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Abstract

In nature, the dynamic range of a scene can be on the order of 106 to 100 from bright

to dark areas. The human eye is capable of capturing images over a wide dynamic

range of illumination while CMOS image sensors have limited ability to capture dy-

namic range available in nature. A Wide dynamic range (WDR) image is captured and

displayed on low dynamic range (LDR) conventional media by a technique called tone

mapping (TM). It is reported that most of the tone mapping operators have a monoton-

ically increasing transduction function. A new CMOS pixel isproposed that aims to

capture and display the wide dynamic range of illuminationsby using the tone map-

ping monotonically increasing reference function. Different tone mapping functions

like Reinhard photographic operator, Drago operator, etc. reference function are pro-

posed and discussed. The tone mapping monotonically increasing function enables new

pixel to capture WDR up to 6 decades of intensity.

A pixel model of different tone mapping operators is developed with parameters that

characterise the pixel response. It is proposed that the pixel model of certain tone map-

ping operators exists. In addition, the parameters extraction routine is also discussed.

The pixel model response is compared with the simulated response to check its validity.

The model error is presented and suggests that the developedmodel fits well with the

simulation data. Fixed pattern noise (FPN) limits the performance of image sensors, and

it is mainly due the variations between the responses of individual pixels within an ar-

ray of pixels. A simple procedure has been adapted to reduce FPN in which parametric

response of the pixel is used, with FPN modeled as variationsin the individual parame-

ters. The parameters of each pixel are measured, recorded and then used to correct their

response.
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1

Chapter 1

Introduction

1.1 Background

Electronic imaging devices have experienced rapid growth in their usage in the last

decade, and these electronic devices replace traditional imaging techniques of film-

based cameras. Traditional imaging techniques of film-based are rarely used in these

times. Although electronic imaging devices have replaced film-based cameras, the hu-

man eye remains the ultimate standard of comparison, and it vastly outperforms the best

cameras in many respects [1].

Electronic imaging devices may be divided into two categories: charge coupled device

(CCD) sensor and complimentary metal-oxide semiconductor (CMOS) sensor. These

imaging devices are mostly used in mobile phones, still and video cameras, automobiles,

security, and biometrics. The earlier digital cameras weremostly made from CCD sen-

sor technology. Charged coupled devices, having benefited from longer development

and maturation, yield superior quality color images, higher signal to noise ratios, high
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photosensitive area, and low readout noise [2]. However, microelectronic manufactur-

ing of CCD sensor is expensive and hence the cost of these image sensors was typically

high. Besides, these also suffered from high power consumption with no functional

integration to other devices.

On the other hand, CMOS image sensors were first introduced in the low-end applica-

tion like toys and mobile phones. Also, CMOS image devices benefit from low power

consumption, lower fabrication costs, ability to integrate with other circuits blocks on a

single chip and faster readout time. These days, CMOS sensorshave replaced CCD in

the most low end as well as professional cameras. According to IC Insights 2015 O-S-D

Report, a market analysis and forecast for optoelectronics,Sensors/Actuators, and Dis-

cretes, CMOS image sensor sales are climbing 15% in 2015 to reach an all-time high of

$10.1 billion after a strong 19% increase in 2014, and 4% growth in2013 that primarily

resulted from steep price erosion and inventory corrections in camera phones. CMOS

image sensor unit shipments are now projected to grow 19% in 2015 to a record-high

$3.7 billion after rising 20% in 2014 and 2013. Overall, total CMOS image sensor sales

are projected to grow by 11.1% in the five-year forecast period to reach $15 billion in

2019 as shown in Figure1 1.1.

Figure 1.1 shows the strong growth in the usage of CMOS image sensors. CMOS image

sensors sales were mainly driven by the camera integration inside a mobile phone. Be-

sides, global shutter and BSI (Back Side Illumination) technology have enabled CMOS

image sensors to compete with CCD sensors on high-end devices like DSLR (Digital

Single Lens Reflex) and video cameras while keeping its traditional advantages like low

power consumption, high resolution, and high integration [3].

1image is taken from IC Insights 2015 O-S-D Report, A Market Analysis and Forecast for Optoelec-
tronic, Sensors/Actuators, and Discrete.



1.2. Image Sensor Designs 3

Figure 1.1: CMOS image sensors yearly growth [Data is taken from IC insights].

1.2 Image Sensor Designs

Electronics image sensors can be divided into two main categories: charge coupled

device (CCD) sensor and complimentary metal-oxide semiconductor (CMOS) sensor.

The common element in these image sensors are photoreceptors like photodiode and

phototransistor that interacts with the light energy reflected from an object in a scene.

The basic function of the photoreceptor are charge capture generated from capture of

photons and later, this charge is transferred and convertedinto a desirable quantity such

as a voltage or current for further processing.

1.2.1 Charge Couple Devices

Figure 1.2(a) illustrates the basic structure of interlinetransfer CCD pixel. The CCD

sensor has three basic functions: a) charge collection, b) charge transfer and c) charge

conversion into a measurable voltage. During the first stage, incoming light strikes the
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photosensitive area of each pixel. These photons generate electron-hole pairs in the

depletion region of the CCD structure. After some time, duringreadout process, every

pixel charge is transferred through vertical shift registers to an amplifier where it is

converted to a voltage, buffered, and sent off-chip as an analog signal. The typical CCD

sensor is composed of a pixel arranged in vertical and horizontal shift registers as shown

in Figure 1.2(b).

The main disadvantages of CCD sensors are that their fabrication is quite complex,

they require more electronics circuit outside sensor, and also suffer from high power

consumption that leads to heat issues in the camera. The overheating issue impacts the

image quality.

(a)

������

���	�
����
��	������	���

�������	����
��	������	�� ��	��	

(b)

Figure 1.2: (a) The typical CCD pixel structure. (b) The basic structure of interline
CCD sensor.
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1.2.2 CMOS Devices

A typical CMOS image sensor pixel consists of a photodetector, usually photodiode

and a couple of transistors and capacitors. When light falls on the photodiode, charge

carriers are produced which are used to produce the output voltage or current signal. A

typical CMOS 3 transistor linear pixel is shown in Figure 1.3.M1, M2 andM3 are all

NMOS devices. TransistorM1, M2 andM3 are reset, source follower and row select

switch respectively.PD is a photodiode which converts input light into charge. Pixel

operation starts with the high reset voltage at the gate of transistorM1. Due to high

voltage atM1, theVdd−Vt will be transferred to nodeN. Light falling on the photo-

diode then generates charge at nodeN, which acts to reduce the voltage being held on

the diode capacitance. The voltage at nodeN is readout using the source followerM2

and select switchM3.

Figure 1.3(b) shows the typical CMOS image sensor array. In the array, charge voltage

signals are read out one row at a time in a manner similar to a random access memory

using row and column select circuits [4]. The random access readout provides the high-

speed readout at low power consumption. However, readout path comprises of several

devices that introduce temporal and fixed pattern noise thatdegrades the image quality

of CMOS image sensor.

1.3 Wide Dynamic Range Image Sensor

Nature have a dynamic range of light intensities up to 6 decades. Typical CMOS APS

(active pixel sensor) and CCD have limited ability to capture the light available in nature.

The dynamic range of CMOS sensor is the ratio between the maximum and minimum
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(a) (b)

Figure 1.3: (a)Schematic of a typical CMOS linear pixel. (b) CMOS pixel array.

luminance in a scene and is limited by the semiconductor device used to capture the

image [5]. This semiconductor device converts input light into a charge that is read out

and digitised to store the image. High input light generatesa large amount of charge

which saturates the pixel. On the other hand, very low input light generates a low charge

that is very difficult to read out faithfully. Typical CMOS sensors using the basic APS

have a dynamic range between 40dB to 60dB.

Several different approaches and CMOS circuits have been proposed to extend the dy-

namic range of CMOS pixels. These include logarithmic sensors using the weak inver-

sion region of operation of a MOS transistor [6], well capacity adjustment [7], thresh-

old comparison, integration time control [8], neuromorphic approaches [9] and linear-

logarithmic pixel [10]. More detailed discussion about these techniques and circuits to

enhance the wide dynamic range of CMOS sensors are presented in the next section.
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1.3.1 Well Capacity Adjustment Sensors

One way to increase the dynamic range of image sensor is to enhance the well capac-

ity by changing the reset signal during the integration period. Decker and co-workers

have proposed the similar technique to change the reset signal at a rate increasing with

time [7]. This change in reset voltage changes the pixel charge as shown in Figure 1.4.

By increasing the pixel operating voltage, one can also adjust the well capacity. How-

ever, this will lead to increasing power consumption. It hasbeen noted that with the

power supply constant, any charge generated in the pixel after its saturation often spills.

Controlling this spilling charge operation can be used to enhance the dynamic range of

the pixel. One can also use the pinned photodiode in APS to integrate the spilled charge

and photodiode charge to extract the input light on the pixel[11].

Figure 1.4: A steeped reset signal and corresponding chargefor dynamic range enhance-
ment for well capacity adjustment sensors.
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1.3.2 Logarithmic Sensors

Logarithmic pixel is another technique to capture wide dynamic range. Logarithmic

pixel is similar to active pixel sensor except NMOS reset transistor operating in a weak

inversion region with its gate shortened to the drain as shown in Figure 1.5. Reset

NMOS transistor in weak inversion region act as a logarithmic amplifier, which com-

presses the input photocurrent and converts into logarithmic voltage.

A logarithmic pixel can capture wide dynamic range more than6 decades of light inten-

sity. The main disadvantage of logarithmic pixels is high fixed pattern noise. They are

highly susceptible to fixed pattern noise, as any double sampling operation is difficult

to undertake.

Figure 1.5: A schematic of typical logarithmic pixel.
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1.3.3 Threshold Comparing Sensors

Wide dynamic range can be enhanced by using threshold comparing pixels. Threshold

pixels integrate the photocurrent till the output reaches aknown threshold value [12].

For example, Hyneceks pixel provides a provision for resetting the pixel only when

the accumulated charge exceeds a certain threshold voltageand ignoring the reset at all

other instances [12]. Later, the number of resets can be stored in local memory inside

each pixel. Due to a large number of compacters and memories inside each pixel reduce

the pixel fill factor and effect its quantum efficiency.

In an another approach, Anaxagoras and Allinson have proposed an active pixel which

resets every time it saturates [13]. The number of saturations is measured on a counter.

This count in combination with the final pixel output is used to extend the dynamic range

of the pixel. The main drawback of threshold comparing pixels is low light sensitivity

due to a large pixel size and a small area reserved for light capture.

1.3.4 Integration Time Control Sensors

Integration time control technique can be used to capture wide dynamic range informa-

tion. The integration time can be controlled by locally adapting the integration time for

each pixel or group of pixels [14,15]. This may be achieved bycontinuously comparing

the pixel output to one or many references and using the output of comparison to gen-

erate reset pulses or a few bits of flags to be stored in a memory[15]. Integration time

control sensors have high fixed pattern noise due to the mismatch of a circuit element

as well as integration time mismatch between pixels.
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1.3.5 Threshold Comparing and Integration Time Control Pix-

els

By combining the two approaches of threshold comparing and integration time control,

provides another design to capture the dynamic range information [10]. Figure 1.6

shows the signal flow diagram of an integration pixel. In a typical linear pixel, high

photocurrentI1 shown by dashed lines saturates the pixel that leads to incomplete wide

dynamic range capture. However, in an integration pixel, a continuously increasing

reference signal is compared to the integrated signal shownas I1, I2, I3 in Figure 1.6,

and the integration is stopped when the two signals are equal. The voltage at which

these two signals are equal is recorded and used as pixel output. Hence, pixel output

depends on the increasing reference voltageVre f .

Figure 1.6: Signal flow diagram in an integration pixel.
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1.4 A New Wide Dynamic Range Pixel Design

A new wide dynamic range integration pixel which uses NMOS transistors as shown

in Figure 1.7 is proposed which aims to capture the wide dynamic range of intensities

available in nature otherwise lost in active pixel sensor. WDR capture can be performed

by introducing a monotonically increasing reference signal Vre f . It is possible to capture

high intensity information by comparing the integrated voltage at nodeN to a reference

voltageVre f . The pixel output follows a known reference signal, which issampled and

held at a value when the photo-generated signal on the diode becomes lower than the

reference voltage. The potential at which these two signalsare equal is recorded and is

used as the pixel’s response [16]. In the pixel,M1, M2, M3 andM4 are reset device,

reference voltage switch, source follower and row select switch.

The pixel operation starts by resetting the transistorM1, by applying the high reset

signalVrst at the gate of transistorM1. Due to the high voltage at the gate ofM1,

voltageVdd−Vth is transferred to deviceM1 source nodeN. The high voltage placed on

the capacitance of nodeN is discharged by the photo-generated charge when transistor

M1 is off, by lowering its gate voltage. A monotonically increasing reference function

Vre f is applied to transistorM2 drain. At the start of integration, the voltageVre f is lower

than node voltageN and hence transistorM2 is on. However, discharging node voltage

atN and monotonically increasingVre f leads to transistorM2 being switched off. After

this time, the gate voltage ofM3 is held by its gate capacitance until its readout and a

pixel is reset. The output voltage of the pixel depends on thesignalVre f andIph.

Hence, a novel NMOS pixel with reference switch can capture wide range of light in-

tensities by using the monotonically increasing referencefunction. In this thesis, we

proposed different reference functions extracted from tone mapping operators.
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(a) (b)

Figure 1.7: (a) High dynamic range pixel schematic with adjustable reference function.
(b) Operation of the wide dynamic range pixel.

1.4.1 Tone mapping

In a real world, the dynamic range of a scene can be on the orderof 106 to 100 from light

to dark areas. However, display devices available to us are unable to produce such wide

dynamic range that nature has. In order to obtain realistic images on display devices, it

is necessary for the images to be a faithful representation of the scene they depict. In

addition, for good and realistic image reproduction on display devices, it is also nec-

essary to take into account the way HVS (Human Vision System)operates. To solve

the problem of displaying wide dynamic range content on low dynamic range displays,

computational algorithms known as tone mapping operators have been proposed. Tone

mapping is a technique that aims to match the dynamic range ofWDR content with the

display device dynamic range. Tone mapping compresses or expands the luminance to

fit WDR content on LDR (Low Dynamic Range) display. The goal of tone mapping

can be different and depends on the particular application.In some cases producing
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just ’nice looking’ image is the main goal while other applications might emphasize

reproducing as much detail as possible, or might maximize the image contrast [17].

Figure 1.8 shows the wide dynamic range image and processed image after tone map-

ping. It can be noted that tone mapping operation enhanced the overall image quality

and contrast. In addition, image detail in dark areas is morevisible after tone mapping.

Tone mapping operators can be divided into four groups called

• Global operators

• Local operators

• Frequency operators

• Segmentation operators

The detail discussion about these operators will be presented in next chapter. Global

tone mapping operators are used for wide dynamic range capture and display because

they are computationally efficient and can be executed in real time [17], faster than other

operators.

1.4.2 Tone mapping on an integrating CMOS pixel

As discussed earlier, a CMOS image sensor can capture a wide dynamic range using the

monotonically increasing reference voltage. Most of the tone mapping operators have

monotonically increasing transduction function. Hence, tone mapping transfer function

for CMOS pixel has been proposed which aims to perform tone mapping at the image

acquisition stage, thereby enabling direct display of HDR images. Figure 1.9 presents
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(a) (b)

Figure 1.8: (a) A wide dynamic range image. (b) Same image after tone mapping
operation.

the two reference function extracted from Drago and Exponential tone mapping opera-

tors for CMOS image sensor. Tone mapping operation using a CMOSpixel in practice

performs two operations; one is to capture wide dynamic range using a reference voltage

and second is to enable direct display of an image on LDR display devices. This reduces

the two step process of typical cameras, where the image is captured in one stage and

tone mapping is then applied to make this image displayable on display devices.

Different global tone mapping reference functions will be presented in the chapter 3 with

an aim to capture and display wide dynamic range scenes. Also, WDR pixel simulation

with different reference functions in Cadence using the AMS (Austria Micro Systems)

process technology is also presented in chapter 3.

1.5 Fixed Pattern Noise

A WDR CMOS image sensor has different kinds of noise which includes model error,

fixed pattern noise (FPN), and temporal noise. Model error originates due to the differ-
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Figure 1.9: (a) Drago operator reference function. (b) Exponential operator reference
function.

ence between pixel simulated and pixel model response. FPN generates due to the pixel

mismatch in an array of image sensor. There is a need to develop a pixel model with

different parameters that characterize the pixel responsebefore analysing model error.

A new wide dynamic range pixel parameter model for Reinhard simple and complex

operators is developed [17]. The model response for Reinhardsimple pixel is given as

y = a− b(x+d)

1+c(x+d)
(1.1)
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wherey is pixel output,x is input photocurrent,a is pixel offset voltage,b andc rep-

resents the pixel gain andd is the dark current. Similarly, other mapping operators

pixel model is also developed and presented in later chapters. Parameters need to be

extracted to find the model response and model error. After finding the required param-

eters, Reinhard model response can be calculated by inserting the extracted parameters

into equation 1.1.

FPN severely degrades the quality of an image taken by an image sensor. Figure 1.10

shows the image with and without fixed pattern noise. The image with FPN exhibits

the salt and pepper pattern that distorts the image quality.The variations between re-

sponses of individual pixels generate FPN. These variations are caused by the device

and interconnect parameter mismatches in an individual pixel. FPN can be quantified

by making the human visual system as a standard. Fixed pattern noise can be described

as a contrast threshold error, and 1% error value becomes thebest attempt at matching

FPN error to the sensitivity of the human visual system.

