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Abstract
Strongly interacting systems such as the internal dynamics of the myriad bound states seen in
particle physics experiments are notoriously difficult to obtain a precise quantitative theoretical
description of. Without systematically improvable methods of analysis of such system a vast
region of particle physics phenomenology is left without proper confrontation with theory and
systematic uncertainties arising from knowledge of fundamental particle physics parameters in
the strong sector are difficult to control. Lattice quantum chromodynamics (QCD) has arisen
as a methodological solution to the calculational difficulties raised by the theory of the strong
interaction.

The main testing ground for high precision calculations utilised here is the properties of the two
lowest lying states of the chamronium spectrum, the ηc and the J/ψ. Certain properties of these
mesons are experimentally determined to high precision which makes them good targets for high
precision lattice QCD calculations. At this level of precision it becomes necessary to include at
least leading order electromagnetic corrections. This is addressed in this thesis with the inclusion
of quenched QED in the study of charmonium properties.

In various calculations renormalisation factors need to be computed to high precision. The
technique of nonperturbatively computing renormalisation factors in a momentum subtraction
scheme on the lattice provides a computationally cheap method for the determination of these
factors and is examined using the Highly Improved Staggered Quark (HISQ) action.

The charmonium calculations are then extended to higher masses leading up to the b quark
mass allowing for comparisons with experimental results. It is demonstrated that this method
offers a way to improve on the precision of previous lattice calculations that used nonrelativistic
quark actions. Finally, sub-percent determinations of the strange and charm quark masses are
presented, making use of nonperturbatively determined mass renormalisation factors. These are
shown to agree, at this high level of precision, with other lattice calculations that use different
methodologies, indicating that the systematic uncertainties are appropriately controlled.
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Chapter 1

Theoretical Foundations

The Standard Model of particle physics is a specific example of a quantum field theory, obeying
the constraints of unitarity and Lorentz invariance. It comprises possibly the most verified theo-
retical construction in physics and has withstood decades of rigorous testing across a huge range
of observable processes. While this success has validated the theoretical tools and paradigms
developed and utilised during the compositional phases of the Standard Model there are still
unanswered questions that may seem to lie within the purview of particle physics arising both
from a lack of explanation of certain experimental observations on the macroscopic scales of
astronomy (dark matter) and technical concerns about the soundness of the structure from a
theoretical perspective. In addition there are a few more recent tensions with experimental
results that have not yet reached the level of statistical incompatibility. The Standard Model
does provide a candidate particle to explain the amount of dark matter detected in astronomical
observations. In addition, from the point of view established following the work of Wilson the
presence of a scalar field introduces difficulties due to presumed higher dimensional operators
from new physics giving uncontrolled large contributions to the Higgs mass (known as the hierar-
chy problem). There also a few tensions between experimental measurements of flavour physics
observables and their theoretical predictions from the Standard Model. In particular, these are
LHCb measurements of the ratio of semileptonic B meson decay rates with differing final state
leptons [4, 5, 6, 7, 8] and the high precision measurement of the anomalous magnetic moment of
the muon [9].

With the discovery of the Higgs boson by the ATLAS [10] and CMS [11] experiments the experi-

1
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mental validation of all components of the Standard Model is now complete and a major focus of
experimental effort is the discovery of beyond the Standard Model (BSM) physics. This proceeds
in, broadly, two ways. One is known as the energy frontier and involves extending the energy
reach of experiments to directly search for new physics appearing beyond some threshold. The
other is the precision frontier. In this case physics at high energies are probed through quantum
vacuum effects. As there can be substantial suppression of high energy effects this involves the
comparison of experiment and Standard Model theory to high precision to search for deviations.
Where experiment can provide high precision it is therefore essential for theoretical calculations
to push for the same level of precision. Perturbative calculations can systematically reach high
precision through the inclusion of higher order terms. While this is technically challenging these
calculational programmes have been a huge success. A problem arises when, often inevitably,
nonperturbative effects from the strong force arise in calculations. It is therefore vital to have
a method of calculation in this regime with fully controlled and quantifiable uncertainties that
offers the possibility of systematic improvement. Lattice QCD is this method.

Lattice QCD simplifies the exact calculations necessary through the approximation of spacetime
as a lattice, rendering the number of degrees of freedom finite and making the problems numer-
ically tractable. In many cases the limiting factor on the precision of the calculation becomes
computational power; a resource that continues to undergo rapid expansion. This is not to say
that lattice QCD calculations are simple and active work in the development and application of
new techniques and strategies is critical for further advances in the field.

With lattice calculations reaching and surpassing the 1% landmark efforts are being made in
several directions to fully control such high precision and this work represents some contribution
to that goal. This opening chapter outlines some of the foundational theory of the Standard
Model largely following the treatments of [12, 13, 14, 15]. This is followed by an introductory
chapter on lattice QCD with the remaining chapters providing details of research in the use of
momentum subtraction renormalisation schemes and properties of heavyonium mesons using the
highly improved staggered quark (HISQ) action.

1.1 Quantum fields

A relativistic theory must be invariant under the actions of the group of Lorentz trransformations.
In order to ensure Lorentz invariance the Lagrangian of the Standard Model is constructed from
fields lying in unitary irreducible representations of the Poincaré group (Lorentz group plus
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translations). These representations can be classified by their mass and spin.

A simple enumeration of the irreducible representations (irreps) that classify particle states can
be obtained through a study of the Lorentz group, and more specifically an infinitesimal Lorentz
transformation. If such a Lorentz transformation is denoted Λµν then it may be written as
δµν + δωµν . A unitary operator implementing a Lorentz transformation on a state in a Hilbert
space U(Λ) may then be written U(Λ) = I + (i/2)δωµνM

µν where the generators Mµν can be
decomposed into more familiar operators Ji = 1

2εijkM
jk (angular momentum) and Ki = M i0

(boosts). In terms of these operators the Lie algebra of the Lorentz group is

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = −iεijkJk.

(1.1)

(The exponentiation of the generators of the Lorentz algebra only generates the elements of the
group connected to the identity. Time reversal and parity transformations are also needed to
generate the full group.) By constructing the operators J+

i = 1
2(Ji + iKi) and J−

i = 1
2(Ji − iKi)

this can be written as

[J−
i , J

−
j ] = iεijkJ

−
k ,

[J+
i , J

+
j ] = iεijkJ

+
k ,

[J−
i , J

+
j ] = 0,

(1.2)

which reveals two commuting su(2) subalgebras. Representations of SU(2) are labelled by the
highest eigenvalue of one of the three group generators, typically chosen to be J3. The eigenvalues
of J3 must be of the form j = `/2 where ` is an integer. The representations are therefore labelled
by an integer or half-integer n. It follows that the irrreps of the Lorentz group may be labelled
by a pair of such values (n, n′). Hermitian conjugation will swap this labelling (J+)† = J−.
SO(3) is a subgroup of the Lorentz group and any representation of the latter therefore gives a
representation of the former which provides a definition of the spin of the representation. The
number of components of a representation is (2n + 1)(2n′ + 1). For example, (0,0) corresponds
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to a state of spin 0 (scalar) and both (1/2,0) and (0,1/2) correspond to spin 1/2 states, which
have two components (± spin). The (1/2,1/2) representation corresponds to a spin 1 (vector)
state.

A general field φa(x) will transform under a Lorentz transformation according to

U(Λ)−1φa(x)U(Λ) = Lba(Λ)φb(Λ
−1x), (1.3)

with Lba(Λ) a matrix in the appropriate representation of the Lorentz group.

A spin 1/2 spinor field in the (1/2,0) representation is a two-component object known as a
left-handed Weyl field. It is related to the right-handed (0,1/2) field via Hermitian conjuga-
tion. Writing right-handed Weyl fermions with a dot over the index (ψȧ) we can examine the
difference between these two representations through their Lorentz transformation properties.
An element of the Lorentz group can be obtained through the exponentiation of the generators
Λ = exp(iθjJj + iβjKj) which, upon expansion about the identity, gives Λ = 1 + iθjJj + iβjKj .
The matrices Jj and Kj in the (1/2,0) representation must be 2 × 2. The Pauli matrices are
2× 2 matrices that satisfy the su(2) Lie algebra. We may therefore identify J−

i = 1
2σi and take

J+ = 0. We can take these to be the other way around for the (0,1/2) representation. This gives
the following:

(
1

2
, 0

)
: Ji =

1

2
σi,Ki =

i

2
σi(

0,
1

2

)
: Ji =

1

2
σi,Ki = − i

2
σi.

(1.4)

The left and right handed spinors therefore act in the same way under rotations but in the
opposite sense under boosts. As they are both spin 1/2 particles they are expected to behave
the same under rotations and the behaviour under boosts suggests that in some sense their spins
are aligned in opposite directions.

If a mass term is to be included in a Lagrangian then a Lorentz invariant quadratic of the fields
must be created. Terms such as ψ†

ȧψ
ȧ are not Lorentz invariant 1; a term compensating for the

1The indices on ψ are raised using the antisymmetric tensor: ψȧ = εȧḃψḃ.
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boost part of the transformation is needed. This is achieved with the construction ψ†
aψȧ and its

Hermitian conjugate ψ†
ȧψa. This leads to the Dirac mass term m(ψ†

aψȧ + ψ†
ȧψa) which can be

written in terms of a single object: the Dirac spinor

Ψ =

(
ψa

ξḃ

)
. (1.5)

Defining the Dirac adjoint as Ψ ≡
(
ξ†
ḃ
ψ†
a

)
the Dirac mass term is mΨΨ.

A kinetic term may be written with a single derivative as Ψiγµ∂µΨ. This comes from the Lorentz
invariant term

iξ†bσ
µ∂µξḃ + iψ†

ȧσ
µ∂µψa, (1.6)

with σµ = (1, σ) and σµ = (1,−σ). Defining

γµ =

(
0 σµ

σµ 0

)
(1.7)

gives the kinetic term in terms of the Dirac field.

The Dirac γ matrices can be used to construct operators that project out the left or right handed
components of the Dirac spinor. Starting with γ5 ≡ iγ0γ1γ2γ3 we can define PR = 1+γ5

2 and
PL = 1−γ5

2 which give

PR

(
ψa

ξḃ

)
=

(
0

ξḃ

)
,

PL

(
ψa

ξḃ

)
=

(
ψa

0

)
.

(1.8)

The projection of the spin on to the direction of the momentum, the helicity, is given by the
operator σσσ·p

|p| . If there is no mass term then left and right handed states are eigenstates of the
helicity operator with eigenvalues of opposite sign. This can be seen from the massless Dirac
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equation:

σµp
µξȧ = 0,

σµp
µψa = 0.

(1.9)

1.1.1 Gauge fields

A spin 1 state will be embedded in a vector field in order to have the correct behaviour under
SO(3) but a massless spin 1 particle only has two degrees of freedom, and a massive one three,
while a Lorentz vector has four. There must therefore be some redundancy in this embedding de-
scribed through some relationship between the different components. This redundancy manifests
itself through gauge invariance. The Lagrangian of a massless vector field is

L = −1

4
GµνG

µν , (1.10)

for an antisymmeterised function of the vector field Aµ. Assume that there is a local symmetry
transformation that leaves this Lagrangian invariant. A scalar or spinor field will transform
according to

φa(x) → Uab(x)φb(x). (1.11)

If U can be connected directly to the identity then an infinitesimal transformation may be
written

Uab(x) = δab − igθi(x)(Ti)ab +O(θ2). (1.12)

We take the generators T (which are exponentiated to obtain group elements) to satisfy the
commutation relations

[T i, T j ] = if ijkTk, (1.13)

which defines a Lie algebra with stucture constants f ijk. Choosing a Lie group is natural because
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they correspond to differentiable manifolds and as such provide a positive real symmetric metric
which gives a notion of an inner product required for unitarity. (Here, a gauge theory built
on a Lie gauge group will be termed a Yang-Mills theory.) A gauge field Aaµ(x) transforms as
(suppressing the a index)

Aµ(x) → U(x)Aµ(x)U
†(x) +

i

g
U(x)∂µU

†(x). (1.14)

The covariant derivative is defined as Dµ = ∂µ − igAµ(x) which can be used to construct a field
strength tensor (in analogy with the definition of the Riemann curvature tensor)

Gµν(x) ≡
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (1.15)

The Lagrangian Eq. 1.10 is then invariant under gauge transformations. The invariance under
the transformation of Eq. 1.14 indicates the redundancy in the embedding of a spin 1 state into
a vector field as choosing a specific gauge amongst the orbit described by Eq. 1.14 will lead to a
reduction in the number of degrees of freedom.

When a classical field is Fourier transformed the momentum space is written in terms of basis
vectors εiµ(p), known as polarisation vectors. The equation of motion ∂µAµ = 0 forces pµεiµ(p) =
0. With p2 = 0 there are two independent polarisation vectors (with the appropriate gauge
choice) while for p2 = m2 there are three. These polarisation vectors furnish infinite dimensional
representations of the Poincaré group.

1.1.2 Vectors and spinors

The fact that a Lorentz vector lies in the (1/2, 1/2) indicates that vectors can be written as
bispinors. Defining Lorentz invariant spinor inner products with the totally antisymmetric ε
tensors we have

〈λξ〉 = εabλaξb, [λξ] = εȧḃλ
ȧξḃ. (1.16)

Momenta can be written as bispinors by using σ: paȧ ≡ σaȧµ p
µ. The determinant of paȧ is equal

to the mass squared and is therefore 0 when p is lightlike. Such a matrix can be written as an
outer product paȧ = λaξȧ = λ〉[ξ.
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Polarisation bispinors are given in terms of some reference momentum q (with q · p 6= 0) as
ε−p (q) =

√
2p〉[q/[pq] and ε+p (q) =

√
2q〉[p/〈qp〉.

Consider a 3-point amplitude between massless vector bosons. Labelling the legs 1, 2 and 3
momentum conservation gives 1〉[1 + 2〉[2 + 3〉[3 = 0. Contracting with 〈1 and 〈2 leads to either
〈12〉 = 〈13〉 = 〈23〉 = 0 or [12] = [13] = [23] = 0 meaning that the 3-point amplitude can only
depend on 〈ij〉 or [ij].

The set of transformations that preserve the bispinor momentum paȧ (the little group transfor-
mations) are simple rescalings of the spinors 2

p〉 → zp〉, [p→ 1

z
[p. (1.17)

The consequence of this is that negative polarisations transform as z2 and positive polarisations
as z−2. Therefore, for each vector boson entering an amplitude the number of angle brackets
minus square brackets appearing in the amplitude must be 2 for a negative helicity boson and
-2 for a positive helicity boson. The 3-point function is then determined up to a factor carrying
a group index (a colour factor) Cabc by the helicities of the bosons entering the vertex.

Next, consider a 4-point amplitude. If the helicities are taken as − − ++, with all momenta
directed towards the vertex so that this corresponds to two negative helicity bosons annihilating
to two negative helicity bosons, then the little group scaling requires this amplitude to take the
form

M−−++ = 〈12〉2[34]2Gabcd(s, t, u). (1.18)

Gabcd(s, t, u) has been written as a function of the Mandlestam kinematic variables: s = 〈12〉[21],
t = 〈14〉[41] and u = 〈13〉[31]3. Dimensional analysis shows that G has mass dimension -4. This
inverse power scaling implies that G has a pole as a function of the momenta. Unitarity requires
poles to correspond to the exchange of an on-shell intermediate state [12, 13]. This intermediate
state can be taken to be in the s, t or u channel and splits the 4-point function into two 3-points

2The little group is the subgroup of the Lorentz group that leaves a chosen momentum invariant. For a
massless boson this momentum must be lightlike and the corresponding little group is ISO(2) which is the group
of 2-dimensional Euclidean rotations and translations. This corresponds to rescaling by a complex number (the
phase gives a rotation and the magnitude a translation).

3These are not independent variables; they satisfy s+ t+ u = 0.
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with an internal on-shell propagator. The massless vector propagator is i/P 2. Decomposing into
the two 3-point amplitudes near the s pole

lim
s→0

sM−−++ = −CabeCcde 〈12〉3

〈2P 〉〈P1〉
[34]3

[3P ][P4]
= −CabeCcde 〈12〉

2

〈41〉
[34]2

[14]
, (1.19)

where e is the group index for the intermediate boson. Eq. 1.19 implies lims→0 stGabcd =

−CabeCcde. A similar analysis for the t and u channels (where there are two possible polari-
sation constructions) give

lim
t→0

tsGabcd = CadeCbce,

lim
u→0

usGabcd = CaceCbde.
(1.20)

As s, t and u are not independent we can write

Gabcd = 1

st
gabcd(s/t) +

1

tu
gabcd(u/t), (1.21)

and Taylor expand

Gabcd = 1

st

∞∑
n=0

aabcdn (s/tn) +
1

tu

∞∑
n=0

babcdn (u/tn). (1.22)

The limits from the analysis of G imply aabcd0 = −CabeCcde and babcd0 = −CaceCbde along
with

CadeCbce = lim
t→0

∞∑
n=0

(aabcdn − (−1)nbabcdn )(s/t)n. (1.23)

To avoid singularities aabcdn = (−1)nbabcdn and therefore

CadeCbce = aabcd0 − babcd0 = −CabeCcde + CaceCbde. (1.24)
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That is, the C factors satisfy the Jacobi identity and are the structure constants of a Lie algebra.
This analysis is somewhat lengthy but shows that if you wish to construct a field theory of self-
interacting massless vector bosons then gauge theories based on Lie groups must be what you
produce. The confinement seen in the strong force presumably comes from strong self-interactions
implying that it can be described by a Yang-Mills theory, i.e. QCD. This conclusion, and QCD
in particular, are supported by a wealth of phenomenological evidence at both high and low
energies.

1.1.3 Spontaneous symmetry breaking

If only gauge invariant terms are allowed in the Lagrangian of a field theory then there can be no
mass term for the gauge bosons. However, a term coupling a charged scalar field to a gauge field
looks somewhat like a mass term. Through minimal coupling this term is (schematically)

(∂µφ
∗ − ieAµφ

∗)(∂µφ+ ieAµφ), (1.25)

one part of which is e2φ2A2
µ. If φ can dynamically acquire a vacuum expectation value (vev)

of v/
√
2 then this is (1/2)e2v2A2

µ and a mass term is achieved with only gauge invariant terms.
The development of this expectation value is done through a potential term

m2φ2 − λ

4
φ4. (1.26)

If m2 > 0 then the potential has a minimum at 2m2/λ which provides a vev for the scalar at
that value. This is the essence of the Higgs mechanism to be discussed in the context of the
Standard Model in Section 1.4.

1.2 Quantisation through the path integral

Given a Langragian for a field theory the theory may be quantised by defining the path integral
or, in analogy with statitstical mechanics, partition function. The partition function is given
by

Z[φ] =

∫
DφeiS[φ], (1.27)
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where φ is used to generically denote all field content. The measure Dφ indicates a functional
integral over all configurations of the fields (which depend on x). Matrix elements are then
calculated as

〈T{φ(x1)...φ(xn)}〉 =
∫
DφeiS[φ]φ(x1)...φ(xn)∫

DφeiS[φ]
. (1.28)

These are the calculable quantities of the theory and observables should be extracted from them
for comparison with experiment. When the fields involved are fermionic the integration is over
Grassmann (anticommuting) numbers. Integration rules for such numbers may be written down
by exploiting the fact that θ2 = 0 for a Grassmann θ. This allows the fairly simple expansion
of functions such as exponentials. A very important class of integrals which can be evaluated
analytically are Gaussian Grassmann integrals such as

∫
dθ1...dθndθ1...dθne

−θiAijθj = det(A). (1.29)

This is recognisable as the fermionic part of the partition function of a Yang-Mills theory coupled
to fermions with A = /D −m. Also of interest is the fermionic 2-point function, which can also
be evaluated,

∫
dθ1dθ2dθ1dθ2θ1θ2e

−θiAijθj = det(A)A−1
ij . (1.30)

These evaluations becomes important when the path integral is tackled numerically and the
fermionic variables have to be removed.

The term eiS can be expanded and then, if the couplings entering the action are small, higher
order terms in the couplings can be dropped. It is typical, for calculational purposes, to write
this expansion in terms of Feynman diagrams where different terms are represented by the edges
and vertices of a graph with rules to map between the two (an example is given in Section 1.5).
This perturbation theory breaks down if the coupling becomes too large.

Often it is convenient to perform a Wick rotation t → it which renders the weight term in the
path integral e−S . This does not oscillate and has a damping effect away from the minimum
(classical solution) of the action.
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1.3 Renormalisation

The perturbative evaluation of the path integral generically leads to divergent integrals over
internal momenta. While this seems fundamentally problematic the problem can actually be
dealt with through a systematic procedure.

First the divergent integral is regulated in some manner in order to make it finite. The simplest
method is to apply a cutoff to the momenta included in the integral. The integral can then be split
into a finite part and a divergent part that depends on the regulator. A physically measurable
quantity may then be chosen to absorb this divergence. These quantities are typically the masses
and couplings of the theory.

Take for example a mass appearing in the Lagrangian. If we call this mass the bare mass and
denote it m0 then we can take it to be infinite and proportional to the experimentally measured
renormalised mass m; m0 = Zmm. Writing this factor as Zm = 1+δm gives m0 = m+δmm with
the divergent part contained in the counterterm δm. In so-called renormalisable theories, which
include the Standard Model, the divergences at all orders can be absorbed into a finite number of
parameters. A finite set of conditions are then required to determine the renormalisation factors.
In momentum subtraction schemes these take the fairly natural form that certain correlation
functions evaluated with renormalised parameters are equal to their tree-level (non-interacting)
values. These schemes do not directly rely on perturbation theory and are therefore well suited
to nonperturbative calculations.

The most common regularisation used in perturbative calculations is dimensional regularisation.
This involves shifting the dimensionality of spacetime from 4 to 4 − ε where ε need not be an
integer. As the divergence of a momentum integral is dependent on the number of spacetime
dimension minus the number of momentum powers in the denominator of the integrand, chang-
ing the dimension appropriately renders the integral finite. The momentum integrals are then
performed and the result is given as a function of ε where the poles can clearly be identified as
the divergent parts as ε → 0. These poles must then be absorbed into theory parameters. In
perturbation theory this can be done by adding counter-terms to the Lagrangian which subtract
away the divergence. These then generate extra Feynman diagrams.

There is not a unique way to do this; a specific choice defines a renormalisation scheme. The
most commonly used scheme is modified minimal subtraction or MS. This is a scheme defined
within the perturbative calculational framework. The minimal subtraction scheme is defined so
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that counterterms have no finite part. The MS scheme is a modification of this prescription for
use with dimensional regularisation in which the ln(4π) and γE (the Euler-Mascheroni constant)
factors that arise from the expansion of Γ functions from spherical integrals in arbitrary dimension
are also removed.

Given that the action is dimensionless the mass dimension of a coupling such as that appearing in
Eq. 1.15 is (4−d)/2 which is 0 for d = 4. In order to maintain this while varying the dimension an
arbitrary parameter with dimensions of mass, µ, is introduced and the coupling rescaled:

g → µ
4−d
2 g. (1.31)

Both ε and µ are unphysical and physical results must not depend on them. The regulator is
removed by taking the limit ε → 0 and µ is left as a choice in the final result. The requirement
of µ independence leads to the renormalisation group equations.

1.3.1 The renormalisation group

As the results for physical observables must be independent of the renormalisation scale, given
that it is an arbitrary choice, it must be that the bare parameters of the theory are also in-
dependent of µ. Taking the coupling of a theory g, renormalised in the MS scheme, as an
example:

µ
d

dµ
g0 = 0 = µ

d

dµ
(Zgg). (1.32)

Zg is calculated in perturbation theory and is generally µ dependent. This means that the
renormalised coupling g must also be µ dependent in such a way as to cancel that of Zg. The
function µ(d/dµ)g is known as the β function and gives the running of g with µ. The same
relation holds for other parameters such as the mass, and for any operator written in terms of
bare fields and parameters. This defines the anomalous dimension of an operator

µ
d

dµ
O = γOO. (1.33)

These are known as anomalous dimensions as they quantify the deviation of the scaling behaviour
of an operator from that in the classical theory. A classical correlation function can only depend
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on powers of the quantities in the Lagrangian with the sum of the powers multiplied by the
scaling dimension of the quantity giving the mass dimension of the correlation function. In the
quantum theory the correlation function may also depend on the renormalisation scale µ to some
power γ. If the correlation function Gn has mass dimension n then it now scales as

Gn → µn−γGn, (1.34)

where γ is the anomalous dimension.

1.4 The Standard Model

The Standard Model consists of the union of the theory of the electroweak interaction as an
SU(2) × U(1) gauge theory [16, 17, 18] with the gauge group being broken through the Higgs
mechanism to give the weak bosons masses [19, 20, 21] and the strong force described by an
SU(3) gauge theory.

The gauge group of the Standard Model (SM) is SU(3)× SU(2)×U(1). The fermion content is
broadly classified into quarks and leptons (colour charged and uncharged). All these fermions
are in the (1/2, 0)⊕(0, 1/2) representation of the Lorentz group (Dirac). The left handed leptons
and quarks sit in doublets in the fundamental representation of SU(2). The lepton pairs consist
of an electron like particle and a corresponding neutrino and the quark doublets are formed by
pairs of quarks with differing electromagnetic charge:

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
�

(
uL

dL

) (
cL

sL

) (
tL

bL

)
(1.35)

The right handed fermions are all singlets of SU(2) (the right handed neutrino has not been
observed and its existence depends on whether the neutrino mass is Majorana or Dirac). It is
this asymmetry between the left and right handed particles that leads to the observed parity
violation in the weak interaction [22]. All the quarks also lie in the fundamental of SU(3) giving
them one of three charges: red, green or blue. The hypercharges (charges under U(1)) of the
fermions are collected in Table 1.1. The hypercharges repeat across the generations.
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Table 1.1: Hypercharges of the Standard Model fermion fields.(
νL
eL

)
eR νR

(
uL
dL

)
uR dR

hypercharge −1
2 −1 0 1

6
2
3 −1

3

A scalar doublet with hypercharge 1/2 and transforming in the fundamental of SU(2) is in-
cluded in the theory. Denoting this field H, quadratic and quartic terms are included in the
Lagrangian:

LVH = m2H†H − λ(H†H)2, λ > 0. (1.36)

Due to the shape of this potential (resulting from the different signs of the two terms) the H field
spontaneously acquires a vacuum expectation value (vev) and breaks the SU(2)×U(1) symmetry
to just U(1). This is the Higgs field.

Due to the coupling of this Higgs field to the SU(2) × U(1) gauge bosons the Higgs vev gives
rise to mass terms for what are now the W and Z bosons without breaking the gauge invariance
of the Lagrangian. The fermions are given masses through Yukawa couplings (ψLHψR 4) to the
Higgs field.

The gauge field content before symmetry breaking consists of the eight gluons in the adjoint
representation of SU(3) which are not charged under U(1). The U(1) gauge field is denoted Bµ.
The three SU(2) gauge bosons are charged differently under U(1): +1, -1 and 0 for the W 1, W 2

and W 3 respectively. Symmetry breaking mixes the W 1,2,3 and the Bµ to leave the W± and Z
bosons and the photon.

When the SM Lagrangian is written in a basis in which the quark masses are diagonal then a
matrix in flavour space is introduced in interaction terms between the W bosons and quarks.
For example:

e√
2 sin(θw)

W+
µ u

i
LγµV

ijdjL. (1.37)

4This term is gauge invariant due to the SU(2) doublet natures of the left handed fermion field and the Higgs
field.
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V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The moduli of the elements are measured
from various processes and display a clear structure. The diagonal elements are largest with
values decreasing away from the diagonal. This means that transitions between quarks of different
generations are suppressed. The CKM matrix in the Standard Model is unitary by construction
and studies of the unitarity of the experimentally measured matrix are therefore an avenue for
BSM searches. Lattice QCD provides important contributions to these efforts by calculating the
form factors that enter the theoretical determinations of weak meson decays.

To summarise the particles of the Standard Model along with their masses and electromagnetic
charges (in units of the proton charge) are given in Table 1.2. The masses are taken from the
PDG [23]. For the quark masses the MS masses at the chosen scale of the PDG are given, except
for the top quark for which the pole mass 5 is given. Lattice determinations, which are included
in the PDG average, can provide considerably more precise results than those given in Table 1.2
as shown in Chapter 6. (The PDG average weights different determinations differently.)

5The mass that gives rise to a pole in the fermion propagator. This can be measured for the top quark as it is
so heavy that it decays before binding into a hadron.
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Table 1.2: Masses and electromagnetic charges of the Standard Model particles as measured by
experiment [23].

Particle Mass [GeV] Charge

W± 80.379(12) ±
Z 91.1876(21) 0
Photon (γ) 0 0
Gluon 0 0
Higgs boson (H) 125.10(14) 0
Electron (e) 0.5109989461(31)× 10−3 -1
Muon (µ) 105.6583745(24)× 10−3 -1
Tau (τ) 1.77686(12) -1
Electron neutrino (νe) < 2 eV 0
Muon neutrino (νµ) . 1 eV 0
Tau neutrino (ντ ) < 0.19 MeV 0
Up (u) 2.16+0.49

−0.26 × 10−3 +2/3
Down (d) 4.67+0.48

−0.17 × 10−3 -1/3
Strange (s) 93+11

−5 × 10−3 -1/3
Charm (c) 1.27(2) +2/3
Bottom (b) 4.18+0.03

−0.02 -1/3
Top (t) 172.9(4) +2/3
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1.5 Perturbative approaches to QCD

The SU(3) part of the Standard Model, QCD, has a history of great success in describing the
varied phenomena of the strong interaction. As a stand alone SU(3) gauge theory, as it will be
treated for the majority of this work, it is described by the simple Lagrangian

LQCD =
∑
f

ψf (i /D −m)ψf −
1

4
GµνGµν , (1.38)

where the fermion fields are in the fundamental representation of SU(3), as already stated.

The following vertices and Feynman rules can be extracted from the Lagragian Eq. 1.38:

= −igγµta

k3

k1

k2 = −gfabc[gµν(k1 − k2)
ρ + gνρ(k2 − k3)

µ + gρµ(k3 − k1)
ν ]

k3

k1
k2

k4

= −ig2[fabcf cde(gµρgνσ − gµσgνρ)]

+ facef bde(gµνgρσ − gµσgρν) + fadef bce(gµνgσρ − gµρgσν)]

k

=
i

/k −m
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k

=
−gµν

k2
− (ξ − 1)kµkν

k4

The ta are elements of the SU(3) Lie algebra. These rules are given in the so-called Rξ gauge
which parameterises the gauge with ξ. A choice of ξ = 1 ccorresponds to Feynman gauge and
ξ = 0 to Landau gauge. A calculation of the 1-loop gluon vacuum polarisation, quark self-energy
and quark-gluon vertex leads to an expression for the QCD β function that depends on the
number of fermions in the theory nf (and the number of colours Nc) [24, 25]

∂g

∂log(µ)
≡ βQCD(g) =

g3

16π2

(
−11

3
Nc +

2

3
nf

)
. (1.39)

Clearly the sign is of great importance and for QCD within the standard model (Nf = 6 and
Nc = 3) it is negative. (This is just the 1-loop expression but it is known through five loops with
no change in the qualitative picture [26].) This means that the strength of the QCD coupling
will decrease with increasing energy, or increase with decreasing energy. This is shown in Fig. 1.1
using the four-loop β function and the value of αs in the MS scheme at 5 GeV from [27]. The
consequences of this are profound for both the phenomenology of QCD and the tools needed
for the extraction of that phenomenology. The growth of the QCD coupling at low energies
means that QCD perturbation theory will break down in an energy regime relevant to hadronic
physics. Indeed, it means that the degrees of freedom at low energy appear different to the quark
degrees of freedom present in Eq. 1.38. One method of dealing with this is to separate the high
and low energy regimes in the effective field theory sense and work with a theory that explicitly
works with the observed degrees of freedom. In the case of QCD this can be done with chiral
perturbation theory.

1.5.1 Correlator time moments

The quark loop contribution to the vacuum polarisation (hadronic vacuum polarisation or HVP)
will be of some interest in this work. Fig. 1.5.1 gives a depiction of this contribution. The vacuum
polarisation function
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Figure 1.1: The running of the strong coupling in the MS scheme with the scale µ. The four-loop
QCD β function is used for the calculation. This clearly shows the sharp growth at low µ values.

q

q

γ γ

Figure 1.2: Feynman diagram of the quark loop contribution to the vacuum polarisation of the
photon.

Πµν(q2) ≡ Q2

∫
d4xeiq·x〈T{Jµ(x)Jν(0)}〉,

Jµ(x) = ψ(x)γµψ(x),

(1.40)

can be tackled perturbatively if q2 is large enough. The hadronic vacuum polarisation tensor in
Eq. 1.40 can be Lorentz decomposed into Πµν(q2) = (q2gµν − qµqν)Π(q2).

Time moments, labelled by a nonzero integer k, can be defined in terms of integrals over a
normalised cross-section R:
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Mk =

∫
ds

sk+1
R(s), (1.41)

with R(s) = σ(e+e− → hadrons)/σpt and σpt = 4πα2/3s. An application of the optical the-
orem relates this cross-section to the imaginary part of the vacuum polarisation function Π:
12πIm[Π(q2 = s)].

The reason these are referred to as time moments here is that they can be related to a sum over
the current-current correlation function at zero spatial momentum weighted by a corresponding
power of the time. This is because

Mk =
12π2

k!

(
d

dq2

)k
Π(q2)|q2=0. (1.42)

The perturbative results for these moments (which can only be used for heavy quarks) depend
on the quark mass, and in this way the experimental data for e+e− to various hadrons can be
used, in conjunction with high order perturbative calculations, to extract the values of quark
masses to high precision.

For future use a summary of the current status of the perturbative calculation of QCD time mo-
ments is given here. The pseudoscalar time-moments (in which J(x) = ψ(x)γ5ψ(x) in Eq. 1.40)
are known analytically through O(α3

s) up to k = 4 [28]. However, for the vector time-moments
the O(α3

s) term for k = 4 is only known numerically [29]. The precision is good enough that this
is not a concern. Writing the perturbative and kinematic threshold expansions of the vacuum
polarisation function as

ΠS(q
2) =

3

16π2

∞∑
k=1

Ck,S

(
q2

4m2

)k
, (1.43)

where S labels whether the pseudoscalar p or vector v vacuum polarisation is being considered
and

Ck,S = C
(0)
k,S +

αs(µ)

π
C

(1)
k,S +

(
αs(µ)

π

)2

C
(2)
k,S + ... (1.44)
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Table 1.3: Coefficients in the perturbative expansion of pseudoscalar and vector time moments
from [28] and [29].

k C
(0)
k,p C

(1)
k,p C

(2)
k,p C

(4)
k,p C

(0)
k,v C

(1)
k,v C

(2)
k,v C

(4)
k,v

1 1.3333 3.1111 0.1154 -1.2224 1.0667 2.5547 2.4967 -5.6404
2 0.5333 2.0642 7.2362 7.0659 0.4571 1.1096 2.7770 -3.4937
3 0.3048 1.2117 5.9992 14.5789 0.2709 0.5194 1.6388 -2.8395
4 0.2032 0.7128 4.2670 11.3419 0.1847 0.3021 0.7956 -3.349(11)

Due to the derivative and evaluation at q2 = 0 in the definition of the time moments it is the kth

coefficient Ck that is important for the kth moment. The numerical values of these coefficients
are given in Table 1.3.

This is the perturbative expansion if the scale is chosen to be the quark mass in which case
logarithmic terms vanish. Given that the charm quark mass is quite low it is sometimes desirable
to evaluate the perturbative expansion at a scale higher than the quark mass in which case
the logarithmic terms are required. We expand Eq. 1.44 to include logarithmic terms with
lm ≡ log(m2(µ)/µ2):

Ck,S = C
(0)
k,S +

αs(µ)

π

(
C

(1)
k,S + C

(1,1)
k,S lm

)
+

(
αs(µ)

π

)2 (
C

(2)
k,S + C

(2,1)
k,S lm + C

(2,2)
k,S l2m

)
+ ... (1.45)

The necessary coefficients are given in Table 1.4.

1.5.2 Chiral symmetry

Massless QCD exhibits two global SU(2) symmetries: the left and right handed up and down
quarks may be rotated inside the doublet by an SU(2) matrix. (If they are massive but have the
same mass then there remains a single SU(2) symmetry.) This symmetry is denoted SU(2)L ×
SU(2)R and is known as chiral symmetry.

