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Abstract 

The Popeye domain containing (POPDC) protein family are a unique family of 

transmembrane proteins with several proposed functions that are not fully 

understood. POPDC proteins are abundantly expressed in cardiac and skeletal 

muscle. Within the heart, POPDC1 has been shown to be highly expressed in the 

pace making centres and at moderate to low levels in the atria and ventricles. 

Given this localisation, a role for POPDC1 was hypothesised to be in the 

maintenance of normal heartbeat rhythm.  Studies involving POPDC1 mutant 

mice and zebrafish provided evidence for this proposed function as the 

genetically modified model animals displayed cardiac arrhythmias as the 

predominant phenotype. Since POPDC proteins have been shown to be cAMP 

effectors, I set out to characterise their functions that that were regulated by 

cyclic nucleotide levels. As all the other known cAMP effector proteins such as 

PKA and EPAC form signalling complexes with phosphodiesterase (PDE) enzymes 

to limit cAMP concentrations in the vicinity of the cAMP effector, thus hindering 

their activation under basal conditions, the work presented in this thesis aimed 

to discover whether such a complex existed that contained POPDC and PDE4.  

This thesis begins with characterisation of the molecular interaction between 

POPDC1 and PDE4A. It was hypothesised that a signalling complex containing 

POPDC1 and PDE4A would be formed as a regulatory mechanism to control cAMP 

concentrations in microdomains close to POPDC1 so modulating the activity of 

the protein. Co-immunoprecipitation studies along with proximity ligation assays 

confirmed the presence of this interaction in transiently transfected HEK293 

cells, endogenously expressing neonatal rat ventricular myocytes (NRVM) and 

adult rabbit septal myocytes (ARSM).  Fine mapping of the binding sites on each 

respective protein was carried out using peptide array technology. This allowed 

identification of key docking sites that mediate the interaction between POPDC1 

and PDE4. Using the binding sequence for PDE4A on POPDC1, a cell penetrating 

disruptor peptide was created. It was proposed that the disruptor peptide would 

‘unhook’ the POPDC1-PDE4A interaction, allowing for enhanced cAMP dynamics 

around POPDC1 therefore, modulating its interactions with other proteins such 

as the potassium channel TREK1. Using fluorescence resonance energy transfer 

(FRET) it was shown that the disruptor peptide led to a reduction in the 
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interaction between POPDC1 and TREK1, mimicking the effect of PDE4 inhibition 

with rolipram (4-[3-(cytopentyloxy)-4 methophenyl]-2-pyrrolidinone). 

Furthermore, treatment with the disruptor peptide in adult rabbit ventricular 

myocytes created a marked elongation of the cardiac repolarisation phase. It 

could be suggested that by blocking PDE4A binding to POPDC1, the subsequent 

increase in cAMP in its vicinity may lead to a reduction in the interaction 

between POPDC1 and TREK1. Given that the interaction with POPDC1 increases 

the current through the channel two-fold, the elongated repolarisation phase 

may be due to a decrease in K+ efflux caused by the lack of POPDC1-TREK1 

complex formation. This conclusion represents the first instance where PDE 

activity has been shown to influence POPDC function. 

POPDC1 has previously been shown to be downregulated in human heart failure. 

Using a porcine model of myocardial infarction, I have demonstrated that there 

is an initial disease-induced reduction in POPDC1 expression levels that is lost 

after 3 months. In human patients suffering from heart failure, this loss in 

expression was not replicated. This data suggests that the initial reduction in 

POPDC1 creates a protective effect that helps the injury affected area of the 

heart in animal models.  

A secondary aspect of this work was to investigate whether POPDC1 was 

subjected to any post translational modification (PTMs). PTMs are known to be 

able to modulate interactions between proteins through several mechanisms. In 

silico analysis of POPDC1 sequence revealed a high probability SUMOylation site 

(K119) and a PKA-dependent phosphorylation (T236) site which were confirmed 

using peptide array. Forced SUMOylation in NRVM further confirmed that Popdc1 

is a SUMO substrate. It remains unclear at this time what the functional 

relevance of these PTMs are, but I hypothesize that either or both contribute 

towards the ability of POPDC1 to bind to different interaction partners by 

inducing a conformational change. This is the first study to show that POPDC1 is 

subjected to SUMOylation and phosphorylation.   

The final part of this thesis reports work undertaken to determine the three-

dimensional structure model of POPDC1. Currently, only indirect structural 

information about the protein is available, generated by homology modelling. 

Protein structure can often provide clues about putative protein function as well 
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as confirming that binding sites such as those identified in this work are surface 

exposed. Four expression constructs containing different fragments of POPDC1 

were produced and the solubility of the proteins produced analysed. A construct 

containing only the Popeye domain was taken forward and highly purified 

samples were produced. Despite the quantity of recombinant protein, no 

structural analysis could take place as the protein aggregated in solution. 

Further testing of other constructs will be required to develop a construct that 

can be used to determine the structure of POPDC1.  

In combination, the work described here provides a major contribution to the 

field showing, for the first time, that POPDC1 forms an interaction with PDE4A in 

the heart. I have also described novel methods and tools to investigate the 

functional correlates of the complex. In addition, this interaction underpins the 

first regulatory mechanism of POPDC1 to have been identified. Understanding 

the manner in which the POPDC1-PDE4A interaction affects cardiac pace making 

is necessary to pinpoint how POPDC1 contributes towards disease. This may lead 

to new therapeutic avenues that are able to target the POPDC1-PDE4A 

interaction. 
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Definitions/Abbreviations 

oC degrees Celsius 

25mer 25 amino acid peptide 

5'AMP 5' - adenosine monophosphate 

β-AR β adrenergic receptor 

AC adenylyl cyclase 

ACE angiotensin converting enzyme 

AD Alzheimer's disease 

ADP adenosine diphosphate 

AH Akt homology 

AKAP A-kinase anchoring protein 

ANOVA a one-way analysis of variance 

ANP atrial natriuretic peptide  

APD action potential duration 

ARSM adult rabbit septal myocytes 

ARVM adult rabbit ventricular myocytes 

ATP adenosine triphosphate 

AV atrioventricular 

AVN atrioventricular node 

BSA bovine serum albumin 

BVES Blood vessel epicardial substance 

C catalytic subunit 

CaCl2 calcium chloride 

cAMP cyclic 3',5' adenosine monophosphate 

CAP bacterial catabolite activator  

CAV3 Caveolin 3 

CBD cAMP binding domain 

cCMP Cyclic, 3’,5’ cytidine monophosphate 

CCS cardiac conduction system 

CD50 time from 50% contraction to 50% relaxation 

CFP cyan fluorescent protein 

cGMP cyclic 3',5' guanosine monophosphate 

CL chloride 

cm centimetre 

CMC critical micelle concentration  

cmp counts per minute 

CNBD cyclic nucleotide binding domain 

CNGC cyclic nucleotide gated channels 

CNS central nervous system 

Co-IP co-immunoprecipitation 

CO2 carbon dioxide 

COPD chronic obstructive pulmonary disease 

CREB cAMP response element binding  
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CRP cAMP response protein 

DAG diaglycerol  

DAPI 4′,6-diamidino-2-phenylindole 

DCM dilative cardiomyopathy  

ddH2O double distilled water 

dH2O distilled water 

DMEM Dulbecco's modified eagle medium 

DMSO dimethyl sulfoxide 

DNA deoxyribose nucleic acid 

DRG dorsal root ganglion  

E.coli Escherichia coli  

E1 SUMO activating enzyme  

E2 SUMO conjugating enzyme, UBC9 

E3 SUMO ligase 

ECG electrocardiogram 

ECL enhanced chemiluminescence  

ECM extracellular membrane  

EDTA ethylenediaminetetraacetic acid  

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 

EPAC exchange proteins directly activated by cAMP 

ER endoplasmic reticulum 

ERK extracellular-signal-regulated kinase 

FBS foetal bovine serum 

FFA free fatty acids 

FP fluorescence polarisation 

FRET fluorescence resonance energy transfer 

g grams 

GAL Galectin-1 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GDP guanosine diphosphate  

GEFT guanine nucleotide exchange factor 

GMP guanosine monophosphate 

GPCR G-protein coupled receptors 

GST glutathione S-transferase 

GTP guanosine triphosphate 

H2PO4 dihydrogen phosphate 

HA haemagglutinin 

HCC hepatocellular carcinoma 

HCl hydrochloric acid 

HCN hyperpolarisation-activated cyclic nucleotide-gated   

HCNGC hyperpolarisation-activated cyclic nucleotide-gated cation  

HCSM hydrophobic cluster dependent SUMOylation motif  

HEK-293 human embryonic kidney-293 cells 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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HERG human-ether-a-go-go-related gene 

HF Heart Failure 

HIF Hypoxia inducible factor 

HIS histidine 

HRP horseradish peroxidase 

HSP Heat shock protein  

Ica inward Ca2+ current  

IκBα nuclear factor κ light polypeptide gene enhancer in B-cells inhibitor α 

IBMX 3-isobutyl-1-methylxanthine 

IF immunofluorescence 

IP immunoprecipitation 

IPTG Isopropyl β- d-1-thiogalactopyranoside 

I/R injury ischaemia/reperfusion injury 

KB background potassium current 

kDa kilodalton 

KO knock-out  

LAD left anterior descending  

LB lysogeny broth 

LTCC L-type calcium channel 

LSM laser-scanning confocal microscope 

LV left ventricle 

M molar 

M1 NRVM day 1 medium 

M199 medium 1999 

M2 NRVM day 2 medium 

MAP mitogen activated protein 

MBP Maltose-binding protein  

MI myocardial infarction 

mg milligram 

Mg-ATP magnesium adenosine triphosphate 

MgCl2 magnesium chloride 

MgSO4 magnesium sulphate 

ml millilitre 

MS mass spectrometry 

N106 N-(4-methoxybenzo[d]thiazol-2-yl)-5-(4-methoxyphenyl)-1,3,4-
oxadiazol-2-amine 

NaCl sodium chloride 

NaF sodium fluoride 

NaOH sodium hydroxide 

NCS neonatal calf serum 

NCX sodium calcium exchanger 

NDSM negatively charged amino acid-dependant SUMOylation motif 

NEAA minimum essential medium non-essential amino acids 

NFκB   light chain enhancer of activated B cells 

ng nanogram 
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Ni-NTA nickel-nitrilotriacetic acid  

nm nanometre 

NO nitric oxide 

NKA Na+, K+-ATPase  

NMR nuclear magnetic resonance spectroscopy 

NPB Nuclear Protein Buffer  

NPC nuclear pore complex  

NRVM neonatal rat ventricular myocytes 

P/S penicillin/streptomycin 

PAT protein acyltransferases  

PBC phosphate binding cassette 

PBS phospho-buffered saline 

PCR polymerase chain reaction 

PDE phosphodiesterase 

PDI protein disulphide isomerase  

PDSM phosphorylation dependent SUMOylation motif 

PFA paraformaldehyde 

PIAS protein inhibitor of activated STAT 

PIP POPDC interacting protein  

PKA protein kinase A 

PKB protein kinase B 

PKC protein kinase C 

PKG protein kinase G 

PLA proximity ligation assay 

PLB phospholamban 

PLM promyelocytic leukaemia  

POPDC Popeye domain containing protein 

PTM posttranslational modification 

RAC resin-assisted capture  

RNA ribonucleic acid 

rpm rotations per minute 

ROS reactive oxygen species 

RPKM reads per kilogram per million 

RT room temperature 

RyR ryanodine receptor 

SA sinoatrial 

SAN sinoatrial node 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

SEM standard error of the mean 

SENP sentrin-specific protease 

SERCA sarco/endoplasmic reticulum Ca2+-ATPase 

SIM SUMO interacting motif 

SR sarcoplasmic reticulum 

SSS sick sinus syndrome 
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SUMO small ubiquitin-like modifier 

TAPAS tryptophan anchoring phosphatidic acid selective-binding domain 1 

TBS tris buffered saline 

TBST tris buffered saline with Tween-20 

TCEP tris(2-carboxyethyl) phosphine 

TM transmembrane 

TNF Tumour necrosis factor  

TNFR Tumour necrosis factor receptor 

Tn troponin 

TnC troponin C 

TnI troponin I 

UBC9 SUMO conjugating enzyme, also referred to as E2 

UCR upstream conserved region  

UF unfractionated  

VSMC vascular smooth muscle cell  

v/v volume/volume 

w/v weight/volume 

WB western blot 

WT wild type 

YFP yellow fluorescent protein 

µg microgram 

µl microlitre 

µm micrometre 

µM micromolar 
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1 Introduction 
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1.1 Understanding the electrophysiology of the heart 

1.1.1 Contractile apparatus 

Muscle contractions are governed and executed by electrical stimulation. The 

rhythmic alteration between contraction and relaxation is the defined 

mechanistic basis for heart pump function. During normal cardiac cycle, the 

atria contract to move the blood into the ventricles which are relaxed. Upon the 

ventricles becoming filled, the ventricular myocardium contracts pushing blood 

into either the pulmonary artery, if exiting the right ventricle, or the aorta, if 

exiting the left ventricle. Relaxation of both the atria and ventricles allows the 

cardiac cycle to begin again.  

Contractile apparatus is found in both cardiac and skeletal muscle. In both cell 

types there exists functional similarities and vastly significant differences. The 

most important shared feature is the presence of myofibrils which are 

responsible for the cell’s ability to contract. Myofibrils are composed of 

sarcomeres arranged in a regularly repeating fashion. Each sarcomere is 

comprised of thick and thin filaments laid out in a manner that gives the 

appearance of the myofilaments being striated when examined microscopically. 

Thin filaments are mainly composed of actin, troponin and tropomyosin but also 

contain proteins such as the actin-binding protein nebulin, whereas thick 

filaments are mainly comprised of myosin molecules (Holland and Ohlendieck, 

2013, van Eldik and Passier, 2013). There are several sarcomeric components 

that can also be identified for example Z-discs, which form the boundary of the 

sarcomere. Surrounding each Z-disc is the A (anisotropic) band and the I 

(isotropic) band with the M (middle) line running through the centre of the Z-

disc. Anchored at Z-discs is titin, the largest protein known, functioning to 

connect the thick filaments to the Z-disc to increase the stability of the 

sarcomeres, which plays a crucial role in muscle elasticity and generation of 

passive muscle force (van Eldik and Passier, 2013, Fukuda et al., 2008, Gautel, 

2011). Other components of the Z-discs include the telethorin (T-cap) which is 

known to bind to proteins within t-tubules to help with their development, 

structure and function (Zhang et al., 2009, Ibrahim et al., 2013). The physical 

event of a contraction involves the sliding of the thin filaments past the thick 

filaments. This in turn causes the shortening of the sarcomere and contraction of 
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the myofibril and the muscle. Mechanistically, the contraction is proposed to be 

delivered by the cross-bridge and swinging lever-arm hypothesis of muscle 

contraction (Holmes, 1997). This involves the myosin cross-bridges which are 

bound to actin. These complexes are dissociated by ATP binding to the ATPase, 

myosin, resulting in a conformation change of the myosin cross-bridge. Upon the 

hydrolysis of ATP to ADP + Pi, the conformation returns to its native state. 

Movement of the filaments creates a rowing like action of the myosin cross-

bridge pulling the thin filament toward the M-line. Swinging-level theory 

addresses this by basing the movement of only the distal carboxy terminal 

portion of myosin keeping the main part of the cross-bridge attached to actin 

(Holmes, 1997). 

1.1.2 Electrical activity in the heart 

The rhythmic contraction of the heart is controlled by the propagation of 

electrical impulses controlled by the cardiac conduction system (CCS). To 

generate the cardiac contraction, an electrical impulse begins in the sinoatrial 

(SA) node, located within the wall of the right atrium, where it passes through the 

Bachman’s bundle into the left atrium.  Additionally, from the SA node the signal 

is passed to the atrioventricular (AV) node allowing the propagation of the impulse 

through the bundle of His and down the bundle branches. This impulse is delayed 

slightly to allow the blood from the atria to fill into the ventricles before 

contraction. The right bundle branch depolarizes the right ventricle while the left 

bundle branch depolarizes both the left ventricle and the interventricular septum 

(Anderson et al., 2009, Renwick et al., 1993).  Depolarization generates the 

contraction and the expulsion of blood from the ventricles.  

These physiological changes correlate with changes in action potential. This is 

namely down to changes in the ubiquitous second messenger Ca2+, which is 

central to cardiac electrical activity and is the direct activator of the sarcomere 

(Bers, 2002).  The sarcomere is the basic functional unit of the muscle found within 

a myocyte. It consists of contractile elements; myosin, thick filaments that have 

globular heads that possess ATPase activity and actin, thin filaments arranged in 

an alpha helix woven between the myosin filaments. Tropomyosin acts a 

regulatory element which prevents the interaction between the myosin globular 

head and the actin during rest. Troponin, a complex of three proteins (T, I and C) 
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sits alongside the actin filaments. Troponin T (TnT), mediates the interaction 

between troponin and other contractile proteins, troponin I (TnI) inhibits the 

enzymatic capacity of myosin, and troponin C (TnC) can bind Ca2+ allowing for 

the regulation of contraction (Bers, 2002).   

The electrical impulse passes through the conduction pathway leading to the 

depolarisation of the cardiomyocyte membrane. Following the membrane 

depolarisation, the L-type calcium channels (LTCC) on the membrane open 

allowing an initial influx of Ca2+ into the cell. This Ca2+ induces the opening of 

the ryanodine receptors (RyRs) located on the surface of the sarcoplasmic 

reticulum (SR). The SR functions as an intracellular Ca2+ store and its opening 

generates a greater influx of Ca2+ into the cytosol (Bers, 2002).  It is this free 

Ca2+ that is responsible for mediating the contraction of the myocytes through 

the contractile proteins. TnC binds free Ca2+ and induces its conformational 

change in troponin exposing a site on actin that can now interact with the myosin 

globular head. This interaction leads to the hydrolysis of ATP supplying energy for 

the conformational change of the actin-myosin complex. The change promotes the 

movement of the myosin globular head and actin with the two filaments sliding 

past each other. This shortens the length of the sarcomere resulting in the 

contraction of the myocyte. The relaxation of the myocyte occurs when Ca2+ is 

released from TnC and contractile proteins return to their resting state. Ca2+ is 

then either taken up by SERCA into the SR for storage or expelled from the cell 

via the Na+/Ca2+ exchanger (NCX) (Kawase and Hajjar, 2008, Bers, 2002).   The 

last cellular component contributing to the modulation of Ca2+ is the 

mitochondrial Ca2+ uniport which allows Ca2+ to enter the mitochondria leading 
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to another intracellular store. This process begins again during the next 

depolarisation event (Figure 1.1)(Bers, 2002).  

 

Figure 1.1 The excitation-contraction coupling. Ca2+ enters the cell via the activated L-type 
calcium channel (LTCC). This Ca2+ induces a conformational change in the ryanodine receptor (RyR) 
resulting in the release of Ca2+ from the sarcoplasmic reticulum (SR). Release Ca2+ interacts with 
contractile proteins to mediate cellular contraction. Relaxation of the cell occurs through the removal 
of Ca2+ from the cell via sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) or sodium–
calcium exchanger (NCX). (Kawase and Hajjar, 2008) 

 

1.2 Cyclic Nucleotide Signalling 

1.2.1 Second Messengers and Signal Transduction 

Signal transduction is the process by which cells translate external cues into 

temporal physiological responses. Generally speaking, the activation of signal 

transduction begins with the interaction of an extracellular ligand, commonly a 

neurotransmitter, small molecule or a hormone, with a membrane bound 

receptor. The ligand binding initiates a distinct intracellular signalling pathway, 

which can involve a ubiquitous second messenger, which in turn drives signal 

transduction.  These second messengers are the crucial link between the sensing 

of a stimuli by the receptors and the internal cellular effector proteins which 

can drive the creation of physical changes to respond appropriately to external 

environments (Sutherland, 1972). Second messengers include a wide variety of 

small molecules and ions that allow the cell to discretely respond to changes in 

extracellular environment. They can be rapidly generated or released to trigger 
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a pool of activated cellular effector proteins. For this sequence of events to 

work, there has to be an orchestrated signalling response driven by the activated 

receptor. Levels of second messenger molecules within the cell must be 

controlled both temporally and spatially to allow for compartmentalised signal 

transduction that is both effective and fleeting.  The signalling response is 

complete when the concentrations of the second messenger is reduced back to a 

basal level following release of the second messenger from the cell, reuptake 

into a cellular store or by its degradation by specialised enzymes (reviewed in 

(Newton et al., 2016)). There are a variety of second messengers which include 

Ca2+, diaglycerol (DAG), inositol triphosphate (IP3) and cyclic nucleotides 

(Berridge, 1984, Sutherland, 1972). The two main forms of cyclic nucleotides 

involved in a wide range of cellular signalling are cyclic 3’5’-adenosine 

monophosphate (cAMP) and cyclic 3’5’-guanosine monophosphate (cGMP). Each 

are comprised of a nucleotide with a single phosphate that possesses two single 

bonds between the sugar and this phosphate. Although there are non-canonical 

cyclic nucleotides such as cyclic 3’5’-cytidine monophosphate (cCMP) and cyclic 

3’5’-uracil monophosphate (cUMP); theses will not be discussed in this work as 

they are still relatively uncharacterised.  

1.2.2 cAMP Signalling Pathway 

The first discovery of a second messenger molecules was of cAMP (Sutherland 

and Rall, 1958). cAMP is an important second messenger molecule that is 

involved in a plethora of cellular processes. The cAMP signalling pathway begins 

with the binding of a specific ligand to a G-coupled protein receptor (GPCR) 

(Figure 1.2). Within the span of the human genome, approximately 4% of the 

total protein coding genome codes for GPCRs. These receptors possess both 

widespread expression patterns and a huge range of physiological roles. 

Generally, GPRCs contain a distinct extracellular N-terminal region, seven 

transmembrane domains and a cytosolic C-terminus. Housed within the N-

terminal region is a ligand binding site which activates the receptor (Rosenbaum 

et al., 2009). The C-terminal region interacts with heterotrimeric G-proteins 

consisting of α, β and γ subunits. G-proteins are normally referred to by their α 

subunit therefore the heterotrimeric version contains Gαs, Gαi and Gαq  subunit 

(Pierce et al., 2002). Each of these subunits possesses a distinct function within 

the signalling pathway. Gαs is known to positively interact with the cyclic 
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nucleotide catalysing enzyme adenylyl cyclase (AC). The converse can be said 

about Gαi, which negatively inhibits the activity of AC (Pierce et al., 2002). 

Lastly, Gαq works independently of both cAMP and AC pathways. It instead 

activates phospholipase C and signalling via the second messengers IP3 and DAG. 

Upon ligand binding, the GPCR causes the α-subunit to release its attached 

guanosine diphosphate (GDP) and exchange it for a guanosine triphosphate (GTP) 

which drives a conformational change and subsequently the dissociation of the 

Gα subunit (Pierce et al., 2002). In addition to the α subunit signalling, the βγ 

complex of the G-protein mediates alternative signalling pathways. The 

functional diversity within the GPCRs is due to the multiple ways in which the 

numerous genes encoding the subunits (sixteen α, five β and twelve γ) combine 

(Pierce et al., 2002). 
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Figure 1.2 cAMP signalling pathway. Following the activation of membrane bound GPCRs, ACs 
are stimulated through the binding of the Gαs subunit leading to the generation of cAMP from ATP 
at the surface of the membrane. cAMP activates four main effector proteins: CNGC, PKA, EPAC, 
and POPDC, which are responsible for the mediation of many signalling pathways. The HCN 
channels are also known to be gated by cAMP and are of importance in cardiac cells. The only 
known enzyme able to hydrolyse cAMP is the superfamily of enzymes, PDEs. PDEs hydrolyse 
cAMP resulting in an inhibitory effect on the second messenger and its signalling pathways. (AC, 
adenylyl cyclase; ATP, adenosine tri-phosphate; GCPRs, G-protein coupled receptors; Gs, 
stimulatory G-protein; Gi, inhibitory G-protein; CNGC, cyclic nucleotide gated channel; EPAC, 
exchange protein directly activated by cAMP; POPDC, Popeye domain-containing protein; HCN, 
hyperpolarisation-activated cyclic nucleotide-gated channel; PDE, phosphodiesterase; PKA, protein 
kinase A).  

 

GPCR classical signalling begins with the activation or inhibition of the 

membrane bound AC enzyme by Gαs or Gαi, respectively. The most conserved AC 

structure in higher eukaryotes consists of a short N-terminal region and two 

cytoplasmic domains (C1 and C2) which contain two hydrophobic regions (M1 and 

M2).  There is a total of twelve transmembrane (TM) helices that are dispersed 

within the cytoplasmic domains. The first six TM domains (TM1-TM6) are 

followed by a region containing a catalytic domain (C1a) followed by a C1b 

domain. A further TM region (TM7-12) follows, connected to a second catalytic 
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domain (C2a) and a C-terminal C2b region (Qi et al., 2019).  Within the two 

cytoplasmic loops are conserved ATP binding regions which dimerise in order to 

form the catalytic part of the enzyme (Krupinski et al., 1989, Qi et al., 2019).  

When AC is activated by association with Gαs it catalyses the production of cAMP 

from ATP (Figure 1.2). Interestingly, the catalytic site of the enzyme resembles 

that of DNA polymerase which suggests that it may function in a similar manner 

with a phosphoryl transfer mechanism (Tesmer et al., 1997, Zhang et al., 1997, 

Tang and Hurley, 1998). Contained within the catalytic site are two aspartate 

residues which can bind two Mg2+ atoms that facilitate the phosphoryl transfer. 

This in turn promotes the cyclisation of cAMP and the release of two phosphate 

groups (Willoughby and Cooper, 2007). The activity of AC results in a rapid 

increase in cAMP concentration around the inner surface of the plasma 

membrane.  Since the original characterisation by Krupinski and colleagues 

(1989), a further eight structurally similar AC isoforms have been identified 

(Willoughby and Cooper, 2007).    

 

1.2.3 cAMP effector proteins 

As described, cAMP is produced by membrane bound ACs which are activated via 

Gs protein-mediated signalling. cAMP is known to act through interaction with 

and activation of four distinct classes of effector proteins: protein kinase A 

(PKA), exchange protein directly activated by cAMP (Epac), hyperpolarisation-

activated cyclic nucleotide-gated cation (HCN) channels and Popeye domain 

containing (POPDC) proteins (see Figure 1.3). 
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Figure 1.3 Signalling pathways of the four cAMP effector proteins and their main functions 
in the heart. Norepinephrine (NE) is secreted by sympathetic neurons and can bind to the β-
adrenergic receptor embedded in the membrane of the cell. Binding leads to Gs activation and 
subsequent activation of Adenylyl Cyclase’s (AC) generating cAMP. AC are inhibited through 
acetylcholine ligand binding to the muscarinic acetylcholine receptor. Upon receptor activation, Gi 
can be activated leading to the inhibition of AC decreasing cAMP production. Four main cAMP 
effector proteins sense these changes in cAMP levels; protein kinase A (PKA), exchange factor 
directly activated by cAMP (EPAC), hyperpolarization activated cyclic nucleotide gated (HCN) 
channel, the Popeye domain containing (POPDC) protein. PKA and EPAC are usually found bound 
to the same A-kinase anchoring protein (AKAP), whereas, POPDC1 and CNGCs are membrane 
bound. Listed below each effector protein are the main cardiac processes each is involved in.  
(Figure adapted from (Brand, 2018)) 

 

1.2.3.1 PKA 

PKA was one of the first protein kinases to be discovered (Walsh et al., 1968). 

Interestingly, unlike most other eukaryotic protein kinases, PKA exists as a 

tetrameric enzyme consisting of two regulatory (R) subunits and two catalytic 

(C) subunits (Kemp et al., 1975). The C subunit of PKA can be phosphorylated at 

Threonine 197 (T197) which resides within the activation loop (Cheng et al., 

1998, Cauthron et al., 1998). The C subunit is regulated by the interaction with 

the inhibitory R subunit. The R subunit binds to cAMP driving a conformational 
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change that leads to their dissociation from the C subunits. This dissociation 

allows for activation of the catalytic activity of the enzyme which can affect a 

range of diverse cellular processes by phosphorylating numerous cytoplasmic and 

nuclear proteins (Taylor et al., 1990). There are two known classes of PKA 

designated as PKA (I) and PKA (II) due to the differences that are found within R 

subunits, RI and RII respectively, that can interact with the identical C subunit 

(Taylor et al., 1990).  Although both RI and RII contain tandem and highly 

conserved cAMP-binding domains (CBD) they differ in the N-terminal proteolytic 

hinge that allows their binding to the recognition site in the C subunit. In RII 

subunits there is a serine residue that can be autophosphorylated  by the C 

subunit while the RI subunit possesses a pseudo phosphorylation site (Rosen and 

Erlichman, 1975).   

PKA is a member of the family of serine/ threonine kinases that uses the active 

site to catalyse the transfer of a phosphate group from ATP to a threonine or 

serine residue on the target protein. Target threonine/serine residues are 

usually found integrated into a R-R-x-S/T-θ motif, where θ represents a 

hydrophobic amino acid and x represents any amino acid (Skalhegg and Tasken, 

2000).  As mentioned, this phosphorylation drives the activation of numerous 

cellular processes. For example, in the heart PKA is known to be an influential 

cAMP effector protein involved in excitation-contraction coupling (described in 

section 1.1) via direct phosphorylation and activation of L-type calcium channels 

(LTCC), troponin I (TnI), myosin binding protein C (MyBP-C), phospholamban 

(PB), and potassium channels (Wolff et al., 1996, Baryshnikova et al., 2008, 

Barefield and Sadayappan, 2010, Kurokawa et al., 2004). 

1.2.3.2 Epac 

A more recently identified cAMP effector protein is exchange protein directly 

activated by cAMP (Epac). It was found to have a cAMP binding domain 

homologous to that of PKA R subunits (de Rooij et al., 1998, Kawasaki et al., 

1998). Epac is known to bind cAMP with high affinity and functions to activate 

the Ras family small GTPases Rap1 and Rap2 (Cheng et al., 2008).  There are two 

isoforms of Epac, Epac1 and Epac2, which are the products of two independent 

genes in mammals and share extensive sequence homology. Both Epac1 and 

Epac2 possess distinctly different N-terminal regions whereas they share an 
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evolutionary conserved catalytic domain.  Each isoform has a unique expression 

pattern with Epac1 being ubiquitously spread while Epac2 has a more restricted 

pattern of tissue expression (de Rooij et al., 1998, Kawasaki et al., 1998). These 

proteins are involved in many crucial cellular processes such as cell adhesion and 

migration through activation of integrins (Rangarajan et al., 2003, Han et al., 

2006). Many of the processes that are driven by EPAC are also regulated by the 

activity of PKA. For example, PKA is also known to phosphorylate Rap1 at a site 

in the C-terminal however PKA phosphorylation is not necessary for the cAMP-

dependent activation of Rap1 (de Rooij et al., 1998).  

1.2.3.3 CNGC 

Ions channels that are directly activated by cyclic nucleotides were first 

discovered during the hunt for the second messenger that is crucial in mediating 

the response of retinal photoreceptors (Haynes and Yau, 1985). These channels 

are predominantly activated by cyclic guanosine monophosphate (cGMP) (Liu et 

al., 1994). CNGCs belong to a superfamily of heterogeneous ion channels that 

are linked by the fact that they possess a common transmembrane and pore 

structure. Within the C-terminus there exists a binding site for 3’5’-cyclic 

nucleotide monophosphates (cNMPs) (Kaupp and Seifert, 2002).  

Each CNGC is composed of four subunits which each contain six transmembrane 

domains followed by the C-terminus, which housing the cyclic nucleotide binding 

domain (CBD) (Kaupp and Seifert, 2002, Matulef and Zagotta, 2003). Binding of 

cNMPs to the CNCG results in the opening of the channel and subsequently the 

influx of cations into the cell.    

The hyperpolarisation and cyclic nucleotide-gated channel (HCNGC) is of 

particular importance in the maintenance of the “funny” pacemaker current (If) 

in the heart (Ludwig et al., 1998, Santoro et al., 1998). There are four isoforms 

of HCN (HCN1-4), which are all known to be differentially expressed within the 

heart (Scicchitano et al., 2012).  Channels are modulated by the direct action of 

cAMP binding which induces conformational changes that allow for the opening 

of the channel during hyperpolarisation of the cardiac membrane (DiFrancesco 

and Tortora, 1991). In addition, the binding of cAMP allows for the lowering of 

the threshold potential of the channel opening (DeBerg et al., 2016).  During the 
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opening, the channels become permeable to Na+ and K+ ions that are close to the 

resting membrane potential of the cell producing the If current (Benarroch, 

2013).   Generation of the If current is responsible for the initial depolarisation 

of the cardiac action potential (DiFrancesco and Borer, 2007). 

1.2.3.4 POPDC 

The newest class of cAMP effectors to be identified are the Popeye domain 

containing (POPDC) gene family (Andrée et al., 2000, Reese et al., 1999).  

1.3 Popeye domain containing protein family 

Concomitant screening of cardiac cDNA libraries 18 years ago by two 

independent research groups lead to the discovery of Popeye- domain containing 

protein family (POPDC), a gene family with an enriched cardiac expression 

pattern (Reese et al., 1999, Andrée et al., 2000).  The POPDC family consists of 

three isoforms; POPDC1 (also known as Blood Vessel Epicardial Substance, BVES), 

POPDC2 and POPDC3. These have expression profiles that often overlap with 

each other, but each has its own distinct expression level in specific tissues. For 

example, in the adult heart, POPDC1 is more highly expressed in the atria than 

in the ventricles and has elevated levels within the His bundle, the bundle 

branches, the Purkinje Fibres, sinoatrial node (SAN) and atrioventricular node 

(AVN) of the cardiac conduction system (Froese et al., 2012). In contrast, 

POPDC2 is equally expressed in both the atria and ventricles and at high levels 

within the same cardiac conduction components as POPDC1 (Froese et al., 

2012). 

As mentioned, POPDC1 and POPDC2 are both highly expressed in the heart and 

skeletal muscle whereas the expression pattern of POPDC3 has not been 

extensively examined yet (Froese et al., 2012). In addition to POPDC proteins’ 

expression in heart cells and skeletal muscle cells, they have also been found in 

the smooth muscle lining of the uterus, bladder and the gastrointestinal tract, as 

well as in some neurons and specific epithelial cells such as those in the pyloric 

epithelium of the stomach (Brand et al, 2014).   
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1.3.1 Sequence and structure  

In humans, both POPDC1 and POPDC3 are found on chromosome 6q21 with 

POPDC3 upstream of POPDC1 (Schindler et al., 2012b). Separating the two genes 

is an intergenic sequence of around 20kb, which consists of an antisense RNA 

that overlaps with the start of POPDC3. POPDC1 and POPDC3 are both 

transcribed from a bidirectional promoter (Schindler et al., 2012b). The POPDC2 

gene, located on chromosome 3q13.33, appears to have arisen from gene 

duplication somewhere along the evolutionary path. It shares approximately 50% 

sequence homology with POPDC3, so it was therefore assumed that POPDC3 was 

duplicated (Andrée et al., 2000). In vertebrates, all three of the POPDC genes 

are present, however only two are present in lower chordates, echinoderms and 

non-vertebrates (Hager and Bader, 2009).  Lin et al (2007) noted that Drosophila 

only contains one POPDC gene whereas in Caenorhabditis elegans there is no 

Popdc gene present at all noted it (Lin et al., 2007). Most animals have an 

identifiable POPDC homologue with a similar arrangement of sequence features 

that imply a conserved 3D structure. It is therefore evident that there is high 

evolutionary pressure to maintain the structure and subsequently the function of 

this family of proteins (Schindler and Brand, 2016).  

While the three members of the POPDC family share between 25 and 50% amino 

acid sequence similarity, only limited similarity is observed between the POPDC 

family members and other cAMP effector proteins in vertebrates (Schindler and 

Brand, 2016). Significant sequence similarity has been found with the bacterial 

cAMP-regulated transcription factors, catabolite activator protein (CAP) and 

cAMP receptor protein (CRP), which have provided basis for structural modelling 

(Schindler and Brand, 2016).  

The POPDC proteins are membrane-bound proteins whose isoforms range from 

290-370 amino acids in length.  POPDC1 is the best-characterized member of the 

family with respect to its structure. The extracellular amino terminus of POPDC 

spans around 27-40 amino acids in length and contains two N-glycosylation sites 

(Knight et al., 2003, Andrée et al., 2000). The role of this glycosylation remains 

unclear, but it has been hypothesised that it may contribute to the direct 

localization of the protein to the membrane or protect them from proteolytic 

degradation (Hager and Bader, 2009). The extracellular N-terminal is 

immediately followed by three proposed transmembrane α-helices which 
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transverse the cell membrane (Figure 1.4) (Schindler and Brand, 2016). The 

POPDC proteins contain an intracellular, cytoplasmic C-terminal region which 

contains the evolutionarily conserved 150 amino acid Popeye domain (Andrée et 

al., 2002a, Andrée et al., 2002b).  

The Popeye domain is found within the cytoplasm and contains a phosphate-

binding cassette (PBC) (Figure 1.4). The PBC of the POPDC family does not 

resemble any other cAMP binding proteins (Schindler et al, 2016).  Through cAMP 

affinity pulldowns, radioligand binding assays and FRET analysis, Froese and 

colleagues determined that POPDC1 was able to bind to cAMP with a high affinity 

almost equalling that of PKA.  Within the non-canonical PBC, there are two 

sequence motifs, DSPE and FQVT that have been implicated in POPDCs ability to 

bind cAMP (Froese et al., 2012). A charge-to-alanine mutation at D200 in 

POPDC1 has been shown to significantly reduce its ability to bind cAMP. Although 

the functional implications of POPDC1s ability to bind cAMP is not fully 

understood, it has been shown that cAMP binding modulates its interaction with 

TREK1. A dimerization motif also mapped to the Popeye domain that allows for 

homodimerization or heterodimerization of POPDC proteins at the membrane 

(Knight et al., 2003, Vasavada et al., 2004).  Distal to the Popeye domain is the 

less conserved carboxyl terminal region. Although the three family members 

diverge from one another in this region there is interspecies conservation for 

each. The carboxy terminal region is also noteworthy for clusters of 

serine/threonine residues that can be phosphorylated in cells upon β-adrenergic 

stimulation (Froese et al., 2012, Schindler and Brand, 2016). 
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Figure 1.4 Schematic of the structure of Popeye containing proteins. The three POPDC 
isoforms share a similar protein structure with all containing a 20-40 amino acid extracellular N-
terminal domain. This region is followed by a three proposed transmembrane (TM) domain. The 
cytoplasmic region of the protein contains the evolutionary conserved Popeye domain and the C-
terminal domain, shown in pink. Within the Popeye domain is a non-canonical phosphate binding 
cassette (PBC) consisting of two tetrapeptides, DSPE and FQVT, which are essential for cAMP 
binding. At the end of the Popeye domain exists a dimerization motif. Mutations in the Popeye 
domain have been identified and the POPDC1 S201F mutation found in patients with muscle and 
heart disease has been shown with a red star. POPDC2 generates three alternative splicing 
variants and a putative dimerization domain shown in blue.  

 

 

1.3.2 Regulation of POPDC1 gene expression 

1.3.2.1 EGF signalling supresses Popdc1 

Currently, little is known about how POPDC1 gene expression is regulated. 

However in Drosophila, Popdc1 is suppressed by the secretion of gurken, an 

epidermal growth factor (EGF)-like signalling molecule (Lin et al., 2007). This 

form of regulation has also been discovered in the gastric adenocarcinoma cell 

line SNU-216, which expresses all three of the POPDC isoforms as well as in 

several breast cancer cell lines where the addition of EGF results in the decrease 

of POPDC1 gene expression (Kim et al., 2010, Amunjela and Tucker, 2017b). 

Similarly, in cardiac myocytes cultured in serum, reduced levels of POPDC1-3 

were rescued with the addition of the EGF antagonist tryphostin (Parnes et al., 

2007). Neuregulin, an EGF-like signalling molecule, is secreted by endocardial 

cells and is responsible for the formation of the trabecular layer of developing 

ventricles (Parnes et al., 2007, Meyer and Birchmeier, 1995). POPDC1 expression 

in this region is low which may mean that the neuregulin signalling depletes 

POPDC1 during the suppression of apico-basal polarity of transforming myocytes 

during mid-gestation in mouse heart (Andrée et al., 2000, Andrée et al., 2002a).  
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1.3.2.2 Popdc1 expression can be suppressed by Netrin 

Netrin-1 is a laminin-related neuronal guidance molecule which can be 

expressed in both neuronal and non-neuronal cell types. It has been identified 

that Netrin-1 is a negative regulator of POPDC1 expression through the 

modulation of the PI3-kinase/AKT signalling axis (Han et al., 2015). Netrin-1 is a 

specific inhibitor of the AKT pathway and this signalling cascade can re-establish 

POPDC1 expression. For example, several cancer types including hepatocellular 

carcinoma (HCC) have an increased Netrin-1 expression and an associated 

decrease in POPDC1 levels which may lead to tumour progression (Han et al., 

2015).  

1.3.2.3 The transcriptional regulation of the POPDC genes 

Little work has been done to characterise the mechanisms by which the POPDC 

genes are transcriptionally regulated. It has however, been proposed that 

POPDC1 might be the target of Pax3, a transcription factor important in muscle 

and neural development (Barber et al., 2002). The POPDC2 promoter has also 

been investigated and was found to contain a binding site for the NK homeobox 

protein 2.5 (Nkx2.5) at an overlapping binding site for Meis homeobox 1 (Meis1) 

(Dupays et al., 2015). These two transcription factors are essential in vertebrate 

heart development and therefore in the normal physiology of the adult heart. In 

order to determine which transcription factor was most important in different 

heart tissues the differential binding of these transcription factors were probed 

using chromatin immunoprecipitation. Findings using the mouse Popdc2 

promoter identified that Nkx2.5 bound to the promoter in differentiated cardiac 

myocytes whereas Meis1 bound in the anterior heart field mesoderm (Dupays et 

al., 2015). 

1.3.3 POPDC1 interactome 

Our knowledge of POPDC1’s range of interaction partners is growing as the 

protein is being investigated in different physiological settings by a number of 

groups. POPDC proteins, as mentioned previously, are expressed at high levels in 

cardiac and skeletal muscle and identification of direct binding partners will 

undoubtedly shine further light on the function role of these proteins. The first 

POPDC interacting protein (PIP) to be identified was the two-pore potassium 
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channel, TREK1 (TWIK-related K+ channel 1) (Figure 1.5)(Froese et al., 2012). 

Evidence provided by the study by Froese and colleagues showed that POPDC1 

modulated the gating properties of the channel which could potentially be 

altered in disease.  This initial identification invigorated the idea that the 

POPDC proteins had a major role, not only in the normal function of cells in the 

heart and muscle, but also in the progression of disease pathology.  To date, 

numerous PIPs have been identified with only some of their binding sites on 

POPDC1 being defined experimentally (Figure 1.5).       

 

       

Figure 1.5 Interaction partners of POPDC1 and their proposed binding sites. POPDC1 
consists of an extracellular N-terminus, three proposed transmembrane helices, and an intracellular 
C-terminus. POPDC1 is found dimerised at the membrane.  Most of the interaction sites for 
POPDC1 are held within the highly conserved Popeye domain. Several of the main POPDC 
interacting partners (PIPs) that interact in this region are indicated including; VAMP3 (Vesicle-
associated membrane protein 3), ZO-1 (zona occludens 1), cAMP, Cav3 (Caveolin 3), GEFT 
(guanine nucleotide exchange factor) and TREK1 (TWIK-related K+ channel 1). There are currently 
two PIPs known to bind to the unstructured C-terminal tail, DNRG4 (downstream N-myc regulated 
gene 4) and PR61α.  
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1.3.3.1 POPDC1 interacts with the two-pore potassium channel TREK1 

As POPDC proteins are localised to membranes it was hypothesised that they 

would interact with other membrane proteins. Numerous reports of POPDC 

mutants presenting with cardiac arrythmias have been shown in Popdc1 null 

mutant mice and zebrafish morphants identifying a potential interaction with 

cardiac ion channels or pumps (Froese et al., 2012, Schindler et al., 2016b, De 

Ridder et al., 2019). A specific interaction was identified between POPDC1 and 

the two-pore potassium channel TREK1 (TWIK-related K+ channel 1) which led to 

a two-fold increase in its current (Froese et al., 2012).  Interestingly, this 

increase in current is believed to be due to enhanced membrane localisation of 

TREK-1. A bi-molecular FRET assay identified that TREK1s interaction with 

POPDC1 was sensitive to changes in cAMP concentrations like those caused by 

adrenergic stimulation, which caused a rapid reduction in FRET signal.  This loss 

of interaction has been hypothesized to be caused by structural rearrangement 

of the Popeye domain upon cAMP binding (Froese et al., 2012). Furthermore, 

changes in conformation may allow for previously hidden binding sites to be 

exposed, further extending POPDC’s interactome. Interestingly, the function of 

TREK-1 has not been fully elucidated. However, TREK1 is related to the K29 ion 

channel ORK1 in Drosophila and has been shown to be involved in the regulation 

of pace making activity in the heart (Lalevée et al., 2006).  This would concur 

with data from a cardiac specific knock out for TREK-1 which gave rise to a 

stress induced sinus bradycardia phenotype, which resembles what is seen in 

Popdc1 and Popdc2 null mutants. This cardiac phenotype in POPDC mutants can 

be partly explained by the loss of the interaction between TREK-1 and POPDC 

(Froese et al., 2012, Schindler and Brand, 2016). In humans, the POPDC1S201F 

mutant protein can be found in muscle tissue of patients with Limb-girdle 

muscular dystrophy 2X (LGMD2X). The mutant shows lack of membrane 

localisation and a reduction in cAMP binding to POPDC1S201F (Schindler and 

Brand, 2016). When cAMP levels are increased in POPDC1S201F muscle cells there 

is also a distinct reduction in the membrane localisation of TREK-1 (Schindler 

and Brand, 2016). This information taken together suggests that POPDC1’s 

interaction with TREK-1 has two modulatory stages. The first is a rapid 

conformational change after cAMP binds to POPDC1 causing the dissociation of 

the two proteins. Second is a long-term reduction in the membrane trafficking of 

TREK-1. As such, it is hypothesised that POPDC proteins serve to modulate the 
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resting membrane potential of cardiac myocytes and subsequently influence 

their excitability. The physiological implications of this mechanism however 

remain unclear.  

 

1.3.3.2 Popdc1 is important for control of cell proliferation 

POPDC1 has been found to localise at the nuclear envelope as well as in the 

nucleoplasm in certain cell lines such as cardiac myocytes and epithelial breast 

cancer cells (Amunjela and Tucker, 2016b, Brand and Schindler, 2017). The 

nuclear localisation of POPDC1 may be a clue to identifying the mechanism by 

which POPDC1 regulates cell proliferation.  POPDC1 was identified to have a 

direct interaction with Zonula Occludens- 1 (ZO-1), which was confirmed using 

GST pull-down (Osler et al., 2005). Z0-1 regulates the activity of zonula 

occuldens-1 associated nucleic acid – binding protein/ DNA binding protein A 

(ZONAB/DbpA) (Williams et al., 2011).  ZO-1 is a tight junction adapter protein 

that is known to interact with actin, claudin, occludins and α-catenin and has 

been associated with the regulation of endothelial proliferation through 

ZONAB/DbpA (Balda and Matter, 2009, Pozzi and Zent, 2010). ZONAB/DbpA is a 

Y-box transcription factor that binds to ZO-1, in its SH3 domain, allowing for 

recruitment to tight junctions. It is a known regulator of cell cycle and 

proliferation genes such as cyclin D1 and HER2 and its expression in the nucleus 

results in an increase in cell proliferation (Balda and Matter, 2009, Lima et al., 

2010, Pozzi and Zent, 2010, Balda et al., 2003). Correspondingly, when 

ZONAB/DbpA is bound to and transported by ZO-1 there is a marked decrease in 

the transcription of cell cycle and proliferation genes (Georgiadis et al., 2010, 

Williams et al., 2011). Interestingly, high ZO-1 levels are known to decrease cell 

proliferation and weak nuclear localisation of ZONAB/DbpA (Balda et al., 2003). 

Furthermore, high ZO-1 expression correlates to high POPDC1 expression (Russ et 

al., 2011, Osler et al., 2005).  Conversely, this was corroborated by experiments 

showing a concomitant reduction of POPDC1 and ZO-1 expression in numerous 

cancer cell types (Amunjela and Tucker, 2017a, Amunjela and Tucker, 2017b, 

Hoover et al., 1998). A potential mechanism of action from the interaction 

between POPDC1 and ZO-1 could presumably be to inhibit the nuclear 

localisation of ZO-1 and therefore prevent cell proliferation (Amunjela et al., 

2019). Forced expression of a truncated POPDC1 which did not contain the 
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integral Popeye domain or C-terminal part increased the nuclear localisation and 

transcriptional activity of ZONAB/DbpA further supporting the notion that 

dysregulated POPDC1 drives proliferation (Schindler et al., 2016a).  

The interaction with ZO-1 and ZONAB/DbpA is not the only means by which 

POPDC1 is involved in cell proliferation. POPDC1 has been extensively shown to 

interact with multiple partners in pathways crucial to cell proliferation (Russ et 

al., 2011, Han et al., 2015, Amunjela and Tucker, 2017b, Parang et al., 2017, 

Kliminski et al., 2017, Jayagopal et al., 2011, Smith et al., 2008).  Although this 

has been seen for all POPDC isoforms there is evidence that there is an isoform-

specific role of each. For example, POPDC1 is thought to function as a tumour 

suppressor that can regulate and inhibit cell proliferation under normal 

physiological conditions (Amunjela et al., 2019).  Interactions with the 

aforementioned ZO-1 as well as Wnt and c-myc add support to this hypothesis. 

The transcription factor c-myc is often overexpressed in various cancers and is 

known to regulate many cellular aspects from proliferation to epithelial/ 

mesenchymal transition (Toon et al., 2014, Koo et al., 2000, Cowling and Cole, 

2007). POPDC1 was also shown by Parang and colleagues (2017) to promote the 

proteasomal degradation of c-myc through an interaction with PR61α containing 

-PP2A phosphatase complexes.  Furthermore, the POPDC1 promoter was found to 

be hypermethylated leading to its reduced expressed in patients with colitis-

associated cancer (CAC) when compared to normal colonic tissue (Parang et al., 

2017).  

1.3.3.3 POPDC1 is integral in regulating cell-cell contact  

The role of tight junctions is to regulate the passage of molecules through the 

cell membrane as well as blocking the diffusion of proteins through the apical 

membrane into the baso-lateral membrane and vice versa (Sawada et al., 2003). 

Popdc1, as previously mentioned, interacts with important tight junction 

proteins such as occludins and ZO-1. In human corneal epithelial cells POPDC1, 

through its interaction with ZO-1, sequesters the Rho guanine nucleotide 

exchange factor GEF-H1. It is hypothesised that POPDC1 combined with ZO-1 and 

cingulin uses the sequestered GEF-H1 at the plasma membrane as a means of 

modulating and controlling RhoA signalling (Russ et al., 2011). This concept is  

supported by evidence showing that upregulation of POPDC1 combined with 
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inactivation of the RhoA/Rock pathway was observed during the mesenchymal to 

epithelial transition in pig fibroblasts as well as in human hepatocellular 

carcinoma (Shi et al., 2013). This was confirmed using a RhoA-GTPase activation 

assay to prove that suppression of POPDC1 resulted in an increase in RhoA 

activity that promoted cell migration and invasion (Han et al., 2015). A similar 

scenario occurs in the control of cell contraction in the trabecular meshwork of 

the eye, where POPDC1 downregulates RhoA signalling leading to a decrease in 

the phosphorylation of myosin light chain. An increase in POPDC1 results in the 

increase in tight junction formation as well as increased transepithelial 

resistance (Russ et al., 2011, Russ et al., 2010).  It has also been shown that in 

zebrafish, POPDC1 interacts with atypical protein kinase C (aPKC) which is 

known to play a role in the recruitment and tethering of multiple proteins to the 

tight junction signalling complex and in doing so maintains its integrity (Wu et 

al., 2012a). In addition to the formation and maintenance of tight junctions, 

POPDC1 is known to regulate adherens junctions through its interaction with the 

WNT signalling pathway.  Adherens junctions function to modulate WNT 

signalling through the sequestering of β-catenin at the cell membrane (Klinke et 

al., 2015, Francis et al., 2018).  Interestingly, POPDC1 expression correlates with 

the expression and localisation of E-cadherin and β-catenin (Williams et al., 

2011). Moreover ZO-1, which is a major POPDC1 interacting protein, is known to 

interact with key components of adherens junctions such as N-cadherin as well 

as Connexin43, which is crucial to the formation of gap junctions (Palatinus et 

al., 2010). The overexpression of POPDC1 has been shown to increase the 

membrane localisation of β-catenin while decreasing its cytoplasmic expression, 

whereas in POPDC1-/- mice there were marked increases in the cytoplasmic and 

nuclear level of β-catenin (Williams et al., 2011, Parang et al., 2017). In addition 

the Wnt targets, Mmp7, Wisp2 and Rspo4, were increased in POPDC1-/- mice 

(Parang et al., 2017, Reddy et al., 2016).  

It is of note that POPDC1 is known to localise to cell-cell contact points such as 

filopodia before the appearance of E-Cadherin. The transfection of POPDC1 into 

non-adherent L-cells results in the development of adhesive properties and 

aggregation of those cells (Wada et al., 2001). This evidence suggests that 

POPDC1’s membrane localisation is under the regulation of epithelialization 

signalling pathways.  Wada et al., (2001) provided evidence that the inhibition 
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of POPDC1 disrupts epicardial migration as well as the formation of epithelial 

sheets in rat epicardial cell culture.  The suggestion that POPDC1 possess a role 

in adhesion therefore may allude to a role for the protein in coronary 

vasculogenesis and development. In this vein, the current hypothesis is that 

POPDC1 plays a critical role in the regulation of cell adhesion during coronary 

vessel development(Wada et al., 2001). During the migration of mesenchymal 

cells to the developing vascular beds, POPDC1 accumulates in the perinuclear 

region. It is known that various cells within the epicardium respond to signals 

given off by cardiac muscle cells which may be facilitated and mediated by a co-

factor for GATA transcription, FOG-2, that removes POPDC1 from the cell 

membrane (Tevosian et al., 2000, Wada et al., 2001). Upon vasculogenic 

mesenchyme reaching the forming channels within the myocardium, 

endothelium driven signals cause the movement of POPDC1 back to the 

membrane. This allows POPDC1 to participate in cell-cell adhesion in the 

developing smooth muscle cells (Wada et al., 2001).  

