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Abstract 

Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed bi-

functional protein (chanzyme, channel + kinase) comprising a cation channel and a C-

terminal α-kinase domain. As an ion channel, TRPM7 conducts primarily divalent cations 

such as Mg2+, Ca2+ and Zn2+. The kinase domain has been found to influence activity of 

downstream target proteins including calpain-2, annexin-1, myosin IIA, phospholipase Cγ2 

(PLCγ2) and eukaryotic elongation factor 2-kinase (eEF2-k). The relevance of TRPM7 in 

the cardiovascular system has been demonstrated by an increasing number of studies. Our 

group has previously identified TRPM7 as a key regulator of Mg2+ homeostasis and 

growth in vascular smooth muscle cells (VSMCs). We show that TRPM7 exerts protective 

effects against Ang II-induced hypertension, endothelial dysfunction and cardiac 

hypertrophy and that vasoactive agent bradykinin regulates TRPM7 and its downstream 

target annexin-1, playing an important role in VSMC Mg2+
 homeostasis, cell migration and 

invasion. The implication of TRPM7 in regulating blood pressure was also highlighted 

recently with a study showing that leptin induces hypertension through TRPM7 in carotid 

body.  

Growth factors, such as vascular endothelial growth factor (VEGF) and epidermal 

growth factor (EGF), through activating their receptors VEGF receptor (VEGFR) and EGF 

receptor (EGFR) respectively, which belong to the receptor tyrosine kinase (RTK) family, 

trigger a variety of downstream signalling including PLCγ/protein kinase C (PKC), 

RAS/RAF/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein 

kinase (MAPK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian 

target of rapamycin (mTOR), Janus kinase (JAK)/signal transducer and activator of 

transcription (STAT) and Src family kinases (SFKs). The activation of RTK exerts 

significant biological effects on many cellular processes including cell division, 

proliferation, migration, differentiation and ion homeostasis, and plays a pivotal role in 

embryo development, wound healing and tumour biology.  

There is a paucity of information about the relationship between growth factors and 

TRPM7 in the vasculature, and whether the interaction has a role in vascular health and 

disease. We hypothesize that in VSMCs VEGF and EGF exert regulatory effects on 

TRPM7 activity, and the process mediates ion homeostasis and the activation of cellular 

signalling, which consequently influences cell function and vessel health. While under 
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pathological conditions such as hypertension, the growth factor-RTK-TRPM7 axis could 

be aberrantly expressed and result in deleterious consequences.  

This study identified novel roles of growth factors (VEGF and EGF) in VSMCs which 

is specifically mediated by TRPM7. We demonstrate that VEGF and EGF through 

activating the RTKs (VEGFR and EGFR respectively) upregulate TRPM7 expression and 

phosphorylation in VSMCs and consequently regulate ion homeostasis (Mg2+ and Ca2+) 

through TRPM7 channel activation. With regards to the downstream effects, we show the 

crucial involvement of TRPM7 in the effects mediated by EGF, including activation of 

extracellular signal-regulated kinase 1/2 (ERK1/2) and migration and proliferation in 

VSMCs, processes that are associated with vessel morphology. We also show that the 

VEGF-regulated TRPM7 plays an important role in the endothelium-independent vascular 

relaxation. 

Our study demonstrates that the Growth Factor/RTK system is both upstream and 

downstream of TRPM7 in the vasculature. Taking advantage of different approaches, we 

identify the direct interaction between EGFR and TRPM7 in VSMCs and the interaction is 

enhanced by EGF in a c-Src dependent manner. Our experiments provide visible evidence 

that the interaction between EGFR and TRPM7 occurs at cell membrane, confirming that 

TRPM7 functions as a cell surface protein. Importantly, our data indicate that TRPM7 acts 

as an upstream regulator of RTK, since TRPM7 kinase is indispensable for EGFR 

expression and c-Src activation in VSMCs and lack of TRPM7 kinase activity is associated 

with reduced EGFR phosphorylation in the vessels. Our data also highlight that the 

property of TRPM7 as a kinase is specifically involved in these vascular effects.   

We explored the potential clinical relevance of the RTK-TRPM7 crosstalk. First, we 

show that the EGFR-TRPM7-ERK1/2 pathway is enhanced in VSMCs from hypertensive 

rats, which is associated with increased intracellular Ca2+ and cell migration, suggesting 

that aberrant activity of this pathway might be involved in the pathophysiology of 

hypertension. Secondly, this study takes advantage of placental tissues from two different 

animal models of preeclampsia and show that dysregulation of VEGFR and TRPM7 is 

present in the placenta under preeclamptic conditions. Our experiments suggest that the 

VEGFR-TRPM7 crosstalk might be important for future studies aimed at 

pathophysiological mechanisms and therapeutic targets of preeclampsia.  

Taken together our findings identify TRPM7 as a novel signalling target of growth 

factors EGF and VEGF in the vascular system. Importantly TRPM7 is differentially 
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regulated by EGF and VEGF, which likely contributes to diverse vascular functional 

consequences of RTK-TRPM7 signalling. Data from our studies advance the field of 

TRMP7, Mg2+ regulation and vascular biology and delineate new molecular mechanisms 

whereby growth factors impact vascular function in health and disease.  
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Magnesium (Mg2+) is one of the most abundant minerals in the body, which is 

critically involved in normal cardiovascular functions such as vascular tone and 

contractility. Altered Mg2+ status has been associated with the incidence of cardiovascular 

diseases including hypertension (1). Cellular levels of Mg2+ are tightly regulated and 

maintained within a narrow range through a specialized Mg2+ transport system composed 

of a series of transporters, and we have demonstrated that the ubiquitously expressed Mg2+ 

transporter transient receptor potential melastatin 7 (TRPM7) acts as a functionally 

important regulator of Mg2+ homeostasis in the vascular system (2). Receptor tyrosine 

kinases (RTKs) such as vascular endothelial growth factor receptor (VEGFR) and 

epidermal growth factor receptor (EGFR) and their ligands VEGF and EGF respectively, 

have been shown to modulate the activity of TRPM7 and its sister homologue TRPM6. Of 

importance, therapeutic inhibition of EGFR in cancer patients leads to significant 

hypomagnesemia (3) with mechanisms involving renal TRPM6. However, whether VEGF 

and EGF through RTKs regulate TRPM7 in the vascular system has not been thoroughly 

investigated yet. 

1.1 Magnesium in health and disease 

1.1.1 Magnesium and cell biology  

Magnesium (Mg2+) is the fourth most abundant cation in the body and the second most 

common intracellular divalent cation. The normal adult human body contains ~ 20 

mmol/kg of fat-free tissue, with a total Mg2+ of approximately 1000 mmols (22~26g) (4-6). 

As the second most prevalent cation in the intracellular fluid, Mg2+ has versatile biological 

functions, including contributions to DNA and RNA tertiary structures, protein tertiary or 

quaternary structures and fluidity, stability of phospholipid bilayers and regulation of 

enzymes and signalling molecules  (7, 8). Mg2+ is the most frequently found metal ion 

cofactor and involved in more than 300 enzyme systems in the body (9, 10). Mg2+ can 

affect enzyme activity through binding to ligand such as ATP in ATP-requiring enzymes, 

including Na+/K+ ATPase, creatine kinase, protein kinase and cyclases, regulating diverse 

biochemical reactions (7, 9, 11, 12). The ability of Mg2+ to form complexes with 

phosphate-containing species, such as ATP, and consequently facilitate 

transphosphorylation reactions which are crucial to cell physiology, is the best recognised 

function (7, 11). Mg2+ can also form complexes ADP and GTP, which are necessary for the 

activity of enzymes involved in energy metabolism (11). Another important property 

contributing to the essential physiological role of Mg2+ is its role as nature’s physiologic 
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Ca2+ blocker (13). Mg2+ and Ca2+ levels in the body are jointly regulated through 

competition for intestinal absorption and renal reabsorption, and Mg2+ competes with Ca2+ 

for binding sites on proteins and membranes, thus inhibiting Ca2+ activity. 

Due to the importance of Mg2+ in the body, cellular levels of Mg2+ need to be tightly 

regulated and maintained within a narrow range despite a wide range of variations in 

external Mg2+ concentration. This control is achieved through a balance of Mg2+ uptake, 

intracellular storage and Mg2+ efflux, which is dependent on specialized Mg2+ transporter 

system across biological membranes (Figure 1.1) (14, 15).  

 

 

Figure 1.1 Main magnesium transporters across biological membranes. Transient 

receptor potential melastatin -6 (TRPM6) and -7 (TRPM7), have 6 transmembrane 

domains and harbour a C-terminal α-kinase domain. Magnesium transporter 1 (Mag T1), is 

composed of 4 or 5 transmembrane domains based on different transmembrane prediction 

methods, regulating Mg2+ influx. Solute carrier family 41 member A1 (SLC41A1), 

structurally has 10 putative transmembrane domains, which has been characterized as a 

Na+/Mg2+ exchanger. Ancient conserved domain protein/cyclin M 2 (CNNM2) and 4 

(CNNM4) are strongly expressed in the renal and intestinal epithelia respectively, 

considered as basolateral Mg2+ extruders. 

Magnesium transporter subtype 1 (MagT1) was first discovered in 2005 when Goytain 

et al. used microarray analysis to identify candidate genes that were upregulated with low 
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Mg2+ (16). MagT1 gene is located on human chromosome Xq13.1-13.2 and mouse XD. 

The encoded protein is composed of 4 or 5 transmembrane domains based on different 

transmembrane prediction methods, with no sequence similarity to any known Mg2+ 

transport proteins (17, 18). Northern analysis show that MagT1 is highly expressed in liver, 

heart, kidney and colon, and less expressed in intestine, spleen, brain and lungs (16, 19). 

MagT1 is found in the plasma membrane of mammalian cells, and is particularly abundant 

in epithelial cells (17). The available studies suggest that MagT1 protein possesses 

channel-like characteristics and is highly selective for Mg2+ (19) and its deficiency is 

associated with reduction of total and free intracellular Mg2+ concentration and inhibition 

of embryonic development (20). In humans, loss-of-function mutations in MagT1 are 

associated with an immune deficiency called “X-linked immunodeficiency with 

magnesium defect, intellectual disability and skin disorders (18, 21).  

The 41st family of solute carriers member 1 (SLC41A1), which structurally has 10 

putative transmembrane domains, has been characterized as an Na+/Mg2+ exchanger 

medicating Mg2+ efflux (15, 22). SLC41A1 is part of the central component of vertebrate 

Mg2+ transport systems. It is highly expressed in the body, especially in renal epithelial 

tissues and it is upregulated during Mg2+ deficiency (23, 24). Mutation of SLC41A1 and 

knockdown of SLC41A1 in experiment models can lead to defects in the maintenance of 

Mg2+ homeostasis and are linked to Mg2+ associated diseases (25, 26).  SLC41A3, another 

isoform of SLC41, which is predominantly expressed in the DCT (distal convoluted 

tubule), has also been confirmed as a novel player in Mg2+ homeostasis. SLC41A3 knock 

out mice suffer from isolated hypomagnesemia, and it has recently been demonstrated that 

SLC41A3 is a mitochondrial Mg2+ efflux system, in a Na+-dependent manner (27, 28). 

TRPM6 and TRPM7, which are members of the transient receptor potential (TRP) 

superfamily, composed of Mg2+ permeable channel and α-kinase domain, and share ~50% 

sequence homology, have been highlighted as important channels regulating Mg2+ 

homeostasis (14, 29). The ion channel has six transmembrane segments, with the peptide 

between segments 5 and 6 forming the channels pore, which is highly permeable to Mg2+. 

The kinase domain TRPM6 and TRPM7 harbours is an atypical α-type serine/threonine 

protein kinase in their respective carboxyl termini, which has been shown to form a dimer 

that can autophosphorylate and phosphorylate protein substrates (30). In the following 

sections, we will further discuss these two Mg2+ transporters and the TRP family in more 

detail.  
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1.1.2 Overview of TRP family 

Transient receptor potential (TRP) gene was first described in Drosophila 

melanogaster in the late 1960s. It took about two decades before Rubin et al. showed that 

trp gene encodes a 1275 amino acid protein that has eight transmembrane segments in 

1989 (31, 32), which functions as Ca2+-permeable cations channel and  is  necessary for  

maintained excitation during intense illumination in the photoreceptors of drosophila (33). 

Despite the variations in protein sequence homology between 35% and 80%, TRP channels 

share common structure, comprising six transmembrane domains, with a cation conduction 

pore formed between the fifth and sixth transmembrane segments and intracellular located 

–NH2 and –COOH termini (34, 35). According to amino acid sequence homology, the 

mammalian TRP superfamily is divided into six subfamilies: TRPMC (Canonical), TRPV 

(Vanilloid), TRPM (Melastatin), TRPA (Ankyrin), TRPP (Polycystic) and TRPML 

(Mucolipin) (Figure 1.2) (34). It has been demonstrated that almost all mammalian cells 

express at least one member of the TRP channel superfamily. The majority of TRP 

channels are localised in the plasma membrane, where they can sense external stimuli, 

such as light, sound, chemical, temperature and touch, and play an essential role in 

modulating the entry of cations such as Ca2+ and Mg2+ (36). Activated TRP channels are 

able to change the membrane potential, translocate important signalling ions cross the cell 

membrane and modulate intracellular enzyme activity. By doing so, TRP channels 

contribute to a plethora of fundamental processes, including pure sensory functions (taste 

transduction, temperature sensation and pheromone signalling etc.), cations homeostasis, 

and motile functions such as muscle contraction and vasomotor control (36).  

The critical importance of the TRP family is further supported by the implications of 

TRP channels in a wide range of human diseases, which are also known as channelopathies. 

Defects in the encoding gene of TRP channels, resulting in “loss-of-function” or “gain-of-

function” ion channels have been linked to six diseases: 1) mutations in TRPC6 cause the 

human proteinuric kidney disease called focal segmental glomerulosclerosis (FSGS); 2) 

mutations in the chanzyme TRPM6, which is critical for Mg2+ homeostasis, result in 

hypomagnesemia with secondary hypocalcemia; 3) autosomal dominant polycystic kidney 

disease (ADPKD), which is the most common inherited form of kidney failure, results 

from mutations either in the channel TRPP2 or the associated protein TRPP1; 4) 

mucolipidosis type IV (MLIV), an autosomal-recessive neurodegenerative lysosomal 

storage disorder, is associated with mutations in TRPML1; 5) aromatase excess syndrome, 

an autosomal-dominant disease characterized by enhanced extraglandular aromatization of 
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steroids is linked to a potential rearrangement between TRPM7 and CYP19 genes; and 6) 

Guamanian amyotrophic lateral sclerosis (ALS-G) and Guamanian parkinsonism dementia 

(PD-G) were linked to TRPM7, although one study based on parametric linkage analysis 

did not support the association between TRPM7 and the disease in the Kii peninsula of 

Japan (37-40). The mechanisms underlying the involvement of TRP channels in these 

diseases remain unclear, however, cellular and somatosensory dysregulation, dysfunctions 

in Ca2+ signalling, disturbance of cations (Ca2+ and Mg2+) homeostasis and impairment of 

cellular functions are likely to play a role. 

 

Figure 1.2 A schematic representation of the TRP superfamily in mammalian species. 

Based on their sequence homology mammalian TRP channels fall into six subfamilies, 

including TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), 

TRPP (Polycystic) and TRPA (Ankyrin), with each subfamily containing one or more 

members. Modified from  (41).  
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1.1.3 TRPM subfamily: TRPM7 and TPRM6 

1.1.3.1 Overview of TRPM7 and TRPM6 

TRPM7 and TRPM6 are the closest homologue in the TRPM subfamily. TRPM7 and 

TRPM6 are also called chanzymes (41, 42), as they comprise a cation channel with six 

transmembrane domains fused to a C-terminal atypical α-kinase domain (43).  

The TRPM7 human gene consist of 39 exons located on chromosome 15, encoding a 

1863 amino acid protein with a molecular weight of 210 kDa, which is expressed in all cell 

types examined so far (30, 44). As postulated for other TRP channel, TRPM7 is believed to 

form a tetrameric complex by four TRPM7 subunits (44). The cytoplasmic N-terminus of 

TRPM7 consists of a hydrophobic region (H1), and four melastatin homologous regions 

(MHR), that are highly homologous to other members of TRPM subfamily and have 

undefined biological significances (45). Downstream of H1 segment are six 

transmembrane domains, and the channel pore (aa 1039–1056) is formed between 

transmembrane domain 5 and 6, with 3 negatively charged amino acids located in the pore 

forming segment regulating divalent cation selectivity (30). After the last transmembrane 

domain, the C-terminus portion of TRPM7 contains a highly conserved TRP domain (aa 

1109–1128) which is common to other TRP family members, followed by a coiled-coil 

(CC) connecting loop (aa 1198-1250), serine and threonine-rich domains (aa 1380-1596) 

and eventually the α-kinase domain (aa 1597-1821) (Figure 1.3) (45, 46). Moreover, the 

crystal structure of the TRPM7 kinase domain showed that the N-terminal catalytic core is 

very similar to that of classical protein kinases in structure, including actin-fragmin kinase 

and aminoglycoside kinase, whereas the C-terminal lobe resembles metabolic enzymes 

with ATP-grasp folds (46, 47). Recently, the cryo-electron microscopy (cryo-EM) 

structure of mouse TRPM7 has been reported, showing that Mg2+ occupies the centre of 

the conduction pore, and prominent external disulphide bond found in the pore helix is 

required for channel function as a common feature among the TRPM subfamily (42). 
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Figure 1.3 A schematic diagram to illustrate the structure of the TRPM7 channel and 

kinase. The TRPM7 protein contains four melastatin homologous regions (MHR), 

followed by a hydrophobic region (H1). There are six transmembrane segments (aa 756-

1095), with the channel pore formed between domain 5 and domain 6, which are mainly 

permeable to Zn2+, Mg2+, and Ca2+. Downstream of the last transmembrane domain, is the 

highly conserved TRP domain (aa 1109-1128), followed by a coiled-coil (CC) domain (aa 

1198-1250), serine- and threonine-rich domains (aa 1380-1596), and the α-kinase domain 

(aa 1597-1821).  

The human TRPM6 gene comprises 39 exons and is located on chromosome 9, 

encoding a large protein of 2022 amino acids (48). TRPM6 shares 52% overall identity 

with TRPM7, and similarly comprises six transmembrane domains fused to the C-terminal 

α-kinase, with a conduction pore formed between transmembrane segment 5 and 6 (49). 

TRPM6 was first confirmed as important regulator of Mg2+ homeostasis due to its 

association with hypomagnesemia with secondary hypocalcemia (HSH). Loss-of-function 

mutations in TPRM6 gene (also knowns as CHAK2), was identified in patients with HSH 

by genetic analysis. HSH patients suffer from primary defect in intestinal Mg2+ absorption 

and renal Mg2+ wasting (29, 50). TRPM6 is mainly expressed in the colon and the renal 

distal convolute tubule (DCT), specifically localised to the brush-border membrane and  

the apical membrane respectively, and is responsible for active transcellular Mg2+ 
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absorption in the intestine and active reabsorption in kidneys (19, 51, 52). In contrast to 

channel function, the role of TRPM6 kinase and how TRPM6 channel and kinase activity 

are linked remain unclear. Alessi et al. demonstrate a structural co-ordination between 

channel and kinase activity. Hoenderop et al. indicate that the α-kinase domain itself but 

not kinase activity is required for the regulation of TRPM6 by intracellular ATP. TRPM6 

autophosphorylation is involved in the receptor for activated C-kinase 1 (RACK1)-induced 

inhibition of TRPM6 activity (53-55). Recently, Clapham et al. showed that the C-terminus 

of TRPM6 is proteolytically cleaved in vivo, and the freed kinase moves to the nucleus and 

phosphorylates specific histone residues, regulating gene transcription (56). To date, little 

is known about the substrates of TRPM6 kinase (57, 58).  

1.1.3.2 Interaction between TRPM7 and TRPM6 

TRPM6 kinase has an important role in the function of TRPM7 and TRPM6/TRPM7 

complexes. TRPM6 homomultimeric complexes are not stable and requires TRPM7 to 

form membrane hetero-oligomeric channel complex, where the TRPM6 kinase domain 

determines the Mg2+/ATP sensitivity (14, 59). The crucial role of TRPM7 to the complex 

formation of both channels in cell physiology was demonstrated in vitro by molecular 

studies showing that TRPM6 deficiency in trophoblasts stem cells results in reduction of 

TRPM6/7 currents while the deficiency in TRPM7 completely abolished the TRPM6/7 

currents (60). Moreover, TRPM6 and TRPM7 present both several phosphorylation sites in 

the entire structure of the protein, and besides autophosphorylation, TRPM7 can also be 

transphosphorylated by TRPM6 (61). This was demonstrated in co-transfection 

experiments, which showed that cells transfected with TRPM7-K1646R kinase dead 

mutant was transphosphorylated at serine and threonine motifs by TRPM6 expression. 

Importantly, TRPM7-K1646R mutants do not exhibit autophosphorylation properties. 

These phosphorylated residues were present in the N-terminal, channel, and C terminus, 

and the kinase domain of the TRPM7-K1646R (61). In this study, the mass spectrometric 

analysis of homomeric and heteromeric TRPM7 and TRPM6 channels revealed several 

prominent phosphorylation sites on TRPM7 that are modified through 

transphosphorylation by TRPM6, which is believed to release trafficking signals to direct 

the assembled TRPM6/TRPM7 heteromers to the cell membrane (Figure 1.4) (61). 

However, transphosphorylation of TRPM6 by TRPM7 is very weak, and the interaction 

between TRPM7 and other Mg2+ transporters has rarely been reported, except for the 

observation that in DT40 B cells and colon carcinoma cells, the TRPM7 deficiency was 

associated with increased expression of MagT1 (62, 63). TRPM6 kinase activity also 
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regulates peripheral TRPM7 trafficking and TRPM7-dependent cell growth under 

hypomagnesic conditions in HEK-293 cells and chicken DT40 B cells (64). 

 

Figure 1.4 Transphosphorylation of TRPM7 by TRPM6. TRPM7 and its sister 

homologue, share ~50% sequence identity, with similar structure containing both 6-domian 

channel and an atypical α-kinase. Several sites on TRPM7 as indicated can be 

transphosphorylated by TRPM6, contributing to the regulation of TRPM7/TRPM6 

complex.  

1.1.4 TRPM7 channel domain and ion homeostasis  

As an ion channel, TRPM7 is generally permeable to metal cations, conducting 

Zn2+>Mg2+ >Ca2+, and other essential cations including Co2+, Ba2+, Sr2+, Ni2+, and Cd2+ (65, 

66). It was initially proposed that TRPM7 regulate, and itself to be regulated by, 

intracellular Mg2+ content, with Mg-ATP below 1 mM significantly activating the channel 

(67). TRPM7 has been shown to mediate cellular Mg2+ homeostasis in many cell types, 

including tumour cells, leukocytes, platelets, endothelial cells, vascular smooth muscle 

cells (VSMCs), cardiac myocytes, cardiac fibroblasts and osteoblasts, under both 

physiological and pathological conditions (2, 67-74). For example, in endothelial cells, 

knock-down of TRPM7 significantly inhibited Mg2+ influx, and TRPM7 amounts were 

regulated by extracellular Mg2+ levels (74, 75). In vivo, the TRPM7 kinase-deficient mice 
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demonstrated lower Mg2+ concentration in plasma, urine and bones, and displayed a 

proliferation arrest phenotype which could be rescued by Mg2+ supplementation (76, 77). 

Dysregulation of vascular TRPM7 and its kinase substrate annexin-1 was present in an 

inherited model of hypomagnesemia (78). Cryo-EM structure of mouse TRPM7 showed 

that the centre of the TRPM7 conduction pore is occupied by partially hydrated Mg2+ ions, 

which supports TRPM7 as an important regulator in Mg2+ homeostasis (42). However, the 

role of TRPM7 as an exclusive regulator of Mg2+ homeostasis was questioned by the 

evidence that deletion of TRPM7 did not affect acute uptake of Mg2+ or the maintenance of 

total cellular Mg2+ in T cells, and a recent study demonstrating TRPM7 as intracellular 

Zn2+ storage vesicles (66, 79). However, this may relate to the cell type used in these 

studies. For example, in T lymphocytes Mg2+ homeostasis is typically regulated by MagT1 

(80).  

In addition to modulating Mg2+ transport across cell membranes, TRPM7, together 

with other Ca2+ permeable and membrane located channels, regulate the  Ca2+ entry in 

many cell types (81, 82). TRPM7 was demonstrated as the major Ca2+-permeable channel 

in human atrial fibroblasts, while silencing TRPM7 by shRNA largely abolished both the 

endogenous TRPM7 currents and Ca2+ entry (83). In particular, TRPM7 medicates Ca2+ 

influx during receptor stimulation: 1) in cardiac fibroblasts TRPM7 is functionally active 

and controls both Mg2+ and Ca2+ influx induced by angiotensin II at different time period 

(69); 2) in neuroblastoma cells, activated TRPM7 following bradykinin stimulation 

mediates Ca2+ influx in a kinase-independent manner (84) and 3) Ca2+ entry triggered by 

lipopolysaccharide (LPS) is controlled by TRPM7, with pharmacological channel inhibitor 

significantly diminishing cytosolic Ca2+ elevation (85). Intriguingly, although TRPM7 

itself was not recognised as a store-operated calcium channel (SOCE), the kinase has been 

shown to modulate SOCE, contributing to Ca2+ homeostasis and cellular function (86, 87). 

TRPM7 also exhibits a high Zn2+ conductance, suggesting that it plays a role in 

cellular Zn2+ homeostasis or Zn2+-related physiological functions. The role of TRPM7 in 

intracellular Zn2+ dynamics was first established in mouse cortical neurons, where 

activation of TRPM7 channels increases intracellular Zn2+, and knockdown of TRPM7 

using short hairpin RNA reduces TRPM7-like current and intracellular Zn2+ concentration 

(88). Furtherly, a recent study showed that TRPM7 is intracellular Zn2+-storage vesicle, 

which sequesters Zn2+ during cytosolic overload, and releases Zn2+ under oxidizing 

conditions (66). Several members from the TRPM subfamily have been associated with 

Zn2+. Drosophila TRPM channels are very permeable to Zn2+ and a loss-of-function of the 
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channel disrupts intracellular Zn2+ homeostasis (89). TRPM2 is capable of conducting Zn2+, 

Zn2+ inhibits TRPM2 channel currents, and   activation of TRPM2 leads to Zn2+ release 

from intracellular store (90-92). TRPM5, a monovalent cation permeable channel, can be 

blocked by extracellular Zn2+, with the interaction sites located in the outer pore loop of 

TRPM5 (93).  

1.1.5 TRPM7 kinase domain and its substrates  

The TRPM7 and TRPM6 C-terminal kinase belongs to a specific subfamily of atypical 

protein kinases (APKs) known as alpha-kinases, which is a family of protein kinases with a 

unique catalytic domain homologous to the Dictyostelium discoideum myosin heavy chain 

kinase (MHCK), and little similarity to conventional protein kinases (CPKs) (42, 47, 94). 

The name alpha-kinase was proposed for the family because MHCK and elongation factor-

2 (eEF-2), the first two members of the alpha-kinase family identified in 1995 and 1997 

respectively, were found to phosphorylate amino acids located within alpha-helices (95). 

This is contrary to CPKs, which have been shown to phosphorylate substrate residues 

usually located within loops, β-turns or irregular structures (94, 95). To date, six human 

alpha-kinases have been reported, including eEF-2, alpha-kinase 1 (lymphocyte alpha-

kinase, LAK or ALPK1), alpha-kinase 2 (heart alpha-kinase, HAK or ALPK2), alpha-

kinase 3 (muscle alpha-kinase, MAK or ALPK3), TRPM6 and TRPM7 (46). 

As indicated previously, the N-terminal catalytic core of the TRPM7 kinase domain is 

very similar in structure to that of classical protein kinases, including actin-fragmin kinase 

and aminoglycoside kinase, whereas the C-terminal lobe resembles metabolic enzymes 

with ATP-grasp folds (46, 47). The TRPM7 α-kinase predominantly phosphorylate Ser/Thr 

residues on α-helices. Activation of TRPM7 can induce autophosphorylation with multiple 

autophosphorylation sites identified in the cytoplasmic domain, and phosphorylation of 

other proteins (96, 97). To date, TRPM7 kinase has been shown to phosphorylate: 1) 

Annexin-1 at the conserved serine residue 5 located within the N-terminal α-helix and 

modulate the function of annexin-1 (98); 2) Myosin IIA at Thr1800, Ser1803 and Ser1808 

in a short stretch of amino acids within the α-helical tail and regulate myosin IIA filament 

stability and localisation (99); 3) Eukaryotic elongation factor 2 (eEF2)’s cognate kinase 

eEF2-k on Ser77 under low Mg2+ (100); 4) SMAD2 at the C-terminal Ser465/467 motif in 

a dose dependent manner (101) and 5) Phospholipase C γ2 (PLCγ2) in its C2-domian on 

Ser1164 (Figure 1.5) (102). Additionally, TRPM7 has been shown to activate m-calpain 

(calpain-2) through stress-dependent stimulation of p38, mitogen-activated protein kinase 
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(MAPK) and c-Jun N-terminal kinase (JNK), which has an important role in regulating cell 

adhesion (103, 104). 

 

Figure 1.5 TRPM7 and substrates downstream of its kinase domain.  To date, TRPM7 

kinase has been found to phosphorylate annexin-1, myosin IIA, eEF2, SMAD2 and PLCγ. 

TRPM7 also activates calpain-2. All these substrates play important roles in various 

(patho)physiological processes, such as immune responses, cell survival, apoptosis, cell 

adhesion, protein synthesis, Ca2+ homeostasis, vascular contraction and cell migration.  

1.1.6 Interaction between kinase domain and channel domain 

The functional significance of the coupling between the TRPM7 channel domain and 

kinase domain has been extensively discussed. There is still much controversy regarding 

the interdependence of the kinase and channel domains. Matsushita et al. compared cells 

expressing wild type TRPM7 and mutant TPRM7 with mutation at specific sites disrupting 

the kinase domain activity and found that loss of kinase activity did not affect TRPM7 

channel function and sensitivity to divalent cations (Figure 1.6). Additionally, no 

differences were found in basal intracellular free Ca2+ concentration and the channel 

function (105). These data were further confirmed by in vivo studies, where mouse with 

TRPM7 kinase-dead mutant showed normal development with normal serum total Mg2+ 

and Ca2+ levels (106). However, a significant number of studies also support a link 

between TRPM7 channel and its C-terminal kinase domain. Scharenberg et al. found that 
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HEK293 cells overexpressing mutant human TRPM7 K1648R and G1799D exhibit 

deficient Mg2+/Mg.ATP-dependent suppression of channel activity, and concluded that the 

phosphotransferase activity of the kinase domain could influence channel activity (107). 

Other studies supported the interplay between the kinase and channel include: 1) the 

cleavage of TRPM7 kinase is associated with substantially increasing ion channel activity 

(108), 2) Mg2+ nucleotides and halides regulate TRPM7 channel through the kinase 

domain (109, 110), and 3) Cyclic adenosine monophosphate (cAMP)/protein kinase A 

(PKA) regulate TPRM7 which requires a functional kinase domain (111). Furthermore, 

Ryazanov et al. showed that heterozygous TRPM7Δkinase mice developed signs of 

hypomagnesemia with a defect in intestinal Mg2+ uptake, reduced TRPM7 currents with 

increased sensitivity to Mg2+-induced inhibition (76) and reduced intracellular Mg2+ 

concentration (112). Thus, it seems that although the catalytic activity of the kinase is not 

essential for the channel gating, the kinase domain somehow modulates and “fine tunes” 

channel function in a complex manner.  

Figure 1.6 Schematic diagram showing mutations identified in TPRM7. Mutations of 

TRPM7 that have been reported are highlighted. Numbers indicate the single amino acid or 

region that influence the TRPM7 channel or kinase activity (46).  
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1.1.7 TRPM7 in physiological processes  

1.1.7.1 Overview of the physiological role of TRPM7  

The indispensable role of TRPM7 in cellular biology, could be attributed to its channel 

properties, particularly in mediating the homeostasis of divalent cations Mg2+, Zn2+, and 

Ca2+. Mg2+ and Zn2+ are catalytic and structural cofactor of a great number of enzymes, 

including those involved in cellular signalling pathways and transcription factors (113, 114) 

and the deprivation of these cations suppress cell cycle progression leading to growth 

failure (115, 116). The requirement of Zn2+ is most likely due to its essential role in 

maintaining the conformation and activity of enzymes, transcription factors and cytokines 

involved in the process (117). Mg2+ is a crucial divalent cation needed for the activity of 

protein kinases, and the importance of Mg2+ in the regulation of kinase activity occurs in 

four steps  (Figure 1.7): i) Mg-ATP binds to the enzyme, ii) the kinase binds to its substrate 

protein and catalyses the transfer of the phosphoryl group, iii) substrate protein is 

phosphorylated and Mg2+ is freed, and iv) Mg-ADP is released with the completion of the 

catalytic cycle (46).  

In addition, Ca2+, another important divalent cation regulated by TRPM7, participates 

in the regulation cell function in several ways, with evidence showing that basal cytosolic 

Ca2+, transmembrane Ca2+ influx, nucleoplasmic Ca2+ and endoplasmic reticulum (ER) 

Ca2+ homeostasis all play major roles in vital cellular functions such as cell cycle 

progression, cell proliferation, division and apoptosis (118-120).  In particular, intracellular 

Ca2+ has been considered as a major effector of stimulus-induced physiological changes in 

a variety of cell types, involved in the regulation of a wide range of important eukaryotic 

cellular processes including gene expression, membrane excitability and dendrite 

development (121, 122). 
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Figure 1.7 Contribution of Mg2+ in the kinase catalytic activity. Enzymatic activation 

and phosphoryl transfer require two Mg2+ molecules. The catalytic cycle of kinase activity 

involving Mg2+ is divided into four steps: 1) Mg-ATP binds to the enzyme, 2) the kinase 

binds to its substrate protein and catalyses the transfer of the phosphoryl group, 3) 

substrate protein is phosphorylated and Mg2+ is freed, and 4) Mg-ADP is released with the 

completion of the catalytic cycle. Copied from (46). 

1.1.7.2 TRPM7 in vital cellular processes: proliferation, migration and differentiation  

The dominant role of TRPM7 as ion transporter has been linked to important cellular 

processes. In one of the earliest studies focusing on the cell biological role of TRPM7, the 

genetic disruption of TPRM7 was shown to induce cell growth arrest, which could be 

rescued by Mg2+ supplementation (107). Consistently, Ryazanova et al. showed that the 

proliferation arrest phenotype was displayed in embryonic stem cells with deficient 

TRPM7 kinase domain (76). The critical involvement of TRPM7 in cell proliferation was 

also demonstrated in other cell types including human osteoblast-like cell, colon cancer 

cell and mouse cortical astrocyte (73, 123, 124). Runnels et al. found that silencing 

TRPM7 in fibroblasts enhances cell resistance to apoptotic stimuli in a Mg2+-dependent 

manner through decreasing ROS levels (125). In addition, TRPM7 mediated-Ca2+ 

homeostasis is also closely linked to cellular function. TRPM7 regulates non-voltage-gated 

spontaneous Ca2+ influx, facilitating cell growth, while silencing TRPM7 reduces the 

magnitude of Ca2+ influx and reduces the rate of cell proliferation with retarded G(1)/S cell 
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cycle progression (126). Similarly, Takahashi et al. found that siRNA-mediated TRPM7 

knockdown eliminates spontaneous Ca2+ entry and consequently retards cell growth and 

suppresses erythroid differentiation, possibly through inhibiting ERK activity in a human 

leukaemia cell line K562 (127). Sun et al. showed that cholesterol increases Ca2+ entry via 

TRPM7 channel, which regulates the proliferation, migration and viability of human 

prostate cells (128). 

TRPM7 is also closely associated with cell migration. In VSMCs, Zhang et al. found 

that TRPM7 regulates oxidised low-density lipoprotein (Ox-LDL)-induced migration 

through MEK-ERK pathways (129), and Touyz et al. showed that bradykinin-induced cell 

migration is mediated by TRPM7 (130). In prostate cancer cells, TRPM7 deficiency 

reversed the epithelial-mesenchymal transition (EMT) status and consequently inhibited 

cell migration and invasion (131). In glioblastoma cells, naltriben, a TRPM7 activator 

enhanced migration and invasion, by mechanisms dependent on MAPK/ERK signalling 

pathway, without effects on cell viability and proliferation (132). The regulation of cell 

migration by TRPM7 has been reported in neuroblastoma cell (133), bladder cancer cell 

(134), and human non-small cell lung cancer cells (135). To further investigate whether 

TRPM7 regulates migration via its channel function or via its kinase domain, Guilbert et al. 

overexpressed TRPM7 wild type or kinase-truncated form in breast cancer cells. Notably, 

overexpression of kinase truncated TRPM7 reduced cell migration, while overexpression 

of wild type TRPM7 significantly enhanced it. These experiments suggested the crucial 

role of TRPM7 kinase rather than the channel domain in cell migration (136).  

The essential role of TRPM7 in cell differentiation and embryonic development has 

been addressed in several studies: global disruption of TRPM7 in mice causes embryonic 

lethality before embryonic day 7 (79, 137), consistently homozygous TRPM7 kinase 

knockout mice demonstrates early embryonic lethality (76) and cardiac-targeted knock out 

of TRPM7 impairs embryonic cardiac development (138). The implication of TRPM7 in 

the regulation of cell differentiation has been highlighted in various cell types. In 

mesenchymal stromal cells, TRPM7 mediates shear stress and modulates osteogenic 

differentiation, and silencing TRPM7 accelerates osteogenic differentiation (139). In 

VSMCs, Mg2+ negatively regulates osteogenic differentiation through TRPM7, interleukin-

18 enhances osteogenic differentiation by activating TRPM7, and TRPM7 knockdown 

partially blocks high concentration of d-glucose-induced development of the proliferative 

phenotype (140-142). TRPM7 has also been shown to modulate differentiation in hepatic 

cells, lung fibroblasts, dental pulp stem cells and T cells (79, 143-145). Some of these 
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studies investigated underlying mechanisms of the involvement of TRPM7 in cell 

differentiation, and indicated that the contribution of cations such as Ca2+ and Mg2+ and the 

interaction between TRPM7 and cellular signalling kinases are important (127, 140-142, 

144, 146). Additionally, Mg2+ supplementation was found to promote osteogenic 

differentiation via the activation of Notch signalling in MSCs, which was decreased by 

non-specific TRPM7 inhibitor 2-APB (139, 147-149). In human dental pulp stem cell, 

silencing TRPM7 inhibited proliferation, migration, and osteogenic differentiation, 

supporting TRPM7 a role in the dental pulp repair process (145). 

1.1.8 TRPM7, cancer and stem cell biology 

Since the late 1980s with observations that ion channels are aberrantly expressed in 

cancer cell lines, a variety of channel types continue to be implicated in neoplastic 

progression and critically contribute to the acquirement of the main hallmarks of cancer 

cells, including metabolic re-programming, sustained angiogenesis, limitless replicative 

potential, apoptosis resistance, cell migration and invasiveness (150, 151). In particular, the 

role of TRPM7 as well as several other members of the TRPM family, have been 

demonstrated in various types of human malignant tumours (152). Increasing evidence 

indicates that TRPM7 is aberrantly over-expressed in different types of cancer, such as 

breast carcinoma, gastric carcinoma, lung, colon, prostate and ovarian cancer, and 

glioblastoma. Genetic and pharmacologic studies have shown that TRPM7 inhibition 

results in reduced proliferation, growth, migration and invasion in cancer cells (134, 153). 