In this thesis, we present the new FPN correction technique in which parametric re-

sponse of the pixel is used, with FPN modeled as variations inthe individual parame-

ters. The parameters of each pixel are measured, recorded and then used to correct their

response. We simulated the Reinhard pixel using Monte Carlo simulation and extracted

the parameters for 1000 pixels. Pixel parameters could be extracted using function min-

imization or curve fit technique. However, this is too complex to be applied in real time

and will require several measurements from the pixel. The typical approach of double

sampling to correct fixed pattern noise is difficult to implement in this kind of pixel.

Hence, parameters are used to correct fixed pattern noise. The detail discussion about

FPN correction is presented in later chapters.



1.6. Thesis Objectives 17

(a) (b)

Figure 1.10: (a) Image without fixed pattern noise. (b) Imagewith fixed pattern noise.

1.6 Thesis Objectives

This thesis is mainly concerned with the capture and displayof wide dynamic range

scenes available in nature. CMOS based typical sensor are unable to capture the wide

dynamic range. Tone mapping technique is used to enable the capture and direct dis-

play of wide dynamic range scenes simultaneously. The imageis algorithmically trans-

formed by tone mapping operators to fit the limited dynamic range. In this thesis, a

new pixel is proposed which aims to capture wide dynamic range scenes. The de-

tail literature review on different tone mapping operatorsis presented with the Matlab

simulations. In addition, the comparison between different mapping operators through

Matlab simulations are also presented. Reference voltages are extracted from different

tone mapping operators and applied on a pixel for wide dynamic range capture. The
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derivation of 6 tone mapping operator reference functions is proposed. To verify the

performance of these tone mapping reference function, a typical pixel is simulated us-

ing a 0.35µmCMOS process from Austria Microsystems. Simulation resultsshow that

the pixel response can capture 6 decades of light intensity.

This thesis also deals with the WDR pixel model. A pixel model with different pa-

rameters that characterizes the pixel response is presented. In addition, a model error

between pixel simulation and model response is also considered. Fixed pattern noise

arises due to variations in characteristics of individual pixels within an array of a pixel.

This thesis presents the simple technique to correct FPN in which parametric response

of the pixel is used, with FPN modeled as variations in the individual parameters. The

parameters of each pixel are measured, recorded and then used to correct their response.

1.7 Thesis Organisation

The rest of thesis organisation is given as follows. Chapter 2describes the introduction

and background of the tone mapping technique. A detailed discussion about different

global operators is also presented in this chapter. A comparison of results for different

mapping operators using Matlab routine are discussed. A Matlab routine simulates

each mapping operator transfer function to check the quality and faithfulness of output

image after the tone mapping operation. Two input images with different background

illumination conditions are selected for Matlab simulation. A qualitative criteria are

used to assess the image quality that is simple and straightforward to implement.

Chapter 3 presents the wide dynamic range capture and displayusing tone mapping

operation on a pixel. A new pixel is presented which, aims to capture wide dynamic
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available in nature. Different reference functions are extracted from global tone map-

ping operators and applied on a CMOS pixel to obtain wide dynamic range information.

Tone mapping operation on a CMOS pixel in practice performs two operations; one is

to capture wide dynamic range using reference voltage and second is to enable direct

display of an image on low dynamic range display devices. WDR pixel simulation re-

sults are presented by applying a reference function. The results show the pixel ability

to capture more than 6 decades of dynamic range.

In chapter 4, a pixel model of the Reinhard operator is developed with different param-

eters that characterise the pixel response. In addition, parameter extraction routine is

also discussed. Pixel model response is compared with the simulated response to check

its validity. Model error is presented and suggests that developed model fits well with

the simulation data. This chapter also presents the fixed pattern noise investigation and

correction technique. The variations between individual pixel response within an array

of pixels cause FPN generation. A simple procedure is adapted to reduce FPN in which

parametric response of pixel is used, with FPN modeled as variations in the individual

parameters. The response of 1000 pixel is obtained using Monte Carlo simulations in

Cadence circuit simulator. Parameters values are measured using the response of 1000

pixels and then used to correct the fixed pattern noise.

Chapter 5 presents the pixel model and model error of rest of the global operators.

These includes Drago operator, Exponential, Schlick, Miller, Tumblin and Rushmeier,

and logarithmic pixel. Chapter 6 discusses the conclusion and future work. Chapter 7

presents an appendix.
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Chapter 2

Tone Mapping

2.1 Introduction

A number of industries including defence, night vision imaging, games and computer

graphics are demanding for more realistic images displayedon a computer that matches

the real scene as seen by the human visual system (HVS). However, in a natural world,

there are a wide range of colors and intensities. In addition, the appearance of a scene

depends upon the level of illumination. For example, scenesappear more bright on a

sunny day, whereas the same scene appears dull during night.Luminance is the amount

of light that passes through or is emitted from a particular surface. The standard unit of

luminance is candela per square meter(cd/m2). The dynamic range is the ratio between

the maximum and minimum luminance in a scene. The real world can produce such a

wide dynamic range of illumination, for example, the sun at noon may be 100 million

times brighter than starlight [18].

However, display devices available in the market are unableto produce the image detail
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Condition Illumination
Starlight 10−3

Moonlight 10−1

Roomlight 102

Sunlight 105

CRT monitors 102

Table 2.1: Luminance levels for some common scenes

as seen by human eye. Tone mapping is the operation that matches the dynamic range

of high dynamic range (HDR) content with the display device dynamic range. When the

dynamic range of the captured scene is smaller or larger thanthat of the display device,

tone mapping expands or compresses the luminance respectively [19].

Section 2.2 presents the background of a wide dynamic range of intensities available

in nature and how the human eye perceives the light. Section 2.3 discusses the tone

mapping basic theory and operation. Section 2.4 presents the different global tone map-

ping operators. Section 2.5 presents the Matlab simulationresult to check the quality of

different mapping operators and with a conclusion being presented in section 2.6.

2.2 Background

The human eye can capture the light intensity of about five orders of magnitude simulta-

neously available in the real world as can be seen in Table 2.1. It gathers light onto pho-

toreceptors which then convert light into signals. These signals are then passed through

the optical nerve to the brain that processes these signals producing the perceived image

or percept [20]. The human eye has two types of photoreceptors, cones and rods. The

cones are more sensitive at luminance between 10−2cd/m2 and 108cd/m2 (daylight vi-
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sion). They are also responsible for the perception of high frequency pattern and colors.

The rods are more sensitive at luminance between 10−6cd/m2 and 100cd/m2 (night vi-

sion). The rods and cones also compress the incoming light signal and reduce dynamic

range by following sigmoid function [21],

R
Rmax

=
In

In +σn (2.1)

whereR is the photoreceptor response,Rmax is the maximum photoreceptor response

andI is the light intensity. The variablesσ andn are the semi saturation constant and

the sensitivity control exponent [20] respectively.

The human visual system uses non-linear processing in the form of sigmoid function to

compress the dynamic range of an image. After compression, HVS forms an image that

we call percept. Figure 2.1 shows an image1 which is perceived by the human visual

system and the same image capture by the camera. It can be seenthat human eye is able

to capture wide dynamic range of intensities available in nature. If the scene dynamic

range is greater than the dynamic range of display device, then it is called high dynamic

range scene. Some information will be lost in a scene if this high dynamic range scene

is displayed on a low dynamic range scene. A scene is said to bea low dynamic range

(LDR) when its dynamic range is lower than that of the output medium. In this case,

scene dynamic range has to be expanded to fit the output mediumdynamic range. If the

scene dynamic range and display device dynamic range is samethen it is called standard

dynamic range scene [19].

There are a number of ways to capture HDR content including software and hardware

techniques. However, HDR capture using hardware have some limitations until recently.

1image is taken from http://www.morguefile.com/
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(a)

(b)

Figure 2.1: (a) Image perceived by the camera. (b) Image perceived by the human visual
system.

The most commonly used method to capture HDR image is taking amultiple exposure

images of the same scene from the darkest to brightest areas using a standard cam-

era [20]. Each pixel in an image will be properly exposed or underexposed. HDR

image can be obtained by combining images with different exposure time. Some cam-

era manufactures like Canon, Nikon and Sony have launched DSLR cameras with HDR

capturing features such as multiexposure capturing and automatic exposure merging.
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There are group of 360 degree panoramic cameras, which claimto capture full HDR

like SpheronCam HDR, Panoscan Mk-3 and Civetta 360 by Weiss AG. HDR image can

also be generated using computer graphics.

If one can capture the HDR content somehow, however to display this HDR content

faithfully, HDR display device is needed. Typical display devices like liquid crystal

displays have a standard dynamic range and can reproduce about two orders of magni-

tude of intensity variations. To overcome the limitations of these Low Dynamic Range

(LDR) displays, some research, and industrial interest havebeen drawn to develop High

Dynamic Range (HDR) displays; however these have proven to be either insufficient or

costly [22].

2.3 Tone Mapping

In order to obtain realistic images on display devices, it isnecessary for the images to

be a faithful representation of the scene they depict. In addition, for good and realistic

image reproduction on display devices, it is also necessaryto take into account the

way HVS operates. The rods and cones compress the incoming light and reduce the

dynamic range of the scene using the sigmoid function. Nature has a wide dynamic

range of illumination on the order of 100,000 to 1 sunlight toshadow. However, display

devices available to us are unable to produce such wide dynamic range that nature has.

Typical display devices can only produce an image of dynamicrange of less than 100

to 1 [18] as an example of CRT monitors given in Table 2.1. Hence, it is a problem

to reproduce high dynamic range scenes using media with verylimited dynamic range

like CRT/LCD displays, hard-copy prints, and projectors. In order to solve the problem
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of displaying HDR images on LDR displays, computational algorithms known as tone

mapping operators have been proposed.

HVS
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Figure 2.2: Tone Mapping problem: Faithful representationof HDR content on LDR
display device.

Tone mapping is the operation that matches the dynamic rangeof HDR content with

the display device dynamic range. When the dynamic range of the captured scene is

smaller or larger than that of the display device, tone mapping expands or compresses

the luminance, respectively [19]. On the display device, the image should be a faithful

representation of the real image with some characteristicsof the real image such as

contrast and details should be kept same or improved on the display.

The purpose of applying tone mapping on an image can be different and depends on the

particular application. In some cases producing just ’nicelooking’ image is the main
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goal, while other applications might emphasize reproducing as many details as possible,

or might maximize the image contrast [23]. However, the ultimate goal of tone mapping

is to match the perception of tone mapped image with the real world perception seen by

human visual system as can be seen in Figure 2.2. The tone mapping operator (TMO)

f is used for tone mapping operation can be defined as [20]

f (I) : Rw×h×c → Dw×h×c (2.2)

Here I is an image,f is operator,w is width, h is height andc is number of color

bands which is 3 in RGB color space. The selection of a suitabletone mapping operator

depends on a particular application and a type of display device (LCD, Plasma, CRT)

and its characteristics.

Tone mapping operators mainly classified into four groups given as

2.3.1 Global Operators

The same mapping function is applied to all pixels of the image. Mapping function

treats each pixel of the image independently. Global operators take each pixel value and

a globally derived quantity such as maximum luminance, minimum luminance and the

arithmetic average for the compression. Global operators are computationally efficient,

easy to implement and can be executed in real time. The main drawback of global

operators is that they may not always preserve visibility ifthe dynamic range of an

image is extremely high. In addition, since they make use of global image statistics,

they are unable to maintain local contrast too [20].
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2.3.2 Local Operators

A local mapping operator function compress each pixel valueaccording to its luminance

values and set of neighboring pixels luminance values. Hence, for each pixel the com-

putation is adjusted according to an average over a local neighborhood of pixels [18].

However, halos around edges can appear if neighbors were notchosen carefully. Halos

are sometimes desired when attention needs to be given to a particular area but if the

phenomenon is uncontrolled it can produce unpleasant images [20].

2.3.3 Frequency Domain Operators

Frequency based operators have the same goal of preserving edges and local contrast as

local operators. However, this is achieved by computing in the frequency domain instead

of spatial [20]. Frequency Mapping operator is applied onlyto the low frequencies

while high frequencies are kept same as they preserve fine details.

2.3.4 Segmentation Operators

The image is divided into different uniform regions, a global mapping operator is ap-

plied on each region and finally these are merged.

Global operators will be discussed in the next sections in detail. Global tone mapping

is selected for further research. Local, frequency and segmentation operators are out of

the scope of the thesis.
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2.4 Global Operators

Global operators compress each pixel with the same functionor a compression curve

within an image. In addition, the tone mapping function treats each pixel of the image

independently. These operators often use globally derivedimage statistics to reduce

the dynamic range of the image. Some common statistics are maximum luminance,

minimum luminance, and geometric or arithmetic average values [20]. The goal of

the global operator is to mimic the performance of HVS non-linearity in order to get a

visually more appealing image.

Global operators are computationally efficient and can be executed in real time, faster

than other operators. On the other hand, local tone mapping operators are computation-

ally more expensive. In order to get local contrast improved, local operators need to

be used along with global operators. Different global tone mapping operators will be

discussed in detail next.

2.4.1 Linear Scaling

A simple linear scaling is a straightforward mapping operator. Input or world luminance

Lw(x,y) is multiplied by a constante and output or display luminanceLd(x,y) is given

as,

Ld(x,y) = eLw(x,y) (2.3)

wheree is user controllable value. Whene = 1
Lwmax

, the scaling is called normaliza-

tion. A simple linear scaling is not an efficient tone mappingoperator and is unable to

compress the dynamic range of the scene.
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2.4.2 Logarithmic Mapping

Logarithmic mapping compress the HDR using a logarithm function and given as [24]

Ld(x,y) =
log10(1+Lw(x,y))

log10(1+Lmax)
(2.4)

whereLmax is maximum world luminance. For medium dynamic range images, loga-

rithmic mapping produce good results and in fact be competitive with more complex

operators [18].

2.4.3 Exponential Mapping

Exponential function compress the HDR luminance using the exponential function [25],

and the operator is given as,

Ld(x,y) = 1−exp(
−Lw(x,y))

Lav
) (2.5)

whereLav is the average world luminance. For medium dynamic range images, loga-

rithmic and exponential mapping produce very good results.However, both operators

struggles when compressing full HDR content [18]. For HDR content compression,

other approaches may be suitable.

2.4.4 Drago Mapping Operator

Drago [26] presented a tone mapping operator that applies a logarithmic mapping to

the input luminance. However, the base of the logarithm is adjusted according to each

pixel’s value. It was noted that logarithm with base 10 compress the maximum high
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luminance values while logarithm with base 2 gives good contrast and preserve details

in dark and medium luminance regions. By combining the two different logarithmic

bases, Drago presented a tone mapping operator given as,

Ld(x,y) =
Ldmax log10(1+Lw(x,y))

100 log10(1+Lwmax) log10[2+8(Lw(x,y)
Lwmax

)
log10(p)

log10(0.5) ]

(2.6)

Ldmax is maximum display luminance with a value of 100cd/m2. p is user controllable

value and has a value between 0.7 to 0.9 produces good result.A higher value ofp result

in less contrast and better compression, whereas smaller values increase the available

contrast [18].

2.4.5 Schlick Operator

Schlick operator based on rational functions provides straight forward approach to tone

mapping as given as [27],

Ld(x,y) =
p Lw(x,y)

(p−1)Lw(x,y)+Lmax
(2.7)

where p∈ [1,∞) value ofp can be calculated as,

p =
L0 Lwmax

2NLwmin
(2.8)

N is the number of different luminance levels of display device andL0 is the lowest

luminance value of a monitor that can be perceived by the HVS.The value ofp given in

Equation 2.8 corresponds a uniform quantization process asthe same function is applied

to all pixels. A non uniform quantization process can be applied by using spatially
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varying p′ given as,

p′ = p(1−k+k
Lwavg(x,y)√
Lwmax Lwmin

) (2.9)

wherek ∈ [0,1]. Schlick operator produces reasonable good result. However, in order

to find the values of two parameters some experimentation needed to be done.

2.4.6 Tumblin and Rushmeier Operator

The operator is inspired by the HVS and adopts Stevens work onbrightness [28, 29].

The operator is defined as ,

Ld(x,y) = mLda(
Lw(x,y)

Lwa
)α

whereα =
γ(Lwa)

γ(Lda)

(2.10)

Lda andLwa are display and image adaptation luminance values respectively. The typical

value of display luminance is between 30 and 100cd/m2 for standard display device.

The gamma functionγ(L) is human contrast sensitivity and given as,

γ(L) =















2.665 f or L > 100cd/m2

1.855+0.4log10(L+2.3×10−5) otherwise

The termm is the world adaptation dependent term and its value is givenas

m= C
γwd−1

2
max

γwd =
γw

1.855+0.4 log(Lda)
(2.11)
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whereCmax is the maximum display contrast. This tone mapping operatorcompresses

HDR images, preserving brightness and producing plausibleresults when calibrated

luminance values are available.

2.4.7 Miller Brightness Operator

Miller and colleagues [30] have presented a tone mapping operator that improves the

brightness of the image before and after dynamic range reduction. The mapping opera-

tor is given as,

Q = k Lb
v (2.12)

whereQ is the brightness andLv is the luminance. Miller experimented with three

different formulations for determining brightness valuesfrom luminance and found that

the one presented by Stevens [28] produces the most plausible results. By fitting data

from Stevens work, Miller produced the values ofk andb as follows,

b = 0.338L0.034
v

k = −1.5log10Lv +6.1
(2.13)

Hence, the final relationship between brightnessQ and luminanceLv is given as,

Q = (−1.5 log10Lv +6.1) L0.338L0.334
v

v (2.14)

The operator is fast and simple to implement and produced plausible results.
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2.4.8 Reinhard Mapping Operator

Photographers were often faced with the tone mapping problem. Their main goal is to

produce realistic ’renderings’ of captured scene in order to get a quality print on photo-

graphic papers. Ansel Adams [31] presented the Zone system approach as a solution of

photographic problems. It is the system of practical sensitometry, where the photogra-

pher uses measured information in the field to improve the chances of producing a good

final print [17]. There are eleven print zones from pure black(Zone 0) to pure white

(Zone X). The key is the scene indicative of light, normal anddark areas in the scene.

