding                                                                                     31 

      2.10.2 Apparent diffusion coefficient                                                      33 

      2.10.3 Diffusion tensor imaging                                                                          34 

2.11 Applications of diffusion weighted imaging                                               36 

file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926562
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926563
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926564
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926565
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926567
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926568
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926569
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926570
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926571
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926572
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926573
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926574
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926575
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926576
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926577
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926578
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926579
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926580
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926581
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926582
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926583
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926584
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926585
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926586
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926587
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926588
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926589
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926590
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926591
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926592
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926593
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926594
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926595


VI 
 

2.12 Blood brain barrier integrity                                                                     37 

2.13 Perfusion                                                                                                   38 

2.14 Perfusion weighted magnetic resonance imaging                                      39 

      2.14.1 Contrast Enhanced T1                                                                40 

      2.14.2 Dynamic contrast enhanced                                                                41 

      2.14.3 Dynamic susceptibility contrast MRI                                                     41 

      2.14.4 Arterial spin labelling                                                                                                             41 

 2.15     Application of ASL 45 

 
Chapter 3: An introduction to image analysis techniques    

3.1 Introduction                                                                                                47 

3.2 MRI pre-processing                                                                                     47 

      3.2.1 Retrieve data                                                                                                47 

      3.2.2 Normalization                                                                                     47 

      3.2.3 Sensitivity of surface coil                                                                          48 

      3.2.4 ADC map calculation                                                                          49 

      3.2.5 Skull stripping                                                                                     49 

      3.2.6 Filter                                                                                                           50 

3.3 MRI Post-processing                                                                                  52 

      3.3.1 Segmentation                                                                                     52 

      3.3.2 Registration                                                                                                55 

3.4 Histology                                                                                                    58 

      3.4.1 Pre-processing histology                                                                          60 

      3.4.2 Post-processing histology                                                                          61 

3.5 Validation Measurement                                                                          61 

      3.5.1 Visual assessment                                                                                                         61 

      3.5.2 Dice similarity coefficient                                                                          61 

      3.5.3 ROC analysis                                                                                     62 

      3.5.4     Reproducibility                                                                                           63 

 
Chapter 4: Material and experimental methods 

4.1 Animal study design                                                                                     66 

      4.1.1 Mice and tumour implantation                                                                66 

      4.1.2 Experimental design                                                                          67 

      4.1.3 MRI acquisition                                                                                     68 

      4.1.4 Histology protocols                                                                                     71 

 

file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926596
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926597
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926598
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926599
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926600
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926601
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926602
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926603
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926604
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926605
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926606
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926607
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926608
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926609
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926610
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926611
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926612
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926613
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926614
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926616
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926617
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926618
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926619
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926620
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926621
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926622
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926623
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926624
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926625
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926626
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926627
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926628
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926629


VII 
 

Chapter 5: Stacked in-plane histology for quantitative validation 

application to an infiltrative brain tumour model 

5.1 Introduction                                                                                                 74 

5.2        Experimental protocol                                                                                 77 

5.3        Data processing pipeline                                                                            79 

5.4        MRI data analysis                                                                                       79 

5.5        Histology data analysis                                                                               80 

      5.5.1    Histology to MRI co-registration and production of 3D matrices                 80 

      5.5.2    Segmentation protocol                                                                                81 

      5.5.3    Statistical analysis                                                                                      82 

5.6 Results & Discussion                                                                                  82 

      5.6.1   Tumour volume measurement via single-section histology 
(SSH)              

83 

      5.6.2    Determining optimal number of histology sections for SIH maps                84 

     5.6.3    SIH to MRI registration quality                                                                                                  86 

     5.6.4    Volumetric assessment of SIH maps                                                         87 

     5.6.5    Towards voxel-by-voxel assessment                                                            89 

5.7    Conclusion                                                                                                 91 

 
Chapter 6: Quantitative histopathological assessment of perfusion MRI as 

a marker of GB infiltration 

6.1 Introduction                                                                                                93 

6.2        Tumour region of interest selection                                                                                    95 

6.3        Statistical analysis                                                                                         96 

6.4 Results                                                                                                        96 

      6.4.1 A marginal infiltration of mouse model                                                                96 

      6.4.2 PWI detects more extensive regions of tumour infiltration than 

clinic MRI                                                                                                                      

98 

      6.4.3 Relationship between perfusion and invasion in tumour 

margin                          

101 

      6.4.4 Perfusion variation as a marker of tumour cell infiltration                     102 

6.5 Discussion                                                                                                  104 

6.6 Limitations                                                                                       107 

6.7       Conclusion 107 

  

  

  

 

file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926631
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926632
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926634
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926635
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926636
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926637
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926639
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926644
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926645
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926646
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926647
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926648
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926648
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926649
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926649
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926650
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926651
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926652


VIII 
 

Chapter 7: Investigating how to optimally combine multiparametric MRI 

data to detect GB infiltration 

7.1         Introduction                                                                                                      109 

7.2         Regression analysis models                                                                        112 

7.3         MRI pre-processing                                                                                   113 

7.4         Statistical analysis                                                                                           115 

7.5         Results                                                                                                            116 

      7.5.1      Visual analysis                                                                                   118 

      7.5.2      Pearson correlation                                                                                     118 

      7.5.3      Volumetric analysis of tumour                                                                                            119 

      7.5.4      Probability density function analysis                                                                                 121 

7.6         Discussion                                                                                                       123 

7.7         Conclusion                                                                                                      125 

7.8         Future directions                                                                                             125 

 
Chapter 8: General conclusion 

8.1           Discussion                                                                                           127 

      8.1.1       Limatations                                                                                         131 

8.2   Conclusion                                                                   131 

8.3    Future directions                                                  133 

Appendix A    Published peer reviewed articles  during PhD study 135 

9.1        References 157 

  

file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926653
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926655
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926657
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926658
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926659
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926660
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926661
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926662
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926663
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926664
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926665
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926666
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926667
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926668
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926670
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926671
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926672
file:///G:/0%20MyThesis/Thesis13.docx%23_Toc18926673


IX 
 

 

List of Figures 

Figure 1.1 : Invasion of tumour cells into normal brain tissue. 5 

Figure 1.2: Shows the difference in spatial resolution between CT 
andMRI of mouse. 

6 

Figure 1.3: The theoretical distribution of tumour cell density  extended 
beyond area detected by T2W and CE-T1. 

7 

Figure 1.4: Shows the surgical location of small glioblastoma before and 
after exogenous 5-ALA dye. 

8 

Figure 1.5: Three types of  radiation therapy target volume GTV ,CTV  
and   PTV. 

9 

Figure 1.6: Glioblastoma tumour cells derived from human biopsies 
injected within the mouse brain’s healthy tissue. 

10 

Figure 2.1: The magnetic field causes the nucleus to precess at the 
Larmor frequency. 

14 

Figure 2.2 Spin align with and without  external magnetic field present. 15 

Figure 2.3: Schematic diagram showing the separation of energy levels 
with and without an external magnetic field. 

15 
 

Figure 2.4: Schematic diagram showing the net magnetisation parallel to 
the external magnetic field during a 90° pulseand dephase. 

17 

Figure 2.5: T1 recovery and T2 decay curves. 18 

Figure 2.6: A T2* signal decay after an RF pulse. 19 

Figure 2.7: Gradient  (Gz)  as a linear function of main magnetic field. 20 

Figure 2.8: Shows principles of slice selection. 21 

Figure 2.9: In vivo brain MR images acquired in (A) Axial (B) Sagittal  (C) 
Coronal. 

22 

Figure 2.10: Time diagram of basic gradient-echo sequence. 23 



X 
 

Figure 2.11: Time diagram of basic spin-echo imaging sequence. 24 

Figure 2.12: k-space diagram. 26 

Figure 2.13: The major parts of an MR scanner and electrical 
components. 

28 

Figure 2.14: Example of T1W image of mouse brain. 29 

Figure 2.15: Example of T2W image of mouse brain. 30 

Figure 2.16: Free diffusion particle moving from two points. 31 

Figure 2.17: The Stejskal-Tanner diffusion sequence. 31 

Figure 2.18: Mono-exponential of diffusion signal decay of water in MR. 33 

Figure 2.19: Illustration of isotropic and anisotropic diffusion. 34 

Figure 2.20: Represented eigenvalues of isotropic and anisotropic 
diffusion. 

35 

Figure 2.21: Example of DWI with a malignant brain tumour in mouse. 36 

Figure 2.22: Example of ADC map of brain tumour in mouse. 36 

Figure 2.23: Example of FA image of brain tumour in mouse. 37 

Figure 2.24: Illustration of blood-brain barrier components. 37 

Figure 2.25: Difference of flow between normal and abnormal tissue. 39 

Figure 2.26: Injection of contrast agent (Gd) in mouse-tail. 40 

Figure 2.27: Shows T1W brain image pre and post injection ,and 
subtraction after  injection of Gd contrast. 

40 



XI 
 

Figure 2.28: Illustration describing the principles of freely diffusible tracer 
theory. 

42 

Figure 2.29: Illustration of perfusion imaging, showing the control and 
label slices positioned on a mouse head and subtraction result between 
them.  

43 

Figure 2.30: (A) Pulse sequence (mbASL), (B) The location of the label 
and control slices. 

44 

Figure 2.31: Example of perfusion weighted image using mbASL. 44 

Figure 3.1: (A) Phantom image with vertical profile line. (B) Representing 
pixels’ intensity along line in (A). 

48 

Figure 3.2: DWI before and after removing sensitivity of surface coil. 49 

Figure 3.3: T2W brain image before and after skull stripping. 50 

Figure 3.4: Applying anisotropic diffusion filter. 52 

Figure 3.5: Applying Gaussian Mixture Model on mouse brain. 55 

Figure 3.6: Linear, rigid ,rotation and affine transformation models. 56 

Figure 3.7:  Comparison 2D histograms with and without rotation. 57 

Figure 3.8: Block diagram of the histology process. 59 

Figure 3.9: Example of  H&E stains imaging. 59 

Figure 3.10: Example of  HLA stains imaging. 60 

Figure 3.11: Visual assessment using checkerboard after co-registration 
of MRI with histology images. 

61 

Figure 3.12: The interaction of two regions A and B. 62 

Figure 3.13: Diagram of comparison of two regions true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN) regions. 

63 



XII 
 

Figure 4.1: Tumour margin samples of brains stained for H&E and HLA. 
Regions of vascular cuffing by invading tumour cells are enlarged. 

66 

Figure 4.2: Experimental protocol of first study. 67 

Figure 4.3: Experimental protocol of second study. 67 

Figure 4.4: MRI Biospect 7T scanner and equipment used in the 
experiment. 

68 

Figure 4.5 : Example of MR images of first experiment in week12. 70 

Figure 4.6: Example of MR images of second experiment weeks 15 and 
17. 

71 

Figure 5.1: Effect of cutting angle (φ) on MRI and histology with 
comparison of slice thickness. 

78 

Figure 5.2: The cutting of histology sections were guided by 0.5 mm thick 
T2WHistology with slice thickness comparsion. 

78 

Figure 5.3: Simplified diagram of the image processing pipeline leading 
to the production of 3D matrices after combining MRI modalities and SIH 
data. 

79 

Figure 5.4: Co-register of three HLA sections to construct at SIH map 
and  3D matrix. 

81 

Figure 5.5: Examples of histology sections for  both HLA and H&E stains 
and tumour volume error comparison between sections. 

83 

Figure 5.6: SIH maps generated using several sections of HLA  with 
tumour volume comparison. ROC analysis to evaluate the ability of  5 
sections SIH maps to probe the tumour volume.  

85 

Figure 5.7: Example of non-rigid co-registration of histology with T2W 
MRI and Checkerboard validation. 

86 

Figure 5.8: Volumetric analysis for T2W five individual histology sections 
and SIH. 

88 

Figure 5.9: Power calculation between SIH and T2W for two different 
single slice groups (A) section SSH1 (B) section SSH2. 

89 

Figure 5.10: Scatter plots between T2W, ADC MRI modalities and 
histology. 

90 

Figure 6.1: T2W and CE-T1 (pre and post injection) at week 12 with Ki67 
immunohistochemistry on slices. 

97 



XIII 
 

Figure 6.2: T2W images at different times after injection of G7 tumour 
cells illustrating normal tumour growth and animal weight. 

97 

Figure 6.3: (A) Example of manual selection of ROIs in week 9 and week 
12. (B)Tumour volumes with different MRI modalites (C) Tumour volume 
comparsion between MRI modalites and SIH.  

99 

Figure 6.4: (A) Dice score, (B) Accuracy index (C), Sensitivity index and 
(D) specificity index compasion between different MRI modalites. 

100 

Figure 6.5: (A) Fluorescence microscopy images probing HLA and 
dextran 70kDa. (B) MRI (T2, ADC, PWI) and fluorescent microscope 
images (HLA, dextran) from a mouse at 12 weeks.  

102 

Figure 6.6: Images and scatter plots of PWI signal against SIH for each 
voxel Core, and margin region box plots comparison. 

104 

Figure 7.1: Reconstruction of a single tumour map from different MRI 
modalities. 

110 

Figure 7.2: Schematic showing the voxel by voxel analysis method used 
to generate a single tumour map. 

111 

Figure 7.3: Examples of Linear regression, Quadratic regression, and 
Cubic regression fitting. 

113 

Figure 7.4: Image processing pipeline to create regression maps. 114 

Figure 7.5: Comparison of original MR images in different regression 
maps. 

118 

Figure 7.6: Pearson correlation comparison between regression maps 
and SIH. 

119 

Figure 7.7: Volumetric analysis of tumour between QRM and CRM 
regression maps and SIH map. 

120 

Figure 7.8: Comparison of volumetric analysis between multiple 
regression maps and SIH 

120 

Figure 7.9: Comparison of volumetric analysis between QRM, CRM and 
SIH.  

121 

Figure 7.10: Comparison of normalised probability density function (PDF) 
between CRM and SIH for whole brain. 

122 

Figure 7.11: Comparison between QRM, CRM and SIH. 123 



XIV 
 

List of Tables 

Table 7.1: The multi-regression coefficients (bi) of IRM, QRM and 
CRM. 

117 

  



XV 
 

Dedication 

This work is dedicated to my beloved family 

My parents: Mom and Dad 

My brother Akeel  

My wife 

And for my three lovely sons 

  



XVI 
 

Acknowledgements 

Throughout my studies I received a tremendous amount of support from 

multiple people. I would like to take this opportunity to thank them for 

helping me to achieve my PhD. 

First, I give thanks to Allah for helping me and giving me the knowledge, 

patience, and strength to successfully complete this PhD. I would like to 

acknowledge the advice and guidance of my advisors, Dr. William 

Holmes and Dr. Antione Vallatos. They have been more than mentors 

in guiding me throughout my entire time in the in INP/MVLS at University 

of Glasgow and have played a pivotal role in this project. They were 

always there to offer help and support and were understating of the 

problems that arose throughout my writing. They provided the required 

background and experiential knowledge for the work. Also, I would like 

to thank Dr. Jozien Goense, Dr. John Foster, Dr. Joanna Birch, and 

Giacinta Frisillo for their help and feedback.  

I am sincerely thankful for the support of my family members, without 

whom I wouldn’t have been able to finish my thesis. No words can 

express my gratitude and thanks to my wife for caring for my family while 

I was busy with my studies, and for her patience and endless support 

and sacrifices. Also, I would like to thank and appreciate my sponsor, 

The Ministry of Higher Education and Scientific Research in Iraq, for 

their administrative and financial support. 

Finally, I would like to thank my colleagues, Abdulrahman, Mohammed 

and Samantha for their encouragement and support. In addition, I would 

like to thank all the staff of INP/MVLs, Lindsay, James, Linda, and Conor 

for providing me with essential information about the thesis that helped 

a lot in planning and pacing my work. 



XVII 

Declaration 

I declare that this thesis contains the result of my own work and has not 

been submitted for any other degree at the University of Glasgow or any 

other institution. 

Haitham AL-Mubarak 



XVIII 
 

Abbreviations 

1H Hydrogen atoms 
3D  Three dimensional 
5-ALA 5-Amiinolevulinic acid 
A Cross-section area 
ADC  Apparent Diffusion Coefficient 
ASL Arterial Spin Labelling 
b Magnitude of diffusion encoding gradients 
B1 RF magnetic field 
BBB Blood-Brain Barrier 
B0 The main magnetic field-7 Tesla  
Blocal Local magnetization 
C Curie 
CA Contrast Agent 
CAD Computer Aided Diagnosis 
CBF Cerebral Blood Flow 
CBV Cerebral Blood Volume 
CE-T1 Contrast Enhanced T1 
cMRI Clinic MRI 
CNS  Central Nervous System 
CRM Cubic Regression Map 
CSF Cerebrospinal Fluid 
CT Computed Tomography 
CTV Clinical Target Volume 
CV Coefficient of Variation 
D Diffusion coefficient 
DC Direct Current 
DCE Dynamic Contrast-Enhanced 
Dice Dice Similarity Coefficient 
DICOM Digital Imaging and Communication in Medicine 
DSC Dynamic Susceptibility Contrast 
DTI Diffusion Tensor Imaging 
DWI Diffusion Weighted Imaging 
EM Expectation Maximization 
EPI Echo Planner Imaging 
f Frequency 
FA Fractional Anisotropy  
FCM Fuzzy C-Means 
FID Free Induction Decay 
FITC-dextran Fluorescein Isothiocyanate–dextran 
FLAIR Fluid Attenuated Inversion Recovery 
FN False Negative 
FOV Field Of View 
FP False Positive 
G Gradient amplitude 
Gd-DTPA Gadolinium-Diethylene Triamine Penta-Acetic  
GB Glioblastoma 
Gd Gadolinium 
GE Gradient Echo 
GM Grey Matter 
GMM Gaussian Mixture Model 



XIX 
 

GTV Gross Tumour Volume 
Gx X-gradient 
Gy Y-gradient 
Gz Z-gradient 
H Entropy 
h Planck’s constant 
H&E Haematoxylin and Eosin 
HLA Human Leukocyte Antigen 
I Spin quantum number 
ICP Intracranial Pressure 
IRM Interaction Regression Map 
kB Boltzmann constant 
k k-space 
Kx Frequency encoded 
Ky Phase encoded 
m Mean value 
LRM Linear Regression Map 
mbASL Multiple Boli Arterial Spin Labelling 
mpMRI Multiple parametric MRI 
Mcontrol Control Image 
MD Mean Diffusivity 
MI Mutual Information 
mI Spin quantum number 
Mlabel Labelled Image 
Mpost Image post injection with Gd 
Mpre Image pre injection with Gd 
M0 Net equilibrium magnetisation  
MRA Magnetic Resonance Angiograph 
MRI Magnetic Resonance Imaging 
MTT Mean Transit Time 
MSME Multi Slice Multi Echo 
Mxy Transvers component of the net magnetisation 
NC3RS UK government policy of Replacement, Refinement and 

Reduction 
Mz Longitudinal component of the net magnetisation 
Ndown Number of spins in lower energy level 
NMR  Nuclear Magnetic Resonance 
Nup Number of spins in upper energy level 
PBS Phospate Buffered Sline 
PET Positron Emission Tomography 
PTV Planning Target Volume 
PWI Perfusion Weighted Imaging 
QRM Quadratic Regression Map 
RARE Rapid Acquisition with Relaxation Enhancement 
RF Radio Frequency  
RGB Red, Green and Blue 
ROC Receiver Operating Characteristic 
ROI Region Of Interest 
S Signal 
SE Spin Echo 
SIH Stacked In-plane Histology 
SNR Signal to Noise Ratio 
SOC Standard Of Care 



XX 
 

  

SPECT Single-Photo Emission Computed Tomography 
SSH Single Section of Histology 
STD Standard Deviation 
t Time 
T Temperature 
T1 Longitudinal relaxation time  
T1W T1Weighted 
T2 Transvers relaxation time 
T2* Effective T2 relaxation time 
T2W T2Weighted 
TE Echo Time 
TI Inversion Time 
TM Transformation Model 
TMZ Temozolomide 
TN True Negative 
tp Period of time 
TP True Positive 
TR Repetition Time 
US Ultrasound 
VEGF Vascular Endothelial Growth Factor 
Vmax Maximum Tumour Volume 
Vmin Minimum Tumour Volume 
VOI Volume Of Interest 
ω0 Larmor  frequency  
WHO World Health Organisation 
WM White Matter 
Δ Observation time 
ΔE Energy difference 
δ Duration of the gradient pulse 
λ Parallel diffusivity 
λ1, λ2, λ3 The first, second and third eigenvalues of diffusion tensor 
μ Magnetic moment 
Σi Covariance matrix 
𝛾 Gyromagnetic ratio 



XXI 
 

Peer Reviewed Publication Resulting from This 
Thesis (see appendix A) 

• Stacked in-plane histology for quantitative validation of non-invasive imaging 

biomarkers: application to an infiltrative brain tumour model.  

H.Al-Mubarak; L. Gallagher; W. M. Holmes; A. Vallatos; J. L. Birch; L. Gilmour; 
A. J. Chalmers; J. E. Foster, Journal of Neuroscience Methods,(2019), Vol: 326, 
Page: 108372, Doi: 10.1016/j.jneumeth.2019.108372 

 

• Quantitative histopathologic assessment of perfusion MRI as a marker of 
glioblastoma cell infiltration in and beyond the peritumoral oedema  region. 

A.Vallatos, A., Al-Mubarak, H. F. I., Birch, J. L., Gallagher, L., Mullin, J. M., 
Gilmour, L., Holmes, W. M., Chalmers, A. J., (2018), J Magn Reson Imaging: 1-12, 
Doi: 10.1002/jmri.26580. 

 

• Changes an apparent diffusion coefficient across the macroscopic tumour 
margin correlate with novel tissue measures of infiltration in a preclinical 
glioblastoma Model (Conference abstract). 

Thompson G., Vallatos A., Birch J., Al-Mubarak H., Gallagher L., Gilmour L., 
Waldman A., Holmes W., and Chalmers A., Neuro Oncol, 2018, 20: i15., Doi: 
10.1093/neuonc/nox238.066. 

 

  



XXII 
 

Award Prize 

• National 3R’s Prize 2018 by the Animal Welfare and Ethical Review Board 

(AWERB),UK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



XXIII 
 

 Selected Conference Proceedings 

•  Annual conference CRUK‐EPSRC ‘Heterogeneity’ held by Cancer 
Imaging Centres, 2016, Manchester, UK.  
The Quantitative Assessment of Glioblastoma MRI Data by Multi-spectral 
Analysis, Poster, 1. 
 H. Al-Mubarak, A. Vallatos, J.E. Foster, A.J. Chalmers, W.M. Holmes. 
  

•  The Sanono-Sinapse Meeting, 29th September 2016, Dundee, UK. 

 Optimising small animal MRI to measure invasion and tumour 
heterogeneity in glioblastoma xenografts, Poster. 

A. Vallatos, H. Al-Mubarak, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 

•  British Neuro-Oncology Society Annual Conference, 21-23 June 
2017, Edinburgh, UK. 

 1- Probing glioblastoma infiltration into healthy tissue by magnetic 
resonance perfusion imaging: a quantitative MRI evaluation, oral 
presentation, session  OS-22F. 

A. Vallatos, J.L. Birch, H. Al-Mubarak, L. Gallagher, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

2- Changes in Apparent Diffusion Coefficient across the Macroscopic 
Tumour Margin Correlate with Novel Tissue Measures of Infiltration in a 
Preclinical Glioblastoma Model, Abstract. Neuro-Oncology, Volume 20, 
Issue suppl_1, 1 January 2018, Page i15, 
https://doi.org/10.1093/neuonc/nox238.066. 

Gerard Thompson, Antoine Vallatos, Joanna Birch, Haitham Al-Mubarak, Lindsay 

Gallagher, Lesley Gilmour, Adam Waldman, William Holmes, Anthony Chalmers. 

3- BBB permeability as a magnetic resonance imaging biomarker for low 
glioblastoma infiltration, Abstract, Neuro-Oncology, Volume 20, Issue 
suppl_1, 1 January 2018, Page i25 , 
https://doi.org/10.1093/neuonc/nox238.115. 

Antoine Vallatos, Joanna Birch, Haitham Al-Mubarak, Lindsay Gallagher, Lesley 

Gilmour, Anthony Chalmers, William Holmes. 

 

•  25th Annual ISMRM Meeting and Exhibition, 22-27 April 2017,  
Haonolulu, USA. 

 Multi-parametric MRI of glioblastoma invasion quantitative evaluation 
using histological stacks, Poster, 2929. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 

•  ESMRMB Magnetic Resonance Materials in Physics, Biology and 
Medicine, Congress, October 19 – 21, 2017, Barcelona, Spain.  

 Detecting of Glioblastoma Invasion Cells Using Multi-parametric MRI and 
Quantitative Assessment with in-plane Histology, Oral presentation, 325. 

H. Al-Mubarak, A. Vallatos, J. Birch, L. Glmour, L. Gallagher, J. Mullin, A. Chalmers, 

W. Holemes. 



XXIV 
 

 

•  Annual ISMRM–ESMRMB Meeting, 16-21 June 2018, Paris, France. 

 1- Detecting glioblastoma invasion using multi-parametric MRI and 
quantitative assessment with in plane histology,e-poster, 3831.                    

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 2- Perfusion MRI as a marker of glioblastoma infiltration into health tissue, 
e-poster, 6026. 

A. Vallatos, H. Al-Mubarak, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 3- Apparent diffusion coefficient correlates with histological tumour 
burden at infiltrating margins of a pre-clinical glioblastoma model, e-
poster, 6526. 

Gerard Thompson, Antoine Vallatos, Joanna Birch, Haitham Al-Mubarak, Lindsay 

Gallagher, Lesley Gilmour, Adam Waldman, William Holmes, Anthony Chalmers. 

 4-Quantitative Assessment of MRI Biomarkers Using Non-Rigid 
Registration of Stacked in-Plane Histology:  Application in a Mouse G7 
Tumour Model,e-poster, 4858.  

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 

•  The Sinapse Annual Scientific Meeting, 25 June 2018, Edinburgh, 
UK. 

 1- Stacked in plane histology for quantitative MRI assessment: 
Application to an infiltrative brain tumour model, oral presentation, O6. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 2- Perfusion as a marker of brain tumour infiltration into healthy brain 
tissue: a quantitative MRI evaluation, oral presentation, O13. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, A.J. Chalmers, W.M. 

Holmes. 

  
•  24th Annual ISMRM Scientific Meeting of the British Chapter, 24-26 

September 2018, Oxford, UK.  
 1- Investigating How to Optimally Combine Multimodal MRI Data to Better 

Identify Glioblastoma Infiltration, oral presentation, O16. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 2- Stacked In-plane Histology for Quantitative Assessment of MRI 
Markers: Application to an Infiltrative Brain Tumour Model, Power pitch, 
PP24. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

  



XXV 
 

•  27th Annual ISMRM Meeting and Exhibition, 11-16 May 2019, 
Montreal, Canada. 

 1- Investigating How to Optimally Combine Multimodal MRI Data to Better 
Identify Glioblastoma Infiltration, e-poster, 2354. 

H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 

 2-  2- Stacked In-plane Histology for Quantitative Validation of Non-invasive 
Imaging Biomarkers: Application to an Infiltrative Brain Tumour Model, e-
poster, 2390.                                                                                            

3- H. Al-Mubarak, A. Vallatos, L. Gallagher, J.L. Birch, L. Gilmour, J.E. Foster, A.J. 

Chalmers, W.M. Holmes. 
 



1 
 

1 Chapter 1 
 

General Introduction to Imaging and 
Treatment of Brain Tumours



                                                                                         Chapter 1: General introduction 
 

2 
 

1.1 Background to cancer 

A tumour begins when cells in the body start to proliferate out of control. The 

absence of the normal rules of cell division and death may lead to alterations in 

normal cellular function and threaten life (Hejmadi, 2013). A tumour may 

originate due to external issues such as chemical carcinogens, pollution, radiation 

and so on, which can cause gene modifications resulting in unlimited growth 

(Yankeelov et al., 2012). 

Tumours can be categorized by their cell type of origin and degree of 

aggressiveness. Benign tumours grow very slowly, have distinct borders, seldom 

infiltrate into the surrounding tissue, and can usually be completely removed by 

surgery and without recurrence (Louis et al., 2016). Malignant tumours on the 

other hand, grow rapidly, are difficult to remove completely by surgery and 

infiltrate to the surrounding normal tissues or metastasis (Hejmadi, 2013).  

1.2 The brain anatomy  

The brain is the most complex organ in the human body and is part of the Central 

Nervous System (CNS). It is surrounded by the skull and consists of Grey Matter 

(GM), White Matter (WM) and Cerebrospinal Fluid (CSF). GM consists of neural cell 

bodies, neuropil, glial cells, synapses, and capillaries (Mescher, 2016). WM 

contains myelinated axons. CSF is a clear fluid which exists in the ventricles and 

surrounds the brain and spinal cord.  

