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Abstract

A pivotal aspect in increasing the sensitivity of the Advanced LIGO (aLIGO) detectors to en-
able for the detection of gravitational waves was the installation of the monolithic fused silica
suspensions in the detectors. 40 kg fused silica test masses were installed and suspended by four
400 µm fused silica fibres to lower the thermal noise of the detector compared to initial LIGO.
Along with various other instrument upgrades to increase the sensitivity of the aLIGO detectors,
it allowed the LIGO-Virgo Collaboration to directly observe gravitational waves from coalesc-
ing binary black hole and binary neutron star systems. There is always a desire to make these
detectors even more sensitive by changing parameters of the instrument, and in the case of this
thesis, parameters associated with the monolithic suspensions.

This thesis presents various areas of research related to the use of fused silica fibres for
gravitational wave research. Firstly, a procedure was documented to standardise the alignment
process of the aLIGO fibre pulling machine. Previously, this alignment process was subjective
to the user as there were no documented set of instructions, which increased the probability
of manufacturing defects to be introduced into the fibre production. This procedure also high-
lighted common issues that were related to the misalignment of the pulling machine and how
these misalignments could be corrected.

One of the manufacturing defects that could be introduced into the fibres were angular mis-
alignments in the thermoelastic nulling region. This became a prominent issue during the com-
missioning break between O2 and O3 where there were several instances of suspension fibres
failing where these misalignments were observed. Though it was not concluded that these were
the cause of the failures, an investigation was carried out to determine how great of an ef-
fect these angular misalignments have on the ultimate strength of the fibres. This investigation
confirmed that these angular misalignments could be introduced into the fibre due to beam dis-
tribution misalignment around the stock material during the pulling process. These angular
misalignments however did not show any adverse effect on the ultimate strength of the fibre.

The opportunity to work at LHO arose for a four-month period on a long term attachment
(LTA). During this LTA, an investigation into the stress fatigue of fused silica fibres was carried
out in the fibre production lab at LHO looking at a stress range between 3-5 GPa. The results
of these investigations were then compared to an investigation by Proctor in the 1960s to see if
there were any differences observed. It was found that data from both LHO and Glasgow did not
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align with the data that Proctor had obtained in his investigation, but did align with each other,
showing that investigations carried out at LHO or Glasgow can be considered to be consistent
with each other. Due to the data not aligning with Proctor’s results, a follow-on investigation
looking at fibres with comparable diameters were investigated.

To do this, a dedicated fibre profiler had to be developed first that was designed specifically
to profile fibres within this diameter range. This included being able to profile fibres that were
under 10 µm in diameter. The thin fibre strength tester was also upgraded to add a magnetic
encoder to measure the distance travelled by the motorised stage.

An investigation into the stress fatigue of sub-40 µm diameter fibres was then carried out to
compare results with the previous investigation with aLIGO fibres. It was found that fibres that
were above 10 µm in diameter showed strong performances similar to that of Proctor, regardless
of the initial stock material being polished, double polished, or no polish. Fibres under 10 µm
however did not show this strong performance and were weaker performing. Polishing the initial
stock material did show an increase in suspension time, however these were still weaker than the
>10 µm diameter fibres. To see if this behaviour was consistent with other fibre characteristics,
an investigation into the Young’s modulus of the ultra-thin fibres was investigated.

A previous investigation into the Young’s modulus of ultra-thin fibres was carried out by
the author, however there were several factors in the equipment used at the time that lead to
large uncertainties being associated with the Young’s modulus values obtained. With the new
upgraded strength tester and dedicated fibre profiler, this investigation was revisited to see if re-
sults obtained were consistent or different to that previously found. The uncertainties associated
with the Young’s modulus were successfully decreased from 16%, down to 7%. For fibres that
had a minimum diameter greater than 10 µm, the Young’s modulus value tended to agree with
the accepted value of 72 GPa. The average value of three batches that were tested with diameters
greater than 10 µm were found to be (72.3± 2.3) GPa, (71.8± 1.8) GPa and (75.9± 3.0) GPa.
This gives a weighted average of (72.7±1.3) GPa. For the batch that had fibres under 10 µm in
diameter, the average Young’s modulus value was (63.3±2.7) GPa and a weighted average of
(62.8±1.9) GPa. Non-destructive tests on these fibres showed an average value of (62.9±2.8).
This is consistent with the stress fatigue tests where fibres under 10 µm showed different char-
acteristics.
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Chapter 1

Gravitational Waves

1.1 Introduction to gravitational waves

Over a hundred years ago, Albert Einstein came up with a theory, known as Einstein’s Theory of
General Relativity [1]. In this theory, Einstein explained how an object in the universe can affect
the curvature of spacetime and the resulting impact it has on the motion of bodies around it.
This curvature can be described as the gravitational influence of the object. This means that any
body passing the path of an object would be influenced by the curvature created in spacetime.
The degree of curvature produced from the object depends on the density of the object. This
can be demonstrated with a rubber sheet with a square grid marked out on it to represent two-
dimensional spacetime. If a heavy sphere is placed into the middle to represent a dense body in
space, the sphere creates a curvature in the rubber sheet as it sinks down. An example of two
different bodies curving spacetime is shown in figure 1.1 [2].

Einstein’s theory of General Relativity predicted that massive accelerating objects in the
universe would cause ripples in spacetime where energy is transported away from the source at
the speed of light in the form of gravitational radiation, called gravitational waves. In the same
way that an accelerated electric charge generates electromagnetic waves in the electromagnetic
field, an accelerated mass in space can generate gravitational waves as long as this acceleration
is asymmetrical [3]. The result of this asymmetric acceleration is the creation of gravitational
waves that are quadrupole in nature.

1
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Figure 1.1: Simulated representation of the Sun and the Earth to show the difference in
curvature that the two bodies create [2].

The quadrupole nature of gravitational waves is due to the conservation of two features:

• Conservation of mass which forbids the existence of gravitational monopoles as the mass
does not change with time.

• Conservation of momentum which forbids the existence of gravitational dipoles as the
momentum does not change with time.

The quadrupole nature of gravitational waves results in the stretching and squeezing of space-
time as the waves propagate from the source at the speed of light, in an orthogonal direction
to the direction the wave is moving in. Gravitational waves come in two distinct polarisations:
+ and ×. This is illustrated in figure 1.2. In this example for the + polarisation, the length
change between particles 1 and 3 increases by a distance, dL, giving a total distance of L+dL.
However, for an orthogonal pair of particles, particles 2 and 4, the length decreases to a distance
of L− dL. The ring of particles then returns to its original position before changing in length
again by dL, but with the opposite sign as before. The strain amplitude, h, of the gravitational
wave is a dimensionless variable and indicates the strength of the gravitational wave signal that
would be observed:

h =
2dL

L
(1.1)

where L is the distance between the two free particles and dL is the change in distance.
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Figure 1.2: Diagram showing a ring of free particles for the two types of polarisation, + and
×, of gravitational waves, where the length value refers to the length of the arrows between
two particles.

1.2 Gravitational wave sources

Out of the four fundamental forces that appear in nature (weak, strong, electromagnetism and
gravity), gravity is by far the weakest in strength. This results in the quadrupole amplitude of
gravitational waves to be extremely small, thus making them incredibly difficult to detect. For
example, to generate a gravitational wave in a laboratory environment with two 103 kg spher-
ical masses on a rod of length 2 m rotating at a frequency of 1000 Hz, the amplitude of the
gravitational wave signal observed would be of the order 10−38 [4]. For comparison, a current
generation gravitational wave detector such as the advance Laser Interferometer Gravitational-
wave Observatory (aLIGO) [5] [6] in its current form is sensitive to 10−23 /

√
Hz for detecting

gravitational wave signals from black holes and neutron stars in the universe. Laboratory gen-
erated gravitational waves are therefore not an option to study and must rely on gravitational
waves from sources in the universe. Figure 1.3 shows the frequency range for several types of
sources.

For gravitational waves to be produced from these sources, there has to be an asymmetrical
aspect to the acceleration of the object. The following subsections will describe several types of
sources that show this behaviour.
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Figure 1.3: The gravitational strain,
√

Hz, and corresponding frequency of several types of
sources [3].

1.2.1 Compact Binary Coalescence (CBC)

CBCs come in three different pairings:

• Binary neutron star (BNS)

• Black hole / neutron star (BHNS)

• Binary black hole (BBH)

CBCs orbit around a common centre of mass as they are gradually pulled closer to each other
through gravity. This results in the system radiating energy in the form of gravitational radiation.
The loss of energy in the system decreases the distance between each body in the system.

The amplitude of a gravitational wave signal from a BNS can be calculated by [7]:

h≈ 1×10−23
(

100Mpc
r

)(
MB

1.0M�

) 5
3
(

f
100Hz

) 2
3

(1.2)

where r is the distance to the source, f is the frequency of the gravitational wave signal and MB

is the chirp mass that is equal to:

MB =
(M1M2)

3
5

(M1 +M2)
1
5

(1.3)

where M1 and M2 are the masses of the stars.
The nature of the signal that would be observed for a CBC would be a sinusoidal signal

that would increase in amplitude over time, reaching a maximum when the two objects merge
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together. After the point of maximum amplitude, the signal amplitude decreases extremely
sharply, oscillating down to zero as no more gravitational waves would be produced. This is
called the ring down. The length and amplitude of the signal that is observed is determined
by the density of the objects involved. A BNS coalescence for example will have a longer
observable signal before merging compared to a BBH coalescence due to the BNS having a lot
less mass and therefore taking longer to coalesce than a BBH coalescence. Examples of this will
be shown later in section 1.4.

1.2.2 Supernovae

One of the potential final stages of a star’s life is to explode in what is called a supernova.
When a star burns fuel, the outwards pressure generated counteracts the gravitational pull of
the star’s core such that they are in equilibrium. Supernovae occur when a massive star has
burned all of its fuel and starts producing iron. As fusing iron takes more energy than you get
out from fusing two iron atoms, the gravitational pull of the core takes over the outwards force
that was generated by the burning of fuel. All the gas around the star suddenly collapses causing
the star to explode. A simulation of a supernova explosion is shown in figure 1.4 [8]. Should
the collapse and explosion of the star be perfectly symmetric, no gravitational waves would
be produced. However, if the collapse and explosion of the star was asymmetric in any way,
gravitational waves with the following amplitude would be obtained [9]:

h≈ 6×10−21
(

E
10−7M�

) 1
2
(

1ms
T

) 1
2
(

1kHz
f

)(
10kpc

r

)
(1.4)

where E is the total energy radiated, M� is a solar mass, T is the time to collapse, and r is the
distance to the source. For the example in equation 1.4 for a supernova in the Milky Way, the
signal would be large enough to detect with current gravitational wave detectors, however the
event rate for a supernova in this region is extremely low, meaning at this time signals from these
sources can only be modelled and not compared to real data [9].

Figure 1.4: A simulation of a supernova explosion, showing the asymmetric aspect of the
explosion that would produce gravitational waves [8].
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1.2.3 Continuous Waves (CW)

Continuous wave (CW) sources have so far remained elusive to the current generation of online
detectors. CW sources, as the name suggests, supply a continuous emission of gravitational
waves that can be observed by gravitational wave detectors over a much greater period of time
than the signals obtained from CBCs. An example of a CW source would be pulsars. The first
indirect observation of this behaviour was achieved with a BNS in 1975 by R. A. Hulse and
J. H. Taylor [10] [11]. They observed a pulsar, PSR B1913+16, that consisted of two neutron
stars gradually coalescing over time. They were able to plot out the orbital decay of the system
over time showing that as the orbital distance between the bodies decreased, the system must be
radiating the energy away, shown in figure 1.5.

Figure 1.5: The orbital decay of PSR B1913+16 compared to the general relativistic pre-
diction of the orbital decay [12].

For single pulsars, the emission of gravitational waves relies on an asymmetrical acceleration
component to emit radiation. Pulsars that are not perfect spheres, but instead have a small hill-
like structure on the surface, will not rotate on its axis perfectly. This bump would cause the
pulsar to wobble as it rotates, emitting gravitational waves. These signals are however extremely
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difficult to obtain due to the signal being buried in the noise of the interferometers and require
several months to years of analysed data. The amplitude spectral density of a CW source can be
calculated by [13]:

h≈ 6×10−25
(

frot

500Hz

)2(1kpc
r

)(
ε

10−6

)
(1.5)

where frot is the rotational frequency of the pulsar, r is the distance to the source and ε is the
ellipticity of the pulsar.

Theoretically, it would be possible to deduce a CW signal with one detector. As the Earth
rotates, the orientation of a gravitational wave detector will change relative to the source [14].
This means that the sensitivity of the detector changes with the rotation of the Earth. As CW
searches analyse months to years worth of data looking for signals, the change in the amplitude
of a CW could be deduced with the change of detector sensitivity. The data from a network
of gravitational wave detectors can be combined to limit this sensitivity change. Comparing
equations 1.2 and 1.4 to equation 1.5, it can be seen that the CW sources will produce the
smallest signal. As of the end of the second operating run of aLIGO (O2), no CW signal has yet
been obtained.

1.2.4 Stochastic background

Another potential source of gravitational waves is what is known as the stochastic background
[15] [16]. Similar to the Cosmic Microwave Background in the electromagnetic spectrum, the
stochastic background of gravitational waves should theoretically be detectable. This back-
ground would be isotropic in nature and range over an extremely broadband frequency. It would
not be possible to distinguish this background from one detector as the signal from this source
would be buried within the noise of the interferometers. It is therefore necessary to have a
large network of gravitational wave detectors to distinguish correlated signals between them [4].
From the first observing run of the aLIGO detectors, the upper limit for the stochastic gravita-
tional wave background energy density, ωGW , was found to be < 1.7×10−7 [15].

1.3 Instruments to detect gravitational waves

Attempts to detect gravitational waves have focused on the use of two types of instruments:

• Resonant bars

• Michelson interferometers
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1.3.1 Resonant bar detectors

Joseph Weber was one of the main endorsers for the use of resonant bars in the early era of
attempting to detect gravitational waves. He proposed to have two separate aluminium cylinders,
referred to as bars, located at two locations separated by a large distance [17] [18]. These
cylinders were located in Maryland and Chicago in the United States of America (USA). The
theory was that, should a gravitational wave pass by, both aluminium bars would resonate within
a narrow frequency band. This resonance would be picked up by piezoelectric crystals attached
to the detector to convert the resonance to an electrical signal. The reason two bars were needed
was to allow for the ability to distinguish a signal from local noise sources. As a bar could
resonate through local noise factors to give what would appear to be a gravitational wave signal,
it would be possible to deduce that this was a local noise source if no signal appeared at the
second bar detector. If only one bar were present, then it would be impossible to distinguish any
signal to be a gravitational wave or local noise.

It was claimed by Weber in 1969 that a gravitational wave had been detected through his
experimental set up [19]. He claimed to observe a total of 17 gravitational wave events over
an 81 day time period. With the high frequency of events detected, multiple replica detectors
were made worldwide to try and observe the same signals Weber was detecting through his
bar detectors. Unfortunately, these replica detectors failed to detect any signals similar to what
Weber had detected, publishing results disproving his claims of detecting gravitational waves
[20]. Attention was then turned towards the development of gravitational wave detectors through
the technique of interferometry.

1.3.2 Laser Interferometry

Following the unsuccessful attempts to detect gravitational waves through the use of resonant bar
detectors, a second technique utilising a Michelson interferometer was investigated that showed
the capabilities of detecting gravitational waves. The concept of a Michelson interferometer,
shown in figure 1.6, is that a laser beam passes through a beam splitter down two perpendicular
arms towards a mirror at the end of each arm. The mirror reflects the two beams back down the
arms to the beam splitter where the two beams interfere with each other. The resulting output,
picked up on the photodiode, is what is known as an interference pattern which consists of bright
and dark fringes. The nature of the fringe is determined by the phase of the two beams when
they interfere with each other. Should two peaks interfere, the resulting output is a bright fringe,
known as constructive interference. Should two troughs interfere, the resulting output is a dark
fringe, known as destructive interference.
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Figure 1.6: A schematic of a Michelson interferometer.

As mentioned previously, when a gravitational wave passes through a ring of free particles,
it stretches the ring in one direction, and squeezes it in the perpendicular direction. When a
gravitational wave passes through an interferometer, this same principle applies where one arm,
of length L, would be stretched by a distance dL, and the perpendicular arm is shortened by a
distance dL. This is illustrated in figure 1.7 to show the example of a + polarisation gravitational
wave passing through the interferometer. As the arm length changes, the amount of time the laser
beam is inside the arm changes. This differential in time is what causes the interference pattern
at the photodiode to change.

To utilise the technique of interferometry to detect the faint signal of a gravitational wave,
long interferometer arms are needed to have a sensitivity large enough. Optimal sensitivity can
be achieved in an interferometer when the time it takes for the beam to recombine back at the
beam splitter is half the period of a gravitational wave. This is because this is the moment the
mirror displacement will be at its maximum. The optimal length, Lopt , of an interferometer arm
can be calculated via:

Lopt =
λ

4
=

vt
2

(1.6)

where v is the speed of light and t is the time the beam is in the arm of the interferometer. For
a gravitational wave with a frequency of 100 Hz, t = 0.5×10−2 s giving a value L = 750000 m.
The possibility of building an interferometer with an arm length of 750 km is not practically and
financially feasible. Therefore other techniques must be implemented to increase the sensitivity
of the interferometer.
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Figure 1.7: The effect of a + polarised gravitational wave passing through normal to a
Michelson interferometer illustrating how the arm lengths change by a distance dL.
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1.3.3 Ground-based laser interferometers

There are currently four ground based interferometers that are operational and observing as of
writing this thesis. These are:

• The advanced Laser Interferometer Gravitational-wave Observatory: aLIGO [21] [5] [6]

– One located in Hanford, WA, USA - LIGO Hanford Observatory: LHO

– Second located in Livingston, LA, USA - LIGO Livingston Observatory: LLO

– Arm length of 4 km

– 40 kg fused silica test mass, 400 µm suspension fibre diameter

– Operates at room temperature

• Advanced Virgo [22] [23] [24]

– Located in Pisa, Italy

– Arm length of 3 km

– 40 kg fused silica test mass, 400 µm suspension fibre diameter

– Operates at room temperature

• GEO 600 [25] [26] [27]

– Located in Ruthe, Germany

– Arm length of 600 m

– 5.6 kg fused silica test mass, 270 µm suspension fibre diameter

– Operates at room temperature

There are also currently two ground based interferometers currently being built:

• Kamioka Gravitational Wave Detector: KAGRA [28] [29]

– Located within Mount Ikenoyama, Japan

– Due to join aLIGO and Virgo during the third observing run (O3) in 2020

– Arm length of 3 km

– 22.8 kg silicon test mass, 1.6 mm suspension fibre diameter

– Operates at cryogenic temperature of 22 K

• LIGO India

– Under development in Maharashtra, India. Based on the same design as the two
aLIGO detectors in the USA
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– Completion due in 2024

– Similar design to the aLIGO detectors in the USA

None of the above mentioned interferometers have arm lengths close to the previous example
of having 700 km arm lengths. The two aLIGO detectors have 4 km long arms, Virgo has 3 km
and GEO600 has 0.6 km. Although GEO600 is classed as an online and observing gravitational
wave detector, it is not anywhere near sensitive enough as the aLIGO and Virgo detectors. For
this reason, a lot of updated detector technology with the goal of making gravitational wave
detectors more sensitive is implemented at GEO600 and tested thoroughly before installation at
aLIGO and Virgo.

There are several techniques and upgrades that have been installed in the past decade at the
aLIGO and Virgo observatories that improve the sensitivity of the detectors to make up for the
fact that, for example, a 700 km arm length is not a possibility. Though the arms will not phys-
ically be this length, they can effectively be increased through the use of Fabry-Perot cavities
and delay lines [3] [30]. An example of a Fabry-Perot cavity in the arms of the interferometer
is shown in figure 1.8. To create a cavity in the arm of the interferometer, additional mirrors,
referred to as test masses (TM), are needed compared to the simple Michelson interferometer.
When the beam passes through the beam splitter, it passes through the back of the input test
mass (ITM) and travels down the arm until it reflects off the end test mass (ETM). At the face
of the ITM are several layers of highly reflective coating material that allows for an extremely
small amount of transmission through the test mass, while reflecting the rest, of the order of
one in 3-million photons being absorbed by the test mass. The coating on the ETM however
reflects all the light back into the arm. For the cavity to work, the test masses must be held in
position to build up a resonance between the two test masses where the length of the cavity is an
integral number of the wavelength of the laser. This allows for energy build up within the cavity
and increases the amount of time the beam travels within the arm, effectively increasing the arm
length. For aLIGO, the effective arm length is approximately 1800 km [6].
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Figure 1.8: Schematic of a Michelson interferometer with Fabry-Perot cavities installed in
the arms.

A similar technique to Fabry-Perot cavities is the use of delay lines [31] [32], shown in
figure 1.9. The main difference with this technique is that the beam is not reflected over itself,
but follows one singular traced path reflecting back and forth between the ITM and ETM to
increase the effective arm length inside the cavity. This technique however would require larger
mirrors to get an effective arm length similar to that found with Fabry-Perot cavities, which in
turn would be a larger cost factor in terms of fabrication. Also due to the wider area needed to
reflect the beams, this results in a greater amount of scattered light appearing in the arms, which
can be a limiting noise source [33].

Additional mirrors can be placed along the beam path of the interferometer to increase the
sensitivity of the detector. The input laser for the aLIGO detectors is approximately 125 W [6],
but this can be increased through the addition of a mirror between the laser and the beam splitter.
This is called power recycling, and is shown in figure 1.10.

The configuration of the interferometer is such that when the arms are locked and resonating,
the output at the photodiode is next to a dark fringe. This means that the majority of the light
is therefore reflected back to the beam splitter. By adding a mirror in between the laser and the
beam splitter, referred to as the power recycling mirror (PRM), this light can be recycled back
into the interferometer arms. The PRM also creates a smaller interferometer with the ITMs and
when resonant, will increase the laser power by what is known as the power recycling gain. For
aLIGO, this gain is approximately 42 which results in 5.2 kW of laser power at the beamsplitter
before entering the Fabry-Perot arm cavities. This results in approximately 750 kW of power in
the arm cavities [6].
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Figure 1.9: Schematic of a Michelson interferometer with delay line cavities installed in the
arms.

Figure 1.10: Schematic of a Michelson interferometer with a power recycling mirror (PRM)
installed in between the laser and the beam splitter.

Again, the same technique with power recycling can be applied to the signal before the
output photodiode. Signal recycling [34] [35] can be achieved by placing a mirror, known as the
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signal recycling mirror (SRM), in between the beam splitter and the output photodiode as shown
in figure 1.11. The addition of a SRM allows for a greater frequency response to an incoming
gravitational wave signal by enhancing the signal at a specific frequency, or by broadening the
bandwidth and reflecting the sidebands back into the arm cavities. Broadening the bandwidth
will result in the detector being less sensitive at particular frequencies, but allows for a wider
range of signals to be observed. Narrowing the bandwidth would result in the detector being
more sensitive at a particular frequency, which would aid searches in CW searches, but sacrifices
sensitivity to signals outside this band.

Figure 1.11: Schematic of a duel recycled Michelson interferometer with Fabry-Perot cav-
ities, where the signal recycling mirror (SRM) is installed between the output photodiode
and the beam splitter.

Plans for the next generation of ground-based gravitational wave detectors are already under
way. In particular, there has been significant planning for the Einstein Telescope to be built in
Europe which is designed to be between 100-200 m underground and an order of magnitude
more sensitive that the aLIGO detectors [36] [37]. This underground detector will consist of
a triangular configuration layout which houses 6 interferometers in total with an arm length of
10 km, shown in figure 1.12. Having a triangular formation means that the detector will be
sensitive to gravitational waves coming in from all directions, unlike the current detectors that
are optimally sensitive to signals coming in aligned with the interferometer. Three of the inter-
ferometers will be built to perform at room temperature and therefore focus on high-frequency
signals, whereas the other three are designed to operate at a cryogenic temperature, focusing on
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low-frequency signals. In addition to this, the sizes of the test masses will increase from 40 kg to
approximately 200 kg for the room temperature interferometers. For the cryogenic test masses,
silicon will be used instead of silica due to its better thermal properties at cryogenic tempera-
tures [38]. The Einstein Telescope is not scheduled to be in operation until at least the second
half of the decade of 2020 [37].

Figure 1.12: An artists impression of The Einstein telescope showing the layout of the
interferometer arms underground [37].

1.3.4 Space-based laser interferometers

The next generation of gravitational wave detectors aims to have a space-based detector to
accompany the ground-based detectors, in particular, the Laser Interferometer Space Antenna
(LISA) [39] [40]. LISA will consist of 3 satellites in an equilateral triangle formation following
the Earth’s orbit by approximately 20◦, with each satellite spaced 2.5 million km apart. This
will give the detector a bandwidth of 0.1 mHz to 100 mHz to detect signals from super mas-
sive black holes. In 2015, LISA Pathfinder (LPF) was launched to test various components and
systems, such as an optical metrology, that would be essential to the LISA project. LPF was
launched with two gold-platinum test masses on board with the goal of observing the motion
of the test masses under just the influence of gravity. As well as this, systems such an optical
metrology system, drag-free control system and micro-Newton thruster systems were tested for
performance. Results showed that the test masses performed by a factor of 5 better than required,
indicating that the masses were essentially motionless with respect to each other demonstrating
that the technology required for LISA was achievable at this early stage [41]. LISA is currently
scheduled to launch by 2034.
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1.4 Detection of gravitational waves

On the 14th of September 2015, the two aLIGO detectors detected a signal that originated from
the coalescence of a binary black hole (BBH) system, GW150914 [42]. Two black holes of 36
and 29 solar masses merged to form a black hole of 62 solar masses. This meant that 3 solar
masses worth of energy was radiated away in the form of gravitational waves. This was not only
the first direct observation of a binary black hole system, but also the first confirmed detection
of gravitational waves. A total of 11 confirmed detections have been published from the first
and second observation runs (O1 and O2) with data from aLIGO and Virgo. These include
10 binary black hole coalescences [42] [43] [44] [45] [46] [47] [48] and 1 binary neutron star
(BNS) coalescence [49]. The waveforms from the 10 black hole coalescences are shown in
figure 1.13 [47].

Figure 1.13: Waveforms and simulated images of BBH coalescences observed in O1 and
O2 [50]. The shape of the waveform can be seen to change depending on the mass of the
black holes involved, where the smaller BBHs inspiral over a longer timescale than heavier
ones.

The first BNS detection, GW170817 [49] [51], was significant for several reasons. The grav-
itational wave signal obtained was approximately 100 seconds, which is 2 orders of magnitude
longer than the signals produced from black holes. An example of how this waveform compared
to selected BBH coalescences is shown in figure 1.14. This signal also occurred at the same
time as a gamma ray burst (GRB) was observed. The Fermi Gamma-ray Burst Monitor had in-
dependently observed a GRB signal where the delay between the aLIGO detectors gravitational
wave signal and Fermi was approximately 1.7 seconds [52].When two neutron stars merged to-
gether, an optical counterpart could be detected by telescopes stationed around the world and in
space. This is unlike the case for BBH coalescences which do not emit an optical counterpart.
A world-wide array of telescopes and satellites then began a search in the sky from the aLIGO
and Virgo data to observe any visible remnants of an optical counterpart. Within 11 hours of the
gravitational wave and GRB signal being detected, an optical counterpart was observed by the
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1 metre, 2 hemisphere team using the Swope 1 m telescope, shown in figure 1.15. In total, over
70 ground and space based observatories were able to confirm the signal. All of this confirmed
that BNS mergers are progenitors of short GRBs [53].

Figure 1.14: A comparison of the length of selected BBH coalescences compared to the
BNS coalescence, GW170817 [54].

The optical counterpart was determined to be a kilonova, which forms some of the most
exotic material in the universe such as gold and platinum. This confirmed a source of the pro-
duction of elements in the universe heavier than iron. The optical counterpart was observable for
weeks after the initial signal over the whole optical spectrum, as shown in figure 1.16. This is the
first instance of multi-messenger astronomy where both gravitational and electromagnetic radi-
ation were observed for the same astronomical event [52]. Analysis of the arrival time between
the photons from the GRB and the gravitational wave allowed for a constraint to be applied
to the fractional difference between the speed of gravitational waves and the speed of light to
between 10−15 and 10−16 [53].
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Figure 1.15: Sky localisation of the BNS gravitational wave signal from the aLIGO (green)
and a combination of the aLIGO and Virgo detectors (dark green), the Fermi GRB signal
(dark blue), and the resulting optical discovery from the Swope 1 m telescope 10.9 hours
after the initial signal. For reference, the same area of sky is shown 20 days prior to the
signal arriving from the DLT40 collaboration to show the difference [52].

Figure 1.16: An optical (left) and near infra-red (right) view of the optical counterpart to
GW170817 (labelled SSS17a). Photo credit: 1M2H/UC Santa Cruz and Carnegie Observa-
tories/Ryan Foley.

As of writing this thesis, the third observing run (O3) is currently underway with LHO,
LLO and Virgo with KAGRA due to join the observing run by 2020. Public alerts for candidate
events are now in effect sending notifications out to the public within minutes of the signal being
detected [55]. The number of candidate events found in O3 alone has so far surpassed the total
number of events found prior to O3, with a gravitational wave catalogue detailing the events
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to be released once O3 has finished. These detections would not have been possible had it not
been for the various upgrades that the LIGO detectors went through to get them to their second
generation state of aLIGO. The following section will detail one of the key upgrades that was
carried out, which will be relevant for several investigations carried out in this thesis.

1.5 Overview of the aLIGO four-stage quasi-monolithic sus-
pension system

One of the key upgrades that occurred between initial LIGO and aLIGO was the installation
of the four-stage quasi-monolithic suspension to suspend the test masses [56] [57] [58], shown
in figure 1.17 [59]. A comparison of the initial LIGO and the final stage aLIGO suspension
systems is shown in figure 1.18 [56].

As the aLIGO detectors have to be able to measure a distance change of the order of a
thousandth of the diameter of a proton, the test masses that are moved as a gravitational wave
passes have to be isolated by all local perturbations. This is achieved through the use of a four-
stage pendulum system to suspend the test mass. The concept of a multiple stage suspension
system was first investigated and tested at the GEO 600 detector [60]. The system installed
at aLIGO sits in an active seismic isolation chamber to combat the seismic noise, while the
four-stage system combats this noise passively. The top three stages consist of cantilever blades
to minimise any vertical motion of the test mass. These blades are made of maraging steel to
support the weight of the entire pendulum system, with each stage attached to the end of the
blades with steel wire.

The final stage of the pendulum system is the monolithic fused silica suspension. Fused
silica was specifically used for its strength and thermal noise properties, which will be discussed
in the following section. This final stage consists of a penultimate test mass (PUM) and either an
ITM or ETM, depending on the location in the interferometer. For the purpose of this section,
the suspended test mass will be referred to as the ETM. Both the PUM and ETM are 40 kg
fused silica mirrors with a diameter of 34 cm and a thickness of 20 cm [56] [6]. This is a 29.3 kg
increase in mass from initial LIGO test mass. The face of the ETM consists of several layers of
extremely low loss, highly reflective coating layers of amorphous silica and tantalum pentoxide
[61].
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Figure 1.17: The layout of the four-stage suspension system for the main chain (front sus-
pension) and the reaction chain (rear suspension) [59]. Within the top and upper intermediate
mass are cantilever blades similar to that on the top stage.
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Figure 1.18: Comparison between the initial LIGO suspension and the aLIGO suspension
systems.

The ETM is suspended from the PUM by fused silica fibres. This was a significant change
to the single 310 µm diameter steel wire loop that was used for initial LIGO. These fused sil-
ica fibres start off as 3 mm rods and are heated by a CO2 laser to approximately 2000◦C [62].
This stock is initially pulled down to 800 µm in diameter, followed by pulling down to 400 µm.
The diameter then increases again to 800 µm before the pull concludes. They are approximately
57 cm long and are attached to the test mass through fused silica ears [63]. Further characterisa-
tion and details on the production of the fibres will be described in chapters 2 and 3. These ears
are bonded onto the side of the test mass through hydroxide catalysis bonding [64] [65] [66]
which creates a glass-like bond between the ear and the test mass. With four fibres attached to
the two masses, this equates to the fibres taking a load of 10 kg and a stress of 780 MPa. It is
extremely important that the final stage of the suspension is quasi-monolithic for optimal noise
performance, which will be discussed in the following section.

The design of the whole suspension system was made to reduce several noise sources that
were limiting the initial LIGO sensitivity. This was achieved for the start of the aLIGO observing
run in 2015 allowing for the detection of numerous gravitational wave events to date. There
is always a desire to further reduce the limiting noise sources in the interferometer to make
the detector more sensitive, which would result in an increase in detection events. However,
lowering these noise sources presents a significant challenge.
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1.6 Noise sources

Prior to detecting any gravitational waves, a huge problem for the LIGO and Virgo interferom-
eters was getting the required noise performance to distinguish a gravitational wave signal from
the total noise of the interferometer. Noise budgets, shown in figure 1.19, were simulated to
show what the target sensitivity of the device was going to be, and several science runs were
carried out in the years prior to aLIGO and Advanced Virgo coming online to determine the
limiting noise sources researchers were faced with to getting to their second generation target
noise. Figure 1.20 shows the current sensitivity of all four operating gravitational wave detec-
tors during O3. It is possible to subtract these noise sources once the signal is obtained [67],
but the aim is to always make them more sensitive to limit the need to do any post-signal noise
subtraction.

Gravitational wave interferometers operates within a vacuum to ensure optimal noise perfor-
mance. Should the interferometer operate in-air, particles of dust and air molecules can interact
with the laser beam and the test masses, resulting in noise in the detector output. Should a dust
particle land on the face of the test mass, this can then scatter the laser beam creating noise, or
burn into the coating on the face of the test mass, further introducing noise into the signal. Air
molecules could also influence the movement of the test mass in the interferometer. This section
will discuss various noise sources associated with a gravitational wave detector.

Figure 1.19: The aLIGO noise budget showing the various noise sources that limit and
affect the interferometer [68].
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Figure 1.20: The current differential arm length (DARM) signal of the two aLIGO interfer-
ometers (LHO and LLO), Virgo and GEO600 during O3 [69].

1.6.1 Quantum noise

An example of a noise source that can affect the performance of a gravitational wave detector
is quantum noise. In particular, there are two noise sources that fall into this category: photon
shot noise and radiation pressure noise. Together, they create what is known as the Standard
Quantum Limit (SQL). Figure 1.21 shows the effect that both of these noise sources have on the
detector.

Figure 1.21: Illustration of the fluctuation experienced with radiation pressure noise on a
test mass (left) and photon shot noise on the output photodiode (right) [70].



CHAPTER 1. GRAVITATIONAL WAVES 25

Photon shot noise is a result of the photons from the input laser following a poisson distri-
bution instead of being equal over time. The uncertainty in the number of photons, N, within
the time, T , can therefore be described as

√
N. The amplitude spectral density of photon shot

noise, hSN( f ), which indicates the level at which the interferometer is sensitive to this noise can
be calculated via [70]:

hSN( f ) =
1
L

√
h̄cλ

2πP
(1.7)

where L is the interferometer arm length, λ is the wavelength of the laser, c is the speed of light,
h̄ is the reduced Planck constant, and P is the laser power. From equation 1.7, it can be seen that
to reduce the shot noise, the laser power can simply be increased. This however, has a knock on
effect.

