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Abstract
In this thesis we study the Student-Project Allocation problem (SPA), which is a matching
problem based on the allocation of students to projects and lecturers. Students have pref-
erences over projects, where each project is offered by one lecturer; whilst lecturers have
preferences over students, or over the projects that they offer. We seek stable matchings of
students to projects, which guarantee that no student and lecturer have an incentive to devi-
ate from the matching by forming a private arrangement involving some project. We present
new structural and algorithmic results for four problems related to SPA.

We begin by characterising the stable matchings in an instance of the Student-Project Allo-

cation problem with Lecturer preferences over Students (SPA-S) where the preferences are
strictly ordered, in the special case that for each student in the instance, all of the projects
in her preference list are offered by different lecturers. We achieve this characterisation by
showing that, under this restriction, the set of stable matchings in an instance of SPA-S is a
distributive lattice with respect to a natural dominance relation.

Next, we study a variant of SPA-S where the preferences may involve ties — the Student-

Project Allocation problem with Lecturer preferences over Students with Ties (SPA-ST). The
presence of ties in the preference lists gives rise to three different concepts of stability,
namely, weak stability, strong stability, and super-stability. We investigate stable match-
ings under the super-stability (respectively strong stability) concept. We present the first
polynomial-time algorithm to find a super-stable (respectively strongly stable) matching or
to report that no such matching exists, given an instance of SPA-ST. We also prove some
structural results concerning the set of super-stable (respectively strongly stable) matchings
in a given instance of SPA-ST. Further, we present results obtained from an empirical evalu-
ation of our algorithms based on randomly-generated SPA-ST instances.

Moving away from variants of SPA with lecturer preferences over students, we study the
Student-Project Allocation problem with lecturer preferences over Projects (SPA-P). In this
context it is known that stable matchings can have different sizes and the problem of finding
a maximum size stable matching, denoted MAX-SPA-P, is NP-hard. There are two known
approximation algorithms for MAX-SPA-P, with performance guarantees 2 and 3

2
.

We show that MAX-SPA-P is polynomial-time solvable if there is only one lecturer involved,
and NP-hard to approximate within some constant c > 1 if there are two lecturers involved.
We also show that this problem remains NP-hard if each preference list is of length at most
3, with an arbitrary number of lecturers. We then describe an Integer Programming (IP)
model to enable MAX-SPA-P to be solved optimally in the general case. Following this,
we present results arising from an empirical evaluation that investigates how the solutions
produced by the approximation algorithms compare to optimal solutions obtained from the
IP model, with respect to the size of the stable matchings constructed, on instances that are
both randomly-generated and derived from real datasets.
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1

Chapter 1

Introduction

1.1 Matching problems

In this thesis we look at matching problems with preferences which commonly arise when we
need to allocate a set A of agents to another set B of agents/resources (e.g., when assigning
pupils to schools [9, 10, 23, 78], allocating junior doctors to hospitals [30, 52, 63, 105, 106],
allocating teachers to regions [29, 32, 117], assigning lawyers to legal internship positions
[35], or allocating Israeli youths to gap-year programs [42]). A typical trend is that the
agents involved have ordinal preferences (i.e., the notion of first choice, second choice, and
so on) over the possible outcomes. Also each agent and resource in one set has a specified
capacity, which is the maximum number of agents/resources from the other set that they can
accommodate. The goal is to find a matching, i.e., an allocation of the agents in A to the
agents/resources in B, which is optimal in some sense according to the stated preferences,
and which does not violate the agents’ capacities.

This class of problems was first studied in 1962 by Gale and Shapley [37]. In their semi-
nal paper, they described the College Admissions problem which involves applicants (each
of whom seeks to match with a single college) and colleges (that seek to match with one
or more applicants), where each applicant (respectively college) provides a strictly-ordered
preference list over the colleges (respectively applicants) that they find acceptable. The goal
here is to find a matching of applicants to colleges, such that no applicant and college that are
not matched together would prefer each other to their partner/s (if any). Gale and Shapley
[37] also described a special case of the College Admissions problem — the Stable Marriage

problem, which involves a one-to-one pairing of n men to n women in such a way that no
man and woman who are not assigned to one another would prefer each other to their actual
partners. The main result of their paper is a linear-time algorithm for solving these problems,
which is commonly referred to as the Gale-Shapley algorithm among computer scientists (or
the Deferred Acceptance mechanism among economists).
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The practical applications of matching problems can be seen in various centralised matching
schemes around the world, including the National Resident Matching Program (NRMP) in
the USA [1], the Canadian Resident Matching Service (CaRMS) [2], the Japan Residency
Matching Program (JRMP) [3], and until 2012, the Scottish Foundation Allocation Scheme
(SFAS) [52]. These centralised matching schemes deal with the allocation of graduating
medical students to hospital posts for their medical training programs, in their respective
countries. Other matching schemes can be found in the context of allocating donor kidneys
to transplant patients [88], where a patient who needs a kidney transplant can obtain a com-
patible donor by swapping her own willing but incompatible donor with another patient in
a similar situation. Kidney exchange programmes have already been established in several
countries, for example in the USA [4], the Netherlands [68, 72], and the UK [99]. For a
comprehensive survey of further applications, we refer the interested reader to [24].

Why we need Algorithms

Due to the large number of agents that typically appear in practical applications, it is usually
not feasible to find the desired solution by hand. For instance, the Chinese Higher Education
matching scheme involves over 10 million students annually [122], and the NRMP currently
involves over 40, 000 junior doctors each year [96]. It is clearly obvious why we need to
employ algorithms to compute these allocations. In addition, the allocation that these agents
receive may have a significant impact on their quality of life; thus it is important that the
algorithms produce matchings that are optimal in a precise sense according to the agents’
preferences.

Now, suppose we are given an instance of a matching problem, we can design an algorithm
that will search through all the possible solutions that the problem admits and output the best

solution which suits our goal. However, depending on the problem size, the time it will take
to obtain a solution via this approach could be longer than the age of the universe. To see
this, consider Algorithm A and Algorithm B that solves a given instance I of a problem,
with time complexities O(n2) and O(n!) respectively, where n is the problem size. Suppose
a computer performs 109 operations per second. If n = 10, it will take Algorithms A and B
10−7 second and 0.004 second, respectively, to terminate. However, if n = 50, Algorithm A
will terminate in 2.5 × 10−6 second, while Algorithm B will take longer than the age of the
universe to terminate.

Algorithm B clearly suffers from a “combinatorial explosion” meaning that the running time
grows massively relative to a small increase in the problem size. As a consequence, the
algorithm is not practical, even for the problem size of the SFAS matching scheme that ran
until 2012 which involved about 750 applicants. Thus, it is of great practical interest that the
algorithms we design terminate in a reasonable amount of time (in seconds or minutes rather
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than hours or days).

As a consequence, our focus in this thesis will be on the design of efficient (polynomial-
time) algorithms for a class of matching problems that underpins these centralised matching
schemes, and where such algorithms does not exist, we will provide results to prove this and
we will describe other solution techniques.

1.2 Classification of matching problems

The underlying mathematical structure that is widely used to model matching problems is
a graph. The vertices represent the agents and resources, and there is an edge between two
vertices vi, vj if either the resource corresponding to vj appears on the preference list of
the agent corresponding to vi, or the agents corresponding to vi and vj both appear on each
other’s preference lists. Matching problems in the literature [44, 83] are commonly classified
according to whether they involve (i) two disjoint sets of agents (bipartite), (ii) a set of agents
and a set of resources (bipartite), or (iii) one set of agents (non-bipartite). In addition, the
classification also considers the existence (or otherwise) of preference lists. We discuss each
category further in what follows (see Figure 1.1 for an illustration).

(i) Bipartite matching problems with two-sided preferences. In this category, there are
two disjoint sets of agents involved, and agents in one set rank a subset of agents in
the other set (and vice-versa). The fundamental problem here is the Stable Marriage

problem [44], which has applications in the placement of pupils to schools [9, 10, 11],
allocation of junior doctors to hospitals [105] and allocation of students to projects in
a university department [13, 67].

(ii) Bipartite matching problems with one-sided preferences. Here, there are two disjoint
sets involved – a set of agents and a set of resources, and only the agents rank a subset
of the resources to form their preference list. The fundamental problem in this category
is the House Allocation problem [12, 123], which has applications to campus housing
allocation. Application of problems in this category also extends to the assignment
of reviewers to conference papers [40], and variants of allocating students to projects
[31, 76].

(iii) Non-bipartite matching problems with preferences. There is only one set of agents
involved in this category, and each agent ranks a subset of the other agents in order
of preference. The fundamental problem in this category is the Stable Roommates

problem [44, 50], which has applications to P2P networking [79], and pairing players
in a chess tournament [74]. Another example application appears in the context of the
kidney exchange problem [88, 109].
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Matching problems

Bipartite

Two-sided
preferences

One-sided
preferences

Non-bipartite

Stable Roommates problem [44, 50]

Kidney exchange problem [88, 109]

Stable Marriage problem [37, 44]

Hospitals/Residents problem [105, 106]

Student-Project Allocation problem [13]

House Allocation problem [12, 123]

Figure 1.1: Classification of matching problems.

1.3 Two-sided preferences and stability

In this thesis our focus will be on matching problems that fall under category (i) above. We
recall that the fundamental problem in this category is the Stable Marriage problem (SM)
[37, 44], which we define formally in Section 2.1. Informally, an instance of SM involves
a set of men and a set of women, each of whom has a strictly-ordered preference list over
each member of the opposite set. A matching under SM is a one-one pairing of the men
to the women. The Hospitals/Residents problem (HR) [105, 106] involves the assignment
of residents to hopitals, and it is commonly referred to as a many-one generalisation of SM

because many residents may be assigned to one hospital. Other generalisations of HR in
this category are the Workers/Firms problem (WF) [83] and the Student-Project Allocation

problem (SPA) [13, 83].

Our contributions in this thesis will focus on problems that arise within the context of SPA,
which we define formally in Section 2.3. Informally, an instance of SPA involves three sets
of entities: students, projects and lecturers. Each project is proposed by one lecturer and
each student has preferences over a subset of the available projects that she finds acceptable.
Further, each lecturer may have preferences over the students that find her projects acceptable
and/or the projects that she offers. In addition, each project and lecturer has a capacity.
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Variants of SPA in the literature involve: (i) lecturer preferences over (a) students (SPA-S)
[13, 83], (b) projects (SPA-P) [61, 86, 87], and (c) (student, project) pairs (SPA-(S,P)) [14];
and (ii) no lecturer preference at all [76]. Our main contributions in this thesis will be on
problems belonging to category (a) and (b). Applications of SPA exist at the universities of
Glasgow [76], Southampton [17, 48], Southern Denmark [31], Singapore [116] and York
[36, 67, 118].

For each of these bipartite matching problems with two-sided preferences (i.e., SM, HR, WF,
SPA-S, SPA-P, and SPA-(S,P)), the goal is to find a stable matching. We recall that a matching

is an assignment of agents in one set to agents from the other set, which respects the pref-
erences and capacities of the agents involved. Informally, a stable matching ensures that no
two agents who are not matched together would rather be assigned to each other than remain
with their current assignees. If such a pair were to exist, then the agents involved would have
an incentive to form a private arrangement outside of the matching; thus, undermining its
integrity. The importance of stability as a solution concept in this context was highlighted in
[105, 107, 108, 111].

1.4 Hard matching problems

Many of the practically interesting matching problems tend to have more than one feasible
solution. For example, let I be a variant of HR where the preference lists of residents and
hospitals can include ties (HRT) (see Section 2.2.4 for a formal definition of this problem
variant). Stable matchings in I can have different sizes, with respect to the total number of
residents that are assigned to a hospital. However, in practical applications, we are mostly
interested in picking the best among these set of solutions. For instance, a notion of best
solution in I could be to find a maximum size stable matching, i.e., a stable matching that
assigns as many residents to hospitals as possible. The class of problems that involves finding
the “best” solution among the finite set of feasible solutions that the problem admits are
known as optimisation problems.

For many optimisation problems, the number of feasible solutions admitted grows very fast
with respect to even a small increase in the problem size. Indeed, it turns out that these prob-
lems are NP-hard, so assuming P 6= NP, we cannot construct a polynomial-time algorithm
to find the best solution for every instance of the problem. For an in-depth explanation of
complexity classes, we refer the interested reader to [39]. We briefly discuss some common
techniques of coping with these hard problems in what follows.
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1.5 Coping with hard problems

The following are the most common techniques that have been explored for coping with
NP-hard matching problems.

1. Approximation Algorithms: Given an instance I of a problem that is NP-hard, one
could settle for a polynomial-time algorithm (with respect to the input size of I) that
will output a feasible solution whose measure is guaranteed to not be more than a cer-
tain ratio below (respectively above) that of an optimal solution depending on whether
I is a maximisation (respectively minimisation) problem. Such algorithms are referred
to as approximation algorithms. Let Π be a maximisation (respectively minimisation)
problem, let I be an instance of Π, and let T be an approximation algorithm for Π.
The approximation ratio of T is max{OPT (I)

T (I)
} (respectively max{ T (I)

OPT (I)
}) over all

instances I of Π, where OPT (I) and T (I) are the measures of an optimal solution
and the algorithm’s solution, respectively. As an illustration, the best known approx-
imation algorithm for finding a maximum size stable matching given an instance of
HRT has an approximation ratio of 3

2
[71, 93, 100]. This implies that the algorithm

will output a stable matching whose size is at least two-thirds of that of the optimal
solution.

2. Fixed Parameter Tractable (FPT) Algorithms: In contrast to approximation algo-
rithms, FPT algorithms are “exact algorithms”, except that they are exponential with
respect to a fixed parameter value while polynomial with respect to the input size. Let
I be a decision problem with input size n and a parameter k, an FPT algorithm for I
is an algorithm with time complexity f(k) · g(n), for some computable functions f
and g, where f depends solely on k (for instance, 2k or 1.1k ) and g is a polynomial
function of n only. The fundamental idea behind FPT algorithms is to explore how
various problem-specific parameters affect the computational complexity of the prob-
lem. For example, given an instance I of HRT, one such parameter could be the total
length of ties in I . On one hand, if the parameter is small in practice, an FPT algorithm
can be efficient. The drawback of this approach is that a large parameter could lead
to an impractical algorithm. Marx and Schlotter [89] investigated the parameterised
complexity of NP-hard stable matching problems.

3. Linear Programming (LP): LP is a widely-studied technique used to find optimal
solutions to a range of optimisation problems, including matching problems [65, 120].
Given an instance I of a problem, it involves constructing a set of linear constraints
over a set of real-valued variables and defining a specific objective function in such
a way that an optimal solution in the constructed model corresponds to an optimal
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(fractional) solution of I . We remark that such a formulation leads to an efficient
algorithm for I given the polynomial-time solvability of LP [64, 69].

4. Integer Programming (IP): To solve some matching problems, restrictions need to be
imposed on the domain of the variables involved in an LP model. One such restriction
is that all the variables are integer-valued, thus forming an IP model. Despite the
fact that, in general, solving an IP problem is NP-hard [39], commercial optimisation
solvers, for example Gurobi [5], GLPK [6] and CPLEX [7] allow for these models to
be solved in a reasonable amount of time, with respect to a moderately-sized input. As
a result, there has been a lot of research into the formulation of IP models for matching
problems [15, 17, 26, 31, 77, 92].

1.6 Contribution and thesis outline

Our contribution in this thesis is to present new structural and algorithmic results for four
different problems within the context of SPA (i.e., the Student-Project Allocation problem).
In Chapter 2, we give a literature survey on bipartite matching problems with two-sided
preferences. We focus our attention on problems and known results that will be relevant in
subsequent chapters of this thesis. Building on this, we present our own contributions in
Chapters 3 - 6, which we outline in what follows.

In Chapter 3 we study SPA-S, a variant of SPA where lecturers have preferences over students,
and the preference lists of students and lecturers are strictly ordered (we formally define this
variant in Section 2.3.2). We recall that the solution concept we seek under this variant is
that of a stable matching. Abraham et al. [13] described two linear-time algorithms to find
a stable matching given an instance of SPA-S. The first algorithm finds the student-optimal

stable matching, in the sense that each assigned student is allocated to the best project that
she could obtain in any stable matching; while the second algorithm outputs the lecturer-

optimal stable matching, in the sense that each assigned lecturer is allocated the best set
of students that she could obtain in any stable matching (we discuss this further in Section
2.3.2). As it turns out, an arbitrary instance of SPA-S may admit many other stable matchings
in addition to the student-optimal and lecturer-optimal stable matchings.

Our contribution in Chapter 3 is to characterise the stable matchings given an instance of
SPA-S, in the special case that for each student in the instance, all of the projects in her pref-
erence list are offered by different lecturers. We achieve this characterisation by showing
that, under this restriction, the set of stable matchings in an instance of SPA-S is a distribu-
tive lattice under a natural dominance relation, with the student-optimal and lecturer-optimal
stable matchings representing the maximum and minimum elements of the lattice respec-
tively.
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Moving away from the notion of strictly-ordered preference lists, in Chapter 4 we consider
SPA-ST, a variant of SPA-S where the preference lists of students and lecturers may admit
indifference in the form of ties (we formally define this variant in Section 2.3.3). As a result
of the presence of ties in the preference lists, three different forms of stability arise, namely
weak stability, strong stability, and super-stability. These concepts were first defined and
studied by Irving [51] in the context of SMT, a variant of SM with ties, and subsequently
extended to HRT [57, 59]. We remark that HRT is the special case of SPA-ST in which each
lecturer offers only one project, and the capacity of each project is the same as the capacity
of the lecturer offering the project; in turn SMT is a one-to-one restriction of HRT. Under the
weak stability concept, stable matchings in an instance of SPA-ST can have different sizes
and the problem of finding a maximum size weakly stable matching is NP-hard [60, 84].

Our contribution in Chapter 4 is to present theoretical and experimental results for SPA-ST

under super-stability. We present the first polynomial-time algorithm to find a super-stable
matching or report that no such matching exists, given an instance of SPA-ST. We also
prove the correctness of our algorithm and we show that the algorithm can be implemented
to run in O(L) time, where L is the total length of the preference lists. We give some
structural properties satisfied by the set of super-stable matchings in an instance of SPA-ST.
For experimental purposes, we present an IP model for SPA-ST under super-stability. Further,
we present results from an empirical evaluation of an implementation of our linear-time
algorithm. For the experiments, we investigate how the nature of the preference lists affects
the likelihood of a super-stable matching existing, with respect to randomly-generated SPA-
ST instances. Our main finding from the empirical evaluation is that super-stable matchings
are very elusive with ties in the students’ and lecturers’ preference lists. However, if the
preference lists of the students are strictly ordered and only the lecturers express ties in their
preference lists, the probability of a super-stable matching existing is significantly higher.

In Chapter 5 we present theoretical and experimental results for SPA-ST under strong stabil-
ity. We describe the first polynomial-time algorithm to find a strongly stable matching or
report that no such matching exists, given an instance of SPA-ST. We then move on to prove
the correctness of our algorithm and we show that the algorithm can be implemented to run
in O(m2) time, where m is the total length of the students’ preference lists. In addition, we
give some structural properties satisfied by the set of strongly stable matchings in an instance
of SPA-ST. Similar to the super-stability setting, we also describe an IP model for SPA-ST

under strong stability.

On the experimental side, we present results from an empirical evaluation based on an im-
plementation of our algorithm, which investigates the proportion of randomly-generated in-
stances that admit strongly stable matchings but no super-stable matchings. With respect to
the datasets that we used for our super-stability experiments, we observed that the propor-
tion of instances that admitted a strongly stable matching is exactly the same as those that
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admitted a super-stable matching. However, when we varied the size of the instance between
10 and 50, there was a slight increase in the proportion of instances that admitted a strongly
stable matching but no super-stable matching.

In Chapter 6 we study SPA-P, a variant of SPA where lecturers have preferences over their
proposed projects (we formally define this variant in Section 2.3.4). In contrast to the other
SPA variants considered in Chapters 4 and 5, stable matchings in this context can have dif-
ferent sizes. It is known that MAX-SPA-P, i.e., the problem of finding a stable matching that
assigns as many students to projects as possible, is NP-hard, even if each project and lecturer
has capacity 1, and all preference lists are of constant length [87]. There are two known
approximation algorithms for MAX-SPA-P with approximation ratios 2 [87] and 3

2
[61].

Our contribution in Chapter 6 is to present new theoretical and experimental results for SPA-
P. First, we present a polynomial-time algorithm for MAX-SPA-P where the instance only
involves one lecturer. In contrast to this, if there are two lecturers involved, we show that
MAX-SPA-P remains NP-hard and is not approximable within some constant c > 1, unless
P= NP. Further, we show that this problem remains NP-hard if each preference list is of
length at most 3, with an arbitrary number of lecturers. We then move on to describe an IP
model to enable MAX-SPA-P to be solved optimally, in the general case where there are no
restrictions on the problem instance.

Finally, we present results from an empirical evaluation that investigates how the solutions
produced by the approximation algorithms for SPA-P compare to the optimal solutions ob-
tained from our IP model, with respect to the size of the stable matchings constructed, on in-
stances that are both randomly generated and derived from real datasets. These real datasets
are based on actual student preference data and manufactured lecturer preference data from
previous runs of student-project allocation processes at the School of Computing Science,
University of Glasgow. We also present results showing the time taken by the IP model
to solve the problem instances optimally. Our main finding is that the 3

2
-approximation al-

gorithm finds stable matchings that are very close to having maximum cardinality over the
tested instances.
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Chapter 2

Literature Review

In this chapter, we give formal definitions and a review of the structural and algorithmic
results for bipartite matching problems with two-sided preferences. To be specific, we give
a review of the literature on the Stable Marriage problem (SM), the Hospitals/Residents

problem (HR) and the Student-Project Allocation problem (SPA) in Sections 2.1, 2.2 and 2.3
respectively.

2.1 The Stable Marriage problem: SM

2.1.1 Problem definition

An instance of the classical Stable Marriage problem (SM) involves two sets of agents – a set
M = {m1,m2, . . . ,mn} of men and a setW = {w1, w2, . . . , wn} of women, each of whom
has a strictly-ordered preference list over all the members of the opposite set, thus giving
rise to complete preference information. For each man mi, we say that mi prefers woman
wj1 to wj2 if wj1 precedes wj2 onmi’s preference list. An analogous definition holds for each
woman. In this context, a matching M is a one-one pairing between all the men and all the
women. If a man mi is assigned in M to a woman wj , we say that mi and wj are partners in
M (or M -partners) and write mi = M(wj) and wj = M(mi).

A pair (mi, wj) is said to block M , or be a blocking pair for M , if mi prefers wj to M(mi)

and wj prefers mi to M(wj). Intuitively, mi and wj forms a blocking pair for M if they
would rather be assigned with each other than remain with their M -partners. If a matching
M admits at least one blocking pair, then we say that M is unstable; otherwise, if M admits
no blocking pair then we say that M is stable. Given an arbitrary instance of SM, a typical
goal is to find a stable matching in the instance, as this property guarantees that the matching
cannot be undermined by any man and woman pair. We recall again that the importance of
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stability as a solution concept in this setting was highlighted in [105, 107, 108, 111]. An
example instance I of SM is shown in Figure 2.1, which involves 4 men and 4 women.

Men’s preferences Women’s preferences

m1 : w2 w4 w1 w3 w1 : m2 m1 m4 m3

m2 : w3 w1 w4 w2 w2 : m4 m3 m1 m2

m3 : w2 w3 w1 w4 w3 : m1 m4 m3 m2

m4 : w4 w1 w3 w2 w4 : m2 m1 m4 m3

Figure 2.1: An instance I of SM, due to Gusfield and Irving [44].

It can be verified that matchings M1 = {(m1, w4), (m2, w3), (m3, w2), (m4, w1)} and M2 =

{m1, w4), (m2, w1), (m3, w2), (m4, w3)} are stable matchings in I . Clearly, each of M1 and
M2 cannot be undermined since no man and woman have an incentive to break their assign-
ment and become assigned to each other. On the other hand, matching M3 = {(m1, w1),

(m2, w3), (m3, w2), (m4, w4)} is unstable because it admits the blocking pair (m1, w4): m1

prefers w4 to his M3-partner (i.e., w1); likewise w4 prefers m1 to her M3-partner (i.e., m4).

One might wonder how likely it is for this desired solution concept (i.e., a stable matching)
to exist in an arbitrary instance of SM. Gale and Shapley [37] cleared this doubt by providing
an elegant theorem which establishes that every instance of SM admits at least one stable
matching. To prove this result, they described a polynomial-time algorithm for actually
finding such a matching. Their algorithm, which is referred to as the Gale-Shapley algorithm,
involves a number of iterative proposals from the men to the women. Initially, every man
who is unassigned proposes (simultaneously) to the most-preferred woman on his list, and
each woman rejects all but her most-preferred man among the proposers. In subsequent
steps, every man who is unassigned proposes to the most-preferred woman on his list whom
he has not previously proposed to, and then again each woman who receives one or more
proposals rejects all but her most-preferred man among the proposers and her current partner
(if any). The algorithm proceeds in this fashion until everyone has a partner. It is clear that
the number of proposals in the algorithm is bounded by the total length of the preference
lists, and since all operations in a loop iteration can be implemented to run in O(1) time, the
overall time complexity of the algorithm is O(n2) [73].

In general, a given SM instance may admit many stable matchings, for example, the SM in-
stance in Figure 2.1 admits two stable matchings, i.e., M1 and M2. This raises the question
as to which stable matching is output by the Gale-Shapley algorithm? To answer this ques-
tion, we note that the version of the algorithm that involves the men offering the proposals is
referred to as man-oriented, and the resulting stable matching is man-optimal because each
man obtains the best partner that he could possibly have in any stable matching [37]. Anal-



2.1. The Stable Marriage problem: SM 12

ogously, if the roles are reversed, i.e., if the women are the ones offering the proposals, the
algorithm is woman-oriented, and the resulting stable matching is woman-optimal because
each woman obtains the best partner that she could possibly have in any stable matching.
Perhaps most interesting is the fact that the order in which the men or the women proposes
is inconsequential to the final result.

For a given instance of SM, we will denote its man-optimal and woman-optimal stable
matchings by M0 and Mz respectively. It was observed by McVitie and Wilson [95] that
M0 (respectively Mz) is also a woman-pessimal (respectively man-pessimal) stable match-
ing because each woman (respectively man) obtains the worst partner that she (respec-
tively he) could possibly have in any stable matching. Going back to the SM instance
given in Figure 2.1 (page 11), M0 = M1 = {(m1, w4), (m2, w3), (m3, w2), (m4, w1)} and
Mz = M2 = {m1, w4), (m2, w1), (m3, w2), (m4, w3)}. In the case where M0 = Mz, the
underlying SM instance admits a unique stable matching.

An extended version of the Gale-Shapley algorithm was described in [44]. In addition to
finding a stable matching, the aim of the extended algorithm is also to reduce the preference
lists by eliminating certain pairs that cannot belong to any stable matching. By the term
delete (mi, wj), we mean the removal of wj from mi’s preference list and the removal of
mi from wj’s preference list; further, if mi is assigned to wj , we break the assignment. We
define the successor of mi in wj’s preference list as those men that are worse than mi. An
analogous definition holds for the successor of wj in mi’s preference list.

Similar to the man-oriented version of the Gale-Shapley algorithm, the extended algorithm
involves each man who is unassigned proposing to the most-preferred woman on his list. If
woman wi receives a proposal from man mj , then wj’s partner in the resulting man-optimal
(woman-pessimal) stable matching cannot be worse than mi. This implies that for each
successor mi′ of mi in wj’s preference list, the pair (mi′ , wj) cannot belong to any stable
matching; hence, such pairs are deleted from the preference lists. We note that in the ex-
tended algorithm, if mi proposes to wj then the proposal will be accepted. This is because if
wj is already assigned to a man whom she prefers to mi then the pair (mi, wj) would have
been deleted. As before, the extended algorithm terminates when everybody has a partner;
and its overall time complexity is O(n2). Finally, we note that in the man-optimal stable
matching, each man is assigned to the first woman on her reduced list, and each woman is
assigned to the last man on her reduced list. For further reading on the concept of reduced
list, see [44].

2.1.2 Structure of stable matchings in SM

We recall that depending on the orientation (man- or woman-oriented) of the Gale-Shapley
algorithm that is being used, the algorithm can generate either the man-optimal (M0) or the
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woman-optimal (Mz) stable matching. If M0 = Mz then the instance admits a unique stable
matching. However, if M0 6= Mz then the instance may admit many other stable matchings
different from M0 and Mz. As it turns out, the set of all stable matchings has some form of
structure [44], which we discuss in what follows.

Let I be an instance of SM and letM denote the set of all stable matchings in I . First, we
extend the notion of preferences over agents to preferences over matchings. Given M,M ′ ∈
M, we say that man mi prefers M to M ′ if mi prefers M(mi) to M ′(mi). Also, we say that
mi is indifferent between M and M ′ if M(mi) = M ′(mi). Next, we define a man-oriented
dominance relation onM. We say that M dominates M ′, denoted M �M ′, if for each man
mi, either mi is indifferent between M and M ′ or mi prefers M to M ′. With respect to this
definition of dominance relation,M is a partial order, denoted (M,�).

The structure of stable matchings in I follows from a classical result which states that the
partial order (M,�) forms a distributive lattice1 with the man-optimal and woman-optimal
stable matchings representing the maximum and minimum element of the lattice, respec-
tively. Knuth [73] attributes this structural result to John Conway, and a formal proof can be
found in [44, Section 1.3.1]. As highlighted in [82], this lattice structure has been exploited
to design efficient algorithms for a range of extensions of SM, some of which includes finding
all stable pairs [43], generating all stable matchings [43], counting stable matchings [53], and
finding stable matchings that satisfy additional optimality criteria [43, 54]. In what follows,
we briefly summarise the key results that lead to the establishment of the lattice structure.

Lemma 2.1.1 ([44]). Let M and M ′ be two (distinct) stable matchings in I . Let M∗ be a set

of man-woman pairs formed by assigning each man to the better of his partners in M and

M ′. Then M∗ is a stable matching in I .

Lemma 2.1.2 ([44]). Let M and M ′ be two (distinct) stable matchings in I . Let M∗ be a set

of man-woman pairs formed by assigning each man to the poorer of his partners in M and

M ′. Then M∗ is a stable matching in I .

We denote by M ∧M ′ (respectively M ∨M ′) the set of man-woman pairs in which each
man is assigned to the better (respectively poorer) of his partners in M and M ′. It follows
from Lemma 2.1.1 (respectively Lemma 2.1.2) that M ∧ M ′ (respectively M ∨ M ′) is a
stable matching. These two operations give rise to a lattice structure forM, which we state
as follows.

Theorem 2.1.3 ([44]). Let I be an instance of SM, and letM be the set of stable matchings

in I . Let � be the dominance partial order onM and let M,M ′ ∈M. Then (M,�) forms

a distributive lattice, with M ∧M ′ representing the meet of M and M ′, and M ∨M ′ the join

of M and M ′.
1See Definition 3.3.1 for a formal definition of a distributive lattice.
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So far, we have assumed that in an instance of SM, (i) the sets of men and women are of equal
size, (ii) the preference lists are complete, and (iii) the preference lists are strictly ordered. In
what follows, we consider the extensions of SM that have been studied in the literature [44]
as a result of relaxing these three assumptions.

2.1.3 Preferences with Incomplete lists: SMI

The Stable Marriage problem with Incomplete lists (SMI) represents relaxations (i) and (ii)
in the sense that the size of the sets of men and women need not be equal, and the preference
lists need not be complete (i.e., the preference list of an agent may contain a proper subset of
agents from the opposite set). An instance of SMI consists of a setM = {m1,m2, . . . ,mn1}
of men and a setW = {w1, w2, . . . , wn2} of women (possibly n1 6= n2) each of whom has a
strictly-ordered preference list over a subset of the members of the opposite set. This prob-
lem model allows men (women) to declare some of the women (men) to be unacceptable,
meaning that such men (women) would rather be unassigned than be assigned to a woman
(man) who they did not include in their preference lists. If woman wj appears on man mi’s
list then we say that mi finds wj acceptable. Similarly, if man mi appears on woman wj’s
list then we say that wj finds mi acceptable. If mi and wj find each other acceptable, we
refer to the pair (mi, wj) as an acceptable pair.

A matching M in this context is a one-one pairing between a subset of the men and a subset
of the women such that (mi, wj) ∈ M only if mi and wj find each other acceptable. If
(mi, wj) ∈ M , we say that mi is assigned to wj and we write M(mi) = wj; also, we say
that wj is assigned to mi and we write M(wj) = mi. We note that it may not be possible to
assign every man and woman in this setting. If a man mi (woman wj) is not involved in any
pair in M , we say that mi (wj) is unassigned in M and M(mi) (M(wj)) is undefined. As a
consequence, we redefine the notion of a blocking pair as follows.

Definition 2.1.4 ([44]). Let I be an instance of SMI and let M be a matching in I . An

acceptable pair (mi, wj) is said to block M , or be a blocking pair for M , if (a) and (b) holds

as follows:

(a) either mi is unassigned in M , or mi prefers wj to M(mi);

(b) either wj is unassigned in M , or wj prefers mi to M(wj).

Again, M is stable if it admits no blocking pair. A stable matching always exists in this
context and Gusfield and Irving [44] noted that such a matching can be obtained by extending
the Gale-Shapley algorithm [37]. Moreover, Gusfield and Irving [44] noted that the results
concerning the man-optimal (i.e., woman-pessimal) and woman-optimal (i.e., man-pessimal)
stable matchings extend to SMI. While an instance of SMI may admit many stable matchings,
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Gale and Sotomayor [38] observed that all stable matchings assign exactly the same subset
of agents. Hence, if an agent is assigned (respectively unassigned) in one stable matching,
they are assigned (respectively unassigned) in all of the stable matchings, and as such the
lattice structure result for SM holds for SMI. They also noted that all stable matchings in an
instance of SMI are of the same size.

2.1.4 Preferences with Ties and Incomplete lists: SMTI

If we relax the assumption that the agents’ preference lists are strictly ordered, so that each
agent can express some form of indifference in their preference list, then we obtain a gen-
eralisation of SMI referred to as the Stable Marriage problem with Ties and Incomplete lists

(SMTI). In the preference list of man mi, a set T of r women forms a tie of length r (where
r ≥ 1) ifmi does not prefer wj to wk for any wj, wk ∈ T . A tie in a woman’s list is defined in
a similar fashion. Formally, an instance I of SMTI consists of a setM = {m1,m2, . . . ,mn1}
of men and a setW = {w1, w2, . . . , wn2} of women (possible n1 6= n2) each of whom has a
strictly-ordered preference list over tied batches of agents in the opposite set. Thus an agent
is indifferent between the members of each tie, and prefers each member of a given tie to
each member of any successor tie. The definition of an acceptable pair in I is similar to
that given in the SMI setting. We give an example instance I1 of SMTI in Figure 2.2, which
involves the set of menM = {m1,m2,m3} and the set of womenW = {w1, w2}. Ties in
the preference lists are indicated by round brackets.

Men’s preferences Women’s preferences
m1: w1 w2 w1: m2 m1

m2: (w1 w2) w2: m2 m1 m3

m3: w2

Figure 2.2: An instance I1 of SMTI, adapted from [44, Figure 1.13, page 30]. Man m1

prefers w1 to w2; while man m2 is indifferent between w1 and w2.

The intuition behind the earlier definitions of blocking pair for a matching in the SM and SMI

setting is that if mi and wj are both involved in a blocking pair, both of them would be better
off by becoming assigned to each other. However, this does not directly translate to the SMTI

setting; for example, what happens if mi is indifferent between his assigned partner and wj?
To clarify this, Gusfield and Irving [44] established that an acceptable (man, woman) pair
who are not matched to one another can form a blocking pair for a matching if, by becoming
assigned to one another, either (i), (ii) or (iii) holds as follows:

(i) both of them would improve;

(ii) one of them would improve and the other would not be worse off;
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(iii) neither of them would be worse off.

Further, they defined a matching M in an instance of SMTI as weakly stable, strongly stable,
or super-stable if it does not admit a blocking pair of type (i), (ii) or (iii), respectively.
Based on this informal definition, we note that a super-stable matching is strongly stable,
and a strongly stable matching is weakly stable. Gusfield and Irving [44] showed that we
can always obtain a weakly stable matching in an instance of SMTI by breaking the ties
arbitrarily and applying the Gale-Shapley algorithm to the resulting SMI instance to find
any stable matching. Subsequently, Manlove et al. [84] showed that the manner in which
these ties are resolved could lead to the algorithm generating weakly stable matchings with
different sizes. They further showed that MAX-SMTI (i.e., the problem of finding a maximum
size weakly stable matching) is NP-hard, even under the restriction that the preference lists
on one side are strictly ordered, and each preference list on the opposite side is either strictly
ordered or comprises one tie of length two.

Irving et al. [56] showed that MAX-SMTI remains NP-hard even if the length of each agent’s
list is at most three, and they gave a polynomial-time algorithm for the restriction where the
length of each man’s list is at most two and the length of each woman’s list is unbounded.
Several approximation algorithms for MAX-SMTI exist in the literature [47, 55, 62, 70, 71,
84, 93, 100], with the best known for the unrestricted case having an approximation ratio of
3
2

[71, 93, 100]. See [28] for a recent survey on approximability results for MAX-SMTI.

In contrast to the guaranteed existence of weakly stable matchings, it was observed in [44]
that an instance of SMTI need not admit a strongly stable or super-stable matching. To see
this, consider the instance I1 given in Figure 2.2. The reader can verify that any matching
will be undermined under strong stability or super-stability. For instance, matching M1 =

{(m1, w1), (m2, w2)} is blocked by the pair (m2, w1), since m2 would be no worse off and
w1 would improve relative to M1. A similar argument can be made for the matching M2 =

{(m1, w2), (m2, w1)} which is blocked by the pair (m2, w2).

Under the restriction of SMTI where the preference lists are complete (SMT), Irving [51]
gave O(n4) and O(n2) algorithms to find a strongly stable and a super-stable matching re-
spectively, or to report that no such matching exists, where n = max{n1, n2}. Subsequently,
Manlove [81] extended these two algorithms to the SMTI setting with the same time complex-
ity. Later, Kavitha et al. [66] described an improved strong stability algorithm for SMTI with
running time O(nm), where n is the number of agents and m is the number of acceptable
pairs.
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2.2 The Hospitals/Residents Problem: HR

2.2.1 Introduction

The Hospitals/Residents problem (HR) [37, 44, 110] involves assigning one or more agents
in one set (residents) to an agent in the opposite set (hospitals). In view of the fact that many
residents may be assigned to one hospital, HR is commonly referred to as a many-one gen-
eralisation of SMI. The HR model was first introduced by Gale and Shapley [37], although
in the context of the College Admissions problem. For more than five decades, this problem
model has been applied by centralised matching schemes in different countries, including
NRMP [1], CaRMS [2], JRMP [3], and SFAS [52] which ran until 2012 (see paragraph 3 of
Section 1.1 for a description of these acronyms and more details on the centralised matching
schemes). These matching schemes handle the allocation of graduating medical students
(henceforth residents) to residency positions in hospitals in their respective countries. To
make the allocations, the residents are required to provide strictly-ordered preference lists
over the available hospitals that they would like to be assigned to. Each hospital also pro-
vides a strictly-ordered preference list over the residents that find them acceptable, as well
as a capacity, which indicates the maximum number of residents that the hospital can ac-
commodate. We recall that the goal in this setting is to find a stable matching of residents to
hospitals.

2.2.2 Problem definition

Formally, an instance I of HR involves two sets of agents – a set R = {r1, r2, . . . , rn1} of
residents and a set H = {h1, h2, . . . , hn2} of hospitals. Each resident ri ∈ R ranks a subset
of hospitals in H in strict order of preference, which forms ri’s preference list. If a hospital
hj is in resident ri’s preference list, we say that ri finds hj acceptable. Let hj, hk ∈ H such
that ri finds both hj and hk acceptable. If hj precedes hk on ri’s preference list, we say
that ri prefers hj to hk. Each hospital hj ∈ H ranks a subset of residents in R that find
hj acceptable, which forms hj’s preference list. If ri is in hj’s preference list we say that
hj finds ri acceptable. The prefers relation is defined similarly for a hospital. If ri and hj
both find each other acceptable, we call (ri, hj) an acceptable pair. Also, hj has a capacity

cj ∈ Z+, which indicates the maximum number of residents that hj can accommodate.

An assignment M is a collection of acceptable pairs in R ×H . If (ri, hj) ∈ M , we say that
ri is assigned to hj in M and we denote by M(ri) the set of hospitals that are assigned to ri
in M . Similarly, if (ri, hj) ∈M we say that hj is assigned ri in M and we denote by M(hj)

the set of residents assigned to hj in M . We denote by |M(hj)| the size of M(hj) (i.e., the
number of residents assigned to hj in M ), and we say that hj is undersubscribed, full or
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oversubscribed according as |M(hj)| is less than, equal to, or greater than cj , respectively.
A matching M is an assignment such that |M(ri)| ≤ 1 for each ri ∈ R and |M(hj)| ≤ cj

for each hj ∈ H (i.e., each resident is assigned to at most one hospital and no hospital is
oversubscribed). For notational convenience, if ri is assigned to hj in M , we denote hj by
M(ri).

Definition 2.2.1 ([37]). Let I be an instance of HR and letM be a matching in I . We say that

M is stable in I if it admits no blocking pair, where a blocking pair for M is an acceptable

pair (ri, hj) ∈ (R×H) \M such that (a) and (b) holds as follows:

(a) either ri is unassigned in M , or ri prefers hj to M(ri);

(b) either hj is undersubscribed in M , or hj prefers ri to some resident in M(hj).

Gale and Shapley [37] showed that every instance of HR admits a stable matching and they
described a polynomial-time algorithm to find such matching. Analogous to the man-optimal
and woman-optimal stable matchings in the SMI setting, the algorithm can output a stable
matching that is either resident-optimal (hospital-pessimal) or hospital-optimal (resident-

pessimal), depending on the orientation of the algorithm that is being used (i.e., resident-
oriented or hospital-oriented, respectively).

2.2.3 Structure of stable matchings in HR

Given an instance I of HR, as in the case of SMI, there may be many other stable matchings
in addition to the resident-optimal and hospital-optimal stable matchings. However, there
are some interesting properties satisfied by assigned and unassigned residents and by under-
subscribed hospitals in all stable matchings in I . These properties are collectively referred
to as the Rural Hospitals Theorem in the literature [38, 105, 106], which we state as follows.

Theorem 2.2.2 (Rural Hospitals Theorem [38, 105, 106]). For a given instance I of HR, the

following properties holds:

(i) the same residents are assigned in all stable matchings; thus, all stable matchings in

I are of the same size;

(ii) each hospital is assigned the same number of residents in all stable matchings;

(iii) any hospital that is undersubscribed in one stable matching is assigned exactly the

same set of residents in all stable matchings.

The structural results established for the set of stable matchings in an instance of SM in
Section 2.1.2 also extend naturally to the HR setting [44]. Let I be an instance of HR. Let
M denote the set of all stable matchings in I , and let M,M ′ ∈M. We say that a resident ri
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prefersM toM ′ if ri is assigned in bothM andM ′, and ri prefersM(ri) toM ′(ri). Also, we
say that ri is indifferent between M and M ′ if either (i) ri is unassigned in both M and M ′,
or (ii) ri is assigned in both M and M ′, and M(ri) = M ′(ri). We say that M dominates M ′,
denoted M � M ′, if each resident either prefers M to M ′ or is indifferent between them.
Similar to the SM setting, (M,�) forms a distributive lattice under this dominance relation
with M ∧M ′ and M ∨M ′ representing the meet and join of the lattice, respectively, where
M ∧M ′ (M ∨M ′) is a stable matching formed by giving each assigned resident the better
(poorer) of her hospitals in M and M ′ (each resident who is unassigned in M and in M ′ is
unassigned in M ∧M ′ and in M ∨M ′). Moreover, the resident-optimal and hospital-optimal
stable matchings represent the maximum and minimum elements of the lattice, respectively
[44].

Example 2.2.3. We present an example to illustrate some of the results in this section. The
HR instance I shown in Figure 2.3 involves the set of residents R = {ri : 1 ≤ i ≤ 12}
and the set of hospitals H = {hj : 1 ≤ j ≤ 5}. The instance admits a total of seven stable
matchings, which are illustrated in Figure 2.4. To illustrate Theorem 2.2.2, we observe that

(i) each resident in R \ {r12} is assigned in all of the stable matchings, and r12 is not
assigned in any stable matching;

(ii) each hospital in H is assigned the same number of residents in all stable matchings;
and

(iii) hospital h2 is undersubscribed in all of the stable matchings, and Mk(h2) = {r7}
(1 ≤ k ≤ 7).

For (ii), the reader can easily verify that for each k (1 ≤ k ≤ 7), |Mk(h1)| = 4, |Mk(h2)| =
|Mk(h5)| = 1, |Mk(h3)| = 3, and |Mk(h4)| = 2. Further, the Hasse diagram of the lattice
structure representing the set of all stable matchings in I is illustrated in Figure 2.5, with
the resident-optimal (M1) and hospital-optimal (M7) stable matchings at the top and bottom
of the lattice respectively. This structure is a directed graph with each vertex representing
a stable matching, and there is a directed edge from vertex M to M ′ (where M 6= M ′) if
M � M ′ and there exists no M∗ (distinct from M and M ′) such that M � M∗ � M ′. For
example, it can be verified that M1 = M2 ∧M3 and M4 = M2 ∨M3. We note that all the
edges representing precedence implied by transitivity are suppressed in the Hasse diagram.
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Residents’ preferences Hospitals’ preferences
r1: h3 h1 h5 h4 h1: r3 r7 r9 r11 r5 r4 r10 r8 r6 r1 r2
r2: h1 h3 h4 h2 h5 h2: r5 r7 r10 r6 r8 r2 r3 r11
r3: h4 h5 h3 h1 h2 h3: r11 r6 r8 r3 r2 r4 r7 r1 r10 r12
r4: h3 h4 h1 h5 h4: r10 r1 r2 r11 r4 r9 r5 r3 r6 r8 r12
r5: h1 h4 h2 h5: r2 r4 r10 r7 r6 r1 r8 r3 r11 r9 r12
r6: h4 h3 h2 h1 h5
r7: h2 h5 h1 h3
r8: h1 h3 h2 h5 h4
r9: h4 h1 h5
r10: h3 h1 h5 h2 h4 Hospital capacities: c1 = 4, c2 = c3 = 3, c4 = 2, c5 = 1
r11: h5 h4 h1 h3 h2
r12: h3 h4 h5

Figure 2.3: An instance of HR due to Gusfield and Irving [44].

Matching r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11
M1 h3 h1 h4 h3 h1 h3 h2 h1 h4 h1 h5
M2 h1 h3 h4 h3 h1 h3 h2 h1 h4 h1 h5
M3 h3 h1 h5 h3 h1 h3 h2 h1 h4 h1 h4
M4 h1 h3 h5 h3 h1 h3 h2 h1 h4 h1 h4
M5 h5 h3 h3 h4 h1 h3 h2 h1 h1 h1 h4
M6 h5 h4 h3 h1 h1 h3 h2 h3 h1 h1 h4
M7 h4 h4 h3 h1 h1 h3 h2 h3 h1 h5 h1

Figure 2.4: The stable matchings in the HR instance illustrated in Figure 2.3.