1.3 Brain tumours 

There are several types of brain tumours, such as glioblastoma, astrocytoma, 

pituitary adenoma, acoustic neuroma, meningioma, oligodendroglioma, 

haemangioblastoma, CNS lymphoma, and others (Hattingen  and Pilatus, 2016, 

Mescher, 2016). Brain tumours can be classified into two categories: primary and 

secondary. Primary brain tumours arise from the cells inside the brain. Secondary 

brain tumours are the result of metastases. This occurs when tumour cells 

separate from a primary tumour site and migrate to the brain through the blood 

system or the lymphatic system (Cuddapah et al., 2014, Weinberg, 2007). 
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1.4 Glioma 

Gliomas are the most common form of malignant primary brain tumours and arise 

de novo from glial cells and their progenitors in the brain. Until recently, glioma 

tumour cell classification was based on microscopic examination of tumour 

specimens by neuropathologists. However, since 2016, the World Health 

Organization (WHO) has classified tumours of the Central Nervous System (CNS) 

by integrating both classical histology features (morphological appearance) and 

molecular biomarkers that are based on the specific group’s molecular and gene 

expression profile (Louis et al., 2016). 

Gliomas have a variety of grades and degrees of aggressiveness that can be divided 

into low-grade benign gliomas (grade I and II) or high-grade malignant gliomas 

(grade III or IV).  

Grade I tumours are different from the three other grades. Typically, tumour cells 

are relatively unchanged compared to normal cells, and proliferate very slowly 

and rarely infiltrate into the surrounding tissue. Complete surgical resection can 

usually be achieved due to the distinct borders between a normal brain and 

tumour tissue (Louis et al., 2016). 

Grade II tumour cells do not look like normal cells. The tumour grows slowly and 

often progress into a higher-grade tumour despite therapy. Studies show that the 

tumours return in the form of highly invasive tumours (grade IV) 5 to 10 years after 

the original diagnosis and subsequent treatments (Bogdanska et al., 2017). 

Grade III (Higher malignant) tumours are invasive tumours that share common 

characteristics with grade IV tumours. The tumour cells invade healthy 

neighbouring brain tissue and after this are more likely to become rapidly dividing 

cells, but the tumours contain no dead cells at their centre (necrotic). The tumour 

tends to recur after surgery (Lacroix et al., 2001).  

Grade IV is a glioblastoma, which is a very aggressive tumour; they are 

heterogeneous, grow very fast, build new blood vessels, contain dead cells 

(necrosis) in the centre, and complete surgical resection is not achievable (De 

vleeschouwer, 2017).  
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1.5 Glioblastoma 

Glioblastoma (GB) is a fatal and aggressive form of primary brain tumour. WHO 

classified this brain tumour as a grade IV (De vleeschouwer, 2017). GB generally 

develops de novo, meaning these tumours can develop spontaneously within the 

brain and do not arise from the migration of cells from another tumour found 

within the body (Ray, 2010). The median survival for patients with glioblastoma is 

approximately one and a half years (Bernas et al., 2007). Despite recent advances 

in radiotherapy, chemotherapy, surgical techniques, and newer drugs, there has 

been little improvement in patient survival. 

One of the hallmarks of high-grade glioma is the ability of a single tumour cell or 

small groups to infiltrate adjacent normal tissue (Krakhmal et al., 2015). The 

invasion of tumour cells can occur in several ways (Fig.1.1), i.e., through the 

parenchyma (dashed green square), along vasculature (dashed blue square), via 

white matter tracts (dashed purple rectangle), or in the leptomeningeal space, 

dashed red rectangle (de Gooijer et al., 2018, Zagzag et al., 2008). The 

leptomeningeal space is the space between the arachnoid membrane and pia 

mater that is filled with cerebrospinal fluid and contains the large blood vessels 

that supply the brain. In fact, glioma cells are locally invasive and very rarely 

metastasise. 
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Figure 1.1: Invasion of tumour cells in to normal brain tissue. Four different routes of invasion 
have been described: (1) via the brain parenchyma, (2) perivascular space, (3) white matter 
tracts, and (4) leptomeningeal space. Adapted from (de Gooijer et al., 2018). 

The primary routes of invasion by glioma cells are by migrating through the 

perivascular space surrounding blood vessels or along white matter tracts.  Claes 

et al. (2007) reported that high-grade glioma cells usually use the same routes of 

migration that are travelled by immature neurons. The invasion of tumour cells 

mostly happens along white matter fibers and extend to corpus callosum into the 

contralateral hemisphere.  

1.6 Medical imaging of GB 

There are several techniques to evaluate tumour progression, diagnosis, and 

monitoring of GB. The standard imaging techniques used to diagnose and monitor 

brain tumours are X-ray Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI). Other techniques have been used such as Positron Emission 

Tomography (PET), and Single-Photon Emission Computed Tomography, SPECT,(De 

vleeschouwer, 2017).  
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In the clinic, CT images are widely used for diagnostic and therapeutic purposes 

in various medical disciplines. However, high doses of X-ray radiation can damage 

the normal tissues and image contrast is poor when looking at soft tissues. In 

contrast, MR images provide an excellent contrast between various forms of soft 

tissues which makes it very useful in tumour diagnosis (Fig.1.2). 

 

Figure 1.2: Shows the difference in spatial resolution between CT and MRI in mouse. MRI is 
superior in regards to the detail of the image and the tumour can be clearly seen. Image from 
(Karellas and Thomadsen, 2016). 

MR images are generally classified into two types, clinic and advanced imaging. 

Clinic MRI (cMRI) images are qualitative, whereas advanced MRI methods provide 

quantitative or semi-quantitative measurements. These are discussed in chapter 

2. 

The standard MRI sequences that are used to detect GB in the clinic are T2-

Weighted, T1-Weighted, Contrast Enhanced T1 and Fluid-attenuated inversion 

recovery. These clinic MRI (cMRI) modalities are useful to discriminate between 

brain tumours and normal tissue, although they are not able to detect the 

infiltration of tumour cells into the normal tissue (Sternberg et al., 2014). Several 

studies show that cMRI cannot detect the invasion of tumour cells beyond oedema 

(Swanson et al., 2002, Baldock et al., 2013, Vallatos et al., 2018a). Clinic MR 

cannot detect the invasion of a low density of tumour cells because, the current 

limit for tumour cell detection by MRI is in range between 100-500 cells (Muja and 

Bulte, 2009, Heyn et al., 2005). For more details see Fig.1.3. 
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Figure 1.3: A theoretical distribution of tumour cell density represented by the smooth curve 
showing the tumour distribution extending beyond the region detected by T2W and beyond 
the region detected by CE-T1. Adapted from (Konukoglu et al., 2010). 

1.7 Treatment of glioblastoma  

The current Standard of Care (SOC) for glioblastoma treatment is maximal surgical 

resection followed by radiotherapy and chemotherapy with for example 

Temozolomide (Jain, 2018). However, since glioblastoma tumour cells can 

infiltrate several centimetres beyond the treatment volume defined by standard 

CT or MRI (Tracqui, 1995) this can lead to tumour recurrence and regrowth. 

1.7.1 Surgery 

Surgical resection is the first choice for the treatment of GB. However, this 

treatment routine almost always fails to remove the tumour completely due to 

the aggressive, heterogeneous and infiltrative nature of this type of tumour 

(Lacroix et al., 2001). Complete surgical removal is not always possible, as it is 

difficult to distinguish the tumour from normal tissue and sometimes the tumour’s 

location is too near essential regions of the brain. 

A significant development in oncology in recent years has been the use of 

fluorescence-guided surgery. The patient consumes a drink that enables surgeons 

during operation to target brain tumours accurately, by making cancer cells 

fluoresce pink. The liquid is called 5-Aminolevulinic Acid (5-ALA) that uses a 

fluorescent dye to make cancerous cells fluoresce under UV light (Fig.1.4 A,B).  



                                                                                         Chapter 1: General introduction 
 

8 
 

 

Figure 1.4: (A) Shows the surgical location of a small glioblastoma. (B) After drink of 
exogenous 5-ALA dye, the tumour cells become fluorescent under UV light. This feature can 
identify tumour cells clearly and facilitates resection. Adapted from (Hattingen  and Pilatus, 
2016). 

1.7.2 Radiotherapy  

Radiation therapy is an effective method to attack tumour cells. The radiation 

dose applied to the tumour is dependent on its location and the radio-sensitivity 

of the surrounding tissue. X-rays and gamma rays are routinely used in radiation 

therapy to treat various cancers. Their deposited energy can kill cancer cells or 

cause genetic changes resulting in cancer cell death (Baskar et al., 2012). The 

standard fractionated intensity X-rays in three-dimensional radiotherapy is in a 

total dose of 60Gy in 30 daily fractions, every weekday over a period of six weeks 

(Caranci et al., 2012). 

In conventional radiation therapy three types of target volume are chosen to 

radiate. Firstly, the Gross Tumour Volume (GTV) is the lesion as identified in a 

magnetic resonance imaging scan with CE-T1 contrast. Secondly, the Clinical 

Target Volume (CTV) is defined as GTV plus an expansion margin of 2cm where 

there may be infiltration of tumour cells. Thirdly, the Planning Target Volume 

(PTV) is represented by CTV plus an expansion margin of 1cm (Burnet et al., 2004).  

Figure 1.5 shows these three volumes. This additional margin results in a PTV, 

which may often be four or more times the volume of the original GTV. Figure 1.5 

provides an illustration of how large PTV is compared to GTV. Hence, PTV usually 

incorporates a large number of critical brain regions and applying radiation to 
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these regions can result in irreversible damage. The conventional approach of 

adding a 2cm Euclidean margin to the GTV to construct a PTV is based on limited 

scientific evidence (Pirtoli and Gravina, 2016, Hattingen  and Pilatus, 2016). 

 

Figure 1.5: The three types of target volume are chosen to radiate the tumour: GTV in black 
representing tumour centre. CTV is together with a 2cm margin forms the GTV to be radiated. 
The PTV represents summation of areas GTV and CTV with additional 0.7cm margin. Adapted 
from (Burnet et al., 2004). 

1.7.3 Chemotherapy 

Chemotherapeutic agents work by targeting and killing tumour cells. There are 

many different types of chemotherapy medication, however, they all work in a 

similar way. The current drug for glioblastoma is Temozolomide (TMZ). TMZ is a 

DNA alkylating agent, which causes irreversible DNA damage and ultimately cell 

death. 

Due to the lack of effective treatments available to cure glioblastoma patients, 

new therapies have been investigated such as anti-angiogenic gene therapy to 

reduce the rapid vascularization of GB (Gerstner and Batchelor, 2012), 

immunotherapy to increase patient survival , and hormone therapy to inhibit GB 

growth and to induce apoptotic pathways (Altiok et al., 2011). 
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1.8 Preclinical GB models 

Preclinical animal models are useful to allow researchers to better understand 

tumour biology and develop new treatments. The choice of animal models is key 

to ensure that preclinical findings are relevant for human studies (Kiessling and 

Pichler, 2011). In this respect, a good animal model needs to reflect the biological 

properties of the patient. Animal models, such as rodents, are important tools in 

experiments (in vivo or ex vivo) because they are easy to handle, have a short 

lifespan, and have a central nervous system similar to that of humans.  

There are currently many mouse GB cell lines that that can be used to recapitulate 

features of GB such as the G7, U251, U87, and GL261 that have been implanted 

into the brains of mice (Jacobs et al., 2011). Each glioma model may provide 

varying similarities to human GB, which can be used to test the effectiveness of 

novel chemotherapeutic combinations (Jacobs et al., 2011). However, there are 

two reasons why studying tumour cell invasion is difficult. First, there are few 

animal models that show an invasive growth pattern. Second, there is a deficiency 

of high-grade glioma staining for pathologic analysis (Inoue et al., 2012). 

 

Figure 1.6: Glioblastoma tumour cells derived from human biopsies capture many 
characteristic of the tumour. Tumour cells are injected within the healthy mouse brain. 
Adapted from (Perrin et al., 2019). 

 

This has recently improved with the use of the resected human G7 Glioblastoma 

cell lines, which were donated to the University of Glasgow by Dr. Colin Watts of 

the University of Cambridge, UK (Carruthers, 2015). This model is rich with stem 

cells which are resistant to radiotherapy and chemotherapy (Gomez-Roman et al., 
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2017) and has a pathology resembling human disease, including an infiltrative 

margin which is useful to test new MRI techniques. 
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2.1 Background of MRI 

Rabi et al. (1938) were the first to describe Nuclear Magnetic Resonance (NMR) as 

a method for determining nuclear magnetic moments. After the Second World 

War, Bloch (1946) observed the ‘NMR’ phenomenon, as an radio frequency signal 

response to irradiating magnetic nuclei in a magnetic field with continuous-wave 

Radio Frequency (RF) . Cope and Damadian (1970) were the first to use NMR to 

scan living things and observed that different types of tissue (e.g. normal tissue 

and cancerous tissue) have different signal relaxation properties. Following this 

discovery, many research groups started developing techniques and systems for 

imaging (Mansfield and Grannell, 1973, Lauterbur, 1973), leading to modern MRI.  

In clinical practice, MRI has become a very common imaging tool, used for 

diagnosis, surgical planning, and follow-up of treatment outcomes. Compared with 

CT, MRI has superior soft-tissue contrast. MRI is also non-invasive and, unlike CT, 

does not use ionising radiation, thereby benefitting patient health. It is currently 

understood that exposure to the static magnetic field in MRI does not lead to 

harmful biological effects. MRI can be safely repeated to observe changes in 

pathology, such as the progression of a disease or the impact of treatment. 

2.2 MRI principle 

NMR signals are generally obtained from nuclei with an odd mass number (active 

MRI nuclei), such as 1H, 13C, 23Na and 31P (exceptions being 2H and 14N). These 

nuclei have a non-zero nuclear spin quantum number and a magnetic moment (). 

The interaction of the nuclei with the external magnetic field (B0) causes the 

nuclear magnetic moments to align with and precess around the external magnetic 

field as shown in Fig.2.1.  
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Figure 2.1: The external magnetic field causes the nucleus to precess at the Larmor frequency 
ω0. The Larmor frequency of precession is related to the strength of the magnetic field, B0. 

 

The precession frequency is called the Larmor frequency 𝜔0, which is directly 

proportional to the strength of the magnetic field (B0) and is written as follows: 

 

 𝜔0 = −γB0 Equation 2.1 

Where 𝛾 is the gyromagnetic ratio, a constant specific to a particular nucleus (for 

protons, 𝛾 = 42.58 MHz/T), and B0 the strength of the external magnetic field in 

Tesla. 

Generally, medical magnetic resonance imaging uses the signal from the nuclei of 

hydrogen atoms (1H) which contains a single proton. When no magnetic field is 

applied, the nuclear magnetic moments are oriented in random directions (Fig. 

2.2A), and the net magnetisation (M0) will be zero. However, by applying an 

external static magnetic field of B0, the nuclei will align along the flux lines of the 

magnetic field (Fig.2.2B). 
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Figure 2.2 (A) With no external magnetic field present, spins rotate about their axes in a 
random direction. (B) In the presence of a magnetic field, slightly more spins align parallel to 
the main magnetic field, B, thus produce a net longitudinal magnetization, Mz. Note: diagram 
spins shown as perfectly aligned for convenience. 

According to quantum mechanics, the number of possible orientations or energy 

states is determined by the nuclear spin quantum number, I. Hydrogen has a spin 

number of I= 1/2) and can adopt two possible spin states (2 I + 1). The low energy 

state (mI = +1/2), where the nuclear spin vector is in the same direction as the 

static field, is called spin-up. The high-energy state (mI = -1/2), where the nuclear 

spin vector is in the opposite direction, is called spin-down (Fig.2.3). 

 

Figure 2.3: Schematic diagram showing the separation of energy levels of 1H with and without 
of an external magnetic field (B0). 
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The proportion of spins in the spin-up state (low energy) and spin-down (high-

energy) state is determined by the Boltzmann distribution equation (2.2): 

 Ndown

Nup
= e

−∆E
kBT Equation 2.2 

Where Nup and Ndown represent the number of spins in the upper and lower spin 

states, kB is the Boltzmann constant (1.38x10-23J/ºK) and (T) is the temperature 

in Kelvin (ºK). The difference in energy between the lower energy state and higher 

energy state (ΔE) is equal to:  

 ∆E = hf = ħω =  γħB0 Equation 2.3 

Where h is Planck’s constant which is equal to 6.62×10-34 m2Kg/s and ħ=h/2π. From 

this Curie’s law of temperature-dependent paramagnetism can be derived: 

 
M0 =

cB0

kBT
 Equation 2.4 

Where C is the Curie constant and M0 is the equilibrium net magnetisation. 

2.2.1 Resonance  

In physics, many systems are sensitive to the frequency of interactions, where the 

maximum energy transfer occurs at the resonance frequency. Excitation at this 

resonance frequency causes the system to enter an oscillating regime before 

returning to its initial state. NMR describes how protons aligned with the external 

magnetic field (B0) can be excited when a Radio Frequency (RF) pulse (‘excitation’ 

pulse B1), is applied at the same frequency as the precession frequency of the 

nuclei.  

In the presence of an external magnetic field (B0), the number of spin-up and spin-

down nuclei are not equal. The net magnetization is called M0. After applying the 
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RF pulse, the hydrogen nuclei absorb energy. This increases the number of high-

energy (spin-down) nuclei (Fig.2.3) and creates phase coherence.  

2.2.2 RF pulse  

Magnetic resonance occurs when an RF pulse is applied at the same frequency as 

the Larmor frequency. For a group of nuclei, all the spins have the same phase 

after excitation by the RF pulse, resulting in a coherent transverse magnetization. 

In the presence of a receiver coil, the oscillating of the transverse magnetization 

induces an oscillating electric current in the receiver coil that can be measured. 

The dephasing due to the spins’ interaction during relaxation causes a loss of 

coherence and a decrease of transverse magnetization (Fig.2.4A-C).  

 

Figure 2.4: Schematic diagram showing (A) The equilibrium net magnetisation (M0) parallel to 
the external magnetic field (B0). (B) During the application of a 90° pulse, the M0 moves from 
the z-axis to the xy-plane. (C) Spins lose coherence and dephase due to spin-spin relaxation. 

2.3 Relaxation  

Application of an RF pulse at the Larmor frequency will result in phase coherence 

and a net transverse magnetization (Mxy). The precessing transverse magnetization 

gives rise to the MR signal in the receiver coil. However, the MR signal quickly 

disappears due to two independent processes that return the net magnetization 

back to the equilibrium state (M0). These two processes are spin-lattice relaxation 

(T1 relaxation) and spin-spin relaxation (T2 relaxation), respectively (Weishaupt 

et al., 2006, McRobbie et al., 2006). For more details see Fig.2.5A-B. 
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Figure 2.5: (A) T1 recovery curve which represents exponentially increasing longitudinal 
magnetisation. (B) T2 decay curve that represents the decay of magnetisation in the 
transverse plane (Mxy) after switching off the RF pulse. 

2.3.1 T1 relaxation 

Spin-lattice relaxation (T1) refers to the time taken for energised nuclei (following 

a 90o pulse) to return to their equilibrium state. It is also known as the longitudinal 

relaxation time because, diagrammatically, it represents the time taken for the 

net magnetisation vector, M0, to recover along the B0 direction. The mechanism 

underlying T1 relaxation is a transfer of energy from the nuclear spins to their 

surrounding lattice atoms (Guy and ffytche, 2005). The nuclei in the lattice are 

subject to vibrational and rotational motions, which create a separate, fluctuating 

local magnetic field (Blocal). This magnetic field can have frequency components 

matching the Larmor frequency of the nuclei, which can drive transitions between 

energy levels, returning the system to equilibrium. The recovery is exponential, 

with an exponential time constant termed T1, equation 2.5, Fig.2.5A. The 

relaxation time is defined as the time taken for 63% of the longitudinal 

magnetisation to recover. T1 depends on the inherent characteristics of the tissue 

and the magnetic field strength. The longitudinal relaxation of the net 

magnetization vector, Mz, parallel to the external magnetic field can be described 

by the equation: 

 
Mz = M0(1 − e

−t
T1 ) Equation 2.5 

Where t is time, M0 is the equilibrium net magnetization that depends on the 

proton density and the strength of the external magnetic field (section 2.2). 
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2.3.2 T2 relaxation 

The z-component of the fluctuating local magnetic field Blocal, will add to the 

static magnetic field B0, causing the local Larmor frequency to be time varying. 

As individual spins experience a slightly different magnetic field, this results in 

dephasing and loss of transverse magnetisation (spin-spin relaxation). The decay 

is exponential, with an exponential time constant T2 (Fig.2.5B). T2 decay time is 

defined as the time taken for 63% of the transverse magnetisation to be lost. T2 

also depends on the inherent characteristic of the tissue and the magnetic field 

strength and is usually faster than the corresponding T1 relaxation time. The 

transverse magnetization vector Mxy in the x-y plane can be described as: 

 
Mxy  = M0 e

−t
T2 Equation 2.6 

2.3.3 T2 * relaxation  

After an RF pulse is applied, the Mz is tilted into the x-y plane, producing a signal 

that is known as the Free Induction Decay (FID). The signal rapidly decays once 

the RF pulse is switched off due to parts per million level inhomogeneity in the 

static magnetic field, B0 (Fig.2.6).  

 

 

Figure 2.6: After an RF pulse, T2* signal in rapid decay of resulting from inhomogeneities in 
the main magnetic field. 
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2.4 Gradients 

The magnetic field gradient system can be used to spatially locate nuclear spins, 

thus allowing the development of magnetic resonance imaging from the NMR 

phenomenon. It consists of three orthogonal gradient coils, which are designed to 

produce time-varying gradients in the longitudinal magnetic field (Fig.2.7). 

 

 Figure 2.7: During a gradient pulse Gz where the magnetic field becomes a linear function of 
position on the z axis. Bz = B0, at the centre of the magnet. 

 

The gradient coils produce a linear variation of the magnetic field in the three 

directions, these are termed the x-gradient, Gx, the y-gradient, Gy, and the z-

gradient, Gz (Weishaupt et al., 2006). The magnetic field of these gradients can 

be defined as follows: 

 
Gx =

∂Bz

∂x
 , Gy =

∂Bz

∂y
  ,        Gz =

∂Bz

∂z
 Equation 2.7 

For example, the resultant magnetic field in the presence of a z-gradient can be 

expressed as:  
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 Bz = B0 + Gz𝑧  Equation 2.8 

Where B0 is the static magnetic field strength, Gz is a constant gradient measured 

in T/m, and z is the spatial location within the object being imaged.  

Magnetic field gradients can be used to select a slice for imaging. The slice- 

selection gradient is applied in the presence of an RF pulse whose bandwidth 

matches the precession frequency of spins in a thin slice that is to be imaged 

(Mougin, 2010), as shown in Fig.2.8.  

 

Figure 2.8: Principles of slice selection are achieved by applying a one-dimensional, linear 
magnetic field gradient during the period that the RF pulse is applied.  

A slice can be acquired with any orientation, but it is generally acquired in three 

orthogonal directions relative to the brain, namely, axial, sagittal, and coronal. 

Figure 2.9 illustrates MRI brain images taken in the three slice orientations. 
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Figure 2.9: In vivo MRI images acquired by 7T scanner showing (A) Axial (B) Sagittal, and (C) 
Coronal.  

 

 

These magnetic field gradients are used to perform spatial encoding in two ways: 

frequency encoding and phase encoding. In frequency encoding, the gradient is 

applied to make the precession frequency linearly related to the spatial location 

(combining Equations 2.1 and 2.8): 

 ω(x) = ω0 + γGx𝑥 Equation 2.9 

In phase encoding, the gradient is applied for a period of time (tp), during which 

a phase is linearly accumulated along the phase encoding direction (z): 

 ϕ(y) = γGyytp Equation 2.10 

2.5 Gradient and spin echo sequences 

In MRI, signals can be generated using either Gradient-Echo (GE) or Spin-Echo (SE) 

sequences. In GE sequences (Fig.2.10), the RF pulse is set to produce a 

magnetisation rotation angle, called the flip angle (α), of less than 90o which is 

combined with short TEs and TRs. After the RF pulse, a negatively pulsed 

frequency-encoded gradient is immediately applied, causing rapid dephasing of 

the spins. A second frequency-encoded gradient with in opposite polarity is then 

applied, causing the spins to rephase. This is termed a gradient-echo. The signal 

obtained in this type of sequence depends on T2*, which is a fast decay following 
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the RF pulse. The time needed to produce an echo is shorter than that compared 

with SE sequences.  

 

Figure 2.10: Time diagram of the basic gradient-echo sequence produced by a single RF pulse 
in conjunction with a gradient reversal. Adapted from (McRobbie et al., 2006).  

 

In the basic SE sequence (Fig.2.11), a 90o RF pulse is first used to excite the 

hydrogen nuclei. After a certain period of time, during which the spins dephase 

naturally, an additional 180o pulse is applied (Westbrook et al., 2011). Such a pulse 

causes a rephasing of the spins, which produces an echo after a period equal to 

the time lapse between the two pulses. 
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Figure 2.11: Time diagram of the basic spin-echo imaging sequence produced by pairs of 
radiofrequency pulses 90o and 180o, respectively. Adapted from (McRobbie et al., 2006).  

 

TR is the repetition time (the time between two successive 90o RF pulses). TE is 

the echo time (the time between the 90o RF pulse and the centre of the spin-

echo). 

2.6 MR signal  

RF excitation creates a net ‘in-plane’ magnetisation Mxy, the precession of which 

induces a signal in the receiver coil. The MRI signal can be expressed 

mathematically as follows:  

 s ∝ exp(i𝜙) Equation 2.11 

Where 𝜙 is the spin phase and 𝜙 = 𝜔𝑡, resulting in: 

 s ∝ exp(iωt) Equation 2.12 
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Inputting equation 2.1 into equation 2.11 resulting in,  

 s ∝ exp(iγBt) Equation 2.13 

Where B external magnetic field and (t) time. In the rotating frame, while applying 

a gradient Bz(x)= Gx.x, the MRI signal is expressed as, 

 s ∝ ei(γGx x)t Equation 2.14 

2.7 k-space  

The Cartesian coordinates of the reciprocal space vector, k, are termed k-space 

(Fig.2.12). K space is a spatial frequency domain that contains the digitised 

complex signals received during an MRI scan (Westbrook et al., 2011). Each point 

in k-space contains both the magnitude and the phase of the measured signal 

samples recorded in k-space, which can be transformed into a magnetic resonance 

image by using Fourier transform (Yankeelov et al., 2012). The signal detected by 

the receiver during an MRI scan is an oscillating circularly polarised magnetic field 

which can be separated into real and imaginary components. Two different image 

types can be generated. Magnitude images are most commonly generated by 

taking the modulus of the real and imaginary data, as in equation 2.15. Phase 

images are generated by taking the complex argument of the data, as in equation 

2.16. Conventional MR is viewed in the magnitude image, while the phase image 

can be used to investigate flow. 

 

 Magnitude = √real 2 + imaginary 2 Equation 2.15 

                                Phase = arctan (imaginary /real) Equation 2.16 
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Figure 2.12: The analogue to digital conversion creates complex data points that are stored 
in a Cartesian grid called k-space, named after the reciprocal space vector k. Magnitude and 
phase images are generated by manipulation of the real and imaginary parts of the signal. 

The frequency encoded (kx) and phase encoded (ky) in k-space are expressed as:  

 
kx =

1

2π
 γGx. t Equation 2.17 

 
ky =

1

2π
 γGy. t Equation 2.18 

Integrating the signal for the whole sample, gives the total signal S(x,t). Equation 

2.19 shows the Fourier relationship between the MRI signal and the spin density 

(). 

 
S(x, t) = ∫ 𝜌(𝑥)

+∞

−∞

ei2π(k.x)dx Equation 2.19 
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2.8 Main parts of MRI scanner 

In general, an MRI scanner includes the flowing elements:  

1- The main magnet, which is commonly a coil made of superconducting wire 

immersed in liquid Helium, which carries a high electric current to generate a 

strong, stable, spatially uniform magnetic field B0 ,(Kenneth W. Fishbein). 

2- A shim system containing coils carrying a small current that are used to 

compensate for the inhomogeneity of the main magnetic field (B0).  

3- A gradient system consisting of three separate gradient coils, to produce linear 

gradients in the magnetic field in the x-, y-, and z-directions. These gradients 

are driven by powerful Direct Current (DC) amplifiers. 

4- RF amplifier and RF transmit coil to produce the RF pulses.  

5- Receiver coils (e.g. surface coil, head coil) used to receive signals from the 

body.  

6- Various electrical components are controlling the scanner and the gradients, to 

create the MR images. For more details see Fig.2.13. 
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Figure 2.13: The major parts and electrical compounds of an MRI scanner are: the main 
magnet, gradient coils, shim system, RF transmitter and receiver, and the control computer. 