 

1.3.3.4 POPDC1 in the regulation of cell shape and motility 

In addition to its role in cell-cell adhesion, POPDC1’s involvement in cell motility 

has been widely investigated and recognised.  Using a yeast two-hybrid screen a 

Rho family guanine nucleotide exchange factor, GEFT, was identified as an 

interaction partner of POPDC1, which was later confirmed through direct GST-

pull down (Smith et al., 2008). Overexpression of GEFT leads to a pronounced 

alteration and reorganisation of the cell cytoskeleton giving a marked change in 

the cell morphology (Guo et al., 2003).  A POPDC1 construct with a truncated N-

terminus lacking the transmembrane domain was transfected into NIH3T3 cells 

and led to a reduction in the speed of cell locomotion as well as altered cell 

shape; when transfected into C2C12 myoblasts there was a marked reduction in 

differentiation (Smith et al., 2008).  The exact function of the interaction 

between POPDC1 and GEFT remains largely unclear but it is speculated that 

POPDC1 may affect the proper subcellular localisation of GEFT therefore 

modulate its activity by altered compartmentalisation.  
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POPDC1 is known to be downregulated in aggressive breast cancer cells in 

comparison to non-malignant control groups (Amunjela and Tucker, 2017a). It is 

hypothesised that the loss of POPDC1 at the cell membrane in breast cancer 

causes a reduction in POPDC-mediated tight junctions that promote cell 

migration, a result which has previously been shown in epithelial cells (Russ et 

al., 2011).  Amunjela and Tucker (2017) described the promotion of cell 

migration in various aggressive, malignant breast cancer cell lines such as MCF7, 

MDA231 and SKRB3, with the overexpression of POPDC1 inhibiting migration 

(Amunjela and Tucker, 2017a). This, taken with the fact that the suppression of 

POPDC1 in glioblastoma, hepatocellular carcinoma, gastric and colorectal 

cancers leads to an increase in cell migration and invasion provides strong 

evidence that the loss of POPDC1 promotes a malignant phenotype in cancer 

(Parang et al., 2017, Kim et al., 2010, Amunjela and Tucker, 2016a, Williams et 

al., 2011). As known, cAMP interacts with POPDC1 stabilising it and upregulating 

its expression in MC7, MDA-MB-231 and SKBR3 breast cancer cells (Amunjela and 

Tucker, 2017a). Interestingly, cAMP inhibits cell migration and invasion in breast 

cancer cells (Spina et al., 2012, Bianco et al., 1997). Furthermore, elevating 

cAMP in MC7, MDA- MB-231 and SKBR3 after POPDC1 has been knocked down 

restored both cell migration and proliferation thereby strengthening the 

hypothesis that cAMP, and by association POPDC1, mediates the inhibition of 

breast cancer migration (Amunjela and Tucker, 2017a).   

1.3.3.5 POPDC1 interacts with Caveolin-3 to control caveolar formation 

A more recently identified POPDC interacting protein (PIP) within the confines of 

the heart is the caveolae protein Caveolin 3 (Alcalay et al., 2013). Caveolae are 

small invaginations within the membrane that have integral roles in a variety of 

cellular processes such as signal transduction (reviewed in (Gazzerro et al., 

2010).  There are currently three identified isoforms of caveolin (Cav1, Cav2 and 

Cav3) (Stan, 2005). Of these isoforms, Cav3 has a muscle-specific expression and 

is localised to the sarcolemma in skeletal muscles as well as the sarcolemma and 

transverse tubules in cardiac myocytes (Song et al., 1996). It is proposed that 

POPDC1 functions to regulate the number and size of caveolae within the 

membrane, a notion that was supported by a reduction in the observed number 

of caveolae present, but an increase in their size, in Popdc1 null mice (Alcalay et 

al., 2013). In addition, Popdc1 null mice have alterations in Ca2+ transients as 
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well as increased susceptibility to ischemia-reperfusion injury due to Cav3’s role 

in both vesicular trafficking and signal transduction (Alcalay et al., 2013).   

Importantly, the identified binding site for Cav3 on POPDC1 lies within the 

conserved Popeye domain which is proposed to undergo conformational change 

during the binding of cAMP (Rehmann et al., 2007). In concert with this is the 

knowledge that Cav3 conformation is dynamic and under the control of β-

adrenergic stimulation (Wypijewski et al., 2015). Therefore, the proposed model 

by which Cav3s interaction with POPDC1 takes place is via β-adrenergic 

stimulated generation of cAMP that drives the conformational change of the 

Popeye domain of POPDC1 and allowing Cav3’s binding. The bi-directional 

modulation of the interaction may affect the subcellular localisation of both 

Cav3 and POPDC1 and its interaction with other PIPs (Xiang, 2011).  

1.3.3.6 POPDC1 functions to control vesicular transport  

GST pull-down experiments identified another class of POPDC1 interacting 

proteins, the vesicle-associated membrane proteins Vamp2 and Vamp3 (Hager et 

al., 2010). It is reported the Vamp2 and Vamp 3 are promiscuous during 

development with the proteins replacing each other when one is absent (Deák et 

al., 2006).  Vamp3 is a ubiquitously expressed SNAP Receptor (SNARE) proteins 

with cellular roles including vesicle membrane fusion and membrane trafficking 

of several proteins including β-integrin and transferrin (Luftman et al., 2009, 

Proux-Gillardeaux et al., 2005). Interestingly, the expression of a truncated 

dominant-negative POPDC1 the construct decreased transferrin uptake, reduced 

beta-integrin internalisation and reduced in exocytosis in MDCK (Madin-Darby 

Canine Kidney) cells (Hager et al., 2010). Furthermore, it has been shown that 

Popdc1 knockdown results in  morphological changes that are comparable with 

integrin depletion, allowing the conclusion that POPDC1, through its interaction 

with Vamp3, is crucial for the control of important cellular process that require 

vesicle transport (Hager et al., 2010).  Intriguingly, Vamp2 expression in the 

heart is a key mediator of atrial natriuretic peptide (ANP) from atrial myocytes 

(Ferlito et al., 2010).  TREK1, a previous mentioned PIP, is also known to 

function within the ANP release pathway (McGrath and de Bold, 2009) suggesting 

crosstalk between these systems. It is also of note that VAMP2/3 has crucial 

roles in cell-to-cell adhesion through the control of recycling integrin receptors 

(Luftman et al., 2009). 
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POPDC1’s role in vesicular transport is further supported by its interaction with 

N-myc downstream regulated gene 4 (NDRG4) (Benesh et al., 2013).  Both 

POPDC1 and NDRG4 were found to be crucial in trafficking VAMP3 to the plasma 

membrane through the mediation of the movement of fibronectin via changes in 

the extracellular matrix (ECM) essential for epicardial cell movement (Benesh et 

al., 2013). This interaction is also crucial for the fusion of recycling endosomes 

at the cell surface. A vesicle fusion assay demonstrated that inhibition of the 

interaction between POPDC1 and NDRG4 triggered a disruption in Vamp3 positive 

lipid vesicles that docked to the cell surface (Benesh et al., 2013). In addition, 

disruption of the interaction resulted in a marked reduction in biotin-labelled 

fibronectin that is moved between the medium and the insoluble matrix. This 

provides further support for the notion that cargo delivery to the membrane 

requires POPDC1 and NDRG4 mediated vesicle fusion.   

1.3.4 POPDC in the heart 

The role of POPDC proteins within the heart has been investigated extensively 

with numerous mutant model organisms having been developed. The depletion 

of either Popdc1 or Popdc-2 in both mouse and zebrafish models has resulted in 

the development of severe cardiac arrhythmias (see Table 1)(Froese et al., 2012, 

Kirchmaier et al., 2012). Popdc1-/- and Popdc2-/- mice displayed stress-induced 

sinus bradycardia upon subjection to either physical or mental stress which is 

characterised by the increased occurrence of a sinus pauses where there is a loss 

of sinus node activity (Froese et al., 2012). This results in a widely variable heart 

rate.  Interestingly, the development of bradycardia is age dependent. Young 

animals (3 months old) do not present with bradycardia but the severity of the 

arrythmia worsens with age (Froese et al., 2012). The electrophysiological 

phenotype is found in conjunction with structural degeneration of the SAN in 

both Popdc1-/- and Popdc2-/- mice (Froese et al., 2012). Degeneration is 

particularly significant in the inferior part of the SAN which is crucial in the 

control of cardiac pace making during adrenergic stimulation (Opthof, 1988). 

There is support for the concept that a lack of POPDC leads to a loss of pace-

maker cells as there is a pronounced decrease in the volume of the sinus node 

and an increase in the number of fibroblasts and extracellular matrix (Froese et 

al., 2012).  
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Table 1 Cardiac and Skeletal muscle phenotypes in model organisms and patients.  

Species Mutation Heart Skeletal Muscle References 

 Popdc1-/- stress-induced sinus 
bradycardia 

regeneration defect (Froese et al., 
2012) 

Mouse Popdc1-/- ischemia-reperfusion 
damage 

not analysed (Alcalay et al., 
2013) 

 Popdc2-/- Stress-induced sinus 
bradycardia 

not analysed (Froese et al., 
2012) 

 popdc1 morphants AV-block, pericardial 
effusion 

muscular dystrophy (Schindler et 
al., 2016b) 

Zebrafish popdc2 morphants AV-block, pericardial 
effusion 

muscular dystrophy (Kirchmaier et 
al., 2012) 

 popdc1S191F AV-block, pericardial 
effusion 

muscular dystrophy (Schindler et 
al., 2016b) 

 POPDC1S201F 2nd degree AV-block limb-girdle MD (Schindler et 

al., 2016b) 

Human POPDC1del56 V217-K272  1st degree AV-block limb-girdle MD (Nelson et al., 

2017) 

 POPDC2W188X 3rd degree AV-block no known phenotype (Swan et al., 

2019) 

 

The phenotypes in mice are similar to those of sick sinus syndrome (SSS) in 

humans, a disease of the elderly. SSS patients, much like the Popdc null 

mutants, cannot regulate their heart beating frequency to physiological demands 

(Rodriguez and Schocken, 1990).  Such a correlation has resulted in the 

hypothesis that the disease in humans may be caused by the dysfunction or 

dysregulation of POPDC proteins or gene. Recently mRNA expression of POPDC1 

and POPDC3  has been shown to be reduced in failing hearts compared with 

normal hearts; however, the magnitude of the downregulation seen is highly 

variable between patients (Gingold-Belfer et al., 2011).  

During myocardial ischemia/reperfusion (I/R), there are a number of damaging 

alterations in the myocardial ultrastructure, cardiac function, electrophysiology 

and energy metabolism (Ferdinandy et al., 2007).  Alcalay et al., identified that 
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both the protein and the mRNA levels of POPDC1 were decreased during I/R 

(Alcalay et al., 2013). In POPDC1 null mutants, the induction of myocardial I/R 

resulted in a markedly lower functional recovery when compared to their WT 

counterparts. In addition, cardiac myocytes isolated from POPDC1 null mutants 

showed an impaired Ca2+ transient and an increased vulnerability to oxidative 

stress (Alcalay et al., 2013). Furthermore, a study utilising siRNA knockdown of 

POPDC1 revealed that it is required for the survival of cardiac myocytes in 

serum-deficient conditions (Kliminski et al., 2017). In addition, knockdown of 

POPDC1 in neonatal cardiac myocytes increased the expression of cell death 

regulators Bcl-2/adenovirus E1B 19-kDA interacting protein (Bnip3) while 

reducing Rac1 activity. This is accompanied by the alteration in the interaction 

of FOX3 and NF-κB transcription factors with the promoter of Bnip3 (Kliminski et 

al., 2017). In summation, these results suggest that POPDC1 is a potential target 

for the enhancement of heart protection (Gingold-Belfer et al., 2011).   

Interestingly, Schindler et al, identified a new POPDC1 missense variant (S201F) 

through whole-exome sequencing of a family of four people presenting with 

cardiac arrythmias and limb-girdle muscular dystrophy (Schindler et al., 2016b). 

Forced expression of POPDC1S201F in murine cardiac muscle cells resulted in 

increased hyperpolarisation and upstroke velocity of the action potential 

(Schindler et al., 2016b). A homologous construct (POPDC1S191F) in zebrafish 

resulted in the same heart and skeletal muscle phenotype present in the human 

condition (Schindler et al., 2016b).  To date, this is the only study that has 

identified POPDC as a disease-causing gene in human heart disease.  

Interestingly, in zebrafish the loss of Popdc2 by morpholino oligonucleotide-

mediated knockdown results in the chambers of the heart being misshapen. This 

is normally accompanied by the lack of trabeculation, pieces of muscle that 

extend into the left ventricle, reduced myofibrillar content and embryonic heart 

failure (Kirchmaier et al., 2012). In addition, single SAN cells display less cellular 

extensions which in turn reduces the size of the SAN tissue itself. Single-plane 

illumination microscopy (SPIM) identified that Ca2+ transients measured, using a 

transgenic calcium indicator reporter line (Tg(cmlc2:gCaMP)s878), showed 

Popdc2 mutants suffered from severe arrythmias not seen in their WT 

counterparts (Kirchmaier et al., 2012). Cardiac repolarisation was particularly 
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affected in these animals.  Accompanying the data seen in Popdc2 null mice, 

Popdc2 null zebrafish embryos have been shown to display SAN block and a 

substantial decrease in heart rate (Kirchmaier et al., 2012). However, the exact 

role of popdc2 in the development of the heart and its conductive tissue is not 

fully understood.  

 

1.4 PDEs 

Cyclic nucleotide signalling has critical roles in the control of a wide variety of 

cellular responses (Tasken and Aandahl, 2004). However, termination of 

signalling through these pathways requires hydrolysis of the cyclic nucleotides to 

below the activation threshold of the cyclic nucleotide effector proteins. This 

can only be achieved via the action of cyclic nucleotide phosphodiesterases 

(PDEs). PDEs were identified shortly after the discovery of the second 

messenger, cAMP and are the only known protein able to metabolise cNMPs. 

They function by hydrolysing the 3’5’-phosphodiester bond within cAMP or cGMP 

converting it to 5’AMP or 5’GMP, respectively (Francis et al., 2011a).  

The superfamily of mammalian PDEs is comprised of 21 genes that are grouped 

into 11 families. Each of these genes codes for multiple splice variants resulting 

in approximately 100 PDE isoforms (Maurice et al., 2014). These isoforms have 

widespread distribution patterns and possess distinct functions within the cell. 

Family members can also be categorised on their substrate specificity into three 

groups. PDE1, PDE2, PDE3, PDE10 and PDE11 can act on both cAMP and cGMP 

with a spectrum of affinity dependent upon the isoform (Conti and Beavo, 2007, 

Azevedo et al., 2014).  PDE4, PDE7 and PDE8 are cAMP-specific while PDE5, PDE6 

and PDE9 act upon cGMP alone (Azevedo et al., 2014, Conti and Beavo, 2007).  

Despite the variability in localisation, function and substrate specificity, the 

structure of PDE isoforms is conserved to some degree. Typically, PDEs have an 

NH2-terminal regulatory domain (R-domain) and a C-terminal catalytic (C) 

domain however PDE4 family members are known to have regulatory features in 

their C-domain (Bender and Beavo, 2006).  There are a variety of other domains 

within PDEs that are known to provide regulatory control including; 
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calcium/calmodulin-binding domains (PDE1), GAF domains (PDE2, PDE5, PDE5, 

PDE10 and PDE11), PAS (Per-ARNT-Sim) domain (PDE8), the upstream conserved 

domains (PDE4), and the autoinhibitory domains (Francis et al., 2011a). UCR 

domains serve to directly regulate PDE4 activity (Burgin et al., 2010, Houslay 

and Adams, 2003, Houslay and Adams, 2010, Richter and Conti, 2002, Richter 

and Conti, 2004) as well as forming interactions with heterologous proteins 

(Collins et al., 2008, Houslay, 2010, McCahill et al., 2008, Murdoch et al., 2007). 

PDE regulatory domains are most commonly connected to each other and other 

domains by “linker regions” that are able to communicate changes in activity 

and structure between the portions of the PDE (Francis et al., 2011a).  

Given the widespread role of the PDE superfamily within the cNMP signalling 

pathways it is not surprising that they are linked to the pathophysiology of many 

diseases. Ablation, and more recently forced activation, of their hydrolytic 

activities has been a target for therapeutic intervention in a number of disease 

areas. Since the 1960s when Rall and West identified that the caffeine derivative 

theophylline was able to potentiate cardiac inotropic responses there has been 

the emergence of several drugs onto the market that alter PDE activity (Rall and 

West, 1963).  

1.4.1 PDE4ology  

cAMP-specific PDE4s comprise the largest PDE family with over 20 isoforms which 

are the products of the alternative splicing of 4 genes (A, B, C and D) (Houslay 

and Adams, 2003, Conti et al., 2003, Houslay et al., 2005).  PDE4s contain an 

isoform specific N-terminal transduction domain (TD), upstream conserved 

regions 1 and 2 (UCR1 and UCR2) which are linked by linker region 1 and 2 (LR1 

and LR2) respectively, and the conserved C-terminal catalytic domain (Houslay 

et al., 2007). Isoforms are further segregated by the presence and size of the 

UCR1 and UCR2 domains (Figure 1.6).  



51 
 

 

Figure 1.6 Schematic of PDE4 sub family structure. Schematic diagram showing the domain 
organisation of the PDE4 isoforms. All known isoforms contain a TD, LR1 and LR2 (not shown 
here) and a catalytic domain.  Isoforms containing both upstream conserved regions (UCR1 and 
UCR2) are identified as long isoforms. The presence of a UCR2 region only identifies the family 
member as a short isoform. Family members with a truncated UCR2 and the lack of a UCR1 are 
known as super-short isoforms and those that lack any UCR1 are known as dead-short isoforms. 
(taken from (Tibbo et al., 2019).  

 

Importantly, the TD is known to be important for the targeting the various PDE4 

isoforms to specific subcellular localisation (Houslay et al., 2017) (Figure 1. 7). 

However, more recently it has been identified that other regions within the 

PDE4, such as the multifunctional docking site found at the end of the catalytic 
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domain, can direct subcellular localisation and protein partner diversity (Houslay 

et al., 2017). As mentioned in the above section, the UCR1 and UCR2 domains 

function to regulate the activity of PDE4s via phosphorylation by PKA in the 

UCRs, while ERK phosphorylates a site in the catalytic domain (Hoffmann et al., 

1999, MacKenzie et al., 2002). Interestingly, PDE4 proteins are known to exist as 

dimers; dimerization has been shown to modulate the activity status of the 

enzyme. The UCR1/UCR2 domains of one long isoform partner can occlude the 

cAMP binding site of its partner in a dimer in a process known as ‘trans-capping’ 

(Burgin et al., 2010).  Phosphorylation by PKA in the UCR1 domain or 

SUMOlyation at the start of the catalytic core can cause the locking of the PDE4 

into a more active and unoccluded state. Phosphorylation by ERK MAP (mitogen 

activated protein) kinase at the end of the catalytic domain can force the dimer 

into an inactive conformation where the active site is occluded (Houslay and 

Adams, 2010). Lastly, the catalytic domain is known to contain a hydrophobic 

pocket which functions as the active site for the hydrolysis of cAMP once bound 

(Wang et al., 2007).  

 

Figure 1. 7 Structure and domain function of PDE4 long isoform. The N-terminal domain 
contains the transmembrane helices allowing for the PDE localization.  After the N-terminus are the 
regulatory domains of the PDE. These domains are responsible for auto inhibition, ligand binding, 
dimerization and the interaction sites of effector proteins. These N terminal regulatory regions 
contain the structural determinants that allow the various PDEs to bind different interaction partners 
for example the PDE4 protein contains an upstream conserved region (UCR) in addition to the 
catalytic domain. Immediately following this is the catalytic domain of the protein. This region is 
important for the binding of the metal ions that support the catalytic activity of PDEs as wells as the 
being involved in the specificity of PDEs interactions.  The catalytic domains are followed by the C-
terminus that is responsible for the anchoring of the PDE protein to its interaction partner 
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1.4.2 The role of PDEs in compartmentalised cAMP signalling 

cAMP is a highly diffusible molecule that is synthesised intracellularly in 

response to extracellular stimuli interacting with cell-surface receptors. 

Formation of cAMP occurs at the inside surface of the plasma membrane by the 

membrane associated ACs. cAMP diffuses easily throughout the cell to spatially 

restricted cAMP effector proteins such as PKA and POPDC. Without control, the 

levels of cAMP would rise uniformly throughout the cell after any Gs-coupled 

receptor activation event, leading to the simultaneous activation of all cellular 

cAMP effector proteins. This would in turn lead to a lack of receptor specific 

responses meaning inappropriate signalling pathway activation and probably cell 

death. We know from recent work that cAMP gradients are shaped within cells to 

allow distinct, non-overlapping, receptor-specific responses. The mechanism by 

which this occurs was first researched by Burton and colleagues who determined 

that there are many different GPCRs within cardiac myocytes that lead to the 

same elevated level of cAMP upon activation yet produced very different 

outcomes (Hayes et al., 1980).  Hayes and colleagues discovered that there was 

compartmentalised cellular signalling in which cAMP effector proteins are 

confined to specific compartments and their activation depends on their 

proximity to PDEs (Hayes et al., 1980, Hayes and Brunton, 1982).  

Early attempts to investigate cyclic nucleotide dynamics via 

immunohistochemical methods led to the observation that there was 

compartmentalisation between the cAMP and cGMP signalling systems (Steiner et 

al., 1975, Ong et al., 1975). Although such experimentation verified the fact 

that cAMP signalling depended on compartmentalisation, it failed to provide any 

measurement that would quantify cAMP gradients present in cells. The 

development of optical probes was a transformative breakthrough in this regard 

as it allowed visualisation of cAMP gradients and showed them to be temporally 

and spatially segregated within living cells (Nikolaev and Lohse, 2006).  These 

optical probes were developed to detect the dynamic movement of cAMP in real 

time using fluorescence resonance energy transfer (FRET). Possibly the most 

dramatic result from work using these techniques was the visualisation of 

discrete cAMP microdomains in cardiac myocytes after beta-adrenergic 

stimulation (Zaccolo and Pozzan, 2002). Clearly, cAMP levels were increased 

only in the vicinity of the sarcoplasmic membrane and this cAMP microdomain 
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was only able to activate PKA that was anchored near the transverse tubule. 

Importantly, all of this highly localised signalling was lost if a general PDE 

inhibitor was applied.   Since this initial discovery FRET has been used to 

visualise the cAMP gradients surrounding all cyclic nucleotide effector proteins 

to identify how discrete signalling occurs within the cell as it diffuses from its 

origin at the membrane (Rich and Karpen, 2002, Nikolaev et al., 2004, Zhang et 

al., 2001). The development of targeted cAMP probes that localise to specific 

cellular locations has changed the way we conceptualise cAMP signalling. 

In hand with the compartmentalisation of cAMP signalling is the 

compartmentalisation of PDEs themselves. If left unchecked the levels of cAMP 

would rise uniformly throughout the cell leading to the inappropriate activation 

of all cellular cyclic nucleotide effector proteins causing aberrant signalling 

pathway activation.  As PDEs are the only known enzymes able to hydrolyse 

cAMP, their localisation to specific regions within the cell is crucial to the 

generation of intracellular gradients. The ability of PDEs to shape cAMP 

gradients is dependent on the fact that they can anchor themselves to selected 

microdomains within the cell. The localisation to discrete subcellular domains 

creates a compartmentalised system by which these enzymes can act as ‘sinks’, 

hydrolysing local cAMP and thus shaping the local cAMP gradient and limiting the 

diffusion of this second messenger molecule (Baillie, 2009).  This allows for the 

creation of subcellular cAMP gradients which are solely dependent on the 

activation specific receptors. An example of this was shown in cardiac myocytes 

using cAMP optical reporters (Zaccolo and Pozzan, 2002).  Cardiac myocytes 

were treated with β-adrenergic agonists causing the generation of cAMP 

gradients throughout the cell. Upon treatment with the non-specific PDE 

inhibitor IBMX the distinct areas of low cAMP near PDEs were lost and the whole 

cell became swamped with a uniformly high level of cAMP. This confirmed the 

ability of localised PDEs to directly shape the cAMP gradient through their 

hydrolytic activity.  Thus, a mechanism by which cAMP concentrations increase 

in the vicinity of specific cAMP effector proteins without causing the activation 

of all effectors within the cell is apparent. Anchoring of effectors to subcellular 

locales contributes to this mechanism. Upon the activation of an individual 

receptor, the concentration of cAMP rises allowing for the overwhelming of the 

tethered PDE and subsequent activation of the relevant effector protein. The 
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creation of this signalosome, which can contain unique combinations of 

effectors, either one or a subset of PDEs as well as localised scaffolding proteins 

such as AKAPs allows for the generation of multiple cAMP gradients 

simultaneously in different cellular locations irrespective of their distance to an 

AC (Maurice et al., 2014, Baillie, 2009) (Figure 1.8). 

 

Figure 1.8 Diagrammatic representation of the compartmentalization of cAMP cellular 
signalling. (a) The binding of an appropriate ligand to the transmembrane spanning G- coupled 
protein receptor. Upon activation, Gα subunit of the receptor is released.  (b) The enzyme adenylyl 
cyclase (AC) is bound by the Gα subunit and triggers the production of cAMP. (c) 
Phosphodiesterase’s mediate the signal produced by cAMP by degrading cyclic nucleotides. (d) 
cAMP effectors (PKA and EPAC) form signalosomes with cAMP phosphodiesterase’s (PDEs) 
meaning they can only be activated when the PDEs are ‘swamped’ by the cAMP produced by 
receptor activation.  (e) Activated downstream effectors can drive cellular signalling pathways 
controlling numerous processes such as cellular growth, movement and differentiation.  

 

1.4.3  Role of PDEs in the Cardiovascular System  

The role of PDEs and cyclic nucleotide signalling in the heart has been 

extensively investigated. In the cardiomyocyte, elevation of cAMP controls the 

activity of several proteins (via PKA phosphorylation), including MyBP-C, PLB and 

TnI, which are responsible for excitation-contraction coupling as well as 
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sarcomere function (Kentish et al., 2001, MacLennan and Kranias, 2003, 

Nagayama et al., 2007). This however, means that chronic sympathetic 

stimulation of membrane-bound receptors leads to prolonged high levels of 

cellular cAMP driving pathways contributing towards hypertrophy and heart 

failure (Bobin et al., 2016). As such, researchers have attempted to identify 

therapeutic targets in this area and some of them have been identified as PDEs. 

Within the cardiovascular system, PDE3 and PDE4 are the predominant families 

but this may only be due to a lack of information about the functional roles of 

PDE1, PDE2, PDE5 and PDE9 in the context of heart disease (Bobin et al., 2016).  

Although many pre-clinical studies exist that have examined how inhibition of 

PDEs can help improve the pathophysiology of cardiac related diseases, there 

remains relatively few of these compounds that have been used clinically. One 

of the first investigations into the therapeutic role of PDE modulation for the 

treatment of heart disease started with the hypothesis that the inhibition of 

PDE3  could lead to the enhancement of both PKA and Epac dependant signalling 

pathways (Maurice et al., 2014).  Inhibition of PDE3 resulted in increased 

contractility through the enhancement of the current from LTCC (Verde et al., 

1999, Weishaar et al., 1987). The issue that was presented with broad PDE3 

inhibition is that, due to excessive calcium entry and further internal release 

from the sarcoplasmic reticulum (SR), the development of arrhythmia was 

promoted (Bobin et al., 2016).  The treatment of chronic heart failure patients 

with milrinone, a PDE3 inhibitor, was stopped due to this increased occurrence 

of ventricular arrythmias and an increase in morbidity and mortality (Packer et 

al., 1991, Baillie et al., 2019).  PDE4 inhibition has also been extensively 

investigated. Treatment with the PDE4-specific inhibitor rolipram resulted in 

significantly increased heart rate and contractility as a result of the enhanced 

stroke volume, cardiac output, slope of ESPVR and ejection fraction in rat hearts 

through the activation of SERCA2a (Huang et al., 2019). However, it has been 

shown that the use of rolipram in humans resulted in a potent cAMP-mediated 

anti-inflammatory response which has led to a drive by pharmaceutical 

companies to develop inhibitors that can specifically be used for inflammation-

related diseases (Torphy, 1998, Rabe, 2011).  There are currently several PDE4 

inhibitors approved for clinical use such as: Apremilast in the treatment of 

psoriasis and psoriatic arthritis  and Roflumilast approved for the treatment of 
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chronic obstructive pulmonary disease (COPD) and asthma (reviewed in (Li et 

al., 2018)).  

Within the confines of the cardiac system, the generation of cAMP is largely 

governed by β-adrenergic signalling. In cardiomyocytes, the sympathetic 

activation driving this β-adrenergic signalling functions largely to facilitate the 

fight or flight response (Fertig and Baillie, 2018). This occurs through the 

activation of the membrane bound GPCR subsequently activating an AC through 

association with the Gs-protein. The resulting production of cAMP from ATP 

activates effector proteins causing various downstream signalling pathways. Of 

these effectors, PKA is of great importance during excitation-contraction 

coupling in the heart as it phosphorylates many key proteins, including LTCC, 

ryanodine receptor (RyR), PLB, and TnI, controlling the pathway (Fertig and 

Baillie, 2018). The combination of the actions of these phosphorylated proteins 

leads to numerous positive inotropic and lusitropic effects which help increased 

heart function based on increase circulatory demands (Bers, 2002).  Actions of 

these signalling proteins are tightly regulated in signalosomes by bound PDEs. 

Signalosomes not only contain PDEs, AKAPs, PKA substrate protein and PKA 

holoenzyme. 

Specific PDE isoforms tethered to cardiac signalling complexes have been 

identified by several biochemical methods. Pharmacological intervention by 

inhibiting one family of PDEs, and measuring the subsequent change in the 

phosphorylation of cAMP substrates (Sin et al., 2011).  This is usually followed by 

the development of knock-out animals which lack specific subfamilies for 

example PDE4D allowing for further characterisation of the role of that PDE 

family on the  cAMP-controlled pathway (Lehnart et al., 2005).  Another method 

by which the roles of specific isoforms have been investigated is through the 

development and use of siRNA to knockdown each member of the subfamily 

(Maurice et al., 2014). In doing this the specific isoform that is driving the 

regulation of cAMP-controlled phosphorylation in any given pathway could be 

identified. More recently, peptide array technology has been utilised to map 

specific binding sites of PDEs on their signalosome interaction partners allowing 

for the creation of cell-penetrating disruptor peptides (Lee et al., 2013). These 

peptides function to unhook the interaction in one specific signalosome removing 
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the control over cAMP levels giving further information about the role of a single 

“pool” of a single PDE isoform. As previously mentioned, FRET experiments using 

proteins tagged to fluorescent probes have alluded to how PDEs in signalosomes 

function in the regulation of discrete and localised signalling (Maurice et al., 

2014).  In this context, FRET is particularly informative as it can use cAMP-

binding proteins/domains and targeting proteins to specifically show cAMP in 

very specific microdomains within a cell.  In combination these approaches 

(cAMP FRET and disruptor peptide technology) have potential to identify specific 

isoforms of PDEs tethered to individual signalling complexes.  

 

1.5 Post-translational Modifications 

Post-translational modifications (PTM) of proteins are known to have many 

important regulatory roles that underpin cellular homeostasis. A PTM is the 

covalent attachment of a specific functional group to proteins. Currently there 

are nearly 200 identified PTMs and their dysregulation has been linked to many 

disease pathologies including cancer (Saraswathy and Ramalingam, 2011). Some 

of the main functions of PTMs are in the regulation of protein folding, protein 

stability and conformation. Interestingly, PTMs can either generate a reversible 

or irreversible change in activity. The most commonly found PTMs in life are 

phosphorylation and glycosylation and both are crucial to protein function. 

Additionally, SUMOlyation, which is the addition of small ubiquitin-like modifier 

(SUMO) protein to a substrate, has been shown to have a multitude of functional 

effects including subcellular localisation and degradation of proteins (Müller et 

al., 2001, Seeler and Dejean, 2003, Hannoun et al., 2010).  A PTM that plays a 

major role in the degradation of proteins is ubiquitination. This is the addition of 

ubiquitin, a 76kD protein, covalently to lysine residues of the protein targeting it 

for degradation (Hayat, 2016).  PTMs will be reviewed further in chapter 6.  

1.5.1 Phosphorylation 

Of importance to this work is the PTM of phosphorylation in the context of PDEs 

and it will be briefly described here. Approximately 30% of all cellular proteins 

within the human proteome are known to be phosphorylated (Saraswathy and 
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Ramalingam, 2011). Phosphorylation or dephosphorylation is a quick and 

extremely sensitive method by which the activity state of a protein can be 

altered. The action of two enzymes, phosphatase and a kinase are responsible 

for the removal and addition of a phosphate groups. The kinase will drive the 

addition of a phosphate group to the side chain of certain amino acids which are 

primarily serine (S) or threonine (T), while phosphates act oppositely to this by 

removing the phosphate.  Phosphorylation of PDEs by either PKA or PKG is known 

to stimulate the catalytic ability of multiple enzymes including PDE3, PDE4, 

PDE5 and PDE8 (Figure 1.9)(reviewed in (Baillie et al., 2019)). Not only does this 

PTM affect the activity of the PDE but can also drive the change in its cellular 

localisation. This can be through changing the protein complexes that the PDE is 

found in.  

 

Figure 1.9 Phosphorylation of PDE4. The phosphorylation of PDE4 is an extensively identified 
means by which its activity is controlled. The phosphorylation of PDE4 by PKA activates its 
catalytic ability leading to the decrease in localised cAMP concentrations. (adapted from Baillie, 
Tejeda and Kelly, 2019). 

 

In terms of changing the catalytic ability of PDEs, it has shown that the human 

PDE4A4 activity displays a four-fold increase in activity after phosphorylation by 

PKA (Laliberté et al., 2002). In addition, phosphorylation increases the 

sensitivity of the PDE to enantiomers of rolipram, the specific PDE4 inhibitor. 

The activation of PDEs will be investigated in this work.  
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1.6 Hypothesis and Aims 

Since its original identification in 1999 and 2000, our understanding of how 

POPDC genes function within the cell has increased immensely (Reese et al., 

1999, Andrée et al., 2000). In heart and skeletal muscle, some of the functions 

of POPDC1 have been elucidated however relatively little is known about its 

underlying mechanistic role in the heart and skeletal muscle. POPDC1 is 

proposed to be a key protein involved in the maintenance of cardiac pace-

making due to its high levels in the pace-making regions of the heart. This is 

where the focus of my work lies. 

Recently, POPDC proteins have been identified as a novel family of cAMP 

effector proteins (Froese et al., 2012).  The known interaction with the 

potassium channel, TREK1, has been extensively investigated and is known to be 

a key interaction in heart and skeletal muscle. This interaction is facilitated by 

cAMP, as at basal concentrations the two proteins interact. As cAMP levels rise 

after stimulation of membrane-ACs, TREK1 becomes dissociated potentially due 

to the conformational change of the interaction domain on POPDC1 after binding 

cAMP (Froese et al., 2012). Once cAMP levels return to basal the interaction can 

be formed again allowing the potassium current to be altered. As Popdc1 is the 

newest cAMP effector protein to be identified, we hypothesis that it will form a 

complex with PDEs (PDE4 in particular) and other POPDC interacting proteins. 

The interaction with a PDE4, will facilitate the generation of a cAMP “sink” 

around POPDC1, severely restricting its access to the cyclic nucleotide. In turn 

this would allow for the regulation of POPDC1’s interaction with protein partners 

such as TREK1. This is important as POPDC1 is known to function by way of its 

protein-protein interactions.  

Mutations in POPDC1 have been identified in patients presenting with 

cardiomyopathy, a cardiac conduction disorder usually accompanied by muscular 

dystrophy. One aim of this thesis was to investigate the interaction between 

POPDC1 and PDE4 and use information gleaned to devise a cell-penetrating 

disruptor peptide to allow characterisation of the PDE4-POPDC1 signalosome 

function. I was also interested to determine how known POPDC1 mutations 

affected its interaction with PDE4. 
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Finally, as it is known that post-translational modification can alter the 

localisation, function and interactome of any protein, we sought to identify any 

PTMs that could potentially alter POPDC1. Such data would provide preliminary 

evidence that PTMs alter Popdc1 function and expansion of such a theme may 

identify disease related modifications that could be targeted therapeutically.  

In summation, the hypothesis that I am testing is that POPDC1 function can be 

regulated by either interaction with PDEs or alteration by PTMS. My specific aims 

are: 

1. To investigate whether POPDC1 interacts directly with PDE4 and if so to 

map the protein-protein interactions sites 

2. To use information from the fine mapping of POPDC1-PDE4 interaction 

sites to devise a cell-permeable peptide that can effectively disrupt the 

complex. 

3. To utilise the disruptor peptide in studies that propose a functional role 

for the POPDC1-PDE4 complex. 

4. To try to determine the structure of the Popeye domain of POPDC1 and 

discover the sites of PTMs to better understand PDE4 binding mode and 

assess possible effects of PTMs on POPDC1 function. 
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2 Materials and Methods 
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2.1 General Laboratory Practice 

All equipment and reagents were purchased from Sigma-Aldrich (Dorset, UK) 

unless stated otherwise. Any hazardous reagents were handled and disposed of 

according to the relevant Control of Hazardous to Heath regulations. Personal 

protective equipment was worn accordingly during all procedures.  

Glassware, prior to use, was washed using Decon 75 detergent (Decon 

Laboratories Ltd, East Sussex, UK), thoroughly rinsed with distilled water and 

dried. Sterile disposable plastic dishes, containers and dispensers were used 

including microcentrifuge tubes (Grenier Bio-one, Stonehouse, UK), falcon tubes 

(Corning, Birmingham, UK), stripettes (Corning, Birmingham, UK) and pipette 

tips (Ranin, California, UK).  Reagents, liquids, glassware and other laboratory 

items were sterilised by autoclaving in a Prestige Medical autoclave (Prestige 

Medical, Blackburn, UK). Chemicals for the preparation of buffers, solutions and 

media were weighed using a Mettler Toledo balance (sensitive to 0.01 g, Ohio, 

USA) or a Sartorious CP124S balance (sensitive to 0.0001 g, Bradford, UK). Unless 

otherwise stated, all solutions were prepared using distilled water. Solution pH 

was measured using a Mettler Toledo Seven Easy digital pH meter (Mettler 

Toledo, Ohio, USA) and adjusted to correct pH using either HCl or NaOH. All 

volumes were dispensed using a Gilson battery powered pipetting aid (1 – 25 mL) 

and Gilson and Gilson pipettes (0.2 -1000 µL; Gilson Medical Instruments, 

Staffordshire, UK). Centrifugation was carried out at appropriate temperature in 

a temperature controlled Sigma-Aldrich 1 – 14K rpm table top microcentrifuge 

(ThermoFisher Scientific, Paisley, UK), a ThermoFisher Scientific Cl31 

multispeed centrifuge (ThermoFisher Scientific, Paisley, UK) or a Beckman 

Coulter Optima L – 80 XP ultracentrifuge (Beckman Coulter, High Wycombe, UK) 

depending on volume and speed requirements. Temperature sensitive 

incubations were carried out using a Grant OLS200 water bath (Grant 

Instruments, Cambridgeshire, UK), Techne Dri-Block DB2A heat block (Teche, 

Staffordshire, UK) or a Startorius CERTOMAT BS-1 (Sartorius Stedim BioOutsource 

Ltd, Glasgow, UK).  
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2.2 Isolation and Preparation of Plasmid DNA 

All work encompassing the use of plasmid DNA was performed in a sterile 

environment using autoclaved buffers and media. 

2.2.1  Transformation of Chemically Competent Cells 

Chemically competent DH5α cells (Invitrogen, ThermoFisher Scientific) were 

stored at -80ºC and were thawed prior to use on ice. Typically, 1-5 ng of plasmid 

DNA was added to 50 µl and mixed gently by flicking the tube. Cells were 

incubated on ice for 30 minutes prior to a 30 second heat shock at 42ºC then 

returned to ice for a further 5 minutes. 450 µl of pre-warmed Luria-Bertani (LB) 

media (1% (w/v) Bacto-tryptone, 0.5% (w/v) Yeast Extract and 170 mM NaCl) 

supplemented with either 100 µg/ml Kanamycin or Ampicillin depending on the 

antibiotic resistance of the plasmid. Tubes were incubated, with vigorous 

shaking, for 1 hour at 37ºC. 50-200 µl of the transformation mixture was spread 

onto LB agar plates (LB media supplemented with 1.5% (w/v) agar and 100 µg/ml 

of appropriate antibiotic) and incubated overnight at 37ºC. Colonies present on 

plates after incubation period indicated the cells were successfully transformed 

with the plasmid DNA.  

2.2.2 Preparation of Plasmid DNA 

Single colonies present on the LB agar plates were picked in order to inoculate 5 

ml of LB media supplemented with 100 µg/ml of appropriate antibiotic. Cultures 

were incubated at 37ºC overnight in an orbital shaker at 225 rpm. QIAprep 

Miniprep Kits were used to isolate the plasmid DNA from culture according to the 

manufacturer’s protocol. In order to produce larger DNA collection, 500 ml of LB 

media was used containing 100 µg/ml of appropriate antibiotic was inoculated 

and the QIAprep Maxiprep Kit was used to isolate the plasmid DNA using the 

manufacturer’s instructions. For both protocols purified plasmids were eluted in 

Nuclease-Free distilled water and stored at -20º 

2.2.3 Storage of Plasmid DNA  

 For storage of plasmid DNA as a glycerol stock, 1ml of overnight culture 

described previously was mixed with 1ml 50% LB Media / 50% glycerol solution in 
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a sterile cryovial. Glycerol stocks were snap-frozen on dry ice and stored at -

80ºC until needed. DH5α competent cells are suitable for long tern storage thus 

plasmid DNA preparation can be generated from glycerol stocks when required.  

2.2.4 Quantification of DNA concentration  

To determine the concentration of DNA isolated from the Miniprep or Maxiprep 

protocol a NanoDrop 3300 spectrophotometer (ThermoFisher Scientific) was 

used. The absorbance of the sample was measured at 260 nm and 280 nm. The 

absorbance at 260 nm was used to determine the concentration of double 

stranded DNA (dsDNA). The A260/280 ration was used in order to validate the purity 

of the DNA sample.  

2.3 Mammalian Cell Culture  

Class II flow hoods (ThermoFisher) were used for all detailed cell culture 

procedures. Standard aseptic techniques were used, and all solutions and 

instruments were kept in sterile conditions. All reagents and media were 

purchased from Gibco unless stated otherwise, all plastics including flasks and 

plates were acquired from Corning (Sigma-Aldrich). To visualise cells for routine 

checks a phase contract inverted microscope (Leitz Diavert) was used.  

2.3.1 HEK-293 cell culture 

Human embryonic kidney (HEK) 293 cells were purchased from ATCC and HEK-

293 PDE4A4 stable cell line established by Millipore. HEK-293 and HEK-293 

PDE4A4 cells were cultured in high-glucose Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% (v/v) foetal bovine serum, 1% 

(v/v)penicillin/streptomycin (P/S), 1% (v/v) L-Glutamine, 1% (v/v) minimum 

essential media non-essential amino acids (NEAA). HEK-293 PDE4A4 cell media is 

further supplemented with 500 µg/ml G418 (Promega).  Culture conditions were 

37ºC in a humidified atmosphere with 5% CO2. Cells were split at 80-90% 

confluence and media was replaced every three days as required.   
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2.3.2 Passage of cells  

When HEK-293 and HEK-239 PDE4A4 stable cells reached 80-90% confluency they 

were passaged. Culture media was aspirated from flasks and cells were washed 

with 5ml of sterile phosphate buffer saline (PBS), which was pre-warmed to 

37ºC, per 75 cm2 flask. 0.25% (w/v) trypsin – ethylenediaminetetraacetic acid 

(EDTA) solution was pre-warmed and added to the flask and incubated at 37ºC 

for 5 – 10 minutes until the cell monolayer had detached from the base of the 

flask. An equal volume of fresh culture media was added in order to neutralise 

the cell suspension. Volume was removed and centrifuged at 500 x g for 3 

minutes at room temperature (RT). The cell pellet was resuspended in 

appropriate volume of fresh culture media and seeded as required.  

2.3.3 Isolation and Maintenance of Neonatal Rat Ventricular 
Myocytes  

Neonatal rat ventricular myocytes (NRVM) are a commonly used model to study 

cardiac processes due to the similarities between adult ventricular myocytes as 

well as the relative ease by which they can be isolated.  

The preparation of neonatal rat cardiomyocytes was modified from the protocol 

described by Bogoyevitch et al. (1995) and Chlopeikova et al. (2001). 1-3-day old 

neonatal Sprague-Dawley rats were sacrificed by cervical dislocation and femoral 

artery dissection. Cardiomyocytes were dissociated from the ventricles by serial 

digestions with 0.3 mg/ml Type-2 Collagenase (Worthington) and 0.6 mg/ml 

pancreatin (Sigma) in a balanced salt solution (120 mM NaCl, 20 mM HEPES, 5.5 

mM Glucose, 5.4 mM KCl, 1 mM NaH2PO4 and 0.8 mM MgSO4 (pH 7.4)). The first 

digestion was carried out at 37ºC in a water bath shaking at 130 cycles per 

minute for 5 minutes. The supernatant was collected and discarded. Tissue was 

then incubated for 20 minutes at 37ºC in a water bath shaking at 200 cycles per 

minute. This digestion step was repeated 3-5 times or until the tissue was 

completely digested. Cell suspensions form every digestion were collected and 

centrifuged at 1250 rpm for 5 minutes and the pellet was resuspended in 2ml of 

New-born Calf Serum (NCS). Cells were kept at 37ºC in a humidified incubator 

with an atmosphere of 95% air and 5% CO2. After final digestion the cell 

suspensions were pooled and centrifuged for 5 minutes at 1250 rpm. The pellet 

was resuspended in M1 plating media (67ml D-MEM; 25mM HEPES (Invitrogen), 
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17.5ml M-199 (Invitrogen), 10ml Horse serum, 5 ml New-born calf serum, 1ml 

Glutamine 200nM and 0.1ml Penicillin-streptomycin). As non-cardiomyocytes 

become attached easily, the cells were pre-plated on 10cm2 dishes (Corning) for 

2 hours to allow differential attachment of non-myocardial cells. Non-adhered 

cells were collected and centrifuged at 1250rpm for 5 minutes. Cells were 

counted and plated at a density of 1 x 106 cells per well of a 6 well plate that 

was pre-coated with sterile 1% (w/v) gelatin (Sigma-Aldrich). For 

immunocytochemistry, cells were seeded at 1.5 x 105 on mouse lamin (BD 

Bioscience) (100 µg/ml per coverslip).  

After being allowed to grow in M1 Media for 18-24 hours the media was aspirated 

and replaced with M2 media (75ml D-MEM; 25mM HEPES (Invitrogen), 17ml M-199 

(Invitrogen), 5ml Horse serum, 0.5ml New-born calf serum, 1ml Glutamine 

200nM and 0.1ml Penicillin-streptomycin). All drug treatments and transfections 

were carried out in M2 media.  

Cells derived from the same primary culture were used for each set of 

experimental comparisons (n=1). All experiments were performed at least three 

times with different primary cell isolates.  

 

2.3.4 Adult Rabbit Ventricular Myocytes 

Adult rabbit ventricular myocytes (ARVM) were isolated as described in (Donahue 

et al., 1998). All isolations were carried out by Aileen Rankin (University of 

Glasgow). Briefly, adult rabbits were injected with heparin to prevent 

coagulation and phenobarbital (50 mg/kg). The heart was dissected out of the 

animal and rinsed twice with ice-cold Krebs buffer (138.2 mM Na+, 5.4 mM K+, 

1.2 mM Mg2+, 1.0 mM Ca2+, 144.4 mM Cl-, 1.2 mM SO42-, 1.2 mM H2PO4, 20 mM 

HEPES, 15 mM glucose, saturated with O2, pH7.4). A canula was inserted into the 

aorta to allow the heart to be suspended on a langendorff perfusion rig. The 

perfusion was retrograde through the ascending aorta into the coronary arteries. 

The hearts were perfused with Krebs buffer for 2.5 minutes at a rate of 30 

mL/min immediately followed by Ca2+-free Krebs buffer for 10 minutes at a rate 

of 10 mL/min. Perfusion of an enzyme solution (0.025 mM Ca2+, 1 mg/ml 

collagenase B, -.1 mg/ml protease, 60 mM taurine, 8 mM glutamic acid, 2 mM 

carnitine in  Krebs) allowed for the digestion of the myocardium. Immediately 

following digestion, ventricles were excised separating out the left, right and 
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septal regions and agitated by constant pipetting. Straining through a 200 µm 

nylon mesh filter removed any valve and tendon cells and tissue. Cells were 

“stepped up” in increased concentrations of Ca2+, this was done in 4 consecutive 

steps with at least 10 minutes between to allow for equilibration. Cells were 

cultured in supplemented M199 media (5 mM creatine, 5 mM carnitine, 5 mM 

taurine, 0.1 mg/mL penicillin/streptomycin) in cell culture dishes coated 1 

µg/cm2 laminin. 1-2 hours after initial plating the media was replaced to remove 

dead cells in the culture.  

2.3.5 Transient Transfections 

Plasmids containing human POPDC1-Flag and mouse Popdc1-myc were kindly 

gifted by Dr Thomas Brand, Imperial College London. Dependant on which POPDC 

plasmid was being used, either the human PDE4A4-VSV or the rodent PD4A5-VSV 

were used for transfections. Plasmid DNA was transiently transfected into HEK-

293, HEK-293 PDE4A4 Stables and primary NRVM in the present study. Both HEK-

293 and HEK-293 PDE4A4 stable cell lines were passaged 24 hours prior to 

transfection to ensure cells reached 50-70% confluency on the day of 

transfection. Primary NRVM were allowed to incubate in M2 media for at least 2 

hours before transfection was undertaken. Transfections in all cells were 

performed using Lipofectamine LTX transfection reagent (Invitrogen) following 

manufacturer’s instructions. For HEK-293 cell lines, transfections were carried 

out in OptiMEM reduced serum media (Invitrogen) and in NRVM transfections 

were carried out in M2 media.  Concentration of plasmid DNA and transfection 

reagent were scaled according to the size of the culture dish used. Cells were 

incubated with transfection medium for 18-48 hours in order to ensure maximal 

plasmid expression. For control, mock transfections were carried out without 

plasmid DNA.  

2.4 Preparation of Cell Lysate 

2.4.1 Whole Cell Lysates 

Protein extracts were prepared from cardiomyocytes and HEK-293 cell lines. 

Culture media was aspirated from culture plates and the cells were washed 

thoroughly before the addition of lysis buffer. For this project two lysis buffers 
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were utilised; 3T3 lysis buffer (50 mM NaCl, 50 mM NaF, 25 mM HEPES, 5 mM 

EDTA, 30 mM sodium pyrophosphate, 10% (v/v)  glycerol, 1% (v/v) Triton X-100; 

pH7.5) and a CO-IP buffer (50 mM Tris; pH8.0, 150 mM NaCl, 2 mM EDTA, 1% 

(v/v) Triton X-100, 0.25% (w/v) bovine gelatine (Sigma-Aldrich)) (Roland 

Schindler, Imperial College London). Both lysis buffers were supplemented with 

phosphatase and protease cocktail inhibitor tablet (Roche). Cells were scraped 

using a sterile scrapper and transferred into an ice-cold 1.5 ml microcentrifuge 

tube. Cells were pulled through a sterile 23G needle four to six times before 

being sonicated at 2 mW for 15 seconds. This step was repeated twice with a 15 

second pause between sonication rounds to allow the sample to cool. Samples 

were then centrifuged at 14,000 x g for 30 minutes to remove any insoluble 

components and remove any debris. 

2.4.2 Determination of Protein Concentration 

To determine the concentration of the protein collected from whole cell lysing 

and purified proteins the Bradford dye-binding method (Bradford, 1976) was 

used. The quantification protocol utilises the change in colour and absorption 

maximum of Coomassie Brilliant Blue G-250 when bound to increasing protein 

concentrations. Briefly, A standard curve was constructed using various 

concentrations of Bovine serum albumin (BSA) from 0-5 µg. Each well of a 96 

well plate was composed of 50 µL of 1:50 – 1:200 dilution of the protein sample 

and 200 µL of Bradford reagent (Biorad) prepared at a 1:5 dilution per 

manufacturer’s instructions. All standards and samples were carried out in 

triplicate. Measurements were taken for 595 nm absorbance using Anthos 2010 

plate reader fitted with a 595 nm filter. Analysis was performed using ADAP 

software and a standard curve was constructed using the measurements from 

BSA standards. Concentrations of protein samples could be derived from 

produced curve. 
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2.5 Subcellular Fractionation 

Subcellular fractionation was performed using both transiently transfected HEK-

293 cells and endogenously expressing NRVMs.  

2.5.1 HEK-293 fractionation 

HEK-293 cells were cultured on 10 cm2 dishes before undergoing the transfection 

protocol outlined in section 2.3.5. Following a 24-hour incubation in transfection 

medium, the media was aspirated, and the plate was washed twice in ice-cold 

PBS. 500 µl of Fractionation buffer (20 mM HEPES; pH7.4, 10 mM KCl, 2 mM 

MgCl2, 1 mM EDTA, 1 mM EGTA) and were incubated on ice for 15 minutes.  

Plates were scraped using a sterile cell scraper. Lysates were transferred to 1.5 

ml Microcentrifuge tubes and samples were passed through a 23G needle at least 

10 times. Samples were incubated on ice for a further 20minutes before 

centrifuging at 3000 rpm (720 x g) for 5 minutes. The supernatant was removed 

and added to a fresh 1.5ml microcentrifuge tube and contains the membrane, 

cytoplasm and mitochondrial fractions whilst the pellet contains the nuclear 

fraction. The nuclear fraction was washed with 500µl of fractionation buffer and 

passed through a 23G needle 10 times before centrifuging at 3000 rpm (720 x g) 

for 10 minutes. The supernatant was discarded, and the pellet was resuspended 

in 100µl of Nuclear Protein Buffer (NPB) (10 mM NaCl2, 10 mM Tris-HCl; pH7.5, 2 

mM MgCl2, 0.5% NP-40). The supernatant containing the cytoplasm, membrane 

and mitochondrial fractions was processed next. Samples were centrifuged at 

8000 rpm (10000 x g) for 5 minutes. The supernatant, containing the cytoplasm 

and membrane fractions, was added to a fresh 1.5 ml microcentrifuge tube. The 

pellet containing the mitochondrial fraction was processed in the same manner 

as the nuclear fraction. The cytoplasmic and membrane fraction were 

transferred to ultracentrifuge tubes and centrifuged at 40000 rpm (100000 x g) 

for 1 hour. The supernatant recovered from this step contains the cytoplasmic 

fraction whilst the pellet contains the membrane fraction. The pellet was 

washed by the addition of 400 µl of fractionation buffer and pulled through a 

23G needle and centrifuged at 40000 rpm (100000 x g) for 45 minutes. 

Supernatant was discarded and the pellet was resuspended in 100 µl of 

Fractionation buffer, this was the membrane fraction.  
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Samples are normalised by volume before being run of SDS-PAGE gel. Whole cell 

and nuclear fractions were normalised by the addition of 10µl of sample to 70µl 

dH2O and 20µl 5x Laemmli protein sample buffer (Bio-Rad). The plasma 

membrane and cytoplasmic fraction were normalized by the addition of 50 µl of 

sample to 30µl dH2O and 5x Laemmli protein sample buffer (Bio-Rad). Samples 

are boiled for 10 minutes and stored at -20oC.  