Radiation pressure noise comes from the transfer of momentum from photons to the test mass
when they are reflected off the surface. This transfer of momentum therefore applies a force onto
the test mass causing it to move a distance, x, as illustrated in figure 1.21. The magnitude of
this position movement is affected by the Poisson distribution of the photons onto the test mass
from the laser. This means that the laser power can not simply be increased to reduce the photon
shot noise, as this will have the knock on effect of increasing the radiation pressure noise. The
amplitude spectral density for radiation pressure noise, hRP( f ), can be calculated via [70]:

hRP( f ) =
1

m f 2L

√
h̄P

2π3cλ
(1.8)

where m is the mass of the test mass, f is the frequency of the gravitational wave, and all
other symbols hold their prior definitions. As mentioned previously, increasing the laser power
to reduce the photon shot noise will increase the radiation pressure noise, but this could be
mitigated by increasing the weight of the test mass, but the design of the detector dictates the
value of P when in operation and therefore, these need to be balanced. This means having hSN( f )

equal to hRP( f ). This is known as the Standard Quantum Limit (SQL).
The SQL is analogous to the Heisenberg Uncertainty Principle; should the power of the laser

increase to make the detector more sensitive at higher frequencies due to the reduction of pho-
ton shot noise, the detector will then lose sensitivity at low frequencies due to the increase in
radiation pressure noise, and vice versa. The SQL is a limiting noise source in a Michelson inter-
ferometer such as aLIGO, however the introduction of a technique called ‘squeezing’ [71] [72]
has been proven to reduce this quantum noise limit at the GEO600 observatory [26] [73] [27]
and has been installed at LHO and LLO for O3 [74]. Squeezing involves reducing the quantum
noise in either the amplitude or phase quadrature of the laser beam in the interferometer, while
increasing the quantum noise in the other. For example, if it were desirable to increase the sen-
sitivity in the phase of the laser light, the light can be ’squeezed’ such that the quantum noise in
the phase quadrature decreases, while increasing in the amplitude quadrature.
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1.6.2 Gravity gradient noise

Gravity gradient noise is a dominant noise source that plays a major role in the sensitivity of the
detector at low frequencies [75]. Also known as Newtonian noise, this noise source is due to the
changes in density and surface waves of the ground below the suspensions. Figure 1.22 shows
the effect a surface wave has on the motion of a test mass. As a surface wave sits underneath the
test mass at a peak or a trough, the gravitational pull on the test mass will be perpendicular to the
face of the test mass. Once the wave passes, a gradient will occur as the mass is attracted to the
direction the surface wave is influencing. Current ground based detectors use gravity gradient
models to subtract the Newtonian noise from the signal by measuring the activity of seismometer
arrays placed around the observatory [75] [76]. To minimise the effect of surface waves, building
an underground detector can push the noise budget further down in frequency [77]. This is one
of the motivations for building the Einstein Telescope underground where the low frequency
interferometer will be limited by Newtonian noise at 7 Hz and below, which is an improvement
to the current 10-12 Hz of current generation detectors [36] [37].

Figure 1.22: The effect a propagating surface wave has on a suspended test mass.

1.6.3 Seismic noise

Seismic noise is another noise source that is dominant in the low frequency region of current
gravitational wave detectors. An example of the seismic noise spectrum at LLO is shown in
figure 1.23 [78]. Seismic noise can arise through several different sources such as local weather,
world wide earthquakes, local human activity both at the observatory and in the surrounding
area. Earthquakes around the world can have a significant impact on the performance of the
interferometer. An example of an earthquake approaching LHO is shown in figure 1.24. An
earthquake anywhere around the world that measures 7 and above on the Richter scale will knock
the interferometer out of lock and out of observing mode. The proximity of the interferometer
to the epicentre of the earthquake can also affect the time it takes for the interferometer to
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come back online and their resulting sensitivity. An example of this can be found from July 6th
2017 where a 5.8 magnitude earthquake occurred in Montana, USA, where the low frequency
sensitivity was still being affected by the earthquake several weeks later [79].

Figure 1.23: Seismic noise spectrum obtained for LLO under various scenarios [78].

Figure 1.24: An incoming earthquake being picked up by the seismometers at LHO [69].

Human activity can also be a factor that has to be considered when the detectors are in
observation mode. Figure 1.25 shows an example of the daily noise during a weekday at LHO.
In this figure, several different artefacts can be picked up that are attributed to the human activity
at LHO, which includes the morning rush hour of heavy goods vehicles, as well as the working
hours where most people are on site.
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Figure 1.25: An example of the noise human activity has on seismometers at LHO [69].

To combat seismic noise in the interferometer, a multiple stage pendulum system had to be
developed to satisfy the seismic noise performance required for the aLIGO and Virgo detectors
[56] [24] [80]. A similar system is also installed at KAGRA [29]. As shown previously in figure
1.17, a multiple stage pendulum system was installed into the current generation of gravitational
wave detectors to limit the horizontal and vertical motion of the test mass. The use of a pendulum
system exploits the fact that the transfer function of a pendulum above resonance frequency
follows 1

f 2 for the horizontal component. For a test mass with a mass of m, suspended on a
spring with a spring constant, k, and damping constant, b, the transfer function between the
ground motion, xg, and the motion of the test mass, xm is:

xm

xg
=

ω2
0√

(ω2
0 −ω2)2 +ω2γ2

(1.9)

where ω0 is the resonant angular frequency equal to
√

k
m and γ = b

m is a constant [68]. From
equation 1.9, low frequencies show that xm

xg
≈ 1. This means that the pendulum system would act

as one system where the movement at the bottom of the spring will follow the movement at the
top. However, for high frequencies, xm

xg
≈ ω2

0
ω2 . This means that very little motion is transferred

to the test mass. This same principle applies for the vertical component of the cantilever blades.
Active isolation is utilised in the form of the hydraulic external pre-isolator (HEPI) and the
internal seismic isolation (ISI) system [81]. The HEPI isolates the chamber and is the first line
of defence against the environmental noise using hydraulic actuators in combination with data
from ground seismometers and position sensors. The ISI platforms utilise position and vibration
sensors to damp out various environmental vibrations at local-specific tuned frequencies. The
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active isolation reduces the noise down to approximately 10−13 m. The combination of both
the passive seismic isolation system, in combination with the active isolation system of the
suspension chamber, allows for the sensitivity target of the seismic noise to be achieved.

1.6.4 Thermal noise

Thermal noise is a dominant noise source at≤ 100 Hz and at a range of narrow band frequencies
in the hundreds to kilo-hertz region as shown in figure 1.19, and is associated with the test mass
suspensions installed in the detectors. This noise source is a result of statistical movement of
atoms due to the thermal energy each atom has. This is known as Brownian motion [82]. Robert
Brown observed pollen grains floating in water moving in random motions, which Einstein
would later find was the result of the pollen grains interacting with the thermally driven water
molecules [83]. As the pollen moved in the water, the pollen grains experienced a fluid resistance
that dissipated the pollen’s kinetic energy. A result of the statistical movement of atoms due to
the thermal energy of each atom is the water molecules becoming thermally influenced. The
random nature of the movement of the pollen was due to the number of collisions between the
water molecules and the pollen. This is known as the Fluctuation-Dissipation theorem [84]. The
Fluctuation-Dissipation theorem can be expressed as [85]:

S f (ω) = 4kBT ℜ[Z(ω)][N2Hz−1] (1.10)

where S f (ω) is the power spectral density of the thermal driving force, kB is the Boltzmann
constant, T is the temperature and ℜ[Z(ω)] is the real part of the mechanical impedance of the
system, known as the dissipation where

Z =
F
v

(1.11)

where F is the applied force and v is the velocity. Equation 1.10 can be re-arranged to include
the admittance, Y , and to express the power spectral density for displacement:

Sx(ω) =
4kBT
ω2 ℜ[Y ][m2Hz−1] (1.12)

For a low thermal noise performance, a material that shows a low dissipation behaviour, as well
as high strength characteristics, was needed: fused silica.

One of the low thermal noise properties of fused silica is its thermoelastic loss performance.
This occurs when there is a temperature gradient within the material when it is bending. An
example of thermoelastic loss within the gravitational wave detector is within the fibres that
suspend the test mass in the suspension system. Consider a fused silica fibre that is bending.
This will induce a temperature gradient within the fibre that results in a heat flow between
the compressed side and the stretched side. This gradient can be determined by the thermal
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expansion coefficient, α:

α =
1
l

dl
dT

(1.13)

where l is the length of the fibre, dl is the change in length and dT is the change in temperature.
The thermoelastic loss, φthermoelastic, is [86]:

φthermoelastic =
Y T
ρC

α
2
(

ωτ

1+ω2τ2

)
(1.14)

where Y is the Young’s modulus, T is the temperature, ρ is the density of the material, C is the
specific heat capacity, ω is the angular frequency and the characteristic time for heat to flow
across the fibre, τ , is:

τ =
ρCd2

13.55k
(1.15)

where d is the diameter of the fibre and k is the thermal conductivity.
Research has shown that the thermoelastic loss in a fibre can theoretically be nullified by

applying a certain stress on the fibre due to the Young’s modulus of fused silica increasing with
temperature [87]. For a fused silica fibre, the thermoelastic loss is:

φ f ibre =
Y0T
ρC

(
α−α0

β

Y0

)2(
ωτ

1+ω2τ2

)
(1.16)

where Y0 is the Young’s modulus at room temperature, α0 is the static stress on each fibre and
β = 1

Y0
dY
dT . From equation 1.16, should α0 =

αγ

β
, the thermoelastic loss for a fibre is zero. This

characteristic was exploited for the aLIGO monolithic stage to cancel the thermoelastic loss in
the system. This was done by having an 800 µm diameter region in the fibre which requires a
stress of 195 MPa to be nullified, and is known as the thermoelastic nulling region. It however
was not possible to have the entire fibre 800 µm as this would have an effect on resonant modes
that appear in the suspension system such as the bounce and violin modes.

As the test mass is suspended using a multiple stage pendulum isolation system, the majority
of the energy in the test mass is in the form of gravitational potential energy [88]. For a test mass
of mass, m, suspended on a single fibre, the force on the fibre is:

F = mg (1.17)

where g is the acceleration due to gravity. Displacing the test mass horizontally will result in
a restoring force attempting to bring the mass back to an equilibrium, with the bending region
being located at the top of the fibre. Equating equation 1.17 with the restoring force, Frestore =

kL, where L is the length of the fibre gives:

kgrav =
mg
L

(1.18)
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where kgrav is the spring constant equivalent in a gravitational field. The energy stored in the
fibre is:

Estored in f ibre =
1
2

k f ibrex2 (1.19)

where k f ibre is the spring constant of the fibre and x is the horizontal displacement of the test
mass. The fraction of loss in potential energy, ε , due to the internal friction at the top of the fibre
when the test mass is displaced per cycle is:

Elost per cycle = ε
1
2

k f ibrex2 (1.20)

The quality factor, Q, can be defined as:

Q = 2π
Estored in f ibre

Elost per cycle
=

1
φ f ibre loss

(1.21)

and can be rearranged to give the loss in the fibre, φ f ibre loss:

φ f ibre loss =
ε

2π
(1.22)

The total potential energy stored in the pendulum is:

Estored in pendulum =
1
2
(k f ibre + kgrav)x2 (1.23)

where kgrav is the effective spring constant associated with the gravitational field. Therefore:

φpendulum loss =
εk f ibre

2π(k f ibre + kgrav)
(1.24)

The ratio of losses between that of the fibre and the pendulum is therefore:

φpendulum loss

φ f ibre loss
=

k f ibre

k f ibre + kgrav
(1.25)

Since kgrav >> k f ibre,

φpendulum loss = φ f ibre loss
k f ibre

kgrav
(1.26)

The dilution factor, D, which is the factor that the mechanical loss in the pendulum is reduced
over the mechanical loss in the fibre is therefore:

1
D

=
k f ibre

kgrav
(1.27)

For aLIGO, the dilution is approximately 91 [58].
As the monolithic stage of the suspension is all made out of fused silica, which as previously
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stated has a low mechanical loss value, the concentration of energy in the system is at the res-
onant modes. This means away from the resonant modes, the thermal noise is decreased. This
can be seen in figure 1.26.

Figure 1.26: The horizontal and vertical modes of an aLIGO suspension. It can be seen that
the bulk of the noise occurs at the resonant frequency as a sharp spike [57].

Examples of resonant modes in the aLIGO suspension systems are the pendulum, bounce and
violin modes. The quadruple pendulum has 24 pendulum modes, 22 of which range between
0.4-5 Hz and are damped out by damping the top mass [89]. This arises from the movement
of the test mass incident to the laser in the cavity. This results in a change in the laser path
length which affects the output of the interferometer. This can be moved to a lower frequency
through the use of longer and thinner fibres. The other two modes are the bounce and roll
modes. The bounce mode occurs at approximately ≤10 Hz and the roll mode at approximately
18 Hz [89] [6]. As previously mentioned, the thermoelastic nulling region of the fibre is 800 µm
in diameter. If this length was carried out throughout the entire length of the fibre, the bounce
mode would occur at approximately 18 Hz [58]. It is possible however to move this mode further
down in frequency through the use of thinner fibres to increase the applied stress. For example,
the A+ upgrade proposal of using 300 µm fibres to suspend the test mass will move the bounce
mode from 10 Hz to approximately 7 Hz [90]. Violin modes are also determined by the stress
that is applied to the fibre, but occur at multiple harmonic frequencies. The first violin mode
occurs at approximately 500 Hz, and the second at approximately 1000 Hz [56]. Similar to the
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18 Hz bounce mode scenario, with a fibre diameter of 800 µm along the entire length, the violin
modes would occur at approximately 250 Hz [58]. The A+ upgrade however would increase
the frequency of the violin modes with the first fundamental mode occurring at approximately
750 Hz [90]. Due to the fact that fused silica is an ultra low loss material, any excitation of the
violin modes will result in an extremely long ring down time, of the order of days. An active
damping system is therefore needed to reduce this ring down time as the excitation of this mode
can affect the detector sensitivity greatly [91].

Thermal noise is one of the most critical noise sources that limits the sensitivity of the second
generation detectors. Extensive research and development had gone into lowering this, and the
previously mentioned noise sources, to lower them to the point where gravitational waves could
finally be detected. Even though gravitational waves have been detected, the aim is to always
make the detectors even more sensitive to allow for a greater rate of detections, as well as from
sources yet to be found. For the next generation of gravitational wave detectors, upgrades such as
going underground, into space, cryogenic detectors and longer baselines will hopefully achieve
these goals.

1.7 Thesis outline

The content of this thesis will focus on various aspects of fused silica fibres that are used in
aLIGO suspensions, as well as for fibres used for other gravitational wave related research asso-
ciated with the University of Glasgow and the Albert Einstein Institute in Hannover, Germany.
Chapter 2 will focus on the alignment process of the aLIGO fibre pulling machine to detail how
the pulling machine should be aligned to maximise the efficiency of fibre production. This will
apply to both pulling machines that are at Glasgow and LHO. Chapter 3 will present an inves-
tigation into angular misalignments that can be introduced into the fused silica fibres during the
production process. This chapter will detail methods that will result in angular misalignments
and how to mitigate this, as well as investigating what effect these misalignments have on the
ultimate strength of the fibres. Chapter 4 continues the research of aLIGO fibres by investigating
what is known as stress fatigue in aLIGO fibres. This research was carried out in parallel with a
fellow PhD student at the time of the investigation, Dr Lee, with both sets of data accompanying
each other [92]. Chapter 5 moves on from aLIGO fibres to discuss ultra-thin diameter fibres that
are related to the Sagnac speedmeter and 10 m prototype investigations that are currently being
carried out at Glasgow and Hannover, respectively. This chapter presents the development of a
dedicated fibre profiler for these fibres, as well as upgrades to the fibre strength tester. Chapter
6 carries on the investigation of stress fatigue, but with ultra-thin fibres to accompany the data
obtained in chapter 4. Chapter 7 presents an investigation into the Young’s modulus of ultra-thin
fibres, which is a follow up investigation to research previously carried out [93], but with the
new equipment that was presented in chapter 5.



Chapter 2

Alignment of the aLIGO fibre pulling
machine.

2.1 Introduction

The production of fused silica fibres for aLIGO suspensions has been well established for more
than a decade [62] [56]. A bespoke fused silica fibre pulling machine was designed and devel-
oped at the University of Glasgow and has been replicated at Virgo to produce fibres for the
Virgo detector and at LHO to produce all the fibres used at both the LIGO Hanford Observatory
(LHO) and LIGO Livingston Observatory (LLO) [62].

During this PhD, time was spent by the author at LHO on two separate occasions during
the commissioning period between aLIGO’s second and third observing run specifically to pro-
duce fused silica fibres for the monolithic fused silica suspensions [56] for both LHO and LLO.
During this time the author also assisted with the installation of fibres to one of the monolithic
suspensions at LHO, shown in figure 2.1. In order to produce fused silica fibres for these sus-
pensions, the fibre pulling machine had to be properly aligned prior to any production to ensure
the fibres that were produced fall within the manufacturing tolerances. Such requirements in-
clude the ability to produce fibres with a diameter tolerance of 400±20 µm in the thin middle
section, 800±80 µm in the thermoelastic nulling region, polishing the fused silica stock without
vapourising too much material (less than 100 µm of stock material) and no mechanical induced
offset in the stock when heating is applied. Further details of these tolerances will be discussed
in further detail in chapter 3.

At the time of these two visits to LHO and as of writing this thesis, there is no dedicated
document detailing a procedure to correctly align the pulling machine. This can lead to an
inconsistent alignment procedure depending on the user. This chapter will serve as a detailed
procedure that should be followed to ensure consistent alignment of the pulling machine. The
procedure that is detailed out in this chapter was used extensively during these two visits as well
as in the research that was carried out in chapters 3 and 4.

34
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Figure 2.1: A: The monolithic fused silica suspension at LHO that had fibres installed
during one of the two fibre pulling visits by the author. B: The coated front face of the fused
silica test mass.

2.2 Pulling machine layout

The pulling machine, shown in figures 2.2 and 2.3, utilises a 10.64 µm CO2 laser to heat up a
rod of fused silica held securely in place via clamps. Using a CO2 laser allows for accurate
control over the distribution and delivery of the heat to the fused silica. A 45◦ mirror rotating
at approximately 60 Hz spreads the beam around a conical mirror. This creates a cylindrical
beam as it is reflected up towards the second conical mirror, known as the feed mirror. This is
illustrated in figure 2.4. The laser is focused onto the rod, also known as the stock, from the feed
mirror. A fibre is then drawn out from the molten region by moving the top stage, known as the
pulling stage, via a custom built LabVIEW program [62] that reads in motor voltage values to
send to the motors controlling the stages. To ensure there is always material available to draw
the fibre from, the feed mirror is also on a motorised stage and runs slowly down the stock during
the pull to melt fresh material.
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Figure 2.2: Solidworks rendering of the fibre pulling machine [94]. A: The full pulling ma-
chine assembly, and B: exploded view of the pulling machine to clarify labeled components.
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Figure 2.3: The current state of the fibre pulling machine at the University of Glasgow as
of writing this thesis.
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Figure 2.4: Illustration of the beam path for the pulling machine at Glasgow with a side-
view cross section of the optical path within the optical system of the pulling machine.
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Figure 2.5: The beam path and optical set up on the pulling machine at LHO. Note there is
no periscope in the beam path compared to the Glasgow pulling machine in figure 2.4.

Previous research [95] has shown that fused silica fibres can be strengthened through a tech-
nique called laser polishing. This is a process that has now became the standard procedure for
any fused silica fibres that are to either be installed to an aLIGO monolithic suspension, or for
any strength test investigations. This process involves heating the fused silica stock with the
laser to the point where it is molten (approximately 2000◦C, and then slowly moving the feed
mirror down the fused silica stock, at approximately 0.0275 mms−1. The feed mirror travels
for a distance set by the user, before traveling back up to the start position at the same velocity.
Moving the feed mirror down and back up the fused silica stock at a slow velocity ensures that
at every point between the start and finish positions, the stock has been molten. This removes
artefacts such as surface cracks that may have been present in the fused silica stock that could
potentially have an impact on the ultimate strength of that fibre. Figure 2.6 shows a photo of a
rod of fused silica during the polishing procedure. It is clear from this image to see the part of
the stock material that has been polished as there are no surface artefacts and is transparent. Any
surface dirt is removed by a three stage wipe down of the stock prior to polishing. This wipe
down procedure consists of using Anticon Gold Wipes [96] to clean the stock with methanol,
then with acetone and then with methanol a second time [97].

It is therefore essential to ensure the pulling machine is well aligned so that the laser during
the polishing and pulling process is equally distributed along the stock material. Failure to do so
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could result in the beam being concentrated in areas for prolonged periods of time, vapourising
stock.

Figure 2.6: Rod of fused silica undergoing laser polishing. The difference between the
unpolished and polished stock material can be clearly seen in the insert in the bottom right
where the unpolished region is visibly more opaque than the clear polished region.

In the following sections, the alignment of the pulling machine will be discussed in the order
the procedure should be carried out. The following procedure is written with the assumption that
the pulling machine has been previously assembled according to the documented specifications
[94].

The alignment procedure has two main stages:

• Mechanical alignment of the pulling machine core components

• Alignment of the laser beam

It is important that the alignment procedure is carried out in this order. Reversing the or-
der of alignment by aligning the laser first prior to mechanical alignment can result in further
misalignment of the pulling machine. This would result in compensating for a mechanical mis-
alignment with a misalignment of the laser distribution. While this can be a quick fix for a short
term pulling demonstration environment, this is not an ideal situation for batch production of
fibres for aLIGO suspensions or any proper investigation and can lead to material being wasted
on imperfect fibres.
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It should be noted that the mechanical alignment of the core components, such as the tower
baseplate and conical mirror holders, should only need to be set once and never touched again.
Components associated to the laser beam alignment, such as mirror mount knobs and posts,
will however need frequent checks during usage. Checks on the core mechanical components
should still be carried out prior to the production of fibres that will be used in a monolithic
suspension. The rest of this chapter will describe in detail the procedure to aligning all of the
above components.

2.3 Pulling machine mechanical alignment

2.3.1 Bench, tower and baseplate

A first check to be made is to ensure that the bench the pulling machine is sitting on is level to
the floor. This ensures that the natural user assumption of using the optical bench as a reference
point, is valid. Adjustments to the bench legs should be made following the manufacturer’s
manual [98]. All alignment checks from this point assume a level bench that is perpendicular to
local gravity.

The tower can be checked with spirit levels to ensure that it is perpendicular to the bench.
This is essential as a tower that is not perpendicular to the bench will not pull fibres along an axis
that is perpendicular to the bench. This could lead to misalignment artefacts as both the feed
and pulling stages move along the tower off the central axis of the stock material. Adjustments
can be made to the back arms that hold the tower in place, shown in figure 2.7. How well the
tower is aligned can be judged through the use of the previously mentioned spirit levels with
tools such as a set square.
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Figure 2.7: Arm connector for the tower.

A feature that was installed in the Glasgow machine and later installed at LHO during this
PhD were reference plates for the base of the pulling machine. A reference plate in this case is a
block of aluminium that has been manufactured to have a width and length with a tight tolerance.
It is designed to sit in the space in between the baseplate and the tower baseplate shown in figure
2.8. When installed against the tower baseplate, the baseplate can then be positioned against this
reference plate to ensure that the distance between the baseplate and the tower baseplate was of
a known absolute distance. Prior to their installation, the LHO conical mirror baseplate did not
have any marked reference points on the Bosch frame that the baseplate was sitting on to check
this. An inspection of the position of the opposite edges from the base plate to the back plate
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showed that the baseplate was offset by a few millimetres, also shown in figure 2.8.

Figure 2.8: Offset of the baseplate to the tower baseplate. A: Offset of left side. B: Offset
of right side.

Previous research [93] [99] has shown that the position of the conical mirrors of a fibre
pulling machine is critical to ensuring uniform heating distribution of the laser beam. In the
aLIGO pulling machine, the bottom conical mirror is in a fixed position on the baseplate. The
fixed position is such that the rotating 45◦ mirror is in the centre of this mirror. Also concentric
to this mirror are the post and post holder of the bottom clamp.
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In total, three reference plates were installed to the pulling machine to ensure the baseplate
was sitting in the correct position. This included two plates to reference against the tower of
the pulling machine [100], shown in figure 2.9 and one side plate [101] to ensure the base plate
was sitting flush to the edge of the frame. This means that the bottom conical mirror, and
therefore the fixed and rotating 45◦ mirrors, were sitting in their ideal positions, and could then
be referenced to carry out the next steps in the alignment. This will be discussed in the following
subsection.

Figure 2.9: Installation of the reference plate to align baseplate to the tower baseplate. A:
Reference plate prior to installation. B: Reference plate after installation.

2.3.2 Conical mirrors

In an ideal scenario, the feed mirror would be able to run down the tower until it is just in contact
with the bottom conical mirror to check that both mirrors are concentric. Due to the design of
the pulling machine, this is not possible due to the frame that is holding the bottom post holder.
The feed mirror instead should be run down to the top of the bottom post holding plate without
making contact with the plate.

Two checks should be carried out at this stage. Firstly, to check the attachment plate, shown
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in figure 2.10 of the feed mirror to the feed stage on the tower is level to the motor stage on the
tower. This is then followed by checking the feed mirror holder and the feed mirror itself. Any
offset at this point would suggest two potential scenarios:

• The feed mirror face is not flush to the face of the holder.

• The feed mirror holder is not flush to its attachment plate.

Previous experience had shown material between the contact faces of the holder and mirror
which resulted in the feed mirror failing to sit flush to its holder and therefore this should be
checked. This material can be anything from a bit of dirt, which can then be wiped away with
methanol, to leftover material during manufacturing of the aluminium parts. This can be re-
solved by filing away the leftover material until the drilled hole is flush with the rest of the face.
Ensure this is carried out in an appropriate environment and not in the clean lab. Checks to all
screws should also be carried out to ensure no movement occurs to the mirror or mirror holders
when a small amount of force is applied by hand.

Figure 2.10: The back plate that connects the feed mirror holder to the feed mirror stage
on the tower. The finger in the image is pointing to one of the screws that attach the plate
to the tower that should be checked for tightness. Inset shows SolidWorks rendering with
attachment plate highlighted in green.
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A plastic alignment reference tool [102] can then be installed flush around the bottom post.
This tool has the outer circumference of the conical mirror grooved onto the surface. The feed
mirror can then be aligned up to the circular alignment grooves on the tool by loosening the
screws on the feed mirror holder and sliding the holder until aligned. The alignment of the feed
mirror to the alignment plate grooves can be done by eye as long as the mirror is inspected from
all angles.

Figure 2.11: Disassembled (A) and assembled (B) conical mirror plastic alignment tool.

Figure 2.12: Installation of the conical mirror plastic alignment tool (A) and an installed
alignment tool highlighted in the red box (B).
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Figure 2.13: The groove on the plastic alignment tool to align the feed mirror. A: underside
of feed mirror. B: Topside of feed mirror.

The feed mirror should then run back up to its start position followed by a final spirit level
check. There should be no change in how level the feed mirror is sitting during this positional
change and serves as a "double check". If there is a significant change between the two points,
this would suggest that the feed mirror is not travelling along the central axis of the conical
mirror. This could indicate another issue such as the tower was not properly aligned and not set
perpendicular to the bench. This would have to be revisited and the previous processes repeated
once fixed.

2.3.3 Top and bottom basic clamps

An offset between the top and bottom clamps where the fused silica stock sits is obvious to spot.
Should there be an offset, the moment the fused silica stock becomes molten, the stock will
move in a horizontal direction. This is due to the force that is being applied on the stock due to
the offset. An example of this is shown in figure 2.14.

Figure 2.14: Horizontal offset of a piece of fused silica stock.

If there has been a significant period since the last alignment of the pulling machine, or is the
first alignment prior to a batch of production fibres, it is recommended to use the basic clamps
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for this procedure. An example of basic clamps is shown in figure 2.15. The second type of
clamp, known as fuse clamps, will be discussed in the following subsection. The bottom clamp
should be aligned first to ensure that the stock is held concentric to the conical mirrors. Firstly,
the post that the bottom clamp holder is attached to, shown in figure 2.16, should be checked to
ensure it is at the right height and position. This can be carried out by adjusting the post within
the holder and tightening the screws to secure it in place. Markers can be marked on both the
post and the holder for future reference if desired.

Figure 2.15: A: A basic clamp. B: Top basic clamp attached to its holder.

Figure 2.16: The centre post that holds the bottom clamp holder at Glasgow (A) and LHO
(B).
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To check that the semi-circular groove in the clamp is concentric to the conical mirrors, an
alignment tool, shown in figure 2.17, was developed for use on the Glasgow pulling machine to
aid the alignment of the clamps [103]. This aluminium plate can be slid onto the top of the feed
mirror. The lip on the plate will come into contact with the outside circumference of the feed
mirror resulting in the opposite edge sitting exactly half way along the feed mirror. This side
has a 3±0.1 mm wide groove in the middle where the fused silica stock would slot into should
the stock be perfectly in the centre of the feed mirror.

Figure 2.17: Aluminium alignment plate, D1800247, used to align the clamps to the centre
of the feed mirror.
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Figure 2.18: Zoomed view of the 3mm groove on the alignment plate.

Figure 2.19: Aluminium alignment plate to check fused silica stock is in position.
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Figure 2.20: Alternate angle of aluminium alignment plate to check fused silica stock is in
position.

Using this tool, a rod of stock can be inserted into the bottom clamp with the feed mirror as
far down as possible without going past the bottom clamp. The X-Y translation stage that the
clamp sits on is then adjusted until the stock material is sitting in the groove. This process is
then repeated for the top clamp with the feed mirror at the reset position.

Once aligned, the stage holding the top clamp is moved down as close to the bottom clamp as
possible without touching, as shown in figure 2.21. A check can then be made to ensure that the
sides of the top and bottom clamps and clamp holders are parallel with each other and that the
clamps are coaxial. An offset in the clamp or clamp holders can result in issues with extracting
the fibre cartridge from the pulling machine where the clamps can twist and catch on the holder
when trying to advance the top stage.

Figure 2.21: The top and bottom clamps brought close to contact with each other to align
the clamp holders.

The top stage can then be moved up to its starting position. A final check is made by using
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the aluminium alignment plate with a piece of fused silica stock in the top clamp and with the
feed mirror at its reset position.

2.3.4 Top and bottom fuse end clamps

When producing fibres for use in monolithic suspensions, lengths of fused silica stock are pre-
pared with what are known as fuse end attachments. The process of attaching fuse ends to the
fused silica stock will be described in greater detail in chapter 4. Fuse ends are aluminium at-
tachment blocks that allow handling and securing of the fused silica stock without physically
handling the actual stock material. This is shown in figures 2.22 and 2.23.

Figure 2.22: Fused silica stock with fuse end attachments.

Figure 2.23: Fuse end attachment showing the two flat faces and two curved sides.
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Alignment of fuse end clamps, shown in figure 2.24, is in principle, the same as the basic
clamps. There is however an additional factor to consider when using fused silica stock with
fuse end attachments. An example of a fuse end within a fuse end clamp is also shown in figure
2.24.

The important factor to take into consideration when using fuse ends is the accidental torque
imparted to the fused silica stock during attachment to the clamps. Examples of this are shown
in figures 2.25 and 2.26.

Figure 2.24: A: A fuse end clamp. B: A fused silica stock rod with a fuse end sitting in the
top fuse end clamp in the fibre pulling machine.
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Figure 2.25: Top row: ideal scenario of a fuse end sitting in a fuse end clamp.
Middle row: Top down view of a well aligned fuse end sitting within a fuse end clamp with
an angle induced by a flat tip screw with the resulting stock shape after heating.
Bottom row: Well aligned fuse end with a pointed tip screw used instead of a flat tip screw.

Figure 2.26: Top row: ideal scenario of a fuse end sitting in a fuse end clamp.
Bottom row: Top down view of a fuse end sitting within the fuse end clamp at an angle with
the resulting stock shape after heating.
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By necessity, there is some clearance in the clamps to allow for the installation of fused
silica stock with fuse ends. This can result in slight movement of the stock within the clamp.
This movement, combined with tightening the flat tipped screws that are not perfectly flat, but
"rough" flat, can result in the fuse end being pushed to the other side, twisted or both. This can
easily be misinterpreted as the clamps not being coaxial. To minimise this issue, extra care must
be taken to ensure there is no significant movement of the fuse end when tightening the screws.
Movement of the fuse end during tightening can be seen by eye. It is possible to significantly
reduce the issue caused by flat tip screws by using sharp tipped screws. This is an upgrade that
will be made in the near future prior to production of fibres for A+ [90].

This issue can also arise from a fuse end that has been misaligned during the preparation
process, which can also contribute significantly to this issue. Therefore any fuse ends that are
not properly aligned during the production process should be discarded from production fibres.
This will be discussed in more detail in chapter 4.

2.4 Laser beam alignment

Once the mechanical alignment has been completed, the laser alignment can be carried out. It
is absolutely essential to ensure the laser is properly aligned when producing fibres for aLIGO
suspensions. The mechanical alignment of the core components described previously should
only need to be carried out once at the start of a fibre production period and should not need to
be carried out again in the near future. Laser beam alignment should be carried out at the start of
every day when producing production fibres. It is likely that in between days of producing fibres,
only slight minor adjustments will need to be made the next day. The initial alignment at the
start of the production period however might require significant adjustments. Proper alignment
of the laser beam is essential as misalignment of the beam during the pulling process can produce
fibres that fall outwith the tolerances of the fibre specifications.

Figure 2.27 shows a SolidWorks rendering and an image of the optical setup within the fibre
pulling machine. Figure 2.28 shows the location of the rotating 45◦ mirror within the bottom
conical mirror. Figure 2.29 shows a cross-section of the beam path within the pulling machine
optical set up when the laser is theoretically perfectly aligned.
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Figure 2.27: SolidWorks rendering and an image of the optical setup within the fibre pulling
machine.

Figure 2.28: Rotating 45◦ mirror at the centre of the bottom conical mirror. Inset shows
location in the SolidWorks rendering, highlighted in green.
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Figure 2.29: Cross section of beam path for an aligned pulling machine to the fused silica
stock.

Figure 2.30 shows the beam distribution around the fused silica stock for an aligned pulling
machine. This is the ideal scenario of the pulling machine for producing fibres as the laser beam
is uniformly distributed around the fused silica stock.

Figure 2.30: Distribution of beam around fused silica stock for an aligned pulling machine.
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Figure 2.31 shows the resulting cross section of the beam path where there is a mechanical
offset misalignment of the feed mirror. Figure 2.32 shows the beam distribution around the
fused silica stock with this misalignment. Resulting effects of this type of misalignment will be
discussed in the following chapter.

At this point in the alignment set up, this should have been solved during the mechanical
alignment process that was described prior to this subsection.

Figure 2.31: Cross section of beam path for a mechanical misalignment of the feed mirror.

