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Abstract

In nature, the dynamic range of a scene can be on the ordedd 1@ from bright
to dark areas. The human eye is capable of capturing imagasaowide dynamic
range of illumination while CMOS image sensors have limitedity to capture dy-
namic range available in nature. A Wide dynamic range (WDR)pina captured and
displayed on low dynamic range (LDR) conventional media bgcanique called tone
mapping (TM). It is reported that most of the tone mappingrajfmes have a monoton-
ically increasing transduction function. A new CMOS pixelpi®posed that aims to
capture and display the wide dynamic range of illuminatibpsusing the tone map-
ping monotonically increasing reference function. Difiet tone mapping functions
like Reinhard photographic operator, Drago operator, egference function are pro-
posed and discussed. The tone mapping monotonically isiageéunction enables new

pixel to capture WDR up to 6 decades of intensity.

A pixel model of different tone mapping operators is devebbpvith parameters that
characterise the pixel response. It is proposed that the pimdel of certain tone map-
ping operators exists. In addition, the parameters extracbutine is also discussed.
The pixel model response is compared with the simulatedrespto check its validity.
The model error is presented and suggests that the devehopeel fits well with the
simulation data. Fixed pattern noise (FPN) limits the paniance of image sensors, and
it is mainly due the variations between the responses oviahaal pixels within an ar-
ray of pixels. A simple procedure has been adapted to redabeif-which parametric
response of the pixel is used, with FPN modeled as variatrotige individual parame-
ters. The parameters of each pixel are measured, recordati@mused to correct their

response.
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Chapter 1

Introduction

1.1 Background

Electronic imaging devices have experienced rapid growttheir usage in the last
decade, and these electronic devices replace traditiomaging techniques of film-

based cameras. Traditional imaging techniques of fiimdbase rarely used in these
times. Although electronic imaging devices have repladetiiiased cameras, the hu-
man eye remains the ultimate standard of comparison, aagtiynoutperforms the best

cameras in many respects [1].

Electronic imaging devices may be divided into two categgrcharge coupled device
(CCD) sensor and complimentary metal-oxide semiconductor@SMsensor. These
imaging devices are mostly used in mobile phones, still atlo/cameras, automobiles,
security, and biometrics. The earlier digital cameras weostly made from CCD sen-
sor technology. Charged coupled devices, having benefited flonger development

and maturation, yield superior quality color images, higsignal to noise ratios, high
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photosensitive area, and low readout noise [2]. Howevesrarlectronic manufactur-
ing of CCD sensor is expensive and hence the cost of these iraagers was typically
high. Besides, these also suffered from high power consoemptith no functional

integration to other devices.

On the other hand, CMOS image sensors were first introducdeilow-end applica-
tion like toys and mobile phones. Also, CMOS image devicesheftom low power
consumption, lower fabrication costs, ability to integratith other circuits blocks on a
single chip and faster readout time. These days, CMOS sehawesreplaced CCD in
the most low end as well as professional cameras. Accordif@ Insights 2015 O-S-D
Report, a market analysis and forecast for optoelectro8essors/Actuators, and Dis-
cretes, CMOS image sensor sales are climbing 15% in 2015¢b egaall-time high of
$10.1 billion after a strong 19% increase in 2014, and 4% grow@0ih3 that primarily
resulted from steep price erosion and inventory correstinrcamera phones. CMOS
image sensor unit shipments are now projected to grow 19%91% 20 a record-high
$3.7 billion after rising 20% in 2014 and 2013. Overall, total CE@®nage sensor sales
are projected to grow by 11% in the five-year forecast period to reach $15 billion in

2019 as shown in Figutel.1.

Figure 1.1 shows the strong growth in the usage of CMOS imagsose. CMOS image
sensors sales were mainly driven by the camera integratgda a mobile phone. Be-
sides, global shutter and BSI (Back Side Illumination) tedbgy have enabled CMOS
image sensors to compete with CCD sensors on high-end deilkeeR$LR (Digital

Single Lens Reflex) and video cameras while keeping its toadit advantages like low

power consumption, high resolution, and high integrat®jn [

limage is taken from IC Insights 2015 O-S-D Report, A Marketlysis and Forecast for Optoelec-
tronic, Sensors/Actuators, and Discrete.
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CMOS Image Sensor Growth
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Figure 1.1: CMOS image sensors yearly growth [Data is takem fiC insights].

1.2 Image Sensor Designs

Electronics image sensors can be divided into two main categy charge coupled
device (CCD) sensor and complimentary metal-oxide semictndCMOS) sensor.
The common element in these image sensors are photorezdiggphotodiode and
phototransistor that interacts with the light energy relddrom an object in a scene.
The basic function of the photoreceptor are charge captemergted from capture of
photons and later, this charge is transferred and convirted desirable quantity such

as a voltage or current for further processing.

1.2.1 Charge Couple Devices

Figure 1.2(a) illustrates the basic structure of interlirsnsfer CCD pixel. The CCD
sensor has three basic functions: a) charge collectiorhdrge transfer and c) charge

conversion into a measurable voltage. During the first stamgeming light strikes the
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photosensitive area of each pixel. These photons gendeatgom-hole pairs in the
depletion region of the CCD structure. After some time, durggdout process, every
pixel charge is transferred through vertical shift regst® an amplifier where it is
converted to a voltage, buffered, and sent off-chip as alogrsignal. The typical CCD
sensor is composed of a pixel arranged in vertical and hotdshift registers as shown

in Figure 1.2(b).

The main disadvantages of CCD sensors are that their falomcagiquite complex,
they require more electronics circuit outside sensor, dsa suffer from high power
consumption that leads to heat issues in the camera. Theeaterg issue impacts the

image quality.

Verticil shift registers

Pixels — > 7% | > | s | |
[ o s = -
- | i - |
V+
Silicon Dioxide /Gate | - - |
N s W
- Nt pe channel -.» -_»
= o
Region -_> -_> -_> -_.
P-type silicon T 7 T T
| -
V- Horizontal shift register = Output
() (b)

Figure 1.2: (a) The typical CCD pixel structure. (b) The basiacture of interline
CCD sensor.
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1.2.2 CMOS Devices

A typical CMOS image sensor pixel consists of a photodetectsmally photodiode
and a couple of transistors and capacitors. When light fallthe photodiode, charge
carriers are produced which are used to produce the outftageoor current signal. A
typical CMOS 3 transistor linear pixel is shown in Figure 1M1, M2 andM3 are all
NMOS devices. Transistavil, M2 andM3 are reset, source follower and row select
switch respectivelyPD is a photodiode which converts input light into charge. Pixe
operation starts with the high reset voltage at the gateamfststorM1. Due to high
voltage atM1, theVyq — VW will be transferred to nod@&l. Light falling on the photo-
diode then generates charge at ndfevhich acts to reduce the voltage being held on
the diode capacitance. The voltage at ndlis readout using the source followl2

and select switcivi 3.

Figure 1.3(b) shows the typical CMOS image sensor array.drathay, charge voltage
signals are read out one row at a time in a manner similar todora access memory
using row and column select circuits [4]. The random acoeadaut provides the high-
speed readout at low power consumption. However, readaltqeanprises of several
devices that introduce temporal and fixed pattern noisedipgitades the image quality

of CMOS image sensor.

1.3 Wide Dynamic Range Image Sensor

Nature have a dynamic range of light intensities up to 6 desadypical CMOS APS
(active pixel sensor) and CCD have limited ability to captheelight available in nature.

The dynamic range of CMOS sensor is the ratio between the nuaxiend minimum
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W vdd
Vrst
—| M1

N M2 CMOS Pixel
@
PD e
o
]
= RS a

_| M3
Column Amplifier
— Column ADC — Output

(@) (b)

Figure 1.3: (a)Schematic of a typical CMOS linear pixel. (b) G$lpixel array.

luminance in a scene and is limited by the semiconductorcéewsed to capture the
image [5]. This semiconductor device converts input ligid ia charge that is read out
and digitised to store the image. High input light generatésrge amount of charge
which saturates the pixel. On the other hand, very low inght lgenerates a low charge
that is very difficult to read out faithfully. Typical CMOS s&ors using the basic APS

have a dynamic range betweertd8Xo 60dB.

Several different approaches and CMOS circuits have begropea to extend the dy-
namic range of CMOS pixels. These include logarithmic semngsing the weak inver-
sion region of operation of a MOS transistor [6], well capaeidjustment [7], thresh-
old comparison, integration time control [8], neuromorphapproaches [9] and linear-
logarithmic pixel [10]. More detailed discussion aboutséechniques and circuits to

enhance the wide dynamic range of CMOS sensors are presaritetriext section.
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1.3.1 Well Capacity Adjustment Sensors

One way to increase the dynamic range of image sensor is smeatthe well capac-
ity by changing the reset signal during the integrationgekriDecker and co-workers
have proposed the similar technique to change the resetlsiga rate increasing with

time [7]. This change in reset voltage changes the pixelgehas shown in Figure 1.4.

By increasing the pixel operating voltage, one can also atlpaswell capacity. How-

ever, this will lead to increasing power consumption. It baen noted that with the
power supply constant, any charge generated in the pixaligdtsaturation often spills.
Controlling this spilling charge operation can be used taaeck the dynamic range of
the pixel. One can also use the pinned photodiode in APSegiate the spilled charge

and photodiode charge to extract the input light on the gikg].

A A
. J o
(D) A =
2 A E
.x’ O

~Highl

Lowl....

___________
Time Time

Figure 1.4: A steeped reset signal and corresponding cfardgnamic range enhance-
ment for well capacity adjustment sensors.
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1.3.2 Logarithmic Sensors

Logarithmic pixel is another technique to capture wide dgitarange. Logarithmic
pixel is similar to active pixel sensor except NMOS resatsistor operating in a weak
inversion region with its gate shortened to the drain as showFigure 1.5. Reset
NMOS transistor in weak inversion region act as a logarithamplifier, which com-

presses the input photocurrent and converts into logaitthioitage.

A logarithmic pixel can capture wide dynamic range more thaecades of light inten-
sity. The main disadvantage of logarithmic pixels is higkedpattern noise. They are
highly susceptible to fixed pattern noise, as any double Bagpperation is difficult

to undertake.

Vreset vdd
M1
N M2

PD

E o

Figure 1.5: A schematic of typical logarithmic pixel.
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1.3.3 Threshold Comparing Sensors

Wide dynamic range can be enhanced by using threshold comgparels. Threshold
pixels integrate the photocurrent till the output reaché&s@wvn threshold value [12].
For example, Hyneceks pixel provides a provision for rasgtthe pixel only when
the accumulated charge exceeds a certain threshold valtebignoring the reset at all
other instances [12]. Later, the number of resets can bedstarlocal memory inside
each pixel. Due to a large number of compacters and memaosgkeieach pixel reduce

the pixel fill factor and effect its quantum efficiency.

In an another approach, Anaxagoras and Allinson have pegpas active pixel which
resets every time it saturates [13]. The number of saturai®measured on a counter.
This countin combination with the final pixel output is use@ktend the dynamic range
of the pixel. The main drawback of threshold comparing xsllow light sensitivity

due to a large pixel size and a small area reserved for ligittica.

1.3.4 Integration Time Control Sensors

Integration time control technique can be used to captude wynamic range informa-
tion. The integration time can be controlled by locally atlggpthe integration time for
each pixel or group of pixels [14,15]. This may be achieveddytinuously comparing
the pixel output to one or many references and using the bofpromparison to gen-
erate reset pulses or a few bits of flags to be stored in a mefhb}yIntegration time

control sensors have high fixed pattern noise due to the niénad a circuit element

as well as integration time mismatch between pixels.
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1.3.5 Threshold Comparing and Integration Time Control Pix-

els

By combining the two approaches of threshold comparing ategjration time control,
provides another design to capture the dynamic range irafoom [10]. Figure 1.6
shows the signal flow diagram of an integration pixel. In aidgplinear pixel, high
photocurrent; shown by dashed lines saturates the pixel that leads to ipledenwide
dynamic range capture. However, in an integration pixelp@atiouously increasing
reference signal is compared to the integrated signal ste®inl,, 13 in Figure 1.6,
and the integration is stopped when the two signals are edila voltage at which
these two signals are equal is recorded and used as pixaltoutignce, pixel output

depends on the increasing reference vol¥ge

Vref
""" ’\'::.__ 13 !
' ~’~fg'~ = %\/3
\‘|1/ S A V2
. . S a
L V1

Vpixel
4

-
.
I ga——

10 t1 t2 t3 t4
Time

Figure 1.6: Signal flow diagram in an integration pixel.
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1.4 A New Wide Dynamic Range Pixel Design

A new wide dynamic range integration pixel which uses NMQ#hsistors as shown
in Figure 1.7 is proposed which aims to capture the wide dyoaamge of intensities
available in nature otherwise lost in active pixel sensor.R\Mapture can be performed
by introducing a monotonically increasing reference si§fa. It is possible to capture
high intensity information by comparing the integratediage at nodé&\ to a reference
voltageVet. The pixel output follows a known reference signal, whickaspled and
held at a value when the photo-generated signal on the diedentes lower than the
reference voltage. The potential at which these two sigm@&®qual is recorded and is
used as the pixel's response [16]. In the pixdll, M2, M3 andM4 are reset device,

reference voltage switch, source follower and row seledicéw

The pixel operation starts by resetting the transidtidr, by applying the high reset
signal Vst at the gate of transistdvil. Due to the high voltage at the gate Mfl,
voltageVyq — Vih is transferred to devicel1 source nod®l. The high voltage placed on
the capacitance of node is discharged by the photo-generated charge when transisto
M1 is off, by lowering its gate voltage. A monotonically inasing reference function
Vet IS applied to transistdvl2 drain. At the start of integration, the voltages is lower
than node voltag®l and hence transistdi2 is on. However, discharging node voltage
atN and monotonically increasinge leads to transistavi2 being switched off. After
this time, the gate voltage &3 is held by its gate capacitance until its readout and a

pixel is reset. The output voltage of the pixel depends orsitpealVies andlpp.

Hence, a novel NMOS pixel with reference switch can captudeewange of light in-
tensities by using the monotonically increasing refereinicetion. In this thesis, we

proposed different reference functions extracted frone tm@apping operators.
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Figure 1.7: (a) High dynamic range pixel schematic with atdjble reference function.
(b) Operation of the wide dynamic range pixel.

1.4.1 Tone mapping

In a real world, the dynamic range of a scene can be on the ofdéf to 10° from light
to dark areas. However, display devices available to usrzable to produce such wide
dynamic range that nature has. In order to obtain realistages on display devices, it
is necessary for the images to be a faithful representafitineoscene they depict. In
addition, for good and realistic image reproduction on ldigmevices, it is also nec-
essary to take into account the way HVS (Human Vision Systgmeyates. To solve
the problem of displaying wide dynamic range content on lgwaanic range displays,
computational algorithms known as tone mapping operatave been proposed. Tone
mapping is a technique that aims to match the dynamic rang¢éliR content with the
display device dynamic range. Tone mapping compressespanes the luminance to
fit WDR content on LDR (Low Dynamic Range) display. The goal afdanapping

can be different and depends on the particular applicatlorsome cases producing
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just 'nice looking’ image is the main goal while other applions might emphasize
reproducing as much detail as possible, or might maximieeititage contrast [17].
Figure 1.8 shows the wide dynamic range image and processxgeiafter tone map-
ping. It can be noted that tone mapping operation enhaneedvérall image quality

and contrast. In addition, image detail in dark areas is msible after tone mapping.

Tone mapping operators can be divided into four groupsdalle
e Global operators
e Local operators

e Frequency operators

e Segmentation operators

The detail discussion about these operators will be predeintnext chapter. Global
tone mapping operators are used for wide dynamic range reaptul display because
they are computationally efficient and can be executed irtirea [17], faster than other

operators.

1.4.2 Tone mapping on an integrating CMOS pixel

As discussed earlier, a CMOS image sensor can capture a widenilyrange using the
monotonically increasing reference voltage. Most of theetmapping operators have
monotonically increasing transduction function. Henoagtmapping transfer function
for CMOS pixel has been proposed which aims to perform tonepimgpat the image

acquisition stage, thereby enabling direct display of HDfages. Figure 1.9 presents
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Figure 1.8: (a) A wide dynamic range image. (b) Same imager &ine mapping
operation.

the two reference function extracted from Drago and Exptaktone mapping opera-
tors for CMOS image sensor. Tone mapping operation using a CM&$in practice

performs two operations; one is to capture wide dynamicearsing a reference voltage
and second is to enable direct display of an image on LDRalysj¢vices. This reduces
the two step process of typical cameras, where the imagetsrea in one stage and

tone mapping is then applied to make this image displayablisplay devices.

Different global tone mapping reference functions will begented in the chapter 3 with
an aim to capture and display wide dynamic range scenes, YWBdR pixel simulation
with different reference functions in Cadence using the AM8stria Micro Systems)

process technology is also presented in chapter 3.

1.5 Fixed Pattern Noise

A WDR CMOS image sensor has different kinds of noise which idetumodel error,

fixed pattern noise (FPN), and temporal noise. Model errgirmates due to the differ-
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Figure 1.9: (a) Drago operator reference function. (b) Exgmtial operator reference
function.

ence between pixel simulated and pixel model response. [eRBrgtes due to the pixel
mismatch in an array of image sensor. There is a need to geagbixel model with
different parameters that characterize the pixel respbag@e analysing model error.
A new wide dynamic range pixel parameter model for Reinhamtpk and complex

operators is developed [17]. The model response for Reirgianple pixel is given as

b(x+d)

Y= A I ex+ d)

(1.1)
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wherey is pixel output,x is input photocurrenta is pixel offset voltageb andc rep-
resents the pixel gain andlis the dark current. Similarly, other mapping operators
pixel model is also developed and presented in later cheptarameters need to be
extracted to find the model response and model error. Aftdinfinthe required param-
eters, Reinhard model response can be calculated by irgsérgrextracted parameters

into equation 1.1.