2.5.2 Neonatal Rat Ventricular Myocyte Fractionation 

Neonatal Rat Ventricular Myocytes were harvested and cultured as outlined in 

section 2.3.3. These cells were used to investigate endogenous localisation of 

POPDC1 and PDE4A5 and as such were lysed after 2-hour incubation with M2 

media. Samples were subjected to the same protocol as used for HEK-293 cells, 

outlined in section 2.5.1.  

2.6 Expression of Recombinant Proteins 

2.6.1 GB1 Fusion Protein 

A GB1-POPDC1 fusion construct was used containing residues 123-266 of POPDC1 

fused with a 58 residue GB1 peptide to improve solubility. The construct was 

cloned into a pLEICS-91 vector, an ampicillin resistance vector, at the T7 

promoter (Provided by Professor Thomas Brand, Imperial College London). The 

vector containing the plasmid was transformed into BL21 competent Escherichia 

Coli (E. coli) (NEB) for protein expression using manufacturers protocol. BL21 

cells containing the plasmid were inoculated into 10 ml of Luria-Bertani (LB) 

medium supplemented with 100 µg/ml ampicillin and grown overnight at 37ºC in 

an orbital shaker. The overnight cultures were used to inoculate 500 ml of LB 

medium supplemented with 100 µg/ml ampicillin and grown until optical density 

(OD600) was between 0.6 and 0.8. Once the OD600 reached this level it indicated 

that the culture was in the logarithmic phase, and the exponentially growing 

cells were then subjected to 1mM isopropyl-β-D-thiogalactopyranoside (IPTG) to 

induce protein expression. Cultures were allowed to grow for a further 3 hours 

at 37ºC in an orbital shaker. Cells were pelleted by centrifugation at 6000 x g for 

10 minutes at 4ºC. The supernatant was discarded, and the pelleted cells were 

resuspended in 10 ml (per 500 ml of culture) of lysis buffer (50 mM Tris-HCl; 
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pH8.0, 300 mM NaCl, 10 mM Imidazole) supplemented with protease cocktail 

inhibitor tablet (Roche). The resuspended cell pellet was snap frozen and stored 

at -80ºC overnight in order to improve lysing of cells. Imidazole was added to 

lysis buffers in order to minimise the binding of untagged and contaminating 

proteins to the purification beads, therefore increasing the purity of the target 

protein. Frozen lysate was thawed on ice prior to sonication using a probe 

sonicator at 40-60 kHz (Sonicator, Jencons, England) for 10 minutes. The 

sonication cycle was repeated 7 times with 30 seconds of sonication followed by 

1 minute on ice. Following sonication, cell lysates were centrifuged at 6000 x g 

for 15 minutes at 4ºC.  This allows for the collection of the soluble fraction and 

discarding of the insoluble and cell debris fraction. The supernatants collected 

were incubated end-over-end with pre-equilibrated nickel-nitrilotriacetic acid 

(Ni-NTA) resin (Qiagen) for 1 hour at 4ºC with gentle agitation. Lysate containing 

resin bound protein was transferred to a disposable Econo-Pac® Chromatography 

Column (Bio-Rad) and allowed to flow through. Resin was washed extensively 

with wash buffer (50 mM Tris-HCl, 300 mM NaCl; pH8.0) supplemented with 

10mM imidazole in order to reduce unspecific protein binding.  The fusion 

protein is eluted from the Ni-NTA resin using elution buffer (50 mM Tris-HCl, 300 

mM NaCl; pH8.0) containing step wise increasing concentrations of imidazole 

(25-250 mM) to remove weaker binding contaminating proteins before eluting 

the target protein.  

40 µl samples were collected from each step for analysis by SDS-PAGE and 

Coomassie staining to allow for quality control (described in sections 2.8.12.8.2, 

and 2.8.3). After analysis, the purest elutions (indicated by a single band on the 

gel) were pooled and concentrated using an appropriately sized centrifugal 

concentrator (Vivaspin; Sartorius Stedim Biotech). Buffer exchange was 

performed using dialysis buffer (5 % (v/v) Glycerol, 50 mM Tris-HCl, 100 mM 

NaCl; pH8.0) in order to remove Imidazole and concentrate the protein 

diafiltration. Once the desired concentration was obtained, the purified 

recombinant protein was stored as aliquots at -80ºC   

2.6.2 Glutathione-S-transferase (GST) Fusion Protein 

A construct containing the Popeye domain of POPDC1 fused with a GST tag was 

used for purification.  Cells were grown, induced, harvested and lysed as 
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described in section 2.6.1. The GST fusion protein was purified using glutathione 

sepharose resin (Amersham Biosciences). The elution buffer used to remove the 

protein from the bound resin contained 10 mM reduced Glutathione and 50 mM 

Tris-HCl; pH8.0. The cell lysis, protein purification and concentration procedures 

were carried out as outlined in section 2.6.1. 

2.6.3 Maltose-Binding Protein (MBP) Fusion Protein 

Full-length PDE4A4 fused with MBP was cloned in pET30b vector, produced by 

the Baillie lab, before being transformed into BL21 competent E. Coli cells for 

protein expression. Cells were grown, induced, harvested and lyse as described 

in section 2.6.1. For purification of MBP fusion proteins, cells were resuspended 

in MBP binding buffer (20 mM Tris; pH 7.4, 200mM NaCl, 1 mM EDTA, 1 mM DTT) 

supplemented with cOmplete™, EDTA-free Protease Inhibitor Cocktail (Roche, 

UK). The purification was performed using amylose resin beads (New England 

Bioscience). Proteins were eluted from the resin using elution buffer comprised 

of MBP binding buffer with 10 mM Maltose. The cell lysis, protein elution and 

purification procedures were carried out as outlined in section 2.6.1. 

2.7 Generation of constructs for structural analysis 

2.7.1 Synthetic DNA 

Synthetic DNA containing the full length human POPDC1 sequence was purchased 

from Genewiz (US). The fragment was codon optimised for expression in E. coli.  

Synthetic POPDC1 gene: 

5’ATGAATTACACCGAAAGTAGCCCGCTGCGTGAAAGCACCGCAATCGGCTTCACGCCCG

AACTGGAAAGCATTATCCCGGTGCCGAGCAATAAGACCACTTGTGAGAATTGGCGCGAA

ATCCACCATCTGGTTTTCCATGTTGCAAACATTTGCTTCGCCGTTGGTTTAGTTATTCCT

ACCACTTTACATTTACACATGATCTTTCTGCGCGGTATGCTGACTTTAGGTTGCACTTTA

TATATCGTTTGGGCCACTTTATATCGCTGCGCTTTAGATATCATGATTTGGAATAGCGTG

TTTTTAGGTGTGAACATTTTACATTTAAGCTATTTACTGTATAAGAAGCGTCCCGTTAAG

ATTGAAAAGGAGCTGAGCGGCATGTACCGTCGTTTATTCGAACCTCTGCGCGTGCCTCC

CGATCTGTTTCGCCGTCTGACTGGTCAATTCTGCATGATCCAGACTTTAAAGAAGGGCCA

AACCTATGCCGCCGAAGACAAAACCAGCGTTGATGACCGTTTAAGCATTTTACTGAAGGG
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CAAAATGAAGGTGAGCTATCGTGGTCATTTTTTACACAACATTTATCCGTGCGCCTTCAT

CGATAGCCCGGAATTCCGTAGTACCCAGATGCACAAAGGCGAGAAGTTCCAAGTTACCA

TCATCGCCGACGACAATTGTCGTTTTTTATGCTGGAGCCGCGAGCGTCTGACCTATTTTC

TGGAGAGCGAGCCGTTTCTGTACGAGATCTTTCGCTATTTAATCGGTAAAGATATTACCA

ATAAGCTGTATTCTTTAAACGACCCGACTTTAAATGACAAAAAGGCCAAAAAATTAGAAC

ACCAGCTGTCTTTATGCACCCAGATTAGCATGCTGGAGATGCGCAACAGCATCGCCAGC

AGCAGTGATAGCGATGACGGTTTACATCAGTTTCTGCGTGGCACCAGCAGCATGAGTTC

TTTACATGTTAGCAGTCCGCATCAGCGTGCCAGCGCAAAAATGAAGCCGATTGAGGAAG

GTGCTGAAGATGATGACGACGTGTTTGAACCGGCAAGCCCGAACACTTTAAAAGTTCAT

CAGCTGCCG 3’ 

2.7.2 Molecular cloning  

Fragments of POPDC1 cDNA were created and amplified by PCR using a set of 

primers designed to bind the protein at various domains and all reactions were 

carried out in a MJ Research PTC-200 Thermal Cycle (MJ Research, Nevada, USA) 

(Table 2). PCR reaction conditions were constant throughout all experiments 

with only the annealing temperatures changed depending on primers used.  The 

PCR machine conditions were as follows: 95oC for 2 mins, then 30 cycles of 95oC 

for 30 seconds, primer specific annealing temperature (Table 2) for 30 seconds, 

72oC for 30 seconds, followed by 72oC for 5 minutes then 4oC on hold.  Sequences 

5’TAC TTC CAA TCC and 5’TAT CCA CCT TTA were added to the 5’ and 3’ primers 

respectively to allow for ligation independent cloning into the pNIC28-Bsa4 

plasmid vector (appendix 1) (Keates et al., 2011). NEBuilder® HiFi DNA Assembly 

Cloning Kit was used following the manufacture’s protocol to insert the created 

fragments into the plasmid vector, which was linearized by BsaI digest. To 

ensure correct sequences were produced, fragments were initially transferred 

into DH5α competent cells (NEB) using manufacturers protocol. Positive colonies 

were subjected to colony PCR to confirm presence of transformed fragments 

prior to being transformed into BL21 (DE3) competent cells (NEB).  A single 

colony was taken, resuspended in 10 µl dH2O and added to a PCR reaction 

including; 10 mM 5’ primer (Table 2), 10 mM 3’ primer (Table 2), and taq 

polymerase master mix. Examination of the fragments by agarose gel 

electrophoresis identified successful transformations. Using Monarch® DNA Gel 

Extraction Kit (New England Biolabs, US), confirmed fragments were excised and 

extracted from the gel for transformation into BL21 (DE3) competent cells.  
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Successful BL21 (DE3) colonies were miniprepped and sequenced (Source 

Bioscience, UK; Eurofins Scientific, UK).  From confirmed transformation 

reactions, single colonies were picked and grown in LB supplemented with 50 

mg/mL kanamycin to allow for glycerol stocks to be produced. 1 mL of culture 

was added to 1 mL of sterilised 50 % glycerol and stored at -80 oC.   

 

Table 2: Primers designed for synthetic POPDC1 fragment generation  

Name Sequence Tm (OC) 

Full length 5’ TAC TTC CAA TCC ATG AAT TAC ACC GAA 52 

Popeye domain 5’ TAC TTC CAA TCC AAG CGT CCC GTT AAG 55 

Full length 3’ TAT CCA CCT TTA CGG CAG CTG ATG AAC 55 

Popeye domain 3’ TAT CCA CCT TTA CTT AGG CCT TTT TGT C 52 

 

2.7.3 Solubility testing  

Expression screening was carried out to determine optimal solubility conditions 

for large scale purification.  Scrapings from glycerol stocks were grown in 10 mL 

LB supplemented with 50 mg/mL of kanamycin overnight at 37oC whilst shaking 

at 220-225 rpm. The following day, three 50 mL Conical Centrifuge Tubes 

(Corning, UK) with 10 mL of fresh LB were inoculated with 1 mL of the overnight 

culture and grown to OD600 0.6 - 0.8 whilst shaking at 220-225 rpm. Prior to the 

induction of protein expression, 1 mL of the culture was removed and added to a 

fresh 1.5 mL Eppendorf. Samples were centrifuged at 14,000 x g for 10 minutes; 

the supernatant was discarded, and the pellet was stored at -20o C.  Protein 

expression was induced by the addition of one of three IPTG concentrations; 0.1 

mM, 0.4 mM or 1 mM. Cultures were allowed to express for 3 hours at 37oC or 16 

hours at 16oC whilst shaking at 220-225 rpm. At the end of the induction period 

an OD600 reading was taken to allow the samples for analysis via SDS-PAGE to be 

normalised. A 1 mL aliquot of the induced culture was taken and treated in the 
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same manner as the pre-induction sample. Prior to SDS-PAGE, samples were 

defrosted and 1 mL of Bugbuster® (Merck) was prepared and supplemented with 

25 units of Benzonase (Sigma-Aldrich). 60 µL of Bugbuster® plus Benzonase was 

added to each pellet and pipette thoroughly to resuspend all cells. Samples were 

incubated at room temperature for 20 minutes to allow for lysis of the cell 

membrane. Each sample was made up to a final volume (µL) of 150 x OD600 with 

water. To a fresh Eppendorf, 5 µL was removed from each pre-induction and 

post-induction sample and a further 10 µL of nuclease-free water was added. 

These samples represent the total protein in both pre-induction and post-

induction cultures. Eppendorf tubes were centrifuged at 14,000 x g for 5 minutes 

and the supernatant from each condition was transferred to a fresh 1.5 mL 

Eppendorf and 15 µL was transferred to a further labelled tube, this represents 

the soluble fraction. The pellet was resuspended in the original volume of water. 

5 µL was transferred to a fresh Eppendorf and a further 10 µL of water was 

added, this sample represents the insoluble fraction. Immediately prior to 

running the gel, 5x Laemmli protein sample buffer (Bio-Rad) was added and 

tubes were heated at 60oC for 10 minutes. SDS-PAGE analysis was carried out as 

described in 2.8.1.  

Each construct was subjected to all test conditions.  

2.7.4 Large scale protein purification  

After identification of optimal growth conditions in the solubility screening tests, 

large scale expression was carried out following the same protocol as described 

in 2.6.1 and 2.6.2).  

Cultures were pelleted by centrifugation at 6000 x g for 15 minutes. Cell pellets 

were briefly frozen at -80oC, thawed and the pellets were resuspended in lysis 

buffer (20 mM Tris-HCl; 0.5 M NaCl, pH7.4). Lysate was transferred to a 50 mL 

Conical Centrifuge Tubes (Corning, UK) and samples were sonicated on ice for 30 

minutes, with 15 seconds of sonication and 15 seconds on ice. Cell debris were 

pelleted by centrifugation at 16,000 x g for 45 minutes. During this time, 1 mL of 

Ni-NTA resin (Qiagen) was allowed to settle in disposable Econo-Pac® 

Chromatography Column (Bio-Rad) and washed thoroughly with water then 

equilibrated with binding buffer (20 mM Tris-HCl; 0.5 M NaCl; 5 mM Imidazole, 
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pH7.4). Two of these columns were stacked allowing for lysate to flow through 

Ni-NTA resin twice capturing as much of the expressed protein as possible. After 

centrifugation, the supernatant was added to columns and allowed to drip 

through. Flow through lysate was collected and a 15 µL sample was taken for 

quality control. The columns were separated and resin bed was washed five 

times with binding buffer (20 mM Tris-HCl; 0.5 M NaCl; 5 mM Imidazole, pH7.4) 

and a further three times with wash buffer (20 mM Tris-HCl; 0.5M NaCl; 20 mM 

Imidazole, pH7.4). Protein elutions were collected in 500 µL of elution buffer (20 

mM Tris-HCl; 0.5M NaCl; 0.3 M Imidazole, pH7.4). 15 µL of each elution was 

taken for analysis on SDS-PAGE following protocol outlined in section 2.8.1. 

Immediately prior to running, 5x Laemmli protein sample buffer (Bio-Rad) was 

added and samples were heated to 60oC.  

2.8 Protein Analysis 

2.8.1 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide (SDS-PAGE) gel electrophoresis was 

carried to separate proteins according to their molecular weight. Briefly, equal 

concentrations of protein samples were denatured and reduced in 5x SDS-PAGE 

sample buffer (10% SDS, 300 mM Tris-CL; pH6.8, 0.05% bromophenol blue, 50% 

glycerol, 10% β-mercaptoethanol). Samples containing sample buffer was boiled 

for 5 minutes at 92ºC for 5 minutes or 72ºC for 10 minutes. After briefly 

centrifuging at 14000 rpm, protein samples were resolved on precast 

polyacrylamide gels (4-12% NuPAGE Novex Bis-Tris, Invitrogen) immersed in 

MOPS or MES SDS running buffer according the predicted molecular weight of the 

protein. Pre-stained protein marker (Bio-Rad) was loaded prior to protein 

samples and the gel was run for 45 minutes to 1 hour at 200 V.       

2.8.2 Coomassie Staining  

For direct protein visualisation, SDS-PAGE gels were removed from the pre-cast 

cassette and stained with Coomassie blue stain (1.25 g in 500ml Coomassie 

Brilliant Blue, 44 % (v/v) methanol, 6 % (v/v) acetic acid in water). Gels were 

incubated for 20 minutes at room temperature with gentle agitation. Residual 

background Coomassie staining was removed using a destain solution (10 % (v/v) 
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methanol, 10 % (v/v) acetic acid). Gels were incubated for 5-6 hours at room 

temperature with gentle agitation or until single bands were clearly visible. To 

further clean the stain from the gel, they were allowed to sit in distilled water 

at 4ºC overnight. To prevent the gel for cracking during the drying process they 

were washed with sterile water with 10 % glycerol. The molecular weight of the 

proteins was estimated through referring to the protein marker.  

2.8.3 Western Immunoblotting 

For Western blotting, resolved proteins were electrotransferred onto 0.45 µm 

pore nitrocellulose membranes (Protan, Whatman GmbH) using X-Cell II blotting 

module (Invitrogen) in transfer buffer (NuPage) containing 20 % methanol for 2 

hours at 30 V.   Full transfer of the pre-stained molecular weight markers onto 

the nitrocellulose membrane indicates successful transfer. The membrane is 

then blocked in 5% (w/v) non-fat dry milk (Marvel) in TBS-T (20 mM Tris-Cl; pH 

7.6, 150 mM NaCl, 0.1% Tween 20) for 1 hour at room temperature with gentle 

agitation. Membranes are then probed with specific primary antibodies diluted in 

1% milk/TBS-T solution and incubated overnight at 4o C (Table 3). The 

membranes are washed three times for 10 minutes each in TBST before adding 

appropriate Alexa Fluor fluorescent secondary antibodies diluted 1:10,000, in 1 

% milk/TBS-T solution (Table 4). After secondary antibody incubation, blots are 

scanned using the Odyssey Infrared Imaging System (LI-COR Biosciences, UK) for 

fluorescence detection of the secondary antibodies. Fluorescence signal 

intensity is quantified using the Odyssey application software (LI-COR 

Biosciences, UK). 

 

Alternatively, blots could also be scanned using enhanced chemiluminescence 

(ECL). Appropriate horseradish peroxidase (HRP) conjugated anti-immunoglobin-

G (IgG) secondary antibody, diluted to 1:5000 was added in place of an Alexa 

Fluor antibody. After secondary antibody incubation, membranes were washed 

and detected by enhanced chemiluminescent Western Blotting Substrate 

(ThermoFisher). Chemiluminescent images of immunodetected bands were taken 

on blue-light sensitive autoradiography X-ray films (Kodak BioMax MS, 

Carestream Heath Inc.) developed using the Kodak ® X-Omat Model 2000 

processor. In some cases, membranes were imaged using the Bio-Rad Universal 
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hood II (Bio-Rad). Images developed by both methods were quantified using 

Quantity One software (Bio-Rad) and averaged from at least an n or 3.  

  
 

Table 3: Primary antibody list. IF, immunofluorescence; IP, immunoprecipitation: PA, peptide 
array; WB, western blotting.  

Primary 
Antibody 

Host 
Species 

Immunogen Dilution Supplier; 
Product 
Number 

Appli
catio
n 

POPDC1 
(BVES) 

Mouse  
monoclonal 

Raised against amino 

acids 1-300 mapping 
at the N-terminus of 
BVES of human 
origin. 

1:1000 Santa Cruz; 
sc-374081 

WB; 
IF; IP; 
PA 

BVES Rabbit 
polyclonal 

Raised against amino 
acids 112-360  

1:1000 Proteintech; 
12920-1-AP 

WB; 
IF; IP 

GAPDH Mouse 
monoclonal 

Glyceraldehyde-3-
phosphate 
dehydrogenase 
(GAPDH) from rabbit 
muscle 

1:5000 Millipore; 
MAB374 

WB 

Caveolin 3  Rabbit 
polyclonal 

Synthetic peptide 
corresponding to 
Mouse Caveolin-3 aa 1-
19 

1:2000 Abcam; 
Ab2912 

WB  

c-Myc Mouse 
monoclonal 

A 32 amino acid 
synthetic peptide (aa 
408-439) derived from 
the C-terminus of the 
human c-myc protein. 

1:1000 ThermoFishe
r; 13-2500 

WB; 
IF; IP; 
PA 

GST Mouse 
monoclonal 

Hybridoma 2H3-D10 
produced by the fusion 
of mouse myeloma 
cells and splenocytes 
from BALB/c mice 
immunized with a GST-
fusion protein 

1:1000 Sigma-
Aldrich; 
SAB4200237 

WB; 
IP; PA 

MBP Mouse 
monoclonal 

Raised against an 
epitope of myelin 
basic protein between 
amino acids 84-89. 

1:100-
1:1000 

Abcam;  
ab11223 

WB; 
IP; PA 

Pan-PDE4A Rabbit 
serum 

Conserved C-terminal 
region of rat PDE4A 
isoforms 

1:1000 In-house WB; 
IF; IP; 
PA 

Pan-PDE4A  Mouse 
monoclonal 

Conserved C-terminal 
region of human PDE4A 

1:5000 In-house WB  

Pan-PDE4B Sheep 
serum 

Conserved C-terminal 
region of rat PDE4B 
isoforms of all species 

1:5000 In-house WB; 
IF; IP 

Pan-PDE4D Sheep 
serum 

Conserved C-terminal 
region of PDE4D 
isoforms pf all species 

1:5000 In-house WB; 
IF; IP 

Hexa- 
Histidine 

Mouse Recombinant hexa-
Histidine tagged fusion 
protein 

1:3000 Sigma; 
H1029 

WB; 
PA 
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Phospho-
(Ser/Thr) 
PKA 
Substrate 

Rabbit 
polyclonal  

Synthetic phospho-PKA 
substrate peptide 

1:1000 Cell 
Signalling 
Technologie
s; 9621 

WB; 
PA 

Phospho-
UCR1  

Rabbit 
polyclonal  

Raised against 
phosphorylation site at 
serine 54 in the UCR1 
domain  

1:1000 In-house WB 

SUMO1 (C-
terminal) 

Rabbit 
polyclonal 

Synthetic peptide 
corresponding to aa 
72-97 of human SUMO-
1 

1:1000 Enzo; BML-
PW9460-
0025 

WB; 
PA 

SUMO2/3 
(N-
terminal) 

Rabbit 
polyclonal 

Synthetic peptide 
corresponding to aa 1-
15 of human SUMO-2 

1:1000 Enzo; BML-
PW9465-
0025 

PA 

VSV Rabbit 
polyclonal 

A synthetic peptide 
corresponding to aa 
501-511 of vesicular 
stomatitis virus 
glycoprotein (VSV-G). 

1:1000 Abcam; 
Ab1874 

WB; 
IF; IP; 
PA 

 
 

Table 4. Secondary antibody list.  HRP, horse radish peroxidase; IF, immunofluorescence; PA, 
peptide array; WB, western blot 

Secondary 
Antibody 

Host 
Species 

Immunogen Dilution Supplier; 
Product 
Number 

Application 

Donkey anti-
goat 

Donkey IgG 1:5000 Licor; 925-
68074 

WB 

Donkey anti-
mouse 

Donkey IgG 1:5000 Licor; 925-
68072 

WB 

Donkey anti-
rabbit 

Donkey IgG 1:5000 Licor; 925-
68073 

WB 

Anti-mouse HRP Sheep IgG 1:5000 Sigma; 
NXA931 

PA; WB 

Anti-rabbit HRP Goat IgG 1:5000 Sigma; A6154 PA; WB 

Anti-goat HRP Donkey  IgG 1:5000 Sigma; AP180P PA; WB 

Goat anti-mouse 
488 

Goat IgG H+L from 
mouse 

1:500 Invitrogen; 
A21071 

IF 

Goat anti-rabbit 
488 

Rabbit IgG H+L from 
rabbit 

1:500 Invitrogen; 
A21121 

IF 

Donkey anti-
Mouse 488 

Donkey IgG H+L from 
donkey  

1:500 Abcam; 
Ab1501105 

IF 

Donkey anti-
rabbit 546 

Rabbit IgG H+L from 
rabbit 

1:500 Invitrogen; 
A10040 

IF 
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2.9 Protein-Protein Interactions 

2.9.1 Co-immunoprecipitations 

2.9.1.1 HEK293 cells 

Co-immunoprecipitations (Co-IPs) is an ex-vivo method for confirming the 

interaction between two or more proteins. Cell lysates were normalised to equal 

protein concentration (1 µg/µl) using the lysis buffer outlined in section 2.4.1.  

300-500 µg of cell lysate were precleared for 30 minutes at 4 ºC using washed 

protein G sepharose beads (Invitrogen). Samples were centrifuged briefly at 

14,000 rpm in order to pellet the beads. The supernatant was removed and 

added to a fresh 1.5 ml microcentrifuge tube containing protein G sepharose 

beads combined with an appropriate primary antibody (Table 3). Anti-myc 

antibody was used to precipitate overexpressing POPDC1-myc or PDE4 isoform. 

Volume was adjusted to 500µl with CO-IP lysis buffer. The resulting 

immunocomplexes were captured during an overnight incubation at 4 ºC with 

end-over-end rotation. Samples were centrifuged at 500 x g for 3 minutes at 4 ºC 

and washed with CO-IP lysis buffer five times to remove non-specific binding 

proteins. Immunocomplexes were eluted from the beads by boiling in 2 X SDS-

PAGE sample buffer and subjected to SDS-PAGE and Western blotting to identify 

interacting proteins.  

2.9.1.2 Neonatal Rat Ventricular Myocytes  

Endogenous IPs from neonatal rat ventricular myocytes (NRVM) were performed 

at P1-4. Lysates were prepared as described in section 2.4.1 and 500 µg of lysate 

was adjusted to 500 µl with CO-IP lysis buffer. Anti-BVES (Santa Cruz) was added 

and incubated with protein G sepharose beads at 4 ºC overnight with end-over-

end rotation. Negative controls were set up using mouse IgG antibody to identify 

any non-specific binding proteins. After incubation, samples were handled as 

described in section 2.9.1.1.  
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2.9.2 Solid Phase Peptide Array  

2.9.2.1 Solid Phase Peptide Array Synthesis 

Peptide arrays were produced via automatic SPOT synthesis as described by 

Kramer and Schneider-Mergener (1998) and Frank (2002) using the AutoSpot-

Robot ASS 222 (Invatis Bioanalytical Instruments) followed by Fmoc (9-

fluroenylmethohydroxycarbonyl) chemistry (Kramer and Schneider-Mergener, 

1998, Frank, 2002). This is based on solid phase peptide synthesis method stated 

by Fields and Nobel (1990) (Fields and Noble, 1990). The main principle of this 

technique is the use of spots that are formed through the dispensation of a 

solvent droplet on the array membrane surface creating a vessel for the 

reaction. These peptide array membranes are able to bind endogenous, 

transfected and recombinant purified protein and identify potential active 

motifs in order to investigate certain cellular activities. A 25-mer library of 

overlapping peptides, each shifted by five amino acids at a time, were produced 

sequentially in order to increase the reliability of the screening. Immobilised 

spots containing the peptide sequences were directly synthesised on Whatman 

50 Cellulose membranes and used as peptide arrays.  

2.9.2.2 Peptide array overlay 

The peptide arrays were flooded with 100 % ethanol briefly and equilibrate in 

TBS-T to equilibrate for 10 minutes. This incubation step is used to remove any 

impurities used to store the peptides during synthesis. Peptide arrays were 

blocked using 5 % (w/v) milk (Marvel) in 1X TBS-T for 1 hour at room 

temperature with agitation. Either an appropriate protein or substrate was used 

to overlay the peptide array. For both cell lysate, containing either POPDC1-

FLAG or PDE4A4-VSV, and purified recombinant proteins, either POPDC1-GST or 

PDE4A4-MBP, were diluted in 1 % TBS-T at a concentration of 0.5 µM. The arrays 

were incubated overnight at 4 ºC with gentle agitation. Negative control arrays 

were performed using 1 % Milk (Marvel) in TBS-T in place of the protein of 

interest. Arrays were washed three times with TBS-T for 10 minutes. Any 

interaction between the spots and the overlaid protein was detected using an 

appropriate specific primary antibody against the overlaid protein (Table 3). 

Arrays were incubated at room temperature for 2 – 4 hours with gentle agitation 

and washed as previously described. Arrays were incubated in the appropriate 
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secondary antibody conjugated to horseradish peroxides (HRP) (Table 4) for 1 

hour at room temperature with gentle shaking before they were imaged by ECL.   

2.10 PDE Activity Assay 

To investigate the activity of PDE4A4/5 when in complex with POPDC1, a 

radioactive assay of cAMP hydrolysis was performed using the method outlined 

by Marchmont and Houslay (1980) (Marchmont and Houslay, 1980). Samples were 

first incubated with an 8-[3H]-labelled cAMP substrate which when hydrolysed by 

the PDE becomes [3H]-5’-AMP. Snake venom (Ophiophagus Hannah) is utilised to 

hydrolyse the [3H]-5’-AMP to [3H]-adenosine. The unhydrolyzed cAMP is 

separated from the adenosine using an exchange resin which binds the 8-[3H]-

cAMP as it is negatively charged. The level of [3H]-adenosine is measured by 

scintillation counting to establish the rate of cAMP hydrolysis. 

2.10.1 Preparation of Dowex anion exchange resin 

Dowex anion exchange resin was activated by immersing 100g in 1L 1 M NaOH 

and subjected to constant stirring for 20 minutes. The resin is allowed to settle 

and then washed extensively with dH2O until reaching pH 9.0. The washing 

solution was removed, and the resin was mixed into 1L 1 M HCl for 15 minutes. 

Again, the resin was washed with dH2o until the pH was brought up to pH 3.0. 

The Dowex anion resin was resuspended in an equal volume of dH2O and stored 

at 4oC until use. A 1:1:1Dowex:100% ethanol:dH2O mixture was prepared 

immediately before use in the assay.  

2.10.2 Preparation of Purified Recombinant Proteins 

To carry out the PDE activity assay purified recombinant POPDC1-GST tagged and 

PDE4A4-MBP tagged were produced following the protocols outlined in section 

2.6.2 and 2.6.3. For the optimization step and for the experimental assays, 

PDE4A4-MBP was used at 10 µg/ml. POPDC1-GST was used at increasing 

concentrations from 10 µg/ml to 50 µg/ml. All samples were diluted in KHEM 

buffer (50 mM KCl, 50 mM HEPES pH7.2, 10mM EGTA, 1.9 mM MgCl2, 

supplemented with protease and phosphatase inhibitors).  
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2.10.3 PDE Assay protocol  

All measurements used from this assay were performed in triplicate and carried 

out at 4 oC unless specified otherwise. The assay substrate solution was prepared 

by adding 2 µl of 1 mM cAMP and 3 µl of 8-[3H]-cAMP per ml of PDE assay buffer 

(20 mM Tris-HCl pH7.4; 10mM MgCl2) giving a final concentration of 2 µM and 3 

µCi/ml respectively.  

The required amount of protein, noted in section 2.10.2, was diluted in buffer A 

(20 mM tris-HCl, pH 7.4) to give a total final volume of 50 µl.  Pilot studies were 

performed by adding increasing protein concentrations to give an activity result 

in the linear range (6000-15000 cpm) which gives the optimal protein 

concentration required for the assay. When testing the PDE4 inhibitor rolipram, 

buffer A was added to give a total volume of 40 µl and 10 µl of inhibitor at 

concentrations of 0.5 µM to 10 mM. The control for the assay to test the effect 

of POPDC1 addition on PDE activity was the replacement of POPDC1-GST with 

GST alone. This was to ensure that there was no effect being caused by the tag. 

For the inhibitor assay, POPDC1-GST was again replaced with GST alone and 

treated in the same way as the experimental sample and for no inhibitor 

controls, an equal volume of DMSO was added. 50 µl of the premade substrate 

mix was added to all tubes including the controls to give a final volume of 100 

µl. Samples were vortexed and incubated at 30 oC for 10 minutes before boiling 

in a heat block for 2 minutes to quench the reaction through the inactivation of 

PDE4A4-MBP.  

Samples were cooled on ice for 15 minutes prior to 25 µl of 1 mg/ml snake 

venom being added to each tube. Samples were mixed and incubated for 10 

minutes at 30 oC. This step is to allow the conversion of the MP to adenosine. To 

bind any negatively charged unhydrolyzed cAMP, 400 µl DOWEX anion exchange 

resin was added per tube and samples were incubated on ice for 15 minutes with 

brief vortexing every 5 minutes. The resin was pelleted by centrifugation at 

16000 x g for 3 minutes before 150 µl of each supernatant was combined with 1 

ml of Fluro SAFE1 scintillation in a fresh Eppendorf. To calculate total counts per 

minute, two tubes were prepared using 50 µl substrate solution and scintillant. 

Tubes were vortexed thoroughly before being measured through scintillation 

counting (Wallac 1409 Liquid Scintillation Counter, PerkinElmer). Counting 
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assessed the levels of remaining 8-[3H]-adenosine in the supernatant, which is 

proportional to the levels of cAMP that have been hydrolysed.  

2.10.4 Calculation of PDE activity  

The cAMP hydrolysing capacity of the PDE was calculated using the following 

formula:  

PDE activity = 
2.61 𝑥 

(𝐴𝑣 𝐶−𝐴𝑣 𝐵)

𝐴𝑣 𝑆
𝑥 𝑁 𝑥 1012 𝑥

 1000

𝑃

𝑡
 

Where: 

A = Specific activity of the PDE (ρmole cAMP hydrolysed / min / mg protein 

Av C = Average of 3 repeats of sample value (cpm) 

Av B = Average of 3 repeats of blank value (cpm)  

Av S = Average of 3 repeats of the standard value (cpm) 

N = Amount of cAMP in the substrate mix (moles) 

P = Amount of protein added (µg) 

t = time (min)  

2.61 corrects for the use of 150 µl of supernatant from the Dowex as the total 

volume of the supernatant was 391.5 µl. 

 

Dose response curves were calculated using GraphPad Prism 6.  

 

2.11 Microscopy Techniques 

2.11.1 Immunocytochemical staining 

HEK293 cells or primary neonatal rat ventricular myocytes were seeded onto 

sterile glass coverslips in 6 well plates and transfected using the method 

outlined in section 2.3.5. After 24-hour incubation on coverslips cells were fixed 

using 4% (w/v) Paraformaldehyde for 1 hour at room temperature with gentle 

agitation. Coverslips were then washed 3 times for 10 minutes with PBS and 

blocked for 1 hour at room temperature with blocking buffer (PBS supplemented 

with 0.5% BSA and 0.25% Triton X-100). Primary antibodies were added at a 

1:500 or 1:1000 dilution in blocking buffer to the coverslips and incubated 
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overnight at 4oC in a humidity chamber (Table 3). Coverslips were washed 3 

times with PBS for 30 minutes each time. Alexa-Fluor secondary antibody was 

added to coverslips and incubated for 1 hour at room temperature in a humidity 

chamber. Cells are then washed a further 3 times as before. DAPI nuclear 

staining in mounting media was added to a glass slide and the coverslips were 

mounted face down and allowed to dry overnight in the dark. Imaging was 

performed using a Zeiss Pascal laser-scanning confocal microscope (LSM) 510 

Meta. Images were acquired with Zeiss LSM Image Examiner and analysed on 

ImageJ.  

2.11.2 Proximity Ligation Assay 

To visualise protein-protein interactions in both endogenously and 

overexpressing cells in situ, Duolink® proximity ligation assay (PLA) was 

employed using the manufactures protocol. Briefly, cells were fixed, 

permeabilised and incubated with primary antibodies as outlined in section 

2.11.1. Cells were incubated in a humidity chamber with PLA probes, which are 

secondary antibodies tagged with oligonucleotides, specific to the primary 

antibodies. Coverslips were washed in wash buffer provided before incubation 

with the ligase enzyme for 30 minutes. The ligase enzyme functions to hybridise 

the oligonucleotides only if they are in close proximity (> 40 nm) from each 

other. A further wash was performed before the coverslips were incubated with 

the polymerase enzyme for 100 minutes at 37 ºC in a humidity chamber allowing 

for the rolling circle amplification. The signal can then be detected as small red 

dots by microscopy outline previously.  

 

Figure 2.1 Schematic diagram Proximity Ligation Assay (PLA).  A Cells are incubated with 
primary antibodies against the target proteins which are raised in two different host species. A set 
of PLA probes (PLUS and MINUS), which are bound to an oligonucleotide, recognising the host 
species are then applied. B If the proteins are in close proximity, the DNA strands from the 
opposing PLA probes can interact and are ligated together through a ligation reaction. C Rolling 
circle amplification is carried out through the addition of a DNA polymerase enzyme. D Cells are 
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then incubated with fluorescent probes to detect the DNA product of the amplification step, allowing 
for the visualisation of any interaction by confocal microscopy.  

 

2.11.3 Fluorescence Resonance Energy Transfer  

Fluorescence Resonance Energy Transfer (FRET) was utilised to monitor cAMP 

dynamics in live cells (Nikolaev and Lohse, 2006). Briefly, FRET describes the 

process by which there is the transfer of energy from a donor to an acceptor 

fluorophore. The donor then becomes excited by a particular wavelength it 

emits fluorescence at a characteristic wavelength. Interestingly, when the donor 

and acceptor are in close proximity their emissions spectrum overlap and the 

characteristic emission of the acceptor can be detected.  

2.11.3.1 FRET probes 

Given the lack of POPDC1/PDE4A bimolecular probes, the bimolecular sensors 

used within this work exploited the identified interaction between POPDC1 and 

TREK1. The POPDC1 sensor is fused to a CFP, donor, moiety while TREK1 is fused 

to the acceptor, YFP (Froese et al., 2012). In conditions of low cAMP these two 

fluorophores come into close proximity due to the interaction between POPDC1 

and TREK1, so efficient transfer of energy from the donor to acceptor can occur 

leading to YFP’s characteristic emission being detected and the decrease in the 

CFP emission. However, when the cellular concentration of cAMP is increased, 

cAMP can bind to POPDC1 causing a conformational change therefore increasing 

the distance between the donor and acceptor stopping the transfer of energy. 

This results in the CFP’s characteristic emission being detected. Imaging records 

the ratio of donor to acceptor emissions in response to varying levels of cAMP.  

Sensors used within this work were those produced and trialled by Froese and 

colleagues (Froese et al., 2012).  

 

2.11.3.2 FRET Imaging  

HEK293 cells were plated on sterilised 24 mm coverslips (VWR) at a low density 

to allow for single cells to be measured and clear background regions were 
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available to record. Transient transfections with FRET sensors were carried out 

48hour prior to imaging according to previous protocols (Froese et al., 2012).  

The coverslip was carefully removed from the culturing dish with watchmaker’s 

forceps and inserted into a metal ring and sealed securely. Coverslips are 

washed three times with FRET saline (125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 

mM MgSO4, 20 mM HEPES, 5.5 mM glucose, 1 mM CaCl2, pH7.4). A 300 µL bath of 

FRET saline was applied preventing the cells from drying out. The cells were 

then visualised on an Olympus IX71 Inverted Microscope under 40x or 60x 

immersion lenses (Zeiss).  Image acquisitions were initiated, and real time 

measurements were taken. Stimulation with the AC activator, 25 µM forskolin or 

inhibition by 10 µM rolipram was carried out by diluting the drug in 300 µL FRET 

saline to allow for total dispersion.  For later experiments, cells were treated 

with; 10 mM scrambled peptide, 10 mM disruptor peptide or DMSO, 2 hours prior 

to imaging.  

Static measurements were taken in 5 second intervals for a total of 300 seconds 

to reduce the effects of photobleaching. A beam splitter was used to separate 

CFP and YFP so that images could be used to obtain a ratio of CFP to YFP in 

defined areas which had been drawn around single cells as well as clear 

background. The images were converted to mean intensity values allowing for 

ratios to be calculated. These ratios were used to determine the change in 

interaction between POPDC1 and TREK1 in various conditions.  

2.12 In Vitro SUMOylation assay  

To investigate whether proteins of interest were subjected to the 

posttranslational modification of SUMOylations, the predicted protein was 

subjected to an in vitro SUMOylation kit (Enzo). This kit provides the essential 

components of the SUMOylation pathway including SUMO activating enzyme (E1), 

UBC9 (SUMO E2), SUMO enzyme solutions (SUMO1, SUMO2, SUMO3), buffer, 

MgATP, and dH2O. All samples were prepared on ice and the protocol was 

carried out using manufacturer’s instructions. Reactions were carried out at 30oC 

for 30 minutes with constant agitation. Samples were examined via SDS-PAGE 

and Western blotting. To determine successful SUMOylation, BVES/POPDC1 

specific primary antibody (Santa Cruz) (Table3) was used to detect a band shift. 
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An appropriate fluorescent secondary antibody (Table 4) was used, and 

membranes were visualised using the Odyssey Infrared Imaging System (LI-COR 

Biosciences, UK) for fluorescence detection of the secondary antibodies. 

Fluorescence signal intensity is quantified using the Odyssey application software 

(LI-COR Biosciences, UK). 

 

2.12.1 In Vitro SUMOylation assay using peptide array  

Despite being developed for use on target proteins within either endogenously 

expressing or overexpressing cell lysate, the in vitro SUMOylation kit (Enzo) was 

used to overlay a peptide array containing full length or truncated POPDC1 

sequence. Membrane or glass slide peptide arrays were initially bathed in 

ethanol then washed in TBS-T three times to remove any residual alcohol traces. 

Arrays were blocked in 5% BSA for one hour at room temperature before the 

total SUMOylation kit was added. SUMOylation kit components sufficient for 20 

reactions (one entire kit) were combined and diluted to 1 mL with 5% BSA in 

TBS-T.  Arrays were incubated at 30oC for 1 hour with gentle agitation. Following 

incubation, arrays were washed three times in TBS-T for 10 minutes each wash 

and incubated in SUMO1 primary antibody initially then reprobed with SUMO2/3 

primary antibody to detect any bound SUMO protein (Table 3).  The membranes 

were washed again and incubated in an appropriate HRP-conjugated secondary 

antibody (Table 4) before membranes were visualised using ECL and were 

imaged using the Bio-Rad Universal hood II (Bio-Rad). Images developed by both 

methods were quantified using Quantity One software (Bio-Rad).  Antibody only 

control assays were carried out to ensure there was no unspecific binding.  

 

2.13 In Vitro Phosphorylation Assays 

To determine whether there was a phosphorylation site on POPDC1 or an effect 

on the phosphorylation status of the two proteins when they were interacting, 

and various in vitro phosphorylation assay was performed.  
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2.13.1 In vitro Phosphorylation of POPDC1  

A range of purified POPDC1-GST concentrations from 0.5 µg to 2 µg was 

incubated with or without 100U of the PKA catalytic subunit (Abcam) in PKA 

phosphorylation buffer (20 mM Tris; pH7.5, 150 mM NaCl, 0.5 mM MgCl2, 5 % 

Phosphoblocker, 0.5 mM DTT) supplemented with adenosine-5’-triphosphate 

(ATP) for 30 minutes at 37 ºC with constant shaking. The sample was subjected 

to SDS-PAGE and western blotted with a PKA substrate antibody (Sigma-Aldrich) 

(Table 3).  An appropriate secondary antibody was used, and membranes were 

visualised using the Odyssey Infrared Imaging System (LI-COR Biosciences, UK) 

for fluorescence detection of the secondary antibodies (Table 4). Fluorescence 

signal intensity is quantified using the Odyssey application software (LI-COR 

Biosciences, UK). 

 

2.13.2 In vitro Phosphorylation of POPDC1 peptide array  

To identify sites of phosphorylation, the in vitro assay was utilised alongside 

peptide array technology. Full length and truncated POPDC1 sequence covalently 

linked to nitrocellulose membranes were overlaid with the same PKA buffer with 

or without the PKA catalytic subunit. Initially arrays were blocked with 5% 

PhosphoBlock for 1 hour at room temperature. Components of the assay were 

added, and membrane were incubated at 37oC for 1 hour with gentle agitation. 

Detection was performed using a PKA substrate antibody (Sigma-Aldrich) primary 

and a Rabbit-HRP secondary. Membranes were visualised using ECL and were 

imaged using the Bio-Rad Universal hood II (Bio-Rad). Images developed by both 

methods were quantified using Quantity One software (Bio-Rad).  

2.13.3 In vitro Phosphorylation of POPDC1 and PDE4A in 
Complex 

To investigate the change in phosphorylation 1 µg of POPDC1-GST and 1 µg 

PDE4A4-MBP were incubated for 1 hour at 4 ºC with end-over-end rotation in 

order to allow time for binding. Following incubation, the samples were treated 

following the protocol in section 2.13.1. 
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2.14 Acyl-Rac for Palmitoylation status of proteins 

Acyl-rac to determine palmitoylation status of target protein was carried out as 

described in (Forrester et al., 2011). Following the harvesting and incubation of 

NRVM (2.3.3), cells were washed with PBS and collected in 300 – 500 µL blocking 

buffer (100 mM HEPES, 1.0 mM EDTA, 2.5% SDS, 0.1 % MMTS, pH7.5). Lysed cells 

were incubated at 40 oC for 4 hours with shaking at 12000 rpm. Ice cold acetone 

was added at three times the volume of blocking buffer used, tubes were 

inverted several times and samples were incubated at -20 oC for 20 minutes to 

allow for the precipitation of proteins in the sample. Tubes were subjected to 

centrifugation at 14,000 x G for 5 minutes. The supernatant was removed, and 

the pellet was washed extensively with 70% ethanol and allowed to air dry. The 

pellet was resuspended in binding buffer (100 mM HEPES, 1.0 mM EDTA, 1% SDS, 

pH 7.5) and incubated at 40 oC with agitation for 1-2 hours. During this 

incubation step, 2M Hydroxylamine (NH2OH) at pH 7.5 was prepared. Thiopropyl 

sepharose beads (Sigma T8387) were washed and allowed to equilibrate using 

binding buffer. 50 µL of beads and either 2M NH2OH or 2M NaCl were added to 

each sample. Binding reactions were carried out on a rotator at room 

temperature for 3 hours.  Immediately after addition of all components, 25 µL of 

the sample was removed and 2 x SDS supplemented with 50 mM DDT was added, 

samples were then stored at -20 oC. This constitutes the total input sample 

(labelled unfractionated in figures). After incubation, tubes were centrifuged for 

3 minutes at 14,000 x g and supernatant was aspirated. Five quick resin washes 

were carried out using binding buffer where the buffer was removed 

immediately, then four further washes with 2-3-minute incubations were 

performed. 50 µL of 2 x SDS sample buffer supplemented with 100 mM DTT was 

added to each tube to elute the protein from the beads. Prior to running on SDS-

PAGE, samples were heated at 60oC for 10 minutes. Samples were centrifuged at 

14,000 x G to settle the beads before samples were run.  Western blot analysis 

using POPDC1 specific antibody (Santa Cruz) as well as Caveolin3 (Abcam) as a 

positive control (Table 3). Membranes were visualised using the Odyssey Infrared 

Imaging System (LI-COR Biosciences, UK) for fluorescence detection of the 

secondary antibodies (Table 4). Fluorescence signal intensity is quantified using 

the Odyssey application software (LI-COR Biosciences, UK). Constitutively 
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palmitoylated proteins were seen to be 5x enriched in the hydroxylamine bead 

samples in comparison to the total input (unfractionated) samples.  

 

2.15 Statistical Analysis 

All values presented in this work are presented as mean ± SEM from at least 

three experimental replicated, unless stated otherwise. Statistical significance 

was determined using paired or unpaired t-tests or, if there were more than two 

conditions within the collected data, a one-way analysis of variance (ANOVA) 

was employed.  In cases where ANOVA was used, Tukey’s post-hoc analysis was 

carried out. This allows for the comparison between the mean values of each 

group to the mean of every other group and is considered to be the best method 

of examining confidence intervals or if the sample sizes within the experiment 

are not equal. A p-value of >0.5 (*) was considered the threshold for 

significance, with p<0.01 (**) representing high significance and p<0.001 (***) 

being very high significance. All graphical representation was produced using 

GraphPad PrismTM 6.  
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3 Confirming the interaction between POPDC1 
and PDE4A 

3.1 Introduction 

The POPDC family have been identified as the most recent category of cAMP 

effector proteins (Froese et al., 2012). All other cAMP effector protein groups 

form signalling complexes with PDEs to create compartmentalised, cAMP-driven 

signalling nodes that are localised throughout the cell. Although the components 

of many cAMP effector complexes have been identified, there has been no 

evidence to suggest that POPDC1 forms interactions with PDEs. One family of 

PDEs that is particularly important within the cardiovascular system is PDE4, 

which has been extensively shown to be crucial in the control of localised 

signalling underpinning several cardiac functions.  

PDE4 activity has been shown to localise with the ryanodine receptor and the 

voltage-gated potassium channels in the heart. This interaction allows the 

control of the activation of PKA and subsequently the phosphorylation of key 

proteins involved in excitation-contraction coupling (Dodge et al., 2001, 

Terrenoire et al., 2009). There are multiple PDE4 isoforms found within heart 

however their non-redundant nature has been extensively illustrated (Richter et 

al., 2008, De Arcangelis et al., 2009a). In addition, the unique N-terminal region 

of the isoforms can lead to different localisation of the PDE4. PDE4A4/5 have 

been shown to localise to the ruffles at the cell periphery suggesting proximity 

to POPDC1 at the cell membrane (Beard et al., 1999, McPhee et al., 1999, 

O'Connell et al., 1996).The interaction of PDE4A5 with the SH3 domains of the 

Src family protein kinases was originally thought to be the main membrane 

targeting component of this isoform (O'Connell et al., 1996). However, deletion 

of the SH3 interaction site did not confer a total loss of protein targeting to the 

cell membrane (Huston et al., 2000a). Progressive deletion of the N-terminal 

later identified multiple sites within the noncatalytic portion of PDE4A5 that 

contributed towards its membrane localisation (Beard et al., 2002). This 

information led us to hypothesis that PDE4A4/5 would be a likely candidate for 

an interaction with POPDC1.  
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In cardiac myocytes, cAMP levels increase following -adrenergic stimulation 

leading to the activation of cAMP effector proteins such as PKA, EPAC and cyclic-

nucleotide gated ion channels. The orchestration of this signalling is 

underpinned by PDEs, which generate discrete and distinct pockets of cAMP that 

breach the threshold of activation for the cAMP effectors.  

POPDC1 is known to possess many interaction partners. One of particular 

interest is its interaction with TREK1, the two-pore potassium channel (Froese et 

al., 2012). As previously mentioned, this interaction is modulated by the cellular 

levels of cAMP. At low basal levels, the proteins interact within the plasma 

membrane but at heightened cAMP concentrations e.g. after β-adrenergic 

stimulation, the TREK1-POPDC1 complex disassembles. Interaction with POPDC1 

led to a two-fold increase in the channel’s current which was lost upon loss of 

binding (Froese et al., 2012).  As this interaction is modulated by cAMP levels, it 

would seem appropriate that the signalosome would also contain a PDE to ensure 

inappropriate modulation of the TREK1-POPDC complex under basal conditions 
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3.2 Hypothesis and aims 

Considering the information above, my hypothesis is that POPDC1 forms a 

signalling complex with a PDE4 to provide control over POPDC1’s cAMP binding. I 

hypothesise that the interaction with a PDE4 will serve to function as a 

modulator of POPDC’s interactions with other proteins such as TREK1. Currently, 

there is no evidence to suggest that such a complex exists.  

The aims of this chapter are as follows: 

• To determine whether PDE4 and POPDC1 exist in a signalling complex.  

• To characterise the interaction of POPDC1 and PDE4 using proximity 

ligations assays, co-immunoprecipitations and pure protein interaction 

analysis  

• To fine map areas of POPDC1-PDE4 binding via peptide array technology.  

• To confirm that the POPDC1-PDE4 complex can be inhibited using cell-

penetrating disruptor peptides based on the information gleaned from 

peptide array mapping. 
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3.3 Results  

3.3.1 Localisation of POPDC1 and PDE4A 

It is known that POPDC1 is localised at the plasma membrane, t-tubules, 

intercalated discs, caveolae, lateral membranes and more recently, the nuclear 

envelope and nucleoplasm (Froese et al., 2012, Schindler et al., 2012b, Alcalay 

et al., 2013, Schindler et al., 2012a).  As such, we sought to identify whether 

PDE4A4/5 was found in the same compartment. PDE4A4/5 has previously been 

shown to localise to membranes (Huston et al., 2000a, Beard et al., 2002) and  

interact with a number of membrane partners such as the SRC family kinases 

(McPhee et al., 1999) and p75-NTR (Sachs et al., 2007), hence we hypothesised 

that it was a reasonable candidate to test for POPDC1 interactions. 

Firstly, a cellular fractionation was performed using the model cell-line HEK293 

cells transiently transfected with Popdc1-myc and PDE4A5-VSV constructs. Cells 

were lysed and separated into cytoplasmic, membrane and nuclear 

compartments.  These fractions, and a whole cell lysate sample were run on 

SDS-PAGE and subjected to western blotting to detect levels of POPDC1 and 

PDE4A5 in each fragment. Confirmation of the fraction’s purity was performed 

using Na+/K+ ATPase for the membrane fraction. 
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Figure 3.1 Subcellular fractionation of Popdc1 and PDE4A5 in transiently transfected 
HEK293 cells.  HEK293 cells were transiently transfected with Popdc1-myc and PDE4A5-VSV 
before being subjected to subcellular fractionation outlined in Material and Methods. The resulting 
fractions were run using SDS-PAGE and blotted for MYC and VSV to determine the localisation of 
Popdc1 and PDE4A5 respectively. GAPDH was used to determine the purity of the cytoplasm 
fraction and Na+/K+ ATPase was used as a marker for the membrane fraction. Bands were 
quantified using ImageJ Studio and graphs produced in PRISM for comparison between fractions. 
Representative of an n=2.  

 

As expected, the majority of Popdc1 was found in membrane fragment (Figure 

3.1, upper panel and graph middle right). There was a larger proportion of 

PDE4A5 found in the cytoplasm compared to that of the membrane, however as 

previously published (Huston et al., 2000a, Beard et al., 2002), a “pool” of the 

phosphodiesterase was clearly visible in the membrane fraction (Figure 3.1, 

upper panel and graph middle left).  The NA+/K+ ATPase is a solute pump that 

facilitates the transport of sodium out of the cell and potassium into the cell 

against a gradient concentration. It is found exclusively in the plasma membrane 
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(Matchkov and Krivoi, 2016). As such, it was used to confirm the validity of the 

fraction (Figure 3.1, upper panel and lower graph). The results indicate that 

transfected Popdc1 and PDE4A5 can both localise to membrane compartment 

providing evidence that the two may have the potential to interact at that 

location.   

