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“Das muitas coisas [From the many things]
Do meu tempo de criança [of my childhood time]
Guardo vivo na lembrança [I still vividly remember]
O aconchego de meu lar [the warmth of my house]
No fim da tarde [after the sunset]
Quando tudo se aquietava [and it went quiet outside]
A famı́lia se ajuntava [my family all gathered]
Lá no alpendre a conversar [talking on the porch]
Meus pais não tinham [my parents didn’t have]
Nem escola, nem dinheiro [money or education]
Todo dia, o ano inteiro [everyday, the whole year]
Trabalhavam sem parar [working, nonstop!]
Faltava tudo [material things lacked]
Mas a gente nem ligava [But we didn’t care]
O importante não faltava [the most important thing we had]
Seu sorriso, seu olhar [their smile and peaceful ’eyes’]
[. . .] [. . .]
Correu o tempo [Time has passed]
Hoje eu vejo a maravilha [now I see the wonders]
De se ter uma famı́lia [of having a family]
Quando tantos não a tem [. . .] ” [when so many don’t...]

— Pe. Zezinho, Utopia (Granny’s favourite song)

To my family, for all the unconditional love and support they have always given

me. When times were hard, they were there to hold my hand and help me to pull

through. I would not be who I am or (and) where I am without them!
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Abstract

Anisotropic media have been the object of study in the fields of optics and

photonics for decades. More recently, we have seen the emergence of a new class

of anisotropic materials, the so-called hyperbolic media. These new structures

rapidly gained attention for displaying several optical effects such as all-angle

negative refraction with low loss.

This thesis presents a theoretical investigation of anisotropic magnetic crystals

working as hyperbolic media. These type of structures are not often associated

with hyperbolic behaviour. The aim is to show that magnetic crystals are not

only an alternative way to obtain hyperbolic dispersion but that they can also

be controlled by externally applied fields. The general theory is applied to

manganese fluoride (MnF2), a reasonably well studied antiferromagnet, in a

configuration in which spins cant in response to applied magnetic fields. The

work can be divided into three main strands.

The first is to treat the surface reflection and illustrate how light beams can be

laterally shifted from the position predicted by geometrical optics i.e., the so

called Goos-Hänchen effect. In antiferromagnets these shifts can be controlled

with an external magnetic field. Moreover, the possibility of nonreciprocal

displacements is investigated, for both oblique and normal incidence, due to an

inherent nonreciprocity of the polariton phase with respect to the propagation

direction. Reciprocal displacements are also studied in the absence of an external

field.

The second strand of the work is a study of how all-angle negative refraction can

occur in a uniaxial antiferromagnet close to the magnon resonance frequency. This

behavior is based on the fact that, in such cases, the antiferromagnet acts as an

indefinite permeability medium, i.e., not all its permeability tensor components

are of the same sign. If an external magnetic field is applied, the angle of

refraction becomes tunable, and can be made to change sign.

The final part of this work proposes tunable slab lensing in natural magnetic

media using an externally applied magnetic field. Natural hyperbolic magnetic

materials not only display imaging obtained from slab lenses with plane parallel

sides but also allow one to modify the focal length of a slab lens with an externally



applied magnetic field. This is possible because antiferromagnets are gyrotropic

and support magnetic polaritons whose frequencies are sensitive to magnetic

fields. In addition, an investigation of the caustic formation in this type of lenses

is presented for low temperatures, when damping should be small. Slab focusing

is also studied at higher temperatures.
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Photonic technologies are central to our society. For instance, optical fibres

deliver telephone and internet traffic around the globe, while sub-millimetre

wave based devices have been a key factor in recent imaging advances for medical

and scientific applications [1]. The list of practical photonic devices is endless,

however, the principle behind these technologies is one: to control, manipulate

and shape the flow of electromagnetic waves. To achieve such functionalities,

it is therefore necessary to use suitable media, which interacts with light in

extraordinary ways.

One particular way to manipulate light in optical devices is to use refractive

media as the basis for the apparatus. The index of refraction of a medium is a

1
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property which determines the direction in which light is going to propagate

within that material. The refractive index is known to always be positive [2].

However, recent advances in fabrication techniques have enabled the construction

of new optical active materials with physical properties non-existent in nature

with revolutionary optical capabilities, such as a negative index of refraction

[3, 4]. To this new type of media was given the name “metamaterials” since

their characteristics go beyond existent materials [5, 6]. This class of artificial

media displays negative refractive index due to both magnetic permeability µ

and dielectric permittivity ε being negative, a condition which is not possible to

find in nature [7].

The concept of a medium with negative refractive index was first theorized by

Soviet Physicist Victor Veselago in 1967. He predicted that if such a medium

existed it would brake light in the reverse sense to that normally expected from

classical geometric optics [8]. At first glance this theory was thought to be bizarre

and preposterous [9]. However, the realization of metamaterials has enabled

numerous new optical effects and it has opened up many new paths in the field

of optical physics and device engineering [10, 11, 12, 13].

Fabricating structures that exhibit negative refraction, however, presents many

difficulties in terms of structural growth. Aside from the manufacturing diffi-

culties, to have both negative magnetic and electric response presents another

significant challenge, it leads to high absorption at the operating frequencies,

which can significantly impair these devices functionality.

As an alternative approach to metamaterials having simultaneous negative µ

and ε, several different new media have been proposed [14]. Of particular note

are the so-called hyperbolic media, which have rapidly gained attention for all-

angle negative refraction with low losses [15]. In subsequent sections a detailed

description is given on the role of hyperbolic media and its fascinating physical

properties.
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1.1 Hyperbolic media

Hyperbolic media have blossomed in the past decade as a route to obtain exotic

new optical effects without complicated procedures in fabrication or large effects

of absoption [16]. This class of media is characterized by being highly anisotropic

and typically nonmagnetic with µ = 1, but the permittivity tensor is indefinite,

i.e., it has components with opposing signs along the principal axes. They are

said to have hyperbolic dispersion due to the unusual relationship between the

wavevector components resulting from indefinite permittivity [17][3].

1.1.1 Indefinite permittivity and its properties

The propagation of electromagnetic waves through a given medium may not

show the same physical bahaviour in all directions - in other words, the medium

may be anisotropic. A classic example of anisotropic material is birefringent

crystals, which are know for having different refractive indexes for the different

polarisation of the incident light. The electrons bound within the atoms of a

medium are not uniformly distributed, but are restricted in their motion by

the potentials which confine them [14]. In response to incident electromagnetic

fields, they may therefore move a greater or lesser distance, depending upon the

strength of their confinement in the field direction. These can be classified as

anisotropic forces and as a result, the induced polarisation varies not only with

the strength of the incident electromagnetic fields, but also with its direction. The

permittivity – and properties which depend upon it, such as the refractive index

– cannot be characterized by a single scalar value and are usually characterized

by a permittivity tensor [18].

In such media, the constitutive relations connecting the electric displacement D,

electric fields E and the permittivity tensor
↔
ε (ω) can be written as

D = ε0
↔
ε (ω)E (1.1)
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where ε0 is the vacuum permeability and
↔
ε (ω) is given by

↔
ε (ω) =


εxx 0 0

0 εyy 0

0 0 εzz

 , (1.2)

in a Cartesian frame of reference oriented along the so-called principal axes of

the crystal. The three diagonal components are usually positive, and in general

depend on the angular frequency ω; the crystal is then classified as biaxial when

εxx 6= εyy 6= εzz, uniaxial when εxx = εyy 6= εzz, and becomes isotropic when

εxx = εyy = εzz.

Now, consider radiation passing through an interface between vacuum and a

uniaxial nonmagnetic medium whose uniaxis lies along z, normal to the interface.

The in-plane wave-vector component kx is then given by

kx =
ω

c
sin θi, (1.3)

where θi is the angle of incidence. Boundary conditions dictate that this kx value

holds both sides of the interface.

Maxwell’s equations may be applied in the two layers to find the z components

of the wave vector. In vacuum, this gives

k2
z =

ω2

c2 − k2
x (1.4)

In the second layer, however, we need to consider that propagtion of waves may

happen in different ways for different polarisations. As we are considering a

nonmagnetic medium transverse electric (TE) polarised waves are of no interest,

since the magnetic field of light does not couple with elementary excitation in the

material. Therefore, we concentrate on transverse magnetic (TM) polarised waves.

We may characterize their propagation in a uniaxial crystal by the dispersion

relation

k2
x

εzz
+

k2
z

εxx
− ω2

c2 = 0. (1.5)

When set to zero, the equations above correspond to a circle in k-space if the
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Figure 1.1: Isofrequency curve and relative direction of the wave vector k and the
Poynting vector S for (a) isotropic material, (b) material with εxxεzz > 0, and (c) material
with εxxεzz < 0.

medium is isotropic [Fig. 1.1(a)] and an ellipse if the medium is anisotropic

with positive values for εxx and εzz [Fig. 1.1(b)]. However, that is not always the

case. For instance, in a medium with active-phonon resonance polarised along

one direction, i.e. extreme anisotropy, εzz may be negative for a given range of

frequency (taking the phonon polarisation direction to be z). Media with such

an optical signature are termed indefinite from the point of view of algebra [19],

since their permittivity tensor represents an indefinite nondegenerate quadratic

form, and exhibit a number of unconventional properties. One of these properties

is hyperbolic isofrequecy curves as seen in Fig. 1.1(c) – hence the physical

denomination hyperbolic media - which only happens when the permittivity

tensor components possess opposing signs.

1.2 Phenomena

Anomalous reflection and refraction phenomena have been revealed at the inter-

face between air and hyperbolic media, such as negative refraction and focusing

in flat slab as well as lateral displacements on a reflected light beam.

1.2.1 Goos-Hänchen shifts

The Goos–Hänchen effect is an optical phenomenon in which a light beam

undergoes a lateral shift from the position predicted by geometrical optics, when

totally reflected from an interface between two media. Even though the effect was
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named after the scientists Hermann Fritz Gustav Goos and Hilda Hänchen [20],

who demonstrated its existence experimentally, the first theoretical prediction

of lateral displacements at reflection dates back to the 18th century with Isaac

Newton.

Figure 1.2: Schematic diagram of the Goos-Hänchen shift i.e., the lateral displacement,
D, of a bounded beam at an interface. The dashed lines show the boundaries of the
reflected beam as predicted by geometrical optics theory. (a) Positive and (b) negative
displacements.

The concept of lateral displacement has had several interpretations over the years

[21, 22]. However, the basic theory dictates that when a light beam of width g is

totally reflected at an interface between two distinct media, a lateral displacement

D of the beam arises in the plane of the interface where it is reflected. This

displacement is generally classified within two categories: shifts of a positive

order i.e., forward displacement as shown in Fig. 1.2(a), and shifts of a negative

order i.e., backward displacement as seen in Fig. 1.2(b).

The first investigations of this effect have been associated with total internal reflec-

tion [20]. However, most recent studies have shown that lateral displacements can

happen at external reflection of a beam incident from air onto a highly reflective

surface.

The Goos-Hänchen effect is not necessarily associated with hyperbolic behaviour

in the reflecting medium. It is understood that this type of displacement can

happen in any highly reflective surfaces, such as metallic materials. However,

making use of resonances in the second interface can be a simple, but little

studied, way of obtaining Goos–Hänchen shifts on external reflection [23, 24, 25].

In this case, hyperbolic media may be particularly interesting, since resonant

components of the permittivity tensor may lead to high reflection regions close

to those resonance poles. Recent studies have shown that resonant features in the
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dielectric function in hyperbolic multilayers can be a suitable way to obtain lateral

shifts using the nonlocal optical response of the indefinite material [26]. It has

also been shown that Goos–Hänchen shifts may arise from phonon resonances in

uniaxial crystals such as quartz [27]. Similar effects have also been studied in the

reflection from antiferromagnets [28]. In these systems, the effect stems from the

fact that, at terahertz frequencies, the magnetic component of electromagnetic

radiation can interact with the spin precession near magnon-polariton resonances.

The resulting shift may become nonreciprocal in the presence of an suitably

applied external field B0. Up to now, studies of Goos-Hänchen shifts in reflection

from antiferromagnets have considered only the situation where B0 is applied

along the anisotropy axis, perpendicular to the plane of incidence [29, 30].

1.2.2 Negative refraction

Figure 1.3: Directions of wavevectors and Poynting vectors for p-polarisation refraction at
an interface between air and a uniaxial medium with εxx > 0, εzz < 0. (b) Corresponding
instantaneous field profile for a gaussian beam.

Negative refraction of transverse magnetic (TM) polarised waves was probably

the first phenomenon associated to hyperbolic metamaterials to be studied [16].

Negative refraction in hyperbolic media can be explained by considering the

interface between a nonmagnetic hyperbolic medium and vacuum. We assume

that the component of the dielectric tensor perpendicular to the interface plane

is negative and that the other two components are positive, and consider a TM-

polarised plane wave incident on the interface with an in-plane wave vector kx.

We further assume that the electric field and the wave vector lie in the xz plane,

and that the interface lies in the xz plane (Fig. 1.3(a)). In this geometry the angle
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of refraction, interpreted in terms of the direction of the time averaged power

flow 〈S〉 in the anisotropic medium, is given by [31]

tan θr =
Sx2

Sz2
=

Re(kx/εzz)

Re(kz2/εxx)
(1.6)

where εxx and εzz are the principal components of the dielectric function in the

anisotropic media.

In the situation for which εxx > 0 and εzz < 0 there should be propagation into

the sample. In addition, we see from Eq. 1.6 that θr is negative for θi positive,

i.e. negative refraction should occur, as shown in Fig 1.3(a). Thus, although the

wavevector is refracted positively, power flow is refracted negatively. The physical

interpretation of this in terms of a finite gaussian beam is shown in Fig. 1.3(b).

The wavevector direction is normal to the wavefronts, but the ray direction is

determined by the power flow direction.

An alternative way of interpreting negative refraction in this type of system is

shown in Fig. 1.1(c). Since the direction of the Poynting vector is identical to the

direction of the group velocity vector vg = ∇kω(k). This means that S should

be normal to an equifrequency surface in k space. Negative refraction of the

Poynting vector direction is clearly seen, and it is obvious that such behavior will

occur for a both positive and negative incident angles (positive and negative kx ).

1.2.3 Slab lenses and focusing

Figure 1.4: (a) Image formation by a conventional convex lens, (b) image formation from
a negative-index flat lens and (c) image formation from a slab lens made of a hyperbolic
medium. Directions of wavevector is show in blue arrows and the Poynting vector is
shown in red arrows.

Particular attention has been paid to all-angle negative refraction as it has enabled
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focusing of radiation and perfect imaging in a flat slab made of metamaterials.

Focusing of light, however, has been investigated for centuries, specially in curved

glass lenses such as the one shown in Fig 1.4(a). In this system the rays are guided

onto a focus by the curvature of the lens which creats a real but imperfect inverted

image since not all beams meet at the same point.

In metamaterials with µ = ε = −1, which gives n = −1 (where n is the index of

refraction), all beams are focused at the same point in the center of the lens and

outside of it. Another important feature of this type of lens is that evanescent

waves, which usually decay exponentially inside a medium which has n > 0,

are enhanced inside a metamaterial. These evanescent waves carry the details

of an object, which means the image formed is perfect with minute details and

unlimited sharpness.

Negative refraction in hyperbolic media raises the possibility of realizing a lens

analogues to a superlens made from negative-index metamaterials [32]. A crucial

difference is that the group velocity and power flow are always antiparallel in

negative index metamaterials, whereas in hyperbolic media the group velocity

and power flow directions depend on the propagation direction relative to the

principal axis. The ray-tracing diagram in Fig. 1.4(c) shows that at small angles

of incidence, a lens made of hyperbolic media focuses rays in a similar manner

to a negative-index slab, whereas rays with larger angles of incidence remain

defocused.

Another important point to make is that in hyperbolic media, the evanescent

waves are not amplified. However a real image is formed on the other side of the

slab, in the same way as the lenses proposed by Veselago.

1.3 Realisation of hyperbolic media

Clearly, the special nature of indefinite permittivity systems leads to a number of

exotic effects. Here arises a natural question: how can we obtain such a response

from physical materials? There are several ways to obtain indefinite permittivity

in physical media. However, they all fit into two general categories: artificial

media and natural anisotropic crystals.
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1.3.1 Hyperbolic metamaterials

A common method of obtaining indefinite permittivity is to combine two types of

media. One of the most simple ways is to produce a system of alternating metal

and dielectric layers [33, 34, 35, 36, 15, 37]. In this case, each layer can be described

by homogeneous and isotropic permittivity and permeability parameters and

when the layers are sufficiently thin, the whole system can be treated as a single

anisotropic medium with dielectric permittivity tensor components given by

εxx = εyy =
ε1 + ηε2

1 + η
(1.7)

and

1
εzz

=
1

1 + η

 1
ε1

+
η

ε2

 , (1.8)

where ε1 and ε2 are corresponding permittivities for each medium and η is the

ratio of the two layer widths given by η = d2/d1.

When η is small, the parameters are dominated by the first medium, while for

large η, they resemble those of the second medium. By choosing a suitable value

of η the condition εxx > 0 and εzz < 0 can be satisfied.

Other examples of artificial structures include aligned parallel nanowire structures

[38]. These are also metal based since in metals, the dielectric function is negative

below the plasma frequency.

1.3.2 Anisotropic single crystals

Even though hyperbolic media have been classified as a class of metamaterials

[16], indefinite permittivity has attracted interest since much earlier [39]. However,

the study of natural crystals as hyperbolic media is fairly recent [40]. Examples

of such materials can easily be found in the infrared and THz spectral bands. For

instance, in the far infrared wavelengths, this behaviour can be found in crystal

quartz. In quartz a strong phonon-polariton resonance leads to a large anisotropy

in the dielectric tensor comparable to that of the artificially grown superlattices.

This has been shown at room temperature and the condition εxx > 0 and εzz < 0
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is satisfied in the region between 510 and 540 cm−1 [41, 42].

Similar behaviour has been suggested in triglycine sulphate (TGS) at 5K [31]. In

this medium, however, due to low temperature the imaginary part of ε becomes

significantly small, which extremely minimizes absorption. Whereas the phonon

anisotropy of TGS exists in the low-THz domain, for other materials, it may occur

in a different spectral band. Recent experiments using sapphire (α-Al2O3) have

yielded results pointing to all-angle negative refraction based on this property

[43] at several different frequency ranges from 400 to 910 cm−1. Other materials

considered include Hg2I2 [44] and magnesium fluoride (MgF2) [45]. The main

effect in sapphire occurs around the same frequency as that of quartz, but it has

a somewhat larger absorption. Hg2I2, whose phonon resonance frequencies are

considerably lower, also has a larger absorption than quartz, but, in compensation,

the phonon response is considerably more direction dependent. It is important to

point out here that all these materials have been reported at room temperature.

1.4 Objectives of the work

Hyperbolic dispersion relations due to indefinite permittivity has been demon-

strated in several natural nonmagnetic crystals. Phenomena based on hyperbolic

dispersion in media with indefinite permeability, i.e., principal components of

the permeability tensor have opposing signs, have received rather less attention.

However, we should expect the magnon-polariton response in certain natural

magnetic media to lead to opposing sign components in the permeability ten-

sor, in a manner analogues to phonon-polariton response leads to indefinite

permittivity in anisotropic crystals.