M1

M2 M3

M4

M5

M6

M7

Figure 2.5: The lattice structure for the stable matchings in Figure 2.4, with M1 (the
resident-optimal stable matching) as the maximum element of the lattice and M7 (the
hospital-optimal stable matching) as the minimum element of the lattice.
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2.2.4 Preferences with Ties: HRT

As mentioned earlier, the centralised matching scheme that handles the allocation of resi-
dents to hospitals in the United States (NRMP [1]) involves over 40, 000 residents annually
[96]. In large-scale matching schemes of this kind, popular hospitals may not be able to
provide a strictly-ordered preference over what may be a very large number of residents that
find them acceptable. These hospitals may prefer to express indifference in their preference
lists, for instance, ranking two or more residents equally in a tie. Similarly, a resident may
wish to rank two or more hospitals equally. This leads to a generalisation of HR known as
the Hospitals/Residents problem with Ties (HRT) [57, 59]. The formal definition of a tie in
a resident’s or hospital’s preference list is analogous to that given in the SMTI setting (see
Section 2.1.4). Irving et al. [57, 59] extended the three stability definitions for SMTI, namely
weak stability, strong stability and super-stability, to the HRT setting. Thus a matching M in
I is weakly stable, strongly stable or super-stable if it does not admit a blocking pair with
respect to the corresponding stability criteria. For a formal definition of these terms in the
context of HRT, see [83, Section 1.3.5].

Every instance of HRT admits a weakly stable matching [57]. This can be obtained by break-
ing each tie in the preference lists arbitrarily and subsequently applying the Gale-Shapley
[37] algorithm to the resulting HR instance. However, similar to the SMTI setting, in gen-
eral, the manner in which the ties are resolved yields weakly stable matchings with different
sizes, and the problem of finding a maximum size weakly stable matching given an instance
of HRT (MAX-HRT) is NP-hard [84]. We note that some of the approximability results and
approximation algorithms for SMTI also extend to the HRT setting (we refer the interested
reader to [83] for a summary). Other techniques that have been explored to enable MAX-
HRT to be solved to optimality on reasonably-sized instances include IP formulation [77]
and parameterised complexity [89].

Similar to the SMTI setting, an instance of HRT need not admit a strongly stable or super-
stable matching. To find a super-stable (respectively strongly stable) matching or to report
that no such matching exists, Irving et al. [57] (respectively [59]) described a polynomial-
time algorithm with time complexity O(L) (respectively O(m2)), where L is the total length
of all the preference lists and m is the total number of acceptable pairs. Subsequently,
Kavitha et al. [66] described an improved strong stability algorithm for HRT, which builds
on the one described in [59], with running time O(m

∑
h∈H cj). Furthermore, counterparts

of the Rural Hospitals Theorem for HR (Theorem 2.2.2, page 18) hold for HRT under super-
stability [57] and strong stability [113].
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2.2.5 Couples with joint preference lists: HRC

A generalisation of HR where some of the residents may apply jointly in couples is known as
the Hospitals-Residents problem with Couples (HRC) [25, 44, 83, 94, 105]. This extension is
important in practical applications as it gives large-scale matching schemes, for example the
NRMP [1], the possibility of matching couples to geographically close hospitals, essentially
keeping partners together. A formal definition of this problem model and the notion of a
stable matching can be found in [85]. In what follows, we give a general overview of the
existing algorithmic results for HRC in the literature.

Roth [105] showed that an instance I of HRC need not admit a stable matching, while Ronn
[104] proved that the problem of deciding whether an instance of HRC admits a stable match-
ing is NP-complete, even if there are no single residents and each hospital has capacity 1.
It was shown in [90] that this decision problem is also W[1]-hard when parameterised by
the number of couples. In a further restricted case in which each single resident’s prefer-
ence list contains at most α hospitals, each couple’s preference list contains at most β pairs
of hospitals and each hospital’s preference list contains at most γ residents, referred to as
(α, β, γ)-HRC, Manlove and McDermid [94] showed that deciding whether an instance of
(3, 2, 4)-HRC admits a stable matching is NP-complete. A similar result also holds for an
instance of (0, 2, 2)-HRC [26].

Outwith the hardness results for HRC, Aldershof and Carducci [16] showed that, should an
HRC instance admit a stable matching, such matchings could be of different sizes. Further-
more, Biro et al. [26] described an IP model for finding a maximum size stable matching or
reporting that no such matching exists. They also presented an empirical evaluation of an
implementation of their model, showing that their model is capable of solving instances of
the magnitude of those arising in the SFAS [52] application. Further algorithmic results for
HRC are given in [25, 83, 91].

2.3 The Student-Project Allocation Problem: SPA

2.3.1 Introduction

The Student-Project Allocation problem (SPA) [13, 31, 83] involves three sets of entities:
students, projects and lecturers. Each project is supervised by one lecturer and each student
has preferences over a subset of the available projects that she finds acceptable. Further, each
lecturer may have preferences over the students that find her projects acceptable and/or the
projects that she offers. Typically there may be upper bounds on the number of students that
each project and lecturer can accommodate. In general, the goal is to allocate students to
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projects by respecting the stated preferences such that each student is assigned to at most
one project, and the capacity constraints on projects and lecturers are not violated.

Two variants of SPA arise based on the existence (or otherwise) of lecturers’ preferences. In
some centralised matching schemes that deal with the allocation of students to projects, only
students express preferences. Examples of these schemes exist at the School of Computing
Science, University of Glasgow [76], Department of Civil and Environmental Engineering,
University of Southampton [17, 48], and the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore [116].

Under the SPA model where preferences are permitted from both the students and lecturers,
three different variants have been studied based on the nature of the lecturers’ preferences.
These include (i) the Student-Project Allocation problem with lecturer preferences over Stu-

dents (SPA-S) [13, 83], (ii) the Student-Project Allocation problem with lecturer preferences

over Projects (SPA-P) [61, 86, 87], and (iii) the Student-Project Allocation problem with lec-

turer preferences over Student-Project pairs (SPA-(S,P)) [13, 14]. The problems that we will
be considering in Chapters 3 - 6 belong to category (i) and (ii). In what follows, we give a
survey of the three SPA variants mentioned above, with a specific focus on variants (i) and
(ii).

2.3.2 Lecturer preferences over Students: SPA-S

A variant of SPA where lecturers have preferences over students is known as the Student-

Project Allocation problem with lecturer preferences over Students (SPA-S) [13, 83]. In this
model, each lecturer provides a strictly-ordered preference list over the students who rank at
least one of the projects that the lecturer proposed. The Department of Computing Science,
University of York [36, 67, 118] is an example of a centralised matching scheme where this
variant is in use.

Formally, an instance I of SPA-S involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each student
si ranks a subset of P in strict order, which forms si’s preference list. We say that si finds
pj acceptable if pj is in si’s preference list. We denote by Ai the set of projects that si finds
acceptable. Let pj, pj′ ∈ P such that si finds both pj and pj′ acceptable. If pj precedes pj′ in
Ai, we say that si prefers pj to pj′ .

Each lecturer lk ∈ L offers a non-empty set of projects Pk, where P1, P2, . . . , Pn3 partitions
P . Also, lk ranks in strict order of preference those students who find at least one project in
Pk acceptable. We say that lk finds si acceptable if si is in lk’s preference list. We denote
by Lk the set of students that lk finds acceptable. The prefers relation is defined similarly for
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lecturer lk. For any pair (si, pj) ∈ S ×P , where pj is offered by lk, we refer to (si, pj) as an
acceptable pair if si and lk both find each other acceptable, i.e., if pj ∈ Ai and si ∈ Lk.

Further, lk has a capacity dk ∈ Z+, indicating the maximum number of students that lk is
willing to supervise. Similarly each project pj ∈ P has a capacity cj ∈ Z+ indicating the
maximum number of students that pj can accommodate. We assume that for any lecturer lk,
max{cj : pj ∈ Pk} ≤ dk ≤

∑
{cj : pj ∈ Pk}, i.e., the capacity of lk is (i) at least the highest

capacity of the projects offered by lk, and (ii) at most the sum of the capacities of all the
projects that lk is offering. We denote by Ljk, the projected preference list of lecturer lk for
pj , which can be obtained from Lk by removing those students that do not find pj acceptable
(thereby retaining the order of the remaining students from Lk).

An assignment M is a collection of acceptable pairs in S × P . We define the size of M as
the number of (student, project) pairs in M , denoted |M |. If (si, pj) ∈ M , we say that si is
assigned to pj and pj is assigned si. Furthermore, we denote by M(si) the set of projects
that are assigned to si in M . Similarly, we denote the set of students assigned to pj in M as
M(pj). For ease of exposition, if si is assigned to a project pj offered by lecturer lk, we may
also say that si is assigned to lk, and lk is assigned si. Thus we denote the set of students
assigned to lk in M as M(lk). A project pj ∈ P is undersubscribed, full or oversubscribed

in M if |M(pj)| is less than, equal to or greater than cj , respectively. We say that pj is non-

empty if |M(pj)| > 0, i.e., there exists some student who is assigned to pj in M . Similarly,
each lecturer lk ∈ L is undersubscribed, full or oversubscribed if |M(lk)| is less than, equal
to or greater than dk, respectively.

A matching M is an assignment such that |M(si)| ≤ 1 for each si ∈ S , |M(pj)| ≤ cj for
each pj ∈ P , and |M(lk)| ≤ dk for each lk ∈ L (i.e., each student is assigned to at most one
project inM , and no project or lecturer is oversubscribed inM ). For notational convenience,
if si is assigned to pj in M , we denote pj by M(si).

Definition 2.3.1 ([13]). Let I be an instance of SPA-S and let M be a matching in I . We

say that M is stable in I if it admits no blocking pair, where a blocking pair for M is an

acceptable pair (si, pj) ∈ (S × P) \M such that (a) and (b) holds as follows:

(a) either si is unassigned in M or si prefers pj to M(si);

(b) either (i), (ii) or (iii) holds as follows:

(i) each of pj and lk is undersubscribed in M ;
(ii) pj is undersubscribed in M , lk is full in M and either si ∈M(lk) or lk prefers si

to the worst student in M(lk);
(iii) pj is full in M and lk prefers si to the worst student in M(pj).

We remark that HR is a special case of SPA-S where each lecturer offers only one project
and the capacity of each project is equal to the capacity of the lecturer offering the project,
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i.e., Pk = {pk} and ck = dk (1 ≤ k ≤ n3), respectively. Abraham et al. [13] proposed
two linear-time algorithms to find a stable matching in an instance of SPA-S. The first al-
gorithm involves students applying to projects (the student-oriented version) and it outputs
the student-optimal stable matching, in the sense that each assigned student is allocated to
the best project that she could obtain in any stable matching. In contrast, the second algo-
rithm involves lecturers offering projects to students (the lecturer-oriented version) and it
outputs the lecturer-optimal stable matching, in the sense that each lecturer is allocated the
best set of students that she could obtain in any stable matching. The set of stable matchings
in an arbitrary instance of SPA-S satisfy several properties, analogous to the Rural Hospitals
Theorem for HR (Theorem 2.2.2), which we refer to as the Unpopular Projects Theorem.

Theorem 2.3.2 (Unpopular Projects Theorem [13]). For a given instance of SPA-S, the fol-

lowing holds:

1. each lecturer is assigned the same number of students in all stable matchings;

2. exactly the same students are unassigned in all stable matchings;

3. a project offered by an undersubscribed lecturer is assigned the same number of stu-

dents in all stable matchings.

2.3.3 Lecturer preferences over Students with Ties: SPA-ST

The classical SPA-S model assumes that preferences are strictly ordered. However, this might
not be achievable in practice. For instance, a lecturer may be unable or unwilling to provide
a strict ordering of all the students who find her projects acceptable. Such a lecturer may
be happier to rank two or more students equally in a tie, which indicates that the lecturer is
indifferent between the students concerned. This leads to a generalisation of SPA-S known
as the Student-Project Allocation problem with lecturer preferences over Students with Ties

(SPA-ST) [13, 83]. Abraham et al. [13] proposed this problem and observed that the three
different stability definitions for SMTI and HRT, namely weak stability, strong stability and
super-stability, can be extended to the SPA-ST setting.

Further, Abraham et al. [13] noted that under the weakest of these three stability concepts,
every instance of SPA-ST admits a weakly stable matching (this follows by breaking the ties
in an arbitrary fashion and applying the stable matching algorithm described in [13] to the
resulting SPA-S instance). However, the manner in which the ties are resolved could lead to
weakly stable matchings of different sizes in general [84]. Thus weak stability poses a new
problem denoted by MAX-SPA-ST, which is the problem of finding a weakly stable matching
that matches as many students to projects as possible. This problem is known to be NP-hard
even for SMTI [60, 84], which is the special case of HRT in which each project (hospital) has
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capacity 1. To cope with the hardness of MAX-SPA-ST, Cooper and Manlove [33] described
a 3

2
-approximation algorithm which finds a weakly stable matching that is at least two-thirds

the size of a maximum weakly stable matching. Under the two other stability criteria, an
instance of SPA-ST need not admit a strongly stable or super-stability matching (again, this
follows by restriction to the SMTI and HRT settings). We study the super-stability and strong
stability concepts in the SPA-ST setting in Chapters 4 and 5 respectively.

2.3.4 Lecturer Preferences over Projects: SPA-P

Manlove and O’Malley [87] were the first to study the variant of SPA where lecturers have
preferences over their proposed projects. A motivation for this variant is that a lecturer might
prefer to supervise projects that are closely related to or in-line with her research interests,
while the remaining projects that she proposed, perhaps to ensure that the students have some
sense of choice, are of lesser priority to her. The formal definition of an instance of SPA-P

follows from that of SPA-S, except that each lecturer lk ∈ L ranks the projects in Pk in strict
order of preference instead of ranking the students in S (see Figure 6.1 on page 135 for an
example instance of SPA-P). All the notation and terminology defined for SPA-S also holds
for SPA-P, except that of stability. Informally, a matching in an instance of SPA-P is stable if
it admits no (i) student and lecturer who would rather be assigned together than remain with
their current assignment, and (ii) group of students acting together to undermine the integrity
of the matching by swapping their assigned projects, in order to be better off.

Let I be an arbitrary instance of SPA-P. Manlove and O’Malley [87] established that I
admits at least one stable matching, and when there is more than one stable matching in
I they may have different sizes. Further, they proved that the problem of finding a stable
matching that matches as many students to projects as possible, denoted MAX-SPA-P, is NP-
hard. In addition, they showed that MAX-SPA-P is not approximable within δ1, for some
constant δ1 > 1, unless P = NP. Moreover, the result holds even if each project and lecturer
has capacity 1, and all preference lists are of length at most 4. To cope with this hardness,
they gave a polynomial-time 2-approximation algorithm for MAX-SPA-P.

Subsequently, Iwama et al. [61] described an improved approximation algorithm with an
upper bound of 3

2
, which builds on the one described in [87]. In addition, the authors showed

that MAX-SPA-P is not approximable within 21
19
− ε, for any ε > 0, unless P = NP. For

the upper bound, they modified Manlove and O’Malley’s algorithm [87] using ideas from
Király’s approximation algorithm for MAX-SMTI [70].

O’Malley [98] formulated another definition of stability for SPA-P, which is different from
the one given in [87]. He referred to this form of stability as strong stability, and he showed
that given an instance of SPA-P, a strongly stable matching need not exist. In addition, he
described a linear-time algorithm to find a strongly stable matching or report that none exists.
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2.3.5 Lecturer preferences over Student-Project pairs: SPA-(S,P)

A setting where lecturers’ preference lists involve student-project pairs is a generalisation
of each of SPA-S and SPA-P, and is known as the Student-Project Allocation problem with

lecturer preferences over Student-Project pairs (SPA-(S,P)) [13, 14]. This variant models the
possibility that a lecturer may believe that a given student is better suited to one project that
she offers compared to another project. An instance of SPA-(S,P) is defined in the same way
as an instance of SPA-S, except that each lecturer ranks, in strict order of preference, the set
of student-project pairs (si, pj) where si finds acceptable a project pj that lk offers.

Abraham et al. [13] suggested the study, and Abu El-Atta and Moussa [14] formally defined
the problem. A suitable blocking pair definition was also established in [14]. Further, the
authors extended the student-oriented algorithm for SPA-S [13] to SPA-(S,P). As a conse-
quence, for every instance of SPA-(S,P), a stable matching can be constructed in O(m) time,
where m is the total length of the students’ preference lists [14].

2.3.6 Other applications of SPA with two-sided preferences

Although the SPA problem and its variants were formulated and motivated in the context
of allocating students to projects, they have applications in an engineering context where
network users seek to be associated with base stations in downlink multi-cell non-orthogonal
multiple-access (NOMA) networks [18, 19, 20].

The problem model described in [19] is equivalent to SPA-S with the students, projects and
lecturers corresponding to users, channels and base stations, respectively. Users have strictly-
ordered preference lists over the channels available at each base station. Also, base stations
have strictly-ordered preference lists over the users that want to be associated with their chan-
nels. In addition, there is a capacity constraint on the number of users that can be associated
to a channel and to each base stations. Considering the preferences and constraints, the goal
is to associate users to channels at base stations, such that no user or base station would
deviate from its assignment. This is similar to the concept of a stable matching in the SPA-S

setting. Further, the student-oriented and lecturer-oriented algorithms described for SPA-S in
[13] were adapted to find user-optimal and station-optimal stable matchings respectively.

The problem model described in [20] is equivalent to SPA-P with the students, projects and
lecturers corresponding to users, relays and base stations, respectively. The users and base
stations both have preferences over the relays, and similar to above, there is a notion of
capacity constraints. Further, the 2- and 3

2
- approximation algorithms described for SPA-P in

[61, 87] were adapted to find stable associations of users to relays at base stations.

Finally, the problem model described in [18] is equivalent to SPA-(S,P) with the students
projects and lecturers corresponding to device-to-device (D2D) groups, users and base sta-
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tions, respectively. Each D2D group has a strictly-ordered preference list over the users and
each base station has a strictly-ordered preference list over (D2D group, user) pairs. The two
polynomial-time algorithms for finding a stable matching described for SPA-(S,P) in [14]
was were extended to this setting.

2.3.7 Other SPA models and approaches

The SPA variants that have been considered in the previous sections allow some form of
preference from the lecturers over the students that finds their projects acceptable and/or
the projects that they offer. However, some practical applications of SPA consider lecturer
preferences to be undesirable or unnecessary [31, 76]. In these applications, preferences
are only allowed from the students; thus the underlying SPA model falls under the category
of bipartite matching problems with one-sided preferences. The reader may recall that the
fundamental matching problem in this category is the House Allocation problem (HA) [12,
123].

Informally, an instance of HA consists of a set A of applicants and a set H of houses. Each
applicant has a strictly-ordered preference list over a subset of the houses that she finds
acceptable. In this setting, houses do not have preferences over applicants. A matching M in
this context is a set of (applicant, house) pairs such that a house is paired with an applicant in
M only if the applicant finds the house acceptable; and, each applicant and house is involved
in at most one pair. Clearly, HA is similar to SMI with the applicants representing the men
and the houses representing the women, except that women have no preferences over men
in the HA setting. Extensions of HA that have been studied in the literature [83] include the
House Allocation problem with Ties (HAT) in which applicants’ preference lists may include
ties, the Capacitated House Allocation problem (CHA) in which houses can accommodate
more than one applicant up to a fixed capacity, and a hybrid of HAT and CHA which is the
Capacitated House Allocation problem with Ties (CHAT).

The HA model and its extensions arise in several practical applications for which allocating
students to projects is one of them (see [83] for more applications). For bipartite matching
problems where preference lists are restricted to agents in one set, the notion of stability
as a desired solution concept becomes irrelevant. Other optimality criteria that have been
considered in the literature include: Pareto optimality, where a matching is Pareto optimal if
no agent can be better off without requiring another agent to be worse off; popularity, where
a matching is popular if there is no other matching that is preferred by a majority of the
agents; and profile-based optimality, where the profile of a matching is a vector indicating
the number of agents who are assigned in the matching to their first choice, second choice,
third choice, and so on. In terms of optimising the profile of a matching, several types of
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optimal matching have been considered, including rank maximal matching, greedy maximum

matching, and generous maximum matching.

Informally, a rank maximal matching is a matching that has lexicographically maximum

profile, i.e., the maximum number of agents are assigned to their first choice and subject
to this, the maximum number of agents are assigned to their second choice, and so on. A
greedy maximum matching is a matching of maximum cardinality that has lexicographically
maximum profile. A generous maximum matching is a matching of maximum cardinality
whose reverse profile is lexicographically minimum, i.e., the minimum number of agents are
assigned to their R-th choice (where R is the maximum length of the preference lists taken
over all the agents) and subject to this, the minimum number of agents are assigned to their
(R − 1)-th choice, and so on. For a formal definition of these optimality criteria, and for
algorithmic results under the HA model and its extensions, we refer the interested reader to
[83].

For a given instance I of SPA, Kwanashie et al. [76] described an algorithm to find a greedy
maximum and generous maximum matching in I , both with time complexity O(n2

1Rm),
where n1 is the number of students, R is the maximum length of the preference lists, and m
is the total length of the students’ preference lists.

We now move on to another variant of SPA with one-sided preferences. We denote by SPA-
LQP an instance of SPA where each project, in addition to its capacity, has a lower quota,
which is the minimum number of students that must be assigned to the project. Let I be
an arbitrary instance of SPA-LQP , two different variants of I exist in the literature [75] with
respect to the definition of a feasible solution. We give the two definitions as follows.

1. A matchingM in I is a feasible solution if for each project pj , either pj meets its lower
quota in M or pj is not assigned to any student in M , i.e., pj remains closed.

2. A matchingM in I is a feasible solution if for each project pj , pj meets its lower quota
in M , i.e., pj can still run even if the number of students assigned to pj in M is less
than pj’s lower quota.

Kwanashie [75] showed that for the first definition, the problem of finding a greedy max-
imum or generous maximum matching in I is NP-hard, and for the second definition, a
feasible solution need not exist in I .

Several other variants of SPA have been studied in the literature, many of which take account
of specific problem-constraints arising within the application context. For example, Chiaran-
dini et al. [31] studied the allocation of students to projects which exists at the Faculty of
Science, University of Southern Denmark. In their model, students have preferences over
projects, and students who want to be in the same team can register together as a group.
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Also, each lecturer provides lower and upper bounds on the sizes of each team, as well as a
capacity constraint on the number of teams of students she can supervise for each project. To
find an allocation of students to projects, the authors [31] described a Mixed Integer Linear
Programming (MILP) formulation which computes allocations that are Pareto optimal, fair,
envy-free and stable.

Other centralised matching schemes that are based on different formulations of SPA include
student-project allocation mechanisms at the Department of Civil and Environmental Engi-
neering, University of Southampton [17, 48], and the School of Electrical and Electronic En-
gineering, Nanyang Technological University, Singapore [116]. To find optimal allocations,
techniques that have been used in the literature include constraint programming [36, 118],
evolutionary algorithm [115], genetic algorithm [48], goal programming [101], integer pro-
gramming [17, 65, 103, 112, 119], and local search [41]. See [31] for a recent survey.
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Chapter 3

Structural Result for SPA-S

3.1 Introduction

In this chapter we consider the variant of SPA where students have preferences over projects,
lecturers have preferences over students, and the preference lists of students and lecturers are
strictly ordered. We introduced this variant as the Student-Project Allocation problem with

lecturer preferences over Students (SPA-S) in Section 2.3.2; see that section for the problem
definition along with key algorithmic results. We recall that an arbitrary instance of SPA-
S can have many stable matchings, similar to the SM and HRT settings [53]. Our goal is
to characterize the structure of the set of stable matchings for an instance of SPA-S under
the restriction that for each student, all of the projects in her preference list are offered by
different lecturers. In the remainder of this chapter, it should be clear that any usage of SPA-S

assumes this restriction.

To achieve our goal, we show that the set of stable matchings in an instance of SPA-S forms
a distributive lattice with respect to a dominance relation that we will define. A similar
structure holds for stable matchings in the SM and HRT settings as mentioned in Sections
2.1.2 and 2.2.3 respectively.

3.2 Preliminary definitions and results

First, we extend the notion of preferences over individuals for a student and lecturer to pref-
erences over matchings. We recall from Theorem 2.3.2 that (i) a student who is assigned
in one stable matching is assigned in all stable matchings, and (ii) a lecturer is assigned the
same number of students in all stable matchings. Hence, if a student and a lecturer prefers
one matching over another matching then it is clear that both the student and the lecturer are
assigned in both matchings.



3.2. Preliminary definitions and results 32

Students’ preferences Lecturers’ preferences offers
s1: p3 p1 l1: s1 s2 s3 s4 p1, p2
s2: p1 p3 l2: s2 s1 s4 s3 p3, p4

s3: p4 p2

s4: p2 p4 Project capacities: c1 = c2 = c3 = c4 = 1

Lecturer capacities: d1 = d2 = 2

Figure 3.1: An instance I1 of SPA-S, due to Abraham et al. [13].

Let I be an arbitrary instance of SPA-S. LetM denote the set of all stable matchings in I
and let M,M ′ ∈ M. We say that a student si prefers M to M ′ if si is assigned in both
M and M ′, and si prefers M(si) to M ′(si). Also, we say that si is indifferent between

M and M ′ if either (i) si is unassigned in both M and M ′ or (ii) si is assigned in both
M and M ′, and M(si) = M ′(si). It is not immediately clear how to compare two stable
matchings from the point of view of a lecturer. To see this, consider the instance I1 of
SPA-S illustrated in Figure 3.1. The reader can verify that I1 admits two stable matchings:
M1 = {(s1, p1), (s2, p3), (s3, p2), (s4, p4)}; and M2 = {(s1, p3), (s2, p1), (s3, p4), (s4, p2)}.
However, it is not the case that in M1, each of l1 and l2 is assigned the best two students that
she can be assigned in any stable matching. Abraham et al. [13] described what it means
for a lecturer to prefer one stable matching to another stable matching, which we restate as
follows. Let M and M ′ be two stable matchings in I . For a given lecturer lk who is not
assigned identical set of students in M and M ′, let

M(lk) \M ′(lk) = {s1, . . . , sr},

and let
M ′(lk) \M(lk) = {s′1, . . . , s′r},

where in each case, the students are enumerated in the order in which they appear in Lk.
We say that lk prefers M to M ′ if lk prefers si to s′i for all i (1 ≤ i ≤ r). It immediately
follows from this definition that if lk prefers M to M ′, then lk prefers the worst student in
M(lk) \M ′(lk) to the worst student in M ′(lk) \M(lk). We illustrate this using the instance
I1 in Figure 3.1. With respect to the stable matchings M1 and M2, and considering lecturer
l1, we have that

M1(l1) \M2(l1) = {s1, s3},

and
M2(l1) \M1(l1) = {s2, s4}.

Since l1 prefers s1 to s2, as well as s3 to s4, we say that l1 prefers M1 to M2. Building on the
definition of students’ preferences over matchings, we define a dominance partial order on
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the set of stable matchings in I .

Definition 3.2.1 (Dominance relation: student-oriented). LetM andM ′ be two stable match-

ings in I , we say that M dominates M ′, denoted M � M ′, if and only if each student either

prefers M to M ′ or is indifferent between them.

Proposition 3.2.2. LetM be the set of all stable matchings in I ,M is a partial order under

the dominance relation, denoted (M,�).

Proof. We will show that the dominance relation � onM is (i) reflexive, (ii) antisymmetric
and (iii) transitive.

(i) Let M ∈M; clearly, M �M . Thus � on M is reflexive.

(ii) Let M,M ′ ∈ M such that M � M ′ and M ′ � M . Then M = M ′. Suppose on the
contrary that M 6= M ′. Clearly each of M and M ′ is non-empty. Thus there exists
some student, say si, such that si is assigned in both M and M ′, and M(si) 6= M ′(si).
Now, M � M ′ implies that si prefers M(si) to M ′(si); and M ′ � M implies that
si prefers M ′(si) to M(si); a contradiction. Hence, M = M ′; and hence � onM is
antisymmetric.

(iii) Let M,M ′,M ′′ ∈ M such that M � M ′ and M ′ � M ′′; we claim that M � M ′′.
We prove our claim as follows. First, we know that exactly the same students are
unassigned in all stable matchings (from Theorem 2.3.2). Thus every student who is
unassigned in M is unassigned in M ′′; and thus every unassigned student is indifferent
between M and M ′′. Clearly, every student who is assigned to the same project in
M and M ′′ is indifferent between M and M ′′. Now, let si be a student such that
si is assigned in both M and M ′′, and suppose M(si) 6= M ′′(si). First, suppose
M(si) 6= M ′(si); since M � M ′, it follows that si prefers M(si) to M ′(si). Further,
(a) if M ′(si) = M ′′(si) then si prefers M(si) to M ′′(si); and (b) if M ′(si) 6= M ′′(si),
M ′ � M ′′ implies that si prefers M ′(si) to M ′′(si), and since the preference lists
are strictly ordered, si prefers M(si) to M ′′(si). Now, suppose M(si) = M ′(si).
It follows that M ′(si) 6= M ′′(si); thus M ′ � M ′′ implies that si prefers M ′(si) to
M ′′(si). This implies that si prefers M(si) to M ′′(si). Hence our claim holds; and
hence � onM is transitive.
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Students’ preferences Lecturers’ preferences offers
s1: p1 p2 l1: s3 s1 s2 s4 p1, p2
s2: p2 p3 l2: s2 s4 s3 p3, p4

s3: p3 p1

s4: p4 p1 Project capacities: c1 = c2 = c3 = c4 = 1

Lecturer capacities: d1 = d2 = 2

Figure 3.2: An instance I2 of SPA-S in the general case, where s2 ranks two projects (i.e.,
p2 and p3) that are offered by different lecturers (i.e., l1 and l2 respectively).

3.3 Stable matchings in SPA-S form a distributive lat-

tice

To establish the structure of the set of stable matchings in I , our aim is to show that (M,�)

is a distributive lattice. We define this concept in what follows.

Definition 3.3.1 (Distributive lattice [44]). Let A be a set and let � be an ordering relation

defined on A. We say that the partial order (A,�) is a distributive lattice if:

(i) each pair of element x, y ∈ A has a greatest lower bound, or meet, denoted x ∧ y,

such that x∧ y � x, x∧ y � y, and there is no element z ∈ A for which z � x, z � y

and x ∧ y � z;

(ii) each pair of element x, y ∈ A has a least upper bound, or join, denoted x ∨ y, such

that x � x ∨ y, y � x ∨ y, and there is no element z ∈ A for which x � z, y � z and

z � x ∨ y;

(iii) the join and meet distribute over each other, i.e., for x, y, z ∈ A, x ∨ (y ∧ z) =

(x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The next assumption follows from our restriction that for each student si in I , all the projects
in si’s preference list are offered by different lecturers.

Assumption 3.3.2. Let M and M ′ be two stable matchings in I . If a student is assigned to

two different projects in M and M ′ then the two projects are offered by different lecturers.

Initially, our aim was to show that the lattice structure holds for stable matchings in an
arbitrary instance of SPA-S in the general case where there are no restrictions on the problem
instance. To achieve this, we assumed that Assumption 3.3.2 holds and we used it as a tool
in the proof of the lemmas that lead to the establishment of the structure. However, Bettina
Klaus observed that Assumption 3.3.2 is not true in general, as can be seen in the instance
I2 in Figure 3.2. The stable matchings in I2 are M1 = {(s1, p1), (s2, p2), (s3, p3), (s4, p4)}
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and M2 = {(s1, p2), (s2, p3), (s3, p1), (s4, p4)}; and clearly, s1 is assigned to p1 and p2 in M1

and M2 respectively, and these projects are both offered by l1. We were unable to prove the
results in this section without Assumption 3.3.2 holds. Hence, our reason for adapting this
restriction for our characterisation.

Next, we present some lemmas which will serve as a tool in our characterisation.

Lemma 3.3.3. Let M and M ′ be two stable matchings in I . Let lk be a lecturer such that

M(lk) 6= M ′(lk). Then either lk prefers M to M ′ or lk prefers M ′ to M .

Proof. Let lk be a lecturer in I for which M(lk) 6= M ′(lk). This implies that lk is not
assigned an identical set of students in M and M ′. Let M(lk) \M ′(lk) = {s1, . . . , sr} and
let M ′(lk) \M(lk) = {s′1, . . . , s′r}, where in each case, the students are enumerated in the
order in which they appear in Lk. In order to prove the lemma, it suffices to show that either
(a) for all i (1 ≤ i ≤ r) lk prefers si to s′i or (b) for all i (1 ≤ i ≤ r), lk prefers s′i to si.
Suppose otherwise. Then, without loss of generality, there exists some q (2 ≤ q ≤ r) such
that lk prefers s′q to sq, and for every i < q, lk prefers si to s′i. For this to hold, we note that
|M(lk) \M ′(lk)| = |M ′(lk) \M(lk)| ≥ 2.

First, suppose M ′ �M (i.e., each student who is assigned to different projects in M and M ′

prefers her assigned project in M ′ to her assigned project in M ). Let (s′q, pj1) ∈ M ′ \M ,
where pj1 is offered by lk. By the stability of M , either (i) or (ii) holds as follows:

(i) pj1 is full in M and lk prefers the worst student in M(pj1) to s′q;

(ii) pj1 is undersubscribed in M , lk is full in M , and lk prefers the worst student in M(lk)

to s′q.

Otherwise (s′q, pj1) blocks M . However, we may ignore case (ii) in view of the fact that
sq ∈ M(lk) and lk prefers s′q to sq. Hence, case (i) applies. Now, since pj1 is full in M and
(s′q, pj1) ∈ M ′ \M , there exists some student, say sz1 , such that (sz1 , pj1) ∈ M \M ′. We
remark that z1 < q; also, lk prefers sz1 to s′q. Moreover, by Assumption 3.3.2, sz1 /∈ M ′(lk).
We have identified sz1 ∈ M(lk) \M ′(lk) where z1 < q. Now, since |M(lk) \M ′(lk)| =

|M ′(lk) \M(lk)|, there exists some student, say s′z2 , such that s′z2 ∈ M
′(lk) \M(lk), where

z2 < q. This implies that lk prefers s′z2 to s′q .

Again, let (s′z2 , pj2) ∈ M
′ \M , where pj2 is offered by lk. By the stability of M , pj2 is full

in M and lk prefers every student in M(pj2) to s′z2; otherwise, (s′z2 , pj2) blocks M . We note
that since lk prefers s′z2 to a student in M(lk), namely sq, we may again ignore case (ii). Now
let sz3 be a student such that (sz3 , pj2) ∈ M \M ′. Then lk prefers sz3 to s′z2 . Moreover, by
Assumption 3.3.2, sz3 /∈M ′(lk). Again, since |M(lk) \M ′(lk)| = |M ′(lk) \M(lk)|, there is
a student s′z4 ∈M

′(lk) \M(lk), where z4 < z2. This implies that lk prefers s′z4 to s′z2 .
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We continue in this way to generate a sequence 〈s′z2t〉t≥1 of distinct students, such that: for
1 ≤ t < q, s′z2t ∈ M ′(lk) \ M(lk); and for 2 ≤ t < q, lk prefers s′z2t to s′z2t−2

, also, lk
prefers s′z2 to s′q. Additionally, we need to ensure that, if the same project is assigned to more
than one of the students in the sequence 〈s′z2t〉t≥1, we can choose a unique student who is
assigned to that project in M \M ′ on each occasion. For, suppose pu is such project that
arises x times from pairs in M ′ \M . Following our argument from above, pu must be full in
M with students whom lk prefers to all of those x students. Clearly, there must be at least x
such students in M(pu) \M ′(pu) from which to choose. Finally, as the sequence of distinct
students is finite, we reach an immediate contradiction.

Next, suppose M �M ′ (i.e., each student who is assigned to different projects in M and M ′

prefers her assigned project in M to her assigned project in M ′). Let (s1, pj1) ∈ M \M ′.
We note that s1 prefers pj1 to M ′(s1). Again, by the stability of M ′, either (i) or (ii) holds as
follows:

(i) pj1 is full in M ′ and lk prefers the worst student in M ′(pj1) to s1;

(ii) pj1 is undersubscribed inM ′, lk is full inM ′, and lk prefers the worst student inM ′(lk)

to s1.

Otherwise, (s1, pj1) will form a blocking pair for M ′. We reach an immediate contradiction
in cases (i) and (ii), since lk prefers s1 to every student in M ′(lk) \M(lk).

Lemma 3.3.4. Let M and M ′ be two stable matchings in I . Suppose that student si is

assigned to lecturer lk in M but not in M ′. If si prefers M to M ′ then lk prefers M ′ to M .

Likewise, if si prefers M ′ to M then lk prefers M to M ′.

Proof. Let S (respectively S ′) denote the set of students who prefer M to M ′ (respectively
M ′ to M ). We note that S ∩ S ′ = ∅. Similarly, let L (respectively L′) denote the set of
lecturers who preferM toM ′ (respectivelyM ′ toM ). Again, L∩L′ = ∅. Let si be a student
assigned to a lecturer lk in M but not in M ′, i.e., si ∈ M(lk) \M ′(lk). In order to prove the
lemma, it suffices to show that (a) if si ∈ S then lk ∈ L′, and (b) if si ∈ S ′ then lk ∈ L.

To show (a). Suppose otherwise, i.e., si ∈ S and lk /∈ L′. Then lk does not prefer M ′ to M ,
which, by Lemma 3.3.3, implies that lk prefers M to M ′. Hence lk ∈ L. It follows that lk
prefers the worst student inM(lk)\M ′(lk) to the worst student inM ′(lk)\M(lk). Moreover,
either si is the worst student in M(lk)\M ′(lk) or lk prefers si to the worst student in M(lk)\
M ′(lk). In any case, we have that lk prefers si to the worst student in M ′(lk) \M(lk). Now,
si ∈ S implies that si prefers M(si) to M ′(si); and by Assumption 3.3.2, si /∈M ′(lk).

Let lz0 = lk, sq0 = si, pt0 = M ′(sq0) and pt1 = M(sq0). By the stability of M ′, pt1 is full
in M ′ and lz0 prefers the worst student in M ′(pt1) to sq0; for otherwise, (sq0 , pt1) will form
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a blocking pair for M ′. Now, since (sq0 , pt1) ∈ M \M ′, and since pt1 is full in M ′, there
exists some student, say sq1 , such that (sq1 , pt1) ∈ M ′ \ M ; for otherwise, pt1 would be
oversubscribed in M . Clearly, lz0 prefers sq1 to sq0; and thus, sq1 6= sq0 . Let M(sq1) = pt2 .
We note that pt1 6= pt2 since (sq1 , pt2) ∈ M and (sq1 , pt1) /∈ M . Moreover, sq1 prefers pt2
to pt1; for otherwise, (sq1 , pt1) will form a blocking pair for M . Let lz1 be the lecturer who
offers pt2 . Again, by the stability of M ′, either (i) or (ii) holds as follows:

(i) pt2 is full in M ′ and lz1 prefers the worst student in M ′(pt2) to sq1;

(ii) pt2 is undersubscribed in M ′, lz1 is full in M ′, sq1 /∈ M ′(lz1), and lz1 prefers the worst
student in M ′(lz1) to sq1 .

Otherwise (sq1 , pt2) blocks M ′. In case (i), there exists some student, say sq2 , such that
(sq2 , pt2) ∈M ′ \M ; for otherwise, pt2 would be oversubscribed in M . Let pt3 = pt2 . In case
(ii), there exists some student sq2 ∈M ′(lz1)\M(lz1). LetM ′(sq2) = pt3 (possibly pt3 = pt2).
It is clear that sq2 6= sq1 , since lz1 prefers sq2 to sq1 . Applying similar reasoning as for sq1 ,
sq2 is assigned in M a project pt4 such that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who
offers pt4 . We are identifying a sequence 〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects,
and a sequence 〈lzi〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈M and (sqi , pt2i−1
) ∈M ′,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

First we claim that for each new project that we identify, pt2i 6= pt2i−1
for i ≥ 1. Suppose

pt2i = pt2i−1
for some i ≥ 1. From above sqi was identified by lzi−1

such that (sqi , pt2i−1
) ∈

M ′\M . Moreover (sqi , pt2i) ∈M . Hence we reach a contradiction. Clearly, for each student
sqi that we identify, for i ≥ 1, sqi must be assigned to distinct projects in M and in M ′.

Next we claim that for each new student sqi that we identify, sqi 6= sqt for 1 ≤ t < i. We
prove this by induction on i. For the base case, clearly sq2 6= sq1 . We assume that the claim
holds for some i ≥ 1, i.e., the sequence sq1 , sq2 , . . . , sqi consists of distinct students. We
show that the claim holds for i + 1, i.e., the sequence sq1 , sq2 , . . . , sqi , sqi+1

also consists of
distinct students. Clearly sqi+1

6= sqi since lzi prefers sqi+1
to sqi . Thus, it suffices to show

that sqi+1
6= sqj for 1 ≤ j ≤ i − 1. Now, suppose sqi+1

= sqj for 1 ≤ j ≤ i − 1. This
implies that sqj was identified by lzi and clearly lzi prefers sqj to sqj−1

. Now since sqi+1
was

also identified by lzi to avoid the blocking pair (sqi , pt2i) in M ′, it follows that either (i) pt2i
is full in M ′ or (ii) pt2i is undersubscribed in M ′ and lzi is full in M ′. We consider each cases
further as follows.
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(i) If pt2i is full in M ′, we know that (sqi , pt2i) ∈M \M ′. Moreover sqj was identified by
lzi+1

because of case (i). Furthermore (sqj−1
, pt2i) ∈M \M ′. In this case, pt2i+1

= pt2i
and we have that

(sqi , pt2i+1
) ∈M \M ′ and (sqi+1

, pt2i+1
) ∈M ′ \M,

(sqj−1
, pt2i+1

) ∈M \M ′ and (sqj , pt2i+1
) ∈M ′ \M.

By the inductive hypothesis, the sequence sq1 , sq2 , . . . , sqj−1
, sqj , . . . , sqi consists of

distinct students. This implies that sqi 6= sqj−1
. Thus since pt2i+1

is full in M ′, lzi
should have been able to identify distinct students sqj and sqi+1

to avoid the blocking
pairs (sqj−1

, pt2i+1
) and (sqi , pt2i+1

) respectively in M ′, a contradiction.

(ii) pt2i is undersubscribed in M ′ and lzi is full in M ′. Similarly as in case (i) above, we
have that

sqi ∈M(lzi) \M ′(lzi) and sqi+1
∈M ′(lzi) \M(lzi),

sqj−1
∈M(lzi) \M ′(lzi) and sqj ∈M ′(lzi) \M(lzi).

Since sqi 6= sqj−1
and lzi is full in M ′, lzi should have been able to identify distinct

students sqj and sqi+1
corresponding to students sqj−1

and sqi respectively, a contradic-
tion.

This completes the induction step. As the sequence of distinct students and projects we are
identifying is infinite, we reach an immediate contradiction. Hence, si ∈ S implies that
lk ∈ L′, and it follows that

|S| ≤
∑
lk∈L′
|M(lk) \M ′(lk)|. (3.1)

This completes the proof of (a). Next we show that (b) holds. Suppose there is a student
si′ ∈M ′(lk′)\M(lk′). As shown above, if si′ prefers M ′ to M then lk′ prefers M to M ′, and
it follows that

|S ′| ≤
∑
lk′∈L

|M ′(lk′) \M(lk′)|. (3.2)

But

|S|+ |S ′| =
∑
lk∈L′
|M(lk) \M ′(lk)|+

∑
lk′∈L

|M ′(lk′) \M(lk′)|, (3.3)

since each side represents the number of students that are assigned to different lecturers in
M and in M ′. Clearly, this is true for the LHS. It is also true for the RHS, because as already
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observed, every lecturer that is not assigned identical sets of students in M and M ′ is either
in L or in L′ (but not both). From Inequalities 3.1 and 3.2, it follows that

|S| =
∑
lk∈L′
|M(lk) \M ′(lk)| and |S ′| =

∑
lk′∈L

|M ′(lk′) \M(lk′)|.

Therefore, in M , every student in S ′ is assigned to a lecturer in L. Hence (b) holds.

We begin the demonstration that (M,�) is a distributive lattice by presenting two lemmas
that will provide the foundations for the definitions of the “meet” and “join” operations for
two stable matchings in I .

Lemma 3.3.5. Let M and M ′ be two stable matchings in I . Let M∗ be a set of (student,

project) pairs formed as follows: for each student si, si is unassigned in M∗ if she is unas-

signed in both M and M ′, otherwise si is assigned to the better of her projects in M and

M ′. Then M∗ is a stable matching in I .

Proof. Firstly, we show that M∗ is a matching. It is clear from the hypothesis of the lemma
that no student is multiply assigned. Suppose that there exists some project pj such that pj is
oversubscribed in M∗. This implies that M(pj) 6= M ′(pj). Now, as pj is oversubscribed in
M∗, there exists some si ∈ M∗(pj) \M ′(pj); thus si ∈ M(pj). Also, since pj has at least
cj students in M∗, there exists some si′ ∈ M∗(pj) such that si′ ∈ M ′(pj) \M(pj). Now,
(si, pj) ∈ M \ M ′ implies that si prefers M to M ′, and (si′ , pj) ∈ M ′ \ M implies that
si′ prefers M ′ to M , since each of si and si′ is assigned in M∗ to the better of her project
in M and M ′. Let lk be the lecturer who offers pj . By Assumption 3.3.2, we have that (a)
si ∈ M(lk) \M ′(lk) and (b) si′ ∈ M ′(lk) \M(lk). However, Lemma 3.3.4 applied to (a)
implies that lk prefers M ′ to M , and applied to (b) implies that lk prefers M to M ′. This
gives a contradiction. Hence no project can be oversubscribed in M∗.

Next, suppose that there exists some lecturer lk such that lk is oversubscribed in M∗. As lk
is oversubscribed in M∗, there exists some si ∈ M∗(lk) \M ′(lk); thus si ∈ M(lk). Further,
since lk has at least dk students in M∗, there exists some student si′ ∈ M∗(lk) such that
si′ ∈ M ′(lk) \M(lk). Let M∗(si) = pj and let M∗(si′) = pj′ , with pj, pj′ ∈ Pk. Then si
prefers pj to M ′(si) and si′ prefers pj′ to M(si′). It follows that si prefers M to M ′ and si
prefers M ′ to M . A similar argument follows from above, and thus we reach a contradiction.
Hence M∗ is a matching.

Next, we show thatM∗ is stable. Suppose that (si, pj) forms a blocking pair forM∗, where lk
is the lecturer who offers pj . Firstly, suppose that si is unassigned in M∗. By the hypothesis
of the lemma, we have that si is unassigned in both M and M ′. Now, since (si, pj) forms a
blocking pair for M∗, either (i) or (ii) holds as follows:
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(i) pj is full in M∗ and lk prefers si to the worst student in M∗(pj);

(ii) pj is undersubscribed in M∗, lk is full in M∗, and lk prefers si to the worst student in
M∗(lk).

In case (i), suppose si′ is the worst student in M∗(pj). If si′ ∈ M(pj), then lk prefers si
to the worst student in M(pj); and (si, pj) blocks M , a contradiction. Now, suppose that
si′ ∈ M ′(pj) \M(pj). Then there exists some student sq1 ∈ M(pj) \M ′(pj); for otherwise
pj would be oversubscribed in M ′. Since M is stable, pj is full in M and lk prefers every
student in M(pj) to si. Hence, lk prefers sq1 to si; and thus, lk prefers sq1 to si′ . Moreover,
sq1 is assigned in M ′ to a project pt1 such that sq1 prefers pt1 to pj; for otherwise (sq1 , pj)

would block M ′. Let lz1 be the lecturer that offers pt1 . Following a similar argument as in
the proof of Lemma 3.3.4, we can identify a sequence of distinct students and projects, and
as this sequence is infinite, we reach a contradiction.

In case (ii), suppose si′ is the worst student inM∗(lk). If si′ ∈M(lk), then lk prefers si to the
worst student in M(lk); and (si, pj) blocks M , a contradiction. If si′ ∈M ′(lk) \M(lk), then
there exists some student sq1 ∈M(lk) \M ′(lk); for otherwise lk would be oversubscribed in
M ′. Since M is stable, lk is full in M and lk prefers every student in M(lk) to si. Hence, lk
prefers sq1 to si; and thus, lk prefers sq1 to si′ . SupposeM(sq1) = pt0 (possibly pt0 = pj). We
have that sq1 is assigned in M ′ to a project pt1 such that sq1 prefers pt1 to pt0; for otherwise
(sq1 , pt0) would block M ′. Let lz1 be the lecturer that offers pt1 . Again, we will need to
identify a sequence of distinct students and projects, a contradiction.