FPN severely degrades the quality of an image taken by aneisagsor. Figure 1.10
shows the image with and without fixed pattern noise. The anagh FPN exhibits

the salt and pepper pattern that distorts the image qudlte variations between re-
sponses of individual pixels generate FPN. These varistgsa caused by the device
and interconnect parameter mismatches in an individu&l piPN can be quantified
by making the human visual system as a standard. Fixed paidése can be described
as a contrast threshold error, and 1% error value becomédxettattempt at matching

FPN error to the sensitivity of the human visual system.

In this thesis, we present the new FPN correction technigughich parametric re-
sponse of the pixel is used, with FPN modeled as variationisarnndividual parame-
ters. The parameters of each pixel are measured, recordati@mused to correct their
response. We simulated the Reinhard pixel using Monte Carlolation and extracted
the parameters for 1000 pixels. Pixel parameters could bac&d using function min-
imization or curve fit technique. However, this is too comxie be applied in real time
and will require several measurements from the pixel. Tphe#t approach of double
sampling to correct fixed pattern noise is difficult to impkarhin this kind of pixel.
Hence, parameters are used to correct fixed pattern noisedd&thil discussion about

FPN correction is presented in later chapters.
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Figure 1.10: (a) Image without fixed pattern noise. (b) Imagh fixed pattern noise.

1.6 Thesis Objectives

This thesis is mainly concerned with the capture and dispfayide dynamic range
scenes available in nature. CMOS based typical sensor abdeutoacapture the wide
dynamic range. Tone mapping technique is used to enableafitare and direct dis-
play of wide dynamic range scenes simultaneously. The insglgorithmically trans-

formed by tone mapping operators to fit the limited dynamitgea In this thesis, a
new pixel is proposed which aims to capture wide dynamic easgenes. The de-
tail literature review on different tone mapping operatisrpresented with the Matlab
simulations. In addition, the comparison between differeapping operators through
Matlab simulations are also presented. Reference voltagesx&racted from different

tone mapping operators and applied on a pixel for wide dyoaange capture. The
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derivation of 6 tone mapping operator reference functiengroposed. To verify the
performance of these tone mapping reference function, iadlypixel is simulated us-
ing a 035um CMOS process from Austria Microsystems. Simulation reshitsv that

the pixel response can capture 6 decades of light intensity.

This thesis also deals with the WDR pixel model. A pixel modé&hwvdifferent pa-
rameters that characterizes the pixel response is preseimeddition, a model error
between pixel simulation and model response is also comgldd-ixed pattern noise
arises due to variations in characteristics of individuaéls within an array of a pixel.
This thesis presents the simple technique to correct FPNiohaparametric response
of the pixel is used, with FPN modeled as variations in théviddal parameters. The

parameters of each pixel are measured, recorded and thettous@rect their response.

1.7 Thesis Organisation

The rest of thesis organisation is given as follows. Chaptistribes the introduction
and background of the tone mapping technique. A detaileclidsson about different
global operators is also presented in this chapter. A coisgaof results for different
mapping operators using Matlab routine are discussed. Aallabutine simulates
each mapping operator transfer function to check the quatitl faithfulness of output
image after the tone mapping operation. Two input imagek different background
illumination conditions are selected for Matlab simulatioA qualitative criteria are

used to assess the image quality that is simple and strarglatfd to implement.

Chapter 3 presents the wide dynamic range capture and digplag tone mapping

operation on a pixel. A new pixel is presented which, aimsdptare wide dynamic
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available in nature. Different reference functions areaoted from global tone map-
ping operators and applied on a CMOS pixel to obtain wide dyaaamge information.
Tone mapping operation on a CMOS pixel in practice perforntsdperations; one is
to capture wide dynamic range using reference voltage arwhsdeis to enable direct
display of an image on low dynamic range display devices. Wi@®I gimulation re-
sults are presented by applying a reference function. Tédtseshow the pixel ability

to capture more than 6 decades of dynamic range.

In chapter 4, a pixel model of the Reinhard operator is deeslapith different param-
eters that characterise the pixel response. In additiamnpater extraction routine is
also discussed. Pixel model response is compared withrtihdatied response to check
its validity. Model error is presented and suggests thaeldg@ed model fits well with
the simulation data. This chapter also presents the fixedrpatoise investigation and
correction technique. The variations between individugtlresponse within an array
of pixels cause FPN generation. A simple procedure is addapteeduce FPN in which
parametric response of pixel is used, with FPN modeled aati@rs in the individual
parameters. The response of 1000 pixel is obtained usingeMdarlo simulations in
Cadence circuit simulator. Parameters values are meassirggithe response of 1000

pixels and then used to correct the fixed pattern noise.

Chapter 5 presents the pixel model and model error of resteofgtbbal operators.
These includes Drago operator, Exponential, Schlick,évliTumblin and Rushmeier,
and logarithmic pixel. Chapter 6 discusses the conclusionfature work. Chapter 7

presents an appendix.



20

Chapter 2

Tone Mapping

2.1 Introduction

A number of industries including defence, night vision inmgg games and computer
graphics are demanding for more realistic images displayealcomputer that matches
the real scene as seen by the human visual system (HVS). legwea natural world,
there are a wide range of colors and intensities. In additiomappearance of a scene
depends upon the level of illumination. For example, scempgear more bright on a
sunny day, whereas the same scene appears dull during bighinance is the amount
of light that passes through or is emitted from a particuleifexce. The standard unit of
luminance is candela per square métal/n?). The dynamic range is the ratio between
the maximum and minimum luminance in a scene. The real wanhdproduce such a
wide dynamic range of illumination, for example, the sun@mmay be 100 million

times brighter than starlight [18].

However, display devices available in the market are unagbeoduce the image detalil
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Condition [llumination
Starlight 1073
Moonlight 101
Roomlight 107

Sunlight 10°

CRT monitors| 107

Table 2.1: Luminance levels for some common scenes

as seen by human eye. Tone mapping is the operation that @satoh dynamic range
of high dynamic range (HDR) content with the display deviceaiyic range. When the
dynamic range of the captured scene is smaller or largertiiaof the display device,

tone mapping expands or compresses the luminance resgg¢1i9].

Section 2.2 presents the background of a wide dynamic rahggemsities available

in nature and how the human eye perceives the light. Sect®uli2cusses the tone
mapping basic theory and operation. Section 2.4 presemtiiffierent global tone map-
ping operators. Section 2.5 presents the Matlab simulatisult to check the quality of

different mapping operators and with a conclusion beinggméd in section 2.6.

2.2 Background

The human eye can capture the light intensity of about fiversrdf magnitude simulta-
neously available in the real world as can be seen in Talile®gathers light onto pho-
toreceptors which then convert light into signals. Thegeals are then passed through
the optical nerve to the brain that processes these sigralsgng the perceived image
or percept [20]. The human eye has two types of photorecgptones and rods. The

cones are more sensitive at luminance betweertddy n? and 18cd/n? (daylight vi-
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sion). They are also responsible for the perception of highuency pattern and colors.
The rods are more sensitive at luminance betwee®dd) m? and 18cd/n? (night vi-
sion). The rods and cones also compress the incoming lighakand reduce dynamic

range by following sigmoid function [21],

R "

Rmax 1"+ 0" @D

whereR is the photoreceptor respond®yax is the maximum photoreceptor response
andl is the light intensity. The variables andn are the semi saturation constant and

the sensitivity control exponent [20] respectively.

The human visual system uses non-linear processing in thredbsigmoid function to
compress the dynamic range of an image. After compressigB, fidrms an image that
we call percept. Figure 2.1 shows an imhgehich is perceived by the human visual
system and the same image capture by the camera. It can bihnaekaman eye is able
to capture wide dynamic range of intensities available iturea If the scene dynamic
range is greater than the dynamic range of display deviee,iths called high dynamic
range scene. Some information will be lost in a scene if tlyh dynamic range scene
is displayed on a low dynamic range scene. A scene is said addye dynamic range
(LDR) when its dynamic range is lower than that of the outputinm®. In this case,
scene dynamic range has to be expanded to fit the output meljinamic range. If the
scene dynamic range and display device dynamic range istbemé is called standard

dynamic range scene [19].

There are a number of ways to capture HDR content includifigvace and hardware

techniques. However, HDR capture using hardware have soritations until recently.

limage is taken from http://www.morguefile.com/
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(b)

Figure 2.1: (a) Image perceived by the camera. (b) Imageeped by the human visual
system.

The most commonly used method to capture HDR image is takmglaple exposure
images of the same scene from the darkest to brightest asaag a standard cam-
era [20]. Each pixel in an image will be properly exposed oderexposed. HDR
image can be obtained by combining images with differenbexpe time. Some cam-
era manufactures like Canon, Nikon and Sony have launchedRz8meras with HDR

capturing features such as multiexposure capturing armh®aiic exposure merging.
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There are group of 360 degree panoramic cameras, which ttagapture full HDR
like SpheronCam HDR, Panoscan Mk-3 and Civetta 360 by Weiss AR lhage can

also be generated using computer graphics.

If one can capture the HDR content somehow, however to digpia HDR content
faithfully, HDR display device is needed. Typical displagvites like liquid crystal
displays have a standard dynamic range and can reproduaétatmoorders of magni-
tude of intensity variations. To overcome the limitatioishese Low Dynamic Range
(LDR) displays, some research, and industrial interest haea drawn to develop High
Dynamic Range (HDR) displays; however these have proven taher ensufficient or

costly [22].

2.3 Tone Mapping

In order to obtain realistic images on display devices, itasessary for the images to
be a faithful representation of the scene they depict. Intiadd for good and realistic
image reproduction on display devices, it is also necessatgke into account the
way HVS operates. The rods and cones compress the incongimgaind reduce the
dynamic range of the scene using the sigmoid function. alias a wide dynamic
range of illumination on the order of 100,000 to 1 sunlighst@adow. However, display
devices available to us are unable to produce such wide dgrrange that nature has.
Typical display devices can only produce an image of dynaamge of less than 100
to 1 [18] as an example of CRT monitors given in Tablé.2Hence, it is a problem
to reproduce high dynamic range scenes using media withlweited dynamic range

like CRT/LCD displays, hard-copy prints, and projectors. iday to solve the problem
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of displaying HDR images on LDR displays, computationabalipms known as tone

mapping operators have been proposed.

Scene

HVS

Tone Mapping

Figure 2.2: Tone Mapping problem: Faithful representatdbiiDR content on LDR
display device.

Tone mapping is the operation that matches the dynamic rahg®R content with
the display device dynamic range. When the dynamic rangeeotdiptured scene is
smaller or larger than that of the display device, tone magppxpands or compresses
the luminance, respectively [19]. On the display device,ithage should be a faithful
representation of the real image with some characterisfithe real image such as

contrast and details should be kept same or improved on $ipdagi

The purpose of applying tone mapping on an image can be@iffend depends on the

particular application. In some cases producing just 'o@king’ image is the main
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goal, while other applications might emphasize reprodyiesmimany details as possible,
or might maximize the image contrast [23]. However, them#diie goal of tone mapping
is to match the perception of tone mapped image with the redbvperception seen by
human visual system as can be seen in Figure 2.2. The tonamgaggerator (TMO)

f is used for tone mapping operation can be defined as [20]
f(l) : RW><h><C N DW><h><C (22)

Herel is an image,f is operator,w is width, h is height andc is number of color
bands which is 3 in RGB color space. The selection of a suitabke mapping operator
depends on a particular application and a type of displaycdg.CD, Plasma, CRT)

and its characteristics.

Tone mapping operators mainly classified into four grougsmyas

2.3.1 Global Operators

The same mapping function is applied to all pixels of the imailapping function
treats each pixel of the image independently. Global opesdake each pixel value and
a globally derived quantity such as maximum luminance, mum luminance and the
arithmetic average for the compression. Global operaters@mputationally efficient,
easy to implement and can be executed in real time. The mainbdck of global
operators is that they may not always preserve visibilitthg dynamic range of an
image is extremely high. In addition, since they make uselaba image statistics,

they are unable to maintain local contrast too [20].
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2.3.2 Local Operators

A local mapping operator function compress each pixel vateording to its luminance
values and set of neighboring pixels luminance values. Eleioc each pixel the com-
putation is adjusted according to an average over a locghberhood of pixels [18].
However, halos around edges can appear if neighbors wedhosén carefully. Halos
are sometimes desired when attention needs to be given tdieuts area but if the

phenomenon is uncontrolled it can produce unpleasant isf2gé.

2.3.3 Frequency Domain Operators

Frequency based operators have the same goal of presedgeg and local contrast as
local operators. However, this is achieved by computing@ftequency domain instead
of spatial [20]. Frequency Mapping operator is applied dolythe low frequencies

while high frequencies are kept same as they preserve findslet

2.3.4 Segmentation Operators

The image is divided into different uniform regions, a globepping operator is ap-

plied on each region and finally these are merged.

Global operators will be discussed in the next sections taideGlobal tone mapping
is selected for further research. Local, frequency and seggtion operators are out of

the scope of the thesis.
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2.4 Global Operators

Global operators compress each pixel with the same functiacompression curve
within an image. In addition, the tone mapping function tsezach pixel of the image
independently. These operators often use globally deiivedje statistics to reduce
the dynamic range of the image. Some common statistics axarma luminance,
minimum luminance, and geometric or arithmetic averageesl20]. The goal of
the global operator is to mimic the performance of HVS nowdirity in order to get a

visually more appealing image.

Global operators are computationally efficient and can lee@ed in real time, faster
than other operators. On the other hand, local tone mapiegators are computation-
ally more expensive. In order to get local contrast improuedal operators need to
be used along with global operators. Different global toregping operators will be

discussed in detail next.

2.4.1 Linear Scaling

A simple linear scaling is a straightforward mapping opatanput or world luminance
Lw(X,y) is multiplied by a constarg and output or display luminandg(x,y) is given
as,

Lg (Xv y) = el—W(Xv y) (23)

wheree is user controllable value. Whesn= ﬁ the scaling is called normaliza-

]
X

tion. A simple linear scaling is not an efficient tone mappapgrator and is unable to

compress the dynamic range of the scene.
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2.4.2 Logarithmic Mapping
Logarithmic mapping compress the HDR using a logarithm fiencand given as [24]

_ logio(1+Lw(x,y))
Ld (Xa y) - loglO(1+ Lmax)

(2.4)

whereLmax is maximum world luminance. For medium dynamic range imagem-
rithmic mapping produce good results and in fact be competitith more complex

operators [18].

2.4.3 Exponential Mapping

Exponential function compress the HDR luminance using Xiperential function [25],

and the operator is given as,

—Lw(x,y))

Lav

La(xy) = 1—exp( ) (2.5)

wherel ,y is the average world luminance. For medium dynamic ranggésaoga-
rithmic and exponential mapping produce very good resiiswever, both operators
struggles when compressing full HDR content [18]. For HDRteat compression,

other approaches may be suitable.

2.4.4 Drago Mapping Operator

Drago [26] presented a tone mapping operator that appliegarithmic mapping to
the input luminance. However, the base of the logarithm jesteld according to each

pixel's value. It was noted that logarithm with base 10 cossgrthe maximum high



2.4. Global Operators 30

luminance values while logarithm with base 2 gives good rasttand preserve details
in dark and medium luminance regions. By combining the twéediht logarithmic

bases, Drago presented a tone mapping operator given as,

Lamax!0910(1+ Lw(X,y
Ld(X7y) = e ! ( W< )) log10(p) (26)

100l0g10(1+ Lwmax) 10910[2+ S(M)W]

wmax

LamaxiS maximum display luminance with a value of T@n?. pis user controllable
value and has a value between 0.7 to 0.9 produces good r&sugther value ofp result
in less contrast and better compression, whereas smallexsvancrease the available

contrast [18].

2.4.5 Schlick Operator

Schlick operator based on rational functions providesgitdorward approach to tone

mapping as given as [27],

P Lw(X,y)

Lqg(X,y) = 2.7
) (P—1)Lw(X,Y) + Lmax @D

where p € [1, ) value ofp can be calculated as,
_ Lo Lwmax (2.8)

P= 2N mein

N is the number of different luminance levels of display devandLg is the lowest
luminance value of a monitor that can be perceived by the HW8.value ofp given in
Equation 2.8 corresponds a uniform quantization procesgeasame function is applied

to all pixels. A non uniform quantization process can be iggpby using spatially
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varying p’ given as,
Lwavg(X,Y)
\ meaX I.\Nm|n

wherek € [0,1]. Schlick operator produces reasonable good result. Hawieverder

p=p(l-—k+k (2.9)

to find the values of two parameters some experimentatiotdatt® be done.

2.4.6 Tumblin and Rushmeier Operator

The operator is inspired by the HVS and adopts Stevens wollkrightness [28, 29].

The operator is defined as

LW(X7 y) )a
Lwa

Y(Lwa)

y(Lda)

Ld (X7 y) = ml—da(

(2.10)
wherea =

LgaandL,y, are display and image adaptation luminance values respBcti he typical
value of display luminance is between 30 and dd)@r? for standard display device.

The gamma functiof(L) is human contrast sensitivity and given as,

2.665 for L > 100cd/n?
v(L) =
1.855+0.4log10(L+2.3x 10°5) otherwise

The termmis the world adaptation dependent term and its value is gagen
Yd—1
M = Crax

_ Y
1.855+ 0.4 log(Lga)

ywd (2.11)
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whereCpax is the maximum display contrast. This tone mapping oper@orpresses
HDR images, preserving brightness and producing plausddalts when calibrated

luminance values are available.