Due to the confining nature of QCD it is reasonable to expect that the quark bilinears 〈uu〉
and 〈dd〉 may have non-zero expectation values in the ground state. As these operators are not
invariant under SU(2)L × SU(2)R this indicates a spontaneous breaking of the global symmetry.
A single SU(2) symmetry survives. A theory of scalar fields with this symmetry breaking pattern
can be written on general grounds.
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Table 1.4: Coefficients of logarithmic terms in the perturbative expansion of pseudoscalar and
vector time moments from [28].

k C
(1,1)
k,p C

(2,1)
k,p C

(2,2)
k,p C

(3,1)
k,p C

(3,2)
k,p C

(3,3)
k,p

1 0.0000 -6.4815 0.0000 2.5008 13.5031 0.0000
2 1.0667 1.5909 −0.0444 −7.5852 0.5505 0.0321
3 1.2190 4.3373 1.1683 7.3626 4.2523 −0.0649
4 1.2190 4.8064 2.3873 14.7645 11.0345 1.4589
k C

(1,1)
k,v C

(2,1)
k,v C

(2,2)
k,v C

(3,1)
k,v C

(3,2)
k,v C

(3,3)
k,v

1 2.1333 3.3130 −0.0889 4.0669 0.9590 0.0642
2 1.8286 5.1489 1.7524 6.7216 6.4916 −0.0974
3 1.6254 4.7207 3.1831 7.5736 13.1654 1.9452
4 1.4776 3.6440 4.3713 4.9487 17.4612 5.5856

Take a set of scalar fields Σij(x) that transform under SU(2)L×SU(2)R as (g denoting an SU(2)
element, i.e. gL = exp(iθaLτa)):

Σ → gLΣg
†
R,Σ

† → gRΣ
†g†L. (1.46)

A Lagrangian can be simply constructed using traces of Σ2 = ΣΣ†. If we imagine that the
symmetry is broken by Σ relaxing into a minima, then Σ can be expanded about that minima v
in terms of two real fields

Σ(x) =
v + σ(x)√

2
exp

(
2iπa(x)τa

Fπ

)
. (1.47)

which will exhibit spontaneous symmetry breaking. The σ field is invariant under SU(2) and
can be decoupled from the system leaving

U(x) = exp

(
2iπaτa
Fπ

)
, (1.48)

from which an SU(2)L × SU(2)R invariant Lagrangian can be constructed:

Lχ =
F 2
π

4
Tr[(DµU)(DµU)†] + L1Tr[(DµU)(DµU)†]2 + ... (1.49)
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This is the Lagrangian of chiral perturbation theory which is frequently used to aid calculations in
lattice QCD by guiding light quark mass extrapolations or estimating finite volume effects.

1.5.3 The Operator Product Expansion

The operator product expansion (OPE) as developed by Wilson [30] writes a product of operators
at points x and y as a sum over local operators as the distance between x and y goes to 0

A(x)B(y) →
∑
n

Cn(x− y)On((x+ y)/2). (1.50)

This separates the short and long distance contributions where the coefficients contain the short
distance effects and are therefore perturbatively calculable. For short distances x − y, corre-
sponding to high momenta, Eq. 1.50 can be shown to hold through perturbation theory. As
the operators of which the basis of Eq. 1.50 is constructed may contain large nonperturbative
corrections at low energies it is interesting to think of the OPE in an environment where the
external momenta are low.

We wish to use the OPE to determine the allowed long-distance operators that may contaminate
short-distance matrix elements that will be used to determine momentum subtraction renormal-
isation constants and their dependence on the momentum. To see how such nonperturbative
contributions can be seperated out, consider the Lagrangian of a theory of interest. If a La-
grangian is constructed from local operators Oi(x) as L =

∑
i ηi(x)Oi(x) then the theory can be

treated perturbatively in some region between the ultraviolet cutoff ΛUV and some other scale
µ. After integration of these momenta there remains an effective Lagrangian

Leff = L̃(x,ΛUV, µ) +
∑
i

ηi(x)Ci(ΛUV, µ)Oi(x, µ). (1.51)

All these operators are now renormalised at a scale µ. If µ is sufficiently large that αs(µ) � 1

then the coefficients C can be perturbatively calculated and the long range interactions are con-
tained in the operators O. Even if C cannot be perturbatively calculated operators of various
dimension should still be present, suppressed by the appropriate power of µ to keep the La-
grangian dimensionless. The operators of lower dimension will therefore have a larger impact.
This kind of analysis allows for the construction of fit functions including nonperturbative effects
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that should capture the behaviour of nonperturbative data.

1.5.4 Structure of the quark propagator

For the nonperturbative renormalisation discussion below it is useful to have a functional under-
standing of the form of the quark propagator in QCD (particulary in Landau gauge). The quark
propagator can be written in terms of scalar and vector dressing functions (B(q2) and V (q2)) as
[31]

S(q2) ≡ i

∫
dxeiqx〈T{ψ(x)ψ(0)}〉 = /q

−q2
V (q2) +

B(q2)

−q2
. (1.52)

These dressing functions may be expanded in terms of both perturbative and nonperturbative
pieces which are proportional to various condensates. The nonperturbative pieces are written
using the OPE, and are suppressed by appropriate powers of q. The perturbative expansion has
been performed to three loops. Certain Wilson coefficients in the OPE are also perturbatively
expanded to three loops. The dressing functions can be written as

V (q2) = V0(µ/q, αs) +
Cm2(µ/q, αs)

−q2
m2 +

CA2(µ/q, αs)

−q2
〈A2〉 (1.53)

S(q2) = S0(µ/q, αs)m+
Cm3(µ/q, αs)

−q2
m3 +

CA2(µ/q, αs)

−q2
〈mA2〉+

Cψψ(µ/q, αs)

−q2
〈ψψ〉,

to lowest order in powers of q. The values of the condensate (in a given renormalisation scheme)
can then in principle be extracted from fits to lattice propagator data. 〈ψψ〉 is the chiral conden-
sate familiar from chiral perturbation theory. 〈A2〉 is a gauge-noninvariant gluonic condensate
which can appear as the quark propagator is gauge dependent. The perturbative expansion
of Wilson coefficients has not been done for higher mass dimension condensates which makes
a quantitative measurement of those condensates impossible (the number of such condensates
seriously complicates the problem).

The calculation of the coefficients can be performed by considering the scattering of low energy
gluons from the operators.

The importance of this expansion is that it shows that quantities constructed from gauge fixed
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quark propagators will have nonperturbative contributions suppressed by only two powers of
the scale µ, even in the massless limit. These effects have to be considered when dealing with
nonperturbative data of gauge-noninvariant quantities.



Chapter 2

Lattice Formulations of Quantum
Field Theories

We now move to a discussion of QCD as formulated on a discrete spacetime lattice [32]. As
discussed in Sections 1.2 and 1.5 the evaluation of correlation functions can often not be per-
formed in the well developed framework of perturbation theory due to the large values that the
coupling takes. A different approximation is therefore required. Wilson proposed, and originally
formulated [33], QCD on a spacetime lattice, reducing the number of degrees of freedom in the
path integral to a finite, and computationally manageable, number. A large number of tech-
niques have been developed to extract observables from the discretised theory the most relevant
of which to this work are summarised in this chapter.

2.1 Fields on the Lattice

In order to calculate field theory on the lattice the fields must be given appropriate discretised
definitions. The simplest such interpretation would be to fix field values at each lattice site.
This is what is done for the fermion fields, which will be discussed in more detail in Section 2.2.
However, it turns out to be necessary to deal with the gluons with a different approach: rather
than placing the field at the lattice sites the field is effectively distributed among the links
between the lattice sites. (These links are typically denoted Uµ(x) for a site x and direction µ.)
This allows for a gauge invariant formulation of the lattice QCD action.

27
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The link nature of these fields can be understood in terms of Wilson loops. A Wilson line is
defined as

W (x, y) = eig
∫ x
y Aµ(z)dz, (2.1)

with a Wilson loop being the case in which the end point x and start point y coincide. Wilson
loops are gauge invariant as can be seen from the transformation of a Wilson line under a gauge
transformation (Aµ(x) → Aµ(x) +

1
g∂µα(x)):

W (x, y) → e
ig
[∫ x

y Aµ(z)dz+
1
g

∫ x
y ∂µα(z)dz

]
= eiα(x)W (x, y)e−iα(y), (2.2)

where the phase factors will cancel when x = y. The discretised formulation of the Wilson loop
is natural. Each link on the lattice is associated with a factor of eiagAµ(n) where n is the starting
lattice site of the link and µ is the vector pointing in the direction of travel and a is the lattice
spacing. (Aµ itself is the product of the gluon fields with the corresponding SU(3) generators
Aaµλa.) The Wilson loop is then formed by multiplying the factors associated with a chain of
links that form a loop together. The simplest Wilson loop has dimensions of a × a, with a the
lattice spacing, and is known as a plaquette. Each of these link factors is an SU(3) matrix due
to the exponentiation of the generators. The question of how to construct a lattice QCD action
from the gauge invariant Wilson loops that matches the QCD action in the continuum limit can
be elucidated by expanding the Wilson loop.

Stokes’ theorem can be applied to the definition of the Wilson loop to give

W = exp

(
i
ag

2

∫
Σ
Fµνdσ

µν

)
, (2.3)

which is an integration over the full spacetime volume. Expanding the exponential gives 1 +

i(ag/2)Fµν − (a2g2/4)F 2
µν + ... where F 2

µν makes an appearance. As Fµν is antisymmetric its
trace vanishes. The function, denoting the colour trace tr,

1

(ag)2

∑
µν,n

Re(tr(1−Wµν(n))), (2.4)
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is then (1/4)F 2
µν plus terms that contain factors of a2 and higher. Eq. 2.4 is then an appropriate

gauge invariant discretisation of the pure gauge action known as the Wilson action.

2.2 Fermions on the Lattice

Fermions present a particular challenge for lattice field theories. The problem encountered on
the lattice is fundamentally related to the approximate chiral symmetry of massive QCD. This
is the invariance of the Lagrangian under the fermion field transformation ψ → eiαγ5ψ with
γ5 = iγ0γ1γ2γ3. In QCD this symmetry is not only explicitly broken by the quark masses but
is also spontaneously broken when 〈ψ̄ψ〉 becomes non-zero due to strong QCD dynamics as
discussed in Section 1.5.2.

A simple discretisation of the Dirac action
∫
d4xψ̄(γµ∂µ + m)ψ replaces the derivative with a

finite difference across lattice sites. The resulting action can be written as

a4
∑
x,µ

1

2a
(ψ̄xγµψx+µ − ψ̄x+µγµψx) + a4

∑
x

mψ̄xψx, (2.5)

where µ is a unit vector in one of the four directions. This can be thought of in terms of a
Dirac operator inserted in between ψ and ψ̄: Dx,y =

∑
µ

1
2a(γµδx+µ,y − γµδx−µ,y) +mδx,y. The

quark propagator is found by inverting this operator as per the discussion of Section 1.2. When
performing the inversion in momentum space the boundary conditions induced by the spacetime
discretisation have to be accounted for. The momentum space is a 4-dimensional Brillouin zone
with momenta lying in the interval [0, πa ]. Due to the periodicity of the allowed momenta the

quark propagator takes the form
(
i
∑

µ γµ
1
asin(apµ) +m

)−1
as compared to the continuum form

(p2−m2+iε)−1. There are then propagator poles at all 16 corners of the Brillouin zone indicating
that the theory has 16 fermions rather than the desired 1.

This so-called doubling problem can be seen as a symmetry of the action. The action is invariant
under ψ(x) → Bρ(x)ψ(x) and ψ(x) → B†

ρ(x)ψ(x) with

Bρ(x) ≡ γ5γρ(−1)xρ/a = γ5γρe
ixρπ/a. (2.6)

In momentum space this transformation shifts ψ̃(p) to ψ̃(p− (π/a)µ̂). This transformation can
be applied multiple times in different directions leading to a total of 16 transformations and
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therefore 16 poles in the propagator.

The original solution of this problem proposed by Wilson was to add terms that decouple the
extra fermions from the theory by giving them masses inversely proportional to the lattice spacing
[33]. This involves adding a term to the action that breaks chiral symmetry in the massless limit.
Nielsen and Ninomiya proved that this doubling will always occur in a theory with the following
properties [34, 35]:

I Formulated on a lattice with periodic boundary conditions

I Locality, hermiticity and translation invariance of the Hamiltonian

I Even number of dimensions

I Chiral invariance

2.2.1 The staggered transformation

The simplest discretisation of the Dirac action which simply replaces the covariant derivative by
a finite difference operator

∆µψ(x) =
1

2a
(Uµ(x)ψ(x+ aµ̂)− U †

µ(x− µ̂)ψ(x− aµ̂))

allows a transformation that diagonalises the spin space structure [32, 36]. Consider the opera-
tor

Ω(x) ≡
3∏

µ=0

(γµ)
xµ

acting on quark fields as

ψ(x) → Ω(x)χ(x), ψ(x) → χ(x)Ω†(x).

The Dirac action (naive)

∑
x

ψ(x)(γµ∆µ +m)ψ(x)
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can be written as

∑
x

χ(x)(Ω†(x)γµΩ(x± µ̂)∆µ +m)χ(x). (2.7)

The factor Ω†(x)γµΩ(x ± µ̂) reduces to (−1)x
<
µ where x<µ =

∑
ν<µ xν mod 2 and the action is

diagonal in spin space with every component of χ being equal to all the others. The computational
cost can therefore be reduced by a factor of four by only using one component, with the added
benefit that the number of doublers is reduced from 16 to 4. The staggered action Eq. 2.7 is the
basis on which the Highly Improved Staggered Quark (HISQ) action is built, as detailed below.
There are three remaining doublers. These different quarks, which become degerenate in the
continuum are called different tastes of quark, in analogy with flavour.

Improvement

Discretised actions should map to the desired continuum action in the limit of vanishing lattice
spacing, but the speed of that convergence is variable. An action with faster falling discretisation
errors will allow for reduced extrapolation errors and a generally better control when taking the
continuum limit. One source of discretisation error is the use of a finite difference to approximate
a derivative. The leading error resulting from this can be removed by the replacement

∆µ → ∆µ −
a2

6
∆2
µ. (2.8)

This is known as the Naik term [37]. The staggered formalism also suffers from another source of
discretisation artefact in the form of taste changing interactions. If a low energy quark absorbs
momentum near π/a in some direction then the quark becomes a low energy quark of another
taste. The suppression of these interactions is then important for high precision applications of
staggered quarks. A relatively simple way to do this is to effectively introduce a form factor at
the quark gluon vertex which vanishes as q → π/a. This is done through a smearing procedure.
In the asqtad (a2 and tadpole improved) action [38] this was replacing the gauge links Uµ(x)
with FµUµ(x) where Fµ is defined as

Fµ ≡
∏
ρ6=µ

(
1 +

a2δ
(2)
ρ

4

)
, (2.9)
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with

δ(2)ρ Uµ(x) ≡
1

a2
(Uρ(x)Uµ(x+ aρ̂)U †

ρ(x+ aµ̂)) (2.10)

−2Uµ(x) + U †
ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)),

and then the further replacement

Fµ → Fµ −
∑
ρ 6=µ

a2(δρ)
2

4
, (2.11)

with

δρUµ(x) ≡
1

a
(Uρ(x)Uµ(x+ aρ̂)U †

ρ(x+ aµ̂) (2.12)

−U †
ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)).

In this case the Naik term uses the unsmeared links.

The HISQ action adds another layer of smearing to this by applying the smearing operator Fµ
with a unitarisation operation in between Fµ → FµUFµ. This extra smearing further reduces
taste splitting effects. In the HISQ case the Naik term uses links after one level of smearing.

The HISQ action has been demonstrated to have greatly reduced discretisation effects, partic-
ularly in the case of heavy quarks such as the charm for which calculations can be performed
directly, even on coarse lattices [39].

2.3 Symanzik effective theory

Discretisation explicitly intoduces an energy scale into the theory, given by the inverse of the
lattice spacing a. The effects of discretisation can therefore be captured by a Wilson style effective
theory in which higher dimension operators are added to the desired continuum Lagrangian
suppressed by powers of a. (This assumes that the only operators appearing are irrelevant which
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will be the case if the lattice theory has been correctly constructed to be within the universality
class of the continuum theory under consideration.) This effective theory is known as Symanzik
effective theory, or the Symanzik expansion.

If the expansion of an action in terms of higher order operators can be performed such that the
coefficients are known then these terms can be removed by simply adding these operators to
the action with a negative coefficient. These operator contributions will vanish with a and are
therefore harmless. This process is known as Symanzik improvement. More discussion can be
found in [32, 40].

2.4 Computational challenge

Following the discussion around Eq. 1.30 the calculation of fermionic correlation functions re-
quires the evaluation of the determinant and the inverse of the Dirac matrix (here denoted M).
Given the size of the Dirac matrix for commonly used lattice volumes both of these tasks ccan
become computationally expensive. The computational problems worsen with decreasing lattice
spacing (as the lattice volume has to be increased to maintain physical volume) and decreasing
quark mass. We first discuss the numerical method employed here to perform matrix inver-
sions (or, more accurately, solves) on given gauge configurations. Then we briefly discuss the
generation of dynamical gauge configurations which involves calculating the determinant.

2.4.1 The conjugate gradient solver

The fundamental objects in a vast number of lattice calculations are quark propagators. These
take the form of SU(3) vectors and are the solutions of the Dirac equation

( /D −m)ψ ≡Mψ = ψ0, (2.13)

for a source vector ψ0, which could, for example, be a δ function at a single spacetime point.
(This source vector also carries colour and possibly spin indices.) In the case of a point source
ψ would give the propagator from that point to every site on the lattice.

Given the typical size of M which carries colour and spacetime indices (and spin if staggered
fermions are not used) Eq. 2.13 is solved numerically. All solves for the data presented here
used the conjugate gradient algorithm [41] which is an adaptation of the principle of gradient
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descent algorithms that displays faster convergence. The key is to define conjugate directions.
For a symmetric matrix A a set of vectors di are A-orthogonal if dTi Adi = 0. If A is positive
definite then these vectors are linearly independent (as the name suggests). It turns out that
when solving Ax = b for x, the solution x∗ can be written as

∑
i αidi with

αi = − dTi gi

dTi Adi
, (2.14)

where gi is the ith gradient Axi − b. The conjugate gradient algorithm constructs the vectors di
iteratively from the gradients starting from an intitial solution vector x0:

d0 = b−Ax0

g0 = −d0

αi = − gTi di

dTi Adk

xi+1 = xi + αidi

gi = Axi − b

βi =
gTi+1Adi

dTi Adi

di+1 = −gi+1 + βidi

(2.15)

We use the implementation of this algorithm in the MILC code1 to calculate our propaga-
tors.

There is freedom in the choice of source vector. Constructing the all-to-all propagator matrix
by solving Eq. 2.13 for every point source extracts a maximum amount of information from a
given configuration. However, for any modern lattice size the computational expense of this is
prohibitive. There are therefore several techniques used to increase the statistics gained from
each configuration with only a small number of solves. One way to do this is to use a source
vector, η(x), that is nonzero across a time slice, with a random number on every spatial point of
that time slice. The values are random numbers with the statistical property 〈η(x)η†(y)〉 = δx,y.

1https://github.com/milc-qcd/milc_qcd

https://github.com/milc-qcd/milc_qcd
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We call such a source a random wall source.

2.4.2 Gauge field generation

Gauge fields need to be drawn from a distribution determined by the action which is peaked
at the minima of the action. (If the calculation is performed with dynamical fermions, now
common practice, the Dirac determinant is also part of the distribution.) Markov chain Monte
Carlo (MCMC) methods are used for this purpose. All the ensembles used here were generated
by the MILC collaboration [42] using some variant of the hybrid Monte Carlo (or Hamiltonian
Monte Carlo) algorithm.

In such algorithms a momentum P is associated with each link U . The evolution of the link in
so-called molecular dynamics time is given by

U̇µ(x) = iPµ(x)Uµ(x). (2.16)

In order to keep U within SU(3) P is Hermitian and traceless. The determinant of the Dirac
matrix is written in terms of an integral over a scalar field known as a pseudofermion φ:

det(M) =

∫
dφdφ†e−φ

†M−1φ. (2.17)

Writing an effective action Seff as the sum of the gauge action and −φ†M−1φ a Hamiltonian is
defined as

H =
1

2
P 2 + Seff , (2.18)

and the evolution of the gauge field is determined by the equations of motion of H. The so-called
RHMC algorithm proceeds according to:

I Refresh the momentum from a Gaussian noise distribution exp(−P 2/2)

I Refresh the pseudofermion field using an intermediate η drawn from exp(−η†η) according
to ( /D +m)†η†

I Use the Hamiltonian equations of motion to update U
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I Introduce a Metropolis style accept/reject step with probability of acceptance
min(1, e−δH) where δH is the change in the Hamiltonian between this step and the last

The use of the Hamiltonian and the Hamilton equations guides the Markov chain [43] through
the neighbourhood of high contributions. The logarithm of the determinant is calculated as this
is what is needed in the statistical distribution. This logarithm is divided by 4 corresponding
to taking the fourth root of the determinant. This is to eliminate the effects of having fermion
doublers in the sea. While this leads to nonlocalities in the lattice theory studies of the eigenvalue
spectrum for the staggered Dirac matrix support the assumption that these problems vanish in
the continuum [44].

2.4.3 HISQ ensembles

All the ensembles used here were generated using an αsa2 improved gauge action [45] and HISQ
fermions. Some important parameters of these ensembles are given in Table 2.1. The β value
is related to the inverse of the coupling and corresponds (approximately or precisely based on
the definition of the continuum limit, see Section 6.1) to the lattice spacing. Ls and Lt are the
spatial and temporal extents in lattice units respectively. The masses of the (degenerate) light
quarks, strange quark and charm quark in the sea (that is, those that are included in the fermion
determinant) are also given in lattice units. Finally two values from which lattice spacings can
be calculated are given in terms of the constant w0 discussed in Section 2.10. When considering
ensembles with the same β value but different sea quark masses a choice must be made about
the approach to the continuum limit (i.e. the definition of the lattice spacing). We can chose to
vary the lattice spacing as the sea quark masses are changed at fixed β (a) or we can hold the
lattice spacing fixed as these masses are varied (ã). Both definitions of the lattice spacing are
used in the following chapters and so both are given here for reference (where available). The
w0/ã values are calculated from w0/a values using the results of [27].
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Table 2.1: Important parameters for the lattice ensembles used generated by the MILC collabo-
ration [42]. The value of w0 is 0.1715(9) fm [46]. The lattice spacings approximately range from
0.15 to 0.03 fm. Sets 1-3 are referred to as very coarse, 4-12 as coarse, 13-15 as fine, 16-17 as
superfine, 18 as ultrafine and 19 as exafine.

Set β Ls Lt amsea
l amsea

s amsea
c w0/a w0/ã

1 5.8 16 48 0.013 0.065 0.838 1.1119(10) 1.1322(14)
2 5.8 24 48 0.0064 0.064 0.828 1.1272(7) 1.1322(14)
3 5.8 36 48 0.00235 0.0647 0.831 1.1367(5) 1.1322(14)
4 6.0 20 64 0.008 0.040 0.480 - 1.4075(18)
5 6.0 24 64 0.0102 0.0509 0.635 1.3826(11) 1.4075(18)
6 6.0 24 64 0.00507 0.0507 0.628 1.4029(9) 1.4075(18)
7 6.0 32 64 0.00507 0.0507 0.628 1.4029(9) 1.4075(18)
8 6.0 40 64 0.00507 0.0507 0.628 1.4029(9) 1.4075(18)
9 6.0 32 64 0.00507 0.00507 0.628 - 1.4075(18)
10 6.0 32 64 0.00507 0.012675 0.628 - 1.4075(18)
11 6.0 32 64 0.00507 0.022815 0.628 - 1.4075(18)
12 6.0 48 64 0.00184 0.0507 0.628 1.4149(6) 1.4075(18)
13 6.30 32 96 0.0074 0.037 0.440 1.9006(20) 1.9500(21)
14 6.30 48 96 0.00363 0.0363 0.430 1.9330(20) 1.9500(21)
15 6.30 64 96 0.00120 0.0363 0.432 1.9518(7) 1.9500(21)
16 6.72 48 144 0.0048 0.024 0.286 2.8960(60) 2.994(10)
17 6.72 96 192 0.0008 0.022 0.260 3.0170(23) 2.994(10)
18 7.0 64 192 0.00316 0.0158 0.188 3.892(12) 3.970(15)
19 7.28 96 288 0.00223 0.01115 0.1316 5.243(16) -

2.5 Construction of staggered correlation functions

Once quark propagators have been computed they can be used to calculate various correlators
as a function of time. Here we will focus on 2-point correlators as they are most relevant to the
work presented here. The 2-point correlator is given by

C(t) =
∑
x

〈J(x, t)J(0, 0)〉,

J(x, t) = ψ(x, t)Γψ(x, t).

(2.19)

The sum over x projects onto the zero momentum state. For 2-point functions we take the Γ
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structure in the two currents to be the same. Following the discussion of Section 1.2 this may
be constructed by summing over propagators P :

C(t) =
1

4

∑
x

Tr(ΓPa(0, x)Γγ5P
†
b (0, x)γ5), (2.20)

where the trace is over colour (the a and b indices) and spin indices and the factors of γ5 come
from exchanging a P (x, 0) for P †(0, x) (γ5 Hermiticity). The factor of 1/4 comes from the
taste degree of freedom. With staggered quarks the Γ reduces to a phase arising from the trace
over staggering operations and γ matrices. The propagators in Eq. 2.20 are replaced with the
staggering transformation Ω multiplied by a staggered propagator. With the pseudoscalar this
works as follows:

Tr(γ5Ω(0)Ω
†(x)γ5γ5Ω(x)Ω

†(0)γ5)

= Tr(γx00 γx11 γx22 γx33 (γx33 )†(γx22 )†(γx11 )†(γx00 )†)

= Tr(1).

(2.21)

There is therefore no phase needed for the pseudoscalar current. A similar procedure can be
followed for other Γ structures and for point-split operators where the two currents are not placed
at the same point. In that way it is seen that the operators point split within a hypercube but
with the same Γ structure produce different phases. This indicates that they have different taste
structures.

The construction of staggered meson interpolating operators on a single time slice often leads
to contamination of correlators by states of the opposite parity. Due to the fact that there is
no projection onto low energy modes (there is only a sum over spatial x to project onto zero
momentum) a staggered two-point function couples to a state of a different taste “in the temporal
direction”; that is ρ in Eq. 2.6 is in the t direction. An application of Eq. 2.6 then gives

ψ(x) → γ5γ0(−1)tψ(x). (2.22)

When this substitution is inserted into the current it produces a state of the opposite parity
which oscillates in time (with alternating sign). It is therefore necessary to include terms to
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account for this when fitting correlator data.

2.5.1 Arbitrary momentum with twisted boundary conditions

Momentum can be given to a correlation function by multiplying by eip·x in the sum over x.
Due to the discretisation of the momentum insertion (discrete Fourier transform) here can only
be an integer multiple of 2π/Lx. To acccess arbitrary momenta fermion fields with twist can be
defined as

ψ(x, t) → ψ(x, t)e−ip·x, (2.23)

with pµ = θµ(2π/Lµ). These fields then satisfy the boundary conditions ψ(x+µ̂Lµ) = exp(2iπθµ)ψ(x)

[47, 48, 49]. This can be achieved by multiplying the links by eiapµ :

ψ(x)eiapµUµ(x)ψ(x+ aµ̂) = ψ(x)e−ip·xUµ(x)e
ip·(x+aµ̂)ψ(x+ aµ̂). (2.24)

If these phases are included in the gauge links then the propagators produced with our standard
inversion techniques from a random wall source have momentum p.

2.6 Parallelisation

Calculations in lattice QCD are obviously amenable to parallel computing techniques due to
the locality of the lattice action (although this locality is in some sense decreased by smearing
in the action utilised throughout). If the calculation of the Wilson gluon action is taken as an
example then it is clear that the evaluation of the action over the whole lattice can be split
into the evaluation of the action at each point individually, and that only the link variables
connecting nearest neighbours are required. This suggests splitting the lattice into sublattices
and performing the evaluation of the action on every sublattice in parallel, with the necessary
communications at the boundaries, in order to increase the speed of the computation.

The level of parallelisation possible makes the use of GPUs for some tasks desirable due to
the vastly increased number of cores. When the MILC code2 is built for GPUs, inversions are
performed through calls to the QUDA [50] conjugate gradient inverter (a multimass option is

2https://github.com/milc-qcd/milc_qcd

https://github.com/milc-qcd/milc_qcd
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also available). The performance difference between CPUs and GPUs can be seen in Figures 2.1
and 2.2 which show the performance (in Gflop/s per CPU or GPU respectively) of the MILC
code conjugate gradient on the Peta4 (and Cosma7) Skylake and Wilkes2 facilities. The other
important aspect of these performance numbers is the poor scaling with the number of nodes for
the GPUs relative to CPUs.
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Figure 2.1: Performance of MILC code conjugate gradient routine on Skylake systems for various
lattice volumes. Peta4 provides 32 CPUs per node (2 sockets). [Figure courtesy of A. T. Lytle.]
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Figure 2.2: Performance of MILC code (calling QUDA) conjugate gradient routine on Wilkes2
for various lattice volumes. Wilkes2 provides 4 Nvidia P100 GPUs per node. [Figure courtesy
of A. T. Lytle.]

2.7 Fitting 2-point functions

Correlators are formed from the tie-together of propagators with the choice of γ structure (phase
for staggered quarks) that gives the required spin. Physical observables must then be extracted
which is done through a fit. Consider the 2-point pseudoscalar correlator. The correlator C(t)
as a function of time is written as an expansion in the energy levels Ei via an insertion of the
complete energy basis into the correlation function (assuming large temporal extent T ):

C(t) =

∞∑
i=0

a2i e
−Eit. (2.25)

The lowest energy level E0 corresponds to the mass of the lightest particle with the quantum
numbers of the correlator. The amplitudes ai give the overlap of the Ei energy state with the
vacuum. The higher energy states will contribute less at large values of t as their exponentials
fall faster. The ground state therefore dominates the high t behaviour of the correlator. On
a periodic lattice the backward propagating states also have to be included which gives a fit
function of
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C(t) =

∞∑
i=0

a2i

(
e−Eit + e−Ei(T−t)

)
, (2.26)

with T the extent of the lattice. For certain staggered correlators it is also necessary to include
states of the opposite parity which oscillate in time (see Section 2.5):

C(t) =
∞∑
i=0

a2i

(
e−Eit + e−Ei(T−t)

)
+ (−1)t(aoi )

2
(
e−E

o
i t + e−E

o
i (T−t)

)
. (2.27)

In order to make the problem numerically tractable the series in Eq. 2.25 is truncated at some
value of i, typically ∼ 5. To perform these and other fits we use the Bayesian fitting techniques
discussed in Section 2.8.

2.8 Principles of Bayesian fitting

Throughout this work a Bayesian fitting procedure based on [51] as implemented in the gvar 3,
lsqfit4 and corrfitter5 packages is used. The discussion here follows [51] and the Appendices
of [52, 53].

The χ2 of a fit is typically defined in terms of the difference between a fit function evaluated with
fit parameters pi and some set of input data. Denoting this difference ∆a and the covariance
matrix of the data Cab the χ2 is given by

χ2(p) =
∑
ab

∆(p)aC
−1
ab ∆(p)b. (2.28)

The standard χ2 is augmented in order to penalise a fit that drifts far from the chosen prior
values. This is done simply by

3https://github.com/gplepage/gvar
4https://github.com/gplepage/lsqfit
5https://github.com/gplepage/corrfitter

https://github.com/gplepage/gvar
https://github.com/gplepage/lsqfit
https://github.com/gplepage/corrfitter
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χ2 → χ2 + χ2
prior,

χ2
prior ≡

∑
n

(ηn − η̃n)
2

σ̃2η̃n
,

(2.29)

where a quantity with a tilde denotes a prior.

Best fit parameters are those that minimise the χ2. An approximation for the covariance matrix
of these best fit parameters can be obtained by considering the derivative of the χ2 w.r.t the
parameters (denoted ∂i for ∂/∂pi). We have (at the best fit point)

∂iχ
2(p) = 0 = 2

∑
ab

∂ifa(p)C
−1
ab ∆(p)b

⇒ (C−1
p )ij =

∑
ab

∂ifa(p)C
−1
ab ∂jfb(p) +O(∆).

(2.30)

This allows the covariance matrix of the fit output parameters to be calculated in terms of
derivatives of the fit function. All of this is calculated automatically in the gvar and lsqfit
packages.

If the first part of Eq. 2.30 is differentiated w.r.t the input data ya and then solved for ∂pi/∂ya
the result is

∂pj
∂yb

=
∑
ai

(Cp)ji∂afi(p)C
−1
ab . (2.31)

In the high statistics limit the parameter covariances are related to those of the data via

(Cp)ij =
∑
ab

∂pi
∂ya

Cab
∂pj
∂yb

. (2.32)

From these relations the variance of a function of the fit parameters g(p) can be calculated:



CHAPTER 2. LATTICE FIELD THEORIES 44

σ2g ≡
∑
ij

∂ig(p)(Cp)ij∂jg(p) =
∑
ab

cabCab

cab =
∑
ij

∂ig(p)
∂pi
∂ya

∂pj
∂yb

∂jg(p).
(2.33)

This allows the error budget (the breakdown of various contributions to the uncertainty of a
quantity derived from the fit outputs) to be constructed through the calculation of the coefficients
cab.

Working with covariance matrices, specifically their inverses, can be numerically problematic
unless there are a very large number of statistical samples. Defining the correlation matrix
through the relationship

C = DCcorrD, (2.34)

where D is the diagonal matrix of standard deviations. The inverse of the covariance matrix is
then given by

C−1 =
∑
i

D−1viv
T
i D

−1

λi
, (2.35)

where vi and λi are the eigenvectors and eigenvalues of Ccorr. This form highlights the possibility
of numerical instability when considering small eigenvalues. If the size of the covariance matrix
is Ncorr then there are Ncorr eigenvalues and a sample size Ns much larger than Ncorr is needed
to reliably estimate all of those eigenvalues. If Ns < Ncorr then the low eigenvalues will be zero.
Therefore, if the statistics are not high enough then the small eigenvalues are underestimated,
incorrectly exaggerating their impact.

In order to deal with this we introduce an svd cut. This is a value, λsvd, between 0 and 1.
This is a fraction of the largest eignevalue, λmax, below which we wish to alter the eigenvalues.
All eigenvalues below this fraction are replaced by λsvdλmax; no eigenvalues are removed in this
procedure. This procedure has the effect of increasing uncertainties on fit outputs as the svd cut
is raised (hence it is a conservative move). This can be seen by representing the input data as a
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vector of Gaussian random variables

G = G+ δG, (2.36)

with δG =
∑

i zi
√
λiDvi with the uncorrelated random numbers zi satisfying 〈zi〉 = 0 and

〈zizj〉 = δij . The svd cut adds an extra term

δGsvd =
∑

λi<λsvdλmax

zi
√
λsvdλmax − λiDvi, (2.37)

where the random variables zi again have zero mean. This is an additional source of uncertainty
which increases the overall uncertainty.

With a relatively high svd cut it is often found that lower χ2/dof values than expected are
produced. This smallness is due to the fact that random fluctuations in G are not characteristic
of the fluctuations in δGsvd. You therefore expect to obtain χ2/dof closer to the expectation of
∼ 1 if noise drawn from the distribution given by δGsvd is added to Eq. 2.36. This is indeed
what is seen [53].

2.9 QED on the lattice

As lattice determinations of various quantities approach or push past 1% precision there is an
increased focus on the effects of electromagnetic interactions on hadronic systems. If calculations
of these effects are to be done on lattices of finite volume then there are certain theoretical
difficulties that need to be addressed. The simplest way to see that there is a problem is to
consider Gauss’ law in a finite volume with periodic boundary conditions. The integral of the
divergence of the electric field across the volume vanishes due to the periodicity from which it
follows that charged states cannot propagate through the volume. How to tackle the problem
can be illuminated by observing that the QED action on a torus is invariant under a shift
symmetry:

Aµ(x) → Aµ(x) + bµ. (2.38)

In a space with no boundary conditions this can be written as a gauge transformation bµ = ∂µω(x)
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and is therefore removed by gauge fixing. With periodic boundary conditions the requirement
that the associated U(1) transformation eiω also be periodic leads to

ω(x) = ω(x+ L),

=⇒ bµx
µ + c = bµx

µ + bµL+ c,

=⇒ bµL = 0.

(2.39)

The triviality of this condition indicates that the shift symmetry can no longer be written as
a local gauge transformation. It must therefore be removed manually. In momentum space
the shift transformation modifies the zero mode of the field. A common way to deal with it is
therefore to remove the zero modes.

The prescription for removing the zero modes used here is known as QEDL. This requires that
Aµ(k0,k = 0) = 0. This can be done simply if the field is generated in momentum space. In
Feynman gauge the (discretised) QED action takes the form

S[Aµ(x)] = −1

2

∑
x,µ

Aµ(x)∆
2Aµ(x), (2.40)

with a discretised Laplacian ∆2. In momentum space this is

S[A] =
1

2

∑
k,µ

k̂2|Ãµ(k)|2, (2.41)

with k̂µ the discretised momentum 2 sin(kµ/2). A momentum space field can therefore be drawn
from a Gaussian distribution with variance 2/k̂2 and then Fourier transformed. Fields in other
gauges can be produced by first generating the field in Feynman gauge and then applying a
projection operation. A U(1) field is then constructed from Aµ(x) by multiplying by the quark
charge eQ and exponentiating exp(ieQAµ). The U(1) field is then multiplied into the SU(3) links
which we do before HISQ smearing is applied.