2.9 Applications of relaxation  

As discussed in section 2.3, the main relaxation processes are spin-lattice 

relaxation (T1 relaxation) and spin-spin relaxation (T2 relaxation). Relaxation 

produces the main form of contrast used in clinical MRI, as different tissues have 

different relaxation properties (Weishaupt et al., 2006). 
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2.9.1 T1 Weighted imaging  

T1-weighting is obtained when both TE and TR are short. This procedure usually 

provides excellent contrast between fluids, water-based tissues, and fat-based 

tissues (McRobbie et al., 2006) . In the case of brain images, it presents a poor 

contrast between grey matter and white matter at 7 Tesla. In a T1W image, the 

CSF appears hypointense, while the brain tissues (GM and WM) appear with 

medium intensity, and fat has considerable hyper-intense values (Fig.2.14). 

Contrast agents can be intravenously injected, which alter the T1 of the tissue 

they perfuse (this is explained further in section 2.14.1). 

 

Figure 2.14: Example of T1W image of mice with a G7 tumour model at 7 Tesla. Image 
parameters are TE=12.28 ms, TR=800 ms at a resolution of 176x176 pixels.    

 

2.9.2 T2 Weighted imaging 

Spin-spin relaxation is a much more rapid process, which refers to the time taken 

for coherent nuclei to dephase. Spin-spin relaxation is also known as transverse 

relaxation or T2 relaxation, it describes the reduction in the transverse 

magnetisation vector Mxy. Regarding the T2 values of brain tissues, this protocol 

provides a good distinction between different parts of the brain e.g. GM, WM, CSF, 

and scalp fat. In regions with cerebrospinal fluid, e.g. the ventricles, the rapid 

molecular tumbling, results in the spin interactions occurring in shorter times with 

the slower loss of transverse coherence, which leads to a longer T2 time. 

Conversely, for more constrained structures such as the dense population of cells 

in the parenchyma, interaction and exchange with large molecules or solids result 

in faster loss of transverse coherence, which leads to shorter T2 times. Generally, 

in T2-Weighted images, fluids appear as hyperintensity, whilst water- and fat-
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based tissues are mid-grey. Most tumours damage the microstructures of the 

brain, which prolong the T2 values of the affected tissue. 

 

Figure 2.15: Example of T2W image of one nude mouse with G7 tumour type, TE= 47 ms, and 
TR = 4300 ms. 

 

2.10 Diffusion 

Robert Brown was the first to discover the random motion of pollen grains 

suspended in water while studying them through his microscope. Later, he 

demonstrated diffusive mixing by adding a few drops of ink to a glass of water, 

observing the ink spread (diffuse) and mix with the rest of the water (Moritani et 

al., 2005). This phenomenon is called ‘Brownian motion’. Later, Einstein described 

diffusion statistically by this equation:   

 < x2 >= 6D∆ Equation 2.20 

Where (<x2>) is a mean square displacement during free diffusion that is 

proportional to the observation time (Δ), (Mukherjee et al., 2008) , Fig 2.16, and 

D is a constant, called the diffusion coefficient. 
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Figure 2.16: Free diffusing particle moving from two points, with displacement x, during 
observation time Δ. 

 

2.10.1 Diffusion encoding 

Stejskal and Tanner (1965) presented an NMR sequence sensitive to Brownian 

water motion. This sequence (Fig.2.17) is based on two gradients pulses (G) 

applied (in one spatial direction) on either side of 180o RF pulse. The presence of 

these gradients affects the spin-echo obtained at the end of the sequence. The 

greater the displacement of the spin along the gradient direction, the larger the 

dephasing and the greater the signal attenuation. 

 

Figure 2.17: The Stejskal-Tanner sequence. The diffusion-encoding gradients are applied in 

two matched pulses. G gradient amplitude, δ gradient duration, Δ temporal separation of 

gradients. 

 

During the first diffusion-encoding gradient, the spins accumulate a phase shift. If 

the spins are static, this phase shift is cancelled out by the second gradient, since 
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it has an identical magnitude to the first one, but an opposite sign due to the 

180°pulse. For the spins that have changed position due to diffusion, the phase 

shifts are different, resulting in signal loss. 

As spins are moving randomly with different displacement, this cause phase 

dispersion between the individual spins, producing a reduction of net 

magnetisation (M0). Conversely, in the case of slow or restricted diffusion (GM or 

WM), the relative dephasing between spins is more limited, which results in less 

signal loss. The diffusion sensitivity of a sequence is determined by the (b) factor:    

 S (b) = So exp
(−bD)  Equation 2.21 

Where   

 
b = γ2. δ2. G2. (Δ −

δ

3
) Equation 2.22 

Where 𝛾 is the gyromagnetic ratio (42.57 MHz/T for proton); G represents the 

gradient amplitude; δ represents application time of the gradient and Δ the 

observation time, represents the separation between applied gradients. 

The MRI signal that shows the diffusion displacement of spins in the direction of 

the gradient, is called the diffusion weighted signal. DW signals are not 

quantitative and the image obtained from these signals is called a Diffusion 

Weighted Image (DWI). 

In order to calculate D, signal intensity needs to be measured with at least two b 

values. In a clinical setting, typically two (b) factors, 0 and 1000 s/mm2, are used. 

After performing a linear fit between ln (𝑆0/𝑆) and b, the diffusion coefficient D 

can be calculated in a Region Of Interest (ROI) or voxel-by-voxel as the slope of 

linear regression (Mukherjee et al., 2008). For more detail see Fig.2.18. 
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D =
ln (

S
So

)

bx − bo
 

Equation 2.23 

 

 

Figure 2.18: Mono-exponential signal decay curve of water signal in  diffusion MR. The natural 
logarithm of the diffusion MR signal attenuation curve (ln (S/S0)) is shown against the b-value. 
The slope of the line represents the diffusion coefficient.  

 

2.10.2 Apparent diffusion coefficient  

The measurement of the diffusion coefficients in three orthogonal directions (Dx, 

Dy, Dz) can be used to generate an Apparent Diffusion Coefficient (ADC), which is 

used to represent the quantitative measurement of the diffusion (mm2/s) in three 

directions.  

 
ADC =

Dx + Dy + Dz

3
 Equation 2.24 
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2.10.3 Diffusion tensor imaging 

When diffusion is unrestricted and water molecules move randomly in all 

directions, the displacement can be modelled as a sphere and can be described 

by a single isotropic diffusion coefficient, D,(Mukherjee et al., 2008, Le Bihan et 

al., 2001). In the case of the molecules being restricted by their surrounding 

environment, diffusion may be greater in one particular direction than in other 

directions. Such anisotropic diffusion can be modelled as an ellipsoid (Fig.2.19).  

 

Figure 2.19: Illustration of isotropic diffusion and anisotropic restricted diffusion, with 
respective diffusion tensors. Adapted from (Mukherjee et al., 2008) 

 

Diffusion tensor imaging (DTI) measurements in multiple directions of space (at 

least 6) can be used to produce a diffusion tensor for each voxel. The measures 

that can be extracted from the DTI dataset consist of the three eigenvalues (λ1, 

λ2 and λ3) that represent the diffusion coefficients measured along the 3 

eigenvectors (e1, e2, and e3), (Hecke et al., 2016, Huisman, 2010). If these three 
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eigenvalues are of similar magnitude (λ1 ≈ λ2 ≈ λ3), Fig.2.20A, the diffusion of 

water is not limited to any direction. However, restricted diffusion in a certain 

direction gives rise to diffusion anisotropy, Fig 2.2B, which can be quantified by 

the fractional anisotropy value (FA).  

 

Figure 2.20: Representation of eigenvalues of isotropic and anisotropic diffusion of water. 

 

FA can be computed (equation 2.25) as the ratio of the three eigenvalues, reflects 

the degree of directionality. FA has values between zero and one. FA=0 represents 

perfect isotropy (all eigenvalues are equal) and FA=1 corresponds to perfect 

anisotropy (diffusion in one direction only). 

 

FA = √
3

2

(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

λ1 + λ2 + λ3
 Equation 2.25 

Where MD is mean diffusivity: 

 
MD =

λ1 + λ2 + λ3

3
 Equation 2.26 
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2.11 Applications of diffusion weighted imaging 

The microstructural properties of cancerous tissue, such as changes in cellularity 

or the number of cells in the tumour, can be indirectly measured using DWI and 

provide a useful contrast difference between normal and tumour regions (White 

et al., 2014), Fig.2.21. DWI is currently considered a cancer biomarker and has a 

role in cancer detection staging and follow-up treatment (Villanueva-Meyer et al., 

2017, Huisman, 2010). 

 

Figure 2.21: Example of DWI with a malignant tumour in a mouse brain. Acquired using   
b=1000 s/mm2. 

 

Several researchers have demonstrated the potential use of ADC as a non-invasive 

probe of tumour microstructure, which has motivated clinical and preclinical 

research to use ADC mapping to scan tumours (Moritani et al., 2005, Hecke et al., 

2016). ADC measurement depends on the two b values, for example, 

measurements using low b values would be more sensitive to fast diffusion 

components such as blood, and measurement with high b values would be more 

sensitive to microstructure of the tissue (Drevelegas, 2011), Fig.2.22. 

 

Figure 2.22: Voxel-by voxel calculation of ADC values results in an ADC map. 
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The magnitude and direction of diffusion of water molecules is determined by the 

geometry of the environment of the water spins. In grey matter, an FA value close 

to 0.2 is expected when little diffusion anisotropy is present, while in white 

matter, anisotropy is high and the FA values are expected to be nearer to 0.6, 

indicating a preferred direction of water diffusion, Fig.2.23.    

 

Figure 2.23: Example of FA image map that is a quantitative measure of the micro-structural 
integrity and cohesion of white matter tracts. 

 

2.12 Blood brain barrier integrity 

The Blood–Brain Barrier (BBB) was discovered in the late 19th century by Paul 

Ehrlich when he injected a dye into the bloodstream of a mouse. The dye 

infiltrated all tissues except the brain and spinal cord due to the existence of the 

blood–brain barrier. The blood–brain barrier is formed by endothelial cells of 

the  blood vessel wall, astrocyte end-feet covering more than 90% of the blood 

vessel surface, pericytes embedded in the blood vessel basement membrane, and 

tight junctions (Ballabh et al., 2004). For more detail see Fig.2.24.  

 

Figure 2.24: The illustration of the blood-brain barrier components. Adapted from (Liu et al., 
2012). 

 

https://en.wikipedia.org/wiki/Endothelium
https://en.wikipedia.org/wiki/Capillary
https://en.wikipedia.org/wiki/Astrocyte
https://en.wikipedia.org/wiki/Pericyte
https://en.wikipedia.org/wiki/Basement_membrane


                                                                                                          Chapter 2: MRI theory  
 

38 
 

This system allows the passage of some molecules by diffusion of substances such 

as glucose, water, and amino acids that are crucial to neural function. The loss of 

contact between astrocyte end-feet and blood vessels due to glioblastoma cells 

leads to disruption of the tight junctions, which allows the BBB to pass harmful 

materials into the brain (Watkins et al., 2014). 

The relationship between BBB breakdown and disease is not fully understood. For 

example, disruption of the BBB due to tumour cells enables the brain blood vessels 

to become accessible to low-molecular weight MRI contrast agents (Liu et al., 

2012). The disruption of the BBB in the tumour vasculature could play an important 

role in developing new therapies for gliomas and help to identify a biomarker for 

early diagnosis. 

2.13 Perfusion 

Perfusion is a physiological process by which the body delivers blood to the 

microvasculature, where oxygen and glucose exchange with local tissue. Tumours 

typically require more oxygen and nutrients than normal tissue to sustain their 

high rates of growth and development. To meet this higher demand for oxygen 

and nutrients, tumours create new vascular networks, a process called 

angiogenesis (Hardee and Zagzag, 2012).  

Tumour blood vessels are less regular and organized than those in healthy tissue, 

which may increase tortuosity as it moves through a tumour due to 

neovascularization, therefore, perfusion abnormalities are detected not only 

because of the increased number of vessels (angiogenesis) in a tumour ,but also 

because of the abnormal reaction of those vessels to the environment (Chen, 

2011), Fig.2.25.  

https://en.wikipedia.org/wiki/Astrocyte
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Figure 2.25: Schematic diagram illustrating the difference in flow between normal and 
abnormal tissue. Adapted from (Kalpathy-Cramer et al., 2014). 

 

Neovascularization, one of the features of glioblastoma pathology, may cause a 

change in regional cerebral perfusion and vascular permeability. The importance 

of neovascularisation is nowadays widely accepted in the grading of gliomas. 

These new abnormal vessels, which grow in the region of the oedema, can be 

characterized by decreased blood flow and increased permeability. These 

characteristics  can be used as biomarkers for the evaluation of tumour growth 

(Chen, 2011). 

2.14 Perfusion weighted magnetic resonance imaging  

Perfusion imaging provides a non-invasive quantitative method for assessing 

tumour perfusion and vascularization (Prasad, 2006). There are three principal 

techniques: Dynamic Contrast-Enhanced (DCE) MRI, Dynamic Susceptibility 

Contrast (DSC) and Arterial Spin Labelling (ASL), (Cuenod and Balvay, 2013). The 

labelling method can be based either on an exogenous contrast agent, for 

example, a paramagnetic complex of gadolinium (DCE, DSC), or on the magnetic 

labelling of the endogenous water molecules (ASL). 
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2.14.1  Contrast enhanced T1  

The contrast of the T1W image can be improved by injecting a contrast agent such 

as gadolinium (Gd), Fig.2.26. This shortens the T1 relaxation time, thereby causing 

increased signal intensity on T1W images. 

 

Figure 2.26: The injection of contrast agent (Gd) into mouse tail and image slice location. 

 

The basis for using contrast-agents for brain tumour imaging is that the contrast 

agent does not pass the blood vessel wall inside healthy brain tissue and remains 

in the blood vessels. However, malignant brain tumours cause damage (disruption) 

to the blood brain barrier which allows the contrast agent to leave the vessels and 

leak into the tissue. The affected region will have a shorter T1 that results in a 

hyperintense appearance (contrast enhanced area) on the T1W images (Fig.2.27). 

 

Figure 2.27: T1W brain image (A) before and (B) after injection of Gd contrast. (C) The CE-T1 
image shows a necrotic tumour core surrounded by a hyper-intense ring of contrast 
enhancement caused by a leaky tumour vasculature. 
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2.14.2  Dynamic contrast enhanced  

Dynamic Contrast Enhanced MRI could be used to assess perfusion parameters. The 

sequence requires the bolus injection of a contrast agent followed by the rapid 

acquisition of T1W images over time (Kalpathy-Cramer et al., 2014). The dynamic 

changes in the contrast agent concentration are used to calculate physiological 

parameters such as blood volume, blood flow, transit time, and blood vessel wall 

permeability (Chen, 2011). These perfusion parameters are important in order to 

describe the physiological changes that occur during tumour development or in 

response to therapy. 

2.14.3  Dynamic susceptibility contrast MRI 

In dynamic susceptibility Contrast MRI images, the first pass of a bolus of contrast 

agent through the brain by a series of T2*-Weighted images generates a signal 

intensity time curve (Chen, 2011). The drop in signal is proportional to the 

concentration of the contrast agent and to tissue vascularization. From this curve, 

multiple hemodynamic parameters (for each pixel) can be determined, such as 

the time to peak, Mean Transit Time (MTT), Cerebral Blood Flow (CBF), Cerebral 

Blood Volume (CBV) and perfusion maps. 

2.14.4  Arterial spin labelling  

Arterial Spin Labelling (ASL) is a completely non-invasive method based on the use 

of blood-water protons as an endogenous tracer to obtain information about blood 

flow in the tissue (Dai et al., 2008). Flowing blood is inverted (labelled) at the 

neck of a mouse and its arrival in the tissue of interest is measured (Gregori, 

2015). ASL treats the tissue of interest as two compartments: tissue parenchyma 

and blood. First, parenchyma is considered to consist largely of static (non-

inverted) spins, but there is an exchange between the compartments. Second, the 

blood which comes from the arterial is inverted magnetization and diffuses 

through the blood–brain barrier to parenchyma,(Yankeelov et al., 2012), Fig.2.28. 
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Figure 2.28 : The principles of freely diffusible tracer theory. Inverted magnetization comes 
from the arterial blood water (white arrow) and diffuses through the blood–brain barrier at the 
capillary level. Hence, spins are exchanged with the tissue magnetization, and reduce its local 
intensity. The degree of attenuation is a direct measure of perfusion. Remaining tagged 
magnetization as well as exchanged water molecules flow out of the voxel of interest through 
the venous system (grey arrow). Adapted from (Golay et al., 2004). 

 

The application of an RF pulse inverts the net magnetization of the water in the 

blood. After a certain time (Inversion Time, TI), an image is acquired which is 

called a labelled or tagged image. The image that is acquired without the inversion 

of the net magnetization of blood water is called a control image (Fig.2.29A). This 

perfusion-weighted signal (ASL signal) can be isolated by subtracting a labelled 

image from the control image in which the arterial blood magnetization is at 

equilibrium (Fig.29B). Since the blood occupies, on average, ~4% of the brain 

tissue, the difference in blood signal is relatively small compared with the total 

brain signal. The disadvantages of ASL are its low signal compared with DSC MRI, 

longer acquisition times, and a relatively complex acquisition procedure, which 

may explain its lower use compared with DSC MRI (Detre et al., 2009). There are 

two ways of tagging arterial blood water: pulsed and continuous ASL (Dai et al., 

2008). 
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Figure 2.29: (A) Perfusion imaging, showing the control and label slices positioned on a 
mouse head. (B) Example of a control and label image with the corresponding perfusion 
weighted ASL subtraction. 

 

2.14.4.1 Multiple boli arterial spin labelling  

In this work, a new high-SNR sequence, namely, multiple boli Arterial Spin 

Labelling (mbASL) is used to measure perfusion (Fig.30A). In this sequence, the 

train of adiabatic pulses (a hyperbolic secant) is applied to label the thin slice 

(label slice) in the neck of a mouse, with the spin at the level of the carotid 

arteries (Fig. 2.30B). To minimize the magnetization Transfer Effect (TE), the 

adiabatic train is also applied to the control image, but on the opposite of the 

imaging plane and using a gradient of opposite sign (Vallatos et al., 2018b).  
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Figure 2.30: (A) Pulse sequence diagram for mbASL, (B) The location of the label, control 
and imaging slices. Adapted from (Vallatos et al., 2018b). 

 

After a post-labelling delay (inversion time), the acquired image (label image) is 

subtracted from the control image without labelling to obtain the perfusion 

weighted image (Fig.2.31). 

 

Figure 2.31: Example of perfusion weighted image using mbASL after subtracting label from 
control image. The GB tumour in the right hemisphere shows clear hypoperfusion.   
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2.15 Applications of ASL  

Measuring blood flow is important for the characterization of tumours for several 

reasons. For example, aggressive tumours typically have higher blood flow and, 

hence, blood flow measurement can be an indicator of tumour grade (Yeom et 

al., 2014) and can aid in the differentiation of GB from brain metastases (Tourdias 

et al., 2008). Furthermore, treatments that block the development of the 

tumour’s blood supply have become promising approaches to tumour therapy.  

ASL offers several important advantages in tumour blood flow assessment. ASL 

offers absolute quantification that can be used to compare tumour blood flow 

values measured throughout therapy (Golay et al., 2004). Another key strength of 

MR blood flow measurement in brain tumours is co-registration with anatomical 

imaging such as T1W, T2W and DWI, obtained in the same scanning session. The 

need for such co-registration between anatomical and functional information can 

be used for interpretation of the functional information with anatomical guidance. 

In the next chapters, we will co-register mbASL with clinic MRI to obtain 

complementary information.  
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3.1 Introduction 

As soon as MR images are acquired from an MRI scanner, there is a need for further 

image processing steps. In this study, MR images required one or more image 

processing steps, such as pre-processing and post-processing, before data analysis. 

The software used for this processing was MATLAB 2015a, which can easily 

manipulate data to conduct the necessary measurements and analysis. 

3.2 MRI pre-processing  

Generally, pre-processing techniques are used to improve image quality. For 

example, it is necessary to remove small imperfections that arise due to scanning, 

and noise (discussed later in section 3.2.6) on the image. This involves those 

operations that are conducted before the main goal of analysis and the extraction 

of the desired information. For example, normally there is a need for geometric 

corrections, such as rotation of the original image.  

3.2.1 Retrieve data 

MR images were acquired as Digital Imaging and Communication in Medicine 

(DICOM) files by using Paravison 5.1 software (Bruker Biospin). DICOM data were 

rescaled to retrieve original image intensity values. Each imaging modality must 

be multiplied by the rescaled value obtained from the DICOM structure file. 

3.2.2 Normalisation  

Normalisation is a process that changes the range of pixel intensity values  in order 

to keep the image from presenting  a specific narrow intensity that is less 

interesting to the observer (Brody and Zerhouni, 2000). However, this process may 

result in the loss some of the information in the image. It is very important to 

ensure that pixel values in all the MR images are in the same range (Demirkaya et 

al., 2008) to make a comparison amongst images. The first method of 

normalisation is to divide the whole image pixels by the maximum intensity value 

of the image to change the image intensity to scale [0-1]. Another way of utilizing 

normalisation is take to take the pixels’ images, subtract them from the mean 

value and divide by the Standard Deviation (STD) of the entirety of all pixel images 

according to equation 3.1. 
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z =

x − m

σ
 

Equation 3.1 

 
 

                              
Where z is the new value, x is the old pixel value, m is the mean value and  is 

the standard deviation of the whole brain image. 

Finally, normalized relative perfusion maps (mbASL) are produced by subtracting 

the control and label images and dividing by the control, (Mcontrol-Mlabel)/Mcontrol. 

Contrast-enhanced images (CE-T1) were produced by subtracting the T1W image 

acquired before and after Gd-DTPA injection and normalized by using the equation 

(Mpost-Mpre)/Mpre.  

3.2.3 Sensitivity of surface coil 

Non-uniform detection sensitivity is associated with the use of a surface receiver 

coil. This occurs due to the surface coil’s signal drop-off with increasing distance 

from the coil plane (Wallner et al., 1990) ,for more details see Fig.3.1. It can 

adversely affect the result of image registration. 

 

Figure 3.1: (A) Image of a water phantom, with vertical profile line. (B) Plot representing pixels’ 
intensity along the yellow line shown in (A). 

 

A phantom is a specially designed object filled with gelatine or water generally 

used to evaluate the performance of various imaging devices. In this study, a 

phantom was used to correct surface coil sensitivity for T1W, T2W and DWI 
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images, dividing by the corresponding phantom images (Axel et al., 1987). Figure 

3.2 shows an example of removing the sensitivity of surface coil from a DW image. 

 

Figure 3.2: (A) DWI before removing sensitivity of surface coil (B) phantom image (C) DWI 
after removing sensitivity of surface coil. 

 

3.2.4 ADC map calculation 

Apparent Diffusion Coefficient (ADC) maps were calculated by fitting the DWI data 

to the mono-exponential equation of Stejskal and Tanner (Stejskal and Tanner, 

1965). DTI data were analysed using Paravison 5.1 software (Bruker biospin), with 

an emphasis on FA and ADC images. All data were resampled to match the T2W 

matrix (176x176) by using the cubic-spline method.  

3.2.5 Skull stripping 

Skull stripping is an essential part of many medical image analysis applications 

that study the brain. It is the process of removing non-brain tissue (skull and 

background) from an MR image of the brain. The brain region can be separated 

from the skull and background. For example, using an active contour method to 

find, and extract, brain boundaries after manual delineation (Vicent et al., 1997). 

The background pixel values will be equal to the null value to reduce processing 

time. Figure 3.3 shows an example of extracting the brain from a T2W image. 
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Figure 3.3: (A) T2W image shows whole brain with tumour in the right hemisphere. (B) After 
skull stripping only the brain remains. 

 

3.2.6 Filter 

Noise is a common problem in medical images such as X-rays or MRI. Errors in the 

image acquisition process result in pixel values that do not reflect the true signal 

intensities. The purpose of a filter is to reduce noise and improve the visual quality 

of the image. Despite the existence of many different methods to remove noise, 

accurate removal of noise from MRI is still a challenge (Roy et al., 2013).  

A filter has several disadvantages. For example, it can significantly affect the 

sharpness and reduce the visibility (blurring) of the image. 

An anisotropic diffusion filter was utilized to remove noise from flat regions and 

retain the edges in the image. This filter depends on the diffusion principle. 

Diffusion is the movement of particles from high concentration to low 

concentration and can be described by the equation: 

 j = −D∇u Equation 3.2 

Where the j is flux density, D is the diffusion coefficient which is constant and 

depends on the material, and u⃗⃗⃗⃗  ⃗ =( 
𝜕𝑢

𝜕𝑥
 +

𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑥
 ) denotes the gradient of the 

concentration .  
 
This equation, known as Fick’s first law of diffusion, means the change in 

concentration is the driving force for the movement (flux): 
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 ∂u

∂𝑡
= −div j Equation 3.3 

Where div is the divergence and t is time, which is a consequence of the fact that 

the number of particles remains constant. div is equal to: 

 
div =

∂

∂x
+

∂

∂y
+

∂

∂z
 Equation 3.4 

                                             
After substituting Fick’s first law eq. (3.2) with eq. (3.3), we can obtain Fick’s 

second law of diffusion as follows: 

 ∂u

∂𝑡
= −div(−D∇u) Equation 3.5 

                                                          

 
∂u

∂𝑡
= D (

∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2) Equation 3.6 

 

            
 ∂u

∂𝑡
= D∇2u Equation 3.7 

Therefore, the traditional nonlinear diffusion filtering method, which was 

proposed by Perona and Malik (Perona and Malik, 1990), can be described as 

follows: 

 

{

∂u

∂𝑡
= div(g|∇u|). ∇u]

u(t = 0) = uo              
 Equation 3.8 

Where || is the gradient operator, u is the smoothed image, |u| the gradient 

magnitude of u and g|u| is diffusivity gradient function. Under the control of g 

(||), the model can achieve a selective smooth diffusion from the original image 

based on the gradient. At the edge, the gradient magnitude is large, g(||), and 
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the model will not perform smoothing to retain the edge details. By contrast, 

when the gradient magnitude is small, g(||) at a flat area, the model will 

perform smoothing and remove the noise. Figure 3.4 shows an example of applying 

anisotropic diffusion filter on mouse brain image. The MATLAB code of anisotropic 

diffusion filter was derived from Demirkaya et al. (2008). 

 

Figure 3.4: (A) Original image of mouse brain tumour. (B) After applying noise. (C) After 
applying anisotropic diffusion filter. 
  

3.3 MRI Post-processing  

The post-processing steps occur only on the remaining brain voxels after pre-

processing to reduce processing time. This process includes segmentation and 

registration.  

3.3.1 Segmentation  

Image segmentation is one of the most important and active research areas in the 

medical imaging domain. The purpose of image segmentation is to divide the 

image into regions based on given criteria which, in medical imaging, may 

correspond to the tissue type, structure, or function. For example, a brain tumour 

image can be divided, after segmentation, into white matter, grey matter, 

cerebral spinal fluid, and the tumour region (Liu et al., 2014). 

The segmentation of a brain tumour (glioma high grade) in MRI is a challenging 

task for several reasons. Tumours may have heterogeneous appearances, have 
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different textures, have irregular boundaries, or the tumour borders may be 

unclear and discontinuous due to infiltration. 

The main difficulties in segmentation are the noise (Diaz et al., 2011), blur, low 

contrast, sensitivity of surface coil, and partial volume that a voxel contains to 

multiple tissue types (Roy et al., 2013). For example, the sensitivity of the surface 

coil may affect the tumour’s appearance in the image and provide different 

intensities for the same tissue. 

Despite extensive and promising work in the tumour segmentation field, obtaining 

accurate and reliable segmentations of tumours remains a difficult task. 

Segmentation techniques can be grouped into two main types: supervised and 

unsupervised.  

3.3.1.1 Supervised method  

Supervised approaches are based on the extraction of the features from the 

images such as voxel intensity, histogram, and texture, to create a model based 

on the relationships between each feature. Generally, the supervised 

classification procedure is comprised of two main stages: training and testing. In 

the training stage, the model learns from the information, fed by an expert, to 

discriminate between different tissue classes. In the testing stage, the dataset 

being tested is fed to the trained model. The MR image voxels are then assigned 

to one of the classes. 

Supervised methods strongly depend on prior information (training data) to 

perform the segmentation. This information is generally extracted using an 

expert’s knowledge, (manual selection) which is time consuming, and high (intra- 

and inter-) observation rate variability might induce errors in the training data. 

The most common supervised method used in the medical image field is Support 

Vector Machines (SVM). 

3.3.1.2 Unsupervised method  

These methods do not require training data to perform segmentation. Most of 

these methods employ clustering techniques to separate the voxels into different 
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clusters or classes based on similar features. Some popular unsupervised methods 

are k-means, Fuzzy c-Means (FCM) and the Gaussian Mixture Model. 