Furthermore, to examine whether endogenously expressed Popdc1 and PDE4A5, 

colocalise to the same compartment in a more physiologically relevant cell type, 

a further subcellular fractionation was carried out using neonatal rat ventricular 

myocytes (NRVM) (Figure 3.2). 
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Figure 3.2: Subcellular Fractionation of Neonatal Rat Ventricular Myocytes. Neonatal rat 
ventricular myocytes were harvested after 2 hours incubation in M2 media. Samples were 
subjected to subcellular fractionation following the protocol outline in Material and Methods. Cells 
were fragmented to give cytoplasm, nucleus and membrane compartments. Samples were 
subjected to SDS-PAGE and Western blotted for Popdc1 and PDE4A5. To determine the purity of 
the fragment’s Na+/K+ ATPase was used as a membrane marker. Quantification was performed 
using ImageJ and graphs were produced in Prism6 to allow for comparison. Representative of an 
n=2.  

 

As in the transiently transfected HEK293 cells, Popdc1 was found to be 

predominantly at the membrane of the cell (Figure 3.2, upper panel and graph 

middle right). Small amounts of Popdc1 were found in both the cytoplasm and 

the nucleus, which supports the theory presented by Brand and colleagues that a 

small population of POPDC1 exists outside of the membrane e.g. in the nucleus 

(Schindler et al., 2012a).  The Popdc1 distribution seen in Figure 3.2 may also be 
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due to carry over artefacts during the actual fractionation itself.  PDE4A5 has a 

tighter membrane localisation in the ventricular myocytes than in the 

transfected cells (Figure 3.2, upper panel and graph middle left). Interestingly, a 

population of PDE4A5 was also found in the nucleus and this agrees with work 

that identifies the protein in the perinuclear space (Huston et al., 2000a). Once 

again, the fractionation protocol was validated by complete localisation of the 

Na+/K+ ATPase to the membrane fraction (Figure 3.2, upper panel and lower 

graph).  

To support the data from produced by crude subcellular fractionation, 

immunofluorescence microscopy was undertaken in the same cells outlined 

above i.e. transiently transfected HEK293 cells and isolated NRVM. HEK293 cells 

were transfected with POPDC1-flag and PDE4A4-VSV constructs. After a 24hour 

transfection period, cells were subjected to the staining protocol outlined in the 

Material and methods section (2.3.5).  

 

Figure 3.3: Immunofluorescence Microscopy using transfected HEK293 cells. HEK293 cells 
were transiently transfected with human POPDC1 tagged with FLAG and the human PDE4A4 
isoform tagged with VSV. These transfected cells were incubated for 24 hours before being fixed 
and permeabilised allowing primary antibodies specific to the tag of the protein to be added. 
Samples were subjected to appropriate fluorescent secondary antibody. Cells were assayed for 
POPDC1 (red), PDE4A4 (green) and DAPI nuclear staining (blue). Images are representative of 
three different experiments. Images were taken using the ZeissTM 5 LSM Confocal Microscope and 
analysed using Zeiss Image Studio including production of the intensity graph and Pearson’s co-
efficient. Experiment typical of n=15 cells.  
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From the images presented in Figure 3.3, POPDC1 seems to be localised to the 

plasma membrane and the cytoplasm (third upper panel). This is unsurprising as 

the protein is highly overexpressed and will fill unnatural positions. PDE4A4 

appears to be localised mostly in the cytoplasm with some at the plasma 

membrane (second upper panel). As can be seen in the intensity plot (Figure 3.3, 

lower graph), POPDC1 (red) and PDE4A4 (green) follow similar peaks and 

patterns of intensity suggesting the possible co-localisation of the two proteins. 

Accompanied with a moderate Pearson’s co-efficient of 0.60, the data indicates 

some co-localisation suggesting the possibility that POPDC1 and PDE4A4 interact.  

Again, to determine if the same co-localisation was present in isolated primary 

heart cells, NRVMs were plated on coverslips before undergoing the same 

protocol as performed with transfected cells. Primary antibodies specific for 

Popdc1 and PDE4A5 were used with appropriate fluorescent secondary 

antibodies (Figure 3.4).  

 

Figure 3.4: Immunofluorescent Microscopy using Rat Neonatal Ventricular Myocytes. Culture 
day 2 NRVM were blocked and permeabilised before staining with an isoform specific PDE4A5 
antibody and a Popdc1 specific antibody. Appropriate immunofluorescent antibodies were used 
giving Popdc1 in the red channel and PDE4A5 in green with DAPI nuclear staining in blue. Images 
are representative of three different experiments. Images were taken using the ZeissTM 5 LSM 
Confocal Microscope and analysed using Zeiss Image Studio including production of the intensity 
graph and Pearson’s co-efficient. Images are representative of three different experiments. 
Experiment typical of n=15 cells. 
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As expected, the vast majority Popdc1 was found localised to the membrane of 

the cardiomyocytes (Figure 3.4, third upper panel) with PDE4A5 predominantly 

localised to the cytoplasm (Figure 3.4, second upper panel). The intensity plot 

(lower panel) shows that both POPDC1 and PDE4A5 follow the same intensity 

peaks and patterns in a similar fashion to the transfected proteins in Figure 3.3. 

This suggests that the two proteins, in their endogenous environment, could be 

co-localising. The Pearson’s co-efficient is lower than produced by the 

overexpression confocal experiments. This was to be expected as both proteins 

are being overexpressed causing more localisation of the two. There is still a 

moderate Pearson’s co-efficient value obtained again supporting the co-

localisation of the Popdc1 and PDE4A5 and possible interaction.  

3.3.2 Confirming the interaction between POPDC1 and PDE4A 

As co-localisation studies suggest that pools of Popdc1 and PDE4A can exist in 

similar compartments, I undertook biochemical analysis to find out whether 

Popdc1 and PDE4A4/5 interact to form a signalling complex. Co-

immunoprecipitations from lysate extracted from HEK293 cells overexpressing 

the putative partners were performed to see if an interaction could be detected. 

In the first instance, Popdc1 was immunoprecipitated using its myc tag via myc 

affinity resin. Control IPs were performed using Myc affinity resin and mock 

transfected HEK293 cells.  
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Figure 3.5: Co-Immunoprecipitation using co-transfected HEK293 cells. HEK293 cells co-
expressing Popdc1 and PDE4A5 were set up for co-immunoprecipitation following the protocol 
outlined in the material and methods. Popdc1 was precipitated using myc affinity resin specific to 
the proteins tag. The samples were then western blotted for both myc to identify successful 
immunoprecipitation and VSV to identify PDE4A5. Image is a representative example from an n of 
5 and presented as mean ± SEM. Intensities of bands were recorded using ImageJ and graphs 
were produced using GraphPad Prism 6. 

 

Transfected PDE4A5-VSV was successfully co-immunoprecipitated with Popdc1s 

Myc tag pulldowns (Figure 3.5, upper panel, lane 4) suggesting existence of a 

Popdc1-PDE4A interaction. Control experiments were clear (Lanes 1 and 2 upper 

panel). The amounts of PDE4A5 being pulled down with Popdc1 seem low in 

comparison to the input levels (Figure 3.5, upper panel, lane 3 vs lane 4). This 

may provide evidence that the interaction between Popdc1 and PDE4A5 is a 

highly localised one that is small globally but is important locally at the 

membrane. To provide supporting evidence of this, reciprocal Co-IPs were 

performed using VSV antibody coupled to Protein G sepharose beads specifically 
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immunoprecipitating PDE4A5 by its tag (Figure 3.6). Again, HEK293 cells were 

transiently transfected with Popdc1-myc and PDE4A5-vsv constructs. 

                

Figure 3.6 PDE4A5 Co-immunoprecipitations using transiently transfected HEK293 cells. 
HEK293 cells were transiently transfected with Popdc1-myc and PDE4A5-vsv for 24 hours before 
harvesting. PDE4A5 was precipitated using VSV antibody, specific to its tag, conjugated to Protein 
G sepharose beads. Samples were western blotted for myc corresponding to the tag on POPDC1 
and VSV corresponding to the tag on PDE4A5.Graphs produced by GraphPad Prism 6TM, mean ± 
SEM. Representative of n=3.  

 

In contradiction to data shown in Figure 3.5, no Popdc1 pulled down with 

PDE4A5 (Figure 3.6, lower panel lane four). It is interesting that Popdc1 cannot 

be co-immunoprecipitated when precipitating PDE4A given the result of the 

opposing immunoprecipitation (Figure 3.5). This may be the result of several 

factors such as the tag of the PDE may be brought into a close proximity with 
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binding site of POPDC1 when the two proteins interact. Therefore, when the 

antibody specific to this tag is added there is a disruption of the interaction 

causing a loss of Popdc1 to be seen in the co-immunoprecipitation using PDE4A. 

To determine whether the interaction of Popdc1 with a PDE4 was specific to 

PDE4A (Figure 3.5), isoform specific Co-IPs were carried out using two other long 

isoforms, PDE4B1 and PDE4D7 (Figure 3.7).  These isoforms were selected as 

each contains both the UCR1 and UCR2 present in PDE4A5. Although the majority 

of the UCR domains sequence are conserved between the different isoforms 

there exists small distinct regions of differing amino acid residues.  Transiently 

transfected HEK293 cells were incubated with G-sepharose beads and myc 

antibody as previously described.  

 

Figure 3.7: Co-Immunoprecipitations with long PDE4 isoforms to check for specificity.  
HEK293 cells were transfected with Popdc-myc accompanied by either PDE4B1-VSV and 
PDE4D7-VSV 24 hours prior to harvesting. Popdc1-myc was precipitated using myc antibody 
conjugated to Protein G Sepharose beads. Mock condition represents cells transfected with 
PDE4A5 with no Popdc1. Western blotting for VSV and Myc were used to identified presence of 
proteins in sample. Figures representative of an n=3.  

 

Clear bands representing the protein at the correct molecular weight, 125kD, 

can be seen in the input lane showing that the proteins are being expressed in 

the lysate. When Popdc1 immunoprecipitates were blotted for VSV, allowing for 

the detection of the PDEs, there was no visible band at the relevant molecular 

weight (Figure 3.7, upper panel, lanes 4 and 6). Therefore, it was concluded 

that in transfected HEK293 cells Popdc1 interacts with PDE4A5 and not PDE4B1 

and PDE4D7.  
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To recreate this finding in a more physiologically relevant cell type, co-

immunoprecipitations were carried out in tandem with NRVM and adult rabbit 

septal cells (ARSM). In this case, POPDC1 (BVES) antibody-conjugated beads were 

used allow for the precipitation of the endogenous Popdc1. Popdc1 and PDE4A 

can be visualised in bands present at 100kD in the input lanes for both cell types 

(Figure 3.8A, lane one and B lane one). Clear immunopurification of Popdc1 was 

achieved from NRVMs (Figure 3.8A lane three) but this was not so clear in ARSM 

(Figure 3.8B, lane 3). Encouragingly, a clear co-immunopurification of Popdc1 

and PDE4A could be detected from the NRVM lysate (Figure 3.8A, lane three).  

Conceptually, we envisage small amounts of the Popdc1-PDE4A complex that is 

highly localised in cells, so it was surprising to be able to detect this interaction 

using endogenously expressed proteins 

                       

Figure 3.8: Endogenous Co-Immunoprecipitations in NRVM and ARSM. A NRVM were 
isolated from day 2 neonatal Sprague Dawley Rats. B ARSM were isolated from 12-week-old male 
New Zealand white rabbits. After culturing, cells were harvested and lysed using the protocol 
outlined in the material and methods. BVES-antibody conjugated to Protein G-sepharose beads 
were used to precipitate Popdc1 in both cases and the samples were western blotted for PDE4A 
using an isoform specific antibody. Control co-IPs were carried out using the same lysate sample 
with Protein G beads only. Arrows indicate the presence of Popdc1 and PDE4A. Image is a 
representative of an n of 3.  
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Following positive identification of the endogenous PDE4A-Popdc1 interaction, 

further biochemical and microscope-based assays were carried out to provide 

other forms of robust supporting evidence for the existence of signalosomes 

containing Popdc1 and PDE4A5. Proximity Ligation Assay (PLA) is a highly 

sensitive technique which can be used to detect protein-protein interactions in 

situ (Zatloukal et al., 2014).  PLA was performed using ventricular myocytes 

from neonatal Sprague-Dawley rats (Figure 3.9). Briefly, ventricular myocytes 

were incubated with antibodies specific to Popdc1 and PDE4A5. Subsequently, 

cells were washed and incubated with appropriate PLA probes. If the proteins 

are within 40 nm of each other a rolling circle amplification occurs. This results 

in discrete red fluorescence signals when imaged (Söderberg et al., 2008, 

Bellucci et al., 2011). Wheat germ staining was performed to identify single cells 

through detection of the plasma membrane (Figure 3.9). Confocal microscopy 

was used to detect the fluorescent signal. This method is perfect to visualise the 

occurrence of Popdc1-PDE4A5 clusters via discrete fluorescent signal produced 

when the proteins interact (Figure 3.9).  

 

Figure 3.9: Proximity ligation assay using transfected HEK293, NRVM and ARSM. HEK293 
cells were transfected with Popdc1 and PDE4A5 24 hours prior to fixing and PLA protocols being 
carried out. NRVM were fixed on day two after isolation and ARSM 4 hours after isolation. PLA in 
HEK293 cells was carried out using myc and VSV primary antibodies and using BVES (POPDC1) 
and PDE4A primary antibodies in NRVM and ARSM. Positive PLA signal is detected when the 
proteins tagged are less than 40nm apart. Negative controls were performed where the PLA kit 
was applied directly to the fixed cells to ensure no off-target staining. Cells were counterstained 
with wheat-germ agglutin (green) for membrane staining. Cells presented are representative of a n 
of 3 experiments. Scale bars shown represent 20µM. 
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Under basal conditions, as can be seen in Figure 3.9 (top three panels) Popdc1 

and PDE4A form interactions (signified by red dots) in both transfected cells and 

isolated myocytes. Transfected HEK293 cells and endogenous NRVM seem to 

have PDE4A-Popdc1 interactions distributed throughout the cell whereas, in the 

ARSM there seems to be more localised signal to the membrane, t-tubules and 

intercalated discs. Such a result was expected as the intracellular structures of 

cardiomyocytes become more defined in adult cells. Samples of each cell type 

were incubated with secondary antibody to ensure no unspecific signals were 

being produced (Figure 3.9, lower panels). Results here have supported the 

notion that Popdc1-PDE4A interactions exist under basal conditions and these 

seem targeted to membrane structures in more mature myocytes. 

As previously mentioned, multiple PDE isoforms contain the evolutionary 

conserved URC1 and UCR2 domains that are found in the PDE4A long isoform. To 

further determine that Popdc1 had specificity for PDE4A, PLA was carried out 

initially in HEK293 cells transfected with PDE4B1 and PDE4D7 as in Figure 3.7. 
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Figure 3.10: Analysing the PDE isoform specificity in transfected HEK293 cells. PLA was 
performed 24 hours post transfection. Myc primary antibody was used to detect Popdc1 and VSV 
primary antibody was used to detect all PDE4 isoforms. Positive PLA signal was identified by the 
presence of distinct and discrete red dots. PLA signal is only shown in cases where Popdc1 forms 
a complex with a PDE4. HEK293 were counterstained with wheat-germ agglutin (green) for 
membrane staining. Negative controls were performed where the PLA kit was applied directly to 
the fixed cells to ensure no off-target staining. Images represent and n=3 experiments containing at 
least 15 cells. Scale bars shown represent 20µM. 

 

As can be seen in Figure 3.10, positive co-localisation can only be seen in cells 

transfected with Popdc1-myc and PDE4A5-VSV (Figure 3.10, left panel). Cells 

transfected with Popdc1 and either PDE4B1 (second panel) or PDE4D7 (third 

panel) showed no co-localisation. This data is in agreement with the specificity 

result seen in co-immunoprecipitations (Figure 3.7). Further confirmation that 

PDE4A is the preferred PDE4 partner for Popdc1 was obtained by evaluating the 
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possibility of endogenous interactions being formed between Popdc1 and PDE4A 

PDE4B and PDE4D in NRVMs. Again, red dots that signify Popdc1-PDE4 

interactions were only observed in cells that were treated with Popdc1 and pan-

PDE4A antibodies (Figure 3.11, left panel) whereas PanPDE4B and D primary 

antibodies (second and third panels) produced comparatively little signal (middle 

left and middle right panels).  
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Figure 3.11: Analysis of the PDE isoform specificity in NRVM using PLA. NRVM were fixed 
two days after isolation. BVES (POPDC1) with either Pan PDE4A, PDE4B and PDE4D primary 
antibody were used in conjunction with the described PLA protocol. PLA signal (red) is only shown 
in cases where Popdc1 forms a complex with a PDE4. Cardiomyocytes were counterstained with 
wheat-germ agglutin (green) for membrane staining. Negative controls were performed where the 
PLA kit was applied directly to the fixed cells to ensure no off-target staining. One-way ANOVA 
statistics were performed using the intensity measurements taken from n=45 Popdc1 and PDE4A 
cells, n=27 Popdc1 and PDE4B cells, and n=40 Popdc1 and PDE4D cells. P<0.0001 value 
represented by ****.  Scale bars shown represent 20µM. 
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From the experiments in Figure 3.11, the obviously strong and robust PLA signal 

between Popdc1 and PDE4A was expected, however the weaker signals between 

Popdc1 and PDE4B and PDE4D showed that the Popdc1 interaction may take 

place in regions that are common to all PDE4 long forms (Figure 3.11). To 

determine whether Popdc1 had a stronger binding to PDE4A in comparison to the 

others, a minimum of 27 cells were measured for intensity of PLA signal and a 

one-way ANOVA was performed (Figure 3.11, bar chart). This analysis revealed 

that Popdc1 did indeed have a more robust binding to PDE4A compared to the 

other two isoforms. The specificity for PDE4A, may in part be due to the 

membrane localisation of the PDE (Houslay, 1996) or differences in primary 

sequence.  

 

3.3.3 Confirmation of the interaction using recombinant purified 
protein.  

Co-immunoprecipitations using endogenous and overexpressing cell lysate 

provided support for the interaction between POPDC1 and PDE4A5. However, to 

determine if this interaction was direct or dependent upon other proteins, 

recombinant purified proteins were utilised for pull-down assays and far western 

techniques. Recombinant POPDC1 Popeye domain-HIS-GB1, kindly gifted by 

Professor Thomas Brand (Imperial College London, UK), was purified using the 

protocol outlined in (section 2.6.1). Briefly, the protein was purified using Ni-

NTA resin. The resin bound protein was washed with buffer containing 10 mM 

imidazole. Elutions of the protein from the beads were performed using a linear 

gradient from 100 to 250 mM Imidazole. Two 500 µl fractions were collected 

from each imidazole concentration and analysed using western blotting or 

Coomassie staining (Figure 3.12). Successful purification of the Popeye domain-

His-GB1 recombinant protein is seen by the band at 25kDa in the SDS-PAGE 

shown in Figure 3.12A and confirmed by immunoblotting targeting the His tag 

(Figure 3.12B).  
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Figure 3.12: Recombinant Purified POPDC1 Popeye domain-His-GB1.  Recombinant POPDC1 
Popeye domain tagged with HIS and a solubility peptide GB1 was purified using the protocol 
outlined in the material and methods section. The protein was purified using Ni-NTA resin. The 
resin with bound protein was washed with buffer containing 10mM Imidazole and eluted in a linear 
gradient of 100mM to 25mM imidazole. Two 500 µl fractions were eluted using each concentration 
were collected. Eluted fractions were then analysed on 4-12 % SDS-PAGE gels and visualised 
using A Coomassie staining and B western blotted for HIS. The arrow indicated the successful 
purification of POPDC1-HIS-GB1. 

 

To investigate whether POPDC1 was interacting with PDE4A4 directly, a co-

immunoprecipitation was performed using purified recombinant POPDC1-HIS-GB1 

and PDE4A4-MBP. Briefly, POPDC1-His-GB1 and PDE4A4-MBP were added in equal 

molar concentrations and incubated for 1 hour before the addition of Ni-NTA 

resin. After an hour incubation with the beads, samples were processed and run 

on SDS-PAGE prior to western blotting (Figure 3.13).  
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Figure 3.13: Recombinant protein co-immunoprecipitation. Recombinant purified Popeye 
domain from POPDC1-His and PDE4A4-MBP were incubated together. The Popeye domain of 
POPDC1 was used as bait to pull down PDE-4A4-MBP. Input samples for both proteins were run 
to confirm the protein was present in the sample (A). Samples were western blotted for both His to 
confirm pull down (B) and MBP to confirm interaction (C). Arrow indicated POPDC1 and bracket 
represents PDE4A4. Example is a representative example of an n of 3.  

 

Purified Popeye domain of POPDC1-His was efficiently isolated (Figure 3.13, 

middle panel) and could directly pull down PDE4A4-MBP (see Figure 3.13, right 

panel) confirming direct interaction as well as indicating that the Popeye domain 

in POPDC1 is the region that binds to PDE4A. This data suggests that the two 

proteins may directly interact with each other in vivo and gives support to the 

hypothesis that PDE4A4 is responsible for shaping the cAMP gradient that the 

cAMP effector protein POPDC1 is exposed to.   

Further biochemical assays were carried out to add supporting evidence to the 

notion that direct interaction between POPDC1 and PDE4A4 takes place. For 

these experiments the Popeye domain of POPDC1 Popeye domain tagged with 

GST was purified (Figure 3.14). Optimization of the induction process was 

carried out prior to large scale purification.  
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Figure 3.14: POPDC1 Popeye domain -GST optimised purification. To determine the optimal 
conditions for protein expression, a range of induction conditions were utilised using increasing 
concentrations of IPTG with or without chloramphenicol (conditions are noted next to each gel). 
Recombinant POPDC1 tagged with GST was purified using the protocol outlined in the material 
and methods section.  Glutathione beads with affinity for the GST tag were used to capture 
POPDC1. POPDC1-GST was eluted from the beads using elution buffer containing reduced 
Glutathione. Arrow represents the correct molecular weight (55kD) therefore signalling expression 
of the protein.  
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As can be seen in Figure 3.14A-C (elution lanes 1-7), Popeye domain of POPDC1-

GST was successfully purified in all growth conditions. However, optimal growth 

conditions were observed to be 1mM IPTG during a 2.5-hour incubation at 37 ºC 

given the presence of a stronger band at 55kD indicating purified POPDC1-GST 

(Figure 3.14C, elution lanes 1-7) in comparison to any of the other conditions. 

This information was used to produced recombinant purified POPDC1-GST 

required for further biochemical studies. To confirm the identity of POPDC1-

GST, a western blot was performed immunoprobing for GST (Figure 3.15). 

 

Figure 3.15: Purified Recombinant POPDC1 Popeye domain - GST conformation Western 
blot.  Recombinant purified POPDC1 tagged with GST was run via SDS PAGE. Membranes were 
immunoblotted for GST corresponding to the tag on the recombinant POPDC1 Popeye domain. 
Arrow indicates the correct band seen at 55kDa.  

 

Having correctly produced the POPDC1 Popeye domain tagged with GST, a far 

western was performed using the purified recombinant POPDC1 Popeye domain-

GST and PDE4A4-MBP (Figure 3.16). POPDC1 Popeye domain-GST and positive 

control proteins, UBC9-GST (Houslay et al., 2017) and P75-Ntr-GST (Sachs et al., 

2007) that have previous been shown to be PDE4A binders, were separated by 

SDS-PAGE before being western blotted for GST (Figure 3.16A, first panel), and 

MBP (Figure 3.16A, middle panel). These proteins are immobilised on 

nitrocellulose membranes and can act as bait for the PDE4A4 in a far western 

assay. As can be seen in Figure 3.16B, MBP-PDE4A4 binds directly to the 

immobilised bait proteins (POPDC1, UBC9 and P75-Ntr). Negative controls were 

carried out using RHE PfPdx1, a protein that can phosphorylate and active the 

Plasmodial PLP Synthase Complex (Figure 3.16 C and D). This was performed to 

ensure there was no unspecific binding of PDE4A4-MBP to proteins that were not 
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known to be interactors. As can be seen in Figure 3.16 D, there was no 

interaction between PDE4A4-MBP and RHE PfPdx1.  

 

Figure 3.16: Far Western using Recombinant Purified Protein. A Purified Recombinant Popeye 
domain of POPDC1-GST, UBC9-GST and P75-Ntr -GST were separated by SDS-PAGE and 
western blotted for GST, to confirm successful transfer of the protein to the nitrocellulose 
membrane. Separate membranes were probed for MBP, the tag on the recombinant PDE4A4 
protein. B This membrane was incubated with PDE4A4-MBP for 4 hours before being re-probed 
with MBP. C Negative controls were performed using RHE PfPdx1-GST. To confirm the presence 
of the protein on nitrocellulose membrane they were probed for GST, Separate membranes were 
probed for MBP to confirm there was no cross-reactivity. D This membrane was incubated with 
PDE4A4-MBP for 4 hours before immunoblotting for MBP.  
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Figure 3.16 shows the presence of bands at 55 kDa in the Popeye domain of 

POPDC1 lane and bands ~40 kDa in both the UBC9 and P75NTR lanes. This suggests 

that PDE4A4 is directly binding to these proteins without any other interacting 

proteins. P75 neurotrophin receptor (P75NTR) belongs to the family of Tumour 

necrosis factor receptors (TNFR) and is a known interactor of PDE4A4 via binding 

to its unique C-terminal (Sachs et al., 2007).  

Collectively the data presented so far in this chapter indicates that there is a 

robust, reproducible and novel interaction between POPDC1 and PDE4A4/5. This 

is a direct interaction that has been confirmed in binding experiments using 

overexpressed and endogenous proteins in cell lysates and with purified 

recombinant protein.  

 

3.3.4 Mapping Binding Regions of PDE4A on POPDC1 

In this chapter, POPDC1/Popdc1 has been shown to interact with 

PDE4A4/PDE4A5 in both HEK293 cells and NRVM (Figure 3.6 and Figure 3.8). A 

peptide array approach was employed to determine the essential residues for 

the interaction and effectively map binding sites on both proteins. A peptide 

library of POPDC1 sequence was synthesized onto cellulose membranes as 

described in section 2.9.2. Initially, overlapping 25mers covering the full POPDC1 

sequence were synthesised. Arrays were incubated with cell lysate 

overexpressing PDE4A4-VSV, PDE4D9-VSV and an un-transfected lysate control 

prior to being probed with a VSV primary antibody (Figure 3.17). 

Chemiluminescence was used to identify sites of interaction. As this procedure is 

known to be semi-quantitative, intensity of the spot partially correlated to 

binding affinity, whereas no signal was detected when peptides were outside the 

binding motif. To ensure the detection was due to the binding of an interacting 

protein, an un-transfected cell lysate was used as a control. Representative 

regions of the full length POPDC1 arrays are shown that exhibited the greatest 

degree of interaction (Figure 3.17).  
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Figure 3.17: Peptide Array of Full Length POPDC1 overlaid with PDE4A4.   
Overlapping 25mer peptides, offset by 5 amino acids, for the full-length sequence of POPDC1 were 
synthesised on cellulose membranes and probed with HEK293 lysate overexpressing VSV-tagged 
PDE4A4 (+PDE4A4, left panel), VSV-tagged PDE4D9 (+PDE4D9, middle panel) or untransfected 
HEK293 lysate (Mock, right panel). Binding of VSV-tagged protein to peptides was detected using 
anti-VSV antibody. The protein location and sequence of each peptide is shown to the right. 

 

Binding of PDE4A (Figure 3.17, left panel) but not PDE4D9 (middle panel) to 

immobilised POPDC1 sequence was apparent and control experiments were clear 

(right panel). Interestingly, the binding site identified is housed within the 

Popeye domain of POPDC1 (see Figure 3.17). This site, according to predicted 

secondary structure, lies within two β-sheets allowing it to be partially 

accessible to other proteins. To further narrow down the putative PDE4A4 

binding site, a motif scan was carried out (Figure 3.18). Clearly, the motif 

RLSILLK (in red) is of relevance to the biding of PDE4A4 but not PDE4D9. 
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Within the sequence identified, lies a familial missense mutation, R172H, 

previously outlined by Professor Hendrik Milting’s Lab in Bad Oyenhausen, 

Germany (Schindler, 2014). POPDC1R172H is caused by a missense mutation 

leading to an arginine at position 172 being substituted for a histidine. Patients 

identified with this mutation present with dilative cardiomyopathy (DCM). 

POPDC1R172H There was little to no difference found in the mutant POPDC1s 

affinity for cAMP or in its co-localisation with the potassium channel, TREK1 

(Schindler, 2014). This may mean that the mutation leads to a decrease in 

PDE4A4s ability to bind to POPDC1 and therefore affects the controlled decrease 

of cAMP in the vicinity leading to aberrant interaction with TREK1.   

 

Figure 3.18: Motif scan using peptide array of PDE4A4 binding site on POPDC1. 25mers 
containing the proposed binding site shifted by 5 amino residues at a time. Membranes were 
overlaid with HEK293 lysate overexpressing PDE4A4-VSV or PDE4D9-VSV. Mock transfected 
HEK293 lysate was used as a control. Red highlighted sequence identifies that of the familial 
mutation site and the crucial binding residues identified previously.  

 

To elucidate crucial amino acid residues that were necessary for POPDC1 ability 

to bind to PDE4A4/5. A peptide array using alanine scanning of the identified 

binding site on POPDC1 was performed. Briefly, the 25mer sequence identified in 

Figure 3.17 was synthesized on cellulose membranes and sequentially each 

amino acid was substitute with alanine (A) (Figure 3.19A). Alanine possesses a 

chemically inert methyl side chain meaning that its substitution eliminated the 

endogenous residue while retaining much of the proteins structure. In the 

instance that alanine was the native amino acid in the sequence, aspartic acid 

(D) was used as substitution due to the residues negative charge. The membrane 
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was overlaid with PDE4A4-VSV overexpressing cell lysate following the protocol 

outlined in section 2.9.2.2.    

 

Figure 3.19: Peptide arrays showing alanine scans as well as N and C terminal truncations 
of identified binding site. A 25mer binding sequence previously identified was synthesized to 
cellulose membrane and walking alanine scans, where each residue was substituted an alanine, 
with shown in red. If alanine was in the original sequence the residue was substituted with aspartic 
acid (D), shown in red. Membranes were overlaid with PDE4A4-VSV overexpressing cell lysate 
before primary antibody incubation using a VSV antibody specific to the tag on PDE4A4. A lysate 
control was performed to ensure no unspecific binding. Imaging was performed using 
chemiluminescence. B is N-terminal truncations and B depicts C-terminal truncations. Control 
peptides were overlaid with un-transfected lysates. C C-terminal truncations. Control peptides were 
overlaid with un-transfected lysates and probed with the same VSV-antibody as used for the 
experimental membranes. 
 

This technique identified five amino acid residues that are crucial to POPDC1s 

ability to bind PDE4A4/5 (Figure 3.19 A). In agreement with Figure 3.18, a 

crucial sequence, R-L-S-I-L-L-K is essential to the interaction of POPDC1 and 

PDE4A4/5. Interestingly, the residue involved in the human familial mutation is 

again highlighted, adding evidence to the hypothesis that arrythmias in 
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POPDC1R172H patients may stem from lack of PDE4 binding to POPDC1, resulting in 

higher local cAMP concentration and consequently less TREK1 binding. To further 

validate these residues as important determinants for the interaction of POPDC1 

and PDE4A4/5, N-terminal and C-terminal truncations of the binding region were 

generated (see Figure 3.19 B and C). As expected, sequential removal of these 

key residues (R-L-S-I-L-L-K) resulted in attenuation of the interaction between 

POPDC1 and PDE4A4/5 (Figure 3.19C). This data suggests that these five residues 

are required for the successful binding of PDE4A4/5 to POPDC1, including the 

mutated arginine at position 172.  As expected, truncation of residues from the 

N-terminal of the original 25mer (T154 to K178) did not have any effect on 

binding (Figure 3.19B). 

As mentioned, the PDE4A binding site on POPDC1 contains the identified 

POPDC1R172H mutation site. To determine whether there was a potential change 

in PDE4A binding to this site when the mutation (R to H) was re-created by 

peptide array,  sequences containing the R to H substitution were overlaid with 

purified recombinant PDE4A4 tagged with MBP (Figure 3.20).  

         

 

Figure 3.20: Peptide array of POPDC1 binding sequence with the R172H mutation change.  
Short 12mers and full 25mer binding site sequence were taken and the R172H mutation was 
added. These arrays were overlaid with purified recombinant PDE4A4 tagged with MBP before 
being probed with PDE4A4 specific antibody. An antibody only control membrane was also 
performed. Membranes were imaged using chemiluminescence.  A graph was produced using 
intensity measurements taken of each spot using ImageJ.  

 

Excitingly, a reduction in PDE4A binding was clear when the full 25mer sequence 

was recreated (Figure 3.20, comparing bottom two spots) suggesting that the 

familial mutation (R172 to H) phenotype may manifest by the inhibition of PDE4A 
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binding.  In contrast, binding of PDE4A4 was not reduced in the shortened 

binding site sequence containing the mutant (Figure 3.20), comparing top two 

spots). This may be as a result of the short, linear nature of this peptide which 

may not have as much secondary structure as the 25mer.  

3.3.5 Mapping the binding site of POPDC1 on PDE4A 

In order to discover the POPDC1 binding site on PDE4A and potentially discover 

the nature of PDE4A specificity for the POPDC1 Interaction, I undertook the 

reciprocal experiment of that described above. The full length PDE4A4 sequence 

was encompassed by an array using 25mer peptide, shifted by five amino acid 

residues at a time. Once synthesized, membranes were overlaid with HEK293 

lysate overexpressing POPDC1 tagged with the FLAG tag (Figure 3.21).  

 

 

 



124 
 

 

Figure 3.21: PDE4A4 peptide array identifying the binding site of POPDC1.  25mers of 
PDE4A4 covering the full length of the protein were overlaid with HEK293 lysate overexpressing 
POPDC1. HEK293 cells mock transfected were used as a control. Red highlighted sequence 
identified sites with strongest apparent binding.  A schematic of PDE4A4 structure is shown 
depicting the POPDC1 binding site as well as highlight phosphoserines (represented by green 
circles).  

 

A single binding region was identified for POPDC1 on PDE4A4. This region falls 

within the UCR1, specific to all PDE4 long isoforms. This region is highly 

conserved in all PDE4 subfamilies but does have small divergent areas, some of 

which feature in the POPDC1 binding site I have identified. Interestingly, just 

upstream of the POPDC1 binding site is a site that has previously been identified 

by our lab as a multifunctional docking site (Houslay et al., 2017) for a range of 

PDE4 interacting proteins.  Known as the FLY domain (Phe141, Leu142, and 

Tyr143), this site lies within the UCR1 domain of PDE4 and allows for the binding 

of several proteins including mitogen-activated protein kinase-activated protein 

kinase 2 (MK2).  Long forms of PDE4 can be phosphorylated by MK2 attenuating 

their activation by PKA phosphorylation (MacKenzie et al., 2011). This leads to 

an indirect modulation of PDE4s activity and hence disrupting cellular 

desensitization to cAMP and additionally for PDE4A this phosphorylation leads to 
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a conformational change reducing protein binding to the UCR2 domain 

(MacKenzie et al., 2011).  In order for MK2 to phosphorylate PDE4 long forms 

effectively it has to interact at this docking site (Houslay et al., 2017).  The 

interaction with POPDC1 may elicit a protective mechanism for PDE4A keeping it 

in its active form inhibiting the binding of MK2. Having identified a region of 

POPDC1 binding, alanine scans and C-terminal truncations were performed to 

isolate crucial amino acid residues essential to binding (Figure 3.22) and 

perhaps, PDE4A specificity.  
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Figure 3.22: Alanine scan and C-terminal truncation of identified POPDC1 binding site on 
PDE4A4.  A Walking alanine scans were performed on the identified binding site of POPDC1 on 
PDE4A4. Sequentially, each amino residue was substituted with an alanine or where the native 
residue was an alanine, an aspartic acid residue was used instead (shown in red). Residues crucial 
to binding have been highlighted in the bracket, Membranes were overlaid with POPDC1 Popeye 
domain tagged with His while control membranes were incubated in antibody only.   B C-terminal 
truncations, removing one amino residue each spot was overlaid with POPDC1 Popeye domain 
tagged with His.  
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Alanine scanning was undertaken on the 25-mer that displayed the most robust 

binding of POPDC1 (Figure 3.21, last spot, sequence in red). Sequentially, each 

amino acid residue was substituted with an alanine, or where an alanine was 

present in the native sequence an aspartic acid. Membranes were overlaid with 

the POPDC1 Popeye domain tagged with His. Both the alanine scan (Figure 

3.22A) and the C-terminal truncation (Figure 3.22B) identified a region 

containing 10 residues, (M-S-R-N-S-S-V-T-S-E-A-H-E-A-D; M161-D175 residues) 

that appeared to be critical to POPDC1 binding.  

 

Figure 3.23: UCR1 sequence homology of long PDE4 isoforms. The UCR1 domain denoted in 
pink. Sequence homology between the PDE4 long isoforms is shown with a black background. The 
red box highlights the area of the sequence that was found to be crucial to the binding of POPDC1.  

 

Interestingly, the residues that displayed the greatest loss of binding fall within 

one of the small variable regions of the UCR1 domain (Figure 3.23). As can be 

seen in Figure 3.23, when V-T-S-E-A-H-A-E-D (V167-D175 residues) sequence is 

disrupted, via alanine substitution or C-terminal truncation, there is a highly 

visible loss of the POPDC1 binding. This data not only identifies the putative 

POPDC1 binding site on PDE4 but also suggests a possible route by which POPDC1 

specifically selects PDE4A (and not PDE4B, C or D). 
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3.4 Discussion 

3.4.1 POPDC1 directly interacts with PDE4A 

It is known that most proteins within the cell create a network of interactions 

with other proteins to create signalling cascades that are used to specifically 

activate physiological changes of cells in response to extra-cellular stimuli. 

Identifying a specific protein’s ‘interactome’ allows for the function of said 

protein to be understood within one or more tissue/cell type. As discussed, the 

interaction of a cAMP effector protein with a PDE is crucial for the control and 

activation its function in response to Gs-coupled receptor activation and for its 

resistance to inappropriate activation under basal cAMP conditions (reviewed in 

(Baillie et al., 2003, Fertig and Baillie, 2018, Baillie, 2009)).  PDEs are the 

critical component in regulating both spatial and temporal dynamics of cAMP 

leading to the creation of cAMP microdomains that allow for discrete and 

distinct signalling within the cell in response to single receptor types. This 

concept of cAMP compartmentalisation first devised by Larry Brunton and co-

workers in the late 1970s has resulted in the identification of many localised 

cAMP “signalosomes” that contain a single cAMP effector and a PDE (Hayes et 

al., 1980, Beavo and Brunton, 2002, Hayes and Brunton, 1982, Maurice et al., 

2014).  With POPDC1 being a novel cAMP effector protein and it’s interactome 

being interrogated, it was my hypothesis that a PDE would bind to a signalling 

complex containing POPDC1 and that the PDE activity associated would regulate 

POPDC1 function. The observations made in this chapter have shown, for the 

first time, that indeed POPDC1 interacts with a PDE4, having increased 

specificity for PDE4A.  Other chapters in this thesis will attempt to decipher the 

exact role of the PDE4A pool associated with POPDC1 

I have shown that an interaction between Popdc1 and PDE4A exists in both 

transfected HEK293 cells as well as in endogenously expressing NRVM and 

ARVM/ARSM (Figure 3.5, Figure 3.6, Figure 3.8, and Figure 3.9). Through the use 

of co-immunoprecipitations and PLA, Popdc1 was shown to bind PDE4A. In 

cardiomyocytes, the co-immunoprecipitations appeared to be less clear that 

those performed in overexpressing HEK293 cells (Figure 3.7 compared to Figure 

3.8). A possible explanation for this is that the compartmentalisation of both 

Popdc1 and PDE4A means that there is only a discrete location where the two 
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proteins are found interacting. During co-IPs, the whole cell population is taken 

together meaning that the volume of lysate added to the reaction may only 

contain very small amount of the Popdc1-PDE4A interaction.  An endogenous 

interaction was further supported through PLA, using antibodies detecting 

Popdc1 and PDE4 isoforms (Figure 3.9). This observation led to the first potential 

mechanism by which the activity of Popdc1 is controlled.  

The formation of PDE signalling complexes in the heart have been extensively 

investigated. PDE4 family members have been shown to be vastly integrated into 

complexes containing numerous cardiac proteins, many of which are known to 

be involved in the excitation-contraction coupling as well as in calcium handling 

(Sin et al., 2011, Lehnart et al., 2005, Maurice et al., 2014, Bolger et al., 2003, 

Leroy et al., 2011, Beca et al., 2011, Terrenoire et al., 2009). One of the most 

well-defined signalling complexes, is that of PDE4D5 and β-arrestin. When β2-

adrenoreceptor is stimulated it leads to the production of cAMP through the 

activity of AC, and the surge in localised cAMP activates PKA.  The 

desensitisation of this adrenergic signalling occurs through a negative feedback 

loop initiated when the receptor itself is phosphorylated by PKA. This switches 

the receptors signalling to an inhibitory one type, suppressing AC activity and 

other pathways such as ERK1/2 signalling (Daaka et al., 1997). The 

phosphorylation of the receptor by G-protein coupled receptor kinases leads to 

the recruitment of β-arrestin further desensitising the receptor through 

preventing access to the G-protein (Krupnick and Benovic, 1998). Along with the 

recruitment of β-arrestin there is an increase in localised cAMP degradation.  

Baillie and colleagues identified that this decrease was due to the activity of 

PDE4D5 recruited to the β2-adrenoreceptor by β-arrestin (Baillie et al., 2003). 

PDE4D5 is not the only PDE isoform to interact with β-arrestin, in fact all PDE4 

isoforms can interact due to a conserved binding site in the catalytic region of 

the protein (Perry et al., 2002). However, PDE4D5 possesses a unique binding 

site for β-arrestin in the N-terminal region giving it higher affinity for binding 

(Bolger et al., 2003). The interaction between PDE4D5 and β-arrestin also 

functions to regulate the activity of a localised pool of PKA by tethering the PDE 

to a complex containing AKAP79 and β2-arrestin (Lynch et al., 2005).  The 

formation of a complex containing a cAMP effector protein such as PKA, with a 

PDE allows for it to be hypothesised that the interaction between POPDC1 and 
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PDE4A may represent a novel control mechanism in cardiac signalling functioning 

to modulate the local cAMP levels.  

Peptide arrays were utilised to fine map the binding sites involved in the 

interaction between POPDC1 and PDE4A (Figure 3.17, Figure 3.18, Figure 3.19, 

Figure 3.20, Figure 3.21, and Figure 3.22).  Examining the interaction motif for 

PDE4A on POPDC1 identified a region (R-L-S-I-L-L-K) within the evolutionarily 

conserved Popeye domain (Figure 3.17). Based on predicted secondary structure, 

a proportion of these amino residues are buried within a β-sheet making them 

inaccessible to interacting proteins. Given the close proximity of this site to the 

cAMP binding motifs (DSPE and FQVT motifs) (Froese et al., 2012), it could be 

hypothesised that the binding of cAMP confers a conformational change making 

the binding region accessible. Small molecule binding inducing a structural 

change has previously been shown to create more accessible binding regions. An 

example of this is found with TnI, the actomyosin ATPase inhibitory subunit 

which  elicits its inhibitory effect upon the binding of Ca2+ to TnC, another 

subunit of troponin (Tobacman, 1996, Zhang et al., 2011). The presence of Ca2+ 

causes the increased binding of TnI to tropomyosin due to a regulated 

conformational change in the C-terminal end of TnI.  This conformationally 

controlled interaction is thought to restrict tropomyosin movement at resting 

conditions when calcium levels are low, therefore, inhibiting actomyosin ATPase 

and muscle relaxation (Zhang et al., 2011). In addition, given that the structure 

of POPDC1 is only predicted based on sequence homology it may also be the case 

that the amino residues identified are far more exposed than initially 

anticipated.  

Interestingly, the identified binding site of PDE4A on POPDC1 contains the 

disease related familial mutation, R172H. A German lab group headed by 

Professor Hendrik Milting, initially identified the missense mutation in POPDC1 in 

a patient presenting with dilative cardiomyopathy (DCM) (Schindler, 2014). The 

mutation results in the change of an arginine to histidine at position 172 

(R172H). Interestingly, further analysis of 200 other known candidate genes for 

this disease identified a mutation in the Laminin A/C gene meaning the two may 

be contributing to the disease phenotype (Schindler, 2014). Investigations into 

the effects of the mutation on the function of POPDC1 were carried out using 
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recombinant POPDC1[R172H]. cAMP binding affinity was tested and showed no 

significant differences in comparison to their WT counterparts. There were also 

no changes in the subcellular localisation of the protein or in POPDC1s ability to 

interact with TREK1 (Schindler, 2014). I hypothesise that this mutation lessens 

PDE4A binding affinity (Figure 3.20) and this may be due to the fact that 

arginine is typically found on the outside domains of proteins where it’s 

hydrophilic group can interact with the polar environment, meaning it is usually 

found at the interface of interacting proteins. As it is positively charged it 

contributes to a wide range alterations in both nucleic acid and protein 

interactions (reviewed in (Bayer et al., 2005)). Methylation of arginine residues 

allows for weakening of the bonds between interacting protein allowing for a 

reversible binding. It has been shown in several disease-causing mutations that 

the change from an arginine (Arg) to a histidine (His) can result in in drastic 

conformational changes. Arg>His mutations have become of more importance in 

recent years as work on the molecular mechanisms of His switches in pH sensors, 

or proteins with pH sensitive functions and activities (White et al., 2017, 

Schönichen et al., 2013).  Arginine is known to have a pKa (where Ka is the acid 

dissociation constant) of around 12 whereas histidine with a pKa of 6.5 can then 

titrate with the narrow pH range and shows a shift in population from 

protonated to neutral species at a higher pH. This creates the pH of the protein 

to increase which can change both the activity and interactions of a protein. For 

example, in some cancers an Arg-to-His mutation in the growth factor EGFR has 

been suggested to stabilise the kinase through a conformational change to an 

constitutively active state when there is a high cellular pH (White et al., 2017). 

Therefore, the subtle change from Arg>His could result in drastic changes in 

protein-protein interactions and stability (White et al., 2017). In the context of 

POPDC1/PDE4A complex the change from Arg>His in POPDC1 could have 

numerous implications. For example, this could result in a conformational 

change which may create either weak or dysregulated binding of PDE4A in vivo. 

Lack of cAMP regulation around POPDC1 would affect its subsequent interactions 

with other proteins such as TREK1. As TREK1 and POPDC1 interact under basal 

cAMP conditions the dysregulated rise in cAMP would dissociate the two leading 

to aberrant TREK1 current (Froese et al., 2012).  This, in part, may answer the 

question of how the mutation in POPDC1 contributes to cardiac arrythmia.  
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Furthermore, a single point mutation in proteins has frequently been shown to 

have major contributions to disease either by interrupting protein complexes, by 

affecting the functionality of that protein, or by impacting on the control of 

cAMP signalling (Studer et al., 2013). An example of this is the point mutation 

identified in the cAMP/cGMP degrading PDE10A found in patients suffering from 

Childhood-Onset Chorea with Bilateral Striatal Lesions (Mencacci et al., 2016). 

Chorea is a hyperkinetic disorder that results from the dysfunction of the striatal 

medium spiny neurons (MSNs) (Hermann and Walker, 2015).  The substitution of 

phenylalanine to a leucine at position 300 or 334 in the highly conserved GAF-B 

domain leads to a dramatic reduction in the activity of PDE10A after stimulation. 

This was shown to be due to the altered residues being located within the cAMP 

binding pocket (Mencacci et al., 2016). Studies have shown that PDE10A has two 

states, active and super-active therefore, when cAMP intracellular levels are 

high the PDE is switched to the super-active state. Given that the regulation of 

MSN activity is largely due to the regulation of cAMP, the loss of PDE10A activity 

and subsequently disrupted localised cAMP signalling drives the progression of 

this disease (Threlfell and West, 2013, Mencacci et al., 2016).  In addition, six 

identified separate missense mutations in PDE3A have been linked to the 

development of hypertension and brachydactyly type E (HTNB) (Maass et al., 

2015). The mutations increased the PKA-mediated phosphorylation of PDE3A 

resulting in increased cAMP-hydrolytic activity.  cAMP inhibits myosin light chain 

kinase (MLCK) through PKA causing vascular smooth muscle cell (VSMC) 

relaxation. Increasing the activity of PDE3A was predicted to be contributing to 

the progression of disease by lowering the cAMP concentration in  VSMC thereby 

promoting peripheral vascular constriction (Maass et al., 2015).  Such data 

suggests that the disruption of localised cAMP dynamics as a consequence of 

point mutations can contribute toward disease.  This provides precedent for the 

point mutation in POPDC1R172H leading to a reduction in PDE4A binding (Figure 

3.20) that could contribute towards the onset of conditions such as DCM.  

Of note, is the data gained in this chapter that suggests POPDC1 has the 

capability to bind to PDE4 long isoforms but with a higher affinity for PDE4A that 

leads to a degree of specificity. Previously in the PDE field, dogma has dictated 

that the unique N-terminal directs binding, but it is becoming more apparent 

that other interaction sites on PDE4 contribute  to specificity (Murdoch et al., 
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2007, Richter et al., 2008).  As the site identified here found in the evolutionary 

conserved UCR1 domain, it is of no surprise that this would allow for the binding 

of other isoforms containing this domain. Multiple isoform binding is not 

uncommon either, for example the Disrupted-in-schizophrenia (DISC1) protein 

has been shown to interact with isoforms from PDE4A, PDE4B and PDE4D 

however but  possesses higher affinity for PDE4B (Murdoch et al., 2007). 

Likewise, beta-arrestin recruits PDE4 to Gs-coupled receptors as part of the 

desensitisation mechanism but has a preference for PDE4D5 via an extra binding 

site (Baillie et al., 2003, Baillie et al., 2007, Bolger et al., 2003). We have shown 

here that POPDC1 interacts with PDE4 isoforms endogenously much like DISC1 

however has a preference for PDE4A. Evidence for this is displayed in Figure 3.10 

and Figure 3.11 through preferential PDE4A association observed in the PLA 

experiments carried out in NRVM and HEK293. The PDE4A isoform specific 

sequences found in the UCR1 domain could be crucial binding specificity residues 

for POPDC1 association. In addition, the localisation of PDE4A long isoforms may 

in part be the contributing factor to their preferred binding.  PDE4A4/5 are 

known to be associated with ruffles at the cell periphery via a highly proline-rich 

region which allows for its binding to SH3 domains found in various Src family 

tyrosyl protein kinases (Beard et al., 1999, McPhee et al., 1999, O'Connell et al., 

1996). With POPDC1 known to be predominantly membrane-bound but able to 

localise to multiple locations within the cell under different conditions 

(Schindler et al., 2012a, Alcalay et al., 2013, Swan et al., 2019), we can 

hypothesize that it can form interactions with other PDE4 isoforms when there is 

little to no PDE4A present in the vicinity. At the membrane, one of POPDC’s 

most important interactions is that of TREK1 and I have not looked at whether 

the PDE4A interaction interferes with the TREK1 interaction.  

The POPDC1/PDE4A interaction may be present in other tissues given that both 

proteins are expressed throughout the body (protein expression analysis 

(Lindskog, 2016). As such, this signalling complex may harbour different 

functions and interactions dependent on its localisation.  Detailed analysis must 

be done to identify whether this interaction is present within any other tissue 

type using the same methods outlined in this work. Given that both POPDC1 and 

PDE4A are known to be expressed within the brain, it may be hypothesised that 

this complex would be present in distinct brain regions with functional signalling 
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implications (Hager and Bader, 2009, McCarthy, 2006, Pérez-Torres et al., 2000, 

McPhee et al., 1995, Lakics et al., 2010). Dysregulated cAMP dynamics have 

been shown to correlate to the progression of disease pathology for example the 

PDE4D orchestration of cAMP response element binding (CREB) in Alzheimer’s 

disease (AD) (reviewed in (Tibbo et al., 2019)). In the mammalian brain, cAMP 

signalling has been implicated in many critical neural functions including 

synaptic plasticity, cellular excitation, pain and motor function, and facilitating 

learning and memory (Pierre et al., 2009, Bollen and Prickaerts, 2012, Kandel, 

2012, Brady, 2011). Increases in cerebral cAMP activates PKA that is associated 

with CREB which is vital for synaptic plasticity, formation of long-term memory, 

and cognition (Frey et al., 1993, Bailey et al., 1996, Gilleen et al., 2018, 

Blokland et al., 2019, Takeo et al., 2003, Averaimo and Nicol, 2014, Tibbo et al., 

2019). Errors in this signal transduction driven by anomalous PDE activity result 

in cAMP dysregulated responses in key areas of the brain that affect memory 

formation and Aβ production driving the Alzheimer’s Disease symptoms 

(Ricciarelli and Fedele, 2018). The formation of a POPDC1/PDE4A complex in the 

brain may correlate with distinct regulation of localised cAMP dynamics and as 

such contribute to normal cAMP signalling. This novel POPDC1/PDE4A complex 

may have implications in many tissues and its dysregulation could contribute to 

tissue specific disease pathology. 

 

3.4.2 Methodological considerations and future directions 

Although we have provided strong evidence for a novel interaction between 

POPDC1 and PDE4A, with the benefit of hindsight, there are a number of aspects 

of this project that require further investigation to provide further corroboration 

of these results.   

The ability to both extract Popdc1 from endogenously expressing cells and to 

precipitate it using commercially available POPDC1 antibodies proved to be 

problematic. Due to its membrane localisation, the extraction protocol 

developed is harsh as extensive sonication cycles are required to fragment the 

cell membrane allowing for isolation of Popdc1; this means there may be 

collateral damage to other proteins such as PDEs reducing their binding ability in 
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co-IPs. In addition to this, the commercially available antibodies for POPDC1 

have been shown by Dr Roland Schindler (thesis submission at Imperial College 

London, 2012) to be inefficient in detecting the protein via western blotting. 

This in part, could have led to the lack of clear Co-IPs in cardiac myocytes from 

both rabbits and rat. Currently, there are new antibodies being produced as 

interest in POPDC1 has grown, meaning that the endogenous Co-IPs should be 

performed again with the new batches.  Furthermore, the increased ability to 

isolate POPDC1 via the new antibodies, would allow for a mass spectroscopy 

screen of endogenous binding partners to be undertaken. This would support our 

case if PDE4A was specifically identified as a POPDC1 binder. The interaction in 

this thesis relied heavily upon HEK293 cells overexpressing POPDC1. The PLA 

experiments demonstrated that Popdc1 was able to bind to PDE4A and to a 

lesser extent PDE4B and PDE4D in NRVM. Due to the time constraints of this 

project, the specificity of the interaction was not investigated in adult cardiac 

myocytes. Immature cardiomyocytes are known to lack the mature phenotype of 

adult cardiomyocytes (reviewed in (Peter et al., 2016)). Due to the lack of 

structure, POPDC1 may therefore encounter the other PDE4 isoforms that 

possess a cytoplasmic localisation. The analysis of the interaction in adult cells 

would determine whether the maturity of the cells influences the specificity for 

PDE4A.   