Furthermore, TRPM7 is required for self-renewal and differentiation of cancer stem cells 

(CSCs), which is important for tumour initiation, growth and recurrence (154). Critical role 

of TRPM7 has been observed in mesenchymal stromal cells (MSCs), where it senses 

mechanical stimuli such as intermittent fluid shear stress and membrane tension to regulate 

Ca2+ influx and phosphorylation of cellular signalling kinases, Smad1/5 and p38 MAPK, 

and TRPM7 knockdown reduces MSCs proliferation and viability and triggers cell death. 

In glioma stem cell, Liu et al. found that TRPM7 activates JAK2/STAT3- aldehyde 

dehydrogenase1 (ALDH1) and/or Notch signalling pathways, contributing to the regulation 

of cell proliferation, migration and invasion (155). In lung cancer cells, Chen et al. 

indicated that TRPM7 regulates the cancer stem cell-like and metastatic phenotypes 

through positively modulating the Hsp90α/uPA/MMP2 signalling pathway, while 

pharmacological inhibition of TRPM7 with Waixenicin A is able to supress this pathway 

as well as the CSCs phenotype (156). 
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1.1.9 TRPM7 and its substrates in the cardiovascular system 

1.1.9.1 TRPM7 in cardiac development and cardiac dysfunction  

The role of TRPM7 in different organ systems has been identified in important 

experiments using TRPM7 tissue specific deletion. Animals with specific TRPM7 

deficiency in T cells exhibited impaired thymocytes development and a progressive 

depletion of thymic medullary cells (79). Using Cre-LoxP techniques, Chubanov et al. 

demonstrated that mice with TRPM7 deletion in intestines exhibited early growth failure 

and death after birth, while no obvious phenotypes were observed in mice with TRPM7 

kidney-specific deletion (157). However, none of these studies could elucidate the 

underlying mechanisms whereby global deletion of TRPM7 induces embryonic lethality.  

To date, embryonic lethality was only observed in mice with cardiac-targeted knock-

out of TRPM7 (138). Interestingly, effects of cardiac-specific TRPM7 deletion is timing 

dependent. Early cardiac TRPM7-deletion (before embryonic day 9) results in congestive 

heart failure and death at embryonic day 11.5 (E11.5) due to hypo-proliferation of the 

compact myocardium, while late TRPM7-inactivation (about E13) in cardiogenesis 

produces viable mice with normal cardiac phenotypes, and TRPM7 knock-out at 

intermediate time-point (between E9 and E12.5) leads to cardiomyopathy in half of the 

mice, associated with impaired repolarization and cardiac arrhythmias (138). Furthermore, 

TRPM7 has also been shown to be required for maintaining cardiac automaticity in 

sinoatrial node (SAN) (158). In vivo, TRPM7 deletion in zebrafish, murine global cardiac 

TRPM7 knock-out and SAN-restricted TRPM7 deletion could disrupt cardiac automaticity 

indirectly via regulation of Hyperpolarization Activated Cyclic Nucleotide Gated 

Potassium Channel 4 (HCN4), a hyperpolarization-activated channel responsible for basal 

automaticity in mouse SAN (158). In addition, the critical role of TPRM7 in cardiac 

function has been highlighted by the involvement of TRPM7 in several cardiac diseases: 1) 

TRPM7 regulates SAN fibrosis induced by Ang II in rats with sick sinus syndrome through 

Smad2-mediated mechanisms (159); 2) TRPM7 acts as the major Ca2+ permeable channel 

in human atrial fibroblasts and is likely to participate in transforming growth factor-beta1 

(TGF-beta1)-elicited fibrogenesis in human atrial fibrillation (AF) (83, 160); 3) there was 

an inverse correlation between cardiac TRPM7 expression and left ventricular dysfunction 

in patients with ischaemic cardiomyopathy (161) and 4) reduced TRPM7 expression is 

associated with cardiac fibrosis through mediating inflammation, collagen production and 

Mg2+ deficiency (69, 162).   
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1.1.9.2 TRPM7, vascular Mg2+ homeostasis and hypertension 

Hypertension is a major risk factor to common chronic cardiovascular diseases 

including myocardial infarction, stroke, vascular dementia and chronic kidney disease. It is  

a multifactorial disease, in which many systems including  vascular, neurohumoral, renal, 

metabolic, cardiac and immune have been implicated in its development. Epidemiological 

and clinical studies demonstrate a negative correlation between intracellular Mg2+ and 

blood pressure. Reduced plasma and tissue Mg2+ levels have been associated with 

increased blood pressure in various experimental models (163-165). In the vascular system, 

Mg2+ negatively regulates vascular tone through its Ca2+ antagonistic property and induces 

vascular smooth muscle cell (VSMC) growth (166). 

Despite the critical role of Mg2+ in vascular function, molecular mechanisms 

regulating vascular Mg2+ remain unclear. In 2005, Touyz et al. first showed that TRPM7 is 

expressed in rat, mouse and human VSMCs (2). Downregulation of TRPM7 by siRNA 

reduced both basal level of Mg2+ and Mg2+ influx, whereas there were no significant 

differences of Ca2+ responses relative to control cells (2). Touyz et al. also compared 

TRPM7 and TRPM6 expression in VSMCs from Wistar Kyoto rats (WKY) and 

spontaneously hypertensive rat (SHR). Although TRPM6 was also observed in rat VSMCs, 

basal level of TRPM7 rather than TRPM6 was lower in VSMCs from SHR compared to 

WKY, associated with significantly reduced intracellular Mg2+ (166). Three possible 

mechanisms were proposed to explain the changed TRPM7 expression in SHR, including 

modulation of TRPM7 by Ang II and other vasoactive agents, alterations in TRPM7 gene 

and protein expression, and disturbance of intracellular Mg2+ homeostasis (167). Moreover, 

in an animal model of inherited hypomagnesemia, low intracellular Mg2+ level was 

associated with altered vascular expression of TRPM7 and its substrate annexin-1 (78). 

The involvement of TPRM7 in vascular function is further supported by the fact that fluid 

flow-related mechanical stimuli and vasoactive agents are able to modulate TRPM7 

activity. Clapham et al. showed that TRPM7 translocated to the region of plasma 

membrane in response to shear stress, and TRPM7 current amplitude was increased by 

fluid flow in VSMCs (168). Shear stress is proposed to be sensed by extracellular matrix 

interaction molecules of the cell and signal to cytoskeletal proteins, which consequently 

leads to activation of motor proteins that transport TRPM7 to the plasma membrane (168). 

Touyz et al. found that bradykinin via bradykinin type 2 receptor regulates TRPM7 and its 

substrate annexin-1 through PLC-, PKC- and c-Src-dependent pathways, which influences 

VSMCs migration (130), Ang II upregulated TRPM7 expression via Ang II type 1 
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receptor-mediated ERK1/2 signalling in VSMCs from WKY, which was blunted in 

VSMCs from SHR (166),  and aldosterone infusion in mice resulted in downregulation of 

renal TRPM7, which was associated with increased inflammation and fibrosis (169). 

A direct role of TRPM7 vascular function and blood pressure was established through 

a novel mice model, which is heterozygous for the deletion of the TRPM7 kinase domain 

(TRPM7Δkinase), and preserves channel function with truncated kinase domain (76, 77). 

Exaggerated blood pressure induced by Ang II was found in mice heterozygous for 

TRPM7 kinase with channel mal-function (TRPM7Δkinase mice). These mice also 

exhibited worsening left ventricular function and pronounced cardiac hypertrophy in 

comparison with Ang II-infused WT mice. These altered phenotypes were associated with 

reduced eNOS phosphorylation and increased expression of inflammatory marker vascular 

cell adhesion molecule-1 (VCAM-1) (77). In the animal model of inherited 

hypomagnesemia, low Mg2+ status was associated with increased blood pressure, vascular 

remodelling, elevation in vascular expression of TRPM7 and reduction of the substrate 

annexin-1, suggesting that TRPM7 and its substrate may contribute to Mg2+-related 

pathologies (78). In addition, TRPM7 substrate calpain may also play an important role in 

the development of hypertension. Scalia R et al. showed myeloperoxidase (MPO), a major 

neutrophil effector protein which is elevated in hypertension (170), induced endothelial 

dysfunction through a calpain-mediated manner (171). Calpain was also shown to regulate 

inflammatory process and was a key downstream mediator in Ang II-induced 

cardiovascular remodelling. On the opposite, transgenic mice expressing high levels of 

calpastatin, a calpain-specific inhibitor, exhibited reduced vascular remodelling and 

ventricular hypertrophy induced by Ang II infusion (172). Therefore, all these evidences 

suggest a link between TRPM7 and pathological processes during the development of 

hypertension, and underlying mechanisms may involve both TRPM7-mediated Mg2+ 

homeostasis and the kinase activity (Figure 1.8). 
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Figure 1.8 TRPM7 has been implicated in vascular pathologies in hypertension. Fluid 

flow-related mechanical stimuli and vasoactive agents including Ang II and bradykinin 

(BK), can regulate TRPM7 activity. TRPM7, through mediating Mg2+ influx and Mg2+ 

sensitive process and influencing the activity of several substrates such as myosin IIA, 

annexin-1 and calpain, contributes to pathological processes implicated in the development 

of hypertension. Modified from (14). 

1.1.9.3 Ca2+ mediated by TRPM7 and vascular contraction  

Contraction of VSMCs is triggered by an increase in intracellular free Ca2+ 

concentration, which consequently leads to actin-myosin cross-bridge formation (173). 

Under physiological conditions, intracellular Ca2+ and Ca2+ signalling are finely controlled 

by plasma membrane Ca2+-permeable channels, transporters, exchangers and intracellular 

stores (173). However, perturbed intracellular Ca2+ homeostasis marked by increased Ca2+ 

influx, augmented Ca2+ release from intracellular stores such as sarcoplasmic reticulum 

and enhanced Ca2+ signalling, is associated with an anomalous vascular tone, as has been 

observed in genetic, experimental and human hypertension (173, 174). The involvement of 

Ca2+ in hypertension development is furtherly evidenced by the effective antihypertensive 

action of drugs blocking L-type Ca2+ channel (175).  



23 

 

Members of the TRP channel family including TRPM4, TRPC1, TRPC6, TRPC3 and 

TRPC5 have been implicated in blood pressure regulation (44, 176, 177). Excluding 

TRPM4, which appears to regulate blood pressure through affecting sympathetic tone 

(176), the other four TRP channels were shown to mediate blood pressure in a Ca2+-

dependent manner. In Trpc6−/− deficient mice, an elevation of about 7 mmHg in basal 

mean atrial blood pressure was observed, and this was explained by the compensatory 

overexpression of TRPC3, which led to enhanced basal and agonist-induced Ca2+ entry 

into smooth cells (176). Schmidt et al. showed that a lack of TRPC1 in mice leads to 

stronger hyperpolarisation, extensive Ca2+ influx, and increased release of endothelium 

derived hyperpolarizing factor (EDHF), resulting in decreased blood pressure (176, 178). 

Changes in Ca2+ influx was also observed in non-vascular cells, Liu and colleagues found 

that in monocytes from hypertensive patients and rats, TRPC3 and TRPC5 expression are 

increased and contributing to an enhanced Ca2+ influx (179, 180). 

Thus, considering the permeability of TRPM7 to Ca2+, the fact that TRPM7-mediated 

Ca2+ signals plays a critical role in cardiovascular disease such as atrial fibrillation (83) and 

the involvement of TRPM7 in hypertension established by our group (77), it is reasonable 

to suspect that Ca2+ homeostasis-mediated by TRPM7 in the vasculature may also has a 

role in the regulation of blood pressure by mechanisms that are still elusive. 

1.1.9.4 TRPM7-kinase substrates and cardiovascular dysfunction   

Calpain is a Ca2+ dependent neutral cysteine protease composed of a large catalytic 

subunit (80 kDa) and a small regulatory subunit (30 kDa) (181). Among the calpain family, 

two major isoforms calpain µ (or 1) and calpain m (or 2) are ubiquitously expressed (there 

is one paper also suggesting that calpain-10 is ubiquitous) (182), whereas the other 

isoforms are tissue-specific (172). Under basal conditions, all calpain isoforms are 

predominantly located in the cytosol as inactive proenzymes and translocate to the 

membrane after activation, where it undergoes autoproteolysis with removal of 9 to 15 

amino acids of the N-terminus domain (171, 183). Calpain activity is tightly controlled by 

calpastatin, a specific endogenous inhibitor containing 4 equivalent inhibitory domains 

(184). However, excessive activation of calpains has been implicated in pathophysiological 

processes underlying cardiovascular disease (CVDs), such as endothelial dysfunction and 

vascular remodelling. Scalia and colleagues found that Ang II treatment in mice 

significantly increased vascular calpain activity through Ang II type-1 receptor (AT1r), 

causing endothelial dysfunction with increased leukocyte-endothelium interactions and 
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disruption of the endothelial cell barrier, a process attenuated by either AT1r blocker 

losartan or calpain inhibitor ZLLal (181). Calpain was also shown to cause endothelial 

dysfunction and vascular inflammation in a genetic rat model of type 2 diabetes (185, 186). 

In addition to a widely studied association with endothelial dysfunction, calpain has been 

closely linked to vascular remodelling, by acting as a critical downstream mediator in Ang 

II-induced cardiovascular remodelling (172). The role of calpain in vascular remodelling 

was also observed in experimental models of pulmonary arterial hypertension (PAH) (187). 

Furthermore, activation of calpain-1 was demonstrated in human carotid artery 

atherosclerotic lesions, and a deficiency of calpain inhibitor calpastatin was demonstrated 

in patients with essential hypertension and genetic hypertensive rats (188, 189).  

Based on the critical role of calpain activity in endothelial dysfunction and vascular 

remodelling, targeting the calpain/calpastatin system has been proven promising in the 

treatment of CVDs. In transgenic mice expressing high levels of calpastatin, Ang II-

induced left ventricular hypertrophy and vascular remodelling were blunted compared to 

wild type (172). In piglets undergoing cardiopulmonary bypass surgery, calpain inhibition 

was shown to reduce plasma endothelin-1 and pulmonary vascular resistance, associated 

with preserved pulmonary function(190).  

Annexins (ANX) represent a large family of Ca2+-dependent phospholipid-binding 

proteins, which are found in most eukaryotic organisms and share a similar structure 

involving a conserved C-terminal domain with Ca2+ biding sites and a variable N-terminal 

domain (191, 192).  Annexin A1 (ANXA1), the first characterized member of the annexin 

superfamily, is a 37 kDa glucocorticoid-regulated protein, which has been shown to be 

phosphorylated by TRPM7 at a conserved serine residue (Ser5) located within the N-

terminal amphipathic alpha-helix of ANXA1 (98, 193). Interestingly, protective properties 

of ANXA1 has been observed in the vasculature (193). ANXA1 displays potent anti-

inflammatory and pro-resolving properties, possibly through mechanisms involving the 

inhibition of pro-inflammatory mediators release, tissue repair and inhibition of leukocyte 

recruitment (193, 194). In particular, ANXA1 and its N-terminal-derived peptide have 

been shown to attenuate early atherogenesis and plaque formation (195, 196), protect 

cardiomyocyte in mice subjected to ischemia-reperfusion injury (197), and play a 

protective role in healing after wire injury in mice (198). In an animal model of 

hypomagnesemia, reduced expression of ANXA1 in the vasculature was associated with 

increased vascular inflammation, impaired endothelial function and increased blood 

pressure (78). In addition, another member of annexin family, annexin A5 was also shown 
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to attenuate vascular inflammation and remodelling and improve endothelial function in a 

mouse model of vascular injury (199).  

Therefore, calpain and ANXA1 are able to exert significant effects on vascular 

function and have been considered as attractive therapeutic targets for CVDs. However, 

despite the observation that in inherited model of hypomagnesemia vascular reduction of 

ANXA1 was associated with elevated TRPM7 and TRPM7 regulated cell adhesion 

through calpain by mediating the local influx of Ca2+ (78, 103), how calpain and ANXA1 

contribute to the function and regulation of TRPM7 in the vasculature remains unclear.  

Further investigation is necessary to build a better understanding of TRPM7 and its 

substrates as an integrated system in the vasculature. 
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1.2 Receptor tyrosine kinase and downstream signalling 

1.2.1 Classification of RTKs 

Protein kinases are key enzymes in phosphorylation and regulation of a variety of 

cellular processes by catalyzing phosphate transfer from the adenosine triphosphate (ATP) 

to serine (85%), threonine (11.8%) and tyrosine (1.8%) residues on protein substrates (200, 

201). Although the majority of protein kinases phosphorylate serine or threonine residues, 

90 tyrosine kinases were found in the human genome, of which 58 are receptor types 

(RTKs) and 32 non-receptor types (202, 203). Based on structural features, RTKs in 

humans have been classified in 20 subfamilies, including epidermal growth factor receptor 

(EGFR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth 

factor receptor (PDGFR), nerve growth factor receptor (NGFR), fibroblast growth factor 

receptor (FGFR), insulin-like growth factor receptor (IGFR), discoidin domain receptor 

(DDR), muscle-specific kinase (MuSK) and erythropoietin-producing hepatocellular 

receptor (EPHR) (Figure 1.9) (202).  
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Figure 1.9 Schematic representation of the family of human receptor tyrosine kinase. 

Human receptor tyrosine kinases (RTKs) are divided into 20 different subfamilies. Orange 

cylinders are intracellular tyrosine kinase-homologous domains. Modified from (204). 

1.2.2 Structure of RTKs  

RTKs are membrane receptors with a similar molecular architecture, which consist of 

three major domains, including an extracellular ligand-binding domain, and an intracellular 

tyrosine kinase domain separated by a transmembrane domain (Figure 1.10) (205). The 

majority of RTKs are present at the cell surface as a single polypeptide chain and are 

monomeric in the absence of ligand, with exceptions including the subfamilies Met and 

insulin receptor (InsR). Met is the receptor for hepatocyte growth factor, and its subfamily 

members are heterodimers typically consisting of a short extracellular 50 kDa α-chain and 

a transmembrane 140 kDa β-chain, linked together by disulphide bridges (206-208). The 

InsR subfamily of RTKs such as the insulin-like growth factor-1 receptor (IGF1R) and 

insulin receptor-related receptor (IRR), comprise two α and two β subunits, which are 

disulphide-linked and form an α2β2 heterotetramer (209). The extracellular portion of RTKs 

exhibits significant diversity, depending on the classes of RTKs, and contains a wide array 

of discrete folding modules such as immunoglobulin (Ig)-like domains, fibronectin type 

III-like domains, cysteine-rich domains and EGF-like domains (206). The extracellular 

region is joined to the intracellular region by an α-helix transmembrane domain, which is 

composed by 20 amino acids (202). The transmembrane domain has been shown to 

contribute to the stability of full-length dimers of RTKs, and maintain a signalling-

competent structure (210). In contrast to the extracellular domain, the cytoplasmic portion 

of RTKs has a more uniform structure. Connected to the transmembrane helix, is the 

juxtamembrane region composed of 40-80 amino acids, which is followed by the tyrosine 

kinase domain (TKD) and a carboxy-terminal region. The tyrosine kinase domain consists 

of 12 subdomains, which is organised into two lobes and connected by the kinase insert 

subdomain. The small N-terminal lobe consisting of β-sheets and one α helix, binds, 

stabilises and orients the ATP-Mg2+ complex. The large C-terminal lobe, mainly composed 

of α helices, participates in the chelation of ATP, and catalyses the transfer of the 

phosphate group from the ATP to the receptor chains (202, 211). 
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Figure 1.10 General structure of RTKs. RTKs consist of three major domains, include 

an extracellular ligand-binding domain, a transmembrane domain, and an intracellular 

tyrosine kinase domain. The extracellular domain contributes to ligand recognition, and 

exhibits significant diversity depending on the RTK class. The transmembrane domain is 

α-helix chain comprising 20 amino acids, followed by the juxtamembrane region 

composed of 40-80 amino acids. The tyrosine kinase domain has 12 subdomains, which is 

organised into two lobes and connected by the kinase insert subdomain. In general, ligand 

binding to RTKs at the extracellular level induces receptor dimerization, which further 

leads to activation of the intracellular tyrosine kinase domain through releasing cis-

autoinhibition.  

1.2.3 General mechanisms of action 

In general, RTKs are activated through ligand-induced oligomerization, typically, 

dimerization (Figure 1.10), and four models of RTK dimerization have been proposed (212, 

213): The receptor dimerization could be completely ligand mediated without any contact 

between the extracellular domains; Entirely receptor mediated and the two activating 

ligands make no direct contribution to the dimer formation; Two additional proposed 

models are both ligand-mediated and receptor-mediated components with or without the 

participation of accessory molecules (212, 213). Importantly, a subset of RTKs, such as the 

insulin receptor subfamily, forms dimers without activating ligands, however, the pre-
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formed dimers, which are either ‘active’ or ‘inactive’ are stabilized or activated relatively 

by ligand binding through conformational changes (212, 214). 

Dimerization of the RTK chains increases the respective local concentrations of TKDs, 

and also promotes allosteric effects, which induces the autophosphorylation of tyrosine 

residues located on the opposite receptor chain, a process known as transphosphorylation. 

Consequently, key tyrosine residues in the activation loop are phosphorylated, resulting the 

stabilization of activation loop in an optimal structure conformation for catalysis and an 

accessible C-lobe for protein substrates. Additionally, phosphorylation of tyrosine residues 

located on non-catalytic domains including the juxtamembrane and the kinase insert 

subdomain, provides various anchoring sites for cytoplasmic target proteins. However, 

some RTKs do not require transphosphorylation of the activation loops for activation, such 

as the EGFR/ErbB family. Uniquely, the EGFR TKD forms an asymmetric dimer where 

the C-lobe of one kinase domain, named the ‘Activator’, physically contacts the N-lobe of 

the other kinase domain, named the ‘Receiver’, leading to conformational changes in the 

N-lobe of the Receiver kinase. The allosteric change disrupts the cis-autoinhibition seen in 

the monomer, and induces activation of the Receiver kinase domain (202, 207, 212, 213). 

In the absence of cognate ligands, the intracellular TKD is uniquely cis-autoinhibited 

by intramolecular interactions specific for each receptor. Different autoinhibitory 

mechanisms have also been described (205, 212). The activation loop contains a roughly 

central tyrosine residue, and determines the active or inactive state of the kinase domain 

(202). For RTKs such as InsR and FGFR1, the TKD autoinhibition is mediated by the 

activation loop, which makes physical contact with the activation site of the TKD, where a 

key tyrosine residue in the activation loop is phosphorylated and occludes the active site, 

blocking access of both ATP and protein substrates (213). For RTKs such as MuSK, the 

FMS-like tyrosine kinase 3 (Flt3) and EPHR, the TKD autoinhibition is regulated by 

juxtamembrane sequences, which make close contact with the active site of the TKD, and 

stabilize an inactive conformation. In addition, a third form of reversible cis-autoinhibition 

is observed in Tie2. A region in the carboxyl terminus of Tie2 that contains tyrosine 

autophosphorylation sites, occludes substrate access to the active site of the TDK, and 

plays a negative regulatory role in Tie2 signalling (205, 213, 215).  

1.2.4 RTKs downstream signalling 

After activation, RTKs recruit numerous cytoplasmic proteins containing Src 

homology region 2 (SH2) or phosphotyrosine-binding (PTB) domains that specifically 
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bind to tyrosine phosphorylated receptor chains. These proteins either have intrinsic 

enzymatic activity such as Src and PLCγ, or serve as docking proteins such as FGFR 

substrate 2 (FRS2) and InsR substrate 1 (IRS1), that function as ‘assembly platforms’ and 

recruit additional enzymes (202, 212, 213, 216). Activated RTKs are able to trigger a wide 

range of downstream signalling pathways, mainly include PLCγ/PKC, 

RAS/RAF/MEK/MAPK, PI3K/AKT/mTOR, and JAK/STAT (Figure 1.11) (217). 

 

 

Figure 1.11 Schematic representation of main signalling pathways downstream of 

RTKs activation. Ligand-binding induced dimerization triggers transphosphorylation of 

tyrosine residues located on the receptor chain, resulting in activation of RTKs. 

Downstream signalling cascades activated by RTKs mainly include PLCγ/PKC, 

RAS/RAF/MEK/MAPK, PI3K/AKT/mTOR, JAK/STAT and the Src pathway. The 

functional response of these signals are essentially involved in the regulation of a variety of 

physiological processes. Figure copied from (46). 

1.2.4.1 The RAS/RAF/MEK/MAPK pathway  

The mitogen-activated protein kinase (MAPK) cascade include three tiers of 

serine/threonine kinases, and the third tier mammalian MAPK are divided into four groups: 

the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), 
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p38-MAPK and ERK5. Each MAPK module consists of three tiers of protein kinases 

termed MAP kinase kinase kinase (MAP3K), MAP kinase kinase (MAP2K) and MAPK. 

The MAPK signalling pathway is activated by a number of extracellular signals, including 

hormones, tumour-promoting substances, differentiation factors, and growth factors such 

as EGF and the PDGF (218-220). Growth factors bind to and activate their RTKs, which 

bind to the adaptive protein growth factor receptor-bound 2(Grb2) and recruit Son of 

Sevenless homolog protein (SOS). Activated SOS interacts with its downstream target Ras, 

a small GTP binding protein, which is transformed to the active conformation by 

exchanging GDP for GTP (221). In turn, Ras recruits the serine/threonine protein kinase 

Raf, also known as MAP3K, to the membrane, where it becomes activated by 

phosphorylation. Activated Raf phosphorylates MAP2K MEK1 and MEK2 at specific 

serine residues in the activation loop. MEK1/2 in turn catalyse the phosphorylation of 

ERK1 and ERK2 at both threonine and tyrosine residues within the TEY motif (218). 

Activated ERK1/2 phosphorylate a variety of substrates in the cytoplasm, cellular 

membrane and the cytoskeleton. Phosphorylated ERK1/2 also translocates to nucleus and 

activates various transcription factors involved in cellular processes such as cell 

proliferation, differentiation and migration (202, 222). In addition, the MAPK pathway 

also activates p38 MAPK, JNK and ERK5, all of which involve the classical pathway 

components, MAP3K and MAP2K. However, relative to ERK1/2, which is mainly 

triggered by growth factor via RTKs, there are other important stimuli such as cell stress 

and inflammatory cytokines that activate ERK5, JNK and p38 MAPK independent of Ras 

(223, 224).  

1.2.4.2 The PI3K/AKT/mTOR pathway  

The phosphoinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) 

signalling pathway is initiated by the binding of extracellular growth factors to RTKs, 

including EGFR, VEGFR, IGFR and PDGFR. Activated RTKs recruit the Class I PI3K to 

the plasma membrane, where the PI3K subunit p110 catalyses the phosphorylation of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate 

(PIP3). PIP3 then provides docking sites for signalling proteins with pleckstrin-homology 

(PH) domains including AKT (Protein kinase B,PKB) and 3-phosphoinositide-dependent 

kinase 1 (PDK1) at the membrane, where PDK1 phosphorylates and activates AKT (225, 

226). Activated AKT then dissociates from the plasma membrane, and phosphorylates 

many other downstream proteins, such as glycogen synthase kinase 3 (GSK3), the 

forkhead family of transcription factors (FOXOs) and mTOR. mTOR is a serine/threonine 
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kinase, that exists in two distinct complexes, including complex 1 (mTORC1) and complex 

2 (mTORC2). AKT activates mTOR through phosphorylation of both the proline-rich Akt 

substrate of 40 kDa (PRAS40), a component of mTORC1, and tuberous sclerosis complex 

2 (TSC2) to attenuate the inhibitory effects on mTORC1. Multiple components of the 

PI3K/AKT/mTOR pathway activated by RKTs play a pivotal role in the regulation of cell 

growth, proliferation, transcription, motility, protein synthesis and autophagy (217, 226-

228). 

1.2.4.3 The PLCγ/ PKC pathway 

Binding of growth factors to their RTKs including PDGFR, FGFR, EGFR and 

VEGFR can also activate the phospholipase-Cγ (PLCγ)/protein kinase C (PKC) pathway. 

Upon growth factor stimulation, the phosphorylated tyrosine residues of RTKs act as high-

affinity binding sites and interact with the SH2 domains of PLCγ, leading to its activation. 

PLCγ then hydrolyses PIP2 into two second messengers, inositol 1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG). Consequently, IP3 can bind to its receptor on the endoplasmic 

reticulum (ER) surface, whereas DAG can mediate the activation of PKC (229, 230). This 

process has a key role in regulating intracellular Ca2+. PKC activates voltage-dependent 

Ca2+ channels, leading to extracellular Ca2+ influx. Binding of IP3 to its receptor triggers 

the release of Ca2+ from ER to increase cytosol Ca2+ level. Depletion of Ca2+ in ER can 

further triggers store-operated calcium entry (SOCE) (231-233). Besides Ca2+ balance, the 

PLCγ/ PKC pathway is also involved in the regulation of cell polarisation, proliferation, 

lymphopoiesis and embryogenesis (234-236). 

1.2.4.4 The JAK/STAT and the Src pathways 

Src family tyrosine kinases (SFKs) include 11 protein kinases, with eight members 

such as BLK, FGR, FYN, HCK, LCK, LYN, SRC and YES known as the core SFKs and 

the other three members, PTK6 (BRK), FRK and SRMS considered as SFK-related kinases 

(237). SRC family members are recruited on RKTs including PDGFR, EGFR, FGFR, 

IGFR and MuSK, via an interaction between their SH2 domains and phosphorylated 

residues of activated receptor chains. The association consequently releases intramolecular 

interaction between the SH2 domain and the tail, and triggers conformational 

modifications to initiate SFK activation. Of importance, more studies show that the 

activation of SFKs by RTKs is more complex, which involves Ras and Ral GTPases, and 

the tyrosine phosphatase Shp2 (202, 238). On the other hand, SFKs could also regulate the 

activity and signalling of RTKs, such as EGFR, PDGFR and IGFR. c-Src has been shown 
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to mediate the phosphorylation of EGFR on specific tyrosine residues, and modulate 

EGFR intracellular signalling pathways (239). The activation of Src family members can 

transmit mitogen signals, and plays a major role in the regulation of DNA synthesis, cell 

survival, adhesion, differentiation and motility (202, 240). 

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is 

additional signalling pathway associated with RTKs activation. The activation of some 

RTKs such as EGFR and PDGFR, induces JAK-independent tyrosine phosphorylation of 

STATs, whereas there is evidence showing that FGFR activates STATs in a JAK-mediated 

manner (241, 242). Once activated, STATs enter the nucleus, form dimers or more 

complex oligomers and bind to specific regulatory sequences in target genes, regulating the 

transcription (243).  

1.2.5 Growth factors (VEGF and EGF) and Ca2+/Mg2+ homeostasis  

In the previous section, we discussed the PLCγ/ PKC pathway downstream of RTKs 

activation. This pathway was found to play important role in the regulation of Ca2+ 

homeostasis, including the release of Ca2+ from intracellular stores, such as ER, and 

extracellular Ca2+ influx via membrane based Ca2+ channels. As mentioned earlier, RTKs 

family contain a significant portion of receptors for growth factors, such as VEGF, EGF, 

and PDGF, and to further highlight the role of RTKs-triggered signalling in ion 

mobilisation, we will continue to discuss how these growth factors affect cellular ions, 

with a focus on Ca2+ and Mg2+. 

1.2.5.1 Growth factors and Ca2+ homeostasis 

VEGF has been shown to mediate intracellular Ca2+ in different types of cells, 

including endothelial cells (244-246), VSMCs (247), cardiomyocytes (248), neurons (249) 

and trophoblast cells (250). In endothelial cells, VEGF-A triggers a biphasic Ca2+ signal in 

human umbilical vein endothelial cell (HUVEC), with an initial transient peak dependent 

on store-mediated Ca2+ release,  followed by a sustained plateau dependent of Ca2+ influx 

from the extracellular space  (245, 251) (Figure 1.12). Intracellular Ca2+
 release, mainly 

from ER, relies on the generation of IP3 and the activation of IP3-operated Ca2+ channel 

(IP3 receptor), whereas Ca2+ influx is believed to occur through SOC and/or non-selective 

cationic channel (NSCC) (245, 251). In particular, the TRP family channel has also been 

involved in VEGF-induced Ca2+ elevation. Bates et al. showed that TRPC6 is an 

indispensable component of cation channels contributing to VEGF-mediated cytosolic 

Ca2+ increase (246), and a similar role of TRPC was also observed by Son et al. in 



34 

 

hippocampal neurons (249). In addtion, VEGF appears to mediate Ca2+ mobilisation by 

distinct mechanisms in different cell types. For instance, Chandra et al. showed that in 

VSMCs VEGF stimulated extracellular Ca2+ influx with no intracellular Ca2+ release (247).  

Similarly, the EGF-induced cytosol Ca2+ increase was also reported to exhibit two 

components including store-based Ca2+ release due to activation of the PLCγ/IP3 pathway, 

and a net Ca2+ influx from the outer medium through SOC and/or non-SOC (252). Studies 

focusing on the underlying mechanisms showed that the EGF-mediated Ca2+ entry could 

be regulated by several systems such as sphingosine and annexin VI  (253, 254), and EGF-

induced activation of SOC involves PKC (255). Particularly, TRP family channels TRPP2 

and TRPV4 were shown to form a functional complex, which is activated by EGF in a 

EGFR- and MAP kinase- dependent manner, consequently contributing to EGF-mediated 

Ca2+ influx (256).  In addition, other growth factors including FGF, IGF and PDGF have 

also been demonstrated in the regulation of Ca2+ homeostasis (244, 257, 258). 

 

Figure 1.12 VEGF increases cytosolic Ca2+ through different mechanisms in 

endothelial cells. VEGF activates downstream Src and PLCγ, consequently resulting in 

the generation of IP3, which binds to IP3 receptor located on intracellular Ca2+ store and 

triggers Ca2+ release. Depletion of Ca2+ from intracellular store also induces store-operated 

Ca2+ entry (SOCE), which may contribute to the sustained plateau phase of Ca2+ elevation. 

In addition, voltage-gated Ca2+ channel (VGCC) activated by PKC and TRPC channel are 

also involved in Ca2+ influx mediated by VEGF. The question mark indicates that 

mechanisms of this pathway remains unclear.  
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1.2.5.2 Growth factors and Mg2+ homeostasis   

The critical role of EGF in maintaining systemic balance of Mg2+ has been well 

studied. In 2007, Bindels and his colleagues identified EGF as a magnesiotropic hormone 

involved in total body Mg2+ balance. They performed linkage analysis and mutation 

analysis in two individuals with isolated recessive hypomagnesemia (IRH), and released 

the homozygous mutation C3209T in exon 22, which was absent in ethnically matched 

control chromosomes (259). Bindels et al. further showed that EGF is consistently 

coexpressed with the marker of distal convoluted tubule (DCT) in the kidney, where the 

fine-tuning of the Mg2+ excretion takes place and approximately 10% of the filtered Mg2+ 

load is reabsorbed (259). Mutations in EGF gene lead to abrogated stimulation of the 

EGFR located in DCT, consequently resulting in inadequate activation of TRPM6, the 

known predominant Mg2+ transporter in renal absorption of Mg2+ (52, 259). Furthermore, 

the critical role of EGF in regulating Mg2+ balance is also supported by the fact that cancer 

patients receiving EGFR inhibitors, such as cetuximab and panitumumab, develop severe 

hypomagnesemia as reported in randomized trials and meta-analysis (3, 260). In addition, 

EGF-modulated Mg2+ homeostasis is also observed in different types of cells (261, 262).  

VEGF-induced intracellular Mg2+ elevation was observed in HUVECs by Hong et al, 

showing that VEGF-A165 released Mg2+ from intracellular store in a dose-dependent 

manner, without impact on Mg2+ influx (263). Further investigation into the underlying 

mechanisms indicated that VEGF influences Mg2+ through activation of the RTK/PI3K/ 

PLCγ pathway (263). However, unlike VEGF, PDGF was found to increase intracellular 

Mg2+ in human osteoblast cells only in the presence of extracellular Mg2+, suggesting a 

dependence on Mg2+ influx (264). It was further demonstrated that PDGF is able to affect 

the expression of TRPM7, and mediate Mg2+ influx through TRPM7, a process associated 

with cell proliferation, migration and adhesion (264).  

1.2.6 Growth factors (VEGF and EGF) and cell function  

In recent years, it has been known that growth factors such as VEGF, EGF, PDGF, 

IGF and FGF, through activation of RTKs downstream signalling pathways, play a critical 

role in the regulation of cellular functions including cell proliferation, migration, apoptosis 

and differentiation in a variety of cell types.  In this section, we will discuss in more detail 

the effects of growth factors (VEGF and EGF) in cell functions, with a focus on cell 

proliferation and migration.  
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1.2.6.1 VEGF and cell function  

There is no doubt that VEGF plays an essential role in regulating basic cellular 

functions such as  proliferation, migration and apoptosis, which has been demonstrated by 

both experimental and clinical studies in various types of cells, including multipotential 

stromal cells (MSCs) (265), breast cancer cells (266), neural stem cells (267), endothelial 

cells (268), multiple myeloma cell lines (269), human chromic myeloid leukaemia cell line 

(270), human hepatocellular carcinoma cells (271), and smooth muscle cells (272, 273). In 

endothelial cells, VEGF induces endothelial cell migration and proliferation through the 

activation the PI3K/Akt pathway and the MAPK pathway. Additionally, Wang and 

colleagues found that VEGF activates the PLCγ/PKC/protein kinase D (PKD) pathway and 

contributes to the phosphorylation of histone acetyltransferases and histone deacetylase-7 

(HDAC7), a key regulator of gene expression in maintaining vascular integrity, which 

regulates VEGF responsive genes and is required for EC proliferation and migration (268). 

Cellular enzymes such as endothelial nitric oxide synthase (eNOS), neuropilin-1 (NRP-1) 

and Src homology region 2 domain-containing phosphatase 1 (SH-PTP1), are also 

involved in VEGF-induced endothelial cell proliferation and/or migration (274). 

Interestingly, underlying mechanisms of VEGF-induced cell function might also vary 

depending on the cell types. Anderson et al. showed that in human multiple myeloma cell 

lines, VEGF directly triggers cell proliferation and migration through the 

RAF/MEK/MAPK pathway and a PKC-dependent ERK-independent pathway respectively, 

which is different from pathways involved in ECs as discussed earlier (269, 275).  

VEGF acts as the key regulator of both physiological and pathological angiogenesis by 

stimulating endothelial cell proliferation or by inhibiting endothelial cell apoptosis (276, 

277). Gupta et al. showed that VEGF prevents ceramide- and starvation-induced apoptosis 

in human microvascular ECs by activating MAPK/ERK and inhibiting stress-activated 

protein kinase (SAPK)/JNK. A similar inhibitory role of VEGF in apoptosis was also 

observed in cardiomyocytes (278) and adenocarcinoma cells (279), and in vivo in mice and 

rats (280). Consistent with these findings, inhibition of VEGF gene expression by 

sequence-specific siRNA and VEGF deprivation in vivo using soluble VEGF receptors 

were shown to induce apoptosis (281, 282). Of importance, the regulatory role of VEGF in 

apoptosis may also depend on cell type or experimental conditions, because Narasimhan 

and colleagues showed that VEGF stimulated ERK1/2 signalling and promoted apoptosis 

in cerebral ECs under oxygen-glucose deprivation (OGD)-induced ischemic conditions 

(283).  
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1.2.6.2 EGF and cell function  

EGF has been shown to regulate cell function such as cell migration and proliferation 

both in vitro and in vivo (284-286). Distinct cellular pathways involved in EGF-stimulated 

cell migration and/or proliferation depending on cell types have been described: 1) in hair 

follicle outer root sheath (ORS) cells, EGF promoted cell proliferation and migration 

through the Wnt/β-catenin signalling (287), 2) in the periodontal ligament (PDL) derived 

endothelial progenitor cell (EPC)-like cells, EGF promoted cell proliferation and migration 

through MEK/ERK- and JNK-dependent signals (288), 3) in renal epithelial cells, EGFR 

action mediated cell proliferation and migration by PI3K and p38 MAPK respectively 

(289), 4) in human lens epithelial cells, EGF was found to induce cell migration via ERK 

and PI3K/Akt pathways (290), and 5) in intestinal epithelial cells, EGF-stimulated cell 

migration required Src family kinase-dependent p38 MAPK signalling (291). Moreover, 

EGF was able to exert its influence on cell migration through transactivation of other 

RTKs. Sendtner et al. showed that in cortical precursor cells EGF activates Trk receptors in 

a Src-mediated manner, consequently increasing cell surface levels of TrkB and promoting 

its signalling responsiveness, which is an important physiological process that allow 

newborn cortical neurons to migrate and find their accurate position (292).  