2.4.7 Miller Brightness Operator

Miller and colleagues [30] have presented a tone mappingatqethat improves the
brightness of the image before and after dynamic range tiethud he mapping opera-

tor is given as,

Q=kLb (2.12)

whereQ is the brightness ant, is the luminance. Miller experimented with three
different formulations for determining brightness valfresn luminance and found that
the one presented by Stevens [28] produces the most plaustullts. By fitting data

from Stevens work, Miller produced the valueskaindb as follows,

b =0.338.9-034
(2.13)

k = —1.5logi0Ly+ 6.1
Hence, the final relationship between brightn@sand luminance. is given as,

Q= (~15logsoLy +6.1) L9338 (2.14)

The operator is fast and simple to implement and produceadsitike results.
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2.4.8 Reinhard Mapping Operator

Photographers were often faced with the tone mapping pmableheir main goal is to
produce realistic renderings’ of captured scene in ordgyet a quality print on photo-
graphic papers. Ansel Adams [31] presented the Zone sygipmeach as a solution of
photographic problems. It is the system of practical senstry, where the photogra-
pher uses measured information in the field to improve the@sof producing a good
final print [17]. There are eleven print zones from pure bléténe 0) to pure white
(Zone X). The key is the scene indicative of light, normal aadk areas in the scene.
In order to choose the correct zone, the photographer fikesta luminance reading
he/she perceives as a middle grey. In a typical situatios vl be mapped to zone V,
which corresponds to the 18% reflectance of the print. Fdr-key scenes the middle-
grey will be one of the darker regions, whereas in low-keyssehis will be one of the

lighter regions [17].

The procedure discussed above was used to develop a tonéngnapgerator by Rein-
hard [17]. Log average luminands, is taken as useful approximation of scene’s key

and given as,

Lav =X Y 100(Lu(x,Y)) (215)
Xy

whereLy(x,y) is a pixel luminance andll is the total number of pixels in the image.
If the scene has normal-key we would like to map this to midptey of the displayed

image, or 0.18 on a scale from zero to one. This suggests tlatien,

LOGY) = - Lu(xY) (2.16)

Lav

whereL(Xx,y) is scaled luminance aral= 0.18. The value o& can be varied from.045



2.4. Global Operators 34

to 0.72. Modern photography uses a transfer function that cossgrigh luminance. A

simple mapping operator with that compress high luminascgvien as,

L(X,y)

TELOLy) Cxy) (2.17)

Lg (X7 y) =

It is clear form equation.27 that high luminance are scaled by approximatel% fand
low luminance are scaled by 1. In some cases it is desiralié boight areas burn out
in a controllable fashion. Hence, in order to burn out brayteas above equation can be

rewritten as,

L(x.y) L(xy)
La(x.y) = (1+-—5) (2.18)
1+Lxy) Lanite
wherel2, .. is the smallest luminance that will be mapped to white . By aléfahis

parameter is set to the maximum luminance value in the s¢@renany high dynamic
range images, this operator produced sufficient compnmegsipreserve detail in low
contrast areas, while compressing high luminance to aaligple range. However,
for very high dynamic range images, this operator loses riapbdetails in the image.
Hence, for a very HDR images a local tone mapping operatémjhalies dodging and

burning effect has been presented by Reinhard [17].

2.4.9 Ward Histogram Adjustment

Ward applied the classic technique of histogram enhancetmegproduce HDR images
simulating both visibility and contrast [32]. The operafost calculates the image

histograml of logy space, using a nhumber of bimg;,. 100 bins are sufficient for
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accurate results. The cumulative histogria() is given as,

-3

T:_;I(i)

Histogram is itself the derivate of the cumulative histogrand given as,

(2.19)

(2.20)

The contrast equalization is given as,

log(La(x,Y)) = 10g(Ldmin) + P(log Lw(x,y))log( LZ”;‘;"? (2.21)

Exaggeration of contrast is highly undesirable and can ladt tlerough following re-

finement,

dlg _ Lg
d_ L, (2.22)

L

f(log(Ly)) log(pme) |4
wmin < v .
TAX Lw  ~ Lw (2.23)
which is reduced to a condition df{x),
f(x)<c

TAX (2.24)

I Og( meax)

wmln
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This means that exaggeration may occur when Equation 2r#t satisfied. A solution
is to truncatef (x) which has to be done iteratively to avoid changed in Overall,
the operator used modified histogram method in order to hawe gompression and

overall contrast while simulating some aspects of the HV®.[2

2.5 Comparison Results

Tone mapping operators as discussed in earlier sectionsivatdated with two images,
standard dynamic range and high dynamic range as shown ume=&33 in Matlab to
understand the effects of tone mapping compression on HDiges1n A number of
other authors work [33—36] has been presented in literatuevaluate the different
tone mapping operators. The attributes used for tone mgpperator evaluation in
their work are overall image quality, brightness, contrasproduction of colors and
reproduction of details in very dark and very bright areasc@ding to M.Cadick and
co-worker [33], overall image quality can be presentediimgeof other attributes given
as,

1Q = 0.327Bri + 0.26 TTon-+ 0.102Det + 0.230Col (2.25)

wherelQ is image quality in the interval db, 1], Bri is image brightnes€onis image
contrastDet is detail andCol is color. Matlab code presented in appendix 7.1 was writ-
ten and simulated for each operator in order to check imagétgafter tone mapping

compression.

It should be noted that to assess the quality of images aifter tnapping operation, a
gualitative criteria is adapted. It means that we asse$senhtage quality by visually

looking at it. A quantitative measure of image quality to dhé@ow good or bad the
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result was not taken into consideration. The qualitativiea used to asses the image
quality is simple and straightforward to implement. On thigeo hand, the quantitative
technique is time consuming and need a number of resoutuesntiudes the set of
observers, high-end HDR cameras and display devices. Hguaktative criteria were

chosen to evaluate different tone mapping operators.

Two different input images are used for simulations as showhigure 2.3. Image
shown in Figure 2.3(a) is standard dynamic range image,emasdfigure 2.3(b) presents
a high dynamic range image. Matlab HDR toolBas used for simulations. A simple
Matlab code for logarithmic tone mapping operators is presgk on next page as an
example. This code takes the input image in the form of ’jpg’halr’ picture format
and checks that input image is a gray or three color. The rtextis a change of
input image values into luminance values. These input lamse values are used for
tone mapping operation and the final output luminance vaoeslisplayed back as an

output image.

Different tone mapping operators are applied to both imégebkeck their performance.
Logarithmic, Exponential, Drago and Reinhard operatorgreréd better than others in
terms of overall image quality when standard dynamic ranggge was used as can
be seen in Figure 2.4(a)-(d). It can be noted from the figuras dverall brightness,

contrast and image detail in the dark are enhanced in Lbgaictand Drago operators
when standard dynamic range image was used. Also, brightmas$ contrast is en-
hanced in the case of Exponential and Reinhard operatoricBchiumblin, and Ward

histogram operator are unable to produce good resultsnmstef brightness, contrast

and details in dark.

2Toolbox is taken from 'Advanced High Dynamic Range Imagibg’ Francesco Banterle and co-
authors.
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(b) High dynamic range image.

Figure 2.3: Input images used for Matlab simulation.

On the other hand, Exponential, Reinhard and Tumblin opepeidormed better than
others when high dynamic range image was used as seen ireRdi(b),(d) and (f).
These three operators reproduced details in dark areaswatiryith improved image

contrast and overall brightness. Logarithmic, Drago, 8&ldnd ward histogram oper-
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Mapping Operator | Standard dynamic Range Image | High Dynamic Range Image
Logarithmic Good Bad

Exponential Good Good

Drago Good Bad

Reinhard Good Good

Schlick Average Bad

Tumblin Bad Good

Ward Histogram Bad Average

Table 2.2: Different mapping operator image quality sintialaresult for standard and
high dynamic range image. Our comparison results are in d ggeeement with other
studies presented by different authors

ators seen in Figure 2.5(a),(c),(e) and (g) are unable tergémgreat results in terms of

brightness, contrast and details in the dark.

Overall, Exponential and Reinhard operator produced goadtsefor standard and high
dynamic range images. Because, as mentioned earlier thanErpal operator is ca-
pable of producing very good result due to the exponentiaigression for standard
dynamic range image. In addition, Reinhard operator usetoghaphic technique of
dodging and burning that enhance the dynamic range andlbgasdity of an image.
Hence, we can say that in terms of overall image quality ahdratttributes, both op-
erators are best for HDR compression. Our comparison sgrétin a good agreement
with other studies presented by different authors [33—-B&hould be noted that over-
all image quality after tone mapping operator can be differfewe change the input
image. In brief, overall output image quality depends orutnppnage and mapping
operator. According to them, Reinhard photographic, Exptakand Drago operators
were performed better than others. Tah2fummarizes the different mapping operator

overall image quality simulation results for standard aigghtdynamic range image.
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L ogarithmic Matlab code

function imgOut= LogarithmicT MQimg, glogarithmic klogarithmic)
img= hdrimread’imagejpgd’); = %input image read
checlBColor(img); %3 color check

L =Ium(img);  %Luminance extraction from image

if ( exist’glogarithmic)|| exist’klogarithmic))

glogarithmic= 20;

klogarithmic= 15;

end

if (qlogarithmic< 1)  %check for glogarithmic>= 1
glogarithmic= 1,

endif(klogarithmic< 1)  %check for klogarithmic>= 1
klogarithmic= 1;end

LMax=maxmaxL)); %computing maximum luminance value
Ld = logl0(1 + L * gogarithmic/loglo(l + LMax =«
klogarithmic); %dynamic Range Reduction

imgOut= zerogsizgimg));

fori=1:3

imgout:,:,i) =img(:,:,i).xLd./L;

end

imgOut= RemoveS peciglisngOut);

figure();

imshowimgOut);  %out put image display

end
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(a) Lograthmic Operator. (b) Exponential Operator.

(c) Drago Operator. (d) Reinhard Operator.

(e) Schlick Operator. (f) Tumblin Operator.

(g) Ward Histogram Operator.

Figure 2.4: Results of standard dynamic range image afterrmapping operation.
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(c) Drago Operator. (d) Reinhard Operator.

(e) Schlick Operator. (f) Tumblin Operator.

(g) Ward Histogram Operator

Figure 2.5: Results of high dynamic range image after tonepmgpperation.
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2.6 Conclusion

In a real world, the dynamic range of the scene can be of ther@tl® to 1 from
light to dark areas. Most of display devices available inrtfagket are unable to display
high dynamic range images and can only display images ofrdimiange on the order
of 200:1 which is not sufficient. In order to obtain realistitages on display devices,
it is necessary that images should be a faithful representat the scene they depict.
Hence, it is a problem to reproduce such scenes using metiaery limited dynamic
range like CRT/LCD displays, hard-copy prints, and projextdn order to solve the
problem of displaying HDR images on LDR displays, the ton@pirag operators have

been proposed.

Tone mapping is the operation that matches the dynamic rahg®R content with
the display device dynamic range. When the dynamic rangeeo€aiptured scene is
smaller or larger than that of the display device, tone mappixpands or compresses
the luminance respectively [19]. On the display device,ithage should be a faithful
representation of the the real image with some charadtarist real image such as

contrast, details etc. should be kept same or improved odisipday.

In this chapter, different global tone mapping operatorsewsiscussed in detail. In
addition, Matlab simulation was performed in order to chiaekquality and faithfulness
of the image after tone mapping operation. It should be ntitatin order to assess
the quality of images after tone mapping operation a quegariteria is adapted. It
means that we assess the image quality by visually lookirtigAtjuantitative measure
of image quality to check how good or bad the result was nartakto consideration.
Two operators, Reinhard and Exponential performed betser dithers on two different

dynamic range images. Exponential and Reinhard operaterpraduced good results
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for both standard and high dynamic range images. Hence, wsayathat in terms of
overall image quality and other attributes, both operadaoedest for HDR compression.
Our comparison results are in a good agreement with othéiestpresented by different

authors [33-36].



Chapter 3

Wide Dynamic Range CMOS Image

Sensor

3.1 Introduction

Image sensors are widely used in many industrial applicatike mobile phones, auto-
mobiles, security, and biometrics. CMOS (Complementary Metade Semiconduc-
tor) image sensors have been experiencing rapid growthein tisage in recent years
and now shares the market with CCD (Charge Coupled Device) imagsoss [37].
They have also replaced CCD in most low end as well as profesdsoameras. The
ability to integrate with other circuit blocks make CMOS gsenssideal to use as com-
pared to CCD. Thus, any post processing required to increasdyamic range in
CMOS can be performed easily. On the other hand, CCD dynamie riarignited by
the well capacity and hence can not be improved upon, withost-processing using

multiple frame capture [5]. Hence, CMOS sensors will be theaidhoice for those
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applications where the main emphasis is to capture widerdimi@nge. However, with
all these advancements and popularity, the CMOS cameradiérs from many lim-
itations including that of limited dynamic range and inapito reproduce a scene as
would be visible by the human eye. Nature has dynamic ranggtf 6 decades i.e
150dB, whereas CMOS image sensor dynamic range are limited frord 2iezades i.e
40dbto 80db. Hence, there is need to increase the dynamic range of CMG91sen

it can capture the dynamic range available in nature.

In this chapter, a new pixel sensor is introduced with anitgldib capture a wide dy-

namic range scenes using tone mapping operation. Seclgresents the basic build-
ing block of CMOS active pixel sensor. Section 3.3 presergsniw CMOS pixel

with an ability to capture the wide dynamic range of inteesieind produce them faith-
fully using tone mapping operation. In addition, this sectalso discusses the differ-
ent global tone mapping operator monotonically increasaigrence functions. Sec-
tion 3.4 presents the pixel simulation results and with actimion being presented in

section 3.5.

3.2 Active Pixel Sensor

The basic building block of CMOS sensor is APS (Active pixelsa). A typical APS
schematic and signal flow diagram are shown in Figure 3.1. dymamic range of
APS is limited. The photodiode converts input light into aigde, which is readout and
digitized to store the image. High input light generatesrgdaamount of charge which
saturates the pixel. On the other hand, very low input ligittegates low charge which

is very difficult to readout faithfully. Typical CMOS sensarsing the basic APS have
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a dynamic range betweendi®to 60db due to light saturation. In Figure 3.1, transistor
M1, M2 andM3 are reset, source follower and row select switch respagtivD is
photodiode which converts input light into charge. At titde high voltage is applied

at the gate of devic#l11, then the voltag®yq — V; Is transferred to nodbl. At time

t2, the gate of devic#11 is pulled low due to thi¥ resetis not connected to the pixel
circuit anymore. The photo-diode then generates chargedst which acts to reduce
the voltage being held on the diode capacitance. This digehaill take place until
integration timd;,; and then voltage at nodé¢is readout using the source followi2

and select switcM3. A timet3, this cycle begin again and a new frame is started. The
integrated voltage at the node N is given as,

|
W =Vdd—Vt—tintC—p (3.1)
pd

tint is the integration time | is photogenerated current a@gy is the capacitance at
nodeN. For low and medium currentsg andl,, the pixel faithfully produces a unique
output voltage corresponding to the photocurrent. Howedeerhigher currents, the
pixel saturates and is unable to readout faithfully. Thermfation at higher photocur-
rent is therefore lost, which limits the dynamic range of pireel. The dynamic range
of pixel can be increased if the integration inside the pigedtopped at a certain time
determined to produce a known response. The output duriegration is compared to
another signaVi¢ and stopped when these two signals are the same. Hence i ou

of a pixel will depend on signales.
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(b) Signal flow diagram.

Figure 3.1: Active pixel sensor schematic and signal flovgidien.

3.3 Wide Dynamic Range Pixel

3.3.1 Pixel Operation and Schematic

It is possible to capture wide dynamic range informationdybining the threshold and

integration time control approaches. A WDR pixel is preséntlich aims to capture
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the wide range of light intensities available in nature. Rgbschematic and signal flow
diagram is shown in Figure 3.811,M2, M3 andM4 are reset device, reference voltage
switch, source follower and row select switch respectivétya typical linear pixel as
discussed earlier, high photocurrdntsaturate the pixel due to which linear pixel is
not able to capture the WDR information. However, in the nexepapproach, the
integrated signal at node is compared to a constantly increasing reference skgaal
and the integration is stopped when the two are equal. Thasmfor the high current,
l1, the integration will stop at lower voltagé than the voltages for lower currenits

andlz. The pixel output after the integration time will follow tMg s signal.

The pixel operation starts by resetting the transidtidr, by applying the high reset
signal Vst at the gate of transistdvil. Due to the high voltage at the gate Mfl,
voltageVyq — Vih is transferred to devicel 1 source nod@&l. The high voltage placed on
the capacitance of nod¢ is discharged by the photo-generated charge when transisto
M1 is off, by lowering its gate voltage. A monotonically inaseng reference function
Viet is applied to transistoM?2 drain. At the start of integration, the voltaygs is
lower than node voltagd and hence transistdi2 is on. However, discharging, and
monotonically increasinye ¢ leads to transistdvl2 being switched off. After this time,
the gate voltage df13 is held by its gate capacitance until it's read out and tlkelps

reset. The output voltage of the pixel depends on the sigaabndl .
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Figure 3.2: Wide dynamic range pixel schematic and signed diagram.