In addition, as POPDC1 is part of a three-member family that all share conserved 

regions, one of which is the area identified as a binding site for PDE4A, it is 

possible that all POPDC proteins bind PDE4A. Each POPDC isoform possesses its 

own interaction partners controlled, in part, by cAMP binding (Schindler et al., 

2012b). The need for control of cAMP levels is as equally important with these 

isoforms as it is for POPDC1 so it could therefore be hypothesized that they too 

would interact with a PDE. In order to gain a full picture of how POPDC proteins 

function it would be necessary to determine whether other PDE isoforms are 

involved in the formation of signalling complexes. Peptide arrays containing 

sequences from both POPDC2 and POPDC3 overlaid with PDE4 isoforms as well as 

PLA in endogenous cells and overexpressing cell lines such as carried out in this 

chapter, would allow for the confirmation of any interaction. This information 

would provide a detailed signalling pathway that would elucidate how POPDC 

proteins drive the development of disease pathology which currently is unclear.  
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3.4.3 Chapter summary 

In conclusion, the data provided in this chapter suggests a novel interaction 

between POPDC1 and PDE4A exists that likely controls localised cAMP dynamics 

in the vicinity of POPDC1.  This is consistent with our hypothesis, which was 

developed with the prior information that all other known cAMP effector 

proteins are found to form signalling complexes containing PDEs. Future 

investigations should focus on determining the specificity of the interaction 

between Popdc1 and PDE4A in adult cardiac myocytes as well as identifying 

whether the other POPDC isoforms create interactions such as this. In doing so, 

an in-depth mechanism by which POPDC proteins contribute to normal cellular 

function and disease pathology could be identified. Compartmentalized 

signalling is an important facet in controlling cellular function and as such, this 

finding is of significance.   
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4 Functional implications of the POPDC1-PDE4 
complex 

4.1 Introduction 

It is hypothesised that cAMP binding to the Popeye domain drives a 

conformational change that results in modulation of binding sites for specific 

POPDC interacting proteins (Schindler and Brand, 2016). This increases the 

diversity and number of proteins that can interact with POPDC1 under different 

physiological conditions. The previous chapter provided robust evidence that a 

complex of POPDC1 and PDE4 exists, so I sought to determine what the role of 

the complex is and tried also to gain insight into the mechanism that underpins 

the function.  Signalling complexes that contain PDEs are known to have a wide 

range of cellular functions in the heart. Often the interaction with a PDE 

regulates the activity of the bound protein by modulating the local cAMP 

concentration. The L-type calcium channel (LTCC) is a protein involved in the 

excitation-contraction coupling whose function is closely modified by its 

interaction with PDE4B (Leroy et al., 2011). LTCC then functions to allow 

calcium influx through the cardiomyocyte membrane triggering the release of 

calcium from intracellular stores by the RyR. Increased calcium presence in the 

cytoplasm leads to a positive inotropic effect (Bers, 2002). Under β-adrenergic 

stimulation, PKA phosphorylates the pore forming sub-units of LTCC increasing 

the activity of the channel (Fuller et al., 2010, Bünemann et al., 1999) . PDE4B-/- 

mice displayed a markedly increased calcium current through the LTCC 

increasing contractibility of myocytes (Leroy et al., 2011).  The interaction with 

PDE4B therefore serves to modulate the activity levels of the LTCC in the heart 

to maintain normal pace making function. The POPDC1/PDE4 complex may 

operate in a similar fashion with PDE4A controlling the activity and interactions 

of POPDC1 through the modulation of localised cAMP dynamics.  

4.1.1 POPDC1 in cardiac disorders 

POPDC1 is strongly expressed in the heart and this expression pattern has been 

observed in all of the animal models studied including Xenopous, mouse and 

zebrafish (Wu et al., 2012b, Ripley et al., 2006, Smith and Bader, 2006). In the 

adult heart, POPDC1 is highly expressed in the atria, ventricles, atrioventricular 
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node (AVN), sinoatrial node (SAN) as well as the His bundle and Purkinje fibres 

(Froese et al., 2012). Analysis of POPDC1 function has pointed to a role in the 

control of precise electrical conductance in the heart (Han et al., 2019).  

POPDC1-/- mutant mice developed stress-induced sinus bradycardia following 

exposure to physical exercise, mental stress or injection of isoproterenol 

suggesting that the mice could possibly not regulate a change in heart rate or 

action potential (Froese et al., 2012). Changes in heart rate of POPDC1-/- mice 

were also accompanied by an altered SAN pacemaker pause (Froese et al., 

2012). An interesting point is that the presentation of these changes was not 

seen in young mice however at 5-8 months, the severe stress-induced 

bradycardia with sinus node dysfunction manifested (Froese et al., 2012). This 

phenotype is reminiscent of sick-sinus-syndrome (SSS), which is the most 

frequent cause of pace making device implantation in elderly individuals with no 

prior heart disease issues (Han et al., 2019). The dysregulation of POPDC1 

expression and/or changes to its function have been speculated to be the cause 

of this disease pathophysiology.  

During a myocardial ischemia/reperfusion (I/R) event, there are numerous 

damaging changes made to the myocardial ultra-structure, cardiac function and 

electrophysiology (Ferdinandy et al., 2007). It has been demonstrated that 

POPDC1 protein and mRNA are decreased during I/R and that POPDC1-/- mutants 

had a lower functional recovery compared to their WT counterparts (Alcalay et 

al., 2013). In addition, Schindler et al., forced expression of POPDC1S201F, a cAMP 

binding domain mutant, in murine cardiac cells and increased the 

hyperpolarisation and upstroke velocity of the action potential (Schindler et al., 

2016b). Furthermore, the expression of the homologous POPDC1S191F in zebrafish 

displayed the same heart and skeletal muscle phenotypes, including cardiac 

arrythmia and limb-girdle muscular dystrophy, seen in patients harbouring 

POPDC1 mutations (Schindler et al., 2012b).  These concepts and how they 

relate to my data will be discussed more in depth later. 

4.1.2 Excitation-contraction coupling 

As discussed in section 1.1, the propagation of electrical activation throughout 

the myocardium is carried by the action potential. The shape and duration of the 

potential is variable across the atrium and ventricles. For a coordinated 
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muscular contraction resulting in the efficient expulsion of blood, the electrical 

activation throughout the heart muscle must be coordinated spatially and 

temporally (Bers, 2002).  Activation is initiated in the SAN from specialised 

pacemaker cells and is propagated through the atrial tissue. The signal reaches 

the AVN which in turn passes the impulse through the His-Purkinje fibres in the 

septum of the heart. The atrium and ventricles are electrically separated from 

each other in order to ensure that the atrium contracts prior to the ventricles. 

The endocardium (inward facing surface) of the ventricles become activated and 

propagates the signal through gap junctions to the epicardium (outward facing 

surface) resulting in the coordinated contraction of the ventricles (systole).  This 

electrical activity can be observed externally using an electrocardiogram. On an 

ECG trace Figure 4.1, the P-wave is caused by the depolarisation of the atria 

which is followed closely by the QRS complex (Hadjem and Naït-Abdesselam, 

2015). This complex represents the ventricular depolarisation. The T-wave 

represents repolarisation of the ventricles which is driven by the efflux of K+ and 

the unbinding of calcium from troponin leading to the relaxation of the muscle 

(diastole) (reviewed in (Bers, 2002)). The QT-interval duration is a marker of 

normal ventricular function. A change in QT interval duration can indicate an 

altered ventricular electrical function often caused by a deleterious change in 

protein regulation and /or ion channel transport (Bartos et al., 2015). I will use 

these principals later in this chapter to determine whether treatment of heart 

tissue with the POPDC1-PDE4 disruptor peptide elicits a change in action 

potential.  
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Figure 4.1 Cardiac electrocardiogram (ECG) trace.  Diagrammatic representation of the 
depicting the respective influence of atrial and ventricular action potentials to the P-wave, QRS 
complex and T-wave respectively. Ventricular action potential was utilised in CellOptiq 
experiments.  The electrical signal of a heartbeat begins at the sinoatrial node and travels to the 
atria causing them to contract pushing blood to the ventricles, this signal is recorded as the P 
wave. The PR interval is the time from the beginning of the wave to the beginning of the QRS 
complex. As the signal passes to the ventricles through the atrioventricular node (AV), it slows 
allowing blood to fill the ventricles. This decreased signal appears as a flat line between the P wave 
and the start of the Q wave.  The signal progresses from the AV node through the bindle of His into 
the left and right bindles. Electrical signals can then pass across the ventricles causing the muscle 
to contract and pump blood to lungs and rest of body. This signal is recorded by the QRS complex 
given that these waves occur in rapid succession.  The ventricles can recover to their normal 
resting state, shown by the T wave. The ST segment is the flat, isoelectric section representing the 
interval between ventricle depolarisation and repolarisation.  The distinct ECG pattern for atria and 
ventricles are shown in an overlapping manner depicting the signal transmission through the main 
heart tissues.  

 

4.1.3 The ventricular action potential 

The ventricular action potential comprises of five major phases (0-4) with each 

phase being the result of a balance of ionic currents driven by ion channels 

controlling the dynamic membrane potential (Em) of the cell. The duration of the 

action potential depends on the movement of ionic currents in and out of the 

cell.  

The mediation of phase 0 is under the control of the voltage-gated Na+ channel 

through its rapid activation and deactivation (Figure 4.2). Phase 1 represents the 
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opening of the K+ channel, whose transient outward current (Ito, f, fast and Ito,s, 

slow components) mediates the rapid repolarisation of the cell. Both phase 2 

and phase 3 are the product of direct competition between the inwards currents 

of the voltage-gated L-type calcium channels and the Na+/Ca2+ exchanger (NCX), 

and the voltage-gated delay rectifier K+ channels outward current (Carmeliet, 

1999). Finally, phase 4 occurs when the myocyte is at rest, known as diastole. In 

non-pacemaker cells the voltage during this rest state is kept constant at around 

-90 mV (Bers, 2002). 

                             

Figure 4.2: Trace of the ventricular action potential. Phases of typical ventricular action 
potential (AP). The upper panel depicts the ventricular action potential and the numbers noted on 
the traces correspond to the 5 phases of the action potential. Activation and deactivation of 
associated inward (Na+, Ca+) and outward (K+) currents throughout the course of the action 
potential are shown in the lower panel.  (Image taken from (Jost, 2009)).  

 

4.1.4 Permeation and gating of TREK1 channels 

In this thesis, the potassium channel, TREK1, has been used to detect functional 

changes following modulation of the POPDC1/PDE4A complex. TREK1 is the most 

studied background K2P channel with its primary role being to control excitability 
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and maintain the membrane potential below the threshold of depolarisation 

(Djillani et al., 2019). Interestingly, the dimeric structural arrangement of these 

channels is in stark contrast to that of voltage-gated and inward rectifier 

channels (Patel and Honoré, 2001). The arrangement of these two-pore channels 

appears to underlie ‘background’ K+ (KB) conductance in cardiac myocytes (Backx 

and Marban, 1993, Kim and Clapham, 1989, Yue and Marban, 1988).  KB 

conductance channels have been hard to characterise in native cells as they are 

often insensitive to conventional K+ channel inhibitors as well as lacking defining 

features of a conventional channel such as a strong-voltage dependence 

(Goonetilleke and Quayle, 2012). 

TREK1 channels are known to be active over a wide range of membrane voltages 

which are found physiologically. Therefore, they are able to contribute to the 

membrane potential at both rest and excitation, for example during the 

repolarisation of an action potential (Goonetilleke and Quayle, 2012). 

Interestingly, the outward current of TREK1 is larger than its inward current for 

a given driving voltage. This is a phenomenon known as outward rectification 

(Patel et al., 1998, Dedman et al., 2009).  In a physiological K+ gradient, 

creation of a positive charge results in the instantaneous increase in outward K+ 

current due to an increased driving force in K+ ions. However, K+ current 

continues to increase over time which is indicative of voltage-gating. K2P 

channels such as TREK1 lack a voltage-sensor, which is present in other K+ 

channels. Deletion of the C-terminal of TREK1 has, however, been shown to 

remove its voltage-dependant gating (Maingret et al., 2002). It has also been 

suggested that phosphorylation of the channel at serine 133 (S133) may have an 

inhibitory effect on TREK1’s voltage-dependant gating properties (Dedman et 

al., 2009, Patel et al., 1998).  

4.1.5 TREK1 channel regulation 

TREK1 channels have been shown to have relatively low activity under basal 

conditions (Honoré, 2007, Patel et al., 1998). This activity is increased by 

numerous influencing factors such as membrane stretch and intracellular 

acidification (Patel et al., 1998, Honoré, 2007).  For example, TREK1 channels 

are activated by the mechanical deformation of the cell membrane as well as 

chemical stimuli (Honoré, 2007, Patel and Honoré, 2001). An additional feature 
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of TREK1 channels is that they are sensitive to lipids e.g. polyunsaturated fatty 

acids (PUFAs), such as arachidonic acid, and  phosphatidyl inositol 4,5 

bisphosphate (PIP2) in the lipid bilayer (Patel and Honoré, 2001, Chemin et al., 

2005, Lopes et al., 2005). Inhibition of TREK1 signalling, on the other hand, can 

be triggered by ligands that are coupled to the Gs and Gq signalling pathways 

(Patel et al., 1998). Importantly for this work, the inhibitory effects of Gq 

signalling pathway is most likely due to phosphorylation by PKA (Patel et al., 

1998).  Gq signalling pathway inhibition is routed via PKC phosphorylation or lack 

of activating PIP2 at the membrane (Murbartián et al., 2005, Lopes et al., 2005). 

Collectively, it has been suggested that TREK1 activity is tightly controlled by 

several cross-talking signalling pathways.  
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4.2 Hypothesis and aims 

As discussed, POPDC1’s functions are modulated by cAMP binding and I 

hypothesise that PDE4A forms a complex with POPDC1 to regulate its exposure to 

cAMP under basal conditions. To test this hypothesis, I had the following aims: 

• To determine if PDE4A activity and its ability to be phosphorylated by PKA 

is altered by direct association with POPDC1. 

• To develop and test a cell-penetrating peptide that can disrupt the 

interaction between POPDC1 and PDE4A 

•  To use such a POPDC1-PDE4 disruptor to investigate whether PDE4 

activity regulates Popdc1 binding to TREK1 and whether this in turn 

affects contractility and formation of action potentials in ARVMs.   
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4.3 Method 

4.3.1 Preparation of ARVM for CellOPTIQ 

Left-ventricular (LV) cardiomyocytes were isolated from 12-week-old New 

Zealand White Rabbits and used in experiments detailed here. To investigate 

contractility and relaxation, adult rabbit ventricular myocytes were plated on 

glass bottom microwell dishes (35mm petri dish, 14mm Microwell; MatTek®) and 

allowed to settle for 2 hours prior to each experiment. Cells were treated with 

10µM disruptor peptide or 10µM scrambled peptide for 2 hours at 37oC prior to 

measurements being carried out. Images were taken in the 35mm microwell 

dishes at room temperature.  

4.3.2 Action potential imaging 

CellOPTIQ® (Clyde Bioscience Ltd; Glasgow, UK) software was used in the 

collection of high-speed images of contracting single ARVM. This high-powered in 

vitro system allows for the simultaneous measurements of contractility, voltage 

and calcium in live cells. For this set of experiments, all three parameters were 

evaluated. Cells were paced with electrodes at 40mV with 20ms duration at a 

frequency of 1Hz. For each cell a 30 second recording was taken recording at 

100 frames per second using a 60x objective lens. 

4.3.3 Contractility measurements using ImageJ  

Contraction measurements in cardiomyocytes were achieved using 

measurements of sarcomere length. High-speed (100 frames per second) and 

high resolution (2048x2048 pixels) video was recorded. Image sampling duration 

allowed for a minimum of 5 beats to be recorded and subsequently averaged for 

analysis. Contraction duration (CD50) was recorded, considering both contraction 

and relaxation. CD50 represents the time from 50% contraction to 50% relaxation 

of the myocyte. 

For measurement analysis, the macro programme SarcomereLength created in 

ImageJ by Dr Francis Burton (University of Glasgow), was utilised. Each stack of 

images was analysed by manually positioning a linear selection perpendicular to 

the cell allowing for the capture of isotropic contractions. The line length was 
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dependent upon cell size and width was kept constant at 50 pixels to reduce any 

pixel noise.  

4.3.4 Fluorescent signal analysis of voltage and calcium  

Trace analysis was carried out using CellOPTIQ software. The unfiltered trace 

was baseline-subtracted, filtered using 3-point, 15 pass filter. The upstroke and 

repolarisation phases were filtered adaptively to target smoothness and 

measured by number of curve inflections. Values used in analysis were Trise 

(upstroke 10%-90% depolarisation) and action potential duration (APD) 30,50,75,90 

values, representing time (ms) from upstroke to various degrees of 

repolarisation. For example, APD50 represents the time from 50% contraction to 

50% relaxation. These were plotted to allow visualisation of phase 3 

(repolarisation phase).  

4.3.5 Analysis 

As described in 4.3.3images of contracting ARVM were converted into 

contraction traces using ImageJ software whereas trace analysis for action 

potential investigation was conducted using CellOPTIQ software.  The 

measurement of movement and voltage was taken as a trace of contraction or 

repolarisation (a.u.) over time. Measurements at each interval were presented 

as a scatter plot with bar.  
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4.4 Results 

4.4.1 Examining PDE4 activity in the presence of POPDC1. 

I have provided robust data (Chapter 3) showing a novel interaction between 

POPDC1 and PDE4A4/5. The next logical step was to investigate the functional 

role of this novel signalling complex. I attempted this by first looking to see 

whether the direct interaction of POPDC1 with PDE4A affected the enzyme’s PDE 

activity and regulation. Secondly, I determined whether PDE4 activity controls 

TREK1 binding to POPDC and thirdly, using a novel POPDC1-PDE4A disruptor 

peptide, I sought to see what physiological consequences were changed when 

PDE4A in the vicinity of POPDC1 was displaced. 

4.4.1.1 POPDC1 does not alter PDE4As PKA phosphorylation status 

PDE4 activity is known to be regulated by phosphorylation in the UCR1 by PKA 

(Ekholm et al., 1997, Laliberté et al., 2002, Richter and Conti, 2002). Such 

phosphorylation events in long isoforms, such as PDE4A4, cause their activation 

through the proposed disruption of the UCR1-UCR2 interaction and the 

subsequent interaction of  UCR2 with the catalytic domain (Richter and Conti, 

2002, Laliberté et al., 2002). PKA phosphorylation of PDE4 long forms constitutes 

a feedback control mechanism that shapes the temporal nature of cAMP 

responses. To assess whether the interaction with POPDC1 affected the potential 

of PDE4A4/5 to become phosphorylated by PKA an in vitro PKA assay was 

performed. For the assay, 2µg of PDE4A4-MBP combined with either 2µg of the 

Popeye domain of POPDC1-GST or GST control were incubated with or without 25 

units of active catalytic PKA subunit in phosphor-buffer containing Mg2+ and ATP. 

As mentioned, it is known that the phosphorylation of PDE4A4 by the PKA 

catalytic subunit causes the activation of the enzyme through increasing its 

sensitivity to the Mg2+ cofactor (Laliberté et al., 2002). Proteins were then 

tested for phosphorylation status by SDS-PAGE and western blot analysis (Figure 

4.3). Probing of blots with a specific phosphoserine antibody that identified the 

phospho-motif in UCR1 domain of PDE4A4 was undertaken (Figure 4.3 B and C). 

Additionally, a ‘pan’ PKA substrate antibody (R-X-X-pS/T) allowed for the effect 

of POPDC1s presence on PDE4A phosphorylation to be analysed (Figure 4.3 B and 

C).  
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Figure 4.3 In Vitro PKA Phosphorylation Assay using Recombinant Purified Popeye domain 
of POPDC1-GST and PDE4A4-MBP. Equal molar concentrations of POPDC1-GST and PDE4A4-
MBP were incubated with PKA catalytic subunit. A Samples were separated by SDS-PAGE and 
probed via Western-blotting. Control assays were run without the presence of PKA catalytic 
subunit. Control blots for MBP (top left), GST (top right) and PKA catalytic subunit (right second 
panel) were performed to confirm the presence of POPDC1 and PDE4A4. B PKA substrate and a 
specific PDE phospho-UCR1 antibodies were used to detect changes in the level of PDE 
phosphorylation. A and B Intensities were calculated using ImageJ and normalised to controls. C 
shows graphs generated using GraphPad Prism presented representing an n of 3, mean ± SEM.   

 

Initially, the identity of each purified protein was checked by immunoblotting 

for the tag on the recombinant protein. Figure 4.3A (2 gels on top panel) clearly 

shows the presence of both PDE4A4-MBP and POPDC1-GST. In addition, the 

amount of active PKA catalytic subunit was evaluated to ensure that all 

experimental samples contained an equal concentration of active kinase (Figure 

4.3, second panel on right). Samples were further probed for phospho-UCR1 (PKA 

site) (Figure 4.3, left) and pan PKA phospho-substrate antibody to allow 

observation of the effect of POPDC1 on PDE4A phosphorylation by PKA (Figure 

4.3B, right). The top band on each gel, representing PDE4A, were normalised to 

control blots (GST and MBP). A multitude of bands can be seen in the PDE4A lane 

as the protein has started to degrade.  Changes in the phosphor-UCR1 signal are 

displayed in the graph on the left in panel C of Figure 4.3 and on the right-hand 

side the changes identified in pan-PKA substrate signal are depicted. My data 

clearly suggests that the interaction of PDE4A with POPDC1 does not appear to 

impact the ability of the enzyme to become phosphorylated by PKA (Figure 

4.3C).  

4.4.1.2 POPDC1 does not impede the catalytic ability of PDE4A 

Given that the presence of POPDC1 does not cause any modulation in the 

activation of PDE4A through PKA dependent phosphorylation of UCR1, I sought to 

discover whether there was any impact on its intrinsic catalytic ability. Although 

PDE4 long forms are activated by PKA phosphorylation, the basal activity of 

these enzymes is high without modification by PKA. As outlined in the previous 

chapter, the binding site of POPDC1 is found within UCR1 of PDE4A4 and 

conversely, the PDE4A binding site in POPDC1 lies in the Popeye domain. This 

conformation means that the two proteins may cover a large fraction of the 

other’s catalytic domain. To check whether POPDC1’s interaction affects PDE4 

activity, a PDE assay utilising the chemical shift from the hydrolysis of 
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radiolabelled 8-[3H]-cAMP to [3H]-5’-AMP to [3H]-adenosine was performed 

(Marchmont and Houslay, 1980).  

To determine the optimum concentration of recombinant purified PDE4A4-MBP 

to be used in the PDE assay, increasing amounts of PDE4A4-MBP (from 0µg to 

10µg) was used in a pilot study. 10ug was selected as the concentration as 

counts produced were high enough to detect and in the linear range of the assay 

(Figure 4.4A). Furthermore, to ensure the identity of the purified PDE4, it was 

necessary to ensure that the PDE4A4-MBP was susceptible to rolipram. As shown 

in Figure 4.4B, there is almost complete inhibition of PDE4A4s ability to 

hydrolyse cAMP in the presence of 10mM rolipram confirming the purified 

protein’s identity.  
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Figure 4.4: PDE4A4-MBP concentration optimization for use in PDE Assay and conformation 
of PDE4A4-MBP activity.  A- Increasing concentrations of PDE4A4-MBP were used in a PDE 
activity assay to determine a concentration to be used in the experimental assay. B- An optimized 
concentration of PDE4A4-MBP, 10 µg, were used in both the control and experimental PDE activity 
assays. To confirm the activity of PDE4A4-MBP, samples were exposed to 10 mM Rolipram prior 
to the PDE activity assay.  The hydrolysis of radiolabelled 8-[3H]-cAMP to [3H]-5’-AMP to [3H]-
adenosine was measured using a Tri-Carb 2900TR Liquid Scintillation Analyser and results are 
displayed in pmol cAMP/ min. Graph represents mean ±SEM taken from an n=3.  

 



152 
 
Using the predetermined concentration of PDE4A4-MBP, a further PDE assay was 

carried out in the presence of a range of Popeye domain of  POPDC1-GST 

concentrations from 0µg to 40µg. POPDC1 did not appear to have a significant 

impact on the basal catalytic ability of PDE4A4 at any of the concentrations 

tested (Figure 4.5). The lack of change in the levels of cAMP hydrolysed by 

PDE4A provides further support that POPDC1 does not function to modulate the 

activity of the PDE4 enzyme by inhibition or allosteric activation.                        

 

          

Figure 4.5: Radiolabelled PDE Assay using increasing concentrations of POPDC1. Purified 
recombinant POPDC1-GST and PDE4A4-MBP were incubated together and subjected to PDE 
assay. The activity of PDE4A4 was analysed by hydrolysis of an 8-[3H]-labelled cAMP substrate as 
described in material and methods section 2.10.3. Graphs were determined using GraphPad Prism 
6TM. Results are displayed in pmol cAMP/ min and are represented as a mean ±SEM, n=3. 

 

The last caveat investigated was whether the interaction with POPDC1 conveyed 

any protection to the PDE4 from inhibition by rolipram. Rolipram was among the 

first generation of selective PDE4 inhibitors and was initially produced as a 

putative antidepressant agent (Wachtel, 1983). The compound is directed 

against the active site of the PDE, actively competing with cAMP, and exhibits a 

100-fold selectivity for PDE4 over the other isoforms. It is known that nearly all 

PDE4s exist in two conformations; a high-affinity rolipram binding domain and a 
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low-affinity rolipram binding domain (Souness et al., 2000). As such, equal 

concentrations of both recombinant POPDC1-GST and PDE4A4-MBP proteins or 

PDE4A4-MBP and GST alone, which functioned as a control assay, were exposed 

to increasing concentrations rolipram.  No significant differences between the 

GST control assay and the experimental POPDC1 were identified (Figure 4.6). 

POPDC1 did not confer any protection against rolipram’s inhibitory actions at 

any concentration.  This data suggests that there are no deleterious 

conformational changes that occur in PDE4A when it binds directly to POPDC1. 

All the data thus far in this chapter supports the concept that it is PDE4 activity 

that will likely alter POPDC1 function and not vice versa. 

 

          

Figure 4.6: Dose response curve for radiolabelled PDE Assay using increasing 
concentrations of Rolipram. Purified recombinant POPDC1-GST and PDE4A4-MBP were 
incubated with increasing concentrations of Rolipram (blue). An identical assay was carried out for 
the control with POPDC1-GST substituted for GST alone (purple). The activity of PDE4A4 was 
analysed by the hydrolysis of an 8-[3H]-labelled cAMP substrate as described in material and 
methods section 2.10. Graphs were determined using GraphPad Prism 6TM. Results are 
represented as a mean ±SEM, n=3. 
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4.4.2 Development of a disruptor peptide 

Peptide array data from the last chapter determined the identity of a 25mer 

POPDC1 sequence to which PDE4A bound. This information influenced the 

development and production of a cell-penetrating disruptor peptide that could 

possibly disturb PDE4A from the vicinity of POPDC1. Conceptually, displacement 

of the small “pool” of PDE4A that localises with POPDC1 should leave global 

PDE4 activity unchanged but should have a large and measurable effect on 

POPDC1 function. Perhaps cAMP in the vicinity of POPDC1 would rise following 

disruptor peptide treatment leading to the dissociation of POPDC1 from TREK1 

(Froese et al., 2012). As the same PDE isoform may possess many interaction 

partners and function at other microdomains within the cell, the disruptor 

peptide would only target the specific microdomain where that interaction 

occurred (reviewed in (Omori and Kotera, 2007)).  The use of a peptide such as 

this adds a layer of specificity beyond the use of any dominant negative PDE4A 

construct or siRNA as both techniques target the whole population of a single 

isoform in all its locations. The cell permeable disruptor peptide was based on 

the 25mer sequence identified from POPDC1 peptide arrays and contained the 

sequence: TLKKGQTYAAEDKTSVDDRLSILLK. A scrambled peptide was also 

produced as a control, containing the same amino-acid residues in a random 

order: TTLYTDSSVLKGKRLQDKEKALADI. This sequence was checked by BLAST to 

ensure it was not present in another protein.  Both peptides had stearate group 

conjugated at the N-terminal to allow cell penetration. This technique has been 

used successfully with other peptides that target specific PDE4 pools (reviewed 

in (Wills et al., 2017)). To determine whether the disruptor peptide was active 

in hampering the interaction between POPDC1 and PDE4A, co-IPs experiments 

were carried out. HEK293 cells transfected with POPDC1-myc and PDE4A5-VSV 

were treated with either 10µM disruptor peptide (fifth and sixth lane of Figure 

4.7) or scrambled peptide (last two lanes of Figure 4.7) for 2 hours prior to 

harvesting. Co-immunoprecipitations were performed from cellular lysates using 

myc conjugated Protein G beads to precipitate POPDC1. Control experiments 

were carried out using a ‘mock’ transfected lysate, which contained no 

transfected POPDC1-myc or PDE4A4-VSV (first and second lane of Figure 4.7) as 

well as transfected HEK293 cells treated with DMSO vehicle control instead of 

peptide (third and fourth lane of Figure 4.7).  
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Figure 4.7: Disruptor Peptide Treatment Co-immunoprecipitations. HEK293 cells were 
transiently transfected with Popdc1-myc and PDE4A5-VSV for 24 hours prior to a two-hour 
treatment with 20 µM Disruptor peptide. The disruptor peptide was designed to be targeted to novel 
binding site. Western blot analysis was performed using VSV and myc antibodies that are specific 
for the tag on both proteins. The presence of DMSO, scrambled peptide or disruptor peptide is 
noted by + for present or - for not present noted below the gel. Figure displayed is representative of 
an n=3.  

 

As depicted in lane 5 and 6 of Figure 4.7, the scrambled peptide does not change 

in the level of PDE4A5 that is precipitated with Popdc1. However, treatment 

with the disruptor peptide (lanes 7 and 8 of Figure 4.7) clearly shows the 

reduced PDE4A5 levels that co-immunoprecipitated with Popdc1 confirming the 

activity of the cell penetrating peptide in disrupting the Popdc1-PDE4A5 

complex.  The disassembly of the Popdc1-PDE4A5 interaction was further 

validated using PLA in transiently transfected HEK293 cells. Cells remained 

untreated (Figure 4.8 panel B), treated with 10µM scrambled peptide for two 

hours (Figure 4.8 panel C), or 10µM disruptor peptide for two hours (Figure 4.8 

panel D) prior to the PLA protocol being carried out. Mean fluorescent intensities 

were calculated using ImageJ and displayed on the graph in Figure 4.8 alongside 

the results of a one-way ANOVA. Results show no reduction in the PLA signal in 

(E) in the scrambled peptide group when compared to untreated cells. A one-

way ANOVA identified the significant difference in PLA signal between the 

untreated group and scrambled peptide group compared with the disruptor 

peptide treated group (one-way ANOVA; p<0.0001). This dramatic reduction in 

PLA signal agrees with the results seen in co-immunoprecipitation experiments 

and provided conformation that the disruptor peptide was able to attenuate 

formation of the Popdc1-PDE4A interaction. 
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Figure 4.8: Disruptor peptide treatment of transiently transfected HEK293 cells analysed 
using Proximity Ligation Assay. HEK293 cells were transiently transfected with Popdc1-myc and 
PDE4A5-VSV.  As a control, HEK293 cells were left untreated prior to fixing, representative 
example in panel. For all conditions, myc and VSV antibodies were used to detect Popdc1 and 
PDE4A5 respectively.  B.  Panel C depicts the 10µM scramble peptide treated cells where panel D 
are cells treated with 10µM disruptor peptide. Positive PLA signal is detected when the proteins 
tagged are less than 40nm apart. Negative controls were performed where the PLA kit was applied 
directly to the fixed cells to ensure no off-target staining, panel A. Scale bars shown represent 
20µM. Mean immunofluorescence intensity were calculated from n=3 with 17 cells counted per 
experiment per condition using ImageJ and significance was calculated using a one-way ANOVA 
with Tukey’s post-hoc analysis, displayed using GraphPad. P values given on graph.   
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Further confirmation of the efficacy of the disruptor peptide was sought against 

endogenous Popdc1-PDE4A interactions in NVRM. The same conditions used for 

the model cell line HEK293 were utilised for NRVM. Secondary only controls 

(Figure 4.9, panel A) provided evidence that no background staining could be 

detected. Much as in HEK293 cells, NRVM treated with the disruptor peptide 

displayed significantly reduced PLA signal (Figure 4.9, panel D) in comparison to 

untreated cells (Figure 4.9, panel B; one-way ANOVA, p<0.0001) and to the 

scrambled peptide condition (Figure 4.9, panel C; one-way ANOVA, p<0.0001). 

The confirmation of the disruption of the endogenous Popdc1-PDE4A interactions 

has further confirmed the binding site identified in the previous chapter and is 

supports the notion that the disruptor peptide can be used in physiological 

experiments in NRVMs.  
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Figure 4.9: Disruptor peptide treatment of NRVM cells analysed using Proximity Ligation 
Assay. As a control, HEK293 cells were left untreated prior to fixing, representative example in 
panel. BVES (POPDC1) and Pan4A antibodies were used to detect Popdc1 and PDE4A 
respectively. B.  Panel C depicts the 10µM scramble peptide treated cells where panel D are cells 
treated with 10µM disruptor peptide. Positive PLA signal is detected when the proteins tagged are 
less than 40nm apart. Negative controls were performed where the PLA kit was applied directly to 
the fixed cells to ensure no off-target staining, panel A. Cells presented are representative of a 
n=10 experiments. Scale bars shown represent 20µM. Mean immunofluorescence intensity were 
calculated using ImageJ and significance was calculated using a one-way ANOVA with Tukeys 
post hoc analysis, displayed using GraphPad. P values given on graph.   
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4.4.3 Disrupting the interaction between POPDC1 and PDE4A 
modulated the POPDC-TREK1 interaction 

Froese and colleagues provided evidence to suggest that the interaction 

between POPDC1 and the two-pore potassium channel TREK1 is modulated by 

cAMP (Froese et al., 2012). Using a bimolecular FRET sensor that consists of 

POPDC1-CFP and TREK-1-YFP it was revealed that under conditions of high cAMP 

the proteins disassociated as a result of the direct allosteric effect of cAMP 

binding to POPDC1.  Addition of either isoproterenol or forskolin to generate an 

increase in cellular cAMP resulted in a rapid recline in the YFP/CFP ratio. To 

confirm that this was in fact due to the ability of POPDC1 to bind cAMP, a cAMP 

binding deficient POPDC1D200A mutant protein was used in conjunction with 

isoproterenol treatment. Results gained from these FRET experiments showed 

that the interaction between the two proteins is not lost if POPDC1 is unable to 

bind to cAMP. It can be therefore be hypothesised that the binding of cAMP to 

POPDC1 results in a conformational change lessening its interaction with TREK1. 

We sought to determine whether PDE4A had an indirect role in regulating this 

interaction via its local control of cAMP levels in the vicinity of POPDC1. HEK293 

cells stably expressing PDE4A4 were transfected with the two described 

bimolecular FRET probes. The cells were left untreated (Figure 4.10, top two 

panels), treated with 25µM forskolin (Figure 4.10 middle two panels) or treated 

with 10µM of the PDE4 specific inhibitor, rolipram, (Figure 4.10 last panel). As 

expected, treatment with a saturating dose of the AC activator (forskolin, 25µM) 

lead to a significant reduction in the FRET ratio (Figure 4.10 graph; student’s t-

test, p=0.0151)(Froese et al., 2012). This reduction represents the dissociation 

between POPDC1 and TREK1.  To determine whether this effect could be 

produced by the inhibition of PDE4 directly, cells were treated with rolipram 

(10µM).  Interestingly, there was an even greater reduction in the FRET ratio 

after rolipram compared to that of forskolin (Figure 4.10 graph; student’s t-test, 

p=0.0083) suggesting that the PDE4A tethered to POPDC1 had a greater influence 

on POPDC1 activity than a large increase in cAMP produced by forskolin. 

Identifying that the direct inhibition of PDE4 could result in the modulation of 

POPDC1-TREK1 complex is the first indication of a molecular regulation of 

POPDC1 by a PDE.  
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Figure 4.10 Fluorescence Resonance Energy Transfer (FRET) Microscopy using HEK293 
PDE4A4 stable cells transiently transfected with POPDC1-CFP and TREK1-YFP.  Static 
measurements were taken from cells prior to the addition of either forskolin or rolipram. 
Measurements were collected every 5 seconds for a total of 300 seconds per condition.  
Quantification of the mean FRET ratio change in control, 25 µM  forskolin and 10 µM rolipram 
treated cells. The CFP column represents the POPDC1-CFP signal, the YFP column represents 
the TREK1-YFP signal while the final column shows the ratio between the two fluorphores.   
Results represented as mean ± SEM, control  n=9, forskolin n=15, rolipram n=15 per experiment 
(n=3). Significance was evaluated using a one-way ANOVA with Tukeys post-hoc analysis, ** 
p=<0.005, ***p=0.001, compared to control.  
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Through the direct inhibition of PDE4, the interaction between POPDC1 and 

TREK1 was reduced dramatically, however, rolipram is a panPDE4 inhibitor and 

cannot selectively inhibit PDE4A compared with other sub-families (PDE4 B,C,D) 

(Bolger et al., 1993, Cheng et al., 1995, Müller et al., 1996). Therefore, to 

confirm that the disruption of the POPDC1-TREK1 complex was specifically due 

cAMP microdomains controlled by localised PDE4A activity, further FRET 

experiments were carried out using HEK293 PDE4A4 stably expressing cells 

treated with the cell penetrating disruptor peptide (used in Figure 4.7 and 

Figure 4.8). Static measurements were collected at 5 second intervals for 300 

seconds. Background fluorescence was subtracted from the CFP and YFP 

intensities and mean subtracted intensities calculated for POPDC1-CFP and 

TREK1-YFP probes. Both the untreated group (Figure 4.11, graph A) and 

scrambled peptide group (Figure 4.11, graph B) show no significant deviation in 

the CFP and YFP intensities confirming that POPDC1 and TREK1 are interacting 

as expected. In the disruptor peptide group (Figure 4.11, graph C), there is a 

distinct change in the CFP and YFP intensities shown on the graph. This 

separation of the two probes correlates to the distance between the two 

proteins in the cell meaning that the addition of the peptide has broken the 

POPDC1-TREK1 interaction or has prevented it from forming. When the FRET 

ratio of the three conditions were analysed using a one-way ANOVA (Figure 4.11, 

panel D), a significant reduction can be observed in the disruptor peptide group 

compared to the other two conditions (one-way ANOVA with multiple 

comparisons p=0.001). Given the difference found, post-hoc analysis was used to 

identify that there was a significant change between the scrambled peptide and 

the disruptor peptide group (post-hoc analysis between scrambled and disruptor 

peptide groups p=0.024) (Figure 4.11, panel D).  
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Figure 4.11: Fluorescence Resonance Energy Transfer (FRET) Microscopy using HEK293 
PDE4A4 stable cells transiently transfected with POPDC1-CFP and TREK1-YFP treated with 
disruptor peptide.  Quantification of the mean FRET ratio change in control (panel A), 25 µM  
forskolin (panel B) and 10 µM rolipram (panel C) treated cells. Measurements were collected every 
5 seconds for a total of 300 seconds per condition.  Background fluorescence was subtracted from 
mean intensities and is plotted as mean subtracted intensities. Results represented as mean ± 
SEM, untreated n=11, scrambled peptide n=11, disruptor peptide n=20 per experiment (n=3). A 
one-way ANOVA with Tukey’s post-hoc was carried out and p values are presented on the graphs. 
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4.4.4 Disrupting the Popdc1-PDE4A complex changes action 
potential of cardiac myocytes but not contraction.  

Having shown that the disruptor peptide prevents the formation of both the 

Popdc1-TREK1 interaction and the Popdc1-PDE4A interaction, the next rational 

step was to investigate the changes in functional output in endogenous cells. 

Utilising CellOptiq® (Clyde Biosciences ltd; Glasgow, UK) the changes in action 

potential formation in adult rabbit ventricular myocytes following treatment 

with the scrambled or disruptor peptide were measured. Subsequent evaluation 

of action potential parameters would allow for evaluation of the functional 

effects of the PDE4A pool that associates with Popdc1. These experiments were 

carried out in cells which were paced at 1Hz at baseline conditions, as well as 

under conditions of 10µM scrambled or 10µM disruptor peptide treatment. 

Measurements at four points were collected at a percentage of repolarisation 

(Figure 4.12) and compared (Figure 4.13) 

 

                    

Figure 4.12 Trace of an action potential with noted measurement points. The measurements 
are plotted as a trace of repolarisation (a.u) over time (ms). The APD measurements were taken 
throughout the repolarization phase at 30%, 50%, 75% and 90% repolarisation. (Image taken from 
(Lachaud, 2019)).  

 

No time extensions were seen at any percentage of repolarisation for the 

scrambled peptide in comparison to the untreated group (Figure 4.13). However, 
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there is a significant elongation of the repolarisation phase at APD30 (Figure 

4.13, panel A), APD50 (Figure 4.13, panel B), APD75 (Figure 4.13, panel C), and 

APD90 (Figure 4.13, panel D) in the disruptor peptide treated cardiomyocytes in 

comparison to both control groups (one-way ANOVA, post-hoc: Tukey’s multiple 

comparison p<0.0001).  The differences in the four action potential parameters 

indicates that the action of the disruptor peptide may be due to the alteration 

of the repolarising current of a K+ channel, potentially TREK1.  

 

Figure 4.13: CellOptiq measurements of action potential depolarisation in ARVM. 
Measurements were collected from 4 points during the repolarisation phase: (A) APD30, (B) APD 50, 
(C) APD75, and (D) APD90 for each cell and displayed on scatter plot graphs with bars ± SEM. Three 
conditions were used; untreated, 10µM scrambled peptide, or 10µM Disruptor peptide. Untreated 
cells, n=19, scrambled peptide n=37 and disruptor peptide n=42 cells.  One-way ANOVA with 
Tukey’s post-hoc analysis, performed using GraphPad Prism TM. ****p<0.0001, **p<0.01. 
(Experiments carried out with the help of Ms Sara Dobi, University of Glasgow).  
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Frequently, changes in action potential are met with changes in contraction 

profiles (Pinnell et al., 2007). As such, we sought to determine whether the 

changes in action potential correlated with a change in contractility of the 

cardiomyocytes. Using the parameter, contraction duration 50 (CD50), the time 

between 50% upstroke and 50% downstroke is determined, meaning that both 

contraction and relaxation are considered (Figure 4.14). 

           

Figure 4.14 Example calcium transient recorded parameters from CellOptiq. Baseline shows 
the resting diastolic Ca2+ with the peak depicting the maximum fluorescent value i.e. the systolic 
calcium peak. The TRise is the time (ms) from baseline to the maximal calcium peak. The decay of 
this peak was measured at only CD50 which is represent the time take from 50% upstroke to 50% 
downstroke. (Image take from (Lachaud, 2019)).  

 

 In the same trend as APD measurements, there was no alteration between the 

CD50 of the scrambled peptide cells in comparison to the untreated control cells 

(Figure 4.15). However, treatment with the disruptor peptide also resulted in no 

significant changes in CD50 time compared to the two control conditions (Figure 

4.15).  So, although action potentials are elongated, this did not manifest as an 

observable change in myocyte contractility. 
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Figure 4.15 Contraction duration at 50% contraction and 50% relaxation measurements. 
CD50 is the time (ms) from 50% upstroke to 50% downstroke, taking into account both contraction 
and relaxation. Adult rabbit ventricular myocytes were treated with 10µM scrambled peptide or 
10µM disruptor peptide and incubated for 2 hours prior to imaging. Each point represents the mean 
value from one cell.  Untreated cells, n=19, scrambled peptide n=37 and disruptor peptide n=42 
cells. One-way ANOVA with Tukey’s post-hoc analysis, performed using GraphPad Prism TM. 
(Experiments carried out with the help of Ms Sara Dobi, University of Glasgow). 
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4.5 Discussion    

4.5.1 POPDC1 does not impede the function of PDE4A 

In this chapter, I have shown that POPDC1 does not have an impact on the 

function of PDE4A either through its activation by PKA (Figure 4.3) or its 

hydrolytic activity (Figure 4.5). This is not surprising as with all other cAMP 

effector proteins that interact with PDEs (apart from itself in a dimer), the only 

one to have an effect on the activity of PDEs is PKA (Moorthy et al., 2011). Upon 

the activation of PKA by elevated cAMP levels, the binding of the PKA Riα 

subunit to the PDE causes its catalytic activation (Moorthy et al., 2011). The PKA 

catalytic subunit also phosphorylates PDE4 long forms in the UCR1 region 

promoting activation (MacKenzie et al., 2002, Byrne et al., 2015, Houslay and 

Adams, 2010). As such, it is hypothesised that PDE4A modulates POPDC1 by 

altering the cAMP gradient in its vicinity. As previously mentioned, POPDC1 is a 

known cAMP effector protein that undergoes a proposed conformational change 

when it is bound to cAMP (Froese et al., 2012). The formation of the 

POPDC1/PDE4A complex may control POPDC1’s function by various means and 

this may be considered alongside the literature available at present which 

proposes models by which POPDC1 may function.  Currently, there are four 

proposed working models for the role of POPDC1 in cAMP pathways (Figure 4.16).   

The first working model which has been proposed is the ‘cargo model’ (Figure 

4.16A) which postulates that cAMP influences POPDC1’s role in modulating 

membrane expression of interaction partners. The means by which POPDC1 

modulates vesicle trafficking and membrane trafficking of proteins, such as 

cav3, is not fully understood but it can be hypothesised that PDE4A would 

control this process through the shaping of the localised cAMP gradient  (Benesh 

et al., 2013, Hager et al., 2010, Alcalay et al., 2013, Smith et al., 2008). The 

‘switch model’ (Figure 4.16B) shows the binding of cAMP to POPDC1 leads to a 

direct change in the activity of an interacting protein such as TREK1. As 

mentioned, under conditions of high cAMP, the TREK1/POPDC1 complex is 

reduced (Froese et al., 2012). Therefore, association with PDE4A would reduce 

the elevated cAMP to basal levels in the POPDC1 microdomain allowing for the 

POPDC1/TREK1 complex to reform. The third mode to be offered is the ‘shield 

model’ (Figure 4.16C). This model further builds on the switch model and 

hypothesises that cAMP binding to the Popeye domain may drive indirect 
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downstream effects (Brand and Schindler, 2017). In its unbound state POPDC1 

would function as a shield to block other proteins from being accessed by kinases 

and this protection would be lost with cAMP binding to the Popeye domain. How 

this model would result in the modulation of downstream processes remains 

unclear however, in this scenario PDE4 could be proposed to function in order to 

return that protection by removing bound cAMP. Lastly, the ‘sponge model’ 

(Figure 4.16D) hypothesises that POPDC1 binds cAMP in order to reduce the local 

activation of other proteins in the cAMP pathway, such as PKA.  This takes into 

account the abundant levels of POPDC1 in cardiac and skeletal muscle (Brand 

and Schindler, 2017). A lowering of POPDC1 expression, such as in patients with 

missense mutations, would result in an increase in free cAMP and therefore lead 

to a sustained activation of other cAMP effector proteins (Schindler et al., 

2016b). In this scenario PDE4A would function to prevent cAMP from binding 

POPDC1 resulting in a greater reduction in cAMP effector protein activation. 
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Figure 4.16 Proposed working models of POPDC1.  A The cargo model depicts POPDC1 
modulating the localisation of interacting proteins dependent upon whether cAMP is bound to the 
Popeye domain. For example, this model would explain how POPDC1 is directly involved in the 
membrane association of interacting proteins such as TREK1 and Cav3. B The switch model. 
cAMP bound to POPDC1 causes a direct change in the activity of an interacting protein. POPDC1s 
interaction with TREK1 is known to form under basal cAMP levels. This complex is broken when 
cAMP levels are high which could be due to cAMP being directly bound to POPDC1. C. The shield 
model. POPDC1 blocks interaction partners from cellular kinases in low cAMP levels. This 
protection is lost when the Popeye domain bind cAMP. TREK1 is phosphorylated by PKA, it could 
be hypothesised that POPDC1 would block the access of PKA under lower cAMP levels. When 
cAMP binds to POPDC1 this shield is lost and TREK1 is subjected to PKA phosphorylation. D The 
sponge model depicting POPDC1 sequestering cAMP in order to lower cAMP available to other 
effector proteins. Figure adapted from (Swan et al., 2019).   

 

I have provided evidence suggesting that POPDC1 was not modulating the 

activity of PDE4A in a negative manner. It is interesting to note that the binding 

site of POPDC1 on PDE4A that was identified in the previous chapter lies within 

the dimerization motif of PDE4 (Bolger et al., 2015). The monomeric PDE4 long 

form is more catalytically active due to the lack of ‘trans-capping’ by the other 

monomeric subunit in the dimer (Burgin et al., 2010). It is unclear if the POPDC1 

is binding a monomer or dimer of PDE4A4 , however if it was the former, by 

binding a more catalytically active PDE4A it may be that elevated cAMP 

concentrations are rapidly brought back down to basal levels allowing for the 

interaction of other partners, such as TREK1, to occur. Although no increase in 
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catalytic activity was identified in the PDE activity assay (Figure 4.5), the 

purified-recombinant PDE4A4-MBP may be in a monomeric state due to its 

exogenous environment, meaning a dramatic change would not be seen in the 

presence of POPDC1-GST. This regulation would have great importance in the 

heart, as POPDC1 interaction with TREK1 increases the outward current of K+ 

ions driving action potential repolarisation (Schindler et al., 2012b).   

4.5.2 PDE4 modulates POPDC1 interactions creating output 
changes 

One of the most important findings from this chapter is the development of a 

cell-penetrating peptide that is able to block the interaction between 

POPDC1/Popdc1 and PDE4A (Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.11). This 

allowed for the physiological investigation of the functional role of the 

POPDC1/PDE4A interaction. 

FRET experiments carried out in this chapter have shown that the 

POPDC1/TREK1 complex can be modulated through increased cAMP levels 

initiated by the pharmacological inhibition of PDE4 generally (Figure 4.10) or the 

specific inhibition of POPDC1-PDE4A binding (Figure 4.11). This information 

coupled with the changes found in the repolarisation of the action potential 

(Figure 4.13), suggests that the blocking of the interaction between 

TREK1/Popdc1 and Popdc1/PDE4A has a role in the control of beating of cardiac 

myocytes and proposes a role for the POPDC1-PDE4 complex in cardiac tissue. 

Current literature has shown that the co-expression of POPDC1 and WT TREK1 

leads to a 40% increased current amplitude through TREK1 (Schindler et al., 

2016b). POPDC1S201F, which is unable to bind cAMP due to a mutated DSPE motif, 

enhanced the outward K+ current by 90% presumably leading to an increased 

conductivity through TREK1 channels in complex with this mutant POPDC1 

(Schindler et al., 2016b).  The effects of WT POPDC1 on the TREK1 channel 

current was removed post-treatment with 8-Br-cAMP whereas this loss was not 

seen when POPDC1S201F was transfected with TREK1 suggesting that the inability 

to bind to cAMP leads to a shortened action potential repolarisation due to the 

increase outward K+ current (Schindler et al., 2016b).  It must be noted that this 

study was performed using spontaneously beating HL-1 cells, a cardiac muscle 

cell line, whereas CellOPTIQ in this chapter utilised ventricular myocytes that 
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beat upon stimulation. Although not carried out in the same cell type, the 

combined information from this chapter and the paper by Schindler and 

colleagues can be useful in giving some indication of the role of POPDC1 in the 

sinoatrial node (Schindler et al., 2016b).  

Thinking of the action potential as a balance between the influx of sodium and 

calcium along with the efflux of potassium allows us to hypothesis what may be 

happening to create an elongated action potential seen with disruptor peptide 

treatment. The fight for control by the three channel groups correlates to the 

stages of action potential (Pinnell et al., 2007). The initial TRISE phase, which is 

the upstroke time (ms) from 10% to 90% depolarisation, is driven by the 

activation of voltage-gated sodium channels altering the membrane potential 

and allowing for the Ca2+ channels to take control (Pinnell et al., 2007). The K+ 

channels reach their activation threshold and begin the repolarisation phase of 

the action potential. TREK1 functions as a KB channel which controls the resting 

membrane potential and acts as a ‘break’ for K+ control (Backx and Marban, 

1993, Kim and Clapham, 1989, Yue and Marban, 1988, Goonetilleke and Quayle, 

2012, Osterrieder, 1988). The result of reducing the current through the TREK1 

channel results in a lower total K+ efflux therefore creating a longer 

repolarisation phase, such as seen with the disruptor peptide treated CellOptiq 

data (Figure 4.13). It could be hypothesized that in the presence of the disruptor 

peptide POPDC1 cannot bind PDE4A therefore, cAMP levels remain high which 

results in an extended period of dissociation between POPDC1 and TREK1 and, as 

such a lowering the K+ efflux.   

The issue with targeting this interaction is that creating an elongated 

repolarisation by blocking a K+ channel can have a lethal impact. The potassium 

channel hERG (human-ether-a-go-go-related gene), for example, is an essential 

channel for normal electrical activity in the heart (Sanguinetti and Tristani-

Firouzi, 2006, Curran et al., 1995). Known inherited mutations in the HERG gene 

have been shown to cause long QT syndrome, a cardiac repolarisation disorder 

that often a predisposition to life threatening arrythmias.  A similar disorder to 

this could in fact be triggered by the prescription of hERG-blockers such as 

quinidine which were designed as anti-arrythmia treatment (Sanguinetti and 

Tristani-Firouzi, 2006). In addition, the use of common non-cardiac medications 
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such as antihistamines can also trigger ventricular arrythmia and sudden death 

through blocking of the hERG channel. As such, pharmaceutical companies 

removed such blockers from production and many new compounds are screened 

against the hERG-channel activity in the early stages of drug discovery.  

It remains to be determined whether there are any off-target effects with the 

disruptor peptide that could potentially block other potassium channels such as 

hERG creating a lethal phenotype. In addition, as the cell penetrating disruptor 

peptide would unbiasedly inhibit the interaction between POPDC1 and PDE4A in 

any compartment in the heart this could lead to a worsened phenotype.  

Although we have shown that blocking the Popdc1-PDE4A4 interaction has 

created an elongated AP (Figure 4.13), this did not appear to have an impact on 

the contractibility of the cardiomyocytes (Figure 4.15). POPDC1 mutations have 

previously been described to drive an arrhythmic phenotype (Froese et al., 

2012). There are several reasons that may explain why we have not seen changes 

in CD50 in this chapter. Firstly, the beginning of the contractile cycle is not 

linked to the end of the AP cycle (Pinnell et al., 2007).  Given the short 

experimental time, it may be possible that the contraction changes have not yet 

been propagated. In order to change the contraction of the cardiomyocyte, 

there is often the culmination of the three channels that creates the 

dysregulation in signalling driving the altered contraction (Faber and Rudy, 

2000). A longer incubation time with the disruptor peptide may have triggered 

these changes. Secondly, in patients with the POPDC1 mutations, it is possible 

that the change in the control of multiple interaction partners is how POPDC1 

contributes to the development of disease phenotype. At present we do not have 

the capability to investigate any other interaction partners due to limitations in 

physiology-based techniques. For this project, I only had the means to 

functionally investigate TREK1 due to the availability of FRET-probes and 

conduct potassium measurements in CellOptiq, I had access to no such technique 

to look at other interaction partners.  Finally, it may be that we cannot see the 

change in contraction in a single cell since the change in response is extremely 

small in the ventricles given the lower expression levels of POPDC1. In the SA 

and AV node POPDC1 expression is at its highest therefore a more prominent 

change in contraction (Froese et al., 2012). This could be combated using a 
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whole heart system. Previous studies from the Baillie lab have shown that the 

cell penetrating disruptor peptide can be injected into the heart and 

measurements on contractibility and electrical signalling can be taken (Martin et 

al., 2014, Sin et al., 2015). Performing this study may allow us to determine 

whether the disruption of POPDC1/PDE4A complex is contributing to the 

development of cardiac arrythmia and AV block, a condition impairing the 

propagation of electrical signalling throughout heart, as seen in familial 

mutations of POPDC1 and Popdc1 knock-out models (Froese et al., 2012, 

Kirchmaier et al., 2012, Schindler and Brand, 2016).   