The main objective of this thesis is to demonstrate the possibility of novel optical

effects in natural magnetic hyperbolic crystals which can be tunable when using

externally applied magnetic fields. We are interested in three main topics: (1)

lateral shifts on the reflection, (2) tunable negative refraction and (3) focusing by

a natural hyperbolic magnetic crystal.
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1.5 Structure of this Thesis

We start by discussing some basic concepts in Chapter 2 which are essential to

the understanding of waves propagating through magnetic crystals. We also

present the theoretical demonstration of how antiferromagnets act as indefinite

permeability media, i.e., not all its permeability tensor components are of the

same sign. In addition, we show the effects of an externally applied magnetic

field B0 on the permeability tensor and its physical implications.

In Chapter 3, we show how light beams reflected from the surface of an antiferro-

magnet can be laterally shifted from the position predicted by geometrical optics.

In antiferromagnets this shifts can be controlled with an external magnetic field.

Moreover, we show that nonreciprocal displacements are possible due to inherent

nonreciprocity of the polariton phase with respect to the propagation direction.

In the absence of an external field, reciprocal displacements occur.

We show how all-angle negative refraction can occur in a uniaxial antiferromagnet

close to the magnon-polariton resonance frequency in Chapter 4. If an external

magnetic field is applied, the angle of refraction becomes tunable, and can be

made to change sign. Optical effects such as negative refraction have been vastly

studied in terms of imaging obtained from slab lenses with plane parallel sides.

In chapter 5, we discuss how antiferromagnetic crystals not only display similar

effects but also allow one to modify the focal length of a slab lens with an

externally applied magnetic field. In addition, a rich caustic structure emerges at

low temperatures, when damping should be small. These materials also produce

slab focusing at higher temperatures, although the caustic structure disappears.

A look into future ideas is given in 6, where we present a first glimpse on how

the focusing in slab lenses with parallel sides made of a hyperbolic magnetic

media can be highly affected by changes in the crystal’s easy axis direction. The

final remarks are presented in Chapter 7.
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When an electromagnetic wave propagates through a condensed medium, its

properties are modified by the coupling of the electric and magnetic fields of the

wave to the elementary excitations of the medium [46]. The coupled excitation

is frequently referred to as a polariton and consists of a photon coupled to

a plasmon, optical phonon, magnon, or an exciton which polarises the crystal.

Polaritons are understood to be either surface polaritons (the electromagnetic field

is localized at the surface of the medium) or bulk polaritons (the electromagnetic

field propagates through the medium) [47].

The behaviour of these bulk (and also surface) electromagnetic modes of physical

media – including dielectric crystals, ferrites, antiferromagnets and artificial

dielectric – may be described in terms of dyadic permittivity
↔
ε (ω) and (or)

permeability
↔
µ (ω) [48]. For instance, in non-magnetic crystals the electric field

13
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of light will couple with infrared active phonons, which can be described by the

frequency dependence of the relevant dielectric function
↔
ε (ω). On the other

hand, in magnetic crystals spin waves will be excited by the magnetic field of light

and that can be expressed using the frequency dependent magnetic permeability
↔
µ (ω) [46].

Recently, problems of radiation from stationary sources travelling trough media

displaying anisotropy have gained in importance due to the materials’ capability

of shape or guide the waves in unexpected ways. Special attention has been

paid to indefinite media, i.e. anisotropic media in which not all of the principal

components of the
↔
ε (ω) tensors have the same sign [3, 17] as addressed in

Chapter 1.

Up to now, studies of indefinite media have mostly concentrated on nonmag-

netic crystals where it is assumed that there is no contribution of the magnetic

permeability µ. However, in magnetic crystals,
↔
µ (ω) will in general be a tensor

quantity, which, may be indefinite close to magnetic resonance frequency [49].

It is the purpose of this Chapter to investigate indefinite permeability (i.e. a

permeability tensor containing components of opposing signs), which can be

achieved in a similar manner to the indefinite permittivity found in certain

anisotropic crystals. We use the example case of antiferromagnetic crystals whose

resonance, associated with magnetic excitations and known as magnons, may

lead to negative permeability components. It is also in the scope of this Chapter

to present the consequences of waves propagating in a antiferromagnetic crystal

possessing indefinite permeability.

2.1 Antiferromagnetic Crystals

The term “antiferromagnetic” is used to describe materials in which an antiparal-

lel arrangement of the magnetic moments of atoms or molecules, usually related

to the spins of electrons, is favoured [50]. Such behaviour was first suggested by

Néel,1 who originally investigated a simple material whose spins are aligned in

1Louis Néel (1904-200) was a French physicist who was awarded a Nobel Prize in 1970 for his
pioneering studies of the magnetic properties of solids. In 1930 he demonstrated a new form of
magnetic behaviour, called antiferromagnetism, as opposed to ferromagnetism.
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a regular pattern with neighbouring spins pointing in opposite directions. The

spins have equal magnetic moments so that the net magnetisation is zero such as

the schematic shown in Fig 2.1(b). Such spin ordering is temperature dependent,

vanishing at and above a certain temperature, which has been named the Néel

temperature TN [51].

The antiferromagnetic class of materials include systems with two or more

sublattices as well as those with triangular, spiral or canted spin arrangements.

We consider here the two-sublattice uniaxial antiferromagnet MnF2. The magnetic

structure of MnF2, which has been determined by several experimental methods,

including neutron diffraction studies [52], is shown in Fig. 2.1(a). This crystal

belongs to an important group of antiferromagnetic salts (MnF2, FeF2 and CoF2),

which have been widely studied [46]. In this type-system the unit cell has

tetragonal symetry formed by the magnetic ion sites and they may be conveniently

pictured as a body-centered cube compressed along the c axis. The spins at the

corner sites point along +x, and those at the body centred sites point along −x

[46, 53]. The magnetic unit cell has the same dimensions as the chemical unit cell.

Figure 2.1: Chemical arrangement of a simple antiferromagnet such as in manganese
flouride (MnF2) crystals with body-centred tetragonal structure: (a) perspective view and
(b) side view.

Such systems, as shown in Fig. 2.1(b), are usually known as “pure uniaxial

antiferromagnets”. In a crystal arrangement the magnetic ions are arranged on

two identical interpenetrating sublattices [54]. If there is no contribution from an

external magnetic field, the spins on each sublattice order ferromagnetically, i.e.

all spins on a given sublattice are parallel, but not aligned with other sublattices

[46, 53].

The spins in a simple antiferromagnets are aligned by exchange interactions
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so that they spontaneously order. As a result, the magnetic moment (MS) is

zero.[55, 56].

2.2 Antiferromagnetic resonance

When an electromagnetic wave strikes the surface of an antiferromagnet, the

magnetic field of the radiation (H) interacts with the spins in the material,

inducing precessional motion [57]. The spin magnetic moments µ associated with

the spins it is subjected to a torque L when placed in a uniform field such as H,

and is given by

L = −∂W
∂θ

= µH sin β, (2.1)

where β is the angle between µ and H, and energy W = −µ ·H. In vectors,

remembering that the cross product anticomutes, this can be rewritten as

L = µ×H (2.2)

The dynamic response to a time varying magnetic field in antiferromagnets is

depicted in in Fig. 2.4 which shows spins precessing in opposite directions.

At low temperatures the dissipation of precession, and consequent resonance

linewidths, decreases strongly by suppressing scattering from lattice fluctuations.

We consider a temperature low enough so that the magnetisation in each sublattice

is saturated, which we call Ms. The magnetic field of light induces antiparallel

magnetic moments and these may the be computed by means of the torque

equation so that Eq. (2.1) now becomes Eqs. (2.3) and (2.4) for each of the

sublattices.
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= −γ(µ0M2 ×H(2)

eff) (2.4)

Figure 2.2: Equilibrium spin orientation for uniaxial antiferromagnet, with antiparallel
precession in the absence of an externally applied field.

where γ is the gyromagnetic ratio, Ms =| M1 |=| M2 |= (Σµ) are the magnetisa-

tion associated with each sublattice and Heff is the effective fields acting on the

sublattice given by

H(i)
eff = HiA + HiE + H (2.5)

where HiA measures the anisotropy force, HiE is the exchange force exerted on

each ion by the ions forming the other sublattice and i is the given sublattice.

There are the internal effective fields constraining the sublattice magnetisations

to the preferred axis (+x and −x). As the precission is identical, but in opposing

directions H1A =| H2A |=| HA |, H1E =| H2E |=| HE | and β1 = β2.

We then assume the transverse components of the magnetisation to vary time as

H given by

H = ẑhzeiωt (2.6)

polarised along z, so its disturbance in the spin system is in the yz plane. We can,

therefore, linearize the torque equations of motion by replacing M1 and M2 by

±Ms, HE = BE/µ0 and HA = BA/µ0. The torque Equations (2.3) and (2.4) then
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become

− iω
γ

M1y = M1zBA + (M1z + M2z)BE − µ0MShz (2.7a)

− iω
γ

M1z = −M1yBA − (M1y + M2y)BE (2.7b)

− iω
γ

M2y = −M2zBA − (M1z + M2z)BE + µ0MShz (2.7c)

− iω
γ

M2z = M2yBA + (M1y + M2y)BE. (2.7d)

Substitution of the circular polarised magnetisation

My = M1y + M2y (2.8a)

Mz = M1z + M2z (2.8b)

into Eq. (2.7) yields

ω0 = ±γ(2BABE + B2
A)

1/2. (2.9)

This is the frequency at which the amplitude of precession peaks and it depends

on the interactions responsible for the antiferromagnetic order and the magnetic

anisotropy of the crystal [58, 59]. The sign ± can be chosen according to the

precession modes, there are thus two possible solutions, opposite in the sense of

precession as seen in Fig. 2.4. This resonance determines frequency poles in the

magnetic susceptibility
↔
χ (ω), which is expressed as

Mz =
↔
χ (ω)hz (2.10)

It is convenient to employ the permeability rather than the susceptibility for
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further calculations. Since
↔
µ (ω) = 1+

↔
χ (ω) we can turn Eq.(2.8) into

µyy = µzz = 1 +
Mz

hz
= 1 +

2µ0γ2MSBA

ω2
0 −ω2

. (2.11)

As the sublattices are perfectly aligned anti-parallel to one another and denoting

these orientations as +x and −x, the precession - and corresponding dynamic

response - is in the transverse z and y directions. This means that µxx is unity at

all frequencies.

2.2.1 The indefinite permeability tensor

We have seen how to obtain the permeability components from
↔
µ (ω) = 1+

↔
χ

(ω). If we now define 1 the unity tensor, when there is no externally applied

field B0, we can write all components as a permeability tensor of the form

↔
µ (ω) =


µxx 0 0

0 µyy 0

0 0 µzz

 , (2.12)

where µxx = 1 and µyy = µzz, which are both given by Eq. (2.11). We now turn

to the example material MnF2 which is a well characterized antiferromagnet that

can be readily prepared and studied experimentally. Using the parameters given

in table 2.1 we can calculate the values of µzz, which is shown in Fig. 2.3.

Figure 2.3: µzz for an MnF2 crystal calculated using the values given in table 2.1.
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A strong magnon-polariton resonance occurs at ω/ω0 = 1.00 and appears in the

transverse components being negative from ω/ω0 = 1.00 (ω0)to approximately

1.007 (ωs).

If we restrict our analysis to the frequency regime ω0 ≤ ω ≤ ωs we can sum up

the signs of the tensor components, shown in Eq. (2.12), as follows

↔
µ (ω) =


+ 0 0

0 − 0

0 0 −

 , (2.13)

In this frequency regime, the antiferromagnetic crystal can be classified as never

cuttoff [19]. Never cuttoff media have been classified, by Smith and Schurig, as

possessing µxx/µzz < 0.

This behaviour can be taken as the magnetic analogue of a highly anisotropic

non-magnetic media where the effective permittivity tensor
↔
ε (ω), has compo-

nents of different signs, e.g., εord > 0 and εext < 0 close to the polariton resonance.

Table 2.1: Physical parameters for antiferromagnets

Antiferromagnetic crystal parameters

MnF2 GdAlO3 FeF2

Néel Temperature TN(K) 67 3.87 79

Exchange field BE (T) 55 1.88 53.3

Anisotropy Field BA (T) 0.787 0.365 19.7

Sublattice Magnetisation MS (A/m) 6.0×10
5

6.24×10
5

5.6×10
5

2.3 Field Driven Spin Canting

In the simple case discussed in Section 2.2, the antiferromagnetic resonance of

the two spin wave modes are degenerate with frequency ω0, i.e. the resonance in

the two sublattices are exactly the same but in opposing directions, making this

a symmetric system. If an external magnetic field is present, it brakes the time

reversal symmetry [60]. The influence of a magnetic field has been investigated

in many aspects, a particular one, is when a static field B0 lies along the easy axis
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direction. In this case, the sublattices are no longer equivalent so that there are

two resonance frequencies instead of one. Such geometry has been vastly studied

in terms of nonreciprocal effects associated with reflection and surface waves,

since propagation is forbidden around the resonance frequency.

Here, we are interested in a geometry as such that a static field B0 is applied

perpendicular to the spins alignment direction and along y. In order to analyse

such behaviour we need to derive the form of the dynamic permeability for the

two-sublattice antiferromagnet in similar manner as that employed in Section 2.2.

We proceed by examining the classical equations of motion for the magnetisation

of each sublattice given by Eqs. (2.3) and (2.4). However, H(i)
eff has to be modified

in order to accommodate B0 and it is now given by

H(i)
eff =

1
µ0

(B0 + BiA + BiE) + H (2.14)

As depicted in Fig. 2.4, we also need to consider that the magnetisations M1 and

M2 are given in terms of the angle α, which can be calculated by

B0(1− sin α)− BE sin(2α)− 1
2

BA sin(2α) = 0 (2.15a)

or

B0(1 + sin α)− BE sin(2α) +
1
2

BA sin(2α) = 0 (2.15b)

which yields

b
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(2.16)
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Figure 2.4: Disturbed spin orientation for uniaxial antiferromagnet by an externally
applied field B0 inducing spin canting of the antiparallel precession magnetisations.

The angle α is a direct representation of the canting of the sublattice magnetisa-

tions in order to align to the magnetic field direction. The direct effect of spin

canting is precessional components along all coordinate axes and the net mag-

netisation is no longer zero. Given the angle α, the derivation of the normalized

sublattice magnetisation differ from those show in Eq. 2.8 and are now given by

− iω
γ

M1x = cos α[BE(M2y −M1y) + BAM1y − γh1y], (2.17a)

− iω
γ

M1y = B0M1y + cos α[BE(M1y −M2y) + γh1y], (2.17b)

− iω
γ

M1z = −B0M1x + cos α[BE(M2x −M1x + M1z −M2z)

+BA(M1z −M1x) + (h1z − h1x)]

(2.17c)

and

− iω
γ

M1x = cos α[BE(M1y −M2y) + BAM2y − γh1y], (2.17d)

− iω
γ

M2y = B0M2y + cos α[BE(M2y −M1y) + γh1y], (2.17e)

− iω
γ

M2z = −B0M2x + cos α[BE(−M2x −M1x −M1z + M2z)

+BA(M2z −M2x) + (h1x − h1z)]

(2.17f)

The combinations of these formulas yields a quadratic equation for ω2, and thus

we have two distinct resonance frequencies. This means that not all components

of the susceptibility, and hence permeability, are resonance at the same frequency.

These resonance frequencies are given in terms of ω0 and the angle α, assuming
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the form

ω2
‖ = ω2

0 cos2 α (2.18)

and

ω2
⊥ = ω2

0 cos2 α + 2BEB0 sin α, (2.19)

which also depends on the strength of the applied field B0.

Therefore, it is a matter of algebra to construct the new permeability components

using Eq. (2.10). Then we find

µxx = 1 +
2µ0γ2MSB0 sin α

ω2
⊥ −ω2

, (2.20)

µyy = 1 +
2µ0γ2MSBE cos2 α

ω2
‖ −ω2

, (2.21)

µzz = 1 +
2µ0γ2MS(B0 sin α + BA cos 2α)

ω2
⊥ −ω2

, (2.22)

while

µxz = −µxz = −i
2µ0γ2MSω sin α

ω2
⊥ −ω2

. (2.23)

2.3.1 External Field and the Permeability Tensor

Distinct from non-magnetic crystals, the indefinite behaviour in magnetic media

can be controlled with a magnetic field, which affects the magnon-polariton

resonance frequency. If a magnetic field B0 is applied perpendicular to the zero

field sublattice directions (here taken as y), the sublattice magnetisations will cant

in order to align to the magnetic field direction as discussed in Section 2.2.

As the spin canting induces precessional motion along all directions the perme-

ability tensor
↔
µ (ω) has to be modified as to include the off-diagonal elements
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µxz and µzx. It now takes the form

↔
µ (ω) =


µxx 0 µxz

0 µyy 0

−µxz 0 µzz

 , (2.24)

The main effect of B0 is to shift the resonance ω0 to higher frequencies. Therefore

the resonance and its features, such as µxx > 0 and µzz < 0, are also tuned to

different frequencies [49]. Fig. 2.5(a) shows the effect of a magnetic field on µzz.

The values of Re(µzz), Re(µxx) and Im(µxz) are compared in Fig 2.5, with and

without an applied field. The resonance frequency is now shifted to higher

frequencies depending on the magnitude of the external field.

Figure 2.5: (a) Re(µzz), (b) Re(µxx) and (c) Im(µxz). Solid curve: (B0 = 0); dashed curve
(B0 = 1.5 T.)

For a nonzero B0, all plots show resonances at ω⊥, but the resonances in µxx and

µxz are much weaker than that in µzz since the canting angle is small (B0 = 1 T

corresponds to a canting angle of α = 0.54
0). Note that we show Im(µxz) rather

than Re(µxz) because in this geometry the real part consists of a weak peak at

ω⊥ and it is the imaginary component that shows up the characteristic resonant.

2.4 Magnetic polaritons

The dynamic response of antiferromagnets to optical waves is determined by

competition between components of the permeability tensor. Having now dis-

cussed the nature of resonances and general structure of the tensor, we now turn
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to the electromagnetic problem.

2.4.1 Dispersion Relation

Properties of propagating electromagnetic waves in a medium begin with

Maxwell’s equations. In the material, Maxwell’s equations without sources

or currents hold. Thus:

∇ · ~D = 0, (2.25a)

∇× ~E = −∂~B
∂t

, (2.25b)

∇ · ~B = 0, (2.25c)

∇× ~H =
∂~D
∂t

(2.25d)

Considering that the medium responds to the incident field in a linear manner,

we have the constructive relations

~D = ε0
↔
ε (ω)~E, (2.26)

and

~B = µ0
↔
µ (ω)~H, (2.27)

where the permeability and permittivity inside the medium are given by
↔
ε (ω)

and
↔
µ (ω).

One of the exciting aspects of indefinite permeability media is the propagation of

waves around the magnon-polariton resonance. In order to illustrate this, we start

by considering electromagnetic waves propagating from vacuum onto a uniaxial

antiferromagnet in the geometry shown in Fig. 2.6. The antiferromagnetic crystal

lies in the half-space z ≥ 0, and its principal axes lie along the Cartesian axes x,

y, and z. xz is the plane of incidence and z is normal to the slab surface.
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Figure 2.6: Geometry considered in this work: The sublattice magnetisation and
anisotropy fields are parallel to the surface and directed along +x and −x axes. The
inset shows the spin anti-parallel arrangement in an antiferromagnetic slab. The incident
radiation is considered to be transverse electric (TE) polarised.

We assume radiation of wave vector k propagating in the incidence plane xz.