Once generated the fields can be directly tested against perturbative results for the average link
and plaquette. Due to the smallness of the QED coupling these perturbative results at order
αQED are expected to hold to a high degree of precision. The perturbation theory prediction for
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the average plaquette is given in [54] and is independent of the gauge choice. The αQED coefficient
of the average value of the U(1) links can be extracted from the O(αs) QCD coefficient in [55]
by multiplying by Q2/CF . The results are:

Landau gauge : 1− αQEDQ
20.0581

Feynman gauge : 1− αQEDQ
20.0775

(2.42)

We have checked that the U(1) fields used in the analyses that follow have mean values that
agree with these perturbative results.

2.10 Scale setting

The lattice spacing, or equivalently the strong coupling, have to be set using an experimental
measurement, similar to how the masses are set. Clearly, for good precision, this requires a
quantity that can be calculated to high precision and is well known experimentally. For example,
the Υ(2S−1S) splitting has historically been used to set the scale [56]. Throughout this work the
lattice spacing is determined ultimately via fπ through the intermediate quantity w0. The benefit
of this is that w0/a is determined on each ensemble with a computationally cheap calculation
and it then suffices to have a single calculation of the physical value of w0 tied to fπ to obtain
a.

w0 is a gluonic property of the gauge field that is determined in terms of the gradient (or Wilson)
flow of the field. This is a flow dependent on a flow time variable t that drives the fields closer
to the values that minimise the action. It is defined by the flow equations [57]:

Bµ|t=0 = Aµ,

∂tBµ = DνGνµ + α0Dµ∂νBν ,

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ],

Dµ = ∂µ + [Bµ, ·].

(2.43)

This flow is applied numerically to the gauge field and the dimensionless variable t2〈E(t)〉 where
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E is the contraction of Gµν with itself (1/4)GµνG
µν is computed. Originally a scale t0 was

defined as the flow time at which t2〈E(t)〉 reaches the (somewhat arbitrary) value of 0.3. In [58]
the alternative scale w0 was proposed:

t
d

dt
(t2〈E(t)〉)|t=w2

0
= 0.3. (2.44)

w0 was shown to have smaller discretisation effects than t0.

The discretised version of these flow equations, which are integrated numerically, offer a few
options. The unimproved Wilson action can be used in the flow (which is referred to as Wilson
flow) or the Symanzik improved definition may be used (referred to as Symanzik flow) [58, 59].
These definitions only differ by discretisation effects so as long as one is consistently used the
continuum limits will agree. Here the Wilson flow is used.

The physical value of w0 was determined in [46] from a fit to w0fπ, w0fK , w0fηs and w2
0M

2
ηs

with the experimental value of the leptonic width of the π± and the value of Vud from nuclear
β-decay used as inputs.



Chapter 3

Nonperturbative Renormalisation in
Momentum Subtraction Schemes
with Staggered Quarks

3.1 MOM schemes and their lattice implementation

In a quantum field theoretic calculation performed on a discretised space-time the lattice spacing
acts as an ultraviolet regulator. As the regulator is removed, i.e. the continuum limit is taken,
divergences will appear in some operator matrix elements unless a renormalisation of the opera-
tors involved in the calculation is performed. In a lattice calculation this amounts to multiplying
a matrix element X(a) at a lattice spacing a by a renormalisation constant ZX(a, µ) which, in
addition to depending on the cutoff a, may also have a renormalisation scale µ dependence. The
renormalisation constant accounts for the differences in the UV of the lattice and continuum
theories arising from the exclusion of higher modes in the former.

Clearly the commonly used MS scheme is not viable for lattice renormalisation as it relies on
dimensional regularisation (see Section 1.3). However, due to its prominence in perturbative
computations, scheme dependent quantities, such as quark masses, are conventionally quoted at
a given scale µ in the MS scheme. Lattice computations therefore often employ an intermedi-
ate scheme which is perturbatively matched to MS in the continuum. It is clear that using a
scheme that can be defined independently of the regularisation directly on the lattice can be

49
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p1 p2

q

Figure 3.1: Depiction of the kinematic setup of the vertex functions used in momentum subtrac-
tion scheme. The circle represents the insertion of an operator.

advantageous. Momentum subtraction schemes offer this possibility [60].

Momentum subtraction schemes are defined such that certain renormalised matrix elements
are equal to their tree-level values. In the momentum subtraction schemes discussed here the
quantities of interest are quark propagators and vertex functions. In this context a vertex function
is an operator inserted between two external off-shell quark states. A generic kinematic setup
for this is shown in Fig. 3.1. As quantities such as quark propagators are not gauge invariant
the scheme is defined in a fixed gauge, typically Landau gauge.

The wavefunction renormalisation factor, Zq, is defined in terms of the inverse propagator S−1(p).
At tree-level S−1(p) = /p −m. Due to the separation of γ structures, the p dependent part can
be isolated by tracing over the inverse propagator multiplied by γµ. We can define a projector to
multiply S−1 by, and then take the trace over colour and spin, which will give 1 at tree-level:

1

12p2
Tr[/pS

−1(p)]. (3.1)

The wavefunction renormalisation may then be defined according to

1

12p2Zq
Tr[/pS

−1(p)] = 1. (3.2)

We use two such schemes in this Chapter. These are the RI-SMOM [61] and RI′-MOM [62]
schemes. (We find the former to be a better choice for the reasons discussed below.) These two
schemes differ in the relationship between p1, p2 and q in Fig. 3.1. The RI′-MOM scheme is
simpler and takes p1 = p2 with q = 0. The RI-SMOM scheme uses the more symmetric setup
p1 − p2 = q with p21 = p22 = q2 ≡ µ2. Both these schemes use the definition of Zq already
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discussed. However, certain definitions of the renormalisation factors of different currents ψΓψ
differ between the schemes.

Currents are renormalised using amputated vertex functions traced over a projector, similar to
the case of wavefunction renormalisation. Here, a vertex function is an operator inserted between
external quark states: e.g. schematically 〈ψ(p1)psiΓψpsi(p2)〉 for some Dirac structure Γ. An
amputated vertex function is a vertex function that has been divided on either side by the relevant
quark propagators. Denoting a vertex function for operator O GO(p1, p2), the amputated vertex
function is

ΛO(p1, p2) = S−1(p1)GO(p1, p2)S
−1(p2). (3.3)

In the RI′-MOM scheme [61]

ZV
Zq

≡ lim
m→0

1

12
Tr{ΛµV (p)γµ}

ZA
Zq

≡ lim
m→0

1

12
Tr{ΛµA(p)γµγ5}

ZS
Zq

≡ lim
m→0

1

12
Tr{ΛS(p)1}

ZP
Zq

≡ lim
m→0

1

12i
Tr{ΛP (p)γ5}

ZT
Zq

≡ lim
m→0

1

32
Tr{ΛµνT (p)σµν}.

(3.4)

All of these conditions are expressed as a ratio of a current renormalisation factor to the wave-
function renormalisation being equal to an amputated vertex function traced over a γ structure
which we refer to as a projector. For the trace of an amputated vertex function ΛO over a
projector we use the notation PΛO . For example, ZV /Zq = PΛV

. These conditions are defined
in the massless limit1. This is not necessary but leads to some simplifications discussed briefly
below.

In the RI-SMOM scheme [61]:
1On the lattice the sea quarks cannot be set to zero mass. This is compensated for in the perturbative matching

to MS in the mass calculations of Chapter 6.
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ZV
Zq

≡ lim
m→0

1

12q2
Tr{qµΛµV (p1, p2)/q}

ZA
Zq

≡ lim
m→0

1

12q2
Tr{qµΛµA(p1, p2)γ5/q}

ZS
Zq

≡ lim
m→0

1

12
Tr{ΛS(p1, p2)1}

ZP
Zq

≡ lim
m→0

1

12i
Tr{ΛP (p1, p2)γ5}

ZT
Zq

≡ lim
m→0

1

32
Tr{ΛµνT (p1, p2)σµν}.

(3.5)

The largest difference between the two schemes is in the definition of the vector current renormali-
sation. This will be discussed in terms of the Ward-Takahashi identity in Section 3.3 following the
presentation of results for the mass renormalisation in the RI-SMOM scheme. This is presented
first as in some senses it is the simplest calculation (as it uses the scalar current) and reveals
some of the potential concerns about using momentum subtraction schemes implemented in a
fully nonperturbative manner. The renormalisation of the tensor current will then be discussed
in Section 3.4.

In a lattice computation the vertex functions needed are computed from a tie together of prop-
agators. The steps of such a calculation are outlined here. We consider local functions; point
split opertors are complicated by the need to insert gauge links.

1. Numerically fix gluon fields to Landau gauge

2. Compute a quark propagator for each momentum (incoming and outgoing) using a mo-
mentum source eip·x: S(p1, x) and S(p2, x)

3. For each vertex function being considered construct it according to
GO(q) =

∑
x S(p1, x)e

iq·xOS(p2, x)

4. Fourier transform the x index on the quark propagator to give the momentum space prop-
agator

5. The vertex functions and propagator in momentum space are 48 × 48 matrices.2 These
2It is 48× 48 matrices for staggered quarks due to taste degrees of freedom (16 tastes times 3 colours). With

colour and spin degrees of freedom they are just 12× 12 (4 spins times 3 colours).
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can be manipulated easily. For example, the propagator can be numerically inverted very
quickly. These inverted propagators are used to amputate the vertex functions G(O) ac-
cording to Eq. 3.3

6. ZO is calculated from S−1 and ΛO using the definitions given in Eqs. 3.4 or Eqs. 3.5

7. A perturbative matching calculation can be used to convert between the momentum sub-
traction scheme and, for example, the MS scheme

Step 2 is of importance in being able to achieve good statistical precision with relatively few
configurations. These momentum sources are spread out over the whole lattice and we find that
this allows us to achieve the desired precision with only 20 configurations.

Throughout we use twisted boundary conditions to access arbitrary momenta [63].

3.1.1 Momentum space quark fields with staggered quarks

The use of staggered quarks adds some slight complications to the technical details of the lattice
calculation which are detailed in [64]. The construction of momentum space quark fields must
appropriately handle the taste degrees of freedom. These taste degrees of freedom are, in some
sense, distributed over a hypercube (rather than a single site).

The full Brillouin zone (after the Fourier transform is performed) may be split into subzones
which are labelled with a hypercube vector B. Any momentum may then be written

pµ = p̂µ + πBµ, (3.6)

with p̂ lying in the reduced Brillouin zone {−π/2, π/2}. The momentum space field is then taken
to be

ψ̃B(p̂) =
∑
n

e−ip·nχ(n). (3.7)

Here n denotes sites on the lattice and χ is the standard staggered quark field.

In the free theory this gives the inverse propagator (defined through 〈ψ̃Aψ̃B〉)



CHAPTER 3. NONPERTURBATIVE RENORMALISATION 54

S−1(p̂) = m(1⊗ 1)AB + i
∑
µ

sin(p̂µ)(γµ ⊗ 1)AB, (3.8)

with appropriately defined transformations of the γ-structures (γS ⊗ ξT ), which resembles the
continuum form 3. In this notation the first γ matrix (γS) gives the spin structure and the second
(ξT ) the taste. This shows that the propagator is a taste singlet (ξT = 1). The notation used
here is the same as in [64] and is defined through

(γS ⊗ ξT )AB ≡ 1

4
Tr(γ†AγSγBγ

†
T ),

(γS ⊗ ξT ) ≡
∑
CD

(−1)A·C

4
(γS ⊗ ξT )CD

(−1)D·B

4
.

(3.9)

A shorthand for products of γ matrices has been used here with

γS = γS0
0 γS1

1 γS2
2 γS3

3 , (3.10)

with capital letters denoting 4-dimensional hypercube vectors consisting of 1s and 0s.

3.1.2 Staggered quark bilinears

The calculation of quark bilinears, and therefore vertex functions, also has complications due to
the presence of taste. These bilinears are written (in the notation of [64])

OS⊗T =
1

16N

∑
n

∑
A,B

χ(n)(γS ⊗ ξT )n,n+B−AUn,n+B−Aχ(n+B −A), (3.11)

where the gauge link connecting the sites n and n+B−A, U is inserted in order to maintain gauge
invariance. This defines the so-called covariant form of the operator. (The operator can also be
defined in a “hypercubic” sense with a sum over a partitioning of the lattice into hypercubes.
The covariant form is simpler to implement numerically and avoids bilinear mixing as discussed
in [64].) This can be rewritten for a local operator as

3This is discussed in detail in [64].
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OS⊗T =
1

N

∑
n

χ(n)(γS ⊗ ξT )χ(n). (3.12)

(For the generalisation to the point-split case see [64].) This is just a sum over sites n with a
staggered phase (γS ⊗ ξT ) inserted between quark fields.

As there are multiple tastes of each operator given in Eq. 3.1 the staggered versions of those
conditions must use the appropriate taste structures in the projectors. This can be illustrated
for Zq. In the free theory S−1(p) can be written in terms of (1⊗ 1) and (γµ ⊗ 1) which indicates
that the correct form of Zq is

Zq(p̂) = −i 1
48

∑
µ

p̃µ
p̃2

Tr
[
(γµ ⊗ 1)S−1(p̂)

]
, (3.13)

with p̃ = sin(p̂) + sin3(p̂)/6 to ensure that Zq = 1 in the free theory. The sin3(p̂)/6 term comes
from the contribution of the Naik term (see Section 2.2.1). For the various vertex functions the
taste structures required are chosen to match the phases used in the calculation of the vertex
functions. Examples of this are seen throughout this Chapter.

3.2 Zm: mass renormalisation

A major area in which the precision obtainable through lattice calculations is difficult to match
by other means is the determination of the fundamental parameters of QCD. These include the
quark masses. Due to the origin of these masses in the SM through the interaction with the
Higgs field, precise quark masses are needed for precision Higgs studies [65], a region of great
interest to the particle physics community. Part of obtaining precise and robust results is to
compare different methodologies with different sources of systematic uncertainty. The HPQCD
collaboration performed a calculation of the charm mass using fits to heavy quark current-current
correlator moments and then determined the strange mass using a determination of mc/ms [27].
In Chapter 6 we use some of the same gluon field configurations to perform the calculation of
charm and strange quark masses using the bare quark masses on a range of lattices in conjunction
with the mass renormalisation factor in the RI-SMOM scheme, calculated nonperturbatively on
those lattices, to be able to perform a continuum extrapolation of the renormalised mass. (A
published account of his work can be found in [1].) This Section details the calculation of the
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renormalisation factors in the RI-SMOM scheme.

The renormalisation of quark masses must be performed within the framework of a renormalisa-
tion scheme and then matching calculations may be used to convert between any two schemes.
For nonperturbative lattice calculations it is convenient to use the RI-SMOM scheme from which
results may be converted to the MS scheme, which is the standard for quoting quark masses.
The matching calculation is done perturbatively in the continuum so it is necessary to perform
the lattice calculation in a momentum region where such a perturbative calculation is valid, and
also to consider nonperturbative effects that are not present in the perturbative calculation. The
lowest momentum value used in this calculation was therefore chosen to be 2 GeV. The range
of µ values we use has been chosen so that discretisation effects of the form aµ are not too
large.

3.2.1 Landau gauge fixing

Momentum subtraction schemes must be performed in a specific gauge as they make use of non-
gaugeinvariant quantities such as quark propagators. Here Landau gauge was chosen, which in
the continuum corresponds to the choice of Aµ fields satisfying ∂µAµ(x) = 0. On the lattice
this condition becomes the maximisation of the functional of the gauge links

∑
µRe(Tr(Uµ(x))),

which must obviously be performed numerically. This is done by applying gauge group transfor-
mations to the link variables, typically in some form of gradient descent, normally accelerated
by overrelaxation [66], Fourier acceleration [67] or both. The tolerance of the resulting gauge
fixing can be measured as the magnitude of the gradient of the gauge field. In cases where a very
stringent tolerance is required, particularly on larger lattices, both overrelaxtion and Fourier
acceleration are needed. Here, by a stringent gauge fixing tolerance we mean 10−14. This is
discussed in more detail in Section 3.2.5.

Working in a fixed gauge raises the possibility of effects from Gribov copies. These copies are
the results obtained at different maxima of the gauge fixing functional

∑
µRe(Tr(Uµ(x))). These

arise as the gauge fixing condition is not uniquely satisfied [68]. Here we do not address this
issue and assume that such effects are negligible following the findings of [69], which found no
observable effects at a precision below 1%.
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3.2.2 Zm in the RI-SMOM scheme

The definition of the RI-SMOM scheme is given in Section 3.1. Here the following explicit
kinematic setup was chosen:

ap1 =
2π

Ls

(
x+

θ

2
, 0, x+

θ

2
, 0

)
(3.14)

ap2 =
2π

Ls

(
x+

θ

2
,−x− θ

2
, 0, 0

)
,

where x is an integer and θ is the momentum twist. This makes aq equal to

2π

Ls

(
0, x+

θ

2
, x+

θ

2
, 0

)
, (3.15)

and so the symmetric RI-SMOM condition is satisfied. The conditions of Eq. 3.5 give expressions
for the relevant renormalisation constants. For mass renormalisation only the values of Zq and
PΛS

are required as Zm = 1/ZS where ZS = Zq/PΛS
. Zq is given by 1

12p2
Tr{S−1(p)/p} in our

choice of scheme.

The kinematic setup of the quark bilinears is symmetric with a momentum insertion at the
vertex of qµ such that p21 = p22 = q2. This was originally chosen in order to suppress chiral
symmetry breaking effects present in the RI′-MOM scheme. By studying ΛP − ΛS (P here
denotes the pseudoscalar operator γ5) it was shown that the RI′-MOM scheme could have chiral
symmetry breaking effects disappearing as µ−2. In [70] it was argued that these effects in RI-
SMOM fall as µ−6. A similar analysis may be performed with the data generated here: this is
shown in Fig. 3.2. These results are shown in the mval → 0 limit, the limit being taken with a
polynomial fit to (amval)

2 (discussed further below). The line in Fig. 3.2 is of the form B/µ6 and
is included to indicate that the chiral symmetry breaking µ suppression seen is approximately
as fast as suggested in [70]. The difference of the scalar and pseudoscalar vertex functions shows
a 1/µ6 dependence but the individual vertex functions have a µ dependence which falls more
slowly.

Rather than using simple point sources in the Dirac operator inversions necessary, momentum
sources are instead used in order to improve the statistical precision of the results. (They also
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Figure 3.2: PΛP
− PΛS

in the RI-SMOM scheme for sets 14 and 7 indicating the decrease in
chirality violating effects with increasing µ. The line shown has the form B/µ6 and is drawn to
indicate the speed of this decrease.

allow for a neat construction of the required momentum space functions.) These sources have
the form eipx where p = p̂ + πA with A a hypercubic 4-vector as discussed in Section 3.1.1.
These propagators are then Fourier transformed with momentum −p̂ + πB where B is another
hypercubic 4-vector and are combined into a 48 × 48 propagator matrix. This procedure gives
very precise results on only a small number of configurations (typically 20 are used here) which
makes calculations relatively inexpensive, despite the large number of inversions performed on
each configuration: 32 when using the RI-SMOM scheme with staggered quarks there being 16
for both p1 and p2 as there are 16 hypercubic vectors (see Eq. 3.6).

The scalar vertex function is constructed as

GS,AB(p1, p2) ≡

〈
χ(p̂1 + πA)

(∑
x

χ(x)χ(x)ei(p̂1−p̂2)x

)
χ(p̂2 + πB)

〉
. (3.16)

The quark fields can be contracted into propagators S(p̂1+πA, x) which are the solutions of the
relevant momentum source (MS = e−ip·x where M is the Dirac matrix) and the arguments of
the propagator switched using γ5 hermiticity ((−1)nM †(−1)n =M):
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S(p̂+ πA, x) = (−1)nS†(x, p̂+ πÃ), Ã = A+2 (1, 1, 1, 1), (3.17)

with n = x0 + x1 + x2 + x3 and +2 denoting summation modulo 2. GS,AB then becomes

∑
x

S(p̂1 + πA, x)ei(p̂1−p̂2)x(−1)nS†(p̂2 + πB̃, x). (3.18)

(In the case of the pseudoscalar there is an extra factor of (−1)n which cancels the one coming
from γ5 hermiticity. There is therefore no phase included in that case.) For other operators the
staggered phase factors are more complicated; some are discussed in later Sections.

3.2.3 Data and statistics

The propagator and scalar vertex function were calculated on the range of lattices in Table 3.1.
(This is a subset of those in Table 2.1 collected here for ease of reference.) The correct statistical
procedure is to average propagators and vertex functions over configurations and then form the
elements required for the calculation of Z factors from these averages. However, it is difficult
to propagate the errors through procedures such as matrix inversion which are applied to the
propagators and a bootstrap procedure on the values of Zq and PΛS

on each configuration was
therefore performed as an alternative method to the direct one. Bootstrap samples are formed
by randomly choosing n values from the data on the n configurations, allowing for repeat choices,
and then taking the mean of that selection. This is done N times to produce a dataset of N
samples from which uncertainties and correlations are calculated. The same bootstrap sampling
was used for both the Zq and PΛS

so that correlations between the two could be included when
the bootstrap samples were averaged and the ratio taken. In each case 1000 bootstrap samples
were used, although there was no significant variation when 100 samples were used.

Different µ values were used to allow an examination of nonperturbative contributions which will
vanish as µ is increased as discussed in Section 1.5.3. Ensembles with different sea quark masses
were used at the coarse and fine lattice spacings in order to assess possible effects further. The
results obtained for Zm are given in Table 3.2, where the correlation matrices resulting from
the simultaneous chiral extrapolations (discussed in 3.2.4) are also given. [Note that throughout
this Chapter lattice spacings independent of the sea quark masses, chosen to coincide with the
physical point, are used as they reduce sea quark mass dependence in this case. This is discussed
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Table 3.1: Details of the range of lattice ensembles used in the RI-SMOM quark mass determi-
nation calculation. Those with β = 6.0 are referred to as coarse, β = 6.3 as fine and β = 6.72 as
superfine.

Set β Ls Lt amsea
l amsea

s amsea
c

4 6.0 20 64 0.008 0.040 0.480
5 6.0 24 64 0.0102 0.0509 0.635
6 6.0 24 64 0.00507 0.0507 0.628
7 6.0 32 64 0.00507 0.0507 0.628
8 6.0 40 64 0.00507 0.0507 0.628
9 6.0 32 64 0.00507 0.00507 0.628
10 6.0 32 64 0.00507 0.012675 0.628
11 6.0 32 64 0.00507 0.022815 0.628
12 6.0 48 64 0.00184 0.0507 0.628
14 6.30 48 96 0.00363 0.0363 0.430
15 6.30 64 96 0.00120 0.0363 0.432
16 6.72 48 144 0.0048 0.024 0.286

further in Section 6.1.] (There is a complication being ignored for simplicity here that on all
ensembles except set 16 there was a slight mistuning of some of the µ values. This amounts to
shifting 2, 3 and 4 GeV to 2.004, 3.005 and 4.007 GeV, which is accounted for when all values
are run to the same reference scale of 3 GeV.)

3.2.4 Valence mass extrapolation

As the RI-SMOM scheme being used is defined at zero valence mass and the lattice calculation
cannot be performed at amval = 0 this limit must be taken using data at different valence masses.
This will have the benefit of removing condensate contributions proportional to the quark mass.
The precise form of the quark mass dependence of Zm is not known, although the data displays
very little variation with amval and polynomial fits produce good χ2 for all cases. These fits
are performed simultaneously for each µ on a given lattice in order to correctly propagate the
correlations between these variables.

A third order polynomial was used although this resulted in no significant difference from using
second order:

Zm(amval) = Zm + d1
amval

ams
+ d2

(
amval

ams

)2

+ d3

(
amval

ams

)3

. (3.19)
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Priors decreasing with both m and µ were used to account for the expected decrease in the
relevant condensate terms. The priors used for the m coefficients at 2 GeV were {0 ± 0.1, 0 ±
0.01, 0± 0.001} which were decreased by a factor of 2 for 3 GeV and a factor of 4 for 4 GeV. The
Zm prior was 1.0± 0.5.

The fits all produced χ2 values lower than 1 and Fig. 3.3 shows that the results of the superfine
3 GeV fit can be extended to the strange quark mass, which is not included in the fit, indicating
the reliability of the procedure.

In principle the slope of the chiral extrapolations should be related to chiral condensate terms
in the OPE (see Section 1.5.4), but the size of the observed slopes is too large to be consistent
with this picture given that the value of 〈ψψ〉 is ∼ 0.0081 (GeV)4 and the observed effect
is ∼ −0.1 (GeV)4. This is shown in Fig. 3.4 where d1 and d2 can be seen as a function of
µ. An alternative condensate explanation arises when considering terms proportional to the
nongaugeinvariant condensate 〈A2〉, which are expected to be considerably larger.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
amval

1.134

1.135

1.136

Z
S
M

O
M

m

Figure 3.3: Plot of the chiral extrapolation of set 16 with µ = 3 GeV. The highest mass point
is not included in the fit but is shown to indicate that the fit operates well far from the point
being extrapolated to.

3.2.5 Systematic uncertainties

Several sources of systematic uncertainty have been examined and appropriately addressed where
necessary. The different lattices used differ by the values of the quark masses in the sea and the
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Figure 3.4: The linear and quadratic slopes of the valence mass dependence of ZSMOM
m as a

function of µ. These are d1 and d2 from Eq. 3.19. The curve is a fit of the form C/µ4 to the d2
data.

spatial and temporal extents. While terms allowing for sea quark mass effects were used in the
continuum extrapolation it is still useful to check that no large effects are present and the lack
of modelling of finite volume effects makes some level of direct study essential.

In addition to these systematics in the lattice setup there are also potential numerical systematics
at this level of precision resulting from the use of various stopping conditions; specifically the
Dirac matrix solver and gauge fixing tolerances. No significant effect is observed in the first case.
Gauge fixing effects will be discussed in more detail in Section 3.2.5.

Volume dependence

Finite volume effects are associated with long wavelength (IR) modes. Matching factors are
expected to be UV dominated and therefore no significant finite volme effects should be observed.
In order to test this three lattices with the same parameters except for their spatial extent were
used to calculate Zm across a range of µ values, extending below 2 GeV. No significant variation
was observed as shown in Fig. 3.5.
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Figure 3.5: Upper: Zm against µ for sets 6, 7 and 8. Lower: The three points at µ = 1.80 GeV
(upper left of upper plot) against the spatial extent of the lattice in lattice units. This indicates
that the volume dependence of Zm is negligible.
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Sea quark mass dependence

The lattices detailed in Table 3.1 (crucially including those used in the final analysis) have a
range of nonphysical sea quark masses and it is therefore necessary to address the issue of sea
quark mass dependence of Zm. This was done directly with lattices with a range of msea

c and
msea
s on coarse lattices with a single valence mass. These comparisons for a range of µ values

and a very large range of msea
s and msea

c are shown in Figure 3.6. There it can be seen that
any effects are not visible, despite which we allow for terms to account for these effects in the
continuum limit fit. This is the sea quark mass dependence we see using a lattice spacing defined
to be fixed as the sea quark masses are varied. This definition of the lattice spacing has been
chosen, partially, to make this variation small.

Gauge fixing tolerance dependence

Due to computational expense a full study of the dependence of Zm on gauge fixing tolerance
across the various lattices used was not conducted, but a limited study on mostly coarse lattices
indicates some essential features. For example, there is a clear decrease in the difference between
two Zm values calculated with different gauge fixing tolerances with increasing µ. This is shown
in Figure 3.8. This µ dependence can be explained in terms of decreasing gauge-noninvariant
condensate contributions as discussed in Sections 1.5.3 and 1.5.4.

It is instructive to observe the convergence of the gauge fixing employed. In Figure 3.9 this
is depicted as a scatter plot of the gauge trace link (which is minimised by the Landau gauge
fixing procedure) against ZSMOM

m at µ = 2 GeV. There it can be seen that there is a significant
residual effect from using the relatively high ε value of 10−7 which must be accounted for in the
calculation as this was the tolerance used on Sets 5 , 7 , 12 , 14 and 15. In order to account for
this, uncorrelated (as the possible correlations are not known) errors are added to all ZSMOM

m

values which are chosen to be the same on all lattices but to decrease with µ, as justified above.
The values for 2, 3 and 4 GeV were respectively 0.0004, 0.0001 and 0.00002. This is of the order
of the statistical errors. On Set 16 a gauge fixing tolerance of 10−14 was used in order to remove
these problems from consideration4.

The RI-SMOM Zm values we obtain are given in Table 3.2 along with their correlations. The
factors for different µ values are correlated on each ensemble as correlations have been propagated
through the valence mass extrapolation procedure.

4I thank Eduardo Follana and Eduardo Royo-Amondarain for performing this gauge fixing.
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Figure 3.6: Plots indicating the charm and strange sea quark mass dependence of Zm, which
is clearly small. However, the final continuum extrapolation still allows for some sea mass
dependence. The charm mass variation is shown on sets 4, 5 and 6 and the strange mass
variation on sets 7, 9, 10 and 11.
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Figure 3.7: ZSMOM
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ensembles as in Fig. 3.6. Here a µ value close to 2 GeV is chosen in each case. A clearer
indication of the variation of the values in Fig. 3.6 is given with no variation beyond a few σ.
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lines indicate the mean value.
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3.2.6 Electromagnetic corrections to Zm

Given the level of precision achieved in Chapter 6 it becomes necessary to consider the im-
pact of electromagnetic corrections on the determination of quark masses. Part of this is to
calculate QED corrections to the mass renormalisation which we can do relatively easily in RI-
SMOM.

Here we include quenched QED in our lattice calculations using theQEDL formulation of compact
QED [71] (also see Section 2.9), in which all zero modes are set to zero, Aµ(k0,k = 0) = 0 with
Aµ the U(1) gauge field and k the momentum, in Landau gauge. Here, in our lattice calculation,
we use k = 2sin(ap/2), with ap from Eq. 3.14. Our calculations are performed with a quark
charge of 2e/3 with −e the charge of the electron (i.e. the up or charm quark charge).

We compute the QED correction to Zm in the RI-SMOM scheme on a range of lattice spacings
and at different µ values. These are presented in Table 3.3 as a ratio of the QCD+QED value to
the pure QCD result. These are calculated including the correlations between the results.
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Table 3.3: The electromagnetic correction to Zm for different values of µ and different lattice
spacings are shown in the third column.

Set µ [GeV] ZSMOM
m (µ)[(QCD+QED)/QCD]

6 2 1.001200(83)
14 2 1.001516(35)
16 2 1.001853(83)
6 2.5 1.000827(31)
6 3 1.000540(15)
14 3 1.000851(11)
16 3 1.001308(18)
14 4 1.0005001(21)
16 4 1.0009331(34)
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3.3 ZV : lattice vector current renormalisation

We now move to a discussion of the renormalisation of lattice vector currents. This largely
follows the work presented in [2].

QCD matrix elements that cannot be evaluated within perturbation theory are of importance
to many experimental programmes such as the overdetermination of the Cabibbo-Kobayashi-
Maskawa matrix [72, 73] or the precision study of the anomalous magnetic moment of the muon
[74] where the level of experimental precision requires a good understanding of hadronic contri-
butions.

While the QCD vector current is conserved, and does not suffer renormalisation in the continuum,
certain lattice definitions of the vector current are not and must be renormalised. A conserved
vector current does exist on the lattice which is absolutely normalised. However, the conserved
vector current construction for improved actions is considerably more complex than, for example,
that of the local vector current. It is therefore typical to make use of the local vector current
and perform a renormalisation calculation. There is the added benefit that local currents tend
to be less noisy.

In the past the HPQCD collaboration have performed vector current renormalisation calcula-
tions by requiring that the vector form factor be 1 between two identical hadron states at zero
momentum transfer [75].5 The form factor methods have been very successful in providing high
precision renormalisation factors on MILC lattice ensembles with lattice spacings ranging from
∼ 0.15 fm to ∼ 0.09 fm with the value at a lattice spacing of ∼ 0.06 fm extracted from a fit to the
a2 dependence of the lattice data. These ZV s have been used in calculations such as the leading
order hadronic vacuum polarisation (HVP) contribution to the anomalous magnetic moment of
the muon presented in [77, 78]. However, they require high statistics 3-point correlators so for
future calculations that require new evaluations of ZV it is desirable to have a computationally
cheaper methodology that is still capable of high precision. The use of momentum sources in
conjunction with a momentum subtraction scheme offers this possibility as only a small number
of configurations are required for good statistical precision. Momentum subtraction schemes also
provide an, in principal, simple method for obtaining the renormalisation constants for a variety
of currents.

5Vector current renormalisations have also been calculated from matching lattice QCD time moments to high
order continuum QCD perturbation theory determinations of the same quantities [76].
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In order to improve the results of [78] it will be necessary to include the effects of the electro-
magnetic interaction and the local vector renormalisation done in pure QCD will have to be
appropriately corrected. If this were to be done using the form factor method it would require a
large further computational effort. The use of momentum subtraction schemes on the lattice with
the HISQ action has shown promise in providing a methodology that avoids the computation
of large numbers of 3-point correlation functions required for good precision in the form factor
calculation. There are, however, several systematic effects present in momentum subtraction
scheme calculations, as already discussed. It is therefore desirable to perform a comparison of
the ZV values obtained from schemes such as RI-SMOM and the previous HPQCD results. We
perform this comparison in both the RI-SMOM and the earlier developed RI′-MOM schemes
and assess the viability for future calculations in both. This includes implementing the HISQ
conserved current and checking the Ward-Takahashi identity used in the construction of the
RI-SMOM scheme on the lattice, discussed further in Section 3.3.1.

Furthermore, the HISQ 1-link vector current renormalisation is required by ongoing calculations
of the quark-line disconnected contribution to aHVP

µ [79].

As mentioned in Section 3.2.2 (in the context of scalar and pseudoscalar currents) the RI-SMOM
scheme was originally introduced with the motivation of improving the µ suppression of the
difference between ΛV and ΛA (the axial vector current vertex function) relative to that observed
in RI′-MOM. In Fig. 3.10 we demonstrate the improved performance of the RI-SMOM scheme
in this respect with (PΛV

− PΛA
). The data points here have been extrapolated to zero valence

mass using a similar procedure to that discussed in Sec. 3.3.3 (there is significant valence mass
dependence of PΛA

) and are shown for lattice set 6 (see Table 3.5). We again note that the
RI-SMOM data approximately demonstrates the expected µ−6 suppression [70].

3.3.1 The vector Ward-Takahashi identity on the lattice

Following the discussion in [2, 80, 81] the Ward-Takahashi identity (WTI) can be derived from
the observation that the path integral is invariant under a local change of the fermion fields with
unit Jacobian. The relevant transformation here is multiplication of the field ψ(x) at the point
x by the phase eiε(x) and ψ(x) by e−iε(x). Denoting the transformed field ψε we have

〈f(ψ, ψ)〉 = 〈f(ψε, ψε)〉 =
∫

DψDψe−S[ψε,ψ
ε
]f(ψε, ψ

ε
) (3.20)
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Figure 3.10: The difference between the (amputated, projected local) vector and axial vector
vertex functions as a function of µ in the RI′-MOM and RI-SMOM schemes. The improvement
obtained by using the RI-SMOM scheme is clear. These values have been extrapolated to zero
valence quark mass and are shown for the finest lattice we use (set 16 in Table 3.5.)

and expanding to first order in ε

〈−∆S · f +∆f〉 = 0, (3.21)

where ∆S = Sε−S and ∆f = f ε−f . Using f = ψ(y1)ψ(y2), ∆f is the difference of propagators
from y1 and y2 to x. ∆S is simply the derivative of the vector current ∂µJµ. The same logic
holds on the lattice but the derivative is replaced with a finite difference and Jµ becomes the,
action dependent, lattice conserved vector current (to be discussed further below). Performing
the Fourier transform of Eq. 3.21 gives a relationship between the vector vertex function GµV and
a difference of propagators

iqµG
µ
V (p1, p2) = S(p1)− S(p2) (3.22)

with
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GµV = 〈ψ(p1)

(∑
x

ψ(x)γµψ(x)ei(p1−p2)·x

)
ψ(p2)〉 (3.23)

and qµ = (p1)µ − (p2)µ.

The existence of the vector WTI and the conservation of the vector current (in the continuum)
mean that the vector current operator has no anomalous dimension and does not require renor-
malisation. This amounts to the fact that the WTI can be used in the construction of a renor-
malisation scheme to protect the lattice conserved vector current from renormalisation.

With RI′-MOM kinematics Eq. 3.22 becomes trivial, but another WTI can de derived in this limit
by first taking the derivative w.r.t. the momentum. Note that, with the RI′-MOM definitions,
ZV and Zq will not satisfy this WTI. The vector current in this scheme therefore suffers a
µ dependent matching to the MS scheme which obscures the fact that the vector current is
conserved and therefore absolutely normalised. The matching to MS was calculated in [82] and
found to start at O(α2

s).