Figure 2.32: Distribution of the beam around fused silica stock for a feed mirror mechanical
misalignment.
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2.4.1 Red alignment beam

Initial checks should be made to ensure that the visible alignment beam is aligned with the CO2

laser as the majority of the alignment will be checked with this alignment beam. As of writing
this thesis, there are two different CO2 lasers being used for the LHO and Glasgow pulling
machines:

• LHO - Synrad Firestar f100 100 W [104]

• Glasgow - Synrad Firestar i401 400 W [105]

Both of these lasers have different visible alignment beam units, but both work on the same
alignment principle: near and far field alignment. Low power tests can be carried out with a
temperature-sensitive target cards [106]. An example of one of these cards is shown in figure
2.33. These cards change colour when exposed to a higher temperature than its surrounding.
To carry out near and far field alignment, a target card should be placed in a far field position
and a second removable one placed in the near field. Far field in this case should be at least
the maximum path length the beam would be expected to travel in the optical set up of the
pulling machine. If possible, a greater distance than this would be beneficial to the alignment
process. Near field would be as close as possible to the alignment unit that still allows for visible
inspection of the target card. A flip mirror may be required to place in the beam path to direct
the beam away from the near field card to the far field card. The cards should be positioned such
that the CO2 beam is hitting the centre of the target. This is achieved by using a low laser power,
to ensure the beam does not burn the card, and observing the change in colour around the target
on the card. Care should be taken not to move the card while the laser is on.

Figure 2.33: A Thorlabs VRX6S temperature-sensitive target card that can be used for laser
alignment [106]. Bottom right target highlighted for clarity.
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Once both cards are in place, the red alignment beam is observed on the near field target.
Should there be a difference between the position of the alignment beam and the CO2 beam,
the near field adjustments on the alignment beam unit should be turned until the beam is in the
middle of the target. The same process is then carried out for the far field target.

This process is repeated until the alignment beam is hitting the centre of the target on the
cards for both near and far field. A final check is made by turning the CO2 laser on to ensure
that both the CO2 and visible beams are overlapping each other. As this check is carried out by
eye, a tolerance of 0.5 mm from the centre of the target is acceptable.

It is important that this process is carried out due to the infrared nature of the CO2 not being
visible by eye. The distribution of the red alignment beam is the visible counterpart of the CO2

beam and is therefore key to all visible alignment inspections of the beam path and distribution
to the CO2 beam. Failure to carry this alignment will result in the red alignment beam giving
false information as to the true whereabouts and distribution of the CO2 beam, and is a safety
hazard.

2.4.2 Optical bench mirror mounts

The CO2 beam is directed around the optical bench by reflecting off multiple gold coated 1"
mirrors [107] held in 3 way kinematic mirror mounts [108]. Standard laser safety practice states
that the beam should be travelling parallel to the bench while travelling in between mirrors in
the horizontal axis. This can be achieved simply by using an iris on a post sitting at the desired
height at that point in the beam path, or simply with a 0.5 mm division ruler that can be visibly
inspected by eye.

At this point on, there are four key degrees of freedom that determine the distribution of the
beam around the fused silica stock:

• Horizontal translation

– Horizontal directional movement of the beam across the fixed 45◦ mirror.

• Vertical translation

– Vertical directional movement of the beam across the fixed 45◦ mirror.

• Pitch

– Beam entering the pulling machine optical system at a vertical angle.

• Yaw

– Beam entering the pulling machine optical system at a lateral angle.
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Any combination of the four above listed factors can result in non-uniform heating of the
fused silica stock. Unlike the mechanical alignment of the core components of the pulling
machine, optical components used to direct the beam into the pulling machine optical system
will need regular alignment checks. This is due to the heat transfer from the laser beam. Figure
2.34 shows the periscope set up on the Glasgow pulling machine. This periscope has all the
adjustments needed to correct the above misalignment factors. This periscope set up will be
installed at LHO as part of the future A+ upgrades to the fibre pulling machine.

Figure 2.34: Periscope system currently installed on the Glasgow fibre pulling machine.

An example of a pitch misalignment can be seen in figure 2.35 and the beam distribution
around the stock shown in figure 2.36. A yaw misalignment has the same characteristics, but
with the distribution pattern moved 90◦ around the stock. There is a clear difference in beam
intensity around the stock between figures 2.32 and 2.36. Figure 2.32 intensity is uniform along
the points of contact on the stock, where as figure 2.36 the intensity visibly changes along the
points of contact with the stock.
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Figure 2.35: Cross section of beam path with the laser coming into the pulling machine
optical system at an angle.

Figure 2.36: Distribution of beam distribution around the fused silica stock with an angular
misalignment.

Figure 2.37 shows the path the laser beam takes around the surface of the stock in this
scenario. The beam appears to concentrate itself at the lower most point, where the intensity
is greatest. This concentration of heat is caused by the beam turning back on itself as the 45◦

mirror rotates. This can be seen in figure 2.38 where 10 frames from a video recording shows
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the beam follow the path drawn out in figure 2.37. This can be seen when using the pulling
machine by lowering the voltage supply to the rotating 45◦ mirror which will slow down its
rotation speed.

These are clear indications to separate the two different scenarios between figures 2.32 and
2.36.

Figure 2.37: A: The path of the laser beam across the 2D surface of the fused silica stock.
B: The beam path of the laser on the rotating 45◦ mirror with an angular misalignment.

Figure 2.38: 10 frames from a slow motion video plotting out the path of the beam around
the fused silica stock. The red + that is shown in the bottom right inset of each frame is the
position of the beam along the path that it travels. This path is the same shape as shown in
figure 2.37.
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It is therefore critical to ensure that the beam is level with the bench after the final mirror
before entering the optical system of the pulling machine. The final mirror in this scenario would
be the top periscope mirror. This can be carried out by placing irises along the optical path to
check that the beam is passing through the hole. Ideally, an iris should be placed soon after the
final mirror and another just before the entry to the optical system of the pulling machine. The
irises should be at the height of the fixed 45◦ mirror within the pulling machine set up. Care
should be taken to ensure the irises are placed in a straight line between the last mirror outside
the pulling machine and the entry point into the pulling machine enclosure. Care should also
be taken to ensure that the irises are placed perpendicular to the fixed 45◦ mirror. This can
be achieved by measuring the distance of each side of the iris with respect to the face of the
enclosure at which the beam would enter. This would ensure that the beam is not entering at a
lateral angle.

Should adjustments be required to pass the beam through the irises, knob adjustments to the
mirror mounts on the periscope should be made. The bottom mirror mount adjustments should
be used to direct the beam through the first iris, and the top mirror mount adjustments should be
made to pass the beam through the second iris, and then iterate between the two until the beam
passes through both irises.

Once the beam is level to the bench, the mirror mount knobs should not be adjusted. Any
adjustments to direct the laser beam should now be carried out with the horizontal and vertical
translation stages.

2.4.3 Beam position within the pulling machine

The next step is to check the alignment of the beam within the pulling machine set up. The beam
should be hitting the centre of the fixed and rotating 45◦ mirror before spreading the beam out to
the bottom conical mirror. Figure 2.39 shows the effect of a vertical misalignment coming into
the optical set up of the pulling machine. A lateral misalignment has the same characteristics,
but with the distribution pattern moved 90◦ around the stock. Note that the beam is coming in
level to the pulling machine, but results in the similar beam situation as previously described in
figures 2.31 and 2.32.
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Figure 2.39: Cross section of the beam path coming in high on the fixed 45◦ mirror.

A target cover, similar to the target shown in figure 2.40, can be modified and used as a guide
to position the beam to the centre of the mirror.

Figure 2.40: A Thorlabs LMR1AP target cover that can be modified to sit on top of the
rotating 45◦ mirror [109].

The plastic tool used for the alignment of the conical mirrors can then be used to check the
laser alignment. This is shown in figure 2.41. There is an array of concentric grooves on the tool
that line up with the beam as it is reflected off the bottom conical mirror. Adjustments at this
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point should only be made with the horizontal and vertical translation stages, previously labeled
in figure 2.34, that the mirror posts are sitting on until the beam is lying on the same line around
the tool.

Figure 2.41: Plastic alignment tool for laser alignment check.

A piece of fused silica stock wrapped in teflon tape, or any other opaque thin layer, should
then be installed into the clamps. This makes it easy to see the alignment beam distribution on
the fused silica stock. Slight final adjustments of the X-Y stages should only be needed at this
point. A burn test can be carried out if desired with a piece of fused silica stock wrapped in
masking tape. Ensure that the laser power is low enough to only just burn the tape.

For the pulling machine at LHO, a final test can be carried out by heating up a piece of
fused silica stock until just molten. The beam distribution can then be observed around the
stock through highly tinted welding goggles that are available in the fibre lab. In Glasgow, the
same process can be carried out, but observing the distribution of the beam around the stock
via the installed cameras with ND filters on the fibre pulling LabVIEW program [92] [110].
This upgrade was installed on the LHO fibre pulling machine during the first quarter of 2020 in
preparation for A+.
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Figure 2.42: A: Well aligned laser distribution around the stock during polishing and
pulling, respectively. B: Misalignment of the same situation.

The camera system allows greater accuracy viewing the beam distribution that is not possi-
ble with just welding goggles. With welding goggles, the enclosure set-ups at both LHO and
Glasgow can make it tricky to get close enough to the molten stock material to see the beam
distribution in detail. As the alignment of the beam also relies on the eyes of the user, there
is less control on the degree of alignment as this would be subjective to each user. A camera
monitoring system can reduce this subjectiveness, as shown in figure 2.42. Currently, 3 cameras
are installed onto the pulling machine to view the beam distribution from both sides and the rear
view of the fused silica stock. The rear view in particular is critical as it is not possible to get
this view through welding goggles.

In the future, image templates could be made to ensure that the alignment on the camera feed
match what the expected beam alignment should be. This would remove any inconsistencies
from the alignment process.

2.4.4 Lens system

Installation of a lens system in the pulling machine will reduce the beam size at the point the
beam focuses onto the fused silica stock. It allows for greater headroom of the laser power as
less power is needed to heat the stock material to its molten point. Currently, fibres are pulled
with the f100 laser at 85% power. This is effectively full power as the difference between 85%
and 95% is approximately 5 W. With a lens system, this power can decrease to approximately
50% [111]. The decrease in beam size also means that there is potentially greater control on the
shape of the necks due to less material being heated during the pulling process.
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There are currently no lenses set up in the optical path for either Glasgow or LHO’s pulling
machines to alter the beam size when producing fibres using 3 mm stock. There has previously
been a lens system installed at Glasgow, as shown previously in figure 2.4, so this subsection is
added in the future case that a lens system is again installed on one of the pulling machines.

Installation of the lens system should be the final task done, with the rest of the pulling
machine alignment set as described in this chapter so far. Therefore, the lens system should
just be put in the correct position along the optical path. Care has to be taken to ensure proper
alignment. The lens cage system should be installed first without any lenses in the holders. To
ensure the beam passes through the centre of the lenses, various targets or irises can be installed
onto the lens cage. Shirt targets, shown in figure 2.43, can be used as a first order check to check
the cage is coaxial to the beam. Targets can then be installed in the lens holders to observe where
the beam is passing for that holder.

Figure 2.43: Shirt target attached onto the lens cage to check alignment.

Ideally, the lens posts should be of a fixed length to minimise any drop in height over time
that would occur if the post was sitting in a holder. If a holder has to be used, ensure that the
post height is marked on the post with a permanent marker, or a scribe, and is secured in place
by tightening the knob with an allen key. Figure 2.44 shows a lens cage with both a fixed length
post and a post sitting in a post holder to show the two different options.
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Figure 2.44: Example of a lens cage with both a fixed length post and a post within a post
holder.

Once installed, beam distribution checks should again be carried out to check the beam
alignment.

2.5 Conclusion

This chapter sets out the procedure that should be followed when aligning any of the fused silica
fibre pulling machines in their current state. This chapter will be also written into a LIGO DCC
document that can be updated with versions when any hardware changes have been carried out.
Ensuring the pulling machine is at its optimal alignment increases the efficiency of producing
fibres that fall within the aLIGO fibre tolerances and minimises any wastage of material. Having
a written procedure also eliminates the subjectivity of the alignment procedure which could po-
tentially be different for individual users. This also acts as a guide to solving possible alignment
issues that a less experienced user might come across.

The following two chapters will describe use of both the Glasgow and LHO pulling machines
to produce fused silica fibres, along with other characterisation apparatus. These machines were
used to extensively investigate two separate aspects relating to properties of fused silica fibres.
During these investigations, the alignment procedure detailed in this chapter was carried out on
both machines.



Chapter 3

Angular defects of fused silica fibres used
in aLIGO monolithic suspensions

3.1 Introduction

In 2018, the two aLIGO detectors underwent a commissioning period between observing runs
‘O2’ and ‘O3’. During this commissioning period, there were a total of 8 monolithic assem-
blies replaced to install new test masses. This included all ETMs at both detectors, as well as
two ITMs at LHO and new annular reaction masses. There were several reasons for all these
replacements, which include better transmission for green light used for calibration and locking
of the interferometer, as well as reducing scatter and the removal of an optic with a significant
point absorber on the surface [112]. Unfortunately, there were three incidents where there was
a suspension fibre failure at some stage shortly after the replacement process. These included
an ETM on the x arm (ETMx) at LHO and an ETM on the y arm (ETMy) at LLO which had
two separate failures. ETMx at LHO had a total hang time of approximately 1 week, where as
the two failures at ETMy at LLO occurred during one of the final stages of the fibre installation
process and 4 weeks after installation, respectively.

An investigation was carried out to determine the root cause of these failures [112] [113]
[114]. One of the various suggested contributors to the failures in this investigation was from
angles that appeared in the top thermoelastic nulling region (TNR) of the aLIGO fibre. These
angles would have been introduced into the fibre during the fibre production process. Figure
3.1 shows a photograph of one of the installed fibres into the monolithic assembly that had
a visible angle in the stock-to-TNR region of the fibre. This was the region where the fibre
diameter reduces from 3 mm to 800 µm. The fibre selection process has since been updated to
only allow fibres with an angle between the stock and TNR region of under 1◦. The reason this
was chosen was because angles greater than 1◦ could be visibly seen by eye to allow for quick
visual inspection. It was therefore decided that an investigation into what effect angles in these
TNR regions have on the ultimate strength of the fused silica fibres and whether or not an upper
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limit of 1◦ was a safe value to use for the selection process.

Figure 3.1: A photograph of a fibre that was installed into ETMx at LHO that shows a
visible angle in the fibre. The labeled angles were calculated from pixel analysis of the
photo [114].

This chapter discusses the process behind producing aLIGO fibres using the fibre pulling
machine previously discussed in chapter 2, followed by an investigation into producing fibres
with angular misalignments and their subsequent ultimate strength performance. Fibres dis-
cussed in this chapter aimed to fall within the tolerance of 400±20 µm to be considered suitable
for an aLIGO suspension.

3.2 Fibre production

3.2.1 Fibre production

Producing fibres for this investigation to be as close to the same conditions as in LHO was
essential to understanding how angles could appear during the pulling process. Therefore, the
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laser stabilisation feature, previously mentioned in chapter 2 [92], that has been installed on the
Glasgow pulling machine was not used during the production process. A different laser, a Synrad
Firestar i401 400 W [105], was used as this was the laser currently installed on the Glasgow
pulling machine. The power used to produce fibres was set to match the power of the laser
that was used in LHO, which was approximately 113 W from previous power measurements
(discussed in chapter 4.2.1).

The pulling profile used in this investigation was a modified version of a profile that was
previously used for production of fused silica fibres for the aLIGO suspensions, named "LHO15"
[115]. The modification to this profile was to reduce the speed of the thin middle section of the
fibre by 10%, and is shown in figure 3.2 to allow for the production of fibres with diameters
within the aLIGO specifications. "LHO15" will be used in a future investigation that will be
discussed in chapter 4.2.1. This change in pulling profile was not significant as several pulling
profiles have been developed to produce aLIGO fibres [115].

Figure 3.2: Graph of fibre pulling profile used to produce the fibres in this investigation.

All fibres in this chapter were produced without fuse ends. Lengths of fused silica stock
were cut to 11.5 cm and wiped down following the aLIGO cleaning procedure [97]. They were
then inserted into the basic clamps with a 3 mm groove to sit in and secured with a pointed tip
screw, as described in chapter 2.3.3. The polishing and pulling laser duty cycle, which is the
fraction of the laser period where it is on, were both set to be the same value of 27%. This
equates to an output laser power of 125.5 W. This was on par with the laser power output of the
CO2 laser at LHO. The polishing distance was set to 50 mm with the motor voltage set to 0.25 V.
This equates to a velocity of 0.0275 mms−1 and a total polishing time of 3636 seconds.

After production, the fibres were stored in a storage fridge, shown in figure 3.3. This un-
plugged fridge has been adapted to allow the storage of fibres on aluminium rails. The fridge was
also thoroughly cleaned with isopropanol and the shelves were filled with desiccant to minimise
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the humidity within the fridge.

Figure 3.3: The fibre storage fridge used to store the fibres when not in use at Glasgow.

3.3 Fibre bonding

Previous investigations used cardboard and copper stock holders instead of fuse ends when
carrying out strength tests [97] [95] [92]. This allows for a secure grip to be obtained between
the clamp and the face of the copper without damaging the stock material, and also due to there
not being enough surface area when using fuse ends to secure the stock in place when exerting
loads greater than 20 kg onto the fibre. A schematic of how the cardboard and copper was used
is shown in figure 3.4. The bonding procedure consists of two main procedures, repeated for
both ends of the fibre:

• Bonding copper and cardboard together.

• Bonding the cardboard to the stock.
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Figure 3.4: A schematic of the bonding procedure. Cardboard and copper were first bonded
together (A), before two halves were bonded together with fused silica stock in between and
left to cure (B) and the final product for testing (C).
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3.3.1 Cardboard-copper bonding

Cardboard and copper rectangles of rough dimensions 5× 3 cm and 3× 1.5 cm, respectively
were cut out, as shown in figure 3.5A. Copper was used to increase the grip the clamp has to the
fibre being tested to minimise the chance of slippage within the clamps [92]. The dimensions do
not need to be exact, just as long as the cardboard was big enough so the copper sheets may be
attached. The cardboard was then flattened with a 1 kg mass used as a rolling pin to maximise
flexibility of the cardboard. This makes the insertion of the fused silica described later an easier
process.

Figure 3.5: Cardboard and copper rectangles used to create the cardboard holders
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Cardboard rectangles were placed onto a flat surface such as a bosch strut, as shown in figure
3.5A. A 2-part epoxy, Araldite 2011 [116], was then mixed together and a finger nail size pasted
onto the cardboard. It should be noted that the use of Araldite is only appropriate for in-air tests
and not vacuum tests due to its outgassing nature when in vacuum. The copper rectangles were
then placed onto the area with epoxy and then compressed with another bosch strut. The two
struts were then clamped together with G-clamps and left to cure for at least 12 hours, as shown
in figure 3.5B. Once cured, the clamps were removed and the top strut was removed. The newly
bonded cardboard-copper halves could then be removed from the bottom strut. If too much
epoxy was applied, they could get stuck to the bosch and will be difficult to remove by hand.
If this was the case, tweezers could be wedged into the grooves on the bosch struts to lever out
the cardboard-copper halves. This is shown in figure 3.6. For each end of the fibre, two of these
cardboard-copper halves were needed. Therefore, four of these halves need to be produced per
fibre.

Figure 3.6: The method to remove the cardboard-copper sheets when epoxy overflows onto
the bosch struts.

3.3.2 Cardboard sandwich

There was a lot of handling of the fibre during this procedure so care was taken to ensure nothing
comes into contact with the thin section of the fibre, which could compromise the strength of the
fibre causing it to fail at a lower load than expected. The bonding procedure to attach the two
pieces of cardboard-copper sheets to the fibre to create what will be referred to as a "cardboard
sandwich" must be carried out in two separate steps:

• Bottom stock



CHAPTER 3. ANGULAR DEFECTS OF FUSED SILICA FIBRES USED IN... 77

• Top stock

The order as to which end must be bonded first was not important. Both ends however must
not be done simultaneously as this could lead to epoxy running along the stock and potentially
onto the fibre itself. The fibre would then have to be discarded. Figure 3.7 illustrates the process
carried out to bond the two cardboard-copper halves together to the fused silica stock. Figure
3.7A-D shows the process being carried out.

Prior to installation of the cardboard sandwich, the fused silica fibre was attached to a hor-
izontal rail with blu-tack. This is shown in figure 3.8B. The height of the rail was chosen such
that when the top stock was attached to the blu-tack on the rail, the bottom stock just sits be-
low the length of bosch that sits underneath the rail. Two cardboard-copper halves were each
attached to a metal plate with a small piece of blu-tack, as shown in figures 3.7A. This keeps the
cardboard-copper half in place while handling the metal plate. The two metal plates that were
used are attached together with corresponding screws and holes. The plate with the hole could
be placed over the screws and secured with wing nuts.

Araldite 2011 2 part epoxy [116] was mixed onto a clean surface and applied to both inner
pieces of cardboard-copper halves. There needs to be enough epoxy applied to keep the stock
within the cardboard sandwich during testing, but not too much that the epoxy overflows out
of the cardboard sandwich and onto the aluminium clamp. This could cause problems with
removing the clamp once the epoxy cures, potentially putting that fibre at risk of being damaged.
The amount of epoxy that should be applied could be roughly described as thumb size amount.

Once the epoxy was applied to both halves, the back plate was brought around the back of
the bottom stock with one hand, while the other hand holds the bottom stock. The pinky finger
of the hand holding the plate was placed at the bottom of the plate in line with the applied epoxy.
The hand holding the stock then places the stock gently into the epoxy, with the bottom of the
stock resting on the pinky finger to help keep it in place. This could be seen in figure 3.7C. The
plate might need to be held at a slight angle to keep the stock in contact with the epoxy. Care
should be taken to ensure awareness of the fibre at all times so that no contact was made with
any object.
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Figure 3.7: Illustration of the bonding process to produce the cardboard sandwiches. Photo
inset A: Cardboard-copper halves attached to the metal plates with blu-tack. Photo inset
B: Araldite 2 part epoxy applied to each cardboard half. Photo inset C: Fused silica stock
placed into the epoxy. Note that the plate with the screws was used for this stage. The pinky
finger was used to secure the stock in position to minimise movement within the epoxy
during handling. The ruler attached to the plate was used at a reference for the length of
stock within the cardboard. Photo inset D: Second plate attached by passing screws through
the holes and attached with wing nuts. These were tightened as far as possible.
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Figure 3.8: A: The metal bonding plates sitting on the Bosch strut. B: The cardboard
sandwich bonding rail set up. Note that there was no shield or anything protecting the fibres
from the surrounding lab environment.

The front plate was then placed through the screw holes and pressed onto the stock. While
the plates were pressed together, the wing nuts were then screwed on to secure the plates together
to create the clamp. The clamp was then sat on the bottom length of the bosch, sitting within
the groove to ensure that the fibre was not under tension during curing. This process was then
repeated for the rest of the fibres in the fridge, or until all the spaces were filled up on the rails.
The Araldite epoxy data sheet recommends a cure time of 7 - 10 hours when curing at room
temperature [116]. Due to this cure time, each clamp was left to cure overnight. This means that
the bonding time for one fibre in total was approximately two days.

To remove the clamps, the four wing nuts were removed to allow the front plate to slide out
of the screws. The back plate could then be removed, taking care not to hit the stock or fibre
with the screws that were attached. The fibre was then flipped such that the bonded bottom stock
was attached to the blu-tack on the top rail. The same process as the first bond was then carried
out on the top stock.
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Figure 3.9: A fully bonded fibre ready for strength testing. Note that the fibre in this figure
was not used for testing and was placed on a table for illustration purposes.

3.4 Strength tester

To carry out the destructive testing of the fused silica fibres, the aLIGO fibre strength tester [117],
shown in figure 3.10, was used. This strength tester was conservatively rated at 100 kg load,
which was more than sufficient for this test. The strength tester consists of two stages:

• Fixed load stage

• Bottom pulling stage

The fixed load stage was attached to an Omega S Beam load cell [118] connected to a digital
output reader. This output reader has several readout settings that could be chosen. For this
investigation, the ‘record maximum load’ setting was used. This setting shows the maximum
load applied to the load meter at all times, until the reset button was pressed. The bottom pulling
stage was pulled down via a Parvalux PM10C permanent magnet motor with a double worm
gear. The velocity of the motor could be set by the variable speed control potentiometer on the
motor controller box. Kill switches were wired to the pulling stage to avoid the possibility of
the stage clashing with any components from running too far down during pulling, or too far up
during resetting the stage position.
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Figure 3.10: The experimental set-up of the fused silica fibre within the aLIGO fibre
strength tester. Photo inset: Self tightening clamp with cardboard sandwich within.
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To secure the fibre in place, self tightening wedge grip clamps were used. These clamps,
illustration shown in figure 3.10, have been previously used for strength testing of both fused
silica ribbons and fibres, and have a maximum force capacity of 2.5 kN. Care was taken to ensure
that both clamps were positioned coaxial to each other. To achieve this, the top stage was moved
down to the bottom stage to first check that the plates to which the clamps would be attached
to were aligned. The clamps were then installed and position checks were carried out before
returning the top stage to the desired position.

The orientation of the clamps was such that the width of the cardboard sandwich would be
parallel to the front of the of the strength tester enclosure door. This orientation was chosen so
that data could be obtained to see if there was any movement of the fused silica stock inside the
clamps during testing. Movement of the stock within the cardboard would have been significant
as it would not be mimicking the conditions of a welded fibre in an aLIGO suspension where
the stock material was unable to move in this form.

3.5 High speed camera

In this investigation, the location of the failure of the fibre was a key area to fully understand.
Previous research [92] had shown that the fibre will break at its minimum diameter as this was
theoretically the region that was going to experience the most stress. For this investigation, a
high speed Phantom VEO 410L camera [119] was set up to record the fibre breaks. The settings
used to record the fibre breaks is shown in table 3.1 and the set-up shown in figure 3.11.

Due to previous experiments damaging the enclosure door obscuring the view into the en-
closure, a viewing window had to be cut into the door to make it easier for the strength tester to
see the fibre. Six halogen lights were used to illuminate the fibre to help the image quality on
the high speed camera. A significant amount of time was spent ensuring that the lights were in
the optimal position for the camera. If a light was not in an optimal position, the fibre on the
camera will have a shadow or a bright reflection appear over it which could result in parts of the
fibre not being clearly visible. ‘Phantom Camera Control 3.3’ was used to record the data and
control the camera settings and CineViewer 3.3 was used to analyse the recorded footage [120].
To record the data, the trigger delay setting was used. The camera would continually record data
over a 5 second window until the fibre breaks. The moment the fibre breaks, the user presses
the trigger button which then saves the last 2-3 seconds of data, depending on the setting. The
recorded data could then be analysed to find the breaking point on the fibre.
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Table 3.1: The high speed camera settings used in this investigation.

Setting Value
Frames per second 17000

Exposure 70 µs
Trigger delay 1 s

Figure 3.11: A: The enclosure around the strength tester to contain the aftermath of the
destructive testing. The halogen lights were used to provide enough light to the fibre to be
seen in the high speed camera. B: The high speed camera used for this investigation with
the digital camera placed on top that will be utilised later in this chapter.

3.6 Beam misalignment

As mentioned previously, the current condition set out in the selection process was to discard any
fibre that has an angle between the stock and the Thermoelastic Nulling Region (TNR) greater
than 1◦ degree [112]. Prior experience with pulling aLIGO fibres indicated that the most likely
cause of angular misalignments in the production process was from the non-uniform distribution
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of heat around the fused silica stock. To test this hypothesis, two types of fibres were produced:

• Fibres with an aligned beam

• Fibres with a deliberately misaligned beam

Judging the severity of the misalignment of the beam distribution around the fused silica stock
by eye was difficult. Through welding goggles, the beam distribution could look near enough
perfect, when in reality it could still have some level of deformity. Also due to laser safety
and the layout of the bench, the user could not get up close to inspect the heated region. The
advantage of carrying this investigation out on the Glasgow pulling machines was the addition of
two up close monitoring cameras with ND filters [92], as previously described in chapter 2.4.3.
These filter out the vast majority of the brightness from the radiated heat, allowing the heating
region to be monitored in a more precise, repeatable and quantified way. This is seen in figure
3.12 where the beam distribution appears uniform on both images.

Figure 3.12: A: A view of the molten fused silica through welding goggles to show the
difference in intensity that was viewed. B: Screenshot of the beam distribution of an aligned
beam around the fused silica stock during initial heating. C: Aligned beam around the fused
silica stock during the start of the pull.

Figure 3.13 shows an example of a misaligned beam distribution around the fused silica
stock. This particular example shows a non-uniform distribution around the stock when com-
pared to figure 3.12C.
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Figure 3.13: Screenshot of the misaligned beam distribution around the fused silica stock.
A: Misaligned beam around the fused silica stock during initial heating. B: Misaligned beam
around the fused silica stock during the start of the pull.

The procedure at LHO for pulling fibres was that the pulling machine was aligned at the
start of the day before fibre production. As mentioned previously in chapter 2, the alignment
process of the pulling machine at LHO could be very subjective due to the fact it was carried
out visually instead of through a camera system. Since this investigation wanted to look at
the effect of misalignment, the pulling machine was misaligned at the start of the day before
production fibres were pulled. As the pulling machine will naturally, ever so slightly, misalign
itself through a day, a batch of polished fibres would be produced through the day without
making any attempt to fix the alignment. This gradual misalignment was the result of the laser
heating up the kinematic mounts holding the mirrors, as well as the temperature within the
lab which could increase when the laser, vapour extractor and laser cooler were running for
long periods. This temperature change in the kinematic mounts causes the screws holding the
mirrors, as well as the position of the mount to move over time as the material heats and cools
down when the laser was on and off, respectively. The mirror mounts delivering the laser beam
to the pulling machine used in this investigation have small fans pointed to the mirror mounts
that help reduce the amount of heat dissipated into the mounts. Previous investigations [111]
have shown that the mirror mounts could get as hot as 110◦C with the laser at full power, but
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with the fans on, this temperature falls to approximately 60◦C. As of writing this thesis, fans
were not installed onto the mirror mounts at LHO, but were planned to be installed in the future.

At the start of each pulling day, the machine was "aligned" prior to fibre production. As the
hypothesis was that the beam distribution was the cause of the introduction of angles during the
production process, the daily alignment consisted of deliberately misaligning the beam. To do
this, a fused silica stock length wrapped in teflon tape was placed into the clamps to observe the
beam distribution. The main adjustment made was through the vertical jack on the periscope
mirror system, and the top kinematic mirror mount on the top mirror of the periscope (as shown
previously in chapter 2.4.2). To get a beam distribution with enough asymmetry to introduce an
angle into the fibre, it only took as little as half a turn on the micrometer adjustments on either
the vertical jack or the kinematic mount. This equates to approximately 0.25 mm travel to give
the misalignment shown in figure 3.13.

The production of fibres that achieved the criterion of having angles less than 1◦ criteria had
to involve constant alignment checks during polishing, and initial heating before the pull com-
menced. No alignment of optical components occurred once the pulling process was initiated
due to laser safety, though this has been tested and shown to help matters [111]. In total, 58
fibres were produced for this investigation.

3.7 Results and analysis

3.7.1 Fibre profiles

The resulting dimension of the fibres were measured using the aLIGO fibre profiler [121] [122],
shown in figure 3.14. This apparatus measures the diameter of the fused silica fibre all along the
length of the fibre, as well as the shape of the fibre at the top and bottom of the fibre that includes
the stock, TNR and part of the thin regions. It consists of two perpendicular Unibrain Fire-i dig-
ital board monochrome cameras [123] that were attached to a motorised stage. Attached to the
camera was a lens system that gives a magnification of × 1.75 and × 1.9. The two cameras will
be referred to as ‘camera 1’ and ‘camera 2’ for their respective magnification values. Opposite
the cameras were high powered LEDs directed at the fused silica fibre in the profiler. The fibre
creates a shadow that was cast upon the camera sensor. The custom LabVIEW program [122],
utilises an edge detection algorithm to determine where the edge of the shadows were on either
side. A pixel distance measurement between these two locations could be carried out to deter-
mine the width of the fused silica fibre. This pixel count could be converted to micrometres
by calibrating the profiler with a (500.00±0.12 µm) slip gauge. The motorised stage moves the
cameras along the entire length of the fibre at set intervals. These intervals were measured using
a SIKO MSK320 magnetic encoder [124] which measures counts along a magnetic strip and
converted to millimetres through the LabVIEW program. Details on how this encoder works is
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discussed later in chapter 5.2.2.

Figure 3.14: The aLIGO fibre profiler at Glasgow used to profile the fibres used in this
investigation.

The files for the profile of a fibre were created in three different stages:

• Bottom neck

• Middle

• Top neck

The bottom and top neck scans the entire length of the fibre that was captured on the screen.
This length was typically 4 mm. The stage then moves 0.3 mm before the repeating the process.
This allows more detail to be obtained in this region as the camera scanned over every pixel
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where an edge was observed. The value of 0.3 mm also allows for an overlap of data points after
each stage movement to ensure that no section of the fibre was not profiled. The middle section
only takes 6 data points at a position before taking an average of the 6 diameter values. The files
could then be combined into one Excel spreadsheet. The settings used in this investigation for
the profiler are in table 3.2.

Table 3.2: Values for profiler settings used during this investigation.

Setting Value
Bottom neck scan steps 800

Top neck scan steps 720
Middle scan steps 20
Calibration tool 500 µm slip guage

Calibration camera 1 57.572
Calibration camera 2 84.654

Both bottom and top neck scans comprise of taking diameter readings along the entire length
of the image on the screen. The position of the the pixels that were measured were also recorded.
This was important when it comes to measuring the angle alignment of the fibres, and will be
discussed in detail in the following subsection. Once a measurement was taken, the motorised
stage moves up 0.3 mm before repeating the process. The distance over which this was carried
out over was pre-determined by the user prior to starting the LabVIEW program. For the middle
scan, an average of 6 measurements was taken to measure the diameter of the fibre at that section.
Once taken, the motorised stage moves up a pre-set distance that was also set prior to starting
the LabVIEW program. Table 3.3 shows the distance values, in counts (1 count = 0.1 mm), that
were used for profiling fibres in this investigation:

Table 3.3: aLIGO fibre profiler settings that were used for profiling fibres in this investiga-
tion.

Variable Value (counts)
Bottom neck scan total distance 800

Middle scan total distance 230
Top neck scan total distance 720

3.7.2 Python 3 fibre analysis script

There were two particular areas of interest at each end of the fibre that were investigated for
angular misalignments:

• Angles between the stock and the TNR of the fibre, referred to as ‘stock-to-TNR’.
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• Angles between the TNR and the thin section of the fibre, referred to as ‘TNR-to-thin’.

Figure 3.15 shows the regions of the fibre labeled with their corresponding part as ‘stock’, ‘TNR’
and ‘thin’. As mentioned previously, fibres with stock-to-TNR angular misalignments greater
than 1◦ were discarded from selection for aLIGO suspensions [112]. This applies to both per-
pendicular camera angles. Therefore, fibres produced in this investigation with angles less than
1◦ were considered to be fit for purpose and will be assigned as ‘control’ fibres. In this scenario,
fibres that fall into the control group could have angles between the TNR-to-thin greater than
1◦, as this section was not part of the criteria.