The monotonic reference function can be obtained by equétia integrated voltage

at nodeN with that of the required transduction function. Let us assuhe required

response is,

wherel py is the photocurrent and, is required response. Létbe the inverse function
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for this operator [38], such thag, = f'(Vout). The integrating potential at nodécan
be expressed as,

W(t) = Vilto) — 2 (¢~ t). (3.3)

whereCpp is photodiode capacitance. Transigt2 will remain on, till this potential is
higher than the reference voltage. At the instance, we expect the reference voltage
to be same as the pixel response for the given photoculgpts Vies(t). This result

was published in Procedia Computer Science, vol.41 2014 [3&refore,

Ve m2(t) — Ve ma(to)
(t—to)

f/(Vref(t>) =Cpp (3.4)

shows the reference voltage function in terms of integnatime. It should be noted
that Equation 31 presents the general form of reference function extradtimm pixel
response. Different reference function will be presentedext sub-sections. The pro-
posed new pixel can produce wide dynamic range responselvethelp of a suitable

reference function.

3.3.2 Tone Mapping Reference Function

In order to derive the reference voltage from the tone mappperator, one needs to
translate luminance values from the mapping operator iotor@nt voltage relationship

thatis suitable for a pixel. Different reference functi@ne derived and discussed below.
Reinhard Simple Reference Function

As discussed earlier, Reinhard mapping operator is giveh#ds [

L(x,y) (3.5)

La(X,y) = TFL(xy)
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where

a

L(X> y) = L LW<X7 y) (36)

av
Lq is output display luminanceg is a user controllable valuéd,, is input world lu-
minance and.yy is scaled luminance. Translating Equation 3.5 into volegeent

relationship provides a mapping equation given as,

Ve gkIded
1+gklp’

(3.7)

whereg mapsLiav into Equation 3.5k is proportionality constant andq is pixel oper-
ating voltage and is pixel output voltage. The reference function can be oletiby
comparing the required transduction function with thatitttegrated voltage at nodé

Let us assume that pixel required output transduction fanctt the gate of transistor

M3 is,
- gkIded
Vout = W (IO) 1+ gklp (3-8)
and the voltage at node is given as,
tint |
Wi (t) = W(t0) — 2 (3.9)
pd

whereCpq is photodiode capacitandgy, is photocurrent antiy is effective integration
time. TransistoM2 will remain on, till this potential is higher than the redace voltage
Viet. At the instance, we expect the reference voltage to be sarttegixel response

for the given photocurrent [38Yout = Viet (t), therefore,

gkIded

p

(3.10)
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tintlp _ gKlpVdd

WN(t0) = V4d — Vihm1

By solving Equations 3.10 and 3.11 for the value of referenoetion with respect to

tint leads to equation given as [39],

Viet = fnt —Vo (3-12)

whereV, is an offset related to the threshold voltages.
Reinhard Complex Reference Function

The simple version of Reinhard function provides limitedridag for bright illumina-

tion. Hence, the following modification was proposed by [17]

_ Ly L(x.y)
Ld(X,) = 1—|—L—(x,y) (1+ L&Vhite) (313)

whereL\f\,hite Is the smallest luminance that will be mapped to white. Tietimgy Equa-

tion 3.13 into voltage-current relationship provides anatpn given as,

- gk|ded

gklp
- o+ 55 (3.14)

i

c

whereg mapsl_iav into Equation 3.5k is proportionality constant/yq is pixel operating
voltage and,, corresponds the value &f,hite. The reference function can be obtained

by comparing the required transduction output with thegraged voltage at nods.
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The output transduction function at the gate of transisters,

Vout = Wn(t0) 1+gkllo(l+ 2 ) (3.15)
and the voltage at node is given as,
tintl
Vi (t) = Wy (t0) — 2P (3.16)

whereCpq is photodiode capacitandgy, is photocurrent antyy is effective integration
time. At the instance, we expect the reference voltage t@bwsas the pixel response

for the given photocurrent [38Yout = Viet (t), Therefore

Vet = Wn(1O) 1+gk|p(1+ 2 ) (3.17)
tintlp  9KlpVag gklp
Cpa  1+4gkip |5 (3.18)

WN(10) = V4d — Vihm1

By solving Equations 3.17 and 3.18 for the value of referenoetion with respect to
tint leads to the reference function for Reinhard complex givd3@is

th5(t — aVaa)

Viet(t) =Vgd —Vo— ——V——5~-

(3.19)

Where\, is an offset related the threshold voltagess user controllable value ang,

corresponds the value bfite.
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(b) Reinhard complex reference function.

Figure 3.3: Monotonically increasing reference functionReinhard simple and com-
plex mapping operator with two different valueslof.

Figure 3.3 shows reference function for Reinhard simple aridiaed complex map-
ping operators. It can be noted that both reference voltagesnonotone increasing
functions. Reinhard simple reference function a straigte vith sufficient wide dy-
namic range capture, whereas Reinhard complex referencednias some negatives
values that can be discarded as we are only interested intoraoally positive refer-

ence function.
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Drago Reference Function

The mapping operator presented by Drago [26] discussei@eiarbiven as,

Lamax!0g10(1+ Lw(X,Y))
La(X,y) = i = logyo(p)

100 |0910(1+ meax) |Oglo[2 + S(W)W]

max

(3.20)

Transforming luminance into current voltage relationdbgds to equation given as,

v logi0(1+9lp)

(3.21)

log10(p)

10910(1 + Glpmay) 10g10[2+ 8( L) 61005

9lpmax

whereg is proportionality constantmaxis maximum photocurrent anglis user con-
trollable value. The reference function for the Drago opmraan be calculated by

equating two equations for WDR pixel given as

log1o(1+9lp)

Viet =W — | ) (3.22)
10g10(1+ glpmax) 10g10[2+ 8(gp %) 41009 |
tintlp _ |Oglo(1+g|p) (3.23)
Cpd log1o(p)

'o_)Tog1005]|

10910(1+ glpmax) 10g10[2 + 8(%%,le
A derivable reference function does not exist due to compéure of Drago equation.
However, Drago reference function can be generated usiogkaup table with respect
to integration time. First, values of is assumed betweers@cand 002se¢ and inserted
into Equation 323 that in turn provide the values tf. Hence, by using the values of

|p and other parameters into Equatio23 provide the solution o function that is

shown in Figure 3.4.
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Figure 3.4: Drago reference function.

Exponential Reference Function

Exponential mapping operator is given as [25],

—Lw(x,y))

Lav

La(X,y) = 1—exg ) (3.24)

Transforming luminance equation into pixel voltage-cotnelationship leads to equa-
tion given as,

v=[1—exp(—glp)Vdd (3.25)

whereg is a proportionality constantq is pixel operating voltage ang is photocur-
rent. The reference function can be extracted by compahagottput transduction
function with the integrating voltage at noble The required transduction function and

the integrating voltage is given as

Vout = WN (tO) - [1 — exp(—glp)]vdd (3.26)
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and the voltage at node is given as,

tintl
Vi (t) = Wy (t0) — 2P (3.27)
whereC,q is photodiode capacitanciy, is photocurrent antiy is effective integration
time. It can be assumed thés,; = Viet to solve above equation for the value\ef;.

Hence by solving two above equation one can find the requiredotone reference

function and is given as [38]

_ VadCpa9(Vref +Vors — 1)

3.28
100Vier +Vor1) (3.28)

where wher&,q is photodiode capacitanaogis constant antly¢ ¢ is the offset related to
threshold voltages in pixel. The required monotonous fonds shown in Figure 3.5.
It can be seen that Exponential tone mapping function predue required monotone

transduction curve that will be used to capture the wide dyoaf a CMOS pixel.

W

Reference Voltage(V)
.H. — .N

o

0.01 0.015 0.02
Time(sec)

Figure 3.5: Exponential reference function.
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Schlick Reference Function

Schlick tone mapping operator as discussed earlier is gisda7],

p LW(Xa y)
P—1)Lw(X,Y) + Lmax

La(X,y) = ( (3.29)

where p is user controllable value aridyax is maximum world luminance in scene.

Translation of luminance values into pixel voltages leadsduation given as,
pk|ded

V= 3.30
(P— 1)klp + I pmax (3.30)

wherek is constant anthmaxis the maximum photocurrent. The required reference volt-
age can be calculated by comparing the output transduabitege with the integrating

voltage at nod@&l and given as [38],

lpmart
PVad — ¢ ok

Viet =Vyq—Voif —
ref dd of f p—l

(3.31)

whereVy¢ is the offset related to various threshold voltages in tlagloet chain of the
pixel, Cpq is @ photodiode capacitande,js a constant anthmax is maximum photo-
current in the frame. Figure 3.6 shows the simple linearesiee for Schlick operator.
It can be seen that Schlick tone mapping function producestpgired monotone trans-

duction curve that will be used to capture the wide dynamia GMOS pixel.
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Figure 3.6: Schlick reference function.

Miller Reference Function

The mapping operator presented by Miller [30] is given as,

Q=kLb (3.32)
whereQ is brightness and, is the luminance. The values kfindb is given as

b =0.338.0-034

(3.33)
k = —1.5logi0Ly+ 6.1
Transforming luminance values into pixel voltages leadsqoation given as
v =[—1.5l0g10(glp+ 6.1)](glp) 3389y (3.34)

/colorred whergg is a constant. A derivable reference function does not ekistto

complex nature of Miller function. However, the referenoedtion can be calculated
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using look up table generation by comparing the two pixekbgigns given as

0.034,

Viet = Vdd — Vot t — (—1.5l0910(9lp + 6.1)])(g|p)0-338(9|p) Vg
(3.35)

0.034

tl
?p = (—1.510g10(glp + 6.1)])(glp) 3389 Vg4

The reference function using look up table is shown in Fidli®e It can be seen that
Schlick tone mapping function does not produce the requimedotone transduction
curve because the reference voltage has a constant valug/ahat cannot be used for

wide dynamic range capture.
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Figure 3.7: Miller reference function.

Tumblin and Rushmeier Reference Function

Tumblin and Rushmeier presented a mapping operator inspyeStevens work on

brightness [28, 29] and given as,

Lw(X,Y) )a
Lwa

Y(Lwa)

y(Lda)

La(X,y) = MLya(

(3.36)
whereqa =
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Lya andLya are display and image adaptation luminance values respbctiTrans-

forming luminance into pixel voltage gives

V =Vdd(glp)® (3.37)

whereg ande are user controllable values. The required referenceg®itan be cal-

culated by adapting the technique discussed earlier aed gis,

cgVyq'

Viet = Vgd — Vot — Vaad® (3.38)

where f is constant. The Figure 3.8 shows the reference function@mnblin and
Rushmeier operator. It can be seen that Tumblin and Rushmeeiemntapping function
produce the required monotone transduction curve thabwillsed to capture the wide

dynamic of a CMOS pixel.
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Figure 3.8: Tumblin and Rushmeier reference function.

L ogarithmic Reference Function
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Logarithmic mapping compress the HDR using logarithm fiomcand given as,

|0910(1+ LW<X7 y))
La(x,y) = 3.39

() 10910(1 + Lmax) (3:39)
whereLmax IS maximum world luminance. Transforming luminance valugs pixel

voltages and comparing the pixel equations leads to theatMe given as,

Viet = Vad — Vot f —aVydlog(1+glp)
(3.40)

tl
?p — aVyglog(1+glp)

wherea andg is constant. The reference voltages can be calculated using look up

table generation and shown in Figure 3.9.
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Figure 3.9: Logarithmic reference function.

Different tone mapping reference functions are discusselis section. These mono-
tonically increasing reference functions will be appliettbe pixel to capture the wide
dynamic range of intensities. The next section present$b& pixel simulation with

different reference functions.
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3.4 WDR Pixel Simulation

The wide dynamic range pixel was simulated in the Cadenceitisanulator using
a 0.35um CMOS process from Austria Microsystems (AMS). The pixel scagc is

shown in Figure 3.2. TransistM1, M2, M3 andM4 are reset device, reference switch,

Width

Length of the reset

source follower and row select switch respectively. Theatision -

transistorM1 is olé‘umm whereas that of the source followkt3, reference switciM2

2um .

and row select switctM4 is 06um-

The WDR pixel is simulated with varying refer-
ence voltages in order to find the pixel response. The mooawreference functions
used for this purpose are Reinhard simple, Reinhard complexc8, Exponential,

Logarithmic, Drago, Tumblin and Rushmeier, and Miller.

Figure 3.10 shows WDR pixel response for different tone magppeference functions.
Figure 3.10(a) shows the pixel response of Reinhard simpleamplex operator. It can
be seen that Reinhard pixel has sensitivity problems at wsvyahd high photocurrent.
This means Reinhard pixel is unable to read much informatidhese photocurrents.
However, overall Reinhard pixel is able to capture over & decades of light. Simi-
larly, Figure 3.10(b) shows the pixel response for Milledd@umblin operator. These
two operators produced good results and able to capture@iptrades of light in-
tensity. Figure 3.10(c)(d) shows the pixel response ofikchExponential and Drago
operator. Unfortunately, their pixel response has lowtlggnsitivity and able to capture
4 decades of light intensity. Figure 3.10(e) shows the Litigaic pixel response with
6 decades of light intensity capture. Overall, It can be skahthe reported pixel with
different mapping operator is able to capture over 6 decafléght intensity. Some
pixel operators were performed better than others in ceqgiiine very dark and bright

intensities. By tuning the parameters, one can change thasities which are tone-
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mapped and hence enhance either the lower intensity orjghernintensity regions of
an image. Furthermore, these reference signals can beexhdngng the operation of

the pixel. The WDR pixel can capture the dynamic range of mioae 6 decades with

in-pixel tone mapping operation.

Tone mapping operation on CMOS pixel in practice performs dperations, one is
to capture wide dynamic range using reference voltage acmhsges to enable direct
display of an image on low dynamic range display devicess Téiduces the two step
process of typical cameras, where the image is captureddrsi@age and tone mapping

is then applied to make this image displayable on displaycdsy
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Figure 3.10: WDR pixel response at different monotonousegiee functions.
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3.5 Conclusion

In this chapter, a new CMOS pixel is presented with tone mapigichnigue which aims
to capture wide dynamic range available in nature. Tone imgpgperation on CMOS
pixel in practice performs two operations; one is to captiee dynamic range using
reference voltage and second is to enable direct display ahage on low dynamic

range display devices.

Different tone mapping reference curves are extracted faminance mapping func-
tions. First, luminance mapping curve is transformed irdibage-time relationship and
this monotone voltage curve is applied on CMOS pixel in ordeatitain wide dynamic
range information. The monotonically increasing funcéi@me Reinhard, Schlick, Ex-
ponential, Drago and Logarithmic. WDR pixel was simulate¢agence tools using
0.35um CMOS process from Austria Microsystems (AMS). Pixel resgomwas mea-
sured and presented with different reference functionfieppn the pixel. Some pixel
operators were performed better than others in capturimgehy dark and bright inten-
sities. Overall, pixel simulation result is presented simgvihe pixel ability to capture

more than 6 decades of dynamic range.
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Chapter 4

Pixel Modeling and Fixed Pattern

Noise

4.1 Introduction

To investigate the different noise sources and errors in W@l pthere is a need to
develop a model with different parameters that charaeeriise pixel response. Such
a model can be developed by analysing the pixel schematicerdam between pixel's
simulated and model response can be examined after dewglppiel model. Pixel

modeling will provide the fundamental background to thedipattern noise (FPN).

Fixed pattern noise (FPN) limits the performance of imagesses, and it is mainly due
to the variations in the responses of individual pixels witan array of pixels. The
variations between the responses of pixels are caused lyethee and interconnect
parameter mismatches in an individual pixel. It appearssastand pepper noise pattern

on an image taken by the WDR image sensor. In addition, it cem la¢ expressed
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as intensity and contrast error on an image taken by WDR sefi$uos chapter also
presents a simple procedure to reduce FPN in which the péiiamesponse of pixel is
used, with FPN modeled as variations in the individual patens. The parameters of

each pixel are measured, recorded and then used to coregatabponse.

Section 4.2 presents the Reinhard pixel model using semimboidtheory for the WDR
pixel. Section 43 discusses the parameter extraction procedure for Reirdnzamle

and complex operator. Section 4.4 presents the model erdrdinhard WDR pixel.
Section 4.5 presents the brief overview of FPN and transieismatch. Section 4.6
presents the procedure used to measure FPN in WDR sensoionS&at discusses
the FPN correction technique. Section 4.8 presents thedhgidPN on a test image

before and after correction and section 4.9 discusses tieu=ion.

4.2 Pixel Modeling

Figure 4.1 shows the WDR pixel with a typical column circuitsyis the pixel input
luminance or light ang is the pixel output response. A WDR pixel model can be de-
veloped by examining Figure 4.1. The current in the photdelibave two components.
One of these is the dark or leakage current which is produeen without the presence
of light. Its origins include thermal generation and recamabion as well as defects at
the diode junction and surface [40]. The second term is acaperm produced by the

photon flux falling on diode surface. Hence the photodiodeeti is given as [41]

Ipp = ldark + QPpGAGLAPDLopto (4.1)
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Figure 4.1: A WDR pixel with a typical column circuitry.

whereQpp is the quantum efficiency of the photodiodegp is the light sensitive area
of the photodiode(, is the gain factor related to the photodiode a®a,is the gain

of optical assembly, antqpto is the input intensity. As discussed earlier, at the start
of integration time pixel operation starts by resetting tifamsistorM4, by applying the
high reset signaVs; at the gate of transistdv;. This transfer a reset signeq — W

to deviceM; source nodéN. The high voltage placed on the capacitance of ndde
is discharged by the photo-generated charge when transigtés off, when its gate

voltage is reduced. At the same time, a monotonically ireirgareference function
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Viet is applied to transistoM, drain. At the start of integration, the voltayg s is
lower than node voltag€y and hence transistd, is on. However, dischargingy:
and monotonically increasinge ¢ leads to transistdvl, being switched off. After some
point of time, the gate voltage ®fl3 is held by its gate capacitance until it's read out
and pixel is reset. The output voltage of the pixel dependsesignaV,e+ andly,. We
are assuming Reinhard reference function here. Similathgraeference functions can
also be used for pixel model. The voltage at the gate of tstardvi3 by considering all
threshold voltages and applying reference voltage at thie @f transistoM, is given

as,
gklppVyg

4.2
1+gklpp (4.2)

Vemz = Vdd — Vim1 —Vim2 —

whereVrm1 andVr vz are threshold voltages of transisii andMo respectively. Tran-
sistorMs is a source follower anil, is a row select switch used to enable a particular
row of pixels to place their output on the column bus. Theagpt at the source of
transistorMs is given, as [41]

2lpsms
Vsvg = Vems — Vimz — = (4.3)
Bv3

wherelpsys is the drain current in the transistbt; and By is the transconductance
parameter. It can be noted that whdp is "on”, the gate voltag¥gme of transistorMg

is equal to the source voltage of transidté8. The column bus is biased by transistor
Ms and therefore the drain-source currentdfinandMs are same wheNl, is on [42].