Consideration of the two point correlator 〈ψ(y1)ψ(y2)〉 then leads to a relation between the
derivative (or finite difference) of the vector vertex function and the difference between the
propagators from the points y1 and y2 to the vector current insertion point x (this is a form of
Eq. 3.21) [80]:

〈∆µJ
µ(x)ψ(y1)ψ(y2)〉 = δy2,x〈ψ(y1)ψ(x)〉 (3.24)

− δy1,x〈ψ(x)ψ(y2)〉.

For the case of the HISQ lattice action ∆µ may be chosen to be either the forward or backward
finite difference with the appropriate conserved currents being the backward and forward 3-link
currents respectively. The forward HISQ conserved current is given by
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Jµ =
1

2
[ψ(x)γµWµ(x)ψ(x+ µ̂) + h.c.] (3.25)

+
1

16
[ψ(x)γµXµ(x)ψ(x+ µ̂) + h.c.]

− 1

48
[ψ(x− 2µ̂)γµXµ(x− 2µ̂)Xµ(x− µ̂)Xµ(x)ψ(x+ µ̂)

+ ψ(x− µ̂)γµXµ(x− µ̂)Xµ(x)Xµ(x+ µ̂)ψ(x+ 2µ̂)

+ ψ(x)γµXµ(x)Xµ(x+ µ̂)Xµ(x+ 2µ̂)ψ(x+ 3µ̂) + h.c.]

whereW are HISQ links and X are the links after the first level of HISQ smearing in the notation
of [39]. The backward conserved current is the same but with x→ x− µ̂ and x+ µ̂→ x.

The Fourier transform of Eq. 3.24 can be performed, giving

(1− eiaqµ)

∫
d4xd4y1d

4y2e
iqxe−ip1y1eip2y2〈Jµ(x̃)ψ(y1)ψ(y1)〉, (3.26)

on the left handside where x̃ is the midpoint of x and x+ µ̂, which is where the current sits. The
right handside is simply

∫
d4xd4y1e

ip1xe−ip1y1〈ψ(y1)ψ(x)〉 −
∫
d4xd4y2e

−ip2xeip2y2〈ψ(x)ψ(y2)〉 = S(p1)− S(p2). (3.27)

Multiplying both sides of Eq. 3.24 by the two inverse propagators gives

− 2i

a
sin
(aqµ

2

)
ΛµV (p1, p2) = −S−1(p1) + S−1(p2). (3.28)

We have tested both Eq. 3.24 and Eq. 3.28 using the forward conserved current in numerical
calculations. This is illustrated in Fig. 3.11 for the momentum space case. There the solid line is
the momentum factor −2i

a sin
(aqµ

2

)
and the points are numerical results on a single configuration

for the ratio ΛV /(S
−1(p2)−S−1(p1)) averaged over all matrix components. We also checked that

the real part is zero. The different points demonstrate the fullfillment of the Ward-Takahashi
momentum space identity on the lattice for different values of the quark mass, momentum scale
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and for different gauges.

It is important to understand this identity on the lattice as it is used to construct the vector vertex
projector used in the RI-SMOM scheme. The fact that there is an exact lattice Ward-Takahashi
identity allows the construction of a ZV which is always 1, independent of the momenta or lattice
spacing. Following the continuum derivation of the vector vertex projector in [61], we take the
spin colour trace of Eq. 3.28 (with appropriate normalisation) multiplied by /̃q to obtain

− 1

48q̃2
2i

a
sin
(aqµ

2

)
Tr(ΛµV /̃q) (3.29)

=
1

48q̃2
[Tr(/̃qS−1(p2))− Tr(/̃qS−1(p1))].

(Note that the correct gamma matrix in /q is (γµ ⊗ 1) due to the taste singlet nature of the
inverse propagator.) Here we have started using the momentum discretisation relevant to the
calculation of Zq, i.e. q̃ = sin(p) + sin3(p)/6 (see Eq. 3.13). If the r.h.s of Eq. 3.29 is equal
to (1/48q2)Tr(/qS−1(q)), as it is in continuum perturbation theory, then the r.h.s is Zq and the
l.h.s may be identified as the required denominator (with Zq the numerator) in the definition of
ZV ≡ Zq/PΛV

such that ZV = 1 for the conserved current. The requirement is

Tr(/qS
−1(p2))− Tr(/qS

−1(p1)) = Tr(/qS
−1(q)). (3.30)

This equality would have to hold including discretisation effects and non-perturbative condensate
contributions. Assuming that the inverse propagator takes the form i/pΣV (p

2)+ΣS(p
2) then this

is true. We observe this to be the case, at least once the configuration average has been taken,
to better than 0.05%, as demonstrated in Fig. 3.12.

The general form of the staggered quark propagator is derived in [64] from symmetry constraints.
We can use this form to analyse the discretisation errors that we expect to appear in the lattice
propagator and whether we expect the equality Eq. 3.30 to hold. Considering the massless case
the leading terms are

S−1(p̂) = c1p̂µ(γµ ⊗ 1) + c2
∑
µνρ

p̂µ(p̂ν)
3(p̂ρ)

5(γµνρ ⊗ 1) (3.31)
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Figure 3.11: Demonstration of the vector Ward-Takahashi identity in momentum space on the
lattice. The solid line is the values of −2i

a sin
(aqµ

2

)
as a function of q represented by the quantity

x+ θ/2 which is the momentum divided by 2π/L with L the extent of the lattice in the relevant
direction. The points correspond to lattice results for the ratio ΛV /(S−1(p2)−S−1(p1)) (averaging
over all matrix components) on a single configuration with crosses representing Coulomb gauge
fixing and the circles Landau gauge fixing. Orange points correspond to a valence mass of
amval = 0.0306 while purple points correspond to 0.0102. The Ward-Takahashi identity requires
these points to lie on the line.

with γµνρ = γµγνγρ. It is clear from this that the first term will not affect Eq. 3.30. The second
term also presents no problem when RI-SMOM kinematics are used as various factors of µ2 can
be factored out of the terms with momentum to the third and fifth powers. There is therefore
nothing here to suggest Eq. 3.30 will not hold.

The leading order condensates that might appear as corrections to Eq. 3.30 can be analysed
using the techniques explained in the Appendix of [1]. As the leading 〈A2〉 contribution goes like
∼ r ·s for Tr(/rS−1(s)) this term is the same on both the l.h.s and r.h.s of Eq. 3.30. This must be
the case for the WTI to hold fully nonperturbatively as it should. It means that the RI-SMOM
ZV will not contain condensate contamination.

3.3.2 Tree level vertex functions

It is necessary to pause to discuss a technical element relating to some of the vector currents we
will be using. In cases where the spin and taste of the operator insertion differ it is necessary to



CHAPTER 3. NONPERTURBATIVE RENORMALISATION 78

0.75 1.00 1.25 1.50 1.75
aµ

0.9990

0.9995

1.0000

1.0005

1.0010

[T
r(
/̂q
S
−

1
(p

1
))
−

T
r(
/̂q
S
−

1
(p

2
))

]/
T

r(
/̂q
S
−

1
(q

))

set 2

set 6

set 7

Figure 3.12: Test of the identity in Eq. 3.30. The squares are for set 5, the hexagons are set 14
and the circles are set 16.

divide out the tree level discretisation effects that are introduced. This will then give Z values
of 1 for the free theory as well as reducing the discretisation effects.

Matrix elements of the covariant operator defined in Eq. 3.11 (with appropriate gauge links
multiplied in) can be easily computed at tree level. For the 1-link vector case ∆ = ±1 in the µ
direction. For RI′-MOM this gives the tree level matrix element of the operatorM (0),cov

ST as

M(0),cov
ST =

∑
n

∑
∆

eip̂·ne−ip̂·(n+∆)(γS ⊗ ξT )n,n+S−T (3.32)

=
∑
∆

e−ip̂·∆(γS ⊗ ξT )A,B =
∏
µ

cos(p̂µ(S − T )µ)(γS ⊗ ξT )A,B, (3.33)

leading to a division by
∏
µ cos(p̂µ(S − T )µ) or in this case just cos(p̂µ(S − T )µ) for the vector

current in directon µ. RI-SMOM differs in that the quark fields carry different momenta, giving
the result
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Table 3.4: Tree-level matrix elements of the various operators in the different schemes that we
consider. We also give the projectors that we use in the construction of each ZV . For definitions
of /̂q in each case we refer to the main text. S and T are the vectors describing the spin and
taste of the operator (see [64]). The first column labels both the scheme (SMOM for RI-SMOM
and MOM for RI′-MOM) and the operator. The local operator is labelled ”loc“, the conserved
current operator ”con“ and the 1-link operators of Eqs. 3.46 and 3.47 ”1link-fwd“ and ”1link-cov“
respectively.

Operator/scheme Projector M(0)

loc/SMOM 1
48(q̃)2

q̃/̃q 1
con/SMOM 1

48(q̂′)2 (1− eiqµ)/̂q′ 1
1link-fwd/SMOM 1

48(q̃)2
q̃/̃q 1

2(e
ip2 + e−ip1)

1link-cov/SMOM 1
48(q̃)2

q̃/̃q
∏
µ cos(p

µ
2 )

loc/MOM (γµ ⊗ ξµ) 1
con/MOM (γµ ⊗ 1)

∏
µ

(
9
8cos(p

µ
1 (S − T )µ)

+1
8cos(3p

µ
1 (S − T )µ)

)
1link-fwd/MOM (γµ ⊗ 1)

∏
µ cos(p

µ
1 (S − T )µ)

1link-cov/MOM (γµ ⊗ 1)
∏
µ cos(p

µ
1 (S − T )µ)

M(0),cov
ST =

∑
n

∑
∆

eiq̂·neip̂1·ne−ip̂2·(n+∆)(γS ⊗ ξT )n,n+S−T (3.34)

=
∑
∆

e−ip̂1·∆(γS ⊗ ξT )A,B =
∏
µ

cos(p̂1,µ(S − T )µ)(γS ⊗ ξT )A,B. (3.35)

The matrix elements for the various operators we consider are collected in Table 3.4. These are
obtained through purely kinematic calculations. Further details can be found in [64] App. D,
[83] and [84].

3.3.3 Lattice calculation

We perform calculations on the MILC 2+1+1 HISQ ensembles [42, 85] listed in Table 3.5. We
use broadly the same calculational set up as in [1] and Section 3.2 but here we are considering
vector vertex functions as opposed to scalar. The local vector vertex function is constructed in
much the same way as the scalar case but with a different staggered phase corresponding to a
different gamma structure, which differs between different currents. For the RI-SMOM scheme
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the local current is given by

GV,AB(p1, p2) =
1

ncfg

∑
x,cfg

S(p̂1 + πA, x)e−(p̂1−p̂2)x(−1)x+xµS†(p̂2 + πB̃, x). (3.36)

Here (−1)x = (−1)x1+x2+x3+x4 and arises from γ5-hermiticity of the Dirac matrix, as before. We
follow the notation of [1] where p′ denotes the momentum in a reduced Brillouin zone used to
seperate momentum and taste information. As explained in Section 3.1.2 we need to perform
32 inversions on each configuration to construct the propagators and vertex functions when
using staggered quarks. From these 32 inversions we can construct all vertex functions for
both the RI-SMOM and RI′-MOM schemes. For RI′-MOM p̂2 is replaced by p̂1 so that there
is no exponential factor in the equivalent of Eq. 3.36. The point-split operators are similiarly
contructed although these operators are taste singlets which changes the required phase and
the propagators have different spatial locations. This separation slightly complicates the factor
coming from γ5-hermiticity. Twisted boundary conditions are utilised to give the incoming and
outgoing quarks arbitrary momenta. The use of momentum twists for point-split operators is
slightly complicated.

The twisted propagator is defined as

S̃(x, p) = e−i(θ/2)xS(x, p+ (θ/2)). (3.37)

Not writing the links for brevity, for a point-split operator we want (using a 1-link operator as
an example)

∑
x

γ5e
i(p1+

θ1
2
)xS†(x, p1 +

θ1
2
) (3.38)

× γ5Γe
−i(p2+ θ2

2
)xS(x+ µ̂, p2 +

θ2
2
)

=
∑
x

γ5e
ip1xS̃†(x, p1)γ5Γe

−ip2xei(θ2/2)µ̂S̃(x+ µ̂, p2).

There is a factor of exp(i(θ2/2)µ̂) here that does not arise in the local case. Similar factors arise
for the RI′-MOM setup.
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Table 3.5: Simulation parameters for the MILC gluon field ensembles that we use, labelled by
set number in the first column. β = 10/g2 is the bare QCD coupling and Ls and Lt give the
lattice dimensions. amsea

l , amsea
s and amsea

c give the sea quark masses in lattice units. Set 1
will be referred to in the text as ‘very coarse’, sets 5–8 ‘coarse’, sets 14 as ‘fine’ and set 16 as
‘superfine’.

Set β Ls Lt amsea
l amsea

s amsea
c u0 w0/ã

2 5.80 24 48 0.00640 0.0640 0.828 0.820192(14) 1.1322(14)
5 6.0 24 64 0.0102 0.0509 0.635 0.834613(14) 1.4075(18)
6 6.0 24 64 0.00507 0.0507 0.628 - 1.4075(18)
7 6.0 32 64 0.00507 0.0507 0.628 - 1.4075(18)
8 6.0 40 64 0.00507 0.0507 0.628 - 1.4075(18)
14 6.30 48 96 0.00363 0.0363 0.430 0.852477(9) 1.9500(21)
16 6.72 48 144 0.0048 0.024 0.286 0.870935(5) 2.994(10)

All gauge field configurations used are numerically fixed to Landau gauge by maximising the trace
over the gluon field link with a gauge fixing tolerance of ε = 10−14. This is enough to remove the
difficulties related to loose gauge fixing discussed in Section 3.2.5 and [1]. A bootstrap method
is again used to estimate all uncertainties with correlations. Bootstrap samples are formed for
each Zq and each PΛV

before the bootstrap average is taken.

The anomalous dimension of the vector current operator is zero (ignoring the issue with RI′-
MOM) which leads to the expectation that there should be no µ dependence. However, dis-
cretisation artefacts appearing as even powers of aµ will give lattice data some, hopefully small,
µ dependence which will be removed when taking the continuum limit. In order to determine
the size of these effects, and any possible power corrections, we again perform calculations at
multiple values of µ and a. The same kinematic setup as for the mass renormalisation calculation
[1] is used here, given in Eq. 3.14. We also use the same µ values of 2, 2.5 and 3 GeV on coarse
lattices and 2, 3 and 4 GeV on fine and superfine ensembles. It is generally important to choose
momenta such that ΛQCD � µ � π/a in order to avoid both large discretisation effects and
nonperturbative power corrections. However, in some cases we also make use of data at the low
µ value of 1 GeV, discussed further in Section 3.3.5. This data is included to further demonstrate
the lack of condensate contributions in some cases. If the current is not the conserved current,
for example the local vector current, then the value of ZV will have lattice spacing dependence
which can be expressed, using lattice perturbation theory, as a power series in αs(ΛUV) with
ΛUV an appropriately chosen scale near the cutoff provided by the finite lattice spacing. The
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coefficients of this expansion should not depend on the details of the scheme employed (although
they will depend on the details of the lattice action) as long as ZV = 1 in the continuum and
can therefore be used as a useful check on the agreement of different methodologies.

Valence mass dependence

As already discussed, all of our results are determined at small but non-zero quark mass. This
has no impact on the calculation. Again, it is necessary to calculate each ZV at different masses
and then extrapolate to the amval = 0 point, as in Section 3.2.4. To do this we perform all
calculations at three masses corresponding to the light quark sea mass on a given ensemble, aml,
and at 2aml and 3aml.

We follow the procedure used in [1] for the mass renormalisation in the RI-SMOM scheme and
extrapolate ZV results using a polynomial in amval/ams:

ZV (amval, µ) = ZV (µ) + d1(µ)
amval

ams
+ d2(µ)

(
amval

ams

)2

. (3.39)

We find no need for higher powers of amval/ams here as the valence mass dependence of ZV is
observed to be very mild in all cases.

For the conserved current there should be no valence mass dependence as the vector WTI holds
irrespective of the mass as long as the masses are degenerate. This will protect all RI-SMOM
vector currents from nonperturbative contributions in the continuum that are proportional to
the mass. This will not be the case for the RI′-MOM scheme. However, we still observe a near
negligible valence mass dependence in the RI′-MOM scheme. This is shown in Fig. 3.13.

For the prior on ZV (µ) in Eq. 3.39 we use 1.0± 0.2 with different priors for the coefficients di of
{0± 0.1, 0± 0.01} at µ = 2 GeV with the widths decreased according to µ−2.

Any sea quark mass dependence should be suppressed relative to the valence mass dependence
by powers of αs. As the valence mass dependence is already negligible the sea mass dependence
should be tiny. Above and in [1] it was shown that the sea quark mass dependence of Zm (a
quantity with larger, although still small, valence mass dependence) was unobservable at this
level of precision and we therefore expect the same to be true of ZV .
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Figure 3.13: Valence mass dependence of local ZV values in the RI-SMOM and RI′-MOM
schemes. Upper: Local ZV in the RI-SMOM scheme at µ = 3 GeV. Lower: Local ZV in
the RI′-MOM scheme at µ = 3 GeV. The strongest valence mass dependece we observe is in the
local vector current renormalisation in the RI′-MOM scheme, which can be seen to be very small.
The label Z loc,MOM,raw

V indicates that these are local MOM ZV values before they are multiplied
by a conversion factor to the MS scheme.
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We divide vertex functions by the tree-level values given in Table 3.4. These are trivial when
the current is local.

3.3.4 Conserved vector current renormalisation

Throughout we consider both the RI-SMOM and RI′-MOM schemes which will henceforth be
denoted SMOM and MOM. We will also consider the variation of the SMOM scheme that uses
the same vector vertex projector as the MOM scheme, which then obviously requires different
conditions to obtain a wavefunction renormalisation such that ZV = 1 in the continuum. We
refer to this sheme as SMOMγµ. The conserved vector current renormalisation in the SMOM
scheme, as discussed in Section 3.3.1, is 1 to high precision, independent of µ and the lattice
spacing, as well as the mass of the quark.

However, in the MOM scheme the vector WTI for renormalised quantities has to be abandoned
due to the constraints of numerical implementation of derivatives and the vector current suffers
a renormalisation even in the continuum. The matching to MS begins at order α2

s and is given
in [62] through order α3

s. We therefore multiply all our MOM results by this factor. These
conversion factors for nf = 4 are collected for the various µ values we use in Table 3.6. The lack
of protection from the Ward-Takahashi identity means that Zcon

V (MOM) is expected to contain
discretisation errors and condensate contributions. In order to remove the leading discretisation
effects and ensure that Zcon

V (MOM) = 1 in the noninteracting theory we divide PΛV
by the

tree-level matrix element of the MOM conserved vector operator given in Table 3.4. This is
a procedure common to all point-split operators we use and more detail is provided above in
Section 3.3.2. We then fit the MS converted Zcon

V (MOM) values to the form

Zcon
V (MOM)(a, µ) = 1 +

∑
i

c
(i)
a2µ2

(aµ/π)2i (3.40)

+
∑
i

c
(i)
αa2µ2

(aµ/π)2iαMS(1/a)

+
∑
j

c
(j)
condαMS(µ)

(1 GeV)2j

µ2j

× [1 + c
(j)
cond,a2

(aΛ/π)2] + cαα
4
MS

(µ),

which constrains Zcon
V (MOM) to be 1 in the continuum once condensates are removed. Here
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Table 3.6: Conversion factors from the momentum subtraction schemes we consider to MS at the
µ values used in this calculation, calculated with nf = 4 using the results of [62]. ZV values in
momentum subtraction schemes are multiplied by these factors to obtain ZV in the MS scheme.
These factors are multiplied into any RI′-MOM results that are not a ratio of ZV for different
currents.

µ [GeV] Z
MS/RI′-MOM
V Z

MS/RI-SMOM
V

2 0.99118(38) 1
2.5 0.99308(26) 1
3 0.99420(20) 1
4 0.99549(14) 1

αMS(µ) is the value of the strong coupling in the MS scheme at the scale µ calculated from
running the value obtained in [27] using the four-loop QCD β function. The fit allows for
discretisation errors of the generic form (aµ)2i and terms O(αs(aµ)

2i). These further suppressed
terms are included as the very small uncertainties on the data mean that these terms may have
non-negligible effects. The final term allows for systematic uncertainty from the missing α4

s term
in the MS conversion factor. All coefficients are given a prior of 0± 1, except cα which is given a
prior of 0± 5 based on the lower order coefficients. The condensate terms start at 1/µ2 to allow
for the gauge-noninvariant 〈A2〉 condensate present in the operator product expansion (OPE) of
the inverse propagator. For the MOM kinematic setup it is not possible to perform an OPE for
vertex functions as they are not short-distance quantities. However, the OPE is still valid for
Zq and as this is a component of ZV we still allow for terms of this form. The results of this fit
are shown in Fig. 3.14. The fit has a χ2/dof of 0.6 and gives a sizeable condensate contribution
of

c
(1)
cond = 0.154(54). (3.41)

If the condensate terms are not included then the quality of the fit is very poor with a χ2/dof of
7.7, further indicating their necessity. This shows that features of the data are well understood
and that similar fits should be viable for other quantities. The fit also indicates the importance
of the condensate contribution to ZV in schemes not protected by the Ward-Takahashi identity,
which appear at a 1% level for µ = 2 GeV.
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Figure 3.14: Zcon
V (MOM) for µ values 2, 2.5, 3 and 4 GeV. The fit shown accounts for dis-

cretisation errors and condensate contributions, which prove to be necessary for a good fit.
Discretisation errors proportional to αs are also allowed. The αs(aµ)2 coefficient is very small,
consistent with the suppression of one-loop taste changing interactions when using the HISQ
action [39]. The disagreement between the different µ values after the continuum extrapolation
is performed is the result of condensate contributions.

3.3.5 Local vector current renormalisation

Here we examine the local vector current renormalisation factor in the various schemes we have
discussed. Our aim is to compare the results we obtain with those found in [75]. The two
cases should only differ by discretisation effects in the SMOM scheme, since both approaches
respect the WTI, and may have nonperturbative µ dependent effects in the MOM scheme. We
should therefore find that the difference of the SMOM renormalisation factors and the ZV factors
obtained from form factor methods in [75] can be fit to a form that is pure discretisation effects.
While we do not expect to see nonperturbative effects in the SMOM scheme we allow for such
effects in our fit function. The MOM case is expected to require such terms suppressed by
even powers of µ as well as a term allowing for the next-order missing term in the perturbative
matching calculation between the MOM and MS schemes. All of the momentum subtraction
results obtained and analysed in this Section are given in Table 3.7.
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Table 3.7: Local vector current renormalisation factors at the values of µ used in our calculations
for different schemes at the lattice spacings we use. Rc denotes that we take the ratio with the
conserved current renormalisation in that scheme. The values for Z loc

V (MOM) given here are the
raw RI′-MOM number that we obtain multiplied by the MS conversion factors of Table 3.6.

Set µ [GeV] Z loc
V (MOM) Z loc

V (MOMRc) Z loc
V (SMOM) Z loc

V (SMOMγµ,Rc)

2 1 - - 0.9743(11) -
5 1 - - 0.9837(20) -
2 2 0.97359(64) 0.95426(40) 0.95932(18) 0.87610(26)
5 2 0.98771(85) 0.97012(25) 0.97255(22) 0.91864(25)
14 2 0.99784(79) 0.98292(44) 0.98445(11) 0.959434(58)
16 2 1.00202(89) 0.99012(19) 0.99090(36) 0.982435(21)
5 2.5 0.97968(34) 0.96447(17) 0.96768(12) 0.89506(19)
5 3 0.97434(26) 0.96027(23) 0.964328(75) 0.87733(21)
14 3 0.98785(28) 0.97608(14) 0.977214(35) 0.930025(40)
16 3 0.99651(43) 0.98633(11) 0.98702(11) 0.969563(42)
14 4 0.98090(16) 0.971009(90) 0.972415(18) 0.905823(40)
16 4 0.99241(21) 0.982942(40) 0.983270(54) 0.954992(30)

MOM

The difference of the local vector current renormalisation results from form factor methods
Z loc
V (F(0)) and the renormalisation factor in the MOM scheme Z loc

V (MOM) are shown in Fig. 3.15.
We denote the difference ∆Z loc

V . The data have been fit to the form

∆Z loc
V (ã, µ) =

3∑
i=1

[c
(i)
a2µ2

(ãµ/π)2i + cαa2µ2(ãµ/π)
2iαMS(1/ã)]

+

3∑
j=1

c
(j)
condαMS(1/ã)

(1 GeV)2j

µ2j
× [1 + c

(j)
cond,a2

(ãΛ/π)2]

+ cα(αMS(µ)/π)
4.

(3.42)

The fit gives a χ2/dof of 0.14 and returns a signficant coefficient for the (1/µ2) condensate of
-0.209(63). This is consistent with the value obtained from the fit to the conserved current in
the RI′-MOM scheme Eq. 3.41. If the condensate terms are dropped from the fit then the χ2

degrades to an unacceptable value. The fit is unable to account for the movement towards 1 as
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µ is increased as aµ discretisation effects would push the values away from 1 at higher µ values.
This reinforces the conclusion that if a RI′-MOM ZV at 2 GeV is used then there is a O(1%)

nonperturbative effect that either has to be dealt with through some sort of fit or has to be taken
as a systematic uncertainty.

We can consider the ratio of the MOM local and conserved currents in this setting, which we
would expect to cancel the condensate contribution that survives the continuum in both cases.
We denote this ratio Z loc

V (MOMRc). Calculating ∆Z loc
V with Z loc

V (MOMRc) and using the fit
of Eq. 3.42 gives a χ2/dof of 0.32 while placing a constraint on the lowest order condensate
contribution coefficient of -0.01(5). This data and fit are shown in Fig. 3.16. The conclusion here
is that Z loc

V (MOMRc) does not suffer the condensate contamination of Z loc
V (MOM).
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Figure 3.15: The difference between the MOM local ZV and ZV determined from form factor
methods. The situation for this case is clearly different to that when the SMOM scheme is used
shown in Fig. 3.17. The MOM case shows a clear µ dependent effect as can be expected from
the lack of Ward-Takahashi identity protection in the MOM scheme.

SMOM

A little care is required in the construction of the SMOM projector using staggered quarks. The
operator /qqµΛµV must be constructed to be a taste singlet. The gamma matrices entering the /q
must therefore have different taste for different ΛµV . The correct construction is
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∑
µ,ν

qν(γν ⊗ ξµ)qµΛ
µ
V . (3.43)

We again use the fit form Eq. 3.42 but we drop the α4
MS

term (as there is no matching to MS

required here). The data and fit are shown in Fig. 3.17.

The coefficients were given priors of 0± 1. The fit has a χ2/dof value of 0.18 and no significant
condensate term is seen: the (1/µ2) condensate coefficient returned is -0.020(44). ∆Z loc

V is
therefore compatible with pure discretisation effects, as we expect.

We can also examine the local to conserved ratio in the SMOMγµ scheme which is shown in
Fig. 3.18. Again, there is no evidence of condensate contamination with a leading order coefficient
of -0.03(5) and a χ2/dof of 0.56.

The lack of nonperturbative effects in principle has an impact on the idea of a window bounded
from below of acceptable µ values. The fact that 1 GeV SMOM data can be fit is an indication
that low µ values can be used. As the value of µ is lowered the discretisation effects decrease.
It may therefore be advantageous to use as low a µ as possible. However, the expense of the
calculation increases with decreasing µ as does the uncertainty on the ZV values. We can

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150

a2 [fm2]

0.00

0.01

0.02

0.03

Z
lo

c
V

(F
(0

))
−
Z

lo
c

V
(M

O
M

R
c
)

4 GeV

3 GeV

2 GeV

Figure 3.16: The same as Fig. 3.15 but using the ratio of the MOM local and conserved vector
current renormalisation. These results are consistent with a lack of nonperturbative contamina-
tion, unlike when just using the MOM local vector current (Fig. 3.15).
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Figure 3.17: The difference between the SMOM local vector current renormalisation factor and
the local vector renormalisation determined through a form factor at zero momentum. In the ab-
sence of nonperturbative contamination this is expected to be consistent with pure discretisation
effects. Values as low as µ = 1 GeV are included and no sign of µ dependent nonperturbative
effects is seen.
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Figure 3.18: The difference between the local to conserved vector current renormalisation in the
SMOMγµ scheme and the local renormalisation determined from form factor methods. Similarly
to Fig. 3.17 there is no indication of nonperturbative contamination.
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Figure 3.19: Plot showing the difference between the local ZV determined using form factors
and an SMOM local ZV derived from results at µ values of 2 and 3 GeV in order to reduce
discretisation effects. This uses Eq. 3.44

construct a ZV value with decreased discretisation effects from results at two different µ values.
We define

Z loc
V (µ1, µ2) =

µ21Z
loc
V (SMOM)(µ2)− µ22Z

loc
V (SMOM)(µ1)

µ21 − µ22
, (3.44)

which can be done if the only µ dependence in ZV is through discretisation effects, and we
choose µ1 = 3 GeV and µ2 = 2 GeV. We again take the difference with Z loc

V (F(0)) and plot this
difference in Fig. 3.19. The fit is of the very simple form C + D(a × 1 GeV)4. The fit returns
C = 0.00008(36). This indicates that the construction of Eq. 3.44 has effectively removed a2

effects.

It is possible to fit the SMOM data on its own, without the subtraction of the form factor data.
The local operator is not conserved on the lattice and therefore ZV has the form of a power series
in αs in lattice perturbation theory with the scale set by the lattice spacing. Here we choose to
use αMS(1/a). This is slightly different to the scale used in [75], although there it was checked
that this choice of scale did not affect the β = 6.72 ZV extracted from that fit. We therefore
allow for this expansion in a fit form for the SMOM local current. The fit form used incorporates
this lattice perturbation theory component and discretisation errors
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Figure 3.20: Z loc
V (SMOM) data with the fit given by Eq. 3.45. The grey band shows the lattice

perturbation theory component of the fit and the black diamonds are form factor renormalisations
from [75]. The blue band is the lattice perturbation theory component of the fit to the form
factor data.

Z loc
V (SMOM)(a, µ) =

∑
k

(ck +
∑
i

c
(i,k)
a2µ2

(ãµ/π)2i)αk
MS

(1/a). (3.45)

For the local current the αs coefficient of the lattice perturbation theory is known and so we
fix the leading coefficient to that value: -0.1164(3) [75]. As explained earlier ZV in the SMOM
scheme has no condensate contributions and so we do not include any in the fit form. The fit
gives a χ2/dof below 1 showing that they are not required. This is shown in Fig. 3.20. The
grey band is the result of removing the discretisation effects of the form (aµ)2i from the fit.
It is therefore the result the fit gives for the lattice perturbation theory expansion. The blue
band is the same thing but using the ZV data of [75], the individual data points of which are
shown as black diamonds. The two bands overlap, indicating an agreement between the lattice
perturbation expansions in the two cases. We obtain an α2

s coefficient of 0.725(65).

3.3.6 1-link vector current renormalisation

Next we consider the 1-link point-split vector operator with spin-taste (γµ ⊗ 1). The operators
we use insert thin (unsmeared) links between the point-split quark fields to maintain gauge
invariance. Tadpole effects in lattice QCD lead to a renormalisation of the link operator which
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enlarges the coefficients of lattice perturbation theory by approximately the inverse of the vacuum
expectation value of the link operator [86]. We have therefore used a current definition that
divides by the average trace link in Landau gauge on each ensemble we use, u0. We do not have
the value on set 6 but we do know the values on ensembles with the same β but physical light
quarks and light quarks such that ms/ml = 5. As the variation of u0 with the light quark mass
in the sea is small we take the result on the ms/ml = 5 ensemble.

We considered two possible constructions of these operators. One, which we denote the forward
1-link operator, is the conserved current with all 3-link terms removed and a thin link

j1link-fwd
µ ≡ 1

2u0
ψ(x)(γµ ⊗ 1)Uµ(x)ψ(x+ µ̂) + h.c. (3.46)

The other 1-link operator we consider is the covariant operator of [64]

j1link-covµ ≡ 1

2u0
ψ(x)(γµ ⊗ 1)Uµ(x)ψ(x+ µ̂)

+
1

2u0
ψ(x)(γµ ⊗ 1)U †

µ(x− µ̂)ψ(x− µ̂). (3.47)

The two definitions coincide with MOM kinematics. In the SMOM case, while the values pro-
duced from the two different definitions are not identical they agree within errors and we only
present results for the forward 1-link current. The results of the various tree-level matrix ele-
ments of these operators in the MOM and SMOM schemes are gathered in Table 3.4. We now
consider the MOM and SMOM schemes in turn.

We collect results for various schemes in Table 3.8. Given the discussion regarding the local
current we only study the SMOM results here but the findings in the case of the local current
apply here as well.

The HISQ 1-link current renormalisation has been calculated for some of the lattice spacings
used here using form factor methods in [87] and some more recent calculations using pion form
factors6. We use the pion results, denoting them Z1link

V (F(0)). Table V in Appendix B of [2]
6I thank J. Koponen and A. C. Zimmermane-Santos for providing these values.
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Table 3.8: 1-link vector current renormalisation factors at all µ values considered for different
schemes at the lattice spacings we use. Rc denotes that we take the ratio with the conserved
current renormalisation in that scheme.

Set µ [GeV] Z1link
V (MOM) Z1link

V (MOMRc) Z1link
V (SMOM) Z1link

V (SMOMγµ,Rc)

2 1 - - 0.9617(11) -
5 1 - - 0.9713(19) -
2 2 0.93754(58) 0.90850(50) 0.93516(16) 0.89407(16)
5 2 0.95732(88) 0.93197(21) 0.94966(20) 0.92184(13)
14 2 0.97918(68) 0.95602(46) 0.96695(11) 0.952406(40)
16 2 0.99511(79) 0.97462(20) 0.97996(34) 0.974162(41)
5 2.5 0.94154(36) 0.92050(13) 0.94236(11) 0.905919(88)
5 3 0.93219(39) 0.91340(14) 0.939193(87) 0.895805(67)
14 3 0.95545(23) 0.93859(16) 0.954643(37) 0.929364(26)
16 3 0.97939(40) 0.96376(13) 0.97225(12) 0.961377(20)
14 4 0.94159(15) 0.927888(99) 0.948641(20) 0.914207(23)
16 4 0.96756(20) 0.954010(52) 0.965353(56) 0.948977(19)

gives these values. If we form the difference of Z1link
V (F(0)) and Z1link

V (SMOM) , ∆Z1link
V , then

the lattice perturbative expansion common to both should cancel, as in the local case, and a fit
consisting of purely discretisation effects

∆Z1link
V (a, µ) =

2,3∑
i=0,j=1

cijα
i
s(aµ/π)

2j +

2,3∑
i=0,j=1

dijα
i
s(aΛ/π)

2j , (3.48)

can be considered. The result of this fit is shown in Fig. 3.21. The fit includes discretisation
effect terms for both the SMOM results (aµ) and the form factor values (aΛ). The priors on the
coefficients of the fit are taken to be 0±3. The fit gives a χ2/dof of 0.9 confirming that the∆Z1link

V

data are consistent with pure discretisation effects indicating that there is no visible condensate
contribution and that there is no visible remnant of a perturbative expansion in αs(1/a). In this
case we have made use of data at 1 GeV to further constrain possible condensate terms which
are still not needed by the fit.

3.3.7 QED corrections

As lattice QCD calculations reach percent (or sub-percent) precision it will become necessary
to evaluate the QED corrections expected at this level. If QED effects are included in calcula-
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Figure 3.21: Z1link
V (SMOM) subtracted from the ZV at the corresponding lattice spacing, deter-

mined from the vector form factor at zero momentum transfer. The range of µ values from 1
to 4 GeV indicates that there is not a visible nonperturbative effect growing at small µ. The fit
lines shown are the fit of Eq. 3.48 which consists of only discretisation effects.

tions involving vector currents, such as the ongoing anomalous magnetic moment of the muon
calculations, then consistency requires that QED effects are also included in the vector current
renormalisation. We again included quenced QED in the QEDL formulation as we did in Sec-
tion 3.2. These calculatons are performed with a quark charge of 2e/3 with −e the charge of the
electron (i.e. the up or charm quark charge). The value of ZV at other charges can be obtained
from a linear fit in Q2 to the Q = 0 and Q = 2e/3 results, an example of which is shown in
Fig. 3.22.