Now, suppose that si is assigned to a project in M∗. This implies that si is assigned to a
project in both M and M∗. Since (si, pj) forms a blocking pair for M∗, it follows that si
prefers pj to bothM(si) andM ′(si) (possiblyM(si) = M ′(si)). Further, we have that either
(i) or (ii) holds as follows:

(i) pj is full in M∗ and lk prefers si to the worst student in M∗(pj)

(ii) pj is undersubscribed in M∗, lk is full in M∗, and either si ∈M∗(lk) or lk prefers si to
the worst student in M∗(lk).

In case (i), suppose si′ is the worst student in M∗(pj). If si′ ∈ M(pj), then lk prefers si to
the worst student in M(pj); and (si, pj) blocks M , a contradiction. We arrive at a similar
contradiction if si′ ∈ M ′(pj). In case (ii), suppose first that si ∈ M∗(lk). If si ∈ M(lk),
then (si, pj) blocks M ; and if si ∈ M ′(lk), then (si, pj) blocks M ′, a contradiction. Hence
si /∈M∗(lk). Now suppose si′ is the worst student in M∗(lk). If si′ ∈M(lk), then lk prefers
si to the worst student inM(lk); and (si, pj) blocksM , a contradiction. We arrive at a similar
contradiction if si′ ∈M ′(lk). Hence M∗ is stable.
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We denote by M ∧M ′ the set of (student, project) pairs in which each student is assigned
the better of her projects in M and M ′; and it follows from Lemma 3.3.5 that M ∧ M ′

is a stable matching. It also follows from Lemma 3.3.5 that if each student is given the
better of her projects in any fixed set of stable matchings, then the resulting assignment is
a stable matching. For the case whereM is the set of all stable matchings in I , we denote
by
∧
M∈MM , or simply

∧
M, the resulting stable matching, which, obviously, is student-

optimal, and thus lecturer-pessimal.

Lemma 3.3.6. Let M and M ′ be two stable matchings in I . Let M∗ be a set of (student,

project) pairs formed as follows: for each student si, si is unassigned in M∗ if she is unas-

signed in both M and M ′, otherwise si is assigned to the poorer of her projects in M and

M ′. Then M∗ is a stable matching in I .

Proof. By the hypothesis of the lemma, clearly no student is multiply assigned. Suppose
that there exists some project pj such that pj is oversubscribed in M∗. Following a similar
argument as in the proof of Lemma 3.3.5, there exists two students si and si′ such that
si ∈ M∗(pj) \ M ′(pj) and si′ ∈ M∗(pj) \ M(pj). So we have that si ∈ M(pj) and
si′ ∈ M ′(pj). Now, since each student is assigned in M∗ to the poorer of her projects in M
and M ′, it follows that si prefers M ′ to M and si′ prefers M to M ′. Let lk be the lecturer
who offers pj . Again, by Assumption 3.3.2, we have that (a) si ∈ M(lk) \M ′(lk) and (b)
si′ ∈ M ′(lk) \M(lk). However, Lemma 3.3.4 applied to (a) implies that lk prefers M to
M ′, and applied to (b) implies that lk prefers M ′ to M . This gives a contradiction. Hence no
project can be oversubscribed in M∗.

Next, suppose that there exists some lecturer lk such that lk is oversubscribed in M∗. Similar
to above, there exists two students si and si′ such that si ∈ M∗(lk) \ M ′(lk) and si′ ∈
M∗(lk) \ M(lk). So we have that si ∈ M(lk) and si′ ∈ M ′(lk). Let M∗(si) = pj and
let M∗(si′) = pj′ , with pj, pj′ ∈ Pk. Again, since each student is assigned in M∗ to the
poorer of her projects in M and M ′, clearly si prefers M ′(si) to pj , and thus si prefers M ′

to M . Similarly, si′ prefers M to M ′. Following a similar argument as above, we reach a
contradiction. Hence M∗ is a matching.

Next, we show that M∗ is stable. Suppose that (si, pj) forms a blocking pair for M∗, where
lk is the lecturer who offers pj . Firstly, suppose that si is unassigned in M∗. Then we arrive
at a similar contradiction as in the proof of Lemma 3.3.5 (paragraph 3). Now, suppose that si
is assigned to a project pj∗ in M∗. First, suppose (si, pj∗) ∈ M , and let M ′(si) = pj′ . Since
(si, pj) forms a blocking pair for M∗, we have the following three possibilities:

1. si prefers pj to both pj′ and pj∗ (possibly pj′ = pj∗);

2. pj′ = pj and si prefers pj to pj∗;

3. si prefers pj′ to pj to pj∗ .
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Suppose firstly that (1) holds. Then we arrive at a similar contradiction as in the proof of
Lemma 3.3.5 (paragraph 4). Next, suppose (2) or (3) holds. We have that si is assigned to
different projects in M and M ′. By Assumption 3.3.2, it follows that pj∗ cannot be offered
by lk, and thus si /∈ M∗(lk). Now, since (si, pj) forms a blocking pair for M∗, either (i) or
(ii) holds as follows:

(i) pj is full in M∗ and lk prefers si to the worst student in M∗(pj);

(ii) pj is undersubscribed in M∗, lk is full in M∗, and lk prefers si to the worst student in
M∗(lk).

In cases (i) and (ii), we arrive at a similar contradiction as in the proof of Lemma 3.3.5
(paragraph 3). We remark that if (si, pj∗) ∈ M ′, the argument is similar. Hence M∗ is
stable.

We denote by M ∨M ′ the set of (student, project) pairs in which each student is assigned the
poorer (i.e., least-preferred) of her projects in M and M ′; and it follows from Lemma 3.3.6
that M ∨ M ′ is a stable matching. It also follows from Lemma 3.3.6 that if each student
is given the poorer of her projects in any fixed set of stable matchings, then the resulting
assignment is a stable matching. For the case whereM is the set of all stable matchings in
I , we denote by

∨
M∈MM , or simply

∨
M, the resulting stable matching, which, obviously,

is student-pessimal, and thus lecturer-optimal.

Theorem 3.3.7. Let I be an instance of SPA-S, and letM be the set of stable matchings in

I . Let � be the dominance partial order on M and let M,M ′ ∈ M. Then (M,�) is a

distributive lattice, with M ∧M ′ representing the meet of M and M ′, and M ∨M ′ the join

of M and M ′.

Proof. LetM andM ′ be two stable matchings inM. By Lemma 3.3.5, we have thatM∧M ′

is a stable matching; and by the definition of M ∧M ′, it follows that M ∧M ′ � M and
M ∧ M ′ � M ′. Further if M∗ is an arbitrary stable matching satisfying M∗ � M and
M∗ � M ′, then each student must be assigned in M∗ to a project that is at least as good as
her assigned project in each of M and M ′, so that M∗ �M ∧M ′. Thus M ∧M ′ is the meet
of M and M ′. Similarly, by Lemma 3.3.6, we have that M ∨M ′ is a stable matching; and
by the definition of M ∨M ′, it follows that M � M ∨M ′ and M ′ � M ∨M ′. Further, by
a similar argument to above, M ∨M ′ is the join of M and M ′. Hence (M,�) is a lattice.

Next, we show that the join and meet operation distribute over each other. LetM,M ′ andM ′′

be stable matchings inM. First, letX = M∨(M ′∧M ′′) and let Y = (M∨M ′)∧(M∨M ′′);
we need to show thatX = Y . Let si be an arbitrary student. If si is unassigned in each ofM ,
M ′ and M ′′, it is clear that si is unassigned in both X and Y . Now, suppose si is assigned to
some project in each of M,M ′ and M ′′. We consider the following cases.
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(i) If M(si) = M ′(si) = M ′′(si), clearly X(si) = Y (si).

(ii) Suppose that either (a) M(si) = M ′(si) and M(si) 6= M ′′(si) or (b) M(si) 6= M ′(si)

and M(si) = M ′′(si) holds. Irrespective of how we express si’s preference over
M(si),M

′(si) and M ′′(si) in cases (a) and (b), we have that si is assigned to M(si) in
both X and Y .

(iii) If M ′(si) = M ′′(si) and M ′(si) 6= M(si). If si prefers M ′(si) to M(si) then si is
assigned to M(si) in both X and Y . Otherwise, if si prefers M(si) to M ′(si) then si
is assigned to M ′(si) in both X and Y .

(iv) Suppose that M(si), M ′(si) and M ′′(si) are distinct projects. There are six different
ways to express si’s preference over M(si),M

′(si) and M ′′(si). If si prefers M(si) to
M ′(si) to M ′′(si) then si is assigned to M ′(si) in both X and Y . If si prefers M(si)

to M ′′(si) to M ′(si) then si is assigned to M ′′(si) in both X and Y . We leave it to the
reader to verify that in the remaining four cases, si is assigned to M(si) in both X and
Y .

Since si is an arbitrary student, it follows that X = Y ; and thus the first distributive property
holds. Next, we show that the second distributive property holds. Let X = M ∧ (M ′ ∨M ′′)

and let Y = (M ∧M ′)∨ (M ∧M ′′). Let si be an arbitrary student. Again, if si is unassigned
in each of M , M ′ and M ′′, it is clear that si is unassigned in both X and Y . Now, suppose si
is assigned to some project in each of M,M ′ and M ′′. Following the same case analysis as
above, we arrive at the same conclusion in cases (i) and (ii). We consider cases (iii) and (iv)
below.

(iii) If M ′(si) = M ′′(si) and M ′(si) 6= M(si). If si prefers M ′(si) to M(si) then si is
assigned to M ′(si) in both X and Y . Otherwise, if si prefers M(si) to M ′(si) then si
is assigned to M(si) in both X and Y .

(iv) Suppose thatM(si), M ′(si) andM ′′(si) are distinct projects. Again, in this case, there
are six different ways to express si’s preference over M(si),M

′(si) and M ′′(si). If si
prefers M ′(si) to M ′′(si) to M(si) then si is assigned to M ′′(si) in both X and Y .
Further, if si prefers M ′′(si) to M ′(si) to M(si) then si is assigned to M ′(si) in both
X and Y . Again, we leave it to the reader to verify that in the remaining four cases, si
is assigned to M(si) in both X and Y .

Again, since si is an arbitrary student, it follows thatX = Y ; and thus the second distributive
property holds. Since each ofM ,M ′ andM ′′ is an arbitrary stable matching inM, it follows
that (M,�) is a distributive lattice.
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Example 3.3.8. We illustrate some of the results we have presented in this section, with re-
spect to the SPA-S instance I3 shown in Figure 3.3. This instance involves the set of students
S = {si : 1 ≤ i ≤ 12}, the set of projects P = {pj : 1 ≤ j ≤ 6} and the set of lecturers
L = {lk : 1 ≤ k ≤ 4}. The instance admits a total of nine stable matchings, as illustrated in
Figure 3.4. The lattice structure representing these stable matchings is illustrated in Figure
3.5.

Similar to Example 2.2.3 presented in the HR seting, the Hasse diagram illustrated in Figure
3.5 is a directed graph with each vertex representing a stable matching, and there is a directed
edge from vertex M to M ′ if M � M ′ and there is no such M∗ such that M � M∗ � M ′.
The reader can easily verify the meet and join operations with respect to the stable matchings,
for example, M1 = M2 ∧M3 (i.e., in M1, each student is assigned the better of her projects
in M2 and M3) and M7 = M6 ∨ M4 (i.e., in M7, each student is assigned the poorer of
her projects in M6 and M4). We note that all the edges representing precedence implied by
transitivity are suppressed in the diagram.

3.4 Conclusions and open problems

In this chapter we have characterised the stable matchings in an instance I of SPA-S, under
the assumption that the projects in each student’s preference list are offered by different
lecturers. We achieved this characterisation by showing that the set of stable matchings in I
is a distributive lattice under the dominance relation order.

An obvious open question is: can we characterise the stable matchings in an instance of SPA-
S in the general case, where there are no restrictions on the problem instance? Our initial
thought is that it may be difficult to provide this characterisation, in terms of the lattice struc-
ture, by merely adapting the definitions outlined in this chapter. However, establishing new
definitions, for example, redefining lecturer preferences over matchings, or redefining the
“meet” and “join” operations, may yield positive results. If these ideas do not yield fruitful
results, can we come up with a counterexample to show that the set of stable matchings in
an instance of SPA-S does not admit a lattice structure? Such counterexample could be an
instance of SPA-S with two distinct stable matchings M and M ′ (where a student is assigned
to two different projects offered by the same lecturer in M and M ′) such that if we form
another matching M∗ by giving each assigned student the better of her projects in M and
M ′, then either M∗ is not stable or M∗ does not dominate both M and M ′.

Another interesting direction is to investigate the relationship between the rotation posets and
the set of stable matchings in an instance of SPA-S. To explain what rotations are informally,
consider the stable matchings in the SM instance in Figure 2.1, with stable matchings M1 =
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Students’ preferences Lecturers’ preferences offers
s1: p3 p5 l1: s4 s3 s8 s7 p1, p2
s2: p4 p6 l2: s9 s10 s11 s12 s5 s6 s2 s1 p3, p4
s3: p2 p6 l3: s7 s8 s5 s1 s9 s11 p5
s4: p2 p6 l4: s3 s4 s6 s2 s10 s12 p6
s5: p3 p5
s6: p4 p6
s7: p1 p5
s8: p1 p5
s9: p5 p3
s10: p6 p4
s11: p5 p3 Project capacities: c1 = c2 = c3 = c4 = c5 = c6 = 2
s12: p6 p4 Lecturer capacities: d1 = d2 = 4, d3 = d4 = 2

Figure 3.3: An instance I3 of SPA-S.

Matching s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
M1 p3 p4 p2 p2 p3 p4 p1 p1 p5 p6 p5 p6
M2 p3 p6 p2 p2 p3 p4 p1 p1 p5 p6 p5 p4
M3 p5 p4 p2 p2 p3 p4 p1 p1 p5 p6 p3 p6
M4 p5 p6 p2 p2 p3 p4 p1 p1 p5 p6 p3 p4
M5 p5 p4 p2 p2 p5 p4 p1 p1 p3 p6 p3 p6
M6 p3 p6 p2 p2 p3 p6 p1 p1 p5 p4 p5 p4
M7 p5 p6 p2 p2 p3 p6 p1 p1 p5 p4 p3 p4
M8 p5 p6 p2 p2 p5 p4 p1 p1 p3 p6 p3 p4
M9 p5 p6 p2 p2 p5 p6 p1 p1 p3 p4 p3 p4

Figure 3.4: The stable matchings in the SPA-S instance illustrated in Figure 3.3, with M1 as
the student-optimal stable matching and M9 as the lecturer-optimal stable matching.

M1

M2 M3

M4 M5M6

M7 M8

M9

Figure 3.5: The lattice structure for the stable matchings in Figure 3.4, with M1 as the
maximum element of the lattice and M9 as the minimum element of the lattice.
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{(m1, w4), (m2, w3), (m3, w2), (m4, w1)} andM2 = {m1, w4), (m2, w1), (m3, w2), (m4, w3)}.
The rotation in M1 is a sequence ρ = (m2, w3), (m4, w1) of pairs which allows us to move
from M1 to M2 by assigning m2 to w1 (i.e., M1(m4)) and m4 to w3 (i.e., M1(m2)). We say
that ρ is exposed in M1 and by eliminating ρ from M1, we obtain another stable matching
M2. See [53, 83] for a formal definition of rotation.

Let I be an instance of SM. Gusfield and Irving [44] showed that the set of rotations in I
forms a poset under a natural ordering which they referred to as the rotation poset. Moreover,
the authors established that there is a 1-1 correspondence between the stable matchings in
I and the closed subsets of the rotation poset of I . These results have been extended to the
HR setting [21, 30]. An open problem is to define a rotation in the SPA-S context, as well as
establish the structural correspondence (if any) between the set of stable matchings and the
set of rotations.

Furthermore, the characterisation of the stable matchings in I in terms of closed subsets
of the rotation poset of I has been exploited to design efficient algorithms for a range of
problems associated with SM. As the reader may recall, some of these problems include
finding all stable pairs [43], generating all stable matchings [43], counting stable matchings
[53], and finding stable matchings that satisfy additional optimality criteria [43, 54]. With a
suitable structure, it is open as to whether a similar approach can be explored to solve similar
problems in the SPA-S setting.
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Chapter 4

Super-Stability in SPA-ST

4.1 Introduction

In Section 2.3.3, we introduced a variant of SPA where students have preferences over
projects, lecturers have preferences over students, and preference lists of students and lec-
turers may admit indifference in the form of ties. We referred to this variant as the Student-

Project Allocation problem with lecturer preferences over Students with Ties (SPA-ST). As
the reader may recall, we mentioned that the three forms of stability for SMTI and HRT,
namely weak stability, strong stability and super-stability, can be extended to this setting.
We also mentioned that weakly stable matchings in an instance of SPA-ST can have differ-
ent sizes and the problem of finding a maximum size weakly stable matching is NP-hard
[60, 84].

We remark that super-stability is the most restrictive of these three stability concepts because
it allows a student s and a lecturer l to form a blocking pair in the following situation: s is in-
different between her assigned project and one of l’s projects, whilst l is indifferent between
one of her assigned student/s and s. However, Irving et al. [57] argued that super-stability is
a very natural solution concept in cases where agents have incomplete information. Central
to their argument is the following, which we prove in Proposition 4.2.2: in a practical setting,
suppose that an arbitrary student si has incomplete information about two or more projects
and decides to rank these projects equally in a tie, so that si’s preference list is a strict order-
ing over tied batches of projects. If a super-stable matching M exists in the corresponding
SPA-ST instance I , then M is stable in every instance of SPA-S (obtained from I by breaking
the ties) that represents the true preference of si.

Unfortunately, not every instance of SPA-ST admits a super-stable matching: for example, in
the SPA-ST instance shown in Figure 4.1 (page 49), any matching will be undermined by a
student and lecturer that are not matched together via some project that the lecturer offers.
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However, as we will see later in this chapter, we can find a super-stable matching or report
that no such matching exists in polynomial-time. Moreover, analogous to the HRT setting
[57], if a super-stable matching M exists in an instance I of SPA-ST then all weakly stable
matchings in I have the same size (equal to the size ofM ), and match exactly the same set of
students (we prove this in Proposition 4.2.4). Thus the existence of a super-stable matching
can steer us away from the hardness of finding a maximum size weakly stable matching.

Irving et al. [57] described an algorithm to find a super-stable matching or to report that
no such matching exists, given an instance of HRT. However, merely reducing (using a
“cloning” technique) an instance of SPA-ST to an instance of HRT and applying the algo-
rithm described in [57] to the resulting HRT instance does not work in general (we explain
this further in Section 4.3). Our contribution in this chapter is to present theoretical and
experimental results for SPA-ST under super-stability.

On the theoretical side, we describe the first polynomial-time algorithm to find a super-
stable matching or to report that no such matching exists, given an instance of SPA-ST – thus
solving an open problem given in [13, 83]. Our algorithm runs in time linear in the total
length of the preference lists. On the experimental side, we present results of an empirical
evaluation based on an implementation of our linear-time algorithm that investigates how
the nature of the preference lists affects the likelihood of a super-stable matching existing,
with respect to randomly-generated SPA-ST instances. Our main finding from the empirical
evaluation is that super-stable matchings are very elusive with ties on both sides; however,
the probability of such matching existing is significantly higher if ties are restricted to the
lecturers’ preference lists.

The remainder of this chapter is structured as follows. We give some preliminary definitions
and results in Section 4.2. We describe a natural strategy to clone an instance of SPA-ST to
an instance of HRT in Section 4.3, and we give an intuition as to why this direction does not
work in general. In Section 4.4, we describe our algorithm for SPA-ST under super-stability.
Further, in Section 4.4, we illustrate an execution of our algorithm with respect to an instance
of SPA-ST before moving on to present the algorithm’s correctness and complexity results.
To end this section, we give some structural properties satisfied by the set of super-stable
matchings in an instance of SPA-ST.

In Section 4.5, we present an IP model for SPA-ST under super-stability. Our reason for doing
this is purely experimental, as we intend to use an implementation of the IP model to test the
correctness of our algorithm’s implementation (i.e., to verify the existence or otherwise of
a super-stable matching as reported by our implementation). In Section 4.6, we present the
experimental results obtained from our algorithm’s empirical evaluation. Finally, in Section
4.7, we present some concluding remarks and potential direction for future work.
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Students’ preferences Lecturers’ preferences offers
s1: p3 p2 l1: (s2 s3) s1 p1, p2
s2: (p1 p2) l2: s1 p3

s3: (p1 p2)
Project capacities: c1 = c2 = c3 = 1

Lecturer capacities: d1 = 2, d2 = 1

Figure 4.1: An instance I1 of SPA-ST.

4.2 Preliminary definitions and results

Formally, an instance of SPA-ST involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. All the notation
and terminology defined for SPA-S (see Section 2.3.2) also holds for SPA-ST except that the
preference lists of students and lecturers in I can include ties. In the preference list of a
student si ∈ S , a set T of r projects forms a tie of length r (where r ≥ 1) if si does not
prefer pj to pj′ for any pj, pj′ ∈ T . In addition, si’s preference list is a strict ordering over
tied batches of projects that she finds acceptable. Thus, si is indifferent between the projects
that are tied together in her preference list, and she prefers each project in a given tie to each
project in any successor tie. A tie in a lecturer’s preference list is defined in a similar fashion.

An example SPA-ST instance I1 is given in Figure 4.1, which involves the set S = {s1, s2, s3}
of students, the set P = {p1, p2, p3} of projects and the set L = {l1, l2} of lecturers, with
P1 = {p1, p2} and P2 = {p3}. Ties in the preference lists are indicated by round brackets,
for example, s2 is indifferent between p1 and p2.

Definition 4.2.1 (Super-stability). Let I be an instance of SPA-ST, and let M be a matching

in I . We say that M is super-stable if it admits no blocking pair, where a blocking pair is an

acceptable pair (si, pj) ∈ (S × P) \M such that (a) and (b) holds as follows:

(a) either si is unassigned inM or si prefers pj toM(si) or si is indifferent between them;

(b) either (i), (ii) or (iii) holds as follows:

(i) each of pj and lk is undersubscribed in M ;
(ii) pj is undersubscribed in M , lk is full in M , and either si ∈ M(lk) or lk prefers

si to the worst student in M(lk) or lk is indifferent between them;
(iii) pj is full in M , and either lk prefers si to the worst student in M(pj) or lk is

indifferent between them.

The super-stability definition gives rise to the following proposition, stated for HRT in [57,
Proposition 2], which extends naturally to SPA-ST as follows.
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Proposition 4.2.2. Let I be an instance of SPA-ST and let M be a matching in I . Then M

is super-stable in I if and only if M is stable in every instance of SPA-S obtained from I by

breaking the ties in some way.

Proof. Let I be an instance of SPA-ST and let M be a matching in I . Suppose that M is
super-stable in I . We want to show that M is stable in every instance of SPA-S obtained from
I by breaking the ties in some way. Now, let I ′ be an arbitrary instance of SPA-S obtained
from I by breaking the ties in some way, and suppose M is not stable in I ′. This implies that
M admits a blocking pair (si, pj) in I ′. Since I ′ is an arbitrary SPA-S instance obtained from
I by breaking the ties in some way, it follows that in I:

(i) if si is assigned in M then si either prefers pj to M(si) or is indifferent between them;

(ii) if lk is full in M then either si ∈ M(lk) or lk prefers si to a worst student in M(lk) or
is indifferent between them; and

(iii) if pj is full in M then lk either prefers si to a worst student in M(pj) or is indifferent
between them.

This implies that (si, pj) forms a blocking pair for M in I , a contradiction to the super-
stability of M .

Conversely, suppose M is stable in every instance of SPA-S obtained from I by breaking
the ties in some way. Now suppose M is not super-stable in I . This implies that M admits
a blocking pair (si, pj) in I . We construct an instance I ′ of SPA-S from I by breaking the
ties in the following way: (i) if si is assigned in M and si is indifferent between pj and
M(si) in I then si prefers pj to M(si) in I ′, otherwise we break the ties in si’s preference
list arbitrarily; and (ii) if some student, say si′ , different from si is assigned to lk in M such
that lk is indifferent between si and si′ in I then lk prefers si to si′ in I ′, otherwise we break
the ties in lk’s preference list arbitrarily. Thus (si, pj) forms a blocking pair for M in I ′, i.e.,
M is not stable in I ′, a contradiction to the fact that M is stable in every instance of SPA-S

obtained from I by breaking the ties in some way.

The reader may verify that the SPA-ST instance in Figure 4.1 admits two weakly stable match-
ings, namely M1 = {(s1, p3), (s2, p1), (s3, p2)} and M2 = {(s1, p3), (s2, p2), (s3, p1)}. How-
ever, neither M1 nor M2 is super-stable, since (s2, p2) forms a blocking pair for M1 and
(s2, p1) forms a blocking pair for M2. We remark that the formal definition of weak stability
in SPA-ST follows from the definition of stability in SPA-S (see Definition 2.3.1 on page 24).
Moreover, the existence of a weakly stable matching in I is guaranteed by breaking the ties
in I arbitrarily, thus giving rise to an instance I ′ of SPA-S. Clearly, a stable matching in I ′

is weakly stable in I . Indeed a converse of sorts holds, which gives rise to the following
proposition, which can be regarded as an analogue of Proposition 4.2.2 for weak stability.
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Proposition 4.2.3. Let I be an instance of SPA-ST, and let M be a matching in I . Then M

is weakly stable in I if and only if M is stable in some instance I ′ of SPA-S obtained from I

by breaking the ties in some way.

Proof. Let I be an instance of SPA-ST and let M be a matching in I . Suppose that M is
weakly stable in I . Let I ′ be an instance of SPA-S obtained from I by breaking the ties in
the following way. For each student si in I such that the preference list of si includes a tie
T containing two or more projects, we order the preference list of si in I ′ as follows: if si is
assigned in M to a project pj in T then si prefers pj to every other project in T , otherwise
we order the projects in T arbitrarily. For each lecturer lk in I such that lk’s preference list
includes a tie X , if X contains students that are assigned to lk in M and students that are
not assigned to lk in M , then lk’s preference list in I ′ is ordered in such a way that each
si ∈ X ∩M(lk) is preferred to each si′ ∈ X \M(lk), otherwise we order the students in
X arbitrarily. Now, suppose (si, pj) forms a blocking pair for M in I ′. Given how the ties
in I were removed to obtain I ′, this implies that (si, pj) forms a blocking pair for M in I , a
contradiction to our assumption that M is weakly stable in I . Thus M is stable in I ′.

Conversely, suppose M is stable in some instance I ′ of SPA-S obtained from I by breaking
the ties in some way. Now suppose that M is not weakly stable in I . Then some pair (si, pj)

forms a blocking pair for M in I . It is then clear from the definition of weak stability and
from the construction of I ′ that (si, pj) is a blocking pair for M in I ′, a contradiction.

The following proposition, which is a consequence of Propositions 4.2.2 and 4.2.3, and The-
orem 2.3.2, tells us that if a super-stable matching M exists in I then all weakly stable
matchings in I are of the same size (equal to the size of M ) and match exactly the same set
of students.

Proposition 4.2.4. Let I be an instance of SPA-ST, and suppose that I admits a super-stable

matching M . Then the Unpopular Projects Theorem (i.e., Theorem 2.3.2) holds for the set

of weakly stable matchings in I .

Proof. Let I be an instance of SPA-ST. Let M be a super-stable matching in I and let M ′

be a weakly stable matching in I . Then by Proposition 4.2.3, M ′ is stable in some instance
I ′ obtained from I by breaking the ties in some way. Also M is stable in I ′ by Proposition
4.2.2. By Theorem 2.3.2, each lecturer is assigned the same number of students in M and
M ′, exactly the same students are unassigned in M and M ′, and a project offered by an
undersubscribed lecturer is assigned the same number of students in M and M ′. Hence, the
Unpopular Projects Theorem holds for the set of weakly stable matchings in I .
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4.3 Cloning from SPA-ST to HRT does not work in gen-

eral

As mentioned in Section 2.2.4, Irving et al. [57] described a polynomial-time algorithm to
find a super-stable matching or report that no such matching exists, given an instance of
HRT. One might assume that reducing a given instance of SPA-ST to an instance of HRT

(using a “cloning” technique) and subsequently applying the algorithm described in [57]
to the resulting instance would solve our problem. However, this is not always true. In
what follows, we describe a natural method to clone an instance of SPA-ST to an instance of
HRT, and we show that applying the super-stable matching algorithm described in [57] to the
resulting HRT instance does not work in general.

A method to derive an instance I ′ of HRT from an instance I of SPA-ST was described by
Cooper and Manlove [34]. We explain this method as follows. The students and projects
involved in I are converted into residents and hospitals respectively in I ′, i.e., each si ∈ S
becomes ri in the cloned instance, and each pj ∈ P becomes hj . Residents inherit their
preference lists naturally from students, i.e., if ri corresponds to si, then the preference list
of ri in I ′ is Ai, with each project in Ai being replaced by the associated hospital. Hospitals
inherit their preference lists from the projected preference list of the associated project ac-
cording to the lecturer offering the project, i.e., if pj corresponds to hj , where pj is offered
by lk, then the preference list of hj in I ′ is Ljk, with each student in Ljk being replaced by the
associated resident. Each hospital also inherits its capacity from the project, i.e., for each hj
associated with pj , the capacity of hj is cj .

Let lk be an arbitrary lecturer in I . In order to translate lk’s capacity into the HRT instance,
we create n dummy residents1 for each hospital hj corresponding to a project pj ∈ Pk, where
n is the difference between the sum of the capacities of all the projects in Pk and the capacity
of lk (recall from Section 2.3.2 that dk ≤

∑
{cj : pj ∈ Pk}). The preference list for each of

these dummy residents will be a single tie consisting of all the hospitals corresponding to a
project in Pk. Further, the preference list for each hospital corresponding to a project in Pk
will include a tie in its first position consisting of all the dummy residents associated with lk.

Next, we describe how to map between matchings in I and in I ′. Let M and M ′ be a
matching in I and I ′ respectively. Let ri be the resident associated with si and let hj be
the hospital associated with pj . If si is assigned in M to project pj , then ri is assigned in
M ′ to hospital hj . In what follows, we give an example instance of SPA-ST as well as the
corresponding cloned HRT instance, which adapts the cloning technique described above.
Also, we give an intuition as to why this technique will not work in general.

1The dummy residents created for each hospital will offset the difference between the corresponding lecturer
capacity and the total capacity of her proposed projects.
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Students’ preferences Lecturers’ preferences offers
s1: p1 l1: s1 (s2 s3) p1, p2
s2: (p1 p2) l2: s3 p3

s3: p2 p3

Project capacities: c1 = c2 = c3 = 1

Lecturer capacities: d1 = d2 = 1

Figure 4.2: An instance I of SPA-ST.

Residents’ preferences Hospitals’ preferences
r1: h1 h1: rd1 r1 r2

r2: (h1 h2) h2: rd1 (r2 r3)
r3: h2 h3 h3: r3

rd1: (h1 h2)
Hospital capacities: c1 = c2 = c3 = 1

Figure 4.3: An instance I ′ of HRT cloned from the SPA-ST instance illustrated in Figure 4.2.

Each resident r1, r2 and r3 in I ′ corresponds to student s1, s2 and s3 in I , respectively; and the
preference list of each resident is adapted from the preference list of the associated student.
Also, each hospital h1, h2 and h3 in I ′ corresponds to project p1, p2 and p3 in I , respectively.
The preference list of hospitals h1 and h2 isL1

1 andL2
1 respectively, since l1 is the lecturer that

offers both p1 and p2. Similarly, the preference list of hospital h3 is L3
2, since l2 is the lecturer

that offers p3. Further, for lecturer l1 who offers both p1 and p2, since c1 + c2 = 2 > 1 = d1,
we add one dummy resident rd1 to the cloned instance. The preference list of rd1 is a single
tie consisting of h1 and h2; and the preference list of both h1 and h2 includes rd1 in first
position.

The reader can easily verify that matching M = {(s1, p1), (s3, p3)} is super-stable in the
SPA-ST instance I illustrated in Figure 4.2. Now, following our description of how to map
between matchings in I and in I ′, a matching in I ′ is M ′ = {(rd1 , h2), (r1, h1), (r3, h3)},
with (s1, p1) ∈ M corresponding to (r1, h1) ∈ M ′ and (s3, p3) ∈ M corresponding to
(r3, h3) ∈M ′. Clearly, M ′ is not super-stable in I ′ as (rd1 , h1) forms a blocking pair. In fact,
the HRT instance I ′ admits no super-stable matching. The justification for this is as follows:
irrespective of the hospital that the dummy resident rd1 is assigned to in any matching in I ′,
rd1 will block this matching via one of the other hospitals tied in her preference list (since
the hospital would be better off taking on rd1 , and rd1 would be no worse off).

One way to avoid this problem would be to strictly order the hospitals in rd1’s prefer-
ence list; however, the order in which the hospitals appear will lead to different possi-
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bilities. For instance: if rd1 prefers h1 to h2, the reader can verify that the correspond-
ing HRT instance admits no super-stable matching; however, if rd1 prefers h2 to h1, again
the reader can verify that the corresponding HRT instance admits the super-stable matching
{(rd1 , h2), (r1, h1), (r3, h3)}. The downside of this strategy is that there is no obvious reason
as to why rd1 should prefer h2 to h1 in the cloned HRT instance in Figure 4.3 by merely
looking at the original SPA-ST instance in Figure 4.2. Hence, in order to make this tech-
nique work in general, we will need to generate every HRT instance obtained by ordering the
dummy residents’ preference lists in some way. This is exponential in the problem instance.

4.4 A polynomial-time algorithm

4.4.1 Introduction

In this section we present our algorithm for SPA-ST under super-stability, which we will refer
to as Algorithm SPA-ST-super. First, we note that our algorithm is a non-trivial extension
of Algorithm HRT-Super-Res for finding a super-stable matching or reporting that no such
matching exists, given an instance of HRT [57].

Before we proceed, we briefly describe Algorithm HRT-Super-Res. The algorithm involves
a sequence of proposals from the residents to the hospitals. Each resident proposes in turn to
all of the hospitals tied together in the first position on her preference list, and all proposals
are provisionally accepted. If a hospital h becomes oversubscribed then none of h’s worst
assignees nor any resident tied with these assignees in h’s preference list can be assigned to h
in any super-stable matching – such pairs (r, h) are deleted from each other’s preference lists.
If a hospital h is full then no resident strictly worse than h’s worst assignees can be assigned
to h in any super-stable matching – again such (r, h) pairs are deleted from each other’s
preference lists. The proposal sequence terminates once every resident either is assigned
to a hospital or has an empty preference list. At this point, if the constructed assignment
of residents to hospitals is super-stable in the original HRT instance then the assignment is
returned as a super-stable matching. Otherwise, the algorithm reports that no super-stable
matching exists.

Due to the more general setting of SPA-ST, Algorithm SPA-ST-super requires some new
ideas (precisely lines 27-34 of the algorithm on page 57), and the proofs of the correctness
results are more complex than Algorithm HRT-Super-Res [57]. In Section 4.4.2, we give
definitions relating to our algorithm. We give a description of our algorithm in Section
4.4.3, before presenting it in pseudocode form. In Section 4.4.4, we illustrate an example
execution of our algorithm with respect to an instance of SPA-ST. We present the algorithm’s
correctness and complexity results in Section 4.4.5. Finally, in Section 4.4.6, we show that
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the set of super-stable matchings in an instance of SPA-ST satisfy analogous properties to
those given in Theorem 2.3.2 for SPA-S.

4.4.2 Definitions relating to the algorithm

In what follows, I is an instance of SPA-ST, (si, pj) is an acceptable pair in I and lk is the
lecturer who offers pj . Further, if (si, pj) belongs to some super-stable matching in I , we
call (si, pj) a super-stable pair.

During the execution of the algorithm, students become provisionally assigned to projects.
It is possible for a project to be provisionally assigned a number of students that exceeds its
capacity. This holds analogously for a lecturer. The algorithm proceeds by deleting from the
preference lists certain (si, pj) pairs that cannot be super-stable. By the term delete (si, pj),
we mean the removal of pj from si’s preference list and the removal of si from Ljk.2 In
addition, if si is provisionally assigned to pj at this point, we break the assignment. If si has
been deleted from every projected preference list of lk that she originally belonged to, we
will implicitly assume that si has been deleted from lk’s preference list. By the head of a
student’s preference list at a given point, we mean the set of one or more projects, tied in her
preference list after any deletions might have occurred, that she prefers to all other projects
in her preference list.

For project pj , we define the tail of Ljk as the least-preferred tie in Ljk after any deletions
might have occurred (recalling that a tie can be of length one). In the same fashion, we
define the tail of Lk (the preference list of lecturer lk) as the least-preferred tie in Lk after any
deletions might have occurred. If si is provisionally assigned to pj , we define the successors

of si in Ljk as those students that are worse than si in Ljk. An analogous definition holds for
the successors of si in Lk.

4.4.3 Description of the algorithm

We now describe Algorithm SPA-ST-super, which is shown in pseudocode form as Algo-
rithm 1 on page 57. Algorithm SPA-ST-super begins by initialising an empty set M which
will contain the provisional assignments of students to projects (and implicitly to lecturers).
We remark that such assignments can subsequently be broken during the algorithm’s execu-
tion. Also, each project is initially assigned to be empty (i.e., not assigned to any student).

The repeat-until loop of the algorithm initialises the while loop which involves each
student si who is not provisionally assigned to any project in M and who has a non-empty

2Recall that Lj
k is the projected preference list of lecturer lk for pj , which can be obtained from Lk by

removing those students that do not find pj acceptable (thereby retaining the order of the remaining students
from Lk).
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preference list applying in turn to each project pj at the head of her list. Immediately, si
becomes provisionally assigned to pj in M (and to lk). If, by gaining a new student, pj
becomes oversubscribed, then no student st at the tail of Ljk can be assigned to pj in any
super-stable matching – such pairs (st, pj) are deleted. Similarly, if by gaining a new student,
lk becomes oversubscribed, none of the students st at the tail of Lk can be assigned to any
project offered by lk in any super-stable matching – the pairs (st, pu), for each project pu ∈
Pk that st finds acceptable, are deleted.

Regardless of whether any deletions occurred as a result of the two conditionals described in
the previous paragraph, we have two further (possibly non-disjoint) cases in which deletions
may occur. If pj becomes full, we let sr be any worst student provisionally assigned to
pj (according to Ljk), and we delete (st, pj) for each successor st of sr in Ljk. Similarly if
lk becomes full, we let sr be any worst student provisionally assigned to lk, and we delete
(st, pu), for each successor st of sr inLk and for each project pu ∈ Pk that st finds acceptable.
As we will prove later, none of the (student, project) pairs that we delete can be a super-stable
pair.

At the point where the while loop terminates (i.e., when every student is provisionally
assigned to one or more projects or has an empty preference list), if some project pj that
was previously full ends up undersubscribed, we let sr be any one of the most-preferred
students (according to Ljk) who was provisionally assigned to pj during some iteration of the
algorithm but is not assigned to pj at this point (for convenience, we henceforth refer to such
sr as the most-preferred student rejected from pj according to Ljk). If the students at the tail
of Lk are no better than sr, it turns out that none of these students can be assigned to any
project offered by lk in any super-stable matching; thus for each st at the tail of Lk and for
each project pu ∈ Pk that st finds acceptable, we delete (st, pu). The while loop is then
potentially reactivated, and the entire process continues until every student is provisionally
assigned to a project or has an empty preference list, at which point the repeat-until
loop terminates.

Upon termination of the repeat-until loop, if the set M , containing the assignment of
students to projects, is super-stable relative to the given instance I then M is output as a
super-stable matching in I . Otherwise, the algorithm reports that no super-stable matching
exists in I .

4.4.4 Example execution of the algorithm

We illustrate an execution of Algorithm SPA-ST-super with respect to the SPA-ST instance
I2 shown in Figure 4.4. We initialise M = ∅, which will contain the provisional assignment
of students to projects. For each project pj ∈ P , we set full(pj) = false (this will be set
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Algorithm 1 Algorithm SPA-ST-super
Input: SPA-ST instance I
Output: a super-stable matching M in I or “no super-stable matching exists in I”

1: M ← ∅
2: for each pj ∈ P do
3: full(pj) = false
4: repeat
5: while some student si is unassigned and has a non-empty preference list do
6: for each project pj at the head of si’s preference list do
7: lk ← lecturer who offers pj
8: /* si applies to pj */
9: M ←M ∪ {(si, pj)} /* provisionally assign si to pj (and to lk) */

10: if pj is oversubscribed then
11: for each student st at the tail of Ljk do
12: delete (st, pj) /* if the pair is in M , remove it */
13: else if lk is oversubscribed then
14: for each student st at the tail of Lk do
15: for each project pu ∈ Pk ∩ At do
16: delete (st, pu)
17: if pj is full then
18: full(pj) = true
19: sr ← worst student assigned to pj according to Ljk {any if > 1}
20: for each successor st of sr on Ljk do
21: delete (st, pj)
22: if lk is full then
23: sr ← worst student assigned to lk according to Lk {any if > 1}
24: for each successor st of sr on Lk do
25: for each project pu ∈ Pk ∩ At do
26: delete (st, pu)
27: for each pj ∈ P do
28: if pj is undersubscribed and full(pj) is true then
29: lk ← lecturer who offers pj
30: sr ←most-preferred student rejected from pj according to Ljk {any if > 1}
31: if the students at the tail of Lk are no better than sr then
32: for each student st at the tail of Lk do
33: for each project pu ∈ Pk ∩ At do
34: delete (st, pu)
35: until every unassigned student has an empty preference list
36: if M is a super-stable matching in I then
37: return M
38: else
39: return “no super-stable matching exists in I”



4.4. A polynomial-time algorithm 58

to true when pj becomes full, so that we can easily identify any project that was full during
an iteration of the while loop and ended up undersubscribed at the termination of this or at
the termination of subsequent while loop iterations). We assume that the students become
provisionally assigned to each project at the head of their preference list in subscript order.
Table 4.1 illustrates how this execution of Algorithm SPA-ST-super proceeds with respect
to I2.

Students’ preferences Lecturers’ preferences offers
s1: p1 l1: s5 (s1 s2) s3 s4 p1, p2
s2: (p1 p3) l2: s4 s5 s2 p3

s3: p2

s4: p2 p3 Project capacities: c1 = c3 = 1, c2 = 2

s5: p3 p1 Lecturer capacities: d1 = 2, d2 = 1

Figure 4.4: An instance I2 of SPA-ST.

4.4.5 Correctness of the algorithm

We now present a series of results concerning the correctness of Algorithm SPA-ST-super.
The first of these results deals with the fact that no super-stable pair is deleted during an exe-
cution of the algorithm. In what follows, I is an instance of SPA-ST, (si, pj) is an acceptable
pair in I and lk is the lecturer who offers pj .

Lemma 4.4.1. If a pair (si, pj) is deleted during an execution of Algorithm SPA-ST-super,
then (si, pj) does not belong to any super-stable matching in I .

In order to prove Lemma 4.4.1, we present Lemmas 4.4.2 and 4.4.3.

Lemma 4.4.2. If a pair (si, pj) is deleted within the while loop during an execution of

Algorithm SPA-ST-super then (si, pj) does not belong to any super-stable matching in I .

Proof. Without loss of generality, suppose that the first super-stable pair to be deleted within
the while loop during an arbitrary execution E of the algorithm is (si, pj), which belongs
to some super-stable matching, say M∗. Suppose that M is the assignment immediately
after the deletion. Let us denote this point in the algorithm where the deletion is made by ‡.
During E, there are four cases that would lead to the deletion of any (student, project) pair
within the while loop.

(1) pj is oversubscribed. Suppose that (si, pj) is deleted because some student (possi-
bly si) became provisionally assigned to pj during E, causing pj to become oversub-
scribed. If pj is full or undersubscribed at point ‡, since si ∈ M∗(pj) \M(pj) and no
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Table 4.1: An execution of Algorithm SPA-ST-super with respect to Figure 4.4.

while loop
iterations

Student applies
to project

Consequence

1 s1 applies to p1 M = {(s1, p1)}. full(p1) = true.

2 s2 applies to p1 M = {(s1, p1), (s2, p1)}. p1 becomes oversubscribed. The tail
of L11 contains s1 and s2 – thus we delete the pairs (s1, p1) and
(s2, p1) (and we break the provisional assignments).

s2 applies to p3 M = {(s2, p3)}. full(p3) = true.

3 s3 applies to p2 M = {(s2, p3), (s3, p2)}.

4 s4 applies to p2 M = {(s2, p3), (s3, p2), (s4, p2)}. full(p2) = true.

5 s5 applies to p3 M = {(s2, p3), (s3, p2), (s4, p2), (s5, p3)}. p3 becomes oversub-
scribed. The tail of L32 contains only s2 – thus we delete the pair
(s2, p3) (and we break the provisional assignment).

The first iteration of the while loop terminates since every unassigned student (i.e., s1 and s2) has
an empty preference list. At this point, full(p1) is true and p1 is undersubscribed. Moreover,
the student at the tail of L1 (i.e., s4) is no better than s1, where s1 was previously assigned to p1
and s1 is also the most-preferred student rejected from p1 according to L11; thus we delete the pair
(s4, p2). The while loop is then reactivated.

6 s4 applies to p3 M = {(s3, p2), (s5, p3), (s4, p3)}. p3 becomes oversubscribed.
The tail of L32 contains only s5 – thus we delete the pair (s5, p3).

7 s5 applies to p1 M = {(s3, p2), (s4, p3), (s5, p1)}.

Again, every unassigned students has an empty preference list. We also have that full(p2) is
true and p2 is undersubscribed; however no further deletion is carried out in line 34 of the al-
gorithm, since the student at the tail of L1 (i.e., s3) is better than s4, where s4 was previously
assigned to p2 and s4 is also the most-preferred student rejected from p2 according to L21. Hence,
the repeat-until loop terminates and the algorithm outputs M = {(s3, p2), (s4, p3), (s5, p1)}
as a super-stable matching. It is clear that M is super-stable in the original instance I2.
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project can be oversubscribed in M∗, then there is some student sr ∈M(pj) \M∗(pj)

such that lk prefers sr to si or is indifferent between them. We note that sr cannot be
assigned to a project that she prefers to pj in any super-stable matching. Otherwise,
since pj must have been in the head of sr’s preference list when she applied, this would
mean that a super-stable pair was deleted before (si, pj). Thus either sr is unassigned
in M∗ or sr prefers pj to M∗(sr) or sr is indifferent between them. Clearly, for any
combination of lk and pj being full or undersubscribed in M∗, it follows that (sr, pj)

blocks M∗, a contradiction.

(2) lk is oversubscribed. Suppose that (si, pj) is deleted because some student (possibly
si) became provisionally assigned to a project offered by lecturer lk during E, causing
lk to become oversubscribed. At point ‡, none of the projects offered by lk is over-
subscribed in M , otherwise we will be in case (1). Similar to case (1), if lk is full or
undersubscribed at point ‡, since si ∈ M∗(pj) \M(pj) and no lecturer can be over-
subscribed in M∗, it follows that there is some project pj′ ∈ Pk and some student
sr ∈M(pj′) \M∗(pj′) such that lk prefers sr to si or is indifferent between them. We
consider two subcases.

(i) If pj′ = pj then sr 6= si, since si ∈ M∗(pj) and sr /∈ M∗(pj′). Moreover,
as in case (1), either sr is unassigned in M∗ or sr prefers pj′ to M∗(sr) or sr
is indifferent between them. For any combination of lk and pj′ being full or
undersubscribed in M∗, we have that (sr, pj′) blocks M∗, a contradiction.

(ii) If pj′ 6= pj . Assume firstly that sr 6= si. Then as pj′ has fewer assignees in M∗

than it has provisional assignees in M , and as in (i) above, (sr, pj′) blocks M∗, a
contradiction. Finally assume sr = si. Then si must have applied to pj′ at some
point during E before ‡. Clearly, either si prefers pj′ to pj or si is indifferent
between them, since pj′ must have been in the head of si’s preference list when
si applied. Since si ∈ M∗(lk) and pj′ is undersubscribed in M∗, it follows that
(si, pj′) blocks M∗, a contradiction.