In order to choose the correct zone, the photographer first takes a luminance reading

he/she perceives as a middle grey. In a typical situation, this will be mapped to zone V,

which corresponds to the 18% reflectance of the print. For high-key scenes the middle-

grey will be one of the darker regions, whereas in low-key scenes this will be one of the

lighter regions [17].

The procedure discussed above was used to develop a tone mapping operator by Rein-

hard [17]. Log average luminanceLw is taken as useful approximation of scene’s key

and given as,

Lav = exp(
1
N ∑

x,y
log(Lw(x,y))) (2.15)

whereLw(x,y) is a pixel luminance andN is the total number of pixels in the image.

If the scene has normal-key we would like to map this to middlegrey of the displayed

image, or 0.18 on a scale from zero to one. This suggests the equation,

L(x,y) =
a

Lav
Lw(x,y) (2.16)

whereL(x,y) is scaled luminance anda= 0.18. The value ofa can be varied from 0.045
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to 0.72. Modern photography uses a transfer function that compress high luminance. A

simple mapping operator with that compress high luminance is given as,

Ld(x,y) =
L(x,y)

1+L(x,y)
(2.17)

It is clear form equation 2.17 that high luminance are scaled by approximately by1
L and

low luminance are scaled by 1. In some cases it is desirable tolet bright areas burn out

in a controllable fashion. Hence, in order to burn out brightareas above equation can be

rewritten as,

Ld(x,y) =
L(x,y)

1+L(x,y)
(1+

L(x,y)

L2
white

) (2.18)

whereL2
white is the smallest luminance that will be mapped to white . By default, this

parameter is set to the maximum luminance value in the scene.For many high dynamic

range images, this operator produced sufficient compression to preserve detail in low

contrast areas, while compressing high luminance to a displayable range. However,

for very high dynamic range images, this operator loses important details in the image.

Hence, for a very HDR images a local tone mapping operator that applies dodging and

burning effect has been presented by Reinhard [17].

2.4.9 Ward Histogram Adjustment

Ward applied the classic technique of histogram enhancement to reproduce HDR images

simulating both visibility and contrast [32]. The operatorfirst calculates the image

histogramI of log2 space, using a number of binsnbin. 100 bins are sufficient for
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accurate results. The cumulative histogramP(x) is given as,

P(x) =
x

∑
i=1

I(i)
T

T =
nbin

∑
i=1

I(i)

(2.19)

Histogram is itself the derivate of the cumulative histogram and given as,

d P(b)

dx
=

I(x)
T∆x

∆x =
log(Lwmax

Lwmin
)

nbin

(2.20)

The contrast equalization is given as,

log(Ld(x,y)) = log(Ldmin)+P(log Lw(x,y))log(
Ldmax

Ldmin
) (2.21)

Exaggeration of contrast is highly undesirable and can be dealt through following re-

finement,

d Ld

d Lw
≤ Ld

Lw
(2.22)

Ld
f (log(Lw))

T∆x

log(Lwmax
Lwmin

)

Lw
≤ Ld

Lw
(2.23)

which is reduced to a condition onf (x),

f (x) ≤ c

c =
T∆x

log(Lwmax
Lwmin

)

(2.24)
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This means that exaggeration may occur when Equation 2.24 isnot satisfied. A solution

is to truncatef (x) which has to be done iteratively to avoid changes inT. Overall,

the operator used modified histogram method in order to have good compression and

overall contrast while simulating some aspects of the HVS [20].

2.5 Comparison Results

Tone mapping operators as discussed in earlier section weresimulated with two images,

standard dynamic range and high dynamic range as shown in Figure 2.3 in Matlab to

understand the effects of tone mapping compression on HDR images. A number of

other authors work [33–36] has been presented in literatureto evaluate the different

tone mapping operators. The attributes used for tone mapping operator evaluation in

their work are overall image quality, brightness, contrast, reproduction of colors and

reproduction of details in very dark and very bright areas. According to M.Cadick and

co-worker [33], overall image quality can be presented in terms of other attributes given

as,

IQ = 0.327Bri +0.267Con+0.102Det+0.230Col (2.25)

whereIQ is image quality in the interval of[0,1], Bri is image brightness,Con is image

contrast,Det is detail andCol is color. Matlab code presented in appendix 7.1 was writ-

ten and simulated for each operator in order to check image quality after tone mapping

compression.

It should be noted that to assess the quality of images after tone mapping operation, a

qualitative criteria is adapted. It means that we assessed the image quality by visually

looking at it. A quantitative measure of image quality to check how good or bad the
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result was not taken into consideration. The qualitative criteria used to asses the image

quality is simple and straightforward to implement. On the other hand, the quantitative

technique is time consuming and need a number of resources; this includes the set of

observers, high-end HDR cameras and display devices. Hence, qualitative criteria were

chosen to evaluate different tone mapping operators.

Two different input images are used for simulations as shownin Figure 2.3. Image

shown in Figure 2.3(a) is standard dynamic range image, whereas Figure 2.3(b) presents

a high dynamic range image. Matlab HDR toolbox2 is used for simulations. A simple

Matlab code for logarithmic tone mapping operators is presented on next page as an

example. This code takes the input image in the form of ’jpg’ or ’hdr’ picture format

and checks that input image is a gray or three color. The next step is a change of

input image values into luminance values. These input luminance values are used for

tone mapping operation and the final output luminance valuesare displayed back as an

output image.

Different tone mapping operators are applied to both imagesto check their performance.

Logarithmic, Exponential, Drago and Reinhard operator performed better than others in

terms of overall image quality when standard dynamic range image was used as can

be seen in Figure 2.4(a)-(d). It can be noted from the figures that overall brightness,

contrast and image detail in the dark are enhanced in Logarithmic and Drago operators

when standard dynamic range image was used. Also, brightness and contrast is en-

hanced in the case of Exponential and Reinhard operator. Schlick, Tumblin, and Ward

histogram operator are unable to produce good results in terms of brightness, contrast

and details in dark.
2Toolbox is taken from ’Advanced High Dynamic Range Imaging’by Francesco Banterle and co-

authors.
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(a) Standard dynamic range image.

(b) High dynamic range image.

Figure 2.3: Input images used for Matlab simulation.

On the other hand, Exponential, Reinhard and Tumblin operator performed better than

others when high dynamic range image was used as seen in Figure 2.5(b),(d) and (f).

These three operators reproduced details in dark areas verywell with improved image

contrast and overall brightness. Logarithmic, Drago, Schlick and ward histogram oper-
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Mapping Operator Standard dynamic Range Image High Dynamic Range Image
Logarithmic Good Bad
Exponential Good Good
Drago Good Bad
Reinhard Good Good
Schlick Average Bad
Tumblin Bad Good
Ward Histogram Bad Average

Table 2.2: Different mapping operator image quality simulation result for standard and
high dynamic range image. Our comparison results are in a good agreement with other
studies presented by different authors

ators seen in Figure 2.5(a),(c),(e) and (g) are unable to generate great results in terms of

brightness, contrast and details in the dark.

Overall, Exponential and Reinhard operator produced good results for standard and high

dynamic range images. Because, as mentioned earlier that Exponential operator is ca-

pable of producing very good result due to the exponential compression for standard

dynamic range image. In addition, Reinhard operator uses photographic technique of

dodging and burning that enhance the dynamic range and overall quality of an image.

Hence, we can say that in terms of overall image quality and other attributes, both op-

erators are best for HDR compression. Our comparison results are in a good agreement

with other studies presented by different authors [33–36].It should be noted that over-

all image quality after tone mapping operator can be different if we change the input

image. In brief, overall output image quality depends on input image and mapping

operator. According to them, Reinhard photographic, Exponential and Drago operators

were performed better than others. Table 2.2 summarizes the different mapping operator

overall image quality simulation results for standard and high dynamic range image.
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Logarithmic Matlab code

f unction imgOut= LogarithmicTMO(img,qlogarithmic,klogarithmic)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f ( exist(′qlogarithmic′)|| exist(′klogarithmic′))

qlogarithmic= 20;

klogarithmic= 15;

end

i f (qlogarithmic< 1) %check f or qlogarithmic>= 1

qlogarithmic= 1;

endi f(klogarithmic< 1) %check f or klogarithmic>= 1

klogarithmic= 1;end

LMax= max(max(L)); %computing maximum luminance value

Ld = log10(1 + L ∗ ql ogarithmic)/log10(1 + LMax ∗

klogarithmic); %dynamic Range Reduction

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i).∗Ld./L;

end

imgOut= RemoveSpecials(imgOut);

f igure();

imshow(imgOut); %out put image display

end
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(a) Lograthmic Operator. (b) Exponential Operator.

(c) Drago Operator. (d) Reinhard Operator.

(e) Schlick Operator. (f) Tumblin Operator.

(g) Ward Histogram Operator.

Figure 2.4: Results of standard dynamic range image after tone mapping operation.
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(a) Lograthmic Operator. (b) Exponential Operator.

(c) Drago Operator. (d) Reinhard Operator.

(e) Schlick Operator. (f) Tumblin Operator.

(g) Ward Histogram Operator

Figure 2.5: Results of high dynamic range image after tone mapping operation.
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2.6 Conclusion

In a real world, the dynamic range of the scene can be of the order of 106 to 1 from

light to dark areas. Most of display devices available in themarket are unable to display

high dynamic range images and can only display images of dynamic range on the order

of 200:1 which is not sufficient. In order to obtain realisticimages on display devices,

it is necessary that images should be a faithful representation of the scene they depict.

Hence, it is a problem to reproduce such scenes using media with very limited dynamic

range like CRT/LCD displays, hard-copy prints, and projectors. In order to solve the

problem of displaying HDR images on LDR displays, the tone mapping operators have

been proposed.

Tone mapping is the operation that matches the dynamic rangeof HDR content with

the display device dynamic range. When the dynamic range of the captured scene is

smaller or larger than that of the display device, tone mapping expands or compresses

the luminance respectively [19]. On the display device, theimage should be a faithful

representation of the the real image with some characteristics of real image such as

contrast, details etc. should be kept same or improved on thedisplay.

In this chapter, different global tone mapping operators were discussed in detail. In

addition, Matlab simulation was performed in order to checkthe quality and faithfulness

of the image after tone mapping operation. It should be notedthat in order to assess

the quality of images after tone mapping operation a qualitative criteria is adapted. It

means that we assess the image quality by visually looking atit. A quantitative measure

of image quality to check how good or bad the result was not taken into consideration.

Two operators, Reinhard and Exponential performed better than others on two different

dynamic range images. Exponential and Reinhard operator have produced good results
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for both standard and high dynamic range images. Hence, we can say that in terms of

overall image quality and other attributes, both operatorsare best for HDR compression.

Our comparison results are in a good agreement with other studies presented by different

authors [33–36].
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Chapter 3

Wide Dynamic Range CMOS Image

Sensor

3.1 Introduction

Image sensors are widely used in many industrial applications like mobile phones, auto-

mobiles, security, and biometrics. CMOS (Complementary Metal Oxide Semiconduc-

tor) image sensors have been experiencing rapid growth in their usage in recent years

and now shares the market with CCD (Charge Coupled Device) image sensors [37].

They have also replaced CCD in most low end as well as professional cameras. The

ability to integrate with other circuit blocks make CMOS sensors ideal to use as com-

pared to CCD. Thus, any post processing required to increase the dynamic range in

CMOS can be performed easily. On the other hand, CCD dynamic range is limited by

the well capacity and hence can not be improved upon, withoutpost-processing using

multiple frame capture [5]. Hence, CMOS sensors will be the ideal choice for those
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applications where the main emphasis is to capture wide dynamic range. However, with

all these advancements and popularity, the CMOS camera stillsuffers from many lim-

itations including that of limited dynamic range and inability to reproduce a scene as

would be visible by the human eye. Nature has dynamic range ofupto 6 decades i.e

150dB, whereas CMOS image sensor dynamic range are limited from 2 to4 decades i.e

40db to 80db. Hence, there is need to increase the dynamic range of CMOS sensor so

it can capture the dynamic range available in nature.

In this chapter, a new pixel sensor is introduced with an ability to capture a wide dy-

namic range scenes using tone mapping operation. Section 3.2 presents the basic build-

ing block of CMOS active pixel sensor. Section 3.3 presents the new CMOS pixel

with an ability to capture the wide dynamic range of intensities and produce them faith-

fully using tone mapping operation. In addition, this section also discusses the differ-

ent global tone mapping operator monotonically increasingreference functions. Sec-

tion 3.4 presents the pixel simulation results and with a conclusion being presented in

section 3.5.

3.2 Active Pixel Sensor

The basic building block of CMOS sensor is APS (Active pixel sensor). A typical APS

schematic and signal flow diagram are shown in Figure 3.1. Thedynamic range of

APS is limited. The photodiode converts input light into a charge, which is readout and

digitized to store the image. High input light generates a large amount of charge which

saturates the pixel. On the other hand, very low input light generates low charge which

is very difficult to readout faithfully. Typical CMOS sensorsusing the basic APS have
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a dynamic range between 40db to 60dbdue to light saturation. In Figure 3.1, transistor

M1, M2 andM3 are reset, source follower and row select switch respectively. PD is

photodiode which converts input light into charge. At timet1, high voltage is applied

at the gate of deviceM1, then the voltageVdd−Vt is transferred to nodeN. At time

t2, the gate of deviceM1 is pulled low due to thisVresetis not connected to the pixel

circuit anymore. The photo-diode then generates charge at nodeN which acts to reduce

the voltage being held on the diode capacitance. This discharge will take place until

integration timetint and then voltage at nodeN is readout using the source followerM2

and select switchM3. A timet3 , this cycle begin again and a new frame is started. The

integrated voltage at the node N is given as,

VN = Vdd−Vt − tint
Ip

Cpd
(3.1)

tint is the integration time ,Ip is photogenerated current andCpd is the capacitance at

nodeN. For low and medium currentsI1 andI2, the pixel faithfully produces a unique

output voltage corresponding to the photocurrent. However, for higher currentI3, the

pixel saturates and is unable to readout faithfully. The information at higher photocur-

rent is therefore lost, which limits the dynamic range of thepixel. The dynamic range

of pixel can be increased if the integration inside the pixelis stopped at a certain time

determined to produce a known response. The output during integration is compared to

another signalVre f and stopped when these two signals are the same. Hence, the output

of a pixel will depend on signalVre f .



3.3. Wide Dynamic Range Pixel 48

(a) Active pixel sensor schematic.

(b) Signal flow diagram.

Figure 3.1: Active pixel sensor schematic and signal flow diagram.

3.3 Wide Dynamic Range Pixel

3.3.1 Pixel Operation and Schematic

It is possible to capture wide dynamic range information by combining the threshold and

integration time control approaches. A WDR pixel is presented which aims to capture



3.3. Wide Dynamic Range Pixel 49

the wide range of light intensities available in nature. A pixel schematic and signal flow

diagram is shown in Figure 3.2.M1,M2,M3 andM4 are reset device, reference voltage

switch, source follower and row select switch respectively. In a typical linear pixel as

discussed earlier, high photocurrentI1 saturate the pixel due to which linear pixel is

not able to capture the WDR information. However, in the new pixel approach, the

integrated signal at nodeN is compared to a constantly increasing reference signalVre f

and the integration is stopped when the two are equal. This means for the high current,

I1, the integration will stop at lower voltageV1 than the voltages for lower currentsI2

andI3. The pixel output after the integration time will follow theVre f signal.

The pixel operation starts by resetting the transistorM1, by applying the high reset

signalVrst at the gate of transistorM1. Due to the high voltage at the gate ofM1,

voltageVdd−Vth is transferred to deviceM1 source nodeN. The high voltage placed on

the capacitance of nodeN is discharged by the photo-generated charge when transistor

M1 is off, by lowering its gate voltage. A monotonically increasing reference function

Vre f is applied to transistorM2 drain. At the start of integration, the voltageVre f is

lower than node voltageN and hence transistorM2 is on. However, dischargingVN and

monotonically increasingVre f leads to transistorM2 being switched off. After this time,

the gate voltage ofM3 is held by its gate capacitance until it’s read out and the pixel is

reset. The output voltage of the pixel depends on the signalVre f andIph.
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Figure 3.2: Wide dynamic range pixel schematic and signal flow diagram.

The monotonic reference function can be obtained by equating the integrated voltage

at nodeN with that of the required transduction function. Let us assume the required

response is,

Vout = f (Iph) (3.2)

whereIph is the photocurrent andVout is required response. Letf ′ be the inverse function
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for this operator [38], such thatIph = f ′(Vout). The integrating potential at nodeN can

be expressed as,

VN(t) = VN(t0)−
Iph

CPD
(t − t0). (3.3)

whereCPD is photodiode capacitance. TransistorM2 will remain on, till this potential is

higher than the reference voltageVre f . At the instance, we expect the reference voltage

to be same as the pixel response for the given photocurrent,Vout = Vre f(t). This result

was published in Procedia Computer Science, vol.41 2014 [38]. Therefore,

f ′(Vre f(t)) = CPD
VG,M2(t)−VG,M2(t0)

(t − t0)
(3.4)

shows the reference voltage function in terms of integration time. It should be noted

that Equation 3.4 presents the general form of reference function extraction from pixel

response. Different reference function will be presented in next sub-sections. The pro-

posed new pixel can produce wide dynamic range response withthe help of a suitable

reference function.

3.3.2 Tone Mapping Reference Function

In order to derive the reference voltage from the tone mapping operator, one needs to

translate luminance values from the mapping operator into acurrent voltage relationship

that is suitable for a pixel. Different reference functionsare derived and discussed below.