3.3.1.3 Gaussian Mixture Model 

The Gaussian Mixture Model (GMM) makes an estimation of the Gaussian 

distribution of each class in the dataset. The GMM for a particular class can be 

found as follows: 

 

f(x) = ∑PiN(x/μi, Σi)

k

i=1

 Equation 3.9 

Where x is data, k is the number of classes and Pi is the probability of Gaussian 

component i. N is the probability density function of the Gaussian component of 

k that can be found from the formula:  

 
N(x/μi, Σi) =

1

(2π)
d
2| ∑ |0.5

i

e−
1
2(x−i)∑ (x−i)

−1

 Equation 3.10 

 = ϕ(X; μi, Σi)  

Where ui is the mean and Σi is the covariance matrix. 

Expectation-Maximization (EM) is a method to find the maximum likelihood or 

Maximum a Posteriori (MAP) estimator of parameters of the Gaussian mixture ϕ 

(ui, Σi and Pi). The EM algorithm is an iterative method to calculate the maximum 

likelihood or maximum a posteriori estimates of parameters in statistical models, 

where the model depends on unobserved hidden variables. 

EM is demonstrated in the following steps. In the First step, the Mean (mk) and 

covariance matrix (Σi) are calculated. The second step, called the E step, 

calculates the membership probability of the training data. The third step, called 

the M step, computes the mean and STD of each Gaussian component using the 

membership probability obtained in the E step. The E and M steps are repeated 
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until the convergence Gauss mixture vector of each class is obtained by EM and 

training data for that class (Balafar et al., 2010). Figure 3.5 shows application 

GMM (built-in MATLAB function) on mouse tumour brain after being selected 

manually with 2 and 3 clusters. 

 

Figure 3.5: (A) HLA section with tumour selection (B) After applying GMM into tumour region 
with two clusters. (C) After applying GMM into tumour region with three clusters. 

 

3.3.2 Registration 

Image registration is a process of aligning several images to ensure corresponding 

pixels are at the same position in all images. Registration is a necessary step that 

allows the combination of several images from different modalities to extract 

more information (Suri et al., 2005). For example, registration can be applied 

between PET and MRI or CT with PET. 

3.3.2.1 Transformation model 

The goal of the registration process is to find a Transformation Model (TM). This 

describes how the image will be deformed and the amount of deformation 

allowed. It maps the coordinates of a particular pixel from the moving image (B) 

to be registered to the coordinates of the corresponding pixel in the fixed image 

(A). It is written as follows:  

 B(x′, y′) = TM. A(x, y) Equation 3.11 

The most common image transformation models are rigid and affine (Maintz and 

Viergever, 1998). Figure 3.4 shows different types of these models. The rigid 
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transformation is the simplest transformation model (Fig.3.6A-B). It allows only 

rotation and translation. Affine registration allows scaling and shearing in addition 

to translation and rotation (Fig.3.6C).  

 

Figure 3.6: (A) Linear translation and P constant parameter, (B) Rigid transformation with 
rotation (C) Affine transformation. Adapted from (Kiessling and Pichler, 2011). 

  

One example of the translation model is rotation. Let us assume pixel coordinate 

A(x,y) under geometric distortion produces an image with coordinate B(x’,y’). 

 

 TM = [
x′ = x cos Ɵ + y sin Ɵ

y′ = −x sin Ɵ + 𝑦 cosƟ
] 

Equation 3.12 

Where B is the image after rotation with angle θ, A is the original image and the 

translation model is TM. 

3.3.2.2 Mutual information method  

The relationship between intensities in the two images can be obtained by plotting 

their 2-D histogram. Plotting this histogram for identical images will generate a 

straight line. As one image is spatially transformed with respect to the other, the 

points on the histogram will start to scatter (Fig.3.7).    
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Figure 3.7:  2-D histograms of grey levels for two images are where (A) identical (B-C) with 
small translation. Adapted from (Hill and Hawkes, 1994). 

 

3.3.2.3 Entropy 

Entropy (H) is the measure of uncertainty of a random variable. This uncertainty 

is related to the probability of the occurrence of the event. If the entropy is high, 

the events have probability of occurrence, otherwise, the events have a low 

probability of occurrence. The entropy of variable x is defined as: 

 H(x) = −∑P(i) log2 Px(i)

N

i

 Equation 3.13 

Px the probability distribution of x, can be determined by the normalized 

histogram of the image. Let H (A), H (B) and H (A, B) be the entropy of two images 

A and B and the joint entropy of two images, respectively. These entropies can be 

expressed mathematically as (Vergara and Estévez, 2013): 

 𝐻(𝐴) = −∑Pa(i) log2 Pa(i)

𝑁

𝑖

 Equation 3.14 

 𝐻(𝐵) = − ∑Pb(i) log2 Pb(i)

𝑁

𝑖

 Equation 3.15 
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𝐻(𝐴, 𝐵) = − ∑ 

𝑁

𝑖

∑Pab(i, j) log2 Pab(i, j)

𝑁

𝑗

   Equation 3.16 

Where N is the number of different possible greyscale values that i and j can take 

,Pab (i, j) is the joint probability of the MRI and histology.  

Here, the entropy of the two images used to compute the joint entropy, is 

represented as mutual information (MI). 

 MI(A, B) = H(A) + H(B) − H(A, B) Equation 3.17 

Mutual Information (MI) has been widely used for medical image registration and 

is the most commonly used multimodal registration criterion. MI based registration 

begins with the estimation of the joint probability of the pixel intensities of 

corresponding pixels in the two images. 

MI was used as a measure of statistical correlation of two random variables. Given 

an image A and B, the mutual information of A and B is defined as: 

 MI(A, B) = ∑ P(a, b) . log2

Pab(i, j)

Pa(i). Pb(j)

N

i,j=1

 Equation 3.18 

Where P(a,b) marginal probability distribution Pa and Pb.  

Registration using the mutual information method depends only on the 

information contained within the image, which does not need any prior medical 

knowledge. Also, the value of MI represents the measurement of similarity 

between image A and B (MI=1 best similarity). 

3.4 Histology  

The word ‘Histology’ first appears around 1819. It derives from the Greek words 

‘hystos’ and ‘logos’, meaning tissue and study or science. Histology is the 

microscopic inspection of tissue sections, usually on glass slides, which are 

coloured with different stains to show different functional or physical properties 
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(McCann, 2015). In fact, histology is considered the gold standard for several 

diseases, such as GB. The process to make a histology section can be seen in Fig. 

3.8. 

 

Figure 3.8: Diagram shows the basic steps used in tissue preparation for light microscopy. 
Adapted from  (Mescher, 2016).  

 

In preparation of histological sections for microscopic observation, tissues and 

organs are too provide sections of reduced thickness to allow the passage of a 

light beam. Thus, in most of the cases, tissues are sliced into thin sections (from 

10-20 μm) and are placed on glass slides before being examined (Szende and Suba, 

1999). For better visualization of the cells, pathologists often add stains, such as 

Haematoxylin and Eosin (H&E), Fig.3.9.  

 

Figure 3.9 Examples of mouse brain histological sections stained with H&E, with tumour in 
right hemisphere. 

 

Tissue too delicate for direct sectioning  by using a vibrating blade, so it is most 

commonly either embedded in a hardening material such as Paraffin and sectioned 

using a microtome or frozen and sectioned in a cryostat (a microtome inside a 

freezer), (Pichat et al., 2018). For the fresh freezing method, the tissues should 

be frozen as rapidly as possible to avoid ice crystals and formation of amorphous 

ice. Freezing tissues slowly causes the water molecules during the transition to 
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form crystals, which results in volume expansion with destruction of cell 

membranes and disconnection of the tissue, see Fig.3.10.  

 

Figure 3.10: Example of sections obtained using the fresh freezing method and stained with 
Human Leukocyte Antigen (HLA). 

 

3.4.1 Pre-processing histology 

Staining variations affect the appearance of histology images. Such variations are 

problematic for automated analysis because colour is a critical feature in histology 

(Gurcan et al., 2009). Stain normalization is the process of taking two H&E images 

that have staining variation between them and removing this variation. This 

process consists of transforming the discrete distribution of pixel intensities into 

a discrete distribution of probabilities (histogram), dividing each value of the 

histogram by the number of pixels, and normalizing each colour according to 

shapes of specific histograms (Gonzalez and Woods, 2002). This process allows for 

regions of lower local contrast to gain a higher contrast.  

Colour normalisation/correction by histogram has shown improvement of 

histopathological image quality (Roy et al., 2018, Bhattacharjee et al., 2014). The 

advantage of this method is that both source and target images are the same 

brightness. However, this method is not applicable if the source and the target 

image have large differences in their histograms (Gonzalez and Woods, 2002). 

Software that corrects colour variation has become a standard package provided 

by most microscope manufacturers (Gurcan et al., 2009).  
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3.4.2 Post-processing histology  

Registration of a histology image with MR images is typically challenging due to a 

significant variation in image properties such as resolution, field of view, and 

contrast (Madabhushi et al., 2005). Registering histology images to MR images 

could help, for example, train radiologists, improve non-invasive diagnoses, and 

enable the development of MRI-based Computer-Aided Diagnosis (CAD) tools.  

3.5 Validation measurement 

The validity of segmentation or registration is an important matter in medical 

image analysis because it may have a direct impact on diagnosis and therapy plans. 

There are two types of validation: qualitative and quantitative. In this work, three 

validation methods, namely, visual assessment (qualitative), Dice Similarity 

Coefficient and ROC analysis (quantitative) were used.  

3.5.1 Visual assessment  

One of the quickest validation methods is simple visual inspection of the results. 

However, such qualitative assessment requires experience in comparing brain 

structures between MRI and histology. For more details see Fig.3.11.  

 

Figure 3.11: Visual assessment by checkerboard after co-registration of MRI with histology. 

 

3.5.2 Dice similarity coefficient  

The most widely employed technique to evaluate the accuracy of segmentation is 

the similarity index or Dice Similarity Coefficient (Dice), (Dice, 1945). The value 

of Dice varies between 0 and 1 (perfect segmentation), with 0.7 representing the 

position of good segmentation. However, Dice does not provide information about 

regions and it is sensitive to the total Region of Interest (ROI) and size distribution 

of the ROI (Garcia-Lorenzo et al., 2013). 
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 Dice =
2 A ∩ B   

A ∪ B
 Equation 3.19 

 

Figure 3.12 where A and B are two regions of interest. For example, MRI and 

histology, 

   

Figure 3.12: The Dice method is used to assess the intersection (overlap) between two regions 
A and B. 

 

3.5.3 ROC analysis 

Receiver Operating Characteristic (ROC) curve analysis is used to compare 

abnormal regions of interest probed by different modalities, such as MRI and 

histology, ground truth,(Garcia-Lorenzo et al., 2013). A comparison of abnormal 

regions gives measurements of True Negative (TN), False Positive (FP), False 

Negative (FN) and True Positive (TP) used to calculate sensitivity, specificity 

accuracy, and Dice (see Fig.3.13). 

 Sensitivity =
TP

TP + FN
     Equation 3.20 

 

 Accuracy =
TP + TN

TP + +FP + FN + TN
 Equation 3.21 
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 Specificity =
TN

TP + TN
 Equation 3.22 

 

      Dice =
2 ∗ TP

FP + FN + 2 ∗ TP
 Equation 3.23 

 

 

 

 

Figure 3.13: Diagram of comparison of two regions. If we consider the region outlined by the 
yellow contour is histology compared of the region outlined by white contour, which is MRI, 
the interaction of the two regions divides the space into four regions: true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN).  

 

3.5.4 Reproducibility 

Repeated measurements using a specific method should give identical results. 

However, variations exist which may be both equipment-dependent and operator-

dependent. Reproducibility refers to the ability of a method to be repeated to 

achieve similar results, and measures the variability that exists between repeated 

measurements (Garcia-Lorenzo et al., 2013). A reproducible imaging measure 

should, thus, be independent of scanner, MRI centre and time-point. 

Reproducibility in this study was measured using the Coefficient of Variation (CV) 

as follows: 
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 CV =
σ

m
 Equation 3.24 

Where m is the mean σ and is the standard deviation of the different measures of 

total lesion load. A small value of CV means less variation between two 

measurements. 
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4 Chapter 4 
 

Material and Experimental Methods 



                                                                                     Chapter 4: Materials and methods 
 

66 
 

4.1 Animal study design 

4.1.1 Mice and tumour implantation 

Ten CD1 nude mice (20-25 g, Charles River Laboratories) were acclimatized at 

least 2 weeks prior to any experimental procedure. G7 human glioblastoma cells 

were cultured in stem-like conditions (Advanced DMEM: F12, containing 20 M 

EGF/FGF, 1% B27, 0.5 %N2, heparin, 1% L-Glut) on matrigel coated plates. The 

animals were intracranially injected with G7 cells (105 cells per mouse) using 

stereotactic equipment. This model is rich in stem cells and highly infiltrative in 

the edge of the tumour, see Fig.4.1 (Gomez-Roman et al., 2017).  

 

Figure 4.1: Tumour margin of G7 glioblastoma model samples with the brains stained for H&E 
and HLA. Regions of vascular cuffing by invading tumour cells are enlarged. Reprinted with 
permission  (Vallatos et al., 2018a) . 

 

For an addition group of animals (n=5), anesthetized mice received an intravenous 

injection of 0.1 ml 7.5 mg/ml 70 kDa Texas red-labelled dextran (Thermo Fisher 

Scientific, UK) in Phosphate-Buffered Saline (PBS), for subsequent brain perfusion 

analysis. 
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4.1.2 Experimental design  

The mice were scanned in week 9 and week 12 (Fig.4.2). After the final MRI 

session, animals were humanely killed and the brains were quickly removed for 

histology.  

 

Figure 4.2: Experimental protocol. At week zero, 10 mice were orthotopically implanted with 
G7 glioblastoma cells. Mice were imaged in week 9 and week12.  After the last MRI session, 
mice were sacrificed and prepared for histology. 

 
Four additional animals were scanned at weeks 12, 15, and 17 to allow the 

formation of a necrotic core (Fig.4.3). Following MRI, the animals were sacrificed 

and their brains were freezed to minimize microscopic deformation of cells to 

allow for histology analysis. 

 

Figure 4.3: Experimental protocol of second study. At week zero, four mice were 
orthotopically implanted with G7 glioblastomacells. Mice were imaged in week 12, 15 and 17. 
After the final MRI session, mice were sacrificed and prepared for histology. 
 

All experiments were carried out in accordance with the local ethical review 

panel, the UK Home Office Animals (Scientific Procedures) Act of 1986, and the 



                                                                                     Chapter 4: Materials and methods 
 

68 
 

United Kingdom National Cancer Research Institute guidelines for the welfare of 

animals in cancer research (Workman, 2010). 

4.1.3 MRI acquisition   

MRI experiments were performed on a Bruker Biospec Avance 7 T imaging system 

with a 30 cm horizontal bore (Bruker, Ettlingen,Germany), Fig.4.4. Homogeneous 

RF excitation was achieved using a birdcage volume resonator (diameter = 72 mm, 

length = 110 mm). An actively decoupled 4-channel phased array receive-only 

head surface coil was used for signal detection (Rapid Biomedical, Wurzburg, 

Germany). The system was equipped with shielded magnetic field gradients 

producing up to 400 mT/m. The animals were anaesthetized using 5% isoflurane 

and a 30:70 O2/N2O ratio before being positioned prone on an MRI animal cradle. 

A hot water circulation jacket was used to regulate physiological temperature (37 

± 1 °C) and body temperature was monitored using a rectal probe. The head was 

secured laterally by conical ear rods and longitudinally by the nose cone used for 

anesthetic gas delivery. The animals breathed through a face mask, with 

isoflurane delivered at a constant flow mixed in a 40:60 ratio of O2/N2O (1 L/min). 

Isoflurane concentration was varied (1.5–3%) in order to maintain stable 

respiration rates within normal physiological ranges (40–70 bpm). Respiration was 

monitored using a pressure sensor connected to an air-filled balloon placed under 

the animal abdomen (Biotrig Software, Bruker). 

 

Figure 4.4: Bruker Biospec 7 Tesla MRI scanner with a 30 cm horizontal bore and the 
equipment used for preclinical experiment in GEMRIC.  
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Following a geometry-locater, a series of MRI experiments were performed (field 

of view 2 × 2 cm, five 1.5 mm coronal imaging slices centred at 4 mm posterior 

from rhinal fissure).  

T2-Weighted imaging was performed using an acquisition with Multi Slice Multi 

Echo (MSME) sequence (echo time TE = 47 ms, repetition time TR = 4,300 ms, 

matrix = 176 × 176, NA=4, 15 echoes, slice thickness = 1.5 mm, scan time 9 min), 

Rare factor=8. Higher-resolution T2Whistology images (slice thickness = 0.5 mm) 

were acquired during the final scanning session with MSME sequence (echo time 

TE = 46 ms, repetition time TR = 4,314 ms, matrix = 176 × 176), Rare factor=8.  

Diffusion weighted imaging (DWI) was performed using a 4-shot spin-echo planar 

imaging DW scan (TE = 37 ms, TR = 4,500 ms, matrix = 128 × 128, 1.5 mm slice 

thickness, 6 directions, b-values = 0, 1000 s mm−2, scan time 10 min).  

Perfusion weighted imaging (PWI) was performed using an optimized multiple 

boli arterial spin labelling sequence (mbASL), (Vallatos et al., 2018b), labelling 

with a train of 20 hyperbolic-secant inversion pulses (duration = 3.3 ms, 

dimensionless amplitude parameter μ = 8, angular modulation β = 760 s−1) evenly 

distributed over 5 seconds with a post labelling delay of  50 ms. The inversion slice 

width was 8.5 mm and the offset from the imaging slice was 15 mm. Image 

acquisition was achieved with a 4-shot EPI module (TE = 12 ms, TR = 7 s, matrix = 

96 × 96, partial FT = 1.4, 12 averages, scan time 9 min).  

Contrast-Enhanced T1 imaging (CE-T1) was performed using a RARE acquisition 

(TE = 12.3 ms, TR = 800 ms, NA=4, Rare Factor=4, ms, matrix = 176 × 176, 8 min). 

A catheter was inserted into the tail vein, allowing the injection of a contrast 

agent without removing the mouse from the magnet. Images were acquired before 

and 5 minutes after gadolinium-DTPA injection). Following in vivo scanning, a 

doped water phantom was scanned, for use in correcting the receiver coil bias 

(Rapid Acquisition with Relaxation Enhance), RARE, acquisition, TR=7000 ms, 

TE=46 ms, 18 slices, slice thickness=0.5 mm, matrix size=176x176, 128x128 and 

96x96, NA=20). For more details see Fig.4.5 and Fig.4.6. 
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Figure 4.5 Examples of different MRI modalities from first experiment on GB infected mice at 
week 12. The tumour appears to not have a necrotic core nor a contrast enhance rim. 
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Figure 4.6: Example of MR images of second experiment on GB mice at week 15 and 17 post 
infection. The tumour has a necrotic core. 

4.1.4 Histology protocols 

Following the final MRI last session, anesthetized mice received an intravenous 

injection of 0.1 ml 7.5 mg/ml 70 KDa Texas red-labeled dextran (Thermo Fisher 

Scientific, UK) in phosphate-buffered saline (PBS), for subsequent brain perfusion 

analysis. Two minutes after injection, mice were sacrificed and their brains were 

removed and fresh-frozen in liquid N2. Brain slicing was performed manually on an 

OTF 5000 Bright cryostat, guided by the high-resolution T2Whistology images. The 

identification of common anatomical features by an experienced neuroscience 

research technician (L.G., 20 years’ experience) allowed positioning the 

sectioning plane parallel to the MRI plane. Interleaved 20 μm and 60 μm sections 

were cut. The 20 μm cryosections were fixed in ice-cold acetone and washed in 

PBS before blocking in 3% BSA/TBS/0.05% Tween for 30 minutes at room 

temperature. A 1:500 dilution HLA antibody (Abcam, Cambridge, MA; ab70328) in 

blocking buffer was added and incubated for 2 hours at room temperature. 

Sections were washed three times with TBS-Tween before addition of 1:1000 

antimouse Alexa 647-conjugated secondary antibody (A-21236, Thermo Fisher 
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Scientific) for 1 hour incubation in the dark. Sections were washed three times 

with TBS-Tween and mounted in ProLong Diamond Antifade mount with DAPI 

(P36966, Thermo Fisher Scientific). Eiess 710 upright confocal microscope at x10 

magnification (Far red filters 638-747 nm, Beam splitters-MBS: MBS 488/561/633, 

MBS_InVis:plate, DBS1:Mirror).  

Sections were stained for hematoxylin and eosin (H&E), Ki67, or incubated with 

1:500 dilution HLA antibody (Abcam ab70328) and visualized using DAB staining 

(Dako EnVision + System HRP [DAB] K4007) followed by counterstaining and 

mounting. Sections were imaged using a Hamamatsu (Bridgewater, NJ) 

Nanozoomer Slide scanner with Leica Slide Path imaging Software (J.B., 8 years’ 

experience) or tiling at ×10 on a Zeiss (Thornwood, NY) 710 upright confocal 

microscope. For dextran imaging, unfixed 60-μm cryosections were imaged by 

zstack tile scanning on a Zeiss 710 upright confocal microscope. Images were 

exported as ‘.tiff’. 
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an infiltrative Brain Tumour Model 
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5.1 Introduction 

The use of non-invasive imaging modalities for clinical diagnosis continues to 

advance rapidly. A variety of methods are now available including Magnetic 

Resonance Imaging, Positron Emission Tomography (PET), Single Photon Emission 

Computerised Tomography (SPECT), Ultrasound (US), and X-ray Computed 

Tomography (X-ray CT). Often, the source of image contrast is related only 

indirectly to the underlying biology. This is especially true for MRI, where the 

signal intensity can depend upon many physical parameters including water 

content, local structure, tumbling rates, diffusion, and hypoxia (Dominietto et al., 

2015). There has been considerable interest in identifying whether such 

biologically indirect image contrasts can be used as non-invasive imaging 

biomarkers, either for normal biological functions, pathogenic processes or 

pharmacological responses to therapeutic interventions (Atkinson et al., 2001). 

Histopathology is generally considered to be the ground truth when considering 

the characterisation of diseased tissue (Kiessling and Pichler, 2011). For histology, 

a post mortem or biopsy specimen is cut into thin sections to reveal its internal 

morphology and then stained to observe complex differentiated structures at the 

cellular level (Kiessling and Pichler, 2011). The cutting process inherently yields 

2D sections, which is the manner by which most histology is analysed. However, 

considerable work has been undertaken to reconstruct 3D histological volumes 

from serial 2D sections (Pichat et al., 2018). Though difficult, this allows 

knowledge of the 3D environment to be regained, while still accessing microscopic 

information (Stille et al., 2013).  

When new imaging modalities are proposed as imaging biomarkers for particular 

diseases (Price and Gillard, 2011), it is difficult or impossible to validate them in 

human patients for ethical reasons. Validation against histopathology is limited to 

biopsy (Madabhushi et al., 2005) and later post-mortem comparisons (Kimt et al., 

2000). In the case of biopsy, the size and number of samples taken is very limited 

and difficult to localise on images. Comparison of in vivo non-invasive imaging and 

later post-mortem histology would be compromised by disease progression 

between imaging and death. Further, comparison of post-mortem imaging and 

post-mortem histology, would be compromised by the ex vivo state of the tissue 

(Fagan et al., 2008). 
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Nevertheless, biomarker validation can be performed in preclinical disease 

models, where the animal can be terminated immediately following imaging for 

histological analysis. In principle, co-registration of imaging biomarkers with 

histopathology would allow direct validation. Indeed, there is a considerable 

literature describing such image registration algorithms and their application 

(Dauguet et al., 2007, Pichat et al., 2018). However, in practice, most preclinical 

validation is qualitative, limited to visual comparisons with sample histology 

sections, with little attempt made to match these to the corresponding imaging 

slice (Henning et al., 2007, Langer et al., 2009, Coquery et al., 2014). The reason 

for this is that accurate co-registration of non-invasive images with histology 

sections is challenging. The processing, cutting and staining of histology sections 

can result in complex deformations such as fixation shrinkage, tears and cutting 

artefacts (Stille et al., 2013, Agarwal et al., 2016), which are difficult for 

registration algorithms to handle.  

Examples of quantitative comparison of imaging biomarkers with histology include 

Stille et al. (2013), which used rigid registration and selected anatomical 

landmarks with a rodent stroke model. This approach requires an expert to 

identify the control points, which can be a difficult task due to internal 

distortions. Similarly, Ou et al. (2009) used non-rigid registration with selected 

anatomical landmarks to register histology to MRI of prostate tumours, using two 

criteria: maximization of landmark similarities and maximization of cancer region 

overlap. Jardim-Perassi et al. (2019) used MRI-guided 3D printed tumour moulds 

to facilitate registration in a murine breast tumour model. However, the accuracy 

of these approaches was limited by not accounting for imaging slice thickness and 

often slice orientation too.  

In this chapter, we have tried to achieve high quality registration of histology with 

non-invasive imaging data, not by improving on current image registration 

algorithms, but by focusing on improving the quality of the histology used. This 

was done in five ways: 

1. The use of a ‘flash-freeze’ method for fixation instead of transcardial fixation 

with paraffin embedding. With care and experience this helps to preserve tissue 

morphology, reducing macroscopic distortions associated with extracting, 

cutting, and staining (Peters, 2003, Ou et al., 2009).  
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2. Histology was cut in relatively thick 20 μm sections, to reduce the risk of 

tears/distortions. 

3. Histology sections were carefully cut in the image acquisition plane (e.g. the 

MRI plane), guided by high resolution thin slice (Thickness=0.5 mm) T2Whistology 

MRI. This is particularly important to maximise spatial correlation between MRI 

and histology (cf. Fig.5.1). Voxels of an MRI scan in this work are not isotropic, 

meaning the voxel is not equidistance in all three directions, when there is a 

different voxel resolution within the MRI slices and there is a gap size between 

the slices. It is not possible to use a standard histology section as guidance for 

MRI slice selection. 

4. A protocol was developed to register and stack multiple in-plane histology 

sections in order to reflect the imaging slice thickness. For example, the 

thickness of an MRI slice (~1-2 mm) is approximately 100 times thicker than a 

histology section (~10 to 20 µm) (cf. Fig.5.2). This is crucial where the pathology 

is heterogeneous, with variations occurring on the length scale of the imaging 

slice thickness. 

5. The use of histological stains that exhibit signal intensities proportional to the 

observed phenomenon, in order to produce semi-quantitative maps. This 

facilitates intensity based registration, thus avoiding overfitting limitations of 

commonly used affine transformations (Wells et al., 1996).  

To evaluate the ability of this overall approach to provide a quantitative 

histopathologic assessment of in vivo imaging biomarkers, we applied it to a 

patient-derived mouse model of glioblastoma. In GB, a major factor contributing 

to treatment failure is the ability of tumour cells to infiltrate adjacent normal 

brain tissue (Price, 2007), with low tumour cell density extending far beyond the 

bulk of the tumour. Identifying the full extent of infiltration is important for both 

radiotherapy planning and to achieve complete surgical resection. Here, we 

present the different steps leading to the production of a 3D data matrix, from 

co-registration of multiple MRI modalities with stacked in-plane histology. We 

show how the resulting matrix allows MRI modalities to be assessed, both in terms 

of tumour volume detection and via direct voxel-wise comparison. Such an 
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approach should become the accepted gold standard for validating non-invasive 

imaging biomarkers. 

5.2 Experimental protocol 

All mice brains were scanned in vivo on week (9 and 12) respectively. Following 

the experiment, a phantom image was acquired that was used for correcting the 

sensitivity bias of the RF surface receiver coil. At the end of the MRI session, 

animals were sacrificed immediately following the   last scan and stored frozen at 

-20 ˚C to enable ex vivo studies later. 

Following MRI, animal brains were removed and fresh-frozen for 2 minutes at -45 

˚C using an isopentane solution tube immersed into dry ice. The frozen brain was 

then removed from the isopentane, embedded in Cryomatrix and protected in M-

1 embedding matrix to prevent dehydration (Thermo Fisher Scientific, UK). 

Freezing was favoured in order to avoid the unpredictable macroscopic tissue 

deformation related to perfusion-fixation and paraffin embedding (Petersen et 

al., 2001). Brain slicing was performed manually on an OTF 5000 Bright cryostat (-

16 ̊ C) equipped with a rotary knife (Bright, Criostato-OTF-5000). A relatively thick 

section thickness of 20 μm was chosen, to reduce the risk of tears or distortions. 