EGF acts as a potent mitogen promoting cell proliferation and survival in different 

types of cells and the overactivation of EGF signalling has been found in breast, head and 

neck, prostate and non-small cell lung cancer (293). Under normal conditions, EGF 

signalling is able to activate proliferation and blocks apoptosis (294, 295). However, EGF 

has been shown to induce apoptosis in some cell lines that overexpress the EGF receptor 

(296). Cell lines with naturally overexpressed EGFR such as human epidermoid carcinoma 

(A431) cells and human breast cancer cells (MDA-MB-468) have been well studied with 

consistent evidence showing that EGF induces apoptosis by different mechanisms, 

supposed to involve STAT1 and STAT3 respectively (297-301). In addition, p38 MAPK 

was also shown to mediate the ligand-induced apoptosis in cells overexpressing EGFR 

(302). Furthermore, the role of EGF on apoptosis also depends on experimental conditions. 

Cao et al. found that EGF promoted the growth of squamous carcinoma cell in suspension 

cultures, while it suppressed cell growth and induced apoptosis in monolayer culture (299). 

Gulli and colleagues showed that in A431 cells, only high concentration of EGF (10 nM) 

could lead to morphological features of apoptosis, while a lower concentration (0.01 nM) 

increased cell proliferation (297). A similar dose-dependent effect of EGF on apoptosis 
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was also observed by Zhao et al. in transfected Chinese hamster ovary cell line expressing 

EGFR (303). 

1.2.7 RTKs as target for anti-cancer therapy   

Under normal physiological conditions, the activation of RTKs and downstream 

signalling pathways controls a wide range of essential biological functions, including cell 

growth, motility, apoptosis, and differentiation, as discussed earlier. On the other hand, 

dysregulated RTKs signalling has been observed in various types of human cancers, and 

correlates with the development and progression of cancer (304). In the recent years, drugs 

targeting RTKs have become one of the most promising strategies in the treatment of 

cancer, and the efficacy has been proved in many clinical trials. However, a significant 

portion of patients receiving RTK-targeted drugs also develop unexpected side effects, 

such as hypertension and hypomagnesemia, by unclear mechanisms. In this section, we 

will briefly summarize current knowledge of the activation of RTKs and RTKs-targeted 

treatment in cancer.  

1.2.7.1 Activation of RTKs in cancer  

In normal cells, the activity of RTKs and downstream cellular signalling is tightly 

regulated by the mechanisms described earlier, and by additional cellular enzymes 

including phosphatases (212). However, since the first connection between mutated RTK 

and human cancer was established in 1984, aberrant signalling of RTKs has been reported 

in nearly all forms of human cancer, such as breast, bladder, lung, glial, colorectal, gastric, 

ovarian, prostate and cervical cancer (Table 1.1) (204, 305). In most cases, these 

aberrations result in constitutive or strongly enhanced capacity of RTKs signalling 

associated with transforming potential, leading to malignant transformation (306). In 

general, four principal mechanisms by which RTKs become potent oncogenes have been 

demonstrated in human cancer: activation of RTKs by gain-of-function mutation, 

overexpression and genomic amplification of RTKs, chromosomal rearrangements and 

autocrine activation (212). In addition, several emerging mechanisms potentially 

contributing to the activation of RTKs in cancer have been reported, including 

dysregulation of microRNAs, alterations in tumour microenvironment and signal 

attenuation by negative regulators  (212).  
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1.2.7.2 Targeting RTKs signalling as cancer treatment  

Based on the increasing knowledge of the structure and functionality of RTKs, several 

approaches towards the prevention and interception of dysregulated RTKs signalling in 

cancer have been demonstrated, including the development of selective components that 

target either the extracellular ligand-binding domain, the C-terminal tyrosine kinase or the 

substrate-binding site (306). In brief, RTKs have been targeted by monoclonal antibodies 

that prevent ligand binding and the activation downstream signalling pathways, and small 

molecule tyrosine kinase inhibitors (TKI) that specifically target the ATP-binding site of 

the intracellular TKD (212). To date, the US Food and Drug Administration (FDA) has 

approved many TKIs and monoclonal antibodies to treat a wide range of human cancers 

(Table 1.1). In addition, alternative strategies targeting RTKs signalling are also explored, 

such as immunotoxins and antisense oligonucleotides (306). 
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RTKs  Cancer  RTK-targeted Drugs  

    Cetuximab (Erbitux) 

EGFR family  

HER1: Breast, bladder, lung, and glial 

cancer  

Panitumumab 

(Vectibix) 

(EGFR/ErbB/HER) 

HER2: Breast, gastric, ovarian, 

endometrial Gefitnib (Iressa) 

 
esophageal, and lung cacer  Erlotinib (Tarceva) 

  

Trastuzumab 

(Herceptin) 

  
Lapatinib (Tykerb) 

  
Vatalanib 

VEGFR 

Bladder, brain, breast, colon, gastric, 

lung, Sorafenib (Nexavar) 

 
ovarian, and prostate cancner  Sunitinib (Sutent) 

 
head and neck carcinoma Bevacizumab (Avastin) 

  
Pazopanib  

PDGFR   Imatinib (Gleevec) 

 
Glioblastoma, Infantile myofibromatosis Sunitinib (Sutent) 

  
Pazopanib  

FGFR  Lung, breast, ovarian, bladder,  

Brivanib 

  

endometrial and cervical cancer, 

glioblastoma 

 
Table 1.1 Aberrant expression of RTKs in human cancers, and examples of RTK-

targeted molecular therapies, including TKIs and monoclonal antibodies approved by 

FDA. Summarized from (307) and (308).  

1.2.8 Involvement of RTKs in vascular (patho)biology and hypertension  

RTKs are indispensably involved in the control of most fundamental cellular processes, 

including cell cycle, migration, metabolism, proliferation and differentiation (309). In the 

context of hypertension, signalling cascades activated by RTKs are implicated in structural, 

mechanical and functional abnormalities underlying vascular changes associated with 

elevated blood pressure, such as vascular hypertrophy, inflammation and endothelial 

dysfunction (310). 
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1.2.8.1 EGFR signalling and hypertension  

1.2.8.1.1 EGFR and its ligand are expressed in vascular system  

The mammalian ligands that bind to EGFR consist of several peptide growth factors, 

including EGF, transforming growth factor- α (TGFα), heparin-binding EGF-like growth 

factor (HB-EGF), betacellulin (BTC), amphiregulin (AR),  epigen, epiregulin (EPR) and 

the four neuregulins (311, 312). Most EGF family of ligands as well as all four members of 

the EGFR family (ErbB1, ErbB2, ErbB3, and ErbB4) have been identified in multiple cell 

types within the vascular wall including VSMCs and ECs (313). In VSMCs, EGFR 

signalling activated by EGF or transactivated by other vasoactive agents such as Ang II, 

bradykinin, and endothelin 1(ET-1) has been shown to regulate many physiological 

processes including proliferation, migration, Ca2+ homeostasis, contraction and ROS 

production (313). In ECs, enhanced EGFR activation is involved in nitric oxide (NO) 

homeostasis, an important process associated with inflammation, migration, proliferation 

and angiogenesis (314). In addition, EGFR is also expressed in macrophages, immune cells 

that are abundant in atherosclerotic plaques, contributing to the development of 

atherosclerosis (315), and EGFR inhibition was found to attenuate atherosclerosis via 

affecting macrophages-mediated ROS production and inflammation (316).  

1.2.8.1.2 EGF acts as a vasoconstrictor   

Accumulating evidence has highlighted the EGFR signalling as a critical contributor 

to hypertension. In addition to the well-characterized mitogenic effects in the vasculature, 

members of the EGF family have also been described as direct vascular mediators (317-

320). EGF has been consistently demonstrated as a potent vasoconstrictor by several 

studies. Berk et al. found that EGF significantly induced contraction of rat aortic strips 

which maximally was equivalent to 40% of that caused by Ang II (319). Florian and 

colleagues showed that EGF induced contraction in aorta from rats dependent of MEK and 

L-type Ca2+ channel (320), and Amin et al. showed that myogenic tone of coronary 

arteriole was significantly reduced under inhibition of either EGFR or the downstream 

JAK-STAT3 complex (318). Opposite effects have also been observed, Zhou and 

colleagues showed that HB-EGF promotes both pressure- and flow-induced vasodilation in 

terminal mesenteric arterioles (TMA) from adults rats (317).  
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1.2.8.1.3 Enhanced EGFR signalling in hypertension  

In the context of blood pressure, enhanced EGFR phosphorylation and expression 

have been observed in the cardiovascular system of spontaneously hypertensive rats (SHR), 

while specific knockout of EGFR in VSMCs results in arterial hypotension in mice (314, 

321, 322). EGFR was also shown to mediate vascular dysfunction and cardiac remodelling 

induced by aldosterone/salt and Ang II respectively, strategies widely used to establish 

experimental model of hypertension (323, 324). Furthermore, transactivation of EGFR by a 

variety of vasoactive agents such as Ang II, endothelin-1, Sphingosine-1-phosphate (S1P), 

and phenylephrine has been associated with phenotypes including contraction, 

inflammation, fibrogenesis and hyperproliferation that have been observed in hypertension 

(325-329). In addition, many studies have investigated EGFR as potential therapeutic 

target for cardiovascular diseases. EGFR inhibition using different strategies was found to 

attenuate cardiac hypertrophy and hypertension induced by Ang II (330, 331), prevent the 

development of left ventricular hypertrophy in SHR (332), prevent renal vascular fibrosis 

in nitric oxide (NO) deficiency-induced hypertension in rats (333), attenuate 

atherosclerosis via reducing inflammation and oxidative stress in mice model of 

atherosclerosis (316) and decrease cardiac remodelling in streptozotocin-induced 

cardiomyopathy in mice (334).  

Interestingly, although activation of EGFR signalling is observed in animal model of 

hypertension, and treatments inhibiting EGFR have been shown to be of benefits in 

hypertension, EGFR deficiency under basal conditions are associated with deleterious 

vascular effects. Waved-2 mice, a spontaneous mutant with 90% reduced EGFR activity, 

present with reduced eNOS expression and poor response to acetylcholine-induced 

vascular relaxation (314), and specific deletion of EGFR in VSMCs and cardiomyocytes 

results in arterial hypotension and cardiac hypertrophy (322). Therefore, it seems that 

under physiological conditions, EGFR and downstream signalling play an indispensable 

role in the normal function of the vascular system, while in the context of hypertension, 

this EGFR signalling is aberrantly activated and contributes to pathological processes 

associated with hypertension.  

1.2.8.2 VEGFR inhibitor-induced hypertension in cancer patients  

1.2.8.2.1 Role of VEGF in vascular function is controversial  

While EGF is considered as a potent vasoconstrictor and enhanced EGFR activation is 

present in animal model of hypertension, findings related to the relationship between 
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VEGF signalling and hypertension are controversial. Zhao and colleagues found that Ang 

II infusion in wild type mice upregulates local expression of VEGF and its receptor, which 

consequently mediate proinflammatory processes and contribute to Ang II-induced 

vascular inflammation and remodelling (335). Proinflammatory effects of VEGF were also 

observed during the development of atherosclerotic plaque (336). Contradictory effects 

were also observed. In vivo studies indicated that VEGF delivery after endothelial injury 

promotes endothelial regeneration and accelerates the recovery of endothelium-dependent 

relaxation, supporting VEGF a vasculoprotective role (335). Furthermore, Brock et al. 

showed that recombinant VEGF induced a dose-dependent relaxation in canine coronary 

arteries previously contracted with prostaglandin F2α, through stimulating endothelium-

derived relaxing factor (EDRF)/NO release, a process supposed to have important 

influence on the vasoreactivity of coronary and other vascular beds (337).  

1.2.8.2.2 Hypertension with VEGF inhibition   

Interestingly, EGFR and VEGFR as members of RTKs family share common 

downstream signalling cascades, and both are important therapeutic targets in cancer, 

however, while EGFR inhibition has been shown to have potential beneficial effects in 

cardiovascular disease, VEGF inhibitors (VEGFIs) unexpectedly induce hypertension in 

cancer patients. Both monoclonal antibodies (mAbs) and VEGFR tyrosine kinase 

inhibitors (TKIs, drugs targeting intracellular kinase domain of RTK) can increase blood 

pressure, which usually occurs during the first weeks of treatment, with an incidence 

between 30%-80% in patients treated by VEGFR-targeted drugs, as reported in various 

clinical trials (Table 1.2) (338, 339). Blood pressure elevation was even explored as a 

surrogate marker for efficacy of VEGF-targeted antibodies in some studies  (340). 

Mechanisms underlying VEGFR inhibition-induced hypertension are still elusive. 

Facemire et al. found that antibody against VEGFR2, which is the major VEGFR, could 

cause rapid and sustained increase in blood pressure of approximately 10 mmHg in mice, 

by influencing nitric oxide (NO) synthase expression and NO activity (341). Touyz et al. 

showed that VEGFIs impairs vasodilation and enhances vasoconstriction through redox-

sensitive processes mediated by NADPH oxidase (Nox) (342). In addition, increased 

production of the potent vasoconstrictor ET1, changes in intracellular Ca2+, decreased 

microvessel (rarefaction), and enhanced sensitivity to salt have also been implicated in 

VEGFI-induced hypertension (343).  
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Author  Treatment 

  Hypertension 

Number  All    

of Grade >= 3 

Patients  (%) (%) 

Motzer et al., 2009 Sunitinib  375 112 (30) 45 (12) 

Gore et al., 2015 Sunitinib  4543 1104 (24) 267 (6) 

Akaza etal., 2015 Sunitinib  1671 584 (35) 168 (10) 

Sternberg et al., 

2013 Pazopanib 290 116 (40) 13 (4) 

Escudier et al., 

2007  Sorafenib  451 76 (17) 16 (4) 

Procopio et al., 

2007 Sorafenib  136 36 (26) 2 (1.4) 

Beck et al. 2011 Sorafenib  1145 223 (19.5) 70 (6.1) 

Motzer et al., 2013 Sorafenib  257 88 (34) 46 (18) 

Rini et al., 2011 Axitynib  359 145 (40) 56 (16) 

Huston et al., 2013 Axitynib  189 92 (49) 26 (13) 

Motzer et al., 2013 Pazopanib 554 257 (46) 82 (15) 

 
Table 1.2 Incidence of hypertension in VEGFI-associated hypertension in phase 

III/IV clinical trials. Adjusted from (344).  
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1.2.9 VEGFR signalling, magnesium and preeclampsia  

1.2.9.1 Overview of preeclampsia  

Preeclampsia (PE), a hypertensive disorder of pregnancy, is defined as a systemic 

syndrome characterized by new-onset of hypertension (systolic blood pressure >140 mm 

Hg and/or diastolic blood pressure >90 mm Hg on two occasions at least 4h apart and less 

than 7 days apart) after 20 weeks’ gestation associated with proteinuria or maternal organ 

dysfunction such as thrombocytopenia, renal insufficiency, impaired liver function, 

pulmonary oedema and cerebral/visual symptoms, which resolves completely by the 6th 

postpartum week (Figure 1.13) (345, 346). Based on the time of onset or recognition of the 

disease, PE is clinically divided into two subtypes: early onset (<34 weeks of gestation) 

and late onset (>34 weeks of gestation), representing different aetiologies and phenotypes. 

While late onset PE accounts for the majority of PE cases, early onset PE carries a 

significantly higher risk of adverse maternal and foetal outcomes (347, 348). PE can also 

be classified as mild or severe, depending on the severity of the symptoms presented by 

patients (349). According to the National Institute for Health and Care Excellence (NICE) 

guidance, maternal risk factors for PE include chronic kidney disease, diabetes, chronic 

hypertension, multiple pregnancy, age of 40 years or older, pregnancy interval of more 

than 10 years, body mass index (BMI) of ≥35 kg/m2 and family history of PE (350). 

Worldwide, PE affects between 2% and 10% of all pregnancies, with the incidence 7 times 

higher in developing countries than in developed countries (351). PE can progress to 

eclampsia, which represents the consequence of brain injury caused by preeclampsia and 

manifests as new onset of generalized tonic colonic seizures (352). PE/eclampsia is 

considered as one of the 3 leading causes of maternal mortality, which accounts for more 

than 50,000 maternal deaths each year and makes a similarly important contribution to 

perinatal deaths (353, 354). 

PE is a multisystemic disorder involving multiple systems, including adult respiratory 

distress syndrome (ARDS), pulmonary oedema, cerebral thrombosis or haemorrhage, renal 

dysfunction, hepatic dysfunction, thrombocytopenia and disseminated intravascular 

coagulopathy (DIC) (350, 355). In particular, PE is associated with significantly increased 

risk of hypertension and CVDs later in life (356, 357). In a previous systematic review and 

meta-analysis involving over 258,000 women with PE, Wu et al. found that PE was 

independently associated with an increased risk of future heart failure, coronary heart 

disease, cardiovascular disease death and stroke after adjusting for age, BMI, and diabetes 
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mellitus (358). Additionally, a previous meta-analysis examining multiple prospective and 

retrospective cohort studies demonstrated an increased risk of hypertension in women with 

prior PE (359). It is important to note that PE and CVDs share several common risk factors 

including obesity, metabolic abnormalities, dyslipidaemia and insulin resistance, and 

underling mechanisms such as endothelial dysfunction, oxidative stress and inflammatory 

response (358, 360). Considering that CVDs are a leading cause of death globally, it is of 

great importance to recognise that women with history of PE are at significant risk of 

future CVDs and need to be monitored closely and treated aggressively for modifiable risk 

factors, especially in developing countries with a higher incidence of PE.  

 

 

Figure 1.13 Hypertensive disorders of pregnancy. Based on the temporal relationship 

between hypertension and gestation, and the coexisting symptoms, hypertensive disorders 

of pregnancy are subclassified into four groups: chronic hypertension, preeclampsia 

superimposed on chronic hypertension, preeclampsia and gestational hypertension. *It also 

includes an acute increase of BP, and development of HELLP syndrome (haemolysis, 

elevated liver enzymes, and low platelet) (349, 361). # In the absence of proteinuria, 

diagnosis of PE requires evidence of systemic disease, such as thrombocytopenia, renal 

insufficiency, impaired liver function, pulmonary oedema and cerebral/visual symptoms.  

1.2.9.2 General pathophysiology of preeclampsia  

The pathology of early-onset PE, also referred to as placental PE was reported as a 

three-stage process, which starts with defective trophoblastic invasion leading to a failed 

transformation of the uterine spiral arteries. Physiological remodelling of spiral artery is 
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necessary during implantation, to accommodate increased blood flow to nourish the 

developing foetus, while incomplete spiral artery remodelling results in decreased 

placental perfusion, causing a state of relative ischemia of placenta (Stage 1) (348, 362). 

Consequently, placental ischemia and the resulting oxidative stress induce release into the 

maternal circulation of anti-angiogenic factors, such as soluble vascular endothelial growth 

factor receptor-1 (sFlt-1) and soluble endoglin (sEng) (Stage 2) (362, 363). Excessive 

circulating sFlt-1 blocks VEGF and PIGF, important players to maintain normal 

endothelial function and development of the placental vasculature. Soluble Eng inhibits 

TGF-β, an anti-inflammatory and vasodilator growth factor in vasculature and induces 

systemic endothelial dysfunction affecting multiple organs including the heart, kidney, 

liver and brain, and ultimately contribute to the clinical syndrome observed in the mother 

(Stage 3) (Figure 1.14) (348, 362-364).  

For late-onset PE, also referred to as maternal PE, which mainly occurs in women with 

vascular dysfunction prior to pregnancy, there is little evidence of impaired arterial 

remodelling and the placental perfusion is preserved or even increased, associated with 

minimal placental stress, indicating that the level of pathology does not seem to be at the 

placenta. In addition, circulating levels of sFlt-1 and PIGF, highlighted as important 

biomarkers in early-onset PE, are close to the normal range in late-onset PE (362). Thus, 

the late-onset PE is now thought to arise from the interaction between a relatively normal 

placenta and maternal risk factors such as hypertension, diabetes and obesity, resulting in a 

maternal pre-disposition to cardiovascular disease (348, 362, 364). However, despite the 

pathophysiological differences between the two subtypes, it is worth noting that the 

distinction is not always clear cut and most patients with PE have elements of both causal 

pathways.  
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Figure 1.14 Pathogenesis of preeclampsia: three-stage model. The early-onset PE is 

described as a three-stage disease. It starts from defective trophoblastic invasion followed 

by impaired spiral artery remodelling, resulting in placental ischemia and oxidative stress, 

which consequently triggers the release of anti-angiogenic factors to the maternal 

circulation. Excessive circulating sFlt-1 and sEng were able to antagonize activity of 

VEGF/PIGF and TGF-β respectively, causing endothelial dysfunction in multiple organs, 

which contributes to the clinical manifestations observed in the mother with PE.  

1.2.9.3 VEGF signalling and PE  

1.2.9.3.1 VEGF family and their receptors  

VEGF family contains several members, including VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, VEGF-F and placental growth factor (PIGF) (365). The most widely studied 

member is VEGF-A, also known simply as VEGF, which presents various isoforms such 

as VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, VEGF189 and VEGF206 (366). PIGF 

is predominantly produced by the placenta (367), with low expression levels in other 

tissues including heart, lung, thyroid, liver, skeletal muscle and bone (368). VEGF and 

PIGF stimulate cellular responses through binding to and activating VEGFRs, which are 

typical receptor tyrosine kinases as described in previous chapter. The VEGFR family 

contains three full-length receptors, including VEGFR-1, also known as fms-like tyrosine 

kinase-1 (Flt-1), VEGFR-2, commonly referred to as fetal liver kinase 1(Flk-1) and 
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VEGFR-3, and one splice variant of VEGFR-1, soluble VEGFR-1 (sVEGFR-1, also 

known as sFlt-1), which lacks the transmembrane and intracellular signalling domain (366, 

369). VEGF-A is able to bind VEGFR-1, sVEGFR1 and VEGFR-2, while PIGF only bind 

to VEGFR-1 and sVEGF-1 (370). In addition, PIGF was also shown to transactivate 

VEGFR-2 through an intermolecular crosstalk between VEGFR-1 and VEGFR-2 (371). 

Interestingly, although VEGF-A exhibit higher affinity to VEGFR-1, cellular effects of 

VEGF-A are mainly through VEGFR-2, whereas VEGFR-1 acts as a decoy receptor (367, 

370).  

1.2.9.3.2 The VEGF-VEGFR system in normal pregnancy and PE 

The VEGF-VEGFR system is an essential regulator of angiogenesis and vascular 

permeability in physiological and pathological processes of both embryos and adults. In 

the context of PE, both VEGF and PIGF are critically involved in the placental 

angiogenesis and development (372, 373). Although the level of circulation VEGF in 

patients with PE is inconsistently reported in the literature depending on the technique used 

(374), accumulating evidence shows that VEGF potently stimulates endothelial production 

of NO in placental artery, recruits pericytes to the newly formed vessels and participates in 

the continued survival of nascent endothelial cells, all of which contribute to the 

maturation and stability of newly formed vessels (373). During normal pregnancy, PIGF in 

the maternal circulation increases significantly from 8 weeks gestation and reaches a 

maximal concentration during the second trimester, when nonbranching villous 

angiogenesis and terminal villous formation occur (362, 375). The PIGF-VEGFR-1 

pathway is also important in modulating uterine vascular remodelling and blood flow 

during pregnant state (376). In human PE, circulating level of PIGF, predominantly PIGF-

1, has consistently been shown to be significantly reduced, associated with increased 

circulating maternal levels of sVEGFR-1 (367, 377) and the alterations are believed to 

occur several weeks before the onset of clinical syndrome (369). Excessive sVEGFR-1 

acts a potent scavenger of VEGF and PIGF, preventing their binding to the receptors, 

which subsequently leads to the suppression of VEGF and PIGF and blocks the 

downstream signalling. Therefore, the sFlt-1: PIGF ratio is raised in pregnant women 

before the onset of PE, which has been used clinically to predict the disease progression 

and guide treatment (378).  
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1.2.9.3.3 VEGF and PIGF as potential treatments for PE  

Since excessive sFlt-1 and the resulting angiogenic imbalance play a critical role in the 

development of PE, strategies using PIGF and VEGF to restore angiogenic balance as 

potential therapies have been investigated in different experimental models of PE. Suzuki 

et al. observed  reduced mean blood pressure but with no effect on proteinuria in 

experimental PE induced by transfection of adenoviral vector containing sFlt-1 in mice 

(379). In rat reduced uterine placental perfusion (RUPP) model of PE, which disrupts 

uterine perfusion and flow by clipping the ovarian arteries and abdominal aorta with silver 

clips (380), Granger et al. found that infusion of recombinant human PIGF for 5 days via 

intraperitoneal osmotic minipumps reduced blood pressure, proteinuria and improved 

glomerular infiltration rate (GFR), associated with decreased sFlt-1 level (381). In the 

same model, Khalil et al. showed that PIGF infusion reversed vascular hyper-reactivity and 

hypertension to levels comparable to that in control pregnant rats (382). In addition, 

Makris et al. found that in a uteroplacental ischemia model of PE in non-human primates, 

administration of recombinant human PIGF reduced blood pressure and proteinuria, 

without changes in circulating sFlt-1 (383).  

Beneficial effects of VEGF therapy have been demonstrated in several animal models 

of PE. Experimental PE induced in Wistar rats by treatment with Nω-nitro-l-arginine 

methyl ester (L-NAME), a nitric oxide synthase inhibitor, exhibits many signs of PE, such 

as high blood pressure, proteinuria, and reduced platelet count, pup weight, and placental 

weight, while all of these manifestations could be reversed by VEGF treatment (384, 385). 

Treatment with recombinant human VEGF121 (rhVEGF121) also ameliorated PE 

phenotype in the sFlt-1 overexpression model of PE (379) without apparent harm to the 

foetus, supporting VEGF121 as a potential therapeutic agent for PE (386). Similar 

beneficial effects of VEGF121 were observed in RUPP model and in spontaneous genetic 

model of PE based on BPH/5 mice (387). 

1.2.9.4 Magnesium and PE 

1.2.9.4.1 Therapeutic effect of MgSO4 

Magnesium sulphate (MgSO4), is an important agent used for treatment and 

prophylaxis of eclampsia and in patients with severe PE (388, 389). A previous systematic 

review summarizing 59 publications also recommended initiation of MgSO4 to all women 

with mild PE (390). Despite concerns about toxicities and side effects including loss of the 

patellar reflex, respiratory paralysis, arrhythmias and cardiac arrest, MgSO4
 has been 
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proved effective by randomized trials in preventing and treating eclamptic seizures, with 

superior effectiveness compared to other anticonvulsants such as diazepam and phenytoin 

(389, 391-393).  

1.2.9.4.2 Mechanisms of action: involvement of VEGF  

Protective effects of MgSO4 for PE treatment are associated with vasodilator 

properties, central anticonvulsant, protection of the blood-brain barrier (BBB) and 

reduction of cerebral oedema formation (393). Additionally, Weintraub and colleagues 

found that MgSO4 affects placental VEGF expression (394), which may contribute to the 

therapeutic effect of MgSO4 in PE. However molecular mechanisms induced by MgSO4 

remains unclear.  

1.2.9.4.3 Mg2+ transporters and PE 

Dysregulation of Mg2+ transporters has been reported in PE. Yang et al. showed 

reduced gene expression of TRPM7 and TRPM6 in placenta from women suffering from 

PE during preterm labour and remained lower at term labour (395). Additionally, Kolisek 

and colleagues found  that placentas from PE women exhibit increased expression of 

SLC41A1, a Na+/Mg2+ exchanger important for Mg2+ efflux (15, 22). However, whether 

the alteration of Mg2+ transporters is a direct consequence of changed Mg2+ status in the 

body observed in preeclamptic patients (396-399), or acts as an initial contributor in the 

aetiology of PE remains unclear, which requires further investigation.  
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1.3 Cross talk between growth factors and TRPM7 

1.3.1 TRPM7-mediated regulation of RTK signalling pathways 

Considering the ubiquitous expression of TRPM7, and its dual properties as an ion 

channel and cytoplasmic kinase, it is not surprising that TRPM7 participates in cell 

signalling pathways. In particular, an increasing body of evidence, including studies 

involving pharmacological and genetic modulation of TRPM7, have linked TRPM7 to 

RTKs downstream signalling cascades (Figure 1.15) 

Figure 1.15 Cross-talk between RTK and TRPM7. TRPM7 possesses dual properties 

acting as an ion channel mainly permeable to Zn2+
, Ca2+ and Mg2+, and as a cytoplasmic 

kinase, with identified substrates including ANXA1, myosin IIA heavy chain, eEF2, 

SMAD2 and PLCγ2. TRPM7 contributes to the regulation of RTK downstream signalling 

pathways and vice versa. The cross-talk between TRPM7 and RTK signalling plays an 

important role in cell function, such as cell differentiation and cell growth.  Copied from 

(46). 

1.3.1.1 TRPM7 contributes to the regulation of the MAPK pathway  

Among the RTKs downstream signalling pathways as discussed above, TRPM7 has 

been shown to affect the MAPK pathway in different cell types. In human endothelial cells 

(ECs), silencing TRPM7 by small interfering RNA (siRNA) increased phosphorylation of 
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ERK1/2 and their upstream kinases MEK1/2, whereas there were no effects on p38 MAPK 

and JNK activation (400). The opposite was observed in mouse cortical astrocytes, because 

silencing TRPM7 was associate with decreased ERK phosphorylation. Reduced MEK-

ERK activation was also observed in VSMC treated with the TRPM7 non-specific 

inhibitor 2-Aminoethoxydiphenyl borate (2-APB) (124, 129). In HEK-293 cell line, 

overexpression of TRPM7 activated p38MAPK and JNK and suppressed ERK 

phosphorylation (104). In a rat hepatic stellate cell line (HSC-T6), the up-regulation of 

TRPM7 contributes to PDGF induced activation of ERK and AKT pathways (401). Highly 

expressed TRPM7 was found to contribute to aberrant cellular proliferation, migration and 

invasion during tumour development (153). However, despite being discussed in some of 

the studies, the underlying mechanisms by which TRPM7 interacts with the MAPK 

pathway remains unclear. Trophic factors such as VEGF and EGF, the PLC pathway, 

Ca2+/Mg2+ status, the TRPM7 α-kinase and reactive oxygen species (ROS) production are 

proposed with a suspected role, which requires further investigation (104, 400, 402). 

1.3.1.2 TRPM7 is involved in the regulation of the PI3K/AKT pathway  

The association between TRPM7 and the PI3K/AKT pathway was mainly 

demonstrated in cancer cells. In glioblastoma cells, inhibition of TRPM7 by carvacrol or 

silencing TRPM7 significantly reduced the phosphorylation level of AKT, which was 

associated with reduced cell viability, migration and invasion. Interestingly, the TRPM7 

activator naltriben showed no effect on the PI3K/AKT pathway way in these cells (132, 

402). In two different cell lines of renal cell carcinoma, TRPM7 silencing was shown to 

decrease the activation of AKT, a process involved in tumour growth (403).  Moreover, 

TRPM7 was shown to be required for sustained PI3K/AKT signalling activation, which 

has an indispensable role in regulating lymphocyte growth and proliferation (404). TRPM7 

also affects the PI3K/AKT pathway in normal cells. In mouse chondrocytes, TRPM7 

overexpression was associated with upregulation of PI3K p85 subunit and AKT expression 

and phosphorylation, effects that were reduced by silencing TRPM7 (405). In human 

osteoblasts, mRNA expression of chemotaxis-related genes induced by Mg2+ was 

attenuated by TRPM7 silencing and PI3K inhibitor, suggesting a possible link between 

TRPM7 and PI3K. 

1.3.1.3 TRPM7 and activation of PLC and STAT3 

The phosphorylation and regulation of PLC proteins by TRPM7 was observed in 2012, 

when a study demonstrated  that TRPM7 kinase phosphorylates PLCγ2 in its C2-domain at 
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position Ser1164 and in the linker region at position Thr1045, which might contribute to 

adjusting the signalling intensity of PLCγ2 dependent pathways (102). The involvement of 

PLC enzyme as a substrate of the TRPM7 Ser/Thr kinase was also supported by a recent 

study, which showed that cells expressing specific mutation in the C2 domian of PLCγ2 

with an ablated TRPM7 phosphorylation site exhibited a similar phenotype to that of 

TRPM7 kinase deficient cells (406). However, the molecular targets downstream of 

TRPM7-phosphorylated PLCγ2 and the physiological function remain unclear.  

Studies in cancer cell lines indicated the activation of STAT3 and Src are downstream 

of TRPM7 activation. In glioblastoma cells, downregulation of TRPM7 by siRNA 

significantly reduced the phosphorylation of STAT3 at the Tyr705 residue, without 

changes in total STAT3 levels, contributing to cell proliferation and migration (155). In 

breast cancer cells, silencing TRPM7 significantly reduced EGF-induced STAT3 

activation and decreased the phosphorylation level of Src, and the latter is associated with 

TRPM7-mediated migration and invasion (407, 408).  

Instead of a direct regulatory role, TRPM7 was also implicated in the regulation of 

RTKs downstream signalling pathways triggered by different stimuli. In VSMCs, high 

concentration of glucose (HG) induced phenotype switching and proliferation mediated 

MEK/ERK signalling pathway, effects that were attenuated by TRPM7 knockdown. 

Similarly, TRPM7 is involved in angiotensin II (Ang II)-induced activation of ERK1/2 and 

contributes to Ang II-mediated phenotypic change and proliferation of VSMCs (140, 409). 

In prostate cell lines, cholesterol increased the phosphorylation of AKT and ERK, which 

was attenuated by both TRPM7 inhibitor 2-APB and TRPM7 silencing RNA (128). 

1.3.2 RTK signalling-mediated regulation of TRPM7 

1.3.2.1 Activation of RTKs directly regulates TRPM7 

In contrast to the widely investigated involvement of TRPM7 in the regulation of 

RTKs downstream signalling pathways, less studies have focused on the reverse scenario, 

how RTKs and their downstream effectors could affect TRPM7 functions. An earlier study 

showed that stimulation of EGFR by EGF initiates PLC-γ activation and PIP2 hydrolysis, 

which consequently leads to the inhibition of TRPM7 channel activity (410). However, 

Gao et al. found that in a pulmonary cancer cell lines, EGF through its receptor, enhanced 

the cell membrane protein expression and currents of TRPM7, a process associated with 

cell migration (135).  



55 

 

TRPM7 forms heteromers with its homologue TRPM6, and a similar regulatory role 

of EGF in TRPM6 activity and cell surface expression was observed in HEK293 cells (411, 

412). In 2009, Bindels and colleagues found that EGF through binding and activation of 

EGFR signalling, promotes the activation of TRPM6 and its translocation from cytosol to 

the plasma membrane in kidney epithelial cells. Blockage of this pathway with Cetuximab 

abolishes the stimulatory effect of EGF on TRPM6, and eventually causes renal Mg2+ 

waste (Figure 1.16) (259, 411). In hippocampal neurons, nerve growth factor (NGF), 

reduced the outward rectifying TRPM7-like current, in both dose- and time- dependent 

manners, and this effect could be blocked by the inhibition of tyrosine kinase activity of 

TrkA (NGFR) and PLC inhibitor (413). Furtherly, these authors found that NGF activated 

TrkA, through the PI3K pathway, prevented the up-regulation of TRPM7 expression in 

hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation 

(414). Moreover, although the underlying mechanisms were not discussed, PDGF 

stimulation was shown to increase TRPM7 expression in the HSC-T6 hepatic stellate cell 

line in a time-dependent manner, and TRPM7 inhibitor 2-APB diminished PDGF mediated 

activation of p-AKT and p-ERK, confirming a regulatory role of TRPM7 upstream of AKT 

and ERK (401). 
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Figure 1.16 EGF regulates TRPM6 in distal convoluted tubule (DCT). TRPM6 is the 

close sister homologue of TRPM7, and shares ~50% sequences. In HEK 293 cells, EGF 

activates TRPM6 channel activity through EGFR and Src-family kinase. In DCT, EGF 

promotes the translocation of TRPM6 from cytosol to cell membrane, mediating renal 

Mg2+ reabsorption. Cetuximab, a monoclonal antibody used to treat cancer, binds to and 

inhibit EGFR and can cause renal Mg2+ wasting leading to hypomagnesemia.  

1.3.2.2 RTKs downstream effectors and TRPM7 

In addition to the regulation of TRPM7 triggered by ligand-receptor binding, RTKs 

downstream effectors have been indicated to either individually or through interaction with 

other stimuli contribute to the modulation of TRPM7 activity. Several studies have shown 

controversial effects of PLC activation on TRPM7 function in different cell types. 

Clapham et al. demonstrated PIP2 as a key regulator of TRPM7, and receptor-mediated 

activation of PLC induced the hydrolysis of localised PIP2 leading to the inactivation of 

TRPM7 channel (410). However, Langeslag et al. confirmed that when intracellular Mg2+ 

level is reduced, the TRPM7 currents under whole-cell conditions are remarkably inhibited, 

followed PLC activation. However, under physiological ionic conditions, PLC-activating 

receptor agonists conversely enhanced TRPM7 currents (415). In prostate cells, Sun et al. 

found that TRPM7 expression was mediated by Ca2+ in a ERK1/2 activation dependent 

manner, events that were associated with cell proliferation, migration and viability (128). 

Moreover, RTKs downstream pathways are also involved in the regulation of TRPM7 by 
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other stimuli. In VSMCs, Ang II increased TRPM7 expression through its AT1 receptor 

and ERK signalling pathway (409). Bradykinin, another vasoactive peptide, was found to 

regulate TRPM7 and its downstream target annexin-1 through PLC and c-Src dependent 

pathways, which has an important role in VSMC Mg2+
 homeostasis, cell migration and 

invasion (130). Zhang et al. found that interleukin-18 (IL-18) activated TRPM7 currents, 

and upregulated TRPM7 expression in an ERK1/2-medated manner, which regulates 

osteogenic differentiation of VSMCs (142). In HEK293 cells, interleukin-6 (IL-6) inhibits 

TRPM7 currents through the JAK2-STAT3 signalling pathway and independent of the 

TRPM7 α-kinase domain. The author speculated that the regulation of TRPM7 by IL-6 

signalling may result from JAK2/STAT3-mediated phosphorylation of TRPM7, which 

requires further investigation (416). 
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1.4 Objectives, hypothesis and aims   

1.4.1 Objectives of the study  

The primary objective of the work presented in this thesis was to investigate the 

interplay between growth factors, RTKs and TRPM7 and specifically to assess how 

activation of RTKs initiated by growth factors, such VEGF and EGF, influences TRPM7 

in the vasculature, and the contribution to ion homeostasis, cellular signalling, and vascular 

function.  

1.4.2 Hypothesis  

RTKs, EGFR and VEGFR activated by VEGF and EGF respectively, stimulate 

TRPM7 activity in vascular smooth muscle cells (VSMC) in a Src dependent manner, and 

this process plays a role in cellular cation homeostasis and vascular function. The 

inhibition of RTK signalling reduces TRPM7 expression and trafficking, and changes its 

channel and α-kinase function, which consequently contributes to ion dysregulation as well 

as vascular dysfunction (Figure 1.17). 

Figure 1.17 We hypothesize that growth factors regulate TRPM7 in the vasculature. 

This process is supposed to affect the homeostasis of divalent cations such as Ca2+ and 

Mg2+ and the activity of TRPM7 substrates, and ultimately contribute to the regulation of 

cellular function and vascular function.  
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1.4.3 Specific aims of the study  

AIM 1. To study whether RTKs (VEGF receptor and EGF receptor) regulate TRPM7 in 

VSMCs, and the underlying mechanisms and to explore whether TRPM7 influences RTKs. 