Figure 3.15: A fibre profile of the top end (TE) scan of fibre 58 with corresponding labels
to indicate the different regions of the fibre.

The fibre profiler records fibre alignment data during the bottom and top neck scans. As
discussed previously, this involves scanning across the length of the edge of the fibre on the
screen before moving position to the next point. The pixel that detects the edges of the fibre on
either side was converted to the equivalent distance from the edge of the sensor in micrometres.
This data could then be plotted against the position of the profiler stage to show the shape of the
fibre that was obtained during that scan. All the data from these scans could be combined and
plotted to give the plot shown previously in figure 3.15. Due to interest in calculating angles in
the two listed areas above, this resulted in scanning a much larger distance at both ends of the
fibre to cover both full necks and start of thin fibre section than standard aLIGO fibres would
scan over, by almost a factor of 2. The consequence of this was that each neck file for the two
sets of camera data contain between 80,000 - 100,000 data entries per column. With 8 columns
of data total, each file consisted of between 640,000 - 800,000 individual data points.

A Python script was developed to deal efficiently with large datasets by the author to process
this data. This script was written in Python 3 [125] through Jupyter notebooks [126] (see ap-
pendix A). This script carries out several different tasks related to analysing and characterising
the fused silica fibres. The script works through the following stages:

• Imports the data from the Excel files produced from the fibre profiler.

• Assigns the columns of data to variables.

• Finds the minimum diameter of the fibre and its corresponding location along the length.
The uncertainty in the minimum diameter is stated to be 1.3% [121] [122].
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• Creates various plots of the top, middle and bottom sets of data. For the top and bottom
sections, this includes plotting the alignment of the fibres.

• Calculates the angles between the stock and the TNR region, and the TNR and the thin
region using both profiler cameras for both top and bottom ends.

• Calculate the maximum stress value at the minimum diameter location of the fibre.

• Calculates the stretch of the fibre under a given load. This load would be the maximum
load that would be obtained from the strength tester at point of failure.

• Creates a new fibre profile for when the fibre was stretched to its maximum extension.

• Allows the breaking region to be highlighted and locations compared between breaking
region and minimum diameter region.

• Calculate the breaking stress value at the location of the breaking region which was ob-
tained through the high speed camera footage.

• Saves all plots produced as .png files, as well as creating a .txt file with all the relevant
diameter and angle information within.

Figures 3.16 and 3.17 show an example of the bottom and top end data sets that were ob-
tained from the two cameras.

Figure 3.16: The bottom end (BE) scan profile for cameras 1 and 2 of a selected fibre. Note
the bottom two graphs contains the data used to calculate the angles within the bottom end of
the fibre. The highlighted region indicating the section within the cardboard sandwich was
determined through the use of a ruler attached to the aluminium plates during the bonding
process. The cardboard sandwiches were attached after the profiling process was completed.
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Figure 3.17: The top end (TE) scan profile for cameras 1 and 2 of a selected fibre.

3.7.3 Fibre angle calculations

To calculate the angle from the plotted data, the data from the neck files were sliced into 6
different sections for both the top and bottom ends:

• Edge 1 and edge 2 of the stock section

• Edge 3 and edge 4 of the TNR section

• Edge 5 and edge 6 of the thin section

An example plot of this data is shown in figure 3.18. The edge label format in this figure, ‘Edge
(1-2).(1-6)’ indicate camera 1 or 2, and an edge 1-6.
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Figure 3.18: An example of the 6 different sliced sections of the profiler data, with the full
fibre profile of this region in black.
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Each of these edges contained anywhere between 10000 - 40000 data points depending on
the length of the edge. A line of best fit was then calculated for each edge section using the
scipy.stats.linregress function [127]. This was a function from the SciPy package in the Python
script that calculates a linear least-squares regression. The gradient of the fit, as well as the
standard error in the fit could be obtained through this function. Angles between the stock-to-
TNR and TNR-to-thin section were then calculated. Using the following example of edges 1
and 3, the angle between the stock and TNR were calculated by:

θ = tan−1
(

m1−m3
1+(m1×m3)

)
(3.1)

where m1 and m3 were the gradients of the best fit lines for the edges 1 and 3 respectively. This
equation was derived from the tan(A±B) = tan(A)±tan(B)

1∓tan(A) tan(B) identity to calculate the angle between
two gradients, shown in figure 3.19. This was repeated for the opposite side of the fibre and both
values were averaged to obtain the angle between the stock-to-TNR region. This was repeated
for the TNR-to-thin region and for the second perpendicular camera angle. The uncertainty in
the angle calculated can be extracted from the scipy.stats.linregress function. Though it differs
slightly for every fibre, the uncertainty was of the order 0.01◦. An example of a top fibre end
with labelled angles is shown in figure 3.20, with a photograph comparison shown in figure
3.21. The slight difference between the angles between these two figures was due to the fact
that the photograph angles were plotted out along the edge by hand, instead of through a fitting
function. The two values however were very similar, showing that the fitting in the Python code
was calculating the angles correctly.

The largest angles on the fibres were always at the top end of the fibre. The bottom end
of the fibre would rarely result in an angle greater than 1◦. This could be due to the fact that
the pull at the start has more material to heat and draw the fibre from, which was not as greatly
affected from the beam misalignments as the end of the pull where the angles occur. The number
of fibres obtained for various ranges of angles between the stock and TNR region are shown in
table 3.4, where fibres were designated to an angle range corresponding to its maximum angle
from either camera perspective.
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Figure 3.19: Illustration showing how the angle between two lines could be calculated using
the tan(A±B) identity.

Figure 3.20: Annotated angle profile of fibre 20 that was tested in this investigation.
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Figure 3.21: Photograph of fibre 20 in figure 3.20 showing the coordinates of the edge lines
used to calculate the angle in the fibre end for comparison to the angles obtained from the
Python script.

Table 3.4: The quantity of fibres obtained with various stock-to-TNR angles. Note these
were all top fibre end measurements as that was where the maximum angles occur.

stock-to-TNR fibre angle, ◦ Quantity
0 - 1 15
1 - 2 15
2 - 3 8
3 - 4 3
4 - 5 2
5 - 6 1
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Table 3.5: The quantity of fibres obtained with various TNR-to-thin angles.

TNR-to-thin fibre angle, ◦ Quantity
0 - 1 6
1 - 2 21
2 - 3 10
3 - 4 4
4 - 5 2
5 - 6 1

Table 3.6: The quantity of fibres obtained with various net angles.

Net fibre angle, ◦ quantity
0 - 1 42
1 - 2 2

From table 3.4, 15 of the 44 successfully tested fibres would satisfy the criteria of having
a degree less than 1◦ between the stock-to-TNR region. There were less fibres > 3◦ due to
production restrictions. To get angles greater than 3◦, a significant beam misalignment was
needed around the stock. This resulted in a higher laser power, up to approximately 200 W,
being needed to heat the fused silica stock up to the required temperature. This was approxi-
mately 80 W greater than the maximum LHO laser power at the time of writing this thesis. The
misalignment needed also meant that the CO2 beam was getting physically close to the edges
of the rotating and conical mirrors within the optical system of the pulling machine. This was
determined via observation of the position of the red alignment beam. In the interest of safety
and to keep pulling conditions as close to aLIGO specifications, which would not have had such
severe misalignment as it would be visible by eye and discarded, it was decided to minimise the
number of fibres with angles greater than 3◦.

3.7.4 Strength tests and breaking locations

An intensive investigation was carried out to locate the breaking locations of the fibres that were
tested. To do this, the high speed camera footage for each fibre was analysed frame by frame to
locate where the fibre broke. It was key to know what to look for when locating the breaking
location. Figure 3.22 shows three consecutive frames from the high speed camera data. Frame
A shows the frame immediately prior to the fibre breaking, which is shown in frame B. Frame
C was the frame immediately after the fibre breaking frame. Initially, it was easy to misinterpret
the fibre breaking at the TNR due to the explosive nature of the failure. This was actually due to
the shockwave that travels through the fibre from the breakage and reaching the neck where the
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diameter change from 400-800 µm occurs. The key indication as to where the fibre breaks was to
observe the direction towards which the fibre debris travelled in from either side of the breaking
region. When the nature of the direction was established, the break location could be found by
zooming into the fibre in that area and analysing the footage frame by frame. Depending on the
timing of the break, the break location could vary from a narrow to a wide spread depending on
when the frame on the high speed camera takes the image. An example of a wide and narrow
spread is shown in figures 3.23 and 3.24, respectively.

Figure 3.22: Three consecutive frames from the high speed camera footage of a fibre break-
ing. Note the image colour has been inverted to make it easier to observe the fibre. Top:
Frame prior to the fibre breaking. Middle: Frame fibre breaks. Two artefacts of interest in
this frame were the explosion for the TNR, which could be misinterpreted as the breaking
region, and the actual breaking region highlighted in the red box. The break in the fibre in
this region could clearly be seen. Bottom: Frame after fibre break. Remaining fibre from the
left side of the break travels towards the bottom neck. Fibre on the right side of the break
has disintegrated.
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Figure 3.23: An example of a wide spread break location from the high speed camera
footage. Note that this was the first frame where the fibre appears to break.
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Figure 3.24: An example of a narrow spread break location from the high speed camera
footage. Top zoom frame colour not inverted due to lack of clarity in image when inverted.
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Once the breaking location was established, the next stage was to locate where this point
lay on the fibre profile. A reference point had to be established on the high speed footage to
determine the distance from that point to the breaking location. The reference point used was
the transition point from the top stock and the top neck. This is indicated in figure 3.25.

Figure 3.25: Zoomed in image from a high speed frame of the top stock reference point that
was used to determine the distance of the fibre break.

A calibration tool within the high speed camera software was used to determine the distance
of the break from this reference point. The calibration used was a ruler that was lined up along-
side the fibre during testing. Using the built in software in the high speed camera program, the
calibration tool counts the number of pixels within a 10 cm region along the ruler to determine
the number of pixels per mm. The pixel distance between the reference point and the break
location allowed the location to be located initially from the profile data. The error associated
with locating the reference point was taken into consideration and given a value of±2 mm. This
was obtained through the mm per pixel calibration tool on the camera software.

The stretch of the fibre during testing then has to be taken into account when locating the
breaking location on the fibre profile. The total stretch could be calculated by the following
relation:

n

∑
i=1

∆Ln =
n

∑
i=1

LnF
YAn

(3.2)

where ∆Ln is the stretch of a segment of a fibre profile, Ln, F is the breaking force, Y is the
Young’s modulus of bulk fused silica and An is the cross sectional area of segment Ln. A new
stretched profile could then be plotted and used to locate the fibre break location. This is shown
in figure 3.26. The calculated stretch could be up to 3 cm for fibres that were breaking at ap-
proximately 4.5 GPa.
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Figure 3.26: A stretched fibre profile lined up with the breaking frame of the high speed
footage.

Previous research [92] has indicated that typically the breaking location would be at the min-
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imum diameter location of the fibre. Figure 3.27 shows the location of the minimum diameter
region on the fibre and how wide the spread was of the breaking region from the high speed
camera frame that the fibre breaks.

Figure 3.27: Location of the minimum diameter region on the fibre and the spread of the
breaking region from the high speed footage. From this image, the number of fibres that
have a minimum diameter within the breaking region could be observed.

From figure 3.27, it was clear that the breaking location of the fibres were not consistently
at the minimum diameter. An example of a fibre that did not break in the minimum diameter
location is shown in figure 3.28. Combining the data from these graphs and analysing the data
from the high speed footage, only 32% fibres broke in the region where the minimum diam-
eter was located. Previous research [92] has shown that for fibres breaking at stresses greater
than 4 GPa, this figure should be approximately 80% and above. Further investigation into the
breaking locations needed to be carried out.
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Figure 3.28: A stretched fibre profile lined up with the breaking frame of the high speed
footage. In this example, the breaking region was not near the minimum diameter location.
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3.8 Discussion

3.8.1 Fibre failures due to cardboard sandwich failure

8 fibres failed during this investigation due to the stock coming out of the cardboard sandwiches.
Confirmation of this was also achieved through the high speed camera footage where the stock
could clearly be observed to have came out the holder. An example of this is shown in figure
3.29 where the top end of the fibre has been pulled out of its holder. The fibre clearly could be
seen to still be intact as the top stock material was pulled to the ground.

Figure 3.29: Screenshot of a fused silica fibre where the top stock was pulled out of the
cardboard sandwich holder. It could be seen from this image that the thin section of the fibre
was still intact as the top stock was falling to the ground.
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Figure 3.30 shows a comparison between a fibre that had a higher likelihood to fail through
this method, and the aftermath of a successfully tested fibre. From figure 3.30A, a gap could be
clearly seen between the two halves of cardboard next to the fused silica stock. In figure 3.30B,
this gap was filled with epoxy to the point where it slightly overflows from the sandwich and
around the exposed stock. All the fibres that failed due to pulling out of the cardboard sandwich
did not have this overflow feature.

During the epoxy process, the overflow could appear at the initial attachment of the two
halves, but as the cardboard sandwich was cured vertically, this results in some of the epoxy
naturally sliding down the inner sides of each half. To get around this, extra epoxy could be
applied to the top of the bond region next to the exposed stock to fill in the gaps. Care should
be taken when applying this extra epoxy to ensure that no part of the TNR or fibre was touched
during this procedure. The epoxy could be applied with a small and thin stick of cardboard, or
a cocktail stick, for example. Ensuring that the two aluminium plates were as tight as possible
also helps limit the amount of epoxy that could slide down on the inside.

After each successful test, the cardboard ends were inspected to observe if there was any
slippage within the cardboard sandwiches. No ends showed any visible signs of slippage during
testing.

Figure 3.30: A: An example of a cardboard sandwich that was likely to have the fused
silica pulled out of it during testing. This was determined from the lack of epoxy around the
stock at the edge of the cardboard sandwich. B: An example of a cardboard sandwich with
a sufficient amount of epoxy to keep the stock in place.
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An additional digital camera was set up to record the top clamp during testing to see if
there was any observation of slippage of the cardboard sandwich within the clamps, as well
as monitoring the stock to see if there was any movement of the stock within the cardboard
sandwich to ensure the test was mimicking the environment of the stock being welded in place.
This camera could be seen in the previously shown figure 3.11. Figure 3.31 shows an example
of the result of the footage obtained from this camera for one fibre. A frame from the very start
of the strength test and just before fibre failure were overlaid on top of each other to see if there
was any noticeable difference in the cardboard sandwich position. No slippage or movement
was observed in any of the footage that was obtained within the cardboard. This test was carried
out for multiple fibres and all showed the same behaviour.

Figure 3.31: A: An overlay of two frames from the start of the strength test procedure
(black border frame) and just before the fibre fails (pink border frame) observe if there was
any slippage of the cardboard sandwich in the clamps. It could be seen from this image
that there was no obvious visual movement of the stock between the two images. B: Pink
border frame moved laterally over the black frame image to observe if there was any vertical
movement of the stock. C: Zoomed in view of B.

3.8.2 Breaking location

A major focus of this investigation was to inspect the location of the fibre breaking to determine
whether or not the angles introduced into the fibres would have a greater influence to where
the fibre would break. Having angles in the TNR would increase the amount of stress in the
TNR region of the fibre. The stress applied to the TNR could then result in the fibre failures
occurring at the TNR region instead of the minimum diameter location in the thin section of the
fibre should the stress in this region be sufficiently high enough.

From the breaking position analysis, it was found that while no fibres broke at the TNR
region where the fibre angle was at its greatest, the majority of the fibres that were tested did not
then break at the expected minimum diameter location. In total, only 14 out of 44 (32%) fibres
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broke at the minimum diameter region. 30 fibres did not break around their minimum diameter
location. This result is in contrast with previous research that previously found that fibres would
break around the minimum diameter region with sample sizes of 70 and above [128] [92]. When
carrying out investigations with fused silica fibres, the assumption that the fibre would break at
the minimum diameter region was made when there was no high speed camera available to
monitor the breaks. This was because the stress should theoretically be at a maximum at this
point using the following equation:

σmax =
Fbreak

Amin
(3.3)

where σmax was the maximum stress applied to the fibre, Fbreak was the breaking force applied
from the strength tester when the fibre fails and Amin was the minimum cross-sectional area of
the fibre at its thinnest point. Figure 3.32 shows the difference between the stress in the breaking
region and in the minimum diameter region for all the fibres tested, with the stress at the actual
breaking point being lower than the minimum diameter stress as expected.

Figure 3.32: The stress in the fibre in the location where the fibre broke and at the minimum
diameter region for all the fibres tested in this investigation.

To further investigate why the majority of fibres did not break at their minimum diameter,
the fibre profiles were examined to see if there were any features around the breaking region
that may have contributed to the breaking location. Previous research during the installation of
the laser stabilisation system on the fibre pulling machine had shown that features on the fibre
such as dips in diameter in the thin region could have an effect on the ultimate strength of the
fibre [92]. Figure 3.33 shows a fibre profile with the minimum diameter location (red star) and
the observed breaking region of the fibre. It could be seen that the breaking region was in a
dipped region where the diameter decreases by approximately 20 µm. An artefact such as this,
or in a region where there was a steady change in diameter (either decreasing or increasing)
was only observed in 13 fibres out of the 30 fibres that did not break at the minimum diameter.
Figure 3.34 however shows a fibre that, again, did not break at the minimum diameter region,
but also did not break in a location where there was any obvious visual artefacts.
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Figure 3.33: Fibre profile that shows the breaking region sitting in a location where there
was a dip in diameter. This fibre was of particular interest as the difference in profiler
diameter data between the minimum diameter of the fibre and the minimum diameter of
the breaking region was 0.6 µm. Therefore the stress in both of these locations would be
extremely close. This was the only fibre that had this scenario.
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Figure 3.34: Fibre profile that shows the breaking region sitting in a location where there
was no visual artefact in the breaking region.
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If the fibres that did break in the region where the minimum diameter value was included in
the artefact observation tally, this number would increase from 13 to 24. This equates to more
than half of the successfully tested fibres. It was unclear why the remaining fibres broke in a
location where there was no artefact. Looking only at the 17 fibres that showed this behaviour, 9
fibres showed a breaking stress that could be considered weak. This involves having a breaking
stress below 3 GPa, as defined in previous research [128]. Two of the 9 fibres tested had a
breaking stress under 2 GPa. One of these fibres broke under a load of 44.3 kg, which correlates
to a maximum stress at the minimum diameter of 4.1 GPa. This would generally be considered
to be a very strong fibre, but the breaking region was in the bottom TNR, which resulted in
the low breaking stress at the breaking point. There were no obvious defect in the fibre profile
in this region to suggest why it broke at this point and was the only fibre that was tested in
this investigation that broke in the TNR. The maximum angle observed in the bottom end of
the fibre was 0.5◦. It could be possible that during the bonding process that a bit of apparatus
came in contact with this 800 µm region, but could not be said for certain. The possibility that
additional thermal stress could have been added during the pulling process at this point through
the misalignment of the beam could not be ruled out either though a recording of the beam power
and distribution during the pull would need to be obtained and analysed. There were a further 6
fibres that broke with a breaking stress of under 1 GPa which were not included in the presented
data. These 6 fibres were touched at some point prior to testing and failed take more than 10 kg
of load, meaning that these fibres would have failed the proof test that fibres go through prior to
installation into a suspension.

During the bonding of the cardboard sandwiches to the fibre, the fibre itself was out of its
storage area and in the lab bonding jig for up to 48 hours. This was a significant period of time in
a non-cleanroom, active lab environment. It could not be said for certain that absolutely nothing
came in contact with the fibres during this period as that would require 24 hour surveillance.
Small dust particles carried in the air current would not be expected to cause damage to the
fibres, though it was not something that would be desired.

As previously stated, the laser stabilisation system on the pulling machine was not used
to make the fibre production as identical as possible to those produced on the LHO machine.
Future tests repeating this investigation with fibres that were produced with the laser stabilisation
enabled could lower the number of dipping artefacts that could occur in the fibre profile, and
therefore limit the number of fibres that would break in these regions. As there will be a laser
stabilisation system installed at LHO by the start of 2020, this would give another opportunity
to carry out a comparison test between the Glasgow and LHO pulling machines (a separate
investigation comparing these two machines will be discussed in the following chapter).
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3.8.3 Effect angles have on ultimate strength of fibre

As discussed in chapter 3.8.3, a wide range of angles between the stock-to-TNR and TNR-
to-thin were obtained. Figure 3.35 shows the maximum angle observed in the fibre and the
corresponding breaking stress that was obtained from all the fibres that were tested. The angles
represented in figure 3.35 is the maximum angle found on the fibre out of all the stock-to-TNR
and TNR-to-thin at both ends. Fibres with angles under 1◦ between the stock and TNR region of
the fibre, which was the criteria to be suitable for aLIGO suspension installation, mostly showed
very good performance. This includes the strongest fibre that was tested which broke at 4.3 GPa.
In total, there were 14 fibres that were tested that satisfy the criterion for aLIGO suspensions
that had angles under 1◦ specifically in the top neck stock-to-TNR.

Figure 3.35: The maximum angle (left Y-axis) in both the stock-TNR and TNR-thin, and
the breaking stress (right Y-axis) of the fibres that were tested in this investigation

From figure 3.35, only 11 fibres out of 44 showed a performance where the breaking stress
was under 3 GPa. All 11 of these fibres contain angles in a range between 0.7 - 2.5◦. There does
not appear to be any correlation showing that the more extreme the angle defect is, the worse
the ultimate strength performance is. An interesting follow up investigation would be to test the
lifetime of these fibres hanging a load at a range of stress values. This was discussed in section
3.10, with a similar, but non-related investigation carried out in chapter 4.

During the previous analysis regarding the fibre failures during the commissioning break,
there was some finite element analysis (FEA) that was carried out by members in the suspensions
working group (SWG) within the LIGO Scientific Collaboration (LSC) to observe what the
applied stress on the TNR region would be if angles were inserted into the models [129]. Prior
to this investigation starting, it was thought that the angles found in the fibres could have a
significant effect on the ultimate strength of the fibres. The results presented in this chapter have
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shown that this hypothesis was not the case. For example, the fibre with the greatest angle, 5.96◦,
that was investigated for example had a breaking stress of 4.1 GPa, which could be considered
as very strong. From figure 3.35, it could be seen that the majority of fibres that were tested with
an angle between 1-3◦ were found to have breaking stresses between 3.5-4.3 GPa.

However, the fibre models in this FEA were based on an ideal fibre of uniform diameter in
the stock, TNR and thin regions of the fibre. For this FEA model to be considered an accurate
representation, importing a fibre profile of a real fibre that has been tested was essential and
would need to be carried out to give an accurate comparison to the model and experimental data.
A key component in accurately portraying the fibre in these models was to correctly import the
radius of the bend in the fibre where the angle occurs. This would ensure that the stress values
calculated in the model were as accurate as possible.

It could also be concluded that if, for example, a fibre was installed into a monolithic sus-
pension with angle greater than 6◦, there would need to be an additional contribution through
the welding procedure to observe an angle this severe. Since no fibres with angles greater than
4◦ were obtainable without exceeding the laser power available at LHO, any fibre that would be
installed to the monolithic assembly, previously shown in chapter 1.5, would have to be welded
into the ears poorly to give an overall angle of approximately 6◦ or more. Theoretically, the
de-stress procedure [97] should eliminate any angle introduced into the stock-horn weld region.
However, if this process was not carried out correctly, it could have the detrimental effect of
giving an additional contribution to the overall angle. An investigation could be carried out in
the future where the stock at both ends of the fibre were welded to an ear and tested to see the
strength performance and how angles in the weld region effect the suspension.

3.9 Future research

A follow-on investigation could look into a different mechanism of testing. Instead of misalign-
ment of the beam through adjustments on the mirror mounts, misalignment of the clamps within
the pulling machine could be investigated to see how feasible it was to introduce angles into
produced fibres with the beam well aligned. Chapters 4 and 6 focus on an investigation related
to the stress fatigue of suspension fibres. In these investigations, the angle alignment of the fibre
was not investigated. This investigation focused on the strength of the fibres with angles in them
due to the suspension failures that had occurred during installation into the detector chambers.
The fibres at the time of failure were under a set stress for a period of time before failing. For
example ETMx at LHO hung for approximately 1 week and ETMy at LLO hung for approxi-
mately 4 weeks. Data that was obtained in the investigation that will be explained in chapter 4
of this thesis, which was used in the investigation surrounding the failures [112], showed that
the fibres would have been under a stress of approximately 2.5 - 2.7 GPa. As this was a different
mechanism of investigation where the lifetime of the fibre was investigated under various loads
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instead of ultimate strength of the fibre, it would be interesting to see if fibres with deliberate
angle defects would perform with respect to stress fatigue. The equipment and set-up needed to
carry out this investigation was already made and available to suit aLIGO length fibres due to
previous research that was carried out [92].

An additional factor that was highlighted in the previous report into the fibre failures during
the commissioning break was the stock offset on the horn of the ear on the side of the test mass.
This offset could be introduced during the welding process when the stock material was not
aligned properly when driving stock into the molten region in the horn. An example of this
is shown in figure 3.36. This could be an area that could be investigated in parallel with the
previous suggestion. An offset in the stock material could be easily done by misaligning the X-
Y translation stages that the clamps on the pulling machine were sitting on and would replicate
an offset of the stock on the ear.

Figure 3.36: An offset of the stock material relative to the horn on the ear attached to the
test mass [114].

Finite element analysis modelling of these fibres would help quantify the increase in stress
that was actually applied to the TNR regions of the fibres where the angles were located with
profiles of fibres that were tested experimentally. This was attempted in the early stages of this
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investigation, but due to time constraints, it had to be set aside as future work. Difficulties were
found when it came to producing accurate models of the fibres with angles accurately placed
into ANSYS (a finite element analysis program) [130]. It was decided that time was better spent
obtaining the experimental results, but building on the work that had been carried out by LSC
colleagues [129] to accurately model a real angled fibre that had been tested will help understand
how great of a stress increase was observed in the TNR.

All three of these investigations listed above will require a significant period of research
time and effort, but could yield results beneficial to our understanding of what were the ultimate
limitations the aLIGO fibres that could be installed into a suspension, as well as enhancing more
general understanding of fused silica as a structural material. It would be a recommendation by
the author that these investigations were picked up within the research group in the near future to
feed into future projects that will use fibres such as A+, Einstein Telescope and LIGO Voyager.

3.10 Conclusion

This investigation set out to investigate the potential adverse effect that angular defects have on
the ultimate strength of fused silica fibres. This was motivated due to incidents that occurred
during the aLIGO commissioning break in between O2 and O3 where there were several suspen-
sion failures during installation of new test masses. During the root cause analysis report [113]
into these failures, one of the possible reasons for these failures was angles that had been in-
troduced into the fused silica fibre during the fibre production process. The outcome of this
investigation was that all fibres that showed an angle between the stock and the TNR of the fibre
greater than 1◦ were to be discarded from selection for aLIGO suspensions. An investigation
into finding out what could cause these angles to be introduced during the production process,
and the subsequent effects these angles have on the ultimate strength of the fibre was carried out.

The investigation consisted of firstly confirming that the angles had been introduced through
the misalignment of the laser beam. Previous experience with aLIGO fibre production indicated
that this could be the possible reason, but could not confirm due to the difficulty of determining
the severity of the beam misalignment. This was due to the fact that the beam distribution would
be inspected by eye through heavily tinted welding goggles through a laser safe enclosure win-
dow. This enclosure, as well as general laser safety protocols, made it difficult to inspect the
beam up close to the heating region at an appropriate view to determine the beam distribution
around the stock. At the time of this investigation, this was how the beam distribution was
observed at LHO. On the Glasgow pulling machine, there was a camera monitoring system
installed that allowed the close up inspection of the CO2 through the LabVIEW program con-
trolling the fibre pulling machine. This upgrade will be installed onto the LHO pulling machine
by 2020 in preparation for the A+ upgrade. It was confirmed that a reliable way to introduce
fibres into the production process was to misalign the CO2 beam on the stock material through
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the adjustments that were available on the periscope. This caused the CO2 beam to enter into
the pulling machine optical system at an angle. Ensuring the beam was well aligned onto the
fused silica stock would produce fibres that satisfied the aLIGO criteria of having angles under
1◦ between the stock and the TNR.

A key component on estimating the stress values to which the fibres were exerted, and the
lifetime before failure, was based on an investigation that was carried out by the author while
at LHO. This investigation focused on the stress fatigue of aLIGO fibres where a mass was
attached to the fibre and the hang time was recorded. The result of this investigation is presented
in the following chapter.
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Chapter 4

Stress fatigue in fused silica suspension
fibres

4.1 Introduction

Figure 4.1: An arial photograph of LIGO Hanford Observatory while descending for land-
ing at the Tri-Cities Airport.
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During this PhD, there was an opportunity to work on a Long Term Attachment (LTA) at the
LIGO Hanford Observatory (LHO) in Washington, USA for four months between March-July
2017. During the four month fellowship, one of the main projects that was worked on was
related to the Suspensions Working Group (SWG) within the LIGO Scientific Collaboration
(LSC). An investigation was set up to understand the expected lifetime of fused silica fibres
at a higher stress range than what is currently used in the aLIGO suspensions in preparation
for future upgrades to the suspensions. Fibres investigated in this chapter ranged in diameter
between 183-208 µm. The results of this investigation will be discussed within this chapter.

4.1.1 Motivation

Current upgrade plans to the aLIGO detectors, A+, involve the use of thinner fibres in the mono-
lithic suspensions [72] [90]. This change in design will result in a greater load being applied to
the fused silica fibres suspending the test mass. The maximum increased stress can be calculated
by:

σmax =
Fmax

Amin
(4.1)

where σmax is the maximum stress of the fibre at the thinnest point on the fibre, Fmax is the
force applied to the fibre and Amin is the area of the fibre at its thinnest diameter. In the current
monolithic design [56], the fibres were under a stress of 780 MPa. The proposed plans for A+
is to increase the stress to 1.2 GPa [90]. This increase will move the resonant modes, known
as violin modes, from approximately 500 Hz, to 650 Hz for the first harmonic in the aLIGO
sensitivity curve. The vertical mode of the suspension, known as bounce modes, will also move,
but in the opposite direction from approximately 10 Hz down to 7 Hz. These upgrades, along
with the possibility of increasing the stock and fibre length to increase the dilution factor will
overall lower the thermal noise and increase sensitivity in the detector [58] [72].

Designs for the next generation gravitational wave detectors also suggest the use of heavier
test masses in their suspension design with an increased stress figure [90] for the suspension
compared to current aLIGO. It was therefore essential to understand what impact increasing the
stress has on the expected lifetime of the fused silica fibres.

Previous research by Proctor et al [131] investigated properties of fused silica with fibres that
were 15-80 µm in diameter. These fibres were produced with Vitreosil fused silica through the
use of a gas flame with both single pulls and what was described as a ‘double-draw’ technique.
It was not possible to trace the exact data sheet to observe the properties of the Vitreosil fused
silica. The latter involves pulling a new thin portion from the initial stock, followed by pulling
the actual thin fibre from this new region. This technique was used to produce ultra thin fibres
that will be described in both chapters 6 and 7. The stock material ranged from being treated
with a chromic acid wash, followed by flame polishing, whereas the stock material in aLIGO
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fibres were treated with acetone and methanol followed by laser polishing. These fibres were
placed under a range of stresses both in air and in vacuum. As the fibres that were tested were of
a diameter 10 times thinner than what is currently used in aLIGO suspensions, it was decided it
would be beneficial to investigate if there was an observable difference between Proctor’s fibres
and fibres that could be produced with the aLIGO fibre pulling machine.

Research within this chapter was carried out in parallel with research that was going on
at the University of Glasgow by then PhD student, Dr Kyung Ha Lee. The fibres that were
investigated at LHO were all in air tests, which have been shown to show lower strength than
that in vacuum [131]. Dr Lee’s work [92] looked at a slightly similar stress range in air (2.5-
4.2 GPa), as well as in vacuum tests at a lower stress range (2.3-2.9 GPa) as the set-up at Glasgow
allowed for vacuum tests. Though the aLIGO monolithic suspensions were under vacuum when
installed into the detector, they could spend more than two years in storage before installation, as
well as 2-3 months in air after installation onto the test masses while the quadruple suspension
system is installed into the chamber. While in storage, the fibres were under no tension, but
locked in place within a fibre cartridge (discussed in chapter 4.2.1). Though this investigation
did not allow for the testing of fibres that had been in storage for that amount of time, carrying
out in air tests was still relevant as this would give a lower bound to the fibre safety margin.
In addition, carrying out similar research that produces fused silica fibres with identical pulling
machines at two separate locations also allows for a test of reproducibility to see if both sets of
data match.

To ensure the investigation was carried out to aLIGO conditions, the fibres produced were
pulled and characterised following aLIGO fibre pulling procedures. This is detailed in the fol-
lowing subsection.

4.2 Experimental method and set-up

4.2.1 Fibre production and characterisation

The fused silica fibre pulling machine, shown in figure 4.2 was functionally the same as that
described previously in chapter 2. All fibres produced in this chapter followed the procedure
detailed in the LIGO document, E1000366 [97], the official aLIGO fibre production procedure.
The fused silica stock used was Heraeus Suprasil 2 [132], as used in aLIGO.

This procedure has slight differences compared to the procedure that was carried out in the
fibre production in the previous chapter. The main difference was the introduction of ‘fuse
ends’ attachment holsters and fibre cartridges into the fibre production and characterisation set-
up [133]. The fuse ends are aluminium blocks that were attached to either end of the fused silica
stock to interface with the fuse end clamp installed into the pulling machine. This also gave
the user a contact point to handle the stock without actually touching the stock. A SolidWorks
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rendering of the final product is shown in figure 4.3 [134].

Figure 4.2: The fibre pulling machine at the LIGO Hanford Observatory with a rod of fused
silica installed and being heated to the point where it was molten.

Lengths of 11.5 cm fused silica stock were cut and cleaned prior to installing the fuse ends.
The cleaning process consisted of three stages of wiping down with Anticon gold wipes [96]
doused with methanol, then acetone then methanol again to remove any surface dust. The fuse
ends were attached to the fused silica stock with 2 part Araldite epoxy [116]. The assembly was
then placed into an aluminium holding plate [135] that ensured the fuse ends were sitting in the
correct position on the stock and properly aligned with each end. This holding plate was then
placed on a hotplate at 80◦C for 30 minutes, as seen in figure 4.4. The stock was then ready to
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install into the pulling machine fuse end clamps.

Figure 4.3: SolidWorks rendering of a fused silica stock with attached fuse ends [134].

Figure 4.4: Assembly of a fused silica rods with fuse ends attached curing on a hotplate at
80◦C.
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The laser polishing process for the fused silica stock of these fibres was the same as that
in the previous chapter: 50 mm distance down and up with the feed mirror stage voltage set to
0.25 V. The 100 W CO2 laser [104] was turned on at the start of each day of fibre production with
the shutter closed to ensure that the laser was sufficiently warmed up before fibre production.
This minimises the power fluctuation that could be experienced from a cold start, which could
be up to 10% [104]. This fluctuation could potentially vaporise stock material during the pulling
process. This was because as the fibre was drawn, more heat was concentrated onto a smaller
surface area. A sudden increase in power during this stage could therefore vapourise material
leading to a thinner diameter in that region. Stock material could also be vapourised during the
polishing process from these fluctuations if the power were to increase. As the polishing process
involves moving the feed mirror at a slow speed along the length of the stock, excess heating
could occur in a region due to an increase in power. This would lead to the stock material getting
too hot and vapourising away. This would leave the polished stock having an uneven diameter.
This was an artefact that could be observed by eye without using the fibre profiler, meaning it
could be of the order of approximately 100 µm or greater.