Thus, to derive the form of the dispersion relation we need to decompose k. If

the angle of incidence is represented as θ1, the in-plane wave vector component

kx is the same across all layers and is given by

kx =
ω

c
sin θ1 (2.28)

The z component of the wave vector, however, assumes distinct forms through

the different layers. Maxwell’s equations may be employed in the two media to

find the z component of the wave vector. For the first (vacuum) layer lying in the

z ≤ 0 half-space, one has the usual wave equation for ~E(~x, t):

∇2 +
ω2

c2

 ~E(~x, t) = 0. (2.29)

Considering a TE propagating electromagnetic wave we have:

~E(x̂, t) = ŷE<eikxxe−ikz1ze−iωt. (2.30)

Replacing ~E(x̂, t) in the wave equation shown in Eq. 2.29, we then find

k2
x + k2

z1 =
ω2

c2 . (2.31)
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In the second (antiferromagnet) layer, it is necessary to rewrite the constructive

relations show in Eq. 2.26 and 2.27. We consider the general case when an

external field is non-zero so that the permeability has to be replaced by Eq. 2.24.

The bahaviour of propagating waves in the material also depends on the plane of

polarisation of the incident waves.

First consider the modes in which the magnetic field lies transverse (TM) to the

incidence plane (electric field along y axis). In this case the propagating magnetic

field is given by

~H(~x, t) = ŷHeikxxeikz2ze−iωt (2.32)

and the corresponding ~D field is [from Eq. 2.25d]

~D(~x, t) =
−î

i
ω

∂H(x, y)
∂z

+ k̂
i
ω

∂H(x, y)
∂x

 e−iωt. (2.33)

Using Eqs. (2.26)–(2.27) and Eqs. (2.32)–(2.33) in Eq. (2.25b) we obtain the

following equation:

 1
ε0µ0

(
∂2

∂z2 +
∂2

∂x2

)
+ µyyεω2

 E(x, y) = 0 (2.34)

Using Eqs. 2.34 and 2.32, and considering c = (µ0ε0)
−1/2, we obtain the disper-

sion relation for TM modes :

k2
x + k2

z =
ω2

c2 εµyy (2.35)

Thus, for each value of the wave vector, two frequencies are allowed. In Fig. 2.7,

we present a plot of the TM polariton dispersion curve described by equation 2.39.

As one can see from a glance at the figure, the dispersion relation differs from

a constant, this happen due to the contribution of the µyy permeability tensor

component which is resonant.

We see in Fig. 2.7 two regions where bulk polaritons may exist, and the gap

between these regions is the evanescent region where polaritons are forbidden to

propagate. This region is the frequency gap between ω0 and ωs which is where

µyy is negative and ωs is the frequency at which µyy vanishes.
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Figure 2.7: Polariton dispersion relation around frequencies where the electromagnetic
field of TM polarised radiation interacts with the spins of MnF2 in the absence of an
externally applied field. ω0 is the resonance frequency and ωs is the frequency where µzz
vanishes. The shaded regions represent propagation inside the material and evanescent
waves, without propagation, is seen elsewhere.

This behaviour is the same as the one shown for a single phonon-polariton

resonance. The evanescent region appears in the limit kx → ∞ since kx � ε‖µyy,

kz2 becomes wholly imaginary when there is no damping.

Now we turn to the modes in which the electric field lies transverse (TE) to the

incidence plane (along the y axis). In this case the propagating ~E field is given by

~E(~x, t) = ŷEeikxxeikz2ze−iωt (2.36)

and the corresponding ~B field is [from Eq. 2.25d]

~B(~x, t) =
î

ic
ω

∂E(x, y)
∂z

− k̂
ic
ω

∂E(x, y)
∂x

 e−iωt. (2.37)

We assume that E is a funcion of x and z but not y. This is reasonable since

we only considered propagation in the z direction with no dependence in y.
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As in this plane of polarisation the magnetic fields interacts with all resonant

components of the permeability given by Eq. 2.24 the dispersion relation is more

complicated. It can, however, be and can be found using Maxwell’s equations,

previously written in Eqs. (2.26)–(2.27), combined with the propagating fields in

the material given by Eqs. (2.36)–(2.37) in a similar manner as the one employed

by Camley and Mills [61]. Thus, we obtain the following relation:

 1
µxxµzz + µ2

xz

(
µzz

∂2

∂z2 + µxx
∂2

∂x2

)
+

ω2

c2 ε

 E(x, y) = 0 (2.38)

Using Eqs. 2.38 and 2.32 we obtain

k2
z2µzz + µxxk2

x =
ω2

c2 ε(µxxµzz − µ2
xz) (2.39)

Figure 2.8: Polariton dispersion relation around frequencies where the electromagnetic
field of TE-polarised radiation interacts with the spins of MnF2 in the absence of an
externally applied field. ω0 is the resonance frequency and ωs is the frequency where µzz
vanishes. The shaded regions represent propagation inside the material and evanescent
waves, without propagation, is seen elsewhere.

Here, in a geometry which allows the spins to cant there are two bulk continuum
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regions, shown as shaded in Fig. 2.8. These regions are characterized by kz2

wholly real, which means radiation can propagate through the crystal. Bulk

polaritons are known to be reciprocal in kx (ω(+kx) = ω(−kx)), i.e., they prop-

agate with the same frequency in both directions +kx or −kx. Differently from

the classic Voigt geometry (magnetic field parallel to the easy axis) studied by

Camley and Mills [61], in our case propagation is possible for all frequencies

when kx = 0.

The antiferromagnetic resonance (ω0) can be seen below the transition and the

frequency where the permeability vanishes (ωs) is located at the transition which

means the region in between ω0 and ωs is where µzz is negative.

Figure 2.9: Polariton dispersion relation around frequencies where the electromagnetic
field of s-polarised radiation interacts with the spins of MnF2 in the presence of an
externally applied field B0 = 1.5 T. ω⊥ is the resonance frequency and ωs is the frequency
where µzz vanishes. The shaded regions represent propagation inside the material and
evanescent waves, without propagation, is seen elsewhere.

Fig. 2.8 shows that the application of an external field does not radically alter

the shape of the bulk bands. However, the resonance frequency ωr is now at

higher frequencies which makes the transition between the two bulk bands also
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go to higher frequencies. This is in contrast to MnF2 in a different geometry,

where the external field B0 lies parallel to the spin alignment direction [61], which

shows a radical alteration in the dispersion curves when an external field B0

is applied. In the classic Voigt geometry, there are three bulk bands separated

by two nonpropagating regions in which kz2 is wholly imaginary and there is

no propagation. This corresponds to an split in the magnetic resonance in that

geometry due to nondegeneracy of spin precession. In the geometry we are

interested in here, however, there is a small nonpropagating gap in between

the bulk bands for kx = 0, which only happens in the presence of an external

magnetic field due to the contribution of the extra non-diagonal components µxz

and µzx.

2.5 Damping Effects

Up to now, we only explored the properties of antiferromagnets as non-dissipative

media. This has been appropriate for enumerating the properties of these excita-

tion as true eigenmodes of the magnetic system and has simplified the analysis

of the bulk polaritons and propagation by allowing kz to be either wholly real or

wholly imaginary.

In reality, however, there are a number of important physical processes which need

to be taken into consideration, such as scattering events. These are mechanisms

of energy transfer out of one spin wave mode into other spin wave mode and

ultimately other excitations in the crystal lattice. Such phenomena may generate

relaxation of the precessional motion of the spins and in other to consider this we

introduce a phenomenological Bloch relaxation time τ. τ is directly proportional

to ω0 and it can be used to determine the damping parameter Γ

Γ =
1
τ

, (2.40)

which is been vastly used when fitting experimental spectra. The damping

parameter Γ can dramatically decrease the magnitude of the magnon-polariton

resonance. This type of effect can specially be seen in real systems as dissipation

of energy is commonly seen inside real crystals. It is, thus, essential to include a
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damping parameter Γ in the permeability tensor components by means of the

replacement ω → ω + iΓ. Γ is used in all further calculations for either low or

high temperatures and its values are given in Appendix C.

2.5.1 Damping temperature dependence

At temperatures below TN, the magnetic moment of the spins has anti-parallel

alignment. The lower the temperature, the more perfect this alignment will

be. However as temperature increases not only the alignment may be affected

but also interactions of energy exchange among the spins can happen more

easily. As a consequence the damping parameter Γ is extremely dependent

on the temperature. As the spin precession and alignment may be affected by

these temperature changes, the frequency of resonance ω0 can be shifted as the

temperature varies, and its position has been reported to be inversely proportional

to the temperature [55].

In Fig. 2.10 we show the effect of increasing temperature, and hence Γ, on the

permeability tensor for MnF2. As seen from Fig. 2.3, when Γ = 0, the branches

of the µzz go to infinity as the frequency approaches ω0 and its value is never

imaginary.

Figure 2.10: Effect of temperature induced damping on the real and imaginary parts of
µzz around the magnon-polariton frequency in MnF2 for (a) 0.06TN and (b) 0.42TN .

When the damping parameter is included (Γ 6= 0), however, it leads to complex

permeability components. The real part of the permeability governs electromag-

netic wave propagation in the material and the imaginary part determines the
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absorption of electromagnetic energy by the material. For the case show in Fig.

2.10(a), for 0.06TN the t the imaginary part of µzz is extremely small over almost

the entire range, suggesting that, transmission across that range of frequencies

should be extremely efficient.

When the temperature is risen to 0.42TN , not only the imaginary part widens up,

becoming comparable to the real part of µzz, but also the peak on the real part

becomes much weaker.

In both cases MnF2 still works as an indefinite medium. However, if the tem-

perature rises considerably, closer to TN, this behaviour may disappear since the

resonance may never cross into negative values.





Chapter 3
Spin canting induced Goos-Hänchen shifts

3.1 Reflection and Goos-Hänchen shifts . . . . . . . . . . . . . . . . . . 36

3.2 Zero field Goos-Hänchen shifts . . . . . . . . . . . . . . . . . . . . . 38

3.3 Tunable shifts with B0 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Oblique incidence . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Normal incidence . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

There has been interest in the reflection from magnetic crystals such as antiferro-

magnets, because the reflection can be non-reciprocal, i.e., reversing the direction

of the incident waves or externally applied field leads to a different reflection

coefficient [60, 62]. Nonreciprocal reflection has been vastly studied theoretically

[62, 60, 63, 53, 64, 65] and experimentally [66, 67, 68, 69] in the antiferromagnet

classic Voigt geometry, which is when the plane of incidence is perpendicular to

the magnetic field and the field is parallel to spin orientation (easy axis). In such

geometry, nonreciprocity happens when a magnetic field is externally applied as

the field induces non-degeneracy of the spins precession.

Nonreciprocity in magnetic crystal can be of particular interest when investigating

optical effects such as lateral shifts on the externally reflected beam, the so called

Goos-Hänchen shift [30]. In the case of the Goos-Hänchen shift associated with

reflection from antiferromagnets, the effect stems from the fact that, at terahertz

frequencies, the magnetic component of electromagnetic radiation can interact

with the spin precession near magnon-polariton resonances. The resulting shift

35
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Figure 3.1: Schematic representation of an oblique incident beam with an angle θ1
being displaced on the reflection by a distance D at the interface between vacuum and
an antiferromagnet, where Si and Sr are the incident and reflected Poynting vector
respectively.

may become nonreciprocal in the presence of an suitably applied external field B0.

Up to now, studies of Goos-Hänchen shifts in reflection from antiferromagnets

have considered only the situation where B0 is applied along the anisotropy axis,

perpendicular to the plane of incidence [30, 28, 29].

In this work we are interested in a geometry in which the easy axis is parallel to

the plane of incidence and the external field is applied perpendicular to the both

of them, which makes the spins to cant towards the field direction (as discussed

in Chapter 2). In this geometry, nonrecyprocity happens because the precession

may not happen in-phase when the spins are canted.

3.1 Reflection and Goos-Hänchen shifts

We are interested in the Goos-Hänchen shift for reflection at the boundary

between vacuum and a semi-infinite antiferromagnetic crystal as aligned in the

coordinate system depicted in Fig. 3.1. The material occupies the z > 0 half space

with the easy axis along x. The plane of incidence is xz, z being normal to the

interface and the principal axes of the crystal tensor lie along the Cartesian axes

x, y and z. An applied magnetic field lies perpendicular to both the easy axis and

the plane of incidence (along y).
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We consider the incident radiation to be plane polarised. In the case of a TE

polarised beam (E field normal to the plane of incidence), the radiation interacts

with µxx, µzz and µxz – µxx and µzz being of opposite signs close to the magnon-

polariton resonance (frequency regime ωr ≤ ω ≤ ωs).

If the angle of incidence is θ1, the in-plane wavevector component kx of a plane

wave will be given by

kx =
ω

c
sin θ. (3.1)

We can conveniently consider a finite beam as a sum of plane waves with varying

kx. For each kx value, we have a complex reflection coefficient r which may be

represented in the form

r(kx) = ρ(kx)eiφ(kx), (3.2)

where ρ(kx) is the reflection amplitude and φ(kx) is the associated phase change

on reflection. Since this phase change may vary with kx, interference between the

reflected plane waves can lead to a change in the profile of the reflected beam.

In fact, using this angular spectrum approach, McGuirk and Carniglia [22] have

shown that, to a first approximation, this profile change simply amounts to a

lateral shift D of the reflected beam, and that this shift is given by

D = − dφ

dkx

∣∣∣∣
kx=kx0

. (3.3)

which is also the result obtained by Artmann [21], who considered interference

between two plane waves. The result was originally obtained for the case of total

reflection (i.e. ρ = 1), but is valid even when this condition does not apply [70].

A simple way of evaluating D makes use of the fact that both ρ and φ are, by

definition, real. If the logarithm of 3.2 is taken, it is straightforward to resolve the

equation into real and imaginary parts, and 3.3 becomes [71]

D = −Im
(

1
r

dr
dkx

)
. (3.4)

In order to understand how the above shift will occur in practice, we look at the
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explicit expressions for the complex reflection coefficient r. Combining Maxwell’s

equations we can find the components of ~E in terms of
↔
µ (ω), which is given by

Eq. 2.5, and the components of wave vector~k.From there we can calculate the

reflectance which is defined as

r =
Er

Ei
(3.5)

3.2 Zero field Goos-Hänchen shifts

As a first approach, in order to investigate lateral shifts on the reflection from

an antiferromagnetic crystal, we take B0 = 0. The permeability tensor is then

diagonal and r reduces to

r =
(µxxkz1 − kz2)

(µxxkz1 + kz2)
, (3.6)

with kz1 and kz1 represent the z components of the wavevectors in the two media

and are given by

k2
z1 =

ω2

c2 − k2
x. (3.7)

k2
z2 = εµxx

ω2

c2 −
µxx

µzz
k2

x. (3.8)

here ε represents the dielectric constant of the antiferromagnet.

Replacing the equations above for r into 3.3 it gives

D = −Im

[
2µxxkx(µxxk2

1z − µzzk2
2z)

µzzk1zk2z(µ2
xxk2

1z − k2
2z)

]
. (3.9)

In order to get a more intuitive picture of the implications of these equations, it is

useful to consider the beam behaviour in the absence of absorption, in which case

all the dielectric tensor components will be real and k2z will always be wholly

real or wholly imaginary as discussed in Chapter 2. When k2z is real, we can see

from Eq. (3.6) that r will always be real. The phase is thus either zero or π/2, so

that D is always zero (see (3.4)). Thus we see that an imaginary k2z, leading a
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“reststrahl” region, i.e., total reflection, is necessary to obtain a lateral shift. When

TE polarised waves shine an antiferromagnetic surface a sign combination of µxx,

µzz and the incident angle θ need to be taken into consideration when determining

whether k2z is real or imaginary. These conditions have been discussed before

and are summarized by the dispersion relation shown in Fig. 2.7, in which the

unshaded regions correspond to imaginary k2z (total reflection). In the shaded

regions there is transmission within the crystal.

Since, in the absence of absorption, we are only interested in the totally reflecting

regions where k2z is imaginary, in this region Eq. 3.9 turns into:

D =
2µ2

xxkx(1/µxx − 1)
k1zk2z(µ2

xxk2
1z + k2

2z)
. (3.10)

In the presence of absorption, the tensor components will, in general, be complex,

as will k2z. There will thus not be a strict division between propagating and

reflecting regions.

We now apply our theory to reflection of TM-polarised radiation obliquely inci-

dent at a vacuum/MnF2 interface. MnF2 is a well characterized antiferromagnet

that can be readily prepared and studied experimentally. In Fig. 3.2(a) we present

the calculated plane wave reflectance R = rr∗ spectra, obtained using Eq. (3.6),

for incident angles of ±60◦. Results with and without damping Γ are shown.

In each case, there is no difference between the θ1 = +60◦ and the θ1 = −60◦

reflectivity, i.e. the reflectivity is reciprocal R(θ1) = R(−θ1). This is expected

from simple symmetry arguments [62].

In the case when Γ = 0, kz2 is either wholly real or imaginary. In the case of

kz2 real, propagation through the antiferromagnet can occur. These regions are

indicated by shading in the figures. In the case of kz2 imaginary, reflection is total,

with no propagation into the antiferromagnet. These are reststrahlen regions. For

µxx positive, the reststrahlen condition is 0 < µzz < (1/ε) sin2 θ1 which, providing

θ1 6= 0, is satisfied in a narrow frequency region [49] just above the zero in µzz. In

the configuration considered here, the reststrahlen region only exists at oblique

incidence, and its width depends on the angle of incidence. In Fig. 3.2(a) it is

seen that, in the zero damping case (dashed lines), the reflectivity is unity within

this region and smaller elsewhere.
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Figure 3.2: (a) Calculations of s-polarised oblique incidence (θ1 = ±60◦) reflection from
the interface between vacuum and MnF2 and (b) Goos-Hänchen shift D. Reflected
(c) phase and (d) amplitude, as a function of in-plane wavevector kx, at the frequency
marked as A in (a) (9.0103 cm−1) for the configuration shown in Fig. 3.1. Dashed lines are
calculated for Γ = 0, whereas solid lines are for calculations in which Γ = 0.0007 cm−1.
The shaded regions show where transmission is possible in the absence of damping. In
case (a) the curves corresponding to θ1 = ±60◦ are coincident, so only a blue curve is
seen in the case of the solid lines. Note that, in part (c), φ = π is represented as φ = −π
in the Γ = 0 curve for consistency with the Γ = 0.0007 cm−1 curve.

In Fig. 3.2(b) we show the Goos-Hänchen shifts calculated according to Eq. (3.3).

In a similar manner to the result seen for reflectivity, these shifts are found to be

reciprocal, which in this case corresponds to the relation D(+θ1) = −D(−θ1). In

the absence of damping, the shifts are nonzero only in the reststrahlen region.

This is similar to the behavior of Goos-Hänchen shifts associated with the phonon

response in dielectric crystals [27], and can be explained by the fact that in the

propagation regions the phase is either 0 or π (i.e. r is wholly real) but in the

reststrahlen regions it takes on other values.

Since the displacement D depends on the derivative of the reflected phase (Eq.

(3.4)), it is useful to plot φ and ρ as functions of kx. In Fig. 3.2(c) we show φ(kx)

at the frequency marked as A in Fig. 3.2(a) (9.0103 cm−1), and in Fig. 3.2(d)

we show the corresponding amplitude values ρ, highlighting the values of kx

corresponding to θ1 = ±60◦. In the absence of damping, there are important

differences between the behavior for k2
x/k2

0 < εµzz (i.e. sin2 θ1 < εµzz) and

k2
x/k2

0 > εµzz. In the former case, corresponding to propagation regions, the

amplitude ρ is less than 1 and the phase φ is constant at 0 or π, so that there is no

displacement. In the latter case, corresponding to reststrahlen region behavior, the
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amplitude is unity, corresponding to total reflection, and the phase is continuously

varying, leading to nonzero displacement. θ1 = ± 60
◦ corresponds to reststrahlen

behavior, resulting in the nonzero shift seen in Fig. 3.2 at frequency A. In the

presence of damping, the phase in the bulk region is no longer strictly constant,

so a Goos-Hänchen shift is also possible for lower angles of incidence, albeit most

markedly in low reflectivity regions.