AIM 2. To study whether TRPM7 is involved in the downstream signalling of VEGF/EGF, 

such the MAPK pathway  

AIM 3. To investigate whether TRPM7 dysregulation in the vasculature has clinical 

relevance (hypertension, preeclampsia). 
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Chapter Two 

2 Materials and methods 
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2.1 General lab practice  

All experiments were carried out in laboratories based at the British Heart Foundation 

Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical 

Sciences (ICAMS), and in accordance with the Control of Substances Hazardous to Health 

(COSHH) guidelines specified for each protocol. COSHH Risk Assessment Forms were 

read carefully and signed before conducting any experiments. All animal experiments were 

performed in accordance with the United Kingdom Home Office regulations, the National 

Health and Medical Research Institute Animal Welfare Committee guidelines and the 

Ethical Principles in Animal Experimentation adopted by the West of Scotland Research 

Ethics Service (Licence No. 70/9021). Studies at Sapienza University, in collaboration 

with Prof Savoia, were carried out in accordance with the Italian Law on the protection of 

animal. All daily activities in the lab are in accordance with proper guidelines developed in 

the laboratory of Prof Touyz and ICAMS. 

2.2 Materials 

2.2.1 Reagents and suppliers  

Consumables such as cell culture flasks, plates and pipettes, cell culture medium and 

general chemicals such as ethanol, and chloroform were purchased from Life Technologies 

(Paisley, Scotland, UK). Other reagents, enzymes and specific drugs were purchased from 

commercial companies as listed below: 

Abcam, Cambridge, UK 

Cal-520, AM (ab171868) 

BioRad Laboratories, Hertfordshire, UK 

Precision Plus ProteinTM Dual Xtra Standards 

Fisher Scientific, Loughborough, UK 

Methanol (#67-56-1); Chloroform (#67-66-3); Glycine (#56-40-6); Tris Base (#77-86-

1); D-Glucose anhydrous (#50-99-7); Sodium chloride (#7647-14-5); Sodium hydrogen 

carbonate (NaHCO3, #144-55-8); Dimethyl Sulfoxide (DMSO) 

Life Technologies/Invitrogen, Paisley, UK 

Dulbecco’s Modified Eagle Medium (DMEM, #22320-022); Smooth Muscle Growth 

Supplement (SMGS, #S-007-25); Dulbecco’s Phosphate Buffered Saline without CaCl2 
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and MgCl2 (DPBS, #14190-094); Penicillin Streptomycin Dulbecco (#15140-122); Foetal 

Bovine Serum Heat Inactivated (#10500-064); Phosphate-buffered saline (tablets); DNase1 

(Rnase free); 0.5% Trypsin-EDTA (#10500-064) 

Qiagen, Manchester, UK 

QIAzol Lysis Reagent (#79306) 

R & D Systems, Abingdon, UK 

Recombinant Human VEGF 165 Protein (293-VE); Recombinant Human EGF Protein; 

Recombinant Rat VEGF 164 Protein (564-RV); Recombinant Rat EGF Protein (3214-EG ) 

Sigma-Aldrich, Dorset, UK 

NS8593 hydrochloride (N2538); Apamin (A9459); Naltriben methanesulfonate 

hydrate (N156); N,N,N',N'-tetramethylethane-1,2-diamine (TEMED); Pepstatin; Leupeptin; 

Aprotinin; Phenylmethylsulfonyl fluoride (PMSF); Ponceau S; Sodium nitroprusside 

(SNP); Potassium chloride (#7447-40-7); Calcium chloride (#10043-52-4); Triton X-100 

(#9002-93-1); Tween 20 (#9005-64-5); Bovine Serum Albumin solution (#9048-46-8); 

Soybean trypsin inhibitor; F12 medium (N6658); REDExtract-N-AmpTM Tissue PCR Kit 

Santa Cruz Biotechnology, Heidelberg, Germany  

Gefitinib (sc-202166); Vatalanib Dihydrochloride (sc-202379); Protein A-Agarose 

(sc-2001); Protein G PLUS-Agarose (sc-2002) 

Selleck Chemicals, München, Deutschland 

TG100-115 (S1352) 

Thermo Fisher Scientific, Renfrew, UK 

PierceTM BCA Protein Assay Kit (#23227); Pluronic™ F-127 (P3000MP); High-

Capacity cDNA Reverse Transcription Kit (#4368814); Fast SYBRTM Green Mater Mix 

(4385612); Magnesium Green™, AM, cell permeant (M3735); Nitrocellulose Membrane 

(#88018) ；  Acrylamide/Bis 19:1, 40% (w/v) solution; CellTrace™ CFSE Cell 

Proliferation Kit (C34554) 

Tocris Bioscience, Bio-Techne Ltd, Abingdon, UK 

2-Aminoethoxydiphenylborane (2-APB, #1224) 

VWR International, Lutterworth, UK 
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Ethanol absolute (#64-17-5); N’-2-Hydroxyethylpiperazine-N’-2 ethanesulphonic acid 

(HEPES, #7365-45-9); Magnesium chloride hexahydrate (#7791-18-6); Sodium dodecyl 

sulphate (SDS, #151-21-3); MgSO4·7H2O (#10034-99-8); Potassium dihydrogen 

phosphate (KH2PO4, #7778-77-0) 

Worthington Biochemical Corp, Lakewood, UK 

Collagenase type I; Elastase 

2.2.2 Solutions and Media  

Protein lysis buffer (pH 7.4) 

HEPES (10 mM); Na3VO4
 (2 mM); Triton X-100 (0.5% v/v); Na4P2O7 (50 mM); NaF 

(50 mM); NaCl (50 mM); Na2EDTA (5 mM); supplemented with PMSF (1 mM); aprotinin 

(1 µg/ml); leupeptin (1 µg/ml); pepstatin (1 µg/ml) 

6X Laemmli sample buffer 

SDS (10%, w/v); β-mercaptoethanol (6% v/v); bromophenol blue (0.012% w/v); 

glycerol (30% v/v); Tris-HCl (260 mM, pH 6.8) 

SDS-PAGE separating gel 

Acrylamide/Bis 19:1 (7.5%-12% v/v); Tris-HCl (375 mM, pH 8.8); SDS (0.1% w/v); 

APS (0.045% w/v); TEMED (0.05% v/v); distilled water  

SDS-PAGE stacking gel 

Acrylamide/Bis 19:1 (4% v/v); Tris-HCl (125 mM, pH 6.8); SDS (0.1% w/v); APS 

(0.05% w/v); TEMED (0.1% v/v); distilled water  

SDS-PAGE running buffer 

Tris-Base (25 mM); glycine (193 mM); SDS (0.1% w/v); distilled water  

SDS-PAGE transferring buffer  

Tris-Base (25 mM); glycine (193 mM); methanol (20% v/v); distilled water  

Tris-buffered saline-Tween 20 (TBS-T) 

Tris-Base (20 mM, pH 7.6); NaCl (137 mM); Tween-20 (0.1% v/v); distilled water  

BSA-based blocking buffer 
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BSA in TBS-T (3% w/v) 

Non-fat dried skimmed milk-based blocking buffer  

Marvel Dried Skimmed Milk in TBS-T (5% w/v) 

Stripping buffer  

NaOH in distilled water (200 mM) 

HEPES physiological saline solution for Ca2+ study  

ΝaCl (130 mM); KCl (5 mM); MgCl2· 6H2O (1 mM); CaCl2 (1 mM); d-glucose (10 

mM); HEPES (20 mM); distilled water; pH 7.4 

HEPES Buffer for Mg2+ study 

HEPES without Ca2+ and Mg2+: NaCl (150 mM); KCl (5 mM); d-glucose (10 mM); 

HEPES (20 mM); distilled water; pH 7.4 

HEPES with Mg2+: NaCl (150 mM); KCl (5 mM); d-glucose (10 mM); HEPES (20 

mM); MgCl2
.6H2O (1 mM); distilled water; pH 7.4 

Buffer for separation of cell fractions  

Buffer A: Tris-Base (50 mM); Na2EDTA (2 mM); distilled water; pH 7.4 

Buffer B: NaCl (300 mM), Triton 100 (1% v/v) and SDS (0.1% w/v) in buffer A. 

Protease inhibitors including PMSF (1 mM), leupeptin (1 µg/ml), aprotinin (1 µg/ml) and 

pepstatin (1 µg/ml) were added before use in both buffer A and buffer B.  

VSMCs cell culture medium  

Human VSMCs cell culture medium: DMEM (1 g/L D-Glucose, L-Glutamine, 25 mM 

HEPES, Pyruvate); 1X Smooth Muscle Growth Supplement; 1X Penicillin-Streptomycin 

(1000 U/ml) 

Rat VSMCs cell culture medium: DMEM (1 g/L D-Glucose, L-Glutamine, 25 mM 

HEPES, Pyruvate); 10% (v/v) FBS; 1X Penicillin-Streptomycin (1000 U/ml) 

Digestion solution 

BSA (0.2% w/v); collagenase (0.2% w/v); elastase (0.012% w/v); soybean trypsin 

inhibitor (0.036% w/v) in complete F-12 Ham medium  

High potassium physiological salt solution (KPSS) 
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KCl (62.5 mM); MgSO4 (1.2 mM); NaHCO3 (25 mM); KH2PO4 (1.2 mM); CaCl2 (2.5 

mM); d-glucose (11 mM); distilled water; pH 7.4 

Physiological Salt Solution (PSS): 

NaCl (119 mM); KCl (4.7 mM); MgSO4 (1.2 mM); NaHCO3 (25 mM); KH2PO4 (1.2 

mM); CaCl2 (2.5 mM); d-glucose (11 mM); distilled water; pH 7.4 

HES Buffer (HES): 

HEPES (20 mM); Sucrose (250 mM); EDTA (1 mM); PMSF (1 mM); leupeptin (1 µg/ml); 

aprotinin (1 µg/ml); pepstatin (1 µg/ml); distilled water; pH 7.4  

2.2.3 Antibodies and conditions of use 

Primary and secondary antibodies used in this study are summarized in Table 2.1. Primary 

antibodies used in immunoblotting were diluted 1: 1,000 in TBS-T with 3% BSA (w/v), 

except for β-actin (1:10,000) and α-tubulin (1:2,000). Secondary antibodies used in 

immunoblotting were diluted (1: 10,000) in TBS-T with 1% BSA.  

Name  Company Catalogue ID Host Species Application 

TRPM7 Abcam ab245408 Rabbit WB/IP 

TRPM6 Abcam  ab79227 Rabbit WB 

MagT1 Abcam  ab90478 Rabbit WB 

SLC41A1 Abcam ab83701 Rabbit WB 

Annexin-1 Santa Cruz sc11387 Rabbit WB 

Calpain-2 Santa Cruz sc373967 Mouse WB 

phospho-VEGFR 

(Y951) 

Cell 

signalling 
4991s Rabbit WB 

VEGFR 
Cell 

signalling 
2479s Rabbit WB 

phospho-EGFR 

(Y1068) 

Cell 

signalling 
3777S Rabbit WB 

phospho-EGFR 

(Y845) 

Cell 

signalling 
2231S Rabbit WB 

EGFR 
Cell 

signalling 
2646S Rabbit WB 
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phospho-p38 

MAPK 

(T180/Y182) 

Cell 

signalling 
9211S Rabbit WB 

p38 MAPK 
Cell 

signalling 
9212S Rabbit WB 

phospho-ERK1/2 

(T202/Y204) 

Cell 

signalling 
9101S Rabbit WB 

ERK1/2 
Cell 

signalling 
9102S Rabbit WB 

phospho-PKC 

(T638/641) 

Cell 

signalling 
9375S Rabbit WB 

phospho-Src 

(Y527) 

Cell 

signalling 
2105S Rabbit WB 

Src 
Cell 

signalling 
2109 Rabbit WB 

phospho-MKP1 

(S359) 
Abcam ab63548 Rabbit WB 

MKP1 Abcam ab236501 Mouse WB 

phospho-STAT1 

(Y701) 

Cell 

signalling 
9167S Rabbit WB 

STAT1 
Cell 

signalling 
9176S Mouse WB 

phospho-STAT3 

(Y705) 

Cell 

signalling 
9138S Mouse WB 

STAT3 
Cell 

signalling 
7907 Rabbit WB 

phospho-serine 

/tyrosine/threonine / / / / 

loading controls  
        

β-actin 
Sigma-

Aldrich 
A2228 Mouse WB 

α-tubulin Abcam ab4074 Rabbit WB 

Na/K-ATPase 
/ / / / 

 

Second 

antibodies          

Anti-Mouse  

Alexa Fluor 680 

Thermo 

Fisher 
A21057 Goat WB 

Anti-Rabbit 

Alexa Fluor 800 

Thermo 

Fisher 
A32735 Goat WB 
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Table 2.1 Primary and second antibodies used in this study. WB, western blotting; IP, 

immunoprecipitation. 

2.2.4 Oligonucleotides  

Nucleotide sequences of the primers used in this study are summarized in Table 2.2. 

Table 2.2 Oligonucleotides used in this study to detect mRNA levels. All 

oligonucleotides were purchased from Eurofins Genomics. F, forward; R, reverse; qPCR, 

quantitative real-time polymerase chain reaction. 

 

 

 

 

 

 

 

Targeted gene Primer Name Sequence (5'      3) Application 

Transient Receptor 

 Potential Melastatin 7, 

 human 

hTRPM7_RW2 CTCTATCCCATGCCAATGTAAGG qPCR 

hTRPM7_FW2 TGCAGCAGAGCCCGATATTAT qPCR 

Transient Receptor 

 Potential Melastatin 6, 

 human 

hTRPM6_FW3 TCCTGTCTGATGATGGGACC qPCR 

hTRPM6_RW3 TCTTGAGCGGCAGTGTATTTTC qPCR 

Solute carrier family 

41 member A1, 

 human 

hSLC41A1_FW TTCTTCAGCCCTGATGTGAA qPCR 

hSLC41A1_RW CGAGGAGCTTGCTCAGAGTT qPCR 

Magnesium 

transporter subtype 1, 

 human 

hMagT1_FW GGGATTGCTTTTGGCTGTTA qPCR 

hMagT1_RW TGGTTCCACATTTGACCAGA qPCR 

SGlyceraldehyde-3-

phosphate 

dehydrogenase, 

 human 

hGAPDH_Fw GAGTCAACGGATTTGGTCGT qPCR 

hGAPDH_Rv TTGATTTTGGAGGGATCTCG qPCR 
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2.2.5 Patient characteristics  

Primary hVSMCs isolated from small arteries dissected from surplus surgical tissue of 

patients receiving elective craniofacial surgeries. General characteristics of these patients 

are summarized in Table 2.3.    

BioBank Number Hypertension  Gender Age Type of vessel 

BB140323 NO Male 60 
L Facial 

Artery 

BB140473 NO Female 68 Facial Artery 

BB151402 NO Female 33 L Facial artery 

BB151585 NO Female 66 
R Facial 

Artery 

BB160999 NO Male 43 Facial artery 

BB170377 NO Female 61 
R Facial 

Artery 

BB170655 NO Male 50 Facial Artery 

BB171277 NO Female 48 
L Facial 

Artery 

BB171621 NO Female 67 
R Facial 

Artery 

BB181219 NO Female 45 
L Facial 

Artery 

BB181212 NO Female 78 
L Facial 

Artery 

BB180948 NO Male 68 
R Facial 

Artery 

Table 2.3 Characteristics of patients undergoing craniofacial surgery. Small to 

medium size of surplus arteries were used to establish primary cell culture of hVSMCs. 

BioBank Number is a unique ID allocated to each patient in Professor Touyz’ lab used to 

track sample information. R, right; L, left.   

2.2.6 Software  

Software used for data acquisition and analysis in this study is listed below. A webpage 

link is provided if the software is licence-free.  

Lab Chart Reader 8.1.13 Windows: AD Instruments Ltd, Oxford, UK 

(https://www.adinstruments.com/support/downloads/windows/labchart-reader). 

GraphPad Prism 5: GraphPad Software, San Diego, USA 

Image Studio Lite Ver 5.2: LI-COR Biotechnology; Cambridge, UK 

(https://www.licor.com/bio/image-studio-lite/download) 
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QuantStudio™ Real-Time PCR Software: Applied BioSystems, California, USA 

ZEISS ZEN pro Imaging Software for Connected Microscopy: Carl Zeiss Ltd., 

Cambridge, UK 

FlowJo-Win32-10: Tree Star, Inc., Ashland, USA, 

(https://www.flowjo.com/solutions/flowjo/downloads)  

NanoDrop 1000 v3.7.1 software: Thermo Fisher Scientific, Renfrew, UK 

2.3 Cell culture procedures  

2.3.1 Primary vascular smooth muscle cells  

Primary human vascular smooth muscle cells (hVSMCs) were isolated from small arteries 

dissected from surplus surgical tissue of patients receiving elective craniofacial surgeries. 

Collection and use of human tissue for research has been approved by the West of Scotland 

Research Ethics Committee. Primary rat vascular smooth muscle cells (rVSMCs) were 

isolated from mesenteric arteries dissected from Wistar Kyoto (WKY) rats and stroke-

prone spontaneously hypertensive rats (SHRSP). Primary mouse vascular smooth muscle 

cells (mVSMCs) were isolated from mesenteric arteries dissected from wild type (WT) 

mice and heterozygous TRPM7+/Δkinase mice. The experimental procedure on animals 

conform to the principles highlighted in Section 2.1. General characteristics of cells and 

details of cell culture media used in this study are summarized in Table 2.4. In addition, the 

digestion solution used for primary cell culture was comprised of F12 Ham medium, 1X 

Penicillin-Streptomycin, 50 ml of FBS and 5ml of  2 M HEPES (pH 7.4). 

 

 

 

 

 

 

 

 

 

https://www.flowjo.com/solutions/flowjo/downloads
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Cell type 

Human vascular 

smooth  

muscle cells (hVSMCs) 

Rat vascular smooth  

muscle cells (rVSMCs) 

Mouse vascular 

smooth  

muscle cells 

(mVSMCs) 

Origin 

human: adult facial 

artery  

primary culture 

Rat: mesenteric artery 

 primary culture  

Mouse: mesenteric 

artery 

 primary culture  

Cell 

Culture 

Medium 

DMEM  

1X SMGS 

1X Penicillin-

Streptomycin  

(1000 U/ml) 

DMEM  

10% FBS 

1X Penicillin-

Streptomycin 

(1000 U/ml) 

DMEM  

10% FBS 

1X Penicillin-

Streptomycin 

(1000 U/ml) 

Starvation 

Medium 

DMEM  

0.5% FBS  (v/v) 

1X Penicillin-

Streptomycin  

(1000 U/ml) 

DMEM 

 0.5% FBS (v/v) 

1X Penicillin-

Streptomycin  

(1000 U/ml) 

DMEM 

 0.5% FBS (v/v) 

1X Penicillin-

Streptomycin  

(1000 U/ml) 

Freezing 

Medium 

DMEM (60%, v/v) 

FBS (30%, v/v） 

DMSO (10%, v/v)  

DMEM (60%, v/v) 

FBS (30%, v/v） 

DMSO (10%, v/v)  

FBS (90%, v/v) 

DMSO (10%, v/v) 

Table 2.4 General characteristics of cells and details of cell culture media used in this 

study. DMEM, Dulbecco’s Modified Egle Medium; SMGS, Smooth Muscle Growth 

Supplement; FBS, Fetal Bovine Serum; DMSO, Dimethyl sulfoxide. 

2.3.2 Isolation of vascular smooth muscle cells from human arteries  

Surplus surgical tissue obtained from patients undergoing elective craniofacial surgery 

were kept in phosphate-buffered saline on ice until the isolation procedure. Small arteries 

were dissected from surrounding fat and adventitial tissue with an effort to pool more 

vessel segments, which were then transferred to a sterile tube with 12.5 ml of pre-warmed 

F12 Ham medium containing digestion mix comprised of 25 mg of BSA, 25 mg of 

collagenase (>200 IU/mg), 1.5 mg of elastase and 4.5 mg of soybean trypsin inhibitor. The 

vessel segments were digested at 37 °C for 30 min and the digested fragments were 

subsequently passed through a 20G needle to obtain a homogenised solution. The resulting 
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suspension was centrifuged at 2,000 rpm for 5min at room temperature, and cell pellet was 

resuspended in 5 ml of complete F12 Ham medium (with antibiotics and FBS), distributed 

in a T25 tissue culture flask (passage 0) under normal conditions for cell culture. After 24 

h, the F12 Ham medium was removed and replaced with basal cell culture medium for 

hVSMCs. The procedure of isolation and setting up of the primary culture of hVSMCs was 

performed by the laboratory technician Mrs Jackie Thomson. 

2.3.3 Isolation of vascular smooth muscle cells from rat mesenteric arteries   

Mesenteric beds were isolated from 10 rats and collected in sterile 50 ml tubes containing 

30 ml of F12 Ham medium. Vessels were dissected and the surrounding fat and adventitial 

tissue were removed. The resulting segments were incubated in 25 ml of F12 Ham medium 

containing digestion mix comprised of 50 mg of BSA, 50 mg of collagenase, 3 mg of 

elastase, and 9 mg of soybean trypsin inhibitor, at 37°C for 60-90 min depending on the 

size of tissue. The digested fragments were subsequently passed through needles in 

progression from 16G, 18G to 20G to obtain a homogenised solution. The resulting 

suspension was then filtered through a 100 µm nylon filter and centrifuged for 5 min at 

1,500 rpm. Cell pellet was resuspended in 15 ml of basal cell culture medium (DMEM 

containing 10% FBS and antibiotics), distributed in a T25 tissue culture flask (passage 0) 

under normal cell culture condition. Medium was changed after 24 and 48 h. The 

procedure of isolation and setting up of the primary culture of rVSMCs were kindly 

performed with help from Mrs Wendy Beattie.  

2.3.4 Culture and passage of vascular smooth muscle cells  

VSMCs from human and rodents were cultured in different incubators under 5% CO2 at 

37°C and 95% humidity. The volume of medium used depends on the size of flasks or 

dishes (e.g 20 ml for a T150 cell culture flask, 15 ml for a T75 flask, 3 ml for a 60 mm cell 

culture dish and 7 ml for a 100 mm dish). Cell culture medium was changed every 3 days. 

Cell morphology and cell confluence were checked by microscope every day and 

unhealthy or contaminated cells were discarded. VSMCs were passaged at approximately 

80% confluence to avoid overconfluence that may cause environmental stress. Culture 

medium was removed before passaging and cells were then washed twice by pre-warmed 

and sterile DPBS (without Ca2+ and Mg2+). 0.5% trypsin-EDTA solution (2 ml in T150 

tissue culture flask) was added and cells were incubated at 37°C for 3 min. Cell 

detachment was observed using an inverted light microscope. The enzymatic reaction was 

terminated by the addition of five-times the volume of basal cell culture medium. The 
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resulting cell suspension was transferred to a sterile tube and centrifuged at 1,200 rpm for 3 

min at room temperature. The supernatant was aspirated, and cells were resuspended by 

either appropriate volume of basal culture medium and then plated in flasks and dishes, or 

FBS-containing freezing medium for storage (Section 2.3.5) in liquid nitrogen depending 

on the purpose of the procedure. With help from Mrs Jackie Thomson, every cell culture 

was tested routinely for mycoplasma contamination and cells were phenotyped on a regular 

basis as vascular smooth muscle cells using antibodies to probe VSMC-specific proteins, 

including smoothelin (cat.#: ab8969, Abcam), smooth muscle myosin heavy chain (cat.#: 

sc-6956, Santa Cruz) and smooth muscle actin (sc-32251, Santa Cruz). In this study, 

VSMCs at passage 3-8 were used in in vitro experiments. 

2.3.5 General protocol for freezing and thawing vascular smooth muscle cells 

Cells were detached from the flask and centrifuged as described in Section 2.3.4. Cell 

pellet was resuspended in 1 ml of appropriate freezing medium and transferred to a sterile 

cryogenic vial. Cryogenic vials were then placed in cryofreezing container (Mr Frosty) in a 

freezer at -80°C, with a rate of cooling close to 1°C/min. After 24 h, vials were transferred 

to liquid nitrogen tank for long-term storage. For recovery, vials were removed from liquid 

nitrogen tank and hold in 37°C water bath. Then, cell suspension was transferred to a 15 

ml tube containing 10 ml of complete medium and centrifuged at 1,500 rpm for 3 min. Cell 

pellet was resuspended in 15 ml of complete medium and transferred to a T75 flask. To 

avoid potential adverse effects of DMSO, cell culture medium was refreshed immediately 

after cell attachment was confirmed under microscope.   

2.3.6 Experimental protocols  

VSMCs at approximately 90% confluence were starved overnight in medium containing 

0.5% FBS. Starvation medium was refreshed before experiments. Quiescent cells were 

stimulated with VEGF (50 ng/ml) or EGF (50 ng/ml), concentration used in previous in 

vitro studies (417, 418), for long term (5 h and 34 h) and short term (1-60 min). 

Concentrations were selected according to the literature (419, 420), and our concentration-

response study. In some experiments, 30 minutes prior to stimulation, quiescent VSMCs 

were pre-treated with the following inhibitors: 

-Gefitinib (EGFR inhibitor, 10-6 mol/L) 

-Vatalanib (VEGFR inhibitor, 10-6 mol/L) 

-NS8593 (TRPM7/calcium activated potassium channel inhibitor, 4×10-5 mol/L) 
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-Apamin (calcium activated potassium channel inhibitor, 10-6 mol/L) 

-2-APB (non-specific TRPM7 inhibitor, 3×10-5 mol/L) 

-TG100-115 (TRPM7 kinase domain/PI3K inhibitor, 10-5 mol/L) 

-PP2 (Src family kinase inhibitor, 10-5 mol/L) 

Concentrations of these compounds were based on previously published data and our 

preliminary studies (421-427). For cells stimulated with drug diluted in DMSO (≤1%, v/v), 

DMSO was used as the negative control/vehicle, while for cells stimulated with drug 

diluted in PBS, equivalent volume of PBS was used. To terminate the stimulation, drug-

containing medium was removed by aspiration pump and cells were rinsed with ice-cold 

DPBS. Plates and dishes were then stored in -20°C freezer until further use. Concentration 

of pharmacological modulators were based on previously published data on previous 

studies (428-430). 

2.4 Molecular biology methods  

2.4.1 Western blot (immunoblotting) 

Western blot was used to: i) detect expression of Mg2+ transporters including TRPM7, 

TRPM6, MagT1 and SLC41A1, TRPM7 substrates such as annexin-1 and calpain-2, 

growth factor receptors such as VEGFR and EGFR, and housekeeping proteins such as α-

tubulin, β-actin and Na+/K+-ATPase, ii) examine the activation of cellular kinases such as 

p38 MAPK, ERK1/2, STAT1 and STAT3, and growth factor receptors such as VEGF and 

EGFR, and iii) assess the translocation of cytosol proteins such as annexin-1 and calpain-2 

to cell membrane. 

2.4.1.1 Isolation of total protein from tissue and cells  

After stimulation, VSMCs from human and rats were placed on ice and harvested by 

scrapping in appropriate volume of ice-cold lysis buffer (e.g. 60-80 µl for a 60 mm cell 

culture dish) using a clean cell scraper. Cell lysates were transferred to a pre-cooled 

microcentrifuge tube and kept on ice for 30 min for constant agitation, followed by 

centrifugation at 12,000 rpm for 15 min at 4°C. The resulting supernatant was transferred 

to a new pre-cooled tube and the protein concentration was assessed.  

Tissue samples were homogenised in appropriate volume of lysis buffer using Precellys 24 

tissue homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France). The time and 

speed of homogenization was adjusted depending on the types and amount of tissue. Tissue 
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lysates were centrifuged at 12,000 rpm for 15 min at 4°C, and the resulting supernatant 

was transferred to a new pre-cooled tube for later use.  

2.4.1.2 Isolation of cytosol and membrane fractions  

Human and rat VSMCs cultured in 100 mm cell culture dishes were harvested by scraping 

in appropriate volume of ice-cold Buffer A (80-100 µl) using a clean cell scraper. Cell 

lysates were transferred to a pre-cooled tube and centrifuged at 500 g for 10 min at 4°C. 

The resulting supernatant was collected in a thick-wall polycarbonate tube and 

ultracentrifuged at 40,000 rpm for 1 hour at 4°C using Optima TL Ultracentrifuge 

(Beckman Coulter, High Wycombe, UK). The resulting supernatant was collected as 

cytosolic fraction, and the pellet was resuspended in Buffer B and collected as membrane-

rich fraction. Protein concentration of the fractions was determined and samples were 

storage at -20 °C.  

2.4.1.3 Determination of protein concentration and preparation of samples 

Protein concentration was measured using PierceTM BCA Protein Assay Kit according to 

the manufacturer’s instructions. The assay is based on the reduction of Cu2+ to Cu1+ by 

protein in alkaline medium and the highly sensitive and selective colorimetric 

quantification of Cu1+ by a unique reagent containing bicinchoninic acid (BCA). The 

chelation of cuprous ion and BCA results in a purple-coloured reaction complex which 

exhibit a strong absorbance at 562 nm. For the assay, BSA-based standards were 

established, comprising a set of diluted standards at 2000 µg/ml, 1000 µg/ml, 500 µg/ml, 

250 µg/ml, 125 µg/ml and Milli-Q water as a blank control. Working Reagent (WR) was 

prepared by mixing BCA Reagent A with BCA Reagent B (dilution 50:1). To measure 

protein concentration, 5 µl of either standard or sample was added to wells of a clean 96-

well plate, followed by the addition of 50 µl of Working Reagent to each well. The plate 

was incubated at 37°C for 30 min in the dark on an Eppendorf Shaker. The absorbance was 

measured at 562 nm using VICTORTM X3 Multilabel plate reader (PerkinElmer, 

Michigan, USA). The obtained standard curve with R-squared > 0.98 was accepted, and 

protein concentration of samples was determined by the linear equation of the standard 

curve using Work-Out Wallac software. After protein determination, 20-30 µg of protein 

lysates were mixed with 6X Laemmli sample buffer with a ratio of 5/1 (5 µl of sample 

buffer in 25 µl protein lysate). The mixture was then boiled at 95°C for 7 min to denature 

protein using Eppendorf ThermoMixer, and were stored at -20°C until further use. 
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2.4.1.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to separate proteins according to the molecular weight of the protein 

of interest. 7.5% SDS/PAGE was used for proteins with molecular weight higher than 150 

kDa, 10% SDS/PAGE for proteins of 30-150 kDa and 12% SDS/PAGE for proteins lower 

than 30 kDa. 25-50 µl of sample containing 20-30 µg of protein loaded using special gel 

loading tips in pre-casted narrow wells in stacking gel. Standard of protein molecular 

weight was added in the first lane and positive control was also loaded to testify antibodies. 

Electrophoresis was performed in SDS-PAGE running buffer, at a constant voltage of 140 

V until the blue dye molecule reached the bottom part of the gel. In some experiments, 

commercial gels (Invitrogen Novex Tris-Glycine Mini Gels, 4-20%) which are capable of 

separating a wide range of proteins were used depending on the purpose of experiments.    

2.4.1.5 Transfer of proteins and immunoblotting 

Following the electrophoresis, gel containing proteins was removed from the 

electrophoresis apparatus and rinsed with SDS-PAGE transferring buffer for 10 min. To 

transfer proteins from the gel to a hydrophobic, 0.45 µm pore nitrocellulose membrane, gel 

and membrane were sandwiched between sponge and filter paper sequentially, which were 

then submerged in transferring buffer in a tank, with the membrane oriented nearest to the 

positive electrode. Wet transfer was performed at a constant voltage of 110 V for 90 min. 

For larger proteins such as TRPM7, transfer was performed for 120 min. The efficiency of 

the electrotransfer was assessed by staining the membrane with Ponceau-S solution for 5-

10 sec. Membranes with adequate transfer of proteins were de-stained with distilled water 

and TBS-T, followed by blockage step using either BSA (3%)-based or non-fat dried milk-

based blocking buffer depending on the protein of interest at room temperature for 1 h on a 

shaker at a gentle speed. Blocked membranes were washed by TBS-T for 3 times and 

incubated with primary antibody overnight at 4°C. The following day, the primary 

antibody solution was removed, and the membrane was washed for 5 min with TBS-T (3 

times), followed by incubation with appropriate secondary fluorescence-coupled antibodies 

goat-anti-mouse-IRDye 680 or goat-anti-rabbit-IRDye 800 (LI-COR, Cambridge, UK) for 

1 h at room temperature in the dark. Secondary antibody was removed, and the membrane 

was washed 3×5 min with TBS-T. Immuno-reactive proteins on the membrane were 

visualized using Odyssey CLx LI-COR imaging system (LI-COR Biosciences, Cambridge, 

UK). Protein expression levels were analysed by Image Studio Lite software and 

normalised to housekeeping proteins such as α-tubulin, β-actin and Na+/K+-ATPase 
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depending on the experiments. In some experiments, antibodies were removed from the 

membranes by treatment with NaOH (200 mM) for 5 min at room temperature. The 

efficacy of stripping process was assessed using Odyssey CLx LI-COR imaging system. 

The membrane was then washed 3×5 min with TBS-T, blocked in fresh blocking buffer for 

1 h at room temperature and re-probed with new primary antibody.  

2.4.2 Immunoprecipitation 

Phosphorylation of TRPM7 in VSMCs was detected by immunoprecipitation (IP) followed 

by immunoblot analysis. VSMCs cultured in 100 mm cell culture dishes were harvested 

using appropriate volume of proteins lysis buffer (70 µl for one dish). To improve protein 

concentration, cell lysates harvested from 4 plates were collected as one group.  Cell 

lysates were then subsequently passed through a 26G needle to obtain a homogenised 

solution and kept on ice for 20 min under constant agitation, followed by centrifugation at 

12,000 rpm for 15 min at 4°C. Resulting supernatant was transferred to a new pre-cooled 

tube, and protein concentration was measured using BCA assay kit, as described in 2.4.1.3. 

400-500 µg of protein samples were diluted in 200 µl using Milli-Q water and mixed with 

the immunoprecipitating antibody according to the manufacturer’s datasheet. Appropriate 

volume of sample solution containing about 10% of protein used for IP was also collected 

as input control (pre-IP lysate). The reaction mixture for IP was then rotated in a Stuart 

SB3 Rotator (Camlab Ltd, Cambridge, UK) at a gentle speed overnight at 4°C. The 

following day, 15 µl of Protein A and 15 µl of Protein G was added to the reaction mixture 

and rotated at 4°C for 4 h. The IP complex was then centrifuged at 14,000 rpm for 1 min at 

4°C and the supernatant was collected as output (post-IP lysate). The IP complex was then 

washed twice using 1 ml of protein lysis buffer by centrifugation at 14,000 rpm for 30 sec. 

Supernatant was removed and the final pellet was resuspended with 30 µl of 6X Laemmli 

sample buffer. Pre-IP lysate control and post-IP lysate control were prepared by making a 

mixture (30 µl) containing 40-50 µg (~10% of protein used for IP) of sample protein, 

Milli-Q water and 10 µl of 6X sample buffer. All samples were boiled at 95°C for 7 min 

before Western blot was performed as described earlier.  

2.4.3 RNA analysis  

2.4.3.1 Extraction of total RNA using QIAzol ® 

Total RNA was extracted using QIAzol ® isolation protocol. VSMCs were harvested by 

scraping with appropriate volume of QIAzol ® (500 µl for one well of a 6-well plate), 

while frozen tissues were homogenized in 750 µl of QIAzol ® using Precellys 24 tissue 
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homogenizer. Subsequently, 200 µl of chloroform was added to each sample and mixed 

thoroughly. Samples were maintained at room temperature for 2 min to allow phase 

separation and then centrifuged at 12,000 g for 15 min at 4°C. The aqueous (upper) phase 

was carefully transferred to a new nuclease-free tube using a pipette setting at 75 µl. 500 µl 

of isopropanol was added, mixed and maintained at room temperature for 10 min, followed 

by centrifugation at 12,000 g for 10 min at 4°C. The resulting supernatant was removed, 

and the pellet was washed with 500 µl of 75% ethanol by centrifugation at 8,000 g for 5 

min at 4°C. The supernatant was removed and the pellet was dried by incubation at 37°C 

for 5 min, followed by resuspension with 20 µl (40 µl for tissue sample) of nuclease-free 

water. Samples were then left on ice for 1 h followed by incubation at 65°C for 5 min to 

denature RNA.   

2.4.3.2 Measurement of RNA purity and concentration 

Total RNA concentration and purity were measured using NanoDrop ND-1000 

spectrophotometer (Labtech International, Heathfield, UK) and NanoDrop 1000 v3.7.1 

software. Initially, 1.5 μl of RNase-free water was dispensed onto the lower measurement 

pedestal and measured to wash the system. Next, 1.5 μl of RNase-free water was measured 

as a blank background control, and equal volume of samples were measured in duplicates. 

RNA concentration of samples was calculated based on the following formula: RNA 

concentration = A/𝜀𝑙, where A indicates the absorbance of samples measured at 260 nm, 𝜀 

indicates molar extinction coefficient and l is the light path-length. Additional absorbance 

at 280 nm and 230 nm was measured, and the 260/280 ratio of ~2.0 and the 260/230 ratio 

in the range of 2.0-2.2 indicate that the purity of RNA is high.  

2.4.3.3 Removal of DNA by DNase I treatment  

To avoid the contamination of genomic DNA in isolated RNA samples and the impact on 

following polymerase chain reaction (PCR)-based analysis, DNase I treatment was 

performed for all RNA samples. Briefly, 10-20 μg of total RNA was incubated with 1X 

DNase I buffer and 0.1 U of DNase I for 1 h at 37°C and the enzymatic reaction was 

terminated by 10 min incubation at 70°C. In this study, for RNA samples extracted from 

cultured VSMCs, 4 μg of total RNA was diluted to a 17 μl mixture in RNase-free water, 

followed by incubation with 1 μl of DNase I (2 U) and 2 μl of DNase Buffer 10X as 

described above. Resulting RNA samples were then left on ice and used for cDNA 

synthesis.  
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2.4.3.4 cDNA synthesis by reverse transcription of RNA 

Complementary DNA (cDNA) was synthesized from isolated RNA sample using High-

Capacity cDNA Reverse Transcription Kit based on the manufacturer’s instruction. In a 

96-well PCR plate, 2 μg of DNase I-treated RNA and a reaction mix including 2 μl of 10X 

RT buffer, 0.8 μl of 25X dNTP (deoxyribonucleotide triphosphates) mix, 2 μl of 10X RT 

random primers, 1 μl of multiscribe reverse transcriptase were added to the bottom of the 

well, which was then topped up to a total volume of 20 μl with RNase-free water. In this 

study, for RNA samples isolated from cultured VSMCs as described earlier, 10 μl (2 μg) of 

DNase I-treated sample were added to the reaction mix with extra 4.2 μl of RNase-free 

water, resulting a total volume of 20 μl. Plate was sealed using adhesive transparent PCR 

film and vortexed gently followed by a quick centrifugation to spin down the mixture. 

Subsequently, the cDNA synthesis was performed using a PTC-225 Peltier Thermal Cycler 

(MJ Research, Massachusetts, USA) under the following condition: 10 min at 25°C 

(primers annealing), 120 min at 37°C (cDNA synthesis), 5 min at 85°C (inactivation of 

reverse transcriptase) and 4°C until reaction termination. The synthesized cDNA was 

stored at -20°C until further use.  