Prior to any production, the laser output power was checked. This consisted of placing a fan
cooled laser power meter at the path length such that the power reading would be approximately
this value at the point the fibre was focused onto the stock. At 85 % duty cycle, the power meter
gave a reading of 113 W and at 95 %, a reading of 118 W. This was typical of the performance
of the laser [104] [92].

It was essential that prior to the production of fibres, a diameter, and therefore stress range,
was decided for this investigation. Previous research carried out by Proctor [131] found the
following relationship between stress and failure time:

(σ −σ0) =
1
n

ln(K)− 1
n

ln(t) (4.2)

where σ is the stress on the fibre in kg/mm2, σ0 is the fatigue limit, t is the time to failure
and n and K are constants 4.7× 10−2 and 8.13× 103, respectively. The fatigue limit is the
maximum stress that could be applied without causing fatigue failure in the material, such as
cracks. Rearranging equation 4.2, the predicted hang time, t could be calculated:

t = Ke−n(σ−σ0) (4.3)

This equation was used to determine what stress range should be investigated during this LTA,
with the preference being fibres that would break in under a day to maximise the number of
data points that could be obtained. Using equation 4.3, a range between 3-5 GPa was the aim of
values to be investigated that gave time values that fitted the desired hang time.

Equation 4.3 could therefore be used to calculate the estimated hang time of a fibre under a
specific stress. The pulling process was similar to that described in chapter 3. A voltage profile
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was uploaded to the custom LabVIEW program to control the velocity of the pulling and feed
stages to draw the fibre. In total, three different pulling profiles were created in this chapter to
produce fibres with a minimum diameter range between 183-208 µm. This range was chosen by
calculating the stress values that could be applied with the available masses, and calculating the
predicted hang time of the fibre with equation 4.3 to maximise the number of fibres that could
be investigated during this visit.

These profiles originated from the pulling profile that was already used for previous aLIGO
fibre production, namely the profile "LHO15" [115]. The main change that was made to this
pulling profile was to make the velocity of the pulling stage be maximum during the middle
section of the fibre pull. This was achieved by setting the voltage of the stage to its maximum
value of 10 V. This is shown in figure 4.5. The aim of this was to obtain thinner fibres by
maximising the velocity of the pulling stage, and determine whether or not that velocity was too
fast, or not sufficient enough.

Figure 4.5: The pulling voltage profile used to produce the fibres that were investigated
within this chapter.

This voltage profile, combined with the feed stage voltage profile 1 shown in figure 4.6, gave
fibres that lay in the lower region of the previously mentioned diameter range. To produce fibres
that were slightly thicker, the feed stage voltage had to be increased. Increasing the velocity
of the feed stage means that more material could be fed into the production of the fibre. Feed
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voltage profiles 2 and 3 shown in figure 4.6 produced the fibres that filled out the rest of the
previously mentioned diameter range.

Figure 4.6: Feed stage voltage profile used to produce the fibres that were investigated
within this chapter. Note that the data points at 0.9V̇ is there for all 3 profiles, therefore only
voltage profile 3 is shown due to the overlay of points.

Unlike the fibre puller at Glasgow, there was no camera feedback installed to monitor the
alignment of the beam around the fused silica stock [92]. Alignment of the beam distribution
around the fused silica stock was carried out with the use of a welding mask and heavily tinted
laser goggles. This reduced the visible brightness enough to allow the distribution of the CO2

beam to be observed. Once the fibre has been pulled, aluminium rods were attached to the fuse
end clamps to create one rigid unit, creating what was known as a fibre cartridge [136] shown
in figure 4.7. The top clamp was then loosened from its holder in the pulling machine and the
top stage of the puller was moved up to create space for removal of the cartridge. Once this
was done, the bottom clamp could be loosened from its holder and the cartridge could be safely
extracted from the pulling machine without touching the fused silica fibre.
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Figure 4.7: A fibre cartridge which allows transportation of the fibre around the lab. The
blocks and struts allow for easy physical handling without touching any fused silica.

The fibre cartridge was then installed into the fibre profiler, shown in figure 4.8, to measure
the diameter of the fibre [137]. Figure 4.9 shows the full profile of a fibre that was pulled
using voltage profile 1. This was a combination of the three files that were obtained during the
profiling procedure, as described previously in chapter 3. Figure 4.10 shows a zoomed in plot
of the thin section of the fused silica fibre. Figure 4.11 and 4.12 show the profile of the bottom
and top neck, respectively.

This profiler was a replica of the one developed at Glasgow that was described previously
in chapter 3, however it only had one camera operational at the time of this investigation. As a
result of this, no angle alignment investigation was carried out.

The dip artefact that appears in figures 4.9 and 4.11 was a common artefact that appears in
the vast majority of fibres of all diameters. This occurs at the beginning of the pulling process
when the pulling stage starts to draw out the fibre from the molten region. A possible reason
for this could be due to the high viscosity that the molten fused silica has and the resulting
slow reaction time to reach an equilibrium as the fibre was produced. As the molten region was
unsettled during the initial motion of the pulling stage, the fibre was initially drawn from the
molten region, before a bulk molten mass from this region was pulled out. The rest of the fibre
was then drawn out from this point. In the case of aLIGO fibres, there was a criterion that the
bottom and top necks sit within 800 µm ± 10%. A well aligned pulling machine will produce
fibres with this artefact that fits within this criteria for it not to be a limiting issue.
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Figure 4.8: The aLIGO fused silica fibre profiler at LHO.
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Figure 4.9: A full fibre profile of a fused silica fibre that was pulled with pulling voltage
profile 1. This plot consists of all the data that was obtained from the three files that were
saved during the profiling process as previously described.

Figure 4.10: The thin section of the fused silica fibre in figure 4.9.
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Figure 4.11: The bottom neck of the fused silica fibre in figure 4.9. Here, the bump artefact
that was described could be seen. For aLIGO suspension fibres, a variation of 800 ± 80 µm
was allowed in this region.

Figure 4.12: The top neck of the fused silica fibre in figure 4.9. Note that the neck in
this fibre does not satisfy the 10% error allowed for the neck regions for suspension fibres.
However, this error was not critical for this investigation and was therefore not an issue that
needed to be addressed.

Once characterised, the fibres were stored in a McDry MCU-340A humidity controlled stor-
age cabinet [138]. This kept the fibres in an environment with a humidity level of < 1% until
they were ready to use.

4.2.2 Method

The aim of this investigation was to observe the lifetime of a fused silica fibre under a range of
stresses. In particular, stresses between 3-5 GPa. To do so, an experiment had to be developed
to allow the suspension of a mass from a fibre with the ability to record the total hang time of
the fibre.



CHAPTER 4. STRESS FATIGUE IN FUSED SILICA SUSPENSION FIBRES 129

For this investigation, the lifetime of a fibre under a specific stress was the key investigative
point. To explore this, an experiment was set up to record the lifetime of a fibre hanging a
mass in air. This was set up within the aLIGO fibre proof test enclosure, shown in the inset
of figure 4.13. The enclosure consists of a solid aluminium base with 4 polycarbonate sheets
as walls. These sheets were held in place by a metal frame, and another aluminium plate was
attached to the top to fully enclose the space. For aLIGO suspensions, the proof tester was
used to carry out an overload hang of a fibre before the installation of a fibre into a monolithic
suspension [97]. The fibre was overloaded with a 15 kg mass, which was 50 % more than what
it would experience in the suspension and left to hang for 15 minutes or longer. Should the fibre
survive, it was considered fit for purpose. This minimises the chance of installing a defective
fibre into the monolithic suspension which could result in a suspension failure and stop LIGO
from obtaining data during an observing run. This was the same principle that motivated the
experimental set up for this investigation.

A schematic of the experimental set up is shown in figure 4.13. The proof tester consists of
an anchor point at the top of the enclosure to which the top of the fibre is attached. A motorised
jack on the base of the enclosure could then raise a mass to the required hight to the bottom
of the fibre. The mass could then be attached to the fibre and the jack lowered until the mass
was freely hanging. A timer switch, shown in figure 4.14, was then installed to run on a simple
custom LabVIEW program to record the hang time of the fibre. The switch was placed next to
the jack and underneath the mass so that when the fibre fails, the mass will land on the timer
switch, triggering the LabVIEW program to record the hang time.
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Figure 4.13: Schematic of the experimental set up to suspend a mass from a fused silica
fibre. Inset: The proof tester enclosure with a fibre undergoing a proof test.
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Figure 4.14: The timer switch that was used to record the total hang time of the mass.

Theoretically, the aLIGO strength tester would have allowed for any load to be applied to
the fibre, and therefore allow for specific stress values to be applied with greater control. It
would also have allowed for the change in stress during testing, if so desired. This apparatus
however was unavailable during this investigation. As the proof tester uses fixed masses, this
made it slightly more difficult to aim for specific stress values within this range. As a result,
three masses were used during this investigation, weighing 10 kg, 12.5 kg and 15 kg.

The masses were attached to the fibre by interfacing the fuse-end to a bracket that was
attached to the mass. Both the fuse-end and the bracket have a through-hole drilled through to
allow a screw to be passed through to secure the mass to the fibre. This same technique was used
to attach the fibre to the top of the enclosure. The mass was then lowered using a motorised stage
until suspended. This was operated using a Thorlabs built-in stage controller that had controls
to move the stage up and down.

The timer switch was a push switch encased in a metal enclosure and connected to a PC
via a USB U12 Labjack capture card [139]. A custom LabVIEW program was created to count
the time duration of the suspended mass. The LabVIEW counter would start once the mass
was suspended and would trigger when the mass fell onto the switch. When the switch was
pushed, this sent a +5 V signal to an input pin which tiggers the timer to stop when received.
The program would then record the hang time by subtracting the start time from the trigger time
using its internal time counter.
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4.3 Analysis

4.3.1 Results

Figure 4.15: Total hang time of the suspended masses plotted against breaking stress values
for the fibres that were tested in LHO (blue dots). The × data points were the data points
from Proctor’s in-air research for comparison [131].

Figure 4.15 shows the resulting hang time, in seconds, against the maximum stress applied to the
fibre, in GPa. Figure 4.15 also shows the data from previous research by Proctor [131]. As the
raw data from this research was not available, the data points were extracted from the published
paper using a data plot extraction tool [140]. As this software relies on clicking on data points
on an image of the original graph [131] to extract the data, an uncertainty of ±0.1 GPa was
associated with the position of the data along the x axis on figure 4.15. An assumption was
made that all fibres broke at its minimum diameter along the fibre as no high speed camera was
available to video the fibre breaking. The maximum breaking stress, calculated using equation
4.1, therefore uses the minimum diameter value.
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Each pulling profile altered the fibre diameter significantly enough to cover the parameter
space along the aimed stress range of 3-5 GPa. There were small gaps between 3.1 - 3.4 GPa and
3.9 - 4.2 GPa where there was no data. This was due to no produced fibres having a diameter
that would fall into those ranges with the masses that were available. The range of minimum
diameter values for each pulling profile is shown in table 4.1.

In total, 37 fibres were tested. One fibre failed due to a fuse end failure while lowering the
mass. This fibre did not have sufficient epoxy applied during the preparation process, resulting
in the stock pulling out. This fibre therefore was not included in figure 4.15. Five fibres failed
during the lowering process. Calculations showed that these fibres would experience a maximum
stress greater than 5 GPa, which was the accepted value of the ultimate tensile stress of bulk
fused silica [132], therefore immediate failure was to be expected. The remaining fibres failed
while suspending the mass.

Table 4.1: Range of fibre diameters obtained with the four pulling profiles

Pulling profile Fibre diameter range, µm
1 183.5 ± 2.4 - 186.6 ± 2.4
2 195.2 ± 2.5 - 200.8 ± 2.6
3 194.2 ± 2.5 -198.0 ± 2.6
4 203.7 ± 2.6 - 208.3 ± 2.7

All but one fibre that experienced a maximum stress above 3.4 GPa broke within an hour,
and all those that had a maximum stress greater than 4.4 GPa broke in under 20 seconds. The
fibre that experienced the lowest stress value of 3.2 GPa was the only fibre to last longer than a
day, lasting a total of 70 hours 41 minutes.

4.3.2 Uncertainties

The main source of uncertainties in this chapter was from the diameter of the fused silica fibres
from the profiler. The uncertainty in the diameter of the profiler was taken as 1.3 % as stated
in [121] through the quadrature sum of the random and systematic uncertainties. Calculating
the uncertainties for the area therefore gives a value of 2.6 %. This was the value of the stress
uncertainty shown in figure 4.15.

The vertical error bars were taken as the average human reaction time of 0.2 seconds [141]
as the program was started the moment the mass was suspended. The moment this happened
was obvious by eye as there was movement of the mass at the moment of suspension.

4.3.3 Discussion

Compared to the data points obtained by Proctor [131], the majority of the fibres that were
produced during this investigation lie either at the low end, or below, the spread of data points.
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Both sets of data were carried out in air, however the diameter range was different. Proctor’s
data consisted of fibres that were pulled between 15 - 80 µm in diameter with an uncertainty of
3.0 % [131].

Extrapolation of the data to lower value ranges could allow for predictions of the estimated
hang time of a suspension under a specific stress. Table 4.2 and figure 4.16 shows the predicted
life time of fused silica fibres under stress values of current gravitational wave observatories, as
well as future possible stress values. The exponential relationship from equation 4.3 could be
seen from this graph where fibres that would be exposed to stress of 2.0 GPa would be expected
to hang for more than a year.

Table 4.2: Predicted in-air hang time values of four gravitational wave detector stress sce-
narios.

Detector Stress, GPa Predicted lifetime, years
GEO600 (current value) 0.3 114155
aLIGO (current value) 0.78 5700

aLIGO (proposed A+ upgrade) 1.2 340
aLIGO (potential future upgrade) 1.6 34

Figure 4.16: Predicted in-air lifetime of fused silica fibres at relevant detector stress values.
Note that the highlighted points for GEO600, MIT and LHO were all experimental results.
Out of the three square indicators, only the LHO fibre lab suspension has been dismantled to
allow equipment use for suspension welding practice. GEO600 and MIT are still hanging.

The 1.2 GPa and 1.6 GPa stress values marked in figure 4.16 were chosen as these were two
of the proposed values that were being considered at the time of this research to install into the
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aLIGO suspensions for A+ [72] [90]. In figure 4.16, there was an orange block that indicates
the hang time of a 40 kg suspension at the fibre lab in LHO at 1.2 GPa. This suspension was
however taken down due to the need to use the set up for fibre weld training prior to the start
of the third aLIGO observing run. To reach this required stress value, the fibres have to have a
diameter of 300 µm. It could also be seen from figure 4.16 that any fibres that would be under a
stress of 2.0 GPa would be expected to last for more than a year.

The extrapolation of data in figure 4.16 show that the stress that aLIGO fibres were currently
exposed to (780 MPa) should have an expected lifetime of approximately 5700 years before
failing. For the A+ scenario of 1.2 GPa, a fibre would be expected to last approximately 340
years in air. This was a significantly sufficient lifetime for an operational detector. As it has
been shown that fibres in vacuum could potentially last significantly longer by up to thousands
of years [131] [92], these hang time values could be considered to be the lower expected bound
to the fibre lifetime at this stress. A possible reason for the increased lifetime of fibres in vacuum
could be due to the fact that the fibre is not exposed to a humidity varying environment. Research
has shown that water molecules can affect the integrity of the bonds within fused silica, such
that strength performance drops as the environmental humidity increases [142] [143]. This is a
reason that the fibres are stored away in humidity controlled cabinets where the relative humidity
is <1%.

Increasing the stress to 1.6 GPa would give an in-air lifetime of approximately 34 years.
This was still a lifetime that was suitable for use in an operational detector. A value of 1.8 GPa
would bring the expected in air lifetime to approximately just under 10 years. Though there was
currently no minimum lifetime set of suspension fibres in aLIGO, a value of 10 years could be
seen as a possible minimum lifetime of an operational detector. This was due to the fact that
within those 10 years, there would be many commissioning periods where components would
be changed and replaced and the fibres could be seen as a component that could be replaced.
This assumption would mean 1.8 GPa could be set as the upper limit stress value that should be
applied to a aLIGO suspension fibre. It should be noted however that as previously mentioned,
life time in-air was significantly less than that in-vacuum [131] [92] and should also be taken into
consideration when determining what the maximum stress applied to suspension fibres should
be .

A comparison of data could also be made to research that was carried out in parallel to that
discussed in this chapter by a fellow University of Glasgow PhD student at the time, Dr Kyung
Ha Lee [92]. The Glasgow data was from a similar experimental set up, but focusing on a
lower stress range, to complement the work presented here. In this case, the range was 2.8 -
4.2 GPa. This allowed for some overlap to occur between the two sets of experiments to allow
comparisons between similar stress values.

Both experiments at LHO and Glasgow were deliberately carried out simultaneously to cover
a wide range of stress values due to the exponential rise in time needed for fibres to break at lower
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stresses. The pulling machines that were used in Glasgow and Hanford were the same. The only
differences occur on the optical bench to direct the laser beam into the pulling machine.

Due to a slight difference in the calibration between the profiler between LHO and Glasgow,
a fibre that was produced in Hanford was brought back to Glasgow to be profiled. The profile
data that was obtained from profiling the Hanford fibre both in Hanford and in Glasgow were
then compared [92]. It was found that there was a difference between the two profiles at the
3 mm stock region of the fibre of 45 µm. Data taken from LHO was then adjusted accordingly
to match the calibration of the Glasgow profiler. This allowed a fair comparison between the
Hanford and Glasgow data to be made, and is shown in figure 4.17.

Figure 4.17 shows that the tests that were carried out at LHO and Glasgow, on two different
fibre pulling machines, were in agreement with each other. The fact that both sets of data were in
agreement with each other show that the pulling machine performance could be considered to be
consistent with each other. This means that tests on fibres produced in either location would be
expected to give similar results. Interestingly, both sets of data lie either below or at the bottom
of the spread for the data obtained by Proctor [131]. Up until 3.5 GPa, the majority of fibres that
were tested sit in the bottom of Proctor’s spread. For stresses at 3.5 GPa and above, the trend of
the fibres lying below the data of Proctor continue with the Glasgow tests that were carried out.
The spread of data points for both the LHO and Glasgow data together was however tighter than
the observed spread from Proctor’s data. This could potentially be associated with the tighter
production repeatability of the aLIGO pulling machines than the flame pulled devices that were
used in Proctor’s data.
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Figure 4.17: The comparison of results discussed in this chapter with data from Lee [92]
and Proctor [131].

There was one data point at 3.0 GPa that does not follow the trend of the LHO data points
and was the only fibre tested that lasted for more than 1 day. This point sits above the trend, and
is highlighted in figure 4.17. This fibre hung for a total of 70.6 hours. It was not known why
this fibre lasted this long in comparison to fibres that were tested to similar stress values. All
fibres were subject to the same preparation and pulling procedure. The experimental set-up was
regularly checked to ensure that the fibre was still suspended and that it did not fail and miss
the timer switch. When the fibre eventually failed, it did land on the timer switch triggering the
timer to stop. A greater number of fibres could in the future be tested to see if this one data point
was indeed a true outlier, or if the greater number of tests will widen the spread of data points.

The fused silica that was used in this investigation, as mentioned previously, was Heraeus
Suprasil 2 [132]. This was the same material that was used for producing fibres for the aLIGO
suspensions. However, this was not the same brand of fused silica used in Proctor’s investigation,
for which the data sheet could not be located to confirm purity properties for comparison. It
could be assumed that it was a modern high purity silica due to the high performance values
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it showed. At this point in the investigation, it was not possible to determine whether or not
this played a significant role in the performance of the fibres in this test. The pre-production
treatments were also different in that the stock material in Proctor’s investigation consisted of a
chromic acid wash, followed by flame polishing. This was unlike the laser polishing carried out
in this investigation.

It was possible that the reason for the difference between the aLIGO-type fibres and Proctor’s
fibres was the diameter of fibres tested. As previously mentioned, the fibres that were tested in
Proctor’s work had the diameter of 20-40 µm. Previous research [93] has shown a difference in
performance for thinner (< 100 µm) fused silica fibres than thicker (> 100 µm) fibres. The bot-
tom range of Proctor’s diameter range was approximately an order of magnitude smaller than the
fibres that were tested in LHO. It was therefore a possibility that the thinner fibres tested could
have a different performance than that of the diameter that were tested in LHO and Glasgow. It
was therefore concluded that this would be the next stage in this investigation. Details regarding
the pulling, characterisation and investigation of thinner fibres will be discussed in the following
two chapters.

Due to the set-up of the fibre profiler at the time where only one camera was used to char-
acterise the fibre, angle measurements in the neck regions could not be calculated. Photos of
the fibre necks were not taken either as the angle artefact was not an area of interest at the time.
Even though this was not investigated, no fibres were noted to have an obvious angle by eye
during production as this would have been flagged at the time.

4.4 Improvements

Improvements could be made to this investigation to increase the spread of data points. One
improvement that could be made would be to use the fibre strength tester, as previously used
in chapter 3, instead of metal masses. A limitation of the metal masses was the reliance on
being able to change the fibre diameter to fill in the stress values within the range that was
being investigated. If the strength tester was used instead, it would mean only one pulling
voltage profile would need to be made to produce the approximately the same fibre through the
whole investigation. The strength tester could then be controlled to apply a specific load on the
fibre that would equate to the desired stress that would be wanted. This also means that the
repeatability of obtaining a data point from one specific stress value could occur in a relatively
straight forward manner. An alternative to this would also be the use of a wider range of masses
should the strength tester not be an available option. Tests that involve a change in stress could
also be performed with the strength tester to accompany results of the static tests that were
carried out in this investigation. This could include relaxing and tensioning the fibre at specific
stresses to observe if this effects the life time of the fibre.

A second improvement applies to the profiling procedure and was also a previous recommen-
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dation from the previous chapter on the neck angle investigation. As the fibres in this chapter
were profiled with only one camera, due to the set up of the LHO fibre profiler at the time, it was
not possible to see if there were angular defects in the fibre. The possibility that angular defects
could have a more prominent effect during hang tests instead of destructive tests could not be
ruled out at this stage.

4.5 Conclusion

During a LTA to LIGO Hanford, the opportunity arose to carry out an investigation into the stress
fatigue of fused silica fibres in the fibre production lab at LHO. The aim of this investigation
was to investigate the hang time of fused silica fibres under high stress range compared to what
aLIGO suspension fibres were currently subjected to. This was in preparation for planned future
upgrades to aLIGO, known as A+, and for next generation gravitational wave detectors where
the stress value that the fibres in the suspensions would be exposed to was greater than what
the current aLIGO fibres were exposed to. For example, current aLIGO suspension fibres were
under a stress of approximately 780 MPa, but A+ is aiming to increase this to 1.2 GPa as this
will move resonant modes towards the edges of the observing band.

This investigation involved looking at a stress range between 3-5 GPa as this range would
yield fibres that would break in a time scale of less than a day to maximise the number of data
points that could be obtained during this LTA. All tests at LHO were carried out in air in parallel
to tests that were being carried out in Glasgow at a similar stress range, but both in-air and in-
vacuum. The results of these investigations were then compared to an investigation by Proctor
in the 1960s to see if there were any differences observed.

It was found that data from both LHO and Glasgow did not align with the data that Proctor
had obtained in his investigation, but did align with each other. The alignment of the LHO
and Glasgow data shows that the two separate pulling machines at each location could produce
fibres that were consistent with each other. This means in the future, any investigations that were
carried out at only one location could be considered to produce repeatable results at the other
location.

Extrapolating the LHO data back to the stress that aLIGO fibres were currently exposed
to show that a pristine fibre in air exposed to 780 MPa should have an expected lifetime of
approximately 5700 years before failing. For the A+ scenario of 1.2 GPa, a fibre would be
expected to last approximately 340 years in air. As it has been shown that fibres in vacuum could
last significantly longer, these hang time values could be considered to be the lower expected
bound to the fibre lifetime at this stress. Increasing the stress to 1.6 GPa would give an in-
air lifetime of approximately 34 years. As test masses and various suspension components
could potentially require changing every few years due to performance related aspects, the data
obtained in this investigation could be used to judge what the upper stress bound should be for all
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future suspension upgrades. A recommended maximum stress would be 1.8 GPa which would
give a in air lifetime of approximately just under 10 years.

This data was also used in an investigation into recent suspension failures that occurred
during the commissioning period before the third aLIGO observing run to determine whether or
not the stresses that were applied to the suspension fibres due to misalignments were too high to
determine the cause of failure [112].

As both the LHO and Glasgow data did not perform to the level of Proctor’s data, it was
decided that extending this investigation into fibres with a diameter 50 µm and below would be
carried out to see if they would align with the LHO/Glasgow data or with Proctor. The following
two chapters will detail this investigation thoroughly.



Chapter 5

Development of a dedicated diameter
characterisation profiler and strength
tester for ≤50 µm diameter fibres

5.1 Motivation

Before an investigation into looking at stress fatigue of sub 50 µm diameter fibres could be
investigated, there were several developments that had to be carried out.

Previous research was conducted to build and characterise a pulling machine to produce
fused silica fibres of a much smaller diameter than what was produced for aLIGO, known as the
ultra-thin fibre pulling machine [93] [99]. The ultra-thin fibre pulling machine was capable of
producing fibres up to a length of approximately 30 cm, with diameters down to ≈ 7 µm. Fibres
produced from this pulling machine will here on be referred to as "ultra-thin fibres". The detail
of how the fibres were produced will be discussed in detail in the following chapter. These
fibres were produced for use in various investigations and experiments both in Glasgow, such
as characterisation of ultra-thin fibres, Young’s modulus, and the production of fibres for the
Sagnac Speedmeter [144] [145] and the Albert Einstein Institute’s 10 m prototype interferometer
in Hannover, Germany [146].

One of the investigations carried out in Glasgow was to look into the Young’s modulus of
ultra-thin fibres ranging between a diameter of 10-100 µm [93] [147]. This investigation looked
at pulling fibres from three different pulling profiles to obtain three separate batches of fibres to
investigate. These fibres were then installed into an ultra-thin fibre strength tester to record the
breaking load and stretch at point of failure. All three of these batches obtained a wide spread
of Young’s modulus values.

There were two major factors that contributed to the uncertainties obtained during the Young’s
modulus investigation:

• Uncertainty in the diameter of the fibre during profiling.

141
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• Uncertainty in the reading of the stretch of the fibre at point of failure.

The first of these items was related to the optical set-up of the aLIGO fibre profiler and the dif-
ficulty in accurately imaging an ultra-thin fibre. The second was related to the method the fibre
extension was measured and calculated and the variability in where on the set-up the measure-
ment was taken from. Both of which will be discussed in this chapter.

Figure 5.1 shows a screenshot of one of these ultra-thin fibres being profiled on the aLIGO
fibre profiler that was approximately 9 µm in diameter during the above mentioned investigation.
It could be seen in this case that the image of the fibre was under 6 pixels in width for a fibre
with diameter of approximately 9 µm. This equates to each pixel measuring approximately
1.5 µm which placed limitations for the thin fibre imaging. The uncertainty in the diameter of
the fibres tested could get as high at 10% due to the difficulty in profiling an ultra-thin fibre with
the aLIGO profiler configuration.

Figure 5.1: Screenshot of the image of an ultra-thin fibre being profiled on the aLIGO fibre
profiler. .

Figure 5.2 shows an image of the strength tester during the previous investigation. To mea-
sure the extension of the fibre at the point the fibre broke, a set of digital calipers were used to
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measure the distance between the baseplate and the motorised stage. The ability to measure the
distance between the baseplate and the motorised stage consistently was a challenge due to the
lack of reference points on the set-up to ensure the calipers would sit in the same place for every
measurement. Holding the calipers at an angle and not perfectly perpendicular to the base plate
could result in a greater distance measurement than the motorised stage actually travelled.

Figure 5.2: Highlighted issues with the previous set-up of the ultra-thin fibre strength tester.

The combination of these major sources of uncertainty resulted in values of the Young’s
modulus having up to a 16% uncertainty associated. For any investigation involving these ultra-
thin fibres to be carried out, these sources of uncertainties had to be tackled. In the case of the
aLIGO profiler mentioned previously, the stated uncertainty value for the diameter was 1.29%
for aLIGO diameter fibres. For ultra-thin fibres, this uncertainty value was up to approximately
10%. The best case scenario uncertainty for measuring the stretch of the fibres was ±0.03 mm
that was associated with the digital calipers that were used. This relies on the ability to measure
the stretch of the fibre from the exact same position on the motorised stage of the strength tester.
As previously seen in figure 5.1, the fibre in the screenshot was only approximately 9 µm in
diameter, and takes up 6 pixels. This equates to each pixel approximately measuring 1.5 µm, and
it was this resolution that contributes to the large resulting uncertainty in the earlier mentioned
Young’s modulus.

This chapter will discuss the design and characterisation of a dedicated fibre profiler specifi-
cally for ultra-thin fibres, and the upgrades that were carried out to the already existing ultra-thin
fibre strength tester. The goal of these developments and upgrades was to decrease the above
mentioned uncertainties where the uncertainty that would be associated with the Young’s modu-
lus would be approximately 5-10%. These goals are also stated in table 5.1. This would equate to
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decreasing the profiler uncertainty associated with the profiler to under 5% for ultra-thin fibres.
Work within this chapter was carried out with the assistance of two IREU summer students,

with credit given where appropriate. Work within this chapter was also published in Classical
and Quantum Gravity [99].

Table 5.1: The goals that were aimed to be achieved through the development and upgrades
of the ultra-thin fibre characterisation apparatus in this chapter.

Requirement Feature
Higher camera magnification than the
aLIGO profiler

Increase magnification capabilities
from ×6 to at least ×16

Reduce uncertainty in fibre diameter
measurement

Higher magnification and increased
camera resolution

Ability to easily change magnification
for different diameter samples

Variable magnification

Remove the need to use hand held in-
struments to measure fibre extension

Installation of encoder to strength
tester stage

Ability to strength test multiple
lengths of fibres

Increase length of drive rods

Reduce the uncertainty value in
Young’s modulus measurements

All of the above

5.2 Dedicated ultra-thin fibre profiler

The current iteration of the new fibre profiler, referred to as the "ultra-thin fibre profiler“ from
here onwards, is shown in figures 5.3 and 5.4. It works on the same principle as the aLIGO fibre
profiler [121] [122] as detailed in chapter 3. In short, a variable high magnification lens system
was attached to a camera to image the fibre. A LED was used to illuminate the fibre to cast
a shadow on the sensor of the camera. An ultra-thin fibre cartridge, shown in figure 5.5, was
placed into a holder and a camera system moves along the length of the fibre on a motorised stage
to obtain the diameter of the fibre. This stage, as well as the camera were controlled through a
custom LabVIEW program based on the same program as the aLIGO fibre profiler [122]. The
ultra-thin fibre cartridge and the fibre cartridge holding block that were both developed during
previous investigations [93] [99], shown in figure 5.6, sit on a 360◦ rotating platform. The
rotating platform allows for different perspectives of the fibre to be profiled. The holding block
has the same footprint as the aLIGO profiler, which allows ultra-thin fibre cartridges to be used
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on both profilers. A clear plastic shield was installed onto the front of the platform, as shown
previously in figure 5.3. This was to protect the fibre from air currents as people walk by the
front of the desk the profiler sits on, as the fibres were so thin that they were prone to air current
disturbances.

This section will detail the key components of the ultra-thin fibre profiler.

Figure 5.3: Current iteration of the ultra-thin fibre profiler.
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Figure 5.4: Diagram of the ultra-thin fibre profiler.
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Figure 5.5: Image A: One end of the ultra-thin fibre cartridge, B: SolidWorks rendering of
a full fibre cartridge. Labels: 1 - Cartridge chuck, 2 - cartridge nut, 3 - fused silica fibre, 4
-Cartridge strut.

Figure 5.6: Top left: Cartridge block holder sitting on the 360◦ rotation stage. Bottom left:
Fibre cartridge sitting within slot of block holder. Right: Full fibre cartridge.
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5.2.1 Improved optical set-up

The ultra-thin fibre profiler, had to meet two main criteria to lower the previously mentioned
uncertainty value when measuring the diameter of the fibre:

• Greater and variable magnification system

• Greater camera resolution

The current aLIGO profiler [121] [122] , shown in figure 5.7 with an ultra-thin fibre placed
within the profiler, utilises two 640x480 Unibrain Fire-i digital board monochrome cameras with
a fixed lens with a focal length of 12 mm. These cameras were set up such that two perpendicular
views of the fibre could be simultaneously taken. This allows any misalignments of the fibre to
be observed, as discussed previously in chapter 3. The lenses chosen combined with a lens
tube [148] [149] in between the lens and the CCD, gives a fixed magnification that could be
calculated with:

M =
di

do
(5.1)

where M was the magnification, di was the length of the lens tube and do was the distance
between the object and the lens. Using this equation, the magnifications of the two cameras
were approximately ×1.75 and ×6.

The number of pixels taken up by an object could be calculated by the following equation:

Ob ject size per pixel =
width o f pixel
Magni f ication

(5.2)

where the width of a pixel was 5.6 µm and the magnification was defined by equation 5.1. This
gives 0.93 µm per pixel for a magnification of 6.
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Figure 5.7: An ultra-thin fibre cartridge within the aLIGO profiler

Previous investigations [93] with ultra-thin fibres only utilised the ×6 magnification camera
on the aLIGO profiler, with a slight modification. The fixed length lens tube, shown in figure 5.8,
was increased in length to increase the magnification to approximately ×8.3. Using equation
5.2, this gives 0.68 µm per pixel compared to the previously mentioned 0.93 µm per pixel for×6.
Any attempt to increase the magnification further by increasing the length of the tube ran into
difficulties. The lens required a pinhole aperture to enable focusing onto the fibre by increasing
the depth of field. Due to the combination of light sources and pinholes available, it was not
possible to achieve a depth of field sufficient enough to allow focusing and therefore could not
increase the magnification any further, therefore reaching the limit of the profiler lens set-up.



CHAPTER 5. DEVELOPMENT OF A DEDICATED DIAMETER... 150

Figure 5.8: Left: current installed lens tubes on the aLIGO fibre profiler [149]. Right:
Various lengths of lens tubes and the pinhole cover that could be installed to increase mag-
nification.

It was decided that the ultra-thin fibre profiler would have the following camera set-up:

• Thorlabs DCC1240M CMOS 1280× 1024 camera [150]

• Thorlabs MVL12X20L ×2 magnification lens [151]

• Thorlabs MVL20A ×2 magnification lens [152]

• Thorlabs MVL12X12Z ×7 variable magnification [153]

The new optical set-up for the ultra-thin fibre profiler is shown in figure 5.9. The combination
of the fixed and variable magnification lens system allows for a magnification of up to ×28.
Using equation 5.2, with the magnification set to the maximum value of×28, a value of 0.19 µm
per pixel could be achieved. This was approximately a factor of 3 improvement on the previous
set-up that allowed for 0.68 µm per pixel.
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Figure 5.9: The current lens and camera set-up of the ultra-thin fibre profiler.