The QED effects are included in the lattice calculation by multiplying the QCD gauge field
configurations by a U(1) field such that each link variable is simply multiplied by a phase.
This does not change the derivation of the lattice vector WTI Eq. 3.28 so the conserved vector
current renormalisation (in the SMOM scheme) will still be 1. This is explicitly demonstrated
in Fig. 3.23. It is necessary to use the gauge links multiplied by the U(1) field in the conserved
current for this to be true. The local and 1-link currents will be effected by this QED inclusion
in two ways; one will be an actual change in the renormalisation constant while the other will
be a change in discretisation errors. Including QED will change the coefficients of the lattice
perturbation theory expansion. The leading order correction can be estimated by replacing αs
with (4/3)q2αQED where q is the quark charge and the 4/3 is a group theory factor. This leads
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Figure 3.22: Local SMOM ZV at electromagnetic charges of 0 and 2/3 the proton charge. The
fit shown is linear in the charge squared. This fit could be used to extract ZV values at different
values of the electromagnetic charge.

to a multiplicative correction factor of ∼ 0.9997 using the HISQ one-loop lattice perturbation
theory result. (This is not quite correct as the U(1) gauge links are not improved but the
HISQ calculation was performed with improved links. However, this analysis may still provide
an approximate expectation.) The change in the gauge fields will lead to different discretisation
errors that are potentially larger than the difference in the lattice perturbation theory coefficients.
We ignore the effects of QED on the determination of the lattice spacing. This will slightly
shift the physical momentum of our QCD+QED simulations relative to pure QCD. However,
any momentum dependence is a discretisation artefact of the form (aµ)2n and therefore of no
relevance here. This will not be the case for, for example, the mass renormalisation.

The quantities we choose to study are ratios of renormalisation constants calculated with both
QCD and QED (QCD+QED) to those calculated within pure QCD. This gives a multiplicative
correction factor to apply to pure QCD values. Although the QED effects are small the precision
of our data and the high correlation between the QCD+QED and pure QCD data (a typical
correlation being ∼ 0.99) mean that we can obtain statistically significant results. We will
denote a quantity X calculated in pure QCD as X[QCD] and the same quantity calculated
with the inclusion of quenched QED X[QCD+QED]. The notation X[(QCD +QED)/QCD] ≡
X[QCD +QED]/X[QCD] will also be employed.
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Figure 3.23: ZV for the SMOM conserved current with the inclusion of quenched QED. The
quark charge used is 2/3 the charge of the proton. As expected all values are consistent with 1.
The squares are for set 5, the hexagons are set 14 and the circles are set 16.

Given the long-distance nature of the electromagnetic interaction there are reasonably large finite
volume effects expected in various quantities. For an example relevant here, the finite volume
corrections of the quark self-energy function were discussed in [88]. These should be effects that
are seen in the wavefunction renormalisation. The finite volume effects on the off-shell self energy
function can be expanded in inverse powers of the spatial extent of the lattice. In [88] these finite
volume effects are divided into components arising from the two poles in the ‘electromagnetic
kernel’ that defines the self energy function. One of these poles only arises in the case of a
massive quark and may therefore be dropped for our application. We can therefore take the
leading finite volume correction to the self energy function to be

∆V Σ =
2iQ2/pc1

4πp2L2
x

, (3.49)

where c1 = −2.83729748 and Q is the electromagnetic charge of the quark in units of the
electron charge [88]. Taking the dominant quark propagator finite volume effects to come from
the electromagnetic self energy function we can use Eq. 3.49 to estimate the size of finite volume
corrections to Zq in the RI-SMOM scheme. The finite volume correction to the inverse propagator
is simply ∆V S

−1 = −i∆V Σ. This translates to a finite volume correction to Zq of
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∆V Zq =
2Q2c1
4πL2

x

' −0.2

L2
x

. (3.50)

This calculation was performed in Feynman gauge and as we work in Landau gauge the coefficient
of the finite volume effect may be different. The leading term behaves as 1/L2

x leading to large
reductions in the effect at large volume.

We perform a numerical study of finite volume effects on sets 6, 7 and 8 at a single valence mass
corresponding to the light sea mass. The vector WTI holds in finite volume so we may expect
that the finite volume effects from continuum QED on a torus vanish for ZV . There is still then
the possibility of finite volume effects in the lattice perturbation theory coefficients although
these are likely to be small given that the QED correction will already be small. Indeed, we see
in the upper panel of Fig. 3.25 that the volume dependence of Z loc

V (SMOM) is negligible. There
is also no significant volume dependence in Zq (lower panel of Fig. 3.25).

Our full set of Z loc
V (SMOM)[(QCD+QED)/QCD] results across 3 lattice spacings and a range of

µ values are given in Table 3.9. The results are plotted in Fig. 3.24. We fit this data to a form
allowing for discretisation effects and a perturbative expansion for the ratio of renormalisation
constants. The leading QCD effect cancels between the numerator and denominator so that the
expansion starts at O(αQED). The coefficient of this leading term can be fixed as the HISQ pure
QCD αs coefficient is known to be -0.1164(3). We therefore take the αQEDQ

2 coefficient to be
−0.1164 × 3/4 = −0.0873. For Q = 2e/3 this gives a coefficient of -0.0388 corresponding to a
leading order result for Z loc

V (SMOM)[(QCD+QED)/QCD] of 0.9997, as previously stated. The
largest corrections to this will come from O(αQEDαs) terms. We use a fit form of

Z loc
V (SMOM)[(QCD+QED)/QCD] = 1 + αQED

∑
i

ciα
i
s

1 +
∑
j

dij(aµ)
2j

 , (3.51)

fixing the value of c0. We use i = 0, 1, 2, 3 and j = 1, 2, 3. The χ2/dof is 0.25. As Fig. 3.24 shows
the impact of quenched QED is very small and negligible at an accuracy of 0.1%. This smallness
is due to the improvement in the HISQ action leading to a local vector current renormalisation
with HISQ that is very close to 1.

Additive corrections to the pure QCD local vector current renormalisation from QED for do-
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Table 3.9: The ratio of renormalisation factors ZV for the QCD + quenched QED case to the
pure QCD case. These are for the local HISQ vector current calculated in the RI-SMOM scheme
on gluon field configuration sets listed in column 1 and at µ values listed in column 2 (and at a
valence quark mass of ml).

Set µ [GeV] Z loc
V (SMOM)[(QED +QCD)/QCD]

6 2 0.999631(24)
14 2 0.999756(32)
16 2 0.999831(43)
6 2.5 0.999615(12)
6 3 0.999622(13)
14 3 0.9997043(39)
16 3 0.9997797(92)
14 4 0.9996754(26)
16 4 0.9997425(24)

main wall fermions using a two-point function ratio method are given in [89]. Those values are
comparable, although a little larger, to ours and they also observe a decrease with the inclusion
of QED. The ZV values without QED reported in [89] are significantly further than 1 from those
presented here so the larger effect seen there may be due to more substantial discretisation effects
in the calculations of [89].
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Figure 3.24: Ratio of Z loc
V values for QCD+QED and QCD in the RI-SMOM scheme. Results

are given on sets 14 and 16 for µ values of 2, 3 and 4 GeV and on set 6 values of 2, 2.5 and 3
GeV. The dashed lines give the results of the fit of Eq. 3.51 which indicates that the results are
described well by a perturbative series up to discretisation effects.
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3.3.8 Calculating ZV on finer lattices

The need for stringent Landau gauge fixing makes even these relatively cheap RI-SMOM calcu-
lations expensive for large lattices. We can follow [75] and use a fit to extract ZV values at very
small lattice spacings. We fit the SMOM local data in Table III of [2] to a form allowing for aµ
discretisation effects and a power series in αs evaluated in the MS scheme at a scale of 1/a:

Z loc
V (SMOM)(a, µ) =

∑
i=0,j=1

[
ci + dij

(aµ
π

)2j]
αis (3.52)

This is very similar to the approach adopted in Appendix B of [75] using form factor data. Data
on Set 18 are included: 0.99203(108) at 2 GeV and 0.99023(56) at 3 GeV. As there, we fix the
αs coefficient to its known perturbative value of -0.11640(30). Fig. 3.26 shows the ZV data and
fit as well as a vertical line at a ∼ 0.03 fm. The fit lines for 2 and 3 GeV are also shown. This
fit has a χ2/dof of 0.93.

There is a mistuning of µ on Set 18; the true values are 2.04 and 2.98 GeV rather than 2 and
3. Particularly at this small lattice spacing the variation in ZV with µ is small enough that this
small mistuning can be neglected. In this case it is only a discretisation effect and should not
greatly affect the continuum limit trajectory.

The MILC collaboration have generated an ensemble with a lattice spacing of approximately
0.03 fm [90] (set 19). The value the fit obtains for this ensemble at 2 GeV is 0.99297(21) and at
3 GeV is 0.99188(18). As these have been determined from this fit, they now do not have to be
directly calculated on set 19.

3.3.9 Conclusions: ZV

We have examined vector current renormalisation with staggered quarks in various momen-
tum subtraction schemes and compared the results to determinations from form factor methods
which have different sources of systematic uncertainty. We have explicitly demonstrated the vec-
tor Ward-Takahashi identity with the HISQ action and used this to construct the correct lattice
definition of the conserved vector current renormalisation in the RI-SMOM scheme. We have also
calculated ZV for the local vector and 1-link vector currents in the RI-SMOM, RI-SMOMγµ and
RI′-MOM schemes and demonstrated that nonperturbative contributions are necessary to under-
stand the behaviour of the RI′-MOM conserved current renormalisation. We have demonstrated
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Figure 3.26: Local vector current renormalisation in the RI-SMOM scheme. This fit is given by
Eq. 3.52 and includes discretisation effects and an expansion in the strong coupling (in the MS
scheme) evaluated at 1/a. All the data points shown are included in the fit but only the 2 and
3 GeV fit lines are drawn.

the consistency of the results in these momentum subtraction schemes with those obtained, at
much greater computational cost, through form factor methods.

We have also performed a preliminary study of QED corrections to ZV the results of which
indicate that using momentum subtraction schemes for this purpose is viable, and finite volume
effects are not an issue even at the very high precision that we have here.

The important points of this Section are:

1. The RI-SMOM scheme obeys the Ward-Takahashi identity which results in ZV = 1 for the
conserved current. This is not the case for the RI′-MOM scheme.

2. The local and 1-link vector currents in the RI-SMOM scheme can be determined fully
nonperturbatively without any unwanted nonperturbative artefacts. This has been demon-
started by comparison to renormalisation factors from form factor methods.

3. Again, this is not true of the RI′-MOM scheme. The use of ZV results from the RI′-MOM
scheme will therefore result in a systematic error in the continuum. Considering ratios of
a RI′-MOM vector current to the RI′-MOM conserved current removes these problems.

Several uses of the ZV values calculated here will be used in later Chapters in the context of
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heavyonium physics. This is a high precision area of lattice QCD application and allows for very
precise further tests.

3.4 ZT : tensor current renormalisation

Rare standard model processes, for example those that first appear at 1-loop order through so-
called “penguin” diagrams (one example of which is shown in Fig. 3.4), are objects of great interest
in searches for new physics. They are well placed at the precision frontier as the suppression of the
Standard Model contribution opens the possiblity of significant contributions from beyond the
Standard Model physics. Clearly, precise theoretical results for such processes are also desirable.
For hadronic quantities this requires the application of lattice QCD. These processes, as well as
those of several BSM scenarios, require the calculation of tensor current form factors.

An example of such a calculation is the rare semileptonic B → K decay. A first unquenched
lattice QCD calculation of this decay was performed in [91] by members of the HPQCD collab-
oration and another was given in [92] by the Fermilab lattice and MILC collaborations. The
former used HISQ light and strange quarks and NRQCD b quarks and the latter using asqtad
light and strange quarks and Fermilab b quarks. In the HPQCD calculation the tensor current
was renormalised using one-loop perturbation theory for the NRQCD-HISQ current. A 4% sys-
tematic uncertainty on the tensor form factor was then taken to account for higher order terms.
The Fermilab/MILC calculation also uses one-loop lattice perturbation theory and estimates an
O(α2

s) uncertainty.

The HPQCD collaboration has recently performed a series of B physics calculations using only
HISQ fermions by extrapolating to the physical b quark mass from lighter masses [93, 94, 95, 96].
The success of this methodology indicates the possibility of improvement on previous B → K

b s

d d

`−

`+

W+

Figure 3.27: Example of a penguin diagram for the rare decay B → K`+`−.
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calculations for which it would be important to reduce the uncertainty arising from the tensor
current renormalisation.

Here we use a partially nonperturbative procedure using the RI-SMOM scheme implemented
on the lattice as an intermediate scheme as we do for mass renormalisation in Section 6. This
produces tensor current renormalisation factors to a greater level of precision than those used
in the calculations mentioned above as the perturbative part of the calculation, the matching
to the MS scheme, is known beyond 1-loop. In order to investigate systematic effects in these
renormalisation factors we require a matrix element to multiply by ZT to give a quantity that
we can study in the continuum limit (where the regulator is removed). For this purpose we use
the J/ψ tensor decay constant fTJ/ψ as discussed in Section 4.6.

3.4.1 ZT in the RI-SMOM scheme

The tensor current renormalisation is defined in terms of Zq and the tensor vertex function
ΛT :

∫
d4xd4y1d

4y2e
iqxe−ip1y1eip2y2〈Tµν(x)ψ(y1)ψ(y2)〉. (3.53)

Here Tµν(x) is the tensor current ψ(x)σµνψ(x). The wavefunction renormalisation may be
calculated using either the incoming (p1) or outgoing (p2) quarks propagators. The tensor current
renormalisation may then be defined as

Zq
ZT

=
1

144
Tr(ΛµνT σµν). (3.54)

Renormalisation factors obtained in the RI-SMOM scheme can be matched to the more conven-
tional choice of the MS scheme through a perturbative calculation in the continuum. For the
tensor renormalisation this has been performed to two loop order7.

We also make use of some results in the RI′-MOM scheme which has a simpler kinematic setup
than the RI-SMOM scheme, with no momentum inserted at the vertex and therefore only one
quark momentum, but uses the same definitions of Zq and ZT . The RI′-MOM to MS conversion
is known through O(α3

s) for the tensor current renormalisation factor.
7A recent result [97] extends this to three loop order but is not used in this analysis.
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With the staggered quark fields χ the local tensor vertex function is

〈
χ(p′1 + πA)(∑
x

χ(x)(−1)(xµ+xν)χ(x)ei(p
′
1−p′2)x

)

χ(p′2 + πB)

〉
=

1

ncfg

∑
x,cfg

S(p′1 + πA, x)ei(p
′
1−p′2)x(−1)x0+x1+x2+x3−xµ−xν×

S†(p′2 + πB̃, x),

(3.55)

making use of γ5-hermiticity in the last line. The elements of B̃ are permuted compared to those
of B via B̃ = B +2 (1, 1, 1, 1).

On each ensemble we use 20 configurations apart from on Set 18 where only 6 configurations with
stringent gauge fixing were available. In order to compensate for a potential underestimation
of the uncertainty due to the low statistics we double the uncertainty on the ZT values on Set
18. This small number of configurations is sufficient to achieve high precision given our use of
momentum sources.

We again use the kinematic setup of Eq. 3.14 for RI-SMOM and for RI′-MOM we take the
outgoing momentum to be the same as the ingoing momentum.

3.4.2 Valence mass extrapolation

In order to obtain values at zero valence mass we yet again calculate ZT at three different quark
masses and extrapolate to 0 using a polynomial fit in am. (This is the same procudure we used
in Sections 6 and 3.3.) Fig. 3.28 shows an example of the mass dependence of ZT which is
reasonably benign.

The renormalisation of the tensor current in QCD does not depend on the masses of the fermions
in the current; the renormalisation scheme may be defined at any mass as already noted. Here we
take the bilinears in the renormalisation procedure to be non-diagonal in flavour. For staggered
(and Wilson) fermions the renormalisation factors for flavour singlet and non-singlet bilinears
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Figure 3.28: Valence mass dependence of tensor current renormalisation factors in the RI-SMOM
(upper) and RI′-MOM (lower) schemes. The values shown are for µ = 2 GeV on Set 16. Both
show reasonably mild dependence on the valence mass but the dependence is clearly less for
RI-SMOM.
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Table 3.10: The parameters of the ensembles used in the calculation of the tensor current renor-
malisation factors in the RI-SMOM and RI′-MOM schemes. On each ensemble we calculate the
renormalisation factor at three masses: the sea light quark mass and two and three times that
mass. The values are then extrapolated to zero valence mass. The lattice spacings quoted here
are sea mass independent and are the spacings for an ensemble with the same β but physical
sea quark masses. Note that this definition of the lattice spacing differs from that used for the
calculation of the mesonic properties we study here. To distinguish the two definitions we denote
the sea mass independent lattice spacing ã while the sea mass dependent spacing is denoted a.

Set β w0/ã Ls Lt amsea
l amsea

s amsea
c

2 5.80 1.1322(14) 24 48 0.00640 0.0640 0.828
7 6.00 1.4075(18) 32 64 0.00507 0.0507 0.628
14 6.30 1.9500(21) 48 96 0.00363 0.0363 0.430
16 6.72 2.994(10) 48 144 0.0048 0.024 0.286
18 7.00 3.970(15) 64 192 0.00316 0.0158 0.188

differ for the axial current at the two-loop level [98]. However, this is not the case for the tensor
current (as well as the pseudoscalar and vector currents) and we may therefore safely use the ZT
calculated here for any flavour setup of the tensor current.

3.4.3 Conversion to MS

We calculate ZT in the RI-SMOM and RI′-MOM schemes at various values of the scale µ. We
use multiple µ values in order to investigate µ dependence in ZT arising form nonperturbative
artefacts that will be suppressed by an even power of µ. In the final result these artefacts need
to be removed. An Operator Product Expansion analysis, as outlined for the scalar current in
[1], indicates that, at least through O(αs), the leading condensate contribution is the same as
that for the scalar current renormalisation.

However, there will also be µ dependence due to the tensor anomalous dimension. In order to
deal with this and present results in the conventionally used MS scheme we use the two loop
matching of [99] which gives:

Z
MS/SMOM
T (µ) = 1− 0.21517295

αMS(µ)

4π
−

(43.38395007− 4.10327859nf )

(
αMS(µ)

4π

)2

.

(3.56)
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This expression is multiplied by the ZSMOM
T numbers calculated on the lattice to give ZMS

T :
ZMS
T = Z

MS/SMOM
T ZSMOM

T . Here we will examine this series a little further with a comparison to
the corresponding matching factor for the mass renormalisation factor in RI-SMOM. The pertur-
batively calculated mass renormalisation matching factor between RI-SMOM and MS converges
rapidly to the order to which it is known, with the α2

s coefficient being significantly smaller than
the leading O(αs). This is compared to the less convergent RI′-MOM to MS conversion factor in
[99]. The situation is not the same for the tensor current renormalisation conversion. Evaluating
Eq. 3.56 for nf = 4 we find

1− 0.0171229αs − 0.170795α2
s. (3.57)

This can be compared with the RI′-MOM calculation which is done through O(α3
s) [100]

1− 0.1976305α2
s − 0.4768793α3

s. (3.58)

Note that in Landau gauge the αs term vanishes here. This series is similar to Eq. 3.57 and so
it might be expected that the α3

s coefficient in the SMOM conversion is similar in value. Taking
αs(2 GeV) ' 0.3 the order α2

s term in the RI-SMOM matching is approximately 3 times the
order αs term and for the RI′-MOM matching the α3

s term is of approximately the same size as
the α2

s term. This may raise some concerns about the impact of the truncation of the RI-SMOM
matching factor.

We allow for an α3
s term in our fit that can in principle account for the missing next term in the

series, but we also perform an analysis using RI′-MOM ZT values as more of the series is known.
This provides a check on the control of the uncertainty arising from the matching to MS.

We may then run the values of ZMS
T obtained at different values of µ, using the MS running,

to the same reference scale µref . The only remaining µ dependence should then be purely from
nonperturbative effects, predominantly condensates (and possibly some very slowly varying de-
pendence from higher order terms in the running or matching). We choose a reference scale µref
of 2 GeV. We will also present results for ZT with the renormalisation scale chosen to be the b
quark running mass in the MS scheme, mb(µ = mb).

The values of the two-loop conversion from RI-SMOM to MS at the value of µ relevant for our
analysis are given in the second column of Table 3.11. The values of the running to 3 GeV are
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given in the third column. As all these values result from a perturbative expansion in αs there
is a 100% correlation between all the values in Table 3.11.

We collect all the RI-SMOM and RI′-MOM results in Tables 3.12 and 3.13 respectively along
with the correlation matrix for the different µ values on each ensemble. These correlations are,
in general, quite strong for the RI-SMOM case but less so for RI′-MOM, possibly due to the
slightly stronger valence mass dependence which is fit away.

Table 3.11: Values for the conversion factor between RI-SMOM and MS and the MS running to
a scale of 2 GeV for different values of µ. The three-loop tensor anomalous dimension can be
found in [100]. All of these values are correlated through their use of a common determination
of αs [27].

µ [GeV] Z
MS/SMOM
T (µ) R(3 GeV, µ)

2 0.97913(65) -
3 0.98458(38) 1.03974(94)
4 0.98711(28) 1.0636(14)

3.4.4 Strategy for condensate corrections

In order to use these tensor current renormalisation factors reliably the effects of condensates
must be understood and accounted for. In order to properly assess this we need to be able to
examine the continuum limit which requires a matrix element with which to multiply ZT . We
may then perform a fit similar to that done in Chapter 6 to determine quark masses that allows
an estimate of the condensate contribution which can then be accounted for. This analysis is
performed using the J/ψ tensor decay constant in Chapter 4.
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Table 3.12: RI-SMOM ZT value on the ensembles in Table 3.10 at different µ values along with
the correlation matrices for these different µ values on a given Set. In most cases it can be seen
that these correlations are reasonably strong.

Set µ = 2 GeV µ = 3 GeV µ = 4 GeV correlation
2 1.07293(18) - - -

7 1.10035(28) 1.036117(92) -
(

1 0.824
0.824 1

)
14 1.13250(14) 1.064991(56) 1.030967(30)

 1 0.560 0.375
0.560 1 0.861
0.375 0.861 1


16 1.16641(40) 1.09808(12) 1.061844(57)

 1 0.828 0.866
0.828 1 0.896
0.866 0.896 1


2.04 2.98 4 correlation

18 1.1791(17) 1.11629(64) -
(

1 0.925
0.925 1

)

Table 3.13: RI′-MOM equivalents of the RI-SMOM values in Table 3.12. The correlations are
not as strong in this case, perhaps because of the slightly larger valence mass dependence of the
RI′-MOM results.

Set µ = 2 GeV µ = 3 GeV µ = 4 GeV correlation
2 1.08435(42) - - -

7 1.10970(58) 1.04631(16) -
(

1 0.637
0.637 1

)
14 1.13949(47) 1.06979(13) 1.037388(39)

 1 0.384 0.393
0.384 1 0.609
0.393 0.609 1


16 1.17449(71) 1.10045(25) 1.063735(93)

 1 0.103 0.155
0.103 1 0.337
0.155 0.337 1


2.04 2.98 4 correlation

18 1.1845(29) 1.1181(14) -
(

1 0.234
0.234 1

)
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3.5 Conclusions

In this Chapter momentum subtraction schemes have been shown to offer computationally cheap
and precise current renormalisation factors as long as unwanted nonperturbative effects are
understood and controlled. This included the first applications of the RI-SMOM scheme to
staggered quarks.

The mass renormalisation factors described in Section 3.2 will be used in Chapter 6 as a major
component in high sub-percent determinations of the strange and charm quak masses. The effects
of electromagnetism on that charm quark mass determination will also be calculated using the
QED corrections to Zm given in Section 3.2.6. The local vector current renormalisation factors
given in Section 3.3 will be used for various calculations in Chapters 4 and 5: the decay constants
of vector meson and connected contributions to the hadronic vacuum polarisation contribution
to the anomalous magnetic moment of the muon.

The success of these programs indicates the potential future utility of nonperturbative renormal-
isation in momentum subtraction schemes for future calculations with the HISQ action.



Chapter 4

Properties of Ground State
Charmonium

4.1 The charmonium spectrum

The spectrum of cc mesons is very well determined experimentally which makes it a promising
landscape to perform precision lattice QCD studies. This is done below the open charm threshold
at which decays to heavy-light mesons become kinematically allowed. Hadronic decays are often
not allowed for in lattice calculations as they are typically restricted to connected correlation
functions. This is controllable when only suppressed decays via annihilation are allowed, leading
to particles with small widths which may be treated as stable.

A section of the low-lying charmonium spectrum is shown in Fig. 4.1. Pseudoscalar particles are
given in the first column, vectors in the second and axialvectors in the third. One noticeable
feature of this spectrum is that the splitting between different states is much smaller than the
overall scale. This implies that dynamical scales (i.e. quark velocities) are considerably lower
than the mass scales associated with the quarks implying that the quarks in the mesons are
typically nonrelativistic [101].

The lines to the right of the ηc and J/ψ indicate the relative sizes of their widths. Both are
dominated by decays to hadrons. The radiative ηc decay ηc → γγ only constitues 1.57(12)×10−4

times the total and the J/ψ decay to an e+e− pair partial width is 5.971(32)% of the total width
with a similar contribution from decays to µ+µ−. Clearly the J/ψ is much narrower. The larger

113
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Figure 4.1: The charmonium spectrum below the open charm threshold. Moving from left to
right the first five columns are pseudoscalars, vectors, axialvectors, scalars and spin 2. The bars
to the right indicate the relative widths of the particles.

ηc width is due to the availability of a decay to two gluons. This decay is not allowed in the
calculations presented here. In [39] a perturbative expression is used to relate the mass shift in
the ηc due to annhilation to gluons to the hadronic width of the ηc:

∆Eηc = Γ(ηc → hadrons)

(
ln(2)− 1

π
+O(αs)

)
' −3.1 MeV. (4.1)

Lattice calculations of the ηc mass will be wrong if they are missing this effect, which ours,
and most others, do. In order to be able to see the effect of missing this contribution the
ηc mass needs to be determined to an accuracy of 1 MeV. Rather than look at the ηc mass
directly, we examine the hyperfine splitting: the difference between the J/ψ and ηc masses.
The only lattice computation of the disconnected correlation functions required to calculate this
effect nonperturbatively have been done in the quenched approximation [102]. These gave an
estimate of the effect of +1-4 MeV, which is of opposite sign but similar magnitude to Eq. 4.1. A
calculation of the hyperfine splitting with enough precision to separate the lattice result from the
experimental value may help to resolve this issue and we provide such a calculation here.

Heavy quarkonia (qq) systems are challenging to tackle using perturbative means. Obviously any
mesonic system cannot be studied directly through perturbative QCD due to the nonperturbative
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nature of the confinement of the quarks within the meson but in some cases effective field theories
may be used to provide some physical insight and predictions.

For pseudoscalar mesons composed of light quarks the approximate, sponataneously broken,
chiral symmetry of QCD allows the construction of chiral perturbation theory. For heavy-light
mesons the decomposition of the momentum of the meson according to

pµ = mQv
µ + kµ, (4.2)

where mQ is the heavy quark mass, vµ is the 4-velocity of the meson and kµ � mQ gives rise
to heavy quark effective theory (HQET) which, among other things, gives the form of the heavy
quark mass dependence of various mesonic properties. Both of these methods fail for heavyonium
because they consist of two heavy valence quarks and no valence light quarks.

Some analysis can be performed within the NRQCD framework [103] which is able to make
more precise (and field theoretic) statements than potential models, although for charmonium
v2/c2 ' 0.3 and NRQCD is difficult to properly control. Given the discussion preceeding this
Chapter, it is clear that lattice QCD (with relativistic quarks) offers by far the most powerful
method of studying the properties of heavyonium. This relies on overcoming the difficulties
presented by the use of large bare masses which can render discretisation effects uncontrollable.
The HISQ action was designed with such applications in mind [39]. The result is that the
charm quark mass can be reached on the full range of MILC HISQ ensembles with visible but
controllable discretisation effects. This Chapter presents the most precise theoretical study to
date of charmonium ground state properties, including the hyperfine splitting and J/ψ decay
constant (which is related to the partial width of the J/ψ to an e+e− pair). We will not
study excited meson masses or their properties since these analyses need different techniques
[104].

4.2 Charmonium on the lattice

The precision of lattice QCD calculations has been steadily improving for some time and is now
approaching, or has surpassed, the 1% level for multiple quantities. In order to ensure reliability
at such precision all percent level, and some subpercent level, systematics must be understood.
An example calculation is provided by the lattice QCD effort to produce a competitive deter-
mination of the hadronic vacuum polarisation contribution to the anomalous magnetic moment
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of the muon aµ. New results are expected soon from the Muon g − 2 experiment at Fermilab
[105] which aims to further examine the observed tension between experiment and theory seen
by the Brookhaven E821 experiment [9]. Current lattice calculations have reached the precision
of a few percent for aµ and the issue of addressing electromagnetic corrections has become the
focus of substantial efforts.

Using the highly improved staggered quark (HISQ) action [39] enables fully relativistic calcula-
tions with charm quarks that have controlled discretisation effects. Combined with the availabil-
ity of precise experimental results for the properties of the lowest lying charmonium states, this
makes the charmonium system a good place to study systematic effects of lattice calculations.
Some of these effects, such as electromagnetism, are expected to be suppressed in a net neutral
environment which allows for their controlled study. We can also make use of charmonium cor-
relators to investigate the charm connected contribution to the anomalous magnetic moment of
the muon acµ. While this is a small component it allows for an initial study of electromagnetic
effects, to be extended in the future.

By using the HISQ ensembles generated by the MILC collaboration we present the first charmo-
nium calculations including the effects of light, strange and charm quarks in the sea. A further
improvement on previous HPQCD calculations [76, 106] is that we include multiple ensembles
with physical sea light quarks. This allows for excellent control over sea quark effects which is
vital for the precise determination of certain quantities, for example, the charmonium hyperfine
splitting. We also employ the renormalisation method explored with HISQ quarks in Section 3.3
and [2]. This leads to a vast improvement over the uncertainty coming from renormalisation in
[76] for quantities involving the vector current. We also include the effects of electromagnetism
on the valence quarks. We do this using “quenched QED” where only the QED effect on the
valence quarks is included.

An issue that typically requires some consideration in lattice studies of QED is the presence of
finite volume effects. These effects are suppressed by some power of the lattice extent rather
than the exponential suppression typical in QCD quantities. While the power law suppression
is expected to be greater in systems that are net neutral relative to those that carry some total
charge we employ sets of lattices designed for dedicated finite volume studies to test for any
visible effects.

Throughout we will refer to two types of calculation. Those referred to as “pure QCD” or
just “QCD” are standard lattice QCD calculations. Those referred to as “QCD+QED” have
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a U(1) field multiplied into the previously generated SU(3) configuration. The field multiplied
in depends on the charge of the valence quark. In this setup the effect of electromagnetically
charged sea quarks are neglected. To do this would require the SU(3) field to be freshly generated
as well.

4.3 Lattice setup

We perform calculations on a total of 15 ensembles that include the effects of light, strange and
charm quarks in the sea (nf = 2+ 1+ 1) all using the HISQ action [39], generated by the MILC
collaboration [42, 90]. These include lattices at 6 different β (the bare QCD coupling) values
(approximately corresponding to lattice spacing) with the finest lattice reaching a spacing of
∼ 0.03 fm. In addition we use ensembles with sea masses at the physical point on all but the two
finest spacings. We also employ three ensembles with shared parameters except for their spatial
extent in units of the lattice spacing Ls. These ensembles allow us to investigate finite volume
effects in our QED analysis where they are only suppressed by powers of the spatial extent due
to the long range nature of the electromagnetic interaction. The gluon action on these ensembles
is improved so that discretisation errors through O(αsa

2) are removed [45]. Parameters for these
ensembles are given in Table 4.1.

For our calculations in pure QCD we use 8 time sources (except on Set 19 where 4 were used),
where the propagator is obtained from solving the Dirac equation for a source consisting of
random U(1) numbers across a single time slice, to increase statistics and Ncfg configurations
given in Table 4.1. For the valence charm quark we also use the HISQ action and use valence
masses tuned in [27].

We calculate two types of connected two-point correlation functions: pseudoscalar and vector.
The pseudoscalar ground state corresponds to the ηc meson and the vector ground state to the
J/ψ. When using staggered quarks, as we are here, the different spin structures (γ matrices)
reduce to position dependent phases that are inserted in the tie-together of the propagators
and source. The two-point correlation functions are constructed from quark propagators S(x, y)
as

C(t) =
1

4

∑
x

〈(−1)η(x)Tr(S(x, 0)S†(x, 0))〉. (4.3)
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For the pseudoscalar the η(x) is always 1 and for the vector in the µ direction η(x) = (−1)xµ . The
vector correlator is constructed by averaging over all spatial polarisations µ, i.e. µ = 1, 2, 3.

For the J/ψ decay constant, vector current correlator time moments and the charm connected
contribution to the anomalous magnetic moment of the muon that we present here we use the local
vector current (ψγµψ). This lattice vector current is not conserved and requires renormalisation.
For this purpose we use the RI-SMOMmomentum subtraction scheme implemented on the lattice
as discussed in [2] and Section 3.3. In [2] it was shown that these renormalisation factors do not
suffer any nonperturbative contamination (at least at the high level of precision explored) and can
therefore be safely used in calculations such as those presented here. The QED correction to the
RI-SMOM vector current renormalisation was also given in [2] and shown to be tiny (∼ 0.01%).
We use the ZV values from [2] at a scale µ of 2 GeV which are given in Table 3.7.

It is necessary to discuss in some detail the tuning of the charm quark mass. In order to tune
the mass of the valence charm quark we would like to use bare charm mass values on each lattice
that produce a J/ψ mass equal to the experimental average, once QED effects are included in
the calculation. Here we choose the J/ψ rather than the ηc because the relatively large width
of the ηc leads to problems related to the annihilation of the ηc to gluons, which is prohibited
in the lattice calculation as we only calculate connected correlation functions. However, our
valence masses have not been tuned in this way (they in fact used a modified ηc mass [27]). We
measure our valence mass mistunings as the difference between our lattice J/ψ mass and the
experimental average. The upper panel of Fig. 4.2, where the horizontal line is the experimental
average, shows that these mistunings are all comfortably below the 1% level.

4.3.1 Two-point correlator fitting

Here we are largely interested in the ground state properties of charmonium mesons. We therefore
need to extract information, specifically the energies and amplitudes, of these ground states from
lattice QCD two-point correlators. We do this by fitting the correlators to sums of exponentials
associated with each energy eigenvalue of the system and then taking the ground state values
returned by the fit. We do this by using Bayesian priors to constrain the excited states in the
standard way [51]. The pseudoscalar correlators are fit to

CP (t) =
∑
i

APi

(
e−E

P
i t + e−E

P
i (t−Lt)

)
, (4.4)
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while the vector correlators require a more complicated form due to mixing with the opposite
parity states as a result of the use of staggered quarks:

CV (t) =
∑
i

(
AVi

(
e−E

V
i t + e−E

P
i (t−Lt)

)
+ (−1)tAV,oi

(
e−E

V,o
i t + e−E

V,o
i (t−Lt)

))
. (4.5)

In these fits it is often necessary to remove the data at low values of t, below some value tmin

where excited state contamination is most pronounced. It is also often necessary, following the
discussion in Appendix D of [53], to modify the eigenvalues of the correlation matrix to avoid
issues related to the poor estimation of the lowest lying eigenvalues of the correlation matrix
from the available data. The is done by replacing all eigenvalues below a value of cλmax, where
λmax is the largest eigenvalue, with cλmax. Our fitting procedure adjusts both tmin and c until a
good fit is achieved, using χ2 as a measure of goodness of fit. As the application of svd cut leads
to an alteration of the effective number of degrees of freedom in the fit we apply noise to the
procedure for applying the svd cut, following Section 2.8, and require that the χ2/dof be below
1. Once this is achieved that tmin and c are used in a final fit without svd-noise from which fit
results are obtained. The fit without svd-noise has a lower χ2/dof.

4.3.2 Including quenched QED

We also perform calculations in lattice QCD + quenched QED. By quenched QED it is meant
that effects due to the nonzero electromagnetic charge of the sea quarks are neglected, but
those of the valence quarks are not. For each configuration on which we perform QCD+QED
calculations we generate a momentum space photon field Aµ(k) in Feynman gauge. This choice
of gauge simplifies the generation of the photon field as the QED path integral weight takes
the form of a Gaussian with variance 1/k̂2 where k̂ = 2sin(kµ/2). The results presented here
do not depend on this gauge choice. Once the momentum space field is generated it is Fourier
transformed into position space. We have checked that these Feynman gauge Aµ fields produce
the plaquette and average link obtained from leading order perturbation theory, O(αQED). These
gauge fields are then exponentiated as exp(ieQAµ) to give a U(1) field which is then multiplied
into the QCD gauge links before HISQ smearing. Q is the quark electric charge in units of the
proton charge e.

When discussing QCD+QED and pure QCD calculations of some quantity X we will use the
notation X[QCD+QED] and X[QCD] respectively. We will often consider the ratio of the two



CHAPTER 4. CHARMONIUM PROPERTIES 121

X[QCD + QED]/X[QCD] ≡ X[(QCD + QED)/QCD] for which we will also use the shortened
notation R(0)

QED[X]. The superscript indicates that the ratio is taken at fixed valence mass. In
cases where the mass retuning required by the inclusion of QED effects is taken into account this
superscript will be dropped.