POPDC1 has been shown to interact with caveolin 3, a protein responsible for 

stabilising caveolae which are the specialised membrane invaginations, through 

a consensus sequence found at the distal end of the Popeye domain 

(Vaidyanathan et al., 2018, Alcalay et al., 2013). Caveolae are proposed to be 

important for the compartmentalisation of the sarcolemma and β-AR, AC, 

numerous protein pumps and exchangers for example, NCX, and ion channels 

(inward rectifier potassium, sodium and L-type calcium channels) have all been 

shown to exist in caveolae (Swan et al., 2019, Vaidyanathan et al., 2018). In 

Popdc1 null mutants cardiomyocytes displayed a dramatic reduction in the 

number of caveolae while their size increased (Alcalay et al., 2013). In addition, 

these mutant hearts showed an impaired calcium transient, and an increase in 

oxidative stress sensitivity as well as an increased susceptibility to 

ischemia/reperfusion (I/R) injury (Alcalay et al., 2013). Also noted was a larger 

infarct size when POPDC1 is not present (Alcalay et al., 2013). Mentioned 

previously in this discussion, investigations into other POPDC1 interactors (other 

that PDE4 and TREK1) was out with the scope of my thesis even although these 

may be contributing to the arrythmia and cardiac disease phenotype displayed in 

mutated models and patients. We have only investigated modulation of the 

POPDC1/TREK1 complex but, it may be the cumulative changes in POPDC1 

interactions that drives disease phenotype. As such, blocking the PDE4A 

interaction with POPDC1 may have numerous unknown consequences, such as 

loss of caveolae stability, that would need to be investigated to gain a full 

picture of POPDC1s function.  
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Providing evidence that my cell-penetrating peptide disruptor of Popdc1-PDE4 

can create a measurable functional change has set the precedent for potentially 

looking at function changes of the POPDC1/PDE4A interaction in other locations. 

As described in the discussion of the previous chapter, POPDC1 is known to have 

high expression in muscle cells and heart cells but it is also widely expressed 

throughout the body including the brain (Figure 4.17).
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Figure 4.17 Expression of POPDC1 and PDE4A gene in the human body.  RNA sequencing data of POPDC1 and PDE4A in human tissue elucidated the tissue 
expression patterns. RNA expression is shown as reads per kilogram per million mapped reads (RPKM). Data was collected from the Human Protein Atlas project 
(Lindskog, 2016). (Figure taken from The Human Protein Atlas). 
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As can be seen in Figure 4.17, the expression of PDE4A in the heart is very low in 

comparison to other regions. Interestingly, both POPDC1 and PDE4A have high 

levels of expression in regions of the brain (McCarthy, 2006, Hager and Bader, 

2009, Pérez-Torres et al., 2000). This means that the formation of the 

POPDC1/PDE4A complex may have functional outcomes that could be 

interrupted in brain disease pathophysiology. Furthermore, TREK1 is mainly 

expressed in the brain with secondary levels being found in heart and smooth 

muscle cells (Djillani et al., 2019). In addition, TREK1 has been described to 

have cytoprotective effects after ischemic injury in the brain (Heurteaux et al., 

2004). Ion channels are responsible for the regulation of processes including 

neuronal excitability, plasticity and neurotransmitter release and as such 

TREK1’s regulation is crucial (Benatar, 2000).  

This poses an interesting question as to how the change from POPDC1/TREK1 

complex to POPDC1/PDE4A interaction alters from what we have seen in a 

cardiac environment. For example, TREK1 is involved in the perception of pain 

due to its localisation in the small dorsal root ganglion (DRG) neurons and in 

central hypothalamic neurons (Maingret et al., 2000). The TREK-1 channel is 

inhibited by cAMP which is mediated by PKA phosphorylation on its C-terminal at 

serine233 (Maingret et al., 2000). It could be hypothesised that POPDC1 ‘shields’ 

TREK1 from phosphorylation increasing its outward current under basal 

conditions, as described previously, then as cAMP levels rise, the dissociation of 

POPDC1 allows for TREK1 phosphorylation and subsequent inhibition.  POPDC1 

forms a complex with PDE4A in order to reduce the local cAMP levels allowing 

the POPDC1/TREK1 complex to reform. This, of course, is speculation as more 

detailed studies of the POPDC1/PDE4A complex needs to be completed to 

confirm both its existence in other tissues as well as any potential function.  

 

4.5.3 Methodological changes and future directions 

There are several avenues that must still be investigated to create a full picture 

of the physiological pathways that POPDC1/PDE4A interaction is involved in. One 

point that needs to be addressed is that the human POPDC1 sequence, which 

binds PDE4A and is utilised in development of disruptor peptide is slightly 
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different from rodent isoforms. It is also intended to use this disruptor peptide 

in experiments in model organisms such as xenopus and zebrafish due to the 

availability of Popdc1 mutants from Professor Thomas Brand (ICTEM, Imperial 

College London).  

                  

Figure 4.18 Protein sequence alignment of the binding site of PDE4A on POPDC1 identified 
in the 4 discussed models.  The crucial amino resides identified in the peptide array that was 
used to generate the disruptor peptide. The changed amino residues between the species are 
highlighted.  

 

However, it can be seen in Figure 4.18, that the sequence of the PDE4A binding 

site in POPDC1 is highly conserved throughout these species with only one amino 

residue change. In addition, the amino acid residue change is found out with the 

crucial binding motif (R-L-S-I-L-L-K). With the data described in this chapter, I 

would suggest that the disruptor peptide is able to function in all these 

organisms despite the small sequence differences.  

Our analysis of changes in Popdc1s interactions initiated by the presence of the 

cell-penetrating disruptor peptide (Figure 4.11) must be repeated in a more 

relevant physiological setting, for example by using NRVM and ARVM. This was 

attempted during this project in NRVM, however the transfection of both 

POPDC1-CFP and TREK1-YFP reduced the viability of the myocytes leading to a 

poor FRET signal being produced (data not shown). The inability to examine the 

FRET dynamics in a more endogenous cell type limits the scope of the 

information that can be taken from POPDC1/PDE4A/TREK1 dynamics. 

Primary studies using CellOPTIQ (Figure 4.13) need to be repeated with a 

prolonged incubation period with the peptide in order to investigate cell 

contraction and calcium signalling to determine whether the change in AP 

corresponds to a change in beating frequency.  The temporal pattern of 
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ventricular repolarisation is known to be of critical importance in 

arrhythmogenesis (Porter et al., 2018). As such any factor or small molecule that 

can modulate or destabilize this repolarisation is of great importance in 

investigating the onset and development of arrythmias (Porter et al., 2018). In 

addition, the use of a specific TREK1 inhibitor compound such as Spadin (Djillani 

et al., 2017) in CellOptiq experiments would mean it could be confirmed that 

the changes in AP noted with disruptor peptide were due to loss of TREK1 

current.  

One other caveat that must be addressed is the cell type in which these 

experiments were carried out. Initial studies to examine Popdc1’s role in 

maintaining a steady beating frequency were carried out using the spontaneously 

beating HL-1 cell line (Schindler et al., 2016b). There are key physiological 

differences between these cells and the ventricular myocytes that the 

experiments in this chapter utilised. Much like the HL-1 cell line, cells within the 

SA node are characterised as having no true resting potential but generate 

spontaneous and regular action potentials. In addition to a lack of resting 

potential, one stark difference is that at the end of the repolarisation phase the 

membrane potential is very negative (~ -60mV) known as afterhyperpolarisation 

phase (Grant, 2009). During POPDC1 forced expression in HL-1 cells there was a 

more pronounced afterhyperpolarisation (Schindler et al., 2016b). More 

importantly, expression of POPDC1S201F resulted in a more efficient raising K+ 

conductance resulting in an increased hyperpolarised membrane potential. This 

may explain the presentation of an AV block observed in patients and mutant 

zebrafish (Schindler et al., 2016b).This effect cannot be seen in the ventricular 

myocytes that were used in this set of experiments. As such, these experiments 

should be carried out on isolated SA node cells to give a more pronounced 

picture of how the disruption of POPDC1/PDE4A interaction may contribute to 

arrythmia by altering AP in these pacemaker cells. As mentioned previously, 

conducting contraction and action potential experiments such as Langendorff 

perfused whole heart assay after treatment with the disruptor peptide would 

provide information on the effects of a lost Popdc1/PDE4A interaction on a 

whole heart system.  
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Along with the need for more data to be generated using more physiologically 

relevant cells or whole organ, a method targeting the peptide to specific 

domains within the heart needs to be addressed. POPDC1 is expressed 

throughout the atria, ventricles and more importantly the SA and AV node, and 

inhibiting the interaction between POPDC1 and PDE4A may have alternative 

effects depending on localisation. In fact, prolonged treatment with the peptide 

could contribute to a pronounced arrhythmic phenotype given the inability to 

target the peptide only to SA and AV node only. Viral targeting or genetic 

manipulation may work to target the disruption of the POPDC1/PDE4A 

interaction. 

4.5.4 Conclusion 

In this chapter I have provided evidence that the function of the PDE4A tethered 

to POPDC1 is to modulate the local cAMP gradient in the vicinity of POPDC1 and 

hence modulate the interaction of POPDC1 with TREK1. Specifically blocking the 

interaction between Popdc1 and PDE4 led to noted physiological change, i.e. the 

elongated repolarisation of ARVM, that can be explained by reference to the 

function of TREK1. Additional work is required to confirm and expand on these 

findings as well as investigate the interaction in a different tissue where both 

PDE4A and POPDC1 are highly expressed. 
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5 Analysis of POPDC1 in heart failure 

5.1 Introduction 

5.1.1 Dilative Cardiomyopathy 

Cardiomyopathies are a group of clinical disorders involving the cardiac muscle 

that result in mechanical and electrical dysfunction leading to dilated, 

hypertrophic or restrictive pathophysiology (Hershberger et al., 2010). Dilative 

cardiomyopathy (DCM) is characterized by left ventricular or biventricular 

dilation and impaired contraction that cannot be explained by numerous 

abnormal loading conditions such as hypertension or by coronary artery disease. 

In its late DCM stages, tissue damage accompanied by collagen accumulation in 

the ventricle wall is present however, the severity of myocardial scarring is only 

part of the contributing factors leading to the expansion in the ventricle 

chamber volume (Tanaka et al., 1987, Roberts et al., 1987, Schwarz et al., 

1983). One of the major contributing drivers of ventricular dilation is myocyte 

elongation through the addition of newly formed sarcomeres (Beltrami et al., 

1995). There is also an increase in myocyte diameter, although this expansion is 

moderate and inadequate to preserve the thickness of the chamber wall.  As a 

consequence there is decompensated eccentric hypertrophy which characterizes 

the development of dilated cardiomyopathy in humans (Anversa et al., 1993). In 

animal models, rapid ventricular pacing leads to a cardiac myopathy and these 

animals display an increase in ventricle chamber diameter, mural thinning, 

alterations in coronary blood flow and ventricular wall stress which is consistent 

with human disease (Shannon et al., 1991, Spinale et al., 1991). 

There have been numerous genetic mutations that have been linked to DCM that 

are commonly separated into two categories: defects in force generation and 

defects in force transmission. Defects in generating force are usually due to a 

loss of integrity within the sarcomere. Mutations in cardiac myosin heavy chain 

have been found to cause disruption at either the site of actin-myosin binding or 

at the site of flexible joints of the myosin protein that are responsible for its 

mobility during the contraction event (Rayment et al., 1993). In addition, 

mutations in TnC disrupt its calcium dependent interactions which are important 

for the generation of ATP to drive the actin-myosin contraction (Kamisago et al., 
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2000). Once the actin-myosin contraction is complete, the force is transferred to 

the extracellular matrix from the sarcomere. This is driven by interactions 

between the actin subunit and specific cytoskeletal units (Olson et al., 1998). 

Two mutations coding for regions on the surface of α-tropomyosin have been 

identified in an area that is proposed to be responsible for tropomyosin-actin 

interactions (Olson et al., 1998). Mutations in dystrophin, desmin and 

sarcoglycan have also been shown to diminish the transmission of force (Muntoni 

et al., 1993, Li et al., 1999, Tsubata et al., 2000).  

Regardless of the cause of the DCM, as the disease progresses and the cardiac 

muscle of the ventricle becomes weaker, the heart becomes less able to pump 

blood through the body and maintain a normal electric rhythm. This eventually 

can progress to heart failure or severe cardiac arrythmias (Luk et al., 2009).  

5.1.2 Human heart failure 

Heart failure (HF) is defined as a clinical syndrome that is caused by structural 

and functional defects in the myocardium. This results in an impairment in the 

filling of the ventricles or the subsequent ejection of blood (Inamdar and 

Inamdar, 2016). The onset of HF may also be caused by damage from numerous 

cardiac injuries including myocardial infarction. Myocardial infarction occurs 

when there is improper blood flow to part of the heart leading to the heart 

muscle being injured during the lack of oxygen (Lu et al., 2015). This obstruction 

of blood flow is usually caused by the narrowing and blocking of the coronary 

arteries with plaques, cholesterol and fat deposits (Lu et al., 2015). Often this 

prolonged lack of oxygen causes ischemia and ischemic HF.   

The progression of HF is caused by reduced function in the left ventricular 

myocardium through altered cell metabolism and morphology however, 

dysfunction in the endocardium, myocardium, heart valves and pericardium can 

drive the progression of HF (Inamdar and Inamdar, 2016). Under normal 

conditions the heart derives most of its energy from free fatty acids (FFA)and 

glucose oxidation (Neely et al., 1972, Lopaschuk et al., 2010).  There is a switch 

between oxidation of FFA and glucose called the Randle cycle, which is 

disrupted during heart disease. In progressive heart failure there is an imbalance 

between the requirement and the available oxygen and metabolic supplies. 
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Cardiac cells display a decrease in glucose uptake that drives production of 

lactate increasing cellular acidosis (Fragasso, 2016).  The culmination of these 

changes results in the modulation in ultrastructural properties of the ventricles 

leading to their remodelling. This remodelling describes the morphological 

changes in; heart wall thickness and shape, mass of the heart (hypertrophy and 

atrophy), and increases in area of scarring after MI (Azevedo et al., 2016). 

Remodelling initially overcomes the deleterious changes in cellular metabolism 

and morphology however over time this becomes less efficient and subsequently 

results in the progression to heart failure  (Delgado and Willerson, 1999).   

5.1.3 Alterations in the biology of cardiac myocytes 

 In animal models of heart disease and human heart failure samples, it is has 

been shown that the initiation of cardiac remodelling starts with changes in 

cardiac myocytes (Dash et al., 2001, Mann and Bristow, 2005). There have been 

numerous studies that have suggested that failing human cardiac myocytes 

undergo changes that drive the loss of contraction, loss of myofilaments, 

alterations in cytoskeletal proteins, alterations in excitation-contraction 

coupling and desensitisation of β-adrenergic signalling (Schaper et al., 1991, 

Beuckelmann et al., 1992, Bristow et al., 1982). Many of these changes are 

thought to protect the failing cardiomyocytes against the deleterious effects of 

excessive activation of proteins such as norepinephrine, angiotensin II, 

endothelin, aldosterone, and TNF (Mann and Bristow, 2005). For example, the 

over production of angiotensin II, a smooth muscle constrictor and hypertrophic 

agent, can contribute to many of the deleterious effects. Angiotensin II acts 

mainly through two receptors angiotensin II type 1 (AT1) and AT2, each of which 

has distinct downstream targets that counteract each other to elicit opposing 

effects (Booz and Baker, 1996, Ferrari et al., 2002). AT1 receptors are known to 

cause vasoconstriction, cell growth, positive inotropism, and aldosterone and 

catecholamine release (Booz and Baker, 1996). Conversely, the AT2 receptors are 

involved in the mediation of vasodilation, inhibition of cell growth, apoptosis, 

negative inotropism, and natriuresis (Booz and Baker, 1996).  The two receptors 

also share common downstream targets such as arachidonic acid and nuclear 

factor-κB (NF-κB) (Patterson et al., 1999, Booz and Baker, 1996). Two main 

actions of angiotensin II are thought to be part of the damaging effect on 

vascular cells that contribute towards vascular remodelling. Firstly, angiotensin 
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II can stimulate reactive oxygen species (ROS) in the vascular wall leading to a 

smooth muscle growth thus contributing to remodelling (Wang et al., 2001, 

Dzau, 1993). Secondly, it has been shown that angiotensin II in smooth muscle 

can activate NFκB which in turn regulates several inflammatory cytokines, such 

as tumour necrosis factor α (TNFα), chemokines and cell adhesion molecules 

(Ferrari et al., 2002). Together these inflammatory molecules contribute toward 

the development of atherosclerosis and cardiac remodelling by driving 

inflammation, smooth muscle cell proliferation and apoptosis (Dichtl et al., 

1999, Selzman et al., 1999, Erl et al., 1999).  Protein expression and activity 

changes  cumulatively lead to a pronounced defect in the contractile ability of 

the myocyte as well as a loss of responsiveness to adrenergic control 

mechanisms (Bristow et al., 1982, Beuckelmann et al., 1992, Schaper et al., 

1991). These are the hallmarks of the failing myocardium (Mann and Bristow, 

2005).  In fact, isolated failing myocytes were shown to have a ~50% reduction in 

contraction in comparison to their healthy counterparts (Davies et al., 1995). In 

addition, there is extensive remodelling of the t-tubule network, manifesting in 

abnormal calcium handling, and of the caveolae, resulting in disorganisation of 

the components held within signalling complexes (Davies et al., 1995, Galbiati et 

al., 2001, Fridolfsson and Patel, 2013).  As mentioned, lack of POPDC1 has been 

shown to lead to structural rearrangements in the phenotype of cardiomyocytes, 

suggesting a reduction or dysfunction of POPDC1 may facilitate progression to 

cardiac failure (Schindler et al., 2016b).  

5.1.4 Cardiac Fibroblasts 

Although cardiac myocytes are extremely important in the remodelling events 

during heart disease, there exists another group of cells that have an important 

role in the remodelling process. It has been proposed that the adult heart 

consists of around 30% myocytes and 70% non-myocytes (Zak, 1974, Nag, 1980).  

Cardiac fibroblasts are one of the non-myocyte cellular components of the heart 

and are widely distributed connective tissue cells. Within the heart fibroblasts 

possess numerous important roles in cardiac development, defining cardiac 

structure, maintenance of proper cardiac function and remodelling during 

disease (reviewed in (Souders et al., 2009)).  In addition, cardiac fibroblasts 

represent both sources and targets of different stimuli which aid in the 

coordination of chemical, mechanical and electrical signals between the cellular 
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and acellular components of the heart. Following initial cardiac injury, 

fibroblasts respond to these factors causing a change in the fibroblast gene 

expression and their migration toward the injured region of the heart to 

promote wound healing and scar formation. As the heart undergoes remodelling 

associated with the transition to heart failure there is an increased in cytokine 

and growth factor secretion which leads to the proliferation and the migration of 

fibroblast allowing for the remodelling of the cardiac interstitium (Brown et al., 

2005, Weber, 2004).  

5.1.5 POPDC1 in heart failure 

The progression to heart failure  is known to be associated with expression 

changes in multiple myocardial genes (Andrée et al., 2000). However, the exact 

role played by these proteins is still not fully understood. It remains unclear as 

to how novel myocardial genes, such as the POPDC family of proteins are 

contributing to heart failure (Gingold-Belfer et al., 2011).  Previous studies have 

mentioned POPDC1’s role in the pathophysiology of both cardiac and skeletal 

muscle (Andrée et al., 2002a). Observations from transgenic mice lacking Popdc1 

suggest they had impaired recovery from ischemia/reperfusion injury (Gingold-

Belfer et al., 2011).  Current evidence describing POPDC1 being intrinsically 

involved in cellular signalling drives the hypothesis that its expression is 

important in normal heart function (Gingold-Belfer et al., 2011, Alcalay et al., 

2013, Froese et al., 2012, Schindler et al., 2012b). Furthermore, POPDC1 is 

found in intercalated discs, the facilitator of electrical signal propagation 

between myocytes, and this observation adds more support to the notion that 

the POPDC family’s role revolves around maintaining proper cardiac function 

(Noorman et al., 2009, Gingold-Belfer et al., 2011). Often, heart failure is 

associated with disarray of myocytes, accompanied by alterations in the 

expression and distribution of many proteins which contributes towards the 

impairment of myocardial mechanical and electrical function seen with this 

condition (Hein et al., 1994, Arai et al., 1993, Kostin et al., 2003). Connexin43 

(Cx43) expression is known to be reduced in end stage heart failure with its 

localisation being redistributed to the lateral sarcolemma from the intercalated 

discs (Kostin et al., 2003). A primary look at POPDC1 levels in failing hearts 

provided evidence of a reduction in both mRNA and protein levels (Gingold-

Belfer et al., 2011). Alcalay and colleagues provided further support of this 



185 
 
hypothesis by showing that levels of POPDC1 protein and mRNA were 

downregulated in I/R (Alcalay et al., 2013). Further research found that POPDC1 

is also crucial for the structural maintenance of caveolae via its interaction with 

Cav3 which, as described in the introduction, is essential for ion channel 

function in cardiac contraction (Alcalay et al., 2013). This combined evidence 

suggests that POPDC1 is functionally relevant to the maintenance of cardiac 

health and that it is altered within disease progression.  
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5.2 Hypothesis and Aims 

As described, POPDC1 has been shown to interact with several proteins involved 

in various cellular functions such as ion channel conductance and cell adhesion. 

These interactions and their alteration during heart disease have been suggested 

to have an impact on the loss of function in the heart (Alcalay et al., 2013, 

Kliminski et al., 2017, Osler et al., 2005). With only minimal data on the changes 

in POPDC1 levels in failing hearts, we sought to further investigate expression in 

both human heart and porcine heart. Using tissue kindly donated from Dr Rodger 

Hajjar (New York, USA) and Dr Kenneth Campbell (University Kentucky, USA) and 

processed by Dr Gillian Borland (University of Glasgow), POPDC1 expression 

levels were compared in heart failure to healthy counterparts.  

As such, the specific aims of this chapter are as follows:  

• To determine whether POPDC1 expression is altered in a porcine model of 

MI. 

• To investigate if these changes are pheno-copied in human heart failure 

samples 
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5.3 Methods 

5.3.1 Porcine tissue samples 

Samples were kindly gifted by Dr Roger Hajjar (New York, USA). Prior to samples 

being sent, male Yorkshire pigs (also known as English Large White pigs) were 

subjected to left anterior descending (LAD) cardiac artery balloon occlusion, 

which is commonly used as a model of MI, for a period of 2 hours (day 0). This 

involves the insertion of a balloon into the LAD artery preventing blood flow to 

the left ventricle, subsequently resulting in an infarction (Koudstaal et al., 

2014). Sham animals underwent surgery (day 0) and recovery in the same time 

frame as experimental animals. Tissue samples were collected from the left 

ventricle and snap frozen at -80oC prior to being shipped on dry ice. Samples 

were then processed for Western blotting. All porcine work was carried in 

accordance with ARRIVE (Animal Research: Reporting In Vivo Experiments) 

guidelines.   

50 mg of tissue was placed in a 2 ml RNase free tube along with 5 mm stainless 

steel beads. 700 µl of RIPA buffer substituted with protease cocktail inhibitors 

(Roche, West Sussex, UK), phosphor-stop tablets (Roche, West Sussex, UK) and 

25mM N-ethylmaleimide (Sigma-Aldrich Dorset, UK). The samples were then 

homogenized to lyse the tissue. Tubes for pulsed for 45 seconds with a 3-minute 

incubation on ice to prevent sample overheating, this cycle was repeated three 

times. Samples were centrifuged for 10 minutes at 13,000 rpm at 4oC and the 

supernatant was collected in a fresh tube. The supernatant was subjected to 

Bradford assay and Western blotting through the protocols described in sections 

2.4.2, 2.8.1 and 2.8.3. 
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5.4 Results 

5.4.1 Results Porcine heart tissue comparison  

Levels of POPDC1 were investigated using samples kindly donated by Dr Roger 

Hajjar (New York, USA). Porcine hearts have often been used as a model to 

study heart disease due to the comparable anatomical structure to human 

hearts. This makes pig HF models more apt  than many rodent model systems.  

(Lelovas et al., 2014). Using samples from this model, I observed that there was 

a slight increase in POPDC1 levels immediately  after onset of an MI with the 

highest levels after 2 weeks, with levels returning to that of sham at the 3 

month stage (Figure 5.1). Power calculations using the data and trends collected 

from my experiment (n of 3 for each experimental time point), identified that 

an n of 23 would be needed to accurately identify a statistically significant 

difference in POPDC1 expression in a similar sample set. 
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Figure 5.1 POPDC1 expression in porcine models for MI. Tissue taken from pigs subjected to 
LAD balloon artery occlusion to induce MI were western blotted for POPDC1. The labels given to 
each of the 3 animals in a group represent the code name of that animal throughout the study.  
Four times points after myocardial infarction (MI) were examined; acute MI (3.5 hours after MI) (first 
three lanes), 2 weeks post MI (three lanes) and 3 months MI (third set of three lanes). Control pig 
tissue (last three lanes) that had not been subjected to the LAD balloon were used to determine 
baseline levels of each protein.  Samples were separated via SDS-PAGE and subjected to western 
blotting. Immunoblotting for POPDC1 was undertaken to compare expression levels of the protein 
at each time point. Β-actin was used as a loading control allowing samples to be normalised for 
comparison, ImageJ was used to quantify band intensities for each protein. Values were 
normalised to β-actin and graphs were produced using GraphPad Prism. Graphical results 
represented as mean ± SEM, n=3 for each experimental time point. Statistical analysis was 
performed using a one-way ANOVA.   
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Having identified a potential trend of POPDC1 upregulation, PDE4A levels were 

examined. As with POPDC1, there was a trend toward an increase in PDE4A 

levels immediately after MI with levels decreasing soon after. Residual PDE4A 

levels (following decrease) were higher in comparison to sham after 3 months 

(Figure 5.2). Once again, a power calculation identified that an n=15 would be 

required to produce significant differences between the MI samples and sham 

based on the n of 3 represented here.  

            

Figure 5.2 Expression levels of PDE4A in porcine models of MI. The Pig MI samples previously 
used to examine POPDC1 levels were western blotted for PDE4A and compared to basal levels 
using sham as a control. The labels given to each of the 3 animals in a group represent the code 
name of that animal throughout the study. Β-actin was immunoblotted for to provide a loading 
control. Band intensities were calculated using ImageJ and PDE4A values were normalised to β-
actin values. GraphPad was used to produce a graphical representation of the results. Results 
represented as mean ± SEM, n=3 for each time point. Statistical analysis was performed using a 
one-way ANOVA. There is a trend showing the increase of PDE4A at all stages after MI.  
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5.4.2 Total expression levels of POPDC1, PDE4A and Cav3 remain 
unchanged in Heart Disease.  

Having observed upward trends in POPDC1 and PDE4A expression immediately 

after an MI, with a reduction to near basal levels after prolonged recovery, I 

sought to identify whether there was any change in protein expression during 

end stage heart failure. MI remains the most common cause of heart failure 

worldwide (Cahill and Kharbanda, 2017, Roger, 2013). Heart failure as 

mentioned, is defined as the syndrome resulting from cardiac injury or structural 

changes that leads to the impairment of the ventricle to either fill or eject 

blood (Yancy et al., 2013). In this instance, ischemic heart failure can be caused 

as a secondary outcome of MI. Due to the occlusion of the vessel during MI, there 

is tissue death which in turn leads to a lack of blood flow to that area in the 

aftermath. Ischemic heart failure patient samples and healthy donors, kindly 

gifted by Dr Kenneth Campbell (University of Kentucky), were analysed via 

western blotting for POPDC1, PDE4A and another POPDC1 interacting protein, 

caveolin 3.  
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Table 5: Characteristics of human heart samples.  

Sample 
No. 

Case Type Sex Age (yrs) Race BMI Smoker Heart 
Failure 

Primary Diagnosis Region 

1 Organ 
donor 

Male 26.5 White 24.46 Smoked in 
past 

  Epicardium 

2 Organ 
donor 

Male 50 White 29.4 Smoked in 
past 

  Epicardium 

3 Organ 
donor 

Female 41.6 White unknown unknown   Epicardium 

4 Organ 
donor 

Male 32.5 White 40.4 Smoker   Endocardium 

5 Organ 
donor 

Male 51.6 White 31.2 Smoker   Epicardium 

6 Organ 
donor 

Male 37.4 White 34.2 Smoker   Endocardium 

7 Organ 
donor 

Male 38.6 White 24.1 Smoker   Epicardium 

8 Heart 
transplant 

Male 55.8 White 34.2 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 

9 Heart 
transplant 

Male 66 White 29.4 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 

10 Organ 
donor 

Male 22.2 White Unknown Unknown   Endocardium 

11 Heart 
transplant 

Female 51.3 White 30.6 Smoked in 

past 

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 

12 Heart 
transplant 

Female 59.4 White 24.1 Never 
smoked 

Ischaemic Ischaemic 
cardiomyopathy 

Not specified 

13 Organ 
donor 

Male 32.5 White 40.4 Smoker   Epicardium 

14 Heart 
transplant 

Female 49 White 22.9 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 
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15 Heart 
transplant 

Male 75.5 White 32.8 Never 
smoked 

Ischaemic Chronic systolic 
heart failure 

Endocardium 

16 Heart 
transplant 

Male 66 White 29.4 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

17 Organ 
donor 

 26.5 White 24.46 Smoked in 
past 

  Endocardium 

18 Organ 
donor 

 38.6 White 24.1 Smoker   Endocardium 

19 Heart 
transplant 

 65.2 White 37.3 Never 
smoked  

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 

20 Heart 
transplant 

 49 White 22.9 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

21 Organ 
donor 

 51.6 White 31.2 Smoker   Endocardium 

22 Organ 
donor 

 35.7 White 22.2 Unknown   Epicardium 

23 Heart 
transplant 

 65.2 White 37.3 Never 
smoked  

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

24 Heart 
transplant 

 58.3 White 24.1 Never 
smoked 

Ischaemic Ischaemic heart 
failure and post-MI 
pericarditis 

Endocardium 

25 Heart 
transplant 

 50.5 Black or 
Asian  

22.3 Smoked in 
past 

Ischaemic Ischaemic heart 
failure 

Epicardium 

26 Organ 
donor 

 37.4 White 34.2 Smoker   Epicardium 

27 Heart 
transplant 

 33.5 White 37 Never 
Smoked 

Ischaemic Ischaemic 
cardiomyopathy 

Epicardium 

28 Heart 
transplant 

 59.4 White 24.1 Never 
smoked 

Ischaemic Ischaemic 
cardiomyopathy 

Not specified 

29 Organ 
donor 

 23.3 White 20.45 Never 
smoked  

  Epicardium 
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30 Heart 
transplant 

 33.5 White 37 Never 
Smoked 

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

31 Heart 
transplant 

 55.8 White 34.2 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

32 Heart 
transplant 

 37.8 White 25.9 Never 
smoked 

Ischaemic Ischaemic 
cardiomyopathy 

Not specified 

33 Organ 
donor 

 22.2 White Unknown Unknown   Epicardium 

34 Heart 
transplant 

 75.5 White 32.8 Never 
smoked 

Ischaemic Chronic systolic 
heart failure 

Epicardium 

35 Organ 
donor 

 23.3 White 20.45 Never 
smoked  

  Endocardium 

36 Heart 
transplant 

 51.3 White 30.6 Smoked in 
past 

Ischaemic Ischaemic 
cardiomyopathy 

Endocardium 

37 Organ 
donor 

 35.7 White 22.2 Unknown   Endocardium 

38 Heart 
transplant 

 48.8 White 24.2 Smoked in 
past  

Ischaemic Ischaemic heart 
failure 

Endocardium 

39 Organ 
donor 

 41.6 White Unknown Unknown   Endocardium 

40 Heart 
transplant 

 56.5 White 30.2 Smoked in 
past 

Ischaemic Ischaemic heart 
failure 

Not specified 

41 Organ 
donor 

 50 White 29.4 Smoked in 
past 

  Endocardium 
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Human heart failure samples are detailed in Table 5. As mentioned, POPDC1 was 

shown by Gingold-Belfer and colleagues as well as Alcalay and colleagues to be 

down-regulated in end stage heart failure (Gingold-Belfer et al., 2011, Alcalay et 

al., 2013).Using the above samples, I could detect a robust signal for POPDC1 in 

healthy and disease patient tissue (Figure 5.3, panel A-C).  However, there was 

no significant diminution of POPDC1 levels in patients with ischemic heart 

compared to their healthy counterparts (Figure 5.3, panel D).  

      

Figure 5.3 POPDC1 expression and comparison analysis in human heart samples from 
organ donor control patients and transplant patients suffering from heart failure. Human 
heart tissue samples were blotted for POPDC1 and GAPDH as a loading control. NRVM lysate was 
run as a positive control to ensure POPDC1 was present. Blots for samples 1-14, 15-27 and 28-41 
are shown in A.B and C respectively. Samples from NRVM were run as a control for POPDC1 
expression.  D, graph shows mean ± SEM for n=20 for healthy and n=21 for diseased samples 
which were normalised to the respective GAPDH value. Students t-test was performed.  
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As no change in POPDC1 levels were identified, the next step was to determine 

if the levels of the novel interactor, PDE4A, was altered in the end-stage of 

ischemic heart failure. Samples were probed for PDE4A using a panPDE4A 

antibody. The presence of a band at ~100kD identified PDE4A long isoform in 

human heart (Figure 5.4, panel A-C). Once again, there was no significant 

change in total expression level of PDE4A between healthy and diseased human 

hearts (Figure 5.4).  

         

Figure 5.4 PDE4A expression in human heart failure samples from organ donor control 
patients and ischemic heart failure patients. Human heart tissue samples were blotted for 
PDE4A and GAPDH as a loading control. NRVM lysate was run as a positive control to ensure 
PDE4A was present. Blots for samples 1-14, 15-27 and 28-41 are shown in A.B and C 
respectively. Samples from NRVM were run as a control for PDE4A expression.  D, Graphical 
results show mean ± SEM for n=20 for healthy and n=21 for diseased samples which were 
normalised to the respective GAPDH value. Students t-test was performed.  
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Finally, I evaluated the expression of Cav3 in the human heart samples. Due to 

the known interaction between POPDC1 and evidence from Alcalay and 

colleagues that the POPDC1-Cav3 interaction was decreased in end-stage heart 

failure, I examined whether the expression levels of Cav3 were altered in 

comparison to healthy patients (Gingold-Belfer et al., 2011, Alcalay et al., 

2013). Cav3 is highly expressed in human heart (Figure 5.5, panel A-C) and I 

could easily detect Cav3 protein. Similar to POPDC1 and PDE4A, Cav3 protein 

expression was not significantly altered between healthy and diseased patient 

heart tissue (Figure 5.5, panel D).  

                 

Figure 5.5 Cav3 expression in human heart failure samples from organ donor control 
patients and ischemic heart failure patients. Human heart tissue samples were blotted for Cav3 
and GAPDH as a loading control. NRVM lysate was run as a positive control to ensure Cav3 was 
present. Blots for samples 1-14, 15-27 and 28-41 are shown in A.B and C respectively. Samples 
from NRVM were run as a control for Cav3 expression.  D, ImageJ was used to determine the 
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intensities of the bands on the gel. Graph shows quantitative normalised to GAPDH mean ± SEM 
for n=20 for healthy and n=21 for diseased samples. Students t-test was performed. 

 

Collectively, no significant changes in protein expression levels were seen in 

total heart tissue between healthy and disease groups of either POPDC1, PDE4A 

or Cav3.  

5.4.3 Comparison between endocardium and epicardium 

Despite the lack of alterations in the expression level of any of the three 

proteins of interest, we sought to determine if there was a change in the 

expression levels of any of the proteins present in the epicardium in comparison 

to the endocardium.  Samples from healthy organ donors and ischemic heart 

failure patients were segregated on whether they were harvested from the 

epicardium or the endocardium of the heart. On comparison, there appeared to 

be a trend towards more POPDC1 being expressed in the endocardium of the 

diseased patients in comparison to healthy donors (Figure 5.6, panel A) although 

the changes were not significant (p>0.05).  Such a trend was not seen in the 

epicardium samples (Figure 5.6, panel B). Although only a trend, this does allow 

for some speculation that although the total level of POPDC1 might not be 

altered compartmentalised changes may occur. 
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Figure 5.6 Comparison of POPDC1 compartment expression levels in Epicardium and 
Endocardium of healthy and diseased hearts. Graphical results shown were produced using 
the values obtained from the blots from Figure 5.3. A denotes the changes in endocardium 
expression of POPDC1 diseased and healthy samples. B, comparison of diseased and heathy 
epicardium POPDC1 levels.  Both graphs show normalised mean ± SEM for n=20 for healthy and 
n=21 for diseased samples. Students t-test was performed. 

 

A similar comparison of the evaluation of PDE4A levels in epicardium vs 

endocardium produced a borderline significant increase in the expression levels 

found in the diseased epicardium in comparison to healthy samples (Figure 

5.7Figure 5.6, panel B). This follows the same trend as found in the pig MI model 

samples as the levels of PDE4A were still elevated 3-months post MI (Figure 5.2). 

In contrast, PDE4A expression level within the diseased endocardium remained 

unaltered when examined next to the healthy endocardium (Figure 5.7, panel 

A). This poses an interesting question about the possible compartment specific 

changes in PDE4A profile that may underpin the pathology.  
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Figure 5.7 PDE4A expression levels in the endocardium and epicardium compartments. 
Graphical results shown were produced using the values obtained from the blots from Figure 5.4. A 
denotes the changes in endocardium expression of PDE4A diseased and healthy samples.  B, 
comparison of diseased and heathy epicardium PDE4A levels. A p value of 0.0545 was found 
using a student’s t-test showing a borderline significant change.  Both graphs show normalised 
mean ± SEM for n=20 for healthy and n=21 for diseased samples. Students t-test was performed. 

 

Finally, Cav3 levels were further examined to determine whether there were 

compartmental changes in expression. There appeared to be no change in Cav3 

levels in either the endocardium or the epicardium of diseased hearts in 

comparison to healthy donors (Figure 5.8A and B, respectively). This is 

interesting, as it has been established that there is the dysregulation of caveolae 

within diseased myocytes meaning these results do not correlate with previously 

published data (Bryant et al., 2014, Bryant et al., 2018, Feiner et al., 2011).   
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Figure 5.8 Cav3 expression levels and comparison in the endocardium and epicardium 
compartments. Graphical results shown were produced using the values obtained from the blots 
from Figure 5.5. A denotes the changes in endocardium expression of Cav3 diseased and healthy 
samples.  B, comparison of diseased and heathy epicardium Cav3 levels. Both graphs show 
normalised mean ± SEM for n=20 for healthy and n=21 for diseased samples. Students t-test was 
performed. No significant changes were identified in either compartment.   
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5.5 Discussion 

5.5.1 POPDC1 expression does not appear to be downregulated 
in ischemic heart failure 

Previous studies have characterised a role for POPDC1 in the structural 

maintenance of cardiac and skeletal muscle (Andrée et al., 2002a). Gingold-

Belfer and colleagues noted that transgenic mice lacking Popdc1 expression 

displayed impaired recovery from ischemic injury (Gingold-Belfer et al., 2011). 

In addition, in failing human hearts, a reduction in POPDC1 mRNA expression was 

observed  following myocardial I/R injury, which could be correlated to POPDC1 

protein levels (Alcalay et al., 2013).  I have shown here that in the immediate 

aftermath of MI in porcine models, there is a trend towards an increased level of 

POPDC1 in tissue isolated from whole hearts (Figure 5.1). It should be noted that 

although there appeared to be an increase in the level of POPDC1 immediately 

after MI, this was not significant and could be explained by the natural 

variability between samples. This was also true for PDE4A (Figure 5.2). The low n 

number does not allow for a conclusion to be made about how POPDC1 and 

PDE4A expression changes as part of the response to MI or heart failure. 

However, based off the slight increases in expression identified some hypothesis 

about the roles of the proteins in disease could be made.   

POPDC1, through its interaction with Cav3, has been postulated to have a role in 

the protection of cardiac muscle. As previously mentioned, POPDC1 is a known 

interactor of Cav3 and has been shown to be important for the maintenance of 

caveolae numbers, as well as their size and structure (Alcalay et al., 2013). It 

has been previously established that the muscle specific Cav3 plays a critical 

role in cardiac protection, in ischemic preconditioning as well as in calcium 

handling during excitation-contraction coupling (Patel et al., 2008, Calaghan and 

White, 2006, Löhn et al., 2000). In addition, recovery from I/R and 

preconditioning were hindered when POPDC1 was lacking in hearts or 

cardiomyocytes (Alcalay et al., 2013). It may stand to reason that while there is 

increase of the expression of POPDC1 in the area where damage is immediate, 

there is a compensatory increase in the other unaffected cardiac tissue to 

maintain normal cardiac function.  
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In this light, a potential increase POPDC1 expression in the aftermath of an MI 

injury (Figure 5.1), if confirmed, could pose an interesting mechanism of how 

the heart creates protection from disease.  Current published data has not 

clearly identified how POPDC1 either contributes towards cardiovascular disease 

or offers a protective function. Langendorff-perfused hearts from Popdc1-null 

mice were subjected to an I/R protocol of 30-minute normoxic stabilization, 30-

minute global ischemia and 90 min reperfusion prior to analysis. These hearts 

exhibited larger infarct sizes as well as a decrease in their ability to recovery 

post injury (Alcalay et al., 2013). In addition, Popdc1-null cardiomyocytes 

displayed impaired [Ca2+]I transients leading to augmented sensitivity to 

oxidative stress (Alcalay et al., 2013). Using this information, an explanation for 

the initial increase in POPDC1 could be that there is increased expression to aid 

in the recovery of the affected tissue. POPDC1, as mentioned in section 1.3.3, 

has several roles including in cell-cell junctions, in formation and maintenance 

of caveolae where many cardiac signalling molecules exist, in controlling the ion 

channel TREK1 and other functions that are needed to maintain normal cellular 

homeostasis (Schindler et al., 2012b, Amunjela and Tucker, 2017a, Froese et al., 

2012, Kliminski et al., 2017, Han et al., 2019). I hypothesise that the increase in 

POPDC1 protein seen here is an attempt to maintain POPDC1 function in cells 

that are undergoing drastic morphology and signalling changes.  

To illustrate this concept one can consider the example where contractile 

function is improved in response to pathological and physiological changes such 

as in MI, where there is hypertrophic growth without myocyte proliferation 

(Maillet et al., 2009). The small GTPase Cdc42 activated by GEFT was identified 

to be a signalling intermediate that could restrict cardiac growth in response to 

said physiological changes. Cdc42 is specifically activated in the heart after 

there is pressure overload.  Maillet and colleagues identified that the loss of 

Cdc42 renders the heart more able to drive hypertrophic growth, post pressure 

overload, therefore suggesting that the usual function of Cdc42 is to antagonize 

cardiac growth (Maillet et al., 2009). This is in stark comparison to the other Rho 

GTPases such as Ras, Rac1 and RhoA, which have all been shown to drive 

hypertrophy (Zheng et al., 2004, Sussman et al., 2000, Satoh et al., 2006).  
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It has been postulated that POPDC1 interaction would act as a negative regulator 

of GEFT activity meaning it would be subsequently be important in the control of 

Cdc42 signalling. To support this, downregulation of POPDC1 resulted in 

randomised cell movements and changes possibility due to the perturbation of 

Cdc42/Rac1 signalling (Smith et al., 2008).  Similarly, previous work has shown 

knockdown of POPDC1 expression, in cultured corneal epithelial cells, resulted 

in a disruption of epithelial integrity as well as delayed healing of epithelial 

sheets after wounding (Fenteany et al., 2000, Kofron  et al., 2002, Nobes, 2000). 

This data further supports the function for Cdc42/Rac1 in wound healing and in 

maintaining epithelial sheet integrity. As POPDC1, when lost, was found to cause 

increased activation of Cdc42 it could be hypothesised that POPDC1 would 

function to control activation of GEFT by correctly localising it and as such 

control the function of Cdc42, thus stopping cellular hypertrophy and growth 

(Smith et al., 2008, Hager and Bader, 2009). As Cdc42 is highest at the leading 

edge of the cell it would be appropriate to suggest that the interaction of 

POPDC1 with GEFT would lead to a complex at the membrane allowing for the 

GEFT-activation of Cdc42 (Etienne-Manneville and Hall, 2002).   

I speculate that POPDC1 expression changes in the aftermath of an MI may 

function to increase the onset of hypertrophy to protect the remaining cardiac 

tissue. The increase in Cdc42 drives the hypertrophy phenotype of undamaged 

cardiomyocytes in order to compensate for damage to the heart tissue after MI 

and to preserve cardiac function (Rubin et al., 1983, Beeri et al., 2008, Assayag 

et al., 1997). The trend in increasing POPDC1 was only found to exist in the time 

frame of two weeks post MI after which it is lost (Figure 5.1). Previously it has 

been shown that the hypertrophic response is often accompanied by improved 

function in cardiomyocytes (Mørk et al., 2007). This remodelling process has 

been labelled maladaptive due to late stage hypertrophy often leading to a 

reduction in contractibility and altered Ca2+ signalling which culminate in the 

deterioration of cardiac function (Mørk et al., 2007). In the case of POPDC1 

signalling, the initial increase in expression would correlate to and facilitate the 

onset of hypertrophy by increasing activation of Cdc42 as an acute response by 

the heart. The damage and stress on the heart tissue is either resolved and 

POPDC1 signalling returns to basal, or the hypertrophy does not elicit its 

protective effects and the starved tissue develops into ischemic heart failure 
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(Cahill and Kharbanda, 2017). This pattern of increased protein expression in the 

acute aftermath of an MI, which is lost after period of time is not uncommon. 

For example, in the first 20 minutes after an MI there is a significant increase in 

the levels of Hypoxia inducible factor-1 alpha (HIF-1α) which dissipates after 1 

hour (Al-Salam and Hashmi, 2014). This in turn drives the increase in Galectin-1 

(GAL-1) within 4 hours post insult, which is then lost after 7 days (Al-Salam and 

Hashmi, 2014, Seropian et al., 2013). Gal-1 Is an evolutionarily conserved β-

galactosidase-binding lectin which plays an essential role in the control of 

inflammation and neovascularisation (Camby et al., 2006, Liu and Rabinovich, 

2010). As such, it was proposed that GAL-1 functions to protect normal cardiac 

homeostasis as well as in post-infarction cardiac remodelling by blocking cardiac 

inflammation (Seropian et al., 2013). Therefore, the initial change in expression 

of HIF-1α followed quickly by its return to normal levels (yet the prolonged 

levels of GAL-1) sets precedent a for what I have described with POPDC1.  

There are many more interaction partners of POPDC1 which all may in turn elicit 

changes that lead to the a cardioprotective effect in response to acute MI injury. 

These interactions may also contribute to end stage heart failure when the 

cardioprotective efforts are lost.   

Another interesting observation from this chapter is that I have identified a 

trend toward an increase in PDE4A expression that begins in the acute phase 

after MI (Figure 5.2) and remains higher in the epicardium of heart failure 

patients (p=0.0545) (Figure 5.7, panel B). It has previously been reported that 

PDE4A expression is reduced in hypertrophic cardiomyocytes and in non-ischemic 

heart failure hearts in comparison to healthy hearts (Abi-Gerges et al., 2009, 

Richter et al., 2011, Kittleson et al., 2005). The identified decline was 

hypothesised to be in response to a deficit in cAMP synthesis but, this change in 

PDE signalling may be maladaptive as it could lead to a loss of 

compartmentalised cAMP signalling (Fischmeister et al., 2006, Rochais et al., 

2004). Local loss of PDE4A in certain cAMP micro-domains, may lead to 

unrestricted diffusion of cAMP and the subsequent pan-activation of cAMP 

effector proteins and uncontrolled downstream signalling. Data from the initial 

reports from Abi-Gerges and colleagues (Abi-Gerges et al., 2009), were collected 

from isolated rat cardiomyocytes, whereas I used whole heart tissue from pig 
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and human subjects which may have different adaptive systems compared with 

rodents.  

On the other hand, there is also evidence for the specific increase of PDE4A5, 

the rodent orthologue of PDE4A4, to protect fibroblasts from apoptosis (Huston 

et al., 2000b). This may correlate with the increase identified in this study as 

the increased PDE4A4 would function to protect the fibroblasts in the heart after 

MI. Also of note is the fact that PDE4A4 has been shown to be increased in 

macrophages during chronic obstructive pulmonary disease (COPD) as part of the 

inflammatory response (Barber et al., 2004). Macrophages have been shown to 

have key functions in the promotion of infarct healing and myocyte protection 

and increase vascularisation in ischemic tissue as well as its regeneration (Herold 

et al., 2004, Dewald et al., 2005, Minatoguchi et al., 2004, Trial et al., 2004, 

Chazaud  et al., 2003, Eisenberg et al., 2003). The role of macrophages in this 

process is complex but it is believed that, like many acute responses to MI, 

although beneficial in the acute phase it becomes deleterious in the late phase 

of remodelling (Leor et al., 2006). Increasing macrophages infiltration in 

response to injury may be responsible for the PDE4A seen in the whole heart 

tissue samples used here.  

Finally, I also investigated Cav3 expression in this chapter due to the prior 

knowledge that hypertrophy and heart failure are associated with a decrease in 

its expression(Bryant et al., 2014). Western blot analysis showed no changes in 

the Cav3 expression in heart failure in comparison to healthy counterparts 

(Figure 5.5). However, overexpression of Cav3 was shown by Kong and colleagues 

to be cardioprotective by reducing the phenotypic and functional changes 

brought on by pressure overload (Kong et al., 2019). As such, the lack of change 

in Cav3 expression may be due to protective effects returning to basal after 

acute injury.  

5.5.2 Methodological considerations and future directions 

Several considerations must be taken into account when examining the results 

presented in this chapter. Although, I have identified a trend that hints toward 

an increased expression in both POPDC1 and PDE4A in the acute stages post MI in 

pig, it should be noted that the study is underpowered with only an n of 3 hearts 
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per condition. Therefore, the addition of more replicates would make any 

conclusions more solid.  

In addition, using data produced to formulate a pathway of POPDC1 expression 

and potential function using human and porcine tissue may result in 

discrepancies due to the mixed model experiments. There are in fact major 

anatomical differences between pig and human hearts that could also result in a 

differing response to injury (Crick et al., 1998). One example is that the Purkinje 

fibres in pig possess large subendocardial fibres which provide the animal with a 

more neuro-stimulated myogenic contraction system than humans (Ibrahim et 

al., 2006). In addition, their vascular resistances are more than 2-fold higher 

than that in humans therefore, they may be able to compensate with the 

damage of an MI better (Thein and Hammer, 2004). It also must be considered 

that there is intrinsic variability between individual human and porcine subjects 

that cannot be resolved with such a small sample size.  

It is always important to discuss the difference between statistical significance 

and biological relevance (Page, 2014). Small changes that appear to not be 

statistically significant may result in a large, biologically significant, 

physiological change. For example, the reduction in expression of Small-

Conductance Ca2+-Activated K+ (SK3) channels which modulate arterial tone and 

blood pressure, was shown to elicit a significant biological impact on arterial 

tone contributing to attenuated vasoconstriction responses (Taylor et al., 2003). 

This could allow us to hypothesize that the anything outside of basal levels of 

POPDC1 or PDE4A could have a biological impact, even with minute changes.  

One final point that must be addressed is that the samples collected from 

patients of heart failure and organ donors represent a snapshot in time. The 

levels of natural variations in protein expression, in stages of heart failure, age 

of patient or smoking status may mask any potentially significant changes that 

would have been identified by Western blotting (Egerstedt et al., 2019, Volkova 

et al., 2005, Rababa’h et al., 2019, Vileigas et al., 2019). The patients possessed 

a wide range of health and lifestyle backgrounds (data not shown) that all may 

generate variations in protein expression levels. In addition, the lack of subtle 

changes seen could also be attributed to the process of normalising protein 

concentration for Western blotting. Band intensities of the protein of interest 
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e.g. POPDC1 calculated using ImageJ software were normalised to the band 

intensities of the loading control protein e.g. GAPDH. This process allows for 

samples on different blots to be compared. The intensity measurements are an 

estimation of how much protein is in a sample therefore, it is possible that 

subtle changes are not detected using this method. 

5.5.3 Conclusion   

In conclusion, we have identified that there is a trend toward an increase in 

POPDC1 and PDE4A levels post-MI, which is not in-line with published data. In 

samples of human heart failure there appeared to be a shift in POPDC1 

expression between the epi-and endocardium, which saw more POPDC1 being 

present in the epicardium of diseased hearts and lower levels in epicardium 

compared to healthy samples. For PDE4A, there was a borderline significant 

increase in PDE4A levels in the epicardium of diseased hearts. Collectively, this 

evidence allows for speculation that there may be alterations in the 

compartmentalisation of the POPDC1/PDE4A complex during heart failure that 

may contribute to disease pathology by virtue of alterations in regulation of the 

POPDC1 interactome rather than a lack of POPDC1 expression per se.  
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6 Investigating the SUMOylation, Phosphorylation 
and Palmitoylation of POPDC1 

6.1 Introduction 

The number of human-protein coding genes is around 20,700 however the actual 

proteome includes hundreds of thousands of functionally different proteins 

(ENCODE-Project-Consortium, 2012, Schlüter et al., 2009) due to mRNA splicing, 

promoter diversity and post-translational modification . Post-translational 

modifications (PTMs) are a set of chemical changes that a protein can undergo 

after translation that can influence the protein’s function, stability and location. 

More than 200 diverse types of PTMs are currently known to exist which elicit a 

wide variety of functional effects on their target proteins (Duan and Walther, 

2015). Within this chapter three PTMs will be examined; phosphorylation, 

SUMOylation and palmitoylation (Figure 6.1).  
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Figure 6.1 Some of the potential PTMs of POPDC1. The palmitoylation (purple panel) of proteins 
has been extensively investigated due to its membrane targeting function. One mechanism by 
which POPDC1 may achieve its desired localisation is through palmitoylation of the protein after 
synthesis in the Golgi body, as shown here. Other functions for palmitoylation are known such as 
inferring membrane stability. Phosphorylation (red panel) of proteins is a very common mechanism 
used to control their activity. Given the importance of cAMP dynamics in the interactions of 
POPDC1, it may be the case that POPDC1 is subjected to phosphorylation by protein kinase A 
(PKA). When PKA (pink) is activated in the cell the catalytic subunits can function, adding a 
phosphate (P) group onto its target substrate.  This may have numerous functional consequences 
including conformational changes that could expose new binding regions. In the same thread as 
phosphorylation, the PTM of SUMOylation (orange panel) can result in the creation of new binding 
regions or in contrast, target a protein towards a degradation pathway. SUMOylation occurs 
through the collaborative effort of SUMO E1, E2 (Ubc9) and E3 (e.g. PIASY) ligases attaching a 
SUMO group to the target protein. Upon attachment of the SUMO modification the SUMO E1-3 
enzymes are released.  