(3) pj is full. Suppose that (si, pj) is deleted because pj became full during E. At point ‡,
pj is full in M . Thus at least one of the students in M(pj), say sr, will not be assigned
to pj in M∗, for otherwise pj will be oversubscribed in M∗. This implies that either sr
is unassigned in M∗ or sr prefers pj to M∗(sr) or sr is indifferent between them. For
otherwise, we obtain a contradiction to (si, pj) being the first super-stable pair to be
deleted. Since lk prefers sr to si, it follows that (sr, pj) blocks M∗, a contradiction.

(4) lk is full. Suppose that (si, pj) is deleted because lk became full duringE. We consider
two subcases.
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(i) All the students assigned to pj in M at point ‡ (if any) are also assigned to pj
in M∗. This implies that pj has one more assignee in M∗ than it has provisional
assignees in M , namely si. Thus, some other project pj′ ∈ Pk has fewer as-
signees in M∗ than it has provisional assignees in M , for otherwise lk would be
oversubscribed in M∗. Hence there exists some student sr ∈ M(pj′) \M∗(pj′).
It is clear that sr 6= si, since si plays the role of st at some for loop iteration in
line 24 of the algorithm. Also, sr cannot be assigned to a project that she prefers
to pj′ in M∗, as explained in case (1). Moreover, since pj′ is undersubscribed in
M∗ and lk prefers sr to si, it follows that (sr, pj′) blocks M∗, a contradiction.

(ii) Some student, say sr, who is assigned to pj in M is not assigned to pj in M∗,
i.e., sr ∈ M(pj) \M∗(pj). Since sr cannot be assigned in M∗ to a project that
she prefers to pj and since lk prefers sr to si, it follows that (sr, pj) blocks M∗, a
contradiction.

Lemma 4.4.3. If a pair (si, pj) is deleted in line 34 of Algorithm SPA-ST-super then (si, pj)

does not belong to any super-stable matching in I .

Proof. Without loss of generality, suppose that the first super-stable pair to be deleted during
an arbitrary execution E of the algorithm is (si, pj), which belongs to some super-stable
matching, say M∗. Then by Lemma 4.4.2, (si, pj) was deleted in line 34 during E. Let lk
be the lecturer who offers pj . Suppose that M is the assignment during the iteration of the
repeat-until loop where (si, pj) was deleted.

Let pj′ be some other project offered by lk which was full during a previous repeat-until
loop iteration and subsequently ends up undersubscribed in the current repeat-until
loop iteration, i.e., pj′ plays the role of pj in line 28. Suppose that si′ plays the role of sr
in line 30, i.e., si′ is the most-preferred student rejected from pj′ according to Lj

′

k (possibly
si′ = si). Moreover si′ was provisionally assigned to pj′ during a previous repeat-until
loop iteration but (si′ , pj′) /∈M in the current repeat-until loop iteration. Thus (si′ , pj′)

has been deleted before the deletion of (si, pj) occurred; and thus, (si′ , pj′) /∈ M∗, since
(si, pj) is the first super-stable pair to be deleted. Further, lk either prefers si′ to si or is
indifferent between them, since si plays the role of st at some for loop iteration in line 32.

We remark that no student who is provisionally assigned to some project in M can be as-
signed to a project better than her current assignment in any super-stable matching. For
otherwise, this would mean a super-stable pair must have been deleted before (si, pj), since
each student who is assigned in M applies to projects in the head of her preference list. So,
either si′ is unassigned in M∗ or si′ prefers pj′ to M∗(si′) or si is indifferent between them.
By the super-stability of M∗, pj′ is full in M∗ and lk prefers every student in M∗(pj′) to si′;
for otherwise, (si′ , pj′) blocks M∗, a contradiction.
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Let lz0 = lk, pt0 = pj′ and sq0 = si′ . Just before the deletion of (si, pj) occurred, pt0 is
undersubscribed in M . Since pt0 is full in M∗, there exists some student sq1 ∈ M∗(pt0) \
M(pt0). We note that lz0 prefers sq1 to sq0; for otherwise, (si′ , pj′) blocksM∗, a contradiction.
Let pt1 = pt0 . Since (si, pj) is the first super-stable pair to be deleted, sq1 is assigned in M to
a project pt2 such that sq1 prefers pt2 to pt1 . For otherwise, as each student applies to projects
at the head of her preference list, that would mean (sq1 , pt1) must have been deleted before
(si, pj), a contradiction. We note that pt2 6= pt1 , since (sq1 , pt2) ∈ M and (sq1 , pt1) /∈ M .
Let lz1 be the lecturer who offers pt2 . By the super-stability of M∗, either (i) or (ii) holds as
follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈ M∗(lz1) and lz1 prefer the worst
student/s in M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\M(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \M(lz1). We note that
lz1 prefers sq2 to sq1 . Now, suppose M∗(sq2) = pt3 (possibly pt3 = pt2). It is clear that
sq2 6= sq1 . Applying similar reasoning as for sq1 , sq2 is assigned in M to a project pt4 such
that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are identifying a sequence
〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence 〈lzi〉i≥1 of lecturers, such
that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈M and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

First we claim that for each new project that we identify, pt2i 6= pt2i−1
for i ≥ 1. Suppose

pt2i = pt2i−1
for some i ≥ 1. From above sqi was identified by lzi−1

such that (sqi , pt2i−1
) ∈

M∗ \ M . Moreover (sqi , pt2i) ∈ M . Hence we reach a contradiction. Clearly, for each
student sqi that we identify, for i ≥ 1 , sqi must be assigned to distinct projects in M and in
M∗.

Next we claim that for each new student sqi that we identify, sqi 6= sqt for 1 ≤ t < i. We
prove this by induction on i. For the base case, clearly sq2 6= sq1 . We assume that the claim
holds for some i ≥ 1, i.e., the sequence sq1 , sq2 , . . . , sqi consists of distinct students. We
show that the claim holds for i + 1, i.e., the sequence sq1 , sq2 , . . . , sqi , sqi+1

also consists of
distinct students. Clearly sqi+1

6= sqi since lzi prefers sqi+1
to sqi . Thus, it suffices to show

that sqi+1
6= sqj for 1 ≤ j ≤ i − 1. Now, suppose sqi+1

= sqj for 1 ≤ j ≤ i − 1. This
implies that sqj was identified by lzi and clearly lzi prefers sqj to sqj−1

. Now since sqi+1
was

also identified by lzi to avoid the blocking pair (sqi , pt2i ) in M∗, it follows that either (i) pt2i
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is full in M∗, or (ii) pt2i is undersubscribed in M∗ and lzi is full in M∗. We consider each
cases further as follows.

(i) If pt2i is full inM∗, we know that (sqi , pt2i) ∈M \M∗. Moreover sqj was identified by
lzi+1

because of case (i). Furthermore (sqj−1
, pt2i) ∈M \M∗. In this case, pt2i+1

= pt2i
and we have that

(sqi , pt2i+1
) ∈M \M∗ and (sqi+1

, pt2i+1
) ∈M∗ \M,

(sqj−1
, pt2i+1

) ∈M \M∗ and (sqj , pt2i+1
) ∈M∗ \M.

By the inductive hypothesis, the sequence sq1 , sq2 , . . . , sqj−1
, sqj , . . . , sqi consists of

distinct students. This implies that sqi 6= sqj−1
. Thus since pt2i+1

is full in M∗, lzi
should have been able to identify distinct students sqj and sqi+1

to avoid the blocking
pairs (sqj−1

, pt2i+1
) and (sqi , pt2i+1

) respectively in M∗, a contradiction.

(ii) pt2i is undersubscribed in M∗ and lzi is full in M∗. Similarly as in case (i) above, we
have that

sqi ∈M(lzi) \M∗(lzi) and sqi+1
∈M∗(lzi) \M(lzi),

sqj−1
∈M(lzi) \M∗(lzi) and sqj ∈M∗(lzi) \M(lzi).

Since sqi 6= sqj−1
and lzi is full in M∗, lzi should have been able to identify distinct

students sqj and sqi+1
corresponding to students sqj−1

and sqi respectively, a contradic-
tion.

This completes the induction step. As the sequence of distinct students and projects we are
identifying is infinite, we reach an immediate contradiction.

Lemmas 4.4.2 and 4.4.3 immediately give rise to Lemma 4.4.1. The next lemma will be used
as a tool in the proof of the remaining lemmas.

Lemma 4.4.4. Let M be the assignment at the termination of Algorithm SPA-ST-super
and let M∗ be any super-stable matching in I . Let lk be an arbitrary lecturer: (a) if lk is

undersubscribed in M∗ then every student who is assigned to lk in M is also assigned to lk
in M∗; and (b) if lk is undersubscribed in M then lk has the same number of assignees in

M∗ as in M .

Proof. Let lk be an arbitrary lecturer. First, we show that (a) holds. Suppose otherwise, then
there exists a student, say si, such that si ∈ M(lk) \M∗(lk). Moreover, there exists some
project pj ∈ Pk such that si ∈M(pj) \M∗(pj). By Lemma 4.4.1, si cannot be assigned to a
project that she prefers to pj in M∗. Also, by the super-stability of M∗, pj is full in M∗ and
lk prefers the worst student/s in M∗(pj) to si.
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Let lz0 = lk, pt0 = pj , and sq0 = si. As pt0 is full in M∗ and no project is oversubscribed
in M , there exists some student sq1 ∈ M∗(pt0) \M(pt0) such that lz0 prefers sq1 to sq0 . Let
pt1 = pt0 . By Lemma 4.4.1, sq1 is assigned in M to a project pt2 such that sq1 prefers pt2 to
pt1 . We note that sq1 cannot be indifferent between pt2 and pt1; for otherwise, as each student
applies to projects at the head of her preference list, since (sq1 , pt1) /∈ M , that would mean
(sq1 , pt1) must have been deleted during the algorithm’s execution, contradicting Lemma
4.4.1. It follows that sq1 ∈ M(pt2) \M∗(pt2). Let lz1 be the lecturer who offers pt2 . By the
super-stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈M∗(lz1) and lz1 prefers the worst
student/s in M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\M(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈M∗(lz1) \M(lz1). We note that lz1
prefers sq2 to sq1 . Now, supposeM∗(sq2) = pt3 (possibly pt3 = pt2). It is clear that sq2 6= sq1 .
Applying similar reasoning as for sq1 , student sq2 is assigned in M to a project pt4 such that
sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are identifying a sequence
〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence 〈lzi〉i≥1 of lecturers, such
that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈M and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 4.4.3, we can identify an infinite
sequence of distinct students and projects, a contradiction. Hence, if lk is undersubscribed in
M∗ then every student who is assigned to lk in M is also assigned to lk in M∗.

Next, we show that (b) holds. By the first claim, any lecturer who is full in M is also full in
M∗, and any lecturer who is undersubscribed in M has as many assignees in M∗ as she has
in M . Hence ∑

lk∈L

|M(lk)| ≤
∑
lk∈L

|M∗(lk)| . (4.1)

We note that if a student si is unassigned in M , by Lemma 4.4.1, si is unassigned in M∗.
Equivalently, if si is assigned in M∗ then si is assigned in M . Let S1 denote the set of
students who are assigned to at least one project in M , and let S2 denote the set of students
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who are assigned to a project in M∗; it follows that |S2| ≤ |S1|. Further, we have that∑
lk∈L

|M∗(lk)| = |S2| ≤ |S1| ≤
∑
lk∈L

|M(lk)|, (4.2)

From Inequalities (4.1) and (4.2), it follows that |M(lk)| = |M∗(lk)| for each lk ∈ L.

The next three lemmas deal with the case that Algorithm SPA-ST-super reports the non-
existence of a super-stable matching in I .

Lemma 4.4.5. If a student is assigned to two or more projects at the termination of Algorithm

SPA-ST-super then I admits no super-stable matching.

Proof. LetM be the assignment at the termination of the algorithm. Suppose for a contradic-
tion that there exists a super-stable matching M∗ in I . Suppose that a student is assigned to
two or more projects in M . Then either (a) any two of these projects are offered by different
lecturers or (b) all of these projects are offered by the same lecturer.

Firstly, suppose (a) holds. Then some lecturer has fewer assignees inM∗ than inM . Suppose
not, then ∑

lk∈L

|M∗(lk)| ≥
∑
lk∈L

|M(lk)| . (4.3)

Let S1 and S2 be as defined in the proof of Lemma 4.4.4, it follows that |S2| ≤ |S1|. Hence,∑
lk∈L

|M∗(lk)| = |S2| ≤ |S1| <
∑
lk∈L

|M(lk)|, (4.4)

since some student in S1 is assigned in M to two or more projects offered by different
lecturers. Inequality (4.4) contradicts Inequality (4.3). Hence, our claim is established. As
some lecturer lk has fewer assignees inM∗ than inM , it follows that lk is undersubscribed in
M∗, since no lecturer is oversubscribed inM . In particular, there exists some project pj ∈ Pk
and some student, say si, such that pj is undersubscribed inM∗ and (si, pj) ∈M \M∗. Since
(si, pj) ∈M , then pj must have been in the head of si’s preference list when si applied to pj
during the algorithm’s execution. By Lemma 4.4.1, either si is unassigned inM∗ or si prefers
pj to M∗(si) or si is indifferent between them. Hence (si, pj) blocks M∗, a contradiction.

Next, suppose (b) holds. Then |S1| ≤
∑

lk∈L |M(lk)|. As in case (a), since |S2| ≤ |S1|, it
follows that ∑

lk∈L

|M∗(lk)| ≤
∑
lk∈L

|M(lk)| .

Suppose first that |M∗(lk)| < |M(lk)| for some lk ∈ L. Then lk has fewer assignees in M∗

than in M , and following a similar argument as in case (a) above, we reach an immediate
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contradiction. Hence, |M∗(lk)| = |M(lk)| for all lk ∈ L. Further, for each lk ∈ L we claim
that every student who is assigned to lk inM is also assigned to lk inM∗. Suppose otherwise.
Let lz1 be an arbitrary lecturer in L. Then there exists some student sq1 ∈M(lz1) \M∗(lz1).
Let M(sq1) = pt2 . By Lemma 4.4.1, sq1 is assigned in M∗ to a project pt1 such that sq1
prefers pt2 to pt1 . Clearly, pt1 is not offered by lz1 , since sq1 ∈ M(lz1) \M∗(lz1). We also
note that sq1 cannot be indifferent between pt2 and pt1 . Otherwise, the argument follows from
(a), since sq1 is assigned in M to two projects offered by different lecturers, and we reach an
immediate contradiction. By the super-stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers every student in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗ and lz1 prefers every student in M∗(lz1)

to sq1 .

Otherwise, (sq1 , pt2) blocks M∗. In case (i), there exists some student sq2 ∈ M∗(pt2) \
M(pt2). Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \M(lz1). We
note that lz1 prefers sq2 to sq1 , and clearly sq2 6= sq1 . Let M∗(sq2) = pt3 (possibly pt3 = pt2).
Applying similar reasoning as for sq1 , student sq2 is assigned in M to a project pt4 such that
sq2 prefers pt4 to pt3 . We are identifying a sequence 〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1
of projects, and a sequence 〈lzi〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈M and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 4.4.3, we can identify an infinite
sequence of distinct students and projects, a contradiction.

Now, let si be an arbitrary student such that si is assigned in M to two or more projects
offered by a lecturer, say lk. Then si ∈M∗(lk). Moreover, there exists some project pj ∈ Pk
such that (si, pj) ∈M \M∗. We claim that pj is undersubscribed inM∗. Suppose otherwise.
Let lz0 = lk, pt0 = pj and sq0 = si. Then there exists some student sq1 ∈ M∗(pt0) \M(pt0),
since pt0 is not oversubscribed inM and sq0 ∈M(pt0)\M∗(pt0). Again, by Lemma 4.4.1, sq1
is assigned in M to a project pt1 such that sq1 prefers pt1 to pt0 . Let lz1 be the lecturer who
offers pt1 . Following a similar argument as in the proof of Lemma 4.4.3, we can identify
a sequence of distinct students and projects, and as this sequence is infinite, we reach a
contradiction. Hence our claim holds, i.e., pj is undersubscribed in M∗. Finally, since si
cannot be assigned to any project that she prefers to pj in M∗ and since (si, pj) ∈ M∗(lk),
we have that (si, pj) blocks M∗, a contradiction.
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Lemma 4.4.6. If some lecturer lk becomes full during some execution of Algorithm SPA-
ST-super and lk subsequently ends up undersubscribed at the termination of the algorithm,

then I admits no super-stable matching.

Proof. Let M be the assignment at the termination of the algorithm. Suppose for a contra-
diction that there exists a super-stable matching M∗ in I . Let lk be the lecturer who became
full during some execution of the algorithm and subsequently ends up undersubscribed in
M . By Lemma 4.4.4, |M(lk)| = |M∗(lk)| and thus lk is undersubscribed in M∗. At the point
in the algorithm where lk became full (line 22), we note that none of the projects offered by
lk is oversubscribed. Since lk ended up undersubscribed in M , it follows that there is some
project pj ∈ Pk that has fewer assignees in M at the termination of the algorithm than it had
at some point during the algorithm’s execution, thus pj is undersubscribed in M .

We claim that each project offered by lk has the same number of assignees in M∗ as in
M . Suppose otherwise, then there is some project pt ∈ Pk such that |M∗(pt)| < |M(pt)|;
thus pt is undersubscribed in M∗, since no project is oversubscribed in M . It follows that
there exists some student sr ∈ M(pt) \M∗(pt). By Lemma 4.4.1, sr is either unassigned
in M∗ or prefers pt to M∗(sr). Since lk is undersubscribed in M∗, (sr, pt) blocks M∗, a
contradiction. Hence |M∗(pt)| ≥ |M(pt)|. Moreover, since |M(lk)| = |M∗(lk)|, we have
that |M(pt)| = |M∗(pt)| for all pt ∈ Pk.

Hence pj undersubscribed in M implies that pj is undersubscribed in M∗. Moreover, there
is some student si who was provisionally assigned to pj at some point during the execution
of the algorithm but si is not assigned to pj in M . Thus, the pair (si, pj) was deleted during
the algorithm’s execution, so that (si, pj) /∈ M∗ by Lemma 4.4.1. It follows that either si is
unassigned inM∗ or si prefers pj toM∗(si) or si is indifferent between them. Hence, (si, pj)

blocks M∗, a contradiction.

Lemma 4.4.7. If the pair (si, pj) was deleted during some execution of Algorithm SPA-ST-
super, and at the termination of the algorithm si is not assigned to a project better than pj ,

and each of pj and lk is undersubscribed, then I admits no super-stable matching.

Proof. Suppose for a contradiction that there exists a super-stable matching M∗ in I . Let
(si, pj) be a pair that was deleted during an arbitrary execution E of the algorithm. This
implies that (si, pj) /∈ M∗ by Lemma 4.4.1. Let M be the assignment at the termination
of E. By the hypothesis of the lemma, lk is undersubscribed in M . This implies that lk is
undersubscribed inM∗, by Lemma 4.4.4. Since pj is offered by lk, and pj is undersubscribed
in M , it follows from the proof of Lemma 4.4.6 that pj is undersubscribed in M∗. Further,
by the hypothesis of the lemma, either si is unassigned in M , or si prefers pj to M(si) or is
indifferent between them. By Lemma 4.4.1, this is true for si in M∗. Hence (si, pj) blocks
M∗, a contradiction.
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The next lemma shows that the final assignment may be used to determine the existence, or
otherwise, of a super-stable matching in I .

Lemma 4.4.8. If at the termination of Algorithm SPA-ST-super, the assignment M is not

super-stable in I then no super-stable matching exists in I .

Proof. Suppose M is not super-stable in I . If some student si is assigned to two or more
projects inM then I admits no super-stable matching, by Lemma 4.4.5. Hence every student
is assigned to at most one project in M . Moreover, since no project or lecturer is oversub-
scribed in M , it follows that M is a matching. Let (si, pj) be a blocking pair for M , then si
is either unassigned in M or prefers pj to M(si) or is indifferent between them. Whichever
is the case, (si, pj) has been deleted. Let lk be the lecturer who offers pj . In what follows, we
identify the point in the algorithm at which (si, pj) was deleted, and we arrive at a conclusion
that no super-stable matching exists.

Firstly, suppose (si, pj) was deleted as a result of pj being full or oversubscribed (on lines
12 or 21). Suppose pj is full in M . Then (si, pj) cannot block M irrespective of whether lk
is undersubscribed or full in M , since lk prefers the worst assigned student/s in M(pj) to si.
Hence pj is undersubscribed in M . As pj was previously full, each pair (st, pu), for each st
that is no better than si at the tail of Lk and each pu ∈ Pk ∩ At, would have been deleted on
line 34 of the algorithm. Thus, if lk is full in M then (si, pj) does not block M . Suppose lk
is undersubscribed in M . If lk was full at some point during the execution of the algorithm
then I admits no super-stable matching, by Lemma 4.4.6. Hence lk was never full during the
algorithm’s execution. Recall that each of pj and lk is undersubscribed in M . As (si, pj) is a
blocking pair of M , si cannot be assigned in M to a project that she prefers to pj . Hence I
admits no super-stable matching, by Lemma 4.4.7.

Next, suppose (si, pj) was deleted as a result of lk being full or oversubscribed (on lines 16
or 26), (si, pj) could only block M if lk is undersubscribed in M . If this is the case then I
admits no super-stable matching, by Lemma 4.4.6.

Finally, suppose (si, pj) was deleted (on line 34) because some other project pj′ offered by lk
was previously full and ended up undersubscribed on line 28. Then lk must have identified
the most-preferred student, say sr, who was previously assigned to pj′ but subsequently got
rejected from pj′ . At this point, si is at the tail of Lk and si is no better than sr in Lk.
Moreover, every project offered by lk that si finds acceptable would have been deleted from
si’s preference list at the for loop iteration in line 34. If pj is full in M then (si, pj) does
not block M . Hence pj is undersubscribed in M . If lk is full in M then (si, pj) does not
block M , since si /∈ M(lk) and lk prefers the worst student/s in M(lk) to si. Hence lk is
undersubscribed in M . Again by Lemma 4.4.7, I admits no super-stable matching.

Since (si, pj) is an arbitrary pair, this implies that I admits no super-stable matching.
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The next lemma shows that Algorithm SPA-ST-super may be implemented to run in linear
time.

Lemma 4.4.9. Algorithm SPA-ST-super may be implemented to run in O(L) time and

O(n1n2) space, where n1, n2 and L are the number of students, number of projects and total

length of the preference lists, respectively, in I .

Proof. The algorithm’s time complexity depends on how efficiently we can execute the op-
eration of a student applying to a project and the operation of deleting a (student, project)
pair, each of which occur once for any (student, project) pair. It turns out that both op-
erations can be implemented to run in constant time, giving Algorithm SPA-ST-super an
overall complexity of Θ(L), where L is the total length of all the preference lists. In what
follows, we describe the non-trivial aspects of such an implementation. We remark that the
data structures discussed here are inspired by, and extend, those detailed in [13, Section 3.3]
for Algorithm SPA-student.

For each student si, build an array positionsi , where positionsi(pj) is the position of project
pj in si’s preference list. For example, if si’s preference list is (p2 p5 p3) p7 (p6 p1) then
positionsi(p5) = 2 and positionsi(p1) = 6. In general, position captures the order in which
the projects appear in the preference list when read from left to right, ignoring any ties.
Represent si’s preference list by embedding doubly linked lists in an array preferencesi . For
each project pj ∈ Ai, preferencesi(positionsi(pj)) stores the list node containing pj . This
node contains two next pointers (and two previous pointers) – one to the next project in si’s
preference list (after deletions, this project may not be located at the next array position), and
another pointer to the next project pj′ in si’s preference list, where pj′ and pj are both offered
by the same lecturer. Construct the latter list by traversing through si’s preference list, using
a temporary array to record the last project in the list offered by each lecturer.

As highlighted in [13], we suggest using virtual initialisation [27] for these arrays, to avoid
the O(n1n3) initialisation time dominating the total runtime of the algorithm. Very broadly,
this technique allows us to create and access an initialised array in constant time. See [27,
p. 149] for more details, and see [8] for an illustration.

To represent the ties in si’s preference list, build an array successor si . For each project
pj in si’s preference list, successor si(positionsi(pj)) stores the true boolean if pj is tied
with its successor in Ai and false otherwise. After the deletion of any (student, project)
pair, update the successor booleans. As an illustration, with respect to si’s preference
list given in the previous paragraph, successor si is the array [true, true, false,

false, true, false]. Now, suppose p3 was deleted from si’s preference list, since
successor si(positionsi(p3)) is false and successor si(positionsi(p5)) is true, set successor si
(positionsi(p5)) to false (since p5 is the predecessor of p3). Clearly using these data struc-
tures, we can find the next project at the head of each student’s preference list, find the next
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project offered by a given lecturer on each student’s preference list, as well as delete a project
from a given student’s preference list in constant time.

For each lecturer lk, build two arrays preference lk and successor lk , where preference lk(si)

is the position of student si in lk’s preference list, and successor lk(preference lk(si)) stores
the position of the first strict successor (with respect to position) of si in Lk or a null value if
si has no strict successor3. Represent lk’s preference list (i.e., Lk) by the array preference lk ,
with an additional pointer, last lk . Initially, last lk stores the index of the last position in
preference lk . To represent the ties in lk’s preference list, build an array predecessor lk . For
each si ∈ Lk, predecessor lk(preference lk(si)) stores the true boolean if si is tied with its
predecessor in Lk and false otherwise.

When lk becomes full, make last lk equivalent to lk’s worst assigned student through the
following method. Perform a backward traversal through the array preference lk , starting at
last lk , and continuing until lk’s worst assigned student, say si′ , is encountered (each student
stores a pointer to their assigned project, or a special null value if unassigned). Deletions
must be carried out in the preference list of each student who is worse than si′ on lk’s prefer-
ence list (precisely those students whose position in preference lk is greater than or equal to
that stored in successor lk(preference lk(si′)))4.

When lk becomes oversubscribed, we can find and delete the students at the tail of lk by
performing a backward traversal through the array preference lk , starting at last lk , and con-
tinuing until we encounter a student, say si′ , such that predecessor lk(preference lk(si′)) stores
the false boolean. If lk becomes undersubscribed after we break the assignment of stu-
dents encountered on this traversal (including si′) to lk, rather than update last lk immediately,
which could be expensive, we wait until lk becomes full again. The cost of these traversals
taken over the algorithm’s execution is thus linear in the length of lk’s preference list.

For each project pj offered by lk, build the arrays preferencepj , successor pj and predecessor pj
corresponding to Ljk, as described in the previous paragraph for Lk. Represent the projected
preference list of lk for pj (i.e., Ljk) by the array preferencepj , with an additional pointer,
lastpj . These project preference arrays are used in much the same way as the lecturer pref-
erence arrays

Since we only visit a student at most twice during these backward traversals, once for the
lecturer and once for the project, the asymptotic running time remains linear.

Lemma 4.4.1 shows that there is an optimality property for each assigned student in any
super-stable matching found by the algorithm, whilst Lemma 4.4.8 establishes the correct-

3For example, if lk’s preference list is s5 (s3 s1 s6) s7 (s2 s8) then successor lk is the array [2 5 5 5 6 0 0].
4For efficiency, we remark that it is not necessary to make deletions from the preference lists of lecturers

or projected preference lists of lecturers for each project the lecturer offers, since the while loop of Algorithm
SPA-ST-super involves students applying to projects in the head of their preference list.
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ness of Algorithm SPA-ST-super. The following theorem collects together Lemmas 4.4.1,
4.4.8 and 4.4.9.

Theorem 4.4.10. For a given instance I of SPA-ST, Algorithm SPA-ST-super determines,

in O(L) time and O(n1n2) space, whether or not a super-stable matching exists in I . If

such a matching does exist, all possible executions of the algorithm find one in which each

assigned student is assigned to the best project that she could obtain in any super-stable

matching, and each unassigned student is unassigned in all super-stable matchings.

Given the optimality property established by Theorem 4.4.10, we define the super-stable
matching found by Algorithm SPA-ST-super to be student-optimal.

4.4.6 Properties of super-stable matchings in SPA-ST

In this section, we consider properties of the set of super-stable matchings in an instance of
SPA-ST. We show that the Unpopular Projects Theorem for SPA-S (see Theorem 2.3.2) holds
for SPA-ST under super-stability.

Theorem 4.4.11. For a given instance I of SPA-ST, the following properties holds:

1. each lecturer is assigned the same number of students in all super-stable matchings;

2. exactly the same students are unassigned in all super-stable matchings;

3. a project offered by an undersubscribed lecturer has the same number of students in

all super-stable matchings.

Proof. Let M and M∗ be two arbitrary super-stable matchings in I . Let I ′ be an instance
of SPA-S obtained from I by breaking the ties in I in some way. Then by Proposition 4.2.2,
each of M and M∗ is stable in I ′. Thus by Theorem 2.3.2, each lecturer is assigned the same
number of students in M and M∗, exactly the same students are unassigned in M and M∗,
and a project offered by an undersubscribed lecturer has the same number of students in M
and M∗.

To illustrate this, consider the SPA-ST instance I3 given in Figure 4.5, which admits the super-
stable matchings M1 = {(s3, p3), (s4, p2), (s5, p3), (s6, p2)} and M2 = {(s3, p3), (s4, p3),
(s5, p2), (s6, p2)}. The reader can easily verify that M1 is the student-optimal super-stable
matching in I3. Each of l1 and l2 is assigned the same number of students in both M1 and
M2, illustrating part (1) of Theorem 4.4.11. Also, each of s1 and s2 is unassigned in both
M1 and M2, illustrating part (2) of Theorem 4.4.11. Finally, l2 is undersubscribed in both
M1 and M2, and each of p3 and p4 has the same number of students in both M1 and M2,
illustrating part (3) of Theorem 4.4.11.
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Students’ preferences Lecturers’ preferences offers
s1: p1 l1: s5 s6 s4 (s1 s2) s3 p1, p2
s2: (p1 p3) l2: s3 s4 s5 s6 s2 p3, p4
s3: p2 p3

s4: p2 p3

s5: p3 p2 Project capacities: c1 = c4 = 1, c2 = c3 = 2

s6: p2 p4 Lecturer capacities: d1 = 2, d2 = 3

Figure 4.5: An instance I3 of SPA-ST.

4.5 An IP model for super-stability in SPA-ST

4.5.1 Introduction

In this section, we describe an IP model for super-stability in SPA-ST. Although a super-
stable matching in an instance of SPA-ST can be found in polynomial-time (as illustrated
by Theorem 4.4.10), we reiterate that our reason for this is purely experimental. Let I
be an instance of SPA-ST involving a set S = {s1, s2, . . . , sn1} of students, a set P =

{p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. We construct an
IP model J of I as follows. Firstly, we create binary variables xi,j ∈ {0, 1} (1 ≤ i ≤ n1, 1 ≤
j ≤ n2) for each acceptable pair (si, pj) ∈ S × P such that xi,j indicates whether si is
assigned to pj in a solution or not. Henceforth, we denote by S a solution in the IP model J ,
and we denote by M the matching derived from S in the following natural way: if xi,j = 1

under S then si is assigned to pj in M , otherwise si is not assigned to pj in M .

4.5.2 Constraints

In this section, we give the set of constraints to ensure that the assignment obtained from a
feasible solution in J is a matching, and that the matching admits no blocking pair.

Matching constraints. The feasibility of a matching can be ensured with the following
three set of constraints. ∑

pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), (4.5)

n1∑
i=1

xi,j ≤ cj (1 ≤ j ≤ n2), (4.6)

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3) . (4.7)
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Note that Inequality (4.5) ensures that each student si ∈ S is not assigned to more than one
project, while Inequalities (4.6) and (4.7) ensure that the capacity of each project pj ∈ P and
each lecturer lk ∈ L is not exceeded.

Given an acceptable pair (si, pj), we define rank(si, pj), the rank of pj on si’s preference list,
to be r + 1, where r is the number of projects that si prefers to pj . Clearly, projects that are
tied together on si’s preference list have the same rank. Given a lecturer lk ∈ L and a student
si ∈ Lk, we define rank(lk, si), the rank of si on lk’s preference list, to be r + 1, where r
is the number of students that lk prefers to si. Similarly, students that are tied together on
lk’s preference list have the same rank. With respect to an acceptable pair (si, pj), we define
Si,j = {pj′ ∈ Ai : rank(si, pj′) < rank(si, pj)}, the set of projects that si prefers to pj . Let lk
be the lecturer who offers pj . We also define Ti,j = {si′ ∈ Ljk : rank(lk, si′) < rank(lk, si)},
the set of students that are better than si on the projected preference list of lk for pj . Finally,
we define Di,k = {si′ ∈ Lk : rank(lk, si′) < rank(lk, si)}, the set of students that are better
than si on lk’s preference list.

In what follows, we fix an arbitrary acceptable pair (si, pj) and we enforce constraints to
ensure that (si, pj) does not form a blocking pair for the matching M . Henceforth, lk is the
lecturer who offers pj .

Blocking pair constraints. First, we define θi,j = 1 − xi,j −
∑

pj′∈Si,j

xi,j′ . Intuitively,

θi,j = 1 if and only if si is unassigned in M , or si prefers pj to M(si) or is indifferent
between them. Henceforth, if (si, pj) forms a blocking pair for M then we refer to (si, pj) as
a blocking pair of type (i), type (ii) or type (iii), according as (si, pj) satisfies condition (i),
(ii) or (iii) of Definition 4.2.1, respectively. We describe the constraints to avoid these types
of blocking pair as follows.

Type (i). First, we create a binary variable αj in J such that if pj is undersubscribed in
M then αj = 1. We enforce this condition by imposing the following constraint.

cjαj ≥ cj −
n1∑
i′=1

xi′,j, (4.8)

where
∑n1

i′=1 xi′,j = |M(pj)|. If pj is undersubscribed in M then the RHS of Inequality (4.8)
is at least 1 and this implies that αj = 1, otherwise αj is not constrained. Next, we create a
binary variable βk in J such that if lk is undersubscribed in M then βk = 1. We enforce this
condition by imposing the following constraint:

dkβk ≥ dk −
n1∑
i′=1

∑
pj′∈Pk

xi′,j′ , (4.9)
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where
n1∑
i′=1

∑
pj′∈Pk

xi′,j′ = |M(lk)|. If lk is undersubscribed in M then the RHS of Inequality

(4.9) is at least 1 and this implies that βk = 1, otherwise βk is not constrained. The following
constraint ensures that (si, pj) does not form a type (i) blocking pair for M .

θi,j + αj + βk ≤ 2 . (4.10)

Type (ii). We create a binary variable ηk in J such that if lk is full in M then ηk = 1. We
enforce this condition by imposing the following constraint.

dkηk ≥

1 +

n1∑
i′=1

∑
pj′∈Pk

xi′,j′

− dk . (4.11)

If lk is full in M then the RHS of Inequality (4.11) is at least 1 and this implies that ηk = 1,
otherwise ηk is not constrained. Next, we create a binary variable δi,k in J such that if
si ∈ M(lk), or lk prefers si to a worst student in M(lk) or is indifferent between them, then
δi,k = 1. We enforce this condition by imposing the following constraint.

dkδi,k ≥
n1∑
i′=1

∑
pj′∈Pk

xi′,j′ −
∑

si′∈Di,k

∑
pj′∈Pk

xi′,j′ . (4.12)

Note that if si ∈M(lk) or lk prefers si to a worst student inM(lk) or lk is indifferent between
them, then the RHS of Inequality (4.12) is at least 1 and this implies that δi,k = 1, otherwise
δi,k is not constrained. The following constraint ensures that (si, pj) does not form a type (ii)
blocking pair for M .

θi,j + αj + ηk + δi,k ≤ 3 . (4.13)

Type (iii). Next we create a binary variable γj in J such that if pj is full inM then γj = 1.
We enforce this condition by imposing the following constraint.

cjγj ≥

(
1 +

n1∑
i′=1

xi′,j

)
− cj . (4.14)

where
∑n1

i′=1 xi′,j = |M(pj)|. If pj is full in M then the RHS of Inequality (4.14) is at least 1

and this implies that γj = 1, otherwise γj is not constrained. Next, we create a binary variable
λi,j,k in J such that if lk prefers si to a worst student inM(pj) or is indifferent between them,



4.5. An IP model for super-stability in SPA-ST 75

then λi,j,k = 1. We enforce this condition by imposing the following constraint.

cjλi,j,k ≥
n1∑
i′=1

xi′,j −
∑

si′∈Ti,j

xi′,j . (4.15)

Note that if lk prefers si to a worst student in M(pj) or is indifferent between them, then the
RHS of Inequality (4.15) is at least 1 and this implies that λi,j,k = 1, otherwise λi,j,k is not
constrained. The following constraint ensures that (si, pj) does not form a type (iii) blocking
pair for M .

θi,j + γj + λi,j,k ≤ 2 . (4.16)

4.5.3 Variables

We define a collective notation for each set of variables involved in J as follows:

A = {αj : 1 ≤ j ≤ n2}, Γ = {γj : 1 ≤ j ≤ n2},
B = {βk : 1 ≤ k ≤ n3}, ∆ = {δi,k : 1 ≤ i ≤ n1, 1 ≤ k ≤ n3},
N = {ηk : 1 ≤ k ≤ n3}, Λ = {λi,j,k : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3},
X = {xi,j : si ∈ S ∧ pj ∈ Ai} .

4.5.4 Objective function

On one hand, all super-stable matchings are of the same size, and thus nullifies the need for
an objective function. On the other hand, optimization solvers require an objective function
in addition to the variables and constraints in order to produce a solution. The objective
function given below involves maximising the summation of all the xi,j binary variables.

max

n1∑
i=1

∑
pj∈Ai

xi,j . (4.17)

Finally, we have constructed an IP model J of I comprising the set of integer-valued vari-
ables A,B,N,X,Γ,∆, and Λ, the set of Inequalities (4.5) - (4.16) and an objective function
(4.17). Note that J can then be used to construct a super-stable matching in I , should one
exist.

4.5.5 Correctness of the IP model

Given an instance I of SPA-ST formulated as an IP model J using the above transformation,
we present the following lemmas regarding the correctness of J .
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Lemma 4.5.1. A feasible solution S to J corresponds to a super-stable matching M in I .

Proof. Assume firstly that J has a feasible solution S. LetM = {(si, pj) ∈ S×P : xi,j = 1}
be the assignment in I generated from S. We note that Inequality (4.5) ensures that each
student is assigned in M to at most one project. Moreover, Inequalities (4.6) and (4.7)
ensures that the capacity of each project and lecturer is not exceeded in M . Thus M is a
matching. We will prove that Inequalities (4.8) - (4.16) ensures that M admits no blocking
pair.

Suppose for a contradiction that there exists some acceptable pair (si, pj) that forms a block-
ing pair forM , where lk is the lecturer who offers pj . This implies that either si is unassigned
in M or si prefers pj to M(si) or is indifferent between them. Thus

∑
pj′∈Si,j

xi,j′ = 0.
Moreover, since si is not assigned to pj in M , we have that xi,j = 0. Thus θi,j = 1.

Now suppose (si, pj) forms a type (i) blocking pair for M . Then each of pj and lk is under-
subscribed in M . Thus

∑n1

i′=1 xi′,j < cj and
∑n1

i′=1

∑
pj′∈Pk

xi′,j′ < dk. This implies that the
RHS of Inequality (4.8) and the RHS of Inequality (4.9) is strictly greater than 0. Moreover,
since S is a feasible solution to J , αj = βk = 1. Hence, the LHS of Inequality (4.10) is
strictly greater than 2, a contradiction to the feasibility of S.

Now suppose (si, pj) forms a type (ii) blocking pair for M . Then pj is undersubscribed in
M and as explained above, αj = 1. Also, lk is full in M and this implies that the RHS of
Inequality (4.11) is strictly greater than 0. Since S is a feasible solution, we have that ηk = 1.
Furthermore, either si ∈M(lk) or lk prefers si to a worst student in M(lk) or lk is indifferent
between them. In any of these cases, the RHS of Inequality (4.12) is strictly greater than 0.
Thus δi,k = 1, since S is a feasible solution. Hence the LHS of Inequality (4.13) is strictly
greater than 3, a contradiction to the feasibility of S.

Finally, suppose (si, pj) forms a type (iii) blocking pair for M . Then pj is full in M and
thus the RHS of Inequality (4.14) is strictly greater than 0. Since S is a feasible solution,
we have that γj = 1. In addition, lk prefers si to a worst student in M(pj) or is indifferent
between them. This implies that the RHS of Inequality (4.15) is strictly greater than 0. Thus
λi,j,k = 1, since S is a feasible solution. Hence the LHS of Inequality (4.16) is strictly greater
than 2, a contradiction to the feasibility of S. Hence M admits no blocking pair; and hence,
M is a super-stable matching in I .

Lemma 4.5.2. A super-stable matching M in I corresponds to a feasible solution S to J .

Proof. Let M be a super-stable matching in I . First we set all the binary variables involved
in J to 0. For each (si, pj) ∈ M , we set xi,j = 1. Since M is a matching, it is clear that
Inequalities (4.5) - (4.7) is satisfied. For any acceptable pair (si, pj) ∈ (S × P) \M such
that si is unassigned in M or si prefers pj to M(si) or is indifferent between them, we set
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θi,j = 1. For any project pj ∈ P such that pj is undersubscribed in M , we set αj = 1 and
thus Inequality (4.8) is satisfied. For any lecturer lk ∈ L such that lk is undersubscribed in
M , we set βk = 1 and thus Inequality (4.9) is satisfied.

Now, for Inequality (4.10) not to be satisfied, its LHS must be strictly greater than 2. This
would only happen if there exists some (si, pj) ∈ (S ×P) \M , where lk is the lecturer who
offers pj , such that θi,j = 1, αj = 1 and βk = 1. This implies that either si is unassigned
in M or si prefers pj to M(si) or is indifferent between them, and each of pj and lk is
undersubscribed in M . Thus (si, pj) forms a type (i) blocking pair for M , a contradiction to
the super-stability of M . Hence, Inequality (4.10) is satisfied.

For any lecturer lk ∈ L such that lk is full in M , we set ηk = 1. Thus Inequality (4.11) is
satisfied. Let (si, pj) be an acceptable pair such that pj ∈ Pk and (si, pj) /∈M . If si ∈M(lk)

or lk prefers si to a worst student in M(lk) or is indifferent between them, we set δi,k = 1.
Thus Inequality (4.12) is satisfied. Suppose Inequality (4.13) is not satisfied. Then there
exists (si, pj) ∈ (S × P) \M , where lk is the lecturer who offers pj , such that θi,j = 1,
αj = 1, ηk = 1 and δi,k = 1. This implies that either si is unassigned in M or si prefers
pj to M(si) or is indifferent between them. In addition, pj is undersubscribed in M , lk is
full in M and either si ∈ M(lk) or lk prefers si to a worst student in M(lk) or is indifferent
between them. Thus (si, pj) forms a type (ii) blocking pair for M , a contradiction to the
super-stability of M . Hence Inequality (4.13) is satisfied.

Finally, for any project pj ∈ P such that pj is full in M , we set γj = 1. Thus Inequality
(4.14) is satisfied. Let lk be the lecturer who offers pj and let (si, pj) be an acceptable pair.
If lk prefers si to a worst student in M(pj) or is indifferent between them, we set λi,j,k = 1.
Thus Inequality (4.15) is satisfied. Suppose Inequality (4.16) is not satisfied. Then there
exists some (si, pj) ∈ (S × P) \M such that θi,j = 1, γj = 1 and λi,j,k = 1. This implies
that either si is unassigned in M or si prefers pj to M(si) or is indifferent between them.
In addition, pj is full in M and lk prefers si to a worst student in M(pj) or is indifferent
between them. Thus (si, pj) forms a type (iii) blocking pair for M , a contradiction to the
super-stability of M . Hence, Inequality (4.16) is satisfied. Hence S, comprising the above
assignments of values to the variables in A∪B ∪N ∪X ∪ Γ∪∆∪Λ, is a feasible solution
to J .

The following theorem is a consequence of Lemmas 4.5.1 and 4.5.2.

Theorem 4.5.3. Let I be an instance of SPA-ST and let J be the IP model for I as described

above. A feasible solution to J corresponds to a super-stable matching in I . Conversely, a

super-stable matching in I corresponds to a feasible solution to J .
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4.6 Empirical evaluation

In this section, we evaluate an implementation of Algorithm SPA-ST-super empirically. We
implemented our algorithm in Python5, and we performed our experiments on a system with
dual Intel Xeon CPU E5-2640 processors with 64GB of RAM, running Ubuntu 17.10. For
our experiment, we were primarily concerned with the following question: how does the
nature of the preference lists in a given SPA-ST instance affect the existence of a super-stable
matching?

4.6.1 Datasets

When generating random datasets, there are clearly several parameters that can be varied,
such as the number of students, projects and lecturers; the lengths of the students’ preference
lists as well as a measure of the density of ties present in the preference lists. We denote
by td, the measure of the density of ties present in the preference lists. In each student’s
preference list, the tie density tds (0 ≤ tds ≤ 1) is the probability that some project is tied
to its successor. The tie density tdl in each lecturer’s preference list is defined similarly. At
tds = tdl = 1, each preference list comprises a single tie while at tds = tdl = 0, no tie would
exist in the preference lists, thus reducing the problem to an instance of SPA-S.

4.6.2 Experimental setup

For each range of values for the aforementioned parameters, we randomly generated a set
of SPA-ST instances, involving n1 students (which we will henceforth refer to as the size
of the instance), 0.5n1 projects, 0.2n1 lecturers and 1.2n1 total project capacity which was
randomly distributed amongst the projects such that each project has capacity at least 1. The
capacity for each lecturer lk was chosen uniformly at random to lie between the highest ca-
pacity of the projects offered by lk and the sum of the capacities of the projects that lk offers.
In each set, we measured the proportion of instances that admit a super-stable matching. We
remark that the parameter values were chosen to ensure that projects could typically accom-
modate more than one student, that the total capacity of the projects exceeded the number
of students, and that each lecturer typically offered multiple projects, without reflecting any
specific real-world application. Further, we note that the instances that we used for our em-
pirical analysis in this section, and in Sections 5.5 and 6.6 were generated using a simple
strategy.

It is worth mentioning that when we varied the tie density on both the students’ and lecturers’
preference lists between 0.1 and 0.5, super-stable matchings were very elusive, even with an

5https://github.com/sofiatolaosebikan/spa-st-super
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instance size of 100 students. Thus, for the purpose of our experiment, we decided to choose
a low tie density.

4.6.3 Correctness testing

To test the correctness of our algorithm’s implementation, we implemented our IP model for
SPA-ST under super-stability using the Gurobi optimisation solver in Python. We randomly
generated 10, 000 SPA-ST instances, each consisting of 100 students and a constant ratio of
projects, lecturers, project capacities and lecturer capacities as described above. Also, each
student’s preference list was fixed at 10, with a tie density of 0.1. With this setup, we verified
consistency between the outcomes of our implementation of Algorithm SPA-ST-super and
our implementation of the IP-based algorithm in terms of the existence or otherwise of a
super-stable matching.

4.6.4 Experimental results

Experiment 1

In our first experiment, we examined how the length of the students’ preference lists affects
the existence of a super-stable matching. We increased the number of students n1 while
maintaining a constant ratio of projects, lecturers, project capacities and lecturer capacities
as described above. For various values of n1 (100 ≤ n1 ≤ 1000) in increments of 100, we
varied the length of each student’s preference list for various values of x (5 ≤ x ≤ 50) in
increments of 5; and with each of these parameters, we randomly generated 1000 instances.
For all the preference lists, we set tds = tdl = 0.005 (on average, 1 out of 5 students has a
single tie of length 2 in their preference list, and this holds similarly for the lecturers).