While there may in principle be a QED effect on the lattice spacing we use the same latticce
spacing for both QCD and QCD+QED calculations. The value of fπ extracted from experimental
measurements of the pion leptonic decay rate and Vud which is used to calculate w0 [46] is a pure
QCD quantity. This indicates that QED effects in this scale setting scheme will be very small.
There may be a difference introduced by the fact that [46] used light quarks tuned to the neutral
pion mass which differs from the charged pion mass by corrections quadratic in the u− d mass
difference, in the absence of QED. An uncertainty for this was included on the neutral pion
mass used in [46] based on an estimate from chiral perturbation theory. A recent calculation of
the QED effects on w0 using the Ω baryon mass by the BMW collaboration [107] showed that
the effect was small and obtained a w0 value in agreement with the one used here (which was
obtained in [46]).

An estimate of the size of QED corrections in charmonium systems can be obtained by studying
the QED effect on the J/ψ mass. (This depends on the precise tuning scheme used and the
form of the photon propagator used but it is still useful to see the sizes of the shifts we will be
dealing with.) The bottom panel of Fig. 4.2 shows the J/ψ mass for both QCD+QED and pure
QCD calculations using the amc valence mass (tuned using the ηc mass) on sets 2, 7, 14 and 16.
The vast majority of the uncertainties shown comes from the uncertainty in the lattice spacing.
The QCD+QED and QCD results at the same lattice spacing are separated on the x-axis for
clarity. All points share a correlated uncertainty from w0. The uncorrelated error is shown by
the smaller error bar, with the full error bar including the uncertainty from w0. Note that the
points at the same lattice spacing are also correlated through their w0/a value. The greatest
shift is on set 16 at ∼ 0.4%.

The top panel of Fig. 4.2 shows the pure QCD results for MJ/ψ using amc. The error bars are
displayed in the same way as for the bottom panel. This shows that, although the bare charm
masses were not tuned to the J/ψ there is still not much deviation from the physical J/ψ mass
across the ensembles. This means that we can safely use the discrepancy from the experimental
J/ψ mass as a mistuning parameter (rather than using the ηc mass). The largest mistuning is
clearly on set 19, the finest ensemble.
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Figure 4.2: Top panel: Pure QCD J/ψ masses on all 15 sets from Table 4.1 using the valence
masses in that Table. Two error bars are shown. The error can be broken into parts that are
uncorrelated between different sets and the contribution from w0 which is correlated. The outer
error bar shows the full uncertainty and the inner bar the uncertainty without the contribution
from w0. Bottom panel: The J/ψ masses on sets 2, 7, 10 and 14 with and without the inclusion of
quenched QED. On each set the same valence mass was used for both pure QCD and QCD+QED
but the points have been separated on the x-axis for clarity. The error bars are the same as for
the top panel, but note that here there is a correlation of the uncertainty from w0/a for the QCD
and QCD+QED results on each set.
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4.3.3 Fitting strategy for inclusion of QED effects

Our data sets consist of a large amount of pure QCD data on the sets in Table 4.1 with
QCD+QED data on a subset of ensembles. To be able to simultaneously account for the ef-
fects of valence mass mistuning and QED, which may be similarly sized, we choose to fit all of
this data in a single fit for each quantity we consider. The generic form of the fit we use for a
quantity X is

X(a2, Q) = x

[
1 +

5∑
i=1

c(i)a (amc)
2i + cmδ

sea,uds
m (1 + ca2,sea(aΛ)

2 + ca4,sea(aΛ)
4) +

+cm,cδ
sea,c
m + cvalδ

val,c
m ×

(1 + cval,a(amc)
2) + αQEDQ

2

{
cQED +

3∑
p=1

c
(p)
aQ(amc)

2p

+cval,Qδm,val

}]
. (4.6)

Here Λ is chosen to be 1 GeV. Here Q2 is the valence quark charge used in the calculation and
is therefore 0 in pure QCD. The pure QCD value of this fit is x while the value including QED
corrections is x[1 + αQEDQ

2cQED].

We also include the effect of mistuning of the charm mass in the sea through

δsea,cm =
msea
c −mphys

c

mphys
c

. (4.7)

The values of mphys
c are taken to be the tuned valence mass values divided by the appropriate

a. The mistunings in the light and strange quark masses in the sea is accounted for through the
mistuning measure:

δsea,udsm =
2(msea

l −mphys
l ) +msea

s −mphys
s

10mphys
s

. (4.8)

mphys
s is taken from [27] or, where not available, calculated from the mc/ms ratio given in
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[27].

Mistuning in the valence mass is measured through δval,cm which we choose to be the difference
between the J/ψ mass calculated on each lattice from the PDG experimental average [23] divided
by the PDG average:

δval,cm =
MJ/ψ −M expt

J/ψ

M expt
J/ψ

. (4.9)

All other terms are discretisation effects.

The factor of αQED multiplying the QED part of the fit function is there so that the fit parameters
are order 1; this is not a perturbative expansion in αQED. All orders of αQED are included along
with αQEDαs terms. There are some αQEDαs that are present in full QCD+QED but are not in
our full QCD + quenched QED calculation.

In order to make proper use of the correlations between our QCD+QED and pure QCD data
we calculate R(0)

QED[X] for each case using the exact same configurations and time sources on
both the pure QCD and QCD+QED runs. We then perform simultaneous fits that capture
the correlations and appropriately propagate them to the fit outputs from which we calculate
R

(0)
QED[X]. These R(0)

QED[X] values are then multiplied by the full datasets for pure QCD to feed
into the fit form of Eq. 4.6. The fit form has been constructed such that the coefficients (apart
from x) are expected to be of order 1. We therefore use priors of 0(1) for all fit parameters except
x which changes depending on the quantity X and cm,c for which we use a prior of 0±0.1.

4.4 Hyperfine splitting

The hyperfine splitting, ∆Mhyp, is simply calculated on each ensemble as the difference of the
vector and pseudoscalar ground state masses, in lattice units, divided by the lattice spacing. The
results for aMηc and aMJ/ψ in pure QCD are given in Table 4.2 along with the hyperfine splitting.
On Set 7 a purposefully mistuned valence mass of 0.643 was also used to help understand valence
mass mistuning effects. Similarly, on Set 18 another mass of 0.188 was also used. Although the
pseudoscalar and vector correlators on each configuration are correlated the fit outputs of the
vector correlator dominate uncertainties and the correlations have very little effect as a result.
We therefore neglect these correlations.
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Table 4.2: The ηc and J/ψ masses and their difference (a∆Mhyp) in pure QCD on each set in
lattice units. The pseudoscalar and vector correlator fits have been performed separately and
the correlations between aMηc and aMJ/ψ have therefore been ignored beacuse they have little
impact.

Set aMηc aMJ/ψ a∆Mhyp

1 2.331899(72) 2.42072(19) 0.08883(20)
2 2.305364(39) 2.39308(14) 0.08772(14)
3 2.287707(26) 2.37476(21) 0.08705(21)
5 1.876536(48) 1.94364(10) 0.06710(11)
7 1.848041(35) 1.914749(67) 0.066708(76)
7∗ 1.834454(34) 1.901479(66) 0.067025(74)
12 1.833950(18) 1.900441(39) 0.066491(43)
13 1.366839(72) 1.41568(16) 0.04884(17)
14 1.342455(21) 1.391390(43) 0.048935(48)
15 1.329313(18) 1.378237(51) 0.048924(54)
16 0.896675(24) 0.929860(54) 0.033185(59)
17 0.862689(22) 0.895650(37) 0.032961(43)
18 0.666818(39) 0.691981(54) 0.025163(67)
18† 0.652439(56) 0.67798(14) 0.02554(15)
19 0.496991(47) 0.516126(68) 0.019135(82)

Our aim here is to provide a precise enough calculation of the hyperfine splitting to assess the
sign and magnitude of the effect of the partial width of the ηc to gluons, which is the largest
effect missing from the lattice calculation.

The data, presented in Table 4.2 and Fig. 4.3 (along with a modified version of the fit form
Eq. 4.6), show a relatively strong dependence on the light sea quark mass on the finest lattices.
This dependence is heavily lattice spacing dependent. We allow for terms in the fit Eq. 4.6
that account for this. The significant lattice spacing dependence of the light sea quark mass
mistuning may be due to the masses of the various staggered pions in the sea varying with the
lattice spacing.

The effect of quenched QED for the ηc and J/ψ masses and the hyperfine splitting are given in
Table 4.3. The inclusion of quenched QED shifts both the ηc and J/ψ masses up by O(0.1%).
Although these mass shifts are small they can have a more substantial impact on the hyperfine
splitting, which is itself less than 10% of the J/ψ mass. The values of R(0)

QED[∆Mhyp] are shown
against (amc)

2 in Fig. 4.5 where it can be seen that discretisation effects are very small. This is
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Figure 4.3: The hyperfine splitting against (amc)
2 with the fit of Eq. 4.6. The top plot shows the

pure QCD part of the fit while the bottom gives the full fit as well as showing the QCD+QED
data points in violet. The two points at purposefully mistuned valence mass are not shown. The
black cross is the experimental average and the orange cross is the continuum extrapolation.
There is a clear difference between the continuum lattice value and the experimental value which
could be explained by the annihilation of the ηc to two gluons.

not true of the individual masses but the effect largely cancels in the difference.

All of our data are shown in Fig. 4.3 against (amc)
2 along with the fit of Eq. 4.6. The fit has a

χ2/dof of 0.59 and the QCD+QED result in the continuum is 0.1196(11) GeV. It is expected that
this result will differ from the experimental value of 0.1130(5) GeV due to the missing annihilation
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Figure 4.4: Fit results for the hyperfine splitting in QCD+QED (excluding the contribution from
the J/ψ annihilation to a photon) with various pieces of data removed. By mistuned masses it
is meant the data on sets 7 and 18 that have deliberately mistuned valence masses.

effects discussed above. Taking the (correlated) difference between the continuum value and the
x parameter of Eq. 4.6, which corresponds to the pure QCD value, we get 0.948(48) MeV. The
continuum value of RQED[∆Mhyp] is 1.00804(43). This fit was tested by removing various pieces
of data the results of which are shown in Fig. 4.4. All the results are consistent.

There is an additional, pure QED, contribution to the J/ψ mass from a diagram in which the
charm quarks annihilate into a photon which decays back into a charm and anticharm. The
contribution of this diagram is

8παQEDQ
2

M2
J/ψ

|ψ(0)|2, (4.10)

where ψ(0) is the nonrelativistic J/ψ wavefunction equal to (with this normalisation)
fJ/ψ

√
MJ/ψ/

√
6 [108]. The contribution evaluates to 0.07 MeV. This is added onto our hyperfine

splitting result with a 30% uncertainty. This gives a final result of:

∆Mhyp = 0.1203(11) GeV. (4.11)

The finite volume effects present in electromagnetic corrections to meson masses have been the
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Table 4.3: QCD+QED ηc and J/ψ masses in lattice units and the QED correction to the hyperfine
splitting, presented as the ratio of the QCD+QED result to the pure QCD one. Here only the
configurations used in the QCD+QED calculation are used for the pure QCD result in the ratio
so that correlations in the data can be used.

Set R
(0)
QED[Mηc ] R

(0)
QED[MJ/ψ] R

(0)
QED[∆Mhyp]

2 1.000450(26) 1.000750(27) 1.0086(10)
7 1.0008335(59) 1.0010742(81) 1.00774(28)
14 1.0011861(54) 1.0014044(76) 1.00739(26)
16 1.0015755(48) 1.001787(11) 1.00750(33)

subject of extensive study through several different effective field theory approaches. These finite
volume effects are organised into a power series in 1/Ls as the temporal extent is typically taken
to be infinite. To this end [109] uses scalar and spinor QED and then argues for the universality of
the leading terms (O(1/Ls) and O(1/L2

s)), both between the scalar and spinor case and for point
and composite particles. The authors of [110] use scalar NRQED and obtain the same leading
terms as [109]. These terms are proportional to the meson electric charge and are therefore not
relevant for charmonium. In [110] it is shown that the finite volume expansion for neutral mesons
starts at O(1/L4

s). We therefore expect finite volume effects to be negligible for the hyperfine
splitting calculation we present here. We do, in fact, find that the results for QED mass shifts
on Sets 6, 7 and 8 which have spatial extents ranging from 24 to 40 are completely consistent as
shown in Fig. 4.6.

4.4.1 Discussion

The experimental average of the hyperfine splitting from the PDG [23] is calculated as the dif-
ference of the separate averages for the J/ψ and ηc masses. The different experimental results
contributing to the PDG average of the two masses are shown in Fig. 4.7. For the J/ψ mass
the average is dominated by the most recent result from KEDR [111]. There are only three
experimental results used in these analyses that can independently produce values for the hyper-
fine splitting. These are the KEDR [111, 112] experiment and two LHCb analyses in different
channels [113, 114]. The LHCb result in [114] used the ηc(2S) → pp decay while the analysis of
[113] used ηc(1S) → pp. In the comparison plot of Fig. 4.8 [113] is referred to as LHCb15 and
[114] as LHCb17.

Fig. 4.8 shows a comparison of lattice QCD results for the hyperfine splitting along with the
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Figure 4.5: The QED effect on the hyperfine splitting against (amc)
2. This shows the smallness

of discretisation effects as well as the precision that can be obtained by capitalising on the
correlations between QCD+QED and pure QCD correlators. The dashed line shows the average
of the points.
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Figure 4.6: The J/ψ and ηc mass shifts from the inclusion of quenched QED presented as the
ratio of the QCD+QED value to the pure QCD value. These lines are flat indicating an absence
of visible finite volume effects.
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Figure 4.7: Comparison of different experimental results for the charmonium hyperfine splitting
as well as the PDG average. The PDG average is obtained from taking the differences of the
PDG J/ψ and ηc masses rather than from experiments that directly measure the splitting. The
ηc results represent a recent subset of those used in the PDG average. The most recent result is
from BELLE [115]. There are three different determinations from LHCb [113, 114, 116], two of
which also measured the hyperfine splitting. We include a KEDR measurement [112], two from
different BaBar analyses [117] and two from BESIII [118, 119].
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Figure 4.8: Comparison of different lattice results for the charmonium hyperfine splitting and
separate experimental results as well as the PDG average. The squares represent 2+1 lattice
results and the hexagon this 2+1+1 result. All lattice results have had uncertainties from
neglecting ηc annihilation results removed so that we expect some difference between them and
experiment. The Fermilab/MILC result using asqtad ensembles and Fermilab charm quarks was
presented in [120]. The χQCD result is from [121] and Briceño et al. is from [122].
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Table 4.4: Error budget for our final result for the charmonium hyperfine splitting including
quenched QED corrections. The uncertainties shown are given as a percentage of the final
result. The largest uncertainties are clearly due to the determination of the lattice spacing.

∆Mhyp

a2 → 0 0.13
Pure QCD statistics 0.24
QCD+QED statistics 0.08
w0/a 0.24
w0 0.87
Valence mistuning 0.02
Sea mistuning 0.06
Total 0.96

PDG average and separate experimental values. Both the Fermilab/MILC lattice result and the
previous HPQCD result lie above the experimental result although only by just over one standard
deviation. The result we present here is substantially more precise than those studies and for
the first time displays a nearly 5σ difference from the experimental average, clearly showing that
the lattice result lies above the experimental one. We interpret this as the effect of ignoring
annihilation to gluons in the calculation of the ηc mass.

The error budget for our hyperfine splitting results is given in Table 4.4. The precise meaning
of our error budgets is discussed in Section 2.7. The majority of the uncertainty is associated
with the lattice spacing determination, either from the correlated w0 uncertainty or the indi-
vidual w0/a uncertainties. We have separated out the uncertainty arising from the pure QCD
data and the R(0)

QED[∆Mhyp] values from Table 4.3 which we label “Pure QCD Statistics” and
“QCD+QED Statistics” in Table 4.4. The sea mistuning uncertainty comes from the cm coeffi-
cients in Eq. 4.6 and the valence mistuning uncertainty from the cval and cval,Q coefficients. The
a2 → 0 uncertainty is from the ca and caQ coefficients.

Given the precision of our hyperfine splitting result we can give an indication of the size of the
ηc annihilation impact on the ηc mass:

∆Mannihln
ηc = +7.3(1.2) MeV. (4.12)
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4.5 J/ψ and ηc decay constants

4.5.1 J/ψ decay constant

The decay constant of the J/ψ (fJ/ψ) is defined such that

〈0|ψγµψ|J/ψ〉 = fJ/ψMJ/ψεµ, (4.13)

where εµ is the polarisation of the J/ψ. The J/ψ is at rest and has the same polarisation as the
current. In terms of the ground state amplitude and mass obtained from the vector correlator it
is (in lattice units)

fJ/ψ = ZV

√
2AJ/ψ

MJ/ψ
. (4.14)

Here AJ/ψ is from Eq. 4.5. Although this cannot be directly measured experimentally it can be
related to the partial decay width of the J/ψ to an e+e− pair. The relation we use is (correct
up to (me/MJ/ψ)

4 correction terms from interference between initial and final state radiation
[123])

Γ(J/ψ → e+e−) =
4π

3
α2
QEDQ

2
c

f2J/ψ

MJ/ψ
, (4.15)

where Qc is the charge of the charm quark in units of the charge of the proton.

Here we give a brief summary of the experimental measurement of the J/ψ decay width to
leptons. The spread introduced by imperfect experimental resolution is typically broader than
the narrow J/ψ width. If the initial state of the experiment is e+e− then Γ(J/ψ → e+e−) can be
extracted, in principle, from the cross-section to any final state. The experimental measurement
will typically be of the cross-section for the process e+e− → e+e− or e+e− → hadrons, which
will display a resonant contribution on top of a nonresonant background. This measured cross-
section is then fitted and resonance parameters extracted. The cross-section can be written in
the form [124, 125]
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σ(s) =

∫
dx

σ0((1− x)s)

|1−Π((1− x)s)|2
F(s), (4.16)

where σ0 is the tree-level cross-section for the relevant process, F is a function that contains the
effects of initial state radiation [126] and Π is the vacuum polarisation function. The vacuum
polarisation may be used to separate out nonresonance, resonance and interference terms to the
cross-section. To do this the vacuum polarisation may be written as

Π = Π̃ + ΠR. (4.17)

The resonance contribution to Π may be written as

ΠR(s) =
3Γ0(J/ψ → e+e−)

αQED

s

M0

1

s−M2
0 + iM0Γ0

. (4.18)

Here the scale independent partial width Γ0 and mass M0 (the “bare” parameters of [124]) have
been introduced. These are related to the experimentally determined widths by Γ = Γ0/|1− Π̃|2.
This amounts to running αQED in Eq. 4.15 to the scale of the charm mass. We take αQED(mc) =

1/133.6 [127]. While the running of αQED is small it is not negligible and has a 2.5% effect on
Γ(J/ψ → e+e−) (compared to taking αQED = 1/137). The expression Eq. 4.15 is clearly tree-
level in QED which is the correct form for comparison with experimental measurements inclusive
of radiation in the final state. In principle there are corrections from interference between inital
and final state radiation but these are heavily suppressed for heavy mesons [123].

The first column of Table 4.5 gives the values of afJ/ψ/ZV in pure QCD on 13 of the sets from
Table 4.1. There are clearly reasonably large discretisation effects. In column three we give
R

(0)
QED[fJ/ψ/ZV ] on a subset of these ensembles. These values are shown in Fig. 4.9. Again these

effects are comfortably subpercent. We use the values of ZV from [2] along with a new value for
set 18. We collect these values in Table 4.6.

Our results for fJ/ψ are shown in Fig. 4.10. The χ2/dof of the fit from Eq. 4.6 is 0.43. The
agreement with experiment can clearly be seen. The sea quark mass dependence is much less than
for the hyperfine splitting. We obtain a pure QCD fJ/ψ value of 0.4096(16) GeV which becomes
0.4104(17) GeV when including quenched QED. The result for J/ψ derived from experiment
using Eq. 4.15 is 0.4064(37) GeV. Our result (both the QCD and QCD+QED results) agree with
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Table 4.5: Lattice data and electromagnetic corrections for the J/ψ and ηc decay constants. The
electromagnetic corrections for fJ/ψ do not include the corrections to ZV . We take these from
[2], using the µ = 2 GeV values except on sets 1-3 which we have calculated for this work as
0.999544(14).

Set afJ/ψ/ZV afηc R
(0)
QED[fJ/ψ/ZV ] R

(0)
QED[fηc ]

1 0.43370(55) 0.37659(18) - -
2 0.42346(48) 0.370332(91) 1.00410(64) 1.00294(50)
3 0.4163(11) 0.366127(57) - -
5 0.29411(21) 0.268331(61) - -
7 0.28835(15) 0.263727(60) 1.00341(37) 1.00326(13)
7∗ 0.28671(15) 0.262077(48) - -
12 0.285592(88) 0.261676(26) - -
13 0.19406(30) 0.18191(12) - -
14 0.191341(79) 0.179362(26) 1.00295(12) 1.002951(54)
15 0.18961(15) 0.178039(24) - -
16 0.12334(10) 0.117535(28) 1.00283(33) 1.00311(47)
17 0.119606(63) 0.114151(26) - -
18 0.091380(85) 0.087772(39) - -
18† 0.09069(29) 0.086774(59) - -
19 0.06837(11) 0.065876(49) - -

Table 4.6: Vector renormalistion constants in the RI-SMOM scheme at both 2 and 3 GeV along
with the QED correction at 2 GeV. Most of these values are taken from [2].

β ZV (2 GeV) ZV (3 GeV) RQED[ZV ](2 GeV)
5.80 0.95932(18) - 0.999544(14)
6.00 0.97255(22) 0.964328(75) 0.999631(24)
6.30 0.98445(11) 0.977214(35) 0.999756(32)
6.72 0.99090(36) 0.98702(11) 0.999831(43)
7.00 0.99203(108) 0.99023(56) -
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Figure 4.9: The electromagnetic correction to the J/ψ decay constant on lattices with different
lattice spacings.

the value obtained using twisted mass fermions and vector current renormalisation (at 2 GeV)
in the RI′-MOM scheme1 [60, 62] in [128]: 0.418(9) GeV.

We studied the volume dependence of the (QCD+QED)/QED ratio of fJ/ψ (at fixed valence
mass), again, on sets 6-8 and find that the effect is negligible (Fig. 4.11). The value of RQED[fJ/ψ]

that we extract from our fit is 1.00188(36).

We have used vector current renormalisations in the RI-SMOM scheme at a scale of 2 GeV.
The µ dependence of ZV should just be the result of discretisation effects and results using
different renormalisation scales should agree in the continuum. Here we verify that this is the
case using the 2 and 3 GeV results from [2]. There is no 3 GeV result on the very coarse lattices
as the discretisation effects are too large. We just use the pure QCD results for afJ/ψ/ZV in
the comparison of 2 and 3 GeV, shown in Fig. 4.12. There is clearly agreement between the two
results in the continuum limit (the 3 GeV result is 0.4087(18) GeV).

4.5.2 fηc

We may also calculate the decay constant of the pseudoscalar ηc. While there is not a correspond-
ing experimental measure to compare to directly, it still acts as a test of systematics in different

1This scheme was shown to suffer from O(1%) condensate contamination in the vector current renormalisation
in [2] and Section 3.3.
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Figure 4.10: The J/ψ decay constant calculated on the ensembles of Table 4.1. The upper plot
only gives the pure QCD data points and fit, while the lower plot includes the QCD+QED points
in blue which are also included in the fit shown there. There is quite a significant lattice spacing
dependence but the sea quark mass dependence is less visible than for the hyperfine splitting.
The vector current renormalisation factors determined in the RI-SMOM scheme contribute little
to the uncertainties. They also contribute relatively little to the discretisation effects.
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Figure 4.11: The volume dependence of the electromagnetic effect on the J/ψ and ηc decay
constants measured on sets 6-8. All results are perfectly consistent with each other indicating
that there is no observable finite volume effect.
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Figure 4.12: The continuum extrapolation of fJ/ψ using ZV at reference scales of 2 and 3 GeV.
The points at amc values of ∼ 0.8 are not present for the 3 GeV case as the discretisation errors
in ZV become too large. There is a clear agreement between the two continuum results.
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lattice calculations. Here we compare to the result of [106] which also used the HISQ action for
valence quarks but on the older nf = 2 + 1 ensembles including asqtad sea quarks.

The pseudoscalar decay constant is extracted from the ground state fit parameters in Eq. 4.4
through:

fηc = 2mc

√
2Aηc
M3
ηc

. (4.19)

We again use data at different valence masses to constrain the fit, as we did with the J/ψ decay
constant.

Our results, along with the continuum and mass mistuning fit, are shown in Fig. 4.13. The χ2/dof

of the fit is 0.88. The final result is fηc = 0.3981(10) GeV. Our pure QCD result is 0.3975(10)
which is in good agreement with the pure QCD result of [106]2. The value of RQED[fηc ] we
extract is 1.00166(25). This lies within a standard deviation of our value for RQED[fJ/ψ].

The volume dependence of the QED effect on fηc is, again, negligible as shown in Fig. 4.11.

4.5.3 Discussion

We now give the error budget for our final values of fJ/ψ and fηc in Table 4.7. It is clear from this
that the dominant sources of error are related to the determination of the lattice spacing.

The error budget presented here for the J/ψ decay constant is markedly different from that of
[76]. There the dominant contribution to the error was from the vector renormalisation constant
obtained using a matching between lattice time moments and high order perturbative QCD
[129]. Here that error is substantially reduced by using the vector current renormalisations of
[2]. Again, the largest contributions come from w0 and the w0/a values.

Due to a cancellation of w0 and discretisation effects, the ratio of the vector and pseudoscalar
decay constants can be determined to very high precision. This ratio is plotted in Fig. 4.14
with a fit of the form Eq. 4.6 which gives a χ2/dof of 0.62 and a continuum value of fJ/ψ/fηc =
1.0284(19). There is also a significant cancellation of QED effects. The shape of the curve reflects
that the discretisation effects are not dominated by O(a2).

2In [106] the effects from neglecting the charm quark in the sea are estimated to be O(0.01%) which is negligible.
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Figure 4.13: The decay constant of the ηc in pure QCD (upper) and QCD+QED (lower). The
fit form is the same as was used for fJ/ψ. The discretisation effects are noticeably smaller than
in the J/ψ case.
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Table 4.7: Error budget of the J/ψ and ηc decay constants. In both cases the largest uncertainty
is contributed by the uncertainty on the value of w0, as has also been seen to be the case for the
hyperfine splitting. The contributions from different sources are very similar between the two
decay constants. The most significant difference between the error budgets is the presence of ZV
in the J/ψ case. This uncertainty has been greatly reduced from the work of [76] by using the
RI-SMOM results of [2].

fJ/ψ fηc
a2 → 0 0.09 0.03
ZV 0.05 -
Pure QCD Statistics 0.12 0.05
QCD+QED Statistics 0.05 0.02
w0/a 0.11 0.08
w0 0.34 0.24
Valence mistuning 0.05 0.01
Sea mistuning 0.01 0.00
Total 0.40 0.26
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Figure 4.14: Ratio of the vector and pseudoscalar decay constants with continuum extrapolation
fit.



CHAPTER 4. CHARMONIUM PROPERTIES 142

4.6 J/ψ tensor decay constant

The J/ψ tensor decay constant is defined analogously to fJ/ψ. It involves the matrix element of
a tensor current in the following way:

〈0|ψσµνψ|J/ψ〉 = ifTJ/ψ(µ)(εµpν − ενpµ). (4.20)

εµ is the polarisation vector of the J/ψ. Here the decay constant is µ dependent, unlike the vector
decay constant. We can therefore extract fTJ/ψ from the two-point tensor correlation function
constructed as

CT (t) =
1

4

∑
x

〈(−1)ηT (x)Tr(S(x, 0)S†(x, 0))〉, (4.21)

where ηT (x) is a position dependent phase remnant of σµν resulting from the use of staggered
quarks. This is the same phase as that appearing in Eq. 3.55. We take ν to be in the temporal
direction and average µ over spatial directions. We compute this on a set of ensembles overlapping
with those in Table 3.10 summarised in Table 4.8.

There is no standard model observable that can be related to the J/ψ tensor decay constant. A
sum rules calculation of fTJ/ψ as well as of the ratio fTJ/ψ/fJ/ψ was presented in [128] along with a
lattice calculation, and we will compare to their results here. fTJ/ψ is required for the calculation
of certain beyond the standard model lepton flavour violating vector meson decay rates [130].
The tensor current requires renormalisation so that fTJ/ψ can be calculated.

The values of afTJ/ψ extracted from our two point correlator fits on the ensembles in Table 4.8
are given in Table 4.9.

A major goal of the analysis we present here is to investigate the size of nonperturbative effects
arising from ZT and if possible propose a way to remove, or account for, them. We do this by
fitting a physical quantity: the tensor decay constant at a scale of 2 GeV. This is obtained by
taking the product of the renormalised J/ψ tensor decay constant fTJ/ψ (calculated by multiplying
lattice results by ZSMOM

T (µ) from Table 3.12 or Table 3.13), the perturbative MS matching
discussed in Section 3.4 and the running to 2 GeV in the MS scheme. The fit form used is:
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Table 4.8: Parameters of the ensembles on which we calculate the J/ψ tensor decay constant.
Some of these ensembles are the same as those in Table 3.10, but here we use a different definition
of the lattice spacing that depends on the sea quark masses.

Set w0/a Ls Lt amsea
l amsea

s amsea
c amval

c

2 1.1272(7) 24 48 0.0064 0.064 0.828 0.873
5 1.3826(11) 24 64 0.0102 0.0509 0.635 0.664
7 1.4029(9) 32 64 0.00507 0.0507 0.628 0.650
12 1.4149(6) 48 64 0.00184 0.0507 0.628 0.643
14 1.9330(20) 48 96 0.00363 0.0363 0.430 0.439
15 1.9518(7) 64 96 0.00120 0.0363 0.432 0.433
16 2.8960(60) 48 144 0.0048 0.024 0.286 0.274
18 3.892(12) 64 192 0.00316 0.0158 0.188 0.194

Table 4.9: Data for the J/ψ tensor decay constant on each of the ensembles in Table 4.8 in lattice
units before multiplication by the tensor renormalisation factor and the ratio of the tensor and
vector J/ψ decay constants (again, before renormalisation). The vector decay constant numbers
can be found in Table 4.5 in Section 4.5.

Set afTJ/ψ/ZT (ZV f
T
J/ψ)/(ZT fJ/ψ)

2 0.3741(12) 0.8837(30)
5 0.25754(15) 0.87548(81)
7 0.25212(35) 0.8743(13)
12 0.24977(36) 0.8747(13)
14 0.165404(96) 0.86433(62)
15 0.16396(13) 0.86386(78)
16 0.105293(93) 0.8535(10)
18 0.07685(19) 0.8410(22)

fTJ/ψ(µref , µ, a) = fTJ/ψ(µref)×
[
1 +

∑
n

c(n)amc
(amc)

2n+

hsea`
δseam`

mphys
s

+ hseac
δseamc

mphys
c

]
×[

1 +
∑
i

c(i)aµ(ãµ/π)
2i + cαα

3
MS

(µ)

+
∑
j

c
(j)
condαMS(µ)

(1 GeV)2j

µ2j

]
.

(4.22)
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Figure 4.15: Continuum extrapolation of the J/ψ tensor decay constant in the MS scheme at a
scale of 2 GeV using tensor current renormalisation in the RI-SMOM scheme. Three different
values of the renormalisation scale µ, all converted to MS and run to a reference scale of 2 GeV,
are used to allow nonperturbative µ dependence to be fit. These three different µ values are
shown as different coloured lines. The purple line is 2 GeV, the blue 3 GeV and the red 4 GeV.
The black hexagon at amc = 0 is the physical result for fTJ/ψ(2 GeV) obtained from the fit (with
the condensate pieces removed). The square shows the ETMC result [128] for the J/ψ tensor
decay constant.

ã refers to the lattice spacing for a given β with physical sea quark masses. The first brack-
eted term captures the lattice spacing and sea mass dependence of fTJ/ψ/ZT . The second term
contains discretisation effects, condensate terms and a term to account for the next term in the
perturbative matching to MS. This is designed to capture the lattice spacing and µ dependence
of ZT . This is similar to the fit used in Chapter 6 to determine quark masses.

Our data using the RI-SMOM ZT from Section 3.4 with the fit of Eq. 4.22 are shown in Fig. 4.15.
The χ2/dof is 0.19 giving a continuum value with condensate contributions removed of 0.3912(37)
GeV. The black hexagon shows the result for the fTJ/ψ fit parameter in Eq. 4.22. This has both the
discretisation effects and condensate contributions removed. This is clearly lower than the value
you obtain from simply taking the continuum limit of the 2 GeV (purple) line. This indicates the
necessity of performing the calculation at multiple values of µ in the RI-SMOM scheme before
running all of the results to a reference scale, in this case 2 GeV. The difference between the black
hexagon and the lines for the different µ values is then a correction that needs to be applied to
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Figure 4.16: The “correction” to the tensor current renormalisation designed to account for
nonperturbative effects that must be removed defined in terms of a subset of the fit posteriors of
the fit shown in Fig. 4.15. This is the absolute correction. If the corrected value of ZT is denoted
Ztrue
T and the uncorrected value Zraw

T then Ztrue
T = Zraw

T − “correction”.

the ZT values to remove the condensate contamination. We define a µ dependent subtraction to
apply to the values of ZT which acts to remove the remaining µ dependence once all ZT values
have been run to the same reference scale µref . This is parameterised in Eq. 4.22 by cα and c(j)cond.
It is difficult for the fit to separate these different contributions and as a result the individual
coefficients are not well determined. However, if all the terms are combined, taking account of
the correlations between the fit parameter outputs, then significant values can be seen across the
µ range. These additive corrections are shown in Fig. 4.16 against µ2. It can be seen that the
corrections are at the 2-3% level for µ = 2 GeV.

We also examine fTJ/ψ using a tensor current renormalisation obtained in the RI′-MOM scheme.
In this case we use the conversion to MS in Eq. 3.58 and change the α3

s term in Eq. 4.22 to α4
s

as in this case we use an MS matching accurate through O(α3
s). This fit is shown in Fig. 4.17

and the final continuum result agrees with that given by RI-SMOM renormalisation factors. The
χ2/dof of this fit is 0.36 giving a final result for fTJ/ψ(2 GeV) of 0.3864(38) GeV. This indicates
that allowing an α3

s term in the continuum extrapolation is sufficient to absorb the potential
problems of unknown higher order terms in the perturbative matching to MS in the RI-SMOM
case. It can be seen in Fig. 4.17 that the 2 and 3 GeV values are significantly further from each
other than the 3 and 4 GeV points. This is reflected in a large coefficient for the 1/µ4 condensate
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Figure 4.17: Continuum extrapolation of the J/ψ decay constant using a nonperturbative renor-
malisation of the tensor current in the RI′-MOM scheme. Multiple values of the renormalisation
scale µ have been used so that µ dependent nonperturbative effects can be removed in the fit.
The result is in agreement with that using RI-SMOM renormalisation (see Fig. 4.15). The colours
and shapes denote the same things as in Fig. 4.15.

term in the fit of -1.33(26). The size of the corrections needed for the RI′-MOM scheme is shown
in Fig. 4.18 where it can be seen that the correction for 2 GeV is similar to, although more
uncertain, than for the RI-SMOM case.

As the discretisation effects in fTJ/ψ are similar to those in fJ/ψ on the same set of ensembles,
as presented in Section 4.5, we may be able to extract the ratio of the two to a higher precision
than can be obtained from the individual fits. (We neglect any correlations between the decay
constants on each lattice ensemble.) We may also be able to see a clearer indication of the size
of nonperturbative effects in the ratio. This ratio is also presented in [128] using both lattice
and sum rules methods.

We show this ratio in Fig. 4.19 using ZT in the RI-SMOM scheme. We use the fit of Eq. 4.22
and obtain a result for the ratio in the continuum and absent of nonperturbative effects of
0.9627(62). This displays a 2σ with the lattice QCD result of [128], although both are below 1,
i.e. the tensor decay constant is lower than the vector decay constant. In Fig. 4.19 two fit lines
are shown for each value of µ. This is to display the ãµ dependence of the data. The dashed lines
indicate the value of the fit function when ãµ = 0. This figure more clearly shows the presence
of nonperturbative effects that depend on µ. As discussed in [2] the RI-SMOM ZV contains no
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Figure 4.18: The same as Fig. 4.16 but using a tensor current renormalisation in the RI′-MOM
scheme.

(at least visible) nonperturbative contamination due to the protection of the Ward-Takahashi
identity. Therefore the condensate and α3

s terms returned by the fit to the ratio of the vector
and tensor J/ψ decay constants should agree with those from the fit to just the tensor decay
constant. We find that this is the case for each coefficient individually and for the ZT correction
factor obtained from their combination which we show for the ratio fit in Fig. 4.20.

We give an error budget for our result for the decay constant ratio fTJ/ψ/fJ/ψ in Table 4.10. The
largest source of uncertainty, other than statistical precision of the lattice decay constant data,
comes from the α3

s term that allows for the effects of truncating the perturbative matching from
RI-SMOM to MS.