2.4.3.5 Determination of mRNA expression levels by quantitative PCR  

Gene expression of the Mg2+ transporters TRPM7, TRPM6, MagT1 and SLC41A1 in 

cultured hVSMCs were assessed using SYBR Green-based quantitative PCR (qPCR), also 

known as real-time PCR. SYBR Green is a commonly applied fluorescent dye and 

preferentially binds to the minor groove of double-stranded DNA, consequently emitting 

fluorescence that is directly proportional to the concentration of amplified DNA (431). The 

fluorescence could be measured at the end of each amplification cycle and the PCR cycle 

number at which the fluorescence intensity reaches significantly above the background 

level is termed the threshold cycle (Ct). Consequently, relative gene expression level is 

calculated by the 2 -ΔΔCT method using a reference gene (housekeeping gene) as the 

normaliser (432). 

Before qPCR was performed, cDNA samples were diluted in RNase-free water to a 

concentration of 10 ng/μL. In a 384-well reaction plate, 3 μl of cDNA sample (30 ng), 0.3 

μl of primer FW (300 nM), 0.3 μl of primer RW (300 nM), 1.4 μl of nuclease-free water 

and 5 μl of Fast SYBR GreenTM Master mix containing DNA polymerase, SYBR Green I 

dye, dNTPs, Uracil-DNA Glycosylase (UDG) and ROXTM passive reference dye were 

added to the bottom of the well, resulting in a final volume of 10 μl. The negative control 
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of the reaction was performed by adding 3 μL of nuclease-free water instead of cDNA 

sample. Plate was sealed using adhesive transparent qPCR film and vortexed gently 

followed by a quick centrifugation to spin down the mixture. PCR reaction was performed 

using a 7900HT Fast Real-Time PCR System (Applied Biosystems) under the following 

conditions: 50°C for 2 min, 95°C for 10 min, then 40 cycles of 95°C for 15 sec and 60°C 

for 1 min, followed by a dissociation curve stage including 95°C for 15 sec, 60 °C for 15 

sec and 95°C for 15 sec. The analysis was performed using the 2-ΔΔCT method, with 

GAPDH as the reference gene. Briefly, ΔΔCt was calculated using the following formula: 

ΔCt=CtGOI-CtHKG, where CtGOI indicates Ct value of gene of interest and CtHKG indicates Ct 

value of the housekeeping gene, and ΔΔCt =ΔCtsample-ΔCtcontrol, where ΔCtcontrol indicates 

the average ΔCt value of the vehicle-treated control group and ΔCtsample indicates the ΔCt 

value of stimuli-treated groups. The relative quantity (RQ) value of the target gene was 

calculated as: RQ=2-ΔΔCt (432). Results were reported as fold change relative to the 

vehicle-treated control group. 

2.4.4 Imaging of Ca2+ in VSMCs by live cell microscopy  

Intracellular Ca2+ levels in VSMCs were assessed using fluorescent Ca2+ indicator Cal-520 

acetoxymethyl ester (Cal-520AM, Abcam) and imaged using live cell microscopy. Cal-520 

is a new fluorogenic Ca2+ sensitive dye, displaying several critical advantages including 

significantly higher signal to noise ratio (S/N), improved intracellular retention and 

convenient spectrum compared to the existing green Ca2+ probes such as Fluo-3 AM and 

Fluo-4 AM. Cal-520 crosses cell membrane and in the intracellular environment, its 

lipophilic blocking groups are cleaved by esterase, resulting in a negatively charged dye 

emitting fluorescence that are enhanced upon binding to Ca2+.  

Human or rats VSMCs were cultured in 12-well plate and loaded with 5 µM Cal-520 AM 

in starvation medium (0.5% FBS) at 37 °C for 75 minutes followed by 30 minutes at room 

temperature. The dye solution was replaced with 800 µl of HEPES buffer (130 mM NaCl, 

5 mM KCl, 1 mM CaCl, 1 mM MgCl2, 10 mM D-glucose and 20 mM HEPES, pH 7.4) in 

each well for 30 min prior to imaging. In some experiments, cells were pre-treated with the 

pharmacological inhibitors gefitinib, NS8593 and 2-APB during this period according to 

the purpose of experiments. Fluorescent signals were collected using an inverted 

epifluorescence microscope (Axio Observer Z1 Live-Cell imaging system, Zeiss, 

Cambridge, UK) at excitatory wavelength of 490 nm and emission of 535 nm, and images 

were taken at 2-sec interval for 4 min. Stimuli were added 30 sec after the fluorescent 
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signal of sample had been collected, and the average fluorescent level in the first 30 sec 

was considered as the basal level. Data were acquired and analysed using Zen Pro (Zeiss, 

Cambridge, UK). 

2.4.5 Flow cytometry 

Flow cytometry is a widely used method to analyse single cells or particles suspended in a 

buffered salt-based solution, where each particle or cell is measured for visible light scatter 

and one or multiple fluorescence parameters (Figure 2.1). Through the beam scatter light, 

cells or particles are analysed for forward scatter (FS) which correlates with cell size and 

side scatter (SS) which is proportional to the granularity of the cells, allowing to 

distinguish different cell populations. Within the flow cytometer, the fluorescence from 

stained cells or particles are channelled by a set of filters and mirrors, consequently 

detected by different photomultiplier tubes (PMTs).  

 

Figure 2.1 Overview of the flow cytometer. In the flow cytometer, cells pass individually 

through a laser light beam. Forward and side scattered light is detected to distinguish cell 

populations based on differences in cell size and granularity. Fluorescence from stained 

cells or particles are channelled by a set of filters and mirrors, consequently detected by 

different photomultiplier tubes (PMTs). 
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2.4.5.1 Measurement of intracellular free Mg2+ in VSMCs using Magnesium Green 

Intracellular free Mg2+ levels in VSMCs were assessed using fluorescent Mg2+ indicator 

Magnesium Green (Thermo Fisher Scientific, Renfrew, UK) and flow cytometry. 

Magnesium Green possesses the o-aminophenol-N, N, O-triacetic acid (APTRA) group, 

one of the most well-established ligands for targeting Mg2+, and displays a higher affinity 

for Mg2+ than other APTRA-based probes such as mag-fura-2 and mag-indo-1. Magnesium 

Green has excitation maximum and emission maximum at 490 nm and 520 nm 

respectively (433). Upon binding to Mg2+, Magnesium Green exhibits increased intensity 

of the fluorescence emission without any shift in the wavelength. The fluorescent signal 

can be detected by fluorescence-sensing techniques such as flow cytometry.  

VSMCs cultured were detached from a T-75 cell culture flask  by 0.5% trypsin-EDTA 

solution for 3 min at 37°C. The resulting cell suspension was transferred to a 15 sterile 

tube and washed using 12 ml of sterile DPBS, followed by centrifugation at 1,200 rpm for 

3 min at room temperature. Supernatant was removed and the cell pellet was resuspended 

in 1,400 μl of Mg2+ and Ca2+ (Ca2+/Mg2+)-free HEPES buffer (150 mM NaCl, 5 mM KCl, 

10 mM d-glucose and 20 mM HEPES), followed by 10 min incubation at 37°C for 

stabilisation. Magnesium Green solution was prepared by adding 5 μl of 2.5 mM 

Magnesium Green diluted in DMSO and 1 μl of Pluronic F127 (20% solution in DMSO) to 

2 ml of Ca2+/Mg2+-free HEPES buffer. The final concentration of Magnesium Green is 

~6.25 μM and Pluronic F127 is 0.01%. Subsequently, 600 μl of the prepared Magnesium 

Green solution was added to the cell solution, followed by 30 min incubation at 37°C in 

the dark. To avoid the attachment of VSMCs to the tube wall, the tube was vortexed gently 

every 5 min. Stained cells were then washed twice with 12 ml of DPBS by centrifugation 

at 1,200 rpm for 3 min at room temperature. The resulting cell pellet was resuspended in 

200 μl of HEPES buffer with Mg2+ and no Ca2+(150 mM NaCl, 5 mM KCl, 10 mM d-

glucose, 20 mM HEPES and 1 mM MgCl2). Cell suspension was kept at room temperature 

for 15 min to allow complete de-esterification of intracellular AM esters before 

measurement. In some experiments, inhibitors such as gefitinib, NS8593, and 2-APB were 

added to samples during this period according to the purpose of experiments. Stimuli 

(VEGF or EGF in this study) were then added to samples and mixed by gentle vortex, and 

after 5 min flow cytometry was performed to assess the intracellular level of free Mg2+ 

using the fluorescein isothiocyanate (FITC, Ex/Em 492/517). 

 



82 

 

2.4.5.2 Assessment of cell proliferation using CFSE 

To assess how growth factors regulate VSMCs proliferation, the cell tracking dye 

carboxyfluorescein succinimidyl ester (CFSE) was used. CFSE is initially introduced into 

cells as carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), a colourless nonpolar 

analogue of fluorescein. After CFDA-SE diffuses into the cytoplasm, its acetate 

substituents are cleaved by cellular nonspecific esterases, resulting in highly fluorescent 

and membrane impermeable CFSE, which covalently labels long-lived intracellular 

molecules through reacting with amine groups on peptides and proteins (434, 435). When 

CFSE-labelled cell divides, the fluorescein-tagged molecules are split roughly evenly 

between the two daughter cells, and thus cell division can be indirectly assessed by 

measurement of the corresponding decrease in the fluorescence intensity by flow 

cytometry.  

Briefly, quiescent VSMCs were trypsinized by 0.5% trypsin-EDTA solution for 3 min at 

37°C. The resulting cell suspension was transferred to a 15 sterile tube and washed using 

12 ml of starvation medium, followed by centrifugation at 1, 200 rpm for 3 mint at room 

temperature, and the cell pellet was resuspended by 1 ml of sterile DPBS containing 1% 

FBS. 1 μl of 5 mM CFSE (Thermo Fisher, Renfrew, UK) diluted in DMSO was added to 

the cell solution resulting in a final concentration of 5 μM for CFSE, and mixed by gentle 

vortex, followed by incubation at 37°C for 30 min. The stained cells were then washed 

twice using basal cell culture medium. Following the second centrifugation, the 

supernatant was removed and the cell pellet was resuspended using appropriate volume of 

cell culture medium. CFSE-labelled cells were then plated at 30% confluence and cultured 

for 24 h in cell culture medium (10% FBS), followed by incubation in DMEM 

supplemented with 2.5%-5% FBS for 72 h. During this period, cell culture medium was 

refreshed with the addition of stimuli (e.g. EGF) every 24 h. In some experiments, 30 min 

prior to the addition of stimuli, inhibitors such as gefitinib, NS8593 and 2-APB were added 

to the medium. After 72 h, cells were trypsinized using 0.5% trypsin-EDTA, washed using 

sterile DPBS and resuspended in 300 μl of DPBS containing 1% FBS. Flow cytometry 

with the FITC PMT (Ex/Em 492/517) was performed to assess cell division by measuring 

the fluorescence of VSMCs. Data acquisition and analysis were performed using the 

software FACSDiva (BD Biosciences).  
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2.4.6 Scratch-wound assay  

To investigate how growth factors regulate VSMCs migration, the scratch-wound assay, a 

two-dimensional (2D) in vitro technique was performed. This assay is based on the 

observation that, upon creation of a cell-free area by scratching a confluent cell monolayer, 

cells on the edge of the ‘wound’ will migrate into the gap to close the ‘wound’ until the 

establishment of new cell-cell contacts (436, 437). However, this ‘wound healing’ is 

considered as a combination of both cell migration and proliferation. To ensure true 

detection of migration, pre-treating with DNA synthesis inhibitors such as mitomycin C is 

often recommended (438). In this study, to reduce the effects of cell proliferation, the assay 

was performed in a medium with low FBS (0.5%), a condition used for cell starvation in 

our experiments.  

VSMCs were counted with a haemocytometer and plated at density of 100, 000 cells/well 

in a 6-well plate. Cells were cultured in basal culture medium (10% FBS), and when cells 

were confluent, medium was replaced with starvation medium (0.5% FBS) overnight. 

Subsequently, a sterile pipette (200 µl) was used to slowly and gently scratch the cells 

across the centre of the well, resulting a straight ‘wound’ with equal width. Wells were 

washed using DPBS to remove the floating cells, and then the 6-well plate was placed on a 

microscope (EVOS XL Core, Thermo Fisher Scientific, UK). 3 zero-hour (0h) photos were 

taken at appropriate areas for each well using a 10× objective. Cells were then incubated in 

fresh starvation medium, with the addition of growth factors (EGF or VEGF, 50 ng/ml) for 

20 h. In some experiments, 30 min prior to the addition of stimuli, inhibitors such as 

gefitinib, NS8593 and 2-APB were added to the medium. After 20 h, the plate was placed 

on the microscope, and 3 photos were taken at appropriate areas for each well using the 

10× objective. The images were collected and analysed using Image J software. Cell 

migration was determined by the distance travelled from one side of the scratch to the 

other side during the 20 h.  

2.4.7 Proximity ligation assays 

rVSMCs from WKY were seeded on cover glasses (13 mm, Thickness No.0; VWR) at a 

density of 5×104 cells per well in 6-well plates. The following day, cells were stimulated 

with EGF (50 ng/ml) for 5 min with or without 30 min pretreatment of inhibitors. Cells 

were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature, and cell 

membranes were then stained by wheat germ agglutinin (WGA; cat.#: w6748; Invitrogen) 

for 25 min, followed by permeabilization using 0.1% Triton X-100 (Sigma-Aldrich) in 
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PBS for 10 min at room temperature. Cells were washed with Buffer A (0.01 M Tris-Base, 

0.15 M NaCl, 0.05% Tween-20, pH=7.4) and blocked using Blocking Buffer for 1 hour at 

37°C, followed incubation with primary antibodies EGFR (cat.#: 2646S; Cell signalling; 

1:100) and TRPM7 (cat.#: MA5-27620; Invitrogen; 1:100) overnight at 4°C. The 

following day, proximity ligation assay was performed according to the manufacturer’s 

protocol using the Duolink Detection Kit (Sigma-Aldrich). Briefly, cells were washed 

using Buffer A and incubated with Duolink® In Situ PLA® Probe Anti-Mouse PLUS 

(cat.#: DUO92001) and Duolink® In Situ PLA® Probe Anti-Rabbit MINUS 

(cat.#:DUO92005) at 37°C for 1 hour to label TRPM7 and EGFR respectively. Circular 

DNA molecules were formed in Ligation Buffer (working dilution 1:5) containing DNA 

Ligase (1:40) at 37°C for 30 min, and were amplified in Amplification Buffer (1:5) 

containing the rolling circle polymerase (1:80) at 37°C for 100 min. Coverslips were 

mounted with Duolink® In Situ Mounting Medium with DAPI (cat.#: DUO82040; Sigma-

Aldrich). Images were acquired using a laser-scanning confocal microscope (LSM 5 

PASCAL ZEISS) under an oil immersion objective (63×/1.4 NA). In order to detect all 

PLA signals, a series of Z-stack images were collected and were analysed by Image J 

software. 

2.4.8 Confocal microscopy 

rVSMCs from WKY were seeded on cover glasses (13 mm, Thickness No. 0; VWR) at a 

density of 8×104 cells per well in 6-well plates. After stimulation, cells were fixed by 4% 

paraformaldehyde in PBS for 15 min and permeabilized with Triton X-100 (Sigma-Aldrich) 

in PBS for 4 min at room temperature. After three washes with Tris-buffered saline (TBS; 

150 mM NaCl, 20 mM Tris-HCl, pH 7.6), cells were blocked with 10% goat serum and 2% 

BSA (w/v) in TBS for 1 h at room temperature. Cells were then washed three times using 

TBS, and incubated with specific primary antibodies to: TRPM7 (cat.#: MA5-27620; 

Invitrogen; 1:300) and EGFR (cat.#: 2646S; Cell signalling; 1:300) overnight. The 

following day, cells were washed and then incubated with 1:400 diluted secondary 

antibodies Alexa Fluor 555 Goat anti-Rabbit IgG (cat.#: A-21428; Invitrogen) and Alexa 

Fluor 488 Goat anti-Mouse IgG (cat.#: A-11001; Invitrogen) for 2 hours at room 

temperature. Coverslips were mounted with Prolong Gold Antifade mounting medium with 

DAPI (cat.#: P36935; Invitrogen). Staining were visualized using a laser-scanning confocal 

microscope (ZEISS LSM880) with a 40× (NA 1.1) water-immersion objective. Images 

were analysed using the open source Fiji software. 
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2.4.9 Live cell imaging of intracellular TPRM7 movement  

Human embryonic kidney (HEK) 293 cells (HEK-293) expressing yellow fluorescent 

protein (YFP)-tagged wild type mouse TRPM7 (WTmTRPM7-YFP) were kindly provided 

by Dr. Vladimir Chubanov (Ludwig Maximilian University of Munich, Munich, Germany). 

The transient transfected HEK-293 cells were maintained in DMEM containing 10% FBS. 

After EGF (50 ng/ml) treatment, fluorescent signal of TPRM7 in HEK-293 cells were 

recorded for 15 min by an inverted epifluorescence microscope (Axio Observer Z1 Live-

Cell imaging system, ZEISS) at excitatory wavelength of 490 nm and emission of 535 nm. 

Images were acquired and analysed by Zen Pro software (ZEISS). 

2.5 Animals  

2.5.1 Housing and husbandry  

Wild type TRPM7+/+ (WT) mice (C57BL/6J and SV-129 mixed background) and mice 

heterozygous for the deletion of TRPM7 kinase domain (TRPM7+/Δkinase) were housed  in 

the BHF Glasgow Research Centre, Institute of Cardiovascular and Medical Sciences, 

University of Glasgow. Mice were housed and breed in individual cages under controlled 

conditions including constant humidity and temperature (22-24°C), a 12-hour light/dark 

cycle and accessible food and tap water. Cages were cleaned and replaced twice a week by 

the staff working in animal rooms. SV-129 mice were housed at Sapienza University by 

Professor Carmine Savoia’s research group under controlled conditions.  

Ear clipping was used to identify individual adult rodents. Genetically modified animals 

were confirmed by genotyping performed by Mrs Jackie Thomson and Mrs Wendy Beattie. 

All in vivo procedures were carried out by Dr. Francisco Rios under his personal license 

(University of Glasgow, UK), and all animal experiments were performed in accordance 

with proper regulations, guidelines and principles that apply to Scotland as highlighted in 

Section 2.1. Studies at Sapienza University were performed in accordance with the Italian 

Law on the protection of animal. 

2.5.2 Wild type and TRPM7-kinase heterozygous mice  

To investigate how the kinase domain of TRPM7 contributes to TRPM7-mediated 

signalling pathways and vascular function, WT and TRPM7+/Δkinase mice were used. WT 

mice were generated on the mixed background C57B1/6 and SV-129. The deletion of 

TRPM7 kinase domain was obtained using a gene-targeting vector through inserting a 

neomycin resistance gene cassette to replace exons 32-36 encoding the large portion of the 
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kinase domain (76). As a result of this technique, mutant TRPM7 mRNA encodes a protein 

containing amino acids 1-1, 537 of TRPM7, which is truncated immediately upstream of 

the α-kinase domain (Figure 2.2). Homozygous TRPM7Δkinase mice are embryonic lethal, 

suggesting that the intact kinase domain of TRPM7 is necessary for normal development 

of mice (76). TRPM7+/Δkinase mice were generated through breeding between male WT and 

female TRPM7+/Δkinase, and the offspring were either homozygous TRPM7+/+ (WT) or 

heterozygous TRPM7+/Δkinase, which were confirmed by genotyping after 3 weeks old.  

 

 

Figure 2.2 A schematic representation of truncated TRPM7 protein. The deletion of 

TRPM7 kinase domain was obtained using a gene-targeting vector technique. Arrow 

indicates the position of truncation in TRPM7Δkinase.  

2.5.3 SV-129 mice and drugs administration 

The SV-129 mouse strain was first generated by Columbia University in 1928 and has 

been frequently used in biomedical research either as a background strain (wild type) or in 

the production of targeted mutations (439). In this study, to investigate the in vivo role of 

RTK inhibitors vatalanib and gefitinib, specific for VEGFR and EGFR respectively, 

normotensive male SV-129 mice were housed in individual cages under controlled 

conditions: constant humidity and temperature of 22-24°C, a 12-hour light/dark cycle and 

accessible standard food and tap water. 8 weeks-old SV-129 mice were divided into 3 

groups (n=6 for each group), and treated for 2 weeks, as follows: vehicle-treated group, 

gefitinib-treated group (Gef, 100 mg/Kg/day) and vatalanib-treated group (Vat, 100 

mg/Kg/day). In previous studies, the concentrations were well tolerated by mice and no 

significant signs of toxicity were observed (440, 441).. Blood pressure (BP) was measured 
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by tail-cuff before and after the treatment. Mice were sacrificed and tissues including 

kidney, heart and aorta were collected for further experiments. It should be noted that 

animal housing, BP measurement, and tissue collection were performed by Professor 

Carmine Savoia’s research group at Sapienza University. Collected tissues were carefully 

transported to Glasgow under dry ice conditions.  

2.5.4 Rat model of preeclampsia 

To explore the involvement of the VEGF-VEGFR system and Mg2+ transporters in PE, we 

took advantage of two animal models of PE in this study. SHRSP is an established model 

of genetic predisposition to hypertension and stroke, which has made a tremendous 

contribution to cardiovascular research. Graham and her research group have demonstrated 

that pregnant SHRSP exhibits deficient uterine artery remodelling adversely affecting 

pregnancy outcome independent of pre-existing hypertension (442). Pregnant SHRSP rats 

also demonstrate reduced uteroplacental blood flow, increased sFLT-1/PIGF ratio in 

maternal plasma and increased albumin/creatinine (ACR) ratio in maternal urine, 

phenotypes that are associated with preeclampsia (442, 443). Thus, pregnant SHRSP is 

considered as a model of superimposed preeclampsia. The renin-angiotensin system (RAS) 

has been implicated in the pathogenesis of preeclampsia (444). Pregnant female human 

angiotensinogen (hAGN) transgenic rat (TGR) overexpressing angiotensinogen mated with 

male hrenin (hREN) TGR overexpressing renin displays preeclamptic features including 

increased blood pressure, proteinuria and placenta alterations of oedema and necrosis (445). 

In this study, placental tissues from pregnant WKY and SHRSP, the transgenic 

preeclampsia model and age-matched Sprague Dawley rats were kindly provided by Dr 

Delyth Graham and Dr Sheon Samji (Institute of Cardiovascular and Medical Sciences, 

University of Glasgow). Samples were prepared as described in section 2.4.1 for western 

blot.  

2.5.5 Genotyping  

WT and TRPM7+/Δkinase mice were genotyped using the REDExtract-N-AmpTM Tissue PCR 

Kit (Sigma-Aldrich, Dorset, UK). DNA was extracted from the murine ear notches 

according to manufacturer’s instructions, and the concentration and quality of isolated 

DNA were analysed using the NanoDrop spectrophotometer. The sequence designed to 

detect the TRPM7+/Δkinase is (5’ tgc gag gcc aga ggc cac ttg tgt agc 3’; and 5’ tgc gag gcc 

aga ggc cac ttg tgt agc 3’), which specifically amplifies the neighbouring sequence regions 

of TRPM7 kinase domain. DNA sample isolated from WT mice is not amplified using 
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these primers, because the PCR conditions in our study do not allow amplification of such 

a large sequence (TRPM7 plus the neighbouring sequence). Thus, the PCR product is only 

amplified in TRPM7+/Δkinase mice.  A control primer set (5’ aaa tct tag gct ggt aga cag tg 3’; 

and 5’ ctt atc tct caa gcc aat tta gga g 3’) independent of TRPM7+/Δkinase was also used 

to exclude the possibility that the absence of PCR bands observed in WT mice was caused 

by poor DNA extraction and/or PCR performance. The PCR reaction was carried out using 

a PTC-225 Peltier thermal cycle under the following conditions: 94°C for 15 sec; and then 

35 cycles of: 94°C for 10 sec (denaturation), 62°C for 30 sec (annealing) and 68°C for 2 

min (extension); followed by 68°C for 5 min and 4°C until reaction termination. 

Subsequently, the amplified PCR products were separated by agarose gel electrophoresis 

and visualized using a ChemiDocTM XRS+ System (Bio-Rad Laboratories Ltd, Watford, 

UK) with Image LabTM software. Experiments in this part were kindly performed by Mrs 

Jackie Thomson and Mrs Wendy Beattie. 

2.6 Small vessel wire myography  

Wire myography is an in vitro technique developed by Mulvany and Halpern in 1977, that 

is widely used to study the functional properties of isolated small arterial vessels (446). 

Briefly, on a four-channel wire myograph, small vessels were carefully dissected from 

murine mesenteries and were mounted between two wires that went through the lumen. 

One wire is connected to a micrometre allowing control of vessel circumference, and the 

other wire is connected to a force transducer that measures the tension developed by the 

vessel (Figure 2.3). Followed equilibration and a normalisation procedure, during which 

the passive length-tension relationship is determined, stimuli were added directly to the 

bath and vessel tension was monitored.  
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Figure 2.3 Schematic representation of wire myography system. Small vessel segment 

was mounted by two steel wires, with one connected to a micrometre allowing the control 

of vessel circumference, and the other connected to a force transducer that records changes 

in vascular tension. Modified from (447).  

2.6.1 Dissection of mesenteric arteries and preparation for myography  

Mice were sacrificed by CO2 inhalation and intestine including the superior mesenteric 

artery was removed and collected in a 50 ml tube containing cold DPBS. Under a 

dissecting microscope, the first or second order mesenteric arteries were carefully dissected, 

cleaned of surrounding perivascular fat using a spring scissor without contacting the vessel 

wall. Dissected artery was then cut into several segments that were approximately 2 mm in 

length. Before mounting the vessel segments, the organ bath was washed 4 times with 

distilled water followed by 4 times with PSS (pH 7.4) leaving PSS in the bath after the 

final wash and bubbled with 95% O2/5% CO2. Subsequently, two wires, approximately 2 

cm in length, were inserted through the lumen of the vessel segment minimizing contact 

with the artery wall. The mounting jaws and micrometre screw were adjusted properly, 

resulting in a final wire myography system with mounted vessel as shown in Figure 2.3.  

Mounted vessels were washed with PSS and left for 30 min equilibration at resting tension 

before normalisation. To set vessels to standard initial conditions, all vessels were 

normalised using the normalisation module in LabChart software. Following a rest period 

of about 20 min after normalisation, to ensure that the technique of isolating and mounting 

vessels does not cause impairment in functional response, the viability of the vessels was 
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assessed based on the contractile response to high-potassium (62.5 mM KPSS)-induced 

depolarization. Vessels were challenged at least twice by KPSS with a 5-minutes interval 

to achieve a full wake-up. Vessels that failed to maintain a sustained and repeatable 

contraction were excluded for further experiments, and the maximum response to KPSS 

was used for further analysis. To check endothelial integrity, vessels were first pre-

contracted by U46619 (3×10-8 M), followed by a single dose of acetylcholine (ACh, 1×10-6 

M) to induce endothelium-dependent relaxation. A functional endothelium is defined as a 

response to attenuate 50% or more of the maximal contractile effect induced by U46619. 

Vessels without a functional endothelium were not used in this study.  

2.6.2 Concentration response curves and data analysis   

Subsequently, to investigate how growth factors and TRPM7 affect vascular activity, 

vessels were incubated with VEGF (50 ng/ml), EGF (50 ng/ml) or Naltriben (TRPM7 

activator, 5×10-5 M) for 60 min and cumulative concentration-response curves (CCRC) in 

response to vasoconstrictor (U46619) or vasodilators (acetylcholine and SNP) were 

performed. It is worth mentioning that U46619 is a stable analogue of thromboxane A2 

(TXA2) which stimulates potent vessel contraction through  vascular smooth muscle 

TXA2 receptors (448), ACh induces vasodilation through promoting the release of nitric 

oxide (NO) from endothelial cells, which diffuses within the vessel wall and causes 

relaxation of smooth muscle cells (449), and sodium nitroprusside (SNP) is a well-known 

NO donor and it is able to induce endothelium-independent vascular relaxation (450). 

Briefly, to assess the contractile response to U46619, vessels were exposed to cumulatively 

increasing concentrations of U46619 (1×10-10 M, 3×10-10 M, 1×10-9 M, 3×10-9 M, 1×10-8 

M, 3×10-8 M, 1×10-7 M, 3×10-7 M, 1×10-6 M, 3×10-6 M). The tension developed by vessels 

was recorded by LabChart software and the contractile response to U46619 was calculated 

and expressed as a percentage of the maximal response to KPSS measured earlier. 

Similarly, to assess endothelium-dependent and endothelium-independent relaxation in 

response to ACh and SNP respectively, vessels were first pre-contracted to 80% of its 

maximum level using U46619 (3×10-8 M). Following a plateau of the contractile response 

to U46619, vessels were exposed to cumulatively increasing concentration of ACh or SNP 

(1×10-9 M, 3×10-9 M, 1×10-8 M, 3×10-8 M, 1×10-7 M, 3×10-7 M, 1×10-6 M, 3×10-6 M, 

1×10-5 M, 3×10-5 M). The tension level immediately achieved after pre-contraction with 

the addition of U46619 was set as 0% relaxation, and the relaxation in response to ACh or 

SNP was expressed as a percentage of relaxation relative to the presumed maximum 

relaxation (the distance between the stable tension recorded prior to the addition of 
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U46619 and the tense recorded at 0% relaxation). Dose-response curves were then 

converted and expressed as the percentage of contraction or relaxation to the log 

concentration of the stimulus (U46619, ACh, or SNP) using a log (stimulus) vs response 

model in the GraphPad Prism software, which were then analysed using the nonlinear 

regression model and extra sum-of-squares F test.  

2.7 Histology 

Aorta tissues from WT and TRPM7+/Δkinase mice were fixed in 10% buffered-formalin and 

embedded in paraffin. Histological sections (5 µm thickness) were stained with 

Haematoxylin and Eosin (HE). Briefly, aorta sections were deparaffinized and rehydrated 

in two 7-min changes of Histo-Clear (Fisher Scientific Ltd) and graded ethanol solutions 

(100%, 95% and 70%, 7 min each), followed by 7 min in distilled water. Next, nuclei were 

stained with Harris’ modified haematoxylin (Cell Pathology Ltd) for 2 min and then rinsed 

in running tap water for 5 min followed by 30 seconds in 70% ethanol. Cytoplasmic 

structures were stained using Eosin Y solution (Sigma-Aldrich) for 2 min. Consequently, 

tissue sections were rinsed in graded ethanol solutios (95% for 30 seconds ×2; 100% for 1 

min and 7 min separately), followed by two 5-min changes in Histo-Clear. Tissue sections 

were then mounted with glass coverslips using DPX non-aqueous mounting medium 

(Merck Millipore). Images were acquired using a light microscope (ZEISS) with 20× and 

40× objective and were analysed using Image J software.   

2.8 Statistical analysis 

All quantitative data were analysed using commercially available GraphPad 5/6 software 

package (San Diego, USA). Results were expressed as mean ± standard error of the mean 

(SEM), with sample size (n) indicating independent experiments specified in each figure. 

For comparisons between two treatment groups, unpaired and two-tailed Student t-test was 

performed. When more than two groups were compared, one-way analysis of variance 

(ANOVA) was performed, followed by Dunnett's or Tukey’s post-test. To compare 

vascular reactivity between groups, the maximal effect (top or bottom parameter) and the 

agonist concentration (Log agonist) that produced 50% of the maximal response (Log 

EC50) were calculated and compared using nonlinear regression (curve fit). To compare 

intracellular Ca2+ level between groups, results were converted and expressed as areas 

under curve (AUC), followed by comparison using Student t-test or ANOVA. Statistical 

significance was determined as a p value <0.05 and was indicated by special symbols in 

each figure.  



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 

 

 

 

Chapter Three 

3  Investigating the Interaction Between EGFR and TRPM7 in 

VSMCs 
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3.1 Overview 

Epidermal growth factor (EGF) belongs to the EGF family that binds to EGF receptor 

(EGFR) family (ErbB1, ErbB2, ErbB3, and ErbB4) (451). After binding, EGFR undergoes 

conformational changes and dimerization, which consequently leads to the 

autophosphorylation of tyrosine residues in the carboxyl terminal portion of the EGFR 

(452). Activated EGFR is able to trigger different downstream signalling pathways 

including PLCγ/PKC, RAS/RAF/MEK/MAPK, PI3K/AKT/mTOR, JAK/STAT and 

SFKs(46). The EGF-EGFR system exerts significant biological effects on many cellular 

processes including cell division, proliferation, migration, differentiation and ion 

homeostasis, and plays a pivotal role in embryo development, wound healing and tumour 

biology (261, 314, 453-455). 

EGFR has been identified in vascular smooth muscle cells (VSMCs) and endothelial 

cells with indispensable role in maintaining organ and cellular homeostasis (314). The 

crucial importance of EGFR to the cardiovascular system is observed experimentally in 

waved-2 (wa-2) mice, a genetic model that exhibits reduced activity of EGFR tyrosine 

kinase and develops defects in the aortic valve, left ventricular hypertrophy and heart 

failure (313). Additionally, these mice exhibit reduced vasoconstriction induced by 

aldosterone and salt with no effects on vascular remodelling (323). Inhibition of EGFR 

with erlotinib, a widely used anti-cancer drug, was shown to attenuate vascular 

hypertrophy and perivascular fibrosis induced by Angiotensin II (Ang II) infusion in 

C57BL/6 mice through mechanisms involving metalloproteinase ADAM17 and 

endoplasmic reticulum (ER) stress (456). Of importance, vasoactive agents such as 

aldosterone, endothelin-1 (ET-1) and Ang II have been shown to transactivate EGFR and 

consequently induce VSMCs hypertrophy, proliferation and migration through 

mechanisms involving EGFR downstream signalling pathways such as ERK1/2, p38 

MAPK and Src kinase (457-460).  

The relevance of TRPM7 in the cardiovascular system has been demonstrated by an 

increasing number of studies. Early cardiac TRPM7-deletion results in congestive heart 

failure and death at embryonic day 11.5 due to hypo-proliferation of the compact 

myocardium (138). TRPM7 contributes to cardiac rhythm, with evidence showing that 

TRPM7 is required to maintain cardiac automaticity in sinoatrial node (SAN) and regulates 

SAN fibrosis induced by Ang II by mechanisms dependent on Smad signalling (158, 159). 

In previous studies, we identified TRPM7 as a key regulator of Mg2+ homeostasis and 
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growth in VSMCs (2, 78). Using TRPM7 kinase-deficient mice with malfunction of the 

channel (TRPM7+/Δkinase), we found that TRPM7 exerts protective effects against Ang II-

induced hypertension, endothelial dysfunction and cardiac hypertrophy. TRPM7+/Δkinase 

mice also exhibit pro-inflammatory and pro-fibrotic cardiovascular phenotype (77, 461). 

The implication of TRPM7 in regulating blood pressure was also highlighted in a recent 

study by Polotsky and colleagues, showing that leptin induces hypertension through 

TRPM7 in carotid body (462).  

EGF-EGFR pathway has been shown to regulate TRPM7 expression and channel 

activity in different cancer cell lines by mechanisms involving phosphatidylinositol 4,5-

bisphosphate (PIP2) hydrolysis and mediate cell migration (135, 410). EGFR inhibitors, 

such as cetuximab and panitumumab, are widely used in cancer treatment, however, 

patients develop severe hypomagnesemia as a side effect (3). Bindels and colleagues 

demonstrated that EGF regulates activity and translocation of TRPM6, the TRPM7 

homologue, in kidney epithelial cells through mediating EGFR, SFKs and MAP kinase 

(259, 411).  

TRPM7 is ubiquitously expressed and plays important role in vascular cells, however, 

whether the interaction between TRPM7 and the EGFR signalling exists in the vasculature 

has not been investigated yet. Here, we hypothesized that in the vasculature the EGF-

EGFR ligand-receptor system interacts with TRPM7, and this process regulates TRPM7 

activity and influences vascular homeostasis, VSMCs function and cellular signalling.  
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3.2 Objective and aims  

Objective  

The overall objective of the in-vitro based studies presented in chapter 3 was to explore the 

crosstalk between the EGFR signalling and TRPM7 in the vasculature, mainly in VSMCs, 

and how this interaction affects cellular signalling pathways, VSMCs function and vascular 

homeostasis.    

Specific aims 

1. To study whether EGF induces VSMC signalling and Ca2+and Mg2+ mobilisation by 

mechanisms dependent on TRPM7 activation.  

TRPM7 protein expression and phosphorylation were used to assess TRPM7 activity. 

Effects of pharmacological inhibition of TRPM7 on EGF-induced ion homeostasis were 

studied.  

2. To study whether TRPM7 affects the intracellular signalling activation induced by 

EGFR in VSMCs.  

EGFR and c-Src kinase phosphorylation were assessed in vessels from WT, TRPM7 

kinase-deficient and TRPM7 kinase-dead mice. Effects of pharmacological inhibition of 

TRPM7 on the ERK1/2 activation induced by EGF were assessed. Physical interaction 

between EGFR and TRPM7 in VSMCs was also investigated.  

3. To explore the importance of EGFR-TRPM7-ERK1/2 pathway in VSMC function and 

vessel homeostasis.   

Effects of pharmacological inhibition of EGFR, TRPM7 and ERK1/2 on EGF-induced 

VSMC migration and proliferation were assessed. Additionally, we investigated the effects 

of genetic deficiency of TRPM7 on vessel structure and expression of the proliferation 

marker PCNA  

For this study we used VSMCs from rats, mice and human. We also investigated the cross-

talk of EGFR and TRPM7 in the following mice models: i) SV129 mice treated with the 

EGFR inhibitor gefitinib (463); ii) TRPM7 kinase-deficient mice with malfunction of the 

channel (TRPM7+/Δkinase) (461) and iii) the TRPM7 “kinase-dead” mice (TRPM7R/R) 

carrying a global K1646R point mutation (106, 157). 
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3.3 Results  

3.3.1 TRPM7 is expressed in VSMCs and contributes to Ca2+ homeostasis  

TRPM7 is a ubiquitously expressed channel and mediates Ca2+ and Mg2+ influx in 

different cell types (46). Firstly, we confirmed TRPM7 protein expression in VSMCs 

derived from humans and rats (Figure 3.1A). In previous study, we demonstrated that 

TRPM7 is able to mediate Mg2+ influx in VSMCs (2). Here we showed that TRPM7 is also 

involved in Ca2+ homeostasis in VSMCs. Naltriben, is a TRPM7 channel activator that 

affects channel gating rather than permeation characteristics of the TRPM7 pore through 

mechanisms involving PIP2  (430, 464). Naltriben was able to induce intracellular Ca2+ 

elevation in VSMCs, effect that was attenuated by TRPM7 inhibitors NS8593 and 2-APB 

(Figure 3.1B and C). To test the specificity and efficacy of the Ca2+ indicator Cal-520 

acetoxymethyl ester (Cal-520AM, Abcam) used in this study, VSMCs labelled by Cal-520 

were treated with ionomycin, a calcium ionophore that facilitates Ca2+ transport across cell 

membrane (465), and Ang II that rapidly induces intracellular Ca2+ elevation in VSMCs 

(466). Ang II and ionomycin induced rapid enhancement of fluorescent signals that were 

captured by live cell microscope and the fluorescent signals in VSMCs were also sensitive 

to changes of extracellular Ca2+ concentrations (data not shown). Thus, our data supported 

that the usage of Cal-520 to observe Ca2+ mobilisation in VSMCs is acceptable.  

3.3.2 Optimizing the protocol to detect Mg2+ in VSMCs  

To visualize Mg2+ mobilisation in VSMCs, we first tried the selective fluorescent 

probe Magnesium Green. hVSMCs stained with Magnesium Green (5µM and 20 µM) 

were imaged by live cell microscope. Addition of different concentrations of MgCl2
 did not 

induce any changes of fluorescent Mg2+-probe signal, as shown in Figure 3.1D. The dual 

wavelength intracellular magnesium indicator Mag-Fura-2 was also tested in hVSMCs, 

however, we did not detect fluorescent signals upon stimulation of MgCl2
 at different 

concentrations (Figure 3.1D). Finally, we decided to apply flow cytometry to investigate 

Mg2+ status in our study. As shown in Figure 3.1E, hVSMCs stained with Magnesium 

Green were incubated with MgCl2
 of different concentrations for 5 min and using flow 

cytometry we were able to observe changes of intracellular Mg2+ levels.  
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Figure 3.1 TRPM7 has a role in mediating Ca2+ and Mg2+ homeostasis in VSMCs. 