Care was taken to cut the sections in planes parallel to the MRI image ones. For 

this, sectioning was guided by high resolution T2W images (slice thickness = 0.5 

mm, T2Whistology) Common brain structures identified by an experienced 

neuroscience research technician (L. Gallagher) were used to iteratively orientate 

the sectioning plane, so as to be parallel to the MRI plane (Fig.5.1). Five sections 

within the MRI thickness were cut at 300 μm intervals and then lifted onto to poly-

L-lysine slides. Then, the sections were stained using either haematoxylin and 

eosin (H&E) or Human Leukocyte Antigen (HLA) stain to identify the human tumour 

cells (Fig.5.2). The 20 μm cryosections were fixed in ice cold acetone and washed 

in PBS 226 before blocking in 3% BSA/TBS-tween for 30 mins at room temperature. 

A 1:500 dilution HLA antibody (abcam ab70328) in blocking buffer was added and 

incubated for 2 hours at room temperature. Sections were washed three times 

with TBS-Tween before addition of 1:1000 anti-mouse Alexa Fluor 647-conjugated 

secondary antibody (Thermo Fisher Scientific, UK - A21236) for 1hour incubation 

in the dark. Sections were washed 3 times with TBS-Tween and mounted in 231 

ProLong Diamond Antifade mount with DAPI (Thermo Fisher Scientific, UK - 
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P36966). Whole brain section tile scans were conducted using a Zeiss 710 upright 

confocal microscope at x10 magnification.  

 

Figure 5.1: Effect of cutting angle (φ) on MRI to histology comparison: (A) MRI (1.5 mm 

thickness) and histology (20 m thickness) cutting angles. (B) The effect of cutting angle 
discrepancies on the overall volume and voxel-wise overlaps between MRI and stacked 
histology. Reprinted with permission (Al-mubarak et al., 2019). 

 

 

Figure 5.2: The cutting of histology section was guided by 0.5 mm thick T2-Weighted images 
(T2WHistology), matching the cryo-section plane to the MRI acquisition plane. Five evenly 
distributed histology sections (20 µm) were cut (red) to cover the 1.5 mm thickness of the 
T2W scans. . Reprinted with permission (Al-mubarak et al., 2019). 
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5.3 Data processing pipeline 

Both MRI and histology data were processed using MATLAB code developed in-

house (MATLAB R2015a , MathWorks Ltd., U.K.). The overall processing pipeline is 

summarised in Fig.5.3. 

 

Figure 5.3: Simplified diagram of the image processing pipeline leading to the production of 
a 3D data matrix, combining both different MRI modalities and the SIH data. Reprinted with 
permission (Al-mubarak et al., 2019). 

 

5.4 MRI data analysis 

To remove any bias that could arise due to differences in the image intensity 

values for the different modalities, the DICOM images were normalised (0-1 

range). Furthermore, non-uniform detection sensitivity associated with the use of 

a surface receiver coil was corrected, as it can adversely affect the registration 

processes: T1W, T2W and DW images were divided by phantom MRI images 

acquired using the same parameters to remove the sensitivity of the surface coil. 

(Axel et al., 1987). ADC maps were calculated by fitting the DWI data to the mono-
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exponential equation of the Stejskal and Tanner model (Stejskal and Tanner, 

1965). Normalized relative perfusion maps were produced from the MRI signal of 

the control image (Mcontrol) and labelled image (Mlabel), using the equation (Mcontrol-

Mlabel)/Mcontrol. Prior to comparison, all data (DWI, ADC, ASL, and SIH) were resized 

to the T2W in-plane resolution (176 x 176). To reduce processing time, the brain 

region was separated from the background by the application of an active contour 

method following manual delineation (Caselles et al., 1997). 

5.5 Histology data analysis 

Following digital scanning of whole brain histology sections, the histology images 

were rotated by a small angle to remove differences in orientation of the brain 

caused by the placement on glass microscope slides. Histology images were then 

downsampled from their original resolution (approximately 1400x1200 pixels) 

using the cubic spline method (MATHLAB built-in function) to match the resolution 

of the T2W images (176x176 pixels). Signal intensity inhomogeneity, as a results 

of difference in staining across the image, were automatically corrected for each 

section by using a histogram equalization method (Belsare, 2012). Further, a 

threshold value was selected, creating a brain mask to remove the background 

signal. SIH maps were generated by a co-registration of multiple histology sections 

register using non-rigid Mutual Information method (MATHLAB built-in function) 

and by taking a voxel-wise average of the signal intensities. Registration used 

Mutual Information based transformation with global translation, rotation, scaling 

and shearing for optimal registration. In one histology section with greater tissue 

deformations, a B-spline method was applied to improve the registration. 

5.5.1 Histology to MRI co-registration and production of 3D 
matrices  

Registration of histology sections with MR images is typically challenging due to a 

significant variation of image properties, such as resolution, field of view and 

contrast (Madabhushi et al., 2005). Here, the SIH maps, allowed intensity based 

registration with MRI images to be undertaken using the Mutual Information 

registration method. For consistent registration, the histology sections were 

transformed so they had the same resolution and dimensions as the MR images. 
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Figure 5.4: (A) Co-registration after three HLA sections and construction of a SIH map. (B) 
3D matrix consisting of different MRI modalities and SIH.  

 

5.5.2 Segmentation protocol   

For both histology and MRI, tumour related abnormal Regions of Interest (ROI) 

were manually drawn by 3 observers (with more than 3 years’ experience). 

Histology ROIs were selected based on HLA stain intensity on SIH maps. MRI ROI 

delineation was performed without prior knowledge of the histology data, to avoid 

selection bias. Care was taken not to include non-infiltration related enhancement 

(e.g. ventricle compression). Inter-observer reproducibility of ROI selection was 

evaluated using the coefficient of variation (100×standard deviation/mean), 

resulting in 10% for histology and 12-21% for the different MRI modalities. 
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5.5.3 Statistical analysis 

The two-tailed Student’s t-test was used for comparisons between MR 

measurements of tumour volume and histology measurements of tumour volume 

(SSH or SIH), using a Bonferroni correction (Graph Pad prism 6, Ver.6.01, 2012). 

All values are reported as means ± standard deviation. * Statistically significant 

p<0.01, ** statistically significant p<0.001, *** statistically significant p<0.0001 and 

NS not statistically significant. Statistical power analysis was performed using G-

Power (version 3.1) software (Erdfelder et al., 1996). 

5.6 Results & Discussion 

We present a quantitative method for validating imaging-based biomarkers by 

registration with stacks of in-plane histology. 

While it is generally agreed that histopathology is the gold standard for 

assessment, in practice most preclinical validation is limited to visual comparisons 

with sample histology sections, with little attempt made to spatially match the 

histology section to the corresponding imaging slice. By improving the quality of 

the histology processing and analysis, we have been able to produce stacked in-

plane histology maps. These high quality SIH maps can then be co-registered with 

non-invasive imaging modalities, allowing more direct and quantitative validation 

of imaging biomarkers than has previously been possible. 

To demonstrate this methodology, we applied it to a patient-derived mouse model 

of glioblastoma. In the case of GB patients, an imaging biomarker capable of 

identifying the full extent of GB cell infiltration would be valuable for both 

radiotherapy planning and in achieving complete surgical resection. Below, we 

assess the optimal number of histology sections need to produce SIH maps and the 

quality of SIH with MRI registration. Finally, potential MRI biomarkers are assessed, 

both by volumetric and voxel-wise comparison with SIH maps. 
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5.6.1 Tumour volume measurement via single-section histology 
(SSH) 

Figure 5.5A shows exemplary H&E and HLA stained sections, obtained from within 

the 1.5 mm MRI slice. The heterogeneity in tumour shape and size is readily 

apparent at this length scale. The commonly applied method of arbitrarily 

selecting a single-section of histology (SSH) to estimate tumour volume inevitably 

leads to significant measurement variation. For example, the percentage 

difference between the minimum tumour volume (Vmin) and maximum tumour 

volume (Vmax) for each series of sections was found to be 46% for H&E and 50% for 

HLA (Fig.5.5B). While tumours can be identified on H&E sections due to a much 

higher density of cell nuclei, there is less sensitivity in detecting regions of low-

density GB infiltration. However, Human Leukocyte Antigen staining is very 

specific in the mouse model, as it only stains cells that originated from the 

implanted human tumour cells. Hence, in the following analysis we define tumour 

volume as the maximum extent of GB cell infiltration identified using the HLA 

sections. 

 

Figure 5.5: Examples of histology sections for a GB mouse and volume error comparison: (A) 
Five corresponding histology sections (H&E and HLA) cut within the 1.5 mm thickness of one 
MRI slice (B) Percentage volume error between maximum and minimum tumour volumes (Vmax 
and Vmin respectively), derived from in the five sections for each animal, calculated using (Vmax 
- Vmin)/Vmax)x100. Reprinted with permission (Al-mubarak et al., 2019). 



                                                                              Chapter 5: Stacked in-plane histology 
 

84 
 

5.6.2 Determining optimal number of histology sections for SIH 
maps  

It is clear that increasing the number of histology sections (20 μm thick) used to 

generate a SIH map will make the SIH map more representative of the 

corresponding imaging slice (1500 μm thick). However, this comes at the expense 

of longer processing time (histology preparation / analysis time). In applying the 

SIH method, the optimal number of sections will be disease specific, depending 

on the length scale of heterogeneities and the corresponding imaging slice 

thickness.  

For the GB tumours, we assessed how tumour volume measurements were 

improved by using more HLA sections to generate the SIH maps. In 6 out of 9 mice, 

where five quality HLA sections were available, SIH maps were produced with one, 

two, three, four and five sections (Fig.5.6A-E), using all possible combinations of 

the sections. The measured tumour volume reaches a plateau when 3 or more 

sections are used to produce the SIH map, with no significant difference found 

between using 3, 4 or 5 sections (Fig.5.6F). These volume measurements are 

analogous to numerical integration where the more sections used to calculate a 

volume, the more accurate the result will be, eventually converging at the true 

value. To further investigate the effect of using multiple histology sections, we 

performed a ROC curve analysis (Garcia-Lorenzo et al., 2013) comparing SIH maps 

produced with 1, 2, 3 and 4 HLA sections to maps produced with 5 HLA sections. 

This assumed the 5-section map was the ‘ground truth’ for the assessment of the 

other maps, to avoid bias in the selection of sections, maps were produced from 

all possible combinations of sections for each mouse. It should be noted that the 

values of Dice, sensitivity, and accuracy indices will be dependent on the number 

of sections used in the gold standard. However, Fig.5.6G-J does show a diminishing 

increase of these indices with the number of sections used, and their standard 

deviation decreases markedly. As expected, specificity measures were not 

affected by this evaluation, as smaller numbers of sections tended to 

underestimate the tumour region.  
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Figure 5.6: (A) One section (SIH1), (B) Two sections (SIH2), (C) Three sections (SIH3), (D) Four 
sections (SIH4) and (E) Five sections of HLA (SIH5). (F) Measured tumour volume against 
number of sections used to produce the SIH map (n=6). Evaluation of the ability of SIH maps 
to probe the tumour related abnormal area in comparison with the 5-section SIH map: (G) S 
ensitivity, (H) Specificity, (I) Dice similarity coefficient and (J) Accuracy indices. Reprinted 
with permission (Al-mubarak et al., 2019). 
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Given the above analysis, as a trade-off between improved accuracy and expanded 

processing time, we settled on using three histology sections for the remaining 

analysis. After excluding poor quality sections, the three sections with the largest 

tumour area were selected. It is crucial to note that the choice of three sections 

is very specific to this particular disease model (mouse model of glioblastoma). If 

the SIH method is to be applied to different disease models or different species, 

then the optimum number of slices will be different and will need to be assessed. 

5.6.3 SIH to MRI registration quality  

Registration of histology with MRI was qualitatively and quantitatively evaluated 

at each stage of the process. The qualitative evaluation consisted of a visual 

inspection of the overlay of the inner and outer contours of the T2W image and 

histology section (Fig.5.7). Accurate alignment was observed between borders and 

internal structures. Excellent post-registration overlays were found; with Dice 

values above (0.96±0.011). The resized and co-registered data were used to create 

a 3-dimensional data matrix, which allowed the MRI modalities to be assessed 

against histology, both in terms of tumour volume detection and via direct voxel-

wise comparison. 

 

Figure 5.7: Example of non-rigid co-registration of histology with MRI using the Mutual 
Information method: (A) a T2Weighted image (T2W) (B) Stacked in-plane histology. (C) co-
registration fusion image with false colour showing similarities (purple) and difference 
(green). (D) Checkerboard comparison between registered MRI and SIH maps. Reprinted with 
permission (Al-mubarak et al., 2019). 
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5.6.4 Volumetric assessment of SIH maps 

The proposed SIH approach was used to quantitatively validate different MRI 

modalities as imaging biomarkers of GB infiltration, this is discussed in full in 

chapter 6. In this section, we focus on the comparison between tumour volume 

measurements made using single section histology (SSH) and volume 

measurements made using stacked in-plane histology (SIH) maps. For this, both 

the SSH and SIH approaches were used to measure the ‘ground truth’ tumour 

volume (i.e. the volume of GB infiltrated tissue) for the same dataset. Given the 

analysis in section 5.3.3, as a trade-off between improved accuracy and expanded 

processing time, we settled on using three HLA sections to produce the SIH maps. 

In all 9 mice, after excluding poor quality sections, the three sections with the 

largest tumour area were selected. 

Fig.5.8A shows representative manual ROI selections for T2W, SSH1, SSH2, SHH3, 

SSH4, SSH5, and SIH in the same animal. Figure 5.8B shows tumour volumes 

obtained from manual delineation of the T2W, compared with tumour volumes 

measured from five individual single sections of histology (SSH). Clearly, the large 

standard deviation of the SSH tumour volume measurements (±6 mm3) makes it a 

poor ‘ground truth’ for validating the T2W tumour volume measurements, with no 

significant differences found between any of the T2W and the SSH measurements.  

However, tumour volume measurements made using SIH maps show a much lower 

standard deviation (±0.8 mm3), Fig.5.8C, allowing better validation of the MRI 

modalities. A statistically significant difference was found between the SIH 

measured tumour volume and T2W which is considered as standard in MRI.  
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Figure 5.8: Volumetric analysis: (A) Examples of Regions of interest for T2W, individual 
histology sections (SSH), and SIH from the same animal. (B) Comparison of tumour volume 
measurements made using T2W and single sections of histology (SSH). (C) Comparison of 
tumour volume measurements made using T2W and stacked in-plane histology (SIH) maps 
generated using 3 sections. The volumes obtained for all animals as the mean ± standard 
deviation. Adapted from (Al-mubarak et al., 2019). 

 

The lower standard deviation of SIH tumour volume measurements has important 

implications, as it allows statistical significance to be achieved without requiring 

an increase in the number of animals used. To further examine this, we performed 

power analysis using the results presented in Fig.5.8. For example, to achieve a 

statistically significant difference (p<0.05) between T2W and SSH tumour volume 

measurements, would require between 72 and 800 mice. By contrast, using SIH 

maps as the ground truth, required only 9 mice to achieve p<0.01, Fig.5.9. Such 

an impressive reduction in animal usage is a stated aim of the UK government, via 

its policy of Replacement, Refinement, and Reduction of Animals in Research 

(NC3Rs) and should arguably feature in future guidelines for reporting in vivo 

experiments (Kilkenny et al., 2010). 
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Figure 5.9: Power calculation of number of animals that would have been required for 
achieving a given significance with the single-slice or the SIH approach for two different 
single slice groups (A) section SSH1 (B) section SSH2. Reprinted with permission (Al-
mubarak et al., 2019). 

 

5.6.5 Towards voxel-by-voxel assessment 

A new application can be envisioned for the validation of in vivo imaging 

modalities with 2D histopathology. The in vivo imaging signal and histopathology 

could quantitatively assess how sensitive and how specific are the signal detected 

in vivo. Another perspective concerns the analysis of imaging biomarker is voxel 

by voxel which providing the opportunity to gain deeper insight into neuroanatomy 

and to improve our knowledge of mechanisms involved in disease states. 

The ideal approach to validating imaging biomarkers would involve voxel-by-voxel 

comparison with co-registered histology. To date, the difficulties involved in 

accurately co-registering histology sections with imaging slices have prevented 

this. However, we believe that the methodological pipeline we have outlined 

overcomes many of these difficulties, yielding a co-registered multi-dimensional 

data matrix (T2W, DWI, ADC, ASL and SIH map).  

In the case of HLA, the staining intensity is proportional to the density of tumour 

cell membranes. Therefore, by averaging multiple histology sections, the resulting 

SIH maps represent a semi-quantitative measure of tumour cell density in the MRI 

slice. This allows the MRI modalities to be more accurately evaluated against 

histology in a direct voxel-by-voxel analysis. For example, Fig.5.10A-C shows 

scatter plots of different MRI modalities against SIH intensity. Here the pathogenic 
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regions identified by the ‘ground truth’ histology ROIs can be highlighted, allowing 

the relationship between the MRI signal and the underlying histopathology to be 

assessed. Furthermore, it enables the assessment of multi-spectral analysis 

approaches on a voxel-by-voxel basis, investigating and validating combinations 

of MRI parameters against histology. 

 

Figure 5.10 Comparison scatter plots between different MRI modalities and histology. 
Highlighting the pathogenic regions identified by the “ground truth” histology ROIs allows 
the relationship between the MRI signal and the underlying histopathology to be assessed. 
Where N is a pixel of normal tissue, A is a pixel of abnormal region and AD a pixel of abnormal 
region that cannot detect by MRI. 

 

Figure 5.10 shows three types of voxels’ regions. The first region is green (N) and 

it represents normal tissue. The second region is red (A) and represent an 

abnormal tissue that can be detected by MRI. Finally, the blue region (AD), 

represents abnormal tissue that cannot detected by MRI. The interface between 

these regions makes it difficult to distinguish amongst them by using MRI. More 

research is needed to find the relationship between MRI modalities the tissue 

being scanned that may allow improvement in tumour diagnosis and therapy 

planning. 



                                                                              Chapter 5: Stacked in-plane histology 
 

91 
 

5.7 Conclusion 

We have introduced a novel methodological pipeline to improve the validation of 

non-invasive imaging biomarkers. In contrast to most previous studies, which focus 

on improving the registration algorithms, we have taken the approach of 

improving the quality of the histology processing and analysis. In an infiltrative 

brain tumour model we have demonstrated how stacked in-plane histology maps, 

co-registered with multiple MRI modalities, provide a ‘ground truth’ for 

quantitative comparisons. Our results demonstrate that, in cases of small and 

heterogeneous tumours the use of this multi-section approach is crucial, as 

conventional assessment using single-section histology is prone to significant 

errors.  

In chapter 6, this new methodology is used to validate the use of perfusion MRI as 

a marker of glioblastoma cell infiltration. Finally, achieving robust three-

dimensional registration with non-invasive imaging modalities, the development 

of this method could lead to voxel to voxel histopathologic assessment of new 

imaging biomarkers, we discuss this possibility further in Chapter 7. 
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6 Chapter 6 
 

Quantitative Histopathological 
Assessment of Perfusion MRI as an 

Imaging Biomarker of GB Infiltration 
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6.1 Introduction 

Of all primary brain tumours with a poor prognosis, glioblastoma is the most 

common and aggressive. Patients who are receiving the currently accepted 

standard of care (surgery, radiotherapy, and chemotherapy) survive, on average, 

12-15 months after diagnosis (Johnson et al., 2018) and face a high probability of 

tumour recurrence. A major limitation of successful treatment is the ability of 

tumour cells to infiltrate into normal brain tissue (Price and Gillard, 2011), 

potentially extending several centimetres from the tumour bulk.  

Neuroimaging has been become vital for the management of high-grade gliomas. 

It is used for the detection and localisation of tumours, for the planning of 

neurosurgery and radiotherapy and to assess treatment efficacy. One of these 

techniques is MRI. It has been used to provide information on brain tumour growth, 

structure, function, vasculature, and metabolism (Dominietto, 2014). T2W 

imaging is usually used to obtain an anatomical view of the brain. Tumours 

typically appear hyperintense relative to normal brain tissue in the T2W image. 

However, oedema, huge vessels, haemorrhage, and necrosis have different T2 

relaxation times and contribute to the heterogeneity of the T2W.  T1W imaging is  

generally used to highlight the presence of tumours before and after the injection 

of contrast agents such as Gd (Earnest et al., 1988). Tumour vessels have a 

disrupted blood-brain barrier, allowing the contrast agent to leak out and 

accumulate in the tumour’s tissue. Consequently, the tumour becomes brighter 

than surrounding tissue due to the shortening of the T1 relaxation time. FLAIR 

sequences are like T2W acquisitions, except that the signal of the cerebrospinal 

fluid is eliminated. They can be used to delineate the boundaries of peritumoural 

oedema.  

Several studies have shown the extension of tumour cells beyond the contrast 

enhancement region. For example, (Swanson et al., 2003) proved that 

theoretically and by using invasion models accounting for MRI sensitivity that 

infiltration may often extend beyond abnormal T2W regions. Watkins et al. (2014) 

have showed the presence of tumour cells outside the CE-T1 enhancement region. 

However, most cMRI sequences are limited in their ability to adequately probe 

infiltration of tumour cells, typically adjacent to the CE-T1 abnormal region (Kelly 

et al., 1987). There is no single study which has been validated by histology which 
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demonstrates infiltration of tumour cells beyond the oedema region. The 

infiltration of tumour cells may decrease the accuracy of target volume 

delineation for radiotherapy planning (Niyazi et al., 2016). Therefore, it is 

important to develop imaging modalities that enable better tumour delineation 

which, in turn, allow increased efficiency in therapy planning. 

However, advanced MRI techniques show promising results in the detection of the 

invasion of tumour cells. Jarnum et al. (2010) state in their study that perfusion 

measurements beyond the contrast enhanced region tend to show increased values 

due to early angiogenesis. Another study by (Swanson et al., 2003) investigated 

the effect of invasion into white matter and tracts by DTI using infiltration 

patterns. The metabolic behaviour of tumour cells can also be used as a biomarker 

of tumour infiltration. For example, (Holash et al., 1999) found increases in both 

choline peaks using magnetic resonance spectroscopy. Further, positron emission 

tomography has been used to measure abnormal uptake of 11 C-methionine in 

regions with low tumour cell density. 

The ability to detect the infiltration of tumours in their early stage is challenging. 

One MRI method with the potential to detect tumour infiltration is perfusion 

imaging. Perfusion measurements are performed either by using exogenous 

contrast agents, such as in DSC and DCE, or by using endogenous blood water, as 

in ASL (Jarnum et al., 2010). DSC and DCE are widely used in brain tumour imaging 

(Shiroishi et al., 2015). However, there are relatively low SNRs in infiltrated 

healthy tissue regions which make subtle perfusion perturbation studies 

challenging.  

 

ASL has been shown to provide similar results to DSC in brain tumour studies and 

it has been used to improve GB delineation and facilitate clinical decision-making 

(Geer et al., 2012). The SNR achieved by ASL may be more sensitive to subtle 

perfusion perturbations in the infiltration zone than other methods, making ASL a 

suitable candidate for probing infiltration beyond the CE-T1 enhancement region. 

Preclinical studies provide an opportunity for more quantitative histopathologic 

assessment of MRI. However, most studies to date have used qualitative 

approaches, probably due to difficulties with MRI and histology registration (Cha 

et al., 2003). Frequently, histological sections are not cut in the MRI plane and 
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the enormous difference in slice thickness compared with MRI is ignored 

(histology~20 µm, MRI~1000 µm). The development of new methods of 

quantitative histopathologic assessment of MRI modalities is crucial in order to 

analyse infiltrative glioblastoma models where heterogeneous tumour 

distributions can vary considerably within the MRI slice thickness. 

In Chapter 5, a new method was described for producing high quality registration 

of MRI and histology. In this chapter we describe the use of this method to 

quantitatively evaluate the ability of several MRI techniques to probe infiltration 

of tumour cells. For this, we used a realistic GB model presenting both a tumour 

bulk region and highly infiltrative edges. Research focussed on regions of low 

tumour cell infiltration, not easily detected by standard clinical imaging 

techniques. We also focussed on the interrogation of MRI sensitivity limits 

compared with perfusion weighted images (PWI) provided by a recently developed 

high SNR multi boli ASL sequence (mbASL). The relation between perfusion and 

GB cell density at the tumour edges was also evaluated. Registering MRI with 

histology data allows voxel-wise analysis, giving a deeper insight into the relation 

between local tumour infiltration and MRI signal variation. The data gathered 

suggest a negative correlation between perfusion and marginal infiltration of GB 

cells. 

6.2 Tumour region of interest selection 

Tumour regions of interest (ROIs) were manually selected for each imaging 

modality (T1W, T2W, DWI, ADC and mbASL) and SIH was mapped by three persons 

(with 3, 3 and 5-years’ experience, respectively). To avoid selection bias, the 

delineation of MRI ROIs was done without prior knowledge of the histology data 

(SIH). Moreover, care was taken not to include non-invasion related enhancement 

(e.g., ventricle compression). One mouse that did not show tumour growth was 

removed from this study, while two mice showing necrotic regions were not 

considered for voxel-to-voxel comparison with SIH maps. Histology ROIs were 

selected based on HLA stain intensity on SIH maps. Independent intensity-based 

selection was used for manual selection. 
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6.3 Statistical analysis 

As previously mentioned, SIH maps were considered as the ‘ground truth’ for 

defining the tumour boundaries and were evaluated against ROIs defined using 

MRI. The accuracy of inter-observer reproducibility was quantified using the 

coefficient of variation that was calculated for each region. Sensitivity, 

specificity, accuracy and dice similarity indices (Garcia-Lorenzo et al., 2013, Zou 

et al., 2004) were calculated for each animal and imaging modality. A two-tailed 

student t-test (Armstrong, 2014) was performed for comparisons between MRI and 

SIH ROI measurements. All values are reported as mean ± standard deviation. 

Statistical significance flags: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 and NS 

(not statistically significant). 

6.4 Results 

6.4.1 Marginal infiltration of mouse model 

In glioblastoma, MRI usually can distinguish three main regions: central regions of 

necrosis, the active tumour region, and oedema. Figure 6.1A shows T2W and CE-

T1 images for week 12 post-injection. While significant abnormal volumes could 

be measured on T2W, most CE-T1 images showed no significant signal change. 

Only three cases of CE-T1 contrast were identified at this stage of the tumour 

development and they displayed only light enhancement and no necrotic core 

(e.g. Fig. 6.1). Later in the tumour development (week 15), most CE-T1 images 

showed (Fig. 6.1B) a non-enhanced core (necrotic core) surrounded by a contrast 

enhanced region. The infiltration of tumour cells in the margins were confirmed 

by histology with three stains, namely, HLA, Ki67 and H&E (Figure 6.1C). At this 

stage of the tumour development, T2W abnormal regions appeared to be fairly 

homogeneous, with the abnormal volume growth being similar for most of the 

animals studied (Fig. 6.2A-B). It should be noted that after week 12 and the 

appearance of a necrotic core, a substantial spread of tumour growth was 

observed in the animals and most began losing weight (Fig. 6.2C). 
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Figure 6.1: (A) T2W and CE-T1 images at week 12 post-injection for the same animal. (B) T2W 
and CE-T1 images obtained at 12 and week 15 post-injection. (C) HLA, Ki67and H&E stains 
show infiltration of tumour cell at the margins. 

 

 

Figure 6.2: (A) T2W images at different time points. (B) Average tumour volume and (C) 
Average animal weight over a 15-week period post -injection (n=6). Reprinted with permission 
(Vallatos et al., 2018a). 
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6.4.2 Perfusion detects more extensive regions of tumour  

Figure 6.3 A, B shows images obtained at weeks 9 and 12 during the longitudinal 

MRI study. Most MRI techniques (T2W, DWI, ADC and mbASL) detected tumour 

regions by week 9. The tumour region remained homogeneous until week 12, 

appearing hyperintense on T1W, T2W and DW and hypointense on ADC and mbASL. 

Only two mice exhibited small necrotic cores at this stage of tumour progression 

(high ADC in the tumour core). FA values were low in tumour core regions, 

indicating oedema with high FA values around the margins of the tumour. At week 

12, strong similarity was observed between the abnormal regions identified by the 

different MRI modalities and the regions of high tumour cell concentration 

identified on tumour cell concentration maps (SIH).  

Figure 6.3 A, B shows the corresponding MRI ROIs in weeks 9 and 12. Inter-observer 

CV at week 9 was 29% for T2W, 12% for DWI and 19% for both ADC and mbASL. At 

week 12, CV was 20% for T1W and T2W, 21% for DWI, 19% for ADC, 12% for mbASL 

and 10% for SIH maps. 
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Figure 6.3: (A) (A) Example of manual selection of ROIs in week 9 using different MRI 
modalities. (B) Example of manual selection of ROIs in week 12 includes the SIH map obtained 
for the same brain region. (C) Volumetric comparison between different MRI modalities at 9 
weeks (D) Volumetric comparison between different MRI modalities and SIH at 12 weeks (n = 
9). Two-tailed student’s t-test after Bonferroni correction was used for comparison between 
MRI images and SIH. Statistical significant flags: * P<0.01, **P<0.001 and NS (not statistically 
significant). Reprinted with permission (Vallatos et al., 2018a). 