The result, which is displayed in Figure 4.6, shows that as we varied the length of the pref-
erence list, there was no significant uplift in the number of instances that admitted a super-
stable matching. In most cases, we observed that the proportion of instances that admit a
super-stable matching is slightly higher when the preference list length is 50 compared to
when the preference list length is 5. The result also shows that the proportion of instances
that admit a super-stable matching decreases as the number of students increases. Further,
we recorded the time taken for our algorithm’s implementation to terminate, and as can be
seen in Table 4.2, for an instance size of 1000 and preference list length 50, the algorithm
terminates in approximately 0.4 second.
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Figure 4.6: Proportion of instances that admit a super-stable matching as the size of the
instance increases while varying the length of the preference lists with tie density fixed at
0.005 in both the students’ and lecturers’ preference lists.

Table 4.2: Time (in seconds) for our algorithm’s implementation to terminate averaged over
1000 for each instance size, with the length of each student’s preference list fixed at 50.

n1 100 200 300 400 500 600 700 800 900 1000

Time 0.017 0.046 0.082 0.120 0.160 0.203 0.248 0.298 0.349 0.399

Experiment 2

In our second experiment, we investigated how the variation in tie density in both the stu-
dents’ and lecturers’ preference lists affects the existence of a super-stable matching. To
achieve this, we varied the tie density in the students’ preference lists tds (0 ≤ tds ≤ 0.05)

and the tie density in the lecturers’ preference lists tdl (0 ≤ tdl ≤ 0.05), both in increments
of 0.005. For each pair of tie densities in tds × tdl , we randomly-generated 1000 SPA-ST

instances for various values of n1 (100 ≤ n1 ≤ 1000) in increments of 100. For each of
these instances, we maintained the same ratio of projects, lecturers, project capacities and
lecturer capacities as in Experiment 1. Considering our discussion from Experiment 1, we
fixed the length of each student’s preference list at 50.

The result displayed in Figure 4.7 shows that increasing the tie density in both the students’
and lecturers’ preference lists reduces the proportion of instances that admit a super-stable
matching. In fact, this proportion reduces further as the size of the instance increases. How-
ever, it was interesting to see that when we fixed the tie density in the students’ prefer-
ence lists at 0 and varied the tie density in the lecturers’ preference lists, about 74% of
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the randomly-generated SPA-ST instances involving 1000 students admitted a super-stable
matching.

Figure 4.7: Result for Experiment 2. Each of the coloured square boxes represents the pro-
portion of the 1000 randomly-generated SPA-ST instances that admit a super-stable matching,
with respect to the tie density in the students’ and lecturers’ preference lists. See the colour
bar transition, as this proportion ranges from dark (100%) to light (0%).

4.7 Conclusions and open problems

In this chapter, we have described a linear-time algorithm to find a super-stable matching or
report that no such matching exists, given an instance of SPA-ST. We established that for
instances that do admit a super-stable matching, our algorithm produces the student-optimal
super-stable matching, in the sense that each assigned student has the best project that she
could obtain in any super-stable matching. We leave open the formulation of a lecturer-
oriented counterpart to our algorithm.

We also described an IP model for super-stability in SPA-ST. Further, we carried out an
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empirical evaluation of our algorithm’s implementation. The purpose of our experiments
was to investigate how the nature of the preference lists affects the existence (or otherwise)
of super-stable matchings in an arbitrary instance of SPA-ST.

Based on the instances we generated randomly, the experimental results suggest that as we
increase the size of the instance and the density of ties in the preference lists, the likelihood of
a super-stable matching existing decreases. There was no significant uplift in this likelihood
even as we increased the length of the students’ preference lists. When the ties occur only
in the lecturers’ preference lists, we found that a significantly higher proportion of instances
admit a super-stable matching. However, the reverse is the case when the ties occur only in
the students’ preference lists. We have no explanation for this outcome.

Given that there are typically more students than lecturers in practical applications, it could
be that only lecturers are permitted to have some form of indifference over the students
that they find acceptable, whilst each student might be able to provide a strict ordering over
what may be a small number of projects that she finds acceptable. Further evaluation of
our implementation could investigate how other parameters (e.g., the popularity of some
projects, or the position of the ties in the preference lists) affect the existence of a super-
stable matching. It would also be interesting to examine the existence (or otherwise) of
super-stable matchings in real SPA-ST datasets.

From a theoretical perspective, the following are other directions for future work. Let I be
an arbitrary instance of SPA-ST.

1. Can we formalise the results on the probability of a super-stable matching existing in
I? This question has been partially explored for the Stable Roommates problem [102].

2. Is there a characterisation of the set of super-stable matchings in I in terms of a lattice
structure? It is known that the set of super-stable matchings in an instance of SMT

forms a distributive lattice [82, 114]. To generalise this structural result for SPA-ST,
ideas from [82, 114], as well as Chapter 3 of this thesis, would certainly be useful.
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Chapter 5

Strong Stability in SPA-ST

5.1 Introduction

The experimental results arising from our contribution in Chapter 4 suggest that super-stable
matchings can be very elusive given an arbitrary instance of SPA-ST. To cope with the
possible non-existence of matchings satisfying this stability concept, rather than settle for a
weakly stable matching, a natural strategy would be to seek a strongly stable matching if one
exists.

It was motivated in [59] that weakly stable matching may be undermined by bribery or per-
suasion, in practical applications of HRT. In what follows, we give a corresponding argument
for an instance I of SPA-ST. Suppose that a matching M is a weakly stable matching in I ,
and suppose that a student si prefers project pj (where pj is offered by lecturer lk) to her
assigned project in M , say pj′ (where pj′ is offered by a lecturer different from lk). Suppose
further that pj is full in M and lk is indifferent between si and one of the worst student/s
assigned to pj in M , say si′ . Clearly, the pair (si, pj) does not constitute a blocking pair for
M under weak stability as lk would not improve by taking on si in the place of si′ . However,
si might be so invested in pj that she is ready to persuade or even bribe lk to reject si′ and
accept her instead. Lecturer lk, being indifferent between si and si′ , may decide to accept
si’s proposal. We can reach a similar argument if the roles are reversed. However, if M is
strongly stable, it cannot be potentially undermined by this type of student-project pair.

Throughout this chapter, if a SPA-ST instance admits a strongly stable matching, we say that
such an instance is solvable. Unfortunately not every instance of SPA-ST is solvable. To see
this, consider the case where there are two students, two projects and two lecturers, each
lecturer offers one project, the capacity of each project and lecturer is 1, the students have
exactly the same strictly-ordered preference list of length 2, and each lecturer’s preference
list is a single tie of length 2. Then any matching will be undermined by a student and lecturer
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that are not matched together). However, it should be clear from the discussions above that
in cases where a strongly stable matching exists, it should be preferred over a matching that
is merely weakly stable.

Our contribution in this chapter is to present theoretical and experimental results for SPA-ST

under strong stability. On the theoretical side, we present the first polynomial-time algorithm
to find a strongly stable matching or report that no such matching exists, given an instance of
SPA-ST – thus solving an open problem given in [13, 97]. Our algorithm is student-oriented
because it involves the students applying to projects. Moreover, the algorithm returns the
student-optimal strongly stable matching, in the sense that if the given instance is solvable
then our algorithm will output a solution in which each student has at least as good a project
as she could obtain in any strongly stable matching that the instance admits. We note that
our algorithm is a non-trivial extension of the strong stability algorithms for SMT [51], SMTI

[81], and HRT [59] (we discuss this further in Section 5.3.3).

On the experimental side, we present results of an empirical evaluation based on an imple-
mentation of our polynomial-time algorithm that investigates the proportion of randomly-
generated SPA-ST instances that admit strongly stable matchings but no super-stable match-
ings. With respect to the datasets that we used for our super-stability experiments, we ob-
served that the proportion of instances that admitted strongly stable matchings are exactly
the same as those that admitted super-stable matchings. However, when we varied the size
of the instance between 10 and 50, there was a slight increase in the proportion of instances
that admitted strongly stable matchings but no super-stable matchings.

The remainder of this chapter is structured as follows. We give a formal definition for the
strong stability concept in Section 5.2, followed by some justification for the definition. We
describe our algorithm for SPA-ST under strong stability in Section 5.3. Further, in Section
5.3: we discuss the non-triviality of extending the strong stability algorithms in the literature
[51, 59, 81] to the SPA-ST setting; we illustrate an execution of our algorithm with respect to
an example instance of SPA-ST; and we present the algorithm’s correctness and complexity
results. To end Section 5.3, we give some structural properties satisfied by the set of strongly
stable matchings in an instance of SPA-ST.

In Section 5.4, we present an IP model for SPA-ST under strong stability. Similar to the
justification we gave in the super-stability setting, we intend to use an implementation of
the IP model to test the correctness of our algorithm’s implementation. In Section 5.5, we
present the experimental results obtained from our algorithm’s empirical evaluation. Finally,
in Section 5.6, we present some concluding remarks and potential direction for future work.
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Students’ preferences Lecturers’ preferences offers
s1: (p1 p2) l1: s3 (s1 s2) p1, p2
s2: p2 p3 l2: (s3 s2) p3
s3: p3 p1

Project capacities: c1 = c2 = c3 = 1
Lecturer capacities: d1 = 2, d2 = 1

Figure 5.1: An instance I1 of SPA-ST.

5.2 Preliminary definitions

5.2.1 Introduction

Let I be an instance of SPA-ST (as defined in Section 4.2), and let M be a matching in I . Let
(si, pj) be an acceptable pair in I and let lk be the lecturer who offers pj .

Definition 5.2.1 (Strong stability). We say that M is strongly stable in I if it admits no

blocking pair, where a blocking pair is an acceptable pair (si, pj) ∈ (S × P) \M such that

either (1a and 1b) or (2a and 2b) holds as follows:

(1a) either si is unassigned in M or si prefers pj to M(si);

(1b) either (i), (ii) or (iii) holds as follows:

(i) each of pj and lk is undersubscribed in M ;
(ii) pj is undersubscribed in M , lk is full in M , and either si ∈ M(lk) or lk prefers

si to the worst student/s in M(lk) or lk is indifferent between them;
(iii) pj is full inM , and lk prefers si to the worst student/s inM(pj) or lk is indifferent

between them.

(2a) si is indifferent between pj and M(si);

(2b) either (i), (ii) or (iii) holds as follows:

(i) each of pj and lk is undersubscribed in M ;
(ii) pj is undersubscribed in M , lk is full in M , and either si ∈ M(lk) or lk prefers

si to the worst student/s in M(lk);
(iii) pj is full in M and lk prefers si to the worst student/s in M(pj).

In the SPA-ST instance shown in Figure 5.1, it may be verified that matchingM1 = {(s1, p2),
(s3, p3)} is weakly stable (for the weak stability definition, see Definition 2.3.1), since each
of lecturer l1 and l2 would not be better off rejecting her assigned student for s2. It may also
be verified that matching M2 = {(s1, p2), (s2, p3), (s3, p1)} is weakly stable in I1. Clearly,
matchings M1 and M2 have different sizes. We note that I1 admits the strongly stable match-
ing M3 = {(s1, p1), (s2, p2), (s3, p3)}. Clearly, a strongly stable matching is also weakly
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stable. Further, M3 should be preferred over M2 in practical applications because each of s2
and s3 is assigned inM3 to a project better than her assigned project inM2. Moreover, strong
stability will prevent s2 and s3 from undermining M2 by persuading l1 and l2 respectively to
take them on for p2 and p3 respectively. We remark that (s1, p2) forms a blocking pair for
M3 under super-stability, since s1 and l1 will be no worse off forming an arrangement for s1
to take on p1. In fact, I1 does not admit a super-stable matching.1

In the remainder of this chapter, any usage of the term blocking pair refers to the version of
this term for strong stability as defined in Definition 5.2.1.

5.2.2 Justification for the strong stability definition

In this section, we give a justification for our definition of how an acceptable pair (si, pj)

can form a blocking pair for a matching M under strong stability. Let lk be the lecturer who
offers pj . It is clear from Definition 5.2.1 that if si seeks to become assigned to pj outside
of M , then either si improves relative to M (i.e., si is unassigned in M or prefers pj to her
assigned project in M ) or si is indifferent to the switch.

First, we consider the case where si improves relative to M , i.e., Definition 5.2.1(1a). Fol-
lowing from the implication of strong stability, lecturer lk must be no worse off relative to
M . There are three different scenarios in which lk will be willing to take on si for pj . In
Definition 5.2.1(1b)(i), lk will be willing to take on si for pj , since there is a free space. In
Definition 5.2.1(1b)(ii), if si was already assigned in M to a project offered by lk then lk
will agree to the switch, since the total number of students assigned to lk remains the same.
However, if si was not already assigned in M to a project offered by lk, since lk is full, lk
will need to reject some student assigned to her in order to take on si. Obviously, lk will not
reject a student that she prefers to si; thus lk will either improve or be no worse off after the
switch. Finally, in Definition 5.2.1(1b)(iii), since pj is full, lk will need to reject some student
assigned to pj in order to take on si. Again, lk will either improve or be no worse off after
the switch. Under this definition, as observed in [13, Section 2.2], if si was already assigned
in M to a project offered by lk, then the number of students assigned to lk will decrease by 1

(the reason for adapting this definition was further justified in [13, Section 6.1]).

Next, we consider the case where si will be no worse off relative to M , i.e., Definition
5.2.1(2a). Again, following from the implication of strong stability, lecturer lk must improve
relative to M . Now, for this to happen, we would expect that either (A), (B) or (C) holds as
follows.

1Let I be an instance of SPA-ST, and suppose I admits no super-stable matching. In contrast to Proposition
4.2.4, if I admits a strongly stable matching then weakly stable matchings in I may be of different sizes, as the
example instance I1 shown in Figure 5.1 illustrates.
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Students’ preferences Lecturers’ preferences offers
s1: (p1 p2) l1: s1 s2 s3 p1, p2
s2: (p1 p2)
s3: p2 Project capacities: c1 = c2 = 2

Lecturer capacity: d1 = 3

Figure 5.2: An instance I2 of SPA-ST.

Students’ preferences Lecturers’ preferences offers
s1: (p1 p2) l1: s1 s2 p1, p2
s2: p1

Project capacities: c1 = c2 = 1
Lecturer capacity: d1 = 2

Figure 5.3: An instance I3 of SPA-ST.

(A) pj is undersubscribed, lk is undersubscribed and si /∈ M(lk): if pj and lk are both
undersubscribed then the only way that lk would improve is if si is not already assigned
in M to a project offered by lk, if this is the case, then lk will agree to the switch since
there is a free space and she will get one more student to supervise, namely si.

(B) pj is undersubscribed, lk is full, si /∈ M(lk) and lk prefers si to the worst student/s in
M(lk): if pj is undersubscribed and lk is full then the only way that lk could improve
is first for si to not be assigned in M to a project offered by lk, if this is the case then
lk will be happy to reject a student that is worse than si on her preference list.

(C) pj is full, si /∈M(lk) and lk prefers si to the worst student/s in M(pj): if pj is full then
the only way that lk could improve is first for si to not be assigned in M to a project
offered by lk; if this is the case then lk will be happy to reject some student assigned
to pj; obviously, this student must be worse than si on lk’s preference list.

The reader can observe that cases (A), (B) and (C) above are different from the cases laid
out in Definitions 5.2.1(2b) (i), (ii) and (iii), respectively. Our reason for adapting Definition
5.2.1(2b) is because if we settle for cases (A) - (C), then strongly stable matchings in I may
be of different sizes. We illustrate this with respect to the SPA-ST instances in Figures 5.2
and 5.3 as follows.

(A) Here, instance I2 illustrated in Figure 5.2 admits the strongly stable matching M1 =

{(s1, p2), (s2, p2)}. Each of p1 and l1 is undersubscribed inM1, but it is straightforward
to see why neither s1 nor s2 forms a blocking pair for M1 via p1, since they are both
assigned in M1 to a project offered by l1. Also, instance I3 illustrated in Figure 5.3
admits the strongly stable matching M2 = {(s1, p1)}. Again, each of p2 and l1 is
undersubscribed in M2; however, (s1, p2) is not a blocking pair for M2, since s1 ∈
M2(l1).
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Students’ preferences Lecturers’ preferences offers
s1: (p1 p2) l1: s3 s1 s2 p1, p2, p3
s2: (p1 p2)
s3: p3 Project capacities: c1 = c2 = c3 = 1

Lecturer capacity: d1 = 2

Figure 5.4: An instance of SPA-ST.

(B) Following this definition, instance I2 illustrated in Figure 5.2 also admits the strongly
stable matching M3 = {(s1, p1), (s2, p2), (s3, p2)}. We observe that p1 is undersub-
scribed in M3 and l1 is full in M3; however, (s2, p1) does not form a blocking pair for
M3 since s2 ∈ M3(l1). Clearly, instance I2 admits two strongly stable matchings of
different sizes, namely M1 and M3.

(C) Here, instance I3 illustrated in Figure 5.3 admits the strongly stable matching M4 =

{(s1, p2), (s2, p1)}. Here, p1 is full in M4 and l1 prefers s1 to a worst student assigned
to p1, namely s2. However, (s1, p1) is not a blocking pair underM4 since s1 is assigned
in M4 to a project offered by l1. It is clear that instance I3 also admits two strongly
stable matchings of different sizes, namely M2 and M4.

Going back to Definition 5.2.1(2b), we will now draw our conclusions by referring to Def-
inition 5.2.1(2b)(ii). The reader can easily verify that Definition 5.2.1(2b) has enforced the
condition that if si is already assigned in M to a project offered by lk, then (si, pj) could still
potentially form a blocking pair for M . The implication of this is that, potentially, lk does
not improve after the switch. To see this, consider the SPA-ST instance in Figure 5.4 with
the matching M = {(s1, p2), (s2, p2)}, where s1 is indifferent between p1 and her assigned
project in M , p1 is undersubscribed in M , l1 is full in M and s1 ∈ M(l1). Under Definition
5.2.1(2b)(ii), the pair (s1, p1) forms a blocking pair for M ; and hence M is not strongly
stable in the instance. Indeed, the instance admits no strongly stable matching.

We note that by allowing (s1, p1) to form a blocking pair, neither s1 nor l1 will improve.
On one hand, one could argue that this does not satisfy the concept of strong stability. On
the other hand, if we enforce that (s1, p1) cannot form a blocking pair in this case because
s1 ∈ M(l1), this will lead us back to strongly stable matchings having different sizes as
argued in case (B). Moreover, in order to assign as many students to projects as possible,
we would seek a maximum size strongly stable matching. However, we conjecture that
this problem is NP-hard, following from related problems of finding maximum size stable
matchings in the literature [60, 84]. As a consequence, in the remainder of this chapter, we
will adapt Definition 5.2.1(2b).
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5.3 A polynomial-time algorithm

In this section we present our algorithm for SPA-ST under strong stability, which we will
refer to as Algorithm SPA-ST-strong. In Section 5.3.1, we give some definitions relating
to the algorithm. In Section 5.3.2, we give a description of our algorithm and present it in
pseudocode form. In Section 5.3.3, we briefly describe the non-trivial modifications that are
involved in extending the existing strong stability algorithms for SMT [51], SMTI [81] and
HRT [59] to our algorithm for the SPA-ST case. We illustrate an execution of our algorithm
with respect to a SPA-ST instance in Section 5.3.4. In Section 5.3.5, we present our algo-
rithm’s correctness and complexity results. Finally, in Section 5.3.6, we give some structural
properties satisfied by the set of strongly stable matchings in an instance of SPA-ST.

5.3.1 Definitions relating to the algorithm

Given a pair (si, pj) ∈ M , for some strongly stable matching M in I , we call (si, pj) a
strongly stable pair. During the execution of the algorithm, students become provisionally

assigned to projects (and implicitly to lecturers), and it is possible for a project (and lecturer)
to be provisionally assigned a number of students that exceeds its capacity.

The provisional assignment graph is an undirected bipartite graph G = (S ∪ P , E) such
that there is an edge (si, pj) ∈ E if and only if si is provisionally assigned to pj . During
the execution of the algorithm, it is possible for a student to be adjacent to more than one
project in G. Thus, we denote by G(si) the set of projects that are adjacent to si in G. Given
a project pj ∈ P , we denote by G(pj) the set of students who are provisionally assigned to
pj in G and we let dG(pj) = |G(pj)|. Similarly, we denote by G(lk) the set of students who
are provisionally assigned to a project offered by lk in G and we let dG(lk) = |G(lk)|.

As stated earlier, for a project pj , it is possible that dG(pj) > cj at some point during the
algorithm’s execution. Thus, we denote by qpj = min{cj, dG(pj)} the quota of pj in G.
Similarly, for a lecturer lk, it is possible that dG(lk) > dk at some point during the algorithm’s
execution. At this point, we denote by αk =

∑
{qpj : pj ∈ Pk} the total quota of projects

offered by lk in G, and we denote by qlk = min{dk, αk} the quota of lk in G.

The algorithm proceeds by deleting from the preference lists certain (si, pj) pairs that are not
strongly stable. By the term delete (si, pj), we mean the removal of pj from si’s preference
list and the removal of si from Ljk (i.e., the projected preference list of lecturer lk for pj); in
addition, if (si, pj) ∈ E we delete the edge from G. By the head and tail of a preference
list at a given point we mean the first and last tie respectively on that list after any deletions
might have occurred (recalling that a tie can be of length 1).

We now give four further definitions relating to the provisional assignment graph.
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Definition 5.3.1 (Dominated in Ljk). Given a project pj , we say that a student si is dominated

in Ljk if si is worse than at least cj students in Ljk who are provisionally assigned to pj .

Definition 5.3.2 (Dominated inLk). Given a lecturer lk, we say that a student si is dominated

in Lk if
∑

pj∈Pk

min{qpj , |{sr : (sr, pj) ∈ G ∧ lk prefers sr to si}|} is at least dk.

Definition 5.3.3 (Lower rank edge). Given an edge (si, pj) ∈ E, let lk be the lecturer who
offers pj and let αk be as defined above. We define (si, pj) as a lower rank edge if si is in the
tail of Lk and αk > dk.

Definition 5.3.4 (Bound). Given an edge (si, pj) ∈ E, we say that si is bound to pj if (i) pj
is not oversubscribed or si is not in the tail of Ljk (or both), and (ii) (si, pj) is not a lower
rank edge. If si is bound to pj , we may also say that (si, pj) is a bound edge; otherwise, we
refer to it as an unbound edge.2

Reduced assignment graph. We form a reduced assignment graphGr = (Sr, Pr, Er)

from a provisional assignment graph G as follows. Initially, let Gr = G. For each edge
(si, pj) ∈ E such that si is bound to pj , we remove the edge (si, pj) from Gr and we reduce
the quota of pj inGr (and implicitly the quota of lk inGr) by 1.3 Further, we remove all other
unbound edges (si, pt) incident to si in Gr, without reducing pt’s quota in Gr. Each isolated
student vertex is then removed from Gr. Finally, if the quota of any project is reduced to 0,
or if pj becomes an isolated vertex, then pj is removed from Gr. For each surviving pj in
Gr, we denote by q∗pj the revised quota of pj , where q∗pj is the difference between pj’s quota
in G (i.e., qpj ) and the number of students that are bound to pj . Similarly, we denote by q∗lk
the revised quota of lk in Gr, where q∗lk is the difference between lk’s quota in G (i.e., qlk)
and the total number of bound edges adjacent to a project offered by lk in G.4

Further, for each lk who offers at least one project in Gr, we let

nk =
∑
{q∗pj : pj ∈ Pk ∩ Pr} − q∗lk ,

where nk is the difference between the total revised quota of projects in Gr that are offered
by lk and the revised quota of lk in Gr. Now, if nk > 0 and dGr(lk) > q∗lk (i.e., if the revised
quota of lk in Gr is less than the number of students who are adjacent to a project offered by
lk in Gr), we extend Gr as follows. We add nk dummy student vertices to Sr. For each of
these dummy vertices, say sdi , and for each project pj ∈ Pk ∩Pr that is adjacent to a student

2Note that an edge (si, pj) ∈ E can change state from bound to unbound, but not vice versa.
3We note that we only remove this edge to form Gr, we do not delete the edge from G.
4We note that the revised quota of lk in Gr is not in general the minimum between the capacity of dk and

the total revised quota of projects offered by lk in Gr (for example, see the second paragraph in the description
corresponding to Figure 5.6, page 98).
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vertex in Sr via a lower rank edge, we add the edge (sdi , pj) to Er.5 An intuition as to why
we add dummy students to Gr is as follows. Let lk be a lecturer who offers a project that
is provisionally assigned to a student in Gr. If dGr(lk) > q∗lk and nk > 0, then we need nk
dummy students to offset the difference between

∑
{q∗pj : pj ∈ Pk ∩ Pr} and q∗lk , so that

we do not oversubscribe lk in any maximum matching obtained from Gr. On the contrary, if
dGr(lk) ≤ q∗lk or nk ≤ 0, we do not add any dummy student for lk.6

Given a set X ⊆ Sr of students, define N (X), the neighbourhood of X , to be the set of
project vertices adjacent in Gr to a student in X . Similarly, given a set Y ⊆ Pr of projects,
define N (Y ), the neighbourhood of Y , to be the set of student vertices adjacent in Gr to
a project in Y . For each project pj ∈ Pr, we replace pj with x clones of pj in Pr, where
x = min{dGr(pj), q

∗
pj
}. For each cloned vertex pjt (1 ≤ t ≤ x), and for each si ∈ N (pj),

we add the edge (si, pjt) to Er. Hence the reduced assignment graph Gr is a bipartite graph
whose vertex set Sr∪Pr consists of real student vertices, dummy student vertices and cloned
project vertices, each with capacity 1.

It is well known in the literature [80] that if Gr does not admit a matching that saturates
Sr, then there must exist a deficient subset X ⊆ Sr such that |X| > |N (X)|. Similarly,
if Gr does not admit a matching that saturates Pr, then there must exist a deficient subset
Y ⊆ Pr such that |Y | > |N (Y )|. To be precise, the deficiency of X is defined by δ(X) =

|X| − |N (X)|; and the deficiency of Y is defined analogously.

Definition 5.3.5 (Left-critical set). The left deficiency of Gr, denoted δL(Gr), is the max-
imum deficiency taken over all subsets of Sr. If δL(Gr) > 0, then there exists a minimal
subset Zs ⊆ Sr that is maximally deficient such that δL(Gr) = δ(Zs). We refer to Zs as the
left-critical set.

Definition 5.3.6 (Right-critical set). Similar to above, the right deficiency of Gr, denoted
δR(Gr), is the maximum deficiency taken over all subsets of Pr. If δR(Gr) > 0, then there
exists a minimal subset Zp ⊆ Pr that is maximally deficient such that δR(Gr) = δ(Zp). We
refer to Zp as the right-critical set.

Definition 5.3.7 (Feasible matching). To form a feasible matchingM in the final provisional
assignment graph G, first we need to identify a subset of projects in P that must be full in
M . We denote by P ∗ a subset of projects in P that is obtained as follows. For each project
pj ∈ P , let lk be the lecturer who offers pj . We add pj to P ∗ if for any student si, the pair
(si, pj) has been deleted, and (i) and (ii) holds as follows:

(i) either si is unassigned in G or (si, pj′) ∈ G where si prefers pj to pj′ or is indifferent
between them;

5We only add edges between the dummy students and projects that are adjacent to students via lower rank
edges because lk is bound to have at least nk lower rank edges.

6There is no need to add dummy students since in either of these two cases, the revised quota of lk will not
be exceeded in any maximum matching in Gr.
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(ii) either lk is undersubscribed in G or lk is full and lk prefers si to some student in G(lk).

Let G∗ be the subgraph of G induced by the students who are adjacent to a project in P ∗,
and let E∗ be the edge set of G∗. A feasible matching in G is a maximum matching M in G
such that M ∩ E∗ is a maximum matching in G∗.

5.3.2 Description of the algorithm

Algorithm SPA-ST-strong, described in pseudocode form as Algorithm 2, begins by initial-
ising an empty bipartite graph G which will contain the provisional assignments of students
to projects (and implicitly to lecturers). We remark that such assignments (i.e., edges in G)
can subsequently be broken during the algorithm’s execution.

The outer repeat-until loop of the algorithm initialises the inner repeat-until
loop, which in turn initialises the while loop. The while loop involves each student si who
is not adjacent to any project in G and who has a non-empty preference list applying in turn
to each project pj at the head of her preference list. Immediately, si becomes provisionally
assigned to pj in G (and to lk). If by gaining a new provisional assignee, project pj becomes
full or oversubscribed, then for each student st in Ljk such that st is dominated in Ljk, we
delete the pair (st, pj). As we will prove later, such pairs cannot belong to any strongly
stable matching. Similarly, if by gaining a new provisional assignee, lk becomes full or
oversubscribed, then for each student st in Lk, such that st is dominated in Lk and for each
project pu ∈ Pk that st finds acceptable, we delete the pair (st, pu). This continues until
every student is provisionally assigned to one or more project or has an empty preference
list.

At the point where the while loop terminates, we form the reduced assignment graph Gr

and we find the right-critical set Zp of projects in Gr (Lemma 5.3.10 describes how to find
Zp). As we will see later, for each cloned project pjt ∈ Zp, no student si in the tail of Ljk
(where pj is the real project associated with pjt) can be assigned to pj in any strongly stable
matching, so all such pairs are deleted.7 Next, we find the left-critical set Zs of students in
Gr (Lemma 5.3.11 describes how to find Zs). For each cloned project pjt ∈ N (Zs), the
associated real project pj cannot be assigned to any student in the tail of Ljk in any strongly
stable matching, so all such pairs are deleted.

At the termination of the inner repeat-until loop on line 26, i.e., when Zp∪Zs is empty,
if some project pj that has been deleted from a student’s preference list is undersubscribed,
we carry out some certain deletions.8 We let sr be any one of the most-preferred students

7We remark that Zp consists of project clones. However, deletions are carried out in the projected preference
list of the real projects associated with each project clones in Gr.

8A weaker form of this type of deletion was also carried out in Algorithm SPA-ST-super (page 57, lines
27 - 34).
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(according to Ljk) who was provisionally assigned to pj during some iteration of the inner
repeat-until loop but is not assigned to pj at this point. If the students at the tail of
Lk are no better than sr, it turns out that none of these students can be assigned to any
project offered by lk in any strongly stable matching – such pairs (st, pu), for each st at
the tail of Lk and for each project pu ∈ Pk that st finds acceptable, are deleted. The outer
repeat-until loop is then potentially reactivated, and the entire process continues until
every student is provisionally assigned to a project or has an empty preference list.

At the termination of the outer repeat-until loop on line 35, if a student is adjacent
in G to a project pj via a bound edge, then we may potentially carry out extra deletions as
follows. First, we let lk be the lecturer who offers pj and we let U be the set of projects that
are adjacent to si in G via an unbound edge. For each project pu ∈ U such that pu is not
offered by lk, it turns out that si cannot be assigned to pu in any strongly stable matching,
thus we delete all such pairs (si, pu). Finally, we let M be any feasible matching in the
provisional assignment graph G. If M is strongly stable relative to the given instance I then
M is output as a strongly stable matching in I . Otherwise, the algorithm reports that no
strongly stable matching exists in I .

Finding the right-critical and left-critical set. Consider the reduced assignment graph
Gr = (Sr, Pr, Er) formed fromG at a given point during the algorithm’s execution (line 15).
We recall that the vertex set of Gr consists of real student vertices, dummy student vertices
and cloned project vertices, with each vertex having capacity 1. To find the right-critical
set of projects and left-critical set of students in Gr, first we need to construct a maximum
matching Mr in Gr, with respect to the unitary capacity for each pjt ∈ Pr. We describe how
to construct Mr as follows:

1. Let G′r be the subgraph of Gr induced by the dummy students adjacent to a project in
Gr. First, find a maximum matching M ′

r in G′r.

2. Using M ′
r as an initial solution, find a maximum matching Mr in Gr.9

An alternating path in Gr relative to Mr is any simple path in which edges are alternately in,
and not in, Mr. An augmenting path in Gr is an alternating path from an unassigned student
vertex to an unassigned cloned project vertex. The following lemmas are classical results
with respect to matchings in bipartite graphs.

Lemma 5.3.8. A matching Mr in a bipartite graph Gr has maximum cardinality if and only

if there is no augmenting path relative to Mr in Gr.

9By making sure that all the dummy students are matched in step 1, we are guaranteed that no lecturer is
oversubscribed with non-dummy students in any maximum matching in Gr.
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Algorithm 2 Algorithm SPA-ST-strong
Input: SPA-ST instance I
Output: a strongly stable matching in I or “no strongly stable matching exists in I”

1: G← ∅
2: repeat
3: repeat
4: while some student si is unassigned and has a non-empty list do
5: for each project pj at the head of si’s list do
6: lk ← lecturer who offers pj
7: add the edge (si, pj) to G
8: if pj is full or oversubscribed then
9: for each student st dominated in Ljk do

10: delete (st, pj)
11: if lk is full or oversubscribed then
12: for each student st dominated in Lk do
13: for each project pu ∈ Pk ∩At do
14: delete (st, pu)
15: form the reduced assignment graph Gr (using the transformation on page 90)
16: find the right-critical set Zp of project clones (using Lemma 5.3.10)
17: for each project pj such that a clone of pj is in Zp do
18: lk ← lecturer who offers pj
19: for each student si at the tail of Ljk do
20: delete (si, pj)
21: find the left-critical set Zs of students (using Lemma 5.3.11)
22: for each project pj such that a clone of pj is in N (Zs) do
23: lk ← lecturer who offers pj
24: for each student si at the tail of Ljk do
25: delete (si, pj)
26: until Zp ∪ Zs is empty
27: for each pj ∈ P do
28: if there is some student si such that (si, pj) has been deleted then
29: lk ← lecturer who offers pj
30: sr ← most-preferred student rejected from pj , who was previously assigned to pj
31: if pj is undersubscribed and the students at the tail of Lk are no better than sr then
32: for each student st at the tail of Lk do
33: for each project pu ∈ Pk ∩At do
34: delete (st, pu)
35: until every unassigned student has an empty list
36: for each student si in G do
37: if si is adjacent in G to a project pj via a bound edge then
38: lk ← lecturer who offers pj
39: U ← unbound projects adjacent to si in G
40: for each pu ∈ U \ Pk do
41: delete (si, pu)
42: M ← a feasible matching in G
43: if M is a strongly stable matching in I then
44: return M
45: else
46: return “no strongly stable matching exists in I”
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Lemma 5.3.9. Let Mr be a maximum matching in Gr. Then |Mr| = |Sr| − δL(Gr), where

Sr is the set of left vertices. Likewise, |Mr| = |Pr| − δR(Gr), where Pr is the set of right

vertices.

The Hopcroft-Karp algorithm [49] can be used to obtain Mr, and this can be implemented to
run inO(

√
nm) time, where n = |Sr|+ |Pr| andm = |Er|. Now that we have described how

to construct a maximum matching in the reduced assignment graph, the next two lemmas tells
us how to find the right-critical set of projects and the left-critical set of students.

Lemma 5.3.10. Given a maximum matching Mr in the reduced assignment graph Gr, any

right-critical set Zp consists precisely of the set Up of unassigned project clones together

with the set U ′p of project clones reachable from a project clone in Up via an alternating

path. Hence, the right-critical set is unique.

Proof. First, we note that δR(Gr) = |Up|. Let C = Up ∪ U ′p; we claim that δ(C) = |Up|. By
the definition of δR(Gr), clearly δ(C) ≤ δR(Gr) = |Up|. Now suppose that δ(C) < |Up|,
then

|Up| > δ(C)

= |Up ∪ U ′p| − |N (C)|

= |Up|+ |U ′p| − |N (C)|, (since Up ∩ U ′p = ∅)

which implies that

|U ′p| < |N (C)| . (5.1)

We claim that every project clone that is assigned in Mr to a student si′ ∈ N (C) must be in
U ′p. For suppose there is a project clone pjt /∈ U ′p such that pjt is assigned to si′ in Mr. Since
si′ ∈ N (C), then si′ must be adjacent to some project clone pj′t ∈ C. Now, if pj′t ∈ Up, then
there is an alternating path from pj′t to pjt via si′ , a contradiction. Hence, pj′t ∈ U

′
p. Since pj′t

is reachable from a project clone in Up via an alternating path, pjt is also reachable from the
same project clone in Up via an alternating path. Hence our claim is established.

Since N (C) contains |U ′p| students, denoted by S ′, who are collectively assigned to project
clones in U ′p, Inequality (5.1) implies that there is an additional student si ∈ N (C) \ S ′. If
si is assigned in Mr, then the above claim implies that si ∈ S ′, a contradiction. Hence si is
unassigned in Mr. Now, since each project clone in U ′p is reachable from a project in Up via
an alternating path, and the project clones in Up ∪ U ′p are collectively adjacent to students in
N (C), we can find an alternating path from a project clone in Up to si. Thus Mr admits an
augmenting path, contradicting the maximality of Mr. Hence δ(C) = |Up|.
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Next we show that the right-critical set is unique. We note that any right-critical set Zp
must contain every project clone that is unassigned in some maximum matching in Gr. For,
suppose not. LetM∗

r be an arbitrary maximum matching inGr, where |M∗
r | = |Pr|−δR(Gr).

Suppose there is some project clone pjt ∈ Pr \ Zp such that pjt is unassigned in M∗
r . There

must be δR(Gr) unassigned project clones, with at most δR(Gr)−1 of these clones contained
in Zp (since pjt /∈ Zp). Hence Zp contains at least |Zp|− δR(Gr) + 1 assigned project clones.
It follows that

|N (Zp)| ≥ |Zp| − δR(Gr) + 1,

or
|Zp| − |N (Zp)| ≤ δR(Gr)− 1,

contradicting the required deficiency of Zp. Moreover, for every pjt ∈ U ′p, there is a maxi-
mum matching in which pjt is unassigned, obtainable from Mr via an alternating path from
a project clone in Up to pjt . Hence C ⊆ Zp. Further, by the minimality of Zp, and since

δ(C) = |Up|

= |Pr| − |Mr|

= |M∗
r |+ δR(Gr)− |Mr|

= δR(Gr) (since both M∗
r and Mr are maximum matchings in Gr)

= δ(Zp),

it follows that C = Zp. Hence Zp is unique.

Lemma 5.3.11. Given a maximum matching Mr in the reduced assignment graph Gr, any

left-critical set Zs consists precisely of the set Us of unassigned students together with the set

U ′s of students reachable from a student in Us via an alternating path. Hence, the left-critical

set is unique.

Proof. By symmetry, the proof is similar to that given for Lemma 5.3.10.

5.3.3 The non-triviality of extending Algorithm HRT-strong to SPA-

ST

Algorithm SPA-ST-strong is a non-trivial extension of Algorithm HRT-strong for HRT [59].
Here we outline the major distinctions between our algorithm and Algorithm HRT-strong,
which indicate the challenges involved in extending the earlier approach to the SPA-ST set-
ting.
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1. Given a lecturer lk, it is possible that during some iteration of our algorithm, some
pj ∈ Pk is oversubscribed which causes lk to become full or oversubscribed (see
Figure 5.6(a) on page 98, at the point where s3 applies to p1). Finding the dominated
students in Lk becomes more complex in SPA-ST – to achieve this we introduced the
notion of quota for each pj ∈ Pk (i.e., qpj ).

2. To form Gr in the SPA-ST case, we extended the approach described in the HRT case
[59] by introducing the concept of lower rank edges for each lecturer who offers a
project in Gr, and we also introduced dummy students and project clones.

3. In the HRT setting, the critical set is restricted to the resident vertex set. However, in
our case, the critical set involves both the student and project vertex sets. See Figure
5.10 on page 101.

4. Lines 27 - 34 of Algorithm SPA-ST-strong refer to additional deletions that must be
carried out in a certain situation. A weaker form of this type of deletion was also
carried out in Algorithm SPA-ST-super (page 57, lines 27 - 34). See the description
corresponding to Figure 5.7 on page 99 for why we may need to carry out this type of
deletion in the strong stability context.

5. Lines 36 - 41 of Algorithm SPA-ST-strong are new. This section of the algorithm
deletes additional (student, project) pairs that cannot be part of any strongly stable
matching.

6. Constructing a feasible matching M from G in the SPA-ST setting is much more chal-
lenging: we first identify some projects that must be full in M , denoted by P ∗. See the
description corresponding to Figure 5.8 on page 100.

5.3.4 Example execution of the algorithm

In this section, we illustrate an execution of Algorithm SPA-ST-strong with respect to two
SPA-ST instances shown in Figures 5.5 and 5.9. We begin with Figure 5.5, which involves
the set of students S = {si : 1 ≤ i ≤ 8}, the set of projects P = {pj : 1 ≤ j ≤ 6}
and the set of lecturers L = {lk : 1 ≤ k ≤ 3}. The algorithm starts by initialising the
bipartite graphG = {}, which will contain the provisional assignment of students to projects.
We assume that the students become provisionally assigned to each project at the head of
their preference list in subscript order. Henceforth, the usage G(i) (for i ≥ 1) denotes the
provisional assignment graph at the i-th iteration of the inner repeat-until loop. A
similar definition holds for G(i)

r ,M
(i)
r , Z

(i)
p , and Z(i)

s , for i ≥ 1.

Figures 5.6, 5.7 and 5.8 illustrate how this execution of Algorithm SPA-ST-strong proceeds
with respect to I4.
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Students’ preferences Lecturers’ preferences offers
s1: p1 p6 l1: s8 s7 (s1 s2 s3) (s4 s5) s6 p1, p2
s2: p1 p2 l2: s6 s5 (s7 s3) p3, p4
s3: (p1 p4) l3: (s1 s4) s8 p5, p6
s4: p2 p5

s5: (p2 p3)
s6: (p2 p4)
s7: p3 p1 Project capacities: c1 = c2 = c6 = 2, c3 = c4 = c5 = 1

s8: p5 p1 Lecturer capacities: d1 = d3 = 3, d2 = 2

Figure 5.5: An instance I4 of SPA-ST.
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graph G(1) at the end of the
while loop, with the quota of
each project labelled beside it.

p11

p12

p22

s1

s2

s3

s4

sd1

(b) The reduced assign-
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(c) The provisional assignment
graph G(1) at the end of itera-
tion (1).

Figure 5.6: Iteration (1).

Iteration 1: At the termination of the while loop during the first iteration of the inner
repeat-until loop, every student, except s3, s6 and s7, is provisionally assigned to
every project in the first tie on their preference list. Edge (s3, p4) /∈ G(1) because (s3, p4) was
deleted as a result of s6 becoming provisionally assigned to p4, causing s3 to be dominated
in L4

2. Also, edge (s6, p2) /∈ G(1) because (s6, p2) was deleted as a result of s4 becoming
provisionally assigned to p2, causing s6 to be dominated in L1. Finally, edge (s7, p3) /∈ G(1)

because (s7, p3) was deleted as a result of s5 becoming provisionally assigned to p3, causing
s7 to be dominated in L3

2.
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To form G
(1)
r , the bound edges (s5, p3), (s6, p4), (s7, p1) and (s8, p5) are removed from the

graph. We can verify that edges (s4, p2) and (s5, p2) are unbound, since they are lower rank
edges for l1; however, (s5, p2) /∈ G

(1)
r , since s5 is bound to p3. Now, since p1 is oversub-

scribed, and each of s1, s2 and s3 is at the tail of L1
1, edges (s1, p1), (s2, p1) and (s3, p1) are

unbound. Further, the revised quota of l1 in G(1)
r is 2, and the total revised quota of projects

offered by l1 (i.e., p1 and p2) is 3, hence n1 = 1. Moreover, since the number of students
that are adjacent to a project offered by l1 in G(1)

r is more than the revised quota of l1 (i.e.,
d
G

(1)
r

(l1) = 4 > 2 = q∗l1), we add n1 (i.e., 1) dummy student vertex sd1 to G(1)
r , and we add

an edge between sd1 and p2 (since p2 is the only project in G(1)
r adjacent to a student in the

tail of L1 via a lower rank edge).

Finally, we replace each project pj inG(2)
r with min{d

G
(1)
r
, q∗pj} clones, i.e., p1 with min{3, 1}

clone and p2 with min{2, 2} clones. With respect to the maximum matching M (1)
r (i.e., the

thick edges), it is clear that the right-critical set Z(1)
p = ∅, and the left-critical set Z(1)

s =

{s1, s2, s3}, thus we delete (s1, p1), (s2, p1) and (s3, p1); and the inner repeat-until
loop is reactivated.
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(a) The provisional assignment
graph G(2) at the end of the
while loop.

p2 : 1s4

(b) The reduced assignment
graph G

(2)
r .
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p3 : 1

p4 : 1

p5 : 1

p6 : 1

s1
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s5

s6

s7

s8

(c) The provisional assignment
graph G(2) at the end of itera-
tion (2).

Figure 5.7: Iteration (2).

Iteration 2: At the beginning of this iteration, each of s1 and s2 is unassigned and has a non-
empty preference list; thus we add edges (s1, p6) and (s2, p2) to the provisional assignment
graph obtained at the end of iteration (1) to form G

(2)
r . It can be verified that every edge

in G
(2)
r , except (s4, p2) and (s5, p2), is a bound edge. The revised quota of l1 in G

(2)
r is

1 and thus no dummy student is added at this point. Clearly, Z(2)
p ∪ Z(2)

s = ∅, thus the
inner repeat-until loop terminates. At this point, project p1, which was deleted from
s3’s preference list during iteration (1), is undersubscribed in iteration (2). Moreover, the
students at the tail of L1 (i.e., s4 and s5) are no better than s3, where s3 is one of the most-
preferred students rejected from p1 according to L1

1; thus we delete (s4, p2) and (s5, p2). The
outer repeat-until loop is then reactivated (since s4 is unassigned and has a non-empty
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preference list).
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p2 : 1

p3 : 1

p4 : 1

p5 : 1

p6 : 1

s1

s2

s4

s5

s6

s7

s8

(a) The provisional assignment
graph G(3) at the end of the
while loop.

Figure 5.8: Iteration (3).

Iteration 3: At the beginning of this iteration, the only student that is unassigned and has
a non-empty preference list is s4; thus we add edge (s4, p5) to the provisional assignment
graph obtained at the end of iteration (2) to form G

(3)
r . The provisional assignment of s4 to

p5 led to p5 becoming oversubscribed; thus (s8, p5) is deleted (since s8 is dominated on L5
3).

Further, s8 becomes provisionally assigned to p1. It can be verified that all the edges in G(3)
r

are bound edges. Moreover, the reduced assignment graph G(3)
r = ∅.

Again, every unassigned student has an empty preference list. We also have that project p2,
which was deleted from s4’s preference list in iteration (2), is undersubscribed in iteration (3).
However, no further deletion is carried out on line 34 of the algorithm, since the student at
the tail of L1 (i.e., s2) is better than s4 and s5, where s4 and s5 are the most-preferred students
rejected from p2 according to L2

1. Hence, the outer repeat-until loop terminates. Also,
no deletion is carried out on line 41 of the algorithm.

We observe that P ∗ = {p5}, since (s8, p5) has been deleted, s8 prefers p5 to her provisional
assignment in G and l3 is undersubscribed. Thus we need to ensure that p5 fills up in the fea-
sible matching M constructed from G, so as to avoid (s8, p5) from blocking M . Finally, the
algorithm outputs the feasible matching M = {(s1, p6), (s2, p2), (s4, p5), (s5, p3), (s6, p4),
(s7, p1), (s8, p1)} as a strongly stable matching. We leave it to the reader to verify that M is
strongly stable in I4.

Next, we consider Figure 5.9, which involves the set of students S = {si : 1 ≤ i ≤ 3}, the
set of projects P = {pj : 1 ≤ j ≤ 4} which are all offered by a single lecturer l1. This
example highlights why we need the left-critical set of projects and the right-critical set of
students. Similar to the previous example, the algorithm starts by initialising the bipartite
graph G = {}, which will contain the provisional assignment of students to projects. Again,
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we assume that the students become provisionally assigned to each project at the head of their
preference list in subscript order. Figure 5.10 illustrates how this execution of Algorithm
SPA-ST-strong proceeds with respect to I5.

Students’ preferences Lecturers’ preferences offers
s1: (p1 p2 p3) l1: (s1 s2 s3) p1, p2, p3, p4
s2: (p3 p4)
s3: (p3 p4) Project capacities: cj = 1 for 1 ≤ j ≤ 4

Lecturer capacity: d1 = 3

Figure 5.9: An instance I5 of SPA-ST.
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Z
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Figure 5.10: Iteration (1).