TRPM7 protein expression in hVSMC (upper panel) and rVSMC (lower panel) were 

examined by immunoblotting (A). Intracellular Ca2+ levels induced by naltriben (50 µM) 

were measured in the presence and absence of TRPM7 inhibitors NS8593 (NS, 40 µM) 

and 2-APB (30 µM) in hVSMCs. Data are expressed in Fluorescent Cal-520AM-Ca2+ 

signals (percentage of baseline)-time curve and in Area under curve (B-C). Fluorescent 

Mg2+ probes Mg Green and Mag-Fura-2 were tested in hVMSCs by live cell microscope 

(D). Detection of intracellular Mg2+ levels using Mg Green by flow cytometry (E). 

*P<0.05 compared to naltriben. 
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3.3.3 EGF regulates Ca2+ and Mg2+ homeostasis through TRPM7 in VSMCs 

EGFR expression was confirmed by immunoblotting in VSMCs derived from rats and 

humans (Figure 3.2A). Stimulation of rVSMCs with EGF induced Ca2+ mobilisation and 

significantly increased intracellular Ca2+ levels ([Ca2+]i), effects that were attenuated by 

EGFR inhibitor gefitinib and the non-specific TPRM7 inhibitor 2-APB, but not NS8593, a 

well-known potent and relatively specific inhibitor for TRPM7 (Figure3.2B and C) (157, 

430). In addition, EGF increased intracellular free Mg2+ concentration ([Mg2+]i), effect that 

was attenuated by gefitinib, NS8593 and 2-APB (Figure 3.2D). NS8593 was also reported 

to block Ca2+-activated channels (SK channels) (406), to clarify whether the inhibitory 

effect of NS8593 is via TRPM7, apamin, an SK channel inhibitor, was added as a control 

for NS8593. As shown in Figure 3.2D, apamin did not attenuate effects of EGF on [Mg2+]i, 

further supporting the importance of TRPM7 to the Mg2+ influx induced by EGF.  
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Figure 3.2 EGF regulates Ca2+ and Mg2+ homeostasis through EGFR and TRPM7. 

EGFR expression in rVSMCs (upper panel) and hVSMCs (lower panel) was examined by 

immunoblotting (A). Intracellular Ca2+ levels induced by EGF (50 ng/ml) were measured 

in the presence and absence of gefitinib (Gef, 1 µM), NS8593 (NS, 40 µM) and 2-APB (30 

µM) in rVSMCs. Data are expressed in Fluorescent Cal-520AM-Ca2+ signals (percentage 

of baseline)-time curve and in Area under curve (B-C). Intracellular free Mg2+ 

concentration ([Mg2+]i) after EGF (50 ng/ml) treatment (5 min) in the presence and 

absence of gefitinib (1 µM), NS (40 µM) , Apamin (Apa, 1 µM) and 2-APB (30 µM) (D). 

*P<0.05 compared to vehicle (veh) and † P<0.05 compared to EGF treated cells. 
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3.3.4 EGF regulates TPRM7 activation and expression in VSMCs through EGFR by 

c-Src-dependent mechanisms  

Next, we investigated whether EGF exerts regulatory effects on TRPM7. Thus, 

TRPM7 phosphorylation and total protein expression were investigated after EGF 

stimulation for 5 min and 24 h respectively. As shown in Figure 3.3A and B, EGF 

treatment significantly increased TRPM7 phosphorylation at Ser1511 (21%) and total 

expression (47%) in rVSMCs, effects that were abolished by gefitinib (21% and 70% 

respectively). SFKs, including Src, Fyn and Yes, are important downstream signalling 

pathways of EGFR (46), and EGF is known to stimulate TRPM6 activity though Src 

kinase (411). To determine whether c-Src is necessary for EGFR-mediated regulation of 

TRPM7, rVSMCs were preincubated with PP2, a selectively inhibitor c-Src (467). In the 

presence of PP2, EGF failed to stimulate TRPM7 phosphorylation (Figure 3.3A) and 

protein expression (Figure 3.3B).  

Additionally, we investigated whether EGF regulates other Mg2+ transporters, 

including TRPM6, magnesium transporter subtype 1 (MagT1), an important transporter 

involved in Mg2+ influx, and the 41st family of solute carrier member 1 (SLC41A1) which 

critically contributes to Mg2+ efflux (19). Long-term (24 h) stimulation with EGF did not 

change expression levels of TRPM6 (Figure 3.3C) and SLC41A1 (Figure 3.3D). However, 

it was found that EGF significantly increased expression of MagT1 (49%), effects there 

attenuated by inhibitors of EGFR (37%) and c-Src (46%) (Figure 3.3E).  

The importance of EGFR on TRPM7 expression was also investigated in wild type 

SV129 mice treated with vehicle or gefitinib (100 mg/Kg/day) for two weeks. TRPM7 

expression in aorta was assessed by immunoblotting. Aortas from animals treated with 

gefitinib exhibited reduced TRPM7 expression (73%) compared to the vehicle group 

(Figure 3.3F). 
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Figure 3.3 Effects of EGF on magnesium transporters in rVSMCs. rVSMCs were 

stimulated with EGF (50 ng/ml) for 5 min and 24 in the presence and absence of 30 min 

pretreatment of gefitinib (Gef, 1 µM) or PP2 (10 µM). Expression of phosphorylated 

TRPM7 (Ser1511) was accessed by immunoglotting after 5 min EGF stimulation (A).  

Expression of TRPM7 (B), TRPM6 (C), SLC41A1 (D) and MagT1 (E) was assessed after  

24 h EGF stimulation. TRPM7 expression in aorta (F) from mice treated with gefitinib 

(Gef, 100 mg/Kg/day) or vehicle for two weeks.  *P<0.05 compared to vehicle (veh) and † 

P<0.05 compared to EGF. 

3.3.5 Expression and activation of TRPM7 substrates   

To explore whether EGF regulates the expression of the TRPM7-kinase substrates 

annexin-1 and calpain-2, rVSMCs were treated with EGF (50 ng/ml) for 24 h in the 

presence and absence of gefitinib and PP2. As shown in Figure 3.4, long-term EGF 

treatment did not affect expression of annexin-1 (A) or calpain-2 (B). Annexin-1 and 

calpain-2 are well known downstream targets of TRPM7, and upon activation translocate 

to the plasma membrane (468). Thus, rVSMCs were treated with EGF for 1 min, 5 min, 30 

min and 60 min. Cell lysates were separated into membrane and cytosol rich fractions by 

ultracentrifugation. Protein expression in membrane fractions was normalised by 

membrane specific protein Na/K-ATPase. As shown in Figure 3.4, no statistical 

significance was found in the expression of annexin-1 (C) or calpain-2 (D) in cell 

membrane compared to unstimulated control group.   
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Figure 3.4 Expression and activation of TRPM7 substrates after EGF treatment. 

rVSMCs were pre-treated with gefitinib (Gef, 1 µM) or PP2 (10 µM) for 30 min and 

stimulated with EGF (50 ng/ml) for 24 h. The expression of annexin-1 (A) and calpain-2 

(B) was investigated by immunoblotting. Protein expression was normalised by the 

housekeeping protein β-actin. rVSMCs were stimulated with EGF (50 ng/mL) for 1, 5, 

30and 60 min. Membrane fractions were obtained by ultracentrifugation and investigated 

for the presence of annexin-1 (C) and calpain-2 (D). Na/K ATPase was used as 

housekeeping protein for the membrane fractions.   
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3.3.6 Expression of EGFR and c-Src activity is dependent on TRPM7-kinase 

Using an specific antibody to amino acids 1817-1863 of the kinase domain (cat.#: 

MA5-27620; Invitrogen), the kinase deficiency was confirmed in cells from TRPM7+/Δkinase 

mice by the reduction (80%) in immunoblotting signals (Figure 3.5A). At basal level, 

mVSMCs from TRPM7+/Δkinase mice exhibit reduced EGFR expression (68%) (Figure 3.5B) 

and c-Src phosphorylation (40%) at the activation motif Tyr416 (Figure 3.5C). TRPM7R/R 

mice that express a global “kinase-dead” K1646R point mutation and consequent 

deficiency of the catalytic activity was used to assess the role of the TRPM7-kinase (469). 

Relative to wild type C57BL/6 mice, aorta tissue from TRPM7R/R mice exhibited  

significantly reduced phosphorylation of EGFR (66%) on tyrosine 845 (Y845), a well-

known Src-dependent phosphorylation site (Figure 3.5D) (470). Taken together, our 

experiments suggest that TRPM7 interacts with EGFR and its downstream c-Src kinase, 

which is required for VSMCs to maintain EGFR and c-Src activity, and this process is 

dependent on a functional TRPM7-kinase.  
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Figure 3.5 TRPM7 is required for EGFR and c-Src activity in VSMCs. Protein 

expression and phosphorylation levels in VSMCs and aorta tissue derived from mouse 

models were assessed by immunoblotting, with representative images (upper panels) and 

quantification (lower panels). mVSMCs from WT and TRPM7 kinase-deficient mice 

(TRPM7+/Δkinase, M7+/Δ) were investigated for the expression of TRPM7 (A), EGFR (B) 

and phosphorylated c-Src (p-Src) (C) at basal level. Aortas from TRPM7 kinase-dead 

(TRPM7R/R, M7R/R) and wild type C57BL/6 mice were investigated for EGFR 

phosphorylation at tyrosine 845 (Y845) (C57BL/6 n=5, M7R/R n=6) (D). *P<0.05 

compared to WT mice. 
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3.3.7 EGFR directly interacts with TRPM7 in VSMCs in a c-Src-dependent manner  

Next we further investigated the interaction between TRPM7 and EGFR, given our 

previous observations that suggest a crosstalk between these proteins. Firstly, co-

immunoprecipitation experiments were performed in rVSMCs (Figure 3.6A). EGFR was 

detected when TRPM7 was immunoprecipitated with a TRPM7 specific antibody. The 

presence of TRPM7 was also detected when EGFR was immunoprecipitated using an 

EGFR specific antibody. The colocalization of EGFR and TRPM7 was also confirmed by 

immunofluorescence using confocal microscopy (Figure 3.6B). Finally, we performed 

proximity ligation assay (PLA) using antibodies against EGFR and TRPM7 in rVSMCs, 

which is a sensitive technique to detect and visualise protein-protein interactions (471). At 

basal level, there was significant PLA signals mainly distributed at cell membrane in 

rVSMCs, suggesting a direct interaction between EGFR and TRPM7 at cell surface 

(Figure 3.6C). Because EGF was shown to enhance TRPM7 expression and 

phosphorylation, we then questioned whether EGF regulates the interaction between EGFR 

and TRPM7. As shown in Figure 3.6C and D, 5 min EGF treatment increased 51% PLA 

signals in rVSMCs, and the effects were attenuated by gefitinib (34%) and PP2 (25%), 

suggesting that c-Src mediated the association between EGFR and TRPM7. 

3.3.8 Intracellular trafficking of TRPM7 in HEK293 cells 

EGF has been shown to promote translocation of TRPM6 from cell cytosol to 

membrane (411). It was also observed that TRPM7 translocates from the cytosol to the 

plasma membrane in VSMCs (141) and thus we tried to investigate whether the enhanced 

EGFR-TRPM7 interaction is accompanied by TRPM7 translocation upon EGF stimulation. 

HEK-293T cells (kindly provided by Dr. Will Fuller and Xing Gao) overexpressing yellow 

fluorescent protein (YFP)-tagged TRPM7 (YFP-TRPM7) were stimulated with EGF for 15 

min. The fluorescent signal was captured by live cell microscopy. As shown in Figure 

3.7A, there were no significant TRPM7 movements towards cell membrane after EGF 

stimulation, suggesting that the regulation of EGFR-TRPM7 interaction by EGF may not 

depend on TRPM7 trafficking.  
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Figure 3.6 Direct interaction between EGFR and TRPM7 in VSMCs. EGFR was 

detected when TRPM7 was immunoprecipitated from rVSMCs using anti-TRPM7 

antibody (left panel) and TRPM7 was detected when EGFR was immunoprecipitated from 

rVSMCs using anti-EGFR antibody (right panel) (A). Representative confocal microscopy 

images of rVSMCs co-immunostained for TRPM7 (Alexa 488, green) and EGFR (Alexa 

555, red). Nuclei were stained with DAPI (B). Proximity ligation assay was used to 

visualize and quantify TRPM7-EGFR interaction in rVSMCs stimulated with vehicle 

(Veh), and EGF (50 ng/mL) for 5 min in the presence and absence of gefitinib (1 µM) and 

PP2 (10 µM). Wheat germ agglutinin (WGA, Alexa 488, green) was used to stain cell 

membranes. Red dots are identified as PLA positive signals. Orange dots in the merge 

figure identify the colocalization in the cell membrane (C and D). Scale bar=5 µm. Arrows 

indicate colocalization of EGFR and TRPM7. *P<0.05 compared to vehicle (veh) and † 

P<0.05 compared to EGF treated cells. 
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Figure 3.7 Observation of intracellular TRPM7 movements upon EGF stimulation. 

HEK cells overexpressing YFP-TRPM7 was stimulated with EGF (50 ng/ml) for 15 min. 

Cellular location of fluorescent TRPM7 was recorded by an inverted epifluorescence 

microscope (Axio Observer Z1 Live-Cell imaging system, ZEISS) at excitatory 

wavelength of 490 nm and emission of 535 nm.  
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3.3.9 The effects of TRPM7 on ERK1/2 activation induced by EGF  

Growth factors such as EGF and VEGF through binding to their receptors activate a 

wide range of downstream signalling pathways, including the MAP kinase pathway (46). 

MAP kinase ERK1/2 is now known to play an important role in the vasculature (223, 472).  

In rVSMCs EGF stimulation for 5 min increased ERK1/2 phosphorylation (2-fold), effects 

that were reduced by pre-treatment with inhibitors of EGFR (gefitinib, 55%), c-Src (PP2, 

56%) and TRPM7 (NS8593 and 2-APB, 46% and 57% respectively) (Figure 3.8A). Next, 

the phosphorylation of ERK1/2 was investigated in mVSMCs derived from WT and 

TRPM7+/Δkinase mice. At basal level, there was remarkably reduced ERK1/2 

phosphorylation (90%) in mVSMCs from TRPM7+/Δkinase mice relative to WT (Figure 

3.8B). While EGF still triggered ERK1/2 phosphorylation in TRPM7+/Δkinase mice (EGF 

1.54±0.97 vs veh 0.095±0.037), the extent was significantly reduced compared to WT 

(M7+/Δ 1.54 ±0.97 vs WT 5.09 ±0.26) (Figure 3.8B).  

As TRPM7 is a chanzyme comprising an α-kinase domain linked to its channel 

segment, and the kinase domain has been shown to influence TRPM7 channel activity and 

mediate cellular functions (107, 108). Thus, we questioned whether TRPM7 kinase 

catalytic activity is involved in the regulation of ERK1/2 activity. ERK1/2 phosphorylation 

was examined in aortic tissue from C57BL/6 and the “kinase-dead” TRPM7R/R mice. There 

was significantly reduced ERK1/2 phosphorylation (37%) in aorta isolated from 

TRPM7R/R mice, confirming that the effect is kinase dependent (Figure 3.8C).  
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Figure 3.8 EGF induces ERK1/2 phosphorylation through TRPM7 in VSMCs. 

rVSMC were pre-treated with inhibitors of EGFR (gefitinib, Gef, 1 µM), c-Src (PP2, 10 

µM), TRPM7 (NS8593, 40 µM), non-selective TRPM7 (2APB, 30 µM) for 30 min, 

followed by EGF (50 ng/ml) stimulation for 5 min (A). *P<0.05 compared to veh and † 

P<0.05 compared to EGF. mVSMCs derived from WT and TRPM7+/Δkinase (M7+/Δ) mice 

were stimulated with vehicle or EGF (50 ng/mL) for 5 min (B). *P<0.05 compared to WT 

veh and † P<0.05 compared to WT EGF. Aortic tissues isolated from TRPM7R/R (M7R/R) 

and wild type C57BL/6 mice (C57BL/6 n=6, M7R/R n=9) (C). *P<0.05 compared to wild 

type. ERK1/2 phosphorylation was assessed by immunoblotting and normalised by total 

protein expression.  
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3.3.10 EGF enhances VSMCs proliferation and migration through TRPM7 and 

ERK1/2  

VSMCs proliferation and migration are key processes in VSMCs phenotypic 

modulation, contributing to physio(patho)logic processes in the vasculature (473, 474). We 

explored whether EGF regulates VSMCs migration and proliferation and the involvement 

of EGFR downstream kinases, TRPM7 and ERK1/2. Using CFSE proliferation assay, we 

found that EGF promoted rVSMCs proliferation (17%), effects that were attenuated by 

gefitinib (7%), NS8593 (20%), 2-APB (11%) and PD98059 (10%), an ERK1/2 inhibitor 

(Figure 3.9A). VSMCs migration was investigated by Scratch-wound assay. Because EGF 

was found to enhance rVSMCs proliferation, serum-free medium was used throughout the 

study to reduce the effects of cell proliferation. As shown in Figure 3.9B, EGF 

significantly increased rVSMCs migration (27%), which was inhibited by gefitinib (26%), 

NS8593 (53%), 2-APB (18%) and PD98059 (35%) (Figure 3.9B).  
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Figure 3.9 EGF regulates VSMCs proliferation and migration through TRPM7 and 

ERK1/2. rVSMCs were treated with EGF (50 ng/ml) for 20 h (migration study) or 72 h 

(proliferation study) in the absence and presence of gefitinib (Gef, 1 µM), NS8593 (NS, 40 

µM), 2-APB (30 µM) and PD98059 (PD, 20 µM). rVSMCs proliferation was examined by 

CFSE assay using flow cytometry. Upper panel: Representative flow cytometry histograms. 

Lower panel: Quantification of proliferation rate (percentage of control) (A). rVSMCs 

migration was assessed by Scratch-wound assay. Upper: Representative images. Lower: 

Quantification of migration as wound healing closure (B). *P<0.05 compared to vehicle 

(veh) and † P<0.05 compared to EGF.  
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3.3.11 The effects of TRPM7 deficiency on vascular structure  

Since TRPM7 interacts with the EGF-EGFR system and plays an important role in 

VSMCs migration and proliferation, we studied the effects of TRPM7-deficiency on vessel 

morphology. Aortas were isolated from WT and TRPM7+/Δkinase mice and stained with 

Haematoxylin and Eosin (HE). As shown in Figure 3.10A and B, there was significantly 

reduced vessel wall thickness in TRPM7+/Δkinase (35%), which was associated with reduced 

TRPM7 phosphorylation (67%) (Figure 3.10C) and expression of proliferating cell nuclear 

antigen (PCNA) (66%), a widely used cell proliferation marker (475) (Figure 3.10D). To 

further investigate the underlying mechanisms of altered vessel structure in TRPM7+/Δkinase 

mice, we investigated the expression of NOTCH3, a cell surface receptor predominantly 

expressed in hVSMCs regulating vascular development (476). NOTCH3 protein 

expression was remarkably reduced in mVSMCs derived from TRPM7+/Δkinase mice (92%) 

(Figure 3.10E), and there was a decreased trend (p=0.053) of NOTCH3 expression in 

aortic tissues isolated from TRPM7+/Δkinase mice (WT 1.04 ±0.19 vs M7+/Δ 0.33±0.17) 

(Figure 3.10F).  

3.3.12 The effects of TRPM7 in vascular relaxation and contraction induced by EGF  

To investigate whether EGF influences vascular reactivity, small mesenteric arteries 

were isolated from wild type (WT) and heterozygous TRPM7+/Δkinase mice. The arteries 

were incubated with EGF (50 ng/ml) for 30 min and vascular reactivity was assessed by 

wire myography. As shown in Figure 3.11, vessels exposed to EGF were less responsive 

to acetylcholine (ACh)-induced relaxation in both WT  (maximum response: veh 97%±3% 

vs EGF 63%±10%, p<0.05), and TRPM7+/Δkinase mice (maximum response: veh 89%±5% 

vs EGF 69%±5%, p<0.05) (A), while there were no significant differences in sodium 

nitroprusside (SNP)-induced vessel relaxation (B) and U46619-induced contraction (C) 

among groups of the two mice strains.  

 



116 

 

Figure 3.10 TRPM7 deficiency is associated with structural alterations of vessel walls. 

Aortas were isolated from WT and TRPM7+/Δkinase (M7+/Δ) mice. Tissues were stained 

with Haematoxylin and Eosin (HE) to study aortic wall thickness. 20X objective: Scale 

bar=150 µm. 40X: Scale bar=75 µm (A and B). Total tissue lysates of aortas were 

examined for phosphor-TRPM7 (C), PCNA (D) and NOTCH3 (F) by immunoblotting. 

NOTCH3 expression in VSMCs derived from WT and M7+/Δmice was examined by 

immunoblotting (E). *P<0.05 compared to WT. 
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Figure 3.11 EGF regulates vascular relaxation independently of TRPM7 kinase. 

Isolated vessels were treated with EGF (50 ng/ml) for 30 min and vascular activity was 

assessed by wire myography. Endothelium-dependent vascular relaxation was assessed by 

concentration-response curve to acetylcholine (ACh, 1 nM – 100 µM) (A). Endothelium-

independent vascular relaxation was assessed by concentration-response curve to sodium 

nitroprusside (SNP, 10 nM – 10 µM) (B). Vascular contractility was assessed by 

concentration-response curve to U46619 (10 nM – 1 µM) (C). *P<0.05, maximum 

response:  EGF vs vehicle (Con) counterparts. 
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3.3.13 The effects of TRPM7 on Mg2+ homeostasis, ERK1/2 activation and migration 

induced by EGF in human VSMCs  

We questioned whether the novel pathway (EGFR-c-Src-TRPM7-ERK) observed in 

rodent cells and tissues are present in human cells. hVSMCs were derived from 

normotensive male and female human subjects (Table 3.1). Initially, we observed that 5h 

EGF stimulation increased expression of TRPM7 (67%) compared to vehicle treated 

controls, and the pre-treatment with gefitinib was able to reduce the effect (14%) (Figure 

3.12A). EGF treatment induced increased [Mg2+]i (6%) effects that were reduced the 

treatment with gefitinib (11%), NS8593 (19%) and 2-APB (29%) (Figure 3.12B). Next, we 

observed the phosphorylation of ERK1/2, which was increased by EGF (2-fold), which 

was reduced by pre-treatment with gefitinib (22%), NS8593 (19%) and 2-APB (17%) 

(Figure 3.12C). Cell migration assay demonstrated that EGF enhanced hVSMCs migration 

(99%), and the effect was reduced by gefitinib (57%), PP2 (69%) and NS8593 (65%), 2-

APB (25%) and PD98059 (39%) as shown in Figure 3.12D.  
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Table 3.1 Characteristic of human patients undergoing craniofacial surgery. Small 

arteries were isolated from surplus surgical tissue of patients receiving elective craniofacial 

surgeries. Primary cell culture was established by Wendy Beatie and Jackie Thomson 

using the method we previously described (477). Hypertension is defined as a systolic 

blood pressure ≥140 mmHg and/or a diastolic pressure ≥ 90 mm Hg (478, 479). Biobank 

number is a unique ID allocated to each patient and is used to track sample information in 

Professor Touyz’ lab. L, left; R, right. 
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Figure 3.12 Effects of EGF on Mg2+ homeostasis, ERK1/2 activation and cell 

migration are mediated by TRPM7. Human VSMCs were treated with EGF (50 ng/ml) 

for short term (5 min) and long term (5 h and 20h) in the presence and absence of gefitinib 

(Gef, 1 µM), PP2 (10 µM), NS8593 (NS, 40 µM), 2-APB (30 µM) and PD98059 (PD, 20 

µM). TRPM7 expression after 5 h EGF stimulation was examined by immunoblotting 

using α-tubulin as the house keeping protein (A). [Mg2+]i
  after 5 min EGF treatment was 

assessed by flow cytometry using specific Mg2+ indicator Magnesium Green (B). ERK1/2 

phosphorylation after 5 min EGF stimulation was assessed by immunoblotting (C). 

Scratch-wound assay was used to check hVSMCs migration after 20 h EGF treatment (D). 

*P<0.05 compared to vehicle (veh) and † P<0.05 compared to EGF. 
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3.4 Chapter Discussion  

This study demonstrates the direct interaction between EGFR and the chanzyme 

TRPM7, which involves c-Src kinase and plays an important role in VSMCs function and 

vessel morphogenesis. Firstly, in primary VSMCs and aortic vessels from humans and 

different rodent models, we show that i) the EGF-EGFR pathway regulates TRPM7 

expression and phosphorylation in a c-Src-dependent manner and ii) EGFR is also 

regulated by TPRM7, supported by the fact that genetic TRPM7-defiency leads to reduced 

EGFR expression. To delineate the underlying molecular mechanisms, with several 

different approaches including PLA, immunocytochemistry and co-immunoprecipitation, 

we have shown that EGFR directly interacts with TRPM7 mainly at cell membrane and the 

interaction is enhanced by EGF stimulation in a c-Src kinase dependent pathway. Our data 

also suggest that the interaction between EGFR and TRPM7 regulates VSMCs function: i) 

EGF-EGFR regulates the activation of ERK1/2 via c-Src and TPRM7; ii) EGF-EGFR 

regulates cell migration and proliferation via TRPM7 and ERK1/2 and iii) TRPM7 kinase-

deficient mice exhibited reduced wall thickness.  

EGF exerts important regulatory roles in Mg2+ and Ca2+ homeostasis. Bindels et al. 

found that EGF through activating TRPM6 channel, which is localised along the apical 

membrane of distal convoluted tubule, stimulates renal Mg2+ absorption and handles 

systemic Mg2+ balance (52, 259, 411). Mutation in the EGF gene is associated with 

isolated recessive renal hypomagnesemia (IRH), and patients receiving cetuximab, an 

antagonist of EGFR, display gradually reduced serum Mg2+ level (259). EGF also mediates 

cellular Ca2+ homeostasis, with evidencing showing that EGF promotes both Ca2+ release 

from intracellular store and Ca2+ influx from the outer medium (252, 480). TRPM7 was 

identified as a Mg2+-and Ca2+- permeable channel essential for Mg2+ balance in mammals, 

and we previously found that TRPM7 functions as an important regulator of vascular Mg2+ 

homeostasis, while dysregulation of TRPM7 is associated with inherited hypomagnesemia 

(2, 67, 76, 78). TRPM7 also regulates the entry of Ca2+ in many cell types, such as platelet, 

atrial fibroblast and cancer cells (83, 84, 481). In particular, the TRPM7 kinase domain 

exerts important effects on store-operated Ca2+ entry (86, 87). Our study further expands 

the role of EGF in mediating cellular Mg2+, particularly in VSMCs via a TRPM7-

dependent manner. Additionally, our data showed that EGF regulates the expression of 

MagT1, an important transporter for Mg2+ influx, which in combination with TRPM7 

impacts Mg2+ uptake and cell proliferation (62, 63). Interestingly, although in our 

experiments EGF induced intracellular Ca2+ elevation, the effect was only abolished by 2-
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APB, and not by a relatively more specific TRPM7 inhibitor NS8593. 2-APB has been 

shown to exert nonspecific inhibitory effects on Ca2+ channels including TRPM2 and 

store-operated Ca2+ channels (482, 483). Taken together, our findings suggest that in 

VSMCs,  EGFR activation regulates Mg2+ homeostasis via TRPM7, while the Ca2+ 

mobilisation is mediated by EGF through other Ca2+ channels, which may include other 

TRP channels or store-operated Ca2+ channel, as they are inhibited by 2-APB (482, 483).     

EGFR belongs to the large RTKs family, and we have recently reviewed the cross-talk 

between TRPM7 and RTKs downstream signalling pathways (46). In the present study, we 

explored the effect of TRPM7 on EGFR and c-Src. Experiments were performed using 

cells and tissues from two mouse models, TRPM7+/Δkinase which is heterozygous for 

deletion of TRPM7-kinase with channel malfunction and TRPM7R/R which carries a 

mutant “dead” kinase domain. It was found that TRPM7 is important to maintain EGFR 

and c-Src activity at both cell and tissue levels with a critical involvement of the TRPM7 

catalytic activity. It is worth noting that, our experiments focused on the phosphorylation 

of c-Src at tyrosine 416 (Y416), which is associated with high kinase activity, and 

phosphorylation of EGFR on Y845, a Src-dependent phosphorylation site (470, 484). c-Src 

is downstream of EGFR, and the colocalization of EGFR and Src has been previously 

elucidated and supported by our co-IP experiment (data not shown) (485). Thus, the 

reduced EGFR phosphorylation (Y845) and c-Src (Y416) observed in TRPM7-deficient 

mouse models by our study also suggest a role of TRPM7 in the interaction between EGFR 

and c-Src. 

A key finding of this study is that EGFR directly interacts with TRPM7 at plasma 

membrane of VSMCs, and the interaction is enhanced by EGF in a c-Src-dependent 

manner. Proximity ligation assay is a powerful technique to detect, localise and quantify 

protein-protein interaction, which in combination with co-IP and confocal 

immunofluorescence, provided firm evidence of the EGFR-TRPM7 interaction. 

Importantly, our data confirmed TRPM7 expression at plasma membrane of VSMCs. 

Clapham and colleagues have shown that TRPM7 is most abundant on intracellular 

vesicles, with undetected level at the plasma membrane in multiple cell types. In our 

investigations, TRPM7 co-localised with EGFR, a well-known cell surface receptor, and 

the positive PLA signal mainly occurred at cell membrane. Thus, cellular location of 

TRPM7 may depend on cell types, while in VSMCs there is a relatively high expression at 

cell membrane. We also investigated mechanisms underlying the enhancement of EGFR-

TRPM7 interaction upon EGF stimulation. Bindels et al. demonstrated that EGF increased 
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TRPM6 cell surface expression (411), and thus we explored whether EGF-induced TRPM7 

trafficking to cell membrane, which would consequently contributes to the EGFR-TRPM7 

interaction. Using HEK-293T cells overexpressing YFP-TRPM7, we tracked TRPM7 

movement upon EGF stimulation, however, there was no significant TRPM7 trafficking 

towards cell membrane. Therefore, our data suggest that EGF-induced enhancement of 

EGFR-TRPM7 interaction might mainly depend on membrane-localised TRPM7.  

TRPM7 possesses dual properties as an ion channel and a cytoplasmic kinase, and thus 

it is not surprising that TRPM7 participates in cellular signalling activation. TRPM7 has 

been shown to affect the activity of RTKs downstream signalling cascades including the 

MAP kinase pathway (46). However, results have been contrasting and seems to be cell 

dependent. Xiong et al. found that silencing TRPM7 promotes proliferation via activating 

ERK1/2 in endothelial cells, while in mouse cortical astrocytes, silencing TRPM7 inhibits 

proliferation via ERK1/2 and c-Jun N-terminal kinases (JNK) pathways (124, 400). In 

HEK-293 cell line, overexpression of TRPM7 activated p38 MAPK and JNK, and reduced 

phosphorylation of ERK1/2 (104). Through modulating the MAP kinase pathway, 

particularly ERK1/2, EGF regulates cellular functions such as migration and proliferation 

in different types of cells (288-290). This pathway was confirmed in the present study, as 

PD98059, a pharmacological inhibitor of ERK1/2, attenuated EGF-induced VSMCs 

migration and proliferation. Importantly, our data demonstrate that TRPM7 is involved in 

ERK1/2 activation downstream of the EGF-EGFR system, and this pathway plays a critical 

role in regulating VSMCs function.  

Although EGF has been consistently demonstrated as a potent vasoconstrictor by 

several studies (319, 320), we did not observe any regulatory effects of EGF on vascular 

contraction. Interestingly, our data showed that EGF reduced ACh-induced relaxation, 

which is also endothelium dependent, in both WT and TRPM7+/Δkinase mice, suggesting a 

TRPM7 kinase-independent manner. Since the deletion of TRPM7 kinase domain did not 

change the channel expression in plasma membrane, but significantly reduced the channel 

currents, which is associated with altered Mg2+ status in plasma, urine and bones of the 

mice (76), it is difficult to conclude whether or not TRPM7 channel property is involved in 

EGF-regulated vessel relaxation. It would be interesting to investigate the contribution of 

TRPM7 substrates such as calpain-2, because calpain has been shown to affect endothelial 

function, NO production and endothelial adhesiveness (171). To further study the 

involvement of TRPM7 channel, chelators of Mg2+ and Ca2+ such as EGTA and EDTA can 

be applied accordingly in future experiments. In addition, to confirm that EGF mediate 
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endothelium-dependent relaxation, experiments can be repeated using endothelium-

denuded vessels. 

VSMCs are the main components of the artery media layer, maintaining the integrity 

and structure of mature vascular wall (486). Abnormal proliferation and migration of 

VSMCs have been associated with a number of vascular diseases including hypertension, 

atherosclerosis and in-stent restenosis (474, 487, 488).  The observation that EGFR and 

TRPM7, two proteins with critical cardiovascular relevance, interact at the membrane of 

VSMCs and mediate migration and proliferation, leads us to explore the effect of TRPM7 

deficiency on vascular wall. Using the TRPM7+/Δkinase mouse model, we showed that 

vascular wall thickness was reduced when there was a lack of TRPM7-kinase, which was 

associated with a decreased expression of PCNA, a proliferation marker. Notch3 functions 

as a critical regulator of developmental and pathological blood vessel formation, and our 

recent study found that mutation in Notch3 is associated with aberrant vascular function 

(489, 490). Here, we demonstrated that that Nothc3 expression was reduced in 

TRPM7+/Δkinase mice at both cell and tissue level. Therefore, our data suggest that TRPM7 

might have an important role during blood vessel morphogenesis. This process is 

associated with aberrant VSMCs proliferation resulting from TRPM7 deficiency and the 

dysregulation of Notch3.  

In summary, utilizing a combination of pharmacological, biochemical and genetic 

tools, and taking advantage of different animal models, we provide new evidence that 

EGFR directly interacts with TRPM7 at the plasma membrane in VSMCs. These effects 

are dependent on c-Src kinase, influence the activation of EGFR downstream signalling 

pathway and regulate VSMCs migration and proliferation. Importantly, TRPM7 deficiency 

is associated with reduced EGFR signalling pathway and reduced thickness of the vascular 

wall compared to WT animals. These findings define a novel pathway in VSMCs and 

expand the knowledge of EGFR and TRPM7 in vascular biology, which might contribute 

to a better understanding of pathology of cardiovascular diseases (Figure 3.13). Moreover, 

these data suggest that there is important interplay between EGF/EGFR and TRPM7 
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Figure 3.13 Schematic figure demonstrating the novel EGFR- and TRPM7- related 

signalling pathway in the vasculature. In VSMCs, growth factor EGF though activating 

EGFR, interacts with TRPM7 at cell membrane in a c-Src-dependent manner. The 

interaction influences TRPM7 activity (phosphorylation and expression) and consequently 

regulates Mg2+ homeostasis, ERK1/2 activation and VSMCs migration and proliferation. 

Crosstalk between the EGF-EGFR ligand-receptor system and TRPM7 in VSMCs may 

also exert important role in vascular homeostasis.   
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Chapter Four 

4 VEGF regulates TRPM7 through VEGFR, a process 

mediating ion homeostasis and vascular reactivity 
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4.1 Overview   

Vascular endothelial growth factor receptor (VEGFR), which belongs to the receptor 

tyrosine kinases (RTK) family,  together with the ligand VEGF are important signalling 

molecules involved in vascular development and regulation (491, 492). VEGF regulates 

cellular functions such as migration, proliferation and apoptosis has been studied 

thoroughly in endothelial cells (493). In vivo studies have demonstrated that VEGF is 

protective by promoting endothelial regeneration and accelerates the recovery of 

endothelium-dependent relaxation (335). 

Growth factors through activating RTKs have been shown to regulate TRPM7 activity 

in different types of cells. In hippocampal neurons, nerve growth factor (NGF), reduced the 

outward rectifying TRPM7-like current and this effect could be blocked by the inhibition 

of tyrosine kinase activity of TrkA (NGFR) and PLC inhibitor (413). In the HSC-T6 

hepatic stellate cell line, PDGF stimulation was shown to increase TRPM7 expression in a 

time-dependent manner (401). VEGF has been shown to regulate Mg2+ homeostasis in 

endothelial cells by releasing Mg2+ from intracellular stores (263). On the other hand, 

alterations in Mg2+ status are associated with imbalance of the VEGF-VEGFR system. 

Uysal et al. showed that chronic use of magnesium reduces VEGF levels in the uterine 

tissue in rats, and magnesium sulfate was reported to affect VEGF expression in placental 

tissue from normotensive and preeclamptic patients (394, 494). Underlying mechanisms of 

the close relationship between VEGF and Mg2+ remain unknown, and it is unclear whether 

Mg2+ transporters such as TRPM7 are involved in this process.  

VEGF-induced intracellular Mg2+ elevation was observed in HUVECs, where Hong et 

al. showed that VEGF-A165 released Mg2+ from intracellular store in a dose-dependent 

manner, without impact on Mg2+ influx (263). PDGF was found to increase intracellular 

Mg2+ in human osteoblast cells only in the presence of extracellular Mg2+, suggesting a 

dependence on Mg2+ influx (264). It was furthermore shown that PDGF is able to affect the 

expression of TRPM7, and mediate Mg2+ influx through TRPM7, a process associated with 

cell proliferation, migration and adhesion (264).  

 In the current chapter, we will focus on whether VEGF through activating its receptor, 

regulates TRPM7 in VSMCs and consequently influences ion homeostasis, activation of 

cellular kinases and vascular reactivity. 
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4.2 Objective and aims 

Objective  

The overall objectives of the studies presented in Chapter 4 were to explore whether VEGF 

regulates TRPM7 channel and kinase in VSMCs and to investigate the importance of 

TRPM7 on vascular reactivity induced by VEGF.  

Specific aims  

1. To elucidate whether VEGF regulates TRPM7 expression and activity in VSMCs  

Human VSMCs were stimulated with VEGF in the absence and presence of vatalanib for 

short (5 min) and long (5 h) term. TRPM7 expression and phosphorylation were examined 

by immunoblotting to assess TRPM7-kinase activity.  

2. To study whether VEGF regulates Mg2+ and Ca2+ homeostasis in VSMCs through 

TRPM7 

Human VSMCs were stimulated with VEGF for a short period (1-60 min) in the absence 

and presence of vatalanib and TRPM7 inhibitors NS8593 and 2-APB. Using specific 

fluorescent indicators, Ca2+ mobilization was examined by live cell microscope, and 

intracellular free Mg2+ was assessed by flow cytometry.  

3. To explore whether TRPM7 is important for MAP kinase activation induced by VEGF 

Human VSMCs were stimulated with VEGF for 5 min in the absence and presence of 

vatalanib and TRPM7 inhibitors NS8593 and 2-APB. Both total and phosphorylated forms 

of the MAP kinases (p38 MAPK and ERK1/2) and protein kinase C (PKC) were examined 

by immunoblotting.  

4. To examine effects of TRPM7 on the vascular activity induced by VEGF 

Mesenteric arteries were derived from mice wild type and TRPM7 kinase-deficient with 

channel malfunction (TRPM7+/Δkinase). Vessels were treated with VEGF and vascular 

reactivity (contraction and relaxation) was assessed by wire myography.   
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4.3 Results 

4.3.1 The effects of VEGF on TRPM7 expression and activity on VSMCs 

Human VSMCs stimulated with VEGF for 5 h exhibit a significant increase in 

TRPM7 expression (50%). These effects were attenuated by VEGFR inhibitor vatalanib 

(11%) (Figure 4.1A). No significant changes were found after 24 h stimulation with VEGF. 