4.6.1 Final ZT values

Following the discussion presented above we run all of our results, after converting to MS, to
a common scale of 2 GeV and then subtract a correction that depends on µ to be applied to
the ZT values of Section 3.4. The scale of 2 GeV allows us to compare directly to the results
of [128]. However, another scale is useful when computing form factors for semileptonic B
decays. In order to extract phenomological observables, for example the angular distribution
of the differential decay rate of a B to some final state, a weak Hamiltonian in which the W
boson degrees of freedom are integrated out is utilised [91]. Observables are then calculated as
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Figure 4.19: Continuum extrapolation of the ratio of the tensor and vector J/ψ decay constants
using renormalisation factors in the RI-SMOM scheme. Again, purple points and lines show µ = 2
GeV data and fit lines, blue are 3 GeV and red 4 GeV. The bold dashed lines are continuum
extrapolations at each µ value with the condensate terms left in. The black hexagon is the
continuum extrapolation with condensates removed.
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Figure 4.20: Nonperturbative “correction” calculated from a fit to the ratio of the J/ψ vector and
tensor decay constants using renormalisation factors from the RI-SMOM scheme. This agrees
with Fig. 4.16 as expected from the lack of condensate contributions to the RI-SMOM vector
current renormalisation.
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Table 4.10: Error budget for the ratio of the J/ψ vector and tensor decay constants. The
“Missing α3

s” and “Condensates” error contributions come from the terms in the fit that the ZT
“correction” discussed in the text. Combined, these give the largest contribution to the total
uncertainty.

fTJ/ψ/fJ/ψ
(amc)

2 → 0 0.11
(ãµ)2 → 0 0.28
ZT 0.13
ZV 0.14
Missing α3

s term 0.33
Statistics 0.41
Sea mistuning 0.04
Condensates 0.05
Total 0.64

functions of products of the form factors and the Wilson coefficients of the weak Hamiltonian.
These Wilson coefficients are scale dependent and have been calculated at a scale equal to the b
mass in the MS scheme mb(mb) in [131].

In Table 4.11 we give both uncorrected and corrected results for ZT in the MS scheme at a scale
equal to the b quark running mass calculated from fully nonperturbative values of ZT in the
RI-SMOM scheme at 2 and 3 GeV. We use a notation ZT (µSMOM | µMS) where µSMOM is the
scale at which the RI-SMOM calculation was performed and µMS is the final scale at which the
MS result is presented. We also give the correlations between these numbers for the corrected
case where the source of these correlations is complicated by the addition of terms from a fit to
the data.
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Table 4.11: ZT values in the RI-SMOM scheme run to a renormalisation scale of the b quark
running mass in the MS scheme. The notation ZT (µ1|µ2) indicates that ZT has been calculated
in the RI-SMOM scheme at a scale of µ1 and then converted to the MS scheme and run to a
scale of µ2. The first set of results are given without any correction for nonperturbative effects.
The second set have a correction applied calculated from continuum fits to the J/ψ vector to
tensor decay constant ratio. The superscript c indicates that these are corrected values, i.e. the
correction to remove condensate contamination has been applied.

Set ZT (2 GeV | mb) ZT (3 GeV | mb)

2 0.9846(20) -
7 1.0097(21) 0.99408(87)
14 1.0392(21) 1.02178(89)
16 1.0704(22) 1.05353(93)
18 1.0820(27) 1.0703(11)
Set ZcT (2 GeV | mb) ZcT (3 GeV | mb)

2 0.9623(51) -
7 0.9874(51) 0.9834(39)
14 1.0169(51) 1.0111(39)
16 1.0480(51) 1.0428(39)
18 1.0624(49) 1.0596(39)

Table 4.12: Correlation matrix of the corrected ZT values from Table 4.11. These correlations
are large in part due to the correlation of the perturbative matching and running calculations
that have been applied.

(2,2) (7,2) (14,2) (16,2) (18,2) (7,3) (14,3) (16,3) (18,3)
(2,2) 1.0 0.99815 0.99895 0.99625 0.95044 0.96298 0.96425 0.96478 0.94788
(7,2) 0.99815 1.0 0.99835 0.99582 0.95032 0.96148 0.96186 0.96247 0.94578
(14,2) 0.99895 0.99835 1.0 0.99702 0.95174 0.95941 0.96099 0.96149 0.94410
(16,2) 0.99625 0.99582 0.99702 1.0 0.94886 0.95649 0.95798 0.96050 0.94215
(18,2) 0.95044 0.95032 0.95174 0.94886 1.0 0.92363 0.92517 0.92586 0.95432
(7,3) 0.96298 0.96148 0.95941 0.95649 0.92363 1.0 0.99964 0.99923 0.98721
(14,3) 0.96425 0.96186 0.96099 0.95797 0.92517 0.99964 1.0 0.99945 0.98752
(16,3) 0.96425 0.96186 0.96099 0.95797 0.92517 0.99923 0.99945 1.0 0.98725
(18,3) 0.96478 0.96247 0.96149 0.96050 0.92586 0.98722 0.98752 0.98725 1.0
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4.7 acµ and vector time moments

With new results expected from the Fermilab g− 2 experiment soon there has been a concerted
effort by the lattice community to understand and control systematic effects, in particular, in the
calculation of the hadronic vacuum polarisation contribution to the anomalous magnetic moment
of the muon. Classicaly the magnetic moment of the muon is 2, so the anomaly is presented
as a difference from this value aµ ≡ g − 2. The hadronic vaccum polarisation contribution to
this value can be separated into different flavour contributions. The charm quark contribution
is denoted acµ. The first calculation of acµ is from [77]. Following [77] we can extract acµ from
the charmonium vector current correlators by calculating the current-current correlator time
moments:

Gn = Z2
V

∑
t

tnCV (t). (4.23)

The t here runs from −T/2 to T/2 rather than from 0 to T 3. The charm contribution to the
four lowest moments, n = 4, 6, 8, 10, can be compared to values extracted from experiment using
high order QCD perturbation theory. The perturbation theory is needed to subtract the u, d, s
contribution from experimental e+e− → hadrons cross-section data. In [129] these are defined
as

Mk ≡
∫

ds

sk+1
R(s) (4.24)

=
12π2

k!

(
∂

∂q2

)k
Π(q2)|q2=0,

where Π(q2) is the vacuum polarisation function. (R(s) is the charm quark contribution only.)
These are related to the time moments defined in Eq. 4.23 by

Gexp.
n =

(2k + 2)!Mk

12π2Q2
. (4.25)

The analysis of [129] uses a dispersion relation derived from the optical theorem to relate deriva-
3The python package https://github.com/gplepage/g2tools is used to calculate time moments and acµ.

https://github.com/gplepage/g2tools
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Table 4.13: Vector current time moment data on the ensembles in Table 4.1. The values given
are (Gn/Z

2
V )

1/(n−2) in lattice units.
Set n = 4 n = 6 n = 8 n = 10

1 0.389670(40) 0.949791(62) 1.410524(75) 1.815497(88)
2 0.396283(22) 0.961260(35) 1.425498(42) 1.833868(49)
3 0.400779(15) 0.969045(24) 1.435671(28) 1.846369(33)
5 0.511194(12) 1.164351(19) 1.701040(26) 2.184698(34)
7 0.5206344(85) 1.181180(14) 1.724311(19) 2.214708(24)
7∗ 0.5254224(87) 1.189687(14) 1.736041(19) 2.229780(25)
12 0.5254560(47) 1.1897785(76) 1.736217(10) 2.230069(13)
13 0.70981(13) 1.53941(21) 2.24688(27) 2.90799(32)
14 0.723760(11) 1.566115(20) 2.285959(27) 2.959283(36)
15 0.731489(11) 1.580936(18) 2.307649(25) 2.987715(32)
16 1.070736(33) 2.276543(58) 3.355470(80) 4.37418(10)
17 1.114660(44) 2.366266(78) 3.48827(11) 4.54699(14)
18 1.431378(91) 3.03675(16) 4.49434(22) 5.86769(29)
18† 1.46556(17) 3.10710(31) 4.59734(43) 6.00058(56)
19 1.91475(23) 4.06357(42) 6.02429(55) 7.86806(66)

Table 4.14: (QCD+QED)/QCD values for the time moments on a subset of the ensembles in
Table 4.1. The values given are (Gn/Z

2
V )

1/(n−2) [(QCD+QED)/QCD].
Set R

(0)
QED[n = 4] R

(0)
QED[n = 6] R

(0)
QED[n = 8] R

(0)
QED[n = 10]

2 0.999954(26) 0.999910(17) 0.999858(15) 0.999810(15)
7 0.9998455(15) 0.9997169(11) 0.9995987(10) 0.9994908(11)
14 0.999554(24) 0.999312(20) 0.999124(20) 0.998995(22)
16 0.999096(59) 0.998767(49) 0.998584(48) 0.998489(48)

Table 4.15: The first four time moments calculated from our lattice data in the continuum limit
compared with the results extracted from experiment in [129]. Agreement at the level of a single
standard deviation is seen for all time moments.

n G
1/(n−2)
n (Gexp.

n )1/(n−2) RQED

[
G

1/(n−2)
n

]
4 0.31715(49) 0.3142(22) 1.00106(13)
6 0.67547(84) 0.6727(30) 1.00069(11)
8 1.0041(11) 1.0008(34) 1.000466(99)
10 1.3117(13) 1.3088(35) 1.000370(96)
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tives of the vacuum polarisation function to the e+e− → hadrons cross-section. As the data for
σ(e+e− → hadrons) that are used are inclusive of photons in the final state this should include
all the internal QED contributions to vacuum polarisation bubbles. Judging by the good agree-
ment between previously calculated pure QCD time moments [76] and those from experiment
we expect QED effects to be small.

In order to compare Gn determined from the lattice and from experiment we must take the
continuum limit of our results. As before, we use a fit form that includes terms accounting
for (amc)

2i discretisation effects, valence mass mistunings and sea quark mass mistunings. The
values of (Gn/Z2

V )
1/(n−2) are given in lattice units for all the ensembles we employ in Table 4.14.

The (n − 2)th root is taken in order to reduce all moments to the same dimensionality, that of
inverse mass. The QED corrections R(0)

QED[n] to the moments are also given there. The QED
corrections to ZV are not included in these values.

As we have reduced all moments to have dimension of inverse mass we can contruct dimen-
sionless quantities by multiplying G1/(n−2)

n by MJ/ψ. These quantities can be extrapolated to
the continuum and then divided by the experimental J/ψ mass to recover the time moments.
The lattice spacing cancels in the ratio which we find greatly reduces the uncertainty in the
continuum.

Fig. 4.21 shows the four moments multiplied byMJ/ψ against (amc)
2 with the fit of Eq. 4.6. The

crosses are at the positions of the continuum values. The QED corrected points are not shown
here for clarity but are included in the fit. The moments are fit simultaneously. This requires an
svd cut of 10−3 which produces a χ2/dof of 0.62. The continuum extrapolated results (divided
by the experimental J/ψ mass) are given in column 2 of Table 4.15. In all cases we achieve
greater precision than the results of [129] which are given in the third column. Agreement within
2σ is seen between our results and those of [129] for all four moments.

For the first two moments we show a comparison between our results and previous results from
lattice QCD calculations as well as phenomenological determinations that make use of experi-
mental data in Fig. 4.22.

Error budgets for the four rooted moments are given in Table 4.16. The additional uncertainty
incurred from using an svd cut in the simultaneous fit is contained in the contribution labelled
“Pure QCD Statistics”. While the lattice spacing cancels in the data we fit, contributions from
w0 and w0/a still arise through their use in the calculation of the valence mass mistunings on
the various ensembles.
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Figure 4.21: The four lowest time moments multiplied by the J/ψ mass and their extrapola-
tion to a = 0. The values of the moments increase as the moment number is increased. The
extrapolations of the moments shown are performed simultaneoulsy.

The connected charm contribution to the anomalous magnetic moment of the muon, acµ, is
related to the vacuum polarisation function Π̂(q2) by an integration over a kinematic kernel.
As the time moments are related to derivatives of Π̂(q2) w.r.t q2 they can be used to construct
a Taylor expansion at low q2 where the kinematic kernel is large. This is done through the
relationship

Q2G2i = (−1)i
∂2i

∂q2i
q2Π̂(q2)|q2=0 (4.26)

= (−1)i(2i)!Πi−1,

where Πi−1 is the (i− 1)th Taylor coefficient. In practice the Taylor series is replaced by a Padé
approximant to handle the high q2 behaviour.

To calculate acµ in the continuum we can either use the continuum extrapolated time moments or
calculate acµ on each lattice, using the time moments on that lattice, and then take the continuum
limit. If acµ were directly calculated from the moments in Table 4.14 on each ensemble then it
would contain the uncertainty from the lattice spacing determination. As this has largely been
removed from our time moments through multiplication by aMJ/ψ, using the time moment values
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Figure 4.22: Comparisons of various determinations of the first two vector charm moments.
Lattice QCD results are shown in blue and phenomonological determinations using e+e− →
hadrons cross-section data are shown in red. The previous HPQCD result is from [76] and the
JLQCD result is from [132]. For the latter only the second of the two moments is available due
to discretisation effects. The phenomenological results are from [129] and [133]. [Figure courtesy
of C. T. H. Davies.]
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Table 4.16: Error budget for various time moments as calculated from an extrapolation in the
(rooted) moment multiplied by the J/ψ mass.

G
1/2
4 G

1/4
6 G

1/6
8 G

1/8
10

a2 → 0 0.06 0.05 0.04 0.03
ZV 0.04 0.02 0.02 0.02
Pure QCD Statistics 0.03 0.02 0.02 0.02
QCD+QED Statistics 0.01 0.01 0.01 0.01
w0/a 0.06 0.05 0.05 0.04
w0 0.10 0.08 0.06 0.05
Sea mistunings 0.06 0.03 0.03 0.03
Valence mistunings 0.01 0.00 0.00 0.00
M exp.
J/ψ 0.02 0.02 0.02 0.02

Total 0.15 0.12 0.11 0.10

calculated in the continuum would be considerably more precise. However, we can calculate acµ
on each lattice in a way that removes the relatively large uncertainty contribution from the lattice
spacing determination. This is discussed in Section 4.7.1.

By calculating acµ from the continuum values of the time moments given in Table 4.15 we obtain
an acµ value of 1.4595(44)× 10−9 and an RQED[a

c
µ] value of 1.00212(26).

4.7.1 acµ lattice spacing dependence

In order to reduce the uncertainty arising from the lattice spacing determination we multiply
the value (in lattice units) of each rooted time moment from Table 4.14 by aMJ/ψ and then
divide by the experimental value of the J/ψ mass. These values on each ensemble are given in
Table 4.17.

The results of calculating acµ on each lattice and then extrapolating are given in Table 4.17 and
shown in Fig. 4.23 where the fit has a χ2/dof of 0.44. This fit obtains

acµ = 1.4638(47)× 10−9, (4.27)

RQED

[
acµ
]

= 1.00214(19).

The final result agrees with that obtained from using the continuum extrapolated moments
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(labelled “moments” in Fig. 4.23) as well as the previous HPQCD result and the result obtained
by the BMW collaboration using a different staggered quark action [134].
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Figure 4.23: Extrapolation of the charm connected HVP contribution to the anomalous magnetic
moment of the muon to the continuum. The continuum result is compared to the result obtained
by calculating acµ from the individually continuum extrapolated time moments. Agreement is
seen, as expected. The result also agrees well with, with an signficantly decreased uncertainty,
the previous HPQCD result. There is also agreement with the BMW result of [134] and the
ETMC result of [135, 136] where we have used the QED correction of [136]. The upper plot
displays only pure QCD data with a fit line excluding the QED part of the fit. The lower plot
includes the QCD+QED data and the full fit.

In order to demonstrate the reduction in discretisation effects achieved with the HISQ action we



CHAPTER 4. CHARMONIUM PROPERTIES 158

Table 4.17: Values of acµ and the electromagnetic correction R
(0)
QED

[
acµ
]
used in the fit shown

in Fig. 4.23. The uncertainties quoted are correlated through w0 across all ensembles and, to a
lesser extent, ZV across those sharing the same β.

Set acµ × 109 R
(0)
QED

[
acµ
]

1 1.23183(78) -
2 1.24522(75) 1.000478(80)
3 1.25431(77) -
5 1.40782(91) -
7 1.41738(91) 1.001080(89)
7∗ 1.42370(91) -
12 1.42234(91) -
13 1.47866(97) -
14 1.48514(75) 1.001416(83)
15 1.48853(75) -
16 1.4725(13) 1.00141(15)
17 1.4805(13) -
18 1.4610(33) -
18† 1.4702(33) -
19 1.4572(10) -

can compare our results to the results of the BMW collaboration who used a different staggered
action. We read the BMW acµ values from Fig. S4 of [134]. In Fig. 4.24 we plot these values
along with ours against a2. The BMW values are shown as green dots. The size of these dots is
not indicative of the uncertainty.

An analysis of the QED finite volume effects in the light quark hadronic vacuum polarisation
using scalar QED was given in [137]. Scalar QED was used as the dominant finite volume effect
should arise from pion loops. There it was shown that the leading finite volume effect for the
neutral current goes as 1/L3 due to a cancellation of the 1/L2 terms. The analysis of that work
suggests that the QED finite volume on the light quark HVP contribution is unobservably small
so we expect the same to be true of the charm quark contribution. We observe this to be true
for both acµ and all the time moments we study as Fig. 4.25 shows.

The quenched QED effect on acµ was studied using a methodology based on an expansion in αQED

in [135]. The result was updated in [136] following work on the QED effect to the renormalisa-
tion of quark bilinears presented in [138]. The [(QCD+QED)/QCD] value obtained in [136] is
1.00123(25). This is in slight disagreement with our result but the two calculations use different
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Figure 4.24: Comparison of the discretisation effects in the data of Table 4.17 (red open symbols)
and the data from BMW [134] (green circles). The BMW data points are estimates and do not
include an uncertainty.
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Figure 4.25: Volume dependence of the electromagnetic correction to acµ and the first four vector
current correlator time moments on sets 6-8. There is no observable dependence as expected
from previous analyses of QED finite volume effects in the hadronic vacuum polarisation.
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Table 4.18: Error budget for the direct determination of the charm quark connected HVP con-
tribution to the anomalous magnetic moment of the muon. Factors of the lattice spacing cancel
in the raw data we use in the extrapolation but w0 and w0/a still contribute to the uncertainty
through their use in the calculation of mistuning parameters.

acµ
a2 → 0 0.15
ZV 0.07
Pure QCD Statistics 0.08
QCD+QED Statistics 0.01
w0/a 0.16
w0 0.18
Sea mistunings 0.09
Valence mistunings 0.03
M exp.
J/ψ 0.05

Total 0.32

charm mass tuning schemes. The results of [136] also support the conclusion of [137] that finite
volume effects are small.

Results for the QED effect on the strange and light connected contributions using domain wall
fermions were presented in [89]. While the comparison to our results is not a direct one it is
interesting to note that the contribution from the QED correction to ZV evaluated in [89] forms a
significant contribution to the overall QED correction and is in fact considerably larger than the
contribution from the correlator in the strange case. Once the correction to the vector current
renormalisation is taken into account the correction is O(0.1%) which is consistent with our
findings for the charm contribution and with the results of [136].

The value of acµ presented here is compared with other results from lattice QCD in Fig. 4.26.
The BMWc result is from [134] and the ETMC result from [135]. Agreement is seen between all
the lattice results with the result presented here the most precise.
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Figure 4.26: Comparison of the charm connected hadronic vacuum polarisation contribution to
the anomalous magnetic moment of the muon from different lattice QCD calculations.The BMWc
result is from [134]. The ETMC result is from [135]. [Figure courtesy of C. T. H. Davies.]

4.8 Conclusions

We have performed the first nf = 2+1+1 lattice computations of various charmonium properties.
We have used a large number of HISQ ensembles to ensure control over both the continuum and
chiral extrapolations, improving on previous work by HPQCD. Given the high level of precision
this data allows us to achieve we have also performed calculations including quenched QED to
assess the impact of and control this remaining source of systematic uncertainty.

Here we collect our final results before discussing each in turn:

MJ/ψ −Mηc = 0.1203(11) GeV

fJ/ψ = 0.4104(17) GeV

fηc = 0.3981(10) GeV

acµ = 1.4638(47)× 10−9.

(4.28)

The precision of our hyperfine splitting result allows us to resolve, for the first time, the sign and
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magnitude of the anticipated difference between the lattice and experimental results. We take
this to be the effect of the ηc decay to gluons which is prohibited in the lattice calculation and
find it to be +7.3(1.2) MeV. The electromagnetic effect on the hyperfine splitting is the largest
such effect that we observe here, reaching 1.14% once the pure QED effect from J/ψ annhilation
to photons has been included perturbatively.

The J/ψ decay constant is the most precise to date and acts as a subpercent test of QCD. We
find agreement with the experimental result of 0.4064(37) GeV. The gain in precision from the
calculation of [76] is a result of having physical sea mass ensembles and the use of RI-SMOM
vector current renormalisation. The importance of the precision of ZV is further highlighted by
our results for fηc derived from the connected two-point correlator where no such renormalisation
is required. In that case we do not see a signficant decrease in uncertainty compared to the earlier
HPQCD result of [106].

We also updated the HPQCD value for the charm connected contribution to the leading order
hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon. We
included electromagnetic effects and charm quarks in the sea, as well as again using RI-SMOM for
vector current renormalisation. The electromagnetic effect is very small at about 0.2%.



Chapter 5

Bottomonium Ground State
Properties with a Fully Relativistic
Action

5.1 Heavyonium physics

The ground state vector bb state, the Υ, was discovered at Fermilab in 1977 [139]. It took until
2008 for the discovery of the pseudoscalar ηb by the BaBar experiment [140]. The programs
of experiments such as BELLE, BaBar and CLEO have provided a result for the bottomonium
hyperfine splitting with a 5% uncertainty. While this is considerably less precise than the char-
monium hyperfine splitting it does allow tests of the understanding of systematic uncertainties in
lattice hyperfine splitting calculations from the charm mass to the b at the 5% level. In addition
measurements of Υ properties are more precise. For example, the partial width of the Υ to an
e+e− pair is known to 1.4%. We can therefore test lattice QCD in the context of bottomonium
to a precision of a few percent.

During the discussion of the previous Chapter the issue of valence mass dependence of various
results was raised in the context of accounting for mistuning of the charm mass. However, using
purposefully heavy valence masses offers a way of studying bb mesons. As, for most available
lattice spacings, the b mass cannot be reached while controlling discretisation effects if the HISQ
action is to be used for b quarks an extrapolation in mass must be performed. In the case where

163
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the meson consists of a heavy quark and a light quark then the expansion in inverse powers of the
meson mass (using the meson mass as a proxy for the heavy quark mass), present in heavy quark
effective theory (HQET), suggests that a polynomial in the inverse mass should be appropriate.
However, for heavyonium the separation of scales on which HQET relies does not exist and the
effective theory justification of the expansion is therefore not valid. However, given sufficiently
large masses the polynomial expansion in the inverse mass should still be able to capture the
mass dependence as a Taylor expansion. We refer to this method of calculation as the heavy
HISQ or all-HISQ method.

The most common lattice methods for studying bottomonium (bb) use either NRQCD or Fer-
milab heavy quark [141] actions. The former is explicitly nonrelativistic while the latter is a
generalisation of the Wilson action that uses NRQCD to tune its parameters for the heavyonium
case [142]. In [94] a different approach was introduced. There, HISQ calculations were performed
at a variety of heavy quark masses between mc and mb and the heavy mass dependence was fit to
allow extrapolation to the physical b mass. In this Chapter this is extended to 2+1+1 ensembles,
on the finer of which the b mass can be reached, and to include vector mesons. This method
proves to be very precise compared to previous results.

5.2 Lattice calculation

As previously we make use of MILC 2+1+1 HISQ ensembles some parameters of which are given
in Table 5.1 along with the valence masses used on each ensemble. Only relatively fine lattices
are used as you cannot get far past the charm mass on coarser ensembles.

We use a common fit form for all quantities to perform a simultaneous extrapolation (or inter-
polation) in both lattice spacing and heavy quark mass. The form accounts for discretisation
errors of the form (am)2i, the valence mass dependence and sea quark mass mistuning effects.
The form is
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Table 5.1: Parameters of the ensembles used in this analysis and the heavy valence masses used
on each of the ensembles in lattice units.

Set Label w0/a Ls Lt amsea
l amh

13 f-5 1.9006(20) 32 96 0.0074 0.6
0.8

15 f-phys 1.9518(7) 64 96 0.00120 0.6
0.8

16 sf-5 2.8960(60) 48 144 0.0048 0.274
0.4
0.5
0.6
0.7
0.8

17 sf-phys 3.0170(23) 96 192 0.0008 0.26
0.4
0.6
0.8

18 uf-5 3.892(12) 64 192 0.00316 0.194
0.4
0.6
0.8
0.9

19 ef-5 5.243(16) 96 288 0.00223 0.138
0.45
0.55
0.65
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f(M,a) = A

(
M

M0

)b{∑
i,j

cij

(
M0

M

)i
(amh)

j+

∑
k

c`k

(
M0

M

)k
[δ`(1 + c`,a2(aΛ)

2 + c`,a4(aΛ)
4)+

cckδc(1 + cc,a2(aΛ)
2)]

}
.

(5.1)

The M here is acting as a proxy for the quark mass. We choose M to be the mass in GeV of the
heavyonium vector meson on each ensemble. We take Λ to be 1 GeV. Results for bottomonium
are extracted by evaluating the fit function at M = MΥ using the experimental average value
for MΥ. The δ terms are as follows:

δ` =
2(msea

l −mphys
l ) + (msea

s −mphys
s )

10mphys
s

,

δc =
msea
c −mphys

c

mphys
c

.

(5.2)

We useM0 = 2 GeV throughout. Note that the fit form allows for heavy quark mass dependence
in the sea mass mistuning terms. This is found to be crucial to achieve fits with acceptable
χ2/dof given the precision of the data.

5.3 Hyperfine splitting

The experimental average of the bottomonium hyperfine splitting is currently obtained from
four experimental measurements with the most precise coming from the Belle Collaboration
[143]. These values are shown in Fig. 5.1 along with the PDG average. There is some tension
between the different results. The measurement of the Υ mass is an order of magnitude more
precise than that of the ηb. The hyperfine splitting results quoted in the PDG correspond to
different measurements of the ηb mass which are subtracted from the average Υ mass. The value
from [143] lies somewhat lower than the other values that constitute the PDG average.

As for the charmonium case, pseudoscalar and vector connected two-point correlators are com-
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Table 5.2: Vector and pseudoscalar heavyonium ground state masses and hyperfine splitting on
the ensembles detailed in Table 5.1 with the valence masses given there.

Set amval aMVh aMηh aMhyp

13 0.6 1.717413(70) 1.675594(46) 0.041819(84)
0.8 2.101519(58) 2.064117(39) 0.037402(70)

15 0.6 1.715445(20) 1.674259(14) 0.041185(25)
0.8 2.099916(23) 2.063012(12) 0.036903(26)

16 0.274 0.929901(81) 0.896656(32) 0.033245(87)
0.4 1.202369(82) 1.175551(28) 0.026818(87)
0.5 1.411146(67) 1.387452(25) 0.023694(72)
0.6 1.614661(59) 1.593082(23) 0.021579(63)
0.7 1.813284(52) 1.793112(22) 0.020172(57)
0.8 2.006815(48) 1.987499(20) 0.019316(52)

17 0.26 0.895692(48) 0.862669(27) 0.033023(55)
0.4 1.199803(33) 1.173901(23) 0.025902(40)
0.6 1.612583(25) 1.591667(19) 0.020915(32)
0.8 2.005042(22) 1.986244(17) 0.018798(28)

18 0.194 0.692016(61) 0.666824(40) 0.025191(73)
0.4 1.147608(40) 1.130727(30) 0.016882(50)
0.6 1.562877(32) 1.549105(25) 0.013773(41)
0.8 1.958249(27) 1.945794(22) 0.012455(35)

19 0.45 1.211599(32) 1.201319(26) 0.010280(42)
0.65 1.623681(25) 1.614870(21) 0.008811(33)

puted and then a multiexponential fit is used to extract the ground state masses. The vector
meson, pseudoscalar and hyperfine splitting results that we extract from these fits are presented
in Table 5.2 in lattice units. It can clearly be seen that the hyperfine splitting decreases with
increasing quark mass. There are correlations between results on the same ensemble at different
masses that we include in our fits.

The fit of Eq. 5.1 gives a χ2/dof of 1.1 with priors of 0(1) on all parameters except the sea charm
mistuning parameters where priors of 0± 0.1 were used. A reasonably large effect from light sea
quark mass mistuning is seen (as was the case for the charmonium hyperfine splitting, which is
effectively included in this fit). The value returned for c`0 is -1.27(32). The value of MΥ −Mηb

extracted from the fit is 0.0583(15) GeV. This is just over 1σ below the experimental average of
0.0623(32) GeV, although it agrees with the BELLE result [143].

Similarly to the case of the ηc the ηb is not allowed to decay to hadrons in this calculation. The
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ηb width is approximately a third of that of the ηc which suggests that the effect this has on
the hyperfine splitting should be smaller. The perturbative calculation of [39] gives an expected
downward shift of approximately 1 MeV. If this perturbative expectation is realised then we
would get a result for the hyperfine splitting from the lattice calculation that is approximately
1 MeV lower than the true value.

55 60 65 70 75
MΥ −Mηb [MeV]

BABAR08

BABAR09

CLEO10

BELLE12

Figure 5.1: Summary of the current status of experimental measurements of the bottomonium
hyperfine splitting. The BELLE12 result is from [143], the CLEO12 result is from [144], the
BABAR09 result is from [145] and BABAR08 is from [140]. The red band is the PDG average.

The heavy mass dependence of the light sea mass mistuning extracted from the fit is mild as
shown in Fig. 5.3. The quantity plotted here is the contribution the fit assigns to the light sea
quark mistuning terms in physical units for a given value of the sea mistuning measure δ`. The
curves obtained from using the value on sets 16 (sf-5) and 17 (sf-phys) are shown. This is the
“physical” dependence where the lattice spacing has been set to 0.

Previous lattice calculations of the bottomonium hyperfine splitting have used either NRQCD or
a variant of the clover action for the b quarks. The result presented here has significantly smaller
uncertainties (approximately a factor of 4 better than for the most precise previous result) than
these results as shown by the summary plot in Fig. 5.4.

The error budget for the bottomonium hyperfine splitting is given in Table 5.3. The largest
single contribution is from the statistical uncertainties in the lattice data. The contribution
from statistics is considerably larger than the uncertainties on the data points themselves. This
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Figure 5.2: Hyperfine splitting of heavyonium including a simultaneous continuum extrapolation
and mass interpolation to the b mass, using the vector meson mass as a proxy. The black
cross marks the PDG average of the bottomonium hyperfine splitting. The labels in the legend
correspond to ensembles according to Table 5.1.

seems to be due to the correlations between the points. If the svdcut of the fit is raised then
the uncertainty contribution from statistics decreases but the contribution from the continuum
extrapolation rapidly increases. The next largest error is from the continuum extrapolation, even
though an ensemble with the very low lattice spacing of 0.03 fm is used.
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Figure 5.3: Heavy mass dependence of the light sea quark mass mistuning dependence of the
hyperfine splitting as calculated from the output of a fit to the from given in Eq. 5.1. The two
lines shown are for the δ` values on sets 16 (purple) and 17 (blue). For the hyperfine splitting
this shows little heavy mass dependence with a slight decrease at higher masses.
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This work

Figure 5.4: Comparison of lattice results for the bottomonium hyperfine splitting. The red band
shows the PDG average. The green squares show results that use either NRQCD (HPQCD13
[146] and Meinel10 [147]), Fermilab heavy quarks (FNAL/MILC09 [142]) or the RHQ action
(RBC/UKQCD12) [148].
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Table 5.3: Error budget for the bottomonium hyperfine splitting. The contributions from the
continuum extrapolation are separated into pieces that are independent of the heavy mass and
dependent on it (c0j and cij and i 6= 0). There is also an uncertainty contribution from the
physical M dependence terms which are not multiplied by a power of amh.

MΥ −Mηb [GeV]
a2 → 0 M independent 1.08
a2 → 0 M dependent 0.92
Physical M extrapolation 0.50
Statistics 1.72
w0 0.53
w0/a 0.48
Light sea mass mistuning 0.62
Charm sea mass mistuning 0.58
Total 2.54%

5.4 Vector and pseudoscalar decay constants

Following the precision achieved for the decay constant of the J/ψ using the vector current
renormalisation factors in the RI-SMOM scheme an extension of this calculation to the Υ decay
constant offers another quantity that could allow comparison between lattice and experiment at
high precision. The values of the unrenormalised vector decay constants, afVh/ZV , for the various
masses and ensembles employed here are given in lattice units in the third column of Table 5.4.
These data are then multiplied by the relevant ZV and divided by the lattice spacing before being
fit to Eq. 5.1. The result is shown in Fig. 5.5. The black cross marks the experimental average
of the Υ decay constant (calculated from the PDG value of the partial width of the Υ to an
e+e− pair according to Eq. 4.15 with the appropriate substitutions using a value for αQED(mb)

of 1/132 from [149]). The red star shows a previous HPQCD determination using an NRQCD
quark action [150]. Our result for fΥ is 0.682(12) GeV compared to the result determined from
the experimental average of the leptonic width of the Υ: 0.689(5) GeV.

We can again study the heavy mass dependence of the light sea quark mass mistuning. For
the vector decay constant this is shown in Fig. 5.6. While of a smaller magnitude than for the
hyperfine splitting (particularly at the charm mass) it displays a steeper heavy mass dependence
and increases in size with mass.

This picture is very similar for the pseudoscalar decay constant which was calculated in [94] using
the same method as is used here. The calculation presented here improves on that result in a
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Table 5.4: Vector and pseudoscalar heavyonium ground state decay constants on the ensembles
detailed in Table 5.1 with the valence masses given there.

Set amval afVh/ZV afηh
13 0.6 0.21865(11) 0.208641(60)

0.8 0.25711(10) 0.249695(64)
15 0.6 0.21690(10) 0.207535(22)

0.8 0.255249(96) 0.248493(21)
16 0.274 0.12339(15) 0.117554(37)

0.4 0.13916(21) 0.135692(39)
0.5 0.15104(20) 0.148936(40)
0.6 0.16318(19) 0.162314(41)
0.7 0.17617(19) 0.176638(42)
0.8 0.19061(19) 0.192680(44)

17 0.26 0.11969(10) 0.114147(34)
0.4 0.137266(83) 0.134475(37)
0.6 0.161236(77) 0.161035(39)
0.8 0.188634(82) 0.191297(41)

18 0.194 0.091442(91) 0.087774(42)
0.4 0.114918(72) 0.114953(46)
0.6 0.135412(69) 0.137487(54)
0.8 0.158238(72) 0.162850(58)
0.9 0.171745(74) 0.178229(58)

19 0.138 0.06841(10) 0.065916(59)
0.45 0.100572(70) 0.102989(81)
0.55 0.109506(67) 0.112668(82)
0.65 0.118680(64) 0.122639(81)
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Figure 5.5: Fit of the vector decay constant of heavyonium to Eq. 5.1. The PDG experimental
average of the Υ decay constant is shown as a black cross and a previous HPQCD result [150],
shown as a red star, using NRQCD b quarks which is set at a point higher than the Υ mass on
the x-axis for clarity.
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Figure 5.6: Same as Fig. 5.3 but for the vector decay constant. The heavy mass dependence in
this case is more significant than for the hyperfine splitting.
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Figure 5.7: The heavyonium pseudoscalar decay constant with the fit of Eq. 5.1. There is no
experimental observable that corresponds to this so we compare to a previous HPQCD result
[94] (also using the heavy HISQ method) which is shown as a black cross.

few important ways. One change is that [94] used HISQ valence quarks on an asqtad sea while
here we use HISQ ensembles (which have a charm quark in the sea not present in the asqtad
case). The more important improvements are that we include ensembles with physical sea quark
masses at two different lattice spacings and include points on a finer ensemble (set 19) which
extend beyond the physical b mass. Our data are given in Table 5.4 and are plotted in Fig. 5.7
along with the fit of Eq. 5.1. The final value for fηb is 0.7217(72) GeV which is somewhat higher
than the value from [94] (0.667(6) GeV). Both studies used data on ensembles with a lattice
spacing of approximately 0.045 fm at some of the same valence masses. These data points agree
well indicating that the difference arises from the fit. The continuum extrapolation in [94] ends
up considerably lower than the data points at high mass which the 0.03 fm data points restrict
from happening for our data.

The behaviour of the sea quark mass mistuning dependence on the heavy quark mass is very
similar to the vector decay constant case and is shown in Fig. 5.8.