Iteration 1: At the termination of the while loop during the first iteration of the inner
repeat-until loop, every student is provisionally assigned to every project in the first
tie on their preference list. All of the edges in G(1) are lower rank edges, since each of
s1, s2 and s3 is at the tail of L1 and the total quota of projects offered by l1 is more than the
capacity of l1, i.e., α1 = 4 > 3 = d1. Thus all of the edges in G(1) are unbound edges, and
thus G(1) = G

(1)
r . The number of students that are adjacent to a project offered by l1 in G(1)

r

is equal to the revised quota of l1 in G, i.e., d
G

(1)
r

(l1) = 3 = q∗l1 , and thus no dummy students

are added. Further, each project in G(1)
r has a revised quota of 1, and thus each project has

only 1 clone.

With respect to the maximum matching M (1)
r (i.e., the thick edges), it is clear that the right-

critical set Z(1)
p = {p1, p2}, thus we delete (s1, p1) and (s1, p2). As a consequence, s1 became

exposed in M (1)
r , and thus the left-critical set Z(1)

s = {s1, s2, s3}. Then we delete (s1, p3),
(s2, p3), (s3, p3), (s2, p4) and (s4, p4). Since Z(1)

p ∪ Z(1)
s 6= ∅, the inner repeat-until

loop is reactivated. This terminates immediately, since each unassigned student has an empty
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preference list. We have that P ∗ = {p1, p2, p3, p4}; however, since the provisional assign-
ment graph G is empty, the feasible matching M is also empty. Each of the deleted pairs
forms a blocking pair for M , and the algorithm outputs that no strongly stable matching ex-
ists. The reader can verify that any matching obtained from instance I5 will be undermined
by a (student, project) pair that is not in the matching.

5.3.5 Correctness of the algorithm

We now present the following results regarding the correctness of Algorithm SPA-ST-strong.
The first of these results deals with the fact that no strongly stable pair is deleted during the
execution of the algorithm.

Lemma 5.3.12. If a pair (si, pj) is deleted during an execution of Algorithm SPA-ST-
strong, then (si, pj) does not belong to any strongly stable matching in I .

In order to prove Lemma 5.3.12, we present Lemmas 5.3.13 - 5.3.17.

Lemma 5.3.13. If a pair (si, pj) is deleted within the while loop during an execution of

Algorithm SPA-ST-strong then (si, pj) does not belong to any strongly stable matching in

I .

Proof. Suppose that (si, pj) is the first strongly stable pair to be deleted within the while
loop during an arbitrary executionE of Algorithm SPA-ST-strong. LetM∗ be some strongly
stable matching in which si is assigned to pj . Let lk be the lecturer who offers pj . Suppose
that G is the provisional assignment graph immediately after the deletion of (si, pj). There
are two cases to consider.

1. Suppose that (si, pj) is deleted (on line 10) because some other student became pro-
visionally assigned to pj during E, causing pj to become full or oversubscribed, so
that si is dominated in Ljk. Since (si, pj) ∈ M∗ \ G, there is some student, say sr,
such that lk prefers sr to si and (sr, pj) ∈ G \M∗, for otherwise pj would be over-
subscribed in M∗. We note that sr cannot be assigned to a project that she prefers to
pj in any strongly stable matching, for otherwise some strongly stable pair must have
been deleted before (si, pj), as pj must be in the head of sr’s preference list when she
applied. So sr is either unassigned in M∗ or sr prefers pj to M∗(si) or is indifferent
between them. Clearly for any combination of lk and pj being full or undersubscribed
in M∗, it follows that (sr, pj) blocks M∗, a contradiction.

2. Suppose that (si, pj) is deleted (on line 14) because some other student became pro-
visionally assigned to a project offered by lk during E, causing lk to become full or
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oversubscribed, so that si is dominated in Lk. We denote by Ck the set of projects
that are full or oversubscribed in G, which are offered by lk. We denote by Dk the
set of projects that are undersubscribed in G, which are offered by lk. Clearly the
projects offered by lk that are provisionally assigned to a student in G at this point can
be partitioned into Ck and Dk. We consider two subcases.

(i) Each student who is provisionally assigned in G to a project in Dk (if any) is also
assigned to that same project in M∗. However, after the deletion of (si, pj), we
know that ∑

pt∈Ck∪Dk

qpt =
∑
pt∈Ck

ct +
∑
pt∈Dk

dG(pt) ≥ dk; (5.2)

i.e., the total quota of projects in Ck∪Dk is at least the capacity of lk. Now, since
pj has one more assignee in M∗ than it has provisional assignees in G, namely
si, then some other project pj′ ∈ Ck must have fewer than cj′ assignees in M∗,
for otherwise lk would be oversubscribed in M∗. This implies that there is some
student, say sr, such that lk prefers sr to si and (sr, pj′) ∈ G \M∗. Moreover, sr
cannot be assigned to a project that she prefers to pj′ in M∗, as explained in (1)
above. Hence, (sr, pj′) blocks M∗, a contradiction.

(ii) Each project in Ck at this point is full in M∗. This implies that there is some
project pj′ ∈ Dk with fewer assignees in M∗ than provisional assignees in G,
for otherwise lk would be oversubscribed in M∗. Thus pj′ is undersubscribed in
M∗ (since Dk is the set of undersusbcribed projects offered by lk). Moreover,
there is some student, say sr, such that lk prefers sr to si and (sr, pj′) ∈ G \M∗.
Following a similar argument as in (i) above, (sr, pj′) blocksM∗, a contradiction.

Lemma 5.3.14. If a pair (si, pj) is deleted on line 20 during an execution of Algorithm

SPA-ST-strong then (si, pj) does not belong to any strongly stable matching in I .

Proof. Suppose that (si, pj) is the first strongly stable pair to be deleted during E. Suppose
further that (si, pj) was deleted on line 20 of the algorithm. Let M∗ be some strongly stable
matching in which si is assigned to pj , where lk is the lecturer who offers pj . We note that
(si, pj) is deleted at this point because some clone of pj is in the right-critical set Zp, and
at that point si is in the tail of Ljk. We refer to the set of preference lists at that point as the
current lists. Let Z ′p be the set of project clones in Zp such that the associated real projects
are assigned in M∗ to a student from the tail of their current lists. We have that pjt ∈ Z ′p,
for 1 ≤ t ≤ min{dGr(pj), q

∗
pj
}; thus, Z ′p 6= ∅. Let S ′ be the set of students in N (Zp)

who are assigned in M∗ to at least one project from the head of their current list. Consider
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si′ ∈ N (Zp). We note that si′ cannot be assigned in M∗ to a project that she prefers to any
project in the head of her current list, for otherwise some strongly stable pair must have been
deleted before (si, pj). Hence, any student si′ in N (Zp) who is provisionally assigned to
some clone of pj in Gr must be in S ′; otherwise, (si′ , pj) would block M∗. Thus S ′ 6= ∅.
Also Zp \Z ′p 6= ∅, because |Zp| − |N (Zp)| > 0 and |Z ′p| − |N (Zp)| ≤ |Z ′p| − |S ′| ≤ 0, since
every project whose clone is in Z ′p is assigned in M∗ to a student in S ′.

We now claim that there must be an edge (sr, pj′t) in Gr such that pj′t ∈ Zp \Z
′
p and sr ∈ S ′.

For otherwise, N (Zp \ Z ′p) ⊆ N (Zp) \ S ′, and

|Zp \ Z ′p| − |N (Zp \ Z ′p)| ≥ |Zp \ Z ′p| − |N (Zp) \ S ′|

= |Zp| − |N (Zp)| − (|Z ′p| − |S ′|)

≥ |Zp| − |N (Zp)|, (since |Z ′p| − |S ′| ≤ 0) .

Hence Zp \ Z ′p has deficiency at least that of Zp, contradicting the fact that Zp is the right-
critical set. Thus our claim is established, i.e., there is some project pj′t ∈ Zp \ Z

′
p and some

student sr ∈ S ′ such that sr is adjacent to pj′t in Gr and (sr, pj′) /∈ M∗. We note that sr is
indifferent between pj′ and M∗(sr), since S ′ is the set of students who are assigned in M∗ to
some project in the head of their current list.

Let sq0 = sr, pt0 = pj′ , and let lz0 be the lecturer who offers pt0 . By the strong stability of
M∗, either (i) or (ii) holds as follows:

(i) pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0) to sq0;10

(ii) pt0 is undersubscribed in M∗, lz0 is full in M∗ and lz0 prefers the worst student/s in
M∗(lz0) to sq0 or is indifferent between them.

Otherwise (sq0 , pt0) blocks M∗. In case (i), since (sq0 , pt0) ∈ G \ M∗, there exists some
student sq1 ∈ M∗(pt0) \ G(pt0). For suppose each student who is assigned to pt0 in M∗ is
also assigned to pt0 in G, then (sq0 , pt0) would have been deleted in G. Let pt1 = pt0 .

In case (ii), we claim that lz0 is either full or undersubscribed in G. Suppose otherwise, i.e.,
lz0 is oversubscribed in G, then considering how Gr is formed from G, we have that the
number of students assigned to a project offered by lz0 in Gr exceeds the revised quota of
lz0 , i.e., dGr(lz0) > q∗lz0 . Now, if the total revised quota of projects offered by lz0 in Gr is
at most the revised quota of lz0 , i.e., if

∑
{q∗pu : pu ∈ Pz0 ∩ Pr} ≤ q∗lz0 , then each project

clone in Gr that is associated with a real project offered by lz0 is matched in all maximum
matchings that can be obtained from Gr, and thus pj′t /∈ Zp, a contradiction. Hence,

∑
{q∗pu :

pu ∈ Pz0 ∩ Pr} > q∗lz0 , which implies that nz0 = (
∑
{q∗pu : pu ∈ Pz0 ∩ Pr} − q∗lz0 ) dummy

10We note that lz0 cannot be indifferent between the worst student/s in M∗(pt0) and sq0 , since pt0 is not
assigned in M∗ to students from the tail of its current list.
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student vertices are adjacent to the project clones corresponding to each lower rank projects
offered by lz0 in Gr. With this construction, again, each project clone in Gr that is associated
with a real project offered by lz0 is matched in all maximum matchings that can be obtained
from Gr, and thus pj′t /∈ Zp, a contradiction. Hence, our claim holds, i.e., lz0 is full or
undersubscribed in G. Moreover, since sq0 ∈ G(lz0) \M∗(lz0), there exists some student
sq1 ∈ M∗(lz0) \ G(lz0). We note that lz0 either prefers sq1 to sq0 or is indifferent between
them; clearly sq1 6= sq0 . Now, suppose M∗(sq1) = pt1 (possibly pt1 = pt0).

Since (si, pj) is the first strongly stable pair to be deleted, sq1 is provisionally assigned in G
to a project pt2 such that sq1 prefers pt2 to pt1 . For otherwise, as students apply to projects in
the head of their preference list and since (sq1 , pt1) /∈ G, that would mean (sq1 , pt1) must have
been deleted during an iteration of the while loop, a contradiction. We note that pt2 6= pt1 ,
since (sq1 , pt2) ∈ G and (sq1 , pt1) /∈ G. Let lz1 be the lecturer who offers pt2 . Again by the
strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗ and lz1 prefers the worst students in
M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\G(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \ G(lz1). We note that
lz1 prefers sq2 to sq1; again, it is clear that sq2 6= sq1 . Now, suppose M∗(sq2) = pt3 (possibly
pt3 = pt2). Applying similar reasoning as for sq1 , sq2 is provisionally assigned in G to a
project pt4 such that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are
identifying a sequence 〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence
〈lzi〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈ G and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

First we claim that for each new project that we identify, pt2i 6= pt2i−1
for i ≥ 1. Suppose

pt2i = pt2i−1
for some i ≥ 1. From above sqi was identified by lzi−1

such that (sqi , pt2i−1
) ∈

M∗ \G. Moreover (sqi , pt2i) ∈ G. Hence we reach a contradiction. Clearly, for each student
sqi for i ≥ 1 that we identify, sqi must be assigned to distinct projects in G and in M∗.

Next we claim that for each new student sqi that we identify, sqi 6= sqt for 1 ≤ t < i. We
prove this by induction on i. For the base case, clearly sq2 6= sq1 . We assume that the claim
holds for some i ≥ 1, i.e., the sequence sq1 , sq2 , . . . , sqi consists of distinct students. We
show that the claim holds for i + 1, i.e., the sequence sq1 , sq2 , . . . , sqi , sqi+1

also consists of
distinct students. Clearly sqi+1

6= sqi since lzi prefers sqi+1
to sqi . Thus, it suffices to show
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that sqi+1
6= sqj for 1 ≤ j ≤ i − 1. Now, suppose sqi+1

= sqj for 1 ≤ j ≤ i − 1. This
implies that sqj was identified by lzi and clearly lzi prefers sqj to sqj−1

. Now since sqi+1
was

also identified by lzi to avoid the blocking pair (sqi , pt2i ) in M∗, it follows that either (i) pt2i
is full in M∗, or (ii) pt2i is undersubscribed in M∗ and lzi is full in M∗. We consider each
cases further as follows.

(i) If pt2i is full in M∗, we know that (sqi , pt2i) ∈ G \M∗. Moreover sqj was identified by
lzi+1

because of case (i). Furthermore (sqj−1
, pt2i) ∈ G \M∗. In this case, pt2i+1

= pt2i
and we have that

(sqi , pt2i+1
) ∈ G \M∗ and (sqi+1

, pt2i+1
) ∈M∗ \G,

(sqj−1
, pt2i+1

) ∈ G \M∗ and (sqj , pt2i+1
) ∈M∗ \G.

By the inductive hypothesis, the sequence sq1 , sq2 , . . . , sqj−1
, sqj , . . . , sqi consists of

distinct students. This implies that sqi 6= sqj−1
. Thus since pt2i+1

is full in M∗, lzi
should have been able to identify distinct students sqj and sqi+1

to avoid the blocking
pairs (sqj−1

, pt2i+1
) and (sqi , pt2i+1

) respectively in M∗, a contradiction.

(ii) pt2i is undersubscribed in M∗ and lzi is full in M∗. Similarly as in case (i) above, we
have that

sqi ∈ G(lzi) \M∗(lzi) and sqi+1
∈M∗(lzi) \G(lzi),

sqj−1
∈ G(lzi) \M∗(lzi) and sqj ∈M∗(lzi) \G(lzi).

Since sqi 6= sqj−1
and lzi is full in M∗, lzi should have been able to identify distinct

students sqj and sqi+1
corresponding to students sqj−1

and sqi respectively, a contradic-
tion.

This completes the induction step. As the sequence of distinct students and projects is infi-
nite, we reach an immediate contradiction.

Lemma 5.3.15. If a pair (si, pj) is deleted on line 25 during an execution of Algorithm

SPA-ST-strong then (si, pj) does not belong to any strongly stable matching in I .

Proof. Suppose that (si, pj) is the first strongly stable pair to be deleted during E. Suppose
further that (si, pj) was deleted on line 25 of the algorithm. Let M∗ be some strongly stable
matching in which si is assigned to pj , where lk is the lecturer who offers pj . We note
that (si, pj) is deleted at this point because some clone of pj is provisionally assigned to a
student in the left-critical set Zs, and at that point si is in the tail of Ljk. We refer to the set
of preference lists at that point as the current lists. Let Z ′s be the set of students in Zs who
are assigned in M∗ to a project from the head of their current lists, and let P ′ be the set of
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project clones in N (Zs) such that the associated real projects are assigned in M∗ to at least
one student from the tail of its current list. Since (si, pj) ∈ M∗, then some clone of pj , say
pjt for 1 ≤ t ≤ min{dGr(pj), q

∗
pj
}, must be in P ′. Thus P ′ 6= ∅. Consider si′ ∈ Zs. We note

that si′ cannot be assigned inM∗ to a project that she prefers to any project in the head of her
current list, for otherwise some strongly stable pair must have been deleted before (si, pj).
Hence, any student si′ in Zs who is provisionally assigned to pjt must be in Z ′s, otherwise
(si′ , pj) would block M∗. Thus Z ′s 6= ∅. Also Zs \ Z ′s 6= ∅, because |Zs| − |N (Zs)| > 0 and
|Z ′s| − |N (Zs)| ≤ |Z ′s| − |P ′| ≤ 0, since every student in Z ′s is assigned in M∗ to a project
in P ′.

We now claim that there must be an edge (sr, pj′t) in Gr such that sr ∈ Zs \Z ′s and pj′t ∈ P
′.

For otherwise, N (Zs \ Z ′s) ⊆ N (Zs) \ P ′, and

|Zs \ Z ′s| − |N (Zs \ Z ′s)| ≥ |Zs \ Z ′s| − |N (Zs) \ P ′|

= |Zs| − |N (Zs)| − (|Z ′s| − |P ′|)

≥ |Zs| − |N (Zs)|, (since |Z ′s| − |P ′| ≤ 0) .

Hence Zs \ Z ′s has deficiency at least that of Zs, contradicting the fact that Zs is the left-
critical set. Thus our claim is established, i.e., there is some student sr ∈ Zs \ Z ′s and some
project pj′t ∈ P

′ such that sr is adjacent to pj′t in Gr. Since sr is either unassigned in M∗ or
prefers pj′ to M∗(sr), and since the lecturer who offers pj′ is indifferent between sr and at
least one student in M∗(pj′), we have that (sr, pj′) blocks M∗, a contradiction.

Lemma 5.3.16. If a pair (si, pj) is deleted on line 34 during an execution of Algorithm

SPA-ST-strong, then (si, pj) does not belong to any strongly stable matching in I .

Proof. Suppose that (si, pj) is the first strongly stable pair to be deleted during E. Suppose
further that (si, pj) was deleted on line 34 of the algorithm. Let M∗ be some strongly stable
matching in which si is assigned to pj , where lk is the lecturer who offers pj . Let pj′ be some
other project offered by lk, such that pj′ was deleted from the preference list of some student
during an iteration of the inner repeat-until loop and pj′ is undersubscribed at the end
of the loop, i.e., pj′ plays the role of pj on line 31 of the algorithm. Suppose that si′ plays
the role of sr on line 30, i.e., si′ was provisionally assigned to pj′ at some point during an
iteration of the inner repeat-until loop and si′ is the most-preferred student rejected
from pj′ according to Lj

′

k (possibly si′ = si). Then (si′ , pj′) /∈ G at the end of the loop. Thus
(si′ , pj′) /∈ M∗, since no strongly stable pair is deleted within the inner repeat-until
loop, as proved in Lemmas 5.3.13 - 5.3.15. Moreover, lk prefers si′ to si or is indifferent
between them, since si plays the role of st at some for loop iteration on line 32.

Let lz0 = lk, pt0 = pj′ and sq0 = si′ . We remark that no student who is provisionally
assigned to some project in G can be assigned to a project better than her current assignment
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in any strongly stable matching. For otherwise, this would mean a strongly stable pair must
have been deleted before (si, pj), since each student who is assigned in G applies to all the
project/s in the head of her preference list. So, either (a) sq0 is unassigned in M∗ or sq0
prefers pt0 to M∗(sq0), or (b) sq0 is indifferent between pt0 and M∗(sq0). If (a) holds, then
by the strong stability of M∗, pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0)

to sq0 ; for otherwise, (sq0 , pt0) blocks M∗, since si ∈ M∗(lz0) and lz0 prefers sq0 to si or is
indifferent between them, a contradiction.

If (b) holds, i.e., sq0 is indifferent between pt0 and M∗(sq0). First suppose that M∗(sq0) is of-
fered by lz0 , then the argument follows from (a) above. Next, suppose M∗(sq0) is not offered
by lz0 , we claim that (i) if pt0 is full in M∗ then lz0 prefers the worst student/s in M∗(pt0)

to sq0 , and (ii) if pt0 is undersubscribed in M∗ then lz0 prefers sq0 to si. To prove claim
(i), suppose lz0 is indifferent between a worst student in M∗(pt0) and sq0 , since (sq0 , pt0)

has been deleted during an iteration of the inner repeat-until loop, for each student
sqa tied together with sq0 in Lt0z0 , (sqa , pt0) would have been deleted at the same iteration, a
contradiction.

To prove claim (ii), suppose lz0 is indifferent between sq0 and si, we will identify the point in
the algorithm where (sq0 , pt0) was deleted. We note that (sq0 , pt0) was not deleted on line 10
(i.e., when pt0 became full or oversubscribed) of the algorithm, otherwise sq0 will not be the
most-preferred student rejected from pt0 for pt0 to become undersubscribed on line 34 after
being full on line 10. Next, we note that (sq0 , pt0) was not deleted on line 14 (i.e., when lz0
became full or oversubscribed), otherwise (si, pj) would have been deleted during the same
iteration, a contradiction. Thus, (sq0 , pt0) must have been deleted (a) on line 20 (i.e., at the
point where some clone of pt0 was in the right-critical set Zp, and at that point sq0 was in
the tail of Lt0z0), or (b) on line 25 (i.e., at the point where some clone of pt0 was adjacent
in Gr to some student in the left-critical set Zs). Moreover, since sq0 is indifferent between
pt0 and M∗(sq0), this implies that sq0 was not in Gr during that iteration. Thus, some other
student, say sqa , must have caused this deletion and such student would either be unassigned
in M∗ or be assigned to a project worse than pt0 on her preference list. As a result, if pt0 is
undersubscribed in M∗ and lz0 is full in M∗ with si ∈ M∗(lz0), then (sqa , pt0) blocks M∗, a
contradiction.

To recall, either sq0 is unassigned inM∗ or sq0 prefers pt0 toM∗(sq0) or is indifferent between
them. Moreover, pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0) to sq0 . Just
before the deletion of (si, pj) occurred, pt0 is undersubscribed in G. Since pt0 is full in M∗,
it follows that there exists some student, say sq1 , such that (sq1 , pt0) ∈ M∗ \ G. We note
that lz0 prefers sq1 to sq0 . Let pt1 = pt0 . Since (si, pj) is the first strongly stable pair to be
deleted, sq1 is provisionally assigned in G to a project pt2 such that sq1 prefers pt2 to pt1 . For
otherwise, as students apply to projects in the head of their preference list, that would mean
(sq1 , pt1) must have been deleted during an iteration of the inner repeat-until loop, a
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contradiction. We note that pt2 6= pt1 , since (sq1 , pt2) ∈ G and (sq1 , pt1) /∈ G. Let lz1 be the
lecturer who offers pt2 . By the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈M∗(lz1) and lz1 prefers the worst
student/s in M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\G(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \ G(lz1). We note that
lz1 prefers sq2 to sq1 . Now, suppose M∗(sq2) = pt3 (possibly pt3 = pt2). It is clear that
sq2 6= sq1 . Applying similar reasoning as for sq1 , sq2 is assigned in G to a project pt4 such
that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are identifying a sequence
〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence 〈lzi〉i≥1 of lecturers, such
that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈ G and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 5.3.14, we can identify an infinite
sequence of distinct students and projects, a contradiction.

Lemma 5.3.17. If a pair (si, pj) is deleted on line 41 during an execution of Algorithm

SPA-ST-strong, then (si, pj) does not belong to any strongly stable matching in I .

Proof. Suppose that (si, pj) is the first strongly stable pair to be deleted during E. Suppose
further that (si, pj) was deleted on line 41. Let M∗ be some strongly stable matching in
which si is assigned to pj . Let lk be the lecturer who offers pj . At this point in the algorithm
where the deletion of (si, pj) occured, si is adjacent to some other project pj′ ∈ G via a
bound edge, where pj′ is offered by lk′ (note that lk 6= lk′). By the definition of a bound edge,
it follows that either pj′ is not oversubscribed in G or lk′ prefers si to some student in G(pj′)

(or both)11. Also, (si, pj′) is not a lower rank edge.

Let lz0 = lk′ , pt0 = pj′ and sq0 = si. We note that sq0 is indifferent between pj and pt0 . Now,
since (sq0 , pt0) ∈ G \M∗, by the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0) to sq0 or is indifferent
between them;

11This is similar to saying lk′ prefers si to some student at the tail of Lj
k who is assigned to pj′ in G
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(ii) pt0 is undersubscribed in M∗, lz0 is full in M∗ and lz0 prefers the worst student/s in
M∗(lz0) to sq0 or is indifferent between them.

Otherwise (sq0 , pt0) blocksM∗. In case (i), since sq0 is bound to pt0 inG and since (sq0 , pt0) ∈
G \M∗, there exists some student sq1 ∈ M∗(pt0) \ G(pt0). Let pt1 = pt0 . In case (ii), since
sq0 is assigned in G to a project offered by lz0 (i.e., pt0) via a bound edge, and since sq0 is
not assigned to lz0 in M∗, there exists some student sq1 ∈ M∗(lz0) \ G(lz0). We note that
lz0 either prefers sq1 to sq0 or is indifferent between them; clearly sq1 6= sq0 . Now, suppose
M∗(sq1) = pt1 (possibly pt1 = pt0).

Since (sq0 , pj) is the first strongly stable pair to be deleted, sq1 is provisionally assigned in
G to a project pt2 such that sq1 prefers pt2 to pt1 . For otherwise, as students apply to projects
in the head of their preference list and since (sq1 , pt1) /∈ G, that would mean (sq1 , pt1) must
have been deleted during an iteration of the repeat-until loop, a contradiction. We note
that pt2 6= pt1 , since (sq1 , pt2) ∈ G and (sq1 , pt1) /∈ G. Let lz1 be the lecturer who offers pt2 .
Again by the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗ and lz1 prefers the worst student/s in
M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\G(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \ G(lz1). We note that
lz1 prefers sq2 to sq1 ; again it is clear that sq2 6= sq1 . Now, suppose M∗(sq2) = pt3 (possibly
pt3 = pt2). Applying similar reasoning as for sq1 , sq2 is provisionally assigned in G to a
project pt4 such that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are
identifying a sequence 〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence
〈lzi〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈ G and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 5.3.14, we can identify an infinite
sequence of distinct students and projects, a contradiction.

Lemmas 5.3.13 - 5.3.17 immediately give rise to Lemma 5.3.12. The next two lemmas will
be used as a tool in the proof of the remaining lemmas.
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Lemma 5.3.18. Let M be a feasible matching in the final provisional assignment graph G.

The following holds: (a) every student who is assigned to a project in G must be assigned in

M ; (b) every project that is undersubscribed in G has as many assignees in M as it has in

G, and every project that is full or oversubscribed in G is full in M .

Proof. First, we show that (a) holds. Suppose si is a student who is provisionally assigned
to some project in G. If si is not assigned in a feasible matching M , then si must be in the
left-critical set Zs. Thus Zs 6= ∅, a contradiction. Next, we show that (b) holds. Suppose pj
is a project that is provisionally assigned to some student in G. If pj is undersubscribed in
G then |M(pj)| = dG(pj); and if pj is full or oversubscribed in G then |M(pj)| = cj . For
otherwise, pj must be in the right-critical set Zp. Thus Zp 6= ∅, a contradiction.

We note that an equivalence of Lemma 4.4.4 for super-stability also holds in the strong
stability setting, which we restate as follows without proof.

Lemma 5.3.19. Let M be a feasible matching in the final provisional assignment graph G

and let M∗ be any strongly stable matching. Let lk be an arbitrary lecturer. The following

holds: (a) if lk is undersubscribed in M∗ then every student who is assigned to lk in M is

also assigned to lk in M∗; and (b) if lk is undersubscribed in M then lk has the same number

of assignees in M∗ as in M .

The next three lemmas deal with the case that Algorithm SPA-ST-strong reports the non-
existence of a strongly stable matching in I .

Lemma 5.3.20. Let M be a feasible matching in the final provisional assignment graph G.

Suppose that (a) some lecturer who is undersubscribed in G has fewer assignees in M than

provisional assignees in G, or (b) some lecturer who is full in G is not full in M . Then I

admits no strongly stable matching.

Proof. Suppose that M∗ is a strongly stable matching for the instance. By Lemma 5.3.18,
each student who is provisionally assigned to a project in G must be assigned in M . More-
over, any student who is not provisionally assigned to a project in G must have an empty
preference list. It follows that these students are unassigned in M∗, since Lemma 5.3.12
guarantees that no strongly stable pairs are deleted. Thus |M∗| ≤ |M |.

Suppose that condition (a) is satisfied. Then some lecturer lk′ who is undersubscribed in G
satisfies |M(lk′)| < dG(lk′), where dG(lk′) is the number of students that are provisionally
assigned in G to a project offered by lk′ . As lk′ is undersubscribed, it follows that dG(lk′) <

dk′ . Now |M(lk)| ≤ min{dk, dG(lk)} for all lk ∈ L. Hence

|M | =
∑
lk∈L

|M(lk)| <
∑
lk∈L

min{dk, dG(lk)} . (5.3)
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Now, suppose that |M∗(lk)| ≥ min{dk, dG(lk)} for all lk ∈ L. Then |M∗| > |M | by
Inequality (5.3), a contradiction. Hence |M∗(lk)| < min{dk, dG(lk)} for some lk ∈ L.
This implies that lk is undersubcribed in M∗. Moreover, lk has fewer assignees in M∗ than
provisional assignees in G. Thus there exists some student si who is provisionally assigned
to lk in G but not in M∗. It follows that there exists some project pj ∈ Pk such that (si, pj) ∈
G \M∗. By Lemma 5.3.12, si is not assigned to a project that she prefers to pj in M∗. Also,
by the strong stability of M∗, pj is full in M∗ and lk prefers the worst student/s in M∗(pj)

to si; for if pj is undersubscribed in M∗ then (si, pj) blocks M∗, a contradiction. Since pj
is full in M∗ with students that are better than si in Ljk and (si, pj) ∈ G \M∗, then there
is some student, say si′ , such that lk prefers si′ to si and (si′ , pj) ∈ M∗ \ G. For if all the
students assigned to pj in M∗ are also assigned to pj in G, then si would be dominated in Ljk
and thus (si, pj) would have been deleted in G.

Let lz0 = lk, pt0 = pt1 = pj , sq0 = si, sq1 = si′ . Again, by Lemma 5.3.12, sq1 is provisionally
assigned in G to a project pt2 such that sq1 prefers pt2 to pt1 . For otherwise, as students apply
to projects in the head of their preference list, since (sq1 , pt1) /∈ G, that would mean (sq1 , pt1)

must have been deleted during the algorithm’s execution, a contradiction. We note that
pt2 6= pt1 , since (sq1 , pt2) ∈ G and (sq1 , pt1) /∈ G. Let lz1 be the lecturer who offers pt2 . By
the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗, sq1 /∈M∗(lz1) and lz1 prefers the worst
student/s in M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\G(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈M∗(lz1) \G(lz1). We note that lz1
prefers sq2 to sq1 . Now, supposeM∗(sq2) = pt3 (possibly pt3 = pt2). It is clear that sq2 6= sq1 .
Applying similar reasoning as for sq1 , student sq2 is assigned in G to a project pt4 such that
sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are identifying a sequence
〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence 〈lzi〉i≥1 of lecturers, such
that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈ G and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 5.3.14, we can identify an infinite
sequence of distinct students and projects, a contradiction.

Now suppose condition (b) is satisfied, i.e., some lecturer who is full in G is not full in M .
LetL1 andL2 be the set of lecturers who are full and undersubscribed inG respectively. Then
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some lk′′ ∈ L1 satisfies |M(lk′′)| < dk′′ . Condition (a) cannot be satisfied, for otherwise the
first part of the proof shows that M∗ does not exist. Hence |M(lk)| = dG(lk) < dk for all
lk ∈ L2. Now |M(lk)| ≤ dk for all lk ∈ L1. Hence

|M | =
∑
lk∈L1

|M(lk)|+
∑
lk∈L2

|M(lk)| <
∑
lk∈L1

dk +
∑
lk∈L2

dG(lk) . (5.4)

Now suppose that |M∗(lk)| = dk for all lk ∈ L1, and |M∗(lk)| ≥ dG(lk) for all lk ∈ L2.
Then |M∗| > |M | by Inequality (5.4), a contradiction. Hence either (i) |M∗(lk′)| < dk′

for some lk′ ∈ L1, or (ii) |M∗(lk′)| < dG(lk′) for some lk′ ∈ L2. In case (ii), we reach
a similar contradiction to that arrived at for condition (a). In case (i), we have that lk′ is
undersubscribed in M∗. As lk′ is full in G, there exists some student si who is provisionally
assigned to some project offered by lk′ in G, but si is not assigned to a project offered by lk′

inM∗. That is, there is some project pj ∈ Pk′ such that (si, pj) ∈ G\M∗. By Lemma 5.3.12,
si is not assigned to a project in M∗ that she prefers to pj . Following a similar argument as
above, we can identify a sequence of distinct students and projects, and as this sequence is
infinite, we reach a contradiction. Thus I admits no strongly stable matching.

Lemma 5.3.21. Suppose that in the final provisional assignment graphG, a student is bound

to two or more projects. Then I admits no strongly stable matching.

Proof. Suppose that a strongly stable matching exists for the instance. Let M be a feasible
matching in the final provisional assignment graph G. Denote by L1 and L2 the set of lectur-
ers who are full and undersubscribed in G respectively. Denote by S1 the set of students who
are bound to one or more projects in G, and by S2 the other students who are provisionally
assigned to one or more projects in G. By Lemma 5.3.18,

|M | = |S1|+ |S2| . (5.5)

Also,

|M | =
∑
lk∈L1

|M(lk)|+
∑
lk∈L2

|M(lk)| . (5.6)

Moreover, we have that∑
lk∈L1

|M(lk)|+
∑
lk∈L2

|M(lk)| =
∑
lk∈L1

dk +
∑
lk∈L2

dG(lk); (5.7)

for otherwise, no strongly stable matching exists by Lemma 5.3.20. Now, if some student is
bound to two or more projects, by considering how the lecturers’ quotas are reduced when
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the students in S1 are removed in forming Gr from G, it follows that∑
lk∈L1

(dk − q∗lk) +
∑
lk∈L2

(dG(lk)− q∗lk) ≥
∑
lk∈L1

(min{αk, dk} − q∗lk) +
∑
lk∈L2

(min{αk, dk} − q∗lk)

=
∑
lk∈L1

(qlk − q∗lk) +
∑
lk∈L2

(qlk − q∗lk)

=
∑

lk∈L1∪L2

(qlk − q∗lk)

> |S1|, (5.8)

where
∑

lk∈L1∪L2
(qlk − q∗lk) is the total number of bound edges that are adjacent to a project

offered by a lecturer in L1 ∪ L2. It is clear that dk − q∗lk ≥ min{αk, dk} − q∗lk for each
lk ∈ L1. We claim that dG(lk) ≥ αk for each lk ∈ L2. Suppose otherwise, i.e., there
exists some lk ∈ L2 such that dG(lk) < αk, i.e., dG(lk) < {qpj : pj ∈ Pk ∩ P}. This
implies that dG(lk) < qlk . Now, by considering how Gr is formed from G, we have that
dGr(lk) < q∗lk .12 Thus, no dummy students will be adjacent to a project offered by lk in
Gr. Moreover, after replacing each project offered by lk in Gr with clones, we have that
dGr(lk) < |N (Gr(lk))|.13 This implies that, in Gr, some cloned project associated with a
real project offered by lk does not belong to some maximum matching. Thus, the right-
critical set Zp is non-empty, a contradiction. Hence, dG(lk) − q∗lk ≥ min{αk, dk} − q∗lk for
each lk ∈ L2. Now, by substituting Equality 5.7 into Inequality 5.8, we obtain the following∑

lk∈L1

|M(lk)| −
∑
lk∈L1

q∗lk +
∑
lk∈L2

|M(lk)| −
∑
lk∈L2

q∗lk > |S1| . (5.9)

Combining Equalities (5.5) and (5.6) into Inequality (5.9), we have

|S1|+ |S2| −
∑
lk∈L1

q∗lk −
∑
lk∈L2

q∗lk > |S1|,∑
lk∈L1∪L2

q∗lk < |S2| . (5.10)

Since the total revised quota of lecturers in L1∪L2 whose projects are provisionally assigned
to a student in Gr is strictly less than the number of students in S2, the preceding inequality
suffices to establish that the left-critical set Zs is non-empty, a contradiction.

Lemma 5.3.22. Let M be a feasible matching in the final provisional assignment graph G.

If some project in P ∗ is not full in M then I admits no strongly stable matching.
12Since for each bound edge which is adjacent to a project offered by lk that we remove from Gr, we reduce

the quota of lk by 1.
13This is because before the project cloning takes place, the number of students adjacent to a project offered

by lk in Gr is fewer than the total quota of projects offered by lk in Gr.
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Proof. Suppose for a contradiction that there exists a strongly stable matching M∗ in I . By
the hypothesis of the lemma, P ∗ is non-empty. Thus there exists some project pj ∈ P ∗ and
some student, say si, such that (si, pj) has been deleted. Thus (si, pj) /∈ G. Let lk be the
lecturer who offers pj . By the definition of P ∗, either (a) lk is undersubscribed in G or (b) lk
is full in G and lk prefers si to the worst student/s in G(lk).

If lk is undersubscribed in G then lk is undersubscribed in M , since M is formed from G.
By Lemma 5.3.19, we have that lk is undersubscribed in M∗. Since pj is offered by lk, and
pj is undersubscribed in M , it follows from the proof of Lemma 4.4.6 (paragraph 2) that pj
is undersubscribed in M∗. Moreover, since (si, pj) has been deleted, we have that either si is
unassigned in M or si prefers pj to M(si) or is indifferent between them. By Lemma 5.3.12,
this is true for si in M∗. Hence (si, pj) blocks M∗, a contradiction.

If lk is full in G and lk prefers si to some student in G(lk). By Lemma 5.3.20, lk is full in
M , and by Lemma 5.3.19, lk is full in M∗. Moreover, in this case, the only possibility is that
si is indifferent between pj and M(si). For suppose otherwise, i.e., either si is unassigned
in M or si prefers pj to M(si), then (si, pj) must have been deleted during some iteration of
the outer repeat-until loop. Now, since pj is undersubscribed in G, then every student
that is no better than si according to Lk would have been deleted from lk’s preference list
on line 34. However, lk prefers si to the worst student/s in G(lk). Thus, (si, pj) must have
been deleted on line 41, which implies that (si, pj) is an unbound edge. Further, we note that
si /∈ G(lk) because the deletion of (si, pj) on line 41 implies that si is bound to some other
project offered by a lecturer different from lk. So, if si ∈ G(lk) at the termination of the
algorithm, then si must be bound to two projects. Thus, no strongly stable matching exists
by Lemma 5.3.21, a contradiction. Now, by Lemma 5.3.12, either (a) si prefers pj to M∗(si)

or (b) si is indifferent between pj and M∗(si). Let lz0 = lk, pt0 = pj and sq0 = si. If (a)
holds then by the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0) to sq0;

(ii) pt0 is undersubscribed in M∗, lz0 is full in M∗ and lz0 prefers the worst student/s in
M∗(lz0) to sq0 .

Otherwise (sq0 , pt0) blocks M∗. In case (i), since pt0 is undersubscribed in G, there exists
some student sq1 ∈M∗(pt0) \G(pt0). Let pt1 = pt0 . In case (ii), since lz0 prefers sq0 to some
student in G(lz0), there exists some student sq1 ∈ M∗(lz0) \ G(lz0). We note that lz0 prefers
sq1 to sq0; clearly sq1 6= sq0 . Now, suppose M∗(sq1) = pt1 (possibly pt1 = pt0). If (b) holds,
then by the strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt0 is full in M∗ and lz0 prefers the worst student/s in M∗(pt0) to sq0 or is indifferent
between them;
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(ii) pt0 is undersubscribed in M∗, lz0 is full in M∗ and lz0 prefers the worst student/s in
M∗(lz0) to sq0 or is indifferent between them.

Otherwise (sq0 , pt0) blocks M∗. In case (i), since pt0 is undersubscribed in G, there exists
some student sq1 ∈M∗(pt0) \G(pt0). Let pt1 = pt0 . In case (ii), since lz0 prefers sq0 to some
student in G(lz0), there exists some student sq1 ∈ M∗(lz0) \ G(lz0). We note that lz0 either
prefers sq1 to sq0 or is indifferent between them. Now, suppose M∗(sq1) = pt1 (possibly
pt1 = pt0).

By Lemma 5.3.12, sq1 is provisionally assigned in G to a project pt2 such that sq1 prefers pt2
to pt1 . For otherwise, as students apply to projects in the head of their preference list during
the algorithm’s execution, and since (sq1 , pt1) /∈ G, that would mean (sq1 , pt1) must have
been deleted during some iteration of the algorithm, a contradiction. We note that pt2 6= pt1 ,
since (sq1 , pt2) ∈ G and (sq1 , pt1) /∈ G. Let lz1 be the lecturer who offers pt2 . Again by the
strong stability of M∗, either (i) or (ii) holds as follows:

(i) pt2 is full in M∗ and lz1 prefers the worst student/s in M∗(pt2) to sq1;

(ii) pt2 is undersubscribed in M∗, lz1 is full in M∗ and lz1 prefers the worst student/s in
M∗(lz1) to sq1 .

Otherwise (sq1 , pt2) blocksM∗. In case (i), there exists some student sq2 ∈M∗(pt2)\G(pt2).
Let pt3 = pt2 . In case (ii), there exists some student sq2 ∈ M∗(lz1) \ G(lz1). We note that
lz1 prefers sq2 to sq1; again it is clear that sq2 6= sq1 . Now, suppose M∗(sq2) = pt3 (possibly
pt3 = pt2). Applying similar reasoning as for sq1 , sq2 is provisionally assigned in G to a
project pt4 such that sq2 prefers pt4 to pt3 . Let lz2 be the lecturer who offers pt4 . We are
identifying a sequence 〈sqi〉i≥1 of students, a sequence 〈pti〉i≥1 of projects, and a sequence
〈lzi〉i≥1 of lecturers, such that, for each i ≥ 1

1. sqi prefers pt2i to pt2i−1
,

2. (sqi , pt2i) ∈ G and (sqi , pt2i−1
) ∈M∗,

3. lzi prefers sqi+1
to sqi; also, lzi offers both pt2i and pt2i+1

(possibly pt2i = pt2i+1
).

Following a similar argument as in the proof of Lemma 5.3.14, we can identify an infinite
sequence of distinct students and projects, a contradiction.

The next lemma shows that the feasible matchingM may be used to determine the existence,
or otherwise, of a strongly stable matching in I .

Lemma 5.3.23. Let M be a feasible matching in the final provisional assignment graph G.

If M is not strongly stable then I admits no strongly stable matching.
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Proof. Suppose that M is not strongly stable. Let (si, pj) be a blocking pair for M , and let
lk be the lecturer who offers pj . We consider two cases.

1. Suppose (si, pj) /∈ G, i.e., (a) either si is unassigned in M or si prefers pj to M(si),
or (b) si is indifferent between pj and M(si). Then (si, pj) has been deleted. First,
suppose (si, pj) forms a blocking pair for M because each of pj and lk is undersub-
scribed in M . If lk is full in G then by Lemma 5.3.20, no strongly stable matching
exists. Hence lk is undersubscribed in G. In cases (a) and (b), we have that pj ∈ P ∗.
Moreover, since pj is not full in M , no strongly stable matching exists by Lemma
5.3.22.

Next, suppose (si, pj) forms a blocking pair for M because pj is undersubscribed in
M and lk is full in M . We claim that si /∈ M(lk) and lk prefers the worst student/s
in M(lk) to si. To prove our claim, we identify the point at which (si, pj) was deleted
within the inner repeat-until loop during the algorithm’s execution, i.e., lines 10,
14, 20, 25 and 34. We treat the deletion outside the repeat-until loop separately,
i.e., line 41, because it is only valid for case (b).

Suppose (si, pj) was deleted on line 10 as a result of pj becoming full or oversub-
scribed. Let sr be some student who was assigned to pj at some point during the
algorithm’s execution, where sr is the most-preferred student rejected from pj accord-
ing to Ljk. Then either (i) sr = si, or (ii) lk is indifferent between sr and si, or (iii)
lk prefers sr to si. As pj is undersubscribed, each pair (st, pu), for each st that is no
better than sr at the tail of Lk and each pu ∈ At ∩ Pk, would have been deleted on
line 34. Thus our claim holds. Now, suppose (si, pj) was deleted on line 14 as a result
of lk becoming full or oversubscribed, then for each st at the tail of Lk and for each
pu ∈ At ∩ Pk, (st, pu) would have been deleted on line 14. Thus our claim holds.

Now, suppose (si, pj) was deleted (i) on line 20, i.e., because si was in the tail of Ljk
at a point when some clone of pj was in the right-critical set Zp, or (ii) on line 25, i.e.,
because si was in the tail of Ljk at a point when some clone of pj was adjacent to a
student in the left-critical set Zs. Let sr be some student who was adjacent to some
clone of pj in the reduced assignment graph at that point. The argument follows from
the first part of the previous paragraph. Thus our claim holds.

Finally, suppose (si, pj) was deleted on line 34, because some other project pj′ offered
by lk has been deleted from some student’s preference list and pj′ was undersubscribed
at line 31. Then lk must have identified her most-preferred student, say sr, who was
assigned to pj′ at some point during the algorithm’s execution but is not assigned to pj′

on line 30. Moreover, for each st at the tail of Lk and for each pu ∈ At ∩ Pk, (st, pu)

would have been deleted on line 34. Thus our claim holds.
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Now, suppose (si, pj) was deleted on line 41. Then the only possibility is that si is
indifferent between pj and M(si). In addition, si must be bound to some project pj′

offered by a lecturer different from lk. Further, si is not assigned to any project offered
by lk in G. For otherwise, si is bound to two projects offered by different lecturers;
and thus, no strongly stable matching exists, by Lemma 5.3.21. Hence, si /∈ G(lk),
and hence si /∈ M(lk). Again, recall that pj is undersubscribed in M and lk is full in
M . Moreover, (si, pj) can only form a blocking pair in this case if lk prefers si to the
worst student/s in M(lk). If this is the case, then pj ∈ P ∗. Since pj is not full in M ,
no strongly stable matching exists by Lemma 5.3.22.

2. Suppose (si, pj) ∈ G, i.e., si is indifferent between pj and M(si). Then (si, pj) has
not been deleted. First, suppose (si, pj) forms a blocking pair for M because each
of pj and lk is undersubscribed in M . If lk is full in G then by Lemma 5.3.20, no
strongly stable matching exists. Hence, lk is undersubscribed in G. It follows that si
is bound to pj . Now, if si /∈ M(lk) then lk has fewer assignees in M than provisional
assignees in G. Thus no strongly stable matching exists by Lemma 5.3.20. Hence,
si ∈ M(lk). Let M(si) = pj′ , we claim that si is bound to pj′ . For otherwise, since
lk is undersubscribed in G, the only possibility is that pj′ is oversubscribed in G and
si is in the tail of Lj

′

k . By the construction of Gr, since si is bound to pj , we have that
si is not adjacent to any project in Gr. Thus, some other student si′ at the tail of Lj

′

k is
adjacent to clones of pj′ in Gr. Since (si, pj′) ∈M , this implies that some clone of pj′

is unassigned in some maximum matching obtained from Gr. Thus the right-critical
set is non-empty, a contradiction. Hence our claim holds; and hence si is bound to two
projects in G. Thus no strongly stable matching exists by Lemma 5.3.21.

Next, suppose (si, pj) forms a blocking pair for M because pj is undersubscribed in
M and lk is full in M . Suppose firstly that si /∈M(lk). It follows that both (si, pj) and
(si,M(si)) are unbound edges.14 Now, since pj is undersubscribed in M and (si, pj)

is an unbound edge, this implies that (si, pj) is a lower rank edge. Thus lk is full in
M with students that are no worse than si, and thus (si, pj) cannot block M . Hence
si ∈M(lk). In this case, we claim that (si, pj) is not a lower rank edge. For otherwise,
(si, pj) and (si,M(si)) are both in the reduced assignment graph Gr. Moreover, since
(si, pj) ∈ G\M and since pj is undersubscribed inM , it follows that some clone of pj
is unassigned in some maximum matching obtained from Gr. Thus, the right-critical
set is non-empty, a contradiction. Further, since pj is undersubscribed and (si, pj) is
not a lower rank edge, it follows that si is bound to pj . Let M(si) = pj′ , the argument
that si is bound to pj′ follows from the previous paragraph. Hence, si is bound to two
projects in G; and hence, no strongly stable matching exists by Lemma 5.3.21.