Treatment with vatalanib for 24 h reduced TRPM7 (24%) expression compared to vehicle-

treated group (Figure 4.1B). TRPM7 mRNA expression was checked by qPCR. 5h 

treatment with VEGF increased TRPM7 mRNA (77%), effects that were attenuated by 

vatalanib (48%) (Figure 4.1C and D).  

TRPM7 can be phosphorylated at several serine and threonine sites and the process is 

associated with TRPM7-kinase activity and cellular localization (96, 495). Thus, we 

questioned whether VEGF influences TRPM7 by modulating phosphorylation of the 

kinase domain. VSMC cell lysate was immunoprecipitated using a specific anti-TRPM7 

antibody, and phosphorylation of TRPM7 was assessed by immunoblotting using a specific 

anti-phosphor tyrosine/serine/threonine antibody. As shown in Figure 4.1E, 5 min VEGF 

stimulation increased TRPM7 phosphorylation in a VEGFR-dependent manner. Because, 

TRPM7 has been identified in cell plasma membrane and in the intracellular vesicles and 

TRPM7 trafficking may play an important role in cell function  (64, 66), we next explored 

whether VEGF regulates TRPM7 translocation by examining cell surface expression of 

TRPM7. As shown in Figure 4.1F, VEGF increased the presence of TRPM7 in the cell 

membrane after 5 min stimulation. 

To further confirm the regulatory role of VEGF on TRPM7 expression, wild type 

SV129 mice were treated with vatalanib (Vat, 100 mg/Kg/d) and the expression of TRPM7 

was assessed in aortas and kidneys. There was a trend for decreased TRPM7 expression in 

the aorta (50%, Figure 4.1G) and kidney (38%, Figure 4.1H) tissues derived from the 

vatalanib-treated mice compared to the vehicle-treated group. 
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Figure 4.1 VEGF regulates TRPM7 expression and phosphorylation in hVSMCs. 

hVSMCs were treated with VEGF (50 ng/ml) for long term (5 h or 24 h) and short term (5, 

10 and 30 min) in the presence and absence of vatalanib (Vat, 1 µM). TRPM7 protein (A 

and B) and gene (C and D) expression after 5 h and 24 h treatment were assessed by 

immunoblotting and qPCR respectively. TRPM7 phosphorylation at Try/Ser/Thr residues 

after 5 min VEGF treatment was normalised by total TRPM7 expression (n=2, E). TRPM7 

expression in membrane-rich cell fractions after VEGF treatment for 5, 10 and 30 min was 

examined by immunoblotting, normalised by the cell membrane-specific protein Na/K-

ATPase (n=1, F). TRPM7 expression in aortas and kidneys from mice treated with vehicle 

(veh), vatalanib and gefitinib, 100 mg/Kg/d (G and H). * P<0.05 compared to veh. 
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4.3.2 The effects of VEGF on the expression of Mg2+ transporters in VSMCs  

VEGF has been shown to mediate intracellular Mg2+, and we recently found that EGF 

regulates the Mg2+ transporters TRPM7 and MagT1 (263). Thus, we explored whether 

VEGF exerts regulatory effects on Mg2+ transporters MagT1, TRPM6 and SLC41A1. As 

shown in Figure 4.2A and B, 5 h VEGF treatment significantly increased MagT1 protein 

expression (1.2-fold) in hVSMCs and the effect was attenuated by vatalanib (26%), 

without affecting MagT1 expression at mRNA levels. Protein expression of TRPM6, was 

not significantly changed after 5h and 24h stimulation of VEGF (Figure 4.2C and D). No 

changes in gene expression of SLC41A1 were observed in hVSMCs stimulated with 

VEGF (Figure 4.2E).  

4.3.3 The effects of VEGF on activation of TRPM7-kinase substrates annexin-1 and 

calpain-2 in hVSMCs  

TRPM7 as a kinase is able to phosphorylate several cellular substrates including 

annexin-1 and calpain-2 (46). These two proteins are predominantly located in the cytosol 

and upon activation translocate to the plasma membrane (468). We checked annexin-1 and 

calpain-2 expression in membrane-rich fractions of hVSMCs stimulated with VEGF for 

different time periods. As shown in Figure 4.3, VEGF treatment for short term (1, 5, 30 

and 60 min) did not change annexin-1 expression in the cell membrane (A), while there 

was significantly reduced calpain-2 expression after 1 min and 5 min VEGF treatment (30% 

and 35% respectively) (B). To further investigate whether VEGF exerts the effect through 

VEGFR, hVSMCs were stimulated with VEGF in the presence and absence of vatalanib 

for different time periods. VEGF might regulate calpain-2 expression in the cell membrane 

in a time-dependent manner, and the effect might be reduced by the pre-treatment with 

vatalanib (Figure 4.3C).  
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Figure 4.2 Expression of magnesium transporters induced by VEGF in hVSMCs. 

hVSMCs were treated with VEGF (50 ng/ml) for 5 h or 24 h in the presence and absence 

of vatalanib (Vat, 1 µM). Protein expression levels of MagT1 (A) and TRPM6 (C and D) 

after VEGF treatment were assessed by immunoblotting using α-tubulin as the house 

keeping protein, with representative images (upper panels) and quantification (lower 

panels). Gene expression of MagT1 (B) and SLC41A1 (E) in hVMSCs simulated with 

VEGF was assessed by q-PCR. * P<0.05 compared to vehicle (veh).  
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Figure 4.3 Effects of VEGF on the activation of annexin-1 and calpain-2 in hVSMCs. 

hVSMCs were treated with VEGF (50 ng/ml) for 1, 5, 10, 30 and 60 min in the presence 

and absence of vatalanib (Vat, 1 µM). Membrane-rich cell fractions were isolated by 

ultracentrifugation. Activity of annexin-1 and calpain-2 was assessed by the expression in 

cell membrane. Protein expression levels of annexin-1 (A) and calpain-2 (B) and (C) (n=1) 

in membrane-rich fractions of cell lysates were examined by immunoblotting. 

Sodium/potassium ATPase (Na/K-ATPase) was used as a loading control for protein 

expression in the cell membrane. * P<0.05 compared to vehicle (veh). 
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4.3.4 VEGF regulates Mg2+ and Ca2+ mobilisation through TRPM7 activation in 

hVSMCs  

TRPM7 acts as a functionally important regulator of Mg2+ homeostasis in VSMCs and 

as shown in Chapter 3,  we found that EGF mediates Mg2+ mobilisation through TRPM7 in 

VSMCs (2). Next, we explored whether VEGF regulates Mg2+ influx in a TRPM7-

dependent manner in hVSMCs. First, we tested the efficacy of using the indicator 

Magnesium Green by Flow cytometry to detect intracellular free Mg2+
 by adding different 

concentrations (1 mM, 5 mM and 20 mM) of extracellular Mg2+ for 5 min. MgCl2 was used 

as extracellular source of Mg2+. As shown in Figure 4.4A, intracellular Mg2+ was 

detectable and reached a plateau at 5 mM extracellular Mg2+ concentration. Thus, in the 

following experiments, the 1 mM extracellular Mg2+ concentration was chosen as the best 

experimental condition. To further investigate Mg2+ mobilization upon VEGF stimulation 

in hVSMCs, we measured intracellular Mg2+ for 60 min after VEGF treatment. VEGF 

mediated intracellular Mg2+ in a time-dependent manner, and there was a trend (4%) 

towards increased intracellular Mg2+ after 5-10 min (Figure 4.4B). To study whether the 

changes of intracellular Mg2+ level was induced by Mg2+ influx or intracellular store 

release, experiment was repeated at 0 extracellular Mg2+. There was a decline of 

intracellular Mg2+ in the absence of extracellular Mg2+, suggesting the involvement of 

Mg2+ influx (Figure 4.4C). Next, we stimulated hVSMCs with VEGF for 5 min in the 

presence and absence of inhibitors of VEGFR and TRPM7. VEGF increased Mg2+ influx 

and the effect was abolished by vatalanib, NS8593 and 2-APB (Figure 4.4D).  

We also studied the effect of VEGF on Ca2+ homeostasis. Stimulation of hVSMCs 

with VEGF induced Ca2+ mobilization and significantly increased intracellular Ca2+ levels, 

effects that were abolished by NS8593 and 2-APB. Vatalanib also attenuated the effect of 

VEGF, however the difference was not significant (Figure 4.4E and F).  
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Figure 4.4 TRPM7 medicates Mg2+ and Ca2+ mobilisation induced by VEGF in 

hVSMCs. Intracellular free Mg2+ ([Mg2+]i
 ) in hVSMCs was measured by flow cytometry 

using Magnesium green. [Mg2+]i in hVSMCs after adding different concentrations of 

extracellular Mg2+ for 5 min (A). [Mg2+]i in hVSMCs at different time points under 1 mM 

(B) and 0 mM (C) extracellular Mg2+, n=3. [Mg2+]i in hVSMCs stimulated with VEGF (5 

min) in the presence and absence of vatalanib (Vat, 1 µM), NS8593 (40 µM) and 2-APB 

(30 µM) (D).*P<0.05 vs vehicle (veh) and † P<0.05 vs VEGF. Intracellular Ca2+ levels 

induced by VEGF were measured in the presence and absence of vatalanib (Vat, 1 µM), 

NS8593 (40 µM) and 2-APB (30 µM). Data are expressed in Fluorescent Cal-520AM-Ca2+ 

signals (percentage of control)-time curve and in Area under curve (E and F). *P<0.05 vs 

VEGF. 
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4.3.5 Investigate whether VEGF mediates activation of MAP kinase and PKC 

through TRPM7  

Next we investigated whether VEGF modulates the activity of ERK1/2, p38 MAPK 

and protein kinase C (PKC) in hVSMCs, downstream signalling pathways of VEGFR that 

have been well studied in endothelial cells (496-498). Firstly, to determine the optimal 

time point for experiments, hVSMCs were stimulated with VEGF for different time 

periods and phosphorylation of ERK1/2 was checked by immunoblotting. Interestingly, we 

found reduction in ERK1/2 phosphorylation with maximal effect after 5 min (36% 

reduction) (Figure 4.5A). Next, we stimulated hVSMCs with VEGF for 5 min in the 

presence and absence of vatalanib, NS8593 and 2-APB. As shown in Figure 4.5, VEGF 

significantly reduced ERK1/2 phosphorylation (58%), effect that was not changed by 

VEGFR and TRPM7 inhibitors (B), however, there were no significant differences in the 

phosphorylation of p38 MAPK (C) and PKC (D) between groups. These findings suggest 

that VEGF exhibits different effects on ERK1/2 phosphorylation in VSMCs compared 

with endothelial cells, with mechanisms that may not involve VEGFR and TRPM7.  

 

 

 

 

 

 

 

 

 

 

 

 

 



137 

 

Figure 4.5 Phosphorylation of ERK1/2, p38 MAPK and PKC in hVSMCs. hVSMCs 

were stimulated with VEGF (50 ng/ml) for 5 min in the presence and absence of vatalanib 

(Vat, 1 µM), NS8593 (40 µM) and 2-APB (30 µM). Protein expression and 

phosphorylation were assessed by immunoblotting with representative images (upper 

panels) and quantification (lower panels). Phosphorylation of ERK1/2 in hVSMCs after 

VEGF stimulation for 1, 5, 15 and 30 min (A). Phosphorylation of ERK1/2 (B), p38 

MAPK (C) and PKC (D) in hVSMCs after 5 min VEGF treatment. *P<0.05 vs vehicle 

(veh). 
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4.3.6 Effects of TRPM7 on vascular reactivity induced by VEGF in mesenteric 

resistance arteries  

To investigate whether VEGF influences vascular reactivity, we isolated small 

mesenteric resistance arteries from wild type (WT) and heterozygous TRPM7+/Δkinase mice. 

Arteries were incubated with VEGF (50 ng/ml) or naltriben (50 µM), a pharmacological 

activator of TRPM7, for 30 min and vascular reactivity was assessed by wire myography. 

Cumulative concentration-response curves (CCRC) in response to vasoconstrictor (U46619) 

or vasodilators acetylcholine (ACh) and sodium nitroprusside (SNP) were used to assess 

vessel contraction and relaxation relatively. Pre-treatment with VEGF did not change 

U46619-induced vascular contraction (maximum response: WT veh 120%±6% vs VEGF 

127%±9%, p>0.05; TRPM7+/Δkinase veh 124%±7% vs VEGF 124%±7%, p>0.05) (Figure 

4.6A) and ACh-induced (endothelium-dependent) vascular relaxation (maximum response: 

WT veh 97%±3% vs VEGF 96%±5%, p>0.05; TRPM7+/Δkinase  veh 89%±3% vs VEGF 

89%±4%, p>0.05) (Figure 4.6B) in both WT and TRPM7+/Δkinase mice. However, VEGF-

pretreated vessel was more sensitive to SNP-induced/endothelium-independent vascular 

relaxation in WT mice (LogEC50: veh 7±0.13 vs VEGF 7.4±0.12, p<0.05) and exhibited 

reduced maximal relaxation in TRPM7+/Δkinase mice (maximum response: veh 89%±5% vs 

VEGF 74%±2%, p<0.05) (Figure 4.6C), suggesting that VEGF might influence vessel 

relaxation via the TRPM7 kinase. To further confirm the involvement of TRPM7 in the 

regulation of vascular reactivity, vessels were pretreated with the TRPM7 activator 

naltriben. As shown in Figure 4.6D, naltriben-pretreated vessel was more sensitive to SNP-

induced relaxation compared to vehicle (Con)-pretreated group in WT mice but not in 

vessels from TRPM7+/Δkinase mice (LogEC50: WT veh 7.0±0.13 vs naltriben 7.7±0.09, 

p<0.05; TRPM7+/Δkinase  veh 6.8±0.15 vs naltriben 7.1±0.11, p>0.05). 
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Figure 4.6 Vascular reactivity induced by VEGF in WT and TRPM7+/Δkinase mice. 

Isolated vessels were treated with vehicle (Con), EGF (50 ng/ml) or naltriben (Nal, 50 µM) 

for 30 min and vascular reactivity was assessed by wire myography. Cumulative 

concentration-response curve (CCRC) was performed in response to the vasoconstrictor 

U46619 (U4) and results were expressed as a percentage of the maximal response to 62.5 

mM KCl (A). CCRC in response to the vasodilator acetylcholine (ACh) (B). CCRC in 

response to the vasodilator sodium nitroprusside (SNP) in vessels pretreated with vehicle 

(Con), VEGF (C) and naltriben (D). Results were expressed as a percentage of relaxation 

relative to the presumed maximum relaxation. n=4-5. *P<0.05 vs vehicle (Con) 

counterparts. 
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4.4 Discussion  

Major findings from this chapter demonstrate that in human VSMCs: 1) VEGF 

regulates TRPM7 expression, phosphorylation and trafficking through VEGFR; 2) 

regulation of TRPM7 by VEGF mediates Mg2+ influx and Ca2+ homeostasis and 3) VEGF 

affects endothelium-independent vasodilation in a TRPM7 kinase-mediated manner. Taken 

together, these data highlight an important role for VEGF which involves the bifunctional 

chanzyme TRPM7, in the regulation of cation homeostasis in VSMCs and vascular 

relaxation.  

TRPM7 was established as a membrane-bound ion channel, however, Clapham and 

colleagues found that TRPM7 is most abundant as intracellular vesicles (66). In this study, 

we isolated membrane-rich fractions from VSMCs lysate by ultracentrifugation and 

showed that TRPM7 was expressed in the membrane-rich fractions, which was upregulated 

by VEGF with a maximal effect at 5 min. The expression, phosphorylation and trafficking 

may contribute differently to the functional effects of TRPM7 in VSMCs, which still 

requires further investigation.  

Our group has previously identified TRPM7 as a functionally important regulator of 

Mg2+ homeostasis in VSMCs, playing a role in angiotensin II (Ang II)-induced Mg2+ influx 

(2). The critical role of TRPM7 in the regulation of Mg2+ was further supported by recent 

advances in the cyro-electron microscopy (cyro-EM) structure elucidation of mouse 

TRPM7, which shows that the centre of the TRPM7 conduction pore is occupied by 

partially hydrated Mg2+ ions (42). In addition to TRPM7, we also found that MagT1, 

another important Mg2+ transporter with important role in Mg2+ influx was also increased 

after VEGF stimulation, and whether MagT1 contributes the Mg2+ influx observed here is 

still elusive. TRPM7 is also an important Ca2+ permeable channel. In cardiac fibroblasts 

TRPM7 is functionally active and controls both Mg2+ and Ca2+ influx induced by Ang II at 

different time periods (69). In neuroblastoma cells, activated TRPM7 following bradykinin 

stimulation mediates Ca2+ influx in a kinase-independent manner (84). Here, we found that 

VEGF induces elevation of intracellular Ca2+ concentration in a TRPM7-mediated manner.  

Calpain-2 is a Ca2+ dependent cysteine protease, which remains inactive in the cytosol. 

In response to increased intracellular Ca2+ level, calpain-2 translocates to cell membrane, 

where it undergoes autoproteolysis with removal of 9 to 15 amino acids of the N-terminus 

domain (171, 183). Many studies have built a reverse association between calpain-2 

activity and endothelial function (171, 499). Our data showed that short-term treatment 
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with VEGF reduced the presence of capain-2 in cell membranes, indicating a reduced 

calpain-2 activity. Although Su et al. pointed out that TRPM7 overexpression was 

associated with increased calpain-2 activity in HEK-293 cells, there is still a lack of 

detailed information of how TRPM7 regulates calpain-2, and whether the TRPM7 α-kinase 

directly phosphorylates capain-2 remains unclear (104). Another possibility is that the 

increased intracellular Mg2+ concentration would antagonise the Ca2+ effects on calpain-2 

activation.  

TRPM7 plays a critical role in cardiovascular system. Clapham et al. found that early 

cardiac-targeted knockout of TRPM7 impaired ventricular function, conduction and 

repolarization (138). Our previous study showed that TRPM7 kinase deficiency resulted 

exaggerated hypertension, pronounced cardiac hypertrophy and worsened left ventricular 

function in Ang II treated mice (77). In addition, vasoactive agents such as aldosterone, 

angiotensin II and bradykinin have been involved in the regulation of TRPM7 activity, 

including channel function, plasma membrane expression and substrates activation (77, 

130, 500). In the current study, we showed that VEGF increases the sensitivity of vascular 

relaxation in response to SNP (endothelium-independent) only in WT mice, while in 

TRPM7 kinase-deficient mice, VEGF impairs maximal relaxation of vessels in response to 

SNP, suggesting that VEGF influences vascular relaxation in a TRPM7 kinase-dependent 

manner. The involvement of TRPM7 in the regulation of vascular reactivity was also 

confirmed by the finding that vessels pretreated with naltriben, the pharmacological 

TRPM7 activator, are more sensitive to SNP induced relaxation, and the effect was not 

observed in TRPM7 kinase-deficient mice. Interestingly, similar effects were not observed 

for ACh-induced vascular relaxation. It is worth noting that mechanisms underlying SNP- 

and ACh- induced vascular response are different. ACh has been shown to relax vessels 

through endothelial release of both NO and endothelium-derived hyperpolarizing factor 

(EDHF) (501), whereas SNP induces vascular smooth muscle relaxation with mechanisms 

involving a decrease in intracellular Ca2+ concentration and a reduction of the sensitivity of 

the contractile apparatus to Ca2+ (502). Thus, further studies can be performed to explore 

whether TRPM7-meidated Ca2+ is specifically involved in SNP-induced vascular 

relaxation. In addition, Bonaventura et al. demonstrated that the relaxation and Ca2+ 

decrease induced by SNP in VSMCs is potentiated by endothelial production of NO (450), 

and several studies reported that endothelium exerts an inhibitory effects on the 

vasodilation induced by SNP (503). Thus, it would be necessary to expand the study using 
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endothelium-denuded vessels, to better understand the role of VEGF and TRPM7 in 

vascular relaxation.  

In summary, the present study provides new data on the regulation of TRPM7 by 

VEGF in VSMCs. Our data indicate that TRPM7 is expressed in the cell membrane and is 

positively regulated by VEGF/VEGFR. The process is functionally linked to vascular Mg2+ 

and Ca2+ homeostasis and cellular translocation of calpain-2 and may have an important 

role in the modulation of vascular relaxation.  In particular VEGF-induced vasorelaxation 

seems to require functional TRPM7, because TRPM7 deficiency was associated with 

impaired VEGF-induced vasorelaxation. Exact mechanisms underlying this are unclear but 

seem to be endothelium-independent and likely involve altered signalling in vascular 

smooth muscle cells as we demonstrate in this study. 
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Chapter Five 

5 Investigating the potential role of vascular TRPM7 in 

hypertension and preeclampsia 
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5.1 Overview  

5.1.1 The EGFR-TRPM7-ERK1/2 pathway and hypertension  

Hypertension or high blood pressure (BP) is a chronic disease manifesting as elevated 

arterial blood pressure. According to the Seventh Joint National Committee Guidelines, 

hypertension is defined as a systolic blood pressure ≥140 mmHg and/or a diastolic pressure 

≥ 90 mm Hg and patients with systolic BPs between 130 and 139 mmHg are classified as 

high normal or prehypertensive (478, 479). Despite many decades of research, the 

aetiology stills remains unknown in >95% of  patients with hypertension, hence termed 

essential hypertension (504). However, alterations in the vascular system seem to play a 

major pathophysiological role (505). In previous chapters we established the importance of 

the EGFR-TRPM7-ERK1/2 pathway in the regulation of VSMC function. Importantly, 

components of this pathway, including the EGF-EGFR ligand-receptor system, TRPM7 

and ERK1/2 have all been associated with the regulation of blood pressure.    

EGF was first demonstrated as a vasoconstrictor in 1985 when Berk et al. reported that 

EGF was able to induce contraction of rat aortic strips with a maximum extent equivalent 

to 40% of  that caused by Ang II (319). The vasoconstrictive effect of EGF was also 

confirmed in experimental model of hypertension by mechanisms dependent on L-type 

voltage-gated calcium channel (318, 320). Studies focusing on the EGF receptor (EGFR) 

show consistent results: enhanced EGFR activity was observed in the cardiovascular 

system of spontaneously hypertensive rats (SHR), while specific knockout of EGFR in 

VSMCs results in arterial hypotension in mice (314, 321, 322). 

TRPM7 involvement in hypertension was highlighted using a TRPM7 kinase-deficient 

mice (TRPM7+/Δkinase) model by our group (77). These animals exhibit exaggerated Ang II-

induced hypertension with amplified cardiac remodelling and left ventricular dysfunction 

compared to wild type (77). Additionally, TRPM7+/Δkinase mice exhibit cardiovascular 

inflammation and fibrosis, through mechanisms involving macrophage activation and 

intracellular Mg2+ status (461). TRPM7 was also found to contribute to the pathology of 

hypertension. Polotsky and colleagues demonstrated that leptin, a hormone that plays an 

important role in obesity-related hypertension, induces high blood pressure through 

activating TRPM7 in carotid bodies (506). 

ERK1/2 belongs to the mitogen-activated protein kinase (MAPK) family and 

increased ERK activity has been demonstrated in various animal models of hypertension 

(472, 507). Mechanisms whereby ERK1/2 is involved in contraction are related to 
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phosphorylation of myosin light chain (MLC) (472, 508). The phosphorylated MLC forms 

cross-bridge with actin, resulting in phosphorylated actomyosin, which leads to muscle 

contraction (509). Moreover, ERK1/2 can cause vascular contraction through the 

phosphorylation of caldesmon, an actin-binding protein that inhibits the adenosine 

triphosphatase activity of actomyosin. Upon ERK1/2-induced phosphorylation, the activity 

of caldesmon is reduced leading to removal of the inhibitory effect on adenosine 

triphosphate (472).  

5.1.2 VEGF, magnesium and preeclampsia  

Preeclampsia (PE) is a clinical syndrome characterized by new-onset of hypertension 

and proteinuria after 20 weeks of gestation (510). Based on the time of onset, PE can be 

classified as early onset PE (<34 weeks of gestation) and late onset PE (>34 weeks of 

gestation) (511), which affects 2%-8% pregnancies and is responsible for around 14% of 

maternal deaths (512). PE can progress to eclampsia, which represents the consequence of 

brain injury caused by PE and manifests as new onset of generalized tonic colonic seizures 

(355). PE carries an increased risk for the mother to develop cardiovascular disease. A 

recent study based on a large UK pregnancy cohort showed that compared to women 

without hypertension in pregnancy, women affected by PE had higher hazard ratios for 

atherosclerosis, peripheral artery disease, atrial fibrillation, heart failure and cardiovascular 

deaths (513). 

VEGF family members VEGF-A (VEGF) and placental growth factor (PIGF) are 

critically required for placental vascular formation and development during normal 

pregnancy. Human placental VEGF expression increases with gestational age and plays a 

paracrine and autocrine role in the regulation of extensive angiogenesis that occurs in late 

gestation (373). PIGF in the maternal circulation increases significantly from 8 weeks 

gestation and reaches a maximal concentration during the second trimester, when 

nonbranching villous angiogenesis and terminal villous formation occur (362, 375). In the 

context of PE, reduced bioavailability of VEGF and PIGF has been critically involved in 

the pathological processes. It has been demonstrated that placental ischemia resulting from 

incomplete spiral artery remodelling induces release of soluble vascular endothelial growth 

factor receptor-1 (sFlt-1), which acts as potent scavenger of VEGF and PIGF, leading to 

endothelial dysfunction in multiple organs (348, 362-364). Raised sFlt-1: PIGF ratio was 

reported in pregnant women before the onset of PE,  which has been used clinically to 

predict the disease progression and guide treatment (378). 



146 

 

Magnesium sulphate (MgSO4) is the drug of choice used to prevent seizures in pre-

eclamptic women (514, 515). Mechanisms of action of magnesium in treating PE remain 

unclear. It has been proposed that magnesium acts as a vasodilator, with actions lowering 

total peripheral vascular resistance and protecting the blood-brain barrier (BBB) to 

decrease cerebral oedema formation. Additionally, Mg2+ acts centrally to inhibit N-methyl-

D-aspartate (NMDA) receptors and provides anticonvulsant activity (393). Is was also 

shown that perfusion with MgSO4 normalises concentrations of placental VEGF in patients 

with PE but has no effect on VEGF levels in normotensive placentas (394).  

TRPM7 and TRPM6 were identified in the placenta of pregnant women, with 

predominant expression in the syncytiotrophoblast layers (395). Importantly, reduced gene 

expression of TRPM7 and TRPM6 were found in preeclamptic placenta tissues during 

preterm labour, which remained lower at term labour (395). Whether these magnesium 

transporters are involved in the pathophysiological processes of PE and act as potential 

therapeutic targets remain unclear. 

In Chapters 3 and 4, we investigated the relationship between RTKs (VEGFR and 

EGFR) and TRPM7 and the functional implications in VSMCs under physiological 

conditions. In the current chapter, we will explore the RTK-TRPM7 axis under 

pathological conditions including hypertension and preeclampsia. 
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5.2 Objective and aims  

Objective  

The overall objectives of the studies presented in Chapter 5 are to explore whether the 

RTK (VEGFR and EGFR)-TRPM7 axis is dysregulated in animal models of hypertension 

and preeclampsia.  

Specific aims  

1. To study whether EGF/EGFR regulates TRPM7 expression and activity in VSMCs in the 

context of hypertension  

Primary VSMCs were derived from SHRSP rat and simulated with EGF in the presence 

and absence of gefitinib (EGFR inhibitor), PP2 (c-Src inhibitor) and NS8593 (TRPM7 

inhibitor). Phosphorylation of TRPM7 and ERK1/2 were assessed by immunoblotting. 

2 To explore the importance of the EGFR-TRPM7-ERK1/2 pathway in VSMCs from 

hypertensive animals  

Activity of EGFR, c-Src, TRPM7 and ERK1/2 at basal level in VSMCs from WKY and 

SHRSP rats was checked by immunoblotting. Ca2+ and Mg2+ homeostasis upon EGF 

stimulation in VSMCs from WKY and SHRSP rats were assessed by live cell microscopy 

and flow cytometry relatively. Cell migration was evaluated using scratch wound assay.  

3. To investigate the importance of the VEGFR/TRPM7 pathway and magnesium 

transporters in placenta from animal models of preeclampsia   

Placental tissues were isolated from wild type and two different animal models of PE. 

Activity of VEGFR2 assessed as p-VEGFR2/total VEGFR2 and expression of magnesium 

transporters (TRPM7, TRPM6, MagT1, SLC41A1) and TRPM7 substrates (annexin-1 and 

calpain-2) were examined by immunoblotting.  
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5.3 Results  

5.3.1 The vascular EGFR-TRPM7-ERK1/2 pathway in hypertension  

5.3.1.1 Activity of the EGFR-TRPM7-ERK1/2 pathway is enhanced in SHRSP 

VSMCs 

VSMCs from SHRSP exhibited increased phosphorylation of EGFR at the 

autophosphorylation site tyrosine 1068 (Y1068) (2-fold), which was associated with 

reduced expression of total EGFR (58%) compared to WKY (Figure 5.1A and B). Next, 

we investigated the activity of c-Src kinase, at the inhibitory tyrosine phosphorylation site 

527 (Y527) which is associated with an inactive c-Src conformation (516). There was 

significantly reduced phosphorylation of c-Src at Y527 in VSMCs from SHRSP rats (62%), 

indicating enhanced c-Src activity (Figure 5.1C). Basal level of ERK1/2 phosphorylation 

was also increased in VSMCs from SHRSP rats (70%) compared to WKY (Figure 5.1D). 

To assess activity and amounts of TRPM7, we examined both TRPM7 

phosphorylation and expression levels in VSMCs from WKY and SHRSP rats. As shown 

in Figure 5.2A and B, there were significant increase of TRPM7 phosphorylation (93%) 

and expression (1.1-fold) in VSMCs from SHRSP compared to WKY rats. In addition, we 

also checked expression of TRPM7 substrates calpain-2 and annexin-1. Increased 

expression of calpain-2 (73%) and decreased expression of annexin-1 (61%) were 

observed in VSMCs from SHRSP relative to WKY (Figure 5.2C and D).  
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Figure 5.1 Activity of EGFR, c-Src and ERK1/2 in VSMCs from WKY and SHRSP 

rats. Protein expression and phosphorylation levels in VSMCs derived from WKY and 

SHRSP rats were examined by immunoblotting, with representative images (upper panels) 

and quantification (lower panels). Phosphorylation of EGFR (p-EGFR) at tyrosine 1068 

(Y1068) was normalised by total EGFR (t-EGFR) and β-actin (A). Total EGFR expression 

was normalised by β-actin(B). Phosphorylation of c-Src (p-Src) at the tyrosine 

phosphorylation site 527 (Y527) (C) and phosphorylation of ERK1/2 (p-ERK1/2) (D) were 

normalised by total protein expression. *P<0.05 compared to WKY.  
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Figure 5.2 Dysregulation of TRPM7 and its substrates in VSMCs from SHRSP rats. 

Protein expression and phosphorylation levels in VSMCs derived from WKY and SHRSP 

rats were examined by immunoblotting, with representative images (upper panels) and 

quantification (lower panels). Phosphorylation of TRPM7 (p-TRPM7) (A) and protein 

expression of TRPM7 (B), calpain-2 (C) and annexin-1 (D) in primary VSMCs derived 

from WKY and SHRSP rats. Results were normalised by β-actin. *P<0.05 compared to 

WKY.  
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5.3.1.2 The effects EGFR-TRPM7-ERK1/2 pathway in VSMCs from SHRSP  

In chapter 3, we demonstrated that EGFR interacts with TRPM7 at cell membranes in 

a c-Src dependent manner, which consequently mediates activation of ERK1/2 in VSMCs. 

Here, we studied the importance of this pathway in VSMCs derived from SHRSP rats, a 

well-known animal model of essential hypertension (517). As shown in Figure 5.3A, EGF 

stimulation (5 min) enhanced phosphorylation of TRPM7 (27%), effects that were reduced 

by c-Src inhibitor, PP2 (61%) and EGFR inhibitor gefitinib (40%). EGF also significantly 

increased the phosphorylation of ERK1/2 (2-fold) and the effect was attenuated by 

gefitinib (21%). There was a trend to reduced ERK1/2 phosphorylation in cells pretreated 

with the TRPM7 inhibitor NS8593 (14%) compared to EGF, however, there was no 

differences in cells pretreated with apamin (Figure 5.3B). Both apamin and NS8593 inhibit 

calcium activated potassium (SK) channels (518), and thus apamin was used to exclude the 

involvement of SK channel. Treatment with EGF did not change the phosphorylation of 

p38 MAPK and no further changes were observed in cell pretreated with gefitinib or 

NS8593 (Figure 5.3C).  
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Figure 5.3 EGF regulates TRPM7 through EGFR and c-Src leading to ERK1/2 

phosphorylation. rVSMCs derived from SHRSP rat were treated with EGF (50 ng/ml) for 

5 min in the presence and absence of gefitinib (Gef, 1 µM), PP2 (10 µM), NS8593 (NS, 40 

µM), and apamin (1 µM). Protein expression and phosphorylation levels were examined by 

immunoblotting, with representative images (upper panels) and quantification (lower 

panels). Phosphorylation of TRPM7 (p-TRPM7) was normalised using the house keeping 

protein β-actin (A). Phosphorylation of ERK1/2 (p-ERK1/2) (B) and p38 MAPK (p-p38) 

(C) was normalised by the total protein expression. *P<0.05 compared to vehicle (veh) and 

† P<0.05 compared to EGF. 
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5.3.1.3 The effects of TRPM7 on Ca2+ and Mg2+ mobilisation induced by EGF in 

VSMCs from SHRSP  

We have shown that EGF significantly increased intracellular Ca2+ levels ([Ca2+]i) in 

VSMCs from WKY rats and the effects were attenuated by the non-specific TPRM7 

inhibitor 2-APB, but not NS8593, a well-known potent inhibitor for TRPM7 (Figure 5.4A). 

Since 2-APB also inhibits other Ca2+ channels such as TRPM2 (482), our data suggest that 

there might be alternative mechanisms contributing to EGF-induced Ca2+ mobilisation in 

VSMCs from normotensive rats. Experiments were repeated in VSMCs from SHRSP rats 

under similar conditions described in Chapter 3. As shown in Figure 5.4B, EGF 

stimulation increased intracellular Ca2+ concentration. These effects were attenuated by 

gefitinib (p=0.06) and abolished by NS8593 and 2-APB, suggesting that TRPM7 is 

involved in this process.  

We also compared the regulation of Mg2+ homeostasis by EGF in VSMCs from WKY 

and SHRSP rats. At basal level there was reduced intracellular Mg2+ in VSMCs from 

SHRSP (61%) compared to WKY (Figure 5.5A). EGF exerts similar effects on 

intracellular free Mg2+ in VSMCs from the two rat strains. As shown in Figure 5.5B and C, 

in VSMCs from WKY and SHRSP rats, EGF increased intracellular Mg2+ and the effect 

was attenuated by pharmacological inhibitors of EGFR (gefitinib) and TRPM7 (NS8593 

and 2-APB), but not by the SK channel inhibitor apamin.  
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Figure 5.4 EGF-induced Ca2+ mobilization is enhanced through TRPM7 in VSMCs 

from SHRSP. In rVSMCs derived from WKY (A) and SHRSP (B) rats, intracellular Ca2+ 

levels induced by EGF (50 ng/ml) were measured in the presence and absence of gefitinib 

(Gef, 1 µM), NS8593 (NS, 40 µM) and 2-APB (30 µM). Data are expressed in Fluorescent 

Cal-520AM-Ca2+ signals (percentage of baseline)-time curve (Upper panel) and in Area 

under curve (Lower panel). *P<0.05 compared to EGF.  
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Figure 5.5 EGF mediates Mg2+ homeostasis in a similar manner in VSMCs from 

WKY and SHRSP. Basal levels of Magnesium Green fluorescence indicating intracellular 

Mg2+ concentration were measured in VSMCs from WKY and SHRSP rats (A). In VSMCs 

from WKY (B) and SHRSP (C) rats, intracellular free Mg2+ concentration ([Mg2+]i) after 

EGF (50 ng/ml) treatment (5 min) in the presence and absence of gefitinib (1 µM), 

NS8593 (NS, 40 µM) , apamin (Apa, 1 µM) and 2-APB (30 µM) were measured by flow 

cytometry using Magnesium Green. *P<0.05 compared to WKY.  
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5.3.1.4 The effects of TRPM7 on cell migration and proliferation induced by EGF in 

VSMCs from SHRSP rats  

Although the number of experiments is low, we found that at basal levels there might 

be a trend of increased cell migration in VSMCs from SHRSP compared to WKY rats. 

EGF might further enhance the cell migration, effects that were blunted by pretreatment 

with gefitinib, NS8593 and PD98059 (Figure 5.6A). There might be a trend of increased 

cell proliferation after EGF treatment (20%) in VSMCs from SHRSP and the effect was 

attenuated by gefitinib (20%), NS8593 (71%) and PD98059 (20%) (Figure 5.7A).  Sample 

size was small in these studies, and experiments need to be repeated before any clear 

conclusions can be drawn.  

Next we questioned whether blocking EGFR with gefitinib could attenuate activity of 

the downstream TRPM7 and ERK1/2 in VSMCs from SHRSP rats. As shown in Figure 

5.8A and B, short-term (5 min) treatment with gefitinib significantly reduced 

phosphorylation of TRPM7 (54%) and ERK1/2 (24%) in VSMCs derived from SHRSP. 

Gefitinib treatment also decreased ERK1/2 phosphorylation (35%) in VSMCs from WKY 

rats (Figure 5.8C).  

5.3.1.5 The effects of TRPM7 on cell migration induced by EGF in VSMCs from 

hypertensive patients   

Primary VSMCs were isolated as we previously described (477). As shown in Figure 

5.9A, at basal level there was a trend of increased cell migration in VSMCs derived from 

hypertensive patients compared to that of normotensive patients. EGF might further 

enhance cell migration and the effect was attenuated by gefitinib, NS8593 and PD98059. 

In addition, we also tested the role of Ca2+ in EGF-induced cell migration. Pretreatment 

with the Ca2+ chelator EGTA (2 mM) might blunt EGF-induced migration in VSMCs from 

hypertensive patients (Figure 5.9A). 
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Figure 5.6 EGF-induced cell migration might be enhanced through TRPM7 and 

ERK1/2 in VSMCs from SHRSP rats. VSMCs derived from SHRSP rats were 

stimulated with EGF (50 ng/ml) for 20 h in the presence and absence of gefitinib (Gef, 

1µM), NS8593 (NS, 40 µM), 2-APB (30 µM) and PD98059 (PD, 20 µM). VSMCs 

migration was assessed by Scratch-wound assay, with representative images at the 0 h and 

20 h time points from 2-4 independent experiments.  
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Figure 5.7 EGF-induced proliferation in VSMCs from SHRSP rats. VSMCs derived 

from SHRSP rats were stimulated with EGF (50 ng/ml) for 72 h in the presence and 

absence of gefitinib (Gef, 1 µM), NS8593 (NS, 40 µM), 2-APB (30 µM) and PD98059 

(PD, 20 µM). VSMCs proliferation was examined by CFSE assay using flow cytometry. 

Upper panel: Representative flow cytometry histograms. Lower panel: Quantification of 

proliferation rate (percentage of control). Results are from 1 independent experiment.  
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Figure 5.8 Gefitinib attenuates phosphorylation of TRPM7 and ERK1/2 in VSMCs 

from WKY and SHRSP rats. VSMCs derived from WKY and SHRSP rats were treated 

with vehicle or gefitinib (Gef, 1 µM) for 5 min. Protein expression and phosphorylation 

levels were examined by immunoblotting, with representative images (upper panels) and 

quantification (lower panels). Phosphorylation of TRPM7 (p-TRPM7) was normalised to 

the expression of β-actin (A). Phosphorylation of ERK1/2 (p-ERK1/2) in VSMCs from 

SHRSP (B) and WKY (C) rats was normalised to total ERK1/2 (t-ERK1/2). *P<0.05 

compared to vehicle treated cells (veh 5’).  
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Figure 5.9 Regulation of cell migration by EGF in VSMCs from hypertensive patients. 