 

 

6.1.1 PKA phosphorylation  

Protein phosphorylation is a major mechanism by which protein function can be 

regulated in response to both intracellular and extracellular stimuli (Ardito et 

al., 2017).  This reversible modification occurs through protein kinases, such as 

PKA, which link a phosphate group (PO4) to the polar group R of various amino 

acids (Ardito et al., 2017) and phosphatases, which do the opposite. The 

addition of a negatively charged phosphate group modifies the protein from 

hydrophobic polar to hydrophilic polar resulting in a change in protein 

conformation that can influence interaction with other proteins or molecules. 

Not only can phosphorylated proteins bind and form complexes but they can 

consequently allow for the detachment of protein complexes (Alberts et al., 
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2002).  Phosphoproteins primarily rely on the ATP as the phosphate group donor 

(Ardito et al., 2017).   

6.1.1.1 Kinases  

In more recent years kinases have been considered to hold a crucial role not only 

in signalling but it the transduction of that signal (Hornberg et al., 2005, 

Heinrich et al., 2002). Most  protein-phosphorylation events occur on a serine (S 

or Ser), a threonine (T or Thr), or a tyrosine (Y or Try) residue (Roskoski, 2012).  

Less common is the phosphorylation of a histidine (H or His) or an aspartate (D or 

Asp) residues but, these are less stable phosphorylation events (Ardito et al., 

2017). The superfamily of protein kinases is responsible for all protein 

phosphorylation. Most kinases can also be phosphorylated as part of the 

activation mechanism and this promotes a cascade of signalling events 

culminating in the phosphorylation of the terminal protein substrate that 

impinges on the physiological function of the cell (Alberts et al., 2002).  The 

activation or deactivation of kinases can occur through; cis-

phosphorylation/autophosphorylation, by binding an activator or inhibitor or by 

changes in their subcellular localisation in relation to their target substrate 

(Roskoski, 2012).  

The catalytic domain of the protein kinase contains two sub-domains, N and C 

terminal (Schwartz and Murray, 2011). The two subunits are connected by a 

peptidic strand that forms an active site containing both a front and back pocket 

(Ardito et al., 2017).  The activation of this catalytic domain is caused by the 

phosphorylation of the activation loop or alternatively through an allosteric 

mechanism (Schwartz and Murray, 2011).  Kinases also possess a non-catalytic 

domain which allows for the attachment of substrates and the recruitment of 

other signalling proteins (Nishi et al., 2014).   

There are currently 218 human protein kinases which have been identified and 

they are classified according to the amino acid residue they phosphorylate. Most 

of the known kinases can phosphorylate both Serine and Threonine residues 

(serine/ threonine kinases -STKs), others act on Tyrosine (Tyrosine kinases -TKs), 

while others act on all three (dual-specificity kinases – DSKs) (Miller et al., 2008, 

Hunter, 2009).  
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6.1.1.2 Protein Kinase A 

One serine/threonine kinase is the cAMP dependent protein kinase A (PKA). The 

activity of its two catalytic (C) subunit is regulated by the two regulatory (R) 

subunit isoforms,  (Taylor et al., 2004).  In addition to the R units, substrate 

specificity is governed via attachment to scaffold proteins called A kinase 

anchoring proteins (AKAPs). AKAPS have the ability to target PKA through its R 

subunits to different sites within the cell bringing them into close proximity with 

PKA substrates (Gold et al., 2006).  

During its activation, the C-subunit is initially phosphorylated by 

phosphoinositide-dependent protein kinase at T197 (Cheng et al., 1998, 

Cauthron et al., 1998). The phosphorylation of T197 in the activation loop is 

necessary for the activity of PKA and once this has been phosphorylated it is not 

turned over readily (Steinberg et al., 1993, Adams et al., 1995, Taylor et al., 

1990, Shoji et al., 1979).  The C-subunit is regulated through the interaction 

with the inhibitory R-subunit which sequesters the C-subunit in an inactive 

heterodimeric holoenzyme. Upon the binding of 2 cAMP molecules to each R-

subunit, there is a conformational change whereby there is the dissociation of 

the holoenzyme realising the C-subunit (Taylor et al., 1990). The free C-subunit 

can then go on to phosphorylate a wide range of cytoplasmic and nuclear protein 

substrates (Moore et al., 2003).  For example, S54 of the cAMP-specific PDE4D3 

is known to be a PKA phosphorylation site that is crucial for activation of the 

enzyme (Sette and Conti, 1996). 

6.1.2 SUMOylation 

6.1.2.1 The SUMO family  

The post translational modification of SUMOylation, is based on the covalent 

attachment of small ubiquitin-like modifier (SUMO) protein to a substrate 

(Hannoun et al., 2010). However, the name SUMO is misleading as sequence 

homology has shown that there is only ~18% similarity with ubiquitin (Müller et 

al., 2001). This modification is highly conserved in a wide range of species and 

displays a wide range of functional effects such as regulation of the cell cycle 

and transcription, to the targeted subcellular localisation of proteins and their 
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degradation (Müller et al., 2001, Seeler and Dejean, 2003, Verger et al., 2003, 

Hannoun et al., 2010). 

There are three SUMO homologues that have been identified in humans: SUMO-1, 

SUMO-2 and SUMO-3 (Johnson, 2004). SUMO-2 and SUMO-3 have a 95% sequence 

homology with each other but only share 50% sequence homology with SUMO-1 

(Johnson, 2004). SUMO proteins are able to covalently bind to lysine residues in 

the target substrate, which are mostly contained within the SUMO consensus 

sequence, ΨKxD/E, where Ψ corresponds to a large hydrophobic amino acid, K is 

a lysine residue, x is any amino acid and D/E is an aspartic acid or a glutamic 

acid residue (Hannoun et al., 2010). It has been noted however, that proteins 

can be SUMOylated out with this consensus motif and currently ~40% of known 

SUMOylated proteins do not possess this consensus sequence (Hannoun et al., 

2010, Ulrich, 2009). Binding occurs through the formation of an isopeptide bond 

between the C-terminal carboxy group of the SUMO protein and the ε-amino 

group of the lysine residue of the substrate protein (Hannoun et al., 2010). A 

unique property of SUMO-2 and SUMO-3 is the ability to form polySUMO chains 

that are covalently linked to each other through the lysine residue at the N-

terminus of their consensus sequence (Hannoun et al., 2010).  SUMO-1 does not 

contain this consensus site and as such is not able to form polySUMO chains 

therefore it can act as a chain terminator (Ulrich, 2009, Kurepa et al., 2003, 

Kroetz, 2005).  

6.1.2.2 SUMOylation cascade 

The enzymatic process of adding a SUMO protein to the target substrate is 

largely similar to that of its cousin, the ubiquitination pathway. Both of these 

pathways utilise three enzymes: the activating enzyme, E1; the conjugating 

enzyme, E2; and the ligase enzyme, E3 (Takahashi et al., 2001, Gareau and 

Lima, 2010, Hannoun et al., 2010) (Figure 6.2). Like ubiquitin, SUMOs are 

initially synthesised as propeptides that require cleavage (Mukhopadhyay and 

Dasso, 2007). Cleavage reveals a C-terminal di-glycine motif and which must 

occur in order to allow conjugation to a substrate (Mukhopadhyay and Dasso, 

2007). The next step involves the SUMO E1 activating enzyme, which interacts 

with the SUMO protein creating an energetic thioester bond. The heterodimer E1 

enzyme contains two subunits known as Aos1 (SAE1) and Uba2 (SAE2) (Figure 6.2) 
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(Han et al., 2018).  Formation of the thioester bond by E1 is required for the 

conjugation E2 enzyme to interact with SUMO. So far there has only been one 

identified E2 enzyme, Ubc9, which can be located at the nuclear pore complex 

(NPC) or at the nucleoplasm side of the NPC (Han et al., 2018).  The activated 

SUMO protein is transferred to a cysteine residue at position 93 in the active site 

of Ubc9 through a transesterification reaction leading to the formation of an E2-

SUMO thioester compound. Unlike SUMO-E2, multiple SUMO-E3 proteins have 

been identified, each of which has substrate specificity for numerous SUMO 

target proteins with little redundancy (Ulrich, 2009, Han et al., 2018). The most 

prominent group of E3 ligases in humans is the protein inhibitor of activated 

STAT (PIAS) family which consists of 5 proteins made up of 4 human PIAS genes; 

PIAS1, PIAS3, PIASxα and PIASγ (Palvimo, 2007, Liu and Shuai, 2008, Liu et al., 

1998). The PIAS family of proteins contain SP-RING domains, which bind to Ubc9, 

and SUMO interacting motifs (SIMs), which can bind to SUMO directly promoting 

SUMOylation of substrates (Hochstrasser, 2001). SUMOylation, just like 

phosphorylation is a reversible process that is under the control of a family of 

cysteine proteases called sentrin-specific proteases (SENPs) (Figure 6.2) 

(Mukhopadhyay and Dasso, 2007). These proteases are able to deSUMOylate 

proteins by simply removing SUMO from its substrate. There are seven known 

SENP family members which possess a level of substrate specificity 

(Mukhopadhyay and Dasso, 2007, Ulrich, 2009).  
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Figure 6.2 SUMOylation Cascade. The SUMOylation cascade begins with the cleavage of the C-
terminal portion of the pro-form of SUMO. This process is carried out by sentrin-specific proteases 
(SENP). SUMO protein is then bound to the E1 protein, which exists as complex containing UBA2 
and AOS1. This interaction is dependent upon ATP-Mg2+.  Next, SUMO is transferred to the 
catalytic cysteine of the E2 conjugating enzyme UBC9. An E3 ligase then catalyses the removal of 
SUMO from UBC9 and facilitates the conjugation of SUMO to the target protein. SENP’s can 
remove added SUMO from a substrate to create a dynamic and reversible pathway. (Figure 
adapted from (Hannoun et al., 2010)).  

 

6.1.2.3 Functional effects of SUMO  

The SUMO system is essential in almost all organisms (Ulrich, 2009). There is 

however, no single defined effect of SUMOylation on a target protein and 

investigations have shown that a wide range of functional outcomes are possible 

(reviewed in (Ulrich, 2009)).  

Firstly, SUMOylation of a target protein can alter its interactions with other 

proteins (Ulrich, 2009). The conjugation of the SUMO protein can allow for the 

creation of an additional binding site altering its interaction with other proteins 

or allowing the substrate to be targeted to a specific subcellular location. Some 
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proteins interact with SUMO covalently using a C-terminal di-glycine motif and 

others can interact in a non-covalent manner due to the presence of SIMs. An 

example of a SIM binding protein is p73, a member of the p53 tumour suppressor 

family, which has been shown to only interact with certain proteins after it has 

been SUMOylated (Minty et al., 2000). SUMOylation can also result in the 

blocking of an interaction site therefore preventing protein-protein interaction 

formation (Ulrich, 2009). It has also been shown that SUMOylation has the ability 

to modify the conformation of substrate proteins affecting the way substrates 

interact with other proteins (Steinacher and Schär, 2005).  Additionally, some 

SUMOylation sites can only be utilised if they are adjacent to an already 

phosphorylated phospho-site (Hietakangas et al., 2006). A phosphorylation-

dependant SUMOylation motif, ψKxExxSP, where P represents a proline, has 

previously been identified in a number of transcription factors (Hietakangas et 

al., 2006). This contains the classical SUMO interaction motif two amino residues 

upstream of a phosphorylation site. For example, PDE4D5 is known to be 

phosphorylated by PKA in order to elicit its activation (Lynch et al., 2007). 

SUMOylation of PDE4D5 at a phosphorylation-dependant SUMOylation motif next 

to the PKA phosphorylation site results in its locking into a hyperactive state (Li 

et al., 2010). In addition, the SUMO modification of PDE4D5 can also acts as a 

shield, blocking inhibitory phosphorylation by ERK (Li et al., 2010).  Finally, 

SUMO and ubiquitin can function cooperatively, for example a protein can be 

SUMOylated after which it is targeted to the nucleus leading to its ubiquitination 

and degradation (Huang et al., 2003, Ulrich, 2009). Conversely, SUMOylation of a 

protein can block ubiquitination at the same lysine residue (Liebelt and 

Vertegaal, 2016). 

Many of SUMO targets are nuclear proteins that are involved in the regulation of 

transcriptional activity, however, there is an emerging field of study 

characterising a role for the SUMOylation of cytosolic proteins that elicit a wide 

range of functional effects (Yang et al., 2017). In summation, SUMO conjugation 

can trigger a variety of outcomes for a target substrate such as; modulating the 

protein’s interactions with other proteins, its subcellular localisation, and its 

stability (Ulrich, 2009).   
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6.1.3 Palmitoylation 

The lipid modification known as palmitoylation is a reversible and regulated 

modification that has numerous cellular functions (reviewed in (Charollais and 

Van Der Goot, 2009)). The process of palmitoylation generally consists of the 

addition of C16 carbon saturated fatty acyl chain to a cysteine residue on a 

cytoplasmic region of the protein (known as S-palmitoylation) via the formation 

of a thioester linkage (Zhang and Hang, 2017). It is this high-energy thioester 

bond that underpins S-palmitoylation’s reversible state. The primary function of 

S-palmitoylation is to target proteins to specific membrane compartments or 

microdomains (Levental et al., 2010, Rocks et al., 2005, Kanaani et al., 2008, 

Schroeder et al., 1997). In influencing the localisation of proteins and their 

trafficking, palmitoylation can have critical consequences for protein function.  

Interestingly, 40% of the membrane proteome has been estimated to be S-

palmitoylated  (Roth et al., 2006, Hemsley et al., 2013, Kang et al., 2008).  

6.1.3.1 S-palmitoylation pathway 

Palmitoylation is known to occur at a wide variety of sequence motifs within 

both soluble and transmembrane proteins, which has made identification of a 

consensus sequence difficult. The diversity in substrates is accommodated by a 

large array of enzymes known as the DHHC protein acyl-transferases (PATs) 

family (Fukata et al., 2004, Huang et al., 2004, Lobo et al., 2002, Roth et al., 

2002, Roth et al., 2006). There are 23 distinct mammalian DHHC PATs, which 

together carry out most of the palmitoylation events within the cell (Putilina et 

al., 1999, Ohno et al., 2006). The DHHC PATs are multi-pass transmembrane 

proteins that are mainly localised to the intracellular compartments of the 

membrane but are also found at the plasma membrane (Ohno et al., 2006).  

DHHC proteins palmitoylate substrates by a twostep process: firstly the enzyme 

is auto-acylated and then it transfers its attached palmitoyl-residue to the 

target protein (Jennings and Linder, 2012, Mitchell et al., 2010). The process of 

depalmitoylation is tightly regulated and is carried out by the cytoplasmic 

enzymes acyl-protein thioesterases 1 and 2 (APT1 and APT2) (Bachovchin et al., 

2010).  
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6.1.3.2 Regulatory effects of palmitoylation  

Palmitoylation is normally found coupled with either N- myristoylation or 

prenylation (Shahinian and Silvius, 1995). N- myristoylation is the addition of 

myristic acid (C14) to a glycine residue with an exposed NH2 group in the target 

protein (Zha et al., 2000) whereas prenylation results in the attachment of 

farnesyl or geranylgeranyl isoprenoids to a C-terminal cysteine residue within its 

consensus sequence (Wright and Philips, 2006). These groups collectively can 

regulate membrane interactions with soluble cytosolic proteins. Single chains of 

either myristoyl or prenyl chains allow for transient membrane association 

allowing DHHC proteins to carry out palmitoylation and stabilise membrane 

binding (Shahinian and Silvius, 1995). In this way, palmitoylation is crucial for 

the stability of some membrane proteins. An example of this is found in the Gα 

subunits of G proteins which are myristoylated and palmitoylated to increase 

stability in the membrane (Linder et al., 1993). In contrast to many other static 

lipid modifications, the reversibility of palmitoylation allows for dynamic 

regulation of protein localisation such as seen in the Ras protein family (Rocks et 

al., 2005, Roy et al., 2005, Goodwin et al., 2005).  For example, without 

palmitoylation, H-Ras and N-Ras display weak membrane affinity and lower 

trafficking to the membrane. Palmitoylation promotes Ras trafficking from the 

Golgi to the plasma membrane and stabilises its membrane interaction. 

Subsequent depalmitoylation causes Ras to disassociate with membrane and the 

process can begin again (Goodwin et al., 2005, Rocks et al., 2005).   
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6.2 Hypothesis and Aims 

There is currently little data on the extent and identity of POPDC1 PTMs and 

such modifications could be important for POPDC1 function. The possibility that 

POPDC1 could be modified by three of the most common PTMs was examined. 

Firstly, prediction software was used to determine that POPDC1 contained 

possible sites of phosphorylation, SUMOylation and palmitoylation. The main aim 

of this chapter was to determine whether these modifications could be detected 

using a variety of assays. More specifically, the aims were as follow: 

• To identify and confirm a phosphorylation site in POPDC1 using peptide 

array  

• To examine whether POPDC1 contains a motif for SUMOylation and 

determine if SUMOylation can occur in endogenous NRVM 

• To investigate if POPDC1 can be palmitoylated in endogenous NRVM 
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6.3 Results 

6.3.1 POPDC1 contains a site for PKA phosphorylation in the 
Popeye domain  

The lack of knowledge surrounding control of POPDC1 by PTM led to the 

hypothesis that it may be a target of phosphorylation. As POPDC1 is a newly 

discovered cAMP effector I was intrigued by the possibility that POPDC1 could be 

a substrate for PKA. Via phospho-site prediction software (GPS 5.0) I highlighted 

11 possible serine and threonine residues that could be sites of PKA 

phosphorylation (Table 6). This Group based prediction software makes a 

computational prediction of phosphorylation sites along with their cognate 

protein kinase through a novel algorithm. The algorithm uses motif recognition 

parameters to score the site giving insight as to the probability of its existence.  

Given that these residues were widespread throughout the entire POPDC1 

sequence, it was determined that the initial screen would encompass the full 

POPDC1 sequence on a peptide array membrane.  

 

Table 6 Prediction of PKA motifs in POPDC1 using GPS 5.0 kinase prediction software. Full 
length human POPDC1 human sequence was run through the CUCKOO Workgroups Group-
based Prediction system (GPS) to highlight predicted phosphorylation motifs within the protein 
(Xue et al., 2010). The table notes the residue position of the phosphorylated serine (S) or 
threonine (T) as well as the sequence in which the site is found. Also, notes the confidence score 
of each site. The higher this score the higher the probability that it exists biologically.  
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Initially the full length POPDC1 sequence, presented in 25mers on a peptide 

array, each spot sequentially shifted by 5 amino residues (described in 2.9.2), 

was overlaid with purified, active PKA catalytic subunit in a kinase assay mix to 

identify any PKA phosphorylation sites (Figure 6.3). Using a PKA phospho-

substrate antibody, only one site was identified for PKA phosphorylation on a 

threonine residue at position 236 (Figure 6.3, denoted in red). This residue lies 

in the middle of the Popeye domain around 50 amino residues downstream of 

the identified PDE4A binding site and of the predicted TREK1 binding site 

(described in section 3.3.4). T236 was one of the sites predicted through the 

phospho-site virtual screen adding some validity to the result.  There was no 

unspecific binding of the PKA substrate antibody in the control array that was 

not overlaid with PKA cat subunit (Figure 6.3). 

 

Figure 6.3 In vitro PKA assay using full length POPDC1 peptide array. To identify any PKA 
phosphorylation sites, POPDC1 full length was spotted on cellulose in 25mer peptides that were 
shifted by 5 amino residues each time. The peptide array was overlaid with PKA catalytic subunit 
(denoted with + above). Peptide arrays were stained with Coomassie or incubated with antibody 
only as controls (denoted with – above). Arrays were imaged using Xomat® (Kodak). Red letters 
indicate the threonine that is the potential site of phosphorylation.  

 

To confirm that it was the threonine residue that was being phosphorylated by 

PKA, walking alanine scans were carried out on the identified 25mer (Figure 

6.4). Sequentially each amino residue was substituted with an alanine and the 

peptide array was overlaid with the PKA catalytic subunit in the kinase assay 

mix. Ablation of the threonine residue led to a complete loss of phosphorylation 

(Figure 6.4). Interestingly, the change in the amino residues R232 and R-L-T 

(residues 234-236) collectively, resulted in a loss of PKA phosphorylation.  
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Figure 6.4 Walking Alanine scan of PKA site. Sequentially, 25mer amino acid sequence, 
surrounding and including the PKA site on POPDC1, were substituted with alanine (shown in bold). 
Arrays were subjected in vitro PKA assay before being immunoblotted for PKA substrate. Control 
slides were not subjected to in vitro PKA assay only probed with primary and secondary antibody. 
An untreated array was Coomassie stained as a protein concentration control. 

 

A secondary alanine scan peptide array, that substituted two residues, at a time 

was carried out to examine if the sequence immediately prior to the T236 was 

crucial to POPDC1s ability to be phosphorylated by PKA (Figure 6.5).  

Interruption of the S-R-E-R-L-T (residues S231-T236) sequence resulted in the 

complete loss of phosphorylation, identifying that this site was critical to the 

addition of the phosphate group of T236.  

Collectively this evidence provides the first conformation of a possible PKA-

dependent phosphorylation site on POPDC1.  
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Figure 6.5 Double Alanine Substitutions of PKA site.  In each instance two amino residues 
surrounding and including the PKA site were substituted with alanine. Arrays were subjected to in 
vitro PKA assay before being immunoblotted for PKA substrate (denoted with +). Control slides 
were not subjected to in vitro PKA assay only probed with primary and secondary antibody 
(denoted with -). An untreated array was Coomassie stained as a protein concentration control. 

 

6.3.2 POPDC1 contains a SUMO site that can be SUMOlyated in 
vitro 

As mentioned, SUMOylation of protein substrates can have a wide range of 

effects from increasing or decreasing their stability to modulating their 

interactions with other proteins (Ulrich, 2009). The next step in examining the 

potential post-translational modifications of POPDC1 was to investigate whether 

it could be modified by SUMO. SUMOylation of a target proteins occurs through 

the conjugation of a SUMO protein to a lysine situated in the consensus sequence 

ΨKxD/E, where Ψ represents a large hydrophobic residue, K a lysine residue, x is 

any amino acid and D/E is an aspartic acid or glutamic acid respectively 

(Hannoun et al., 2010).  

As there has been no previous work carried out on SUMOylation of POPDC1, 

SUMOplotTM prediction software was utilised to identify any potential sites of 

SUMOylation (Figure 6.6A). The software identifies possible SUMOylation sites 

and gives the probability of the lysine contained within this site being 

SUMOylated based on the classical consensus motif. Not only does it identify 
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classical motifs, but also close consensus motif matches that share a similar 

hydrophobicity pattern (Abgent, SUMOplotTM Analysis Program). One SUMO 

consensus site that was identified in this scan, lysine at position 119 (K119), can 

be seen to reside immediately upstream of the Popeye domain (Figure 6.6B).   In 

addition, two SIMs were predicted to exist, one in the extracellular N-terminus 

and the other at the end of the Popeye domain. 

 

Figure 6.6 Sumo site scan and schematic of POPDC1 with sites. A SUMOplot ® was used to 
identify potential SUMOylation sites and SUMO interacting motifs (SIMs) in POPDC1. Sequence of 
SUMOylation binding or SIM are highlighted in red text. The confidence score of each site is given 
alongside its position in the POPDC1 protein. The higher the score the higher the probability that 
this is a biologically found SUMOylation site. B, A schematic representation of POPDC1 protein 
showing SUMO consensus sequence and its position on the protein.   

 

To confirm whether this predicted site was SUMOylated, peptide arrays 

containing the full-length sequence of POPDC1 (25mers shifted by 5 a.a.) were 

exposed to an in vitro SUMO assay kit (Enzo). Using a SUMO2/3 specific primary 

antibody it was shown that the predicted consensus site was able to be modified 

by SUMO (Figure 6.7). Furthermore, there was no evidence of non-specific 

binding in the antibody only control. SUMOylation of the P-V-K-I-E motif was lost 

in the 5mer shifts that did not contain said motif (Figure 6.7 lowest spot) or 

where the motif was close to the point of immobilisation at the N-terminal of 

peptide (Figure 6.7, 2nd lowest spot).  
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Figure 6.7 In vitro SUMO assay using full length POPDC1 peptide array confirmed SUMO 
motif. Full length POPDC1 sequence covered in 25mer spots on peptide arrays were used in an in 
vitro SUMO assay. 25mers were shifted by 5 amino residues each spot to allow full coverage of the 
protein. After 1-hour incubation at 37oC in the presence of the SUMO kit, membranes were blocked 
in 5% BSA and incubated in SUMO2/3 primary antibody. Control membranes were not exposed to 
the SUMO kit. The consensus sequence identified is noted in red. POPDC1 can be SUMOylated 
on the VKIE motif at position (V118-E121). 

 

Although peptide arrays have confirmed that the V-K-I-E (V118-E121) motif is a 

conjugation point for SUMO, peptide arrays are limited by the fact that they are 

immobilised peptides that are used in cell-free systems. This means that data 

from peptide array  studies do not necessarily  reflect the situation in the cell as 

short peptides cannot replicate tertiary structure of the proteins of interest. 

Therefore, the next step was to determine whether the POPDC1 protein could be 

SUMOylated in its natural conformation. To do this, NRVM lysates were subjected 

to an in vitro SUMOylation assay (Enzo) carried out according to manufacturers 

protocol. To determine whether SUMOylation of Popdc1 had occurred, the 

resulting assays were Western blotted for the target protein and the presence of 

a bandshift indicated the presence of SUMOylation. As a negative control, assays 

were performed without MgATP, a co-factor that is essential for SUMO E1 ligase 

activity. When NRVM lysates were subjected to the SUMO assay and 

immunoblotted for Popdc1 there was a distinct bandshift indicating that Popdc1 

had been SUMOylated (Figure 6.8). This band was more intense than those in the 

control lanes but, a student’s t-test did not show any statistical significance 

between samples with MgATP present and those without. The data presented 

here (Figure 6.8) suggests that endogenous Popdc1 from NRVM may be 
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SUMOylated in vitro, although further repeats of this experiment would be 

needed to confirm this PTM.  

                       

Figure 6.8 In vitro SUMO assay using NRVM lysate. NRVM was subjected to in vitro 
SUMOylation using a SUMO assay kit (Enzo). BVES (POPDC1) antibody was used to detect both 
SUMOylated and unSUMOylated Popdc1.  A band shift of ~20kDa was present in the sample 
containing all assay components including MgATP. Control assays were run without the addition of  
MgATP, the crucial co-factor for the E1 enzyme meaning no SUMOylation can occur. The 
intensities of the lower unSUMOylated Popdc1 band and the upper SUMOylated Popdc1 band 
were measured using ImageJ studio and compared using GraphPad Prism TM. A student’s t-test 
was carried out (p=0.33). Results represented as mean ± SEM, n=3.  

 

6.3.3 Popdc1 is not palmitoylated in NRVM  

Palmitoylation is a group of lipid modifications that are a common feature of 

many eukaryotic proteins. Unlike many other PTMs, there has been no strict 

consensus sequence identified, but the modification occurs on cysteine residues 

and these possess similarities in local amino acid sequences. They are usually: 

surrounded by basic or hydrophobic amino residues, adjacent to myristoylation 

and prenylation sites and they are frequently found in the cytoplasmic regions 

that flank transmembrane domains (Salaun et al., 2010). Using NetWheel, 
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protein helical and charge prediction software, a cysteine residue at position 89 

in the POPDC1 sequence was identified to be a possible site of palmitoylation 

(NetWheel data not shown) (Figure 6.9). C89 is surround by a cluster of 

hydrophilic residues on one side with hydrophobic residues on the other. This 

could allow the residue C89 in Popdc1 to interact with the membrane in order 

for the palmitoyl to be conjugated to it through a DHHC PAT protein. 

Interestingly, this cysteine residue is conserved between Popdc1 and Popdc2 

(Figure 6.9), supporting my hypothesis that it may provide some crucial function.  

 

Figure 6.9 Identification of cysteine residue for possible palmitoylation in Popdc1. A cysteine 
residue identified through the NetWheel algorithm resides in the cytoplasmic region immediately 
following a transmembrane domain and was found to be conserved in Popdc2 (shown in grey box).   

 

To confirm whether this site was able to become palmitoylated, a protocol for 

the identification of S-acylated species using resin-assisted capture (acyl-RAC) 

was utilised. After the blocking of free thiols with S-methyl 

methanethiosulfonate (MMTS), palmitoylated proteins were captured on 

thiopropyl sepharose beads (GE life sciences) in the presence of 200mM 

hydroxylamine (HA) (Forrester et al., 2011, Howie et al., 2014). Treatment with 

HA will block any newly free thiols from becoming exposed meaning that only 

the cysteine residues that have been palmitoylated will be precipitated with the 

thiopropyl sepharose beads. The beads contain thiol groups that are able bind to 

the free, palmitoylateable cysteine residues via the formation of mixed 

disulphide bonds. The level of palmitoylation was assessed by quantifying the 

band present in the HA lane, which captures cysteine residues where disulphide 

bonds that attach a C16 carbon saturated fatty acyl chain have formed, 

compared to the total protein in the unfractionated (UF) lane (Figure 6.10). As a 

negative control, NaCl was used in place of HA and this control showed no non-

specific binding of either Popdc1 or Cav3 (Figure 6.10). It can be seen that no 

Popdc1 was palmitoylated in either of the two representative examples (Figure 

6.10).  Cav3 is known to be palmitoylated at multiple cysteine residues and was 
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therefore used as a positive control (Dietzen et al., 1995). The Cav3 band in HA 

lanes signals that the assay is functioning correctly (Figure 6.10).  

               

Figure 6.10 In Vitro Palmitoylation assay using NRVM lysate. NRVM lysate was harvested in 
blocking buffer (100M HEPES; 1mM EDTA; 2.5% SDS, 1% MMTS; pH7.5) prior to the acyl-RAC 
assay being carried out.  Samples were either treated with hydroxylamine (represented in the HA 
lane) or NaCl as a negative control. Thiopropyl sepharose beads (GE Life Sciences) were used to 
capture free cysteine residues that had been palmitoylated during assay. The presence and level of 
palmitoylation was compared to the target protein abundance in the starting cell lysate (UF). The 
resin-captured fraction is reduced fivefold in volume in comparison to the to the unfractionated 
sample therefore the palmitoylated samples are fivefold enriched. Cav3 was used as it is a known 
positive control for palmitoylation. Figures are representative an n=2 of a total n=5. (Experiments 
carried out with help of Ms Alice Main, University of Glasgow). 

 

Despite there being a correctly positioned cysteine residue, Popdc1 was found to 

not be palmitoylated in any of the replicates of this assay that were carried out.  

 

 

 

 



229 
 

6.4 Discussion 

6.4.1 POPDC1 contains a site for PKA phosphorylation 

Phosphorylation acts a major mechanism of control in regulating the contractile 

state of the heart via the modulation of numerous proteins. PKA phosphorylation 

is known to affect a variety of proteins that play a significant role in regulating 

cardiac contractility and performance of the heart, such as PLB, RyR2, and 

cardiac myosin binding protein-C (cMyBP-C) (Barefield and Sadayappan, 2010, 

Baryshnikova et al., 2008, Jones et al., 2008, Li et al., 2004, Wolff et al., 1996). 

For example, cMyBP-C phosphorylation results in force generation by affecting 

the interaction between the thick and thin filaments of actin  (Barefield and 

Sadayappan, 2010, Tong et al., 2008). In addition, the PKA-dependent 

phosphorylation of the SR Ca2+ pump (also known as sarco-/endoplasmic 

reticulum Ca2+-ATPase, SERCA) was shown to increase the Ca2+ affinity of the 

pump and increase calcium current ICa-triggered Ca2+-release from the SR stores 

(Phrommintikul and Chattipakorn, 2006, Mattiazzi et al., 1994, Sichelschmidt et 

al., 2003). With phosphorylation playing such a crucial role in maintenance of 

cardiac function, the possibility that POPDC1 could be subjected to the same 

PTM was exciting as it could represent another regulatory mechanism of POPDC1 

function and interactions. In this chapter evidence has been provided for the 

existence of a PKA phosphorylation site in the catalytic domain Popeye domain 

of POPDC1 (Table 6, Figure 6.3, Figure 6.4, and Figure 6.5). Given the close 

proximity of this putative phospho-site to the DSPE and FQVT cAMP binding motif 

it is obvious to suggest that phosphorylation may regulate cAMP binding in a 

similar way to PKA (Das et al., 2007). It could be suggested that the 

phosphorylation of the Popeye domain coupled with the binding of cAMP would 

lead to a conformational change leading to the gain or loss of binding to its 

interaction partners. This conformational change itself may serve as a means of 

regulating POPDC1’s protein-protein interactions: for example, it has been 

discussed that POPDC1 interacts with TREK1 under basal cAMP levels but 

dissociates under high cellular cAMP. High levels of cAMP also lead to the 

activation of PKA, therefore upon POPDC1 binding to cAMP concomitant 

phosphorylation by PKA may induce a conformational change in the structure of 

POPDC1, dissociating it from TREK1. Phosphorylation dependant conformational 

changes have been reported in number of proteins, for example, the FXYD 
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proteins, which are the family of regulatory subunits of the Na+, K+-ATPase (NKA) 

ion pump. Phosphorylation of NKA at S936 modulates pumping activity by 

changing the accessibility to the ion-binding site (Poulsen et al., 2012). This 

gives support to my hypothesis that POPDC1 conformational change may be 

triggered, in part, by PKA phosphorylation in the Popeye domain. In addition, it 

has been postulated that the binding of POPDC1 to TREK1 indirectly prevents the 

channels activation by blocking its phosphorylation by PKA. It therefore may be 

that the phosphorylation of POPDC1 is due to this shield mechanism (Patel et al., 

1998, Terrenoire et al., 2001).  

Interestingly, the phosphorylation motif found in POPDC1 is unlike any canonical 

PKA motif. However, there is a high similarity between the motif in POPDC1, R-

X-R-X-T, and the canonical protein kinase B (PKB) motif, R-X-R-X-T-S-hyd-R 

(Obata et al., 2000).  PKB comprises of a NH2-terminal Akt homology (AH) 

domain tethered to a catalytic domain (that shows high sequence homology with 

PKA and protein kinase C (PKC) and a short C-terminal domain. The activity of 

PKB can be initiated by numerous cellular stimuli including insulin, 

hyperosmolarity stress and increased cAMP (Cross et al., 1995, Burgering and 

Coffer, 1995, Andjelković et al., 1996, Filippa et al., 1999). POPDC1 may be 

phosphorylated by PKB rather than PKA. Given that the catalytic domain shares 

high sequence homology to PKA (Alessi et al., 1996) it may be that the forced 

phosphorylation assay carried out in this chapter that uses the catalytic domain 

of PKA has identified a PKB site. This would need to be confirmed through in 

vivo assays such as inhibition of either PKA or PKB and subsequent analysis of 

POPDC1 phosphorylation to confirm which kinase is interacting with POPDC1.  

Despite the speculation about the functional outcome of POPDC1 PKA-dependent 

phosphorylation, the event itself needs to be confirmed in vivo. There are 

limitations with the use of peptide arrays as mentioned previously. Given that it 

the peptide array uses linearized peptides, the threonine we have shown to be 

able to be phosphorylated may not be exposed in the proteins native state. 

Based on Jpred4™ secondary structure prediction software, T236 lies within an α-

helix in the heart of the Popeye domain therefore may not be accessible in basal 

conditions. cAMP binding to the Popeye domain may occur prior to PKA-

phosphorylation allowing for a conformational change exposing the threonine to 



231 
 
be phosphorylated. Further research with a custom-made phosphor-site specific 

antibody against the region containing T236 would confirm the existence of this 

modification in cells and tissue. If true, this would represent the first instance of 

PKA regulation of another cAMP effector protein and would provide a new level 

of crosstalk within the cAMP signalling system. 

6.4.2 POPDC1 is SUMOylated 

This study presents the first evidence that POPDC1 can be SUMOylated at K119 

within the consensus motif VKIE 118-121 (Figure 6.6 and Figure 6.7). Although in 

a cell-free system, SUMOylation using the in vitro assay, allowed for the putative 

site to be identified using peptide array method (Figure 6.7). The data suggests 

that all four amino acid residues in the consensus sequence are important for 

SUMOylation of POPDC1, as the removal of this sequence results in the loss of 

SUMOylation (Figure 6.7). This SUMOylation assay was also utilised to confirm the 

same result as the peptide array in NRVM lysate showing that Popdc1 can be 

SUMOylated in a biological environment. As time constraints did not allow 

further validation of this Popdc1 modification, other experiments that would 

have added extra evidence to the theory that POPDC1 gets SUMOylated would be 

to pull-down POPDC1 with SUMO agarose (agarose conjugated to SUMO specific 

antibodies), proteomics studies that not only confirm the existence of SUMO-

POPDC1 but also identify possible sites at which this takes place, cloning of 

unSUMOylateable (K119 to R119) POPDC1 mutants that could be used in the cell 

free SUMO assay and finally proximity ligation techniques that show intimate co-

localisation of antibodies directed against both SUMO and POPDC1.  

SUMOylation of cardiac proteins has been well defined. One such protein is 

SERCA2a, an ATPase responsible for Ca2+ re-uptake in the excitation-contraction 

coupling. SERCA2a has been shown to be SUMOylated at lysine 480 and 585 and 

that this SUMOylation is critical to the activity and stability of the protein (Kho 

et al., 2011). In failing human hearts, the SUMOylation of SERCA2a is markedly 

reduced (Kho et al., 2011). The addition of SUMO by adeno-associated virus-

mediated gene therapy in HF mice resulted in the stabilisation of SERCA2a by 

reducing its degradation which significantly improved cardiac function. 

Overexpression of SUMO1 by gene transfer rescued pressure overload-induced 

dysfunction concomitantly with a marked increase in the function of SERCA2a in 



232 
 
mouse and porcine (Kho et al., 2011, Lee et al., 2014, Tilemann et al., 2013). 

Given that increasing SUMOylation results in a protective outcome, a small 

molecule screen resulted in the identifying of N-(4-methoxybenzo[d]thiazol-2-

yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-amine (N106) that can drive in vivo 

and in vitro SUMOylation of SUMOs target substrates (Kho et al., 2015). N106 

docks to a putative site of E1 ligase and confers its activity. The ability to 

therapeutically target the SUMOylation of SERCA2a presents as a novel approach 

to the treatment of HF. Using this novel N106 compound the SUMOylation of 

POPDC1 and the functional implications could be further deciphered using 

techniques outline previously.  

Although K119 conforms to the classical SUMOylation motif, ΨKxD/E, there are 

additional factor that must be contemplated. For example, studies into the ETS-

like protein, ELK-1, identified an extended SUMOylation motif in which the 

amino acid residues immediately downstream of the target K residue are 

negatively charged. Termed a negatively charged amino-acid dependent 

SUMOylation motif (NDSM), the extended site allows for upregulation of 

SUMOylation on that site (Yang et al., 2006).  The identified POPDC1 site 

contains glutamic acid (E) residues at position 121 and 123, which are 2 and 4 

amino acids downstream K119. Future studies should focus on determining 

whether these residues play a role in the ability of POPDC1 to become 

SUMOylated.  POPDC1 conforms to the NDSM extended motif, but not to others 

known extended motifs known as phosphorylation-dependent SUMOylation motif 

(PDSM) and the hydrophobic cluster-dependent SUMOylation motif (HCSM). All 

three of these extended motifs are believed to upregulate SUMOylation of a 

target protein by increasing the SUMO pathways enzymatic substrate specificity 

(Hietakangas et al., 2006, Yang et al., 2006).  

Given the evidence I have presented suggesting that POPDC1 is SUMOylated at 

the start of the cytoplasmic region, out with the Popeye domain, there are 

several hypotheses that can be made about the function of this SUMOylation. 

Firstly, SUMOylation may act to stabilize the protein, a phenomenon seen with 

IκBα (Ulrich, 2012). IκBα, is responsible for the inhibition of NFκB during the 

activation of inflammatory responses and it is stabilised by SUMOylation (Ulrich, 

2012).  Secondly, POPDC1 has also been shown to be localised to the nucleus and 
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it is not understood how this occurs. It is possible that the act of SUMOylation 

allows for the nuclear localisation of the protein, seen for example with NEMO 

proteins that require SUMOylation to be translocated to and retained in the 

nucleus (Huang et al., 2003, Liebelt and Vertegaal, 2016).  Lastly, although the 

site we identified was not predicted to be a site for ubiquitination (scan 

performed using UbPred software – a predictor of protein ubiquitination sites) 

(data not shown), it may be possible that this SUMOylation site is incorrect. 

There is an accumulation of evidence that suggests that SUMOylation serves as a 

prerequisite for ubiquitination and thereby inducing protein degradation 

(reviewed in (Wei and Lin, 2012). It is possible that a further SUMOylation site 

exists that also contains the site for ubiquitination targeting POPDC1 for 

degradation by the proteasome. This is turn would provide a turnover 

mechanism for POPDC1. Further investigation such as proteomics, should be 

conducted to confirm the site identified is correct and that no other exists. For 

example a novel proteomics approach was undertaken through the stable 

expression of different SUMO paralogs in HEK293 cells, each of which contained 

a His6 tag and a tryptic cleavage site at the C-terminus allowing for recovery and 

identification of SUMOylated peptides by mass spectrometry (Galisson et al., 

2011).  Using this method Galisson and colleagues identified 205 unique protein 

substrates with 17 SUMOylation sites that were present in 12 SUMO conjugates 

using HEK293 cells, with 3 of these sites being found in the promyelocytic 

leukaemia (PLM) protein (Galisson et al., 2011). This same method could be 

adopted to study POPDC1 SUMOylation status in healthy and disease states.  

6.4.3 POPDC1 does not undergo Palmitoylation 

The large majority of membrane proteins are incorporated into the membrane of 

the endoplasmic reticulum (ER). Protein folding then occurs within the ER at the 

three different topological environments that membrane bound proteins 

encompass, i.e. the cytoplasm, membrane and the lumen (Braakman and 

Hebert, 2013). Upon proper folding and assembly, the protein is transported 

from the Golgi and routed towards its final localisation. When the protein’s 

lifespan has come to an end, it is usually targeted by lysosomes or autophagy for 

their degradation (Anelli and Sitia, 2008). As mentioned in section 6.1.3, most 

DHHC PATs are localised to a specific organelle; mainly to the plasma 

membrane, Golgi and endosomes. These transmembrane DHHC proteins can 



234 
 
palmitoylate a protein on cysteine residues located either inside or close to the 

membrane (Bijlmakers and Marsh, 2003). We initially identified a cysteine 

residue (C89) in POPDC1 that sits close to the membrane that fits with the 

conditions need for palmitoylation (explained in 6.3.3). Despite this initial step, 

after multiple attempts at an acyl-RAC using endogenous NRVM found no 

evidence that Popdc1 was palmitoylated (Figure 6.10). Given that palmitoylation 

is an important PTM crucial to the ability of some proteins membrane targeting, 

the lack of this PTM means membrane localisation of POPDC1 remains unclear 

(Bijlmakers and Marsh, 2003, Goodwin et al., 2005, Rocks et al., 2005). There 

are, however, numerous other membrane-targeting signals that may function to 

direct POPDC1 localisation to the membrane. Alongside palmitoylation, N-

myristylation and S-prenylation are other lipid based PTMs that could be 

responsible for membrane localisation in this instance (Resh, 1999, Resh, 2006). 

In addition, structural domains within the protein itself; including C1,C2, PH, 

FYVE, PX and FERM domains, that can trigger the membrane localisation of a 

protein (reviewed in (Bhardwaj et al., 2006, Cho, 2001, Yang and Kazanietz, 

2003, Nalefski and Falke, 1996, Rizo and Südhof, 1998, Ferguson et al., 2000, 

Lemmon and Ferguson, 2000, Stenmark et al., 2002, Bretscher et al., 2002). 

Therefore, it could be speculated that any of these other PTMs and/or structural 

domains are responsible for targeting POPDC1 to the membrane.  

Further studies are required to create a clearer picture of how POPDC1s cellular 

localisation is controlled. The membrane targeting of the cAMP specific PDE4A1 

was mapped by through the use of truncated protein constructs. Truncation of 

the N-terminal region produced a highly cytosolic protein as well as identifying 

an eleven residue helical module through 1H-NMR structural analysis (Shakur et 

al., 1993, Shakur et al., 1995, Smith et al., 2007, Baillie et al., 2002). This 

module contains a core bilayer insertion unit comprised of two tryptophan 

residues known as the TAPAS-1 (tryptophan anchoring phosphatidic acid 

selective-binding domain 1) (Baillie et al., 2002). Replacement of this domain 

with a hydrophobic cassette comprising seven alanine residues also abolished 

membrane localisation indicating that trafficking and imbedding in the 

phospholipid bilayer was by the virtue of hydrophobic interactions (Smith et al., 

2007). Confirmation of this site was undertaken using mutagenesis of the TAPAS-

1 domain which resulted in a lack of PDE4A1 associated with the membrane in 
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COS1 cells (Baillie et al., 2002). Using a path of experiments such as this may 

help to identify regions of POPDC1 that contribute to the membrane association 

of the protein.  

 

6.4.4 Methodological considerations and future direction  

A large amount of work needs to be done to fully characterise PTMs that are 

important to POPDC1 and my work described here provides exciting but 

preliminary evidence to suggest that both SUMO and PKA phosphorylation might 

be altering POPDC1. 

Although we have identified a site for phosphorylation it remains to be 

confirmed that POPDC1 can be phosphorylated in vivo. The limitations of 

peptide array technology have been covered in this thesis (section 3.4.1) 

therefore these results need further validation. Using the PKA assay utilised in 

peptide array experiments, forced phosphorylation of endogenous POPDC1 in 

NRVM could be examined. NRVM lysate would be exposed to the catalytic PKA 

subunit in PKA assay buffer as outline in section 2.13.3, allowing for the forced 

phosphorylation of PKA targets. This would confirm whether this was a PKA 

dependent phosphorylation as with other methods of activating intracellular 

kinase through increase in cAMP might result in POPDC1’s phosphorylation by 

another source.  The generation of a phospho-specific POPDC1 primary antibody 

using the PKA-phosphorylation site fine mapped using peptide array would allow 

for immunoprecipitation experiments to be carried out. Using NRVM lysate that 

was either treated with forskolin to increase PKA activity or with a PKA inhibitor 

such as H89, analysis of POPDC1 could be undertaken using the phospho-specific 

POPDC1 antibody to immunoprecipitate any PKA-dependent phosphorylated 

POPDC1.  Confirming the phosphorylation of POPDC1 would assist in narrowing 

down how POPDC1 functions in terms of its interaction with TREK1. The shield 

model proposed that POPDC1 prevents PKA-dependent phosphorylation. As such, 

the phosphorylation of POPDC1 may result in a conformational change allowing 

PKA access to TREK1. A POPDC1 phospho-site mutant protein could be produced 

with a fluorophore tag to be used in FRET experiments. It was previously shown 

that treatment with forskolin to increase cAMP leads to a reduction in the 
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interaction between POPDC1 and TREK1 (Froese et al., 2012). The same protocol 

could be undertaken with cells transfected with the phospho-mutant or treated 

with a PKA inhibitor such as H89. A lack of FRET ratio changes in cells expressing 

a phospho-mutant construct treated with forskolin would signify blocking of PKA-

dependent phosphorylation of POPDC1 is necessary to dissociate the 

POPDC1/TREK1 interaction. This result could then be compared to results from 

FRET experiments using cells transfected with WT-POPDC1 FRET construct and 

treated with PKA inhibitors. Completion of this set of experiments would 

elucidate how POPDC1 phosphorylation is involved in the modulation of 

POPDC1’s interactions.  

In this chapter, evidence was provided for POPDC1 SUMOylation.  However, 

further investigation is required to fully confirm this modification. For a target 

protein to become SUMOylated, it must directly interact with UBC9 the only 

known SUMO E2 ligase (Knipscheer et al., 2008). A peptide array consisting of 

full length POPDC1 could be overlaid with UBC9 to produce a binding site. With 

this information a fusion protein could be created between POPDC1 and UBC9 

(Kim et al., 2009, Jakobs et al., 2007, Weber et al., 2014) . Transfection into 

HEK293 cells would increase intracellular SUMOylation providing support for the 

notion that this is a PTM POPDC1 is subjected to. In addition, the creation of a 

SUMOylated-POPDC1 antibody that have previously been developed in our lab for 

SUMOylated TnI and B2AR would allow for the endogenous detection of a 

SUMOylated Popdc1 (Wills, 2017, Fertig, 2019). Such evidence is crucial to 

validate this PTM of POPDC1. 

It was previously stated that there is usually extensive cross talk between 

SUMOylation and ubiquitination. Given that a ubiquitin scan (data not shown) did 

not identify this motif as a site for the PTM it does not mean that POPDC1 is not 

SUMOylated. Given that the event of SUMOylation is thought of as pre-priming a 

protein for ubiquitination it may be that POPDC1 undergoes SUMOylation but not 

at the site identified (reviewed in (Wei and Lin, 2012)).  In addition, given that 

the canonical SUMO motif is found in over a third of proteins, false positives are 

likely to exist. The SUMOylation kit contains all the enzymatic components and 

SUMO proteins in non-physiological, high concentration in order to allow target 

proteins to reach a detectable level.   
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Although no evidence of palmitoylation of POPDC1 was found in these 

experiments, it could be argued that membrane localisation of POPDC1 is the 

function of one of the previously mentioned membrane-localisation domains or 

other lipid modifications. As such, proteomic scans of POPDC1 could be 

undertaken to identify if such protein targeting domains exist. In addition, mass 

spectrometry of POPDC1 to identify further modifications could be done which 

may elucidate pathways for future investigations.  

A final point to be noted is that neither the SUMOylation of the PKA-

phosphorylation site are conserved in either of the other POPDC members 

(Figure 6.11). Many of the consensus motifs that have been identified for PTMs 

such as phosphorylation are weakly constrained and are often not conserved 

(Beltrao et al., 2013). The functional relevance of the identified PTMs of POPDC1 

will have to be examined. Conservation domains within protein families usually 

identify regulatory hotspots that overlap functionally important regions (Beltrao 

et al., 2012). For example, 313 phosphorylation sites were identified in HSP70 

proteins but only 2 were determined to be significant hotspots (Beltrao et al., 

2012). More detailed analysis of the POPDC1 phosphorylation and SUMOylation 

status is required to determine whether these PTMs identified have any 

functional relevance.  

 

Figure 6.11 Clustal Omega alignment of POPDC1-3. Identified PTM sites were examined for 
conservation between the three POPDC family members. A the SUMOylation motif of POPDC1 
(red) was not conserved in any of the other isoforms. B PKA-phosphorylation site, T236, or the 
surrounding amino residues (blue) are not present in POPDC2 or POPDC3.   
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6.4.5 Conclusion 

In conclusion, in this chapter I have provided evidence that POPDC1 is subjected 

to phosphorylation and SUMOylation but not palmitoylation (Figure 6.3, Figure 

6.8, Figure 6.10). These PTMs may serve as controls of POPDC1s function, 

localisation or that of its interaction partners. Given the wide range of possible 

modifications that can be made to a protein, the data here only provides a 

preliminary look at those affecting POPDC1. As such, there are numerous 

avenues that must be explored to fully understand how POPDC1 is controlled, 

modulated, stabilised and degraded in the cell. Now, with the successful 

identification of posttranslational modification sites on POPDC1, future work can 

focus on both; confirmation of the sites through the techniques outlined above 

and investigation of functional outcomes.  
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7 Structural analysis of POPDC1 

7.1 Introduction 

The question of what a protein does within a cell is a challenging one to answer. 

Even when you have information about some of the protein’s biochemical 

characteristics, defining its exact biological role is difficult to do accurately. As 

protein structure and function are inextricably linked, solving foster 

understanding of function. 

 Currently, little is known about the structure of the POPDC protein family other 

than what has been deduced from structural homology modelling.  POPDC 

proteins possess a short (27-39 amino residue) extracellular N-terminal domain 

that are subjected to N-linked glycosylation at two asparagine (Asn) residues 

(Asn20 and Asn27) (Amunjela and Tucker, 2016b, Han et al., 2019). Predictions 

such as this is followed by three transmembrane domains linking to the 

intracellular portion of the protein. Following on from these transmembrane 

domains is the Popeye domain which houses the non-canonical phosphate 

binding cassette (PBC). The PBC, also known as a cyclic nucleotide binding 

domain (CNBD) consists of two conserved motifs, DSPE and FQVT, which are 

responsible for the binding of cAMP (Froese et al., 2012). The C-terminus 

contains the largest proportion of sequence variability between the isoforms and 

its function is unknown (Andrée et al., 2000).              

Given the lack of known structure either for the full-length protein or the CNBD 

itself the mode by which POPDC proteins bind cAMP has been predicted through 

modelling studies. Problematically, there is a lack of sequence homology to 

classical cAMP effector proteins that have had their structures determined with 

cAMP bound. The closest sequence similarity was found in the bacterial 

catabolite activator (CAP) or the cAMP response proteins (CRP), where 20% 

similarity has been identified. As such the secondary predictions were built using 

the CNBD structure of Streptomyces coelicolor (PDB:2PQQ) as an initial template 

and the CNBD of PKA RII (PDB: ICX4) was used for refinement (Figure 7.1) 

(Amunjela et al., 2019) .  
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Figure 7.1 Homology model of the Popeye domain of POPDC. A homology model of the CNBD 
of POPDC3 was by Amunjela and colleagues created using Phyre2 algorithm. The pink represents 
the FQVT and DSPE motif that are crucial to the proteins ability to bind to cAMP, which can be 
seen bound in the figure by the black arrow. The position of cAMP binding was predicted using the 
3DLigandSite predictor (Kelley et al., 2015, Wass et al., 2010). As the closest homology to the 
CNBD of POPDC1 was found in the cAMP response (CRP) protein and bacterial catabolite 
activator (CAP), the CNBD of Streptomyces coelicolor was used as a template with PKA RII CNBD 
used to refine the structural prediction. (Adapted from (Amunjela et al., 2019)).  

 

The POPDCs PBC is highly divergent from any of the known canonical CNBDs. In 

addition, the uncertainty surrounding the mode by which POPDC1 binds cAMP 

and the functional changes that occur makes it challenging to identify possible 

implications of mutations within the domain. Thus, determining POPDC’s 

structure will be a crucial step in developing our understanding of its role in the 

cell.  
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7.2 Hypothesis and Aims 

Structural analysis of POPDC1 has been under investigation for years with little 

success. Despite the slow progress it is clear that the information that can be 

gained from solving the structure of the first POPDC family member would allow 

for a more complete analysis of the protein’s functions and interactions. 