The lateral displacement of a Gaussian beam obliquely incident on a MnF2 surface

is shown in Fig. 3.3. In this case the beam is given by Eq. (D.1) with [29, 45, 49]

ψ(kx) = −
g

2 cos θ1
√

π
exp

[
−g2(kx − kx0)

2

4 cos2 θ1

]
, (3.11)

where 2g represents the beam width at the sample surface and θ1 is the incident

angle.

We take g ≈ 2λ, where λ is the free space wavelength of the radiation. The results

in Fig. 3.3 are for the same frequency as that used in Figs. 3.2(c) and 3.2(d), i..e

Frequency A (9.0103 cm−1). At this frequency, even when damping is considered,

the reflectivity is large enough to be seen in Fig. 3.3, without using logarithmic

scale for the intensity. We clearly see that the incident beam is positively shifted

with a large displacement of around D = 0.2 cm (approximately 2λ), in line with

the results predicted from Fig. 3.2(b).

Figure 3.3: Calculated overall power intensity (in terms of the magnitude of the time-
averaged Poynting vector) showing intensities for a beam of width g = 0.2 cm obliquely
incident (θ1 = +60◦) on a vacuum/MnF2 interface at the frequency marked as A in Fig.
3.2 (9.0103 cm−1). The arrows represent the incident and reflected beams, positioned
according to Eq. (3.3), with angle of reflection assumed equal to angle of incidence.
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3.3 Tunable shifts with B0 6= 0

Due to the effect of an externally applied field B0 on the spins in antiferromagnetic

crystals the complex reflection coefficient r can be express in the form

r =
kz1(µxxµzz + µ2

xz)− kz2µzz − kxµxz

kz1(µxxµzz + µ2
xz) + kz2µzz + kxµxz

. (3.12)

The overall reflectivity is given by R = rr∗. For this situation the wave-vector

component kz2 is calculated from Eq. 2.39 and is given by

k2
z2 =

εk2
0(µxxµzz + µ2

xz)− k2
xµxx

µzz
. (3.13)

Without an external magnetic field the effects associated with external reflec-

tion from an antiferromagnetic surface are reciprocal. When a field is applied,

nonreciprocal effects, either considered with respect to reversing the sign of the

incident angle or that of the applied field, are introduced.

The nonreciprocal behavior considered here is associated with the off-diagonal

elements µxz and µzx of the permeability tensor. They are nonzero only due to the

canting of the spins, which results in a small spin component along the applied

field direction.

For the geometry shown in Fig. 3.1, spin precession is mainly restricted to the

yz plane, with the spins on the two sublattices precessing in opposite directions.

However, when the spins are canted toward the y axis, one can consider that

there is also a small amount of precession in the xz plane. In this plane, the

precession direction is the same for both sublattices, but changes direction when

the field direction is reversed. The antiferromagnet is thus gyromagnetic, with

nonzero permeability components µxz and µzx whose signs depend on the field

direction. If the incident field of the electromagnetic radiation has a magnetic

component in the xz plane, therefore, nonreciprocal effects, such as nonreciprocal

Goos-Hänchen shifts, may be expected in reflection.

Nonzero µxz and µzx values are also responsible for the nonreciprocal Goos-

Hänchen shifts in the previously studied configuration in which the easy axis is

taken parallel to the applied field, along y [30, 28, 29]. In such a configuration,
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however, they become nonzero without the necessity of spin canting. Noticeably

higher fields are therefore necessary in the present case than in the previously

studied one.

In Fig. 3.4 we show the effect on the Goos-Hänchen shifts of applying an external

magnetic field for the same geometry as represented in Fig. 3.1. The figure

shows how the applied field shifts the resonance, and associated reststrahlen

region, to higher frequency. The shift itself becomes distinctly nonreciprocal

D(+θ1) 6= −D(−θ1), as predicted above. However, it is clear that the relationship

between the size of the shifts and the applied field is far from linear. This appears

to be related to the coupling of the incident beam to surface resonances. A full

analysis of this relationship is beyond the scope of the present thesis. Here we

analyze in some detail the general behavior of the nonreciprocal shift, using a

field of B0=1.5 T as our example.

Figure 3.4: Goos-Hänchen shift D for different values of applied external field (a)
B0 = 0.0 T, (b) B0 = 0.5 T, (c) B0 = 1.0 T and (d) B0 = 1.5 T. Blue lines are calculated for
θ1 = +600, whereas red lines are calculated for θ1 = −600
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3.3.1 Oblique incidence

In Fig. 3.5(a) we show the reflectivity R for oblique incidence (θ1 = ±600)

reflection from an MnF2 surface with an external magnetic field B0 = 1.5 T. All

features are now at higher frequencies than in Fig. 3.2 due to the higher resonance

frequency ω⊥ (Eq. (2.19)). In the case of Γ = 0 (dashed lines), both positive

and negative angles of incidence give the same result. However, when Γ 6= 0,

R(+θ1) and R(−θ1) are no longer identical. This is an example of the well-known

result that the reflectivity is reciprocal in the absence of damping but can be

nonreciprocal when damping is present [66, 62, 63, 67].

Figure 3.5: (a) Calculations of s-polarised oblique incidence (θ1 = ±60◦) reflection from
the interface between vacuum and MnF2 in the presence of an external magnetic field of
1.5 T and (b) Goos-Hänchen shift D. Reflected (c) phase and (d) amplitude, as a function
of in-plane wavevector kx, at frequency marked as B (9.125 cm−1) in (a). Dashed lines are
calculated ignoring damping, whereas solid lines are for calculations in which damping
is included. The shaded region shows frequencies where transmission can occur in the
absence of damping.

In Fig. 3.5(b) we show the corresponding Goos-Hänchen shifts. It is immediately

seen that the shifts are distinctly nonreciprocal D(+θ1) 6= −D(−θ1), either with

or without damping. Furthermore, there are nonreciprocal shifts some way into

the propagation region. Indeed, in the absence of damping, we observe the some-

what counterintuitive property D(+θ1) = D(−θ1) in this region. Alternatively

one could say that, for some given incident angle, reversing the field direction

would change the sign of D without changing its amplitude. This result has also

been shown for the case of the easy axis perpendicular to the plane of incidence

[30].
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In Fig. 3.5(c) we show the reflected phase φ as a function of kx at the frequency

marked as B in Fig. 3.5(a) (9.125 cm−1). In 3.5(d) we show the corresponding

amplitude ρ. The nonreciprocal phase behavior is similar to that discussed by

Dumelow et. al. [65], and leads to nonreciprocal Goos-Hänchen shifts. For

smaller incident angles, corresponding to transmission region behavior (−0.6 <

kx/k0 < 0.6), the amplitude is less than unity in the absence of damping, as in

the zero field case. However, the phase is no longer simply 0 or π in this region.

It is in fact antisymmetric about kx = 0, so that φ(kx) = −φ(−kx). This can be

shown by resolving Eq. (3.12) into real and imaginary terms (recalling that µxz is

imaginary in the absence of damping, all other terms being real), and leads to

equal derivatives for positive and negative kx, giving the result discussed above

(D(+θ1) = D(−θ1)) for the transmission region frequencies.

For the situation shown in Fig. 3.5 we are interested in the phase derivative at

θ1 = ±60◦ (shown as red arrows in Fig. 3.5(c)). This corresponds to reststrahlen

behavior, as anticipated from Fig. 3.5. dφ/dkx is clearly nonzero and its magni-

tude is different for positive and negative angles, in agreement with Fig. 3.5(b),

in which nonreciprocity in the Goos-Hänchen shift can be seen. In the absence of

damping the amplitude values ρ for positive and negative values of kx are exactly

the same, confirming the results already discussed in relation to Fig. 3.5(b).

Using the plane wave spectrum model represented by Eqs. (D.1) and (3.11),

we can simulate a Gaussian beam reflected from an antiferromagnet specimen

(as in Fig. 3.3) in the presence of a nonzero external magnetic field. In the

present case we are using the same conditions as in Fig. 3.5(c). In Fig. 3.6(a), we

show results for a positive incident angle θ1 = +60◦, corresponding to a small

displacement of approximately +0.03 cm, as expected from Fig. 3.5(b). In Fig.

3.6(b) we show the case for θ1 = −60◦. In this case we can observe a displacement

of about -0.1 cm (i.e., D ' −λ), which also agrees with the results shown in Fig.

3.5(b). Thus, although the sign of the displacement has changed, as expected, the

amplitude is considerably larger than in the θ1 = +60◦ case, confirming that the

Goos-Hänchen shift is nonreciprocal.
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Figure 3.6: Calculated overall power intensity (in terms of the magnitude of the time-
averaged Poynting vector) showing intensities for a beam of width g = 0.2 cm obliquely
incident on a vacuum/MnF2 interface at frequency B (ω = 9.125 cm−1) in the presence
of a magnetic field B0 = 1.5 T. (a) θ1 = +60◦; (b) θ1 = −60◦ .The arrows represent the
incident and reflected beams, positioned according to Eq. (3.3), with angle of reflection
assumed equal to angle of incidence.

3.3.2 Normal incidence

We now consider the possibility of a normal incidence Goos-Hänchen shift of the

type discussed by Lima et. al. [28, 29] for the case of the antiferromagnet easy

axis parallel to the applied field. In the absence of an external field, the reflected

phase is reciprocal [i.e., φ(+kx) = φ(−kx)], so dφ/dkx will be zero at normal

incidence (kx = 0), resulting in a zero shift. In fact, as discussed in Section II,

there is no reststrahlen region associated with normally incident radiation, and no

magnon-polariton related phenomena are expected. In the presence of a nonzero

external field, however, due to the more complex nature of the permeability

tensor represented by Eq. (2.24), a narrow reststrahlen region does appear at

normal incidence. This can be seen from Fig. 3.7(a), which shows the normal

incidence reflectivity in the presence of a an applied field of 1.5 T, i.e., the same

configuration as in the Fig. 3.5 but at normal incidence. We can see that there

is a narrow reststrahlen region, centered around 9.12 cm−1. In this region, the

reflectivity is unity in the absence of damping, although it is considerably less in

the presence of damping.

Figure 3.7(b) shows the normal incidence Goos-Hänchen shift, which is nonzero

both inside and outside the reststrahl region. At frequency B, in the bulk region,

there is small negative shift, as predicted from Fig. 3.5(c). At frequency C

(9.1204 cm−1), within the reststrahlen region, however, a considerably larger
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displacement of about -0.05 cm is observed with a reasonable reflectivity.

Figure 3.7: Normal incidence calculations in the presence of an external magnetic field of
1.5 T. (a) Plane wave reflectivity spectrum; (b) Goos-Hänchen shift D. Reflected (a) phase
and (b) amplitude, as a function of in-plane wavevector kx, for s-polarised reflection from
a MnF2 crystal at the frequency marked in C as (a) (9.1204 cm−1), in the presence of an
external magnetic field of 1.5 T. Dashed lines are calculated ignoring damping, whereas
solid lines are for calculations in which damping is included. The shaded regions show
where transmission can occur in the absence of damping.

The reflected phase φ (Fig. 3.7(c)) and the amplitude ρ (Fig. 3.7(d)) are shown, as

a function of kx, for frequency C. The dashed lines show results without damping

and the solid lines show results with damping included. At this frequency,

reststrahlen behavior is present for all incident angles, so the amplitude is always

unity, ignoring damping. It is seen that φ(kx) is nonreciprocal and has nonzero

derivative when kx is zero, with or without damping. This results in a significant

nonzero Goos-Hänchen shift consistent with Fig. 3.7(b).

The lateral displacement at frequency C (see Fig. 3.7(a)) can be seen in Fig. 3.8

where we show the beam intensity profile (i.e. |E|2) of a normally incident beam.

For this simulation we use the model described by Eqs. (D.1) and (3.11). However,

when θ1 is equal to zero, the function ψ reduces to

ψ(kx) = −
g

2
√

π
exp

(
−g2k2

x
4

)
. (3.14)

For a normal incidence we increase the width of the beam to g ≈ 5λ in order to

better simulate the wide beam approximation inherent in Eq. (D.17). We can see

clearly from the resulting profile in Fig. 3.8 that there is a shift of the reflected

beam at the sample surface in accurate agreement with the result shown in Fig.
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3.7, based on Eq. (3.3). The vertical solid line represents the center of the incident

beam at x = 0, and the vertical dashed line represents the center of the reflected

beam, which is slightly dislocated to the left (x = −0.04 cm).

Figure 3.8: Intensity profiles of the incident (solid curve) and reflected (dashed curve)
gaussian beam of width g = 0.5 cm, at the frequency marked as C as Fig. 3.7 (9.1204
cm−1), normally incident on MnF2 in the presence of a magnetic field B0 = 1.5 T, with
damping effects taken into account. The vertical solid line represents the center of the
incident beam (x = 0) and the vertical dashed line represents the center of the reflected
beam (x = −0.04 cm).

In addition to using Fig. 3.7(c) in interpreting normal incidence results, we

make some additional observations with regard to its use in interpreting Goos-

Hänchen shifts at oblique incidence at frequency C. Firstly, at this frequency, it

is seen that dφ/dkx is always positive regardless of the sign of kx, so the sign of

the shift should always be negative regardless of the sign of the incident angle

(alternatively, reversing the sign of the applied field would always change the sign

of the shift). We can see this using the example of θ1 = ±60◦, already considered

in the previous section. Figure 3.5(b) confirms that the expected behavior does

indeed occur at frequency C. For θ1 = +60◦, there is a very small negative

displacement, reflecting the fact that the derivative of φ(kx) is small and positive.

For θ1 = −60◦, there is a somewhat larger negative displacement, as predicted

from the derivative of the φ(kx) curve in Fig.3.7(a).

A second observation with regard to this figure concerns a comparison of the

phase behavior in Fig. 3.7(c) with the amplitude behavior in Fig. 3.7(d). As can

be seen, the amplitude turns out to be extremely nonreciprocal when damping

effects are included. In fact it reaches a minimum within the negative kx regime

where the phase has a large derivative, i.e. where the shift D will be large. When

this occurs, both kx and D are negative, i.e., they are both in the same direction,
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resulting in what would normally be described as a positive Goos-Hänchen

shift. This implies an increased penetration into the antiferromagnet, so it is

reasonable to expect a higher absorption. In the case of a negative Goos-Hänchen

shift (positive kx) there is less penetration, and hence less absorption [30]. The

reflectivity dip at negative kx is actually an example of coupling to a surface

resonance, and the associated phase behavior confirms that this coupling has a

drastic effect on the nonreciprocal Goos-Hänchen shifts.

3.4 Conclusions

We have considered the reflection of terahertz radiation from an uniaxial antifer-

romagnetic crystal (MnF2) with its uniaxis in the plane of incidence, parallel to

the antiferromagnet surface. We find that large Goos-Hänchen shifts (D ≈ 0.2 cm

) for external reflections from an antiferromagnetic crystal are possible. Using an

s-polarised terahertz beam, we show that, in the absence of an external magnetic

field, these shifts are reciprocal (D(+θ1) = −D(−θ1)), and only occur in the

reststrahlen regions. These regions only exist at oblique incidence and are much

narrower than when the spins are perpendicular to the plane of incidence (the

case studied by Lima et. al. [30]).

We have shown that a magnetic field B0 externally applied perpendicular to the

uniaxis can induce nonreciprocity. This nonreciprocity is associated with a spin

component parallel to the applied field. This particular spin component only

exists due to canting of the spins, and for this effect to be evident somewhat

higher fields than in the previously studied case, in which the uniaxis is parallel

to the field, are necessary. The magnitude of non-reciprocal effects is largely

associated with coupling of the incident radiation to surface resonances, and this

aspect deserves further study.

Even though resonances in natural crystals have been previously used to ob-

tain lateral displacements on reflection, considering the dielectric function in

isotropic crystals [72], the use of resonances in the magnetic permeability of

antiferromagnets still presents some limitations for experimental works. In the

geometry considered in this work, as well as the one presented by Lima et. al., the
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need for low temperatures limits the possibilities for experimentation. However,

antiferromagnetic crystals at room temperature possessing high reflection regions,

such as NiO may be a suitable candidate for experiments.
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The origins of the concept of a medium that could refract waves negatively

dates back to the work done by Veselago in 1968 [8]. He showed that when

electromagnetic waves propagate through a medium possessing µ < 0 and ε < 0

they are bent backwards to the opposite direction, differently from what would

be predicted by geometric optics. When this condition is satisfied, the E, H and k

vectors form a left-handed triplet. As a result the wave vector k and the Poynting

vector S are oriented in opposite directions and that is the definition of negative

index materials n < 0.

As an alternative approach to materials with n < 0, negative refraction of the

power flow has been demonstrated in highly anisotropic nonmagnetic media

due to hyperbolic dispersion [73, 74]. However, similar behaviour should be

expected in magnetic media displaying indefinite permeability (i.e. have a

51
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permeability tensor containing components of opposing signs) in similar manner

to the indefinite permittivity found in certain anisotropic crystals. In this type

of media hyperbolic dispersion and similar effects to those found for indefinite

permittivity media should be possible.

In the present Chapter, we investigate hyperbolic properties in antiferromagnetic

media. We concentrate on the case of uniaxial antiferromagnets, confirming

that all-angle negative refraction should indeed be possible in such materials.

In addition, we show that, differently from nonmagnetic crystals, the angle

of refraction should be tunable by applying an external magnetic field. We

investigate absorption effects by investigating a large figure of merit as well as

nonreciprocity of the angle of refraction when an external field is applied.

4.1 Indefinite permeability tensor

The principle behind indefinite permeability in antiferromagnets has been dis-

cussed in some detail in chapter 2. Here we summarize the basic principle.

In magnetic media, spins may be resonant at a certain frequency ω0 as a response

to an incident electromagnetic field. In the undamped limit Γ = 0, the condition

µxx > 0 and µzz < 0 will be satisfied in the frequency interval ω0 < ω < ωs. In

the more realistic case where Γ 6= 0, µzz becomes complex, and we can in practice

replace the negative refraction condition µxx > 0 and µzz < 0 by Re(µxx)> 0 and

Re(µzz)< 0, which occurs over approximately the same frequency interval.

In Fig. 4.1 it is shown the real and imaginary parts of µzz, close to the magnon-

polariton resonance frequency ω0, for MnF2 at 4.2 K. We show the frequency

scale in terms of the resonance frequency ω0. Re(µzz) is seen to be negative in the

frequency region between A and C, which are ω0 and ωs respectively. Since µxx

= 1, this region can be considered as an indefinite permeability region.

Since we are discussing effects related to propagation of waves, it is relevant to

look at the the Im(µzz) shown in Fig. 4.1. The Imaginary part of the resonant

permeability tensor of a material is directly related to the absorption inside

the medium. In MnF2, Im(µzz) is extremely small over almost the entire range,

suggesting that, this medium would be an excellent candidate for transmission
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Figure 4.1: Real part of µzz for an MnF2 single crystal as a function of frequency (expressed
in terms of ω0) around the magnon-polariton resonance frequency.

of electromagnetic radiation.