 

Figure 6.3 C-D shows the average volumes and ± standard deviation of tumour 

abnormal regions for the MR imaging modality at 9 and 12 weeks post-injection of 

G7 cells. Both end points show that perfusion weight imaging exhibited larger 

abnormal regions than T1W, T2W, DWI and ADC at both time periods. The results 

in week 9 should be considered with caution, because the abnormal region is 

relatively small.  Hence, resizing of the lower resolution imaging modalities, such 

as mbASL, can possibly introduce errors into the data. The size of this ROI selection 

error was estimated by using a coefficient of variation which was found to be 10% 

for the smaller abnormal regions at week 9 and below 1% for the medium and 
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abnormal regions at week 12. That error is small compared with the T2W/mbASL 

abnormal volume ratio (~60% at week 9 and ~75% at week 12).  

Due to accurate co-registration of MRI and histology (SIH) it is possible to make a 

quantitative evaluation (volumetric analysis) of the MRI biomarker with the ground 

truth histology (SIH). Tumour volume comparison between MRI and SIH revealed 

no significant (p=0.2) difference between abnormal perfusion volumes and SIH 

volumes. However, there was a statistically significant difference between MRI 

(T2W, DWI, and ADC) and SIH.  

Figure 6.4 shows the results of ROC curve analysis of abnormal volumes between 

different MRI modalities and SIH. 

  

Figure 6.4: (A) Dice, (B) Accuracy (C) Sensitivity (D) Specificity of volumetric analysis 
segmentation of each imaging modality and SIH of tumour regions at week 12. Reprinted with 
permission (Vallatos et al., 2018a). 

 
All abnormal regions of MRI obtained high Dice coefficients and approximately 

similar accuracy compared with SIH (Figure 6.4 A-B). The abnormal perfusion 

region achieved the highest Dice score compared with T1W, T2W, DWI and ADC. 

The mbASL showed more abnormal regions compared with the other MRI 
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modalities and mbASL was associated with higher sensitivity than other MRI 

techniques (Fig. 6.4C). However, T1W, T2W, DWI, and ADC imaging showed higher 

specificity than perfusion (Fig. 6.4D) due to the tendency for perfusion to extend 

outside the tumour region. This demonstrates  that, firstly, clinical MRI protocols 

under-evaluate tumour volume and, secondly, that average mbASL ROI volume 

(15±3 mm3) was approximately similar to the average SIH ROI volume (16±2 mm3), 

with only three cases of mbASL ROI volumes greater than SIH by 13%, 8%, and 3%. 

6.4.3 Relationship between perfusion and invasion in tumour 
margin regions 

Histological analysis was used to find the relationship between perfusion and 

infiltration of tumour cells. Figure 6.5A shows a comparison between histological 

slices of FITC-dextran 70kDa that detect perfusion and HLA stained slices for the 

same animal. The same MRI slice is shown in Fig. 6.5A-B. The regions of 

hypoperfusion, which are clearly demonstrated by perfusion MRI and dextran 

histology, show a strong relationship between perfusion imaging (mbASL) and 

FITC-dextran staining. Furthermore, the region of infiltrative tumour cells showed 

reduced perfusion in both mbASL and dextran assays.  

This relationship between perfusion and infiltration was stronger in the marginal 

tumour region, which has a low density of tumour cell infiltration. The relationship 

was highlighted by the dataset from one mouse that developed two distinct 

tumour regions (Fig. 6.5B). Firstly, the high-density region near the tumour cell 

injection point is surrounded by a small necrotic core (white spots on T2W and 

ADC; black spots on HLA). Secondly, the low-density region appeared later in 

tumour growth. The physical connection between the two regions that occurred 

at the back of the brain is distinguished by the red arrows on the T2W images (Fig. 

6.5B second row). Both mbASL and dextran images show a reduction in perfusion 

in the infiltrated lower-density region. This relation between dextran delivery and 

invasion is less clear around the necrotic core of the tumour.  
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Figure 6.5: (A) Example of fluorescence microscopy images probing HLA and dextran 70kDa 
for three mice. (B) First row shows different MRI and fluorescence microscopy images (HLA, 
dextran) from a mouse at 12 weeks. Second row shows T2W images of thickness 0.5 mm 
acquired at the same time point. The red dotted box highlights the three 0.5 mm thick T2W 
slices acquired at the same location as the T2W image (shown in the first row). Red arrows 
display connection points between the upper and the lower tumour lesions. Reprinted with 
permission (Vallatos et al., 2018a). 

 

6.4.4 Perfusion variation as a marker of tumour cell infiltration 

The accurate co-registration of MRI modalities and SIH maps, which are evaluated 

in Fig. 6.4, allow voxel-to-voxel comparison to be applied. To separate high and 

low tumour density regions within mbASL and SIH ROIs, the ROIs in both mbASL 

and SIH were selected manually (Fig.6.6A) using a Gaussian mixture model with 

two clusters performed.  
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The scatter plots of perfusion (mbASL) against SIH for one animal are shown in Fig. 

6.6B. Voxels identified as tumours on SIH maps are highlighted using red dots and 

the whole brain is highlighted using grey dots. The voxel-based approach can be 

used to find the relationship between perfusion and invasion at the tumour’s 

margins (Fig. 6.5C). This analysis shows that the perfusion value was generally 

higher in low SIH value voxels and decreased with increasing SIH. 

In Fig. 6.6C, the marginal voxels (green) of the tumour have lower SIH values than 

the core voxels (red). In fact, these marginal voxels exhibit higher perfusion values 

than tumour core voxels (Fig. 6.6D). The relation between perfusion and invasion 

at the margins of the tumour was evaluated by applying separate linear regression 

fits to the core and the margins (Fig. 6.6C). The negative correlation between 

tumour infiltration and perfusion was observed at the tumour margins, whereas 

no clear relationship was observed within the tumour core region (Fig. 6.6E). 

Linear regression R2 values were statistically significant between perfusion at the 

margins and perfusion in the core of tumour (Fig. 6.6F). 
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Figure 6.6: (A) Example of mbASL and SIH images from one mouse. SIH ROIs were manually 
selected (red outline), and SIH ROIs were clustered into two regions. (B) Scatter plots of 
mbASL signals against SIH for each voxel in the tumour region. (C) Scatter plots of perfusion 
signals vs. SIH for the tumour voxels only. (D) Comparison of perfusion average signal 
between core and margin of tumour region shown in (A). (E) Linear regression fit slope 
comparison between core and margin of tumour region. (F) R2 of the linear regression fit 
(n=7). Reprinted with permission (Vallatos et al., 2018a) 

 

6.5 Discussion 

This study has proven the existence of a negative relationship between tumour 

cell infiltration and local perfusion in the tumour margin region of an orthotopic 

G7 model that replicates features of human glioblastoma. To achieve this, we 

used an in vivo mouse model which exhibits infiltrative tumour margins. In 

addition, the approach described in Chapter 5 was used to prepare histology 

sections and register them with mbASL. One of the common models used in 

preclinical studies is nude mice implanted with brain tumour cells. The deficiency 

of the immune systems in nude mice allows many tumour models to grow fast. 

One of the major obstacles to studying tumour invasion is the lack of good 

preclinical mouse models to accurately replicate tumour cell invasion. In this 
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work, the G7 infiltration tumour model was selected to replicate glioblastoma 

behaviour seen in a human. The highly infiltrative G7 model exhibits regions of 

low tumour density which are not detected by CE-T1. This region usually extends 

beyond the range of T2W hyperintensity. Moreover, the slow rate of progression 

of the G7 model, where oedema is larger than the CE-T1 region, allows replication 

of the clinical scenario. By contrast, other preclinical GB models frequently show 

poor tumour cell  infiltration, exhibiting a sharp transition between tumour bulk 

and healthy brain tissue, with the size of T2W and CE-T1 regions remaining the 

same (Cha et al., 2003).  

Angiogenesis is a physiological process of the formation new blood vessels from 

pre-existing vessels in the early stages of a tumour. Generally, angiogenesis 

requires solid tumour conditions such as significant tumour size, acidity and 

hypoxia (Gillies et al., 1999). Brain tumours may develop and grow using the 

vascular system called co-option mechanism (Leenders et al., 2002). The 

development of neovascularization in the tumour core (G7 model) that induces 

angiogenesis allows accurate modelling of the invasive of tumour cells in the 

borders. One of the important chemical signals of growth is Vascular Endothelial 

Growth Factor (VEGF), which controls angiogenic (including endothelial cell) 

proliferation and migration (Ghaffari et al., 2017), appears to be involved not only 

in neovascularization but also in oedema production (Machein and Plate, 2000) 

through the induction of vascular permeability (Leenders et al., 2002). 

The mechanism of angiogenesis is expected to affect perfusion (Blystad et al., 

2017). In preclinical situations, decreased perfusion in tumour regions is generally 

observed in rodent glioblastoma models and can be explained by the early stage 

of tumour progression and before disruption of the blood-brain barrier which is 

related to leaky vessels that arise from angiogenesis and increasing distance from 

the contrast-enhancing region. The infiltrative models typically exhibit a 

detectable reduction in perfusion within the tumour region (Cha et al., 2003). 

Other mechanisms may affect perfusion.  The relationship between perfusion and 

intracranial pressure (ICP), where compression of the brain tissue caused by 

oedema in combination with increased ICP, can cause reduced local perfusion with 

increasing distance from the contrast-enhancing region of the tumour (Blystad et 

al., 2017). ICP effects are expected to be less in the margins of the tumour due 



                                                                       Chapter 6: Perfusion as tumour biomarker 
 

106 
 

to the relatively small marginal volume. However, infiltration of tumour cells 

could cause healthy tissue compression that may lead to perfusion drop.  

It is challenging to probe and evaluate the infiltration of tumour cells at the 

margins. The detection power of MRI is limited and often exhibits inhomogeneous 

spatial distributions that compromise visual validation using histology. Therefore, 

a new method for quantitative MRI assessment with histology (stack of in-plane 

histology slices, ‘SIH’) was used (see Chapter 5). This method allowed for the 

quantitative evaluation (voxel by voxel) of a range of MRI techniques (T2W, DWI, 

ADC, and mbASL) with SIH. The high specificity of T2W in comparison with SIH 

maps shows that most abnormal T2W regions are related to regions of tumour 

infiltration. This relationship between high T2W signal and infiltration of tumour 

cells is consistent with clinical results. Furthermore, histological studies show the 

potential of high infiltration in the high T2W signal region surrounding the CE-T1 

enhancement region (Eidel et al., 2017). In addition, analysis of patient survival 

has shown a negative correlation with abnormal T2W volume (Zhang et al., 2014). 

We have shown that perfusion MRI measurements made using mbASL can detect a 

larger tumour region than the other cMRI sequences. Therefore, it is suggested 

that perfusion may be used as a marker of infiltration of tumour cells. Clinical 

studies of MRI perfusion focus on regions beyond CE-T1 enhancement where a 

higher signal is expected because of angiogenesis. Lin et al. (2016) measured a 

negative perfusion gradient at the margins of metastatic regions that may be 

related to co-option or oedema. The significant relationship between the 

infiltrating tumour region and perfusion could facilitate the characterisation of 

marginal glioblastoma infiltration into healthy tissue.  

The SNR of the perfusion by MRI could strongly affect the sensitivity of the 

detection. The perfusion gradient calculated from high SNR perfusion images 

could be used as a direct marker of tumour cell infiltration into the healthy tissue. 

This approach may lead to improved tumour delineation and might also lead to 

improved surgery and radiation therapy.  
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6.6  Limitations 

This study has several limitations: 

1- The quantitative analysis used a small number of mice as well as data 

acquisition and histology processing protocols that are expensive and time 

consuming.  

2- There are differences between human gliomas and the G7 mouse model 

(immunodeficient mice), complicating any direct comparison. The immune 

status of G7 mice may slow tumour growth. However, it is unlikely to have a 

significant effect on the analysis of the relationship between local perfusion 

and tumour burden.  

3- Features of MRI equipment in this work should be highlighted. The combination 

of 7 Tesla instruments with a novel perfusion sequence (mbASL) allowed SNR 

limitations of clinical perfusion imaging based on ASL sequences to be 

overcome, thus enabling the investigation of low perfusion regions.  

6.7 Conclusion 

This work found a negative relationship between tumour cell burden and perfusion 

MRI signals in infiltrative regions of low tumour cell density distant from CE-T1 

enhancement regions. A novel histological protocol was employed to assess the 

performance of a range of MRI modalities, contributing a significant step toward 

quantitative and voxel by voxel evaluation of the ability of MRI protocols to probe 

regions of tumour cell infiltration. The results indicate that the relationship 

between perfusion gradient and tumour cell density can be used as a marker of 

tumour infiltration. Future work will concentrate on the application of this study 

to clinical settings. In addition, the application of machine learning may be useful 

when identifying the margins of invasive tumours.
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7.1 Introduction 

Glioblastoma is the deadliest, most aggressive, and most heterogeneous category 

of brain tumour. The invasive nature of glioblastoma, which is difficult to 

visualize, represents a major obstacle to its successful treatment and may be 

responsible for tumour recurrence.  

Clinically, cMRI techniques (T1W, T2W, FLAIR and CE-T1) followed by qualitative 

visual evaluation are routinely used in the diagnosis and treatment plans of GB 

(Dominietto, 2014, Abul-Kasim et al., 2013). These sequences are used to identify 

the shape and location of the tumour and, possibly, any associated oedema and 

necrosis. However, these techniques do not have the ability to accurately detect 

the whole tumour region, which includes infiltration of tumour cells to adjacent 

tissue (Price and Gillard, 2011, Konukoglu et al., 2010).  

Advanced MRI modalities such as Diffusion Tensor Imaging , Perfusion-Weighted 

Imaging , and MR spectroscopy now allow the detection of additional tumour 

phenotypes (Nandu et al., 2018), for example, neoangiogenesis, proliferation, 

cellularity and metabolism (Kalpathy-Cramer et al., 2014). These phenotypes may 

further support the ability to distinguish tumours from normal tissue that cannot 

be assessed by clinic MR imaging alone. Therefore, the combination of cMRI and 

advanced MRI modalities might improve detection of the whole tumour region, 

including adjacent regions infiltrated by tumour cells. 

In recent years, mpMRI has gained renewed interest from the clinical research 

community. The combination of image data from various MRI modalities 

(morphological and functional) has the potential to provide the radiologist with a 

single tumour map, by extracting more information from the individual images 

(Kazerooni et al., 2015), for more details see Fig.7.1.  
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Figure 7.1: Reconstruction of a single tumour map from different MRI modalities (T2W, ADC, 
FA ,and mbASL). 

 

The selection of which MRI modalities to use to create a single map depends on 

several factors, including the application and the particular disease. Both 

weighted and quantitative MR images have been found to detect, with varying 

degrees of success, the tumour’s biological effects (Wu et al., 2010). Weighted 

images (T1W, T2W, and FLAIR) are not necessarily specific to the underlying 

biological state. Only qualitative differences in signal intensity can be used to 

detect pathology. On the other hand, quantitative MRI maps are often used when 

numeric values of signal intensities are measured, as they may increase the 

accuracy of the results. The quantitative MRI maps (e.g. ADC, FA, and CBF) are 

more closely related to the tissue pathophysiology. In this study, using a T2 map 

did not improve the detection of infiltration of tumour cells. In this work, a 

combination of weighted and quantitative MR images has been used, as shown in 

Chapter 4, to identify the whole tumour region, including the infiltration of 

tumour cells. 

There are currently two strategies to analyse mpMRI data. The first involves 

extracting relevant features such as volume, signal intensity and texture, then 

applying a model to those factors (Wu et al., 2010). The second strategy is to 

perform a voxel-wise (voxel by voxel) analysis. The voxel-wise technique 

transforms voxel values from each imaging modality to create a single image map 

by applying either a linear or non-linear function (Fig.7.2).  
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Figure 7.2: Schematic showing the voxel by voxel analysis method used to generate a single 
tumour map after co-register using MI method. 

 

It has been hypothesised that mpMRI with qualitative evaluation can be used for 

better detection of the tumour region. However, this is difficult to prove in 

patients as the histology gold standard is not available, and biopsy is difficult in 

heterogeneous tumours as only a limited number of samples can be taken.  

Kazerooni et al. (2015) proposed that using a combination of MRI images (ADC, 

PWI and T2W) followed by a segmentation method could find the extension of GB 

and could help in its delineation before surgery. However, it is difficult, when 

using this method, to accurately check the delineation of the tumour region. 

Further, several studies have recommended including additional imaging 

biomarkers adopted from diffusion and perfusion modalities, which might provide 

a deeper insight about the physiological behaviour of glial brain tumours (Chen, 

2011, Kao et al., 2013). For example, Jensen and Schmainda (2009) stated that by 

combining several MRI modalities (morphological and functional) with a 

segmentation algorithm, they were able to distinguish between the invasion of 

the tumour and the normal tissue inside oedema. However, Vallatos et al. (2018a) 

found that invasion of tumour cells can be extended beyond the oedematous 

region by using a perfusion weighted image (ASL) in an infiltrative mouse model. 

The purpose of the current study was to quantitatively test, for the first time, the 

hypothesis that mpMRI can better identify the tumour region than by using 

individual MR images. As discussed in the previous chapter, we have a unique 

dataset of co-registered MRI and histology (Al-Mubarak et al., 2019).  
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7.2 Regression analysis models 

Regression is used widely in the medical field. It is a basic tool of medical 

statisticians to understand the degree of relationship or association between two 

continuous variables, X (independent) and Y (dependent). The built-in MATLAB 

function (regress) was used to calculate regression maps. The most common class 

of regression is linear regression. This function attempts to describe the 

relationship between Y and X as a straight line, as in Equation 7.1 (Quinn and 

Keough, 2002). 

 Y = b∘ + b1X Equation 7.1 

Equation 7.1 represents a straight line where b0 is the intercept (y-axis) and b1 

represents the slope of the line (Fig.7.3A). 

In many situations, the outcome (Y) does not depend on one variable, but on 

several variables (X1, X2, X3….). The dependent variable (Y) might well be 

associated with a number of independent variables X1,X2,X3,…Xn, (Steele et al., 

2016) . In this case, multiple linear regression analysis can be performed. This is 

called interactive regression (Equation 7.2). 

 Y = b∘ + b1 X1 + b2 X2 + b3 X1 X2 + ⋯ Equation 7.2 

Where X1, X2, X3,…Xn are predictor variables, and bo,b1,b2,….bn are regression 

coefficients.    

Quadratic regression turns a linear regression model into a curved shape. It still 

qualifies as a linear model because X is squared. A quadratic term creates a 

parabolic shape, Fig.7.3B. Multiple quadratic regression can be written as follows: 

 Y = b∘ + b1 X1 + b2 X2 + b3 X1 X2 + b4 X1
2 + b5 X2

2+.. Equation 7.3 

Finally, cubic regression is a type of regression analysis where the relationship 

between the variables (X and Y) is modelled as an nth degree cubic in X (Fig.7.3C). 

Multiple cubic regression can be written as follows: 
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 Y = b∘ + b1 X1 + b2 X2 + b3 X1 X2 + b4 X1
2 + b5 X2

2

+ b6 X1
3 + b7 X2

3 + ⋯ 

Equation 7.4 

 

 

 

Figure 7.3: Examples of (A) Linear regression. (B) Quadratic regression, (C) Cubic regression 
with one dependent variable (X) and (D) Independent variable (Y) with two dependent 
variables (T2W and ADC). 

 

7.3 MRI pre-processing 

The first step in pre-processing images in this study was the application of a filter 

which was used to remove noise and enhance the quality of the image. A nonlinear 

diffuse filter was applied to reduce the noise and revise the edges in the image 

(iterations=100, and λ=0.2). The MATHLAB code is adapted from Demirkaya et al. 

(2008). Image analysis processing requires a standardized intensity range for the 
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MR images in order to achieve the accuracy and efficiency of measurements. The 

normalization equation used in this work is:  

 
z =

x − m

σ
   

Equation 7.5 

Where z is the voxel’s new value, x is the original value, m is the mean value, and 

σ is the standard deviation of the voxel values in the whole brain section. 

The regression models use the histology and mpMRI input data to find the best 

fitting coefficients to create a regression map. First, the model will calculate a 

regression map by calculating the regression coefficients (bi). Where Y=SIH and 

X1=T2W, X2=ADC… Xn. Next, these coefficients (bi, where i=1,2,3…n) from the 

previous step are used to generate a regression map (Y). Figure 7.4 summarizes 

the pre-processing steps in this study. 

 

Figure 7.4: Image-processing pipeline to create a regression map after applying nonlinear 
diffuse filter and image normalization. 

 

Regression equations, such as the linear Regression Method (LRM), equation 7.1, 

Interactive Regression Method (IRM), equation 7.2, Quadratic Regression Method 

(QRM), equation 7.3 and Cubic Regression method (CRM), equation 7.4, were used 

to produce a regression map. These equations are applied to find the best 

combination between MR data (T2W, ADC, FA and mbASL) to represent the tumour 

region. 
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7.4 Statistical analysis 

The performance of regression methods was evaluated using three statistical 

methods: 

1. The Pearson coefficient method is useful to identify if two or more variables 

are related to each another. A correlation coefficient (r) is a numerical 

assessment of the strength of the relationship between the X and Y values in 

the data set consisting of (X, Y) pairs, as in equation 7.6.  

 
r =

ΣXY − (ΣX)(ΣY)

√[NΣX2 − (ΣX)2][NΣY2 − (ΣY)2]
    

Equation 7.6 

 

Where N is the total number of variables. 

2. In our study, to test the accuracy of each method, we also compared manually 

delineated volumes of interest (VOI) selected from the different regression 

maps with the VOI selected from the corresponding SIH map. 

3. The most common method of computing the image texture is the histogram. It 

can provide quantitative information on momentum (mean, standard deviation, 

skewness, variance, and kurtosis) that is not visible to the human eye. In this 

study, the normalized Probability Density Function (PDF) was calculated from 

the histogram by dividing the PDF by the area under the curve. The mean, 

variance, skewness, and kurtosis of normalized PDF was then calculated 

according to the following equations: 

 Mn = ∫ f(x)(x − 𝑐)𝑛 dx
+∞

−∞

 Equation 7.7 

Where f(x) is the normalized variable value and c is grey level values. The first 

moment is termed the mean of the PDF (n=1), the second moment the variance 

(n=2), the third moment the skewness (n=3) and the fourth moment the 

kurtosis (n=4).  
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 Variances = ∫ f(x)(x − c)2 dx
+∞

−∞

 Equation 7.8 

Skewness refers to the asymmetry of the PDF. If the distribution is symmetric the 

skewness value is zero. A distribution with an asymmetric tail extending to the 

right is referred to as being positively skewed, while a distribution with an 

asymmetric tail extending to the left is referred to as negatively skewed. The 

skewness of a distribution is defined as follows: 

 skewness = ∫ f(x)(x − c)3 dx
+∞

−∞

 Equation 7.9  

Kurtosis is a measure of how flat or peaked a frequency-distribution curve is when 

compared with the normal distribution. If the distribution is similar to the normal 

distribution, the kurtosis value is 3.  

 kurtosis = ∫ f(x)(x − c)4 dx
+∞

−∞

 Equation 7.10  

GraphPad Prism software (Inc., version 6.0, CA, USA) was used to perform 

statistical tests and to produce graphs which display mean values’ ± standard 

deviation. Significance was tested using an unpaired Student’s t-test with 

Bonferroni correction. 

7.5 Results  

This study was conducted with the principal aim of finding the best combination 

of MRI modalities (T2W, ADC, FA, and mbASL) to extract the tumour region after 

co-registration with stacked in-plane histology (SIH). Regression models were used 

to analyse these data. 
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The average of b coefficients for all mice cannot be used to recreate multi-

regression maps for each mouse because of big variation of b coefficients 

(standard deviation) of the b’s coefficients average of. The Table 7.1 shows the b 

coefficients of CRM (T2W, ADC, FA and mbASL), QRM (T2W, ADC, FA and mbASL) 

and IRM (T2W, ADC). 

MRI b coefficients 

CRM 
T2w,ADC,FA, 

mbASL  

QRM 
T2w,ADC,FA, 

mbASL 

IRM 
T2W+ADC 

mean± STD mean± STD mean± STD 

 b0 -0.03± 0.12 -0.11± 0.36 -0.93± 0.69 

T2W b1 -0.21± 1.61 0.31± 0.94 1.74± 1.00 

ADC b2 0.97±1.26 0.97± 0.59 1.61± 1.08 

FA b3 0.67± 0.96 0.98± 1.01  

mbASL b4 -1.12± 1.12 -1.18± 1.16  

T2W+ADC b5 0.46±3.00 0.74± 1.41 -2.07± 1.56 

T2W+FA b6 0.06± 1.44 0.02± 1.13  

T2W+mbASL b7 -1.66± 1.97 -0.30± 1.02  

ADC+FA b8 -0.68± 1.75 -1.33± 1.38  

ADC+mbASL b9 2.06±2.54 1.43± 1.51  

FA+mbASL b10 0.09±0.63 -0.001± 0.63  

T2W+T2W b11 2.61±5.03 -0.21± 1.18  

ADC+ADC b12 -2.20± 5.64 -1.23± 0.72  

FA+FA b13 -0.26± 1.16 -0.23± 0.34  

mbASL+mbASL b14 1.77± 1.87 0.55± 0.75  

T2W+T2W+T2W b15 -2.39± 3.79   

ADC+ADC+ADC b16 0.97± 3.18   

FA+FA+FA b17 0.03±0.86   

mbASL+mbASL+mbASL b18 -1.00± 1.42   

 

Table 7.1:  The multi-regression coefficients (bi) of IRM, QRM and CRM.
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7.5.1 Visual analysis 

Figure 7.5 shows a visual comparison between the original images (FA, ADC T2W, 

and mbASL) and the regression maps, LRM, IRM, QRM  and CRM. Visual inspection 

shows a significant improvement in tumour region detection in both CRM and QRM 

maps compared with LRM and IRM maps.  

  

Figure 7.5: Comparison of original MR images (T2W, ADC, FA, and mbASL) and LRM, IRM, 
QRM, and CRM derived single tumour maps (a.u). 

 

7.5.2 Pearson correlation 

Figure 7.6 shows a comparison of correlation coefficients between different 

regression methods (LRM, IRM, QRM and CRM) and the SIH ‘ground truth’. This 

figure clearly shows that QRM and CRM have higher correlation coefficients (r>0.5) 

than LRM and IRM. According to (Oppo et al., 1998), the following clinically 

relevant r values were used: an r value less than 0.4 was considered poor, an r 

value of 0.4-0.59 was considered fair, an r value of 0.6-0.74 was considered good, 

and an r value greater than 0.74 was considered excellent.  
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Figure 7.6: Comparison between regression maps and SIH in the brain using the Pearson 
correlation after discarding the background. This figure shows that QRM and CRM best 
correlate with the SIH maps (r>0.5).  

 

7.5.3 Volumetric analysis of tumour  

The analysis of tumour volume is a powerful tool for studying the effects of cancer 

treatment. However, in this work, we use tumour volume to compare between 

multi-regression maps and histology (SIH). The tumour Volume of Interest (VOI) 

for nine mice was obtained by manual delineation of both regression maps and the 

corresponding SIH map, by two observers; both with more than 3 years’ experience 

(see Fig.7.7).  
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Figure 7.7: Volumetric analysis of tumour. VOIs are manual selections between different 
regression models (QRM and CRM). 

 

The tumour volumes were calculated after counting the number of pixels within 

the tumour boundaries for both multi-regression and SIH and multiplying them by 

the pixel volume to obtain the tumour volume in mm3.  

Figure 7.8 shows the average and STD of tumour volumes manually delineated 

from the individual MRI maps, multiple regression maps and histology (SIH). The 

figure demonstrates that multi-regression maps that were created from four MRI 

modalities with a quadratic or cubic regression map is closer to SIH than other 

regression types.  
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Figure 7.8: Comparison of volumetric analysis between multiple regression maps and SIH.  
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According to the results in Fig.7.8, we decided to focus on three or four MRI 

modalities with a quadratic or cubic regression map. Figure 7.9 shows the average 

and standard deviation of tumour volumes for four MRI modalities with a quadratic 

or cubic regression map at week 12. The mean tumour volumes selected by QRM 

(16.98±4.18 mm3) and CRM (14.49±3.46 mm3) exhibited no statistically significant 

difference, except for QRM (T2W, ADC and FA) when compared with SIH average 

volume (14.2±2.89 mm3). This comparison proves statistically that both QRM and 

CRM are suitable to describe SIH. 

 

Figure 7.9: Statistical analysis using Student’s t-test with Bonferroni correction shows that 
there is no statistical significance between QRM, CRM and SIH determined tumour volumes 
(p> 0.008). * Statistical significance (p<0.0083); NS = no statistical significance. 