Early tests were carried out with the new camera system to determine the optimal set-up
of the new camera system. Leah Perri, an IREU student who spent a summer at Glasgow as-
sisted with this early work [154]. The camera manufacture software [150] was used to image a
50±3 µm feeler gauge [155] at a range of magnifications. The set-up, shown in figure 5.10, con-
sists of a 50 µm feeler gauge held securely within a clamp with a LED positioned behind it. The
feeler gauge was then placed in front of the lens system and imaged at various magnifications.
A conversion between the number of pixels that were covered by the shadow of the feeler gauge
on the camera sensor could then be obtained, shown in table 5.2. The feeler gauge was then
replaced with a 75±0.75 µm wire [156], shown in figure 5.11, and the same process repeated.
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Figure 5.10: Experimental set-up of early tests of the new optical set-up for ultra-thin fibre
profiler (LED out of shot). Original image taken from final report [154] with labels added.

Table 5.2: The number of pixels occupied by the feeler gauge’s shadow and the resulting
size of the image. Data from final report [154].

Magnification Number of pixels
2.32 29.9

4 40.9
6 59.2
8 81.3

10 103.2
12 121.9
16 155.6
20 193.4
24 230.1
28 266.3
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Figure 5.11: Screenshot of a 75 µm wire under a magnification of ×16. Original image
from final report [154].

5.2.2 Hardware and design

The overall hardware design of the ultra-thin fibre profiler was conceptually similar to the aLIGO
profiler. It utilises the same ball screw motor stage tower and base platform to hold the fibre that
was on the aLIGO profiler. The camera and lens system sits on a Thorlabs X-Y translation
stage [157] to allow the position and focus of the camera system to change. A green high
intensity 4W "Lumiled" LED with variable brightness, that was previously used for a different
set-up [122], was used to illuminate the fibre. Both the camera system and LED were each
attached to a Bosch strut. These struts were then attached to the moving motorised stage, such
that they were opposite each other.

This set-up only uses one camera to image the fibre due to practicability and cost factors at
the time. The variable magnification system has a length of approximately 272 mm. This would
mean that if a second system were to be installed on the same profiler, modifications to the
profiler stage would have to be made to accommodate the length of a second identical system.
The arms that the LED and camera system sit on would need to be lengthened by approximately
280 mm to give enough room for adjustability of the second system. This would allow another
arm to be attached between the two of them for the second camera system. A smaller LED
housing would have to be made to then sit opposite the second camera system. Additional tests
would then need to be carried out with the motor stage to ensure it could perform to the design
specifications with what would be a large and heavy cantilever attached. While not impossible,
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this was a decision made at the time to not pursue, but could be considered for any future
upgrades.

The motorised stage was controlled by using a circuit board utilising a L6205 DMOS dual
full bridge driver [158]. A circuit diagram of the final version of the motorised stage controller
is shown in figure 5.12.

Figure 5.12: Circuit schematic for the motor controller board.

Figure 5.13: A schematic of a H-bridge concept to control the profiler motor. S# dictates
the switch and its associated number.

This circuit in figure 5.12 was based on one of the recommended L6205 typical application
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diagrams in the manufacture data sheet [158]. Figure 5.13 shows a schematic of the H-bridge.
A H-bridge works by sending a signal to two of the input pins to dictate how the motor will
move. In the example shown in figure 5.13, if switches S1 and S4 were closed and S2 and S3
remain open, the motor would move in a clockwise direction. When S2 and S3 are closed and
S1 and S4 are open, it moves in an anticlockwise direction. To stop the motor, both S1 and S3
(or S2 and S4) were open or closed. A H-bridge could work with either relays, as in the above
example, or through a solid-state design. The latter was the case in the L6205.

The L6205 works by sending a high/low input to the motor that controls the stage to make
the stage move/stop. The L6205 provides dynamic braking to stop the motor and hold the stage
in position once the signal was sent, when the signal sent to the enable and input were both high.
The first iteration of this circuit was tested by connecting the enable channels into a 5 V power
supply to control the motorised stage. Depending on which pin was connected to the 5V signal
determined the direction of the motor stage. This allowed the stage to be tested to ensure the
motor and the moving stage were in a working condition.

This board was then configured to allow control of the motorised stage through both a custom
LabVIEW motor control program and the LabVIEW program that would control the ultra-thin
fibre profiler (discussed later in this chapter). The input signals were sent to the circuit board
via the +5 V terminals on a LabJack U12 [139]. The motor control program could then be set
to send the desired combination of high/low values to the circuit board to move the stage up or
down. Limit switches, as used in the aLIGO profiler and shown in figure 5.14, were fixed at the
bottom and top of the tower to stop the stage from clashing with the optical board or beyond
the top of the tower. At both ends, there were two sets of switches: software limit and hardware
limit switches. The software limit switches were programmed to stop the motor moving within
the fibre profiler LabVIEW program. The hardware limit switch cuts off all power to the motor
when triggered. This could be overridden by pressing the override switch which will complete
the circuit and cause the stage to move.
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Figure 5.14: A: Limit switches fixed to the top of the profiler tower. B: Limit switches fixed
to the bottom of the profiler tower. C: Wiring of software and hardware limit switches.

To measure the distance that the motor has moved, a SIKO MSK320 magnetic encoder [124]
was attached to the side of the motor stage. A magnetic strip was attached to the side of the tower
for the encoder to move over as the stage moves. The encoder works by sensing magnetic peaks
within the strip. The peak registers a "high" voltage reading which could be registered as a
"count", shown in figure 5.15. This was the same concept that was used for the aLIGO fibre
pulling machine and profiler. The two channels for the encoder, A and B, read the strip pattern
separately. As the two lines were 90◦ out of phase, when the encoder moves across figure 5.15
left to right, channel A leads channel B. If it moves right to left, channel B leads channel A. This
allows for a directional distinction to be made so that it was possible to determine whether the
motorised stage would be moving up or down.
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Figure 5.15: Example of the pattern on the magnetic encoder strip showing the high-low
pattern the encoder passes over.

The data for the encoder was read into a custom made read-in circuit board [159]. This
board was originally developed for the aLIGO profiler and was replicated for the ultra-thin
fibre profiler. A digital schematic of the circuit board is shown in figure 5.16. This circuit
works by taking in the high-low transitions from the encoder and passing this signal through
a 74LS123 multivibrator [160]. When the encoder passes over a transition point, a pulse is
generated from the 74LS123. As both channels are read through simultaneously, this means
a pulse is generated at every transition for both channels A and B. Each pulse is then sent to
the LabJack U12. Counting pulses on both channels allows for an encoder to be changed by
the user. If 0.4 mm counting is required, then only one channel needs to be fed to the U12. If
0.1 mm is desired, then both channel pulses would be combined to give 0.1 mm counts. This
was achieved through a switch wired into the circuit to swap between 0.1 mm and 0.4 mm count
distances. This signal was then sent to the LabVIEW program where the pulses were counted
and converted to a distance [121] [159]. The circuit board allows for either 0.1 mm or 0.4 mm
counts to be recorded. This means that a pulse would be generated either every 0.1 mm or every
0.4 mm.
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Figure 5.16: The circuit schematic for the encoder read-in board, initially designed for the
aLIGO profiler [159].
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5.2.3 LabVIEW

Once the hardware had been assembled, the ultra-thin fibre profiler LabVIEW program was
created. The full LabVIEW block diagram can be found in appendix B. The front panel of the
ultra-thin fibre profiler program is shown in figure 5.17

The program used was a modified version of the aLIGO profiler program that was previously
developed in [121]. This program has a state-machine structure. This means that the program
was developed such that specific actions, or states, were only performed when specific condi-
tions were met. This could be from inputs from the user or in-state conditions being met to then
move to the next state. The program works through the following states:

• Initialisation of the program.

– Loads up the settings for:

∗ The camera.

∗ Encoder counts for measurements.

∗ Calibration values for the camera.

• Create files.

– A file name was given by the user.

– 3 files were automatically generated and named with the suffix of "Bottom", "Mid-
dle" and "Top" added to the end of the name.

– These three files were for three sections of the fibre: Bottom neck, middle thin sec-
tion and the top neck.

• Start data taking for "Bottom" file.

– This setting takes full screen scan measurements of the shadow edge measurements
from top to bottom for every row of pixels.

– Each pixel along this scan was a data point where values of the following were taken
for each camera:

∗ Fibre position - This was the encoder value of the stage at that particular point.

∗ Fibre diameter - This was the distance between the left and right edge of the
pairing of pixels. This distance was then converted to µm through a calibration
value that was set prior to starting the program.

∗ Left edge pixel distance - This was the distance from the left of the screen to the
left data point.

∗ Right edge pixel distance - This was the distance from the left of the screen to
the right data point.
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– The data from the scan was then saved to the file with the suffix, "bottom".

– The motorised stage then moves up 0.1 mm to the next data point and repeats the scan
measurement. The default value that was set for the aLIGO profiler was 0.3 mm to
ensure that there was an overlap between each scan region. This value could be
changed by the user to their discretion. Care should be taken to ensure overlap in
data so no regions were missed as the motor moves between each iteration.

– This process will repeat until the motorised stage has moved the pre-determined
distance set in the initialisation process.

– Start data taking for "middle" file.

∗ This setting takes 6 edge measurements in the centre of the screen. All 6 values
were then averaged together to give one value.

∗ This value was saved in the "middle" file, with its corresponding position mea-
surement.

∗ This process was repeated until the user presses the "move to top neck" button.

– Start taking data for "top" file.

∗ This was the same process as the "bottom" file, but for the "top" file.

– Once complete, the motorised stage will travel down to its reset position. This was
determined by the position of the bottom software switch.

– User could then insert a new fibre to repeat the process or exit the program and the
three files were available to use.

The distance the motor moves during the "bottom" and ’top" sections were determined by the
user prior to starting the program. These values were set in the "length of top neck scan steps"
and "length of bottom neck scan step" boxes. The values were determined from the pulling
profile that was used to create the fibre as the length of the neck regions could be calculated
from these pulling profiles. These boxes are shown in figure 5.18.
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Figure 5.17: Front panel of the LabVIEW program for the ultra-thin fibre profiler.
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Figure 5.18: Input boxes to determine interval between points during the thin section of the
fibre and the length of measurements for the top and bottom necks.

The calibration values were also set prior to starting the program for a measurement. To
calibrate the cameras, a 500±0.12 µm slip gauge was placed into the profiler and a "middle"
measurement was carried out 10 times. An average of the 10 pixel width values was noted down
and set as the default value in the calibration box, shown in figure 5.19. The number of times
this measurement was repeated was to the discretion of the user. This process was carried out
for both cameras separately.

Figure 5.19: Calibration boxes to calibrate the profiler.
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Figure 5.20: Screenshot of a 500 µm slip gauge being profiled for calibration at a magnifi-
cation of approximately ×12.

The major modifications that had to be made to the existing program for the ultra-thin fibre
profiler were in the following areas:

• Removal of the dual camera set-up so it works with just one camera

• Initialisation, settings and read-in of the new camera

• Control of the motor that drives the moving stage with the new circuit board

• Edge detection and data save settings of the fibre

There were multiple "virtual instruments", known as VIs, within the LabVIEW program.
These VIs were pre-written subprograms that could be used to control any software or hardware
components within the overall program. In this case, the majority of sub VIs used control
specific aspects of the profiler, such as camera settings, initialisation of components, encoder
read in, etc. The VIs that controlled the previous fire-wire cameras were removed and replaced
with the VIs of the Thorlabs camera that were supplied by the manufacturer. These newly
installed VIs initialise the camera and load the camera setting values for the exposure, exposure
range, brightness, frame rate, pixel clock and blacklevel offset. The image capture VIs were also
used to obtain the live feed footage and snapshots during profiling.

Controlling of the motor only occurs in specific program states. A case structure in Lab-
VIEW was a specific scenario that was only triggered when the appropriate conditions were
met. There were multiple case structures within this program. The motor only needs to be
controlled in the following structures:
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• Reset

• Motor off

• Move step (neck)

• Motor on

In the state "move step (neck)", the motor will move a distance that could be set by the user
in the scan distance box until the full distance that was set by the user on the front panel "length
of top/bottom neck scan steps" boxes was covered. In the state "motor on", the motor will move
the desired distance set by the user in between each data point. In the structure "motor off", the
motor was stationary. In the structure "reset", the motor moves back to its starting position and
stops when the software limit switch was triggered. In all four cases, the high/low values for the
appropriate pins have to be set to ensure the motor was moving in the correct direction when
instructed, and that it stops correctly after moving the desired distance in between points.

The live image shown on the front panel was inverted. This was because the edge detection
works from the top of the screen to the bottom. In order to save the data collected to have the
correct position readings within the spreadsheet, this inversion was necessary.

The middle section was currently set to average over 9 points, before moving to the next
point. This value was chosen to ensure a long enough uniform region could be averaged over,
but not too long so that there would be a greater chance of the edge detection picking up large
dust particles that could land on the fibre and skew the diameter reading.

The next step to get the profiler into working order was to characterise its capabilities over
various diameters and magnifications

5.2.4 Varying magnifications and repeated profiles

Initial tests on the assembled profiler were carried out using wire. The wire used was a nickel-
chromium alloy with a diameter of 25±1.25 µm [161]. The wire was imaged at various different
magnifications to observe the depth of field of the optical set-up. The camera would start out of
focus and would be moved at set intervals of 1 µm until the wire was in focus. This interval was
achieved through the micrometer attached to the translation stage. A schematic of this state is
shown in figure 5.21 and a screenshot of the wire both in and out of focus is shown in figure 5.22.
There were ten diameter readings of the wire diameter taken at every interval. This allowed the
standard deviation to be calculated for each interval. Once in focus, the camera would continue
to move the same distance as before in the same direction, moving out of focus of the wire.
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Figure 5.21: Illustration of the experimental set-up of the depth of field tests.
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Figure 5.22: Two screenshots of a 25 µm wire under×20 magnification. The left image was
the wire in focus and the right image was the wire out of focus. The difference in camera
position between these two images was approximately 10-15 µm.

Figure 5.23 shows the 25 µm wire under various magnifications during this investigation.
Figures 5.24 and 5.25 show the results of this test for various magnifications. The vertical error
bars are the standard deviation of the 10 measurements that were taken at every interval. The
horizontal error bars represent the uncertainty associated with turning the micrometer on the
translation stage, ±0.5 µm.

Figure 5.23: The 25 µm wire imaged with various magnifications.
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Figure 5.24: Diameter values obtained for magnifications×6,×8 and×10 during the depth
of field tests. The horizontal lines at diameter values 26.25 µm and 23.75 µm indicate the
wire tolerance.

Figure 5.25: Diameter values obtained for magnifications ×12, ×16, ×20, ×24 and ×28
during the depth of field tests. The horizontal lines at diameter values 26.25 µm and 23.75 µm
indicate the wire tolerance.
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From figures 5.24 and 5.25, it can be seen that the higher the magnification, the smaller the
depth of field is. This means that the higher the magnification, the more alert the user must
be to ensure the fibre was in focus, as a small distance change of a couple of microns in the
case of ×28 magnification could result in the wire being out of focus. In figure 5.24, it can
be seen that the lower magnifications of ×6 and ×8, the diameter of the wire falls outside the
wire uncertainty tolerance. The magnification of ×10 in figure 5.24 also falls out the tolerance
values when considering an average of all the data points in the focused region. There were 3
data points in this region that lie just inside the tolerance value. This could be due to the number
of pixels per micron being too large, with low magnifications of ×6 and ×8. It would suggest
that magnifications of 10 or below should not be used for objects that lie below 25 µm. For
magnifications of ×12 and above, diameter values were found to be within the wire tolerance.
It would be a recommendation for any opaque object that was approximately 25 µm and below
that magnifications of×12 and above be used. The final choice of magnification from this range
was to the discretion of the user.

In figure 5.24, there was a trend that could be seen for all three of these magnifications in
that they were all above the wire tolerance. This could be due to the calibration used for each
magnification where the location of the wire used to calibrate the profiler was such that it was
an area close to the +1.25 µm uncertainty. It was possible that taking an average reading along
the length of the wire during calibration could limit the chance of calibrating the profiler with
an upper limit section of the wire.

Vertical error bars in areas out of focus were large due to the large spread in diameter values
that were obtained when attempting to profile the wire out of focus. As previously seen in figure
5.22, when the wire was out of focus, dark lines start appearing further from the edge of the
wire’s shadow. The edge detection algorithm starts to pick up these lines instead of the edge of
the shadow, which could result in obtaining a mixture of larger and smaller diameter values than
expected. This could be seen in figure 5.25 for the×16 and×24 magnification. Prior to bringing
the wire into focus, the diameter gradually increases before decreasing as the fibre comes into
focus, before showing the same trait when going back out of focus. When the wire was in focus,
these dark lines beyond the edge of the wire do not show up, and a sharp image of the edge of
the wire could be obtained.

An additional set of data was taken by profiling the 25 µm wire, but this time carrying out
"neck scans" as well. It should be noted that no "neck" would be expected along the wire, but was
just the name of the state the machine was in during profiling. This was carried out to ensure that
the data points in between scans have an overlap region. If there were no overlap, there would
be a visible gap in the scan data where no measurements would have been taken. Figure 5.26
shows the profile data obtained of the wire at a magnification of ×24. During the neck scans,
the encoder moves at 0.1 mm intervals in between each scan. This was the minimum distance
that the current encoder allows for. During the middle section where the averaging takes place
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instead of scans, the distance between each data point was set to 2 mm. There was no specific
reason for this distance value apart from personal choice. Figure 5.27 was the left hand side scan
region of the profile shown in figure 5.26 and figure 5.28.

Figure 5.26: A full profile of a 25±1.25 µm wire at a magnification of ×24. The distance
between each scan point was 0.1 mm and the distance in the middle region between data
points was 2 mm.

Figure 5.27: The zoomed in view of the bottom scan of the 25±1.25 µm wire. Note that all
data points in this region sit within the wire tolerance.
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Figure 5.28: The zoomed in view of the bottom scan of the 25±1.25 µm wire. Note that all
data points in this region sit within the wire tolerance.

While there was an overlap region between the neck scan positions, the overlap was quite
small. From the data file, the overlap was 0.11 mm. To increase the overlap, the intervals
between scan measurements need to decrease. This will require changing the current encoder
to one with a better resolution, such as a SIKO MSK5000-0373 [162], which will be used and
discussed later in this chapter. In figures 5.27 and 5.28, a step-like feature could be seen where
there was a sharp change in diameter with a change of approximately 0.2 µm. This could be a
digitisation artefact where the camera system was reaching its limitation and will be discussed
in detail in 5.2.5.

Following this, the same investigations that were carried out with the wire were performed
with a fused silica fibre. This fibre was pulled in the ultra-thin fibre pulling machine [93] [99].
Figure 5.29 shows a fused silica fibre under the same range of magnifications as carried out
with the wire. A fused silica fibre appears different on the image compared to the wire. The
transparent fibre has a bright central region where the light was focused as the fibre acts like a
lens, unlike the opaque wire. This could lead to issues when trying to image the fibre when it was
out of focus. The edge detection could pick up one of the inner edges next to the central bright
line, which could lead to a false diameter reading. This was important for higher magnifications
when the fibre could easily be out of focus by a couple of millimetres. This effect could be seen
in figure 5.31. For magnifications above ×20, once the fibre was out of focus towards the right
side of the graph, the diameter starts to decrease after 35 µm on the x-axis. The edge detection
will be picking up a mixture of outer and inside edges to give these values.
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Figure 5.29: Fused silica fibre imaged at various magnifications. The diameter values at
each magnification are shown in figures 5.30 and 5.31.

Figure 5.30: Fibre diameter values obtained for ×6, ×8, ×10 and ×12 magnifications
during depth of field tests.
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Figure 5.31: Fibre diameter values obtained for ×16, ×20, ×24 and ×28 magnifications
during depth of field tests.

The tests carried out with the fibre agree with the wire tests as expected. The higher up in
magnification, the shorter the depth of field is, which means more care must be taken when pro-
filing a fibre with the higher magnifications to obtain accurate diameter readings. The variation
in error bars is due to the same artefact as previously discussed for figures 5.24 and 5.25. It
would be a recommendation that for fibres that were approximately 30 µm, a magnification of
at least ×16 should be used. This was higher than the recommendation of the wire due to the
nature of focusing onto a transparent fibre being more difficult to achieve than an opaque wire.

The next test that was carried out was taking repeated full profiles of a fused silica fibre. The
aim of this test was to see how repeatable profiles could be made. This test was carried out with
a fused silica fibre produced with the ultra-thin fibre pulling machine [99]. The pulling machine
used is described in detail in the following chapter. Figure 5.32 shows 5 profiles of this fused
silica fibre. All these profiles were taken one after another on the same day. It could be seen
from figure 5.32 that all 5 profiles lie on top of each other and follow the same characteristic
diameter values.
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Figure 5.32: Five separate profiles of one fused silica fibre. A stepping artefact could be
seen in the profiles, similar to that seen in figures 5.27 and 5.28.

Singular data points that were out from the main trend could be attributed to slight differ-
ences in focusing. Due to the short depth of field at higher magnifications discussed earlier,
a few microns difference on the translation stage could have an effect on the level of focus at
which the fibre was sitting. Table 5.3 shows the minimum diameter that was found during the
repeated profiling of this fibre.

Table 5.3: Minimum diameter of the fibre for all five profiles.

Fibre profile Diameter, µm
1 8.3
2 8.0
3 8.3
4 8.3
5 8.3

The uncertainty in the diameter shown was calculated by calculating the systematic uncer-
tainty between all 5 profiles at each position along the fibre. The standard deviation of the
systematic uncertainty was then attributed to the fibre diameter uncertainty. Four of the 5 pro-
files all have a minimum diameter within a 0.2 µm spread. Profile 2’s minimum point was an
outlier just before the 100 mm mark on figure 5.32, which could be contributing to a focusing
factor due to the tightness of the spread for the four other profiles. It could be possible to aver-
age over a larger number of data points during the profiling process to eliminate the possibility
of obtaining outliers. It could be seen in figure 5.32 that there was a step like artefact in the
profiler diameter data. This could have an effect on the previously calculated uncertainty values
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associated with the fibre diameter in table 5.3, and will be discussed in the follow subsection.

5.2.5 Uncertainties

The purpose of developing this dedicated ultra-thin fibre profiler was to minimise the uncertainty
associated with the fibre diameter compared to that on the aLIGO profiler for these types of
fibres. Previous investigations [93] found that the uncertainty associated with profiling ultra-
thin fibres on the aLIGO profiler could be as high as 13%. The uncertainty associated with the
fibre diameter was calculated by calculating the systematic uncertainty associated with each data
point. This percentage uncertainty was obtained by firstly profiling the calibration wire over a
length, and dividing the standard deviation of that length by the minimum diameter obtained.
This can then be multiplied by the diameter value obtained when profiling a fibre to give the
systematic uncertainty for each data point. The standard deviation of the systematic uncertainty
over all points was then taken, converted to a percentage and then applied to the data points.
From table 5.3, all the percentage uncertainty values for the minimum diameter were under 1%,
with the greatest being 0.72% for profile 1 and 4.

It was however noticeable from figure 5.32 that there was a step-like artefact in between
points as the fibre tapers down in diameter. These steps appear at approximately 0.3 µm intervals
and was only observed on fibres that have a sharp taper along it during the "middle" state of the
LabVIEW program. This could be considered a limiting aspect of the fibre profiler when using
high magnifications. It is possible that this arises from the capability of the sensor to resolve the
image close to the edge of the fibre between pixels. The µm per pixel value could be calculated
using the previously mentioned equation 5.2. A magnification of ×17.6 (despite the camera
system being set for ×16) would be needed to give a value of approximately 0.3 µm per pixel.

At the maximum magnification of×28, a value of 0.19 µm per pixel value would be achieved.
For the previously discussed wire scans in figures 5.27 and 5.28, the step-like artefacts occur at
0.2 µm intervals. Carrying out similar calculations gives 0.22 µm per pixel. This value would be
consistent with the step artefacts with the lens system set to×24. Table 5.4 shows the calculated
micrometre per pixel values for various magnification values. It was possible that a sensor with a
denser number of pixels could lower this stepping artefact. This is shown in figure 5.33. Smaller
sized pixels in a similar sensor area will result in a lower µm per pixel value for corresponding
magnifications. For example, a camera with a pixel size of 3.45×3.45 µm at the maximum men-
tioned magnification would have a µm per pixel value of 0.12. At this point, this was reaching
the extreme limitations of the resolution ability of this optical set-up. Along with the previously
mentioned uncertainty values for individual points on the fibre, this stepping artefact needs to
be considered in the diameter uncertainty value at each magnification. Combining the µm per
pixel value with the standard deviation in quadrature changes the uncertainty to 0.31 µm. This
equates to a percentage uncertainty of 3.8-3.9%, which was still a significant improvement to
the previous uncertainty of up to 13% for the aLIGO profiler set-up.
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Table 5.4: Micrometre per pixel values for a range of magnification values. These magni-
fications would give the step-like artefacts with intervals of the corresponding µm per pixel
values.

Magnification µm per pixel
6 0.93
8 0.68

12 0.44
16 0.33
17 0.31
18 0.29
20 0.26
24 0.22
28 0.19

Figure 5.33: A schematic illustrating the possible cause of the stepping artefact that appears
in figure 5.32.

In addition, as there were no small divisions on the lens system to tell exactly what mag-
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nification the camera was set to, this was a possible reason for a magnification of ×17.6 being
used instead of ×16. Should an exact magnification ever be needed for an investigation, the
calibration of the profiler could include calculating the magnification value that the lens system
was set to, by using the previously mentioned equation 5.2.

The encoder attached to the motorised stage has a stated manufacture uncertainty of±0.04 mm
[124]. A movement test was carried out to check the performance of the encoder in the profiler
set-up. This was achieved by measuring the distance travelled over 10 cm using two independent
measurement methods:

• Magnetic encoder attached to the motorised stage that will be used for profiling.

• SIOS SP 5000 NG interferometer attached to the motorised stage for this measurement
[163]. This has an uncertainty of ±0.1 pm, which was significantly smaller than the un-
certainty of the encoder.

A schematic of the experimental set-up for this investigation is shown in figure 5.34. The
vibrometer works by sending laser beams out of the unit to a mirror placed against a flat surface.
In this case, the flat surface was the table that the profiler was sitting on. The beam was reflected
off the mirror and back to the vibrometer. When the motorised stage moves, there will be a
phase change of the beam which could be converted through the manufacture software [163]
to read out the distance the motorised stage has travelled. This gives a completely independent
measurement to the magnetic encoder that was already attached to the motorised stage. Prior to
measurements being taken, the SIOS had to be aligned to ensure the beam stays within the unit
when the return beam enters to reach the sensor. This was achieved through a status monitor box
in the manufacture software that gives a percentage value of how well the beam was aligned.
An alignment through all the measurements of 98% was achieved with the current set-up of the
table on which the profiler was stationed on. It was not possible to achieve 100%.

The motorised stage was controlled via a custom LabVIEW program that reads out the
counts and distance travelled. The stage was moved until the distance reading showed that
the stage had travelled approximately 10 cm. The reason this was approximate was because the
motor controller runs via an on-off switch that the user controls and the controller was turned
off once the encoder count reaches 1000 (or close to this value). The distance travelled was then
compared to the distance travelled by the vibrometer. This was repeated a total of 20 times,
where the stage was measured moving 10 cm upwards 10 times, and downwards 10 times. This
data is shown in table 5.5.
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Figure 5.34: The set-up of the SIOS for the motorised stage position measurements investi-
gation.

The results shown in table 5.5 show that the largest difference between the values of the
encoder and the SIOS was 0.08 mm, which was 0.04 mm greater than the stated tolerance of the
SIKO encoder. This could potentially be due to the alignment of the SIOS not having an align-
ment percentage of 100%. As the scan settings for the neck regions was set to 0.1 mm intervals,
it could be a possibility that if there was a slight overrun in the motorised stage of 0.08 mm,
that a 0.08 mm section was missed in the fibre profile when using the maximum magnification.
For the research carried out in this thesis, this was not a critical issue that needed to be attended
to, but should be taken into consideration for future upgrades where the SIKO encoder was re-
placed with an encoder with a smaller resolution. This is an upgrade discussed in the following
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subsection.

Table 5.5: Distance travelled by motorised stage during repeated up and down movements.

Direction of
movement

Encoder
counts

Distance
travelled,

encoder, mm.
±0.04

Distance
travelled,

SIOS, mm.
±0.1 µm

Down 1002 100.20 100.23
Up 1000 100.00 100.05

Down 1001 100.10 100.14
Up 999 99.90 99.95

Down 1003 100.30 100.34
Up 1003 100.30 100.34

Down 1004 100.40 100.43
Up 1000 100.00 100.07

Down 999 99.90 99.98
Up 1001 100.10 100.16

Down 1004 100.40 100.42
Up 1000 100.00 100.06

Down 999 99.90 99.96
Up 1003 100.30 100.35

Down 999 99.90 99.96
Up 999 99.90 99.97

Down 1001 100.10 100.17
Up 1000 100.00 100.08

Down 1001 100.10 100.17
Up 1002 100.20 100.26

5.2.6 Future improvements

There was potential to make improvements to the ultra-thin fibre profiler in the future. The first
suggested improvement that could be made was the addition of a second camera and lens system
that was previously discussed. This would bring the ultra-thin profiler in line with the design
of the aLIGO profiler and allow for dual readings at perpendicular angles to observe if there
were any angular defects. Dual camera systems could also be beneficial when profiling different
shaped samples. One example would be silicon ribbons. One camera could be set-up to profile
the thickness of the ribbon sample while the perpendicular camera could profile the width of the
samples. This would save time as two measurements would not have to be taken separately one
after the other. Difficulties in this upgrade would be the practicability of having two cameras
working in this set-up. The current arms would have to be lengthened to accommodate the strut
that would hold the second camera set-up. Tests on the motor stage would have to be carried
out to ensure that it works to the design specifications due to the set-up being a large and heavy
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cantilever. Large holes in the Bosch struts could be drilled out to help reduce the weight from
the arms. Changing the cameras completely to one that has a greater pixel density was another
possible upgrade to the profiler. This, as previously described, would decrease the µm per pixel
that could reduce the stepping artefact that appears in fibres with a sharp taper.

Another suggested improvement would be a measuring track guide for the variable magni-
fication set-up. Currently, the magnification is change by turning the dial on the variable lens
tube. This could move with ease by hand, but does not have a track guide on the dial to reliably
revisit a previously set magnification value. Markings engraved onto the magnification tube
would allow for previous magnifications to be revisited if an optimal magnification was found
for specific types of samples.

An additional improvement related to the magnification would be to replace the current set-
up with a "snap to" style variable magnification system. The procedure of pulling ultra-thin
fibres, described in detail in the following chapter, requires a two stage pulling process. This
means that from the original stock material, the first pull produces a new, approximately 500 µm
piece of stock. The second pull produces the ultra-thin fibre from this new 500 µm section. Due
to the need for high magnification to profile the ultra-thin fibre, this results in the 500 µm section
being too large to profile at the same time. A "snap to" system would allow the 500 µm section
to be profiled with lower magnification, followed by consistently "snapping to" a higher magni-
fication value to profile the ultra-thin fibre section. This would require two calibration values to
be set per camera for each magnification. A dual camera set-up could remove the need of having
a "snap to" system by having each camera set to different magnifications to accommodate both
the stock and the ultra-thin section. This would however sacrifice the possibility of accurately
dual profiling the ultra-thin section, as the magnification of one camera would be too low. It
would however allow for one camera to profile the stock material with a lower magnification,
which was necessary when profiling fibres that will be used in suspensions.

An alternate design could potentially be developed that utilises an absolute measurement
technique. Using a laser beam, a diffraction pattern could be obtained when directed at a fused
silica fibre. The observed pattern could be calibrated to allow for diameter measurements to be
observed. Early tests through an undergraduate project showed encouraging results, and this
type of measurement could be pursued in the future.

As previously shown in table 5.5, there was the possibility of a slight overrun from the
motorised stage. This overrun could be up to 0.08 mm which was not critical for the work carried
out in this thesis, but when using the maximum magnification on the lens system, it should be
kept in mind if the overlap region in the profile was critical. This could be minimised through
the use of a magnetic encoder that has a smaller resolution than the current SIKO MSK320 [124]
that was used, such as a SIKO MSK5000 [162]. The smaller resolution will allow for greater
precision of the motorised stage.
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5.3 Upgrades to ultra-thin fibre strength tester

The second of the major source of uncertainty that were listed at the start of this chapter was the
uncertainty associated with measuring the stretch of the fibre at point of failure within the ultra-
thin fibre strength tester, shown in figure 5.35. The ultra-thin fibre strength tester was previously
developed by an undergraduate student [164], and was utilised in previous research [93].

In principle, it was the same as the aLIGO strength tester [117], only scaled down. A Omega
S-Beam load cell [118] was attached to a top fixed stage with a clamp attachment to hold the
chuck of the ultra-thin fibre cartridge. A digital readout was also attached to the load cell to read
the load being applied. The digital readout would be set to the maximum load setting, which
stores the maximum load that was applied until the system was reset. The bottom stage was
attached to a stepper motor which drives the stage, that also holds the clamp to attach the bottom
chuck. The stepper motor was controlled via a custom LabVIEW program [164]. Previously,
data was taken by reading the maximum load value shown on the digital readout of the load cell
at the point the fibre failed. The distance the motorised stage travelled was measured using a set
of digital calipers. Best efforts were made at the time to ensure the calipers were always reading
from the exact same positions on the stage against the drive rods, but would always be a source
of reading uncertainty.

To reduce this uncertainty, as well as improve the set-up, it was decided that the ultra-thin
fibre strength tester would undergo multiple upgrades:

• Lengthened drive rods

– Allows for fibres longer than 10 cm to be tested within the strength tester. This
is important for strength testing fibres that would be used to suspend mirrors for
research activities both in and out of Glasgow.

• Installation of a magnetic encoder to read the distance traveled by the motorised stage

– Allows for repeatable and reliable measurement of the distance travelled by the mo-
torised stage. An accurate measurement of the extension of the fibre could then be
obtained.

• Read in load cell values directly to the LabVIEW program running the strength tester

– Allows for a real-time plot of the force applied to the fibre against the extension of
the fibre through the LabVIEW front panel. This means that the exact time that the
fibre was under tension and when it breaks could be accurately tracked.

The work within this section was carried out in conjunction with an IREU student, Erin
Momany. Her project during her time in Glasgow was to install these desired upgrades. Data
from her report will be cited and credited accordingly.
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Figure 5.35: SolidWorks CAD rendering of the ultra-thin fibre strength tester prior to up-
grades [164].

5.3.1 Installation of upgrades

Previous research that was carried out with the ultra-thin fibre strength tester mainly utilised
fibres that had a length of approximately 10 cm. Due to the length of the original drive rods, it
was not possible to test fibres that were any longer than this in the strength tester. As there were
experiments that want to utilise fibres that were 20 cm in length, the strength tester needed to be
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modified to allow for this upgrade. The drive rods were replaced with 95 cm drive rods to allow
for longer fibres to be installed, shown in figure 5.36. The ultra-thin fibre pulling machine could
produce fibres up to 30 cm. Including the added length of the two chucks on the fibre cartridge,
the new drive rods were sufficiently long enough to accommodate the longest fibres that could
be produced. The top fixed stage has adjustments available to allow the stage to slide to the
required height for any length fibre sample that was required. This set-up suits all lengths of
thin fibres that have been tested.