4.1.1 Hyperbolic dispersion

Hyperbolic media derive their name from the topology of their isofrequency

curves, which are calculated from the dispersion relation between the frequency

ω and the wave vector k. In order to analyse this behaviour we consider refraction

of electromagnetic waves at an interface between vacuum and MnF2. If the angle

of incidence is represented as θ1, the in-plane wave-vector component kx is given

by

kx =
ω

c
sin θ1. (4.1)

The z component of the incident wave vector from vacuum, is given by the linear

relation:

k2
x + k2

z1 =
ω2

c2 . (4.2)

We assume that the incident radiation, from vacuum, is transverse electric (TE)

polarised (E along y) with ky = 0.

Within the antiferromagnet, the permeability is a tensor
↔
µ (ω) with frequency de-

pendent components in the form shown by Equation (2.5). In this case, waves with
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transverse electric (TE) polarisation have a behaviour described by a dispersion

relation in the form

k2
z2

µxx
+

k2
x

µzz
=

ω2

c2 ε. (4.3)

Examples of isofrequency curves, which relate the principal components of the

wave vector, are shown in Fig. 4.2 for the different frequencies marked as A,

B, C and D on Fig. 4.2. The group velocity, and hence the Poynting vector, are

perpendicular to the constant ω plots, and are shown in Fig. 4.2 as red arrows.

Figure 4.2: Real parts of the wave-vector component k1z (air) and k2z (MnF2) as a function
of kx for transmission in a MnF2 crystal having its extraordinary axis directed along x.
(a) Frequency A (ω/ω0 = 1.00), (b) frequency B (ω/ω0 = 1.004), (c) frequency C (ω/ω0 =
1.006) and (c) frequency D (ω/ω0 = 1.008 = ωs)

In air (curves shown in Fig. 4.2) the linear dispersion and isotropic behaviour

of propagating waves implies a circular isofrequency curve and it is given by



Chapter 4: Antiferromagnets as Negative Refractive Media 55

Equation (4.2). The direction of the incident beam (S1) is always perpendicular

to the circular surface regardless of the incident beam’s frequency. The circular

isofrequency curve of air distorts to two branched straight lines at the magnon-

polariton resonance frequency ω0, as shown in Fig. 4.2(a) at frequency A, where

µzz → ∞ and Eq. 4.3 becomes independent of the of kx, and hence the incident

angle θ1. In this case, the x component of the Poynting vector (S2) approaches

zero and the power flow propagation is perpendicular to the crystal’s surface.

After the magnon-polarition resonance, in the frequency regime ω0 < ω < ωs,

such that µxx · µzz < 0 the isofrequency curve opens into a hyperbola as seen in

Fig. 4.2(b) at frequency B. Therefore, the x component of the Poynting vector

(S2) inside the antiferromagnet is in the opposite direction to that of the incident

beam (S1). That means negative refraction of the power flow may be achieved in

antiferromagnetic crystals in the frequency regime ω0 < ω < ωs. Such effect is

called backwards refraction of rays, but no backward characteristics are exhibited

by the wavevectors k, and hence the directions of advance of the phase fronts.

At frequency C, close to ωs i.e. the frequency where µzz vanishes, the two

branches of the hyperbolas become very close as shown in Fig. 4.2(c). In this

situation, the power flow (S2) makes an angle of approximately 90
0 with the

normal, therefore the incident radiation propagates along the sample surface and

there is no propagation into the crystal.

And finally, the bahaviour seen in Fig. 4.2(d) at frequency D, is similar to

an isotropic medium with positive ε and µ components, so that the circular

isofrequency curve of air distorts to an ellipse. Here, the propagating power flow

is positively refracted.

4.2 Power Flow Analysis

In order to analyse negative refraction of electromagnetic waves, it is important

to look at the power flow S, which, for the incident and refracted rays are

represented as S1z and S2z respectively. In the first medium (vacuum), the power

flow is parallel to the wave vector. In the second medium, however, that is not

always true. In order to determine this direction, we represent the power flow by
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the Poynting vector:

S = E×H∗ (4.4)

For TM polarised waves, the E field is confined along y, so the Poynting vector is

most easily represented in terms of the Ey field. Making use of the conversion

k× E = ωµ0µH, the resulting time-averaged Poynting vector 〈S〉 = 1/2Re(E×

H∗) inside the material has components

〈S2x〉 =
|Ey|2

2ωµ0
Re
(

kx

µzz

)
, (4.5)

〈S2y〉 = 0, (4.6)

〈S2z〉 =
|Ey|2

2ωµ0
Re
(

k2z

µxx

)
(4.7)

In this configuration the power flow direction (or angle of refraction θ2) can be

calculating by geometry and is given by

tan θ2 =
〈S2x〉
〈S2z〉

=
Re(kx/µzz)

Re(k2z/µxx)
(4.8)

The power flow behaviour demonstrated in Fig. 4.2 can be confirmed by calculat-

ing the angle of refraction. In Fig. 4.3 we show the angle of refraction, calculated

using Eq. 4.8, and confirms that θ2 is equal to 0 and 90
0 at frequencies A and

C respectively, positive at frequency D and negative at frequency B. We show

calculations for different incident angles.

Figure 4.4 shows the resulting intensities for a Gaussian beam obliquely incident

on an MnF2 crystal, at the frequencies marked as A, B, C, and D on Fig. 5.1.

At frequency A, corresponding to the magnon-polariton resonance frequency

ω0, propagation into the antiferromagnet is essentially normal to the surface, as

expected from Figs. 4.2(a) and 4.3. Frequency B is in the negatively refracting

frequency range, and Fig. 4.4(b) confirms this behaviour. At frequency C, close to

the zero in Re(µzz), the power flow should be nearly parallel to the surface, but,

in practice, it is seen that there is very high absorption so there is no effective
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Figure 4.3: Angle of refraction θ2 in MnF2 for various angles of incidence from vacuum.

propagation. Positive refraction is observed at frequency D.

Figure 4.4: Contour plots showing intensities (in terms of the magnitude of the time-
averaged Poyting vector) for a beam obliquely incident from vacuum on an MnF2 crystal
(θ1 = 400). (a) Frequency A (ω/ω0 = 1.00), (b) frequency B (ω/ω0 = 1.004), (c) frequency
C (ω/ω0 = 1.006) and (d) frequency D (ω/ω0 = 1.008 = ωs).

All the plots in Fig. 4.4, except that corresponding to frequency C, show propaga-

tion into the antiferromagnet with extremely low absorption.

It is important to point out that the type of negative refraction shown in Fig. 4.4

differs from that seen in metamaterial and described by Veselago [8]. In such

structures S and k travel in opposite directions whereas in the present case both

always propagate in the forward direction. In metamaterials, the vector k is in the

direction of the phase velocity and opposite to the group velocity which does not

happen in antiferromagnets where the phase velocity behaves in a similar manner

as that one seen in positive refractive isotropic media. Thus, in antiferromagnetic

crystals the group velocity of incident beam undergoes negative refraction, while

the phase velocity undergoes positive refraction.
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4.3 Effects of externally applied fields

One of the most exciting features of using indefinite permeability to obtain

hyperbolic dispersion, and hence negative refraction, is that the permeability

itself can be easily tuned by the application of an external magnetic field B0,

as discussed in Chapter 2 and shown in Fig 4.5. Considering an externally

applied field perpendicular to the plane of incidence, along y, the immediate

effect of such a field would be to cant the spins toward the field direction.

As discussed previously, the main effect of canting is to raise the z-polarised

resonance frequency ω0 to a higher value ωr. The external field also induces

nonzero off-diagonal components in the permeability tensor given by Eq. 2.24.

Figure 4.5: Effect of various external applied fields B0 on the real part of µzz for an
MnF2 single crystal as a function of frequency (expressed in terms of ω0) around the
magnon-polariton resonance frequency.

In this case, the dispersion relation equation has to be modified in order to

include the off-diagonal permeability tensor components µxz, and it is now given

by:

k2
z2µzz + k2

xµxx =
ω2

c2 ε(µxxµzz + µ2
xz). (4.9)

Examples of isofrequency curves, which relate the principal components of the

wavevector at a chosen frequency (C), are shown in Fig. 4.6 for different values

of externally applied field. The shape of the isofrequency plot gradually changes

from a hyperbolic shaped curve to elliptical, which can be translated as the

negatively refracted beam changing into positively refracted.
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Figure 4.6: Real parts of the wave-vector component k1z (red lines) and k2z (blue lines) as
a function of kx for transmission in a MnF2 crystal having its extraordinary axis directed
along x, at a frequency ω/ω0 = 1.004 for(a) B0 = 0.0, (b) B0 = 0.5 T, (c) B0 = 1.0 T and (d)
B0 = 1.5 T.

In order to analyze the behaviour of the power flow when an external field is

applied Eq. 4.8 should therefore be modified. In this situation the Poynting vector

components will be changed to

〈S2x〉 =
|Ey|2

2ωµ0
Re
(

kxµxx − k2zµxz

µxxµzz + µ2
xz

)
, (4.10)

〈S2y〉 = 0, (4.11)

〈S2z〉 =
|Ey|2

2ωµ0
Re
(

k2zµzz + kxµxz

µxxµzz + µ2
xz

)
(4.12)
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The angle of refraction can still be calculated using the geometrical relation

given by Eq. 4.8. Even though the angle is affected by the new off-diagonal

components, the basic effect on the angle of refraction is to shift the features to

higher frequency. The resulting values, assuming an incident angle of θ1 = 400,

are shown in Fig. 4.7 for a series of both positive and negative applied fields

(positive fields being directed along +y and negative fields along −y).

Figure 4.7: Angle of refraction θ2 as a function of frequency in MnF2 for an incident angle
of θ1 = 45

0.

We now look at how the angle of refraction can be tuned by varying the applied

magnetic field. Since the θ2 curves in Fig. 4.7 depend on B0, at any given

frequency the angle of refraction will depend on the magnitude of the applied

field. We consider the frequency marked as X (ω/ω0 = 1.004) in Fig. 4.7. As can

be seen from the figure, at this frequency the angle of refraction should vary from

negative to positive as the applied field is increased, confirming the behaviour

predicted by the isofrequency curves shown in Fig. 4.6.

We can verify the predicted behavior by studying that of a Gaussian beam incident

on the surface of the antiferromagnet for various values of applied field, using the

same type of analysis used in obtaining Fig. 4.4. The results for various positive

values of B0 are shown in Fig. 4.8 (results for negative B0 are essentially the same,

as expected from Fig. 4.7). Figure 4.8 confirms that the angle of refraction can

be tuned from negative to positive using an applied external magnetic field, and

that, in the case of the chosen frequency C, propagation into the antiferromagnet

occurs without significant absorption.
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Figure 4.8: Intensity profile (time averaged power density) of a Gaussian beam obliquely
incident at an angle of θ1 = 45

0, passing through an MnF2 slab at frequency ω/ω0 = 1.004

for(a) B0 = 0.0, (b) B0 = 0.5 T, (c) B0 = 1.0 T and (d) B0 = 1.5 T.

4.4 Snell’s Law and Negative Refraction

Snell’s law, which describes quantitatively the bending of a wave as it enters a

medium, is perhaps one of the oldest and most well known of electromagnetic

phenomena [75]. Snell’s law is one of the basis for direct measurement of a

medium’s index of refraction n.

The phenomenon of refraction, happens at a boundary between two media due

to the change in the speed of the travelling wave as it crosses from one medium

to the other. This can be related by

n1 sin θ1 = n2 sin θ2, (4.13)

where n1 and n2 represent the index of refraction in vacuum and within the

medium respectively, n = c/v and v is the speed of the travelling wave. This is

the Law of Refraction, also know as Snell’s Law1. From this principle it has been

shown that rather than going straight through, the ray entering a higher-index

medium bends toward the normal. The reverse is also true; that is, on entering a

medium having a lower index, the ray will bend away from the normal.

However, only recently, the implications of a negative n have been discussed. The

real implications of this, have been studied by Pendry [32] who showed that such

medium could focus all rays an the same point in the center of the slab, with no

1Willebrord Snel van Royen was a Dutch astronomer and mathematician. In 1613 he became a
professor of mathematics at the University of Leiden and in he rediscovered the law of refraction
in 1621.
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aberration if

θ1 = −θ2. (4.14)

This is possible in the special case when n2 = −1 and n1 = 1.

4.4.1 Effective index of refraction in Antiferromagnets

We have explored in Section 4.1.1 the behaviour of the angle of refraction in

antiferromagnetic crystals due to its hyperbolic dispersion. It is, therefore, useful

to compare results with Snell’s law.

In order to calculate the angle of refraction θ2 within the antiferromagnetic slab,

we use the same approach as proposed in the previous sections, which is based

on the power flow direction S2. In Fig. 4.9(a) we show both values of θ2 in MnF2,

calculated using Eq. 4.8 (blue solid lines) and for a metamaterial with n = −1

using Eq. (4.14).

Figure 4.9: Angle of refraction θ2 as a function of angle of incidence θ1. The red dashed
line shows the behaviour of a medium with n = −1. (a) The solid line shows the angle
of refraction calculated using Eq. 4.8 and the blue dashed line gives the result of using a
paraxial approximation represented by Eq. 4.16 at the interface between air and a MnF2
in the absence of an external field. (b) Effect of various external fields B0 on θ2 in MnF2.

In an anisotropic medium such as antiferromagnets, the relationship between θ1

and θ2 can be found by combining Eqs. (4.1), (4.9), (4.10) and (4.12) with Snell’s,

Law given by Eq. (4.14). In the absence of absorption this gives

sin2 θ2 =
µxx sin2 θ1

µxx sin2 θ1(µxx − µ2
zz) + εµzz(µxxµzz + µ2

xz)
(4.15)
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There is therefore not, in general, a linear relationship between θ1 and θ2 as would

be expected for isotropic media. Nevertheless, in the small angle (paraxial) limit,

we can take the sines of the two angles to be in the small angle limit (kx � ω/c)

so that Eq. (4.15) reduces to

sin2 θ2

sin2 θ1
=

µxx

εµzz(µxxµzz + µ2
xz)

(4.16)

The resulting curve for MnF2 using Eq. (4.16) is shown as blue dashed lines in

Fig. 4.9(a). Despite the large discrepancies at high angles when compared to

the result of Eq. (4.8) (solid blue line), the paraxial approximation holds good at

incident angles of 200 or less.

In Fig. 4.9(b), we show the effect of small externally applied fields so that all-angle

negative refraction still possible at the chosen frequency ω/ω0 = 1.005, however,

the module of the angle is somewhat smaller.

The changes in the angle may be described by the the medium’s index of refraction

which can be found from Eq. (4.16), which gives the effective index ne f f for the

antiferromagnet,

ne f f =

√
εµzz(µxxµzz + µ2

xz)

µxx
. (4.17)

The resulting value of ne f f is show in Fig. 4.9(c) at the frequency frequency

ω/ω0 = 1.005. We can also see how the effective index of refraction increases in

module as µzz become smaller in magnitude.

4.5 Figure of Merit

The degree of absorption in indefinite (hyperbolic) media is most often repre-

sented by a figure of merit (FOM) [76, 77] defined as FOM=|Re(k2z)|/Im(k2z) .

Note that, according to this definition, the FOM is dependent on incident angle

[15]. The FOM is plotted in Fig. 4.10 as a function of frequency for various

magnetic fields B0. Firstly we look at the case where B0 = 0, the minimum in

the FOM is slightly above frequency C, in a narrow frequency region which, in

the absence of damping, would correspond to 0 < µzz < (1/ε) sin2 θ, with k2z

imaginary and no propagation into the antiferromagnet. In the absence of damp-
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ing, therefore, the FOM would be zero within this narrow frequency range, and

infinite outside it (i.e., in the propagating regions). In the propagating regions,

a finite FOM implies absorption. In the case of MnF2, the FOM is large at all

frequencies except those close to frequency C, in line with the results of Fig. 4.3

which shows θ2 = 900. Of particular interest is that, in the negatively refracting

region, the FOM is several orders of magnitude higher than typically reported

for metamaterial structures, so propagating efficiency is high.

Figure 4.10: Figure of merite (FOM) as a function of applied field B0. Frequency X (8.98

cm−1).

The effect of an external magnetic field B0 on the curves is effectively to shift

its features to higher frequencies by the application of an external field, but

are otherwise unchanged to any significant degrees of magnitude, despite the

increased complexity that might be expected from the new features that appear

in µxx and µxz. Thus the refracting behaviour is very similar to that discussed

before for B0 = 0, and, in addition, the application of an applied field does not

adversely affect the FOM to any noticeable extent.

4.6 Nonreciprocity

In analyzing the effect of reversing the direction of B0 [in effect, changing the

sign of µxz, and hence µzx], we note that, in the limit of zero damping (i.e., zero

absorption), µxx and µzz would both be real and µxz would be imaginary. As in

the zero field case, k2z would be either wholly real or wholly imaginary, being

real if there were propagation within the antiferromagnet and imaginary where
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there is not (corresponding to a narrow frequency region just above the zero in

µzz). In the former case, which is that of interest when considering refraction, it is

straightforward to see from Eqs. 4.7 that none of the Poynting vector components

would depend on the sign of µxz. The angle of refraction θ2 would therefore be

independent of the sign of B0, and we would say that it is reciprocal with respect

to field reversal. In practice, therefore, any nonreciprocal effects in the power

flow direction are associated with the imaginary part of k2z. At frequencies at

which propagation is expected, the imaginary part is due to absorption.

Figure 4.11: Angle of refraction θ2 in MnF2 as a function of applied field B0 at frequency
X (8.98 cm−1).

The above analysis is in agreement with the results in Fig. 4.7. For most of the

spectrum, reversing the sign of B0 has negligible effect. However, near the relevant

minimum in the FOM (close to the zero in µzz), at which there is a significant

imaginary contribution to k2z, some nonreciprocity is seen. Nevertheless, the

behavior at such frequencies is similar to that shown in Fig. 3(b), and it is not

realistic to speak of refraction in the normal sense. In the regions in which it

makes sense to discuss refraction, positive or negative, it is reasonable to say

that refraction is reciprocal. Any nonreciprocal behavior present is simply due to

absorption. This is similar to the type of nonreciprocity observed in the intensity

of the reflected beam. Nonreciprocity in this intensity also only exists in the

presence of absorption. We can see from Fig. 4.11 that the behaviour of the angle

of refraction for both positive and negative fields is of reciprocal nature.
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4.7 Conclusion

Negative refraction of this kind has been experimentally demonstrated in sev-

eral systems varying from artificial structures to natural media [41, 42], mostly

dielectric media. In magnetic structures, however, this phenomenon has been

demonstrated in ferrites [78]. Such a hyperbolic material works in microwave

ranges, and it can be tuned to sub-THz range by applying proper bias magnetic

field. Here the frequencies studied are at higher frequencies due to antiferro-

magnetic resonance being in the THz region. Other materials are also potential

candidates for experimental studies. For example, one can extend such properties

to far infrared ranges by using CoF2, NiF2, KNiF3 and FeF2 [78].

In this chapter, it was shown that a uniaxial antiferromagnet should act as

a negatively refracting medium due to its indefinite permeability. We have

demonstrated how natural magnetic crystals can act as hyperbolic media and

the implications of this phenomenon upon the transmitted beam. Furthermore,

the refracting angle can be tuned by the application of an external magnetic

field perpendicular the easy axis (which leads to spin canting). In this particular

material, losses are expected to be very low due to the temperature in which the

material become antiferromagnetic (bellow TN), and the refracted beam should

propagate with high efficiency.