 

7.5.4 Probability density function analysis 

The statistical approach of texture analysis using grey-level distribution within an 

image is the most widely used method in medical applications. Statistical methods 

can be used to analyse the spatial distribution of pixel grey values in medical 

imaging. Figure 7.10 shows a comparison between the PDFs of CRM and SIH for 

two mice. 
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Figure 7.10: Comparison of normalised probability density function between CRM and SIH 
for whole brain. 

 

The computation of global features is derived from the histogram of image pixel 

grey values. These features are average, STD, kurtosis and skewness of the image 

and these statistical features can be used to find similarities between two images.  

In the previous section, QRM and CRM tumour maps were shown to be best able to 

identify the tumour region. Hence, this section will focus on those two tumour 

maps. For each map, we calculated the following features: (1) mean, (2) standard 

deviation, (3) skewness, and (4) kurtosis of the PDF. These measurements were 

calculated from a normalised PDF of the whole brain region. The PDF features 

showed that there was no statistical significance (p>0.025) observed in the mean, 

standard deviation, and skewness between QRM, CRM and SIH. It is a good 

indicator that, when compared with SIH, CRM shows most of the tumour region. 

Figure 7.11 summarizes the results in graph form for each of the PDF features. 
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Figure 7.11: Volumetric comparison (mean and STD) between QRM, CRM and SIH shows that 
CRM describes SIH better than QRM. Statistical comparisons were made using a student’s t-
test unpaired with Bonferroni correction. * = statistically significant (p<0.025); NS = not 
statistically significant. 

 

7.6  Discussion  

The availability of different MRI pulse sequences yields varying contrasts that can 

be used to diagnose GB. However, these individual contrasts do not discriminate 

well between tumour cells and normal tissues using clinic MRI. It has been 

hypothesised that mpMRI can be used to better detect the tumour region (Marino 

et al., 2018). The purpose of the current study was to quantitatively test this 
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hypothesis for the first time, using a unique dataset of co-registered MRI and 

histology (Al-Mubarak et al., 2019).   

Figure 7.5 shows a comprehensive visual comparison between MR imaging, 

regression maps, and SIH. Interestingly, regression maps for QRM and CRM show 

the best visual comparison with SIH. The QRM and CRM regression maps can clearly 

distinguish between the tumour region and normal tissue, which allows us to 

delineate the outline of the tumour boundary for the next steps. 

The correlation coefficient is a statistical measure that calculates the strength of 

the relationship between variables, with values ranging between 0 and 1. The 

correlation between QRM, CRM and SIH is larger than 0.5, which is considered a 

good correlation (for more details see Fig.7.6). In fact, the high correlation 

between CRM, QRM and SIH allows us to clearly distinguish the tumour outline, 

including any infiltration region.  

Quantitative image analysis and statistical methods can quantify precise 

parameters of the region. These parameters might include area, volume, 

intensity, roundness, and other physical features. For example, the volume of 

tumour can be quantitatively measured and validated with a mesoscopic scale 

(histology). Volumetric analysis (Figs. 7.8 and 7.9) indicates that tumour volumes 

which are extracted from QRM (16.98±4.18 mm3) and CRM (14.5±3.48 mm3) maps 

and from MR images (T2W, ADC, FA and mbASL) are not statistically significant 

(p>0.0083) when compared with tumour volumes derived from histology SIH 

(15.73±2.54 mm3). However, the selection of tumour volume is limited by several 

factors such as the partial volume effect and the contrast of the tumour against 

the background. 

A histogram is used to describe the voxel intensity distribution between two 

images. Figure 7.10 shows a normalized PDF calculated from the corresponding 

histogram to visually compare CRM and SIH mouse brain images. In Fig.7.11, the 

PDF parameters, including mean, standard deviation, skewness (a measure of 

asymmetry of the probability distribution), kurtosis (a measure of the shape of the 

probability distribution), were extracted and compared. The analysis shows no 

statistical significance between CRM and SIH (for mean, STD, and skewness with 

the exception of kurtosis p>0.025). We conclude that CRM is better at describing 
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SIH than QRM. The limitation is that the histogram’s measurements do not provide 

information regarding the relative spatial position and intensity distribution of 

voxels to one another. This can be achieved by using a grey level co-occurrence 

matrix (second-order of texture). 

7.7 Conclusion 

Using a unique dataset of co-registered MRI and histology maps for a mouse model 

of GB, the hypothesis was tested using a voxel-by-voxel multiple regression 

analysis. For the first time we are able to conclude that mpMRI is better at 

identifying the whole tumour region than when using individual MR images alone. 

Development and translation of such techniques could allow improved brain 

tumour diagnosis, prognosis, and monitoring.  

           

7.8 Future directions  

Adding new imaging modalities such as MRS or PET to identify more tumour 

characteristics and metabolic parameters would provide additional insight into 

various biological mechanisms occurring within the tumour. For example, MRS 

imaging can measure glucose metabolites that may allow detection of extra 

phenotypes of tumours (Di Costanzo et al., 2006) that cannot be detected by 

morphological and functional MRI techniques. 

Future studies should concentrate on using quantitative information from mpMRI 

to create computer assisted diagnostic software. This information could help 

radiologists in their reporting. Such technology, combined with special training in 

tumour mpMRI, may help to improve inter-observer variability and increase the 

accuracy of reports.  
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8 Chapter 8 
 

General Discussion and Conclusion
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8.1 Discussion  

This thesis addresses the problem of detecting glioblastoma invasion beyond the 

oedema region by using several MRI techniques. Two methods were proposed to 

detect brain tumour invasion. The first method used perfusion weighted imaging 

derived from mbASL as a biomarker of tumour invasion. The second method used 

mpMRI from T2W, ADC, FA and mbASL with multi-regression analysis to reconstruct 

a single tumour map for better detection of the tumour region, including 

infiltration of tumour cells beyond the oedema. However, these methods require 

a quantitative ground truth model in order to assess with MRI. Therefore, it was 

decided to develop a new validation method, where MR images are co-registered 

with ‘stacked in-plane histology’, which allows for quantitative and voxel by voxel 

analysis. 

It is widely accepted that histology is the gold standard to study of the microscopic 

structure and functional of biological tissues. A key step during the development 

of an imaging biomarker is to validate the signal measured in vivo. Histology is 

commonly used as a ground truth during the preclinical development of an imaging 

biomarker in order to validate that the signal detected in vivo corresponds to the 

underlying tissue of interest. In animal models of disease, histology is widely used 

to highlight neuropathological markers of brain tumour that can be used to 

validate MRI. However, most of these validations are done by visual inspection 

(qualitative) which may influence pathologists’ opinion. This type of analysis is 

not sufficiently accurate, because many biologically relevant features cannot be 

easily identified and analysed by the human eye. For example, the different 

nucleus size of two tumours, delineation of the volume of high glioma grade and 

so on. On the other hand, quantitative validation methods for the analysis of the 

brain section for cellular and pathological markers may solve this issue.  

 

In chapter 5, the methods currently used to validate non-invasive imaging 

biomarkers were inadequate. Therefore, it was decided to develop a new method 

of combining multiple histology sections, cut in the MRI plane. This “stacked in-

plane histology” then better represents the actual imaging slice, which is often 

orders of magnitude thicker than histology. 
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This approach of improving the quality of the histological technique was shown to 

be far superior when compared to the traditional single slice approach, typically 

employed in validating non-invasive imaging (MRI).  

The proposed model ‘stacked in-plane histology’ was used to quantitatively 

validate different MRI modalities as imaging biomarkers of GB. For example, SIH 

has proved that MRI is not accurate to detect whole tumour region by comparing 

regions of different MRI modalities (T2W, DWI, and ADC) with SIH. Also, tumour 

volume measurements made by SIH maps display a lower standard deviation which 

allows for better validation with MRI. The lower stander deviation of SIH tumour 

volume measurements has important implications such as reduced the number of 

the animals in the experiment which is agreed with police of Replacement, 

Refinement and Reduction of Animal in research. 

Several studies attempt to use a quantitative analysis between MRI and histology. 

One of these studies was carried out by (Jardim-Perassi et al., 2019). They used 

an MRI-guided 3D printer to facilitate the register of MRI with histology to enable 

the evaluation of the MRI habitat. Where is other studies carried out by using co-

register MRI with histology to improve the capabilities of non-invasive imaging to 

characterise cancerous tissue (Alic et al., 2010, Chappelow et al., 2007). However, 

these studies were limited by not accounting of histology section thickness and 

orientation.  

The SIH could be used to assess the performance of a range of MRI modalities and 

it is a significant step toward quantitative and voxel by voxel evaluation of ability 

of preclinical MRI protocols to probe tumour and evaluation treatment plan. 

According to our knowledge, this is a first time using histology for quantitative 

and voxel by voxel evaluation of MRI modalities which open door for accurate and 

new applications. 

In chapter 6,  a negative correlation between the tumour cells burden at an early 

stage and perfusion of MRI signal, was discovered in the  infiltration region beyond 

the contrast enhance region. Perfusion measurements exhibited the largest 

tumour regions in this early stage of infiltration model, confirming the strong links 

between tumour infiltration and small host vessels reported elsewhere (Geer et 

al., 2012). Clinical studies tend to focus on the regions surrounding CE-T1 
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enhancement where the ASL signal is expected to be stronger because of 

angiogenesis. Several clinical researchers have studied cerebral blood flow in the 

marginal tumour regions. For example, Lin et al. (2016) observed a negative 

perfusion gradient at the margins of metastatic regions that could be related to 

the co-option. Blasel et al. (2011) found that cerebral blood volume (rCBV) 

increased in the region adjacent to the contrast enhancement on MRI of 

glioblastomas. However, the results in this chapter show that there is a negative 

relationship between perfusion and infiltration of tumour cells and tumour cell 

are infiltrated beyond the oedema region. Later, this result has been confirmed 

by using a human study which have been done by (Noth et al., 2019). They found 

that quantitative T1map differences between pre and post gadolinium contrast 

agent are better for detecting infiltration inside and beyond the peritumoral 

oedema of glioblastomas. 

To observe angiogenesis in a preclinical model it is necessary to reproduce solid 

tumour conditions (e.g. significant tumour burden, hypoxia). However, these 

conditions require either a non-infiltrative model that lacks realism or a 

considerable size of tumour, thus compromising animal survival. Most infiltrative 

preclinical models will therefore tend to present a phase of vascular co-option 

that can lead to a detectable perfusion drop (Cha et al., 2003). As far as can be 

established, this is the first-time perfusion MRI has been suggested an imaging 

biomarker of tumour cell infiltration beyond CE-T1 and even T2W enhancement 

regions. In this work, the infiltration-related drop in perfusion was confirmed both 

by perfusion and histology. The significant relation observed between infiltrated 

tumour burden and perfusion at the margins suggests that probing abnormal 

perfusion gradients far from the CE-T1 enhancement regions could facilitate the 

characterisation of marginal glioblastoma infiltration into healthy tissue.  

In chapter 7, the first use of mpMRI with multi-regression analysis to improve the 

delineation of tumour regions of orthotopic G7 tumour growth in mice was 

proposed. In recent years, there has been a growing trend in designing in vivo 

neuroimaging to prognostic and diagnostic of brain tumour. Many of studies have 

reported promising prediction performances with the claim that brain tumour can 

be diagnosed robustly and accurately. For example, cMRI which includes T2W, CE-

T1, DWI and FLAIR is an excellent non-invasive imaging tool to longitudinally assess 
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morphological and functional changes in a brain tumour. However, individual cMRI 

is not accurate to probe whole tumour region specially infiltration of tumour cells. 

Quantitative MRI maps (qMRI) are often used when numeric values of signal 

intensities are measured and they are more closely related to the tissue 

pathophysiology. The combination of the different quantitative MRI techniques 

(DTI, CBV, CBF, T2map and T1map) could increase the accuracy of the results. 

However, in this study, T2map couldn’t improve the detection of infiltration of 

tumour cells. Therefore, the decision has been made to remove it from the study 

and replace with T2W. 

The combination of several MRI modalities using mpMRI may overcome the 

limitations of each individual modality and provide morphological, functional, and 

molecular information about tumour. The combination of different MRI modalities 

allowed complementary assessment of tumour growth characteristics, including 

total tumour volume and infiltration of tumour regions beyond the oedema. 

However, until now, mpMRI have not been fully integrated into the clinic, based 

to our knowledge, the main reason for this is that are not assessed be histology, 

amount of post-processing analysis required, lack of clinical trial data, and lack 

of radiology training (Hyare et al., 2017). 

In this chapter, computer has given ability to solve the problem of accurate 

detection of tumour boarders by Machine learning. Machine learning studies could 

be revolutionary to detect infiltration of tumour cells, For example, the multi- 

regression method could be used to find a relationship between dependent 

(histology) and multiple independent variables (MRI) and multi-regression 

coefficients (bi) which are calculated by using this method can be used later to 

reconstruct a single tumour map. Unfortunately, using average of these 

coefficients and for all mice to reconstruct a single tumour map has failed due to 

a huge variation between these coefficients. However, using average of multiple 

variables linear regression model coefficients to reconstruct a single tumour map 

give us better results. 

Another advantage co-registering MRI with histology, is that it enables 

quantitative analysis via a voxel-wise approach. This allows for the exploration of 

more ROIs than would be possible with manual selection. Voxel-wise analysis 
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pushes exploratory analysis even further by enabling analysis at the voxel-level. 

This enables the detection of effects that cannot be easily characterised by ROIs 

such as; local effects or diverging effects within a close region. For example, in 

chapter 6 and 7, voxel-wise analysis was used to detect the tumour region, 

including infiltration of tumour cells into normal tissue. 

 

8.1.1 Limitations  

With hindsight and reflection, a number of limitations have been identified in this 

thesis: 

1- Only one mouse model of GB was employed. It would have been preferable to 

have used multiple models, which could have provided a more vigorous test of 

our methods. 

2- Animals were only scanned at two time point (9 weeks and 12 weeks). It would 

have been preferable to have more time points to analyse and compare the 

results in the early and later stages of tumour invasion.  

3- Another limitation of this study is the lack of quantitative longitudinal 

histology. Histology at different time points would have provided concrete 

evidence of the various morphological and functional changes occurring within 

the tumour rather than the processes based on last time point histology. This 

could have been achieved by having several groups of animals, with each group 

terminated at a different time point. 

8.2 Conclusion 

The main aim of this thesis was to develop quantitative medical image analysis 

methods that allow for quantitative assessment imaging biomarkers with the 

ground truth (histology). Though these methods can be applied to any disease 

model, we initially chose to apply them to an infiltrative glioblastoma mouse 

model. Furthermore, developing a new quantitative medical image analysis 

method to improve the delineation of tumour regions including infiltrative regions, 

may lead to the improvement in therapy planning, assessment of drug treatments 

and identifying the chances of patients developing future complications. 
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This thesis proposed several scientific contributions to the main components of 

medical imaging analysis. The summary of these contributions and potential future 

directions are provided as follows: 

Firstly, histology is the ground truth of assisting non-invasive imaging biomarking. 

However, most of the validation approach involves visual inspection (qualitative). 

Therefore, it was decided to develop a new technique to advance the quality of 

histology. Multiple histological sections were cut in the MRI imaging plane and 

thickness to produce a stacked in-plane histology map that can be used as the best 

available ground truth with which to quantitatively validate imaging biomarkers. 

A high-level accuracy of co-register histology and MRI allows for the application 

of quantitative and voxel by voxel analysis comparison between MRI mortality and 

histology. For example, a quantitative volume comparison between clinical MRI 

and histology shows that clinic MRI cannot detect a whole tumour region especially 

infiltrative tumour cells in normal tissue. This study highlighted the importance of 

histology section thickness to measure of tumour volume because assessment 

based exclusively on single histology section was not reliable and did not truly 

reflect the GB extension in each animal. 

Secondly, in chapter 6, this study identified that a negative relationship between 

tumour cell in the margins of tumour and cerebral perfusion, which can potentially 

be used as an imaging biomarker for tumour invasion beyond oedema region. In 

addition, this chapter indicated that cMRI is not useful in the detection of the 

invasion of tumour cells beyond the oedema which may be responsible for tumour 

recurrence after surgery. 

The robust protocol that were developed to assess the performance of a range of 

MRI modalities by using histology is a significant step toward quantitative 

evaluation of the ability of preclinical MRI protocols in to probe regions of 

infiltration of tumour cells. 

Thirdly, chapter 7 demonstrated that mpMRI, coupled with multi-regression 

analysis, allows assessment of the detectability of tumour infiltration by 

assessment of relaxation, diffusion, and perfusion properties, potentially allowing 

better delineation of the infiltrative region beyond the peritumoural oedema 

region. Development and translation of such a technique, which strengthens the 
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links between in vivo imaging biomarkers and the structural / functional 

properties of tissue, has the potential to provide predictive models to improve 

brain tumour prognosis, and monitoring. This approach shows much promise in 

probing the boundaries of tumour cell infiltration in glioblastoma. 

8.3 Future directions  

The potential future direction of development in the detection of tumour cells 

beyond the oedema region by quantitative medical image analysis is shown below:  

1- The quantitative analysis of the multimodality of MRI images which can 

significantly increase the accuracy of tumour detection requires further 

investigation. 

2- PET/MRI is a hybrid imaging technology that incorporates MRI soft tissue 

morphological and PET functional imaging. It can provide both anatomical and 

metabolic information about abnormal tissues which is useful for tumour 

diagnosis and delineation. MRI that is integrated with different medical image 

modalities will benefit disease diagnosis, therapy evaluation and drug 

assessment. It is anticipated to be one of the most promising topics in the 

future.  

3- The potential role of multi-parametric MRI in the delineation of glioblastoma 

has been highlighted by the results in chapter 7 of the thesis. Notwithstanding 

this, further investigation is required in the future. Future research should 

concentrate on adding quantitative MRI techniques such as CBF, CBV and semi-

quantitative DCE.  

4-  Computer assisted diagnostic software should be developed to help radiologists 

to diagnose. Techniques such as this combined with specialist training in tumour 

detection and delineation may help to improve inter-reporter variability and 

hence consistency in reporting. 

5-  The next steps arising from chapter 7 will be to take multiple regression 

analyses to use as guide for potential future studies involving novel therapies 

and the assessment of efficacy. 

6- Recently, machine learning has seen a huge development that leading to a lot 

of interest from medical field. Train artificial neural networks by using histology 

‘ground truth’ can be more accurate and less time consuming.  
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7- One of promising technique to analysis the data is radiomics which is refers to 

the extraction and analysis of large amounts of imaging features. These 

features have the potential to find disease characteristics that fail to be 

appreciated by the pathologist’s eye. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 



 
 

157 
 

9.1 References 

ABUL-KASIM, K., THURNHER, M., PUCHNER, S. & SUNDGREN, P. 2013. Multimodal 
magnetic resonance imaging increases the overall diagnostic accuracy in 
brain tumours: Correlation with histopathology. South African Journal of 
Radiology, 17, 4-10. 

 
AGARWAL, N., XU, X. & GOPI, M. 2016. Robust registration of Mouse brain slices 

with severe histological artifacts. Tenth Indian Conference. India. 
 
AL-MUBARAK, H., VALLATOS, A., GALLAGHER, L., BIRCH, J. L., GILMOUR, L., 

FOSTER, J. E., CHALMERS, A. J. & HOLMES, W. M. 2019. Stacked in-plane 
histology for quantitative validation of non-invasive imaging biomarkers: 
Application to an infiltrative brain tumour model. J Neurosci Methods, 326, 
108372. 

 
ALIC, L., HAECK, J. C., KLEIN, S., BOL, K., VAN TIEL, S. T., WIELEPOLSKI, P. A., 

BIJSTER, M., NIESSEN, W. J., BERNSEN, M., VEENLAND, J. F. & DE JONG, M. 

2010. Multi-modal image registration: matching MRI with histology. Medical 
Imaging 2010: Biomedical Applications in Molecular, Structural, and 
Functional Imaging, 7626, 762603. 

 
ALTIOK, N., ERSOZ, M. & KOYUTURK, M. 2011. Estradiol induces JNK-dependent 

apoptosis in glioblastoma cells. Oncol Lett, 2, 1281-1285. 
 
ATKINSON, A., COLBURN, W., DEGRUTTOLA, V., DEMETS, D., J, D. G., HOTH, D., 

OATES , J. A., PECK, C. C., SCHOOLEY, R., SPIKER, B., WOODECOCK, J. & 
ZEGER, S. 2001. Biomarkers and surrogate endpoints: preferred definitions 
and conceptual framework. Clin Pharmacol Ther, 69, 89-95. 

 
AXEL, L., COSTANTINI, J. & LISTERUD, J. 1987. Intensity correction in surface-coil 

MR imaging. AJR Am J Roentgenol, 148, 418-20. 
 
BALAFAR, M. A., RAMLI, A. R., SARIPAN, M. I. & MASHOHOR, S. 2010. Review of 

brain MRI image segmentation methods. Artificial Intelligence Review, 33, 
261-274. 

 
BALDOCK, A. L., ROCKNE, R. C., BOONE, A. D., NEAL, M. L., HAWKINS-DAARUD, 

A., CORWIN, D. M., BRIDGE, C. A., GUYMAN, L. A., TRISTER, A. D., 
MRUGALA, M. M., ROCKHILL, J. K. & SWANSON, K. R. 2013. From patient-
specific mathematical neuro-oncology to precision medicine. Front Oncol, 
3, 1-11. 

 
BALLABH, P., BRAUN, A. & NEDERGAARD, M. 2004. The blood-brain barrier: an 

overview: structure, regulation, and clinical implications. Neurobiol Dis, 
16, 1-13. 

 
BASKAR, R., LEE, K. A., YEO, R. & YEOH, K. W. 2012. Cancer and radiation therapy: 

current advances and future directions. Int J Med Sci, 9, 193-9. 
 



 
 

158 
 

BELSARE, A. D. 2012. Histopathological Image Analysis Using Image Processing 
Techniques: An Overview. Signal & Image Processing : An International 
Journal, 3, 23-36. 

 
BERNAS, L. M., FOSTER, P. J. & RUTT, B. K. 2007. Magnetic resonance imaging of 

in vitro glioma cell invasion. J Neurosurg, 106, 306-13. 
 
BHATTACHARJEE, S., MUKHERJEE, J., NAG, S., MAITRA, I. K. & BANDYOPADHYAY, 

S. K. 2014. Review on Histopathological Slide Analysis using Digital 
Microscopy. International Journal of Advanced Science and Technology, 62, 
65-96. 

 
BLASEL, S., FRANZ, K., ACKERMANN, H., WEIDAUER, S., ZANELLA, F. & 

HATTINGEN, E. 2011. Stripe-like increase of rCBV beyond the visible border 
of glioblastomas: site of tumor infiltration growing after neurosurgery. J 
Neurooncol, 103, 575-84. 

 
BLOCH, F. 1946. Nuclear Induction. Physical Review, 70, 460-474. 
 
BLYSTAD, I., WARNTJES, J. B. M., SMEDBY, O., LUNDBERG, P., LARSSON, E. M. & 

TISELL, A. 2017. Quantitative MRI for analysis of peritumoral edema in 

malignant gliomas. PLoS One, 12, e0177135. 
 
BOGDANSKA, M. U., BODNAR, M., PIOTROWSKA, M. J., MUREK, M., SCHUCHT, P., 

BECK, J., MARTINEZ-GONZALEZ, A. & PEREZ-GARCIA, V. M. 2017. A 
mathematical model describes the malignant transformation of low grade 
gliomas: Prognostic implications. PLoS One, 12, e0179999. 

 
BRODY, W. & ZERHOUNI, E. 2000. Hand book of medical imaging processing and 

analysis, USA, Academic Press. 
 
BURNET, N. G., THOMAS, S. J., BURTON, K. E. & JEFFERIES, S. J. 2004. Defining 

the tumour and target volumes for radiotherapy. Cancer Imaging, 4, 153-
61. 

 
CANCER RESEARCH UK. 2019. Cancer incidence statistics [Online]. UK: Cancer 

research.  [Accessed 12/8/2019]. 
 

CARANCI, F., POLONARA, G., CARRIERO, A., POPOLIZIO, T., MUTO, M., STECCO, 
A., POLLICE, S. & TARTARO, A. 2012. Imaging Gliomas After Treatment. 

 
CARRUTHERS, R. D. 2015. Response to ionising radiation of glioblastoma stem-

like cells. PhD, Glasgow university. 
 
CASELLES, V., KIMMEL, R. & SAPIRO, G. 1997. Geodesic active contours. 

International Journal of Computer Vision, 22, 61-79. 
 
CHA, S., JOHNSON, G., WADGHIRI, Y. Z., JIN, O., BABB, J., ZAGZAG, D. & 

TURNBULL, D. H. 2003. Dynamic, contrast-enhanced perfusion MRI in mouse 
gliomas: correlation with histopathology. Magn Reson Med, 49, 848-55. 



 
 

159 
 

CHAPPELOW, J., MADABHUSHI, A., ROSEN, M., TOMASZEWESKI, J. & FELDMAN, M. 
2007. A combined feature ensemble basedmutual information scheme for 
robust inter-modal, inter-protocol image registration. IEEE. 

 
CHEN, C. C. 2011. Advances in the biology, imaging and therapies for 

glioblastoma, Croatia, InTech. 
 
CLAES, A., IDEMA, A. J. & WESSELING, P. 2007. Diffuse glioma growth: a guerilla 

war. Acta Neuropathol, 114, 443-58. 
 
COPE, F. W. & DAMADIAN, R. 1970. Cell Potassium by 39K Spin Echo Nuclear 

Magnetic Resonance. Nature, 228, 76-77. 
 
COQUERY, N., FRANCOIS, O., LEMASSON, B., DEBACKER, C., FARION, R., REMY, C. 

& BARBIER, E. L. 2014. Microvascular MRI and unsupervised clustering yields 
histology-resembling images in two rat models of glioma. J Cereb Blood 
Flow Metab, 34, 1354-62. 

 
CUDDAPAH, V. A., ROBEL, S., WATKINS, S. & SONTHEIMER, H. 2014. A neurocentric 

perspective on glioma invasion. Nat Rev Neurosci, 15, 455-65. 
 

CUENOD, C. A. & BALVAY, D. 2013. Perfusion and vascular permeability: basic 
concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging, 
94, 1187-204. 

 
DAI, W., GARCIA, D., DE BAZELAIRE, C. & ALSOP, D. C. 2008. Continuous flow-

driven inversion for arterial spin labeling using pulsed radio frequency and 
gradient fields. Magn Reson Med, 60, 1488-97. 

 
DAUGUET, J., DELZESCAUX, T., CONDE, F., MANGIN, J. F., AYACHE, N., 

HANTRAYE, P. & FROUIN, V. 2007. Three-dimensional reconstruction of 
stained histological slices and 3D non-linear registration with in-vivo MRI 
for whole baboon brain. J Neurosci Methods, 164, 191-204. 

 
DE GOOIJER, M. C., GUILLEN NAVARRO, M., BERNARDS, R., WURDINGER, T. & VAN 

TELLINGEN, O. 2018. An Experimenter's Guide to Glioblastoma Invasion 
Pathways. Trends Mol Med, 24, 763-780. 

 

DE VLEESCHOUWER, S. 2017. Glioblastoma, Australia, Codon Publications. 
 
DEMIRKAYA, O., ASYALI, M. H. & SAHOO, P. K. 2008. Image processing with 

MATLAB: applications in medicine and biology, Taylor and Francis group. 
 
DETRE, J. A., WANG, J., WANG, Z. & RAO, H. 2009. Arterial spin-labeled perfusion 

MRI in basic and clinical neuroscience. Curr Opin Neurol, 22, 348-55. 
 
DI COSTANZO, A., SCARABINO, T., TROJSI, F., GIANNATEMPO, G. M., POPOLIZIO, 

T., CATAPANO, D., BONAVITA, S., MAGGIALETTI, N., TOSETTI, M., 
SALVOLINI, U., D'ANGELO, V. A. & TEDESCHI, G. 2006. Multiparametric 3T 
MR approach to the assessment of cerebral gliomas: tumor extent and 
malignancy. Neuroradiology, 48, 622-31. 



 
 

160 
 

DIAZ, I., BOULANGER, P., GREINER, R. & MURTHA, A. 2011. A critical review of 
the effects of de-noising algorithms on MRI brain tumor segmentation. Conf 
Proc IEEE Eng Med Biol Soc, 2011, 3934-7. 

 
DICE, L. R. 1945. Measures of the Amount of Ecologic Association Between Species. 

Ecology, 26, 297-302. 
 
DOMINIETTO, M., RUDIN, M. 2014. Could magnetic resonance provide in vivo 

histology. Frontiers in Genetics, 4. 
 
DOMINIETTO, M., TSINOREMAS, N. & CAPOBIANCO, E. 2015. Integrative analysis of 

cancer imaging readouts by networks. Mol Oncol, 9, 1-16. 
 