Figure 5.36: Left: The original drive rods. Right: The newly installed lengthened drive
rods.

The second upgrade carried out was the installation of the magnetic encoder to the motorised
stage. The encoder used was a SIKO MSK5000-0373 [162]. This encoder has a smaller reso-
lution than that which was installed into the ultra-thin fibre profiler described previously. The
encoder and magnetic strip, shown in figure 5.37, has a minimum resolution of 1 µm. This would
allow for greater accuracy and position resolution than the digital calipers that were previously
used. To connect the encoder to the motorised stage, a right-angled bracket mount was attached
to the side of the motorised stage. This positions the encoder to sit just above the magnetic strip.
The encoder could then be read into the LabVIEW program to show the distance travelled in
real time.
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Figure 5.37: The MSK5000-0373 magnetic encoder installed onto the side of the motorised
stage.

To test that the encoder was working properly, measurements of the distance travelled were
compared between the encoder and calipers. The stepper motor was set to travel down 10000
steps, followed by a measurement reading of the distance travelled with calipers. This was then
compared to the value that was displayed on the LabVIEW program from the encoder.
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Table 5.6: Distance of motorised stage moving up from calipers and magnetic encoder. Data
taken from Erin Momany’s final report [165].

Number of
steps travelled

Distance
travelled,
caliper, mm

Accumulated
encoder
counts

mm/counts

10000 1.35±0.03 1103 0.001
20000 2.27±0.03 2198 0.001
30000 3.31±0.03 3311 0.001
40000 4.59±0.03 4424 0.001
50000 5.84±0.03 5518 0.001

Table 5.7: Distance of motorised stage moving down from calipers and magnetic encoder.
Data taken from Erin Momany’s final report [165].

Number of
steps travelled

Distance
travelled,
caliper, mm

Accumulated
encoder
counts

mm/counts

10000 1.22±0.03 1017 0.001
20000 2.49±0.03 2114 0.001
30000 3.47±0.03 3221 0.001
40000 4.72±0.03 4337 0.001
50000 6.77±0.03 5426 0.001

Tables 5.6 and 5.7 show the distance values of the motorised stage measured with both
calipers and the magnetic encoder [165]. The encoder values for counts per millimetre match
the resolution values given in the data sheet of 1 µm [162]. The larger variation in the caliper
values compared to the encoder values obtained could be attributed to the position the calipers
were placed when measuring the distance travelled. This is the issue that the encoder is aiming
to solve as it is fixed into position on the stage.

The third upgrade was changing the load cell read out. As previously mentioned, the load
cell was read out onto a digital reader that could be observed. The digital reader had two main
settings that were utilised during previous investigations:

• Live value

• Maximum value

The live value setting would display the load on the load cell in real time, where as the
maximum value setting would display the maximum load to which the load cell was exerted
until the reset button was pressed. Previously, load cell readings would be noted down after
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regular distance intervals to plot the load to which the fibre was exerted. By reading in the load
cell values through the LabVIEW program and recording the values, the load cell reading at
every point during the strength test process could be plotted and saved for analysis. To do this,
the digital read out of the load cell was connected to the desktop PC via a National Instruments
6008 USB DAQ [166]. The DAQ could then be read into the LabVIEW program to allow the
load cell data to be plotted in real time, as well as saved to an excel file. Combining this upgrade
with the addition of the encoder, live graphs of load against stretch of the fibre could be plotted
during strength tests. The front panel of the updated LabVIEW program is shown in figure 5.38.
The live plotted graph could be seen in the bottom right of the front panel.

Figure 5.38: The updated custom LabVIEW program for the ultra-thin fibre strength tester
[165].

The load cell could be calibrated through the LabVIEW program. A mass with a known load
could be attached to the load cell and read through the program. The mass should be as close to
the expected load that would be applied to the fibres. A load of 529±0.5 g was attached to the
load cell and a kg/V value was inserted into the calibration box on the front panel. This converts
the voltage signal that the digital readout sends to the DAQ into kg that was saved to the file and
plotted on the live graph.

Having a live plot of the force on the fibre allows for the initial slack removal period to be
recorded. This was the period where the fibre was slack within the strength tester and not under
any tension. As the fibre was slack, then no load is applied to the load cell, hence no load is also
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showing on the live graph. Once the fibre was no longer slack, a load is applied to the load cell
and appears on the live graph. The corresponding stage position from the encoder on the graph
could then be noted down as the point the fibre starts to stretch. All this data was also recorded
in the text file that was saved.

5.3.2 Uncertainties

The main source of uncertainty was attributed to the measurement of the motorised stage. This
was due to the uncertainty in the caliper measurements and differences in ensuring that the
calipers were always reading values from the same point on the stage. The magnetic encoder
has an uncertainty of ±0.01 mm, which was better than the best case scenario uncertainty of the
caliper which was±0.03 mm [167]. The encoder also has the benefit of reading its distance from
the same position, as it was fixed to the motorised stage. To test the performance of the encoder
to see if the uncertainty value was accurate, a repeated movement test was carried out. This
involved moving the motorised stage down by 10000 steps and recording the distance the stage
had travelled every 200 steps. The stage was then moved up by the same number of steps and the
distance travelled also recorded. This was repeated 5 times. The systematic uncertainty at each
200 step interval was calculated for all 5 times the stage was moved up and down, respectively.
The standard deviation of this uncertainty was then calculated. The standard deviation when the
stage was moving down was found to be 0.0027 mm, and 0.0018 mm when the stage was moving
up. Adding these uncertainties in quadrature gives an uncertainty of 0.003 mm associated with
the position of the motorised stage. Combining this with the uncertainty of the encoder still
gives a rounded uncertainty of 0.01 mm. The uncertainty associated with the load cell was
unchanged during these upgrades and remains at 0.01% [118]. Combining this uncertainty with
the uncertainty in the calibration mass which was 0.1%, the overall uncertainty on the load was
0.1%.

5.4 Conclusion

The purpose of the work carried out in this chapter was to develop and improve the apparatus
associated with the ultra-thin fibre research that was carried out at Glasgow. The end goal of
this was to reduce the uncertainty associated with the fibre diameter and fibre stretch during
characterisation investigations. The development of the ultra-thin fibre profiler has significantly
improved the capabilities of characterising fibres down to below 10 µm in diameter. The uncer-
tainty associated with the fibre diameter has been reduced from up to 13% to approximately 4%,
depending on the thickness of the fibre and the magnification used, due to the installation of a
variable high magnification lens system. Future improvements to the profiler, such as the instal-
lation of a second identical camera and lens system could be made if decided necessary. This
apparatus has since been used for various different areas of research, such as fibre production
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and characterisation for the Glasgow Sagnac Speedmeter experiment and the AEI 10 m proto-
type interferometer experiment, imaging of MEMS gravimeters [168], imaging silicon ribbon
samples, and was used extensively in the following two chapters in this thesis.

The upgrades of the ultra-thin fibre strength tester has successfully decreased the associated
uncertainties associated with the position of the motorised stage with the installation of a mag-
netic encoder to measure the distance travelled by the motorised stage. This therefore decreases
the uncertainty of the stretch of the fibre from a best case scenario of ±0.03 mm to a consistent
±0.01 mm. The ability to record the live load feed during the strength test also decreases the
uncertainty in the stretch as the slack removal period could be accurately measured to locate
the moment the fibre was under tension. This apparatus was extensively used in chapter 7 to
investigate the Young’s modulus of fused silica with the goal of reducing the uncertainty in the
previously obtained values [93].

The next step was to proceed further with the stress fatigue investigation that was carried out
in chapter 4. Instead of thick fused silica fibres of approximately 200 µm in diameter, ultra-thin
fibres that match the diameters that Proctor had investigated will be used. As well as this, the
experiment will be extended using fibres thinner than what was used by Proctor to see if the data
still agrees, or if there was any significant change.



Chapter 6

Stress fatigue in 10-40 µm diameter fibres

6.1 Motivation

Following the investigation that was carried out previously in chapter 4, there was a desire to
expand the range of diameters for stress fatigue tests. The fibres tested in that chapter ranged
between 183.5±2.4 µm and 208.3±2.7 µm. These were significantly thicker than those investi-
gated by Proctor [131]. Proctor’s fibres ranged between 20-40 µm in diameter, and were seen
to have superior stress fatigue performance. Therefore it was desirable to test a range of fibre
diameters around the diameters Proctor used, including thinner fibres than Proctor used. The
fibres tested in this investigation will be referred to as ultra-thin fibres.

This chapter will detail this continued investigation by discussing the production process of
ultra-thin fused silica fibres, characterisation of these fibres with the new ultra-thin fibre profiler
that was discussed in chapter 5, the experimental set-up and the results obtained.

6.2 Production and characterisation of ultra-thin fused silica
fibres

6.2.1 ultra-thin fibre pulling machine hardware overview

The production of the ultra-thin fibres was carried out using the ultra-thin fibre pulling machine
[93] [99]. This pulling machine, shown in figures 6.1 and 6.2 was previously developed and
characterised by the author for a MSc thesis [93]. The procedure to align this pulling machine
can be found in this thesis. This pulling machine works around the same concept as the aLIGO
pulling machine [62] that was used previously in chapters 2-4, though with several hardware
differences. The first difference was the high velocity pulling stage, a Newport IMS400-LM
[169]. This pulling stage was chosen due to its fast acceleration and maximum velocity values,
which were 26000 mms−2 and 500 mms−1, respectively. Having a high acceleration allows

188



CHAPTER 6. STRESS FATIGUE IN 10-40 µm DIAMETER FIBRES 189

the stage to accelerate to its desired speed in milliseconds, which allows for a sharp change
in diameter at the initial stage of the pull. The pulling stage was also set horizontal along the
pulling bench. The reason the stage was not vertical was that when there was no power applied
to the pulling stage, the stage platform could move freely. If the pulling stage was therefore set
to be vertical, the pulling platform would fall to the bottom of its travel.

Figure 6.1: SolidWorks rendering of the ultra-thin fibre pulling machine that was used to
produce the fibres that were investigated in this chapter. Labels: 1 - Cartridge chuck. 2 -
Feed mirror. 3 - First conical mirror. 4 - Pulling stage. 5 - Fused silica stock. 6 - Feed mirror
motorised stage. 7 - Axicon [99].
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Figure 6.2: The ultra-thin fibre pulling machine in its current set-up as of writing this thesis.

The second major difference was the use of what was known as an "axicon" to deliver the
CO2 beam to the first conical mirror instead of a rotating 45◦ mirror [170] [171]. The axicon
and beam path is shown in figure 6.3. This was a fixed cone mirror that spreads the beam out to
the conical mirror by reflecting the CO2 beam off the tip of the cone. The reason this delivery
method was chosen was due to the desire to heat all around the stock material simultaneously,
instead of through a rotating 45◦ mirror that was used in the aLIGO pulling machine. There
was also a lens system installed onto the optical bench to focus the CO2 beam onto the fused
silica stock. This lens system comprises of two zinc selenide (ZnSe) lenses with focal lengths
of 110 mm and -100 mm to give a beam waist of approximately 100 µm at the focal point on the
stock. This means the area of stock that was heated could be controlled better than no lenses as
the beam will be concentrated over a smaller area. Should the beam be spread over a larger area,
this would result in the neck length tapering down, as the fibre is greater in length and is pulled
from a larger molten area, which was not desirable for these fibres.
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Figure 6.3: Left: The axicon that was used to spread the CO2 beam out to the first conical
mirror. Right: Cross section of the beam path of the CO2 mirror after reflecting off the
axicon. [99].

Two fibre cartridge chucks, previously described in chapter 5.2, were installed into their
holder prior to the installation of the fused silica fibre. The fused silica stock was installed into
the collets that were within the chucks and were tightened by hand. The stock material then
follows the aLIGO cleaning procedure of alternately wiping with methanol and acetone [97].
The fibre could then be produced through the use of velocity profiles, described in the following
subsection.

6.2.2 Velocity profiles and fibre production

The pulling machine was controlled via a custom LabVIEW program [172] that differs to the
aLIGO puller LabVIEW program [62]. The aLIGO pulling stage was controlled by applying a
voltage defined within the voltage pulling profile for each encoder count of the loop during the
pulling process. The ultra-thin fibre pulling machine was controlled through the use of velocity
pulling profiles, comprising a text file with three columns of values:

• Velocity

• Acceleration

• Time

The velocity of the stage was a value between 0 and 500 mms−1. The acceleration column
included values between 0 and 26000 mms−2. The time column was a value in seconds to
indicate how long the pulling stage will travel at the corresponding velocity value. Once the
time has elapsed, the stage will move to the next line of the pulling profile and move to the
given velocity, acceleration and time values. The final line of the pulling profile will have all
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three columns at 0 to bring the stage to a stop. Failure to put a row of 0s at the end will result
in the pulling stage naturally decelerating to a stop, which could include triggering the in-built
kill-switches. By using the velocity, acceleration and time values, the distance travelled by the
stage could be calculated for each line of the pulling profile. The velocity profile values that
were chosen in this investigation were through a combination of past experience pulling fibres,
as well as modifications of previously used velocity pulling profiles [93].

The stock used in this investigation was 2 mm diameter Heraeus Suprasil 3 [132]. To pro-
duce fibres of the previously mentioned desired diameter, a 2 stage pull needs to be utilised. This
comprises of initially pulling the starting stock down to a thinner diameter, before pulling the
final fibre from the stock material that was produced from the first stage pull. For fibre produc-
tion in this chapter, the first stage pull would bring the diameter down to approximately 500 µm
over a length of 5 cm. This diameter and length was chosen as this velocity profile was devel-
oped previously by the author for fibre production related to the previously mentioned sagnac
speedmeter [144] and the AEI 10 m [173] experiments. Once the first stage pull was undertaken,
the feed mirror was reset to its start position and a second velocity profile was uploaded. The
second velocity profile then produces the ultra-thin fibre from the central thin section of the first
stage pull.

In total, 2 main pairs of velocity profiles were used. The first to produce fibres that were
aimed to be approximately around 10 µm in diameter, and the second to produce fibres that were
approximately to be 20 µm in diameter. Both of these pairs of velocity profiles were produced
with various polishing conditions. The 10 µm fibres were produced firstly with no polishing to
the initial stock material, and then produced with polishing of the initial stock material. This
was to see if the polishing process would have any difference when the second stage pull was
produced from newly made stock material. The 20 µm fibres were produced with no polishing,
one full polish and two full polishes. The reason that two polishes were not carried out with
the 10 µm fibres was the issue of vaporising too much material off during polishing that fibre
production became difficult when attempting to produce fibres of this diameter.

Polishing the initial stock was carried out with a laser duty cycle set to 80% laser power
over a length of 7 mm. This equates to approximately 28-30 W of power. This polish length was
chosen as it would cover more than the entire length of stock that would be used during the whole
pulling process. The laser duty cycle of 80% was chosen as the stock would start to vaporise too
much material during polishing and therefore potentially cause issues with the ability to actually
produce a fibre. The feed mirror would move at a velocity of 0.0275 mms−1 which was the
equivalent velocity of the feed mirror for the aLIGO fibre polishing procedure [97]. There was
currently no laser stabilisation system set-up on the ultra-thin fibre pulling machine unlike the
Glasgow aLIGO fibre pulling machine. This was a potential feature that could be installed in
the future which would allow for greater control of the laser power during polishing and pulling.
The laser duty cycle was controlled manually by using a Synrad UC-2000 laser controller [174].
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There were visual indicators, such as the operating light on the feed stage control box, on the
optical bench that indicates when the pulling process has started and finished. The laser was
turned off when this light switches off.

Tables 6.1 and 6.2 show the first and second stage velocity profiles used to produce the fibres
that were aimed to be around 10 µm in diameter. The first stage was carried out with the feed
mirror velocity at 0.7 mms−1 and the laser duty cycle set to the maximum value of 95%. The
second stage was carried out with the feed mirror velocity set to 0.05 mms−1 and the laser duty
cycle set to approximately 25-30%. Beyond 30%, the stock could vaporise very quickly which
could compromise the chances of producing a fibre from that stock.

Table 6.1: The first stage velocity pulling profile for the 10 µm diameter fibres.

Velocity (mms−1) Acceleration (mms−2) Time (ms) Distance (mm)
0.1 20000 200 0.02
1 20000 1500 1.52
2 20000 200 1.92
3 20000 200 2.52
4 20000 1000 6.52
7 20000 1000 13.52
13 20000 1832 37.37
0 0 0

Table 6.2: The second stage velocity pulling profile for the 10 µm diameter fibres.

Velocity (mms−1) Acceleration (mms−2) Time (ms) Distance (mm)
0.1 20000 140 0.014
10 20000 100 1.014
20 20000 100 3.014
30 20000 200 9.014

200 20000 433 95.614
10 20000 100 96.614
5 20000 200 97.614
0 0 0

Tables 6.3 and 6.4 show the first and second stage velocity profiles used to produce the fibres
that were aimed to be around 20 µm in diameter. The first stage was carried out with the feed
mirror velocity at 0.7 mms−1 and the laser duty cycle set to the maximum value of 95%. The
second stage was carried out with the feed mirror velocity set to 0.5 mms−1 and the laser duty
cycle set to approximately 25-30%. Note that these fibres were longer in length for both the
first stage and second stage. This was due to the fact that these velocity profiles were developed
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by the author for the previously mentioned experiments associated with the Sagnac speedmeter
and the AEI 10 m prototype experiments. Research has shown that the fibre length should not
have an impact on the strength performance [128]. These profiles were also used to minimise
the need to develop additional hardware for cartridge components.

Table 6.3: The first stage velocity pulling profile for the 20 µm diameter fibres.

Velocity (mms−1) Acceleration (mms−2) Time (ms) Distance (mm)
0.1 20000 200 0.02
1 20000 1500 1.52
2 20000 200 1.92
3 20000 200 2.52
4 20000 1000 6.52
7 20000 1000 13.52
13 20000 2750 49.27
0 0 0

Table 6.4: The second stage velocity pulling profile for the 20 µm diameter fibres.

Velocity (mms−1) Acceleration (mms−2) Time (ms) Distance (mm)
0.1 20000 140 0.014
10 20000 100 1.014
20 20000 100 3.014
50 20000 200 13.014

190 20000 962 195.794
10 20000 100 196.794
5 20000 200 197.794
0 0 0

The fibres were extracted from the pulling machine by running the feed mirror past the
cartridge chuck holder. This is shown in figure 6.4 This allows for enough space to install the
cartridge struts to each chuck. The grub screws that hold the chucks in place in their holders
were then loosened and the LabVIEW program was stopped. As previously mentioned, when
there was no power going to the pulling stage, it is free to move. This allows for easy extraction
of the cartridge as the pulling stage could be slid to the far end of its path and the cartridge could
slide out of the holders. The end that was designated as the top end of the cartridge was assigned
to the end of the fibre that was produced last. This orientation was kept constant through the
remainder of the chapter. The fibres were then stored in a modified non-powered freezer, shown
in figure 6.5. This was used as it was a sealed room temperature storage container that could be
modified inside to house shelves that the cartridges could sit in. The bottom tray was filled with
desiccant to minimise humidity in the container.



CHAPTER 6. STRESS FATIGUE IN 10-40 µm DIAMETER FIBRES 195

Figure 6.4: The extraction process of a fibre cartridge from the pulling machine.
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Figure 6.5: Fibre storage that was used for the fibres investigated in this chapter. The bottom
tray was filled with desiccant to reduce the humidity within.

6.3 Experimental set-up

The experimental set-up for this investigation was based on the configurations that were used
in chapter 4 and in the research carried out in parallel by Dr Lee [92] . An illustration of the
set-up is shown in figure 6.6. A fibre was housed in an enclosure, shown in figures 6.7 and
6.8, with a mass attached to one end and the other end fixed to the roof of the enclosure. This
enclosure helps minimise any chance of dust touching the fibre while it was under tension during
the investigation. A universal joint was attached to the end of a M10 screw that has been shaved
on two opposite sides, as shown in figure 6.7. This screw sits in a slot that has been milled out
of the top plate, which was attached to one half of the enclosure. The height of the screw could
therefore be adjusted by turning the nuts on either side of the plate without the screw physically
turning. This was set prior to the fibre being installed by taking into consideration the length
of the cartridge and how much room was needed for the mass installation jig, which will be
described later in this subsection. The top end of the fibre cartridge was then slotted into the
universal joint. The universal joint was used to ensure that the fibre chuck, and therefore the
fibre, will be sitting perpendicular to local gravity. The chuck was then held in place with a grub
screw on the side of the universal joint.

Two micro-switches connected in parallel sit at the bottom of the enclosure with a platform
connecting the two levers on the switch, as shown in figure 6.6. The platform was attached to
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the two levers with superglue to ensure it stays attached when the mass falls. These switches
were attached to a right angle bracket which was attached to the same half of the enclosure as
the top plate. When the fibre fails, the mass will fall and hit the platform that was connected to
the levers on the switch. This then sends a signal to a program on a Raspberry Pi [175]. This
program was a modified version of one that was used in Dr Lee’s investigation [92] to allow for
more switches to be controlled for multiple enclosures. The two halves of the enclosure were
attached to each other through two metal attachment plates on each side of the enclosure. These
four plates were then held in place with M4 screws that screw into tapped holes on the enclosure
halves. A small cut out was made at the bottom of the enclosure to allow exit of the timer switch
wires that go to the Raspberry Pi.

Figure 6.6: The experimental set-up that was used to carry out the stress fatigue inves-
tigation in this chapter. The two switches that were connected to the Raspberry Pi were
connected together in parallel so that the timer recording was triggered when either switch
was pressed.
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Figure 6.7: The closed enclosure used in this investigation. Photo inset: Shaved screw used
to adjust the hight of the universal joint within the enclosure.
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Figure 6.8: An open view of the enclosure showing the internal layout, and indicating how
one half of the enclosure comes apart from the other half.
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Figure 6.9: The inside of the enclosure that was used to enclose the fibres in this investiga-
tion. Note that the black paint allowed for the fibre to be easily seen as the reflective metal
background cause difficulty.

As the fibres used in this investigation required extreme care and caution to firstly free the
bottom of the fibre from the bottom chuck, and to secondly attach the mass, without damaging
the fibre in the process, a mass installation jig had to be developed. This jig had to securely hold
the bottom stock of the fibre in place so that the removal of the bottom chuck could be carried
out. It then also had to be able to securely hold the mass that would be attached to the fibre for
installation. Finally, it needed the ability to lower the mass and for the jig to be removed from
the enclosure space in a controlled manner. The final design of the mass installation jig is shown
in figure 6.10. It comprises of a vertical Bosch strut attached to a 5 cm adjustable horizontal
translation stage. Figure 6.11 shows a walk-through of how the masses were installed to the
fibres.
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Figure 6.10: Top: The mass installation jig used to remove the bottom chuck and to install
the mass to the bottom stock of the fibre. Back (bottom left) and side (bottom right) view
of the mass installation jig showing the XYZ adjustments that were available. The position
of the holder for both stages could be set prior to installation and moved along the strut they
were attached to.
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Figure 6.11: Top left: Tweezers moved into position and tightened to secure the bottom
stock as the chuck was removed from the stock. Top right: Mass installed by inserting
stock into hole in mass. Stock secured in place by inserting and tightening grub screws on
opposite sides. Bottom left: Tweezers loosened and retracted once mass was secured to the
stock. Bottom right: Mass platform lowered until mass was suspended. The platform could
then be retracted.
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Two XYZ translation stages were attached to the vertical strut. The top XYZ translation
stage has ceramic tipped tweezers attached to it [176]. The ceramic tips have a 2 mm groove
carved into them. These grooves allow the tweezer to grab the fused silica stock and to securely
hold it in place by tightening the nut on the tweezers. The bottom XYZ translation stage has
a removable cantilever that could securely hold the mass to be installed securely in place. The
reason this cantilever was removable was because it would be in the way of the bottom chuck
during removal. Once the tweezers were in place and attached to the stock, the nut on the bottom
chuck was loosened with care to ensure no movement of the chuck during this process. Once
loosened, the screws attaching the cartridge struts were removed from the bottom clamp. This
process was carried out by hand where one hand was holding the bottom chuck while the other
hand loosens and removes the screws. Once the bottom chuck was free of the cartridge struts,
the stock could slowly be removed from the chuck by gently bringing the chuck down. The stock
should not move as it was held securely by the tweezers, but care should be taken to ensure no
movement of the stock was occurring during this process. Once the chuck was removed, the
cartridge struts could then be fully removed by removing the top screws. The cantilever could
then be installed onto the bottom XYZ translation stage.

The cantilever has a block attached to it with grooves that align with the holder on the XYZ
translation stage, allowing for easy removal and attachment. At the end of the cantilever was a
holder for the masses that were attached to the fibre. The holder consists of two metal blocks
with a M4 tapped hole in each. These holes house grub screws that could be tightened by hand
to secure and release the mass.

The horizontal translation stage sits on top of a vertical jack to allow for additional vertical
adjustments. When the mass was attached to the fibre, the tweezers could be released from the
stock and retracted away from the stock through the XYZ translation stage. The XYZ translation
stage holding the mass could then be lowered until the mass was suspended by the fibre. If this
adjustment isn’t enough, then the vertical jack could be lowered until the mass was suspended.
Once suspended, the horizontal translation stage could be retracted all the way and the vertical
jack holding the installation jig could be removed. The front half of the enclosure was then
slid into position, and attached to the other enclosure half. A viewport in the front half of the
enclosure allows for inspection of the fibre within the enclosure.

For the fibres that were approximately 10 µm in diameter, the masses that were attached
were modified aLIGO fuse ends. A 2 mm hole was drilled into the bottom of the fuse end, with
two M3 tapped holes in the side for grub screws to feed into. For the fibres that were 20 µm in
diameter, they were sufficiently thick at the bottom cartridge chuck could be used as a mass. In
this case, the mass holder at the end of the cantilever was not necessary and was instead used as
a platform to hold the chuck in place. In both cases, as there was a stress range of 3-5 GPa that
was to be investigated, several different masses were used to fill in different stress values. These
masses ranged between 11.5 g to 209.0 g. Each mass though was based on either using the fuse
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end or the bottom chuck as its core. Figure 6.12 shows two modified masses. On the left was a
modified fuse end with washers used to add weight. On the right, a plastic ring that could slot
over the bottom chuck with additional washers was used to add weight. All masses used were
weighed prior to installation and after fibre failure. The first weighing was to give an estimate
of the stress that the fibre was under during the test. The second weighing was to give a final
value of the weight that was attached to the fibre to include the fused silica stock that was still
intact. The fuse end masses were weighed using a RS 10 g calibrated scale [177], and the chuck
masses were weighed using a Beetle B218D-6 scale. These scales have uncertainties of 0.001 g
and 0.5 g, respectively.

Figure 6.12: The two types of masses that were used during this investigation. Additional
modifications were made to change the mass.
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6.4 Results

6.4.1 First stage pull down

Figure 6.13 shows the profile of the first stage pull down for the 10 µm velocity profiles that was
used in this investigation. Figure 6.14 shows the result of the fibre pulled from the first stage
pull down. This first stage creates the stock material that will be used for the second stage pull
to create the final fibre. The second stage pull down was pulled from the highlighted region in
figure 6.13, which has an approximate diameter in that region between 480-520 µm. The laser
controller during the first stage was set to the maximum 95% duty cycle. It can be seen in figure
6.13 that the first stage pull down has a similar bump artefact that occurred previously in fibres
that were investigated in chapters 3 and 4. As the second stage pull occurs at the opposite end
of this region, this was not an issue that had to be taken into consideration.

Figure 6.13: Profile of the first stage pulldown for the 10 µm velocity profile. The first stage
pulldown for the 20 µm was the same, except that the final length was longer.
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Figure 6.14: The first stage pull down from which the final fibre was pulled, held in a fibre
cartridge.

6.4.2 10 µm velocity profile fibre batch

As mentioned previously, the velocity profiles shown in tables 6.1 and 6.2 were designed to
produce fibres that had a diameter of approximately 10 µm. Figure 6.15 shows an example of a
profile of a fused silica fibre that was taken with magnification set to ×24. This magnification
was chosen as it was sufficiently high to image the thin section of the fibre. This however results
in the rest of the fibre (stock and taper region of both necks) being too thick to profile. This was
not problematic as the diameter difference was too large to have any major contribution. Figure
6.16 shows the minimum diameter values of all the fibres that were tested that were produced
using the 10 µm velocity profile.

Figure 6.15: A fibre profile of a fibre that was produced with the 10 µm velocity profile.
Note that only the thin middle section was shown due to the high magnification that was
used.
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It can be seen in figure 6.15 that the fibre diameter seems to follow an oscillating ring down
in the fibre diameter. This could potentially be due to the stability of the viscous molten fused
silica during the start of the pull where a large amount of force was being applied to the stock.
This will be discussed in section 6.5.

Figure 6.16: All minimum diameter values from the non-polished and polished fibres that
were produced with the 10 µm velocity profile. Blank spaces in fibre numbers were fibres
that were not successfully suspended.

In total, 25 fibres were produced in this investigation. The velocity profile shown in tables
6.1 and 6.2 were designed to produce fibres that had a minimum diameter of approximately
10 µm. Figure 6.16 show that all except 1 fibre that was produced were below 10 µm in diameter.
The vertical error bars come from the 3.9% uncertainty that was discussed previously in chapter
5.2.5. The thinnest fibre produced was fibre 21 which had a minimum diameter of (5.7±0.2) µm.
Due to the minimum diameter being so small, this fibre could not be tested as no mass was
available that was sufficiently small enough. The minimum diameter would be located towards
the end of the top end of the fibre. This was the end of the fibre that was produced last during
the production process. Fibre 23 was the only fibre that did not have a minimum diameter under
10 µm, with a diameter of (14.6±0.6) µm. This was due to the fact that the wrong feed mirror
velocity was set during the second stage pull. It should be noted that all the fibres produced
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above were thinner than the fibres that were tested by Proctor [131].
16 of the 25 fibres were not polished. The remaining 8 fibres that were polished were pol-

ished according to the process in section 6.2.2. The limited number of polished fibres that were
produced was due to the polishing process vapourising initial stock material. There were many
attempts to produce polished fibres with the velocity profile in this section, but reliable pro-
duction could not be achieved. It was possible that the addition of a laser stabilisation system,
similar to that installed on the aLIGO pulling machine [92] could improve the reliability of
producing polished fibres with the above velocity profile.

The experimental set-up for fibres in this subsection is shown in figure 6.17. Figure 6.18
shows the stress values that were tested within this section. The data from Proctor [131] is
also shown in this figure. The stress range investigated for non-polished fibres was (2.5±0.1)→
(3.4±0.1) GPa. The stress range investigated for polished fibres was (2.7±0.1)→ (4.4±0.2) GPa.
The uncertainty value for the calculated stress was a combination of the profiler uncertainty
when calculating the area cross section at the minimum diameter and the uncertainty in the
weighing scales mentioned in section 6.3. The uncertainty in the time was taken as the aver-
age human reaction time of 0.2 seconds [141]. This was because all the micro-switches of the
enclosures were connected to the Raspberry Pi and controlled through the same timer program,
and not through individual programs. A timer on a separate computer screen was set up next to
the enclosure to note the time the mass was suspended. The time that was noted down was the
start time for that enclosure. The time between the separate computer and the Raspberry Pi was
synchronised.
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Figure 6.17: A fuse end mass suspended on a fused silica fibre. The front of the enclosure
was then attached to ensure the fibre was protected from the surrounding environment.
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Figure 6.18: The failure time of the fibres that were produced using the 10 µm velocity
profile under a range of stresses.

6.4.3 20 µm velocity profile fibre batch

The previously mentioned velocity profiles in tables 6.3 and 6.4 were used to produce fibres
that had a diameter of approximately 20 µm. Figure 6.19 shows the diameter profile from a
fibre that was produced using this velocity profile. It can be seen that there is a dip artefact at
approximately 15 mm along the length of the profile that appeared in the LHO fibres in chapter 4.
This region was where the minimum diameter of the fibre would be for the fibres in this section.
This was in contrast to the fibres discussed in section 6.4.2 that had the minimum diameter occur
towards the top end of the fibre. Figure 6.20 shows the minimum diameter values of all fibres
that were produced using the 20 µm velocity profile.
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Figure 6.19: A fibre profile of a fibre that was produced with the 20 µm velocity profile.
Note that only the thin middle section was shown due to the high magnification that was
used.

Figure 6.20: All minimum diameter values from the non-polished and polished fibres that
were produced with the 20 µm velocity profile. Blank spaces in fibre numbers were fibres
that were not successfully suspended.

In total 16 fibres were tested in this section, including 4 polished and 4 double polished.
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The experimental set-up is shown in figure 6.21. The polishing conditions were the same as
the fibres in section 6.4.1. In the case of the double polish, the process was carried out twice.
The vertical error bars were also the same as that described in section 6.4.2. When considering
the three production conditions, the range of minimum diameters that were produced with the
20 µm velocity profile were greater than that produced by the 10 µm, excluding fibre 23 that
was previously described. The spread in diameters from the 10 µm velocity profile was 3.3 µm,
where as here it was 10.4 µm. The minimum diameter of the fibres ranged from (14.4±0.6) µm
→ (24.8±1.0) µm. 12 of the 16 fibres were in the same diameter range as that tested by Proctor,
which was 20-40 µm in diameter [131]. Figure 6.22 shows the range of stress values that were
tested in this section. The error bars shown were the same as calculated in 6.4.2. The stress
range that was investigated for these fibres was (3.2±0.3)→ (4.8±0.2) GPa.

Figure 6.21: The experimental set-up for the fibres that were tested in this subsection. Note
that the chuck masses were used in this set-up. This was also carried out prior to spray
painting the enclosures black, making it difficult to see the fibre in this set-up.
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Figure 6.22: The failure time of the fibres that were produced using the 20 µm velocity
profile under a range of stresses.

6.5 Discussion

All fibres produced in this chapter followed the cleaning procedure that was applied to the prepa-
ration of fused silica stock material set out for aLIGO production [97]. This means that at no
point does the final produced fibre get exposed to additional heat or coating of any material. All
polishing that was carried out was only applied to the initial stock material. The location of the
minimum diameter point between the two velocity profiles was at opposite ends of the fibre.
This could be down to the nature of the velocity profile. In the case of the 10 µm velocity profile,
the characteristic fibre shape would be a taper from the start of the pull all the way to the end
of the pull, as shown in figure 6.15. For the 20 µm velocity profile, the fibre shape would have
a large bump and dip at the start of the pull, before levelling out for the rest of the pull. This
resulted in the minimum diameter region being located in this dip region, as shown previously
in figure 6.19. As well as a taper, all the fibres from the 10 µm velocity profile also show an
oscillation in the fibre diameter along the length of the fibre. This could be seen again in figure
6.15. This oscillation would appear to ring down in amplitude over the length of the fibre. The
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cause of this could be from the stability of the viscous molten fused silica during the start of the
pull. As the pulling stage was accelerating at a rate of 20000 mms−2, a huge amount of force
was pulling on the fuse silica stock. As the actual weight of the moving stage was not mentioned
in the data sheet [169], an estimated weight of 5 kg would give a force of 100 N being applied to
the fused silica stock at the start of the pull. This could potentially cause a shockwave to travel
through the stock material. This ring down over the length of the fibre was not shown in figure
6.19, but the same mechanism could be the cause of the large bump and dip artefact previously
described. The different velocities used in the velocity profiles, as well as the temperature of
the stock material, could also have an impact on the characteristics of the ring down. Changes
in the heat distribution around the fused silica could also be a potential source of the oscillation
feature of the fibre. There was no aLIGO style laser stabilisation system [92] on the ultra-thin
fibre pulling machine, meaning that there could be slight variations in the laser power. This
could contribute to the range of minimum diameters that was achieved as it was possible stock
material could have been vapoured off at various points during the production process, such as
during polishing and during the two stage pulls.