The voltage at the gate of transisidg is given as [41],

Vems = Vomz —Vimz — 4 | %(VGSNB—\AMS) (4.4)
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TransistoiMg andM; makes a second stage of readout circuits need to connealdgix
the single output of the array. When transidtbris "on”, the output of source follower
Mg is connected to output bué. TransistorMg is common to the whole array and
provides the current bias to the column source followerse flilmal expression for the

output is given as [41],

Bus

5 (Vesmve — Vrms) (4.5)
M6

W = Voms —Vime —

Combining all above equations leads to the output from ary arfrpixels as,

o gk('dark"‘ QPDGAGLAPDLopto)Vdd
W =Vyd —Vim1 —
1+ gk('dark + QPDGAGLAPDLopto)

(4.6)
— %(VGSNB_VtMS) - %(VGSNB—V'LMS)
Bus Buis

This equation can be rewritten in the form of pixel paransegard given as,

— (Vim2 +Vim3z + Vivis)

b(x+d)

Y= 8 I ex+a)

(4.7)



4.2. Pixel Modeling 73

with the terms given as,

y=W
B Bus Bms
a=Vdd —Vim1 — Mm2 +Vimz +Vems) — | 5— (Vesve —Vims) — | 5— (Vesve — Vims)
Bv3 Bvis
b = gk\gd
c=gk
d= Idark

X = QppGaGLAPDLopto
(4.8)

wherey is the pixel outputx is the input photocurreng is the pixel offset voltageh
andc represents the pixel gain andis the dark current. Hence, Equation 4.7 shows
the pixel model for Reinhard simple operator. Similarly, pveel model for Reinhard

complex can be rewritten in the form of parameters and gigen a

 b(x+d)(1+e(x+d))
Ye=a- 1+c(x+d) (4.9)

It should be noted that Reinhard reference function is used fuxel model demon-
stration. Similarly, other operators can also be used figrghrpose. The parameter
terms of Reinhard complex are same as Reinhard simple opeextoept the parameter

e = l,,% which corresponds user controllable value.

Fixed pattern noise is mainly due to the variations betwberré¢sponses of individual
pixels within an array of pixels. In order to remove FPN, aggrprocedure has been

adapted to reduce FPN in which parametric response of thed igiused, with FPN
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modeled as variations in the individual parameters. Tharpaters of each pixel are
measured, recorded and then used to correct their respblesee, we need to mea-
sure and extract the individual parameters in each pixeémoove FPN and the next

section 4.3 presents the parameter extraction routine.

4.3 Parameter Extraction

4.3.1 Reinhard Simple

In order to check the validity of the analytical pixel modés, response has to be com-
pared with the simulated response at the same illuminaki@wever, parameters need
to be extracted before determining the model response angartson with simulated
response. Parameters can be extracted by assuming difbatéoration currents. The

model response for Reinhard simple pixel is given as,

b(x+d)

~ 14c(x+d) (4.10)

y=a
This equation can be simplified by assuming that dark or lgakarrent is small enough

to be neglected for high photocurrents. Hence the modebrespequation can be

simplified to,
B bx
1+cx

ys=a (4.12)

In this equation three parameters are unknown hence thlibeati@n currents are suf-
ficient. The extraction procedure of parameters can be peéo by assuming three

different current, Xz, X3 and their responsg, y» andys. The model response using
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Parameter | a (V) | b (V/A) c(A™h d (A)
Value 138 | 7.11x 101 [ 7.13x 1011 [ 1.10x 10714

Table 4.1: Extracted parameters using different calibratiurrents over 9 decades of
photocurrent.

calibration currents are given as,

—a bX]_
Ys1 = 1+ cx
bx,
=a— 412
Y Troo (4.12)
—a bX3
Y3 = 1+cx3
Parameters value can be extracted by solving above eqsaiwhgiven as,
_ X1Ys2 — X2Ys1 — X1Ys3 + X3Ys1 + X2Ys3 — X3Ys2
X1X2Ys1 — X1X2Ys2 — X1X3Ys1 + X1X3Ys3X2X3Ys2 — X2X3Y3
Ys2 — ¥s3
b=—"—%" (4.13)
1+cxs 1+cx
azygt 28
—YST I o

The parameted which represents the dark current can be extracted formtiequé 10

by putting input photocurrent value= 0. The value ofl is given as,

a—Ys

“b_act CYs (4.14)

Table 41 shows the extracted parameters by assuming three diffeaébration cur-
rents. Hence, by using the simulated response of the pixble¢ different current, it
is possible to find the parameters required to model the pide¢ calibration currents

chosen to extract parameters are one dark current and tinldeemange photocurrents.
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4.3.2 Reinhard Complex

The model response for Reinhard complex by ignoring darleoticontribution is given

as,
~ bx(1+ex

4.15
1+4cx ( )

Ye=2a

However, this equation is not suitable for simple paransst¢&traction. Hence, it needs
simplification in order to get parameters extracted. A senplodel response can be

calculated by simplifying Equation 4.15 and is given as,

Yo = P4+ Qx— RX — Syx (4.16)

whereP =a, Q=ac—b, R=beandS= c. There are 4 unknown parameters, hence
four calibration currentsy, Xo, X3, X4 With the responseg., Ye2, Yc3, Yes are required

for parameters extraction. The model equations with catlin currents are given as,

Ye1 = P4+ Qx1 — R — Syixg
Ye2 = P+ Qxo — R% — SyoXo

(4.17)
Ye3 = P+ Qxg — R — Syaxa

Yoa = P+ Qxg — R — Syaxa

These equations can be solved for parameters by matrix sh&thsimultaneous equa-

tion. Above equation can be rewritten as,

1 X1 —%X —YaXi P Ye1
1 X2 =% —YeXo Q| Ve
1 X3 —%5 —YaXs R Ye3
1 Xa —X§ —YoaXa S Yoa
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Parameter | P (V) | Q (V/A) R (V) SA Y d (A)
Value 1.44 | 253x101 [ 1.88x10*|588x 10" | —8.80x 10 1°

Table 4.2: Reinhard complex extracted parameters usingrelift calibration currents
over 9 decades of photocurrent.

A-X=B

X=A"1B
Hence, parameters matri can be calculated by multiplication of matrix 1 with
matrix B. The calibration current with their response chosen tocaexfparameters are

one dark current, two mid-range photocurrents and one higitogurrent. Table .2

shows the extracted parameters at four different caldmgihotocurrent.

4.4 Model Error

In order to check the validity of the analytical pixel modés,response has to be com-
pared with the simulated response at the same illuminaiitwe. pixel model response
can be calculated using the model equation with paramet&ecéed in earlier section.
Figure 4.2 shows the comparison of simulated and model nsgpof Reinhard simple
and complex mapping operator. Figure 4.3 shows the modai leetween pixel model
and simulated response. It can be seen that the suggestedifitodell with the simu-
lated data except at some middle range photocurrents 0e?A— 10~11A. Reinhard
simple model fits well as compared to the Reinhard complex. niagimum model

error in Reinhard simple case is aroundr\ whereas Reinhard complex exhibits the
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model error of around 490V which are very promising results. The model error gener-
ates due to the arbitrary selection of calibration currgntsy, x3, X4 with the responses

Yel, Ye2, Ye3, Yea @nd can be reduced by choosing the suitable calibratioectsr
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Figure 4.2: Comparison of parameter model and simulated pggponse.

4.5 Fixed Pattern Noise

The variations between the responses of individual pixetsr@adout circuits within
an array of pixels lead to differences in the response of @aa. These variations

lead to the presence of a spatial, but not temporal, noissages acquired by these
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Figure 4.3: Model error between pixel simulated and modgioese.

pixels [42]. This kind of noise is called fixed pattern noi$d°N) and appear as a
fixed pattern on an image. FPN appears as a striping noisesidliomensional imagers,
whereas in two-dimensional imagers, it appears as salt @oplgp noise. Fixed pattern
noise has been observed in most imaging devices, includliaige coupled devices [43,
44], active pixel sensors (APSs) [7], logarithmic pixel& [45] infrared detectors [46]
magnetic resonance imagers [47]. The main effect of fixetepahoise on an image
is the reduction in intensity and contrast of the image. lditawh, FPN also affects the
tone mapped image taken by WDR pixel proposed earlier. Theesai FPN can be

identified by analysing the signal chain in an array of a piReWDR pixel circuit was

analysed in the last section to obtain its model. The nexsextibn briefly describes
the device and interconnect parameter mismatches in andndi pixel. These device

mismatches generate fixed pattern noise.

45.1 Transistor Mismatch

Two identical transistors on the same chip have some randfbeneshces in their be-

havior. These variations are due to the lateral diffusiothefsource and drain implants
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as well as the field oxide encroachment in the MOS channelddiitian to these two,
other factors including local mobility fluctuations, oxigeanularity, oxide charge, and
gate dielectric thickness have also been considered asesooffmismatch [48,49]. The
standard models for the mismatch caused by different dedoe characterized by the
random variation of the differences in their threshold agé\/, their body factory
and their current factg8. Experimentally verified model for these variations aresgiv

as [48,49],

2 ! '\/2 2
0% (AVr) = VTIT_+S€,TD
2 A%’ 2

_ 4.18

a?(Ay) WL+S§D (4.18)

o’(8B) _ A_lz3+séD2
32 WL

Here W is the effective gate width, is the effective gate lengtB), is the mutual distance
between devices all; , Ag, Sy, Sy, Sg are process dependent constants. Despite the
fact that the threshold voltage and the transconductamterfiaave similar origins, their
variations have been found to be independent of one andtherabove models shows
that the smaller geometry devices will have large variaiontheir threshold voltage

and current gain factors.

4.6 Fixed Pattern Noise Measurement

Most of the images we capture, store and manipulate are ysédrban viewers for

decision-making, aesthetics, surveillance and contrpl [2ence, fixed pattern noise
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can be quantified by making the human visual system (HVS) aaralard. It has
been reported that HVS can see differences in illuminadbragainst the background
illumination I, to an accuracy of about 1% in high illumination and 10% in layht
levels [50, 51]. In other words, the human eye has a conthasshold of 1%, which
means the human eye is unable to perceive errors in misepessilluminations that
are less than 1% of the original illumination. Thereforegéixpattern noise can be
described as a contrast threshold error and 1% error vatenies the required standard
at matching FPN error to the sensitivity of the human visyatem. The fixed pattern

noise expressed as contrast threshold error is given as,

StandardDeviatioflext)

Relative Contrast Errok
Mear(lext)

(4.19)

whereleyt is the extracted current form pixel model response. Fix¢gpanoise effects
can be measured by simulating the WDR pixel multiple time# wifferent parameter
values. Using the Monte Carlo simulations in Cadence cireoitigtor, the response
of 1000 pixels was obtained by sweeping the photocurrent ®wecades. In Monte
Carlo simulations, process parameters like the transisjoed ratio, gate capacitance
per unit area and threshold voltages were inherently atera controlled manner while
determining the pixel response to a range of photocurréht3 he Reinhard simple and
complex pixel response are given as,

bj (% +d;)

Trci(x+d) (4.20)

YSj=aj—

YGj :Pj+Qin—Rin2—Sijin (4.21)
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Parameters | a (V) b (V/IA) c(A™h d (A)
Mean 1.39 7.13x 1011 7.13x 101 1.10x 1014
SD 0.13 4.40x 10% 1.93x 1010 7.26x 10" 16

Table 4.3: Mean and standard deviations of 1000 extracteshters for Reinhard
simple pixel.

Parameters| P (V) | Q (V/A) R (V) SA Y D (A)
Mean 1.45 | 253x 10" | 1.89x 104 | 5.89x 10 —828x101°
SD 0.145] 1.64x 10° [ 1.40x 10°° | 4.68x 1010 253x 10 15

Table 4.4: Mean and standard deviations of 1000 extracteahpaers for Reinhard
complex pixel.

whereys; andygj are the pixel responses to an illumination represented biyoa p
tocurrentx; for Reinhard simple and complex operator respectivelgndi are pixel
index and photo illumination, respectively. In order toraext different parameters from
the 1000 pixel response data, calibration currents areeaeeBour different calibra-
tion current were selected for this purpose, i.e. one darkeotiand three middle
rangéx; = 10fA), (xo = 7.08pA x3 = 10nA) photocurrent. The parameters extraction
procedure was discussed in detail in last section. The peemof 1000 pixels were
extracted using 1000 pixel response data and a calibratioerd for Reinhard simple
and complex operator. The mean and standard deviation & pB@! parameters are

given in Table 43 and 44.

Fixed pattern noise can be calculated by finding the extiazierent mean and standard
deviation value. By solving Equation 4.20, extracted curfen Reinhard simple in
terms of parameters is given as,

ysj —aj —a;jdjcj +ysjc;jdj + bjd,
ajCj —ysjCj —bj

ISext - (422)
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Extracted current for Reinhard complex pixel in terms of pagters is given as,

Qj — 2djR; — Sjya; = (Qf — 2Q;Sjyq; + S}yd — 4Rjya; +4PjR))"/?

The mean extracted current can be calculated by insertmgnéan values of param-
eters in Equation 4.22 and 4.23. In addition, the mean valextoacted current was
also used to find the fixed pattern noise before correctiogurés 4.4 and 4.5 shows
the fixed pattern noise before correction for Reinhard sinaplé complex operators.
FPN simulation result shows that both operators exhibitéthh fixed pattern noise.
Reinhard simple operator exhibit a contrast error in the easfgl0%-200%. Whereas
complex operator exhibit a contrast error in the range oR4@100%. Hence, a simple

and effective technique is needed to reduce FPN.
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Figure 4.4: Reinhard simple FPN expressed as contrast exforcorrection.
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Figure 4.5: Reinhard complex FPN expressed as contrastesfore correction.

4.7 FPN Correction

The last section presented the FPN noise measurementdeetamd contrast error be-
fore correction. The results show that FPN before corradgauite high which needs
to be corrected. FPN correction can be performed by usingdn@meters values ex-
tracted in the last section. FPN measurement before theatmn was performed using
the mean values of parameters. However, FPN can be corregtederting the value

of each parameter. Multiple parameters correction teclenigq used to correct FPN.
Firstly, one parameter was corrected to check the qualiRi correction technique.
Secondly, the second and third parameter was correcteak fparameter correction did

not produce good results.
Reinhard Simple Correction

Firstly, the extracted current given in Equation 4.22 wdsuiated by inserting each
parameters individual value instead of mean value. 1008Ipixdividual data was

used for this purpose. Secondly, this extracted curreniused to calculate the FPN by
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using Equation 4.19. Parametewas corrected first, by inserting the valueaah each
pixel extracted current and then this current was used taulze FPN. One parameter
a FPN correction expressed as contrast error is shown in &iged. One parameter
FPN correction exhibits the high contrast error around 20#iddle range currents i.e
1pA—1nA Hence, seconbdand thirdc parameter correction procedure was performed.
Figure 4.7 shows the contrast error using two parametbisorrection. FPN correction
using two parameters also exhibits the high contrast efr80%. The two parameter
correction procedure exhibited the high contrast errorampared to one parameter
correction because of the dark current and arbitrary setectf calibration currents.
Figure 4.8 presents the contrast error using three parasreete c correction. Three
parameters correction procedure have exhibited goodtsesuid the relative contrast
error is below than 1%. Hence, three parameters FPN cavregtbcedure is sufficient.
Figure 4.9 presents the FPN using four parameddssc, d correction. FPN correction
using four parameters produced a high error at low photeatinrange because of dark
current contribution. Overall, a simple technique in whibree parameters were used
to correct FPN have performed very well and exhibited sonmgesults. After FPN
correction, Reinhard simple exhibits the contrast erras bhan 1%, which is a very

promising result.
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Figure 4.6: Reinhard simple FPN expressed as contrast dtsyrane parametea
correction.

N w
o o
T

[y
o
T T T

_

-16 10—14 10—12 10—10

Photocurrent (A)

Relative Contrast Error%

Bo

Figure 4.7: Reinhard simple FPN expressed as contrast éteotwso parametera and

b correction.
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Figure 4.9: Reinhard simple FPN expressed as contrast dteoradl parameters cor-

rection.

Reinhard Complex Correction

A similar technique to correct FPN using multiple parameisrapplied to Reinhard
complex operator. Parametd?€), R, S D are used for FPN correction procedure. The
extracted current is calculated using Equation 4.23. HyeatameteP is corrected and

then followed by other paramete@ R, S, D correction. Figure 4.10 presents the one



4.7. FPN Correction 88

parametelP correction contrast error. FPN using one parameter caoreprocedure
exhibits high contrast error at different photocurrengufe 4.11 and 4.12 presents the
FPN expressed as contrast error using BM@ and thred®, Q, R parameters respectively.
Both correction techniques still exhibit the high contrasbe Hence, four parameters
P,Q,R, S correction technique is used. Figure 4.13 shows the cdrdgres using four
parameters correction. Reinhard complex FPN correctidmigae using four param-
eters performed very well and contrast error is less than 86 the whole range of

photocurrents.