Chapter 5
Tunable Focusing

5.1 Hyperbolic dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Refraction of a Gaussian Beam through an Antiferromagnetic Slab 69

5.2 Image formation in the paraxial limit . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Caustics and field tunable focusing . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

The phenomenon of refraction is responsible for devices that can focus or (and)

shape radiation, such as lenses [2]. Negative refraction, therefore, opens up

new possibilities for optical imaging [32]. This intriguing phenomenon has

attracted great attention, specially in terms of possibilities to construct lenses

made from planar slabs, which are able to bring light rays to a focus, without

physical curvature [32][79]. The most well-known example of such lens associated

with negative refraction is that discussed by Veselago [8], who theoretically

investigated the properties of an isotropic medium with ε < 0 and µ < 0. Such

focusing is possible because the index of refraction is given by n =
√

εµ, which is

negative in metamaterials [80].

Over the past decade, all-angle negative refracting behaviour has been demon-

strated in highly anisotropic media, such as the one proposed in Chapter 4, which

suggests that these type of media would be a suitable candidate for slab lensing

in the same way as proposed by Veselago. Recent works on layered and nanowire

structures report negative refraction of the power flow (which determines the

ray direction). Negative refraction in such media is not isotropic, but it does

67
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occur for all incident angles, and slab lenses made of such medium have been

demonstrated [81]. At far infrared frequencies, the anisotropic dielectric response

associated with optical phonons in certain crystals appears particularly promising

in this respect. Recent transmission experiments using crystal quartz have yielded

results pointing to all-angle negative refraction based on this property [41], sug-

gesting that this material may be suitable for slab lenses and that subwavelength

imaging may be possible in the correct configuration [42].

In Chapter 4, we have observed how all-angle negative refraction is not only

possible but it can also be tuned in magnetic crystals by simply applying a

large enough external field B0. In this Chapter, we concentrate on the effects

of small applied fields so that the angle of refraction is always negative at a

given frequency, however, its value may be modified. Based on this principle

we investigate transmission across an antiferromagnetic slab which may be used

as a Veselago lens, very much in the same way as the one presented earlier in

Fig. 1.4(c). Magnetic crystals, however, not only focus radiation but also allow

one to modify the focal length of the slab with an externally applied magnetic

field. In addition, a rich caustic structure emerges at low temperatures, when

damping should be small. These materials also produce slab focusing at higher

temperatures, although the caustic structure disappears.

5.1 Hyperbolic dispersion

Before we proceed, it is useful for the following discussion, to be reminded of

some familiar concepts. We start with the field dependent permeability tensor

component µzz shown in Fig. 5.1.

The effect of an external field can be directly seen in the dispersion relation plots

in Fig. 5.2. These relate the principal components of the wavevector at a given

frequency and some examples can be seen in Fig. 5.2 and have been studied in

details in Section 4, however, we now concentrate on the effect of small fields. The

isofrequency surfaces can be used to explain the negative refraction behaviour in

MnF2. Here we examine this behaviour in a single frequency, (ω/ω0 = 1.005),

where these plots are always hyperbolic even when small fields are externally
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Figure 5.1: Real part of µzz for an MnF2 single crystal as a function of an externally
applied field B0 varying from 0.0 to 2.5 T.

applied.

The calculations are shown for different values of externally applied field. In air

the linear dispersion displays isotropic behaviour of propagating waves, which

implies a circular isofrequency curve given by Eq. 4.2. The circular isofrequency

curve of air distorts to an ellipse for an anisotropic medium with positive ε and

µ components. However, when we have extreme anisotropy, as occurs in MnF2

close to the magnon-polarition resonance, such that µxx · µzz < 0, the isofrequency

curve opens into a hyperbola (shown as green lines in Fig. 5.2).

The group velocity, and hence the Poynting vector, is perpendicular to the constant

ω plots, and are shown in Fig. 5.2 as red arrows. Therefore, the x component

of the Poynting vector (S2) inside the antiferromagnet is always in the opposite

direction to that of the incident beam (S1).

When a small external field B0 is applied the isofrequency curve becomes flatter

than the equivalent zero field curve, as shown in Figs. 5.2(b), 5.2(c) and 5.2(d).

This is due to changes in the permeability tensor component µzz, which, for fields

less than 1 T, is negative and field dependent, in line with Fig. 5.2(a).

5.1.1 Refraction of a Gaussian Beam through an Antiferromag-

netic Slab

Negative refraction of a Gaussian beam at oblique incidence can be seen directly

in In Fig. 5.3. We calculate refraction of a beam of finite width, with a Gaussian



Chapter 5: Tunable Focusing 70

Figure 5.2: Real parts of the wave-vector component k1z (blue lines) and k2z (green lines)
as a function of kx (expressed in units of k0), for transmission in a MnF2 crystal having its
extraordinary axis directed along x, in s-polarisation at a frequency ω/ω0 = 1.005. (a) B0
= 0.0, (b) B0 = 0.2 T and (c) B0 = 0.4 T. Dashed lines: T = 0.06 TN . Solid lines: T = 0.42 TN .
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profile in x and z, passing through a MnF2 crystal 10λ thick, where λ is the

free-space wavelength. The angle of incidence is set to 45
0 (marked as a black

arrow in Fig. 4.17(b)), and the Gaussian beam is focused at the slab surface.

Figure 5.3: Intensity profile (time averaged power density) of a Gaussian beam obliquely
incident at an angle of incidence θ1 = 45

0, passing through an MnF2 slab at frequency
ω/ω0 = 1.005 where ω0 = 8.67 cm−1 (T = 0.06 TN). (a) B0 = 0.0, (b) B0 = 0.2 T and (c) B0
= 0.4 T. The intensity scale is in arbitrary units.

We show how the angle of refraction θ2 can be tuned using an external magnetic

field due to its effect on the permeability tensor components. For B0 = 0.0 at

ω/ω0 = 1.005, negative refraction is seen as a displacement of the transmitted

beam in the negative x direction (see Fig 5.3(a)). Note that the behaviour for all B0

values in the chosen range, is qualitatively similar. The direction of the refracted

beam is consistent with the arrows shown in Fig. 5.2, which are perpendicular

to the hyperbolic equifrequency plots. However the angle of refraction becomes

smaller as the field is increased. The direction of the power flow (black arrows)

could equally well be calculated using the power flow analysis described in E.

5.2 Image formation in the paraxial limit

Now we turn to the image formation by an antiferromagnetic slab lens. We start

by considering the simplest situation, in which the paraxia approximation holds

true. We consider the geometry depicted in Fig. 5.4(a), showing the ray path

of a single ray emanating from a source S positioned at x = z = 0. The ray is

negatively refracted in at the z = d1 interface, and crosses the z axis at a distance

L from the interface, within the slab. The ray is once again negatively refracted at

the other side of the slab, crossing the z axis at a distance d3.
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Figure 5.4: Path of a single ray from a source S passing through a slab of thickness d2.

As a result of negative refraction of this type, if a point source, emanating

radiation in all direction, is placed close to an antiferromagnetic flat lens with

parallel sides it is possible to obtain focusing within the lens, with a second focus

on the other side of it. Thus an object placed on one side of the lens can form an

image on the other side in a manner similar to that described by Pendry [32] for

media with ε < 0 and µ < 0. In the paraxial limit i.e. small angles of incidence,

focusing, i.e. image formation, effectively occurs at a single focal point as seen

from Fig. 5.5(a).

Therefore, the lens equation for this type of system simply relates the image

distance d to the object distance d1, the thickness d2 of the lens and its effective

index of refraction ne f f for use in Snell’s law. It can be obtained either by

geometric optics [31] or wave optics [82]. From the geometry shown in Fig. 5.4

one we can obtain the following relation at the first interface,

ne f f =
θ1

θ2
=

h/d1

−h/L
= − L

d1
. (5.1)

In a similar manner we can obtain at the second interface

ne f f =
h′/d

−h′/(d2 − L)
= −d2 − L

d
. (5.2)
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Figure 5.5: (a) Schematic of focusing due to a source S placed above an MnF2 slab in the
absence of an external field (B0 = 0.0). The incident angle is restricted to the range -10

0 to
+10

0. The distance d1 is equal to 0.25 cm and d2 is equal to 1.0 cm. The extraordinary
axis is directed along x and incident radiation at ω/ω0 = 1.005. Effect of an externally
applied magnetic field B0 are shown for (b) the effective index of refraction ne f f and (c)
the image distance d.

Eliminating L from both equation we get

d = −d1 −
d2

ne f f
. (5.3)

The form of these equations are equivalent to those shown for lenses made of

nonmagnetic hyperbolic media [31]. However, an exciting feature of magnetic

crystals is the fact that ne f f strongly depends on µzz, whose value is highly reliant

on external applied fields, as seen from Fig. 2.5(b). One consequence of a nonzero

field is that the image position can be tuned as the angle of refraction depends on

the effective index of refraction. The effects of a field B0 on the distance d between

the image and the lens is illustrated in Fig. 5.5(c), which shows d decreasing

as the strength of the field B0 increases. It is also worth mentioning another

consequence of an externally applied field: the off-diagonal components in the

permeability tensor become non-zero (i.e. gyromagnetic), and these off-diagonal

components also affect ne f f ,[49] although in practice the effect is negligible.
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Figure 5.6: s-polarisation image formation at T = 0.06 TN due to a line source placed above
an MnF2 slab. The distance d2 is 20λ’ (≈ 1.0 cm), where λ’ represents the wavelength
within the antiferromagnet at normal incidence (about half the free-space wavelength).
The distance d1 is equal to d2/4 (≈ 0.25 cm). The extraordinary axis is directed along x
and the frequency of the incident radiation is ω/ω0 = 1.005. (a) Schematic showing the
path of multiple rays passing through an MnF2 slab for B0 = 0.0. (b) Power flow intensity
for the setup shown in (a). Effect of a magnetic field on the intensity profile for (c) B0 =
0.2 T and (d) B0 = 0.4 T.The intensity scale is in arbitrary units. The intensity scale is in
arbitrary units.

5.3 Caustics and field tunable focusing

Although the image formed by an antiferromagnetic lens is real, it is not perfect.

In a hyperbolic medium the focusing of peripheral rays occurs at positions which

cannot be described by the paraxial approximation. In order to illustrate this, we

show, in Fig. 5.6(a), a ray diagram representing focusing over a wide range of

incident angles. Marginal rays are focused after the paraxial focus within the

slab, and before the paraxial focus outside the slab. This leads to an envelope of

interfering refracted rays, i.e., caustics.

In Fig. 5.6(b) we show how the behaviour of the power flow, given by the time-

average Poynting vector〈S2〉 of radiation emanating from the line source, directed

along y, at a frequency ω/ω0 = 1.005 and temperature 0.06 TN, in the absence

of an externally applied field. Due to high levels of transmission for all incident

angles, intersecting rays produces a network of constructive and destructive

interference within the caustic envelope, both inside and outside the slab. This

is most visible when damping is extremely low (as would be expected at low

temperatures for good crystals). The network of intensities discussed here are
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Figure 5.7: Calculation of trasmittance as a function of incidence angle (θ1) for an MnF2
slab of thickness d2 = 20λ’ (≈ 1.0 cm) whose easy axes lies along x. The incident radiation,
at a frequency ω/ω0 = 1.005, is s-polarised. (a) B0 = 0.0, (b) B0 = 0.2 T and (c) B0 = 0.4 T.
Dashed lines: T = 0.06 TN . Solid lines: T = 0.42 TN .

examples of caustic curves analogous to those discussed in the classic works by

Nye [83]. These caustics are a result of the non-perfect focusing due to hyperbolic

behaviour of antiferromagnets. The shape of these caustics can be modified by

changing the magnitude of the external applied field B0. Nevertheless, despite

the complications of the caustics due to imperfect focusing at high angles, there

is a high intensity sharp focus at the cusp. Figures 5.6(c) and 5.6(d) show how

the image is moved closer to the lens by simply applying an external field, as

predicted by Fig. 5.5(c).

As well as investigating image formation at 0.06TN, we have also considered

higher temperatures an example is shown for 0.42TN, leading to a significant

increase in magnon damping within the antiferromagnet. The effect of this is

to reduce transmission at higher angles, as shown in Fig. 5.7, which compares

the angular dependence of transmittance at the two temperatures. The figure

shows that, at the higher temperature, efficient transmission only occurs within

the range ± 20
0. This behaviour can affect the properties of a lens made of



Chapter 5: Tunable Focusing 76

an antiferromagnet, the result of which can be seen in the sketch in Fig. 5.8(a)

which shows exclusively the focusing of small angle incident rays, leading to

paraxial-type behaviour.

Figure 5.8: s-polarisation image formation at T = 0.42 TN due to a line source placed
above of an MnF2 slab. The distance d2 is 20λ’ (≈ 1.0 cm) and d1 is equal to d2/4 (≈ 0.25

cm). The extraordinary axis is directed along x and incident radiation at ω/ω0 = 1.005.
(a) Schematic showing the path of multiple rays passing through an MnF2 slab for B0 =
0.0. (b) Power flow intensity for the setup shown in (a). Effect of a magnetic field on the
intensity profile for (c) B0 = 0.2 T and (d) B0 = 0.4 T. The intensity scale is in arbitrary
units.

Since, at high angles of incidence there is little propagation inside the slab, there

is not much interference emanating from these rays with higher damping, and

the envelope of refracted rays forming a well defined caustics fold is lost, as seen

from the power flow behaviour shown in Fig. 5.8(b). However, the radiation

focusing is still present as a strong cusp and the tunable image position is also

unaffected by the temperature change although, due to the loss of high angular

components the effect of the field is less obvious as seen in Figs. 5.8(c) and 5.8(d).

Nevertheless, these components will be more prominent in the case of thinner

slabs, leading to the restoration to of much of the structure shown in Fig. 5.6.

5.4 Conclusion

In this Chapter it was shown that antiferromagnetic crystals are strong candidates

for slab lensing studies in the THz region (around the magnon-polariton frequen-

cies). We concentrated our calculations to fairly thick slabs when compared to
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those in most studies based on multilayer structures [37, 84]. Even though they

are highly transparent, better transmission should be possible with thinner slabs

(specially for the cases in which the temperature is increased).

Furthermore, the focusing achieved by these materials can be tuned by using an

externally applied field B0. Changing the focal point of a hyperbolic lens has

been shown by Dumelow and co-workers when the frequency is changed and

the value of the permeability tensor components change. However, changing the

frequency of radiation in the THz region means changing the source, which is

not always possible in experiments, therefore changing the focal point with an

external field is a far simpler approach. In the same way, by changing the overall

object-image distance one could be able to investigate embedded objects without

knowing its real distance from the detector or source.

At low temperatures, when damping is low enough to enable transmission of all

incident angles, a rich caustics structure can be seen. However the key element,

focusing of radiation, can be obtained even if the temperature is increased. In both

cases, the transmission leves still show more efficiency that those demonstrated

in artificial hyperbolic multilayers due to fabrication issues [15]. It is also worth

mentioning that the focusing achieved by our lenses, i.e., focusing inside and

outside the lens, is different from spherical lenses as the radiation conventional

lenses is guided to a focus due to their shape.

This work clearly needs extending to other frequencies with other materials,

and there appear to be various possibilities for experimental studies in either

ferrimagnetic of ferromagnetic crystals [78].
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The concept of anisotropy in natural crystals has been of interest for some

considerable time [85]. However, the understanding of hyperbolic media and

how they are connected to the anisotropy of a medium is fairly new [3]. Up

to now, the research on hyperbolic media has mostly been concentrated on

geometries in which the direction of the anisotropy is polarised either parallel or

perpendicular to propagation of electromagnetic waves [86, 37, 84, 87]. However,

the anisotropy polarisation direction can be decisive when fully investigating

optical effects in hyperbolic media. For instance, in non-magnetic media, if the

anisotropy is not polarised along one of these direction, in general, there will

appear nonzero off-diagonal components in the permeability tensor which are

essentially real. Off-diagonal components of this type can often be brought in

unintentionally in experimental works. However, even the small contribution of

these kind of resonant component can lead to extremely increased absorption

inside the crystal [39].

Some progress has been made using modest deviations of the anisotropy direction

[88, 89, 90]. In such systems, there is no resonance associated with the anisotropy
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which makes this systems particularly promising for transmission studies [91]. As

there is no hyperbolic behaviour, all-angle negative refraction cannot be achieved,

and hence slab lensing of the type show in Chapter 5.

Throughout this work we have have only considered the situation when the

antiferromagnetic crystal’s magnetisation direction lies parallel to the surface

where radiation is incident. This chapter is dedicated to some preliminary results

on the effect of easy axis rotations. If such rotations are allowed, the position

where the image is formed can be modified not only along the z axis, similar to

when an external magnetic field is applied, but in the present situation the image

position can also change along the image plane.

6.1 Easy axis transformation

Figure 6.1: (a) Geometry of easy axis rotation along the xz plane by an angle ϕ.

We start by exploring the properties of magnetic polaritons in an antiferromag-

netic crystal whose easy axis may be rotated in the xz plane by an angle ϕ such

as show in Fig. 6.1. For simplicity, we concentrate our analysis in the case when

there are no externally applied fields. If a rotation takes place (ϕ 6= 0), the tensor

shown in Eq. 2.12 has to be modified in terms of the rotation angle ϕ and it is

now given by

↔
µ′ (ω) =


µ′xx 0 µ′xz

0 µ′yy 0

µ′zx 0 µ′zz

 (6.1)
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Such tensor is obtained using
↔
µ′ (ω) = T

↔
µ (ω)T−1, where T is a transformation

matrix in the xz plane and T−1 is its transposed. In the absence of an external

field, µxz = µzx by symmetry and the tensor components are

µ′xx = µxx cos2 ϕ + µzz sin2 ϕ (6.1a)

µ′zz = µxx sin2 ϕ + µzz cos2 ϕ (6.1b)

µ′xz = µ′zx = (µzz − µxx) sin ϕ cos ϕ. (6.1c)

6.2 Rotated Hyperbolic dispersion

In order to analyse the properties of propagating waves in an antiferromagnetic

crystal whose easy axis may be rotated along the xz plane, we proceed by

combining Maxwell’s equations once again, in the same way as done in Chapter

2. However, the permeability tensor has to be replaced by Eq. 6.1 and using Eqs.

(2.25d) and (2.27) we obtain

1
(µ′xxµ′zz − µ

′2
xz)

µ′zz
∂2

∂z2 + µ′xx
∂2

∂x2 + µ′xz
∂2

∂x∂z
+ µ′zx

∂2

∂z∂x

 E(x, y) =

−ω2

c2 ε‖E(x, y)

(6.2)

We take E(x, y) as being given by Eq. (2.32) which yields

µ′zzk2
z2 + 2µ′xzkxkz2 + µ′xxk2

x = −ω2

c2 ε‖(µ
′
xxµ′zz − µ

′2
xz). (6.3)

Note that when ϕ 6= 0 the off-diagonal components are equal (µxz = µzx), and

differently from the case when H0 = 0, here these components are purely real

when Γ = 0. And the result of same sign off-diagonal components is an extra

term (2µxzik||k2z) in the equation for dispersion relation

In previous chapters we have concentrated on the simple situation in which the

crystal’s easy axis lied parallel to both surface and incidence plane. This has

also been the case for most studies in hyperbolic non-magnetic media. However,

when an arbitrary direction (0 < ϕ < 900) is considered the propagation of rays
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becomes more complex.

In Fig. 6.2 we show the effect of different rotations of the easy axis direction on

the equifrequecy plots. It is important to point out that all frequencies are now

of interest in terms of exotic wave propagation properties, therefore, we show

the effect of rotation on both hyperbolic and elliptical dispersion. At frequencies

bellow ω0 (here we used ω/ω0 =0.995), where all components of the permeability

are positive, the elliptical dispersion rotates generating negative refraction for a

small range of incident angles. In this case, propagation is allowed to all incident

angles regardless of the rotation angle ϕ.