Reinhard Simple Reference Function

As discussed earlier, Reinhard mapping operator is given as [17],

Ld(x,y) =
L(x,y)

1+L(x,y)
(3.5)
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where

L(x,y) =
a

Lav
Lw(x,y) (3.6)

Ld is output display luminance,a is a user controllable value,Lw is input world lu-

minance andLx,y is scaled luminance. Translating Equation 3.5 into voltage-current

relationship provides a mapping equation given as,

v =
gkIpVdd

1+gkIp
, (3.7)

whereg maps a
Lav

into Equation 3.5.k is proportionality constant andVdd is pixel oper-

ating voltage andv is pixel output voltage. The reference function can be obtained by

comparing the required transduction function with that theintegrated voltage at nodeN.

Let us assume that pixel required output transduction function at the gate of transistor

M3 is,

Vout = VN(t0)− gkIpVdd

1+gkIp
(3.8)

and the voltage at nodeN is given as,

VN(t) = VN(t0)− tint Ip

Cpd
(3.9)

whereCpd is photodiode capacitance,Iph is photocurrent andtint is effective integration

time. TransistorM2 will remain on, till this potential is higher than the reference voltage

Vre f . At the instance, we expect the reference voltage to be same as the pixel response

for the given photocurrent [38],Vout = Vre f(t), therefore,

Vre f = VN(t0)− gkIpVdd

1+gkIp
(3.10)
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tint Ip

Cpd
=

gkIpVdd

1+gkIp

VN(t0) = Vdd−VthM1

(3.11)

By solving Equations 3.10 and 3.11 for the value of reference function with respect to

tint leads to equation given as [39],

Vre f =
tint

Cpd gk
−Vo (3.12)

whereVo is an offset related to the threshold voltages.

Reinhard Complex Reference Function

The simple version of Reinhard function provides limited burning for bright illumina-

tion. Hence, the following modification was proposed by [17]

Ld(x,) =
L(x,y)

1+L(x,y)
(1+

L(x,y)

L2
white

) (3.13)

whereL2
white is the smallest luminance that will be mapped to white. Translating Equa-

tion 3.13 into voltage-current relationship provides an equation given as,

vc =
gkIpVdd

1+gkIp
(1+

gkIp
I2
w

) (3.14)

whereg maps a
Lav

into Equation 3.5.k is proportionality constant,Vdd is pixel operating

voltage andIw corresponds the value ofLwhite. The reference function can be obtained

by comparing the required transduction output with the integrated voltage at nodeN.
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The output transduction function at the gate of transistorM3 is,

Vout = VN(t0)− gkIpVdd

1+gkIp
(1+

gkIp
I2
w

) (3.15)

and the voltage at nodeN is given as,

VN(t) = VN(t0)− tint Ip

Cpd
(3.16)

whereCpd is photodiode capacitance,Iph is photocurrent andtint is effective integration

time. At the instance, we expect the reference voltage to be same as the pixel response

for the given photocurrent [38],Vout = Vre f(t), Therefore

Vre f = VN(t0)− gkIpVdd

1+gkIp
(1+

gkIp
I2
w

) (3.17)

tint Ip

Cpd
=

gkIpVdd

1+gkIp
(1+

gkIp
I2
w

)

VN(t0) = Vdd−VthM1

(3.18)

By solving Equations 3.17 and 3.18 for the value of reference function with respect to

tint leads to the reference function for Reinhard complex given as[39],

Vre f(t) = Vdd−Vo−
tI2

w(t −aVdd)

a(aVdd− tI2
w)

. (3.19)

WhereVo is an offset related the threshold voltages,a is user controllable value andIwh

corresponds the value ofLwhite.
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(a) Reinhard simple reference function.
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(b) Reinhard complex reference function.

Figure 3.3: Monotonically increasing reference function for Reinhard simple and com-
plex mapping operator with two different values ofIw.

Figure 3.3 shows reference function for Reinhard simple and Reinhard complex map-

ping operators. It can be noted that both reference voltagesare monotone increasing

functions. Reinhard simple reference function a straight line with sufficient wide dy-

namic range capture, whereas Reinhard complex reference function has some negatives

values that can be discarded as we are only interested in monotonically positive refer-

ence function.
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Drago Reference Function

The mapping operator presented by Drago [26] discussed earlier is given as,

Ld(x,y) =
Ldmax log10(1+Lw(x,y))

100 log10(1+Lwmax) log10[2+8(Lw(x,y)
Lwmax

)
log10(p)

log10(0.5) ]

(3.20)

Transforming luminance into current voltage relationshipleads to equation given as,

v =
log10(1+gIp)

log10(1+gIpmax) log10[2+8(
gIp

gIpmax
)

log10(p)
log10(0.5) ]

(3.21)

whereg is proportionality constant,Ipmax is maximum photocurrent andp is user con-

trollable value. The reference function for the Drago operator can be calculated by

equating two equations for WDR pixel given as

Vre f = VN − log10(1+gIp)

log10(1+gIpmax) log10[2+8(
gIp

gIpmax
)

log10(p)
log10(0.5) ]

(3.22)

tint Ip

cpd
=

log10(1+gIp)

log10(1+gIpmax) log10[2+8(
gIp

gIpmax
)

log10(p)
log10(0.5) ]

(3.23)

A derivable reference function does not exist due to complexnature of Drago equation.

However, Drago reference function can be generated using a look up table with respect

to integration timet. First, values oft is assumed between 0secand 0.02sec, and inserted

into Equation 3.23 that in turn provide the values ofIp. Hence, by using the values of

Ip and other parameters into Equation 3.22 provide the solution ofVre f function that is

shown in Figure 3.4.
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Figure 3.4: Drago reference function.

Exponential Reference Function

Exponential mapping operator is given as [25],

Ld(x,y) = 1−exp(
−Lw(x,y))

Lav
) (3.24)

Transforming luminance equation into pixel voltage-current relationship leads to equa-

tion given as,

v = [1−exp(−gIp)]Vdd (3.25)

whereg is a proportionality constant,Vdd is pixel operating voltage andIp is photocur-

rent. The reference function can be extracted by comparing the output transduction

function with the integrating voltage at nodeN. The required transduction function and

the integrating voltage is given as

Vout = VN(t0)− [1−exp(−gIp)]Vdd (3.26)
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and the voltage at nodeN is given as,

VN(t) = VN(t0)− tint Ip

Cpd
(3.27)

whereCpd is photodiode capacitance,Iph is photocurrent andtint is effective integration

time. It can be assumed thatVout = Vre f to solve above equation for the value ofVre f .

Hence by solving two above equation one can find the required monotone reference

function and is given as [38]

t =
vddCpdg(Vre f +Vo f f −1)

log(Vre f +Vo f f)
(3.28)

where whereCpd is photodiode capacitance,g is constant andVo f f is the offset related to

threshold voltages in pixel. The required monotonous function is shown in Figure 3.5.

It can be seen that Exponential tone mapping function produce the required monotone

transduction curve that will be used to capture the wide dynamic of a CMOS pixel.

0.01 0.015 0.02
0

1

2

3

Time(sec)

 R
ef

er
en

ce
 V

ol
ta

ge
(V

)

Figure 3.5: Exponential reference function.
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Schlick Reference Function

Schlick tone mapping operator as discussed earlier is givenas [27],

Ld(x,y) =
p Lw(x,y)

(p−1)Lw(x,y)+Lmax
(3.29)

where p is user controllable value andLmax is maximum world luminance in scene.

Translation of luminance values into pixel voltages leads to equation given as,

v =
pkIpVdd

(p−1)kIp + Ipmax
(3.30)

wherek is constant andIpmaxis the maximum photocurrent. The required reference volt-

age can be calculated by comparing the output transduction voltage with the integrating

voltage at nodeN and given as [38],

Vre f = Vdd−Vo f f −
pVdd− Ipmaxt

Cpdk

p−1
(3.31)

whereVo f f is the offset related to various threshold voltages in the readout chain of the

pixel, Cpd is a photodiode capacitance,k is a constant andIpmax is maximum photo-

current in the frame. Figure 3.6 shows the simple linear reference for Schlick operator.

It can be seen that Schlick tone mapping function produce therequired monotone trans-

duction curve that will be used to capture the wide dynamic ofa CMOS pixel.
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Figure 3.6: Schlick reference function.

Miller Reference Function

The mapping operator presented by Miller [30] is given as,

Q = k Lb
v (3.32)

whereQ is brightness andLv is the luminance. The values ofk andb is given as

b = 0.338L0.034
v

k = −1.5log10Lv +6.1
(3.33)

Transforming luminance values into pixel voltages leads toequation given as

v = [−1.5log10(gIp +6.1)](gIp)
0.338(gIp)0.034

Vdd (3.34)

/colorred whereg is a constant. A derivable reference function does not existdue to

complex nature of Miller function. However, the reference function can be calculated
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using look up table generation by comparing the two pixel equations given as

Vre f = Vdd−Vo f f − (−1.5log10(gIp +6.1)])(gIp)
0.338(gIp)0.034

Vdd

tIp

c
= (−1.5log10(gIp +6.1)])(gIp)

0.338(gIp)0.034
Vdd

(3.35)

The reference function using look up table is shown in Figure3.7. It can be seen that

Schlick tone mapping function does not produce the requiredmonotone transduction

curve because the reference voltage has a constant value of 2.5V that cannot be used for

wide dynamic range capture.
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Figure 3.7: Miller reference function.

Tumblin and Rushmeier Reference Function

Tumblin and Rushmeier presented a mapping operator inspiredby Stevens work on

brightness [28,29] and given as,

Ld(x,y) = mLda(
Lw(x,y)

Lwa
)α

whereα =
γ(Lwa)

γ(Lda)

(3.36)
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Lda andLwa are display and image adaptation luminance values respectively. Trans-

forming luminance into pixel voltage gives

V = Vdd(gIp)
e (3.37)

whereg ande are user controllable values. The required reference voltage can be cal-

culated by adapting the technique discussed earlier and given as,

Vre f = Vdd−Vo f f −VddgecgVdd
f

t
(3.38)

where f is constant. The Figure 3.8 shows the reference function forTumblin and

Rushmeier operator. It can be seen that Tumblin and Rushmeier tone mapping function

produce the required monotone transduction curve that willbe used to capture the wide

dynamic of a CMOS pixel.
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Figure 3.8: Tumblin and Rushmeier reference function.

Logarithmic Reference Function
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Logarithmic mapping compress the HDR using logarithm function and given as,

Ld(x,y) =
log10(1+Lw(x,y))

log10(1+Lmax)
(3.39)

whereLmax is maximum world luminance. Transforming luminance valuesinto pixel

voltages and comparing the pixel equations leads to the value ofVre f given as,

Vre f = Vdd−Vo f f −aVddlog(1+gIp)

tIp

c
= aVddlog(1+gIp)

(3.40)

wherea andg is constant. The reference voltageVre f can be calculated using look up

table generation and shown in Figure 3.9.
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Figure 3.9: Logarithmic reference function.

Different tone mapping reference functions are discussed in this section. These mono-

tonically increasing reference functions will be applied on the pixel to capture the wide

dynamic range of intensities. The next section presents theWDR pixel simulation with

different reference functions.
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3.4 WDR Pixel Simulation

The wide dynamic range pixel was simulated in the Cadence circuit simulator using

a 0.35µm CMOS process from Austria Microsystems (AMS). The pixel schematic is

shown in Figure 3.2. TransistorM1, M2, M3 andM4 are reset device, reference switch,

source follower and row select switch respectively. The dimension Width
Length of the reset

transistorM1 is 1µm
0.6µm whereas that of the source followerM3, reference switchM2

and row select switchM4 is 2µm
0.6µm. The WDR pixel is simulated with varying refer-

ence voltages in order to find the pixel response. The monotonous reference functions

used for this purpose are Reinhard simple, Reinhard complex, Schlick, Exponential,

Logarithmic, Drago, Tumblin and Rushmeier, and Miller.

Figure 3.10 shows WDR pixel response for different tone mapping reference functions.

Figure 3.10(a) shows the pixel response of Reinhard simple and complex operator. It can

be seen that Reinhard pixel has sensitivity problems at very low and high photocurrent.

This means Reinhard pixel is unable to read much information at these photocurrents.

However, overall Reinhard pixel is able to capture over 5−6 decades of light. Simi-

larly, Figure 3.10(b) shows the pixel response for Miller and Tumblin operator. These

two operators produced good results and able to capture upto6 decades of light in-

tensity. Figure 3.10(c)(d) shows the pixel response of Schlick, Exponential and Drago

operator. Unfortunately, their pixel response has low light sensitivity and able to capture

4 decades of light intensity. Figure 3.10(e) shows the Logarithmic pixel response with

6 decades of light intensity capture. Overall, It can be seenthat the reported pixel with

different mapping operator is able to capture over 6 decadesof light intensity. Some

pixel operators were performed better than others in capturing the very dark and bright

intensities. By tuning the parameters, one can change the intensities which are tone-
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mapped and hence enhance either the lower intensity or, the higher intensity regions of

an image. Furthermore, these reference signals can be changed during the operation of

the pixel. The WDR pixel can capture the dynamic range of more than 6 decades with

in-pixel tone mapping operation.

Tone mapping operation on CMOS pixel in practice performs twooperations, one is

to capture wide dynamic range using reference voltage and second is to enable direct

display of an image on low dynamic range display devices. This reduces the two step

process of typical cameras, where the image is captured in one stage and tone mapping

is then applied to make this image displayable on display devices.
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(a) Reinhard Pixel Response.
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(b) Tumlin& Rushmeir and Miller Response.
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(d) Drago Pixel Response.
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(e) Logarithmic Pixel Response.

Figure 3.10: WDR pixel response at different monotonous reference functions.
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3.5 Conclusion

In this chapter, a new CMOS pixel is presented with tone mapping technique which aims

to capture wide dynamic range available in nature. Tone mapping operation on CMOS

pixel in practice performs two operations; one is to capturewide dynamic range using

reference voltage and second is to enable direct display of an image on low dynamic

range display devices.

Different tone mapping reference curves are extracted formluminance mapping func-

tions. First, luminance mapping curve is transformed into voltage-time relationship and

this monotone voltage curve is applied on CMOS pixel in order to obtain wide dynamic

range information. The monotonically increasing functions are Reinhard, Schlick, Ex-

ponential, Drago and Logarithmic. WDR pixel was simulated incadence tools using

0.35µm CMOS process from Austria Microsystems (AMS). Pixel response was mea-

sured and presented with different reference functions applied on the pixel. Some pixel

operators were performed better than others in capturing the very dark and bright inten-

sities. Overall, pixel simulation result is presented showing the pixel ability to capture

more than 6 decades of dynamic range.
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Chapter 4

Pixel Modeling and Fixed Pattern

Noise

4.1 Introduction

To investigate the different noise sources and errors in WDR pixel, there is a need to

develop a model with different parameters that characterises the pixel response. Such

a model can be developed by analysing the pixel schematic. Anerror between pixel’s

simulated and model response can be examined after developing pixel model. Pixel

modeling will provide the fundamental background to the fixed pattern noise (FPN).

Fixed pattern noise (FPN) limits the performance of image sensors, and it is mainly due

to the variations in the responses of individual pixels within an array of pixels. The

variations between the responses of pixels are caused by thedevice and interconnect

parameter mismatches in an individual pixel. It appears as asalt and pepper noise pattern

on an image taken by the WDR image sensor. In addition, it can also be expressed
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as intensity and contrast error on an image taken by WDR sensor. This chapter also

presents a simple procedure to reduce FPN in which the parametric response of pixel is

used, with FPN modeled as variations in the individual parameters. The parameters of

each pixel are measured, recorded and then used to correct their response.

Section 4.2 presents the Reinhard pixel model using semiconductor theory for the WDR

pixel. Section 4.3 discusses the parameter extraction procedure for Reinhardsimple

and complex operator. Section 4.4 presents the model error for Reinhard WDR pixel.

Section 4.5 presents the brief overview of FPN and transistor mismatch. Section 4.6

presents the procedure used to measure FPN in WDR sensor. Section 4.7 discusses

the FPN correction technique. Section 4.8 presents the impact of FPN on a test image

before and after correction and section 4.9 discusses the conclusion.

4.2 Pixel Modeling

Figure 4.1 shows the WDR pixel with a typical column circuitry. x is the pixel input

luminance or light andy is the pixel output response. A WDR pixel model can be de-

veloped by examining Figure 4.1. The current in the photodiode have two components.

One of these is the dark or leakage current which is produced even without the presence

of light. Its origins include thermal generation and recombination as well as defects at

the diode junction and surface [40]. The second term is an optical term produced by the

photon flux falling on diode surface. Hence the photodiode current is given as [41]

IPD = Idark+QPDGAGLAPDLopto (4.1)
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Figure 4.1: A WDR pixel with a typical column circuitry.

whereQPD is the quantum efficiency of the photodiode,APD is the light sensitive area

of the photodiode,GA is the gain factor related to the photodiode area,GL is the gain

of optical assembly, andLopto is the input intensity. As discussed earlier, at the start

of integration time pixel operation starts by resetting thetransistorM1, by applying the

high reset signalVrst at the gate of transistorM1. This transfer a reset signalVdd−Vt

to deviceM1 source nodeN. The high voltage placed on the capacitance of nodeN

is discharged by the photo-generated charge when transistor M1 is off, when its gate

voltage is reduced. At the same time, a monotonically increasing reference function
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Vre f is applied to transistorM2 drain. At the start of integration, the voltageVre f is

lower than node voltageVN and hence transistorM2 is on. However, dischargingVN1

and monotonically increasingVre f leads to transistorM2 being switched off. After some

point of time, the gate voltage ofM3 is held by its gate capacitance until it’s read out

and pixel is reset. The output voltage of the pixel depends onthe signalVre f andIph. We

are assuming Reinhard reference function here. Similarly, other reference functions can

also be used for pixel model. The voltage at the gate of transistorM3 by considering all

threshold voltages and applying reference voltage at the drain of transistorM2 is given

as,

VGM3 = Vdd−VtM1−VtM2−
gkIPDVdd

1+gkIPD
(4.2)

whereVTM1 andVTM2 are threshold voltages of transistorM1 andM2 respectively. Tran-

sistorM3 is a source follower andM4 is a row select switch used to enable a particular

row of pixels to place their output on the column bus. The voltage at the source of

transistorM3 is given, as [41]

VSM3 = VGM3−VtM3−
√

2IDSM3

βM3
(4.3)

whereIDSM3 is the drain current in the transistorM3 andβM3 is the transconductance

parameter. It can be noted that whenM4 is ”on”, the gate voltageVGM6 of transistorM6

is equal to the source voltage of transistorM3. The column bus is biased by transistor

M5 and therefore the drain-source currents inM3 andM5 are same whenM4 is on [42].