As discussed earlier, one and two parameter correctioregtoe produced large errors
as compared to three and four parameters correction. Thened the high error could
be fact that each parameter contributes into FPN generdfioe parameter correction
procedure only corrects FPN of one parameter while otha@npeters are still uncor-
rected. Hence, four parameter technique is the best agpod&®N correction because

each mismatch parameter is corrected in this way.
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Figure 4.10: Reinhard complex FPN expressed as contrastadten one parametd?
correction.
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Figure 4.11: Reinhard complex FPN expressed as contrastadtes two parameters
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Figure 4.12: Reinhard complex FPN expressed as contrastadteo three parameters
P, Q,R correction.

Operator Model Error| FPN 1 para| FPN 2 para| FPN 3 para| FPN 4 para.
Reinhard Smple | 15mV 20% 30% 1% 3%
Reinhard Complex | 40mV 250% 150% 100% 1%

Table 4.5: Summary Table.

4.8 FPN Effects on a Test Image

The FPN correction technique was identified in the last sectirhis section presents

the effects of FPN on a typical image. A simple test image éswshin Figure4.14 was

limage is taken from http://www.notebookcheck.net/
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Figure 4.13: Reinhard complex FPN expressed as contrastadten four parameters
correction.

used to check the effects of FPN on an image taken by CMOS sdnsadition, how
well the FPN correction technique performs on a test imagdsis presented. FPN is
added to test image to check the image quality degradatiosechby this. The FPN
correction technique is later applied on a test image tmaadl has FPN added. A test
image with and without FPN is shown in Figure 4.14 and 4.15ufé@ 4.16 shows the
image after FPN correction for Reinhard simple and complextaipr. It can be seen
that FPN after correction procedure shows some artifacdigik regions of an image.
The artifacts in an image are due to an arbitrary selectiaratbration currentsy, Xo,

x3 and artifacts could be removed by adjusting the calibratioment.



4.8. FPN Effectson a Test Image 91

Figure 4.14: Test image.

Figure 4.15: Test image with fixed pattern noise.

(@) (b)

Figure 4.16: (a) Test image after FPN correction of Reinhargpke. (b) Test image

after FPN correction of Reinhard complex.
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4.9 Conclusion

In this chapter, analytical pixel model was developed asdwdised with different pa-
rameters that characterise the pixel response. Pixel nmgdslthe basic building block
in finding fixed pattern noise. In order to check the validityhe developed pixel model,
simulated response is compared with the model responsedditicn, parameters ex-
traction procedure is also discussed. FPN correction tgubrfor Reinhard CMOS

pixel is also presented in this chapter. FPN is mainly dué¢ovariations between the
responses of individual pixels within an array of pixels. Wéwe shown that calibration
technique can be used to correct the fixed pattern noise etspiwhich can produce a
tone mapped response, particularly the Reinhard tone mgpfisimple procedure has
been adapted to reduce FPN in which parametric responseafipiused, with FPN

modeled as variations in the individual parameters.

The parameters of 1000 individual pixels were measuredyded and then used to cor-
rect their response. As discussed earlier, the human eya ¢t@astrast threshold of 1%
which means the human eye is unable to perceive errors iepnesented illuminations
that are less than 1% of the original illumination. Therefdt% error value becomes
the best attempt at matching FPN error to the sensitivittheftuman visual system.
FPN correction results are presented with an overall kegatontrast error is less than
1% for Reinhard simple and complex operator, which are veoynsing results. In ad-
dition, the results of FPN correction technique on a tesgienare also presented. FPN
after correction procedure shows some artifacts in darlonsgof an image. Theses
artifacts in an image are due to an arbitrary selection abaion currentsq, X, X3

and artifacts may be removed by adjusting calibration cusre
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Chapter 5

Pixel Modeling for Different

Mapping Operators

5.1 Introduction

The previous chapter presented the model error i.e errordagt the analytical and sim-
ulated results, and FPN correction technique for Reinhare toapping operator. This
chapter deals with the pixel model and parameters extragtigtine for rest of the oper-
ators i.e. Drago, Exponential, Schlick, Miller, TumblindeRushmier, and Logarithmic.
Parameters extraction is an essential part in order to peothe FPN correction tech-
nique. The FPN correction technique for Reinhard operagsegted in the last chapter
can be used for other tone mapping operators. However, pirelel, a model error
between pixel simulation, and the analytical model andrpatars extraction technique

need to be shown before FPN correction.

Section 5.2 presents the Drago pixel model with parametea@ion. Section 5.3 dis-
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cusses the parameter extraction procedure for an Expahemerator. Section 5.4
presents the parameter extraction routine for Schlick toapping operator. Section 5.5
presents the pixel model of Miller operator. Section 5.6prés the parameter extrac-
tion of Tumblin and Rushmeir operator. Section 5.7 discusgikel model of Loga-

rithmic mapping operator.

5.2 Drago Pixel Model

A Drago pixel model can be developed using semiconductaryhand analysing the
typical WDR pixel circuitry as shown in the last chapter intdiig 4.1. The pixel output

for a Drago mapping operator obtained by analysing the mixelitry is given as,

Vadl0g10(1+ g(ldark + QpoGAGLAPDLopto))

W =Vad —Vrmi— g — (Vrmz+Vrma+Vrve)
log10(1+ glpmax) 10910[2+ 8( g(ldark+QP|:é?AGLAPDLopto)) ) 081005 |
pmax
- %(VGSNB —Vrwms) — Pus (Vesve — V)
Pus Bwe
(5.1)
The above equation can be rewritten in the form of paramatailgyiven as,
bl 1 d
y—a 0010(1+c(x+d)) (5.2)

~ logio(1+ c)logio(2+ 8(x+ d)0-234)
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with terms given as,

y=W

a=Vga—Vrm1 — (Vrmz +Vrms +Vrme) — 4 %(VGSNB —Vrms) — \/ %(VGSNB —V1Mms)

b= Vyq
c=g
d= Idark

X = QppGaGLAPDLopto
(5.3)

Parameters extraction can be performed by assuming diffeadibration currenty, xo,
X3 with response, y2, y3. Model response using calibration current and assumirtg tha

the dark currentl is small enough to be neglected is given as,

blogio(1+cxq)

= a—

. log10(1+ c)logio(2+ 8(x1)0-234)
blogio(1+ c(x2)

- 5.4
& log10(1+ c)logio(2+ 8(x2)0-234) (5.4)
y3=a— blleO(l—l—C(Xg)

3 log10(1+ c)logio(2 + 8(x3)0-234)

Unfortunately, certain parameters could not be extractedtd the complex mathemat-
ical nature of Drago model equation. We needed to use Matlakeditting technique
to find the optimum value of each single parametds, c andd and then by using the

optimum value ofc, the rest of the parameteas b andd can be extracted by solving
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equations given as,

blogio(1+cx)

a= 5.5
1t ogro(1+ C)logro(2 + 8(x1)02%4) (5.5)
(Y2 —y1)log(1+c)
b= log(1+cxp) 4 log(1+cxg) (5.6)
log(2+8(x2)923%) " log(2+8(x1)0234)

Lets choose the curve fit optimum valueawf 10'3(A~1) and find the values df and

b. Three calibration currents and responses values ardeelmed given ag; = 1013,

Xo =10"12 x3 =1019 y; = 1.3638,y, = 1.1442,y; = 0.5534. The extracted values
of parameters ara = 1.4536V), b = 2.7007V /A), d = 10715(A). Model response
of Drago pixel can be calculated by inserting the parametalses in Equation 2.
Figure 5.1 shows the comparison between pixel model andlaiediresponse. It is
apparent from the figure that suggested model does fit welll githulated response
at middle range photocurrents, and the maximum model egtwden simulated and
model response is around &8/, which is a good result. The reason of this model error

is the arbitrary selection of parameter vatue

T T
— Simulated Response|
— Model Response

=
N
T

=
N
™1

Pixel Response (V)
o
© P
LA DL |

o
(o))
T

| |
10 10°% 10
Photocurrent (A)

Figure 5.1: Comparison of model and simulated Drago response
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Figure 5.2: Model error between simulated and model respons

5.3 Exponential Pixel Model

The exponential model can be developed using the pixel satiemith exponential

reference function and given as,

W = V4d — Vrme — Vad(1—expglp)) — (Vrmz +Vrms + Vrve)

_ % _ _ % _ &1
(Vesve — VT ms) (Vesve — VT ms)
Bus Bve

This equation can be rewritten in the form of model paransajaren as,
y=a+bexpdc(x+d)) (5.8)

with different term given as,

y=W

/ M8
a=2Vgd—Vrmr — Vrmz2+Vrmz +Vrwe) — %(VGSNB—VTMS)— %(VGSNB—VTMS)

(5.9)



5.3. Exponential Pixel M odel 98

b= Vyd
c=g

(5.10)
d= Idark

X = QppGaGLAPDLopto

Parameters can be extracted by assuming different cadibratirrentsx;, X, X3 and

respective responsgs, Yo, y3. Parametric equations with calibration currents are given

as,

y1 =a+bexpdcx)
y2 = a+b expgcx) (5.11)

y3 =a+b exgcxs)

A mathematical solution for the parameters does not exis¢std complex nature of
the equation. However, certain parameter values can benaslsusing Matlab curve fit
technique in order to find the solution of exponential pixeldal equation. Assuming
the optimum value of parameter= 10'°(A~1) from curve fit technique, and use this

value to find the rest of parametexsb andd. The parametest andb can be calculated

using the equations given as,

a=y;—bexgcx) (5.12)

_ Yo—Y1
~expex) —expcx)

(5.13)



5.3. Exponential Pixel M odel 99

By assuming different calibration currents xo, X3 and responsg,, Yy», ys leads to the
extraction of parameteig b andd. The extracted parameters values are 2.71(V),
b=55x10B(V/A),c=109A~1) andd = 1.42x 10-16(A). Equation 58 is used for
the exponential model response and Figure 5.3 shows thearop between model
and simulated exponential response. It can be seen tha¢stiegignodel fits well with
simulated response except at middle range currents betigséfA-10-11A. The max-
imum model error between two responses is around®@0The reason of high model
error at middle range current is the arbitrary selectionasbmeter value and calibra-

tion currents.
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Figure 5.3: Comparison of model and simulated exponentsgiaese.
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Figure 5.4: Error between simulated and model response.



5.4. Schlick Pixel Model 100

5.4 Schlick Pixel Model

The Schlick pixel model using the same semiconductor tegtenas mentioned in ear-

lier sections is given as,
~ b(x+d)
c(x+d)+10°6

y=a (5.14)

One can extract parameters from the model equation by asguimiee different cali-
bration currentsy, X, andxz with responsey, y» andys. In addition, the dark current

d can be neglected. The model equation with different cdiifamacurrents are given as,

g P
=8 1106
bX2
—a—— 5.15
y2=4 cx+10-6 ( )
g P
3= cX3+10°6

These equations can be solved for the values of parangbersandd that is given as,

bX]_
—y1 1
a=yi+ a1 10°© (5.16)
_ -6 =
b 108(y1 — yo)(cxe +1078) (cx + 1076) (5.17)
Xo — X1
_ 1078(xay2 + YaX1 + Y1Xo — X1Y2 — Xay1 — YaXo) (5.18)
XoX3Y3 + X1X3Y1 + X1X2Y2 — X1X3y3 — X1X2y1 — X2X3Y2 '
(a—y)10°®
d=-—"—F"— 5.19
b+yc—ac ( )

A mathematical solution for parameters exist for Schlickppiag operator. Hence,
Schlick model response can be calculated by inserting thesaf parameters in Equa-

tion 5.14. Different calibration currents and response were ahfreen pixel simulated
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Parameter | a (V) | b (V/A) c(A™h d (A)
Value 277 | 6.13x10° | 259%x 10° | 9.87x 1014

Table 5.1: Schlick extracted parameters using differelibi@ion current.

data to extract parameters and givenxas= 1013, x, = 2.51x 10 11, X3 = 10~ °,

y1 = 2.7146,y, = 0.7270 andys = 0.4220.
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Figure 5.5: Comparison between Schlick pixel simulated andehresponse.
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Figure 5.6: Model error between Schlick pixel simulated aratlel response.

The analytical and simulated responses have to be compactetk the effectiveness

of a developed model. Figure 5.5 presents the compariserebatpixel simulated and
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model response. Also, Figure 5.6 shows the model error legtweodel and simulated
response. It can be seen that model response exhibits sodes enmr at middle range
currenti.e.l = 10-12A. The maximum model error Schlick pixel exhibits are 144.

The cause of model error is the arbitrary selection of catibn current. The model
error of Schlick operator is high, and it needs to be corcebtfore the FPN correction

procedure.

55 Miller Pixel Model

The model equation for Miller tone mapping operator can heldped using the semi-

conductor theory as discussed earlier and given as,
=a—b(—1.5log(c(x+d))+6.1)(c(x+d)™ o :
y b(— 1.5l d)) +6.1 d)0-338(c(x+d))? %% (5.20)

Model parameters can be extracted by assuming differeibratbn current,, X, and
x3 with the responsg;, y2 andys. The dark currend is assumed small enough to be

neglected. Different calibration current model equatiaresgiven as,

y1 = a— b(—1.5log(cxq + 6.1)(cxq )*-338ex) 7

ys = a— b(—1.5l0g(Cxp + 6.1) (Cxp)*-338ex) 7% (5.21)

ys = a— b(—L5log(cxs + 6.1) (cxs) 338"

A mathematical solution of different parametexsb, c andd does not exists due to
complex nature of equations. However, we can find the optinaalue of parameter

c using Matlab curve fit technique. This value ofand calibration currentgy, X,
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x3 leads to the extraction of other parametars andd. Parametec = 10°(A~1) and
calibration currents; = 1014, x, = 10~ 12 andxz = 10~ 19 with responsey; = 1.3784,
y> =1.1871 and/3 = 1.1007 are chosen. Parameter veiisnda can be extracted using

the equations given as,

a=y1+b(—1.5l0g(cxs + 6.1) (Cxq )*-338x) % (5.22)
_ Yi—y2
(—1.5l0g(Cxp) + 6.1)(Cxp)0-338e%)?%3* _ (1 5log(cxy ) + 6.1)(Cxq )0-338(ex)70%%
(5.23)

The extracted value of parameters are- 1.45(V), b = 1.6 x 1074(V/A) andd =
10-14(A). Figure 5.7 shows the comparison between model and sindutaponse
of Miller operator. It is apparent from the figure that suggdsmodel does fit well
with simulated data in this case too. Figure 5.8 shows theemexdor between two
responses, that is around &®/. This model error is due to the selection of calibration

currents and parameter
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Figure 5.7: Comparison between Miller pixel simulated andieloesponse.
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Figure 5.8: Model error between Miller pixel simulated anddal response.

5.6 Tumblin and Rush Pixel Model

Like other operators, the model equation for Tumblin and Ruspping operator can

be developed using semiconductor theory discussed inHagter and given as,

y=a—b(x+d)° (5.24)

The parameters can be extracted using the calibrationrdarend different current

model equations are given as,

y1=a—bx°
Yo = a— bx° (5.25)
y3 = a—bxs®

A mathematical solution of different parametexsb, c andd does not exists due to
complex nature of the equations. Using Matlab curve fit tesl gives the optimum
value ofc = 1071% (A~1). By using the value ot and different calibrations current

Xy = 10714 x, = 10712, x3 = 1019 with responseg; = 1.4261,y, = 1.1669 andys =
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1.0799 provides the paramet@andb given as,

a=yl+bX (5.26)
_Yi—y
b= ©x (5.27)

Figure 5.9 shows the comparison between model and simulespdnse of Miller op-
erator. It is apparent form the figure that suggested modelgll with simulated data.
Figure 5.10 shows the model error between two responsédsstaund 150nV. The

high model error is due to the selection of parameter
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Figure 5.9: Comparison between Tumblin pixel simulated andehresponse.

5.7 Log Pixel Model

The pixel model equation for logarithmic mapping operasagiven as,

y=a—blog(1+c(x+d)) (5.28)
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Figure 5.10: Model error between Tumblin pixel simulated amdel response.

Operators Drago | Exponential| Schlick | Miller | Log
Model Error | 25mV | 300mV 140mV | 15mV | 150mV

Table 5.2: Summary Table.

Model parameters can be extracted by assuming differeibratbn currentsy, X, and
x3 with the responsgs, y» andys. The dark currentl is assumed small enough to be
neglected. Let’s assume the valuecef 10'° (A~1) using curve fit technique and find
the mathematical solution of logarithmic model equatiorarametera andb can be

calculated using equation given as,

a=yl+blog(l+cx) (5.29)

_ yi—Yo
b= log(1+cxe) —log(1+4cx—1) (5-30)

Figure 5.11 shows the comparison between model and sirdulesponse of logarith-
mic operator. It is apparent form the figure that suggestedietoes fit well with sim-
ulated data. Figure 5.12 shows the model error between tggoreses, that is around

150mV. The high model error is due to the selection of parameter
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Figure 5.11: Comparison between logarithmic pixel simulated model response.
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Figure 5.12: Model error between logarithmic pixel simathand model response.