14Justification for this is as follows: if (si, pj) is a bound edge then (si,M(si)) would have been deleted on
line 41; similarly, if (si,M(si)) is a bound edge then (si, pj) would have been deleted on line 41.
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Finally, suppose pj is full in M . Then (si, pj) cannot block M irrespective of whether
lk is full or undersubscribed in M , since the worst student/s in M(pj) are either better
or no worse than si, according to Ljk.

Since (si, pj) is an arbitrary pair, this implies that I admits no strongly stable matching.

Lemma 5.3.24. Algorithm SPA-ST-strong may be implemented to run in O(m2) time,

where m is the total length of the students’ preference lists.

Proof. It is clear that the work done in the inner repeat-until loop other than in finding
the maximum cardinality matchings and critical sets is bounded by a constant times the
number of deleted pairs, and so is O(m). We remark that the total amount of work done
outside the inner repeat-until loop (i.e., in deleting pairs when a project that has been
deleted from a student’s preference list is undersubscribed on line 31) is bounded by the
total length of the students’ preference lists, and so is O(m). Similarly, the total amount
of work done on lines 36 - 41 (i.e., in deleting some set of unbound edges) is bounded by
the total length of the students’ preference lists, and so is O(m). During each iteration of
the inner repeat-until loop of Algorithm SPA-ST-strong, we need to form the reduced
assignment graphGr, which takesO(m) time. Further, we need to find a maximum matching
in Gr, which allows us to use Lemmas 5.3.10 and 5.3.11 to find the right-critical and left-
critical set respectively. Next we show how we can bound the total amount of work done in
finding the maximum matchings, which is inspired by that given in the HRT setting [58].

Suppose that Algorithm SPA-ST-strong finds a maximum matching M
(i)
r in the reduced

assignment graph G(i)
r at the ith iteration of the inner repeat-until loop. Suppose also

that, during the ith iteration in this loop, a total of xi pairs are deleted on lines 20 and 25
because they involve (i) students that are in the tail of a project whose clone is in the right-
critical set Z(i)

p , and (ii) students that are in the left-critical set Z(i)
s or students tied with

them in the tail of a project whose clone is in N (Z
(i)
s ). Suppose further that in the (i + 1)th

iteration, yi pairs are deleted before the reduced assignment graph G(i+1)
r is formed. Note

that any edge in G(i)
r which is not one of these xi + yi deleted pairs must be in G(i+1)

r , since
an edge in the provisional assignment graph cannot change state from unbound to bound. In
particular, at least |M (i)

r | − xi − yi edges of M (i)
r remain in G(i+1)

r at the (i + 1)th iteration.
Hence we can start from these edges in that iteration and find a maximum matching M (i+1)

r

in O(min{nm, (xi+yi+ zi)m}) time, where zi is the number of edges in G(i+1)
r which were

not in G(i)
r .

Suppose that a total of s iterations of the inner repeat-until loop are carried out, and
that in t of these, min{nm, (xi + yi + zi)m}) = nm. Then the time complexity of maximum
matching operations, taken over the entire execution of the algorithm, isO(min{n,

∑
cj}m+



5.3. A polynomial-time algorithm 120

tnm + m
∑

(xi + yi + zi)) where the first term is for the maximum matching computation
in the first iteration, and the sum in the third term is over the appropriate s− t− 1 values of
i. We note that

∑s
i=1(xi + yi + zi) ≤ 2m (since each of the total number of deletions and

provisional assignments is bounded by the total length of the students’ preference lists), and
since xi + yi + zi ≥ n for the appropriate t values of i, it follows that

tnm+m
∑

(xi + yi + zi) ≤ m

s∑
i=1

(xi + yi + zi) ≤ 2m2.

Thus
m
∑

(xi + yi + zi) ≤ 2m2 − tnm.

To construct a feasible matchingM on line 42, we first need to identify the set P ∗ of projects
that needs to fill up inM . The total amount of work done in finding P ∗ is bounded by the total
length of the students’ preference lists, and so is O(m). Moreover, M can be constructed by
taking the final maximum matching at the termination of the outer repeat-until loop
and augmenting it to a maximum matching in G by prioritising edges that are adjacent to a
project in P ∗ over edges that are adjacent to a project in P \ P ∗.15 This operation is clearly
bounded by the number of edges, and so is O(m). It follows that the overall complexity of
Algorithm SPA-ST-strong is O(m+ min{n,

∑
cj}m +2m2) = O(m2).

We remark that the Hopcroft-Karp algorithm [49] can be used to find a maximum matching
in Gr, since each student vertex and cloned project vertex has capacity 1. This can be im-
plemented to run in O(

√
nm) time, where n is the number of vertices in Gr and m is the

number of edges. However, it is not clear how this algorithm can be used to improve the
overall running time of Algorithm SPA-ST-strong.

The following theorem collects together Lemmas 5.3.12 - 5.3.24 and establishes the correct-
ness of Algorithm SPA-ST-strong.

Theorem 5.3.25. For a given instance I of SPA-ST, Algorithm SPA-ST-strong determines

in O(m2) time whether or not a strongly stable matching exists in I . If such a matching

does exist, all possible executions of the algorithm find one in which each assigned student

is assigned at least as good a project as she could obtain in any strongly stable matching,

and each unassigned student is unassigned in every strongly stable matching.

Given the optimality property established by Theorem 5.3.25, we define a strongly stable
matching found by Algorithm SPA-ST-strong to be student-optimal. We note that a student-
optimal strongly stable matching in an arbitrary instance of SPA-ST need not be unique.

15We remark that the final outcome is independent of the type of edges (i.e., bound or unbound) that are
selected during the augmenting stage.
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5.3.6 Properties of strongly stable matchings in SPA-ST

In this section, we consider properties of the set of strongly stable matchings in an instance
of SPA-ST. We show that the Unpopular Projects Theorem for SPA-S (see Theorem 2.3.2),
which holds for SPA-ST under super-stability (i.e., Theorem 4.4.11) also holds for SPA-ST

under strong stability.

Theorem 5.3.26. For a given instance I of SPA-ST, the following properties holds:

1. each lecturer is assigned the same number of students in all strongly stable matchings;

2. exactly the same students are unassigned in all strongly stable matchings;

3. a project offered by an undersubscribed lecturer has the same number of students in

all strongly stable matchings.

Proof. Let M be the student-optimal strongly stable matching returned by Algorithm SPA-
ST-strong, and let M∗ be any other strongly stable matching in I .

1. Let lk be an arbitrary lecturer. By Lemma 5.3.19, if lk is full in M then lk is full in
M∗. Moreover, if lk is undersubscribed in M , then lk has as many assignees in M∗

as she has in M . Thus |M(lk)| ≤ |M∗(lk)|. However, |M∗(lk)| ≤ |M(lk)|, since M
is student-optimal and Lemma 5.3.12 guarantees that no strongly stable pair is deleted
during an execution of the algorithm. Hence |M(lk)| = |M∗(lk)|.

2. Let U and U∗ be the set of students that are unassigned in M and M∗ respectively. By
Lemma 5.3.12, U ⊆ U∗, since each student who is unassigned inM is also unassigned
in M∗. However, from (1) above, we have that |M | = |M∗| and thus |U | = |U∗|.
Hence, U = U∗.

3. Let lk be an arbitirary lecturer who is undersubscribed in M . By Lemma 5.3.19, lk
is undersubscribed in M∗. We want to show that each project offered by lk has the
same number of assignees in M∗ as in M . Suppose on the contrary that there exists
some project pj ∈ Pk such that |M∗(pj)| < |M(pj)|, then pj is undersubscribed in
M∗ since no project is oversubscribed in M . Moreover, there is some student sr ∈
M(pj) \M∗(pj). By Lemma 5.3.12, either sr is unassigned in M∗ or sr prefers pj to
M∗(sr) or is indifferent between them. Since each of pj and lk is undersubscribed in
M∗, (sr, pj) blocks M∗, a contradiction. Therefore |M∗(pj)| ≥ |M(pj)|. Moreover,
from (1), we have shown that |M(lk)| = |M∗(lk)|. Hence, |M(pj)| = |M∗(pj)| for all
pj ∈ Pk. This completes the proof.

To illustrate each of these properties, consider the SPA-ST instance I6 given in Figure 5.11,
which admits the strongly stable matchingsM1 = {(s1, p2), (s2, p1), (s3, p3), (s4, p3), (s6, p4),
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Student preferences Lecturer preferences offers
s1: p2 (p4 p1) l1: s6 s2 s4 s3 s5 p3
s2: p1 p3 p2 l2: s1 s3 s2 (s5 s7) p1, p2
s3: p3 p2 p1 l3: s6 (s7 s5) (s1 s4) p4, p5
s4: p3 (p4 p5)
s5: p4 p3 p1
s6: p4 p5 p3 Project capacities: c1 = c2 = c3 = c5 = 2, c4 = 1
s7: p4 (p5 p1) Lecturer capacities: d1 = d2 = 2, d3 = 3

Figure 5.11: An instance I6 of SPA-ST.

(s7, p5)} and M2 = {(s1, p2), (s2, p3), (s3, p2), (s4, p3), (s6, p4), (s7, p5)}. The reader can
easily verify that M1 is the student-optimal strongly-stable matching in I6. Each of l1, l2
and l3 is assigned the same number of students in both M1 and M2, illustrating part (1) of
Theorem 5.3.26. Also, s5 is unassigned in both M1 and M2, illustrating part (2) of Theorem
5.3.26. Finally, l3 is undersubscribed in both M1 and M2, and the projects offered the l3,
i.e., p4 and p5, have the same number of students in both M1 and M2, illustrating part (3) of
Theorem 5.3.26.

We note that l2 is full in both M1 and M2; however, the projects offered by l2 (i.e., p1 and p2)
do not have the same number of students in both M1 and M2. We illustrate this in Table 5.12
below.

M1 M2

l2 {s1, s2} {s1, s3}
p1 {s2} ∅
p2 {s1} {s1, s3}

Figure 5.12: The set of students assigned to each of l2, p1 and p2 in both M1 and M2, with
respect to the SPA-ST instance I6 in Figure 5.11.

5.4 An IP model for strong stability in SPA-ST

In this section, we describe an IP model for SPA-ST under strong stability. Again, our reason
for doing this is to test the correctness of our implementation of Algorithm SPA-ST-strong.
Let I be an instance of SPA-ST involving a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. We construct
an IP model J of I as follows.

Variables. The variables involved in this setting are similar to those given in the context
of SPA-ST under super-stability. For completeness, we recall them in what follows. We
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create binary variables xi,j ∈ {0, 1} (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) for each acceptable pair
(si, pj) ∈ S × P such that xi,j indicates whether si is assigned to pj in a solution or not.
Henceforth, we denote by S a solution in the IP model J , and we denote by M the matching
derived from S in the following natural way: if xi,j = 1 under S then si is assigned to pj in
M , otherwise si is not assigned to pj in M .

5.4.1 Constraints

In this section, we give the set of constraints to ensure that the assignment obtained from a
feasible solution in J is a matching, and that the matching admits no blocking pair.

Matching constraints. The constraints to ensure the feasibility of a matching are exactly
the same as Inequalities (4.5), (4.6) and (4.7) for SPA-ST under super-stability (see page 72).

Given a lecturer lk ∈ L, a student si ∈ Lk, and an acceptable pair (si, pj), the definition of
rank(si, pj) and rank(lk, si) follows from that given in the super-stability setting (see page
73). With respect to an acceptable pair (si, pj), we define Si,j = {pj′ ∈ Ai : rank(si, pj′) ≤
rank(si, pj)}, the set of projects that si likes as much as pj . We also define S∗i,j = {pj′ ∈ Ai :

rank(si, pj′) = rank(si, pj)}, the set of projects that si ranks equally with pj in the same tie.

In what follows, we fix an arbitrary acceptable pair (si, pj) and we impose constraints to
ensure that (si, pj) does not form a blocking pair for the matching M . Henceforth, lk is the
lecturer who offers pj .

Blocking pair constraints. First, we define θi,j = 1−
∑

pj′∈Si,j
xi,j′ . Intuitively, θi,j =

1 if and only if si is unassigned in M or si prefers pj to M(si). Next, we define θ∗i,j =∑
pj′∈S∗i,j

xi,j′ − xi,j . Intuitively, θ∗i,j = 1 if and only if si is indifferent between pj and
M(si), where pj 6= M(si). Henceforth, if (si, pj) forms a blocking pair for M then we refer
to (si, pj) as a blocking pair of type (1i), type (1ii), type (1iii), type (2i), type (2ii) or type
(2iii), according as (si, pj) satisfies condition (1bi), (1bii), (1biii), (2bi), (2bii) or (2biii), of
Definition 5.2.1, respectively.

We remark that the constraints to avoid blocking pair of types (1i), 1(ii) and 1(iii) are exactly
the same as those given for blocking pair of types (i), (ii) and (iii) respectively, in the super-
stability setting (see Inequalities (4.10), (4.13) and (4.16)). The only exception is that the θi,j
in each inequality is as defined for the strong stability setting. For completeness, we recall
these blocking pair constraints below.

Type (1i). The following constraint ensures that (si, pj) does not form a type (1i) blocking
pair for M , where αj and βk are as defined for a type (i) blocking pair in the super-stability
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setting (see page 73).

θi,j + αj + βk ≤ 2 . (5.11)

Type (1ii). The following constraint ensures that (si, pj) does not form a type (1ii) block-
ing pair for M , where ηk and δi,k are as defined for a type (ii) blocking pair in the super-
stability setting (see page 74).

θi,j + αj + ηk + δi,k ≤ 3 . (5.12)

Type (1iii). The following constraint ensures that (si, pj) does not form a type (1iii) block-
ing pair for M , where γj and λi,j,k are as defined for a type (iii) blocking pair in the super-
stability setting (see page 74).

θi,j + γj + λi,j,k ≤ 2 . (5.13)

Next, we give the constraints to avoid blocking pair of types (2i), 2(ii) and (2iii).

Type (2i). The following constraint ensures that (si, pj) does not form a type (2i) blocking
pair for M , where αj and βk are as defined for a type (i) blocking pair in the super-stability
setting (see page 73).

θ∗i,j + αj + βk ≤ 2 . (5.14)

Type (2ii). First, we define ωi,k =
∑

pj′∈Pk
xi,j′ . If si is assigned to a project offered by lk

in M then ωi,k = 1 in S; otherwise, ωi,k = 0 in S. We define

D∗i,k = {si′ ∈ Lk : rank(lk, si′) ≤ rank(lk, si)},

the set of students that lk likes as much as si. Next, we create a binary variable µi,k in J such
that if si ∈M(lk) or lk prefers si to a worst student in M(lk), then µi,k = 1. We enforce this
condition by imposing the following constraint.

dkµi,k ≥ ωi,k +

n1∑
i′=1

∑
pj′∈Pk

xi′,j′ −
∑

si′∈D∗i,k

∑
pj′∈Pk

xi′,j′ , (5.15)

where
n1∑
i′=1

∑
pj′∈Pk

xi′,j′ = |M(lk)| and
∑

si′∈D∗i,k

∑
pj′∈Pk

xi′,j′ is the occupancy of lk in M involv-

ing students that are at least as good as si (including si). Note that if si ∈M(lk) or lk prefers
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si to a worst student in M(lk) then the RHS of Inequality (5.15) is at least 1, and this implies
that µi,k = 1; otherwise, µi,k is not constrained. The following constraint ensures that (si, pj)

does not form a type (2ii) blocking pair for M , where ηk is as defined in the super-stability
setting (see page 74).

θ∗i,j + αj + ηk + µi,k ≤ 3 . (5.16)

Type (2iii). We define T ∗i,j,k = {si′ ∈ Ljk : rank(lk, si′) ≤ rank(lk, si)}, the set of students
that are at least as good as si on the projected preference list of lk for pj . Next, we create a
binary variable τi,j,k in J such that if lk prefers si to a worst student in M(pj), then τi,j,k = 1.
We enforce this condition by imposing the following constraint.

cjτi,j,k ≥
n1∑
i′=1

xi′,j −
∑

si′∈T ∗i,j,k

xi′,j , (5.17)

where
∑n1

i′=1 xi′,j = |M(pj)| and
∑

si′∈T ∗i,j,k
xi′,j is the occupancy of pj in M involving students

that lk likes as much as si. Note that if lk prefers si to a worst student in M(pj), then the
RHS of Inequality (5.17) is at least 1, and this implies that τi,j,k = 1; otherwise, τi,j,k is
not constrained. The following constraint ensures that (si, pj) does not form a type (2iii)
blocking pair for M , where γj is as defined in the super-stability setting (see page 74).

θ∗i,j + γj + τi,j,k ≤ 2 . (5.18)

5.4.2 Variables

We define a collective notation for each set of variables involved in J as follows:

A = {αj : 1 ≤ j ≤ n2}, ∆ = {δi,k : 1 ≤ i ≤ n1, 1 ≤ k ≤ n3},
B = {βk : 1 ≤ k ≤ n3}, M = {µi,k : 1 ≤ i ≤ n1, 1 ≤ k ≤ n3},
N = {ηk : 1 ≤ k ≤ n3}, Λ = {λi,j,k : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3},
Γ = {γj : 1 ≤ j ≤ n2}, T = {τi,j,k : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3},
X = {xi,j : si ∈ S ∧ pj ∈ Ai} .

5.4.3 Objective function

Similar to the super-stability setting, all strongly stable matchings are of the same size, which
nullifies the need for an objective function. However, optimisation solvers require an objec-
tive function in addition to the variables and constraints in order to produce a solution. The
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objective function given below involves maximising the summation of all the xi,j binary
variables.

max

n1∑
i=1

∑
pj∈Ai

xi,j . (5.19)

Finally, we have constructed an IP model J of I comprising the set of integer-valued vari-
ables A,B,N,Γ, X,∆,M,Λ and T , the set of constraints (4.5), (4.6), (4.7), (4.8), (4.9),
(4.11), (4.12), (4.14), (4.15), (5.11) - (5.18) and an objective function (5.19). Note that J can
then be used to construct a strongly stable matching in I , should one exist.

5.4.4 Correctness of the IP model

Given an instance I of SPA-ST formulated as an IP model J using the above transformation,
we present the following lemmas regarding the correctness of J .

Lemma 5.4.1. A feasible solution S to J corresponds to a strongly stable matching M in I .

Proof. Assume firstly that J has a feasible solution S. LetM = {(si, pj) ∈ S×P : xi,j = 1}
be the assignment in I generated from S. We note that Inequality (4.5) ensures that each
student is assigned in M to at most one project. Moreover, Inequalities (4.6) and (4.7)
ensures that the capacity of each project and lecturer is not exceeded in M . Thus M is a
matching. We will prove that Inequalities (5.11) - (5.18) ensures that M admits no blocking
pair.

Suppose for a contradiction that there exists some acceptable pair (si, pj) that forms a block-
ing pair for M , where lk is the lecturer who offers pj . This implies that (a) either si is
unassigned in M or si prefers pj to M(si), or (b) si is indifferent between pj and M(si). If
(a) holds then

∑
pj′∈Si,j

xi,j′ = 0; and thus θi,j = 1. Now suppose (si, pj) forms a blocking
pair of type (1i), type (1ii) or type (1iii) for M . Following the same argument as in the proof
of Lemma 4.5.1, we arrive at a conclusion which contradicts the feasibility of S. Hence M
does not admit any blocking pair of types (1i), (1ii) or (1iii).

If (b) holds, since si is not assigned to pj in M , we have that
∑

pj′∈S∗i,j
xi,j′ − xi,j = 1. Thus

θ∗i,j = 1. Now, suppose (si, pj) forms a blocking pair of type (2i) for M . Then each of pj
and lk is undersubscribed in M . Thus

∑n1

i′=1 xi′,j < cj and
∑n1

i′=1

∑
pj′∈Pk

xi′,j′ < dk. This
implies that the RHS of Inequality (4.8) and the RHS of Inequality (4.9) is strictly greater
than 0. Moreover, since S is a feasible solution to J , αj = βk = 1. Hence, the LHS of
Inequality (5.14) is strictly greater than 2, a contradiction to the feasibility of S.

Next, suppose (si, pj) forms a type (2ii) blocking pair for M . Then pj is undersubscribed
in M and as explained above, αj = 1. Also, lk is full in M and this implies that the RHS
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of Inequality (4.11) is strictly greater than 0. Since S is a feasible solution, we have that
ηk = 1. Furthermore, either si ∈ M(lk) or lk prefers si to a worst student in M(lk). In
any of these cases, the RHS of Inequality (5.15) is strictly greater than 0. Thus µi,k = 1,
since S is a feasible solution. Hence the LHS of Inequality (5.16) is strictly greater than 3, a
contradiction to the feasibility of S.

Finally, suppose (si, pj) forms a type (2iii) blocking pair for M . Then pj is full in M and
thus the RHS of Inequality (4.14) is strictly greater than 0. Since S is a feasible solution, we
have that γj = 1. In addition, lk prefers si to a worst student in M(pj), which implies that
the RHS of Inequality (5.17) is strictly greater than 0. Thus τi,j,k = 1, since S is a feasible
solution. Hence the LHS of Inequality (5.18) is strictly greater than 2, a contradiction to the
feasibility of S. Hence M admits no blocking pair and it follows that M is a strongly stable
matching in I .

Lemma 5.4.2. A strongly stable matching M in I corresponds to a feasible solution S to J .

Proof. LetM be a strongly stable matching in I . First we set all the binary variables involved
in J to 0. For each (si, pj) ∈ M , we set xi,j = 1. Since M is a matching, it is clear that
Inequalities (4.5) - (4.7) is satisfied. For any acceptable pair (si, pj) ∈ (S × P) \M , if si is
unassigned in M or prefers pj to M(si), we set θi,j = 1; and if si is indifferent between pj
and M(si), we set θ∗i,j = 1. For any project pj ∈ P such that pj is undersubscribed in M ,
we set αj = 1 and thus Inequality (4.8) is satisfied. For any lecturer lk ∈ L such that lk is
undersubscribed in M , we set βk = 1 and thus Inequality (4.9) is satisfied.

Now, for Inequality (5.11) not to be satisfied, its LHS must be strictly greater than 2. This
would only happen if there exists some (si, pj) ∈ (S ×P) \M , where lk is the lecturer who
offers pj , such that θi,j = 1, αj = 1 and βk = 1. This implies that either si is unassigned in
M or si prefers pj to M(si), and each of pj and lk is undersubscribed in M . Thus (si, pj)

forms a type (1i) blocking pair for M , a contradiction to the strong stability of M . Hence,
Inequality (5.11) is satisfied.

For any lecturer lk ∈ L such that lk is full in M , we set ηk = 1. Thus Inequality (4.11) is
satisfied. Let (si, pj) be an acceptable pair such that pj ∈ Pk and (si, pj) /∈M . If si ∈M(lk)

or lk prefers si to a worst student in M(lk) or is indifferent between them, we set δi,k = 1.
Thus Inequality (4.12) is satisfied. Suppose Inequality (5.12) is not satisfied. Then there
exists (si, pj) ∈ (S × P) \M , where lk is the lecturer who offers pj , such that θi,j = 1,
αj = 1, ηk = 1 and δi,k = 1. This implies that either si is unassigned in M or si prefers pj
to M(si). In addition, pj is undersubscribed in M , lk is full in M and either si ∈M(lk) or lk
prefers si to a worst student in M(lk) or is indifferent between them. Thus (si, pj) forms a
type (1ii) blocking pair for M , a contradiction to the strong stability of M . Hence Inequality
(5.12) is satisfied.
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For any project pj ∈ P such that pj is full in M , we set γj = 1. Thus Inequality (4.14)
is satisfied. Let lk be the lecturer who offers pj and let (si, pj) be an acceptable pair. If lk
prefers si to a worst student in M(pj) or is indifferent between them, we set λi,j,k = 1. Thus
Inequality (4.15) is satisfied. Suppose Inequality (5.13) is not satisfied. Then there exists
some (si, pj) ∈ (S × P) \M such that θi,j = 1, γj = 1 and λi,j,k = 1. This implies that
either si is unassigned in M or si prefers pj to M(si). In addition, pj is full in M and lk
prefers si to a worst student in M(pj) or is indifferent between them. Thus (si, pj) forms a
type (1iii) blocking pair forM , a contradiction to the strong stability ofM . Hence, Inequality
(5.13) is satisfied.

Now, for Inequality (5.14) not to be satisfied, its LHS must be strictly greater than 2. This
would only happen if there exists some (si, pj) ∈ (S ×P) \M , where lk is the lecturer who
offers pj , such that θ∗i,j = 1, αj = 1 and βk = 1. This implies that si is indifferent between
pj and M(si), and each of pj and lk is undersubscribed in M . Thus (si, pj) forms a type (2i)
blocking pair for M , a contradiction to the strong stability of M . Hence, Inequality (5.14) is
satisfied.

Let (si, pj) be an acceptable pair such that pj ∈ Pk and (si, pj) /∈ M . If si ∈ M(lk) or lk
prefers si to a worst student in M(lk), we set µi,k = 1. Thus Inequality (5.15) is satisfied.
Suppose Inequality (5.16) is not satisfied. Then there exists (si, pj) ∈ (S × P) \M , where
lk is the lecturer who offers pj , such that θ∗i,j = 1, αj = 1, ηk = 1 and µi,k = 1. This implies
that si is indifferent between pj and M(si). In addition, pj is undersubscribed in M , lk is full
in M and either si ∈M(lk) or lk prefers si to a worst student in M(lk). Thus (si, pj) forms a
type (2ii) blocking pair for M , a contradiction to the strong stability of M . Hence Inequality
(5.16) is satisfied.

Let lk be the lecturer who offers pj and let (si, pj) be an acceptable pair. If lk prefers si to
a worst student in M(pj), we set τi,j,k = 1. Thus Inequality (5.17) is satisfied. Suppose
Inequality (5.18) is not satisfied. Then there exists some (si, pj) ∈ (S × P) \M such that
θ∗i,j = 1, γj = 1 and τi,j,k = 1. This implies that si is indifferent between pj and M(si).
In addition, pj is full in M and lk prefers si to a worst student in M(pj). Thus (si, pj)

forms a type (2iii) blocking pair for M , a contradiction to the strong stability of M . Hence,
Inequality (5.18) is satisfied.

Hence S, comprising the above assignments of values to the variables in A ∪ B ∪ N ∪ Γ ∪
X ∪∆ ∪M ∪ Λ ∪ T , is a feasible solution to J .

The following theorem is a consequence of Lemmas 5.4.1 and 5.4.2.

Theorem 5.4.3. Let I be an instance of SPA-ST and let J be the IP model for I as described

above. A feasible solution to J corresponds to a strongly stable matching in I . Conversely,

a strongly stable matching in I corresponds to a feasible solution to J .
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5.5 Empirical evaluation

In this section, we evaluate an implementation of Algorithm SPA-ST-strong empirically.
We implemented our algorithm in Python16, and we performed our experiments on a system
with dual Intel Xeon CPU E5-2640 processors with 64GB of RAM, running Ubuntu 17.10.
For this experiment, our aim was to examine the proportion of SPA-ST instances that admit
strongly stable matchings but no super-stable matchings.

5.5.1 Experimental setup and datasets

When generating random datasets, there are clearly several parameters that can be varied.
However, we used the parameters and datasets from the previous chapter (see Section 4.6)
in this chapter as well. We recall that we randomly generated a set of SPA-ST instances,
involving n1 students (which we will henceforth refer to as the size of the instance), 0.5n1

projects, 0.2n1 lecturers and 1.5n1 total project capacity which was randomly distributed
amongst the projects such that each project has capacity at least 1. The capacity for each
lecturer lk was chosen uniformly at random to lie between the highest capacity of the projects
offered by lk and the sum of the capacities of the projects that lk offers. In each set, we
measured the proportion of instances that admit a strongly stable matching.

5.5.2 Correctness Testing

To test the correctness of our algorithm’s implementation, we implemented (i) a brute-force
algorithm that finds all the strongly stable matchings (if any) in a given SPA-ST instance, and
(ii) our IP model for SPA-ST under strong stability using the Gurobi optimisation solver in
Python. We then proceeded as follows.

(i) We randomly generated 100, 000 SPA-ST instances, each consisting of 15 students, 10

projects, 5 lecturers, and total project capacity of 18. The capacity for each project and
lecturer was obtained as explained above. Also, the length of each student’s preference
list was fixed at 3, with tie density of 0.1 in the students’ and lecturers’ preference lists.
For each instance, we verified consistency between the outcomes of our implementa-
tion of Algorithm SPA-ST-strong and our brute-force implementation in terms of the
existence or otherwise of a strongly stable matching. The outcomes of the two imple-
mentations were consistent in 100% of the randomly-generated instances. Further, we
observed that 45% of the instances admitted a strongly stable matching.

16https://github.com/sofiatolaosebikan/spa-st-strong
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(ii) We randomly generated 10, 000 SPA-ST instances, each consisting of 100 students, 50

projects, 20 lecturers, and total project capacity of 120. Again, the capacity of each
project and lecturer was as described above. Also, the length of each student’s pref-
erence list was fixed at 10, with tie density td ∈ {0.05, 0.1} in both the students’ and
lecturers’ preference lists. Similar to above, we verified consistency between the out-
comes of our implementation of Algorithm SPA-ST-strong and our implementation
of the IP-based algorithm in terms of the existence or otherwise of a strongly stable
matching. Again, the outcomes of the two implementations were consistent in 100%

of the randomly-generated instances. Moreover, with td = 0.1, we observed that 4% of
the instances admitted a strongly stable matching, and with td = 0.05, approximately
20% of the instances admitted a strongly stable matching.

5.5.3 Experimental results

We note that the setup for the next two experiments is similar to that of Experiments 1 and 2
in the super-stability setting. For completeness, we recall them in what follows.

Experiment 1

We examined the existence of strongly stable matchings as we varied the length of the stu-
dents’ preference lists for various values of x (5 ≤ x ≤ 50) in increments of 5. For each
x, we increased the number of students n1 (100 ≤ n1 ≤ 1000) in increments of 100 while
maintaining a constant ratio of projects, lecturers, project capacities and lecturer capacities
as described above. Also, we set tds = tdl = 0.005, and with each of these parameters,
we randomly generated 1000 instances. With this setup, we observed that the proportion
of instances that admitted a strongly stable matching is exactly the same as the proportion
of instances that admitted a super-stable matching (see Figure 4.6). We give a potential
justification for why we observed this consistency in what follows. As highlighted in the
super-stability case, for a given dataset, 1 out of 5 students has a single tie of length 2 in her
preference list, and this holds similarly for the lecturers. Thus, the ties in the preference lists
are so sparse that any blocking pair for the super-stability type is bound to be a blocking pair
for the strong stability type as well.

We also recorded the time taken for our algorithm’s implementation to terminate (see Table
5.1). For an instance size of 1000 and preference list length 50, the implementation termi-
nates in less than 1.5 seconds, which is three times slower than what we recorded in the
super-stability case. This is not surprising since the complexity of the super-stability algo-
rithm is O(L) time, while that of the strong stability algorithm is O(m2) time, where L is
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the total length of all the preference lists and m is the total length of the students’ preference
lists.

Table 5.1: Time (in seconds) for our algorithm’s implementation to terminate averaged over
1000 for each instance size, with the length of the students’ preference lists fixed at 50.

n1 100 200 300 400 500 600 700 800 900 1000

Time 0.042 0.106 0.187 0.286 0.402 0.543 0.703 0.890 1.094 1.330

Experiment 2

Here, we investigated the existence of strongly stable matchings as we varied the tie density
in the students’ preference lists tds (0 ≤ tds ≤ 0.05) and the tie density in the lecturers’ pref-
erence lists tdl (0 ≤ tdl ≤ 0.05), both in increments of 0.005. For each pair of tie densities
in tds × tdl , we increased the number of students n1 (100 ≤ n1 ≤ 1000) in increments of
100, and we maintained the same ratio of projects, lecturers, project capacities and lecturer
capacities as in Experiment 1. Also, we fixed the length of each student’s preference list at
50. With each of these parameters, we randomly-generated 1000 SPA-ST instances.

Again, the results we observed with this setup is exactly the same as those observed in
the super-stability setting (see Figure 4.7): i.e., with n1 = 1000, tds = 0 and tdl = 0.05,
74% of the randomly-generated instances admitted a strongly stable matching; however,
with n1 = 1000, tds = 0.005 and tdl = 0, only about 5% of the 1000 randomly-generated
instances admitted a strongly stable matching. Considering that when ties are on one side of
the preference lists only, the definition of super-stability and strong stability coincides, it is
not surprising that the experimental results also agree with this. On the other hand, when we
varied the tie density on both sides, there was little (0.1% increase) to no difference between
the proportion of instances that admitted strongly stable matchings and those that admitted
super-stable matchings. Perhaps, a small instance size, a small preference list length, and
an increase in tie density in both the students’ and lecturers’ preference lists will lead to an
increase in the proportion of instances that admit a strongly stable matching but no super-
stable matching? We explore this further in the next experiment.

Experiment 3

Considering the consistency of the results obtained in Experiments 1 and 2 with those ob-
served in the super-stability experiments, we decided to compare the proportion of instances
that admit super-stable and/or strongly stable matchings for various values of n1 (10 ≤ n1 ≤
50) in increments of 10, with the length of each student’s preference list fixed at 5. The
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ratio of projects, lecturers, project capacities and lecturer capacities was obtained as in the
previous experiments. We varied the tie density in the students’ preference lists tds (0.025 ≤
tds ≤ 0.15) and the tie density in the lecturers’ preference lists tdl (0.025 ≤ tdl ≤ 0.25), both
in increments of 0.025. With each of these parameters, we randomly-generated 1000 SPA-ST

instances. The result displayed in Figure 5.13 shows some slight increase in the proportion
of instances that admit a strongly stable matching but no super-stable matching.

5.6 Conclusion and open problems

In this chapter, we have described a polynomial-time algorithm to find a strongly stable
matching or to report that no such matching exists, given an instance of SPA-ST. We also
established that our algorithm produces a student-optimal strongly stable matching for solv-
able instances, i.e., each student who is assigned in a solution output by our algorithm is
assigned to at least as good a project as she could obtain in any strongly stable matching. We
leave open the formulation of a lecturer-oriented counterpart to our algorithm.

We also carried out an empirical evaluation of our algorithm’s implementation. The aim
of our experiment was to examine the likelihood of the existence of strongly stable match-
ings compared to super-stable matchings in randomly-generated instances of SPA-ST. We
observed that as we increased the size of the instance and the length of the preference list,
and as we varied the tie density in both the students’ and lecturers’ preference lists, the re-
sults that we obtained from our strong stability experiments are consistent with what we
observed in our super-stability experiments, with respect to the instances that we generated
randomly. However, for instances of size between 10 and 50, we observed a slight increase
in the proportion of instances that admitted strongly stable matchings but no super-stable
matching. Further evaluation of our implementation could investigate how other parameters
(e.g., the popularity of some projects, or the position of the ties in the preference lists) affect
the existence of a strongly stable matching when no super-stable matching exists.

It would also be interesting to explore some of the open problems we suggested in Chapter
4, which include: (i) formalising the results on the probability of a strongly stable matching
existing, given an arbitrary instance of SPA-ST (see [102] for some results regarding this for
the Stable Roommates problem); and (ii) characterising the strongly stable matchings in an
instance of SPA-ST with respect to a dominance relation (see [82] for results regarding this
for SMT).
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(a) tds = 0.025.

(b) tds
= 0.05.

(c) tds
= 0.075.

(d) tds
= 0.1.

(e) tds = 0.125.

(f) tds
= 0.150.

Figure 5.13: Proportion of instances that admit a strongly stable and/or super-stable match-
ing as the size of the instance increases, with the length of each student’s preference list fixed
at 5, and with varying tie density in the lecturers’ preference lists.
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Chapter 6

Algorithmic and Experimental
Results for SPA-P

6.1 Introduction

In Section 2.3.4, we considered the SPA-P [87] model, which is a variant of SPA where
students have preferences over the available projects that they find acceptable while lecturers
have preferences over their proposed projects. As the reader may recall, stable matchings for
an instance of SPA-P can have different sizes, and the problem of finding a maximum size
stable matching (MAX-SPA-P) is NP-hard, under certain restrictions [87]. Moreover, the best
known approximation algorithm for MAX-SPA-P has a performance guarantee of 3

2
[61].

Our contribution in this chapter is to present new algorithmic and experimental results for
SPA-P. On the algorithmic side, first we explore the complexity of MAX-SPA-P under the fol-
lowing restrictions: if (i) the instance involves r lecturers (denoted MAX-SPA-P-Lr), where r
is a constant; and (ii) each preference list is of length at most 3 (denoted (3, 3)-MAX-SPA-P).
For the first restriction, if there is only one lecturer involved, we show that MAX-SPA-P is
polynomial-time solvable. In contrast to this, if there are two lecturers involved, we show
that the problem remains NP-hard and is not approximable within some constant c > 1 un-
less P = NP. For the second restriction, we show that MAX-SPA-P remains NP-hard. We then
move on to describe an IP model to enable MAX-SPA-P to be solved optimally, in the general
case where there are no restrictions on the problem instance.

On the experimental side, we present results arising from an empirical evaluation that inves-
tigates how the solutions produced by the existing approximation algorithms for MAX-SPA-P

[61, 87] compare to optimal solutions obtained from our IP model, with respect to the size of
the stable matchings constructed, on instances that are both randomly-generated and derived
from real datasets. These real datasets are based on actual student preference data and man-
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Students’ preferences Lecturers’ preferences
s1: p3 p2 p1 l1: p2 p1
s2: p1 p2 l2: p3
s3: p3

Project capacities: c1 = c2 = c3 = 1
Lecturer capacities: d1 = 2, d2 = 1

Figure 6.1: An instance I1 of SPA-P.

ufactured lecturer preference data from previous runs of student-project allocation processes
at the School of Computing Science, University of Glasgow. We also present results showing
the time taken by the IP model to solve the problem instances optimally. Our main finding
is that the 3

2
-approximation algorithm finds stable matchings that are very close to having

maximum cardinality.

This chapter is organised as follows. We give a formal definition of stability in the context
of SPA-P in Section 6.2. We describe a polynomial-time algorithm for MAX-SPA-P-L1 in
Section 6.3.1, and we give an inapproximability result for MAX-SPA-P-L2 in Section 6.3.2.
In Section 6.4 we show that (3, 3)-MAX-SPA-P is NP-hard. In Section 6.5, we describe our
IP model for MAX-SPA-P. We present our empirical evaluation in Section 6.6, along with
some discussions regarding results obtained from the experiments. Finally, in Section 6.7 we
give some conclusions and open problems.

6.2 Preliminary definitions

Formally, an instance I of SPA-P involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. In contrast
to SPA-S (see Section 2.3.2), each lecturer lk ∈ L ranks the projects in Pk in strict order of
preference instead of ranking the students in S. An example instance of SPA-P is illustrated
in Figure 6.1, which involves the set S = {s1, s2, s3} of students, the set P = {p1, p2, p3} of
projects and the set L = {l1, l2} of lecturers, with P1 = {p1, p2} and P2 = {p3}.

All the notation and terminology defined for SPA-S also holds for SPA-P, except that of
stability, which we define as follows.

Definition 6.2.1 ([87]). Let I be an instance of SPA-P and let M be a matching in I . An

acceptable pair (si, pj) ∈ (S × P) \M is a blocking pair for M if (i), (ii) and (iii) holds as

follows:

(i) either si is unassigned in M or si prefers pj to M(si);

(ii) pj is undersubscribed in M ;
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(iii) either (a), (b) or (c) holds as follows:

(a) si ∈M(lk) and lk prefers pj to M(si),

(b) si /∈M(lk) and lk is undersubscribed in M ,

(c) si /∈M(lk) and lk prefers pj to his worst non-empty project.

If a pair (si, pj) forms a blocking pair for M , we may also say that (si, pj) blocks M . For
ease of exposition, throughout this chapter, we will refer to any such pair as a blocking pair
of type (a), type (b) or type (c). With respect to the SPA-P instance given in Figure 6.1,
M1 = {(s1, p3), (s2, p1)} is clearly a matching. It is obvious that each of students s1 and s2
is assigned to her first ranked project in M1. Although s3 is unassigned in M1, the lecturer
offering p3 (the only project that s3 finds acceptable) is assumed to be indifferent among
those students who find p3 acceptable. Also p3 is full in M1. Thus, we say that M1 admits
no blocking pair.

Another way in which a matching could be undermined is through a group of students act-
ing together, forming a coalition. Given a matching M , a coalition is a set of students
C = 〈si0 , . . . , sir−1〉, for some r ≥ 2 such that each student sij (0 ≤ j ≤ r − 1) is assigned
inM and prefersM(sij+1

) toM(sij), where addition is performed modulo r. Again, consid-
ering the SPA-P instance given in Figure 6.1, the matching M2 = {(s1, p1), (s2, p2), (s3, p3)}
admits a coalition {s1, s2}, as students s1 and s2 would rather permute their assigned projects
in M2 so as to be better off. We note that the number of students assigned to each project and
lecturer involved in any such swap remains the same after such a permutation. Moreover, the
lecturers involved would have no incentive to prevent the switch from occurring since they
are assumed to be indifferent between the students assigned to the projects they are offering.
If a matching admits no coalition, we define such matching to be coalition-free.

A matching M in I is said to be stable if M admits no blocking pair and is coalition-free.
Some intuition for the stable matching definition is given in [87]. The reader can easily verify
that each of the matchings M1 = {(s1, p3), (s2, p1)} and M3 = {(s1, p2), (s2, p1), (s3, p3)}
is stable in the SPA-P instance shown in Figure 6.1.

6.3 SPA-P with constant number of lecturers

As mentioned in Section 2.3.4, MAX-SPA-P is not approximable within δ1, for some δ1 > 1

unless P = NP [87]. Moreover, the result holds even if each project and lecturer has capac-
ity 1, and each preference list is of length at most 4. We wished to answer the following
question: what is the complexity of finding a maximum size stable matching if a constant
number of lecturers are involved in an arbitrary SPA-P instance I? As it turns out, the problem
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is polynomial-time solvable if there is only one lecturer involved in I and hard to approxi-
mate if there are two lecturers involved in I . We present the proof of these results in the next
two sections.

We denote by SPA-P-Lr an instance of SPA-P involving r lecturers, where r is a constant, and
we denote by MAX-SPA-P-Lr the problem of finding a maximum size stable matching given
an instance of SPA-P-Lr.

6.3.1 A polynomial-time algorithm for MAX-SPA-P-L1

Let I be an instance of SPA-P-L1 where l is the lecturer involved in I; assume all notation
and terminology from the general SPA-P case. Given an acceptable pair (si, pj), we define
rank(si, pj), the rank of pj on si’s preference list, to be r + 1, where r is the number of
projects that si prefers to pj . Let R be the maximum rank of a project in any student’s pref-
erence list. We define the profile ρ(M) of a matching M in I as an R-tuple (x1, x2, . . . , xR),
such that for each r (1 ≤ r ≤ R), xr is the number of students, say si, assigned in M to a
project, say pj , such that rank(si, pj) = r.

For example, the matching M3 = {(s1, p2), (s2, p1), (s3, p3)} in the instance I1 given in
Figure 6.1 has the profile ρ(M3) = (2, 1, 0), since two students (i.e., s2 and s3) are assigned to
their first choice project in M3, one student (i.e., s1) is assigned to her second choice project
in M3 and no student is assigned to her third choice project in M3. A greedy maximum

matching in I is a matching of maximum cardinality that has lexicographically maximum

profile, i.e., the maximum number of students are assigned to their first choice and subject
to this, the maximum number of students are assigned to their second choice, and so on.
Clearly, M3 is a greedy maximum matching in I1.

In what follows, we give an informal description of our polynomial-time algorithm for find-
ing a maximum size stable matching given an instance I of SPA-P-L1, which we denote by
Algorithm MAX-SPA-P-L1. Our algorithm begins by first constructing a greedy maximum
matching M in I using the polynomial-time algorithm given in [76]. As we will prove later,
at this point in the algorithm, M is coalition-free and does not admit a blocking pair of type
(a) or type (b).

If M admits a type (c) blocking pair then the first while loop of the algorithm is executed. In
this loop, we identify a student, say si, involved in a type (c) blocking pair, say (si, pj), such
that (si, pj) is the best blocking pair for si. Next, we identify l’s worst non-empty project
in M , say pq, we identify any student assigned to pq in M , say sr, and we remove the pair
(sr, pq) from M . Finally, we promote si by adding the pair (si, pj) to M . As we will prove
later, M does not admit a blocking pair at the termination of this loop.



6.3. SPA-P with constant number of lecturers 138

If M admits a coalition C = 〈si0 , si1 , . . . , sir−1〉 at this point, for some r ≥ 2, then we satisfy

the coalition in the second while loop, by letting the students inC swap their projects, i.e., for
each j (0 ≤ j ≤ r − 1), sij moves project from M(sij) to M(sij+1

), where addition is taken
modulo r. At the termination of this loop, M is output as a maximum size stable matching
in I . We describe our algorithm in pseudocode form in Algorithm 3, and we provide a proof
of correctness in Theorem 6.3.1.

Algorithm 3 Algorithm MAX-SPA-P-L1
Input: SPA-P-L1 instance I

Output: a maximum size stable matching in I

1: M ← a greedy maximum matching in I

2: while there exists a type (c) blocking pair do
3: si ← a student involved in such blocking pair

4: (si, pj)← best blocking pair for si
5: pq ← worst non-empty project offered by l

6: sr ← any student assigned to pq in M

7: M ←M \ {(sr, pq)}
8: M ←M ∪ {(si, pj)} /* promote si to pj */

9: while M admits a coalition C do
10: satisfy C

11: return M

Theorem 6.3.1. Given an instance I of SPA-P-L1, Algorithm MAX-SPA-P-L1 terminates

with a maximum size stable matching in O(n2
1Rm) time, where n1 is the number of students,

R is the maximum rank of a project in any student’s preference list and m is the total length

of the students’ preference lists.

Proof. Let E be an arbitrary execution of Algorithm MAX-SPA-P-L1, and let M be the
matching at the termination of E. Let M0 be the greedy maximum matching in I found on
line 1 during E; clearly M0 is of maximum cardinality. In what follows, we show that just
before the first while loop was initiated during E, M0 admits no blocking pair of type (a) or
type (b), and is coalition-free.

Suppose that (si, pj) is a blocking pair of type (a), i.e., si ∈ M0(l) and si prefers pj to
M0(si); pj is undersubscribed in M0 and l prefers pj to M0(si). Let M0(si) = pj′ . Now, let
M ′

0 = (M0 ∪ {(si, pj)}) \ {(si, pj′)}. Then |M ′
0| = |M0| and ρ(M ′

0) > ρ(M0) (according to
lexicographic order), contradicting the fact thatM0 is a greedy maximum matching. Suppose
that (si, pj) is a blocking pair of type (b), i.e., si is unassigned in M0, and each of pj and
l is undersubscribed in M0. Now, pj undersubscribed and l undersubscribed implies that
M0 ∪ {(si, pj)} is a matching in I , contradicting the maximality of M0. Next, we show that
M0 is coalition-free. Suppose M0 admits a coalition of students C = 〈si0 , si1 , . . . , sir−1〉 for
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some r ≥ 2. Suppose M ′
0 is the matching that results from satisfying C. Then |M ′

0| = |M0|
and ρ(M ′

0) > ρ(M0), since each student in C will prefer her assigned project in M ′
0 to that

in M0. This is a contradiction to the fact that M0 has a lexicographically maximum profile.

We note that the first while loop is bound to terminate since (i) the number of students
involved in I is finite, and (ii) for each student involved in a type (c) blocking pair that gets
promoted, the lecturer obtains one more student assigned to a project that is better than her
previous worst non-empty project. LetM1 be the matching at the termination of the first loop.
Clearly, M1 cannot admit a type (c) blocking pair. Moreover, M1 cannot admit a type (b)
blocking pair either, since for each student that becomes unassigned from a project within the
loop, another student becomes promoted to a project in the same while loop iteration. Thus
the cardinality ofM1 remains unchanged, and the proof follows as in the previous paragraph.