The voltage at the gate of transistorM6 is given as [41],

VGM6 = VGM3−VtM3−
√

βM5

βM3
(VGSM5−VtM5) (4.4)
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TransistorM6 andM7 makes a second stage of readout circuits need to connect a pixel to

the single output of the array. When transistorM7 is ”on”, the output of source follower

M6 is connected to output busY. TransistorM8 is common to the whole array and

provides the current bias to the column source followers. The final expression for the

output is given as [41],

VY = VGM6−VtM6−
√

βM8

βM6
(VGSM8−VTM8) (4.5)

Combining all above equations leads to the output from an array of pixels as,

VY = Vdd−VtM1−
gk(Idark+QPDGAGLAPDLopto)Vdd

1+gk(Idark+QPDGAGLAPDLopto)
− (VtM2 +VtM3 +VtM6)

−
√

βM5

βM3
(VGSM5−VtM5)−

√

βM8

βM6
(VGSM8−VtM8)

(4.6)

This equation can be rewritten in the form of pixel parameters and given as,

y = a− b(x+d)

1+c(x+d)
(4.7)
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with the terms given as,

y = VY

a = Vdd−VtM1− (VtM2 +VtM3 +VtM6)−
√

βM5

βM3
(VGSM5−VtM5)−

√

βM8

βM6
(VGSM8−VtM8)

b = gkVdd

c = gk

d = Idark

x = QPDGAGLAPDLopto

(4.8)

wherey is the pixel output,x is the input photocurrent,a is the pixel offset voltage,b

andc represents the pixel gain andd is the dark current. Hence, Equation 4.7 shows

the pixel model for Reinhard simple operator. Similarly, thepixel model for Reinhard

complex can be rewritten in the form of parameters and given as,

yc = a− b(x+d)(1+e(x+d))

1+c(x+d)
(4.9)

It should be noted that Reinhard reference function is used for a pixel model demon-

stration. Similarly, other operators can also be used for this purpose. The parameter

terms of Reinhard complex are same as Reinhard simple operators except the parameter

e= I−2
w which corresponds user controllable value.

Fixed pattern noise is mainly due to the variations between the responses of individual

pixels within an array of pixels. In order to remove FPN, a simple procedure has been

adapted to reduce FPN in which parametric response of the pixel is used, with FPN
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modeled as variations in the individual parameters. The parameters of each pixel are

measured, recorded and then used to correct their response.Hence, we need to mea-

sure and extract the individual parameters in each pixel to remove FPN and the next

section 4.3 presents the parameter extraction routine.

4.3 Parameter Extraction

4.3.1 Reinhard Simple

In order to check the validity of the analytical pixel model,its response has to be com-

pared with the simulated response at the same illumination.However, parameters need

to be extracted before determining the model response and comparison with simulated

response. Parameters can be extracted by assuming different calibration currents. The

model response for Reinhard simple pixel is given as,

y = a− b(x+d)

1+c(x+d)
(4.10)

This equation can be simplified by assuming that dark or leakage current is small enough

to be neglected for high photocurrents. Hence the model response equation can be

simplified to,

ys = a− bx
1+cx

(4.11)

In this equation three parameters are unknown hence three calibration currents are suf-

ficient. The extraction procedure of parameters can be performed by assuming three

different currentsx1, x2, x3 and their responsey1, y2 andy3. The model response using
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Parameter a (V) b (V/A) c(A−1) d (A)
Value 1.38 7.11×1011 7.13×1011 1.10×10−14

Table 4.1: Extracted parameters using different calibration currents over 9 decades of
photocurrent.

calibration currents are given as,

ys1 = a− bx1

1+cx1

ys2 = a− bx2

1+cx2

ys3 = a− bx3

1+cx3

(4.12)

Parameters value can be extracted by solving above equations and given as,

c =
x1ys2−x2ys1−x1ys3 +x3ys1 +x2ys3−x3ys2

x1x2ys1−x1x2ys2−x1x3ys1 +x1x3ys3x2x3ys2−x2x3y3

b =
ys2−ys3

x3
1+cx3

− x2
1+cx2

a = ys3 +
bx3

1+cx3

(4.13)

The parameterd which represents the dark current can be extracted form Equation 4.10

by putting input photocurrent valuex = 0. The value ofd is given as,

d =
a−ys

b−ac+cys
(4.14)

Table 4.1 shows the extracted parameters by assuming three different calibration cur-

rents. Hence, by using the simulated response of the pixel atthree different current, it

is possible to find the parameters required to model the pixel. The calibration currents

chosen to extract parameters are one dark current and three middle range photocurrents.
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4.3.2 Reinhard Complex

The model response for Reinhard complex by ignoring dark current contribution is given

as,

yc = a− bx(1+ex)
1+cx

(4.15)

However, this equation is not suitable for simple parameters extraction. Hence, it needs

simplification in order to get parameters extracted. A simple model response can be

calculated by simplifying Equation 4.15 and is given as,

yc = P+Qx−Rx2−Sycx (4.16)

whereP = a, Q = ac−b, R= beandS= c. There are 4 unknown parameters, hence

four calibration currentsx1, x2, x3, x4 with the responsesyc1, yc2, yc3, yc4 are required

for parameters extraction. The model equations with calibration currents are given as,

yc1 = P+Qx1−Rx2
1−Syc1x1

yc2 = P+Qx2−Rx2
2−Syc2x2

yc3 = P+Qx3−Rx2
3−Syc3x3

yc4 = P+Qx4−Rx2
3−Syc3x3

(4.17)

These equations can be solved for parameters by matrix method for simultaneous equa-

tion. Above equation can be rewritten as,


















1 x1 −x2
1 −yc1x1

1 x2 −x2
2 −yc2x2

1 x3 −x2
3 −yc3x3

1 x4 −x2
4 −yc4x4



















·



















P

Q

R

S



















=



















yc1

yc2

yc3

yc4


















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Parameter P (V) Q (V/A) R (V) S(A−1) d (A)
Value 1.44 2.53×1011 1.88×10−4 5.88×1011 −8.80×10−15

Table 4.2: Reinhard complex extracted parameters using different calibration currents
over 9 decades of photocurrent.

A·X = B

X = A−1B

Hence, parameters matrixX can be calculated by multiplication of matrixA−1 with

matrix B. The calibration current with their response chosen to extract parameters are

one dark current, two mid-range photocurrents and one high photocurrent. Table 4.2

shows the extracted parameters at four different calibration photocurrent.

4.4 Model Error

In order to check the validity of the analytical pixel model,its response has to be com-

pared with the simulated response at the same illumination.The pixel model response

can be calculated using the model equation with parameters extracted in earlier section.

Figure 4.2 shows the comparison of simulated and model response of Reinhard simple

and complex mapping operator. Figure 4.3 shows the model error between pixel model

and simulated response. It can be seen that the suggested model fits well with the simu-

lated data except at some middle range photocurrents i.e., 10−12A−10−11A. Reinhard

simple model fits well as compared to the Reinhard complex. Themaximum model

error in Reinhard simple case is around 15mV, whereas Reinhard complex exhibits the
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model error of around 40mV which are very promising results. The model error gener-

ates due to the arbitrary selection of calibration currentsx1, x2, x3, x4 with the responses

yc1, yc2, yc3, yc4 and can be reduced by choosing the suitable calibration currents.
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(a) Reinhard simple Pixel Response.
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(b) Reinhard complex Response.

Figure 4.2: Comparison of parameter model and simulated pixel response.

4.5 Fixed Pattern Noise

The variations between the responses of individual pixels and readout circuits within

an array of pixels lead to differences in the response of eachpixel. These variations

lead to the presence of a spatial, but not temporal, noise in images acquired by these
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Figure 4.3: Model error between pixel simulated and model response.

pixels [42]. This kind of noise is called fixed pattern noise (FPN) and appear as a

fixed pattern on an image. FPN appears as a striping noise in one-dimensional imagers,

whereas in two-dimensional imagers, it appears as salt and pepper noise. Fixed pattern

noise has been observed in most imaging devices, including charge coupled devices [43,

44], active pixel sensors (APSs) [7], logarithmic pixels [41, 45] infrared detectors [46]

magnetic resonance imagers [47]. The main effect of fixed pattern noise on an image

is the reduction in intensity and contrast of the image. In addition, FPN also affects the

tone mapped image taken by WDR pixel proposed earlier. The source of FPN can be

identified by analysing the signal chain in an array of a pixel. A WDR pixel circuit was

analysed in the last section to obtain its model. The next subsection briefly describes

the device and interconnect parameter mismatches in an individual pixel. These device

mismatches generate fixed pattern noise.

4.5.1 Transistor Mismatch

Two identical transistors on the same chip have some random differences in their be-

havior. These variations are due to the lateral diffusion ofthe source and drain implants
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as well as the field oxide encroachment in the MOS channel. In addition to these two,

other factors including local mobility fluctuations, oxidegranularity, oxide charge, and

gate dielectric thickness have also been considered as sources of mismatch [48,49]. The

standard models for the mismatch caused by different devices are characterized by the

random variation of the differences in their threshold voltageVT , their body factorγ

and their current factorβ . Experimentally verified model for these variations are given

as [48,49],

σ2(∆VT) =
A2

VT

WL
+S2

VT
D2

σ2(∆γ) =
A2

γ

WL
+S2

γ D2

σ2(∆β )

β 2 =
A2

β

WL
+S2

β D2

(4.18)

Here,W is the effective gate width,L is the effective gate length,D is the mutual distance

between devices andAVT , Aβ , SVT , Sγ , Sβ are process dependent constants. Despite the

fact that the threshold voltage and the transconductance factor have similar origins, their

variations have been found to be independent of one another.The above models shows

that the smaller geometry devices will have large variations in their threshold voltage

and current gain factors.

4.6 Fixed Pattern Noise Measurement

Most of the images we capture, store and manipulate are used by human viewers for

decision-making, aesthetics, surveillance and control [2]. Hence, fixed pattern noise
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can be quantified by making the human visual system (HVS) as a standard. It has

been reported that HVS can see differences in illuminationδ I , against the background

illumination I , to an accuracy of about 1% in high illumination and 10% in lowlight

levels [50, 51]. In other words, the human eye has a contrast threshold of 1%, which

means the human eye is unable to perceive errors in misrepresented illuminations that

are less than 1% of the original illumination. Therefore, fixed pattern noise can be

described as a contrast threshold error and 1% error value becomes the required standard

at matching FPN error to the sensitivity of the human visual system. The fixed pattern

noise expressed as contrast threshold error is given as,

Relative Contrast Error=
StandardDeviation(Iext)

Mean(Iext)
(4.19)

whereIext is the extracted current form pixel model response. Fixed pattern noise effects

can be measured by simulating the WDR pixel multiple times with different parameter

values. Using the Monte Carlo simulations in Cadence circuit simulator, the response

of 1000 pixels was obtained by sweeping the photocurrent over 8 decades. In Monte

Carlo simulations, process parameters like the transistor aspect ratio, gate capacitance

per unit area and threshold voltages were inherently altered in a controlled manner while

determining the pixel response to a range of photocurrents [2]. The Reinhard simple and

complex pixel response are given as,

ysi j = a j −
b j(xi +d j)

1+c j(xi +d j)
(4.20)

yci j = Pj +Q jxi −Rjx
2
i −Sjyci j xi (4.21)
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Parameters a (V) b (V/A) c(A−1) d (A)
Mean 1.39 7.13×1011 7.13×1011 1.10×10−14
SD 0.13 4.40×1010 1.93×1010 7.26×10−16

Table 4.3: Mean and standard deviations of 1000 extracted parameters for Reinhard
simple pixel.

Parameters P (V) Q (V/A) R (V) S(A−1) D (A)
Mean 1.45 2.53×1011 1.89×10−4 5.89×1011 −8.28×10−15

SD 0.145 1.64×1010 1.40×10−5 4.68×1010 2.53×10−15

Table 4.4: Mean and standard deviations of 1000 extracted parameters for Reinhard
complex pixel.

whereysi j and yci j are the pixel responses to an illumination represented by a pho-

tocurrentxi for Reinhard simple and complex operator respectively,j and i are pixel

index and photo illumination, respectively. In order to extract different parameters from

the 1000 pixel response data, calibration currents are needed. Four different calibra-

tion current were selected for this purpose, i.e. one dark current and three middle

range(x1 = 10f A),(x2 = 7.08pA,x3 = 10nA) photocurrent. The parameters extraction

procedure was discussed in detail in last section. The parameters of 1000 pixels were

extracted using 1000 pixel response data and a calibration current for Reinhard simple

and complex operator. The mean and standard deviation of 1000 pixel parameters are

given in Table 4.3 and 4.4.

Fixed pattern noise can be calculated by finding the extracted current mean and standard

deviation value. By solving Equation 4.20, extracted current for Reinhard simple in

terms of parameters is given as,

Isext =
ysi j −a j −a jd jc j +ysi j c jd j +b jd j

a jc j −ysi j c j −b j
(4.22)
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Extracted current for Reinhard complex pixel in terms of parameters is given as,

Icext =
Q j −2d jRj −Sjyci j ± (Q2

j −2Q jSjyci j +S2
j yc2

i j −4Rjyci j +4PjRj)
1/2

2Rj
(4.23)

The mean extracted current can be calculated by inserting the mean values of param-

eters in Equation 4.22 and 4.23. In addition, the mean value of extracted current was

also used to find the fixed pattern noise before correction. Figures 4.4 and 4.5 shows

the fixed pattern noise before correction for Reinhard simpleand complex operators.

FPN simulation result shows that both operators exhibited ahigh fixed pattern noise.

Reinhard simple operator exhibit a contrast error in the range of 10%-200%. Whereas

complex operator exhibit a contrast error in the range of 100%-400%. Hence, a simple

and effective technique is needed to reduce FPN.
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Figure 4.4: Reinhard simple FPN expressed as contrast error before correction.
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Figure 4.5: Reinhard complex FPN expressed as contrast errorbefore correction.

4.7 FPN Correction

The last section presented the FPN noise measurement technique and contrast error be-

fore correction. The results show that FPN before correction is quite high which needs

to be corrected. FPN correction can be performed by using theparameters values ex-

tracted in the last section. FPN measurement before the correction was performed using

the mean values of parameters. However, FPN can be correctedby inserting the value

of each parameter. Multiple parameters correction technique is used to correct FPN.

Firstly, one parameter was corrected to check the quality ofFPN correction technique.

Secondly, the second and third parameter was corrected, if one parameter correction did

not produce good results.

Reinhard Simple Correction

Firstly, the extracted current given in Equation 4.22 was calculated by inserting each

parameters individual value instead of mean value. 1000 pixels individual data was

used for this purpose. Secondly, this extracted current wasused to calculate the FPN by
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using Equation 4.19. Parametera was corrected first, by inserting the value ofa in each

pixel extracted current and then this current was used to calculate FPN. One parameter

a FPN correction expressed as contrast error is shown in Figure 4.6. One parameter

FPN correction exhibits the high contrast error around 20% at middle range currents i.e

1pA−1nA. Hence, secondb and thirdc parameter correction procedure was performed.

Figure 4.7 shows the contrast error using two parametersa,b correction. FPN correction

using two parameters also exhibits the high contrast error of 30%. The two parameter

correction procedure exhibited the high contrast error as compared to one parameter

correction because of the dark current and arbitrary selection of calibration currents.

Figure 4.8 presents the contrast error using three parameters a,b,c correction. Three

parameters correction procedure have exhibited good results, and the relative contrast

error is below than 1%. Hence, three parameters FPN correction procedure is sufficient.

Figure 4.9 presents the FPN using four parametersa,b,c,d correction. FPN correction

using four parameters produced a high error at low photocurrent range because of dark

current contribution. Overall, a simple technique in whichthree parameters were used

to correct FPN have performed very well and exhibited some good results. After FPN

correction, Reinhard simple exhibits the contrast error less than 1%, which is a very

promising result.
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Figure 4.6: Reinhard simple FPN expressed as contrast error after one parametera
correction.
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Figure 4.7: Reinhard simple FPN expressed as contrast error after two parametersa and

b correction.
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Figure 4.8: Reinhard simple FPN expressed as contrast error after three parameters

a,b,c correction.
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Figure 4.9: Reinhard simple FPN expressed as contrast error after all parameters cor-

rection.

Reinhard Complex Correction

A similar technique to correct FPN using multiple parameters is applied to Reinhard

complex operator. ParametersP,Q,R,S,D are used for FPN correction procedure. The

extracted current is calculated using Equation 4.23. First, parameterP is corrected and

then followed by other parametersQ,R,S,D correction. Figure 4.10 presents the one
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parameterP correction contrast error. FPN using one parameter correction procedure

exhibits high contrast error at different photocurrent. Figure 4.11 and 4.12 presents the

FPN expressed as contrast error using twoP,Q and threeP,Q,Rparameters respectively.