The results shown in figure 6.18 display some notable features. All fibres but one had a
minimum diameter under 10 µm in diameter, and all fibres were below the diameters that were
investigated by Proctor, but of the same order of magnitude. Non-polished fibres had the biggest
differential of failure times compared to Proctor that had been tested so far, sitting 2-3 orders of
magnitude lower. There was a noticeable increase in performance when the initial stock material
was polished, of up to just under 2 orders of magnitude, but this still resulted in fibres sitting in
the low end of the spread obtained by Proctor. Fibre 23 that was previously mentioned to being
the thickest fibre in this batch as (14.6±0.6) µm was the only fibre that does not follow the trend
and sits in the middle of the range of Proctor values.

This suggests that there was potentially a change in material properties for fibres that have a
minimum diameter under 10 µm. It has been suggested that there was a surface layer of fused
silica with a thickness of 1 µm [178] [179]. It was therefore possible that this indicates the
mechanical structure of the surface layer, which in the case for the thinnest fibre tested makes
up a significant 35% of the diameter at its thinnest point, has influence on the failure time of the
fibre. The polishing procedure is designed such that it removes surface impurities which could
potentially be more critical when testing fibres with a diameter under 10 µm. Polishing does not
seem to affect the performance of 10-20 µm diameter fibres, suggesting that the first stage pull
down effectively acts as a polishing procedure by producing new stock material. This is an area
that could be investigated in the future by trying to locate the diameter at which the transition
occurs where the surface layer becomes a more dominant feature in terms of performance and
the need for a greater attention to detail when polishing. Further discussions on the breaking
stress of these fibres will be presented in the following chapter.

Due to the configuration of the fibre profiler, it was not possible to image the fibre as it tapers
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sharply down from the 500 µm stock to the thin middle diameter. It was therefore not possible to
determine whether of not there were additional artefacts such as alignment that could potentially
have a greater effect at sub-10 µm diameters than at thicker aLIGO diameters. Upgrading the
profiler with the suggested improvements from chapter 5.3 could help identify if this could be a
contributing factor to the performance of these fibres. The previous upgrade suggestion of a laser
stabilisation system on the ultra-thin fibre pulling machine could also increase the probability of
producing sub-10 µm diameter fibres with double polishing. Double polishing was not possible
with the current set-up as too much material would be vapourised away during the process. A
new second stage velocity profile could be developed to compensate for this by running at lower
velocities, but this was not pursued due to time constraints. This could be a future area to be
investigated.

As there was a small level of improvement in the failure time of the polished fibres pre-
viously discussed in figure 6.18, it was interesting to see that polished fibres did not show an
improvement in performance in figure 6.22. The polishing process was carried out as previ-
ously described with the laser duty cycle set to 80%. Both single and double polished fibres lay
among the spread of values obtained for the non-polished fibres. This was in contradiction to
previous findings that polished fibres will show an improvement in strength [62] [92] [110]. It
was possible that the first stage pull down where new stock material was created from the initial
molten region was sufficient enough to replicate the polishing process. Future tests could look
into producing these fibres through more than two stage pulls to see if there was any effect. For
example, a three stage pull could consist of 2 mm stock material initially pulled down to 1 mm,
followed by the 1 mm region being pulled down to 500 µm. The final stage pull to produce the
fibre could then be produced from the 500 µm stock. Creating new stock material at each pull
down could potentially remove further imperfections that could be within the centre of the stock.
Fibres pulled with this velocity profile showed a level of performance that was consistent to that
obtained by Proctor, with values obtained filling out a wide range of the spread that was ob-
tained. These fibres also included fibres that sat within the diameter range that was investigated
by Proctor (20-40 µm), as well as going below this down to (14.4±0.6) µm. It was encouraging
that fibres produced in this investigation that sat in comparable diameter ranges showed perfor-
mance similar to Proctor when produced with different techniques. This consistency leads to
more support suggesting that there was a mechanism that needs to be further investigated that
was related to the fibres that were produced with the 10 µm velocity profile to fully understand
the difference in performance for fibres with minimum diameters under 10 µm.

A comparison of all of the above data to the values that were found previously in chapter 4
is shown in figure 6.23. From figure 6.23, it can be seen that all the fibres that were not polished
and produced from the 10 µm velocity profile fall significantly off the trend of the rest of the
results by up to 2 order of magnitudes. The vast majority of data points lie either below, or in the
lower region of the spread that was obtained by Proctor [131]. The vast majority of fibres that
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were produced with the 20 µm velocity profile show a clear increase in performance compared
to the LHO results that were obtained. The same brand fused silica, Heraeus, was used, though
the LHO fibres had a 3 mm starting diameter instead of 2 mm in this chapter [132]. Proctor’s
results were obtained with 1 mm fused silica stock from a brand previously known as Thermal
Syndicate Limited, namely their product called Vitreosil [180]. It is unknown what iteration of
Vitreosil was used during Proctor’s tests.

Further investigations could be carried out in vacuum to see how the vacuum performance
would compare with that obtained in previously described research [131]. Research carried out
at Glasgow has already seen an increase in performance in vacuum compared to in air, following
the trend seen by Proctor [92].

Figure 6.23: All stress fatigue data obtained from chapters 4 and 6 compared to the data
obtained by Proctor [131]. Shown here were the values obtained from the investigation
carried out at LHO, and the fibres that were produced using the 10 µm and 20 µm velocity
profiles (VP) under various polish/non-polish conditions.

6.6 Conclusion

The aim of the investigation carried out in this chapter was to expand on the previous research
that was carried out on stress fatigue from chapter 4 at LHO and research that was carried out in
parallel [92]. The fibres tested in chapter 4 had a diameter range between (183.5±2.4) µm and
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(208.3±2.7) µm. These fibres, as well as the investigation that was carried out in parallel [92],
that were tested had a failure time that was lower than expected when comparing to data obtained
by Proctor [131]. It was therefore determined that the next step would be to carry out a similar
investigation, but with fibres that lay in the range investigated by Proctor of 20-40 µm. As well
as this, fibre diameters below this range was aimed to be investigated as well.

The ultra-thin fibre pulling machine that was previously developed [93] [99] was used to
produce a range of fibres to suit the above range conditions. An experimental set-up was then
fabricated based on the concept of the previously mentioned research where a mass was attached
to a fused silica fibre and suspended. The total hang time was recorded when the mass falls at
the point of fibre failure to trigger a timer switch.

Fibres were produced in two main batches through the use of two velocity profiles. The first
velocity profile, named "10 µm velocity profile", was created with the aim to produce fibres that
had a diameter that was approximately 10 µm in diameter. This velocity profile produced a range
between (5.7±0.2) µm and (14.6±0.6) µm. These fibres were separated into two sub-batches of
polished and non-polished fibres. The second velocity profile, named "20 µm velocity profile"
was created with the aim to produce fibres that had a diameter that was approximately 20 µm in
diameter. The range of fibres that were produced with this velocity profile had a diameter range
between (14.4±0.6) µm and (24.8±1.0) µm. These fibres were separated into three sub-batches
of non-polished, single polished and double polished fibres.

Of all the fibres tested, the non-polished fibres from the 10 µm velocity profile had the biggest
differential to Proctor’s data, performing significantly lower than expected. A difference of up
to two orders of magnitude was observed for these fibres compared to Proctor’s data. Polishing
the stock material prior to fibre production did increase the performance of these fibres, but only
enough to lay in the bottom range of the spread when comparing the data. Interestingly, there
was no improvement in performance observed for single and double polishing for fibres that
were produced using the 20 µm velocity profile. All fibres from this batch performed best of all
the fibres that had been tested, including from chapter 4, covering a wide range of the spread that
was obtained by Proctor. This consistency between the two sets of data show that there must be
a mechanism causing the fibres from the 10 µm velocity profile batch to underperform.

Further investigation was decided to be carried out looking to see if this difference between
the two main batches of fibres continues for other characteristics associated with the fused silica.
The previous chapter described an upgrade that was carried out to the ultra-thin fibre strength
tester. Previous research has shown that the Young’s modulus could potentially change for
fibres under 20 µm in diameter [93]. It is possible this characteristic could be linked to the
results obtained in this chapter. With the development of the thin fibre profiler and strength
tester described in chapter 4, it was decided that this research should be revisited to decrease the
associated uncertainty with the results and to see if there is any significant change in results with
the improved characterisation apparatus.



Chapter 7

Measuring Young’s modulus of sub-20 µm
fibres

The results discussed in this chapter were journal peer-reviewed for publication in Classical and
Quantum Gravity, volume 35, number 165004, 2018 [99].

7.1 Motivation

Previous research carried out by the author [93], and previously described in chapter 5.1, had
shown that the Young’s modulus of fibres could reach up to (106.0±6.8) GPa. This was an
increase in the accepted Young’s modulus value of fused silica which is 72 GPa [181]. This
research was however carried out prior to the development of the thin fibre profiler and upgrades
to the thin fibre strength tester from chapter 5. This meant the Young’s modulus uncertainties
were as high as 16%. The upgrades described in chapter 5 should lower these uncertainties and
also provide more consistency with how some measurements, such as profiling and extension of
the fibre, were measured.

The Young’s modulus is the stress to strain ratio where the stress can be calculated by:

σ =
F

Axs
(7.1)

where σ is the stress on the fibre at a segment with cross sectional area, Axs, when a force, F , is
exerted onto it. The strain of the fibre can be calculated by:

ε =
∆L
L

(7.2)

where ε is the strain on the fibre with length, L, when it is stretched by length, ∆L. The Young’s
modulus is therefore:

Y =
FL

Axs∆L
(7.3)
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where Y is the Young’s modulus.
The goal of the investigation in this chapter was to compare results previously obtained

through the old experimental set-up with those obtained through the newly developed set-up to
minimise the uncertainty values obtained. Due to the difference in failure time of the fibres that
were under 10 µm in diameter that were tested in the previous chapter, it was decided that it
would be interesting to investigate if fibres under 10 µm in diameter would show a difference in
performance to those greater than 10 µm in diameter.

7.2 Experimental set-up

To investigate the Young’s modulus of fibres, an experimental set-up that could record the stress
applied to the fibre, as well as the stretch of the fibre was needed. All fibres produced in this
chapter were produced using the ultra-thin fibre pulling machine, as used in chapter 6 [99]. The
upgrades to the strength tester previously described in chapter 5 were carried out specifically
with this investigation in mind. Previous research into the Young’s modulus of sub-100 µm
fibres were carried out prior to the installation of these upgrades [93] [164]. These investigations
would measure the stretch of the fibre through measuring the position change of the motorised
stage using a digital caliper. The use of digital calipers to measure the extension resulted in an
additional human uncertainty that would have to be considered when it came to the position of
the calipers. This would be in combination to the±0.3 mm uncertainty that is already associated
with the calipers. The calipers would have to be positioned in exactly the same place and held
perfectly parallel to the drive rods on the strength to measure the extension of the fibre accurately.
The addition of a magnetic encoder to the set-up ensures that the position of the motorised stage
would be read from exactly the same position throughout the entire pulling process. Position
readings could also be taken continuously through each fibre test instead of periodically, which
was the case in the previous research [93].

The addition of reading the load cell digital readout through the LabVIEW program helps
to locate the exact point of the motorised stage where the fibre is no longer slack, and begins
to take up the tension. This is necessary, as the fibre is installed into the clamps while slack to
minimise any accidental stretching within the clamps prior to the LabVIEW program starting.
Previously, the digital readout was read from the front of the control unit. The program would
then have to be stopped to measure the position of the stage. As both the encoder and the load
cell were read into the new LabVIEW program, the load cell data could be plotted against the
position data to locate the point at which the fibre begins to stretch.
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Figure 7.1: The experimental set-up used in this Young’s modulus investigation with key
components of the strength tester labelled.

Figure 7.1 shows the experimental set-up. A fibre cartridge housing a fused silica fibre was
installed into the bottom clamp. This clamp was the end that was attached to the motorised
stage. Two grub screws were tightened once the bottom cartridge chuck is in its holder to hold
the chuck in place. The top plate, which has the top clamp attached to the load cell, is then
moved down the drive rods and the holder slid onto the top chuck. The grub screws for the
top plate was then tightened to ensure that the plate does not move during the tests. The grub
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screws for the top clamp was then tightened to ensure the chuck does not move during the tests.
The forces that were being applied to the fibre were small enough so that slippage of the top
plate or any of the chucks is not a factor that needs to be considered. This was determined by
applying forces to these components by hand where no visible slippage was observed to any of
these components. The load cell was calibrated through the same method that was described
previously in chapter 5.3.

7.3 Fibre production

This investigation consisted of producing fibres in four separate batches. Though four batches
were produced, only two velocity profiles were used. The first three batches were produced
using the velocity profile that was developed by the author for use in the Sagnac speedmeter
(SSM) investigation that was being carried out at Glasgow at the time to suspend 1 g masses.
The decision to use these velocity profiles was to firstly minimise the time needed to develop
additional velocity profiles at the time, but also to strength-test fibres that would be used for these
experiments to ensure that they were sufficiently strong to cover the safety factor that would be
required. This safety factor is similar to that of the aLIGO suspensions in that the fibres must
be able to take at least 3 times the load it would take installed into the suspension [62] [56].
The difference between the fibres that were produced during the first three batches were the feed
velocity values.

Table 7.1 shows the first stage that was used for both velocity profiles in this chapter. This
produces a slightly longer fibre, equivalent to the first stage pull down that was shown previously
in chapter 6.4.1. The first stage was pulled with a corresponding feed velocity of 0.8 mms−1.
The second stage of the velocity profile is shown in table 7.2. The corresponding feed velocity
values for batches 1, 2 and 3 were 0.05 mms−1, 0.7 mms−1 and 1 mms−1, respectively. The
fourth batch had a slightly modified second stage. This second stage is shown in table 7.3.

The first stage pull required the CO2 laser to be set to the maximum value of 95%. The sec-
ond stage pulls used for all four batches were pulled with the laser controller set to approximately
25-35%. No fibres in this chapter were laser polished which is consistent to the production of
fibres for SSM suspensions. All fused silica stock was wiped down with methanol once installed
into the cartridge clamps.
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Table 7.1: The first stage velocity pulling profile for both velocity profiles used in this
investigation. This first stage is used with a corresponding feed velocity of 0.8 mms−1.

Velocity (mms−1) Acceleration (mms−2) Time (ms)
0.1 20000 140
1 20000 200
2 20000 200
3 20000 200
4 20000 200
7 20000 1000

11 20000 3000
0 0 0

Table 7.2: The second stage velocity pulling profile used to produce fibres for batches 1-3.
This second stage is used with a corresponding feed velocity of 0.05 mms−1, 0.7 mms−1

and 1 mms−1 for batches 1, 2 and 3, respectively.

Velocity (mms−1) Acceleration (mms−2) Time (ms)
0.1 20000 140
10 20000 100
20 20000 100
30 20000 100

200 20000 448
10 20000 100
5 20000 200
0 0 0

Table 7.3: The second stage velocity pulling profile used to produce batch 4 fibres. This
second stage is used with a corresponding feed velocity of 0.5 mms−1.

Velocity (mms−1) Acceleration (mms−2) Time (ms)
0.1 20000 140
10 20000 100
20 20000 100
50 20000 200

190 20000 385
10 20000 100
5 20000 200
0 0 0

All fibres in this investigation were profiled using the ultra-thin fibre profiler that was previ-
ously described in chapter 5, with a magnification of ×28 [99]. The fibre profiler was calibrated
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using a (25.00±1.25) µm nickel-chromium wire [161]. Figure 7.2 shows profiles of selected fi-
bres from batch 1 [99]. All fibres were profiled in the same manner as those profiled previously
in chapter 6. This means that the magnification is set too high to profile the thicker stock and
taper down regions in order to be able to profile the thinner middle section of the fibre. Table
7.4 shows the range of minimum diameter values that were obtained in this investigation for all
4 fibre batches.

Figure 7.2: Selected profiles from batch 1 [99]. Note that "fibre 2" does not appear on this
graph as it is part of batch 2.

Table 7.4: The range of minimum diameter values that were obtained for all 4 batches of
fibres that were produced.

Batch Range of minimum diameter values(µm)
1 7.6 ± 0.2→ 9.3 ± 0.2
2 12.2 ± 0.2→ 15.6 ± 0.2
3 10.9 ± 0.2→14.7 ± 0.2
4 16.2 ± 0.3→ 18.8 ± 0.5

It can be seen from figure 7.2 that the bump artefact that has been discussed in several of the
previous chapters still appears on the left side of the graph. This was consistent with all other
fibres in that it appears at the start of the pulling process.

7.4 Results

In total, 28 fibres were tested to failure in this investigation. This consisted of 13 fibres produced
from batch 1, and 5 fibres for each batch between batches 2-4. Figure 7.3 shows an example of
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the data that was obtained through the thin fibre strength tester LabVIEW program. The slack
removal period, which can also be seen in the inset of figure 7.3, can be seen at the start of the
run. The length of the slack removal period depends on the installation of the fibre cartridge into
the clamps and the position of the motorised stage prior to the test starting.

Figure 7.3: Graph of the load applied to the fused silica fibre against the extension of the
fibre for fibre 17. This fibre was chosen to show the clear slack removal period that could
occur prior to the fibre going under stress. Inset: Zoom in view of the slack removal period.

The breaking stress range for all fibres tested is shown in table 7.5. As there was no high
speed camera available to use during this investigation, the assumption that the fibre breaks at
the minimum diameter was made. Resulting Young’s modulus values obtained for all fibres
mentioned above are shown in figure 7.4 [99]. The process of how these values were obtained
will be discussed in the following section.

Table 7.5: The range of breaking stress values for the 4 batches of tested fibres.

Batch Range of breaking Stress(GPa)
1 2.0 ± 0.1→ 3.0 ± 0.1
2 3.3 ± 0.1→ 4.0 ± 0.1
3 3.4 ± 0.1→ 4.1 ± 0.1
4 3.7 ± 0.2→ 4.1 ± 0.2
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Figure 7.4: Young’s modulus values obtained for all fibres from batches 1-4 [99].

7.5 Discussion

7.5.1 Young’s modulus values and uncertainty calculations

The breaking stress was calculated by:

σbreak =
Fmax

Amin
(7.4)

where σbreak is the maximum breaking stress applied to the fibre, Fmax is the force that was
applied to the fibre to cause failure, and Amin is the minimum cross section area of the fibre.
This assumes that the fibre breaks at the minimum diameter on the fibre. Locating the exact
breaking point of the fibre was not possible due to no high speed camera available at the time
this investigation was carried out. The uncertainty associated with the strain, δε , described
previously in equation 7.2, could be calculated by:

δε

ε
=

√(
δ∆L
∆L

)2
+
(

δL
L

)2
. (7.5)

The uncertainty associated with the Young’s modulus, δY , could then be defined by:

δY
Y

=

√(
δ σ

σ

)2
+
(

δε

ε

)2
. (7.6)
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This however only applies should the diameter of the fibre be uniform all along the length of
the middle thin section. As figure 7.2 shows, the fibres produced were not perfectly uniform
along the whole length of the fibre. The Young’s modulus needs to therefore be calculated by
modelling the fibre as individual segments of constant diameter. As the fibre profiler takes data at
set intervals, this gives an accurate way to calculate the cross section area of the fibre at separate
segments. This means the extension of each segment at the breaking force could be calculated
by:

∆Ln =
LnF
YAn

(7.7)

where ∆Ln is the extension of the nth segment, Ln is the length of the nth segment and An is the
cross section area of the nth segment. The theoretical total extension of the fibre could therefore
be calculated via:

∆L =
n

∑
i=1

∆Ln =
n

∑
i=1

LnF
YAn

. (7.8)

To obtain the Young’s modulus from equation 7.8, the theoretically calculated extension of the
fibre was made equal to the experimental extension of the fibre obtained from the LabVIEW
file. This could be achieved by calculating the Young’s modulus so that the theoretical exten-
sion matches the experimental extension. Uncertainty values for the stress were calculated in
the same way as calculated previously in chapter 6.4.2, and the strain value uncertainty calcu-
lated as described in chapter 5.3.2. These uncertainties were then combined to give the overall
uncertainty in the Young’s modulus.

The range of Young’s modulus values, shown previously in figure 7.4, is shown in table 7.6.
There was one fibre from batch one, shown in figure 7.4, that was not included in table 7.6 that
has a Young’s modulus value of (48.0±2.2) GPa. This was due to a sudden dip that occurs at the
very end of the fibre that brings the fibre diameter down to (5.3± 0.2) µm, which can be seen
in figure 7.5. This could have been due to a sudden increase in laser power caused from the
power variation that could occur and was therefore treated as an outlier. There has been research
showing that sudden dips in diameter in the fibre could have a negative effect on the overall
strength of the fibre due to the additional thermal stress in the region [92]. Further investigation
would need to be carried out by testing fibres with this artefact to determine how significant
of an impact this dip artefact could have on the overall strength of the fibres with diameters
similar to that which was tested here. This would require installing a camera monitoring system
to measure the intensity of the laser on the fibre during the pull. Should this value be included
in the average Young’s modulus value of batch 1, it would lower it by approximately 2% from
(63.3±2.7) GPa to (62.2±2.7) GPa.
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Table 7.6: The range of Young’s modulus values for the 4 batches of tested fibres. Note that
1A includes the average value without fibre 12 with a Young’s modulus of 48.0 GPa, and 1B
shows the average value with fibre 12.

Batch Young’s modulus (GPa) Average Young’s modulus, GPa
1A (59.8 ± 2.3)→ (68.6 ± 4.8) (63.3±2.7)
1B (59.8 ± 2.3)→ (68.6 ± 4.8) (62.2±2.7)
2 (70.4 ± 1.8)→ (74.4 ± 2.0) (72.3±2.3)
3 (67.5 ± 1.5)→ (75.1 ± 1.7) (71.8±1.8)
4 (71.4 ± 3.8)→ (78.2 ± 2.7) (75.9±3.0)

Figure 7.5: Zoomed in view of the sudden dip artefact that appeared in fibre 12 of batch 1
that was being treated as an outlier.

It can be seen from table 7.6 that fibres that were tested from batches 2-4 have an average
value that falls around the expected Young’s modulus of fused silica of 72 GPa [181]. Calcu-
lating the weighted average of batches 2-4 gives a value of 72.1±1.3 GPa, again agreeing with
the expected Young’s modulus value. The batch 1 average however falls below this value. It
should be noted that batch 1 was the only batch that had fibres under 10 µm in diameter and had
no fibres larger than 10 µm. It was decided that one extra fibre would be produced and tested
non-destructively. This was carried out by stretching a fibre to a stress of 1 GPa by driving the
motorised stage down, followed by bringing the motorised stage back up to approximately its
starting position. The reason this was approximate was to ensure that the fibre was slack and not
under tension. This could be observed either through the live plot on the LabVIEW front panel,
or by visually observing the fibre moving freely within the enclosure. The distance the fibre
stretched was determined by observing the position of the motorised stage when the fibre takes
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up the tension, as shown previously in figure 7.3. This test was repeated a total of 5 times, with
the resulting Young’s modulus values shown in figure 7.6. The values obtained were consistent
with that obtained previously from batch 1, with an average value of (62.9±2.8) GPa.

Figure 7.6: Non-destructive Young’s modulus results from a fibre that was pulled under the
same conditions as batch 1.

7.5.2 Comparison to other investigations

This investigation was consistent with the findings that were obtained in chapter 6 in that fibres
under 10 µm would not agree with the trend that was set from fibres above 10 µm in diameter.
This suggests that there is an additional mechanism at play, however what exact mechanism
this is will require further extensive research to determine what factor affects the ratio between
the stress and the strain the most. The results shown in chapter 6 showed that polishing the
stock material before production shows an increase in breaking stress for fibres under 10 µm in
diameter of up to approximately 2 orders of magnitude. It is possible that polishing the stock
before production could potentially give different Young’s modulus values, however it was not
possible to pursue this due to time constraints. As mentioned previously, there are suggestions
that there is a 1 µm thick surface layer for fused silica [128] [95]. For fibres under 10 µm in
diameter, this surface layer makes up a significant percentage of the cross sectional area of the
fibre.

Figure 7.7 shows the Young’s modulus values obtained in this investigation, as well as fibres
that were obtained previously when this investigation was carried out with the old experimental
set-up [93]. The largest uncertainty in the Young’s modulus in this investigation was 7%, where
as during the previous research, the maximum uncertainty was up to 16.4%. It is interesting
to see that fibres between 10-16 µm in diameter from this investigation and the previous inves-
tigation do seem to follow a trend when taking the error bars for the MSc investigation into
consideration. It is clear from figure 7.7 that the spread between the two investigations has de-
creased. This will be down to the dedicated ultra-thin fibre profiler and strength tester upgrades
that were described in chapter 5. No fibres exceeded 100 GPa like the one stand alone fibre did
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during the MSc investigation.

Figure 7.7: Data from all four fibre batches that were tested in this investigation compared
to the data that was previously obtained during the MSc investigation [93].

There has been research looking at fibres with diameters between 50-300 nm in diameter
that have been shown to have breaking stress values between 10-25 GPa, resulting in a Young’s
modulus in excess of 100 GPa [182]. This was significantly higher than all fibres that have been
investigated in this chapter. These fibres were produced using a flame brushing technique instead
of a CO2 laser to produce 6 mm long "nanowires". However, a flame polishing technique was
applied to the actual fibre itself. This was not possible to carry out with the CO2 laser as all fibres
were produced according to the aLIGO fibre pulling procedure where nothing, including excess
laser beam exposure, should be applied to the fibre itself to minimise any damage or artefacts
introduced to the fibre structure that could compromise the performance.

Investigations on fibres with diameters between 1-3 µm have also shown breaking stress
values of up to 16 GPa [128] [183], but these fibres were treated through additional heating of the
fibre in vacuum or through the use of chemical reagents to treat the surface of the fibre. Chemical
treatments also show an increase in breaking stresses for fibres of 100 µm in diameter [184].
The goal of these treatments aims at further removing any surface impurities, such as cracks
or surface moisture, as previously discussed research has shown that these could be critical in
terms of longevity of a fibre. Due to these treatments were added in post-production once the
fibre is made, none of these were an option for any of the fibres that were produced in this thesis
and were therefore not carried out. This could be an option that could be explored in the future,
however it will take a significant amount of research.

The lower Young’s modulus value for sub-10 µm fibres that were obtained in this investiga-
tion means that any calculations regarding modelling of suspensions utilising these fibres should
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take into account this change in value from the accepted value of 72 GPa. Failure to do so could
result in differences between simulation and real experimental scenarios. Characteristics such as
the fibres not stretching to their predicted value and affecting the values of the violin and bounce
modes [185] could be a resulting effect which could lead to sub-optimal alignment and noise
performance that differs more than expected from the models used.

7.6 Conclusion

The aim of the investigation carried out in this chapter was to repeat previous measurements of
Young’s modulus of fused silica fibres, but with improved characterisation and testing apparatus
to minimise the uncertainty values. This also allows for the comparison of both data sets to
observe if there were any consistencies or differences between the two. Four batches of fibres
were tested in this investigation, with three of them having minimum diameters greater than
10 µm and one batch with fibres under 10 µm in diameter. It was found that for fibres that had
a minimum diameter above 10 µm, the Young’s modulus value agrees with the accepted value
of 72 GPa [181]. The average value of these three batches were found to be (72.3±2.3) GPa,
(71.8±1.8) GPa and (75.9±3.0) GPa. For the batch that contained fibres with a minimum diam-
eter under 10 µm, there was a noticeable difference between the obtained values and the accepted
value. The average value obtained was (63.3±2.7) GPa and was consistent with non-destructive
tests that were carried out with a value of (62.9±2.8) GPa. There was one fibre in batch 1 that
did have a significantly lower Young’s modulus value of (48.0±2.2) GPa

Comparing this data to the previously obtained results shows an agreement for values where
the fibre minimum diameter was between 10-16 µm in diameter. For fibres under 10 µm in diam-
eter, there was a wider spread in data from the MSc investigation that the fibres from this investi-
gation sit in between. The spread of values from this investigation was a lot tighter with a spread
of (59.8±2.3) GPa→ (68.6±4.8) GPa, compared to (54.0±7.5) GPa→ (87.0±14.3) GPa. Over-
all, the goal of improving the uncertainties of the Young’s modulus values were achieved by
decreasing the uncertainties from the previous maximum of 16% down to a maximum of 7%.
Further extensive investigations need to be carried out in the future to fully understand the rea-
sons why fibres under 10 µm in diameter behave differently. This could involve investigating
possible alignment defects that were not detectable through single-camera profiling, as well as
investigating other properties such as shear modulus which has a greater dependency on the
radius of the fibres. Shear modulus is proportional to r4, unlike Young’s modulus which is pro-
portional to r2. An investigation into the shear modulus could be carried out by creating a torsion
pendulum on a fibre and measuring the period. Comparisons of obtained shear modulus values
at different diameters could potentially lead to a greater understanding of the surface layer of
fused silica and its influence on fibres under 10 µm in diameter.



Chapter 8

Conclusion

This thesis presented various areas of research related to the use of fused silica fibres for gravita-
tional wave research. A procedure was documented to standardise the alignment process of the
aLIGO fibre pulling machine. Previously, this alignment process was subjective to the user as
there were no documented set of instructions, which increased the probability of manufacturing
defects to be introduced into the fibre production. This procedure also highlighted common is-
sues that were related to the misalignment of the pulling machine and how these misalignments
could be corrected. This work will be written up in the future as a LIGO DCC document that
can be referred to and updated for all future fibre production work on the fibre pulling machines.

One of the manufacturing defects that could be introduced into the fibres were angular mis-
alignments in the thermoelastic nulling region. This became a prominent issue during the com-
missioning break between O2 and O3 where there were several instances of suspension fibres
failing where these misalignments were observed. Though it was not concluded that these were
the cause of the failures, an investigation was carried out to determine how great of an ef-
fect these angular misalignments have on the ultimate strength of the fibres. This investigation
confirmed that these angular misalignments could be introduced into the fibre due to beam dis-
tribution misalignment around the stock material during the pulling process. These angular
misalignments however did not show any adverse effect on the ultimate strength of the fibre.
These tests were carried out through destructive strength testing to observe whether or not the
fibres were breaking at the angular misalignment region. It was determined that the fibres were
not breaking at the region where the angle occurred, but in the thin section of the fibre. Fur-
ther research looking at long term stress tests rather than destructive short term tests would
determine conclusively whether these angular misalignments are a safety factor that needs to be
re-evaluated in the suspension fibre selection process.

During this PhD, the opportunity to work at LHO arose for a four-month period on a long
term attachment (LTA). During this LTA, an investigation into the stress fatigue of fused silica
fibres was carried out in the fibre production lab at LHO. The aim of this investigation was to
investigate the hang time of fused silica fibres under high stress compared to what aLIGO sus-
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pension fibres were currently subjected to. This investigation involved looking at a stress range
between 3-5 GPa, as this range would yield fibres that would break in a time scale of less than
a day to maximise the number of data points that could be obtained during this LTA. All tests
at LHO were carried out in air in parallel to tests that were being carried out in Glasgow at
a similar stress range, but both in air and in vacuum. The results of these investigations were
then compared to an investigation by Proctor in the 1960s to see if there were any differences
observed. It was found that data from both LHO and Glasgow did not align with the data that
Proctor had obtained in his investigation, but did align with each other, showing that investiga-
tions carried out at LHO or Glasgow can be considered to be consistent with each other. Due
to the data not aligning with Proctor’s results, a follow-on investigation looking at fibres with
comparable diameters were investigated.

To do this, a dedicated fibre profiler had to be developed first that was designed specifically
to profile fibres within this diameter range. This included being able to profile fibres that were
under 10 µm in diameter. A new fibre profiler was developed based on the design of the current
aLIGO fibre profiler, but with a variable magnification system installed. This allows for a wide
range of fibres to be profiled on this machine. The thin fibre strength tester was also upgraded
to add a magnetic encoder to measure the distance travelled by the motorised stage. This was
relevant to a future investigation that was carried out in this thesis.

An investigation into the stress fatigue of sub-40 µm diameter fibres was then carried out to
compare results with the previous investigation with aLIGO fibres. It was found that fibres that
were above 10 µm in diameter showed strong performances similar to that of Proctor, regardless
of the initial stock material being polished, double polished, or no polish. Fibres under 10 µm
however did not show this strong performance and were weaker performing. Polishing the initial
stock material did show an increase in suspension time, however these were still weaker than the
>10 µm diameter fibres. To see if this behaviour was consistent with other fibre characteristics,
an investigation into the Young’s modulus of the ultra-thin fibres was investigated.

A previous investigation into the Young’s modulus of ultra-thin fibres was carried out by
the author, however there were several factors in the equipment used at the time that lead to
large uncertainties being associated with the Young’s modulus values obtained. With the new
upgraded strength tester and dedicated fibre profiler, this investigation was revisited to see if re-
sults obtained were consistent or different to that previously found. The uncertainties associated
with the Young’s modulus were successfully decreased from 16%, down to 7%. For fibres that
had a minimum diameter greater than 10 µm, the Young’s modulus value tended to agree with
the accepted value of 72 GPa. The average value of three batches that were tested with diameters
greater than 10 µm were found to be (72.3± 2.3) GPa, (71.8± 1.8) GPa and (75.9± 3.0) GPa.
This gives a weighted average of (72.7±1.3) GPa. For the batch that had fibres under 10 µm in
diameter, the average Young’s modulus value was (63.3±2.7) GPa and a weighted average of
(62.8±1.9) GPa. Non-destructive tests on these fibres showed an average value of (62.9±2.8).
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This is consistent with the stress fatigue tests where fibres under 10 µm showed different charac-
teristics. Further extensive investigations need to be carried out in the future to fully understand
the reasonings that fibres under 10 µm in diameter behave differently. This could involve inves-
tigating possible alignment defects that were not detectable through single-camera profiling, as
well as investigating other properties such as shear modulus which has a greater dependency on
the radius of the fibres.



Appendix A

Fused silica fibre angle python script

This appendix references the Python 3 code, written by the author, that was used to produce the
results obtained in chapter 3. It is set such that all the conditions, values and outputs are shown
for fibre 20 that was investigated as an example of the script working.

The python script has been uploaded to the LIGO Document Control Centre, with DCC
number LIGO-T2000329.
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Appendix B

Ultra-thin fibre profiler LabVIEW block
diagram

This appendix contains the LabVIEW block diagram for the ultra-thin fibre profiler. This code
is a modified version of the aLIGO fibre profiler LabVIEW code that had previously been de-
veloped [122] [159].

The python script has been uploaded to the LIGO Document Control Centre, with DCC
number LIGO-T2000330.
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