5.8 Conclusion

Pixel modeling for different tone mapping operators wasuksed in this chapter. The
mapping operators are Drago, Exponential, Schlick, Millemblin and Rushmier, and
logarithmic. An analytical pixel model was developed ussegniconductor theory by
analysing the pixel schematic presented in this chaptes. noted that the solution of
a model equation that characterise the pixel response adbexist due to the complex
nature of mathematical equations. Hence, we assumed the ehparameter ¢ using

the Matlab curve fit technique and find the values of rest ofplameters, b and
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d. Drago operator exhibits the model error oin28, Exponential produces the model
error of 300nV, Schlick exhibits the model error of 140/, Miller produces the error

of 15mV and Logarithmic operator exhibits the model error of 180
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Chapter 6

Conclusion and Future Work

This chapter is devoted to summarising this thesis, andgeadeas for possible future
work. The first section presents the overall summary of tesithand results already
presented. Section 1 is further divided into 3 broad submest The first subsection dis-
cusses the tone mapping technique and summarising the asmpeesults of different
tone mapping algorithms. The second subsection presentietfiign and operation of
proposed wide dynamic range pixel. Also, tone mapping djeran wide dynamic
range pixel is presented. Simulation results show that WD|man capture a dy-
namic range of more than 6 decades with in-pixel tone mapppegation. The third
subsection summarises the Reinhard tone mapping operati#l mwor and fixed pat-
tern noise correction technique and results. The fourtlsesttibn presents the model

error of other tone mapping operators.

The rest of this chapter discusses some ideas for the futorie. irhese includes the
possible CMOS chip design of wide dynamic range sensor, too& mapping, video

tone mapping and 3D stacked CMOS image sensor chip.
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6.1 Summary

Electronic imaging devices are very popular nowadays aesktldevices have replaced
film-based cameras. Electronic imaging devices are magdy in mobile phones, auto-
mobiles, security, biometrics and professional camerdsesé& devices can be divided
into two categories: charge coupled device (CCD) sensor anglonentary metal-
oxide semiconductor (CMOS) sensor. CCD sensor technology waajar market
player in the field of digital cameras and main advantages of @@3superior quality
color images, higher signal to noise ratios, high photaseesarea, and low readout
noise [2]. However, the drawbacks of CCD sensor are producbets and high power
consumption. CMOS sensors have replaced CCD in the most lowsewelaas pro-
fessional cameras. CMOS sensors were first used in low-endcapms like toys
and mobile phones. However, improvement in CMOS image ssrisohnology out-
performs CCD in many applications. The ability to integratéhvather circuit blocks
make CMOS sensors ideal to be embedded in mobile phonesyraldibes, security,

and biometrics.

The human eye can capture images over a wide dynamic rangeroinations avail-

able in nature, from as low as 1Hlux in a starlit night to high as £dux in bright sun-

light. However, typical CMOS camera has limited ability tgptare the light available
in nature and dynamic range of typical CMOS sensor is limite8-8 decades. Sev-
eral approaches and CMOS circuits have been proposed todetkterdynamic range
of CMOS pixels. These includes logarithmic sensors usingmbak inversion region
of operation of a MOS transistor [6], well capacity adjusting], threshold compar-
ison, integration time control [8], neuromorphic approaxiO] and linear-logarithmic

pixel [10].
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In this thesis, the image has been algorithmically tramséat by mathematical operators
called tone mapping operators to fit the limited dynamic eangn addition, a pixel
which captures a scene with inbuilt tone mapping operat@tiqularly, the Reinhard

photographic mapping operator, was reported.

6.1.1 Tone Mapping

The dynamic range of a scene in a real world can be of the ofded & to 107 from
light to dark areas. Many industries like defence and niggibm are looking for more
realistic images that match the real scene as seen by thenhvisual system (HVS).
However, display devices available in the market are unagbeoduce the image detalil
as seen by human eye. Typical display devices can only pecailnanage of a dynamic
range of less than £@o 10° [18]. This leads to an incomplete representation of capiture
scene. Hence, it is a problem to reproduce high dynamic racgyees using media with
very limited dynamic range like CRT/LCD displays, hard-copyis, and projectors. In
order to solve the problem of displaying HDR images on LDPpldigs, computational

algorithms known as tone mapping operators have been pEdpos

Tone mapping is the operation by which one can display HDResdron LDR dis-
play device. When the dynamic range of the captured sceneaBesror larger than
that of the display device, tone mapping expands or comgsabe luminance respec-
tively [19]. After tone mapping operation, the image shdodda faithful representation
of the real image with improved contrast and details. on ieplay. The purpose of
applying tone mapping on an image can be different and desp@mdhe particular ap-
plication. In some cases producing just 'nice looking’ iraag the main goal, while

other applications might emphasize reproducing as margilgets possible, or might
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maximize the image contrast [23]. However, the ultimatel gbdone mapping is to
match the perception of tone mapped image with the real waatdeption seen by the

human visual system.

The detailed literature review of each global tone mappipgrator was presented in
chapter 2. Global operators were selected because theymamgutationally efficient
and can be executed in real time, faster than other operdfferent tone mapping
operators were simulated in Matlab, in order to check thditguand faithfulness of
the image after tone mapping operation. Qualitative ¢aterere adopted in order to
assess the quality of images after tone mapping operatia. operators, Reinhard,

and Exponential performed better than others on two diffiedlgnamic range images.

6.1.2 A Wide Dynamic Range Pixel

Nature have a dynamic range of more than 6 decades of ligtsity, whereas CMOS
active pixel sensor dynamic range is limited from 2 to 4 desadHence, in order to
capture and display of wide range of intensities availableature, a new CMOS WDR
pixel with tone mapping technique was presented in chapt&€h8 main goal of WDR
pixel with tone mapping is to capture a wide dynamic rangagiseference voltage
and to enable direct display of image on low dynamic rangplaysdevices at image

acquisition stage.

The new WDR pixel consists of four transistors, reset deviference voltage switch,
source follower and row select switch. In a typical lineatgbj high photocurrent sat-
urates the pixel and so it cannot capture the wide dynamigeramformation. In our
pixel approach, wide dynamic range information can be eaptby introducing ref-

erence voltage switch. A monotonically increasing refeeemoltage is applied to a



6.1. Summary 113

reference switch to capture wide dynamic range informatidre pixel output follows

a reference signal, which is sampled and held at value wheeptbto generated signal
on the diode becomes lower than the reference voltage. Tieretmd at which these two
signals are equal is recorded and is used as the pixel'smegp@ detailed discussion

about WDR pixel was presented in chapter 3.

Different reference voltages were extracted from globaktmapping operators like
Reinhard, Drago, Schlick, Miller, Tumblin and Rushmeier. diliéion, these reference
voltages were applied on a CMOS pixel to obtain wide dynammgeanformation. The
wide dynamic range pixel was simulated in Cadence circuitikitor using a B5uM
CMOS process from Austria Microsystems. The simulationltsshowed that WDR
pixel can capture the dynamic range of more than 6 decadhsmiitixel tone mapping

operation.

6.1.3 Pixel Modeling and Fixed Pattern Noise Correction

Pixel modeling is the basic building block to investigate tioise and errors in WDR
pixel. A pixel model was developed by analysing the pixeksohtic using semiconduc-
tor theory. Reinhard simple and complex operator pixel madlél different parameters
was developed. Reinhard simple model parameters wevrkich is pixel offset volt-
age,b andc represents the pixel gain awlis the dark current. The parameter terms
of Reinhard complex are same as Reinhard simple operatorpteecehe additional
parametee that is user controllable value. Parameters values need txtoacted to
find the required model response. By using the simulated nsgpaof the pixel at three

different currents, it is possible to find the parametersiireg to model the pixel.

Pixel model response is compared with the simulated regptonsheck the validity of
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pixel model. The results showed that the proposed modelrabwith the simulated
data except at some middle range photocurrents i'8AL0LOMA. Reinhard simple
model fits well as compared to the Reinhard complex. The maximodel error in
Reinhard simple case is around v whereas Reinhard complex exhibits the model

error of around 4GV.

FPN originates from the variations between the charatiesisf individual pixels within
an array of a pixel. In order to limit the effects of FPN, a siefpPN removal procedure
was adopted. This technique used the parametric respomsecdbivith FPN modeled
as variations in the individual parameters. It is known thathuman eye has a contrast
threshold of 1% [52]. Hence, it is important that the fixed@at noise in images should

be reduced below this level.

The parameters of 1000 individual pixels were measuredyrdec and then used to
correct their response. The data of 1000 pixels were exlacsing Monte Carlo sim-

ulations. Multiple parameters correction technique wasus reduce FPN. The FPN
correction result was presented with an overall relativerest error is less than 1% for
Reinhard simple and complex operator, which are very promisesults. In addition,

the results of FPN correction technique on a test image veaspksented. FPN after
correction procedure showed some artifacts in dark regpdas image. These artifacts
in an image were due to an arbitrary selection of calibratiomentsxy, x, andxs which

can be removed by adjusting calibration currents.

6.1.4 Pixel Modeling of Different Mapping Operators

Pixel modeling of different mapping operators like Draggp&nential, Schlick, Miller,

Tumblin and Rushmier, and Logarithmic were discussed. Pnadel was developed
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using semiconductor theory similar to Reinhard operatas. ibted that the solution of
a model equation that characterises the pixel responsendbegist due to the complex
nature of mathematical equations. Hence, parantetatue have been assumed using

curve fit technique in order to solve the model equation.

6.2 Future Work

6.2.1 Image Sensor Chip Design

Future work would include the image sensor chip design aliboration. The proposed
image sensor IC block diagram is shown in Figure 6.1. Semrsbrchip would consist
of 200x 100 pixel array, with a dimension of n x 10um. The simulations and
design would be performed by Cadence tools. Also, the tegtebiuld be manufactured
using a 018um CMOS process from Austria Microsystems. The pixel outpua diam

simulation and the experimental chip would be compared.dbfiteon, the difference
between two data sets would also be analysed. The resulBNtBrrection procedure

from chip would also be discussed.

6.2.2 Local Tone Mapping

In global operators, world luminances are mapped to dishiaynances using a sin-
gle tone mapping curve that is same for all pixels of the imaljas operation makes
global operators more efficient and easy to implement, hewthere is a limit to the
dynamic range of the input image beyond which successfupcession becomes diffi-

cult[17]. Global operators are monotonically increasimgdtions with an aim to mimic
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Figure 6.1: Block diagram of image sensor chip.

the performance of HVS non-linearity in order to get a vigualore appealing image.
Display devices available in the market are able to acconateo256 levels, all world
luminance must be mapped to that range and quantized tonenéments [17]. The
higher the dynamic range of an image, the more values mustbee@al to 256 different
numbers by monotonically increasing functions. For exgeADR images, this will

lead to lose of visibility and contrast. Hence, global opersare more suitable for mid
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dynamic range images. For very high dynamic range imagelagbperators compress
the illumination too much, which results in a perceived loskbcal contrast and detail
visibility.

This limitation may be lifted by local operators by compiagseach pixel value ac-
cording to its luminance values and set of neighboring pik@hinance values. Hence,
for each pixel the computation is adjusted according to amame over a local neigh-
borhood of pixels [18]. Local operators usually do not mithie features of the human
visual system. A reasonable assumption is that a viewer doeadapt to the scene
as a whole, but to smaller regions instead. An active obssreges tend to wander
across the scene, focusing on different regions. For eamksfpoint, there is a sur-
rounding region that helps determine the state of adaptatioshe viewer [18]. There
are a number of local tone mapping operators presentee@ratitre includes Chiu vari-
ant operator [53], Duan and Quis algorithm [54], Rahman estifb5], iICAM [53]
and Ashikhmin operator [56]. Each operator uses a diffetexiinique e.g. Duan and
Quis algorithm compresses the HDR image to enhance the docélast [54]. iICAM
algorithm, a new image appearance model, incorporates @égerving spatial filter-
ing with human vision photoreceptor response functions @ual-processing frame-
work [53]. Figure 6.2 presents the Chiu operator results aitd without global con-
trast. It can be seen that halos effects are extensive imthgds. Halos effects can be

reduced by using the glare mask simulations.

Future work can include the Matlab simulations of differédal tone mapping op-
erators using the HDR images. In addition, halos reductsmhriiques can also be
analysed. CMOS image sensor using local tone mapping opeaia@lso be presented

in the future work.
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(a) Chiu oprator with no global contrast. (b) Chiu operator with both local and global contrast.

Figure 6.2: Chiu local tone mapping operator.

6.2.3 Video Tone Mapping

Video tone mapping is the process to display high dynamigeamdeo on low dynamic
range display device. It is similar to static tone mappingegt that to take care of
temporal domain in video tone mapping. Static tone mappiggrithms can be applied
to videos by a frame by frame methods but they often exhibldgihg artifacts and do
not guarantee temporal coherence, resulting in flicke&ag [It was reported that video
tone mapping has been less active than stillimage tone mgpphe main hindrance for
video tone mapping research has been the lack of good gttilR content available to
the research community, which has been partially addrdss#te recent developments

in high-end cameras (such as the Red Epic Dragon, $&%y andF65, and ARRI
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Alexa XT) and other experimental systems now can nativeptuwza High Dynamic
Range (HDR) video up to If4stops [57,58] . Despite the recent development in high-
end HDR video cameras, the other end of HDR video pipelinelD® video display

technology is not yet in the market.

There are a number of video TMO in the literature. Among th#m, global opera-
tors [59-64] including the S-shaped camera response canerglly produce results
with good temporal coherency but poor spatial contrast. l@nother hand, the local
operators [65—68] often maintain high contrast at the cbshare temporal artifacts.
The pros and cons of these operators have been discussedlgectigely evaluated

by [35].

Future work would include the evaluation of different tonapping operators for video
purposes. Qualitative criteria could be used for the guablisessment of tone mapping
operators. In addition, the feasibility of implication afleo tone mapping on a HDR

CMOS video camera could also be discussed.

6.2.4 3D Stacked CMOS Image Sensor

In recent years, CMOS image sensor camera requires much onorgohalities and
compactness due to the strong demand of smart phone cameaddition to the im-
age quality, speed, and pixel counts that conventional @rssgsors require, there is
high demand for new functions that can respond to variousoptaking scenes [69].
In conventional CMOS image sensors, pixels and circuits a@enon the same silicon
substrate. Due to the constraints of pixels and circuitshenseame substrate, a new
CMOS 3D stacked CMOS image sensor was developed. Two diffexgeaits of pix-

els and circuits are proposed in 3D stacked CMOS image senStasking the pixel
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section and the circuit section enables compact size, niglge quality, faster speeds
and flexible integration of versatile functions [69]. Figus.3 shows the structure of

conventional and stacked CMOS image sensor.

| <
. i -
e " - 3 1
= Supporting Substrate _ ! — Logic Process Substrate ]
(a) Conventional CMOS image sensor. (b) 3D Stacked CMOS Image sensor.

Figure 6.3: Structure of conventional and 3D stacked CMOSjersensor.

A 3D stacked image sensor consists of two substrate layerdeoloby micro bumps.
The top substrate usually comprises a photo diode arraiyc&kescanning circuit and
readout circuit for readout signals from the photodiodeyarrThe bottom substrate
usually comprises a storage node array, vertical scanmiogittand readout circuit for

readout signals from the storage node array [70].

Future work can include the design of 3D stacked CMOS imagsmssinising local tone
mapping operators. As discussed earlier, each pixel hapaaae tone map curve in
local tone mapping. Hence, a frame buffer is needed to starle eurve. Therefore, 3D
stacked CIS would be the ideal choice to place all extra dirclike frame buffer on

the same chip.

limage is taken from [69]
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6.3 Conclusion

This thesis was divided broadly into two main topics, Tongpiag and Wide dynamic
range CMOS image sensor. A detailed discussion about tonpintgawas presented in
earlier chapters. Also, different tone mapping algorithmese also discussed. It should
be noted that only global operators were presented in tagstand other tone mapping
operators were out of the scope. The comparison resultdfefefit global tone map-
ping operators were also discussed. Qualitative criteesewsed to assess the quality
of images after tone mapping operation. It means that wesasdehe image quality
visually. The quantitative measure of image quality wastakén into consideration.
The gqualitative criteria used to assess the image qualsiyriple and straightforward to
implement. On the other hand, the quantitative techniquienis consuming and need
number of resources. Hence, qualitative criteria were @hdg evaluate different tone

mapping operators.

The operation of tone mapping was mimicked and applied on CM@$§e sensor with
an aim to capture wide dynamic range. Different referencetfans were extracted
with the aim to capture and display the wide dynamic rangeaneously. A new wide
dynamic range pixel was proposed that is capable of in-pixed mapping operation. A
pixel model was developed and discussed with differentrpatears that characterise the
pixel response. FPN correction technique for Reinhard CMQ8 pias also presented

in this thesis.

The work presented in this thesis can be extended to furtipgs like local tone map-
ping and video tone mapping operators. Future work can aldade the design and
manufacturing of standard and 3D stacked CMOS image serBata8k will improve

the overall efficiency, speed and fill factor of the image sens
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Chapter 7

A Appendix

This appendix presents the different Matlab codes usedisirésearch. These codes
presents the operation of different tone mapping techsiqueHDR and standard dy-
namic range images. In addition, the Matlab extractionineus also presented. Model

error and fix pattern noise codes are also discussed.