Both correction techniques still exhibit the high contrast error. Hence, four parameters

P,Q,R,Scorrection technique is used. Figure 4.13 shows the contrast error using four

parameters correction. Reinhard complex FPN correction technique using four param-

eters performed very well and contrast error is less than 1% over the whole range of

photocurrents.

As discussed earlier, one and two parameter correction procedure produced large errors

as compared to three and four parameters correction. The reason of the high error could

be fact that each parameter contributes into FPN generation. One parameter correction

procedure only corrects FPN of one parameter while others parameters are still uncor-

rected. Hence, four parameter technique is the best approach of FPN correction because

each mismatch parameter is corrected in this way.
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Figure 4.10: Reinhard complex FPN expressed as contrast error after one parameterP
correction.



4.8. FPN Effects on a Test Image 89

10
−16

10
−14

10
−12

10
−10

0

50

100

150

Photocurrent(A)

R
el

at
iv

e 
C

on
tr

as
t E

rr
or

%

Figure 4.11: Reinhard complex FPN expressed as contrast error after two parameters
P,Q correction.
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Figure 4.12: Reinhard complex FPN expressed as contrast error after three parameters
P,Q,Rcorrection.

Operator Model Error FPN 1 para. FPN 2 para. FPN 3 para. FPN 4 para.
Reinhard Simple 15mV 20% 30% 1% 3%
Reinhard Complex 40mV 250% 150% 100% 1%

Table 4.5: Summary Table.

4.8 FPN Effects on a Test Image

The FPN correction technique was identified in the last section. This section presents

the effects of FPN on a typical image. A simple test image is shown in Figure4.141 was

1image is taken from http://www.notebookcheck.net/
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Figure 4.13: Reinhard complex FPN expressed as contrast error after four parameters
correction.

used to check the effects of FPN on an image taken by CMOS sensor. In addition, how

well the FPN correction technique performs on a test image isalso presented. FPN is

added to test image to check the image quality degradation caused by this. The FPN

correction technique is later applied on a test image that already has FPN added. A test

image with and without FPN is shown in Figure 4.14 and 4.15. Figure 4.16 shows the

image after FPN correction for Reinhard simple and complex operator. It can be seen

that FPN after correction procedure shows some artifacts indark regions of an image.

The artifacts in an image are due to an arbitrary selection ofcalibration currentsx1, x2,

x3 and artifacts could be removed by adjusting the calibrationcurrent.
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Figure 4.14: Test image.

Figure 4.15: Test image with fixed pattern noise.

(a) (b)

Figure 4.16: (a) Test image after FPN correction of Reinhard simple. (b) Test image

after FPN correction of Reinhard complex.
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4.9 Conclusion

In this chapter, analytical pixel model was developed and discussed with different pa-

rameters that characterise the pixel response. Pixel modeling is the basic building block

in finding fixed pattern noise. In order to check the validity of the developed pixel model,

simulated response is compared with the model response. In addition, parameters ex-

traction procedure is also discussed. FPN correction technique for Reinhard CMOS

pixel is also presented in this chapter. FPN is mainly due to the variations between the

responses of individual pixels within an array of pixels. Wehave shown that calibration

technique can be used to correct the fixed pattern noise in pixels, which can produce a

tone mapped response, particularly the Reinhard tone mapping. A simple procedure has

been adapted to reduce FPN in which parametric response of pixel is used, with FPN

modeled as variations in the individual parameters.

The parameters of 1000 individual pixels were measured, recorded and then used to cor-

rect their response. As discussed earlier, the human eye hasa contrast threshold of 1%

which means the human eye is unable to perceive errors in misrepresented illuminations

that are less than 1% of the original illumination. Therefore, 1% error value becomes

the best attempt at matching FPN error to the sensitivity of the human visual system.

FPN correction results are presented with an overall relative contrast error is less than

1% for Reinhard simple and complex operator, which are very promising results. In ad-

dition, the results of FPN correction technique on a test image are also presented. FPN

after correction procedure shows some artifacts in dark regions of an image. Theses

artifacts in an image are due to an arbitrary selection of calibration currentsx1, x2, x3

and artifacts may be removed by adjusting calibration currents.
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Chapter 5

Pixel Modeling for Different

Mapping Operators

5.1 Introduction

The previous chapter presented the model error i.e error between the analytical and sim-

ulated results, and FPN correction technique for Reinhard tone mapping operator. This

chapter deals with the pixel model and parameters extraction routine for rest of the oper-

ators i.e. Drago, Exponential, Schlick, Miller, Tumblin and Rushmier, and Logarithmic.

Parameters extraction is an essential part in order to produce the FPN correction tech-

nique. The FPN correction technique for Reinhard operator presented in the last chapter

can be used for other tone mapping operators. However, pixelmodel, a model error

between pixel simulation, and the analytical model and parameters extraction technique

need to be shown before FPN correction.

Section 5.2 presents the Drago pixel model with parameter extraction. Section 5.3 dis-
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cusses the parameter extraction procedure for an Exponential operator. Section 5.4

presents the parameter extraction routine for Schlick tonemapping operator. Section 5.5

presents the pixel model of Miller operator. Section 5.6 presents the parameter extrac-

tion of Tumblin and Rushmeir operator. Section 5.7 discuss the pixel model of Loga-

rithmic mapping operator.

5.2 Drago Pixel Model

A Drago pixel model can be developed using semiconductor theory and analysing the

typical WDR pixel circuitry as shown in the last chapter in Figure 4.1. The pixel output

for a Drago mapping operator obtained by analysing the pixelcircuitry is given as,

VY = Vdd−VTM1−
Vddlog10(1+g(Idark+QPDGAGLAPDLopto))

log10(1+gIpmax) log10[2+8(
g(Idark+QPDGAGLAPDLopto))

gIpmax
)

log10(p)
log10(0.5) ]

− (VTM2 +VTM3 +VTM6)

−
√

βM5

βM3
(VGSM5−VTM5)−

√

βM8

βM6
(VGSM8−VTM8)

(5.1)

The above equation can be rewritten in the form of parametersand given as,

y = a− blog10(1+c(x+d))

log10(1+c)log10(2+8(x+d)0.234)
(5.2)
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with terms given as,

y = VY

a = Vdd−VTM1− (VTM2 +VTM3 +VTM6)−
√

βM5

βM3
(VGSM5−VTM5)−

√

βM8

βM6
(VGSM8−VTM8)

b = Vdd

c = g

d = Idark

x = QPDGAGLAPDLopto

(5.3)

Parameters extraction can be performed by assuming different calibration currentx1, x2,

x3 with responsey1, y2, y3. Model response using calibration current and assuming that

the dark currentd is small enough to be neglected is given as,

y1 = a− blog10(1+cx1)

log10(1+c)log10(2+8(x1)0.234)

y2 = a− blog10(1+c(x2)

log10(1+c)log10(2+8(x2)0.234)

y3 = a− blog10(1+c(x3)

log10(1+c)log10(2+8(x3)0.234)

(5.4)

Unfortunately, certain parameters could not be extracted due to the complex mathemat-

ical nature of Drago model equation. We needed to use Matlab curve fitting technique

to find the optimum value of each single parametera, b, c andd and then by using the

optimum value ofc, the rest of the parametersa, b andd can be extracted by solving
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equations given as,

a = y1 +
blog10(1+cx1)

log10(1+c)log10(2+8(x1)0.234)
(5.5)

b =
(y2−y1)log(1+c)

log(1+cx2)
log(2+8(x2)0.234)

+ log(1+cx1)
log(2+8(x1)0.234)

(5.6)

Lets choose the curve fit optimum value ofc = 1013(A−1) and find the values ofa and

b. Three calibration currents and responses values are selected and given asx1 = 10−13,

x2 = 10−12, x3 = 10−10, y1 = 1.3638,y2 = 1.1442,y3 = 0.5534. The extracted values

of parameters area = 1.4536(V), b = 2.7007(V/A), d = 10−15(A). Model response

of Drago pixel can be calculated by inserting the parametersvalues in Equation 5.2.

Figure 5.1 shows the comparison between pixel model and simulated response. It is

apparent from the figure that suggested model does fit well with simulated response

at middle range photocurrents, and the maximum model error between simulated and

model response is around 25mV, which is a good result. The reason of this model error

is the arbitrary selection of parameter valuec.
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Figure 5.1: Comparison of model and simulated Drago response.
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Figure 5.2: Model error between simulated and model response.

5.3 Exponential Pixel Model

The exponential model can be developed using the pixel schematic with exponential

reference function and given as,

VY = Vdd−VTM1−Vdd(1−exp(gIp))− (VTM2 +VTM3 +VTM6)

−
√

βM5

βM3
(VGSM5−VTM5)−

√

βM8

βM6
(VGSM8−VTM8)

(5.7)

This equation can be rewritten in the form of model parameters given as,

y = a+bexp(c(x+d)) (5.8)

with different term given as,

y = VY

a = 2Vdd−VTM1− (VTM2 +VTM3 +VTM6)−
√

βM5

βM3
(VGSM5−VTM5)−

√

βM8

βM6
(VGSM8−VTM8)

(5.9)
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b = Vdd

c = g

d = Idark

x = QPDGAGLAPDLopto

(5.10)

Parameters can be extracted by assuming different calibration currentsx1, x2, x3 and

respective responsesy1, y2, y3. Parametric equations with calibration currents are given

as,

y1 = a+b exp(cx1)

y2 = a+b exp(cx2)

y3 = a+b exp(cx3)

(5.11)

A mathematical solution for the parameters does not exists due to complex nature of

the equation. However, certain parameter values can be assumed using Matlab curve fit

technique in order to find the solution of exponential pixel model equation. Assuming

the optimum value of parameterc = 1010(A−1) from curve fit technique, and use this

value to find the rest of parametersa, b andd. The parametera andb can be calculated

using the equations given as,

a = y1−b exp(cx1) (5.12)

b =
y2−y1

exp(cx2)−exp(cx1)
(5.13)
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By assuming different calibration currentsx1, x2, x3 and responsey1, y2, y3 leads to the

extraction of parametersa, b andd. The extracted parameters values area = 2.71(V),

b = 5.5×108(V/A), c = 1010(A−1) andd = 1.42×10−16(A). Equation 5.8 is used for

the exponential model response and Figure 5.3 shows the comparison between model

and simulated exponential response. It can be seen that suggested model fits well with

simulated response except at middle range currents between10−12A-10−11A. The max-

imum model error between two responses is around 300mV. The reason of high model

error at middle range current is the arbitrary selection of parameter valuec and calibra-

tion currents.
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Figure 5.3: Comparison of model and simulated exponential response.
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Figure 5.4: Error between simulated and model response.
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5.4 Schlick Pixel Model

The Schlick pixel model using the same semiconductor technique as mentioned in ear-

lier sections is given as,

y = a− b(x+d)

c(x+d)+10−6
(5.14)

One can extract parameters from the model equation by assuming three different cali-

bration currentsx1, x2 andx3 with responsey1, y2 andy3. In addition, the dark current

d can be neglected. The model equation with different calibration currents are given as,

y1 = a− bx1

cx1 +10−6

y2 = a− bx2

cx2 +10−6

y3 = a− bx3

cx3 +10−6

(5.15)

These equations can be solved for the values of parametersa,b,c, andd that is given as,

a = y1 +
bx1

cx1 +10−6 (5.16)

b =
106(y1−y2)(cx2 +10−6)(cx1 +10−6)

x2−x1
(5.17)

c =
10−6(x3y2 +y3x1 +y1x2−x1y2−x3y1−y3x2)

x2x3y3 +x1x3y1 +x1x2y2−x1x3y3−x1x2y1−x2x3y2
(5.18)

d =
(a−y)10−6

b+yc−ac
(5.19)

A mathematical solution for parameters exist for Schlick mapping operator. Hence,

Schlick model response can be calculated by inserting the values of parameters in Equa-

tion 5.14. Different calibration currents and response were chosen from pixel simulated
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Parameter a (V) b (V/A) c(A−1) d (A)
Value 2.77 6.13×105 2.59×105 9.87×10−14

Table 5.1: Schlick extracted parameters using different calibration current.

data to extract parameters and given asx1 = 10−13, x2 = 2.51× 10−11, x3 = 10−9,

y1 = 2.7146,y2 = 0.7270 andy3 = 0.4220.
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Figure 5.5: Comparison between Schlick pixel simulated and model response.
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Figure 5.6: Model error between Schlick pixel simulated andmodel response.

The analytical and simulated responses have to be compared to check the effectiveness

of a developed model. Figure 5.5 presents the comparison between pixel simulated and
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model response. Also, Figure 5.6 shows the model error between model and simulated

response. It can be seen that model response exhibits some model error at middle range

current i.e.I = 10−12A. The maximum model error Schlick pixel exhibits are 140mV.

The cause of model error is the arbitrary selection of calibration current. The model

error of Schlick operator is high, and it needs to be corrected before the FPN correction

procedure.

5.5 Miller Pixel Model

The model equation for Miller tone mapping operator can be developed using the semi-

conductor theory as discussed earlier and given as,

y = a−b(−1.5log(c(x+d))+6.1)(c(x+d)0.338(c(x+d))0.0334
(5.20)

Model parameters can be extracted by assuming different calibration currentsx1, x2 and

x3 with the responsey1, y2 andy3. The dark currentd is assumed small enough to be

neglected. Different calibration current model equationsare given as,

y1 = a−b(−1.5log(cx1 +6.1)(cx1)
0.338(cx1)

0.0334

y2 = a−b(−1.5log(cx2 +6.1)(cx2)
0.338(cx2)

0.0334

y3 = a−b(−1.5log(cx3 +6.1)(cx3)
0.338(cx3)

0.0334

(5.21)

A mathematical solution of different parametersa, b, c andd does not exists due to

complex nature of equations. However, we can find the optimumvalue of parameter

c using Matlab curve fit technique. This value ofc and calibration currentsx1, x2,
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x3 leads to the extraction of other parametersa, b andd. Parameterc = 105(A−1) and

calibration currentsx1 = 10−14, x2 = 10−12 andx3 = 10−10 with responsesy1 = 1.3784,

y2 = 1.1871 andy3 = 1.1007 are chosen. Parameter valueb anda can be extracted using

the equations given as,

a = y1 +b(−1.5log(cx1 +6.1)(cx1)
0.338(cx1)

0.0334
(5.22)

b =
y1−y2

(−1.5log(cx2)+6.1)(cx2)0.338(cx2)0.0334− (−1.5log(cx1)+6.1)(cx1)0.338(cx1)0.0334

(5.23)

The extracted value of parameters area = 1.45(V), b = 1.6× 10−4(V/A) and d =

10−14(A). Figure 5.7 shows the comparison between model and simulated response

of Miller operator. It is apparent from the figure that suggested model does fit well

with simulated data in this case too. Figure 5.8 shows the model error between two

responses, that is around 15mV. This model error is due to the selection of calibration

currents and parameterc.
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Figure 5.7: Comparison between Miller pixel simulated and model response.
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Figure 5.8: Model error between Miller pixel simulated and model response.

5.6 Tumblin and Rush Pixel Model

Like other operators, the model equation for Tumblin and Rushmapping operator can

be developed using semiconductor theory discussed in last chapter and given as,

y = a−b(x+d)c (5.24)

The parameters can be extracted using the calibration currents and different current

model equations are given as,

y1 = a−bx1
c

y2 = a−bx2
c

y3 = a−bx3
c

(5.25)

A mathematical solution of different parametersa, b, c andd does not exists due to

complex nature of the equations. Using Matlab curve fit technique gives the optimum

value ofc = 10−10 (A−1). By using the value ofc and different calibrations current

x1 = 10−14, x2 = 10−12, x3 = 10−10 with responsesy1 = 1.4261,y2 = 1.1669 andy3 =
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1.0799 provides the parametera andb given as,

a = y1+bxc
1 (5.26)

b =
y1−y2

xc
2−xc

1
(5.27)

Figure 5.9 shows the comparison between model and simulatedresponse of Miller op-

erator. It is apparent form the figure that suggested model fits well with simulated data.

Figure 5.10 shows the model error between two responses, that is around 150mV. The

high model error is due to the selection of parameterc.
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Figure 5.9: Comparison between Tumblin pixel simulated and model response.

5.7 Log Pixel Model

The pixel model equation for logarithmic mapping operator is given as,

y = a−blog(1+c(x+d)) (5.28)
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Figure 5.10: Model error between Tumblin pixel simulated and model response.

Operators Drago Exponential Schlick Miller Log
Model Error 25mV 300mV 140mV 15mV 150mV

Table 5.2: Summary Table.

Model parameters can be extracted by assuming different calibration currentsx1, x2 and

x3 with the responsey1, y2 andy3. The dark currentd is assumed small enough to be

neglected. Let’s assume the value ofc = 1010 (A−1) using curve fit technique and find

the mathematical solution of logarithmic model equation. Parametera andb can be

calculated using equation given as,

a = y1+blog(1+cx1) (5.29)

b =
y1−y2

log(1+cx2)− log(1+cx−1)
(5.30)

Figure 5.11 shows the comparison between model and simulated response of logarith-

mic operator. It is apparent form the figure that suggested model does fit well with sim-

ulated data. Figure 5.12 shows the model error between two responses, that is around

150mV. The high model error is due to the selection of parameterc.
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Figure 5.11: Comparison between logarithmic pixel simulated and model response.
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Figure 5.12: Model error between logarithmic pixel simulated and model response.