At frequencies between ωTO and ωLO the hyperbolic dispersion rotates in similar

manner as the elliptical case [See Fig 6.2(b)]. However if the rotation angle is too

high such as the one shown for 45
0, the propagation of small angles of incidence

disappears giving way to a broad “reststrahl” region, i.e., total reflection region

similar to the one discussed in Chapter 3.

When the easy axis is rotated 900 so that it is along z, the hyperbolic isofre-

quecy plots also rotates the same amount. In the region between ω0 and ωs,

there is a forbidden band as the hyperbola branches now point to the direction

perpendicular to the propagation.

6.3 Implications on the angle of refraction

In this section we restrict our analysis to small rotation angles of the crystal’s

easy axis, since at high angles propagation is drastically affected by loses inside

the material. These losses are induced by the off-diagonal components shown

in Eq. 6.1, which are real and ϕ dependent, making kz2 complex even when no

damping is included.

As mentioned before, the angle of refraction can also be calculated from geometry

in terms of the power flow direction, and it is known to be

tan θ2 =
〈S2x〉
〈S2z〉

, (6.4)

where the components x and z of the power flow can be obtained from the

resulting time-average Poynting vector 〈S2〉 = 1/2Re(E×H∗). Using a similar
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Figure 6.2: Real parts of the wave-vector component k1z (air) and k2z (MnF2) as a function
of kx for transmission in a MnF2 crystal having its extraordinary axis rotated along the
xz plane by (a)-(b) ϕ = 0, (c)-(d) ϕ = 450 and (e)-(f) ϕ = 900. The curves on the left
hand-side are for a frequency bellow ω0 and at the right hand-side we see frequencies
above ω0.

approach as the one shown in Appendix E, these components can be written as

〈S2x〉 =
|Ey|

2ωµ0
Re

kxµ′xx + kz2µ′xz

µ′xxµ′zz − µ′2xz

 , (6.5a)
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and

〈S2z〉 =
|Ey|

2ωµ0
Re

kz2µ′zz + kxµ′xz

µ′xxµ′zz − µ′2xz

 . (6.5b)

We have dealt with off-diagonal components of this form before in Chapter 4,

however, the field induced components are imaginary which has little effect on

the angle of refraction θ2. These components are also not equal when a non-zero

field is considered and this yields different signes in Eq. 6.5 and 6.5b. Even

though an external field is responsible for shifting the resonance frequency, the

way the beam is negatively refracted at the new frequency region is unaffected.

In the case when ϕ = 0⇒ µxz = 0, that the angle of refraction depends strictly on

µxx and µzz. Therefore, if µxx > 0 and µzz < 0, all-angle negative refraction is seen.

However, if ϕ 6= 0⇒ µxz 6= 0, the angle of refraction is not as straightforward, it

now depends not only on µxx and µzz but also on the other resonant off-diagonal

component µxz which are real. As seen from Eq. 6.4, in combination with Eqs.

6.5 and 6.5b, if ϕ 6= 0 the angle of refraction cannot be predicted by a simple

combination of signs.

Figure 6.3: Effect of a nonzero rotation angle ϕ on the angle of refraction θ2 and a function
of the incident angle θ1 at (a) ω < ω0 (b) ω0 < ω < ωs.

The effect of ϕ on the angle of refraction is shown in Fig. 6.3 for two different

frequencies. At frequencies below ω0 such as the example ω/ω0=0.995 shown

in Fig. 6.3(b) the angle of refraction always has the same sign as the incident

angle. When the easy axis is rotated by 100 for a range of −θ1 negative refraction

can be seen. If greater rotation is applied, ϕ = 200, for all values of −θ1 negative

refraction is possible. In any rotated case no similar behaviour is possible for

+θ1.

In the frequency regime ω0 ≤ ω ≤ ωs, the effect of ϕ is show in Fig. 6.3(a). If
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ϕ = 0 all-angle negative refraction can be seen as discussed in Chapter 4 and the

same in magnitude so that |θ2(+θ1)| = |θ2(−θ1)|. However when ϕ = 100 this

condition does not hold true so that |θ2(+θ1)| 6= |θ2(−θ1)|, and ultimately, when

a greater angle of rotation is seen ϕ = 200 all angles of refraction are positive

regardless of the sign of θ1.

6.4 Orientation dependence on focusing

Figure 6.4: Real parts of the wave-vector component k1z (air) and k2z (MnF2) as a function
of kx for transmission in a MnF2 crystal at a frequency ω < ω0 having its extraordinary
axis rotated along the xz plane by (a) ϕ = 0, (b) ϕ = 100 and (c) ϕ = 200.

We now turn this analysis to the implications on the focusing by a slab lens made

of an antiferromagnetic crystal. We start by analyzing the elliptical dispersion

rotated by small angles as shown in Fig. 6.4. When ϕ = 0 the incident ray

for positive and negative angles diverge from each other. When ϕ is nonzero,

negative refraction is seen for −θ1. However, no focusing is possible as not all

angles are negatively refracted, in fact, in a range between -90
0 and 90

0 all rays

are channeled to the same side of the material. Therefore, this situation is not of

interest for slab lensing.

For hyperbolic dispersion, focusing can be seen for ϕ = 0. When ϕ is nonzero,

the hyperbolic dispersion rotates as shown in Fig. 6.5. The angles now have

different magnitudes, so that there is a difference in the path lead by the different

rays, which means focusing happens at a different position in both x and z axes.

We now examine how focusing from a line source placed above an MnF2 slab

would work. If the crystal’s easy axis lies along an arbitrary direction in the xz

plane the propagation of waves can be considerably affected and at ω/ω0=1.04
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Figure 6.5: Real parts of the wave-vector component k1z (air) and k2z (MnF2) as a
function of kx for transmission in a MnF2 crystal at a frequency ω0 < ω < ωs having its
extraordinary axis rotated along the xz plane by (a) ϕ = 0, (b) ϕ = 100 and (c) ϕ = 200.

the main effect of a rotation in the easy axes is to shift the position of the paraxial

focus. Differently from magnetic media when external fields are applied, the

position of the image changes along the optical axes as seen from Fig. 6.6(b).

Figure 6.6: Schematic of Image formation due to a line source placed above of an MnF2
slab at a frequency ω0 < ω < ωs having its extraordinary axis rotated along the xz plane
by (a) ϕ = 0, (b) ϕ = 100 and (c) ϕ = 200.

If the angle of rotation ϕ suffer great rotation as seen from Fig. 6.6(c) the

transmission is extremely affected and the focusing is not as evident any more,

even though the power flow is channelled to one single side of the slab.

6.5 Concluding Remarks

Here, it was shown how focusing in hyperbolic media is extremely dependent

on the crystal orientation. When crystal’s axes are rotated along the xz plane

the permittivity tensor, which is usually diagonal, is replaced by a new tensor

with non-diagonal elements. For the simple case of anisotropy such as simple

dielectric crystals the new off-diagonal components are symmetrical εxz = εzx

and essentially real.
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We stress here that our results can be applied to any hyperbolic system, artificial

or natural, magnetic or dielectric. However in more complicated case such as

gyrotropic media, characterized by non-diagonal
↔
ε (ω) and (or)

↔
µ (ω) dyadics,

no such simplification is generally possible. Gyrotropic effects are given by

imaginary non-diagonal elements and after rotated they are non-symmetric. This

means, not only rotation of the paraxial focus can be achieved but tunability is

also possible when external fields are applied.

Such analysis may also be crucial when performing experiments using focusing

in hyperbolic media since a slight rotation on the crystals axes may change

dramatically the results expected.
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7.1 Summary of this thesis

The overarching theme of this thesis was an investigation of how novel optical

effects in hyperbolic magnetic crystals are affected by externally applied magnetic

fields. Particularly, it was investigated the situation where the external field lies

perpendicular to the easy axis direction in antiferromagnetic crystals, inducing

spin canting. Here, the main findings of this work are summarized.

In Chapter 3, it was shown how lateral displacements are possible on the surface

of an antiferromagnetic crystal. Large reciprocal displacements can be seen close

to the magnon-polariton frequency in the absence of an external field. This class

of hyperbolic media are particularly interesting when an effects of an external

field B0 are considered. For instance, as seen in Section 3.3, the appearance

of off-diagonal components on the permeability tensor, and hence breaking in

the crystal’s time reversal symmetry induced by the spins canting towards the

field direction, leads to nonreciprocal reflection. This nonreciprocity weigh up
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on lateral displacements, making D change in magnitude, depending on the

direction of B0. Not only that, but the canting of spins also leads to Goos-

Hänchen shifts even at normal incidence. Even though lateral displacements on

the surface of natural crystals have been previously predicted [27], as discussed in

Chapter 1, nonmagnetic media are not field reliant, and therefore, do not display

nonreciploca shifts.

In chapter 4 it was presented a discussion of the implication of magnetic crystals

working as hyperbolic media. Special attention was given to the effecs on the

angle of refraction, which becomes negative around these frequencies. Negative

refraction of all angles was one of the first phenomena to be associated with

hyperbolic dispersion in artificial structures [3], and recently, it has also been

shown in natural crystals [41]. However, the vast majority of the studies have

somewhat been limited to nonmagnetic structures. In this context, magnetic

crystals such as antiferromagnets, open up a vast range of new possibilities.

Differently from nonmagnetic systems, the angle of refraction in magnetic media

can be tuned across different frequencies by just applying an external field.

Another important characteristics of this type-media is its transmission efficiency.

The efficience of negative refractive media is often described by the figure of

merit (FOM), which in natural magnetic crystals such as MnF2 is dramatically

higher than artificial materials previously studied [15].

In Chapter 5 it was shown the consequences of using a hyperbolic magnetic

crystal as a slab lens as well as the effect of temperature changes on these systems.

The key point here is that for hyperbolic magnetic media, not only can a caustic

structure be seen, but focusing can also be achieved in a slab lens. Similar focusing

has been reported in other natural hyperbolic media such as quartz crystals [42]

and triglycine sulphate [31]. In both cases this occurs for TM-polarised radiation

with a distinct image position that varies with frequency, due to the way that

phonons couple with the electric part of the electromagnetic radiation. However,

natural magnetic media are field reliant which allows tunable image formation

at a single frequency without changing the crystal structure or the physical

shape of the lens. The effects of temperature were also discussed. For low

temperatures, and hence low damping, a rich caustic structure can be observed
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inside and outside the lens. We believe that the method to obtain caustics which

we have reported should be possible in any hyperbolic media given a low enough

temperature. Whereas the caustics disappear when the temperature increases,

the tunable focusing is still possible.

The effect of the easy axis orientation was discussed in Chapter 6. Even though

such effects are usually unwanted when performing experiments, due to the

induction of absorption. If a slight rotation of the easy axes takes place, the

focusing through a slab lens can dramatically change. In such case the sign of the

angle of refraction is nor as straightforward as the situations previously studied,

and can be said to be nonreciprocal |θ2(+θ1)| = |θ2(−θ1)|. It is also important to

note that if there is rotation, negative refraction becomes possible at frequencies

where the dispersion is elliptical.

Finally, we stress that the analysis and general principles presented in this thesis

apply equally well to other types of hyperbolic media, both natural or artificial.

7.2 Outlook

The scope of the work presented in this Thesis is limited to MnF2 crystals acting

as a hyperbolic material which can be used to achieve novel tunable optical effects,

therefore, a number of obvious extensions of this work can be foreseen. It is

described below some directions in which preliminary work has been performed

and further investigation are necessary.

7.2.1 Subwavelength Imaging

Slab lenses, such as the ones presented in Chapters 5 and 6, are not often linked

to subwavlenngth imaging. These type of lenses are most often restricted to

focusing in the far-field limit. However, slab lenses made of hyperbolic materials

can be used to induce reproduction of near-field images [92].

We expect that our intriguing findings can benefit near-field and subwavelength

imaging. Normally, for free space or isotropic media, kz is real but when kx

becomes large, kz becomes imaginary, i.e., the propagation of waves in the z

direction is evanescent: it decays exponentially with z. However, in the case
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Figure 7.1: (a) Real part of the principal component of the permeability tensor of MnF2
around the magnon-polariton frequency. (b) Real part of the wavevector component k2z
as a function of kx (expressed in units of k0), for transmission in an MnF2 crystal having
its easy axes directed along x, at the resonance frequency ω0 (ω/ω0 = 1.00). (c) Schematic
showing the general setup of imaging due to a two-slit source at the surface of a slab of
MnF2 at frequency ω0.

of indefinite permeability such as the one shown in Fig. 7.1(a), at a frequency

ω = ω0, kz is real for all kx values, even for very large ones. Therefore what

would normally be evanescent waves, now become propagating waves.[16, 42]

In this case, the emitted evanescent waves of a light source placed near a slab,

with arbitrarily large in-plane wave vectors can excite propagating modes in the

slab, which will transfer the near-field information to the opposite interface of

the slab, as shown experimentally in the analogous indefinite permittivity case

based on the phonon polariton response in hexagonal boron nitride[93]. As the

equifrequency curve is nearly flat (see Fig. 7.1(b)) at at the magnon resonance

frequency itself, all components should transmit across within the slab with the

same phase and a faithful reproduction of subwavelength details of the object

should be possible as shown in the sketch in Fig. 7.1(c).[42] The use of an external

field should allow some fine tuning as the resonance frequency can be shifted

when applying such a field.

7.2.2 Depth Probe Possibilities

In this work, we have concentrated on using an external magnetic field to adjust

the image position for a fixed source position. However, the external field is

effectively tuning the overall object-image distance. Thus, one could, in principle,

consider a slightly different configuration in which a detector (or detector array)

were placed at the surface of the slab (or a fixed distance from it). Assuming that
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there were an illuminated object at a certain unknown distance from the other

side of the slab, this distance could then be measured by scanning the applied

magnetic field and determining the field at which the image became well focused

on the detector. In this case, the lens would act as a type of depth probe, suitable

for investigating embedded objects.

7.2.3 Other Systems to be Investigated

In this thesis only slab lenses made from MnF2, a material that shows particu-

larly low magnon damping at low temperature, have been discussed. However,

this material belongs to an important group of antiferromagnetic salts, such as

FeF2 and CoF2, which should also display similar behaviour at temperatures

far enough below their Néel temperatures.[46] Antiferromagnets whose Néel

temperatures fall above room tmperature are hard to come by (altough there are

exceptions, such as nickel oxide), and, in addition, magnon damping is likely to

severely limit transmission at higher temperatures. Nevertheless, alternative mag-

netic crystals, such as ferrites, display field-tunable hyperbolic dispersion, similar

to that discussed here, associated with the ferromagnetic resonance.[78] Such

materials may well be suitable for use as tunable slab lenses at room temperature

in the same way as shown here for MnF2 at low temperature.
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Chapter A

On the Reflectivity off a semi-infinite Antiferromagnet

For the interpretation of optical effects, such as Goos-Hänchen shifts, on the sur-

face of antiferromagnetic crystals, formulas for the reflectivity and transmission

are needed. To derive these equations we need to consider the dispersion relation,

hence wave vector inside and outside the material, combined with the boundary

conditions at the surface of the crystal.

For different geometries of the antiferromagnetic crystal, the reflectivity and

transmission can be calculated as a function of the angle of incidence, however,

one of the main determiners of these coefficients is the direction of polarisation.

Here we summarize the main technique used to obtain the equation for transmis-

sion and reflection used throughout this thesis, we concentrate on the case when

the incident wave is transverse electric (TE) polarized.

A.1 Boundary Conditions

Here we treat the geometry of a surface of an antiferromagnetic crystal whose x

axis is aligned along the sublattice magnetisation directions. The incidence plane

is xz and a magnetic field is applied perpendicular to both incidence plane and

anisotropy direction (along y) as shown in Fig. A.1.

We now assume that the electric field of the propagating electromagnetic waves is

polarised perpendicular to the incidence place (TE) and along y. We consider that

the radiation is incident from air with ε1 and µ1. In the antiferromagnet, however,

these quantities are frequency dependent and in the presence of an external field
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Figure A.1: Reflection geometry. The material occupies the lower half plane, z > 0, and
the surface is in the xz plane. The saturation magnetisation is along x and the external
field B0 is perpendicular to both the incidence plane and the easy axis (along y). The
angle of incidence, θi, is the angle the wavevector of the incident wave makes with the
normal to the surface. Hi and Hr represent the incident and reflected magnetic fields,
respectively, which are polarized in the xz plane. Ei and Er represent the incident and
reflected electric fields, respectively, which are polarized in the y axis.

B0 the permeability tensor given by

↔
µ (ω) =


µxx 0 µxz

0 µxx 0

−µxz 0 µzz

 (A.1)

and the dielectric tensor

↔
ε (ω) =


ε⊥ 0 0

0 ε‖ 0

0 0 ε⊥

 . (A.2)

The reflectivity as a function of the angle of incidence reslts from the boundary

conditions in the surface (z = 0). The boundary conditions require the continuity

of the tangential components of E and H,

Eiy + Ery = Ety, (A.3)

Hix + Hrx = Htx, (A.4)
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and the normal components B and D,

Biz + Brz = Btz, (A.5)

Diz + Drz = Dtz. (A.6)

Where i, r and t denote incident, reflected and refracted waves, respectively. The

amplitudes of the transmitted and reflected waves can be found in terms of the

incident wave. In more general situation when there is rotation of the incidence

plane, and hence mixed polarisation modes, or when there are more than one

wave propagating in the material (birefringence, corresponding to two k2z’s),

there are more than one refracted field inside the crystal. This means that all

equations from A.3 to A.6 emanate independent equations.

We consider the simple geometry shown in Fig. A.1, in which the polarisation and

resonances lie in the xz plane. In this case, the boundary condition on continuity

of normal B across the interface can be expressed as a linear combination of the

boundary condition on tangential E, so this does not yield any new relations. We,

therefore, chose the boundary conditions for the continuity of tangential E and

normal H, since they are the only independent equations.

Maxwell’s equations can be employed in order to obtain the H fields in terms of

E. For that we use

k× E = µ0µωH. (A.7)

◦ In the first medium, z ≤ 0 where µ = µ1 we make

∣∣∣∣∣∣∣∣∣
î ĵ k̂

kix 0 kiz

0 Eiy 0

∣∣∣∣∣∣∣∣∣ = µ0µ1ω


Hix

0

Hiz

 . (A.8)

So that the components of H are given by

Hxi =
−kizEiy

µ0µ1ω
(A.9) Hzi =

kixEiy

µ0µ1ω
(A.10)
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◦ In the antiferromagnetic crystal, z ≥ 0 where µ =
↔
µ (ω) we make

∣∣∣∣∣∣∣∣∣
î ĵ k̂

ktx 0 ktz

0 Ety 0

∣∣∣∣∣∣∣∣∣ = µ0ω


µxx 0 µxz

0 µxx 0

−µxz 0 µzz




Htx

0

Htz

 . (A.11)

Here, the components of H are given as a function of the permeability tensor

components, being

Hxt =
−Eiy(ktzµzz + ktxµxz)

µ0ω(µxxµzz + µ2
xz)

(A.12) Hzt =
Eiy(ktxµxx − ktzµxz)

µ0ω(µxxµzz + µ2
xz)

(A.13)

Furthermore, boundary conditions dictate that kx value holds both sides of the

interface so that kix = ktx = kx. If we now eliminate in Eq. (A.4) the magnetic

filed by the electric field according to Eqs. (E.4) and (A.12), we get

−kizEiy

µ0µ1ω
+

krzEry

µ0µ1ω
=
−Eiy(ktzµzz + kxµxz)

µ0ω(µxxµzz + µ2
xz)

, (A.14)

rearranging the terms we obtain

Ery

Eiy
+

Ety

Eiy

(ktzµzz + kxµxz)

kiz(µxxµzz + µ2
xz)

= 1 (A.15)

From Eq. (A.3) we have

−
Ery

Eiy
+

Ety

Eiy
= 1 (A.16)

Combining Eqs. (A.16) with (A.15) in a matrix form we have


1

(ktzµzz + kxµxz)

kiz(µxxµzz + µ2
xz)

−1 1




Ery

Eiy

Ety

Eiy

 =


1

1

 . (A.17)

The complex reflection coefficient r for reflection from an antiferromagnet in the

present geometry is therefore given by

r =
Ery

Eiy
=

kiz(µxxµzz + µ2
xz)− ktzµzz − kxµxz

kiz(µxxµzz + µ2
xz) + ktzµzz + kxµxz

, (A.18)
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and the transmission t is

t =
Ety

Eiy
=

2kiz(µxxµzz + µ2
xz)

kiz(µxxµzz + µ2
xz) + ktzµzz + kxµxz

. (A.19)





Chapter B

On the Transmission Across an Antiferromagnet Film

In order to analyse optical effects related to transmission of radiation passing

through an antiferromagnetic slab, such as negative refraction and focusing, we

need to obtain the suitable equations for reflection and transmission considering

multiple reflection at the different interfaces.