Determining the structure could contribute to a better means of investigating 

how the modulation of the protein occurs under various cellular conditions such 

as high cAMP. Clarity on this point would contribute greatly to POPDC 

characterisation. Having POPDC1 coordinates would also be useful for confirming 

previously identified protein partner binding sites, for example the site of PDE4A 

interaction, and for insight into why familial mutations in POPDC are so 

devastating. As such, the aims of the work presented in this chapter are as 

follows: 

• Create constructs expressing portions of the POPDC1 protein for structural 

analysis 

• Determine expression conditions for the constructs that maximise the 

solubility of the protein by varying the induction conditions 

• Isolate recombinant protein on a large scale with sufficient purity for 

structural analysis 

• Confirm the functionality of purified recombinant proteins  
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7.3 Results 

The isolation of a protein of interest can be a complex process that does not 

necessarily produce purified protein at the required yield or purity. Production 

of recombinant protein is often favoured as it can allow for high quantities of 

protein to be expressed at a relatively low economic cost.  Many recombinant 

expression systems have been trialled and developed over the years, tailored to 

individual research needs. These are categorised based on the cell type used: 

prokaryotic cells such as Escherichia coli (E.coli); eukaryotic cells such as insect 

cells, mammalian cells, yeast cells; and finally cell-free systems  (Baneyx, 1999, 

Jarvis, 2009, Jarvis, 2014, Mattanovich et al., 2012, Carlson et al., 2012).  

Important factors must be considered in determining which expression system to 

choose including cost-effectiveness, source organism of the protein and 

scalability of expression.  

The most commonly used system is E.coli due to numerous advantageous 

properties including high growth rates, high expression yields, cheapness of cell 

strains and growth media as well as a good understanding of protein expression 

machinery.  There are, however, several disadvantages to the use of E.coli such 

as the lack of eukaryotic expression and folding machinery. In this study I took 

steps to ensure the highest yield, including the removal of rare codons, and the 

production of correctly folded protein (reviewed in (Rosano and Ceccarelli, 

2014)).  

7.3.1 Design of constructs 

Eukaryotic genes often contain codons that are rarely used in highly expressed 

genes in E.Coli. A high frequency or the consecutive appearance of these rare 

codons can result in stalled translation, truncation or failed expression of the 

protein (Wada et al., 2001). As such, the POPDC1 sequence was examined for 

the presence of these rare codons.  There were 238 instances of rare codons 

were identified with many of these being found consecutively (Figure 7.2). In 

addition, the optimisation of the POPDC1 gene included the avoidance of RNA 

secondary structures that could stall translation.  Therefore, a synthetic POPDC1 

gene was produced, by Genewiz (UK), to create the optimal chance of protein 

expression for these experiments.  
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Figure 7.2: Identification of rare codons within POPDC1.  The sequence of POPDC1 was 
scanned for rare codons that would potentially affect its expression in E.Coli.  Three proline 
residues and a threonine were identified to contain rare codons, with a proline and the threonine 
residue being found consecutively (Rare Codon Caltor programmed by Edmund Ng).  

 

The yield and solubility of a recombinant protein has been shown to depend on 

the predicted domain boundaries in the protein that have been expressed 

(Edavettal et al., 2012). Polymerase chain reactions (PCR) were carried out with 

the synthetic POPDC1 being used as the template and primers designed to 

contain specific regions of the protein. The fragments all contained the Popeye 

domain flanked by different domains of POPDC1. The primer sequences for 

domain parameters were based on the JPRED prediction of where the regular 

secondary structure elements would end and then adjusted to incorporate a 

number of predicted disordered, hydrophilic residues (Kelley et al., 2015). The 

primers were designed to allow for the easy incorporation of the fragments into 

the pNIC28-Bsa4 backbone by ligation independent cloning. Using a combination 

of 5’ and 3’ primers, a total of ten constructs were designed to express different 

lengths of the POPDC1 protein (constructs used in this chapter are shown in 

Table 6). To create these fragments of POPDC1, PCRs were carried out using the 

conditions noted in Material and Methods section 2.7.  
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Table 6: List of constructs developed with fragment size in base pairs and primers used.  

Residues Fragment  Size Primers 

1-279 N-terminal + Popeye domain 837bp Full length 5’ and 

Popeye domain 3’ 

1-360 Full POPDC1 1080bp Full length 5’ and Full 

length 3’ 

111-279 Popeye domain 504bp Popeye domain 5’ and 

Popeye domain 3’ 

111-360 Popeye domain + C-terminal 750bp Popeye domain 5’ and 

Full length 3’ 

 

The products of the PCR reactions were analysed using gel electrophoresis 

(Figure 7.3) and the reactions were judged successful by the presence of bands 

at the appropriate base pair size (noted in Table ).  The absence of a band in the 

negative control lane provided further support that the PCR products were 

specific to the primers and POPDC1 template DNA.  
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Figure 7.3 Gel electrophoresis confirmation of PCR products for development of POPDC1 
constructs. PCR products from the 4 reactions noted above were examined via 1.5% agarose gel 
electrophoresis. Reaction 1 products contain the N-terminal – Popeye domain construct created 
using Full length 5’ and Popeye domain 3’ primers. Reaction 2 are the products containing the full 
POPDC1 protein created using the Full length 5’ and Full length 3’ primers. Reaction 3 products 
contain the Popeye domain created using the Popeye 5’ and Popeye 5’ primers. Reaction 4 
products contain the Popeye domain – C-terminal fragment created using the Popeye 5’ and the 
Full length 3’ primers.  A negative control was used by carrying out a similar PCR however, the 
primers were excluded. The lack of a band in this lane confirms that there was no unspecific 
amplification or contamination in the samples. (Work carried out with the help of Mr Donald 
Campbell, University of Glasgow). 

  

Upon the confirmation that the fragment was the correct size, the bands were 

excised and extracted from the gel using a Monarch® DNA Gel Extraction Kit 

(New England Biolabs, US).  

7.3.2 Subcloning 

Subcloning is the process of transferring desired genes to a desired vector, in 

this case pNIC28-Bsa4. The pNIC28-Bsa4 backbone was used to allow for the 

expression of the protein with a TEV cleavable N-terminal hexa-histidine (His6) 

tag. PCR fragments containing various regions of POPDC1 were cloned into the 

BsaI linearized and gel purified pNIC28-Bsa4 vector using the NEBuilder® HiFi 

DNA Assembly Cloning Kit following manufacturers protocol. An exonuclease 

within the kit digest the 5’ ends of the double stranded DNA fragments creating 

long 3’ overhangs, which can subsequently anneal strongly and specifically 

enough that the appropriately designed inserts are incorporated into the 

circularised vector.  With this kit, the process is further enhanced by the action 

of DNA polymerase that fills any single stranded gaps and a ligase that ligates 

the resulting nicked ends in the reconstituted plasmid. Plasmids were 
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transformed into DH5α competent cells and allowed to grow on LB agar plates. 

Between four and five colonies were picked from each transformation and a 

colony PCR was carried out using the corresponding primers (Figure 7.4 A-D). 

Initially, the only fragment that was successfully transformed contained the 

Popeye domain only identified by bands of around 500bp in size (Figure 7.4 A). 

To address the lack of transformation of two of the constructs, the 

transformation was reattempted using an increased concentration of fragment 

insert (see section 2.7.2). The presence of bands in the full-length construct 

transformation (Figure 7.4 B) at around 1000bp and in the constructs containing 

the Popeye domain flanked by the C-terminal at 750bp (Figure 7.4 C) confirmed 

their successful transformation into competent cells.  Furthermore, Figure 7.4D 

shows that one colony contained the transformed plasmid containing the Popeye 

domain alongside the N-terminal domain (band at ~830bp). In addition to colony 

PCR, each of the samples from each successful transformation was sent for DNA 

sequencing. Those colonies that contained the correct sequence were taken onto 

further testing.  
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Figure 7.4 Colony PCR to confirm the presence of transformed plasmids containing the 
POPDC1 constructs. A selection of four or five colonies were taken from each transformation 
reaction and subjected to colony PCR using the primers that created the original fragment. A 
Colony PCR reactions for 5 colonies transformed with the Popeye domain construct were carried 
out using Popeye 5’ and Popeye 3’ primers. B Colony PCR reactions for colonies transformed with 
the full POPDC1 construct were carried out using the Full length 5’ and Full length 3’ primers. C 
PCR reactions for 5 colonies transformed with the Popeye domain- C-terminal construct were 
performed using the Popeye 5’ and the Full length 3’ primers.   D 5 colony PCR reactions for 
colonies transformed with the N-terminal – Popeye domain construct were carried out using the 
Full length 5’ and Popeye 3’ primers. Negative controls (-ve) were performed using the DNA 
template without the addition of primers.  Positive controls containing a set of known working 
primers to confirm the reaction was functioning correctly. (Work carried out with the help of Mr 
Donald Campbell, University of Glasgow). 

 

Correctly sequenced fragments were transformed into BL21 (DE3) (NEB) 

competent cells for protein expression tests.  

7.3.3 Testing conditions for protein expression in E.coli 

To determine which construct yielded the most promising expression, test 

cultures were carried out under different growth conditions.  The protein 

expression constructs were tested in 10ml cultures subjected to three IPTG 

concentrations; 0.1mM, 0.4mM and 1mM, with growth being induced at either 

37oC or 16oC. Samples were taken from pre and post induction and lysates were 

analysed via SDS-PAGE to determine protein expression and solubility level.   
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Expression screening of the full-length construct revealed that this was a 

difficult protein to produce. With no or little protein being expressed after 

induction it was decided that the next steps would involve testing of constructs 

that contained only fragments of POPDC1.  

For the construct containing the Popeye domain alone. The presence of a band 

at the expected molecular weight of 20kDa indicated successful expression 

(Figure 7.5). The proportion of protein found in the soluble (S) fraction in 

comparison to the insoluble (P) fraction was used to select subsequent 

expression conditions. The majority of the Popeye domain protein expressed at 

37oC was in the insoluble fraction at all concentrations of IPTG (Figure 7.5 A). At 

16oC a larger proportion of the expressed protein was soluble, with the highest 

levels being found after induction with either 1mM or 0.4mM IPTG, Figure 7.5B).  

Hence, the expression of the Popeye domain at 16oC for 16 hours induced by 

1mM or 0.4mM IPTG were the most promising conditions.  
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Figure 7.5 SDS-PAGE analysis of Popeye domain construct test cultures to determine 
optimum expression conditions.  Expression of the Popeye domain was carried out under two 
different induction temperatures (37oC and 16oC) and three different concentrations of IPTG (1mM, 
0.4mM and 0.1mM) (noted below SDS-PAGE).  A E.coli containing the Popeye induced with 
different concentrations of IPTG at 37oC for 3 hours or B at 16oC for 16 hours. For all conditions, 
samples represent; the total protein after induction (I), the insoluble fraction (P) and the soluble 
fraction (S).  For analysis gels were treated with Coomassie stain to visualise proteins present in 
each sample. The arrow position corresponds to the molecular weight predicted for the protein 
expressed from the Popeye domain construct.   
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The N-terminus-Popeye domain construct was tested, using identical conditions 

to those outlined above to allow for a direct comparison to be made. At 37oC 

(Figure 7.6 A), there was little evidence of a soluble expression of the construct 

shown by a faint band present at ~37kDa in the soluble (S) lane. Weak expression 

in the total protein samples before or after induction was observed with all 

concentrations of IPTG.  Expression could be seen at 16oC judged by the darker 

band at the protein’s expected molecular weight at each of the IPTG 

concentrations (Figure 7.6 B). However, the majority of the expressed protein 

was in the insoluble (P) fraction. In comparison to the Popeye domain alone, the 

expression levels were lower at all conditions tested, leading to the decision 

that this construct should not be used in further large-scale protein purification 

experiments.  
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Figure 7.6 SDS-PAGE analysis of test expression conditions for N-terminus - Popeye 
domain construct.  The expression of the N-terminal of POPDC1 coupled to the Popeye domain 
was carried out under two different induction temperatures (37oC and 16oC) and three different 
concentrations of IPTG (1mM, 0.4mM and 0.1mM) (noted below SDS-PAGE).  A E.coli containing 
the tagged construct were induced with varying concentrations of IPTG at 37oC for 3 hours. B The 
N-terminal domain and Popeye domain protein induced expression was carried out at 16oC for 16 
hours using the noted IPTG concentrations. For all conditions, samples were taken for; the total 
protein before (U) and after induction (I), the insoluble fraction (P) and the soluble fraction (S).  For 
analysis gels were treated with Coomassie stain to visualise proteins present in each sample. The 
arrow denotes the band that corresponds to the correct molecular weight predicted for the N-
terminal coupled Popeye domain construct.  

 

The Popeye domain-C-terminal construct showed a higher expression of protein 

at 37oC growth conditions at all concentrations of IPTG (Figure 7.7 A, Lane I). 

However, the majority of the protein was in the insoluble fraction (P) at 37oC, a 

situation that was only slightly improved when the induction temperature was 

dropped to 16oC (Figure 7.7B).  There appeared to be no significant change in 

the level of protein produced at any of the IPTG concentrations at an induction 
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temperature of 16oC. In comparison to the Popeye domain alone, the Popeye 

domain- C-terminus construct was more highly expressed, but the ratio of 

soluble to insoluble protein was more favourable in the Popeye domain 

construct.            

 

Figure 7.7 SDS-PAGE analysis of Popeye domain - C-terminal construct test cultures to 
determine optimum expression conditions. The expression of the Popeye domain-C-terminal 
construct was carried out under two different induction temperatures (37oC and 16oC) and three 
different concentrations of IPTG (1mM, 0.4mM and 0.1mM) (noted below SDS-PAGE).  A E.coli 
containing the tagged construct were induced with different concentrations of IPTG at 37oC for 3 
hours or B at 16oC for 16 hours using the noted IPTG concentrations. For all conditions, samples 
were taken for; the total protein before (U) and after induction (I), the insoluble fraction (P) and the 
soluble fraction (S).  For analysis gels were treated with Coomassie stain to visualise proteins 
present in each sample. The arrow denotes the band that corresponds to the correct molecular 
weight predicted for the Popeye domain-C-terminal construct.  
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7.3.4 Large scale Protein purification of the Popeye domain 

Based on the information gained from the test cultures, it was clear that the 

Popeye domain construct was the best construct to begin large scale purification 

trials with the hope of using samples for structural analysis. From the conditions 

explored the most promising option was inducing protein expression at 16oC 

supplemented with 1mM IPTG.  

Large scale protein purification was carried out using Ni2+ affinity 

chromatography which captures the His6 tagged Popeye domain.  Successful 

expression of the Popeye domain was detected by the presence of a band at 

around 20kDa seen in both Coomassie® stain and immunoblotting for the His6 tag 

(Figure 7.8A and B, E1-E6 lanes, respectively). As expected, the large-scale 

production resulted in a good yield of Popeye domain protein being expressed 

seen in both the SDS-PAGE and Western blotting analysis in comparison (Figure 

7.8A and B).  Although soluble Popeye domain was obtained, the SDS-PAGE 

analysis (Figure 7.8A) identified that there was contaminants that were 

identified not to be the Popeye domain through Western blotting. The second 

band seen in the Western blot appeared to be approximately 40kDa, a weight 

corresponding to a dimeric Popeye domain protein (Figure 7.8B).  
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Figure 7.8  Initial large-scale purification of the Popeye domain analysed using Coomassie® 
stain and immunoblotting for the histidine tag on the construct. A. A sample of the flow 
through of lysate from a Ni2+ affinity column was separated by SDS-PAGE along with samples 
taken from the column washes. Wash buffer contained 20mM Imidazole to remove weak binding 
proteins from the Ni2+ affinity beads. Elution of the bound protein was carried out using Elution 
buffer containing 300mM Imidazole. Elution fractions were collected in 500µL aliquots and 10µL 
samples were analysed via SDS-PAGE. B. Samples were subjected to Western blotting for the 
histidine tag on the Popeye domain construct. The expected size of the monomeric recombinant 
protein is denoted by the black arrow.  

 

In an attempt to improve the yield of monomeric Popeye domain protein, the 

addition of a reducing reagent was trialled. Tris(2-carboxyethyl) phosphine 

(TCEP) was added to prevent the formation of inter-molecular disulphide bonds. 

TCEP has been shown to be efficient at reducing disulphide bonds, that are 

commonly a source of aggregation, over a long period of time due to its long 

half-life (Getz et al., 1999).  Initially, 5mM TCEP was added to the lysis buffer 

and affinity chromatography buffers used in the purification process. In addition, 
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the Ni2+ affinity resin was not capturing all the Popeye domain, as judged by the 

presence of a band in the FT and wash fractions on the Western blot meaning 

some of the Popeye domain protein may be lost. Therefore, two Ni2+ affinity 

columns were stacked, and lysed cells were allowed to flow through one into the 

other to capture the highest purity and concentration of protein.  The elution 

step was carried out for each column separately in order to identify the purest 

fractions. Samples of each elution taken from column A and column B were 

analysed via SDS-PAGE (Figure 7.9A and C, respectively). The first five elution’s 

from each column contained high amounts of contaminants but a single band was 

observed in the later fractions at the correct molecular weight for the Popeye 

domain recombinant protein (~20kDa) (Figure 7.9). The elution behaviour of this 

protein is unusual as tagged protein would normally elute in first few elution 

fractions at high imidazole however, the Popeye domain protein is seen to be 

eluting slowly from the column implying that it has a higher than usual affinity 

for the column. This implies either multimerization of the protein, avidity effect 

from multiple tags on the same molecular entity, or that the protein binds to the 

resin in a His6-tag independent manner.  Immunoblotting for the His6 tag on the 

construct further confirmed the purity of the elution fractions, in particular the 

last six samples (Figure 7.9 B and D).  The Western blot also revealed the lack of 

dimer band, showing that the addition of TCEP had prevented the dimerization 

of the Popeye domain. The samples noted below the bracket in Figure 7.9 were 

deemed the purest and were taken into further structural analysis.  
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Figure 7.9 SDS-PAGE and Western blot analysis of large scale purification of the Popeye 
domain in the presence of 5mM TCEP.  Large-scale production of the Popeye domain carried out 
at 16oC for 16 hours and induced using 1mM IPTG. The Popeye domain was purified using Ni2+ 
affinity chromatography. Two columns were stacked, and lysed cells were allowed to flow through. 
Elution fractions were collected in 500µl aliquots. A. 10µl of each fraction from column A were 
analysed via SDS-PAGE and B. confirmed through Western blotting for His6. The sample analysis 
was carried out for column B. C. Analysis via SDS-PAGE and D. Western blotting for histidine 
identified the presence of the Popeye domain in the second column. The correct band for 
recombinant Popeye domain was identified by the black arrow. Samples that were carried forward 
to further experiments are denoted under the bracket.  

 

7.3.5 Analysis of the recombinant Popeye domain  

Numerous attempts were made to remove the imidazole and concentrate the 

elution fractions, however, the protein reacted unfavourably by binding to the 

membrane of dialysis devices or aggregating in solution. Although it is not 

normally favourable to study proteins in high imidazole, this prompted the 

decision to leave the Popeye domain protein in the elution buffer with imidazole 

to keep the recombinant protein stable.  
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Dynamic light scattering (DLS) analysis is routinely used in protein 

characterisation studies. It can provide information on the presence of 

aggregates, determine size of proteins and study protein complexes (Stetefeld et 

al., 2016, Lorber et al., 2012). Samples composed of a monomeric Popeye 

domain population were collected for further analysis. From the DLS data, the 

mean hydrodynamic radius can be estimated and the polydispersity of the 

population determined allowing a judgement of whether the protein is 

monomeric or forming aggregates to be made (Bishop et al., 1991, Stetefeld et 

al., 2016). 

In an aqueous solution maintained at a constant temperature, collision with the 

surrounding water molecules leads to the displacement of the molecules 

dissolved in it, this is known as Brownian motion. Smaller molecules move at a 

much faster rate than larger molecules (Figure 7.10 B). Illumination of the 

sample with monochromatic light gives rise to scattering of the light at different 

angles. The intensity of light scattering varies in a time-dependant manner as 

different size particles diffuse through the observation window with larger 

particles such as the dissolved protein scattering more strongly than the solvent 

molecules, and with aggregates scattering more strongly still (Lorber et al., 

2012, Stetefeld et al., 2016). The velocity of this Brownian motion is defined as 

the translational diffusion coefficient (D). This coefficient is used in the Stokes-

Einstein equation (𝑑(𝐻) =
𝜅𝑇

3𝜋𝜂𝐷
 , where; d(H) = hydrodynamic diameter, D = 

translational coefficient, κ = Boltzmann’s constant, T = absolute temperature 

and η = viscosity)  to calculate the hydrodynamic diameter of the protein (Figure 

7.10 B, graph).  
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Figure 7.10 Particle dynamics in DLS elucidate to the size and morphology of the protein. A 
Schematic of a typical DLS instrument set up that is configured to detect backscattered light from a 
dispersed sample. B DLS measures Brownian motion and relates this to the size of the particles in 
the sample. Brownian motion is the random movement of particles due to the bombardment by the 
solvent molecules that they are surrounded by. The smaller molecules are “kicked” further by the 
solvent molecules which move them more rapidly. Large molecules result in a slower Brownian 
motion.  The velocity of the Brownian motions can be defined by a property known as the 
translational diffusion coefficient.  The size of the particle is calculated from the translational 
diffusion coefficient by using the Stokes-Einstein equation. 

 

The scattered light is detected over a period of time to monitor the movement 

of the protein within a given sample.  As mentioned, smaller particles move at 

higher speeds which present with faster fluctuations, with the opposite being 

seen for large molecules. These intensity fluctuations contain information on the 

time scale of the movement of light scattering, which can be fitted with an 

autocorrelation function. Taken alongside the translational diffusion coefficient 

(Dt), which describes the ease with of which a particle is displaced inside a 

buffer by diffusion, the decay of the autocorrelation function relates to the 

dimensions of the protein  (Koppel, 1972, Stetefeld et al., 2016).   
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These initial intensity traces are used to generate an auto-correlation function 

which describes how long the particle remains in the same spot. The exponential 

decay of the auto-correlation function depicts the movement of the molecule 

before it returns to a baseline. The decay of the function represents an indirect 

measure of the time needed for a particle to change its relative position with 

small particles movement decaying quickly and larger ones more slowly. 

Measurements are taken over various delay times with results being plotted over 

a logarithmic time axis (Stetefeld et al., 2016). The signal-to-noise ratio in these 

measurements can be calculated from the plateau value of the correlation 

function at the smaller delay times, known as ‘the intercept’. If there is not 

enough signal from the protein within the sample, then the difference between 

the intercept and the baseline will be low therefore no meaningful correlation 

function can be produced (Stetefeld et al., 2016, Lorber et al., 2012).   

Elutions of the Popeye domain protein (Figure 7.9, bracket) were analysed by a 

DLS to determine whether there was monomeric Popeye domain present that 

could be utilised for further experiments. Of the samples tested, only one 

resulted in a trace that gave a conventional autocorrelation trace (Figure 

7.11A). The clear difference between intercept at 1.1 and the baseline at 1, 

combined with the steep descent allows the autocorrelation function to be 

fitted with parameters that imply the protein is small, in a relatively high 

concentration and in a stable condition without the presence of large 

particulates that were present in the other elutions (Figure 7.11A).  The 

regularization analysis suggests that around 80% of the protein population was in 

a single species of radius ~3.4 nm (Figure 7.11). This would estimate the 

molecular weight of the Popeye domain in the buffer to be 58kDa suggesting 

that the Popeye domain protein is at least a dimer in solution. Precise 

interpretation of this data is difficult due to the presence of the N-terminal 

affinity tag and protease cleavage site, which are expected to be disordered and 

contribute to the hydrodynamic drag on the particles, and the high 

concentration of imidazole, which act as a surfactant contributing to the total 

molecular weight of the particles. However, a molecular weight in this range is 

consistent with the expectation that POPDCs are reportedly found in homo- and 

hetero-dimeric interactions (Figure 7.11B). The data also indicates the presence 

of larger particulates or aggregates in the sample above 100 nm in radius with a 
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predicted molecular weight of several hundred kDa (Figure 7.11B). Given that 

POPDC1 normally dimerises this aggregation may act to stabilise the Popeye 

domain construct in solution.   

 

Figure 7.11 DLS data for Popeye domain elution fraction 7 depicting state and size of 
protein. A Auto-correlation function for Popeye domain protein.  B Regularization analysis. Bars in 
the histogram indicate the mass weighted composition of the particles present in solution that 
would give rise to the recorded autocorrelation function (Experiments undertaken with the help of 
Ms June Southall, University of Glasgow). 

 

7.3.6 Determining whether the Popeye domain recombinant 
protein is functional 

Although recombinant Popeye domain protein could be purified in soluble form 

and maintained in solution in high imidazole buffer, it remained to be 

determined whether the protein was correctly folded and functional. To test the 

protein’s ability to bind cAMP, cAMP conjugated beads were utilised to capture 

recombinant Popeye domain protein (Figure 7.12). POPDC1 has an EC50 of 300 nM 

for cAMP so a final concentration of 10mM free cAMP was added to one of the 
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samples to compete any functional Popeye domain off the cAMP agarose beads 

(Figure 7.12) (Froese et al., 2012). A negative control was performed using 

Protein g agarose beads, without the presence of cAMP, to determine whether 

the recombinant protein bound to the agarose beads non-specifically. The 

recombinant Popeye domain protein was seen to bind to both Protein g and 

cAMP-conjugated agarose beads as indicated by the presence of a band in all 

lanes (Figure 7.12). The addition of free cAMP lead to no reduction in the level 

of captured Popeye domain (Figure 7.12, last lane). Therefore, it could be 

suggested that the protein was interacting non-specifically with the agarose 

beads.  

                         

Figure 7.12 Determination of the functionality of recombinant Popeye domain protein using 
cAMP conjugated agarose beads. 10 µg of purified recombinant protein were diluted in 750µL 
binding buffer with either Protein G beads or cAMP agarose beads. One cAMP agarose capture 
experiment was supplemented with 10mM free soluble cAMP.  Beads were pelleted and washed n 
times before being suspended in Laemmli loading buffer. Samples were analysed by SDS-PAGE 
and Western blotting for the histidine tag on the recombinant protein. The black arrow indicates the 
correct molecular weight for the Popeye domain. Image representative of n=3.   
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7.4 Discussion  

7.4.1 Solubility issues prevent POPDC1 structural analysis 

This chapter illustrates the difficulties in producing a soluble and active POPDC1 

protein suitable for structural studies. Only one of the four tested constructs 

produced an acceptable level of soluble protein that would allow for further 

experimentation (Figure 7.5, Figure 7.6, Figure 7.7 and Figure 7.9), and the 

protein produced could not be maintained in solution without high 

concentrations of imidazole. Therefore, there is a need for further development 

of methods that would lead to production of amenable protein from other 

constructs or expression systems. Although the full-length construct was not 

necessarily expected to be soluble given that it contains predicted hydrophobic 

transmembrane domains, constructs containing more of the N-terminal regions 

may be useful given our lack of knowledge of the precise topology of the 

predicted transmembrane region of the protein. I have shown here that the 

expression of N-terminus containing constructs is possible in E. coli but the yield 

of soluble protein is not favourable (Figure 7.6) and requires further analysis. 

Additional constructs were designed and are being produced that express 

POPDC1 fragments starting at the N-terminus of each of the proposed 

transmembrane domains and include either just the Popeye domain or the full C-

terminal region. Time constraints during this project meant that they could not 

be carried forward to the solubility testing, but this should be an immediate 

focus of investigation moving forward.  

Although the data presented in this chapter has shown that constructs containing 

fragments of POPDC1 could be expressed, there was issues maintaining the 

recombinant protein’s solubility.  The extraction of integral membrane proteins 

can be challenging in terms of keeping the protein soluble and is mostly 

achieved through the use of detergents in the purification buffers. Detergents 

are amphipathic molecules which contain both hydrophobic and hydrophilic 

moieties and can form micelles. If the concentration of detergent is too high, 

micelles can form without inclusion of the protein, this is known as the critical 

micelle concentration. Le Maire et al., have described that the detergents 

function to stabilise the protein by forming cooperative interactions that are 

below the critical micelle concentration (CMC) (le Maire et al., 2000). Within 
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this study, the addition of the detergent CHAPs was trialled with little success in 

stabilising the construct (data not shown). However, there are numerous other 

detergents with elaborate chemical properties that should be investigated to 

determine if a more appropriate solubilizing detergent should be discovered. For 

example, CHAPs is known as a type B detergent, meaning it is more rigid and 

possesses a cholesterol-based structure (reviewed in (Helenius and Simons, 1975) 

and (Ohlendieck, 2004)). It may be that this protein requires a Type A detergent, 

such as Dodecyl 4-O-α-D-Glucopyranosyl-β-D-Glucopyranoside (DDM), which has 

dual hydrophobic/hydrophilic properties. The hydrophobic part of the detergent 

masks the hydrophobic part of the membrane protein preventing their 

aggregation. This type of detergent would allow for experimentation on larger 

constructs that contain more of the POPDC1 protein.  

Furthermore, different tags for the recombinant protein could be trialled. For 

example, E.coli maltose-binding protein (MBP) has been widely recognized as an 

effective solubilizing agent, which has been shown to increase the yield, 

enhance solubility and promote proper folding of proteins (Kapust and Waugh, 

1999, Fox et al., 2003, Esposito and Chatterjee, 2006). The drawback with using 

this as a tag is the poor binding capacity of amylose resin, as well as the high 

level of persistent contaminants (Lichty et al., 2005, Pryor and Leiting, 1997, 

Nallamsetty et al., 2005). It has been shown that a His6 tag can be added to the 

N-terminus of MBP without affecting the solubility of the fused protein 

(Nallamsetty et al., 2005). This would circumvent the lack of affinity for amylose 

resin yet improve the solubility of the protein.  

The co-expression of either chaperones or foldases may also help to stabilise 

proteins allowing for improved solubility and hence greater protein yield. 

Molecular chaperones are known to promote the proper isomerisation and 

targeting of expressed proteins by interacting with folding intermediates. There 

are a number of established chaperone systems within E.coli including GroES-

GroEL, DnaK-DnaJ-GrpE and ClpB (Kumamoto, 1991, Hartl, 1996, Squires and 

Squires, 1992, Schröder et al., 1993).  In addition, there has been evidence that 

the expression of single subunit of protein complexes can be prone to 

aggregation in the absence of their natural binding partners (Tan, 2001). 

Stabilisation of the protein may be gained either by the co-expression of both 
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POPDC1 and an interaction partner such as PDE4A or by the addition of a peptide 

containing the binding site of one of said partners.  Tan has shown that a 

modular polycistronic expression system could be used to co-express up to four 

genes successfully in E.coli therefore allowing the reconstitution of protein 

complexes within the cell (Tan, 2001). This could prove a method of creating a 

stable, soluble construct that could be used to create a co-crystal structure of 

POPDC1 and PDE4A. Furthermore, the whole interacting protein may not be 

required to elicit stability. During this project it has been shown that 25mer cell 

penetrating peptides can interact with the PDE4A protein and disrupt its 

interaction with the POPDC1 protein (see Figure 4.7, Figure 4.8, Figure 4.9, 

Figure 4.11, and Figure 4.13) . Therefore, a possible next step could be to add a 

peptide containing the 25mer of PDE4A, that is known to interact with POPDC1, 

to the cells during protein induction. Foldases may be used in conjunction with 

chaperones or independently to increase stability of proteins. The addition of 

foldases accelerate the rate limiting steps throughout the folding pathway. For 

example, peptidyl-prolyl isomerases (PPI), which are ubiquitously expressed 

proteins in both eukaryotic and prokaryotic cells whose primary function is to 

facilitate the cis-trans isomerisation of peptide bonds to proline residues within 

the polypeptide chain.  It has also been shown to have chaperone properties that 

could further stabilise the recombinant protein (Kruse et al., 1995, Shaw, 2002, 

Schmid, 1995). Furthermore, the simultaneous use of both molecular chaperones 

and foldases can act to prevent and actively reverse protein misfolding and 

aggregation which may occur accidentally in the native-folding pathway of 

recombinant protein expression in a foreign environment (reviewed in (Baneyx 

and Mujacic, 2004)).  

Despite the fact that I have produced a soluble protein, testing its functionality 

as a cAMP binder did not give a definitive answer (Figure 7.12). As POPDC1 is 

known to be a cAMP effector protein, a means of testing whether the Popeye 

domain was folded and functioning correctly was developed using cAMP agarose 

capture. Given that the recombinant Popeye domain was bound to both the 

cAMP and Protein G beads it could be suggested that the protein may be folded 

correctly but has a high level of unspecific binding.  However, the addition of 

free excess cAMP did not outcompete the interaction with POPDC1 bound to the 

cAMP agarose beads; therefore, it remains unclear as to whether a functional 
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protein has been produced (Figure 7.12).  Other methods should be used to 

further identify whether the pure protein is functional e.g. conducting co-

immunoprecipitations using PDE4A and the Popeye domain such as carried out in 

previous chapters. Confirming whether the recombinant protein still had the 

capability to bind to its interaction partner would provide support for the 

protein being correctly folded. This step should be repeated for each construct 

developed before it is taken onto structural analysis.  

Following on from the successful production of a soluble protein, more 

substantial structural analysis should be carried out including nuclear magnetic 

resonance spectroscopy (NMR) or protein X-ray crystallography studies. This 

would provide information that is critical in solving the structure of the POPDC 

protein family. If a complex of POPDC1 and PDE4A is developed this would allow 

for the use of transmission electron cryo-microscopy (cryoEM) to investigate 

protein structure. Advances in cyroEM have made it possible to gain 3-

dimensional structural determination that are too heterogenous to be 

investigated by NMR or X-ray crystallisation (Jonic and Vénien-Bryan, 2009). In 

order to prepare the protein for cryoEM it would be appropriate to express and 

purify the Popeye domain from mammalian cells.  Either way, the solving of 

POPDC1’s structure would provide unmatched insight into how the protein forms 

interactions and is modulate by cAMP binding.  

7.4.2 Conclusion 

The successful expression of a soluble Popeye domain has created a partially 

optimised protocol as well as identifying potential avenues that will improve 

solubility giving direction to any further experimentation.  The development of 

fragments of the POPDC1 protein that encompass the full protein sequence has 

been suggested to be the most promising strategy. Future projects will need to 

focus on the development of said constructs and optimise methods of 

maintaining the protein’s stability during the purification process. Means by 

which solubility could be maintained have been outlined here but I believe that 

the addition of chaperone proteins, whether that be through the systems 

mentioned or by the co-expression of an interaction partner, will be the most 

successful strategy to pursue.  
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8 Discussion 

8.1 Background 

The discovery of the blood vessel epicardial substance or Popeye domain-

containing protein 1 (BVES/POPDC1) by two independent groups in 1999 heralded 

a new cAMP effector protein that was localised to numerous areas in the heart 

including the pace-making centres (Reese et al., 1999, Andrée et al., 2000). The 

first ten years of research have focused on characterising the interactome of 

POPDC1 in an attempt to determine its cellular role in a number of tissues, 

however, most initial work has been carried out in the heart. Latter studies have 

attempted to unpick the complex role of POPDC1 signalling processes, which is 

where this work lies.  

POPDC1 is a largely membrane bound signalling protein that has particular 

relevance in SA and AV nodes. Loss of function experiments in mice and 

zebrafish have established an important role for POPDC1 in the maintenance of 

regular heartbeat, stress signalling and regeneration of skeletal muscle 

(Schindler et al., 2016b, Alcalay et al., 2013, Froese et al., 2012, Schindler et 

al., 2012b). POPDC1-/- mice have been reported to develop stress-induced 

bradycardia in response to physical exercise, mental stress or stimulation by 

injection of isoproterenol (Froese et al., 2012). In addition, it has been shown 

that POPDC1 protein and mRNA levels are decreased during myocardial I/R injury 

(Alcalay et al., 2013).  In humans, POPDC1 mutations, such as POPDC1S201F  have 

been identified leading to the presentation of cardiac arrythmia coupled with 

limb-girdle muscular dystrophy (Schindler et al., 2016b). Functional analysis of 

POPDC1 has therefore suggested a crucial role for the protein in the 

development and maintenance of proper electrical conductance within the heart 

and skeletal muscle (Froese et al., 2012). More recently, POPDC1 has been 

shown to be expressed in a number of epithelial cells and can function to control 

proliferation, migration, invasion and metastasis in a variety of cancers 

(Amunjela and Tucker, 2017b, Amunjela and Tucker, 2017a, Kim et al., 2010, 

Han et al., 2015, Williams et al., 2011). With an expanding list of interaction 

partners, determination of the molecular mechanism(s) of POPDC1 function is a 

complex task. 
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Although many interactors for POPDC1 have been found, little is known about 

how the interactions and hence functions of POPDC1 are controlled. Given its 

status as the newest cAMP effector protein to be discovered and the knowledge 

that all other known cAMP effector proteins interact with a phosphodiesterase, 

it was hypothesised that POPDC1 would also form a complex containing a PDE 

(Froese et al., 2012).  PDE4 has been extensively researched in the 

cardiovascular system making it an attractive putative target for this study 

(reviewed in (Fertig and Baillie, 2018)). The spatial and temporal regulation of 

cAMP by such a localised PDE could provide a means of tightly controlling the 

actions of POPDC1.  

Post-translational modifications to the POPDC family have not been investigated 

in depth. Currently, there have been hundreds of PTMs identified that result in 

functional and structural changes to the proteome, triggering changes in 

protein-protein interactions, cellular location and activity (reviewed in 

(Prabakaran et al., 2012)). Therefore, POPDC1 function and interaction may be, 

in part, directed by post-translational modifications. 

8.2 POPDC1 creates a signalling complex with PDE4A 

The first aim of this project involved the investigation of a potential interaction 

between POPDC1 and PDE4. Interestingly, the data showed that Popdc1 could 

interact with PDE4A, PDE4B and PDE4D in endogenously expressing NRVM. This 

data was not reciprocated in overexpressing HEK293 cells, where POPDC1 only 

formed an interaction with PDE4A. Within the heart, PDE4A levels are markedly 

lower than those of the other isoforms (Richter et al., 2011). Despite the lower 

level of PDE4A in the heart, it displayed the highest affinity for Popdc1 as seen 

in PLA data (see Figure 3.11) therefore, selected as the main focus for further 

interaction. Identification of protein binding sites and subsequent development 

of a cell-penetrating disruptor peptide allowed investigation into the PDE4A-

Popdc1 complex. The disruptor reduced the interaction between Popdc1 and 

PDE4A in both NRVM and HEK293 cells. This data supports the hypothesis that 

POPDC1 is being controlled by a PDE which acts to shape to cAMP gradient 

around the effector protein (Figure 8.1).   
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Figure 8.1 The POPDC1/PDE4A complex. POPDC1 is bound to the potassium channel, TREK1 
at basal levels of cAMP increasing the efflux of K+ ions. As cAMP levels rise, POPDC1 bind cAMP 
and dissociates from TREK1. PDE4A functions within this complex to modulate the cAMP gradient. 
By degrading cAMP in the vicinity of POPDC1, PDE4A can regulate its interaction with TREK1 

 

Given that PDEs can operate within distinct domains within the cell, it may be 

that the POPDC1 localised to the plasma membrane may interact specifically 

with PDE4A4/5 as it possesses membrane localisation domains (Beard et al., 

1999). It is possible that at other cellular locations where PDE4A is not prevalent 

then POPDC1 can form interactions with the other isoforms.  In addition, there 

are several proteins that are known to interact with multiple PDE isoforms but 

maintain a higher affinity for one specific member. For example, multiple PDE4 

isoforms are known to associate with the β1 and β2  adrenergic receptors and can 

control the termination of their signalling processes (De Arcangelis et al., 2009b, 

Baillie et al., 2003, Richter et al., 2008). In isolated murine cardiomyocytes, the 

depletion of PDE4B and PDE4D were shown to lead to a dysregulation of cardiac 

contractibility and Ca2+ cycling (Leroy et al., 2011). Although β1 and β2 can form 

signalling complexes with isoforms from both PDE4B and PDE4D families, it has 

been reported that β1 shows preferential binding to PDE4D8 whereas β2 has 

higher affinity for PDE4D5 (Richter et al., 2008). This provides a precedent for 

the model outlined for POPDC1. The binding of multiple isoforms may also have 
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a compensatory function. Distinct binding regions may exist for the various PDE4 

isoforms on POPDC1 meaning if there was a mutation at one site, for example 

the POPDC1R172H mutation which lies directly in the PDE4A interacting region, 

another PDE4 may still be able to bind and regulate POPDC1s activity. Different 

binding regions for multiple PDE isoforms is a concept that has already been 

shown in the CNS protein, Disrupted in Schizophrenia (DISC1). DISC1 was 

reported to interact with both PDE4B and PDE4D. Mapping of DISC1 binding sites 

on PDE4B and PDE4D identified two common binding regions for both isoforms 

and in addition, a further two PDE4B specific sites (Murdoch et al., 2007).  For 

POPDC1, further analysis would have to be carried out using peptide array 

technology to discover isoform specific binding regions of other PDE4 isoforms.  

Despite homology predicting that the identified PDE4A binding site on POPDC1 is 

only partially accessible, its close proximity of this site to the cAMP binding 

motif creates a possible means of controlling formation of the interaction. 

Increased cellular cAMP allows for POPDC1 to bind cAMP close to the surface of 

the plasma membrane which has been proposed to elicit a conformational 

change (Froese et al., 2012). In turn, the previously masked residues may 

become exposed allowing for the binding of PDE4A and consequently leading to a 

reduction in local cAMP concentration. cAMP bound to POPDC1 is hydrolysed by 

PDE4A and it returns to its ligand-free conformation, breaking the interaction 

with PDE4A. This hypothesis may also explain the relatively low levels of 

endogenous Popdc-PDE4 interaction seen in immunopurification experiments, 

which were carried out under basal cAMP conditions. This is the first instance of 

a PDE being associated with the control of the novel cAMP effector protein 

POPDC1. However, as the structure of POPDC1 has not yet been determined, 

only predictions can be made around how this interaction may form. 

Distinct signalling complexes such as those described in this work are not 

uncommon in the heart and act to ensure normal cardiac function. PDE4D3 has 

been reported to form a complex with the RyR2 complex to act as a key 

regulator in the PKA-dependent phosphorylation of RyR2 (Lehnart et al., 2005). 

Further examination showed that the complete knock-out of PDE4D led to the 

development of age-dependent cardiomyopathy due to hyperphosphorylation of 

RyR2 and severe contractile dysfunction. As POPDC1 interactions can be altered 
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by cellular levels of cAMP, it would not be presumptuous to suggest that the 

interaction with PDE4A is a regulatory mechanism which controls POPDC1s 

interactions through the degradation of cAMP. My work has described that the 

loss of the POPDC1-PDE4 complex resulted in an increased repolarisation event 

(Figure 4.13) which, has the potential to knock the calcium cycle out of rhythm 

if a prolonged disruption of the complex was to occur. In addition, POPDC1 

mutations have been shown in humans, mouse and zebrafish to lead to the onset 

of cardiac arrythmias (Froese et al., 2012, Schindler et al., 2016b, De Ridder et 

al., 2019) and this may in part be due to the loss of control of cAMP dynamics 

through loss of PDE4 interaction.  

There is a variety of conceptual models that have been developed to illustrate 

possible modes of POPDC1 function within the cell (reviewed in ((Swan et al., 

2019)). Two of these models tend to fit with the conclusions from my work. 

Firstly, the switch model provides the simplest of explanation of POPDC1 

activity by suggesting that it functions as a molecular switch. In the absence of 

cAMP binding, POPDC1 is bound to its interaction partners e.g. TREK1. In this 

instance, there is an increase in the efflux of K+  ions out of the cell via this 

channel (Froese et al., 2012). Upon cAMP binding, POPDC1 and TREK1 dissociate 

and the channel there is a reduction in this efflux of K+ ions. My addition to this 

model would be, that with cAMP bound to POPDC1, the obstructed PDE4A 

binding site to become accessible allowing PDE4 to bind. Subsequently there is a 

reduction in local cAMP levels allowing POPDC1 to reinstate its interaction with 

TREK1. This mechanism would function to maintain steady cardiac pace-making 

(Unudurthi et al., 2016). Where mutations in the binding region of PDE4A in 

POPDC1 occur, this control would potentially be lost leading to a dysregulation 

of TREK1 output and the onset of cardiac arrythmia. Secondly, the shield model 

is based on the switch model but suggests that the binding of cAMP may lead to 

an indirect downstream effect. For example, the binding of POPDC to one of its 

partners such as TREK1 would create a shield preventing the bound partner from 

being targeted by kinases such as PKA. When cAMP is bound to POPDC1, either 

the interaction between the two proteins is disrupted or the shielding 

mechanism is no longer efficient and therefore the protection elicited by 

POPDC1 is lost. The protein would now be accessible by kinases and 

phosphorylation events could occur. In this model, PDE4 would again function to 
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desensitise the mechanism. So, although my work is consistent with two of the 

proposed models it does not allow discrimination between them or point to 

which model is correct.  

To summarise, there are many examples of cAMP effector proteins in complex 

with PDEs but, this is the first instance of POPDC1 forming such an interaction. 

In the future it is likely that this novel and exciting finding will allow greater 

insight into the cellular functions of POPDC1 and aid understanding of how the 

cAMP-specific actions of POPDC1 are controlled.  

8.3 Identification of a novel therapeutic target  

The cAMP signalling system has been repeatedly shown to coordinate precise and 

directed cellular responses that are underpinned by numerous protein-protein 

interactions (reviewed in (Lissandron and Zaccolo, 2006)). In the heart, such 

compartmentalised cAMP signalling is vital for numerous process, including the 

fine control of excitation-contraction coupling, which is critical to the 

maintenance of normal cardiac function. As the only enzyme known to degrade 

cAMP, PDEs have been repeatedly shown to act as a crucial control mechanism 

for cardiac signalling (reviewed in (Fertig and Baillie, 2018)). Extensive research 

has shown that highly compartmentalised cAMP signals result in discrete 

receptor-specific physiological changes within cardiomyocytes and when these 

are dysregulated, the result is a loss control that results in the onset of various 

cardiovascular diseases (Zaccolo, 2009, Fischmeister et al., 2006). As such, these 

signalling complexes have long been regarded as potential therapeutic targets 

(Lugnier, 2006). The issue that is posed by targeting proteins such as PDEs, EPAC 

and PKA, which are all key components of compartmentalised cAMP signalling 

mechanisms, is that they are ubiquitous signalling proteins that undertake 

extensive and often unrelated functions in a cell. Targeting protein-protein 

interactions non-specifically could have serious off-target effects leading to a 

worsening condition. In this light, targeting specific protein-protein interactions 

that underpin distinct and highly localised cardiac functions would constitute a 

novel method of isolating single “pools” of these enzymes allowing better 

targeted therapeutic changes.  
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It has been widely accepted that inhibitors targeted against the active site of 

PDE4 isoforms have immense potential in the treatment of many diseases from 

asthma to depression (reviewed in (Houslay et al., 2005) and (Francis et al., 

2011b)).  The main issue with broadly targeting PDE4 is the side effects which 

limit their maximal dosage rendering them ineffective for clinical treatment 

(Zhang et al., 2005). Simultaneously inhibiting all PDE4s has been shown to cause 

headaches, emesis and diarrhoea yet despite this, the PDE4 inhibitor roflumilast 

has been approved for the treatment of late stage chronic obstructive pulmonary 

disease (COPD) (Zhang et al., 2005, Fabbri et al., 2010, Gupta, 2012).  Specific 

targeting of single PDE isoforms has been attempted in several ways including 

siRNA knockdown (Lynch et al., 2005) and dominant negative constructs 

(McCahill et al., 2005, Henderson et al., 2014). However, for PDE4 family 

members, such as PDE4D5, which possess multiple non-redundant functions 

within the cell, all subpopulations of any single isoform would be inhibited 

creating potentially disastrous dysregulation of signalling crosstalk (Lynch et al., 

2007). Therefore, targeting individual PDE4 interactions that anchor the 

enzymes to a distinct location via the peptide interference approach has the 

advantage of not affecting global PDE4 activity while at the same time 

influencing cAMP signals at the nano-level (Smith et al., 2007).  Generation of 

binding maps that chart the binding sites of a set of interacting proteins can act 

as a blueprint for the development of cell penetrating peptides that can disrupt 

a specific protein-protein interaction. This disruption approach has been used 

extensively to investigate cAMP signalling complexes such as the interaction 

between PDE4 and the signalling proteins RACK1, β-arrestin and the 

cardioprotective HSP20 (Bolger et al., 2006, Bolger et al., 2003, Sin et al., 

2011).  

A large body of evidence has shown that β-arrestin orchestrates the 

redistribution of PDE4D5 in response to β2-adrenergic receptor activation (Le 

Jeune et al., 2002, Mongillo et al., 2004, Willoughby et al., 2007, Trian et al., 

2011, Perry et al., 2002, Billington et al., 2008).  The β-arrestin/PDE4D complex 

is translocated to activated β2-adrenergic receptors meaning that an active pool 

of PDEs are present to initiate the desensitisation process (Houslay et al., 2007). 

This process essentially resets the receptor to allow for another round of 

antagonist interaction. Fine mapping of the binding region identified the 
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minimal sequence required to promote an interaction between β-arrestin/PDE4D 

and this was the first ‘proof of concept’ of a cell penetrating peptide that 

altered local cAMP signalling. The peptide attenuated recruitment of PDE4D5 to 

the activated β2-adrenergic receptor leading to the hyperphosphorylation of the 

receptor after stimulation and altered receptor activity (Smith et al., 2007).  

Moreover, the same steps have been carried out with a cAMP effector protein 

signalling complex containing PDE4D5 and EPAC (Rampersad et al., 2010). 

Treatment with the PDE4D5-EPAC disruptor peptide lead to a reduction in 

vascular endothelial cell permeability due to compartmentalised cAMP changes 

at cell-cell contact points.  

Data presented in this thesis has shown that peptide disruption is now a 

technique that can be used to probe POPDC1 function in primary cell cultures. 

My results have shown that there is a distinct delay in repolarisation events after 

treatment with the Popdc1-PDE4 disruptor.  POPDC1 has been predicted to act 

as a hub gene for atrial fibrillation as well as a novel determinant of the length 

of QT interval (Tan et al., 2013). This is interesting as the cell-penetrating 

peptide, designed in this thesis, increased the time taken between the start of 

the depolarisation event and the end of the repolarisation phase in the 

ventricle. To date, numerous POPDC1 mutations found in humans have been 

linked to the onset of cardiac arrythmias (Schindler et al., 2016b). Included in 

this group is the POPDC1R172H mutation which changes the arginine at position 

172 to a histidine and, as mentioned, this site falls within the mapped binding 

region that associates with PDE4A. The use of the disruptor peptide could 

represent a means by which to investigate the functional outcomes of this 

mutation if it were to affect the binding between POPDC1 and PDE4A in disease. 

Similarly, other mutations may lead to increase in binding of PDE4A or an 

inability to sever the interaction after cAMP levels have returned to basal. In this 

scenario, disrupting the interaction could prove a useful therapeutic strategy 

(Figure 8.2).  
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Figure 8.2 The disruptor peptide, designed in this project, blocks the interaction of POPDC1 and 
PDE4A. In turn, this leads to persistently high levels of cAMP surrounding POPDC1. As cAMP is 
not degraded in the vicinity of POPDC1, the interaction between POPDC1 and TREK1 remains 
dissociated. (Image created by Dr Gonzalo Tejeda, University of Glasgow). 

 

Although several peptide based drugs have reached market there is generally 

low stability and membrane permeability (Craik et al., 2013). Therefore, 

nonpeptidic agents such as peptidomimetics and small molecules have offered a 

promising alternative (Schächterle et al., 2015). Fluorescence polarisation (FP) is 

an extremely versatile technique that is widely used to screen for small 

molecules that can be utilised in drug development (Lea and Simeonov, 2011). 

FP is based on the observations taken when a fluorescently labelled peptide is 

excited by polarized light. The peptide emits light with a degree of polarisation 

that is inversely proportional to the rate at which the probe is rotating (Moerke, 

2009). When the peptide is bound to another protein the rate of rotation and 

therefore, the fluorescent signal is altered. The level of change in fluorescence 

can determine the affinity of the peptide for an interacting protein (Moerke, 

2009). This process can be utilised for a competition assay allowing for the 

screening of small molecules which may break the interaction.  The sequence 

used to develop the cell penetrating peptide could be conjugated to a 
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fluorophore and used to screen small molecules that will elicit the same effect 

as the peptide. A library of bioactive compounds and ‘drug-like’ small molecules 

can be screened to generate hits that can be followed up in secondary assays to 

assess chemical properties. Desirable properties can create leads in the 

development of a pharmaceutically relevant drug. There are numerous small 

molecules that have been shown to interfere with protein-protein interactions. 

For example, the interaction between AKAP and PKA has been mapped to a 14-

18 amino acid sequence on AKAPs that allow for the anchoring of PKAs regulatory 

subunit (Christian et al., 2011).  Peptide inhibitors of AKAP-PKA interactions 

have proved to be a successful way of studying the role of these proteins in 

disease but, as mentioned, the poor membrane permeability and inability to be 

given orally has capped their therapeutic potential. As such, a small molecule 

screen was undertaken by Christian and colleagues using the defined binding 

regions of PKA on AKAPs (Christian et al., 2011). This identified the small 

molecules 3,3′-diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1) and its 

derivatives that can disrupt the PKA-AKAP complex both biochemically, using 

recombinant proteins, and functionally, using cultured cardiomyocytes(Christian 

et al., 2011).  This process could be utilised to investigate small molecules that 

could provide therapeutic intervention by targeting the POPDC1/PDE4A complex 

given its role in cardiac and skeletal muscle diseases. Such an approach to target 

the inhibition or activation of this complex would be the first such endeavour 

involving POPDC1.  

8.4 Final Conclusions 

My work demonstrates that there is a novel signalling complex containing both 

POPDC1 and PDE4A and that this has an important function in action potential 

generation.  Since its identification, there has been little research on the control 

of POPDC1 function and this study identifies the interaction with PDE4A as a 

POPDC1 control mechanism. In addition to the identification of binding sites and 

the development of cell penetrating disruptor peptides, I have shown that this 

interaction can be disrupted in a highly specific manner to effect change in 

functional outcomes. It is still unclear whether this interaction can be targeted 

therapeutically, but my work has provided a promising indication that it may be 

possible. Further experimentation is required to validate whether this 

interaction is relevant in whole organisms and animal studies using the peptide 
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could be set up to investigate this. Similar studies have shown promise with 

peptides designed to disrupt the PDE4D-HSP20 complex in the heart (Martin et 

al., 2014, Sin et al., 2011, Sin et al., 2015). Overall, my work has opened up new 

possibilities for research into POPDC1 by firstly discovering the POPDC1-PDE4A 

interaction and secondly developing novel tools to investigate the function of 

the complex in primary cells and animals. 

 

 

 

  



277 
 

Appendix

 

Appendix Figure 1:  pNIC28-Bsa4 vector backbone used for E.coli expression construct 
generation. The vector was linearized using the BsaI sites to allow for the insertion of fragments of 
POPDC1. (Plasmid map taken from (Savitsky et al., 2010)).  
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