5.8 Conclusion

Pixel modeling for different tone mapping operators was discussed in this chapter. The

mapping operators are Drago, Exponential, Schlick, Miller, Tumblin and Rushmier, and

logarithmic. An analytical pixel model was developed usingsemiconductor theory by

analysing the pixel schematic presented in this chapter. Itis noted that the solution of

a model equation that characterise the pixel response does not exist due to the complex

nature of mathematical equations. Hence, we assumed the value of parameter c using

the Matlab curve fit technique and find the values of rest of theparametersa, b and
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d. Drago operator exhibits the model error of 25mV, Exponential produces the model

error of 300mV, Schlick exhibits the model error of 140mV, Miller produces the error

of 15mV and Logarithmic operator exhibits the model error of 150mV.
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Chapter 6

Conclusion and Future Work

This chapter is devoted to summarising this thesis, and provide ideas for possible future

work. The first section presents the overall summary of the thesis and results already

presented. Section 1 is further divided into 3 broad subsections. The first subsection dis-

cusses the tone mapping technique and summarising the comparison results of different

tone mapping algorithms. The second subsection presents the design and operation of

proposed wide dynamic range pixel. Also, tone mapping operation on wide dynamic

range pixel is presented. Simulation results show that WDR pixel can capture a dy-

namic range of more than 6 decades with in-pixel tone mappingoperation. The third

subsection summarises the Reinhard tone mapping operator model error and fixed pat-

tern noise correction technique and results. The fourth subsection presents the model

error of other tone mapping operators.

The rest of this chapter discusses some ideas for the future work. These includes the

possible CMOS chip design of wide dynamic range sensor, localtone mapping, video

tone mapping and 3D stacked CMOS image sensor chip.
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6.1 Summary

Electronic imaging devices are very popular nowadays and these devices have replaced

film-based cameras. Electronic imaging devices are mainly used in mobile phones, auto-

mobiles, security, biometrics and professional cameras. These devices can be divided

into two categories: charge coupled device (CCD) sensor and complimentary metal-

oxide semiconductor (CMOS) sensor. CCD sensor technology was amajor market

player in the field of digital cameras and main advantages of CCDare superior quality

color images, higher signal to noise ratios, high photosensitive area, and low readout

noise [2]. However, the drawbacks of CCD sensor are productioncosts and high power

consumption. CMOS sensors have replaced CCD in the most low end as well as pro-

fessional cameras. CMOS sensors were first used in low-end applications like toys

and mobile phones. However, improvement in CMOS image sensors technology out-

performs CCD in many applications. The ability to integrate with other circuit blocks

make CMOS sensors ideal to be embedded in mobile phones, auto-mobiles, security,

and biometrics.

The human eye can capture images over a wide dynamic range of illuminations avail-

able in nature, from as low as 10−4 lux in a starlit night to high as 105 lux in bright sun-

light. However, typical CMOS camera has limited ability to capture the light available

in nature and dynamic range of typical CMOS sensor is limited to 2-3 decades. Sev-

eral approaches and CMOS circuits have been proposed to extend the dynamic range

of CMOS pixels. These includes logarithmic sensors using theweak inversion region

of operation of a MOS transistor [6], well capacity adjustment [7], threshold compar-

ison, integration time control [8], neuromorphic approaches [9] and linear-logarithmic

pixel [10].
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In this thesis, the image has been algorithmically transformed by mathematical operators

called tone mapping operators to fit the limited dynamic range. In addition, a pixel

which captures a scene with inbuilt tone mapping operator, particularly, the Reinhard

photographic mapping operator, was reported.

6.1.1 Tone Mapping

The dynamic range of a scene in a real world can be of the order of 10−3 to 102 from

light to dark areas. Many industries like defence and night vision are looking for more

realistic images that match the real scene as seen by the human visual system (HVS).

However, display devices available in the market are unableto produce the image detail

as seen by human eye. Typical display devices can only produce an image of a dynamic

range of less than 102 to 100 [18]. This leads to an incomplete representation of captured

scene. Hence, it is a problem to reproduce high dynamic rangescenes using media with

very limited dynamic range like CRT/LCD displays, hard-copy prints, and projectors. In

order to solve the problem of displaying HDR images on LDR displays, computational

algorithms known as tone mapping operators have been proposed.

Tone mapping is the operation by which one can display HDR content on LDR dis-

play device. When the dynamic range of the captured scene is smaller or larger than

that of the display device, tone mapping expands or compresses the luminance respec-

tively [19]. After tone mapping operation, the image shouldbe a faithful representation

of the real image with improved contrast and details. on the display. The purpose of

applying tone mapping on an image can be different and depends on the particular ap-

plication. In some cases producing just ’nice looking’ image is the main goal, while

other applications might emphasize reproducing as many details as possible, or might
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maximize the image contrast [23]. However, the ultimate goal of tone mapping is to

match the perception of tone mapped image with the real worldperception seen by the

human visual system.

The detailed literature review of each global tone mapping operator was presented in

chapter 2. Global operators were selected because they are computationally efficient

and can be executed in real time, faster than other operators. Different tone mapping

operators were simulated in Matlab, in order to check the quality and faithfulness of

the image after tone mapping operation. Qualitative criteria were adopted in order to

assess the quality of images after tone mapping operation. Two operators, Reinhard,

and Exponential performed better than others on two different dynamic range images.

6.1.2 A Wide Dynamic Range Pixel

Nature have a dynamic range of more than 6 decades of light intensity, whereas CMOS

active pixel sensor dynamic range is limited from 2 to 4 decades. Hence, in order to

capture and display of wide range of intensities available in nature, a new CMOS WDR

pixel with tone mapping technique was presented in chapter 3. The main goal of WDR

pixel with tone mapping is to capture a wide dynamic range using reference voltage

and to enable direct display of image on low dynamic range display devices at image

acquisition stage.

The new WDR pixel consists of four transistors, reset device,reference voltage switch,

source follower and row select switch. In a typical linear pixel, high photocurrent sat-

urates the pixel and so it cannot capture the wide dynamic range information. In our

pixel approach, wide dynamic range information can be captured by introducing ref-

erence voltage switch. A monotonically increasing reference voltage is applied to a
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reference switch to capture wide dynamic range information. The pixel output follows

a reference signal, which is sampled and held at value when the photo generated signal

on the diode becomes lower than the reference voltage. The potential at which these two

signals are equal is recorded and is used as the pixel’s response. A detailed discussion

about WDR pixel was presented in chapter 3.

Different reference voltages were extracted from global tone mapping operators like

Reinhard, Drago, Schlick, Miller, Tumblin and Rushmeier. In addition, these reference

voltages were applied on a CMOS pixel to obtain wide dynamic range information. The

wide dynamic range pixel was simulated in Cadence circuit simulator using a 0.35µM

CMOS process from Austria Microsystems. The simulation results showed that WDR

pixel can capture the dynamic range of more than 6 decades with in-pixel tone mapping

operation.

6.1.3 Pixel Modeling and Fixed Pattern Noise Correction

Pixel modeling is the basic building block to investigate the noise and errors in WDR

pixel. A pixel model was developed by analysing the pixel schematic using semiconduc-

tor theory. Reinhard simple and complex operator pixel modelwith different parameters

was developed. Reinhard simple model parameters werea which is pixel offset volt-

age,b andc represents the pixel gain andd is the dark current. The parameter terms

of Reinhard complex are same as Reinhard simple operators except for the additional

parametere that is user controllable value. Parameters values need to be extracted to

find the required model response. By using the simulated response of the pixel at three

different currents, it is possible to find the parameters required to model the pixel.

Pixel model response is compared with the simulated response to check the validity of
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pixel model. The results showed that the proposed model fitedwell with the simulated

data except at some middle range photocurrents i.e 1012A 1011A. Reinhard simple

model fits well as compared to the Reinhard complex. The maximum model error in

Reinhard simple case is around 15mV whereas Reinhard complex exhibits the model

error of around 40mV.

FPN originates from the variations between the characteristics of individual pixels within

an array of a pixel. In order to limit the effects of FPN, a simple FPN removal procedure

was adopted. This technique used the parametric response ofpixel with FPN modeled

as variations in the individual parameters. It is known thatthe human eye has a contrast

threshold of 1% [52]. Hence, it is important that the fixed pattern noise in images should

be reduced below this level.

The parameters of 1000 individual pixels were measured, recorded and then used to

correct their response. The data of 1000 pixels were extracted using Monte Carlo sim-

ulations. Multiple parameters correction technique was used to reduce FPN. The FPN

correction result was presented with an overall relative contrast error is less than 1% for

Reinhard simple and complex operator, which are very promising results. In addition,

the results of FPN correction technique on a test image was also presented. FPN after

correction procedure showed some artifacts in dark regionsof an image. These artifacts

in an image were due to an arbitrary selection of calibrationcurrentsx1, x2 andx3 which

can be removed by adjusting calibration currents.

6.1.4 Pixel Modeling of Different Mapping Operators

Pixel modeling of different mapping operators like Drago, Exponential, Schlick, Miller,

Tumblin and Rushmier, and Logarithmic were discussed. Pixelmodel was developed
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using semiconductor theory similar to Reinhard operator. Itis noted that the solution of

a model equation that characterises the pixel response doesnot exist due to the complex

nature of mathematical equations. Hence, parameterc value have been assumed using

curve fit technique in order to solve the model equation.

6.2 Future Work

6.2.1 Image Sensor Chip Design

Future work would include the image sensor chip design and calibration. The proposed

image sensor IC block diagram is shown in Figure 6.1. Sensor test chip would consist

of 200× 100 pixel array, with a dimension of 10µm× 10µm. The simulations and

design would be performed by Cadence tools. Also, the test chip would be manufactured

using a 0.18µmCMOS process from Austria Microsystems. The pixel output data from

simulation and the experimental chip would be compared. In addition, the difference

between two data sets would also be analysed. The results of FPN correction procedure

from chip would also be discussed.

6.2.2 Local Tone Mapping

In global operators, world luminances are mapped to displayluminances using a sin-

gle tone mapping curve that is same for all pixels of the image. This operation makes

global operators more efficient and easy to implement, however there is a limit to the

dynamic range of the input image beyond which successful compression becomes diffi-

cult [17]. Global operators are monotonically increasing functions with an aim to mimic
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Figure 6.1: Block diagram of image sensor chip.

the performance of HVS non-linearity in order to get a visually more appealing image.

Display devices available in the market are able to accommodate 256 levels, all world

luminance must be mapped to that range and quantized to unit increments [17]. The

higher the dynamic range of an image, the more values must be mapped to 256 different

numbers by monotonically increasing functions. For extreme HDR images, this will

lead to lose of visibility and contrast. Hence, global operators are more suitable for mid
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dynamic range images. For very high dynamic range images, global operators compress

the illumination too much, which results in a perceived lossof local contrast and detail

visibility.

This limitation may be lifted by local operators by compressing each pixel value ac-

cording to its luminance values and set of neighboring pixels luminance values. Hence,

for each pixel the computation is adjusted according to an average over a local neigh-

borhood of pixels [18]. Local operators usually do not mimicthe features of the human

visual system. A reasonable assumption is that a viewer doesnot adapt to the scene

as a whole, but to smaller regions instead. An active observer’s eyes tend to wander

across the scene, focusing on different regions. For each focus point, there is a sur-

rounding region that helps determine the state of adaptation of the viewer [18]. There

are a number of local tone mapping operators presented in literature includes Chiu vari-

ant operator [53], Duan and Quis algorithm [54], Rahman retinex [55], iCAM [53]

and Ashikhmin operator [56]. Each operator uses a differenttechnique e.g. Duan and

Quis algorithm compresses the HDR image to enhance the localcontrast [54]. iCAM

algorithm, a new image appearance model, incorporates edgepreserving spatial filter-

ing with human vision photoreceptor response functions in adual-processing frame-

work [53]. Figure 6.2 presents the Chiu operator results withand without global con-

trast. It can be seen that halos effects are extensive in the images. Halos effects can be

reduced by using the glare mask simulations.

Future work can include the Matlab simulations of differentlocal tone mapping op-

erators using the HDR images. In addition, halos reduction techniques can also be

analysed. CMOS image sensor using local tone mapping operator can also be presented

in the future work.
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(a) Chiu oprator with no global contrast. (b) Chiu operator with both local and global contrast.

Figure 6.2: Chiu local tone mapping operator.

6.2.3 Video Tone Mapping

Video tone mapping is the process to display high dynamic range video on low dynamic

range display device. It is similar to static tone mapping except that to take care of

temporal domain in video tone mapping. Static tone mapping algorithms can be applied

to videos by a frame by frame methods but they often exhibit haloing artifacts and do

not guarantee temporal coherence, resulting in flickering [57]. It was reported that video

tone mapping has been less active than still image tone mapping. The main hindrance for

video tone mapping research has been the lack of good qualityHDR content available to

the research community, which has been partially addressedby the recent developments

in high-end cameras (such as the Red Epic Dragon, SonyF55 andF65, and ARRI



6.2. Future Work 119

Alexa XT) and other experimental systems now can natively capture High Dynamic

Range (HDR) video up to 14f -stops [57, 58] . Despite the recent development in high-

end HDR video cameras, the other end of HDR video pipeline i.eHDR video display

technology is not yet in the market.

There are a number of video TMO in the literature. Among them,the global opera-

tors [59–64] including the S-shaped camera response curve generally produce results

with good temporal coherency but poor spatial contrast. On the other hand, the local

operators [65–68] often maintain high contrast at the cost of more temporal artifacts.

The pros and cons of these operators have been discussed and subjectively evaluated

by [35].

Future work would include the evaluation of different tone mapping operators for video

purposes. Qualitative criteria could be used for the quality assessment of tone mapping

operators. In addition, the feasibility of implication of video tone mapping on a HDR

CMOS video camera could also be discussed.

6.2.4 3D Stacked CMOS Image Sensor

In recent years, CMOS image sensor camera requires much more functionalities and

compactness due to the strong demand of smart phone camera. In addition to the im-

age quality, speed, and pixel counts that conventional image sensors require, there is

high demand for new functions that can respond to various photo-taking scenes [69].

In conventional CMOS image sensors, pixels and circuits are made on the same silicon

substrate. Due to the constraints of pixels and circuits on the same substrate, a new

CMOS 3D stacked CMOS image sensor was developed. Two differentlayers of pix-

els and circuits are proposed in 3D stacked CMOS image sensors. Stacking the pixel
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section and the circuit section enables compact size, high image quality, faster speeds

and flexible integration of versatile functions [69]. Figure 6.31 shows the structure of

conventional and stacked CMOS image sensor.

PixelsCircuits

Supporting Substrate

(a) Conventional CMOS image sensor.

Pixels

Circuits

             Logic Process Substrate

(b) 3D Stacked CMOS Image sensor.

Figure 6.3: Structure of conventional and 3D stacked CMOS image sensor.

A 3D stacked image sensor consists of two substrate layers bonded by micro bumps.

The top substrate usually comprises a photo diode array, vertical scanning circuit and

readout circuit for readout signals from the photodiode array. The bottom substrate

usually comprises a storage node array, vertical scanning circuit and readout circuit for

readout signals from the storage node array [70].

Future work can include the design of 3D stacked CMOS image sensors using local tone

mapping operators. As discussed earlier, each pixel has a separate tone map curve in

local tone mapping. Hence, a frame buffer is needed to store each curve. Therefore, 3D

stacked CIS would be the ideal choice to place all extra circuitry like frame buffer on

the same chip.

1image is taken from [69]
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6.3 Conclusion

This thesis was divided broadly into two main topics, Tone mapping and Wide dynamic

range CMOS image sensor. A detailed discussion about tone mapping was presented in

earlier chapters. Also, different tone mapping algorithmswere also discussed. It should

be noted that only global operators were presented in this thesis and other tone mapping

operators were out of the scope. The comparison results of different global tone map-

ping operators were also discussed. Qualitative criteria were used to assess the quality

of images after tone mapping operation. It means that we assessed the image quality

visually. The quantitative measure of image quality was nottaken into consideration.

The qualitative criteria used to assess the image quality issimple and straightforward to

implement. On the other hand, the quantitative technique istime consuming and need

number of resources. Hence, qualitative criteria were chosen to evaluate different tone

mapping operators.

The operation of tone mapping was mimicked and applied on CMOSimage sensor with

an aim to capture wide dynamic range. Different reference functions were extracted

with the aim to capture and display the wide dynamic range simultaneously. A new wide

dynamic range pixel was proposed that is capable of in-pixeltone mapping operation. A

pixel model was developed and discussed with different parameters that characterise the

pixel response. FPN correction technique for Reinhard CMOS pixel was also presented

in this thesis.

The work presented in this thesis can be extended to further topics like local tone map-

ping and video tone mapping operators. Future work can also include the design and

manufacturing of standard and 3D stacked CMOS image sensor. 3D stack will improve

the overall efficiency, speed and fill factor of the image sensor.
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Chapter 7

A Appendix

This appendix presents the different Matlab codes used in this research. These codes

presents the operation of different tone mapping techniques on HDR and standard dy-

namic range images. In addition, the Matlab extraction routine is also presented. Model

error and fix pattern noise codes are also discussed.

7.1 Tone Mapping Operators

This section summarises the different tone mapping operator Matlab code. This code

simply takes the input high dynamic range or standard dynamic range image. Later, tone

mapping algorithm is applied on an input image. Different tone mapping operators have

several parameters that controls the intensity or contrast. Due to tone mapping opera-

tion, dynamic range of an image is enhanced or compressed that depends on particular

application. Finally, tone mapped output image is displayed with a better contrast and

details than input image.
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Logarithmic Matlab code

f unction imgOut= LogarithmicTMO(img,qlogarithmic,klogarithmic)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f ( exist(′qlogarithmic′)|| exist(′klogarithmic′))

qlogarithmic= 20;

klogarithmic= 15;

end

i f (qlogarithmic< 1) %check f or qlogarithmic>= 1

qlogarithmic= 1;

endi f(klogarithmic< 1) %check f or klogarithmic>= 1

klogarithmic= 1;end

LMax= max(max(L)); %computing maximum luminance value

Ld = log10(1+L∗qlogarithmic)/log10(1+LMax∗klogarithmic); %dynamic Range Reduction

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i).∗Ld./L;

end

imgOut= RemoveSpecials(imgOut);

f igure();

imshow(imgOut); %out put image display

end
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(a) Image before tone mapping operation.