As was done with the charmonium decay constants we can directly examine the ratio of the
vector and pseudoscalar decay constants. This is shown in Fig. 5.9. It is quite clear that fV /fP
is greater than 1 at the charm mass but switches to be below 1 at the b mass. This allows a
nearly 0.5% determination of the ratio at the b mass of 0.9577(52).
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Figure 5.8: Same as Fig. 5.3 but for the heavyonium pseudoscalar decay constant. This is very
similar to the vector decay constant case shown in Fig. 5.6.

Table 5.5: Error budgets for the Υ and ηb decay constants.
fΥ [GeV] fηb [GeV]

a2 → 0 0.66 0.10
a2 → 0 M dependent 0.73 0.29
Physical M extrapolation 0.26 0.09
ZV 0.11 -
Statistics 1.14 0.74
w0 0.52 0.52
w0/a 0.45 0.16
Light sea mass mistuning 0.34 0.15
Charm sea mass mistuning 0.22 0.11
Total 1.73% 0.99%
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Figure 5.9: Ratio of the heavyonium vector and pseudoscalar decay constants with a fit of the
form Eq. 5.1. It is clear that the ratio is above 1 at the charm mass but moves to be below 1 at
the b mass.

The error budgets for both the vector and pseudoscalar decay constant at the b mass are given
in Table 5.5. All of the contributions, with the exception of that from w0, are smaller for the
pseudoscalar.

5.5 Bottomonium vector time moments and abµ

As for the charmonium case discussed in Section 4.7 the time moments of the b vector correlator
can be used as a precision point of comparison between lattice calculations and experimental data
driven determinations. Once the bottomonium time moments are determined in the continuum
it is simple to determine the b quark connected HVP contribution to the anomalous magnetic
moment of the muon abµ. While this contribution is very small we will see that we can obtain
the most precise lattice QCD value to date here.

The appropriately normalised time moments are expected to be inversely proportional to the
quark mass (the proportionality being determined by a perturbative expansion) [27]. We there-
fore constrain b in Eq. 5.1 to be -1.

The time moments for n = 4, 6, 8, 10 are shown in Figs. 5.10, 5.11, 5.12 and 5.13.

A comparison of the continuum values extracted at the b mass from the fit and values obtained
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Table 5.6: Time moments on the ensembles and valence masses given in Table 5.1. These are
G

1/(n−2)
n as in Table 4.15.

Set amval n = 4 n = 6 n = 8 n = 10

13 0.6 0.2533(14) 0.5734(31) 0.8411(45) 1.0871(58)
0.8 0.1955(10) 0.4681(25) 0.6940(37) 0.8961(48)

15 0.6 0.2467(13) 0.5585(29) 0.8192(43) 1.0588(56)
0.8 0.1904(10) 0.4558(24) 0.6758(36) 0.8727(46)

16 0.274 0.3184(18) 0.6801(38) 1.0039(57) 1.3097(74)
0.4 0.2373(13) 0.5161(29) 0.7607(43) 0.9924(56)
0.5 0.1978(11) 0.4380(25) 0.6448(36) 0.8393(47)
0.6 0.16924(96) 0.3833(22) 0.5643(32) 0.7325(41)
0.7 0.14731(83) 0.3423(19) 0.5054(29) 0.6546(37)
0.8 0.12971(73) 0.3100(17) 0.4602(26) 0.5956(34)

17 0.26 0.3182(17) 0.6785(36) 1.0018(53) 1.3069(69)
0.4 0.2279(12) 0.4956(26) 0.7306(39) 0.9532(51)
0.6 0.16247(86) 0.3680(20) 0.5418(29) 0.7034(37)
0.8 0.12452(66) 0.2976(16) 0.4418(23) 0.5718(30)

18 0.194 0.3171(20) 0.6754(41) 1.0009(61) 1.3077(80)
0.4 0.1791(11) 0.3909(24) 0.5785(35) 0.7570(46)
0.6 0.12677(78) 0.2875(18) 0.4243(26) 0.5520(34)
0.8 0.09685(60) 0.2315(14) 0.3440(21) 0.4459(27)
0.9 0.08588(53) 0.2115(13) 0.3166(19) 0.4105(25)

19 0.138 0.3153(19) 0.6714(41) 0.9964(61) 1.3021(79)
0.45 0.12171(74) 0.2683(16) 0.3976(24) 0.5209(32)
0.55 0.10228(62) 0.2296(14) 0.3396(21) 0.4434(27)
0.65 0.08798(54) 0.2020(12) 0.2988(18) 0.3888(24)
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Figure 5.10: Continuum extrapolation and heavy mass interpolation of the 4th vector time
moment. The value extracted from experimental data in [151] is shown as the black circle.
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Figure 5.11: Continuum extrapolation and heavy mass interpolation of the 6th vector time
moment. The value extracted from experimental data in [151] is shown as the black circle.

from experimental data is given in Table 5.7. Agreement between all values within 2 σ is observed.
The results we present here are considerably less precise than the corresponding experimental
determinations as we have had to determine the dependence of the time moments on the heavy
quark mass in order to reach the b mass.
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Figure 5.12: Continuum extrapolation and heavy mass interpolation of the 8th vector time
moment. The value extracted from experimental data in [151] is shown as the black circle.
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Figure 5.13: Continuum extrapolation and heavy mass interpolation of the 10th vector time
moment. The value extracted from experimental data in [151] is shown as the black circle.

Given previous discussions (see Section 4.7) it is nearly trivial to calculate the b quark connected
contribution to the HVP contribution to the anomalous magnetic moment of the muon. This
contribution is very small and was previously calculated by HPQCD using time moments from
lattice NRQCD. Here, we obtain 3.16(12)×10−11 using the time moment values in the continuum
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Table 5.7: Comparison of time moments extracted from our fits and those extracted from exper-
iment in [151] for the first four moments.

n G
1/(n−2)
n (Gexp.

n )1/(n−2)

4 0.0932(16) 0.09151(31)
6 0.1972(27) 0.19910(49)
8 0.2940(51) 0.29964(55)
10 0.3914(47) 0.39548(59)

from the first column of Table 5.5. The result of [150] is 2.71(37) × 10−11 which is clearly
considerably more uncertain than the all-HISQ result presented here. There is agreement between
these two results as well as with the value extracted from the time moments determined from
experimental data which is 3.07(2)× 10−11.

5.6 Conclusions

In this Chapter we have demonstrated that fully relativistic heavy HISQ data for heavy-heavy
mesons can be understood and used to obtain precise results for properties of the ηb and Υ

mesons. We collect our results here:

MΥ −Mηb = 0.583(15) GeV

fΥ = 0.682(12) GeV

fηb = 0.7217(72) GeV

abµ = 3.16(12)× 10−11.

(5.3)

The bottomonium hyperfine splitting obtained is more precise than both previous lattice de-
terminations and the experimental average. We have also used the local vector current renor-
malisations of Section 3.3 to compute both the Υ decay constant and the first four vector time
moments of the b vector correlator. No significant deviations from the experimental value in the
former and values extracted from experimental cross-section data in the latter are seen. The un-
certainty of our Υ decay constant result is approximately twice that of the experimental average
but does improve on previous lattice determinations. We also presented the most precise lattice
QCD value for the b quark connected HVP contribution to the hadronic vacuum polarisation to
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date.

The case of the ηb decay constant has highlighted the importance of data on an ensemble that
can reach the b mass without incurring a large discretisation penalty via amh. This helps to
constrain the discretisation errors that the fit allows for at these higher masses. We have also seen
that there can be significant mass dependent effects in quark mass mistuning terms which we are
able to account for given the data we have on two physical ensembles at various masses.



Chapter 6

Quark Mass Determinations

A major area in which the precision obtainable through lattice calculations is difficult to match
by other means is the determination of the fundamental parameters of QCD. These include the
quark masses. Due to the origin of these masses in the SM through the interaction with the
Higgs field precise quark masses are needed for precision Higgs studies [65]: a region of great
interest to the particle physics community. Part of obtaining precise and robust results is to
compare different methodologies with different sources of systematic uncertainty. The HPQCD
collaboration performed calculations of the charm mass and the ratio of the strange and charm
masses using fits to heavy quark current-current correlator moments [27]. Here we use some of
the same gluon field configurations to perform the calculation of charm and strange quark masses
using the bare quark masses on a range of lattices in conjunction with the mass renormalisation
factor in the RI-SMOM scheme, calculated nonperturbatively on those lattices (see Section 3.2),
to be able to perform a continuum extrapolation of the renormalised mass. (A published account
of this work can be found in [1].)

The renormalisation of quark masses must be performed within the framework of a renormalisa-
tion scheme and then matching calculations may be used to convert between any two schemes,
provided the reference scale is sufficiently high. For nonperturbative lattice calculations it is
convenient to use the RI-SMOM scheme from which results may be converted to the MS scheme,
which is the standard for quoting quark masses. The matching calculation is done perturba-
tively in the continuum so it is necessary to perform the lattice calculation in a momentum
region where such a perturbative calculation is valid, and also to consider nonperturbative ef-

182
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fects that are not present in the perturbative calculation. The lowest momentum value used
in this calculation was therefore chosen to be 2 GeV. This lies within the Rome-Southampton
window of ΛQCD � µ � π/a for a large range of lattice spacings and is a commonly chosen
scale.

Section 6.1 provides a brief discussion on how we define the lattice spacing in this Chapter to
reduce the effect of mistuned sea quark masses. Section 6.2 then presents results for the strange
and charm quark masses following the calculation of [1]. The charm quark mass given there is
then updated in Section 6.3.

6.1 Tuning to the physical point

In this calculation we deal with energy scales above the charm mass as opposed to most lattice
calculations of hadronic properties. The discussion in this Section follows the Appendix of
[27].

As the sea quark masses are varied we have to choose what parameters we hold fixed. The bare
coupling is fixed at the start of lattice computations so this is kept fixed which leaves a choice
of whether to vary the lattice spacing with the sea quark masses, or the physical quantity used
to set the lattice spacing which in our case is w0 (see Section 2.10). Either case will give the
same results at the physical point but the trajectories of the approachs will be different. It is
typically convenient to vary the lattice spacing as w0/a depends on the effects of the fermion
determinant. By the decoupling theorem low energy physics should be independent of the charm
quark mass and therefore of charm mass mistunings. w0 is a low energy quantity indicating that
we may want to keep that fixed. If instead a is held fixed it is possible to see apparent violations
of decoupling.

The running of the QCD coupling in the MS scheme is independent of the sea quark masses by
definition. However, mass dependence can enter through the chosen starting point of the evolu-
tion which is determined by the chosen scale setting procedure on the lattice. This gives

αMS(µ, δm
sea) = αMS(ξαµ) (6.1)

in the notation of [27]. ξα depends on the sea mass mistunings and is studied in the Appendix
of [27]. At the charm mass the nf = 3 and nf = 4 coupling constants have to be matched. At
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the charm threshold

αs(µ, nf = 3) = αs(µ, δm
sea
c , nf = 4), (6.2)

with µ = mc + δmsea
c . At leading order

αs(µ, nf ) =
2π

β(nf )log(µ/Λ
(nf ))

, (6.3)

If α is to have dependence on δmsea
c (defined in Eq. 4.7 of Section 4.3.3) this must come from a

dependence of Λ on the same quantity. which gives a relationship between the scale Λ for nf = 3

and nf = 4. This approximately evaluates to

Λ(δmsea
c , nf ) ' mc

(
Λ(nf = 3)

mc

)β(3)/β(4)(
1− 2δmsea

c

25mc

)
. (6.4)

(The factor of -2/25 here arises from 1 - β(nf = 3)/β(nf = 4).) This implies that Λ(nf = 4) at
physical sea quark masses is related to Λ(δmsea

c , nf = 4) via

Λ(δmsea
c , nf = 4) ' Λ(δmsea

c = 0, nf = 4)

(
1− 2δmsea

c

25mc

)
, (6.5)

from which decoupling implies

αs(µ, δm
sea
c , nf = 4) = αs(nf = 4)(µ(1 + (2δmsea

c )/(25mc))). (6.6)

To summarise, we are choosing to keep a fixed as a function of the sea quark mass so that a has
the same value on all ensembles with the same β.

An ultraviolet quantity such as Zm should not display much dependence on sea quark masses (as
seen in Section 3.2) in contrast with Eq. 6.6. For a mass calculation where you multiply these
Zm values by bare quark masses you will therefore introduce sea mass dependence by using a
lattice spacing definition that varies with sea mass. In this Chapter we therefore prefer to use
w0/a and bare masses at values of the physical sea quark masses. (Above this definition of lattice
spacing has been denoted ã.)
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As quark mass evolution with scale is independent of mass mistunings sea mass dependence of
a mass must enter as a rescaling:

mh(µ, δm
sea) = ξmmh(ξαµ). (6.7)

Again, ξm is studied in [27] and those results are used to compute the bare quark masses at
physical sea quark masses that we use here (in conjunction with using ã).

6.2 mc and ms using the RI-SMOM intermediate scheme

We have shown that we can reliably determine ZSMOM
m to high precision for a given lattice spacing

(β value) in Section 3.2. We must now calculate the renormalised charm quark mass in the MS

scheme at a chosen reference scale µref . We choose this scale to be 3 GeV.

The tuned bare mc and ms values for each spacing for lattices with physical sea quark masses
are taken from the analysis of [27]. There, the charm quark mass was tuned using the ηc meson
and the strange quark tuned using the ηs meson. We generically denote such a mass m(a). This
bare mass must be renormalised and we do this with the renormalisation factors calculated in
the RI-SMOM scheme, ZSMOM

m (µ, a). Several values of µ are used in this analysis. These are the
2, 2.5, 3, 4 and 5 GeV according to Table 3.2. These values are then multiplied by the matching
factor to MS calculated from the coefficients given in Table 6.1, ZMS/SMOM

m (αs(µ)). This gives a
result for the mass in MS at a scale µ for each lattice:

m(µ, a) = ZMS/SMOM
m (αs(µ))Z

SMOM
m (µ, a)m(a). (6.8)

Now that the mass values are in the MS scheme they can be run to the common reference
scale µref using the QCD β function. Here we use the four-loop result of [152, 153] using the
αs determination at 5 GeV of [27]. In a perturbative calculation in the continuum this would
produce the same value for each initial µ, ignoring the small effects of higher orders in the β
function. However, in the lattice case, there is µ dependence coming from discretisation effects,
in the form of even powers of aµ, and terms suppressed by powers of µ capturing nonperturbative
effects.
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6.2.1 Conversion to MS scheme

We now collect some results relevant for the conversion factor between the RI-SMOM and MS

schemes, ZMS/SMOM
m (αs(µ)). The general form of the conversion factors is a power series in αs,

which for RI-SMOM is known to O(α2
s), and which is here denoted

ZMS/SMOM
m (αs(µ)) = 1 + c1αMS(µ) + c2

(
αMS(µ)

)2
+ c3

(
αMS(µ)

)3
+ ... (6.9)

The continuum fit form used allows for various discretisation errors as well as missing α3
s terms in

the RI-SMOM → MS matching, nonperturbative condensate contributions and sea quark mass
effects which can split the values obtained for different lattices with the same spacing.

In this calculation the leading effects from using nonzero sea quark masses are also incorporated
into the matching to MS. It is necessary to use non-zero sea quark masses to properly define
the lattice spacing (which is done for a physical sea). These effects first appear at order α2

s and
so only affect the c2 coefficient given in Table 6.1. The c2 corrections from the charm quark
mass in the sea ∆c2 were calculated by C. Strum as detailed in [1]. The coefficients are small
and indicate a rapidly convergent series expansion so neglecting O(α3

s) and higher terms is not
expected to have a large impact. This can be contrasted with the case of RI′-MOM where the
coefficients are larger and the situation less clear.

Table 6.1: RI-SMOM to MS matching factor coefficients and shifts in the α2
s coefficient due to

the presence of physical charm quarks in the sea and the appropriate αMS
s . The penultimate

column contains the MS mass running to 3 GeV. The value given for c3 was not used in the
initial mass calculations presented in [1] and Section 6.2.2 which is indicated by the asterisk.
These values were computed recently in [97, 154].

µ (GeV) c1 c2 ∆c2 αMS(µ, nf = 4) R(3 GeV, µ) c∗3
2 -0.0514 -0.0415 -0.015 0.3030(54) 0.9034(20) -0.1036
2.5 -0.0514 -0.0415 -0.01 0.2741(43) 0.95819(84) -0.1036
3 -0.0514 -0.0415 -0.007 0.2545(37) - -0.1036
4 -0.0514 -0.0415 -0.004 0.2291(29) 1.0616(11) -0.1036
5 -0.0514 -0.0415 -0.003 0.2128(25) 1.1063(19) -0.1036

6.2.2 Mass results

The full fit form used to extract the continuum MS mass values is
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m(µref , µ, a) = m(µref)× (6.10)(
1 +

Ni∑
i=1

cµ2ia2i(µa/π)
2i + cαα

3
MS

(µ) +

hsea`
δsea`
mtuned
s

+ hseac
δseac
mtuned
c

+

Nk∑
k=1

ccond,2k
A

µ2k
αMS(µ)×

[
1 + ccond,a2,2k(Λa/π)

2
]
×[

1 + hsea`,µ
δsea`
mtuned
s

+ hseac,µ
δseac
mtuned
c

])
×

(
1 +

Nj∑
j=1

cΛ2ja2j (Λa/π)
2j

)

m(µref) is the MS mass value at the reference scale µref , which here is 3 GeV. The mistuning
parameters δsea` and δseac are defined as

δsea` =
∑

q=u,d,s

(mq −mtuned
q ),

δseac = mc −mtuned
c .

(6.11)

The priors on ca2 are taken as 0± 1. The prior on cα is 0.0± 0.2 which allows for the coefficient
to be four times the size of c1 or c2. The priors on the coefficients for the condensate terms are
taken as 0±2. The ccond,a2 prior is 0±1 and a prior of 0.0±0.2 on mass mistuning terms.

The two factors in parentheses model the a and µ dependence of the Zm and quark bare mass
respectively. There are terms allowing for disretisation effects beving as (aµ)2n in Zm and (aΛ)2n

in the bare mass, where Λ was taken as 500 MeV for the strange case and 1 GeV (approximately
the charm mass) for the charm case as these are the relevant scales.

The fit also allows for condensate terms beginning at µ−2 arising from the expected presence of
the 〈A2〉 condensate. Sea mass dependence of Zm is allowed for as well as sea mass dependence
of the condensate contributions. An (aΛ)2 dependence is also allowed for in the condensates
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with Λ = 500 MeV in both cases.

The one-loop coefficient of 〈A2〉 in the operator product expansion of Zm can be calculated by
considering low-energy gluon scattering and takes the value (παsCF 〈A2〉)/(2µ2). This therefore
suggests that a 1/µ2 condensate term could be visible and must be allowed for. If just this
condensate is allowed then the coefficient produced by the fit is not consistent between the
charm and strange cases. The addition of a 1/µ4 term results in consistent fits with a positive
1/µ2 and a negative 1/µ4. These coefficients are reasonably large.

Figure 6.1 shows the continuum extrapolation of the charm and strange quark masses in the MS

scheme at a scale µ = 3 GeV. Also shown are the results obtained from matching current-current
correlators from lattice calculations to high order perturbation theory [27] and good agreement
can be seen between the two.

The uncertainty in w0 and w0/a means that there is some uncertainty in the value of µ which we
account for as a systematic uncertainty. There is an uncertainty in the values of µ used on each
ensemble arising from the uncertainty in the lattice spacing. We therefore include a correlated
(for each β value) uncertainty of 0.0003 on the coarse lattices, 0.0002 on the fine lattices and
0.0008 on the superfine lattices to account for uncertainty in the µ values calculated on each
ensemble as they depend on w0ã. Another 0.1% correlated uncertainty was added to all points
to account for the effect from w0.

The final results from these fits are

mc(3 GeV) = 0.9897(60) (6.12)

ms(3 GeV) = 0.08538(84),

and the robustness of the fit is demonstrated in Figure 6.2 where the mass values from various
altered fits are shown. These alterations involve the removal of certain parts of the data set
from the fit, doubling various prior widths and including more terms. The error budgets for
the two fits are given in Table 6.2. This gives contributions arising from the extrapolation in
lattice spacing, the term accounting for missing α3

s terms in the matching, terms accounting for
condensates and sea mistuning effects. There are also contributions from the uncertainty in the
mass running and matching factors which come from the uncertainty on αs.
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Figure 6.1: Final mass continuum extrapolations. The dashed lines have the sea quark mass
mistunings set to 0. The shaded point on the left gives the final value at a = 0 with the
condensate contributions removed. The empty black circle is the value from the current-current
correlator method of [27].
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Figure 6.2: Robustness checks of the final mass fits. The 5 aµ points mark only uses 5 different
powers of aµ in the fit as opposed to 10, which was used in the fit presented in Figure 6.1.

Table 6.2: Error budget, giving a breakdown of the uncertainties in the c and s quark masses
in the MS scheme at a scale of 3 GeV obtained from the fits described in the text. All the
uncertainties are given as a percentage of the final answer. The condensate uncertainties include
all the uncertainties from that term in the fit function, which also allows for discretisation and
msea effects.

mc(3 GeV) ms( 3 GeV)
a2 → 0 0.28 0.28

Missing α3
s term 0.22 0.22

Condensate 0.22 0.13
msea effects 0.00 0.00

Z
MS/SMOM
m and R 0.04 0.04

ZSMOM
m 0.13 0.13

Uncorrelated mtuned 0.19 0.23
Correlated mtuned 0.30 0.82

Gauge fixing 0.11 0.09
Total: 0.61% 0.98%
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6.3 Charm tuning with the J/ψ

The masses given above in Section 6.2.2 are the results published in [1]. Here a small update to
that calculation of the charm mass is provided by including data from the finer β = 7 ensemble
and applying a correction such that the bare masses are now tuned using the J/ψ for the reasons
discussed in Chapter 4. We also use the recent three-loop calculation of the Zm matching to the
MS scheme which allows us to change the α3

s in Eq. 6.10 to α4
s and reduce the uncertainty arising

from that term. For the charmonium calculations presented here we have tuned the charm quark
mass on set 18. For the calculation of [1] it is not the tuned bare charm mass on set 18 that we
need but the tuned bare mass on an ensemble with the same β but physical sea quarks. To get
this result, and the w0/a value on such an ensemble, we make use of the results of Appendix A of
[27]. We obtain w0/ã = 3.970(15) and mtuned

c = 0.859(3) GeV where the correlated uncertainty
from w0 has been removed (it will be added back in at the end of the calculation as was done
in [1]). [Note that the results presented here differ slightly from those in [3] as the latter uses
newer w0/a determinations, using tuning to the J/ψ mass for the sea charm quarks.]

The Zm(µ) and ZV (µ) that we have calculated on set 18 are at slightly mistuned values of µ
compared to the results previously gathered on the other ensembles. This can be accounted for
by changing the scale µ at which the MS and QCD running are evaluated. The Z factors on set
18 were evaluated at µ values of 2.04 and 2.98 GeV. We allow for the uncertainty on these values
arising from the lattice spacing determination by including a correlated error across the two µ
values of 0.001 on the MS conversion factor.

In Section 6.2 and [1] the bare masses were taken from [27] where they were tuned using an
adjusted value of the ηc mass. The adjustment was composed of an estimate of the effect of QED
on the mass using a Coulomb potential model and a perturbative adjustment for gluon annihila-
tion taking a 100% uncertainty on the adjustment. Because the contribution from annihilation
to gluons is much smaller in the case of the J/ψ it is preferable to use the J/ψ mass for this
tuning. The value of the charmonium hyperfine splitting from Chapter 4 can be used to adjust
the bare masses so that they are tuned to the J/ψ mass instead. As there is little lattice spacing
dependence in the hyperfine splitting we adjust all bare masses by the same percentage. The
hyperfine splitting gives a fractional discrepancy between ηc and J/ψ mass tuning of 0.25%. The
deliberately mistuned data used in the analyses of Chapter 4 indicate that the fractional change
in quark mass is 1.5 times the change in the J/ψ mass. We therefore apply a 0.38% shift to all
bare masses.
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Figure 6.3: mc(3 GeV) extrapolated to the continuum with a fit form that allows for condensate
terms that behave like inverse powers of the renormalisation scale µ. This plot is the same as the
upper section of Fig. 6.1 but with added data at a finer lattice spacing (ultrafine). The ultrafine
points deviate from the µ values of the corresponding lines by 1-2% because the µ values on
these points are slightly mistuned. We are also here using tuning to the J/ψ mass rather than
the ηc mass as was done in [1].

The continuum extrapolation and µ fit is shown in Fig. 6.3 including the ultrafine points. This
fit has a χ2/dof of 0.81. The error budget for this calculation is shown in Table 6.4. Most of the
entries are very similar to those in [1]. The contribution due to the continuum extrapolation has,
unsurprisingly, dropped a little. The fit returns a result of 0.9836(54) GeV for mc(3 GeV).

6.4 QED impact on the determination of mc in the MS scheme

To assess the QED impact on the bare masses we use the QCD+QED J/ψ masses shown in
Fig. 4.2. As we have corrected the result of [1] as if it were tuned to the experimental J/ψ mass
this is the tuning we need to use for the QCD+QED case as well. The shift in amc required to
obtain the correct J/ψ mass after QED has been included (which we denote RQED[amc]) can be
evaluated as the J/ψ mass should vary as 2amc plus some binding energy to a first approximation.
We therefore expect that, to a first approximation, RQED[amc] = RQED[MJ/ψ]. The deliberatley
mistuned amc values in Table 4.2 show that the fractional change in the value of amc is 1.5
times larger than the change in aMJ/ψ. Using this factor of 1.5 we calculate RQED[amc] to be
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Table 6.3: The electromagnetic correction to Zm for different values of µ and different lattice
spacings are shown in the third column, The fourth column is the QED component of the RI-
SMOM to MS matching for each µ and the fifth is the QED mass running to a reference scale of
3 GeV.

Set µ [GeV] RQED[Z
SMOM
m ] Z

MS/SMOM
m [QED] R(3 GeV, µ)[QED]

6 2 1.001200(83) 0.999872 0.999372
14 2 1.001516(35) 0.999872 0.999372
16 2 1.001853(83) 0.999872 0.999372
6 2.5 1.000827(31) 0.999873 0.999718
6 3 1.000540(15) 0.999873 -
14 3 1.000851(11) 0.999873 -
16 3 1.001308(18) 0.999873 -
14 4 1.0005001(21) 0.999873 1.000446
16 4 1.0009331(34) 0.999873 1.000446

0.99840(8), 0.99790(4) and 0.99734(9) on sets 6, 14 and 16respectively. The uncertainty on these
values has been increased by a factor of 5 to account for uncertainty in the factor of 1.5.

As was done in [1] we perform calculations of Zm (RQED[Zm]) at multiple values of the renor-
malisation scale µ, convert to MS, and run all values to 3 GeV using the QCD four loop MS mass
anomalous dimension. This allows us to account for nonperturbative contaminations which are
generically suppressed by powers of µ. (In this case these would be QED corrections to QCD
condensates.)

It is necessary to include QED effects on the matching to MS and the running of the mass
renormalisation in the MS scheme to the reference scale of 3 GeV. The values needed to do this
are given in Table 6.3. In that Table RQED[X] is a shorthand for X[(QCD+QED)/QCD]. The
values for RQED[Zm] from Table 3.3 are also included.

For consistency we should also include QED effects to the mass anomalous dimension. Again,
the αQED coefficient can be obtained from the αs term as before. Higher order terms in αQED are
known but their high suppression renders them negligible. The αsαQED term could, in principle,
have some impact. This term is calculated in [155]. The coefficient is very small and we therefore
ignore it.

We fit the product of RQED[amc], RQED[Zm], the QED MS conversion and QED mass running.
This gives the (QCD+QED)/QCD renormalised charm mass run to a reference scale of 3 GeV.
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Zm is in the RI-SMOM scheme and therefore needs to be converted to MS before we run to 3
GeV. We use the following fit form:

RQED[mc(3 GeV, µ, a)] = RQED[mc(3 GeV)]×[
1 + αQEDQ

2
∑
i=1

c
(i)
a2
(a(1 GeV))2i

]
×[

1 + αQEDQ
2

(∑
j=1

c
(j)
µ2a2

(aµ)2j

+
∑
n=1

αs(µ)c
(n)
cond

(1 GeV)2n

µ2n

)]
. (6.13)

Here the first term on the second line accounts for discretisation effects in RQED[amc]; a scale
of 1 GeV is chosen as this is close to the charm mass. The term multiplying this models the
a and µ dependence of the QED correction to Zm. This includes discretisation effects of the
form (aµ)2i. There are, in addition, terms to model condensate contributions, starting at 1/µ2.
The condensate coefficients are not resolved by the fit. The fit result, with a χ2/dof of 0.87, for
RQED[mc(3 GeV)] is 0.99823(17), which we multiply the pure QCD result by to obtain a final
answer for the charm quark mass in the MS scheme at a reference scale of 3 GeV: 0:9819(54)
GeV. The error budget for this final value is given in Table 6.4.
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Figure 6.4: Electromagnetic correction to the charm quark mass in the MS scheme at a scale
of 3 GeV. The final, continuum extrapolated, result is shown as the red circle to the left. The
different µ values, shown as different colours and shapes, have all been run to 3 GeV and only
differ by discretisation and condensate effects. In fact, there is no visible difference. The vast
majority of the discretisation effect here is due to discretisation effects in the ratio of the charm
bare mass tuned to give the experimental J/ψ mass with and without the inclusion of QED
effects. These appear as even powers of amc.

Table 6.4: Error budget for the calculation of the charm quark mass in the MS scheme at a
scale of 3 GeV using RI-SMOM as an intermediate scheme. The listed contriubtions have the
same meaning as those in [1] except for the “QED effect” which comes from the continuum
extrapolation shown in Fig. 6.4.

mc(3 GeV)
a2 → 0 0.25
Missing α3

s term 0.10
Condensate 0.21
msea effects 0.00
Z

MS/SMOM
m and R 0.05

ZSMOM
m 0.12

Uncorrelated mtuned 0.13
Correlated mtuned 0.30
Gauge fixing 0.09
µ error from w0 0.12
QED effect 0.02
Total 0.51%
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6.5 Cross-check with determination from time moments

The previous HPQCD determination of mc [27] used fits to (pseudoscalar) time moment data
utilising the available three-loop QCD perturbation theory evaluations of those moments in terms
of the quark mass. The fit used was sophisticated and involved division of the moments by their
tree level values to reduce discretisation effects. Here we perform a similar but simpler procedure
to provide another cross-check of our mc value.

For each vector time moment whose continuum value was calculated in Section 4.7 we may
calculate the charm quark mass by dividing by the perturbative expressions given in Section 1.5.1.
The αs in the perturbative expression can be chosen to be evaluated at mc to avoid logarithmic
terms in the series. However, a scale of ∼ 1 GeV poses potential problems for the convergence
of the perturbative expansion. We therefore also evaluate the series, including log terms, at a
scale of 3 GeV. This gives a charm mass in the MS scheme at a scale of 3 GeV. The perturbative
expansion becomes less convergent as the n value of the moment increases and we therefore
only use the first three moments. The mc values at both the charm mass itself and 3 GeV for
the first three moments are given in Table 6.5. The numbers there are very precise, with the
uncertainty being dominated by αs. Given the level of precision and the simplicity of the analysis
no claim is made that the final unccertainties are reliable given that the perturbation theory used
is truncated and performed at reasonably low scales.

The values in Table 6.5 are fit to a constant and a different α4
s term for each moment to allow

for the next unknown term in the perturbative expansion. A prior of 0± 0.5 was used for each
of these terms. We obtain the values:

mc(mc) = 1.2653(86), (6.14)

mc(3 GeV) = 0.9790(84).

Table 6.5: The charm quark mass determined from various vector time moments at scales of the
charm mass itself and 3 GeV.

n = 4 n = 6 n = 8

µ = mc 1.2653(41) 1.2689(28) 1.2677(19)
µ = 3 GeV 0.9789(35) 0.9787(49) 0.9842(51)
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According to the discussion of [133] an uncertainty of ±0.02 GeV on mc(mc) should cover the
systematic uncertainty of unknown higher order perturbation theory, so the results of Eq. 6.14
may not fully capture this. There are also gluon condensate (〈GµνGµν〉) effects that are being
ignored which are expected to be small but grow with n. However, even given these considerations
Eq. 6.14 still agree well with our RI-SMOM results.

6.6 Summary

The current status of lattice determinations of the charm quark mass is displayed in Fig. 6.6.
This only includes lattice QCD results with 4 active flavours of quark in the sea. There are
three lattice determinations using independent methods (with different systematic uncertainties)
that have subpercent uncertainties. The FNAL/MILC/TUMQCD result [156] uses HQET to
parameterise the heavy quark mass dependence of heavy-light meson masses calculated on the
lattice. The quark mass from this expansion is then perturbatively matched to the MS scheme.
(There is a subtlety in the definition of the quark mass that is made well defined through the
use of the minimal renormalon-subtracted (MRS) scheme [157].) The HPQCD HISQ JJc result
is from [27] and uses fits to pseudoscalar time moments (divided by their tree level values) to
a fit including the perturbative expansion. These three all use the MILC HISQ ensembles with
HISQ valence quarks. The ETMC result from [158] uses mass renormalisation performed in the
RI′-MOM scheme with a twisted mass action.

There is very good (well within 1 σ) agreement between the different HISQ determinations (which
are the most precise) indicating that the separate methods have well controlled systematic un-
certainties. All these determinations are considerably more precise than the PDG average.

Our final results for the strange and charm quark masses are:

mc(3 GeV) = 0.9819(54),

ms(3 GeV) = 0.08538(84).
(6.15)
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Figure 6.5: Comparison plot of lattice determinations of the charm quark running mass in the
MS scheme with four flavours in the sea. The grey band corresponds to the PDG average. [Figure
courtesy of C. T. H. Davies.]
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Conclusions

This work has consisted of two main streams. The first is the computation of renormalisation
factors for various currents using largely nonperturbative methods. This has allowed for very
precise results for these factors and we have demonstrated that the systematics associated with
these nonperturbative calculations can be understood and controlled. This included a detailed
examination of the nonperturbative renormalisation of lattice vector currents. The conclusion
of this study was that the RI-SMOM momentum subtraction scheme provides a method for the
calculation of vector current renormalisation factors (ZV ) devoid of nonperturbative contami-
nation. This was shown to not be the case for the RI′-MOM scheme through analysis of the
conserved and local lattice vector current renormalisations, due to the lack of protection given
to the RI′-MOM scheme by the Ward-Takahashi identity. It was also shown that nonpertur-
bative contributions to the mass renormalisation factors obtained using momentum subtraction
schemes on the lattice need to be accounted for in order to achieve percent level precision in
determinations of quark masses that use such renormalisation factors.

The second stream involves applications of these renormalisation factors in the calculations of
charmonium and bottomonium meson properties and the determination of quark masses. This
has resulted in high precision results for ground state charmonium properties. We have pro-
vided the first calculation of the charmonium hyperfine splitting that is precise enough to show
separation from the experimental average which is expected due to the contribution to the ηc
mass from annihilation to gluons. We have made efforts to control all the systematics of this
calculation by using lattice ensembles that cover a very wide range of lattice spacings, going

199
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down to ∼ 0.03 fm, as well as including electromagnetic effects. We therefore take the differ-
ence between our hyperfine splitting result of 0.1203(11) GeV and the experimental average of
0.1130(5) GeV to be the contribution of ηc annihilation which is missing from the lattice cal-
culation. (Properly including this contribution would require the calculation of disconnected
correlators and a complicated analysis of the results. At present this is too difficult.) We also
calculated the J/ψ decay constant, making use of RI-SMOM vector current renormalisation fac-
tors, and achieved better precision (0.4%) than both any previous lattice calculation and the
experimental average. The agreement between our result and the experimental average shows
that our systematic uncertainties are controlled at a level below 1% precision. These results are
summarised in Eq. 4.28.

We have extended these results to higher masses with the aim of reaching the b mass. Using
both the bottomonium hyperfine splitting and Υ decay constant we have demonstrated that we
can parameterise the heavy mass dependence of heavyonium quantities provided that we have
data at small lattice spacings where the b mass can be reached. We have been able to provide
bottomonium results at the 5% level which is comparable to experiment and more precise than
previous lattice results using NRQCD or Fermilab quarks. Bottomonium results are summarised
in Eq. 5.3.

Finally, we presented determinations of the strange and charm quark masses using mass renor-
malisation factors calculated nonperturbatively in the RI-SMOM scheme and then perturbatively
matched to the MS scheme achieving precision below 1% for both. For the charm quark mass
we also included the effects of QED given that we have reached subpercent precision. Our final
values in the MS scheme at a renormalisation scale of 3 GeV are given in Eq. 6.15.

There are several further applications of the renormalisation factors presented here that are
currently underway. Tensor form factors which require the tensor current renormalisation factors
discussed in Section 3.4 are currently being calculated for a study of B → K decays using an
all-HISQ approach, as discussed in Chapter 5. There are also plans to study the QED correction
to the light quark contribution to the HVP which will require the use of the QED corrections to
the local vector current renormalisation given in Section 3.3.7.
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