Next, we show that M1 cannot admit a blocking pair of type (a). Suppose (si, pj) is a block-
ing pair of type (a); this implies that si ∈M1(l) and l prefers pj to M1(si). Let M1(si) = pk.
First, we note that (si, pk) must have been added to M1 as a result of satisfying a type (c)
blocking pair within the first while loop. For, suppose otherwise, (si, pk) ∈ M0. We have
already established that M0 admits no blocking pair of type (a). Hence pj must have been
full inM0 and became undersubscribed during the first while loop. This is only possible if l’s
worst non-empty project in M1 is pj or better. Hence (si, pj) cannot be a type (a) blocking
pair for M1 in this case. Thus (si, pk) must have been added to M1 within the first while
loop.

Moreover, when (si, pk) was added to the matching during the first while loop, pj must be
full, since we satisfy the best blocking pair for each student within a loop iteration. However,
for (si, pj) to form a type (a) blocking pair for M1, pj must be undersubscribed in M1. Now,
the only way pj can end up becoming undersubscribed in M1, having been full in M0, is if
pj was l’s worst non-empty project at a point where a type (c) blocking pair was identified
during the first while loop. Thus in M1, either pj is l’s worst non-empty project, or l’s worst
non-empty project is better than pj . Hence (si, pj) cannot be a type (a) blocking pair for M1.

We have proved in the last two paragraphs that the first while loop terminates with a maxi-
mum matchingM1 in I , which admits no blocking pair. The second while loop is also bound
to terminate, since (i) each student has a finite number of projects in her preference list, and
(ii) for any coalition C of students that exists, each student involved in C obtains a better
project after the swap takes place. Clearly M cannot admit any new blocking pair at the end
of the second while loop. Hence, at the termination of the algorithm, M is a maximum size
stable matching in I .

Analysis of algorithm Algorithm MAX-SPA-P-L1 finds a maximum size stable match-
ing in I in three phases. In the first phase, the algorithm finds a greedy maximum matching
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M in I . This can be obtained in O(n2
1Rm) time using the GREEDY-MAX-SPA algorithm

described in [76], and this complexity dominates the overall runtime of the algorithm. In the
second phase, the algorithm eliminates potential type (c) blocking pairs in M . This phase is
bounded by the length of the lecturer’s preference list, since for any type (c) blocking pair
that is eliminated, the lecturer obtains an additional student assigned to a project that she
prefers to her previous worst non-empty project. Thus, the complexity of this phase is O(n2)

time, where n2 is the number of projects.

In the third phase, the algorithm eliminates potential coalitions that might have been intro-
duced in the second phase. We remark that coalitions in M corresponds to cycles in the envy

graph G(M), which contains a vertex for each student who is assigned in M and a directed
edge from student sij to siq if sij prefersM(siq) toM(sij). ClearlyM is coalition-free if and
only if G(M) is acyclic (see page 148 for further discussions on this). Further, we remark
that cyclic coalitions can be eliminated in O(m) time (see [83, p.308] for a detailed explana-
tion on how to achieve this). Hence, the overall complexity of Algorithm MAX-SPA-P-L1
is O(n2

1Rm).

6.3.2 Inapproximability of MAX-SPA-P-L2

Let I be an instance of SPA-P-L2, and let s+(I) denote the maximum size of a stable match-
ing in I . Define MAX-SPA-P-L2 to be the problem of computing s+(I). In this section, we
show that MAX-SPA-P-L2 is NP-hard, and moreover that there exists a constant δ2 > 1 such
that it is NP-hard to approximate MAX-SPA-P-L2 within δ2. The result holds even if each
project has capacity 1.

We prove this result using a reduction from a problem relating to matchings in graphs. A
matching M in a graph G is said to be maximal if no proper superset of M is a matching in
G. Let β−1 (G) denote the minimum size of a maximal matching in G. Define MIN-MM to
be the problem of computing β−1 (G), given a graph G. The following result regarding the
inapproximability of MIN-MM is proved in [45].

Theorem 6.3.2 ([45]). Let G = (V,E) be an instance of MIN-MM, where m = |E|. Then

there exist constants c0 > 0 and δ0 > 1 such that it is NP-hard to distinguish between the

cases β−1 (G) ≤ c0m and β−1 (G) > δ0c0m. Hence it is NP-hard to approximate MIN-MM

within δ0. The result holds even for subdivision graphs1 of cubic graphs.

We will use Theorem 6.3.2 together with the notion of a gap-preserving reduction [121],
which may be defined as follows.

1Given a graph G, the subdivision graph of G, denoted by S(G), is obtained by subdividing each edge
{u,w} of G in order to obtain two edges {u, v} and {v, w} of S(G), where v is a new vertex.
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Definition 6.3.3 ([121]). Let
∏

1 be a minimisation problem and let
∏

2 be a maximisation

problem. Denote by OPTi(x) the optimal measure over all feasible solutions for a given

instance x of
∏

i (i ∈ {1, 2}). Let α ≥ 1 be some constant and let g1 be a function that maps

an instance x of
∏

1 to a positive rational number. Then a gap-preserving reduction from
∏

1

to
∏

2 is a tuple 〈f, β, g2〉 such that:

(a) f maps an instance x of
∏

1 to an instance f(x) of
∏

2 in polynomial time;

(b) β ≥ 1 is a constant;

(c) g2 maps an instance f(x) of
∏

2 to a positive rational number;

(d) for any instance x of
∏

1 :

(i) if OPT1(x) ≤ g1(x) then OPT2(f(x)) ≥ g2(f(x));
(ii) if OPT1(x) > αg1(x) then OPT2(f(x)) < (1/β)g2(f(x)).

The following proposition is an immediate consequence of Definition 6.3.3.

Proposition 6.3.4 ([121]). Let
∏

1 be a minimisation problem and let
∏

2 be a maximisation

problem, and suppose that there is a gap-preserving reduction from
∏

1 to
∏

2. Assuming

the notation of Definition 6.3.3, suppose further that it is NP-hard to distinguish between

instances x of
∏

1 such that OPT1(x) ≤ g1(x) and OPT1(x) > αg1(x). Then it is NP-

hard to distinguish between instances f(x) of
∏

2 such that OPT2(f(x)) ≥ g2(f(x)) and

OPT2(f(x)) < (1/β)g2(f(x)). Hence it is NP-hard to approximate
∏

2 within β.

We use Proposition 6.3.4, together with Theorem 6.3.2, to prove the NP-hardness and inap-
proximability result for MAX-SPA-P-L2.

Theorem 6.3.5. MAX-SPA-P-L2 is NP-hard. Moreover, it is NP-hard to approximate MAX-
SPA-P-L2 within δ2, for some δ2 > 1. The result holds even if each project has capacity

1.

Proof. LetG (a subdivision graph of some cubic graphG′) be an instance of MIN-MM. Then
G is a bipartite graph, where G = (U,W,E) and, without loss of generality, suppose each
vertex in U has degree 2 and each vertex in W has degree 3. Let U = {u1, u2, . . . , un1} and
W = {w1, w2, . . . , wn2}. For each ui ∈ U , let wji and wki be the vertices adjacent to ui in
G, where ji < ki.

We construct an instance I of SPA-P-L2 as follows. Let S ∪ U1 ∪ U2 be the set of students,
where S = {s1, s2, . . . , sn2}, U1 = {u1i : ui ∈ U} and U2 = {u2i : ui ∈ U}. Let
P ∪ Q ∪ R ∪ T be the set of projects, where P = {p1, p2, . . . , pn2}, Q = {q1, q2, . . . , qn1},
R = {r1, r2, . . . , rn1} and T = {t1, t2, . . . , tn2}, and each project has capacity 1. Let {x, y}
be the set of lecturers, where x has capacity n2 and offers P ∪ T , while y has capacity
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2n1 and offers Q ∪ R. The preference lists in I are shown in Figure 6.2. We claim that
s+(I) = 2n1 + n2 − β−1 (G).

Students’ preferences Lecturers’ preferences

u1i : qi pji pki ri (1 ≤ i ≤ n1) x: p1 · · · pn2 t1 . . . tn2

u2i : qi pki pji (1 ≤ i ≤ n1) y: q1 . . . qn1 r1 . . . rn1

sj: tj (1 ≤ j ≤ n2)

Figure 6.2: Preference lists for constructed instance of SPA-P-L2

Suppose firstly that G has a maximal matching M , where |M | = β−1 (G). We construct a
matching M ′ in I as follows. For each edge {ui, wj} ∈ M , if j = ji, add (u1i , pji) and
(u2i , qi) to M ′; whilst if j = ki, add (u1i , qi) and (u2i , pki) to M ′. For each ui ∈ U , if ui is
unassigned in M , add (u1i , ri) and (u2i , qi) to M ′. For each wj ∈ W , if wj is unassigned
in M , add (sj, tj) to M ′ for 1 ≤ j ≤ n2 − |M |. Clearly, M ′ is a matching in I and
|M ′| = 2|M |+ 2(n1 − |M |) + (n2 − |M |).

No project in Q can be involved in a blocking pair of M ′, since each member of Q is full in
M ′. Similarly, no project in T can be involved in a blocking pair of M ′, since lecturer x is
full in M ′, and since x prefers her worst non-empty project in T to all the undersubscribed
projects in T . Hence, no student in S can be involved in a blocking pair of M ′. Similarly, no
u2i ∈ U2 can be involved in a blocking pair of M ′, since u2i is assigned in M ′ to either her
first or second choice project. Also no project in R can be involved in a blocking pair of M ′,
since each member of U1 is assigned in M ′. Now suppose the pair (u1i , pj) blocks M ′. Then
(u1i , ri) ∈ M ′, and pj is undersubscribed in M ′. Thus no edge in M is incident to ui or wj
in G. Hence M ∪ {{ui, wj}} is a matching in G, contradicting the maximality of M . Thus,
M ′ admits no blocking pair.

We next verify that M ′ is coalition-free. Clearly, no student in S can be involved in a coali-
tion, since any such student who is assigned in M has her first choice project. Also, no
student who is assigned in M ′ to a project in Q can be in a coalition, since every such stu-
dent is assigned to her first choice project. As a consequence, no student who is assigned in
M ′ to her second choice project can be in a coalition, since each such student prefers only a
project in Q. Finally, no student in U1 who is assigned to a project in R can be in a coalition,
since no assigned student prefers a project in R to her project in M ′. Hence M ′ is stable.
Also s+(I) ≥ 2n1 + n2 − β−1 (G).

Conversely, suppose that M ′ is a stable matching in I such that |M ′| = s+(I). First, we
claim that each project in Q is full in M ′. For suppose not, then there exists i (1 ≤ i ≤ n1)
such that (u1i , qi) /∈ M ′ and (u2i , qi) /∈ M ′; and thus (u1i , qi) blocks M ′, a contradiction.
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Hence
M = {{ui, wj} ∈ E : (u1i , pj) ∈M ′ ∨ (u2i , pj) ∈M ′}

is a matching in G. Suppose that M is not maximal. Then there is some edge {ui, wj} ∈ E
such that no edge of M is incident to ui or wj . Thus by the construction of M , either
(i) (u1i , ri) ∈ M ′ or u1i is unassigned in M ′, or (ii) u2i is unassigned in M ′. Also pj is
undersubscribed in M ′, and x cannot fill all n2 places with students who are assigned to
projects in P . It follows that (u1i , pj) blocks M ′ in case (i), whilst (u2i , pj) blocks M ′ in case
(ii), a contradiction to the stability of M ′. Hence M is indeed maximal in G.

For each {ui, wj} ∈ M , it follows that (uzi , pj) ∈ M ′ for some z (1 ≤ z ≤ 2); and thus,
(u3−zi , qi) ∈ M ′. Hence at most n1 − |M | projects in R are full in M ′. Moreover, since
lecturer x has capacity n2 and since |M | projects in P are full in M ′, then at most n2 − |M |
projects in T are full in M ′. Also, recall from the previous paragraph that each project in Q
is full in M ′. Hence |M ′| ≤ |M | + n1 + (n1 − |M |) + (n2 −M) = 2n1 + n2 − |M |, and
thus s+(I) ≤ 2n1 + n2 − β−1 (G).

We have that s+(I) = 2n1 + n2 − β−1 (G), and hence s+(I) + β−1 (G) = 2n1 + n2. Now
2n1 = 3n2, as G is the subdivision graph of the cubic graph G′. Also m = 2n1, where m is
the number of edges in G. Let n be the number of students in I . Then n = 2n1 + n2.

Let c0 and δ0 be the constants given by Theorem 6.3.2, such that it is NP-hard to distinguish
between the cases β−1 (G) ≤ c0m and β−1 (G) > δ0c0m. Hence if β−1 (G) ≤ c0m then
s+(I) ≥ c2n, whilst if β−1 (G) > δ0c0m then s+(I) < (1/δ2)c2n, where c2 = 4−3c0

4
and

δ2 = 4−3c0
4−3δ0c0 . The result then follows by Theorem 6.3.2 and Proposition 6.3.4.

6.4 NP-hardness of (3, 3)-MAX-SPA-P

Recall that (3, 3)-MAX-SPA-P is the restriction of MAX-SPA-P in which each preference list
is of length at most 3. In this section, we show that (3, 3)-MAX-SPA-P is NP-hard. The result
holds even if each project and lecturer has capacity 1. To achieve this, we will show that
(3, 3)-COM-SPA-P is NP-complete — this is the problem of deciding, given an instance of
SPA-P in which all the preference lists are of length at most 3, whether a complete stable
matching (i.e., a stable matching in which every student is assigned) exists. Clearly, the
NP-completeness of (3, 3)-COM-SPA-P implies the NP-hardness of (3, 3)-MAX-SPA-P.

In order to prove this result, we use a reduction from a restricted version of SAT, which
we define as follows. Let (2, 2)-E3-SAT denote the problem of deciding, given a Boolean
formula B in CNF in which each clause contains exactly 3 literals and, for each variable vi,
each of literals vi and vi appears exactly twice in B, whether B is satisfiable. Berman et al.

[22] showed that (2, 2)-E3-SAT is NP-complete.
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Students’ preferences Lecturers’ preferences
x4i: y4i c(x4i) y4i+1 (0 ≤ i ≤ n− 1) lsj : psj csj qsj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

x4i+1: y4i+1 c(x4i+1) y4i+2 (0 ≤ i ≤ n− 1) y′r: yr (0 ≤ r ≤ 4n− 1)

x4i+2: y4i+3 c(x4i+2) y4i+2 (0 ≤ i ≤ n− 1) z′j : zj (1 ≤ j ≤ m)

x4i+3: y4i c(x4i+3) y4i+3 (0 ≤ i ≤ n− 1)

dsj : zj psj (1 ≤ j ≤ m ∧ 1 ≤ s ≤ 3)

uj : q1j q2j q3j (1 ≤ j ≤ m)

Figure 6.3: Preference lists for constructed instance of (3, 3)-COM-SPA-P.

Theorem 6.4.1. (3, 3)-COM-SPA-P is NP-complete. The result holds even if each project

and lecturer has capacity 1.

Proof. Suppose we are given an assignmentM in an arbitrary instance of (3, 3)-COM-SPA-P,
clearly we can verify in polynomial-time if M is a complete stable matching. Hence (3, 3)-
COM-SPA-P is in NP. Let B be an instance of (2, 2)-E3-SAT. Let V = {v0, v1, . . . , vn−1} and
C = {c1, c2, . . . , cm} be the set of variables and clauses respectively in B. Then for each
vi ∈ V , each of literals vi and vi appears exactly twice in B. Also, for each cj ∈ C, |cj| = 3.
Hence m = 4n

3
.

We construct an instance I of (3, 3)-COM-SPA-P as follows. Let X ∪ D ∪ U be the set of
students, where X =

⋃n−1
i=0 Xi, Xi = {x4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n− 1), D =

⋃m
j=1Dj ,

Dj = {d1j , d2j , d3j} (1 ≤ j ≤ m) and U = {uj : cj ∈ C}. Let Y ∪Z∪P ∪Q∪C ′ be the set of
projects, where Y =

⋃n−1
i=0 Yi, Yi = {y4i+r : 0 ≤ r ≤ 3} (0 ≤ i ≤ n−1), Z = {zj : cj ∈ C},

P =
⋃m
j=1 Pj , Pj = {p1j , p2j , p3j} (1 ≤ j ≤ m), Q = {qsj : cj ∈ C ∧ 1 ≤ s ≤ 3}

and C ′ = {csj : cj ∈ C ∧ 1 ≤ s ≤ 3}. Let L ∪ Y ′ ∪ Z ′ be the set of lecturers, where
L = {lsj : cj ∈ C ∧ 1 ≤ s ≤ 3} and offers P ∪ C ′ ∪ Q; Y ′ = {y′r : 0 ≤ r ≤ 4n − 1} and
offers Y ; and Z ′ = {z′j : 1 ≤ j ≤ m} and offers Z. Finally, each project and lecturer has
capacity 1. The preference lists in I are shown in Figure 6.3.

In the preference list of a student x4i+r ∈ X (0 ≤ i ≤ n− 1), if r ∈ {0, 1} then the symbol
c(x4i+r) denotes the project csj ∈ C ′ such that the (r+ 1)th occurrence of literal vi appears at
position s of cj . Similarly, if r ∈ {2, 3} then the symbol c(x4i+r) denotes the project csj ∈ C ′

such that the (r − 1)th occurrence of literal vi appears at position s of cj . We also use x(csj)

to denote x4i+r for r ∈ {0, 1, 2, 3}. Clearly each preference list is of length at most 3.

For each i (0 ≤ i ≤ n−1), let Ti = {(x4i+r, y4i+r) : 0 ≤ r ≤ 3} and Fi = {(x4i+r, y4i+r+1) :

0 ≤ r ≤ 3}, where addition is taken modulo 4. We claim that B is satisfiable if and only if
I admits a complete stable matching.

Let f be a satisfying truth assignment of B. Define a complete stable matching M in I as
follows. For each variable vi ∈ V , if vi is true under f , add the pairs in Ti to M ; otherwise,
add the pairs in Fi to M . Now let cj ∈ C. As cj contains a literal that is true under f , let
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s ∈ {1, 2, 3} denote the position of cj in which this literal occurs. Add the pairs (uj, q
s
j ),

(dsj , zj), (daj , p
a
j ) and (dbj, p

b
j) to M , where {a, b} = {1, 2, 3} \ {s} and a < b. Clearly M is a

complete matching in I .

No project in Y ∪Z can be involved in a blocking pair of M , since each member of Y ∪Z is
full in M . Hence, no student in D can be involved in a blocking pair since any such student
can only potentially prefer a project in Z. Similarly, no project in Q can be involved in a
blocking pair of M since each lecturer lsj ∈ L is full in M and since lsj either prefers her
worst non-empty project to qsj , or qsj is her worst non-empty project. Hence no student in
U can be involved in a blocking pair of M . Now suppose that (x4i+r, c(x4i+r)) blocks M ,
where 0 ≤ i ≤ n − 1 and 0 ≤ r ≤ 3. Let csj = c(x4i+r), where 1 ≤ j ≤ m and 1 ≤ s ≤ 3.
Then lsj is full in M and (uj, q

s
j ) ∈ M . If r ∈ {0, 1} then (x4i+r, y4i+r+1) ∈ M , so that vi

is false under f . But literal vi occurs (unnegated) in cj at position s, a contradiction, since
literal vi was supposed to be true under f by construction of M (since (uj, q

s
j ) ∈ M if and

only if csj is true). Hence r ∈ {2, 3} and (x4i+r, y4i+r) ∈ M , so that vi is true under f . But
literal vi occurs in cj at position s, a contradiction, since vi was supposed to be true under f
by construction of M . Hence M admits no blocking pair.

We next verify that M is coalition-free. Clearly, no student in U can be in a coalition, since
no two assigned students in U find the same project acceptable. Also, no student in D who
is assigned in M to a project in Z can be in a coalition, since every such student is assigned
to her first choice project. As a consequence, no student in D who is assigned in M to a
project in P can be in a coalition, since each such student prefers only a project in Z. For
each i (0 ≤ i ≤ n − 1), no student in Xi can be in a coalition; for if M ∩ (Xi × Yi) = Ti

then neither x4i nor x4i+1 can be involved in a coalition, since each one of them is assigned
in M to her first choice project. As a consequence, x4i+3 cannot be in a coalition, since the
only student x4i+3 can potentially form a coalition with is x4i; and thus x4i+2 cannot be in
a coalition, since the only student x4i+2 can potentially form a coalition with is x4i+3. A
similar argument can be made if M ∩ (Xi × Yi) = Fi. Hence M is stable.

Conversely, suppose that M is a complete stable matching in I . Firstly, we claim that every
project in C ′ is undersubscribed in M . To see this, observe that for each j (1 ≤ j ≤ m),
uj is assigned in M to some qsj (1 ≤ s ≤ 3). As a consequence, the three members of Dj

can only be assigned to the three members of {zj} ∪ (Pj \ {psj}), since each lecturer in L
has capacity 1. Hence, for each s (1 ≤ s ≤ 3), csj is not assigned to any student. Next, for
each i (0 ≤ i ≤ n− 1), we claim that M ∩ (Xi × Yi) is a perfect matching of Xi ∪ Yi. For
suppose otherwise, then either (i) some student x4i+r ∈ X for r ∈ {0, 1, 2, 3} is unassigned
in M , since every project in C ′ is undersubscribed in M , or (ii) some project y4i+r ∈ Y for
r ∈ {0, 1, 2, 3} is undersubscribed in M . If (i) holds, we arrive at a contradiction, since M
is a complete stable matching. If (ii) holds, we reach a contradiction following the argument
from (i). We form a truth assignment f in B as follows. If M ∩ (Xi × Yi) = Ti, set vi to be
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true under f . Otherwise M ∩ (Xi × Yi) = Fi, in which case we set vi to be false under f .

Now let cj be a clause in C (1 ≤ j ≤ m). There exists some s (1 ≤ s ≤ 3) such that
(uj, q

s
j ) ∈ M . Let x4i+r = x(csj) for some i (0 ≤ i ≤ n − 1) and r (0 ≤ r ≤ 3). If

r ∈ {0, 1} then (x4i+r, y4i+r) ∈ M , since M is stable. Thus variable vi is true under f and
hence clause cj is true under f , since literal vi occurs unnegated in cj . If r ∈ {2, 3} then
(x4i+r, y4i+r+1) ∈ M (where addition is taken modulo 4), since M is stable. Thus variable
vi is false under f , and hence clause cj is true under f , since literal vi occurs in cj . Hence f
is a satisfying truth assignment of B.

6.5 An IP model for MAX-SPA-P

In this section, we describe an IP model to enable MAX-SPA-P to be solved optimally. Let I
be an instance of SPA-P involving a set S = {s1, s2, . . . , sn1} of students, a set P = {p1, p2,
. . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. We construct an IP model J
of I as follows. Firstly, we create binary variables xi,j ∈ {0, 1} (1 ≤ i ≤ n1, 1 ≤ j ≤ n2)

for each acceptable pair (si, pj) ∈ S ×P such that xi,j indicates whether si is assigned to pj
in a solution or not. Henceforth, we denote by S a solution in the IP model J , and we denote
by M the matching derived from S in the following natural way: if xi,j = 1 under S then si
is assigned to pj in M , otherwise si is not assigned to pj in M .

6.5.1 Constraints

In this section, we give the set of constraints to ensure that the assignment obtained from a
feasible solution in J is a matching, and that the matching admits no blocking pair and is
coalition-free.

Matching constraints The feasibility of a matching can be ensured with the following
three set of constraints. ∑

pj∈Ai

xi,j ≤ 1 (1 ≤ i ≤ n1), (6.1)

n1∑
i=1

xi,j ≤ cj (1 ≤ j ≤ n2), (6.2)

n1∑
i=1

∑
pj∈Pk

xi,j ≤ dk (1 ≤ k ≤ n3) . (6.3)
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Note that Inequality (6.1) ensures that each student si ∈ S is not assigned to more than one
project, while Inequalities (6.2) and (6.3) ensures that the capacity of each project pj ∈ P
and each lecturer lk ∈ L is not exceeded.

Given an acceptable pair (si, pj), we define rank(si, pj), the rank of pj on si’s preference
list, to be r+1 where r is the number of projects that si prefers to pj . Given a lecturer lk ∈ L
and a project pj ∈ Pk, an analogous definition holds for rank(lk, pj), the rank of pj on lk’s
preference list. With respect to an acceptable pair (si, pj), we define Si,j = {pj′ ∈ Ai :

rank(si, pj′) ≤ rank(si, pj)}, the set of projects that si likes as much as pj . For a project
pj offered by lecturer lk ∈ L, we also define Tk,j = {pq ∈ Pk : rank(lk, pj) < rank(lk, pq)},
the set of projects that are worse than pj on lk’s preference list.

In what follows, we fix an arbitrary acceptable pair (si, pj) and we impose constraints to
ensure that (si, pj) is not a blocking pair for the matching M (i.e., (si, pj) is not a type (a),
type (b) or type (c) blocking pair for M ). Firstly, let lk be the lecturer who offers pj .

Blocking pair constraints We define θi,j = 1 −
∑

pj′∈Si,j
xi,j′ . Intuitively, θi,j = 1 if

and only if si is unassigned in M or prefers pj to M(si). Next we create a binary variable
αj in J such that if pj is undersubscribed in M then αj = 1. We enforce this condition by
imposing the following constraint.

cjαj ≥ cj −
n1∑
i′=1

xi′,j , (6.4)

where
∑n1

i′=1 xi′,j = |M(pj)|. If pj is undersubscribed in M then the RHS of Inequality
(6.4) is at least 1, and this implies that αj = 1; otherwise, αj is not constrained. Now let
γi,j,k =

∑
pj′∈Tk,j

xi,j′ . Intuitively, if γi,j,k = 1 in S then si is assigned to a project pj′ offered
by lk in M , where lk prefers pj to pj′ . The following constraint ensures that (si, pj) does not
form a type (a) blocking pair for M .

θi,j + αj + γi,j,k ≤ 2 . (6.5)

Note that if the sum of the binary variables in the LHS of Inequality (6.5) is less than or equal
to 2, this implies that at least one of the variables, say γi,j,k, is 0. Thus the pair (si, pj) is not
a type (a) blocking pair for M .

Next we define βi,k =
∑

pj′∈Pk
xi,j′ . Clearly, si is assigned to a project offered by lk in M if

and only if βi,k = 1 in S. We define Dk,j = {pj′ ∈ Pk : rank(lk, pj′) ≤ rank(lk, pj)}, the
set of projects that lk likes as much as pj . Next, we create a binary variable ηj,k in J such
that ηj,k = 1 if lk is undersubscribed or prefers pj to his worst non-empty project in M . We
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enforce this by imposing the following constraint.

dkηj,k ≥ dk −
n1∑
i′=1

∑
pj′∈Dk,j

xi′,j′ , (6.6)

where
n1∑
i′=1

∑
pj′∈Dk,j

xi′,j′ is the occupancy of lk involving projects that are at least as good

as pj on lk’s preference list. Intuitively if lk is undersubscribed in M or if lk prefers pj to
her worst non-empty project in M , then the RHS of Inequality (6.6) is at least 1. Finally, to
avoid type (b) and type (c) blocking pairs, we impose the following constraint.

θi,j + αj + (1− βi,k) + ηj,k ≤ 3 . (6.7)

Next, we give the constraints to ensure that the matching obtained from a feasible solution
in J is coalition-free.

Coalition constraints First, we introduce some additional notation. Given an instance
I ′ of SPA-P and a matching M ′ in I ′, we define the envy graph G(M ′) = (S, A), where the
vertex set S is the set of students in I ′, and the arc set

A = {(si, si′) : si prefers M ′(si′) to M ′(si)}.

It is clear that the matchingM2 = {(s1, p1), (s2, p2), (s3, p3)} admits a coalition {s1, s2}with
respect to the instance given in Figure 6.1. The resulting envy graph G(M2) is illustrated
below.

s1 s2s3

Figure 6.4: The envy graph G(M2) corresponding to the SPA-P instance in Figure 6.1.

Clearly, G(M ′) contains a directed cycle if and only if M ′ admits a coalition. Moreover,
G(M ′) is acyclic if and only if it admits a topological ordering. Now to ensure that the
matching M obtained from a feasible solution S under J is coalition-free, we will enforce
J to encode the envy graph G(M) and impose the condition that it must admit a topological
ordering. In what follows, we build on our IP model J of I .

We create a binary variable ei,i′ for each (si, si′) ∈ S×S , si 6= si′ , such that the ei,i′ variables
will correspond to the adjacency matrix of G(M). For each i and i′ (1 ≤ i ≤ n1, 1 ≤ i′ ≤
n1, i 6= i′) and for each j and j′ (1 ≤ j ≤ n2, 1 ≤ j′ ≤ n2) such that si prefers pj′ to pj , we
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impose the following constraint:

ei,i′ + 1 ≥ xi,j + xi′,j′ . (6.8)

If (si, pj) ∈M and (si′ , pj′) ∈M and si prefers pj′ to pj , then ei,i′ = 1 and we say si envies

si′; otherwise, ei,i′ is not constrained. Next we enforce the condition that G(M) must have
a topological ordering. To hold the label of each vertex in a topological ordering, we create
an integer-valued variable vi corresponding to each student si ∈ S (and intuitively to each
vertex in G(M)). We wish to enforce the constraint that if ei,i′ = 1 (i.e., (si, si′) ∈ A), then
vi < vi′ (i.e., the label of vertex si is smaller than the label of vertex si′). This is achieved by
imposing the following constraint for all i and i′ (1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1, i 6= i′).

vi < vi′ + n1(1− ei,i′) . (6.9)

Note that the LHS of Inequality (6.9) is strictly less than the RHS of Inequality (6.9) for all
i, i (i 6= i) if and only if G(M) does not admit a directed cycle, and this implies that M is
coalition-free.

6.5.2 Variables

We define a collective notation for each variable involved in J as follows.

X = {xi,j : si ∈ S ∧ pj ∈ Ai}, Λ = {αj : 1 ≤ j ≤ n2},
H = {ηj,k : 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}, V = {vi : 1 ≤ i ≤ n1} .
E = {ei,i′ : 1 ≤ i ≤ n1, 1 ≤ i′ ≤ n1},

6.5.3 Objective function

The objective function given below is a summation of all the xi,j binary variables. It seeks
to maximize the number of students assigned (i.e., the size of the matching).

max

n1∑
i=1

∑
pj∈Ai

xi,j . (6.10)

Finally, we have constructed an IP model J of I comprising the set of integer-valued vari-
ables X,Λ, H,E and V , the set of Inequalities (6.1) - (6.9) and an objective function (6.10).
Note that J can then be used to solve MAX-SPA-P optimally. Moreover, if J admits a feasible
solution S, then the objective value denoted obj(S) is equivalent to the number of students
that are assigned in M , i.e., obj(S) = |M |.



6.5. An IP model for MAX-SPA-P 150

6.5.4 Correctness of the IP model

Given an instance I of SPA-P formulated as an IP model J using the above transformation,
we establish the correctness of J via the following lemmas.

Lemma 6.5.1. A feasible solution S to J corresponds to a stable matching M in I , where

obj(S) = |M |.

Proof. Assume firstly that J has a feasible solution S. LetM = {(si, pj) ∈ S×P : xi,j = 1}
be the assignment in I generated from S. Clearly obj(S) = |M |. We note that Inequality
(6.1) ensures that each student is assigned inM to at most one project. Moreover, Inequalities
(6.2) and (6.3) ensures that the capacity of each project and lecturer is not exceeded in M .
Thus M is a matching. We will prove that Inequalities (6.4) - (6.7) guarantees that M admits
no blocking pair.

Suppose for a contradiction that there exists some acceptable pair (si, pj) that forms a block-
ing pair forM , where lk is the lecturer who offers pj . This implies that si is either unassigned
in M or prefers pj to M(si). In either of these cases,

∑
pj′∈Si,j

xi,j′ = 0, and thus θi,j = 1.
Moreover, as (si, pj) is a blocking pair for M , pj has to be undersubscribed in M , and thus∑n1

i′=1 xi′,j < cj . This implies that the RHS of Inequality (6.4) is strictly greater than 0, and
since S is a feasible solution to J , αj = 1.

Now suppose (si, pj) is a type (a) blocking pair, and supposeM(si) = pj′′ for some pj′′ ∈ Pk.
We have that lk prefers pj to pj′′ , thus γi,j,k =

∑
pj′∈Tk,j

xi,j′ = 1. Now, θi,j = αj = γi,j,k = 1

implies that the LHS of Inequality (6.5) is strictly greater than 2. Thus S is not a feasible
solution, a contradiction.

Next suppose (si, pj) is a type (b) or type (c) blocking pair for M . This implies that si /∈
M(lk) and thus 1− βi,k = 1−

∑
p′j∈Pk

xi,j′ = 1. Also, either lk is undersubscribed in M or
lk prefers pj to pz, where pz is lk’s worst non-empty project in M . This implies that the RHS
of Inequality (6.6) is strictly greater than 0, and thus ηj,k = 1. Hence the LHS of Inequality
(6.7) is strictly greater than 3. Thus S is not a feasible solution, a contradiction.

Finally, we show that Inequalities (6.8) and (6.9) ensure that M is coalition-free. Suppose
for a contradiction that M admits a coalition 〈si0 , . . . , sir−1〉, for some r ≥ 2. This implies
that for each t (0 ≤ t ≤ r − 1), sit prefers M(sit+1) to M(sit), where addition is taken
modulo r, and hence eit,it+1 = 1, by Inequality (6.8). It follows from Inequality (6.9) that
vi0 < vi1 < · · · < vir−2 < vir−1 < vir = vi0 , a contradiction. Hence M is coalition-free, and
thus M is a stable matching.

Lemma 6.5.2. A stable matching M in I corresponds to a feasible solution S to J , where

|M | = obj(S).
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Proof. Let M be a stable matching in I . First we set all the binary variables involved in J
to 0. For all (si, pj) ∈ M , we set xi,j = 1. Now, since M is a matching, it is clear that
Inequalities (6.1) - (6.3) is satisfied. For any acceptable pair (si, pj) ∈ (S×P)\M such that
si is unassigned in M or prefers pj to M(si), we set θi,j = 1. For any project pj ∈ P that
is undersubscribed in M , we set αj = 1 and thus Inequality (6.4) is satisfied. For Inequality
(6.5) not to be satisfied, its LHS must be strictly greater than 2. This would only happen if
there exists (si, pj) ∈ (S ×P) \M , where lk is the lecturer who offers pj , such that θi,j = 1,
αj = 1 and γi,j,k = 1. This implies that si is assigned in M to a project pj′ offered by lk such
that si prefers pj to pj′ , pj is undersubscribed in M , and lk prefers pj to pj′ . Thus (si, pj) is
a type (a) blocking pair for M , a contradiction to the stability of M . Hence Inequality (6.5)
is satisfied.

Suppose lk is a lecturer in L and pj is any project on lk’s preference list. Let pz be lk’s worst
non-empty project in M . If lk is undersubscribed in M or lk prefers pj to pz, we set ηj,k = 1.
Then Inequality (6.6) is satisfied. Now suppose Inequality (6.7) is not satisfied. This would
only happen if there exists (si, pj) ∈ (S×P)\M , where lk is the lecturer who offers pj , such
that θi,j = 1, αj = 1, βi,k = 0 and ηj,k = 1. This implies that either si is unassigned in M or
prefers pj to M(si), si /∈M(lk), pj is undersubscribed in M and either lk is undersubscribed
in M or lk prefers pj to his worst non-empty project in M . Thus (si, pj) is either a type (b)
or type (c) blocking pair for M , a contradiction to the stability of M . Hence Inequality (6.7)
is satisfied.

We denote by G(M) = (S, A) the envy graph of M . Suppose si and si′ are any two distinct
students in S such that (si, pj) ∈M , (si′ , pj′) ∈M and si prefers pj′ to pj (i.e., (si, si′) ∈ A),
we set ei,i′ = 1. Thus Inequality (6.8) is satisfied. Since M is a stable matching, M is
coalition-free. This implies that G(M) is acyclic and has a topological ordering

σ : S → {1, 2, . . . , n1} .

For each i (1 ≤ i ≤ n1), let vi = σ(si). Now suppose Inequality (6.9) is not satisfied. This
implies that there exists vertices si and si′ in G(M) such that vi ≥ vi′ + n1(1− ei,i′). This is
only possible if ei,i′ = 1 since 1 ≤ vi ≤ n1 and 1 ≤ vi′ ≤ n1. Hence vi ≥ vi′ , a contradiction
to the fact that σ is a topological ordering of G(M) (since (si, si′) ∈ A implies that vi < vi′).
Hence S, comprising the above assignment of values to the variables inX∪Λ∪H∪∆∪E∪V ,
is a feasible solution to J ; and clearly |M | = obj(S).

Lemmas 6.5.1 and 6.5.2 immediately give rise to the following theorem regarding the cor-
rectness of J .

Theorem 6.5.3. A feasible solution to J is optimal if and only if the corresponding stable

matching in I is of maximum cardinality.
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Proof. Let S be an optimal solution to J . Then by Lemma 6.5.1, S corresponds to a stable
matching M in I such that obj(S) = |M |. Suppose M is not of maximum cardinality.
Then there exists a stable matching M ′ in I such that |M ′| > |M |. By Lemma 6.5.2, M ′

corresponds to a feasible solution S ′ to J such that obj(S ′) = |M ′| > |M | = obj(S). This
is a contradiction, since S is an optimal solution to J . Hence M is a maximum size stable
matching in I . Similarly, if M is a maximum size stable matching in I then M corresponds
to an optimal solution S to J .

6.6 Empirical evaluation

In this section we present results from an empirical evaluation that investigates how the sizes
of the stable matchings produced by the approximation algorithms compares to those of the
optimal solution obtained from our IP model, on SPA-P instances that are both randomly
generated and derived from real datasets.

6.6.1 Experimental setup

When generating SPA-P instances, there are clearly several parameters that can be varied,
such as the number of students, projects and lecturers; the length of the students’ preference
lists; as well as the total capacities of the projects and lecturers. For each range of values
for the first two parameters, we generated a set of random SPA-P instances. In each set,
we recorded the average size of a stable matching obtained from running the approximation
algorithms and the IP model. Further, we considered the average time taken for the IP model
to find an optimal solution.

Very broadly, the approximation algorithms involve a sequence of applications and deletions.
The students applies to projects that they find acceptable, and when a project and/or lecturer
becomes full, certain (student, project) pairs are deleted. By design, the approximation al-
gorithms were randomised with respect to the sequence in which students apply to projects,
and the choice of students to reject when projects and/or lecturers become full. In the light of
this, for each dataset, we also ran the approximation algorithms 100 times and record the size
of the largest stable matching obtained over these runs. Our experiments therefore involved
five algorithms: the optimal IP-based algorithm, the two approximation algorithms run once,
and the two approximation algorithms run 100 times.

We performed our experiments on a machine with dual Intel Xeon CPU E5-2640 proces-
sors with 64GB of RAM, running Ubuntu 17.10. Each of the approximation algorithms
was implemented in Java2. For our IP model, we carried out the implementation using the

2https://github.com/sofiatolaosebikan/spa-p-isco-2018
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Gurobi optimisation solver in Java (see footnote 2). For correctness testing on these imple-
mentations, we designed a stability checker which verifies that the matching returned by the
approximation algorithms and the IP model does not admit a blocking pair or a coalition.

6.6.2 Randomly-generated datasets

All the SPA-P instances that we randomly generated involved n1 students (n1 is henceforth
referred to as the size of the instance), 0.5n1 projects, 0.2n1 lecturers and 1.1n1 total project
capacity which was randomly distributed amongst the projects such that each project has
capacity at least 1. The capacity for each lecturer lk was chosen uniformly at random to lie
between the highest capacity of the projects offered by lk and the sum of the capacities of the
projects that lk offers. In the first experiment, we present results obtained from comparing
the performance of the IP model, with and without the coalition constraints in place.

Experiment 0

We increased the number of students n1 while maintaining a ratio of projects, lecturers,
project capacities and lecturer capacities as described above. For various values of n1 (100 ≤
n1 ≤ 1000) in increments of 100, we created 100 randomly-generated instances. Each stu-
dent’s preference list contained a minimum of 2 and a maximum of 5 projects. With respect
to each value of n1, we obtained the average time taken for the IP solver to output a solu-
tion, both with and without the coalition constraints being enforced. The results, displayed
in Table 6.1 show that when we removed the coalition constraints, the average time for the
IP solver to output a solution is significantly faster than when we enforced the coalition
constraints.

Table 6.1: Results for Experiment 0. Average time (in seconds) for the IP solver to output a
solution, both with and without the coalition constraints being enforced.

Size of instance 100 200 300 400 500 600 700 800 900 1000

Av. time without coalition 0.12 0.27 0.46 0.69 0.89 1.17 1.50 1.86 2.20 2.61

Av. time with coalition 0.71 2.43 4.84 9.15 13.15 19.34 28.36 38.18 48.48 63.50

In the remaining experiments, we thus remove the constraints that enforce the absence of a
coalition in the solution. We are able to do this for the purposes of these experiments because
the largest size of a stable matching is equal to the largest size of a matching that potentially
admits a coalition but admits no blocking pair3, and we were primarily concerned with mea-

3This holds because the number of students assigned to each project and lecturer in the matching remains
the same even after the students involved in such coalition permute their assigned projects.
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suring stable matching cardinalities. However the absence of the coalition constraints should
be borne in mind when interpreting the IP solver runtime data in what follows.

In the next two experiments, we discuss results obtained from running the five algorithms on
randomly-generated datasets.

Experiment 1

As in the previous experiment, we maintained the ratio of the number of students to projects,
lecturers and total project capacity, as well as the length of the students’ preference lists. For
various values of n1 (100 ≤ n1 ≤ 2500) in increments of 100, we created 1000 randomly-
generated instances. With respect to each value of n1, we obtained the average sizes of
stable matchings constructed by the five algorithms run over the 1000 instances. The result
displayed in Figure 6.5(a) shows the ratio of the average size of the stable matching produced
by the approximation algorithms with respect to the average size of the maximum cardinality
stable matchings produced by the IP solver.

Figure 6.5(a) shows that each of the approximation algorithms produces stable matchings
with a much higher cardinality from multiple runs, compared to running them only once.
Also, the average time taken for the IP solver to find a maximum cardinality matching in-
creases as the size of the instance increases, with a running time of less than one second
for instance size 100, increasing roughly linearly to 13 seconds for instance size 2500 (see
Figure 6.5(b)). Perhaps not surprising, each of the approximation algorithms terminates in
less than one second for all the datasets.

Experiment 2

In this experiment, we varied the length of each student’s preference list while maintaining a
fixed number of students, projects, lecturers and total project capacity. For various values of
x (2 ≤ x ≤ 10), we generated 1000 instances, each involving 1000 students, with each stu-
dent’s preference list containing exactly x projects. The result for all values of x is displayed
in Figure 6.6(a), which shows that as we increase the preference list length, the sizes of the
stable matchings produced by each of the approximation algorithms approaches optimality.
Figure 6.6(a) also shows that with a preference list length greater than 5, the 3

2
-approximation

algorithm produces an optimal solution, even on a single run. Moreover, the average time
taken for the IP solver to find the size of a maximum size stable matching increases as the
length of the students’ preference lists increases, with a running time of two seconds when
each student’s preference list is of length 2, increasing roughly linearly to 17 seconds when
each student’s preference list is of length 10 (see Figure 6.6(b)).
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6.6.3 Real datasets

The real datasets in this chapter are based on actual student preference data and manufac-
tured lecturer data from previous runs of student-project allocation processes at the School
of Computing Science, University of Glasgow. Table 6.2 shows the properties of the real
datasets, where n1, n2 and n3 denotes the number of students, projects and lecturers respec-
tively; and l denotes the length of each student’s preference list. For all these datasets, each
project has a capacity of 1 and the capacity of each lecturer was provided as part of the
datasets. In the next experiment, we discuss how the lecturer preferences over their proposed
projects were generated (which is the only information we manufactured). We also discuss
the results obtained from running the five algorithms on the corresponding SPA-P instances.

Experiment 3

We derived the lecturer preference data from the real datasets as follows. For each lecturer
lk, and for each project pj offered by lk, we obtained the number aj of students that find
pj acceptable. Next, we generated a strictly-ordered preference list for lk by arranging lk’s
proposed projects in (i) a random manner, (ii) ascending order of aj , and (iii) descending
order of aj , where (ii) and (iii) are taken over all projects that lk offers. Table 6.2 shows
the size of stable matchings obtained from the five algorithms, and the results are essentially
consistent with the findings in the previous experiments: i.e., the 3

2
-approximation algorithm

produces stable matchings whose sizes are close to optimal.
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Figure 6.5: Result for Experiment 1.
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Figure 6.6: Result for Experiment 2.

Table 6.2: Properties of the real datasets and the size of stable matchings obtained from the
five algorithms, with respect to Experiment 3, where A,B,C,D and E denotes the solution
obtained from the IP model, 100 runs of the 3

2
-approximation algorithm, single run of the

3
2
-approximation algorithm, 100 runs of the 2-approximation algorithm, and single run of the

2-approximation algorithm, respectively.

Random Most popular Least popular

Year n1 n2 n3 l A B C D E A B C D E A B C D E

2014 55 149 38 6 55 55 55 54 53 55 55 55 54 50 55 55 55 54 52

2015 76 197 46 6 76 76 76 76 72 76 76 76 76 72 76 76 76 76 75

2016 92 214 44 6 84 82 83 77 75 85 85 83 79 76 82 80 77 76 74

2017 90 289 59 4 89 87 85 80 76 90 89 86 81 79 88 85 84 80 77

6.6.4 Discussions

The results presented in this section suggest that even as we increase the number of students,
projects, lecturers, and the length of the students’ preference lists, each of the approximation
algorithms finds stable matchings that are close to having maximum cardinality, outperform-
ing their approximation factor. Perhaps most interesting is the 3

2
-approximation algorithm,

which finds stable matchings that are very close in size to optimal, even on a single run.
These results also holds analogously for the instances derived from real datasets.

We remark that when we removed the coalition constraints, we were able to run the IP model
on an instance size of 10000, with the solver returning the size of a maximum matching in
an average time of 100 seconds, over 100 randomly-generated instances. This shows that
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the IP model (without enforcing the coalition constraints), can be run on large instances that
could potentially appear in practical applications of the SPA-P model, to find maximum size
stable matchings that potentially admits coalition of students. These coalitions should then
be eliminated in polynomial time by repeatedly constructing an envy graph, similar to the
one described in [83, p.290], finding a directed cycle and letting the students in the cycle
swap projects.

6.7 Conclusions and open problems

In this chapter, we have presented algorithmic and experimental results for finding maximum
size stable matchings in instances of SPA-P. From an algorithmic perspective, we have shown
that MAX-SPA-P becomes polynomial-time solvable if there is only one lecturer, whilst the
problem remains NP-hard to approximate even if there are two lecturers involved. We also
proved that it is NP-hard to find a maximum size stable matching if each preference list is of
length at most 3. It would be interesting to consider other polynomial-time solvable special
cases, for example, what if each student’s preference list is of length at most 2 and each
lecturer’s preference lists is of unbounded length?

Moving away from hardness results, a particularly interesting direction would be to explore
parameterisations that lead to FPTalgorithms for MAX-SPA-P. Whilst our NP-hardness result
shows that parameterising on the number of lecturers or the maximum length of a preference
list is not a good choice, other suitable parameterisations that could be explored include the
maximum capacity of a project or lecturer, which we might expect to be small in practice.
On the other hand, a different direction is to establish W[1]-hardness results under various
parameterisations.

To enable MAX-SPA-P to be solved optimally in practice, we went on to describe an IP
model for the problem. From our experimental results, we were able to deduce that the 3

2
-

approximation algorithm of Iwama et al. [61] constructs stable matchings whose size is very
close to optimal. Nevertheless, the question remains as to whether there exists an approxi-
mation algorithm for MAX-SPA-P that has a performance guarantee better than 3

2
?
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