The boundary conditions here are obtained in a similar manner to that

done in Chapter A. The system studied throughout this work is a layered

Air/Antiferromagnet/Air such as the one shown in Fig. B.1, which allows

an external magnetic field B0 perpendicular to the incidence plane and the

anisotropy axes. In a layered system, multiple reflections generate partial rays

which interfere with one another. Therefore the overall intensities of reflectivity

and transmission have to consider their role and it can be calculated using a

transfer matrix method [64, 94].

B.1 Boundary Conditions

At the top of each layer all rays can be considered as a single wave, with the

variation of the electric fields directed along the y axis, given by Eu
nt and Eu

nr. We

can also represent the equivalent fields El
ni and El

nr at the bottom of the layer as

depicted in Fig B.1.

From the continuity of E along y we have to modify Eq. (A.3) since there is a
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Figure B.1: Reflection geometry. The material occupies the lower half plane, z > 0, and
the surface is in the xz plane. The saturation magnetisation is along x and the external
field B0 is perpendicular to both the incidence plane and the easy axis (along y). The
angle of incidence, θi, is the angle the wavevector of the incident wave makes with the
normal to the surface. Hi and Hr represent the incident and reflected magnetic fields,
respectively, which are polarized in the xz plane. Ei and Er represent the incident and
reflected electric fields, respectively, which are polarized in the y axis.

reflected wave at the second interface, so that

El
ni + El

nr = Eu
(n+1)t + Eu

(n+1)r, (B.1)

and from the continuity of tangential H at the first interface we obtain

− kz1

µ0ωµ1
(El

1i − El
1r) = −

µzzkz2 + µxzkx

ωµ0(µxxµzz − µ2
xz)

(Eu
2t − Eu

2r), (B.2)

and at the second interface it gives

− µzzkz2 + µxzkx

ωµ0(µxxµzz − µ2
xz)

(El
2t − El

2r) = −
kz1

µ0ωµ1
(Eu

3i − Eu
3r). (B.3)
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B.2 Transfer Matrix

Here we use Eq. (B.1) in Eq. (B.2) we can isolate El
1i and E1

rl in terms of Eu
2t and

Eu
r2, and this can be put in a matrix form as follows


El

1i

E1
rl

 =


1
2
+ X

1
2
− X

1
2
− X

1
2
+ X


︸ ︷︷ ︸

M1


Eu

2t

Eu
r2

 , (B.4)

where X is given, in terms of the wave vectors and permeability tensor compo-

nents, by

X =
µ1(k2zµzz + kxµxz)

k1z(µxxµzz + µ2
xz)

. (B.5)

As in the second interface we have now the opposite media structure from the

first interface (Antiferromagnet/Air), the matrix is now written as


El

2i

El
2r

 =


1
2
+ X−1 1

2
− X−1

1
2
− X−1 1

2
+ X−1


︸ ︷︷ ︸

M2


Eu

3t

Eu
3t

 (B.6)

In the case we are studying here, the antiferromagnetic layer is considered as

being finite having thickness d2, which can be used to relate the fields at its top

and bottom

Eu
2r = El

2re−ik2zd2 (B.7)

and

El
2t = Eu

2reik2zd2 (B.8)
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In a matrix form this gives

Eu
2r

Eu
2r

 =

e−ik2zd 0

0 eik2zd


︸ ︷︷ ︸

F

El
2r

Eu
2r

 . (B.9)

In this case, however, the third layer is semi-infinite, i.e. Et
3r = 0 since there is only

transmission in this layer.

The three matrices above can be multiplied together over the structure relating

all the fields presents in this system as sown bellow

El
1i

El
1r

 = M2 × F×M1

Eu
3t

0

 . (B.10)

Since there’s no upward wave propagating in the last layer (n = 3) the overall

matrix may be express in the form

El
1i

El
1r

 =

r11 r12

r21 r22


︸ ︷︷ ︸

R

Eu
3t

0

 , (B.11)

where R is a matrix resulting from the multiplication of all matrices across the

system and its components can be related to find the reflectivity coefficient as

being

r =
r21

r11
. (B.12)

and the transmission

t =
1

r11
. (B.13)



Chapter C

On the Parameters used

The antiferromagnetic ordering of spins appears in MnF2 at temperatures below

its Neél temperature TN = 67 K, with a zero field resonance frequency ω0 given

by Eq. 2.9. In this work, we have used the field parameters reported by Remer et.

al. [66], i.e. BA = 0.787 T, BE = 55.0 T, who also report Ms = 6.0× 105 A/m and

ε = 5.5.

Within the temperature range considered here, the variation in the resonance

frequency ω0 is fairly small. Therefore, for simplicity, we just model it as

a change in the gyromagnetic ratio γ. Thus, at a temperature of 0.06TN,

we have γ/2πc = 0.928 cm−1/T, corresponding to a resonance frequency of

ω0/2πc = 8.67 cm−1, whereas at a temperature of 0.42TN we have γ/2πc = 0.877

cm−1/T, corresponding to a resonance frequency of ω0/2πc = 8.19 cm−1. The

corresponding damping parameters used here are [66] Γ/ω0 = 8× 10−5 at 0.06TN

and Γ/ω0 = 6.5× 10−4 at 0.42TN.
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Chapter D

On the Intensity profile Claculations

In order to analyse the behaviour of electromagnetic waves propagating or (and)

reflecting through an antiferromagnetic crystal it is useful to look at the behaviour

of a finite beam. We construct a Gaussian beam incident upon an antiferromag-

netic surface, either semi-infinite crystal or finite slab, using analytical solutions

of the electric field inside and outside the material. By studying the distribution

of the time-averaged flow on the interface where the reflected Gaussian beam

emerges, we can describe quantitatively the amount of lateral displacement of the

beam position. using the same approach, we can also determine the behaviour of

the propagating wave, which may be negatively refracted.

D.1 Semi-infinite crystal

In the case of reflection of a finite beam, we can base our analysis on plane wave

reflection by considering such a beam as a sum of plane waves. In this approach,

we consider the electric field (directed along y) associated with the incident beam

as a Fourier sum of plane waves in the form

Ei(x, z) =
∫ k0

−k0

ψ(kx)ei(kxx+k1zz) dkx, (D.1)

where k0 = ω/c, kx is the in-plane component of the wavevector associated with

a particular plane wave and ψ(kx) is the Gaussian spectrum which carries the

information on the shape of the beam centered at x = 0 and z = 0 and is given
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by [95, 45, 49]

ψ(kx) = −
g

2 cos θ1
√

π
exp

[
−g2(kx − k0 sin θ1)

2

4 cos2 θ1

]
. (D.2)

Here 2g represents the beam width at its waist and θ1 the incident angle of the

central plane wave.

The electric field distribution the incident beam at the surface, which we define

to be at z = 0, is given by

Ei(x, 0) =
∫ +k0

−k0

ψ(kx)ekxx dkx, (D.3)

and the electric field distribution of the corresponding reflected beam at the

surface is

Er(x, 0) =
∫ +k0

−k0

r(kx)ψ(kx)eikxx dkx. (D.4)

r(kx) represents the complex reflection coefficient, which we can represent as

r(kx) = ρ(kx)eiφ(kx), (D.5)

where ρ(kx) is the reflection amplitude and φ(kx) is the associated phase change

on reflection.

D.2 Finite slab

When travelling through a slab as proposed in Chapter 5, the fields have to be

separated for each of the three distinct layers n, and can be represented as

Ety =
∫ ∞

−∞
Ent(kx)eiknzzeikxxdkx, (D.6)

Ery =
∫ ∞

−∞
Enr(kx)e−iknzzeikxxdkx, (D.7)

The coefficients Ent and Enr are for radiation propagating in the direction of

increasing and decreasing z respectively. In the first layer (z < 0 and n = 1),
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which is the layer at which the radiation is incident we have

E1i = ψ(kx) (D.8)

and

E1i = r(kx)ψ(kx) (D.9)

where r(kx) is given by Eq. (B.12).

In addition, there is no propagation in the negative z direction in the final layer,

so we can make

E3t = t(kx)ψ(kx), (D.10)

where t(kx) is given by Eq. (B.13).

E3r = 0 (D.11)

The other coefficients for n = 2 are obtained using standard transfer matrix

techniques in a manner as described in Chapter A.

When simulating a Gaussian beam travelling through an antiferromagnetic slab

we simply replace ψ(kx) by the one given by Eq. (3.11).

D.2.1 Line point source

In order to model focusing in an antiferromagnet as shown in Chapter 5 a source

radiating in all directions in the xz plane must be used. In order to achieve this,

we consider an oscillating line of electric current I directed along the y axis placed

at x = 0 and z = 0. The analysis is essentially the same as that used for the

Gaussian beam as described previously, but with ψ(kx) now given by

ψ(kx) =
ωµ0 I
4πk1z

. (D.12)
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D.2.2 Goos-Hänchen shift on reflection of a finite beam

In the case of reflection of a finite beam, we can still base our analysis on plane

wave reflection by considering such a beam as a sum of plane waves. Such a plane

wave spectrum approach has been usefully applied to analyzing Goos-Hänchen

shifts by McGuirk and Carniglia [22]. Here we summarize the resulting theory

for application to the present case.

In this approach, we consider the electric field (directed along y) associated with

the incident beam as a Fourier sum of plane waves in the form

Ei(x, z) =
∫ k0

−k0

ψ(kx)ei(kxx+k1zz) dkx, (D.13)

where kx is the in-plane component of the wavevector associated with a particular

plane wave and ψ(kx) is a distribution function representing the shape of the

beam. The electric field distribution the incident beam at the surface, which we

define to be at z = 0, is given by

Ei(x, 0) =
∫ +k0

−k0

ψ(kx)ekxx dkx, (D.14)

and the electric field distribution of the corresponding reflected beam at the

surface is

Er(x, 0) =
∫ +k0

−k0

r(kx)ψ(kx)eikxx dkx. (D.15)

r(kx) represents the complex reflection coefficient, which we can represent as

r(kx) = ρ(kx)eiφ(kx), (D.16)

where ρ(kx) is the reflection amplitude and φ(kx) is the associated phase change

on reflection. If this phase change varies with kx, interference between the

reflected plane waves will be different from that for the incident waves, leading to

a change in the reflected beam profile. This typically manifests itself as a lateral

shift of the reflected beam [29, 22, 21] associated with derivative of φ(kx). To see

this, consider a wide beam. In this case, kx assumes a narrow range of values

centred around kx = kx0, where kx0 = k0 sin θ1, the angle θ1 being the effective
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incident angle of the overall beam. If we now expand ρ and φ as a Taylor series

around kx = kx0, Eq. (D.15) can be approximated to

Er(x) = r(kx0)
∫ +k0

−k0

ψ(kx)exp

[
kx

(
x +

dφ

dkx

∣∣∣∣
kx=kx0

)]
dkx, (D.17)

where r(kx0) is the reflection coefficient of a plane wave whose angle of incidence

is θ1. The integral representing the profile of the reflected beam in Eq. (D.17)

is the same as that for the incident beam in Eq. (D.14) except that x has been

replaced by x + D. Thus the reflected beam has, in effect, been shifted along the

surface by a distance D, given by

D = − dφ

dkx

∣∣∣∣
kx=kx0

. (D.18)





Chapter E
On the Power Flow

Electromagnetic waves propagate through a given medium as a combination

of interpenetrating electric and magnetic fields with similar energies. The flux

of electromagnetic power is therefore calculated as a combination of both these

fields and can be described by the Poynting vector equation

S = E×H, (E.1)

where E and H are the electric and magnetic fields respectively.

The Poynting vector gives a variety of information about the behaviour of propa-

gating electromagnetic waves including the direction of propagation. Throughout

this work, it is considered plane waves transporting energy so that the instanta-

neous value of the power flow is given by the time averaged Poynting vector 〈S〉

of S at a given time.

In order to analyse the behaviour of propagating waves at an interface between

air and an antiferromagnetic crystal is therefore necessary to solve Eq. (E.1) for

both media. It is useful to start by doing the cross product

E×H =

∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 Ey 0

Hy 0 Hz

∣∣∣∣∣∣∣∣∣ . (E.2)

This yields

S = îEyHz − k̂EyHx (E.3)

with components

115



Chapter 7: On the Power Flow 116

Sx = EyHz (E.4) Sz = −EyHx. (E.5)
Inside the antiferromagnet, the components of H have to be replaced as to include

the components of the dynamic permeability tensor. These components have

been derived in Apendix A are give by Eqs. (A.12) and (A.13), in the general case

where an external applied field B0 is considered, and the final components for

the time averaged power flow are given by

〈S2x〉 =
|Ey|2

2ωµ0
Re
(

kxµxx − k2zµxz

µxxµzz + µ2
xz

)
, (E.6)

〈S2y〉 = 0, (E.7)

〈S2z〉 =
|Ey|2

2ωµ0
Re
(

k2zµzz + kxµxz

µxxµzz + µ2
xz

)
(E.8)



Bibliography

[1] S. L. Chuang. Physics of Photonic Devices, 2nd Edition. Springer-Verlag, New

Jersey, US, 2009.

[2] Eugene Hecht. Optics. Addison-Wesley, Reading, Massachussetts, second

edition, 1987.

[3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz.

Composite medium with simultaneously negative permeability and permit-

tivity. Phys. Rev. Lett., 84:4184, 2000.

[4] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of a

negative index of refraction. Science, 292:77–79, apr 2001.

[5] Vladimir M. Shalaev, Wenshan Cai, Uday K. Chettiar, Hsiao-Kuan Yuan, An-

drey K. Sarychev, Vladimir P. Drachev, and Alexander V. Kildishev. Negative

index of refraction in optical metamaterials. Opt. Lett., 30(24):3356–3358, Dec

2005.

[6] Vladimir M. Shalaev. Optical negative-index metamaterials. Nature Photonics,

1(1):41–48, JAN 2007.

[7] O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades. Periodically loaded

transmission line with effective negative refractive index and negative group

velocity. IEEE Transactions on Antennas and Propagation, 51(10):2619–2625, Oct

2003.

[8] V. G. Veselago. The electrodynamics of substances with simultaneously

negative values of ε and µ. Sov. Phys. Usp., 10(4):509–514, 1968.

[9] Michio Kaku. Physics of the Impossible: A scientific Exploration Into the World

of Phasers, Force Fields, Teleportation and Time Travel. Doubleday Publishing,

London, parallel worlds edition, 2008.

117



Chapter 7: BIBLIOGRAPHY 118

[10] WenXuan Tang, ZhongLei Mei, and TieJun Cui. Theory, experiment and

applications of metamaterials. Science China Physics, Mechanics & Astronomy,

58(12):1–11, 2015.

[11] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and

D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies.

Science, 314(5801):977–980, 2006.

[12] Y. Zhou, X. Y. Chen, Y. H. Fu, G. Vienne, A. I. Kuznetsov, and B. Luk’yanchuk.

Fabrication of large-area 3d optical fishnet metamaterial by laser interference

lithography. Applied Physics Letters, 103(12), 2013.

[13] Z. Duan, F. Wang, X. Tang, Y. Wang, Y. Gong, and M. Chen. Overview of

vacuum electron devices for biomedical applications. In RF and Wireless

Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2015 IEEE

MTT-S 2015 International Microwave Workshop Series on, pages 156–157, Sept

2015.

[14] Prashant Shekhar, Jonathan Atkinson, and Zubin Jacob. Hyperbolic meta-

materials: fundamentals and applications. Nano Convergence, 1(1):1–17, 2014.

[15] Anthony J. Hoffman, Leonid Alekseyev, Scott S. Howard, Kale J. Franz, Dan

Wasserman, Viktor A. Podolskiy, Evgenii E. Narimanov, Deborah L. Sivco,

and Claire Gmachl. Negative refraction in semiconductor metamaterials.

Nature Materials, 6(12):946–950, DEC 2007.

[16] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar. Hyperbolic metamaterials.

Nat Photon, 7:948–957, Nov 2013.

[17] David R. Smith and David Schurig. Electromagnetic wave propagation in

media with indefinite permittivity and permeability tensors. Phys. Rev. Lett.,

90(7):077405, feb 2003.

[18] Lorenzo Ferrari, Chihhui Wu, Dominic Lepage, Xiang Zhang, and Zhaowei

Liu. Hyperbolic metamaterials and their applications. Progress in Quantum

Electronics, 40:1 – 40, 2015.



Chapter 7: BIBLIOGRAPHY 119

[19] David R. Smith, David Schurig, Marshall Rosenbluth, Sheldon Schultz,

S. Anantha Ramakrishna, and John B. Pendry. Limitations on subdiffraction

imaging with a negative refractive index slab. Appl. Phys. Lett., 82(10):1506–

1508, mar 2003.

[20] F. Goos and H. Hänchen. Ein neuer und fundamentaler versuch zur totalre-

flexion. Ann. Physik, 436(6):333–346, 1947.

[21] K. Artmann. Berechnung der seitenversetzung des totalrelektierten strahles.

Ann. Physik, 437:87–102, 1948.

[22] M. McGuirk and C. K. Carniglia. An angular spectrum representation

approach to the Goos-Hänchen shift. J. Opt. Soc. Am., 67(1):103–107, jan 1977.

[23] Walter J. Wild and C. Lee Giles. Goos-Hänchen shifts from absorbing media.

Phys. Rev. A, 25(4):2099–2101, apr 1982.

[24] P. T. Leung, Z. W. Chen, and H.-P. Chiang. Large negative Goos-Hänchen

shift at metal surfaces. Opt. Commun., 276(2):206–208, aug 2007.

[25] M. Merano, A. Aiello, G. W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P.

Woerdman. Observation of Goos-Hänchen shifts in metallic reflection. Opt.

Express, 15(24):15928, 2007.

[26] T. Tamir and H. L. Bertoni. Lateral displacement of optical beams at mul-

tilayered and periodic structures. J. Opt. Soc. Am., 61(10):1397–1413, Oct

1971.
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[41] R. Rodrigues da Silva, R. Macêdo da Silva, T. Dumelow, J. A. P. da Costa,

S. B. Honorato, and A. P. Ayala. Using phonon resonances as a route to

all-angle negative refraction in the far-infrared region: The case of crystal

quartz. Phys. Rev. Lett., 105(16):163903, Oct 2010.
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