(b) Image after logarithmic tone mapping operation.

Figure 7.1: Input and output image after logarithmic tone mapping operation.

Exponential Mapping Operator

f unctionimgOut= ExponentialTMO(img,qexponential,kexponential)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f ( exist(′qexponential′)|| exist(′kexponential′))

qexponential= 1;

kexponential= 1;

end

i f (qexponential< 1) %check f or qexponential>= 1
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qexponential= 1;

end

i f (kexponential< 1) %check f or kexponential>= 1

kexponential= 1;

end

Lwa= logMean(L); %computing log luminance value

Ld = 1−exp(−(L∗qexponential)/(Lwa∗kexponential)); %dynamic Range Reduction

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i).∗Ld./L;

end

imgOut= RemoveSpecials(imgOut);

f igure();

imshow(imgOut); %out put image display

end

Figure 7.2: Image before tone mapping operation.
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Figure 7.3: Image after Exponential tone mapping operation.

Drago Mapping Operator

f unction[imgOut,DragoLMax] = DragoTMO(img,DragoLdMax,Dragob,DragoLMax)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f ( exist(′DragoLdMax′))

DragoLdMax= 100;

i f ( exist(′Dragob′)) %Dragob constatnt check

Dragob= 0.3;

end

i f ( exist(′DragoLMax′))

DragoLMax= max(max(L));

LMax= DragoLMax∗0.5+0.5∗max(max(L));

DragoLMax= LMax;

constant= log(Dragob)/log(0.5);

costant2 = (DragoLdMax/100)/(log10(1+LMax));

Ld = costant2∗ log(1+L)./log(2+8∗ ((L/LMax).constant)); %dynamic Range Reduction

imgOut= zeros(size(img));
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f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i).∗Ld./L;

end

imgOut= RemoveSpecials(imgOut);

imshow(imgOut); %out put image display

end

(a) Image before tone mapping operation.

(b) Image after Drago tone mapping operation.

Figure 7.4: Input and output image after Drago tone mapping operation.



7.1. Tone Mapping Operators 128

Reinhard Mapping Operator

f unction[imgOut, pAlpha, pWhite] = ReinhardTMO(img, pAlpha, pWhite, pLocal, phi)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f ( exist(′pWhite′)|| exist(′pAlpha′)|| exist(′pLocal′)|| exist(′phi′))

pWhite= 2∗max(max(L));

pAlpha= 0.85;

pLocal= 0;

phi = 8;

end

Lwa= logMean(L); %Log mean calculation

L = (pAlpha∗L)/Lwa;

pWhite2 = pWhite∗ pWhite;

i f (pLocal)

Ld = (L./(1+Ladapt)); %Simple mapping operation

else

Ld = (L.∗ (1+L/pWhite2))./(1+L); %Mapping operation with burning e f f ect

end

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i)./lum(img).∗Ld;

end

imgOut= RemoveSpecials(imgOut);

f igure();

imshow(imgOut); %out put image display

end
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Schlick Mapping Operator

f unctionimgOut= SchlickTMO(img,schlickmode,schlickp,schlickbit,schlickdL0,schlickk)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

i f ( exist(′schlickmode′)| exist(′schlickp′)| exist(′schlickbit′)

| exist(′schlickdL0′)| exist(′schlickk′))

schlickmode=′ standard′;

schlickp = 1/0.1;

end

L = lum(img); %Luminance extraction f rom image

LMax= max(max(L)); %Maximum Luminance

LMin = min(min(L)); %MinumumLuminance

i f (LMin <= 0.0)

ind = f ind(LMin > 0.0);

LMin = min(min(L(ind)));

switchschlickmode %Di f f erent mode selection

case′standard′

p = schlickp;

i f (p < 1)

p = 1;

Ld = p.∗L./((p−1).∗L+LMax); %dynamic Range Reduction

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = (img(:, :, i).∗Ld)./L;

end

imgOut= RemoveSpecials(imgOut);

imshow(imgOut); %out put image display
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(a) Image before tone mapping operation.

(b) Image after Reinhard tone mapping operation.

Figure 7.5: Input and output image after Reinhard tone mapping operation.

Tumblin&Rushmeier Mapping Operator

f unctionimgOut= TumblinRushmeierTMO(img,Lda,CMax,Lwa)

img= hdrimread(′image. jpg′); %input image read

check3Color(img); %3color check

L = lum(img); %Luminance extraction f rom image

i f (

exist(′Lda′)| exist(′CMax′)) %parameter check

Lda= 200;

CMax= 100;

end
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i f ( exist(′Lwa′))

Lwa= exp(mean(mean((log(L+2.3∗1e−5))))); %Log luminance

end

gammaw= gammaTumRushTMO(Lwa);

gammad= gammaTumRushTMO(Lda);

gammawd= gammaw./(1.855+0.4∗ log(Lda));

mLwa= (sqrt(CMax)).(gammawd−1);

Ld = Lda∗mLwa.∗ (L./Lwa).(gammaw./gammad); %dynamic Range Reduction

imgOut= zeros(size(img));

f ori = 1 : 3

imgOut(:, :, i) = img(:, :, i).∗Ld./L;

end

imgOut= imgOut/100;

f igure();

imshow(imgOut); %out put image display

end
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(a) Image before tone mapping operation.

(b) Image after Schlick tone mapping operation.

(c) Image after Tumblin & Rushmeier tone mapping operation.

Figure 7.6: Input images used for Matlab simulation.
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7.2 Reference Function Extraction

This section presents the reference function extraction ofdifferent tone mapping oper-

ators. Matlab code analyses the behavior of reference function. As discussed earlier,

monotonically reference function is used to capture the wide dynamic range of a CMOS

pixel.

Exponential Reference Function

I pm= 106;

vth= 0.4;

vdd= 3.3;

c = 6.06∗10−10; %Di f f erent parameter values

k = 1∗106;

g = 4.5;

vc= (−0.001 : 0.2 : 3.5);

t = c∗g∗k∗vdd∗ (vc+vth−1)./log(vc+vth); %Re f erence Function

plot(t,vc);

Schlick Reference Function

p = 4; I pm= 106; c = 6.6∗10−10; vth= 0.4; vdd= 3.3;

k = 3.98∗10−13; %Di f f erent parameter values

t = (0 : 0.005 : 0.02);

vc= vdd−vth− (p∗vdd− I pm∗ t./c∗k)./(p−1); %Re f erence Function

plot(t,vc);
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Reinhard Simple Reference Function

vdd= 3.3;

Iw = 1.9;

c = 6.06∗10−9;

g = 1;

k = 10−6;

ka= 1; %Di f f erent parameter values

vth= 0;

z= 106;

t = (0.00 : 0.0005 : 0.02);

vc= (t/c∗g∗k− (vth)); %Re f erence Function

plot(t,vc);

Miller Reference Function

g = 3.16∗106;

c = 10−16;

vdd= 3.3;vth= 0; %Di f f erent parameter values

Ip = logspace(−8,−14.4,40);

a1 = (0.338).∗ (g∗ I p).(0.034);

a = (g∗ I p).a1;

t = c∗ (−1.5∗ log10(g∗ I p)+6.1).∗a./I p;

vc= vdd−vth− (−1.5∗ log10(g∗ I p)+6.1).∗a; %Re f erence Function

plot(t,vc);
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Reinhard complex Reference Function

vdd= 3.3;

Iw = 1.9;

c = 6.06∗10−9;

g = 0.5; %Di f f erent parameter values

k = 106;

ka= 1;

vth= 0;

z= 106;

t = (0.0035 : 0.0005 : 0.02);

Vc = −(t. ∗ (t − c ∗ g ∗ k ∗ vdd). ∗ Iw2)./((c ∗ g ∗ k ∗ vdd− t. ∗ Iw2). ∗ c ∗ g ∗ k) +

3.3; %Re f erence Function

plot(t,Vc);

Tumblin & Rushmeier reference Function

vth = 0;vdd = 3.3;c = 4 ∗ 10−16;k = 10−2;g = 106;e = 2.65; f =

1.4; %Di f f erent parameter values

t = (0.00 : 0.0005 : 0.02);

vc= vdd−vth−vdd∗ ((g∗k)e).∗ (c∗vdd∗g∗k./t) f ; %Re f erence Function

plot(t,vc);
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Logarithmic Reference Function

vdd= 3.3;c= 5.3∗10−14;a= 10−1;g= 1012;vth= 0; %Di f f erent parameter values

Ip = logspace(−8,−16,40);

t = a∗c∗vdd∗ log(1+g.∗ I p)./I p;

vc= vdd−vth−a∗vdd∗ log(1+g.∗ I p); %Re f erence Function

plot(t,vc);

Ward histogram Reference Function

vdd= 3.3;c= 5.3∗10−13; p= 10−1;k= 1012;vth= 0; %Di f f erent parameter values

Ip = logspace(−8,−12,40);

t = c∗exp((−1+1.518∗ p.∗ log(k∗ I p)).∗vdd)./I p;

vc= vdd−vth−exp((−1+1.518∗ p.∗ log(k∗ I p)).∗vdd); %Re f erence Function

plot(t,vc,′ r ′);

Drago Reference Function

vdd = 3.3;vth = 0;g = 1016;g1 = 1017;c = 1.59 ∗

10−19.5; %Di f f erent parameter values

Ip = logspace(−7,−16,40);

t1 = log10(1+g∗ I p)./(log10(2+8∗ (g∗ I p./g1∗10−7).0.234));

t = c∗vdd∗ t1./I p∗ log10(1+g1∗10−7);

vc= vdd−vth−vdd∗ t1./log10(1+g1∗10−7); %Re f erence Function

plot(t,vc);
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7.3 Model Error

This section discusses the model error between pixel model and simulated response for

Reinhard simple, complex and Schlick operator. Firstly, parameters are extracted using

calibration currents. Secondly, these parameters are usedto measure the pixel model

and model error.

Reinhard Simple

z1 = load(′Reinhardsimple12.7.txt′); %simulation data load

x1 = 10−14;x2 = 7.08 ∗ 10−12;x3 = 10−10;x4 = 10−8;y1 = 1.3710;y2 =

0.5459 %calibration currents;y3 = 0.4021;y4 = 0.3814;y = 1.3773;

c1 = x1∗y4−x2∗y4−x1∗y2+x4∗y2+x2∗y1−x4∗y1;

c2 = x1∗x2∗y2−x1∗x2∗y1+x1∗x4∗y1−x1∗x4∗y4+x2∗x4∗y4−x2∗x4∗y2;

c = c1/c2;

b1 = (x1/(1+c∗x1))− (x2/(1+c∗x2)); %Parameter Extraction

b = (y2−y1)/b1;

a = y3+b∗x3/(1+c∗x3);

d = (a−y)/(b−a∗c+c∗y);

v = a−b.∗ (I p1+d)./(1+c.∗ (I p1+d)); %Model Response

semilogx(I p1,v,′ k′, I p1,z1,′k′);

v1 = abs(v−z1); %Model Error

semilogx(I p1,v1,′ k′);
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Reinhard Complex

z2 = load(′Reinhardcomlex12.7.txt′); %simulation data load

A = [1x1 − x12 − y1 ∗ x1;1x2 − x22 − y2 ∗ x2;1x3 − x32 − y3 ∗ x3;1x4 − x42 − y4 ∗

x4]; %Parameter Extraction

B1 = [y1y2y3y4];

B = reshape(B1,4,1);

X = inv(A)∗B;

P = X(1);Q = X(2);R= X(3);S= X(4);d = (P−y)/S∗y; %Parameter Extraction

v = (P+Q∗ (I p1+d)−R∗ (I p1+d).2)./(1+S∗ (I p1+d)); %Model Response

semilogx(I p1,v, I p1,z2,′ r ′);

Schlick Model Error

a2 = load(′schlick.txt′);

x1 = 10−13;x2 = 2.51 ∗ 10−11;x3 = 10−9;y1 = 2.7146;y2 = 0.7270;y3 =

0.4220; %Calibration Currents

c = (10−6) ∗ (x3∗ y2+ y3∗ x1+ y1∗ x2− x1∗ y2− x3∗ y1− y3∗ x2)/(x2∗ x3∗ y3+ x1∗ x3∗

y1+x1∗x2∗y2−x1∗x3∗y3−x1∗x2∗y1−x2∗x3∗y2);

b = (106)∗ (y1−y2)∗ (c∗x2+10−6)∗ (c∗x1+10−6)/(x2−x1); %Parameter Extraction

a = y1+b∗x1/(10−6+c∗x1); d = (10−6)∗ (a−y)/(b+y∗c−a∗c);

y = a−b.∗ (I p1+d)./(c.∗ (I p1+d)+10−6); %Model Response

v1 = abs(y−a1); %Model Error

semilogx(I p1,v1);
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7.4 Fixed Pattern Noise

This section summarises the FPN Matlab code. FPN arises due to the variations of pa-

rameters. Matlab code calculates the mean and standard deviation of parameters and

measures the FPN.

Reinhard Simple

z= mcdata(); %Montecarlo simulation data

f ori = 1 : 1 : 1000

x1 = 10−14;x2 = 7.08∗10−12;x3 = 10−10;x4 = 10−8;y1(i) = z(i,41);y2(i) = z(i,98)

y4(i) = z(i,161);y(i) = z(i,1); %1000parameter values

c1(i) = x1∗y4(i)−x2∗y4(i)−x1∗y2(i)+x4∗y2(i)+x2∗y1(i)−x4∗y1(i);

c2(i) = x1∗x2∗y2(i)−x1∗x2∗y1(i)+x1∗x4∗y1(i)−x1∗x4∗y4(i)+x2∗x4∗y4(i);

c(i) = c1(i)./c2(i);

b1(i) = (x1/(1+c(i)∗x1))− (x2/(1+c(i)∗x2));

b(i) = (y2(i)−y1(i))/b1(i); %1000parameter values

a(i) = y3(i)+b(i)∗x3/(1+c(i)∗x3);

d(i) = (a(i)−y(i))/(b(i)−a(i)∗c(i)+c(i)∗y(i));

c = 7.1330∗1011;d = 1.1017∗10−14;

Iext(i, :) = (z(i, :) − a(i) − a(i). ∗ d. ∗ c + d. ∗ z(i, :). ∗ c + b(i). ∗ d)./(a(i). ∗ c − z(i, :

).∗c−b(i)); %Current Extraction

e= num2cell(Iext,1);

f orn = 1 : 1 : 181

error(n) = std(abs(en))./mean(abs(en)); %FPN error calculation
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Reinhard Complex FPN

z1 = mcdataRC(); %Montecarlo simulation data

f ori = 1 : 1 : 1000

x1 = 5.01∗10−14;x2 = 5.01∗10−13;x3 = 1∗10−11;x4 = 10−9;y1(i) = z1(i,55);

y2(i) = z1(i,75);y3(i) = z1(i,101);y4(i) = z1(i,141);y(i) = z1(i,1); %Parameters Extraction

s1(i) = x1∗y3(i)−x2∗y3(i)−x1∗y4(i)+x2∗y4(i)−x3∗y1(i)+x4∗y1(i)+x3∗y2(i)−x4∗

y2(i)− (y3(i)∗x2

−x3∗y3(i)−x2∗y4(i)+x3∗y4(i)−x3∗y2(i)+x4∗y2(i)+x3∗y3(i)−x4∗y3(i))∗ (x1+x2−

x3−x4);

s2(i) = x1∗ y1(i) ∗ x3− x1∗ y1(i) ∗ x4− x2∗ y2(i) ∗ x3+ x2∗ y2(i) ∗ x4− x1∗ x3∗ y2(i) + x1∗

x4∗y4(i)+x2∗x3∗y3(i)

−x2∗x4∗y4(i)+(x2∗y2(i)∗x3−x2∗y2(i)∗x4+x3∗x4∗y3(i)−x3∗x2∗y3(i)

+x2∗y4(i)∗x4−x3∗x4∗y4(i))∗ (x1+x2−x3−x4);

S(i) = s1(i)./s2(i);

r1(i) = (y3(i)− y4(i)) ∗ (x1− x2)− (y1(i)− y2(i)) ∗ (x3− x4)−S(i) ∗ (x1∗ y1(i) ∗ x3− x1∗

y1(i)∗x4

−x2∗y2(i)∗x3+x2∗y2(i)∗x4−x1∗x3∗y3(i)+x1∗x4∗y4(i)+x2∗x3∗y3(i)−x2∗x4∗y4(i));

r2 = x1+x2−x3−x4;

R(i) = r1(i)./r2;

Q(i) = R(i)∗ (x1+x2)+((y1(i)−y2(i))/(x1−x2))+S(i)∗ (x1∗y1(i)−x2∗y2(i))/(x1−x2);

P(i) = y1(i)−Q(i)∗x1+R(i).∗x12 +S(i)∗y1(i)∗x1;

D(i) = (P(i)−y(i))./S(i)∗y(i);

Iext(i, :) = (Q(i)−2∗D(i)∗R(i)−S(i)∗z1(i, :)−(Q(i).2−2∗Q(i)∗S(i)∗z1(i, :)+S(i).2∗z1(i, :

).2−4∗R(i)∗z1(i, :)+4∗P(i)∗R(i)).1/2)./2∗R(i); %Current extraction

e1 = num2cell(Iext,1);

f ori = 1 : 1 : 181

error(i) = abs(std(e1i)./mean(e1i)); %FPN calculation

semilogx(I p1,error);
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