7.1 Tone Mapping Operators

This section summarises the different tone mapping opeM#dlab code. This code

simply takes the input high dynamic range or standard dyoaamge image. Later, tone
mapping algorithm is applied on an input image. Differemigonapping operators have
several parameters that controls the intensity or contiage to tone mapping opera-
tion, dynamic range of an image is enhanced or compresseddpands on particular
application. Finally, tone mapped output image is displieyth a better contrast and

details than input image.
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L ogarithmic Matlab code

function imgOut= LogarithmicT MQimg, glogarithmic klogarithmic)
img= hdrimread’imagejpgd’); = %input image read
checlBColor(img); %3 color check

L =Ium(img);  %Luminance extraction from image

if ( exist’glogarithmic)|| exist’klogarithmic))

glogarithmic= 20;

klogarithmic= 15;

end

if (qlogarithmic< 1)  %check for glogarithmic>= 1
glogarithmic= 1,

endif(klogarithmic< 1)  %check for klogarithmic>= 1
klogarithmic= 1;end

LMax=maxmaxL)); %computing maximum luminance value
Ld =10g10(1+ L g ogarithmic) /logl0(1+ LMaxxklogarithmic; %dynamic Range Reductjon
imgOut= zerogsizgimg));

fori=1:3

imgout:,:,i) =img(:,:,i).xLd./L;

end

imgOut= RemoveS peciglisngOut);

figure();

imshowimgOut);  %out put image display

end
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(a) Image before tone mapping operation.

(b) Image after logarithmic tone mapping operation.

Figure 7.1: Input and output image after logarithmic tongppiag operation.

Exponential Mapping Operator

functionimgOut= Exponential T M@img, gexponentialkexponential
img= hdrimread’imagejpgd’); = %input image read
checlBColor(img); %3 color check

L =Ium(img);  %Luminance extraction from image

if (exist’gexponentid)|| exist’kexponentidl)

gexponentiak 1;

kexponentiak= 1;

end

if (gexponentiak 1)  %check for gexponentiat=1
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gexponentiak 1;

end

if (kexponentiak 1)  %check for kexponentiat=1
kexponentiak 1;

end

Lwa=logMear(L); %computing log luminance value
Ld = 1—exp—(L *gexponential/(Lwax kexponential); %dynamic Range Reduction
imgOut= zerogsiz€img));

fori=1:3

imgout:,:,i) =img(:,:,i).xLd./L;

end

imgOut= RemoveS peciglisngOut);

figure();

imshowimgOut);  %out put image display

end

Figure 7.2: Image before tone mapping operation.
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Figure 7.3: Image after Exponential tone mapping operation

Drago M apping Oper ator

functiorfimgOut DragoLMax = DragoT MQ(img, DragoLdMax Dragob, DragoLMax)
img= hdrimread’imagejpgd’);  %input image read

checlBColor(img); %3 color check

L=Ilum(img); = %Luminance extraction from image

if (exist’DragoLdMax))

DragoLdMax= 100;

if (exist’Dragol))  %Dragob constatnt check

Dragob=0.3;

end

if (exist’DragoLMax))

DragoLMax= maxmaxL));

LMax = DragoLMax* 0.5+ 0.5« maxmaxL));

DragoLMax= LMax;

constant= log(Dragoy,)/10g(0.5);

costan? = (DragoLdyax/100)/(logl0(1+ LMax));

Ld = costan2xlog(1+L)./log(2+ 8=« ((L/LMax).constany); %dynamic Range Reduction
imgOut= zerogsizgimg));
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fori=1:3

imgout:,:,i) =img(:,:,i).*«Ld./L;

end

imgOut= RemoveS peciglisngOut);
imshowimgOut);  %out put image display

end

(a) Image before tone mapping operation.

(b) Image after Drago tone mapping operation.

Figure 7.4: Input and output image after Drago tone mapppegation.
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Reinhard Mapping Oper ator

functiorfiimgOut pAl pha pW hité = Reinhard T M@img, pAl pha pW hite pLocal, phi)
img= hdrimread’imagejpgd’); = %input image read
checlBColor(img); %3 color check

L =Ium(img);  %Luminance extraction from image

if (exist’pW hité)|| exist’ pAlphd)|| exist’pLocal)|| exist’phi’))
pW hite= 2+« maxmaxL));

pAlpha= 0.85;

pLocal= 0;

phi = 8;

end

Lwa=logMear(L); = %Log mean calculation

L = (pAlphaxL)/Lwa;

pW hite2 = pW hitex pW hite

if (pLocal)

Ld=(L./(1+Ladapt); %Simple mapping operation

else

Ld = (L.x(1+L/pWhite))./(1+L); %Mapping operation with burning ef fect
end

imgOut= zerogsiz&img));

fori=1:3

imgout:,:,i) =img(:,:,i)./lum(img). x Ld;

end

imgOut= RemoveS peciglisngOut);

figure();

imshowimgOut);  %out put image display

end
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Schlick Mapping Operator

functionimgOut= SchlickT M@img, schlickmodeschlick p schlickbit schlickdlO, schlickk
img= hdrimread’imagejpgd’); = %input image read
checlBColor(img); %3 color check

if (exist’schlickmod®| exist’schlickp)| exist’schlickbit)
| exist(’schlickdl0’)| exist(’schlickK))

schlickyode=' standard;

schlick, = 1/0.1;

end

L =lum(img);  %Luminance extraction from image
LMax=maxmaxL)); %Maximum Luminance

LMin = min(min(L));  %MinumumLuminance

if (LMin <=0.0)

ind = find(LMin > 0.0);

LMin = min(min(L(ind)));

switchschlickmode %Dif ferent mode selection
caséstandard

p = schlickp

if(p<1)

p=1

Ld=p.xL./((p—1).xL+LMax); %dynamic Range Reduction

imgOut= zerogsizgimg));

fori=1:3
imgOut:,:,i) = (img(:,:,1).xLd)./L;
end

imgOut= RemoveS peciglisngOut);

imshowimgOut);  %out put image display
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(a) Image before tone mapping operation.

(b) Image after Reinhard tone mapping operation.

Figure 7.5: Input and output image after Reinhard tone mappoeration.

Tumblin& Rushmeier M apping Oper ator

functionimgOut= TumblinRushmeierT M@ng, Lda,CMax Lwa)
img= hdrimread’imagejpgd’);  %input image read
checlBColor(img); %3 color check

L =Ium(img);  %Luminance extraction from image

if(

exist’Ldd)| exist’CMax)) %parameter check

Lda= 200;

CMax= 100;

end
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if (exist’Lwa))

Lwa = expgmearimeari(log(L +2.3x1e—5))))); %Log luminance
end

gammaw= gammaTumRushT MQwa);

gammad= gammaTumRushT MQda);

gammawd= gammaw/(1.855+ 0.4xlog(Lda));

mLwa= (sqrt(CMax)).(gammawd- 1);

Ld = Ldax mLwa * (L./Lwa).(gammaw/gamma); %dynamic Range Reduction
imgOut= zerogsiz&img));

fori=1:3

imgOut:,:,i) =img(:,:,i).«Ld./L;

end

imgOut= imgOut/100;

figure();

imshowimgOut);  %out put image display

end
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(a) Image before tone mapping operation.

(b) Image after Schlick tone mapping operation.

(c) Image after Tumblin & Rushmeier tone mapping operation.

Figure 7.6: Input images used for Matlab simulation.
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7.2 Reference Function Extraction

This section presents the reference function extractiatiftéfrent tone mapping oper-
ators. Matlab code analyses the behavior of referenceiumcAs discussed earlier,
monotonically reference function is used to capture theewlighamic range of a CMOS

pixel.

Exponential Reference Function

lpm= 10°;
vth= 0.4;
vdd = 3.3;

c=6.06x10"1% 9%Dif ferent parameter values

k= 1105

g=4.5;

vc=(—0.001:02:35);

t = cxgxkxvddx (ve+vth—1)./log(vc+ vth); %Reference Function

plot(t,vc);

Schlick Reference Function

p=4; Ipm=10° ¢=6.6x10"1% vth=04; vdd=3.3;
k=3.98x10"13; %Dif ferent parameter values

t =(0:0.005:002);

vc=vdd—vth— (pxvdd— Ipm=xt./cxKk)./(p—1); %Reference Function

plot(t,vc);
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Reinhard Simple Reference Function
vdd = 3.3;

Iw=1.9;

c=6.06%10"9

g=1

k=105,

ka=1; %Different parameter values
vth=0;

z= 105

t = (0.00: 00005 : Q02);

vc= (t/cxgxk— (vth)); %Reference Function

plot(t,vc);

Miller Reference Function

g=3.16x10%

c=1016

vdd=3.3;vth=0; %Dif ferent parameter values

Ip = logspacé—8, —14.4,40);

al = (0.338).x(gx1p).0039;

a=(gxlp).2L;

t =cx*(—1.5xloglO(g*lp)+6.1).xa./lp;

vc=vdd—vth— (—1.5xlogl0(g=*1p)+6.1).xa; %Reference Function

plot(t,vc);
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Reinhard complex Reference Function

vdd= 3.3;
lw=1.09;
c=6.06x10"9;

g=0.5; %Different parameter values

k=10%;

ka=1;

vth=0;

z= 105

t = (0.0035 : 00005 : 002);

Ve= —(t.x (t —cxg*kxvdd). * Iw?)./((c* g+ k*vdd—t. x IW?). x c+ g * K) +
3.3; %Reference Function

plot(t,Vc);

Tumblin & Rushmeier reference Function

vth = O;vdd = 33;c = 4 %« 106k = 10%g = 1e = 265 f =
1.4; %Dif ferent parameter values

t = (0.00 : 00005 : Q02);

vc=vdd—vth—vddx ((g*k)®).* (cxvdd+gxk./t)f; %Reference Function

plot(t,vc);
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L ogarithmic Reference Function
vdd=3.3;c=5.3x10"1%a=10"1;g=10%vth=0; %Dif ferent parameter value
Ip =logspacé—8, —16,40);

t =axcxvddxlog(1+4g.xIp)./Ip;

vc=vdd—vth—axvddxlog(1+g.xIp); %Reference Function

plot(t,vc);

Ward histogram Reference Function

vdd=3.3;c=5.3%10"13 p=10 "1 k=102 vth=0; %Dif ferent parameter value
Ip =logspacé—8,—12 40);

t =cxexp(—1+1.518« p.xlog(k«Ip)).*vdd)./Ip;

vc=vdd—vth—exp(—1+ 1.518« p.xlog(k=1p)).*vdd); %Reference Function

plot(t,vc,/r’);

Drago Reference Function

vdd = 33wvth = 0 = 10%gl = 10%c = 159 =«
10195 %Dif ferent parameter values

Ip =logspacé—7,—16,40);

t1=10g10(1+g*Ip)./(10g10(2+ 8% (g*Ip./glx 107 7).0-234));

t =cxvddxtl./Ip*loglO(1+gl%10~7);
vc=vdd—vth—vddxt1./logl0(1+glx10~7); %Reference Function

plot(t,vc);

S

S
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7.3 Model Error

This section discusses the model error between pixel modkesinulated response for
Reinhard simple, complex and Schlick operator. Firstlyapaaters are extracted using
calibration currents. Secondly, these parameters aretose@asure the pixel model

and model error.

Reinhard Simple

z1 = load('Reinhardsimpl&2.7.txt’); %simulation data load

x1 = 1014x2 = 708 x 10°12;x3 = 1010;x4 = 108yl = 13710y2 =
0.5459 9%alibration currentsy3 = 0.4021y4 = 0.3814y = 1.3773;
Cl=X1xy4d—X2xy4—X1Lxy2+ X4 y2+X2xyl —x4xyl,

C2=X1xX2+Yy2 — XL X2x Y14 XLk X4 % Y1 — XL X4 Y4 + X2 % X4 x Y4 — X2 x X4 x y2;
c=cl/c2;

bl= (x1/(1+cxx1l))—(x2/(1+cxx2)); %Parameter Extraction

b= (y2—y1)/b1;

a=Yy3+bxx3/(1+c*x3);

d=(a-y)/(b—axc+cxy);

v=a—b.x(Ipl+d)./(14+c.«(Ipl+d)); %Model Response
semilogxlpl,v,K,Ipl,z1,/K);

vl=abgv—2z1); %Model Error

semilogxl p1,v1,K);
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Reinhard Complex

22 = load(’'Reinhardcomlek2.7.txt');  %simulation data load

A = [Ix1 — x1% — y1 % x1;1x2 — x22 — y2 % x2;1x3 — x3% — y3 % x3;1x4 — x4> — y4 *
x4]; %Parameter Extraction

B1 = [yly2y3y4];

B =reshap¢Bl,4,1);

X =inv(A) xB;

P=X(1);Q=X(2);R=X(3);S=X(4);d = (P—y)/Sxy, %Parameter Extraction
v=(P+Qx(Ipl+d)—Rx(Ip1+d).2)./(14+Sx(Ip1+d)); %Model Response
semilogxlpl,v,1pl,22,/r');

Schlick Model Error

a2 = load('schlicktxt’);

x1 = 10713;x2 = 251 x 1011;x3 = 109yl = 27146y2 = 0.7270y3 =
0.4220; %Calibration Currents

C=(106) % (x3xy2+ Y3+ XL+ ylx X2 — X1+ y2 — X3 Y1 — y3* x2) /(X2 * X3 * Y3 4 XL % X3 *
Y1+ XL xX2xy2 — XL X3x Y3 — XL X2+ y1 — X2x X3 y2);

b= (10P) % (yl —y2) % (cxx241076) * (cxx1+1076)/(x2—x1); %Parameter Extraction
a=yl+bxx1/(106+cxx1); d=(106)«(a—y)/(b+y*xc—axc);
y=a—b.x(Ipl+d)./(c.x(Ipl+d)+106); %Model Response

vl=abgqy—al); %Model Error

semilogxl p1,vl);
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7.4 Fixed Pattern Noise

This section summarises the FPN Matlab code. FPN arisesodbte wariations of pa-
rameters. Matlab code calculates the mean and standaratidevof parameters and

measures the FPN.

Reinhard Simple

z=mcdatd); %Montecarlo simulation data

fori=1:1:1000

x1=10"14;x2=7.08+10"12;x3=1010;x4 = 10 8;y1(i) = z(i,41);y2(i) = z(i,98)
ya(i) = z(i,161);y(i) = z(i,1); %1000parameter values

Cl(i) = xLxyA(i) —x2xyA(i) — xLxy2(i) + x4« y2(i) +x2x y1(i) — x4+ y1(i);

c2(i) = xLxx2xy2(i) — XL X2k yL(i) + XL x4« yL(i) — XL+ x4 YA(i) + X2 % x4 yA(i);
) = c1(i). /c2(i);

bl(i) = (x1/(1+c(i)*xx1)) — (x2/(1+c(i) *X2));

b(i) = (y2(i) —yd(i)) /bl(i); %1000parameter values

a(i) = y3(i) + b(i) X3/ (1 + c(i) *x3);

d(i) = (a(i) —y(i))/(b(i) —a(i) c(i) +c(i) *y(i));

c=7.1330+10'1;d = 1.1017« 10" 14;

lext(i,:) = (z(i,:) —a(i) —a(i). * d. * ¢ + d. = z(i,:). * ¢ + b(i). = d)./(a(i). * ¢ — Z(i,:
).xc—Db(i)); %Current Extraction

c(i

e=nungcell(lext, 1);
forn=1:1:181

error(n) = std(abgen))./mearjabgen)); %FPN error calculation
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Reinhard Complex FPN

z1 = mcdataRC); %Montecarlo simulation data

fori=1:1:1000

X1 =5.01x10"14;x2=5.01%x10"13;x3=1%10"11;x4 = 10" 9;y1(i) = z1(i,55);

y2(i) = Z1(i,75);y3(i) = z1(i,102); y4(i) = Z1(i,141);y(i) = Z1(i,1); %Parameters Extractio
SL(i) = xLxy3(i) —x2xy3(i) — XL Y4(i) + X2+ y4(i) —x3x y1(i) + x4+ y1(i) + X3 y2(i) — x4 x*
y2(i) - (y3(i) *x2

—X3xY3(i) — X2+ YA(i) + X3+ yA(i) —x3xy2(i) +Xx4*y2(i) +x3xy3(i) — x4 y3(i)) * (XL +x2—
X3 —x4);

S2(1) = xL#yL(i) * X3 — XL+ YA(i) x X4 — X2 x y2(i) * X3+ X2« y2(i) * x4 — XL X3 y2(i) + XL *
X4+ YA(i) + X2 % X3 y3(i)

— X2+ XA+ yA(1) + (X2 y2(i) % X3 — X2+ y2(i) * X4+ X3+ X4 y3(i) — x3* X2+ y3(i)

+ X2« YA(i) x x4 — X3k x4+ y4(i)) * (XL + X2 — x3— x4);

(i) = s(i)./s2(i);
ri(i) = (y3(i) —y4(i)) * (x1 —x2) — (y1(i) —y2(i)) * (x3—x4) — S(i) * (XL * y1(i) * x3 — x1L *
y1(i) * x4

—X2xY2(i) % X3+ X2 y2(i ) % X4 — XL X3 Y3(i) + XLk X5 YA(1) +X2% X3+ Y3(i) — X2+ X4 YA(i));
r2=x1+4x2—x3— x4,
rii)./r2;

R()
(i) = R(0) * (x1+x2) + ((y2(i) —y2(i1)) /(X1 = x2)) 4+ (i) * (xLxyL(i) —x2xy2(i)) / (X1 = x2);
)
)

O

P(i) = y1(i) — Q(i) # XL+ R(i). *x1% 4 (i) * y1(i) * x1;

D(i) = (P(i) = y(i))./S() +y(i);

lext(i,:) = (Q(i) —2xD(i) *R(i) — S(i) * zL(i,:) — (Q(i).2 — 2% Q(i) » S(i) * Z1(i,:) + (i).%  zA(i, :
).2—4xR(i)*z1(i,:) +4xP(i) *R(i)).1/2)./2%R(i); %Current extraction

el = nungcell(lext, 1);
fori=1:1:181
error(i) = abgstd(eli)./mearteli)); %FPN calculation

semilogXl pl,error);
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