DREVELEGAS, A. 2011. Imaging of Brain Tumors with Histological Correlations, 

Berlin, Springer. 
 
EARNEST, F. T., KELLY, P. J., SCHEITHAUER, B. W., KALL, B. A., CASCINO, T. L., 

EHMAN, R. L., FORBES, G. S. & AXLEY, P. L. 1988. Cerebral astrocytomas: 
histopathologic correlation of MR and CT contrast enhancement with 
stereotactic biopsy. Radiology, 166, 823-7. 

 

EIDEL, O., BURTH, S., NEUMANN, J. O., KIESLICH, P. J., SAHM, F., JUNGK, C., 
KICKINGEREDER, P., BICKELHAUPT, S., MUNDIYANAPURATH, S., BAUMER, 
P., WICK, W., SCHLEMMER, H. P., KIENING, K., UNTERBERG, A., BENDSZUS, 
M. & RADBRUCH, A. 2017. Tumor Infiltration in Enhancing and Non-
Enhancing Parts of Glioblastoma: A Correlation with Histopathology. PLoS 
One, 12, e0169292. 

 
ERDFELDER, E., FAUL, F. & BUCHNER, A. 1996. GPOWER: A general power analysis 

program. Behavior Research Methods Instruments & Computers, 28, 1-11. 
 
FAGAN, A. J., MULLIN, J. M., GALLAGHER, L., HADLEY, D. M., MACRAE, I. M. & 

CONDON, B. 2008. Serial postmortem relaxometry in the normal rat brain 
and following stroke. J Magn Reson Imaging, 27, 469-75. 

 
GARCIA-LORENZO, D., FRANCIS, S., NARAYANAN, S., ARNOLD, D. L. & COLLINS, D. 

L. 2013. Review of automatic segmentation methods of multiple sclerosis 
white matter lesions on conventional magnetic resonance imaging. Med 

Image Anal, 17, 1-18. 
 
GEER, C. P., SIMONDS, J., ANVERY, A., CHEN, M. Y., BURDETTE, J. H., ZAPADKA, 

M. E., ELLIS, T. L., TATTER, S. B., LESSER, G. J., CHAN, M. D., MCMULLEN, 
K. P. & JOHNSON, A. J. 2012. Does MR perfusion imaging impact 
management decisions for patients with brain tumors? A prospective study. 
AJNR Am J Neuroradiol, 33, 556-62. 

 
GERSTNER, E. R. & BATCHELOR, T. T. 2012. Antiangiogenic therapy for 

glioblastoma. Cancer J, 18, 45-50. 
 
GHAFFARI, S., LEASK, R. L. & JONES, E. A. V. 2017. Blood flow can signal during 

angiogenesis not only through mechanotransduction, but also by affecting 
growth factor distribution. Angiogenesis, 20, 373-384. 



 
 

161 
 

 
GILLIES, R. J., SCHORNACK, P. A., SECOMB, T. W. & RAGHUNAND, N. 1999. Causes 

and effects of heterogeneous perfusion in tumors. Neoplasia, 1, 197-207. 

 
GOLAY, HENDRIKSE, J. & LIM, T. C. 2004. Perfusion Imaging Using Arterial Spin 

Labeling. Top Magn Reson Imaging, 15. 
 
GOMEZ-ROMAN, N., STEVENSON, K., GILMOUR, L., HAMILTON, G. & CHALMERS, A. 

J. 2017. A novel 3D human glioblastoma cell culture system for modeling 
drug and radiation responses. Neuro Oncol, 19, 229-241. 

 
GONZALEZ, R. C. & WOODS, E. R. 2002. digital image processing, USA, Prentice-

Hall. 
 
GREGORI, J. 2015. Arterial Spin Labeling (ASL) in Dementia [Online]. 2015. 

Available: 
http://s434060124.online.de/aslindementiacms/basicprinciplesofasl2 
[Accessed 2019]. 

 
GURCAN, M. N., BOUCHERON, L. E., CAN, A., MADABHUSHI, A., RAJPOOT, N. M. & 

YENER, B. 2009. Histopathological image analysis: a review. IEEE Rev 

Biomed Eng, 2, 147-71. 
 
GUY, C. & FFYTCHE, D. 2005. An Introduction to The Principles of Medical 

Imaging, London, Imperial College Press. 
 
HARDEE, M. E. & ZAGZAG, D. 2012. Mechanisms of glioma-associated 

neovascularization. Am J Pathol, 181, 1126-41. 
 
HATTINGEN , E. & PILATUS, U. 2016. Brain Tumor Imaging, Berlin-Heidelberg, 

Springer. 
 
HECKE, W. V., EMSELL, L. & SUNAERT, S. 2016. Diffusion Tensor Imaging, NewYork 

Springer. 
 
HEJMADI, M. 2013. Introduction to Cancer Biology, Denmark, Ventus. 
 
HENNING, E. C., AZUMA, C., SOTAK, C. H. & HELMER, K. G. 2007. Multispectral 

quantification of tissue types in a RIF-1 tumor model with histological 
validation. Part I. Magn Reson Med, 57, 501-12. 

 
HEYN, C., BOWEN, C. V., RUTT, B. K. & FOSTER, P. J. 2005. Detection threshold 

of single SPIO-labeled cells with FIESTA. Magn Reson Med, 53, 312-20. 
 
HILL, D. L. G. & HAWKES, D. J. 1994. Voxel similarity measures for automated 

image registration. Proc. SPIE, 2359, 205-216. 
 
HOLASH, J., MAISONPIERRE, P. C., COMPTON, D., BOLAND, P., ALEXANDER, C. R., 

ZAGZAG, D., YANCOPOULOS, G. D. & WIEGAND, S. J. 1999. Vessel cooption, 
regression, and growth in tumors mediated by angiopoietins and VEGF. 
Science, 284, 1994-8. 

 

http://s434060124.online.de/aslindementiacms/basicprinciplesofasl2


 
 

162 
 

HUISMAN, T. A. 2010. Diffusion-weighted and diffusion tensor imaging of the brain, 
made easy. Cancer Imaging, 10 S163-S171. 

 

HYARE, H., THUST, S. & REES, J. 2017. Advanced MRI Techniques in the Monitoring 
of Treatment of Gliomas. Curr Treat Options Neurol, 19, 11. 

 
INOUE, S., ICHIKAWA, T., KUROZUMI, K., MARUO, T., ONISHI, M., YOSHIDA, K., 

FUJII, K., KAMBARA, H., CHIOCCA, E. A. & DATE, I. 2012. Novel animal 
glioma models that separately exhibit two different invasive and angiogenic 
phenotypes of human glioblastomas. World Neurosurg, 78, 670-82. 

 
JACOBS, V. L., VALDES, P. A., HICKEY, W. F. & DE LEO, J. A. 2011. Current review 

of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN 
Neuro, 3, e00063. 

 
JAIN, K. K. 2018. A Critical Overview of Targeted Therapies for Glioblastoma. 

Front Oncol, 8, 419. 
 
JARDIM-PERASSI, B. V., HUANG, S., DOMINGUEZ-VIQUEIRA, W., POLESZCZUK, J., 

BUDZEVICH, M. M., ABDALAH, M. A., PILLAI, S. R., RUIZ, E., BUI, M. M., 
ZUCCARI, D., GILLIES, R. J. & MARTINEZ, G. V. 2019. Multiparametric MRI 

and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse 
Models. Cancer Res, 79, 3952-3964. 

 
JARNUM, H., STEFFENSEN, E. G., KNUTSSON, L., FRUND, E. T., SIMONSEN, C. W., 

LUNDBYE-CHRISTENSEN, S., SHANKARANARAYANAN, A., ALSOP, D. C., 
JENSEN, F. T. & LARSSON, E. M. 2010. Perfusion MRI of brain tumours: a 
comparative study of pseudo-continuous arterial spin labelling and dynamic 
susceptibility contrast imaging. Neuroradiology, 52, 307-17. 

 
JEGATHAMBAL, S. K., MOK, K., RUDKO, D. A. & SHMUEL, A. 2018. MRI Based Brain-

Specific 3D-Printed Model Aligned to Stereotactic Space for Registering 
Histology to MRI. Conf Proc IEEE Eng Med Biol Soc, 2018, 802-805. 

 
JENSEN, T. R. & SCHMAINDA, K. M. 2009. Computer-aided detection of brain tumor 

invasion using multiparametric MRI. J Magn Reson Imaging, 30, 481-9. 
 
JOHNSON, D. R., OMURO, A. M. P., RAVELO, A., SOMMER, N., GUERIN, A., 

IONESCU-ITTU, R., SHI, S., MACALALAD, A. & UHM, J. H. 2018. Overall 
survival in patients with glioblastoma before and after bevacizumab 
approval. Curr Med Res Opin, 34, 813-820. 

 
KALPATHY-CRAMER, J., GERSTNER, E. R., EMBLEM, K. E., ANDRONESI, O. & ROSEN, 

B. 2014. Advanced magnetic resonance imaging of the physical processes in 
human glioblastoma. Cancer Res, 74, 4622-4637. 

 
KAO, H. W., CHIANG, S. W., CHUNG, H. W., TSAI, F. Y. & CHEN, C. Y. 2013. 

Advanced MR imaging of gliomas: an update. Biomed Res Int, 2013, 970586. 
 
KARELLAS, A. & THOMADSEN, B. R. 2016. Handbook of small animal imaging, USA, 

Taylor & Francis Group. 
 



 
 

163 
 

KAZEROONI, F. A., MOHSENI, M., REZAEI, S., BAKHSHANDEHPOUR, G. & SALIGHEH 
RAD, H. 2015. Multi-parametric (ADC/PWI/T2-w) image fusion approach for 
accurate semi-automatic segmentation of tumorous regions in glioblastoma 

multiforme. MAGMA, 28, 13-22. 
 
KELLY, P. J., DAUMAS-DUPORT, C., KISPERT, D. B., KALL, B. A., SCHEITHAUER, B. 

W. & ILLIG, J. J. 1987. Imaging-based stereotaxic serial biopsies in 
untreated intracranial glial neoplasms. J Neurosurg, 66, 865-74. 

 
KENNETH W. FISHBEIN, J. C. M., AND RICHARD G. SPENCER Hardware for Magnetic 

Resonance Imaging. 
 
KIESSLING, F. & PICHLER, B. J. 2011. Small animal imaging basics and practical 

guide, Germany, Springer. 
 
KILKENNY, C., BROWNE, W., CUTHILL, I. C., EMERSON, M., ALTMAN, D. G. & 

GROUP, N. C. R. R. G. W. 2010. Animal research: reporting in vivo 
experiments: the ARRIVE guidelines. Br J Pharmacol, 160, 1577-9. 

 
KIMT, T. S., SINGH, M. & SUNGKARA, W. 2000. Automatic registration of 

postmortem brain slices to MRI reference volume. ICEE transactions on 

nuclear science, 47, 1607-1613. 
 
KONUKOGLU, E., CLATZ, O., BONDIAU, P. Y., DELINGETTE, H. & AYACHE, N. 2010. 

Extrapolating glioma invasion margin in brain magnetic resonance images: 
suggesting new irradiation margins. Med Image Anal, 14, 111-25. 

 
KRAKHMAL, N. V., ZAVYALOVA, M. V., DENISOV, E. V., VTORUSHIN, S. V. & 

PERELMUTER, V. M. 2015. Cancer Invasion Patterns and Mechanisms. 7, 17-
25. 

 
LACROIX, M., ABI-SAID, D., FOURNEY, D. R., GOKASLAN, Z. L., SHI, W. M., 

DEMONTE, F., LANG, F. F., MCCUTCHEON, I. E., HASSENBUSCH, S. J., 
HOLLAND, E., HESS, K., MICHAEL, C., MILLER, D. & SAWAYA, R. 2001. A 
multivariate analysis of 416 patients with glioblastoma multiforme: 
prognosis, extent of resection, and survival. Journal of Neurosurgery, 95, 
190-198. 

 

LANGER, D. L., VAN DER KWAST, T. H., EVANS, A. J., TRACHTENBERG, J., WILSON, 
B. C. & HAIDER, M. A. 2009. Prostate cancer detection with multi-
parametric MRI: logistic regression analysis of quantitative T2, diffusion-
weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson 
Imaging, 30, 327-34. 

 
LAUTERBUR, P. C. 1973. Image Formation by Induced Local Interactions: Examples 

Employing Nuclear Magnetic Resonance. Nature, 242(5394), 190–191. 
 
LE BIHAN, D., MANGIN, J. F., POUPON, C., CLARK, C. A., PAPPATA, S., MOLKO, N. 

& CHABRIAT, H. 2001. Diffusion tensor imaging: concepts and applications. 
J Magn Reson Imaging, 13, 534-46. 

 



 
 

164 
 

LEENDERS, W. P. J., KUSTERS, B. & DEWAAL, R. M. W. 2002. Vessel Co-Option: 
How Tumors Obtain Blood Supply in the Absence of Sprouting Angiogenesis. 
Endothelium. 

 
LIN, L., XUE, Y., DUAN, Q., SUN, B., LIN, H., HUANG, X. & CHEN, X. 2016. The role 

of cerebral blood flow gradient in peritumoral edema for differentiation of 
glioblastomas from solitary metastatic lesions. Oncotarget, 7, 69051-69059. 

 
LIU J., Li M., JianxinWang, Wu F., Liu T., Pan Y. 2014. A survey of MRI-based brain 

tumor segmentation methods. Tsinghua science and technology, 19, 578-
595. 

 
LIU, T. B., PERLIN, D. S. & XUE, C. 2012. Molecular mechanisms of cryptococcal 

meningitis. Virulence, 3, 173-81. 
 
LOUIS, D. N., PERRY, A., REIFENBERGER, G., VON DEIMLING, A., FIGARELLA-

BRANGER, D., CAVENEE, W. K., OHGAKI, H., WIESTLER, O. D., KLEIHUES, P. 
& ELLISON, D. W. 2016. The 2016 World Health Organization Classification 
of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 
131, 803-20. 

 

MACHEIN, M. R. & PLATE, K. H. 2000. VEGF in brain tumors. Journal of Neuro-
Oncology, 50, 109-120. 

 
MADABHUSHI, A., FELDMAN, M. D., METAXAS, D. N., TOMASZEWESKI, J. & CHUTE, 

D. 2005. Automated detection of prostatic adenocarcinoma from high-
resolution ex vivo MRI. IEEE Trans Med Imaging, 24, 1611-25. 

 
MAINTZ, J. B. & VIERGEVER, M. A. 1998. A survey of medical image registration. 

Med Image Anal, 2, 1-36. 
 
MANSFIELD, P. & GRANNELL, P. K. 1973. NMR 'diffraction' in solids? Journal of 

Physics C: Solid State Physics, 6, L422-L426. 
 
MARINO, M. A., HELBICH, T., BALTZER, P. & PINKER-DOMENIG, K. 2018. 

Multiparametric MRI of the breast: A review. J Magn Reson Imaging, 47, 
301-315. 

 

MCCANN, M. T. 2015. Tools for Automated Histology Image Analysis. Doctor, 
Carnegie Mellon. 

 
MCROBBIE, D. W., MOORE, E. A., GRAVES, M. J. & PRINCE, M. R. 2006. MRI From 

Picture to Proton, UK, Cambridge University Press. 
 
MESCHER, A. L. 2016. Junqueira’s basic histology text and atlas, USA, McGraw-

Hill Education. 
 
MORITANI, T., EKHOLM, S. & WESTESSON, P. L. 2005. Diffusion-Weighted MR 

Imaging of the Brain, Berlin Heidelberg, Springer. 
 
MOUGIN, O. 2010. Quantitative Methods in High Field MRI. PhD, University of 

Nottingham. 



 
 

165 
 

 
MUJA, N. & BULTE, J. W. 2009. Magnetic resonance imaging of cells in 

experimental disease models. Prog Nucl Magn Reson Spectrosc, 55, 61-77. 

 
MUKHERJEE, P., BERMAN, J. I., CHUNG, S. W., HESS, C. P. & HENRY, R. G. 2008. 

Diffusion tensor MR imaging and fiber tractography: theoretic 
underpinnings. AJNR Am J Neuroradiol, 29, 632-41. 

 
NANDU, H., WEN, P. Y. & HUANG, R. Y. 2018. Imaging in neuro-oncology. Ther Adv 

Neurol Disord, 11, 1-19. 
 
NIYAZI, M., BRADA, M., CHALMERS, A. J., COMBS, S. E., ERRIDGE, S. C., 

FIORENTINO, A., GROSU, A. L., LAGERWAARD, F. J., MINNITI, G., 
MIRIMANOFF, R. O., RICARDI, U., SHORT, S. C., WEBER, D. C. & BELKA, C. 
2016. ESTRO-ACROP guideline "target delineation of glioblastomas". 
Radiother Oncol, 118, 35-42. 

 
NOTH, U., TICHY, J., TRITT, S., BAHR, O., DEICHMANN, R. & HATTINGEN, E. 2019. 

Quantitative T1 mapping indicates tumor infiltration beyond the enhancing 
part of glioblastomas. NMR Biomed, e4242. 

 

OPPO, K., LEEN, E., ANGERSON, W. J., COOKE, T. G. & MCARDLE, C. S. 1998. 
Doppler perfusion index: an interobserver and intraobserver reproducibility 
study. Radiology, 208, 453-7. 

 
OU, Y., SHEN, D., FELDMAN, M., TOMASZEWSKI, J. & DAVATZIKOS, C. 2009. Non-

rigid registration between histological and MR images of the prostate: a 
joint segmentation and registration framework. IEEE Computer Society 
Conference on Computer. Miami, FL, USA: IEEE. 

 
TRACQUI, G. C. C., D. E. WOODWARD, G. T. BARTOOLL, J. D. MURRAY AND E. C. 

ALVORD, JRLL 1995. A mathematical model of glioma growth: the effect of 
chemotherapy on spatio-temporal growth. Cell ProliJ, 17-3 1. 

 
PERONA, P. & MALIK, J. 1990. Scale-Space and Edge Detection Using Anisotropic 

Diffusion. IEEE transactions on pattern analysis and machine intelligence, 
12, 629-639. 

 

PERRIN, S. L., SAMUEL, M. S., KOSZYCA, B., BROWN, M. P., EBERT, L. M., 
OKSDATH, M. & GOMEZ, G. A. 2019. Glioblastoma heterogeneity and the 
tumour microenvironment: implications for preclinical research and 
development of new treatments. Biochem Soc Trans. 

 
PETERS, S. R. 2003. The art of embedding tissue for frozen section part I: a system 

for precision face down cryoembedding of tissues using freezing 
temperture-embedding wells. Journal of Histotechnology, 11-19. 

 
PETERSEN, D. K. A., NYENGAARD, J. R. & GUNDERSEN, H. J. G. 2001. Tissue 

shrinkage and unbiased stereological estimation of particle number and 
size. Journal of Microscopy, 204. 

 



 
 

166 
 

PICHAT, J., IGLESIAS, J. E., YOUSRY, T., OURSELIN, S. & MODAT, M. 2018. A Survey 
of Methods for 3D Histology Reconstruction. Med Image Anal, 46, 73-105. 

 

PIRTOLI, L. & GRAVINA, G. L. 2016. Radiobiology of Glioblastoma Recent Advances 
and Related Pathobiology, Switzerland, Springer International Publishing. 

 
PRASAD, P. V. 2006. Magnetic Resonance Imaging Methods and Biologic 

Applications, New Jersey, Humana Press Inc. 
 
PRICE, S. J. 2007. The role of advanced MR imaging in understanding brain tumour 

pathology. Br J Neurosurg, 21, 562-75. 
 
PRICE, S. J. & GILLARD, J. H. 2011. Imaging biomarkers of brain tumour margin 

and tumour invasion. Br J Radiol, 84 Spec No 2, S159-67. 
 
QUINN, G. P. & KEOUGH, M. J. 2002. Experimental Design and Data Analysis for 

Biologists, U.K., Cambridge University. 
 
RABI, I. I., ZACHARIAS, J. R., MILLMAN, S. & KUSCH, P. 1938. A New Method of 

Measuring Nuclear Magnetic Moment. Physical Review, 53, 318-318. 
 

RAY, K. S. 2010. Glioblastoma  molecular mechanisms of pathogenesis and current 
therapeutic strategies, USA, Springer. 

 
ROY, S., KUMAR JAIN, A., LAL, S. & KINI, J. 2018. A study about color normalization 

methods for histopathology images. Micron, 114, 42-61. 
 
ROY, S., NAG , S., MAITRA, I. K. & BANDYOPADHYAY, S. K. 2013. A Review on 

Automated Brain Tumor Detection and Segmentation from MRI of Brain. 
International Journal of Advanced Research in Computer Science and 
Software Engineering, 3, 1706-1746. 

 
SHIROISHI, M. S., CASTELLAZZI, G., BOXERMAN, J. L., D'AMORE, F., ESSIG, M., 

NGUYEN, T. B., PROVENZALE, J. M., ENTERLINE, D. S., ANZALONE, N., 
DORFLER, A., ROVIRA, A., WINTERMARK, M. & LAW, M. 2015. Principles of 
T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor 
imaging. J Magn Reson Imaging, 41, 296-313. 

 

STEELE, B., CHANDLER, J. & REDDY, S. 2016. Algorithms for data science, 
Switzerland, Springer. 

 
STEJSKAL, E. O. & TANNER, J. E. 1965. Spin Diffusion Measurements: Spin Echoes 

in the Presence of a Time-Dependent Field Gradient. Journal of Chemical 
Physics, 42, 288-+. 

 
STERNBERG, E. J., LIPTON, M. L. & BURNS, J. 2014. Utility of Diffusion Tensor 

Imaging in Evaluation of the Peritumoral Region in Patients with Primary 
and Metastatic Brain Tumors. American Journal of Neuroradiology, 35, 439-
444. 

 



 
 

167 
 

STILLE, M., SMITH, E. J., CRUM, W. R. & MODO, M. 2013. 3D reconstruction of 2D 
fluorescence histology images and registration with in vivo MR images: 
application in a rodent stroke model. J Neurosci Methods, 219, 27-40. 

 
SURI, J. S., WILSON, D. L. & LAXMINARAYAN, S. 2005. Handbook of Biomedical 

Image Analysis, New York, Kluwer Academic / Plenum Publishers. 
 
SWANSON, K. R., ALVORD, E. C., JR. & MURRAY, J. D. 2002. Virtual brain tumours 

(gliomas) enhance the reality of medical imaging and highlight inadequacies 
of current therapy. Br J Cancer, 86, 14-8. 

 
SWANSON, K. R., BRIDGE, C., MURRAY, J. D. & ALVORD, E. C. 2003. Virtual and 

real brain tumors: using mathematical modeling to quantify glioma growth 
and invasion. Journal of the Neurological Sciences, 216, 1-10. 

 
SZENDE, B. & SUBA, Z. 1999. Introduction to Histopathology, Germany, Medicina 

publishing co. 
 
TOURDIAS, T., RODRIGO, S., OPPENHEIM, C., NAGGARA, O., VARLET, P., AMOUSSA, 

S., CALMON, G., ROUX, F. X. & MEDER, J. F. 2008. Pulsed arterial spin 
labeling applications in brain tumors: practical review. J Neuroradiol, 35, 

79-89. 
 
VALLATOS, A., AL-MUBARAK, H. F. I., BIRCH, J. L., GALLLAGHER, L., MULLIN, J. 

M., GILMOUR, L., HOLMES, W. M. & CHALMERS, A. J. 2018a. Quantitative 
histopathologic assessment of perfusion MRI as a marker of glioblastoma 
cell infiltration in and beyond the peritumoral edema region. J Magn Reson 
Imaging, 50, 529-540. 

 
VALLATOS, A., GILMOUR, L., CHALMERS, A. J. & HOLMES, W. M. 2018b. Multiple 

boli arterial spin labeling for high signal-to-noise rodent brain perfusion 
imaging. Magnetic Resonance in Medicine, 79, 1020-1030. 

 
VERGARA, J. R. & ESTÉVEZ, P. A. 2013. A review of feature selection methods 

based on mutual information. Neural Computing and Applications, 24, 175-
186. 

 
VICENT C., KIMMEL, R., SAPIRO, G. 1997. Geodesic Active Contours. International 

Journal of Computer Vision, 22(1), 61–79. 
 
VILLANUEVA-MEYER, J. E., MABRAY, M. C. & CHA, S. 2017. Current Clinical Brain 

Tumor Imaging. Neurosurgery, 81, 397-415. 
 
WALLNER, B.K., EDELMAN R.R., BAJAKIAN R.L., KLEEFIELD J., ATKINSON D.J., 

MATTLE, H.P. 1990. Signal Normalization in Surface-Coil MR Imaging. 
American Society of Neuroradiology, 1271-1272. 

 
WATKINS, S., ROBEL, S., KIMBROUGH, I. F., ROBERT, S. M., ELLIS-DAVIES, G. & 

SONTHEIMER, H. 2014. Disruption of astrocyte-vascular coupling and the 
blood-brain barrier by invading glioma cells. Nat Commun, 5, 4196. 

 



 
 

168 
 

WEINBERG, R. A. 2007. The Biology of cancer, USA, Garland Science,Taylor & 
Francis Group. 

 

WEISHAUPT, D., KÖCHLI, V. D. & MARINCEK, B. 2006. How Does MRI Work ?, Verlag 
Berlin Heidelberg, Springer. 

 
WELLS, W. M., 3RD, VIOLA, P., ATSUMI, H., NAKAJIMA, S. & KIKINIS, R. 1996. Multi-

modal volume registration by maximization of mutual information. Med 
Image Anal, 1, 35-51. 

 
WESTBROOK, C., ROTH, C. K. & TALBOT, J. 2011. MRI in Practice, U.K., A John 

Wiley & Sons, Ltd. 
 
WHITE, N. S., MCDONALD, C., FARID, N., KUPERMAN, J., KAROW, D., SCHENKER-

AHMED, N. M., BARTSCH, H., RAKOW-PENNER, R., HOLLAND, D., SHABAIK, 
A., BJORNERUD, A., HOPE, T., HATTANGADI-GLUTH, J., LISS, M., PARSONS, 
J. K., CHEN, C. C., RAMAN, S., MARGOLIS, D., REITER, R. E., MARKS, L., 
KESARI, S., MUNDT, A. J., KANE, C. J., CARTER, B. S., BRADLEY, W. G. & 
DALE, A. M. 2014. Diffusion-weighted imaging in cancer: physical 
foundations and applications of restriction spectrum imaging. Cancer Res, 
74, 4638-52. 

 
WORKMAN, P. A., E. O.BALKWILL, F.BALMAIN, A.BRUDER, G.CHAPLIN, D. 

J.DOUBLE, J. A.EVERITT, J.FARNINGHAM, D. A.GLENNIE, M. J.KELLAND, L. 
R.ROBINSON, V.STRATFORD, I. J.TOZER, G. M.WATSON, S.WEDGE, S. 
R.ECCLES, S. A. 2010. Guidelines for the welfare and use of animals in 
cancer research. Br J Cancer, 102, 1555-77. 

 
WU, O., DIJKHUIZEN, R. M. & SORENSEN, A. G. 2010. Multiparametric magnetic 

resonance imaging of brain disorders. Top Magn Reson Imaging, 21, 129-38. 
 
YANKEELOV, T. E., PICKENS, D. R. & PRICE, R. R. 2012. Quantitative MRI in Cancer, 

Taylor & Francis Group, LLC. 
 
YEOM, K. W., MITCHELL, L. A., LOBER, R. M., BARNES, P. D., VOGEL, H., FISHER, 

P. G. & EDWARDS, M. S. 2014. Arterial spin-labeled perfusion of pediatric 
brain tumors. AJNR Am J Neuroradiol, 35, 395-401. 

 

ZAGZAG, D., ESENCAY, M., MENDEZ, O., YEE, H., SMIRNOVA, I., HUANG, Y., 
CHIRIBOGA, L., LUKYANOV, E., LIU, M. & NEWCOMB, E. W. 2008. Hypoxia- 
and vascular endothelial growth factor-induced stromal cell-derived factor-
1alpha/CXCR4 expression in glioblastomas: one plausible explanation of 
Scherer's structures. Am J Pathol, 173, 545-60. 

 
ZHANG, Z., JIANG, H., CHEN, X., BAI, J., CUI, Y., REN, X., CHEN, X., WANG, J., 

ZENG, W. & LIN, S. 2014. Identifying the survival subtypes of glioblastoma 
by quantitative volumetric analysis of MRI. J Neurooncol, 119, 207-14. 

 
ZOU, K. H., WARFIELD, S. K., BHARATHA, A., TEMPANY, C. M. C., KAUS, M. R., 

HAKER, S. J., WELLS, W. M., JOLESZ, F. A. & KIKINIS, R. 2004. Statistical 
validation of image segmentation quality based on a spatial overlap index1. 
Academic Radiology, 11, 178-189. 



 
 

169 
 

 


	2020Al-MubarakCS
	2020Al-MubarakPhD