VSMCs were derived from normotensive (NT) and hypertensive patients (HT). VSMCs 

from HT were stimulated with EGF (50 ng/ml) for 20 h in the presence and absence of 

gefitinib (Gef, 1 µM), NS8593 (NS, 40 µM), PD98059 (PD, 20 µM) and EGTA (2 mM). 

Cell migration was assessed by Scratch-wound assay, with representative images at the 0 h 

and 20 h time points from 4 independent experiments.  
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5.3.2 The effects of VEGFR-TRPM7 pathway in preeclampsia   

5.3.2.1 VEGFR phosphorylation and TRPM7 expression are reduced in a model of 

superimposed preeclampsia 

Dysregulation of the VEGF-VEGFR system is believed to play an important role in 

preeclampsia development, and altered gene expression of TRPM7 has been found in 

preeclamptic placenta (395, 519). We have shown that VEGF exerts regulatory effects on 

TRPM7 through VEGFR2 in VSMCs which influences ion homeostasis and vascular 

relaxation. Here, we questioned whether the VEGFR2 activity is changed in the placenta 

tissues from pregnant SHRSP rats, a model of superimposed preeclampsia (442). Placental 

tissues of this animal model were kindly provided by Dr Delyth Graham and Dr Sheon 

Samji (University of Glasgow). We first checked the activity of VEGFR2 in the placental 

tissues. As shown in Figure 5.10A and B, there was reduced phosphorylation of VEGFR2 

at tyrosine 951 residue (60%) associated with increased total VEGFR expression (72%) in 

the placental tissues from pregnant SHRSP rats compared to pregnant WKY rats.  

As we demonstrated in the previous chapters, TRPM7 is a downstream target of RTKs 

including VEGFR and EGFR. The TRPM7 expression was significantly reduced in the 

placental tissues from pregnant SHRSP (28%) rats compared to WKY rats (Figure 5.11A). 

Additionally, no differences in protein expression of the TRPM7-kinase substrates calpain-

2 and annexin-1 were observed in the two groups (Figure 5.11B and C). 

5.3.2.2 TRPM6, MagT1 and SLC41A1 expression in the placental tissues  

We also checked protein expression of other magnesium transporters. As shown in 

Figure 5.12, there was no differences in TRPM6 (A) expression, while there was increased 

expression of MagT1 (55%) (B) and SLC41A1 (41%) (C) in the placental tissues from 

pregnant SHRSP rats compared to pregnant WKY rats.  
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Figure 5.10 VEGFR2 phosphorylation and expression in placenta from pregnant 

WKY and SHRSP rats. Placental tissues were isolated from pregnant WKY and SHRSP 

rats. Protein expression and phosphorylation levels were examined by immunoblotting 

with representative images (upper panels) and quantification (lower panels). 

Phosphorylation of VEGFR2 (p-VEGFR2) at tyrosine 951 residue was normalised to total 

VEGFR2 expression (A). Expression of VEGFR2 was normalised by the house keeping 

protein β-actin (B). *P<0.05 compared to WKY.  
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Figure 5.11 Expression of TRPM7 and its substrates in placenta from pregnant WKY 

and SHRSP rats. Placental tissues were isolated from pregnant WKY and SHRSP rats. 

Protein expression of TPPM7 (A) and its substrates calpain-2 (B) and annexin-1 (C) were 

normalised by β-actin expression. Upper panel: Representative images of immunoblotting. 

Lower panel: results are expressed as scatter-plot graphs. *P<0.05 compared to WKY. 
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Figure 5.12 Expression of Mg2+ transporters in placenta from pregnant WKY and 

SHRSP rats. Placental tissues were isolated from pregnant WKY and SHRSP rats. Protein 

expression of TPPM6 (A), MagT1 (B) and SLC41A1 (C) in the placental tissues were 

normalised by the house keeping protein β-actin. Upper panel: Representative images of 

immunoblotting. Lower panel: results are expressed as scatter-plot graphs. *P<0.05 

compared to WKY. 
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5.3.2.3 Expression of VEGFR and TRPM7 in a transgenic model of preeclampsia  

To further study whether expression of VEGFR and TRPM7 is altered in preeclamptic 

placentas, we took advantage of a transgenic rat model of preeclampsia (445). Placental 

tissues from pregnant female transgenic rats overexpressing angiotensinogen mated with 

male rats transgenic for human renin and age-matched control rats (Sprague-Dawley) were 

kindly provided by Dr Delyth Graham and Dr Sheon Samji. As shown in Figure 5.13A, 

there was reduced VEGFR2 expression in placenta from the preeclampsia rats (PE) (52%) 

compared to the control rats (Con). There was a trend of increased TRPM7 expression in 

the PE rats (Figure 5.13B). Similar to what we found in the model of PE in SHRSP, no 

differences were found regarding to the expression of calpain-2 and annexin-1 in the two 

groups (Figure 5.13C and D). 

We also examined expression of MagT1 in the placental tissues. As shown in Figure 

5.14A, there was increased MagT1 expression in placenta from the transgenic PE rats 

(54%) compared to the control rats.  
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Figure 5.13 Altered VEGFR2 and TRPM7 expression in a transgenic model of 

preeclampsia.  Placental tissues were isolated from age-matched wild type rats (Con) and 

the transgenic rat model of preeclampsia (PE). Protein expression levels of VEGFR (A), 

TRPM7 (B), annexin-1 (C) and calpain-2 (D) in placental tissues were examined by 

immunoblotting and normalised by the house keeping protein β-actin, with representative 

images (upper panels) and quantification (lower panels). *P<0.05 compared to the control 

rats.  
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Figure 5.14 Expression of MagT1 in the control rats and the transgenic preeclamptic 

rats. Protein expression level of MagT1 (A) in placental tissues from age-matched control 

rats (Con) and the transgenic rat model of preeclampsia (PE) was examined by 

immunoblotting using β-actin as the house keeping protein. Upper panel, representative 

images of immunoblotting. Lower panel, results are expressed as scatter-plot graphs. 

*P<0.05 compared to the control rats.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 

 

5.4 Discussion  

5.4.1 The effects of EGFR-TRPM7-ERK1/2 pathway in hypertension   

Major findings from this chapter demonstrate that: 1) the EGFR-TRPM7-ERK1/2 

pathway exists and the activity is enhanced in VSMCs from animal model of hypertension 

(SHRSP); 2) EGF induces elevation of intracellular Ca2+ concentration through TRPM7 in 

VSMCs from SHRSP rats and 3) the enhanced EGFR-TRPM7-ERK1/2 pathway might 

lead to increased cell migration and proliferation in VSMCs from SHRSP rats. Taken 

together, our data support the hypothesis that aberrantly activated EGFR contributes to 

alterations of ion homeostasis, cell migration and proliferation through TRPM7 in VSMCs 

under hypertensive conditions, which might play an important role in the pathology of 

hypertension.  

We have previously demonstrated that in VSMCs under physiological conditions, 

EGF through EGFR and c-Src kinase enhances TRPM7 expression and phosphorylation, 

which critically regulates ion homeostasis, cell migration and proliferation. Our present 

data show that this functional pathway in VSMCs is enhanced under hypertensive 

conditions. In particular, the enhancement of this pathway is associated with elevated 

intracellular Ca2+. EGF-mediated Ca2+ influx has been shown to involve TRP family 

channels such as TRPP2 and TRPV4 (256). Additionally, we observed that cells from 

VSMCs from SHRSP exhibit reduced intracellular concentration of Mg2+, which may 

contribute the deleterious effects of Ca2+. In VSMCs from WKY cells, EGF-induced 

elevations of intracellular Ca2+ concentration were inhibited by 2-APB but not the 

relatively specific TRPM7 inhibitor NS8593, suggesting the existence of alternative 

mechanisms under physiological conditions. However, in VSMCs from hypertensive 

SHRSP rats, EGF-induced Ca2+ was inhibited by both 2-APB and NS8593, suggesting the 

involvement of TRPM7. Ca2+ is the final messenger contributing to the contraction 

vascular muscle (520), and increased Ca2+ influx leads to augmented vascular tone and 

increased vascular resistance (521). Therefore, we suspect that the enhancement of EGFR-

TRPM7 activity in VSMCs will lead to elevations of intracellular Ca2+, contributing to 

increased vascular contraction in hypertension.  

In the vascular system, Mg2+ negatively regulates vascular tone through its Ca2+ 

antagonistic property and influences VSMCs growth and apoptosis (166). Epidemiological 

and clinical studies demonstrate a negative correlation between intracellular Mg2+ and 

blood pressure. Hypomagnesemia and decreased tissue Mg2+ level have been shown in 
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various models of experimental hypertension (163-165). In our study, EGF-regulated Mg2+ 

homeostasis through TRPM7 was observed in VSMCs from both WKY and SHRSP rats, 

however, there was reduced intracellular Mg2+ in VSMCs from SHRSP. It was 

demonstrated that VSMCs treated with Ca2+ exhibit reduced TRPM7 in the plasma 

membrane, which is reverted by Mg2+ treatment (141). Taken together, a hypothesis that 

could explain these differences is that in hypertension there is a reduction of TRPM7 in the 

plasma membrane, which consequently leads to reduction of intracellular concentration of 

Mg2+ and that increased in Ca2+ may be a result of the TRPM7 in the intracellular 

environment.  

Abnormal proliferation and migration of VSMCs have been associated with a number 

of vascular diseases including hypertension, atherosclerosis and in-stent restenosis (474, 

487, 488). In this chapter, our data show that cell migration at basal level might be 

enhanced in VSMCs derived from hypertensive rats and patients, which was further 

increased by EGF in an EGFR- and TRPM7- dependent manner. Furthermore, we show 

that the effect was mediated by Ca2+, since Ca2+ chelator EGTA significantly abolished 

EGF-induced cell migration. Our data provide evidence of novel mechanisms underlying 

the involvement of TRPM7 and Ca2+ in hypertension, which needs further investigation.  

5.4.2 VEGFR and magnesium transporters in preeclamptic placenta   

PE is a multisystem disorder with clinical manifestations involving different organs 

such as kidneys, liver, brain, heart, lung, pancreas and the vasculature (355). Compared to 

normotensive pregnancies, women with a history of preeclampsia are at increased risk for 

cardiovascular diseases including chronic hypertension, while the underlying mechanisms 

remain unclear (360).  It is believed that the sequestration of circulating VEGF and PIGF 

by sFlt-1 plays an important role in the development of preeclampsia (362).   

Mg2+ negatively regulates vascular tone through its Ca2+ antagonistic property and 

influences vascular smooth muscle cell (VSMC) growth and apoptosis (166). 

Epidemiological and clinical studies demonstrate a negative correlation between 

intracellular Mg2+ and blood pressure. Mg2+ may also play a role in the pathology of 

preeclampsia. It has been demonstrated that serum level of Mg2+ is lower in preeclampsia 

compared to normal pregnant women (396, 522). A small cohort study showed that red cell 

Mg2+ levels is significantly reduced in women with preeclampsia compared with controls 

(523). Moreover, Carella and colleagues provided direct evidence showing that Mg2+ 

deficiency induces spasm of umbilical vessels isolated from normal pregnant women (524).  
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Placenta is an organ composed of different types of cells including VSMCs (525), and 

we have observed that VEGF regulates TRPM7 expression and phosphorylation, a process 

importantly involved in VEGF-induced Mg2+ influx in VSMCs, and that intracellular Mg2+ 

is reduced in VSMCs from SHRSP rats. Thus, we examined the expression of VEGFR and 

TRPM7 in placental tissues from two animal models of preeclampsia: pregnant SHRSP 

rats and the transgenic rat model. Alterations in VEGFR and TRPM7 were observed in 

placental tissues from both models. In particular, there was significantly reduced VEGFR 

phosphorylation and TRPM7 expression in the model of superimposed preeclampsia 

(pregnant SHRSP rats). The importance of TRPM7 in regulating Mg2+ homeostasis has 

been explored thoroughly in many cell types, and TRPM7 kinase-deficient mice display 

low Mg2+ status at tissue and cell level and develop cardiovascular impairment (112). 

However, the transgenic model of preeclampsia displayed opposite patterns of placental 

TRPM7 expression. It is worth noting that one predominant phenotype of the transgenic  

model is significantly increased Ang II in the placenta compared to normal pregnancy (445) 

and upregulation of TRPM7 has been observed in cells derived from mice with Ang II 

infusion (409). Although elevated Ang II levels are present in SHRSP rats (526), a 

reduction in RAS component expression has been observed in preeclampsia compared to 

normal pregnancy, and Graham et al. showed that Ang II infusion was required to establish 

the model of superimposed preeclampsia (443). We assume that different pathological 

mechanisms contribute to the two models used in this study, and the Ang II level might 

exert effects on TRPM7 expression in the placenta. Taken together, our study supports that 

TRPM7 might act downstream of VEGFR with a role in the development of superimposed 

preeclampsia through Mg2+. 

MgSO4 is a therapeutic strategy for preeclampsia, however, the mechanisms of action 

remain unclear. In our study, alterations in the expression of Mg2+ transporters including 

TRPM7, SLC41A1 and MagT1 were observed in the two models of preeclampsia. 

Placental Mg2+ transporters might contribute to the therapeutic effects of MgSO4 in 

preeclampsia. Of importance, Mg2+ supplement has been shown to reverse phenotypes 

displayed in TRPM7 kinase-deficient mice (76, 112). MagT1 is an important transporter 

for Mg2+ influx and knockdown of MagT1 is associated with reduced intracellular free 

Mg2+ concentration (20). Loss of MagT1 abrogates Mg2+ influx required for T cell 

signalling and leads to human primary immunodeficiency (21). Interestingly, an altered 

immune response has been associated with the development of preeclampsia (527). We 

found that MagT1 protein expression was consistently increased in the placental tissue 
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from both experimental models of preeclampsia. Thus, MagT1 might be involved in 

preeclampsia through effects on immune function, which deserves more attention in future 

studies. In addition, MagT1 has been shown to rescue cell growth and Mg2+ uptake in cells 

lacking TRPM7 (62). Further investigation is necessary to determine whether the 

overexpression of MagT1 in placenta was an adaptive and compensatory reaction in the 

context of preeclampsia.  

It is worth noting that we only checked the expression of VEGFR and TRPM7 in 

placental tissues of the two models and there is a paucity of information exploring the 

pathway in trophoblast, which is the major component of placenta (528). Therefore, to 

elucidate the role of VEGFR-TRPM7 axis in preeclampsia, further studies are required, 

especially in the trophoblasts. 

In this chapter we explored whether vascular RTK-TRPM7 interplay is altered in 

pathological conditions. We specifically focused on two conditions, hypertension and 

preeclampsia, which are known to involve pathological processes linked to growth factors, 

Mg2+ and Mg2+ transporters. Our findings clearly show that EGFR/TRPM7 and 

VEGFR/TRPM7 are important molecular players in hypertension and preeclampsia 

respectively. Our studies are limited by the fact that we did not comprehensively study 

EGF and VEGF together in both models. Such studies would be important since EGFR and 

VEGFR signal through similar pathways. These important studies will be pursued in the 

Touyz lab in the future. 
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Chapter Six 

6 General discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

6.1 Crosstalk between RTKs and TRPM7 and the role in vascular biology  

6.1.1 The novel EGF-EGFR-Src-TRPM7-ERK1/2 pathway in VSMCs  

Since the discovery of EGF in 1962 by Stanley, remarkable advances have been made 

in understanding EGF-mediated signalling pathways and the effects on cellular functions 

(529). In general, EGF through binding to and activating EGFR, which belongs to the RTK 

family, stimulates several cellular pathways including RAS-RAF-MEK-ERK1/2 and PIK3-

AKT cascades, the SRC family kinases, PLCγ-PKC, and STATs (530). The EGF-EGFR 

ligand-receptor system has been shown to exert important effects on various biological 

processes including cell division, proliferation, migration, differentiation and ion 

homeostasis, and plays a pivotal role in embryo development, wound healing and tumour 

biology (261, 314, 453-455).  

EGF and its receptor have been shown to modulate TRPM7 activity in various types of 

cells and different results have been observed. In CHO-K1 cell line, activation of EGFR by 

EGF initiates PIP2 hydrolysis, which consequently leads to the inhibition of TRPM7 

channel activity (410). In a pulmonary cancer cell line, Gao and colleagues found that 

EGF-EGFR pathway, significantly upregulated the membrane protein expression of 

TRPM7 and the amplitude of TRPM7 currents, a process associated with cell migration 

(135). EGF also regulates TRPM6 which shares about 50% sequence identity with TRPM7  

(412). Bindels and colleagues demonstrate that in HEK293 cells, EGF promotes 

translocation of TRPM6 from cytosol to plasma membrane and consequently regulate renal 

Mg2+ reabsorption (259, 411). This research group further clarified mechanisms underlying 

the regulation of TRPM6 by EGF and showed that the stimulation of TPRM6 by EGF 

involves both Src-family kinases, MAP kinase, PI3K and Rac1 (411). In our study, we 

investigate both acute and long-term impact of EGF on TRPM7 in VSMCs. We 

demonstrate that EGF enhances TRPM7 channel and kinase activity by mechanisms 

dependent on EGFR and c-Src kinase pathway. A number of TRPM7 phosphorylation sites 

have been reported (96) and TRPM7 has been shown to undergo extensive 

autophosphorylation within the serine/threonine-rich region proximal to the exchange 

domain of the kinase and the kinase’s catalytic core (97). Taking advantage of the antibody 

designed by Chubanov’s lab (101), we specifically examined TRPM7 phosphorylation at 

Serine-1511 (Ser-1511) in this study. Ser-1511 was identified as one of the major sites of 

autophosphorylation of TRPM7, however, mutation of this site did not affect TRPM7 

channel activity (105). Interestingly, phosphorylation of the TRPM7 kinase domain on Ser-
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1511 enhances kinase-substrate interactions leading to their serine/threonine 

phosphorylation (481). Thus, we suspect that EGF-induced TRPM7 phosphorylation might 

further affect the phosphorylation of TRPM7 substrates such as annexin-1, calpain-2 and 

myosin IIA. To further investigate this, specific primary antibodies and 

immunoprecipitation could be utilised to detect the phosphorylated form of these protein in 

VSMCs after short-term treatment of EGF.  

A novel finding of this study is that EGFR directly interacts with TPRM7 in VSMCs. 

To date, few studies have focused on structural interaction between TRPM7 and other 

proteins. Zierler and colleagues performed proximity ligation assay (PLA) in purified 

CD4+ T cells and found that upon TGF-β1 stimulation TRPM7 colocalises with SMAD2 

which is dependent on the catalytic activity of TRPM7 (101). It is worth noting that 

SMAD2 is a transcription factor downstream to TGFβ receptor, highlighting the 

importance of TRPM7 to the intracellular signalling pathway (531). Of importance, 

Clapham showed that TRPM7 is most abundant on intracellular vesicles (66). Our 

investigation shows that TPRM7 colocalises with the membrane-bound protein EGFR. 

Taken together, TRPM7 is physiologically expressed in both cell cytosol and plasma 

membrane and the distribution is dynamically regulated by EGF. However, whether the 

function of TRPM7 changes according to cell location is still elusive. In fact, in 2005 

Clapham and colleagues showed that in HEK-293 cells TRPM7 is less abundant in the 

plasma membrane compared to its intracellular distribution, while in response to shear 

force TRPM7 starts to accumulate at the plasma membrane (168). However, in our study, 

using VSMC from WKY rats and normotensive humans, EGF-induced TRPM7 

translocation was not observed in our experiments, suggesting that in normal conditions 

EGF mediates the TRPM7-EGFR interaction by alternative mechanisms. Whether these 

effects are also observed in pathologic conditions remains unclear.  

TRPM7 was initially proposed to regulate intracellular Mg2+ levels, with intracellular 

level of Mg.ATP below 1 mM strongly activating the channel (67). Cells derived from 

heterozygous TRPM7+/Δkinase mice showed reduced TRPM7 currents with increased 

sensitivity to Mg2+ inhibition (76). In the vascular system, Mg2+ influences vascular 

smooth muscle cell (VSMC) growth and apoptosis and negatively regulates vascular tone 

through its Ca2+ antagonistic properties (166). In our study, we explored EGF-induced 

Mg2+ mobilization and showed that EGF increases intracellular free Mg2+ which is 

specifically mediated by TRPM7, since the effects were reduced by TRPM7 inhibitors 

NS8593 and 2-APB) which are specific to the channel domain (430). Although EGF was 
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found to induce only a modest elevation of intracellular free Mg2+ (~3%) in VSMCs, we 

believe that such as a change could be biological significant. It is worth noting that 

intracellular Mg2+ is normally maintained within narrow concentration limits except in 

extreme situation such as hypoxia or prolonged Mg2+ depletion (4). In VSMCs, our group 

previously showed that basal intracellular Mg2+ is tightly maintained at 0.5 to 0.6 mmol/L 

and the vasoactive agent Ang II-induced changes of intracellular Mg2+ were modest but 

were significantly associated with protein and DNA synthesis  (2). However, at present we 

cannot conclude whether or not EGF mediates Mg2+ homeostasis in VSMC through effects 

on the kinase domain. A significant number of studies support a link between TRPM7 

channel and its C-terminal kinase domain. For instance, Scharenberg et al. found that 

HEK293 cells overexpressing mutant human TRPM7 K1648R and G1799D exhibit 

deficient Mg2+/Mg.ATP-dependent suppression of channel activity, and concluded that the 

phosphotransferase activity of the kinase domain could influence channel activity (107). 

The involvement of TRPM7 kinase domain in cation influx was also demonstrated by the 

observation that although TRPM7 is not a store-operated channel, the kinase regulates 

store-operated Ca2+ entry (86).  

Inhibition of EGFR by monoclonal antibodies targeting an extracellular epitope of the 

EGFR such as panitumumab (Vectibix) and cetuximab (Erbitux), or by small-molecule that 

inhibit the RTK on the cytoplasmic side of cells such as erlotinib and gefitinib, has been 

widely used in anti-cancer treatment (532). However, hypomagnesemia is a common side 

effect observed in patients receiving anti-EGFR treatment. A meta-analysis in 2013 

involving 7,045 patients showed that the relative risk of severe hypomagnesemia in 

patients receiving cetuximab was 8.60 (95%CI, 5.08-14.54) compared with patients on 

standard therapy (533). Weglicki and colleagues showed that plasma magnesium decreased 

progressively after 3-9 weeks of erlotinib administration (532). Mechanisms underlying 

EGFR inhibitor-induced hypomagnesemia have been well studied and it has been shown 

that the blockage of EGFR signalling in the kidney impairs renal Mg2+ reabsorption 

through TRPM6  (260). Importantly, inhibition of EGFR is also associated with alterations 

of cardiovascular phenotypes. Threadgill et al. showed that chronic pharmacologic 

inhibition of EGFR leads to cardiac dysfunction in C57BL/6J mice (534), while Guang 

Liang and colleagues found that EGFR inhibitors attenuate cardiac hypertrophy induced by 

Ang II (330).  

In the heart, Mg2+ has a critical role in modulating neuronal excitation, intracardiac 

conduction and myocardial contraction through regulating several ion transporters 
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including potassium and calcium channels (535). In the vascular system, Mg2+ induces 

VSMC growth and negatively regulates vascular tone via its Ca2+ antagonistic property, 

and through mechanisms involving nitric oxide and oxidative stress (166, 536). Our 

finding that EGF regulates vascular TRPM7 and consequently affects Mg2+ homeostasis 

supports that Mg2+ and its transporter might be important modulators contributing to the 

alterations of cardiovascular phenotypes observed in cancer patients receiving anti-EGFR 

treatment. Mg2+ and Mg2+ transporters should be investigated in the future for studies that 

aims to improve quality of life in those patients.  

EGF-induced Ca2+ increase in cytosol was reported to exhibit two components 

including store-based Ca2+ release due to activation of the PLCγ/IP3 pathway, and a net 

Ca2+ influx from the outer medium through store operated channel (SOC) and/or non-SOC 

(252). TRP family channels TRPP2 and TRPV4 were shown to form a functional complex 

contributing to EGF-mediated Ca2+ influx (256). TRPM7 has also been demonstrated as 

Ca2+ permeable channel in human atrial fibroblasts (83), however, whether TRPM7 has a 

role in regulating Ca2+ in VSMCs has not been clearly elucidated. Here, we show that 

under physiological conditions EGF induced intracellular Ca2+ elevation, an effect 

abolished by non-specific TRPM7 inhibitor 2-APB, but not the potent and relatively 

specific TRPM7 inhibitor NS8593. 2-APB is non-selective drug, which interacts with 

multiple channels including TRPM2 and TRPM7 (537). Thus, we postulate that EGF-

induced Ca2+ transients in VSMCs can be mediated by other ion channels such as the TRP 

channels or store-operated Ca2+ channels. Of importance, our group has recently shown 

that TRPM2 is important for Ca2+ handling in VSMCs, and the channel activity is 

upregulated by ROS leading to enhanced Ca2+ signalling in hypertension (538).  

In addition to the well-characterized mitogenic effects in the vasculature, members of 

the EGF family have been described as direct vascular mediators (317-320). EGF has been 

consistently demonstrated as a potent vasoconstrictor by several studies. Berk et al. found 

that EGF significantly induced contraction of rat aortic strips which maximally was 

equivalent to 40% of that caused by Ang II (319), Florian and colleagues showed that EGF 

induced contraction in aorta from rats dependent of MEK and L-type Ca2+ channel (320), 

and Amin et al. showed that myogenic tone of coronary arteriole was significantly reduced 

under inhibition of either EGFR or the downstream JAK-STAT3 complex (318). However, 

in this study, we did not observe a regulatory role of EGF in vascular contraction. Instead, 

we show that EGF reduces ACh-induced relaxation, which is endothelium dependent, in 

both WT and TRPM7+/Δkinase mice. This is very interesting, because our previous study 
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demonstrated that Ang II reduces ACh-induced relaxation in a TRPM7-mediated manner 

(77). It is worth noting that Ang II exerts its vascular effects through angiotensin type 1 

(AT1) receptor and type 2 (AT2) receptor (539), which belong to the family of G-protein 

coupled receptor (GPCR), while EGFR is a member of the RTK family (202). Ang II is 

able to activate EGFR through a mechanism called transactivation as it was observed in 

VSMCs that Ang II-induced activation of the MAP kinase signalling was inhibited by 

EGFR antagonist (540). Vascular signalling through GPCR and RTK involves different 

cellular components. For instance, ROS and reactive nitrogen species (RNS) have been 

shown to play an important role in GPCR agonist-regulated cell function in the vascular 

system (541). In addition, differences in the role of TRPM7 in Ang II/EGF regulated 

vascular relaxation may be attributable to different experimental conditions. In the current 

study, mesenteric resistance arteries were dissected from mice and were treated with EGF 

in vitro, while in the previous study mesenteric arteries were isolated from mice treated 

with Ang II in vivo.  

We have recently reviewed the crosstalk between TRPM7 and RTK downstream 

signalling pathways including the MAP kinases (46). TRPM7 has been shown to regulate 

the activity of MAP kinases. Xiong et al. found that silencing TRPM7 promotes 

proliferation via activating ERK1/2 in endothelial cells, while in mouse cortical astrocytes, 

silencing TRPM7 inhibits proliferation via ERK1/2 and c-Jun N-terminal kinases (JNK) 

pathways  (124, 400). In HEK-293 cell line, overexpression of TRPM7 activates 

p38MAPK and JNK, whereas suppressed ERK1/2 phosphorylation (104). It is interesting 

that in these studies, inhibition of TRPM7 activity via silencing RNA and pharmacological 

inhibitors show opposite effects on ERK1/2 phosphorylation. Hence, these findings 

suggest that TRPM7 affects ERK1/2 activation in a cell type-specific manner. Our results 

reveal that TRPM7 is positively associated with ERK1/2 phosphorylation, and contributes 

to EGF-induced activation of ERK1/2 in the vasculature. Of importance, in our study the 

regulatory role of TRPM7 in the activation of ERK1/2 was demonstrated at cell and tissues 

from mice model of TRPM7 deficiency. We assume that the underlying mechanisms may 

involve TRPM7 channel activation, involving Ca2+ or Mg2+ effects. Mg2+ deprivation has 

been shown to decrease phosphorylated ERK1/2 levels and consequently inhibit cell 

proliferation in kidney cells (542), and EGF increases ERK1/2 activation through 

regulating Ca2+ in corneal epithelia (543). 

TRPM7 is closely associated with cell migration. In VSMCs, Zhang et al. found that 

TRPM7 regulates oxidised low-density lipoprotein (Ox-LDL)-induced migration through 
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MEK-ERK1/2 pathways (129), and Touyz et al. showed that bradykinin-induced cell 

migration is mediated by TRPM7 (130). The regulation of cell migration by TRPM7 has 

been also reported in neuroblastoma cell (133), bladder cancer cell (134), and human non-

small cell lung cancer cells (135). Our study, to our knowledge is the first to identify the 

importance of TRPM7 in migration in human VSMCs. Underlying mechanisms may 

involve MAP kinase and c-Src. It has been shown that in breast cancer cells, TRPM7 

mediates migration and invasion via MAP kinase pathway (407), and c-Src is an well-

known regulator in cell migration in different cell types (544, 545). Our experiments 

demonstrate that TRPM7 kinase is required to maintain c-Src activity in the vasculature 

and EGF-induced VSMC migration involves TRPM7 and ERK1/2. Those findings 

together suggest that c-Src and ERK1/2 may contribute to the regulatory role of TRPM7 in 

cell migration. Of importance, the TRPM7 kinase activity in phosphorylating myosin-IIA 

heavy chain (MHC-IIA) might influence cell migration (84). Actomyosin contractility 

driven by Myosin II controls cytoskeletal remodelling, and non-muscle myosin II is 

believed to take centre stages in cell adhesion and migration and is upregulated in many 

cancers (546, 547). Regulation of myosin II activity includes dynamic phosphorylation and 

dephosphorylation of myosin heavy chain (MHC) (548) and TRPM7 phosphorylates 

MHC-IIA at Thr1800, Ser1803 and Ser1808 (99). Whether the phosphorylation status of 

MHC-IIA is changed by EGF treatment and exerts effects on cell migration in VSMCs 

remains unclear, but would be of interest to investigate in future studies.  

Mechanisms underlying the regulatory role of TRPM7 in cell proliferation involves its 

kinase activity. Ryazanova et al. showed that the proliferation arrest phenotype was 

displayed in embryonic stem cells with deficient TRPM7 kinase domain (76), and that in 

this study aortic vessels isolated from TRPM7 kinase-deficient mice display reduced 

proliferation marker associated with decreased wall thickness. Compelling evidence shows 

that Ca2+ and Mg2+ and the related signalling pathways play major roles in cell 

proliferation (118, 549), with a specific involvement of the ion channel TRPM7. It has 

been shown that TRPM7 regulates non-voltage-gated spontaneous Ca2+ influx, facilitating 

cell growth, while silencing TRPM7 reduces the magnitude of Ca2+ influx and reduces the 

rate of cell proliferation with retarded G(1)/S cell cycle progression (126), and that 

silencing TRPM7 in fibroblasts enhances cell resistance to apoptotic stimuli in a Mg2+-

dependent manner through decreasing ROS levels (125). In the present study, our 

experiments demonstrate that EGF mediates intracellular levels of Mg2+ and Ca2+ through 

TRPM7. In particular, we observe that under physiological condition (WKY), TRPM7 is 
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not involved in EGF-induced Ca2+ elevation, while in VSMCs derived from SHRSP, cells 

that are characterized by enhanced cell proliferation (505). TRPM7 specifically contributes 

to EGF-triggered Ca2+ mobilisation. All together, we postulate that both the TRPM7 kinase 

activity and the channel property in permeating Ca2+ and Mg2+ are involved in EGF-

mediated proliferation in VSMCs. However, this modulation might be different according 

to the cell activation phenotype. Further strategies to clarify the detailed mechanisms 

include observation of ion homeostasis and cell proliferation in cells with TRPM7 kinase 

deficiency (TRPM7+/Δkinase) or "dead" catalytic activity (TRPM7R/R) in the presence of EGF 

and TRPM7 activator (e.g. naltriben).  

6.1.2 Regulation of TRPM7 by VEGF in VSMCs  

The VEGF family contains several members, including VEGF-A, VEGF-B, VEGF-C, 

VEGF-D, VEGF-F and placental growth factor (PIGF) (365). The most widely studied 

member is VEGF-A, also known simply as VEGF. Since the discovery of VEGF in 1983 

and the subsequent cloning of the gene in 1989 (550, 551), an increasing amount of 

knowledge has accumulated on the biological effects of VEGF on blood vessel formation 

in health and disease (551). VEGF has been described as a potent, endothelial cell-specific 

mitogen that regulates angiogenesis, vascular permeability and vasodilation (552). VEGF 

exerts biological effects through binding to RTKs, mainly VEGFR-1 and VEGFR-2, 

members of the RTK family (553). The VEGF-VEGFR system by increasing 

microvascular permeability and promoting endothelial cell migration and proliferation, 

regulates both the normal and pathological angiogenic processes (365). In addition to the 

classical role in endothelial cells, VEGFR-1 and VEGFR-2 are also expressed in SMCs 

and the activation has been shown to modulate phenotypes of SMCs (554). Zhang et al. 

found that VEGF through activating VEGFR2 promotes VSMCs proliferation with 

mechanisms involving STAT3 (555), while Laitinen and colleagues found that VEGF 

reduces VSMCs proliferation via a mechanism that involves VEGF-induced NO 

production from the endothelium (556).  

TRPM7 plays a critical role in cardiovascular system. Clapham et al. found that early 

cardiac-targeted knockout of TRPM7 impaired ventricular function, conduction and 

repolarization (138). Our previous study showed that TRPM7 is important in regulating 

vascular Mg2+ homeostasis and that Ang II-induced hypertension is exacerbated in TRPM7 

kinase-deficient mice, associated with pronounced cardiac hypertrophy and worsened left 

ventricular function (77). The current study examines the biological effects of the VEGF-
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VEGFR system on VSMCs, with a specific focus on the activity of TRPM7. We 

demonstrate that VEGF through its receptor enhances TRPM7 phosphorylation and 

expression at gene and protein level, without influencing TRPM6. TRPM7 trafficking has 

been associated with important cellular functions. Clapham and his group demonstrate that 

functional TRPM7 accumulates at the plasma membrane in response to fluid flow which 

might play a role in pathological response to vessel wall injury (168). TRPM7 is also 

proteolytically cleaved in normal tissue and cell lines, and the TRPM7 cleaved kinase 

fragments translocate to the nucleus and bind to multiple components of chromatin 

remodelling complexes, which affects gene expression patterns (557). In our study, we 

provide preliminary evidence for the translocation of TRPM7 towards the plasma 

membrane upon VEGF stimulation in VSMCs. Since VEGF-induced Mg2+ influx was also 

observed in VSMCs, we hypothesize that VEGF through VEGFR recruits TRPM7 to the 

plasma membrane acting as a channel for Mg2+ influx.  

VEGF has been shown to mediate intracellular Ca2+ in different cell types, including 

endothelial cells (244-246), VSMCs (247), cardiomyocytes (248), neurons (249) and 

trophoblast cells (250). Angle et al. demonstrate that in VSMCs VEGF induces 

extracellular Ca2+ influx but not intracellular Ca2+ release (247). In our study, we found 

that VEGF elevates intracellular Ca2+ through TRPM7 in VSMCs. However, in our 

experiments the VEGFR inhibitor vatalanib only partially attenuated the effect of VEGF, 

as shown by the Area under curve (AUC) in Figure 4.4. It should be noticed that in our 

experiments the Ca2+-related events were recorded for approximately 250 seconds and the 

AUC value was determined by the whole curve. It seems that vatalanib exerts its inhibitory 

effect mainly in the first 100 seconds (Figure 4.4) and during this period VEGF’s effect is 

abolished, suggesting the involvement of VEGFR. Interestingly, although the specific 

TRPM7 inhibitor NS8593 attenuates the effect of EGF on Ca2+ mobilisation, the extent 

was less compared to the non-specific TRPM7 inhibitor 2-APB. Thus, we postulate that 

alternative mechanisms might contribute to VEGF-regulated Ca2+ homeostasis in VSMCs. 

In line with this, TRP family channel TRPC6 has been shown to modulate VEGF-induced 

intracellular Ca2+ elevation in human microvascular endothelial cells (246). In VSMCs, our 

group recently demonstrate that TRPM2 is an important Ca2+ channel, which contributes to 

the crosstalk between vascular Redox and Ca2+ signalling (538). Whether other TRP 

family channels are involved in VEGF-induced Ca2+ mobilisation in VSMCs remains 

unclear. To further explore this, chemical compounds 8-Br-cADPR and Larixyl Acetate, 
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inhibitors to TRPM2 (538) and TRPC6 (558) respectively can be utilised in the presence of 

VEGF in VSMCs for future studies.  

VEGF-induced Mg2+ mobilisation was observed in endothelial cells. Hong and 

colleagues show that VEGF promotes Mg2+ release from intracellular store in a dose-

dependent manner. Here, we demonstrate that VEGF promotes Mg2+ influx by 

mechanisms dependent on VEGFR and TRPM7 activation in VSMCs under a 

physiological concentration (1 mM) of extracellular Mg2+. Interestingly, VEGF reduces 

intracellular free Mg2+ under 0 extracellular Mg2+ in a time-dependent manner in our 

experiments. These data, together with the observation that there was a trend for increased 

SLC41A1 expression after VEGF stimulation, suggest that VEGF might promote both 

Mg2+ influx and efflux in VSMCs, a dynamic process depending on the level of 

extracellular Mg2+. It is worth noting that the indicator Magnesium green used in this study 

specifically detects intracellular free Mg2+ (559). However, only 1-5% intracellular 

magnesium is ionized, and the remainder is bound to proteins, negatively charged 

molecules and adenosine triphosphate (ATP) (6). The observation that intracellular free 

Mg2+ was reduced upon VEGF stimulation under 0 extracellular Mg2+ can also be 

explained by the increased binding of Mg2+ to ATP and intracellular proteins, which is of 

interest and deserves more attention.  

VEGF through its receptor, mainly VEGFR-2, has been shown to stimulate the 

activation of diverse signalling proteins in ECs including p38 MAPK and ERK1/2, which 

consequently regulates processes related to angiogenesis such as endothelial cell migration, 

proliferation, and vascular permeability (560-562). VEGF also induces the phosphorylation 

of PKC in ECs and regulates endothelial permeability in a PKC-dependent manner (498, 

563). Interestingly, in VSMCs we observe that VEGF has no effect on the phosphorylation 

of p38 MAPK and PKC, while it reduces the phosphorylation of ERK1/2 in a VEGFR-

independent manner. In line with our finding, Freischlag and colleagues demonstrate that 

VEGF inhibits PDGF-induced phosphorylation of ERK1/2 and exerts negative effect on 

proliferation in VSMCs (564), and Standley et al. showed that the upregulation of MEK 

and ERK1/2 as proliferative phenotype appears to be abrogated by VEGF in VSMCs (565). 

Although Zhang et al. found that VEGF promotes VSMCs proliferation, the effect is 

dependent on VEGFR2/STAT3-mediated upregulation of the proliferation makers Cyclin 

D1 and PNCA (555). In addition, VEGF has been shown to mediate cell function through a 

crosstalk with G protein-coupled receptor as a novel mode of “transactivation” in the 

vascular wall (566).  
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There is emerging evidence that VEGF acts as a potent vasodilator and exerts 

vasculoprotective effects. In the skin vasculature, VEGF by the activation of VEGFR-2 

induces vasorelaxation with postreceptor signalling pathways involving PLC, PKC, Ca2+ 

release from intracellular store, and the synthesis/release of NO (567). In coronary arteries, 

VEGF triggers endothelium-dependent relaxation by stimulating endothelium-derived 

relaxing factor (EDRF)/NO release via a Ca2+ dependent mechanism (337). Abman and 

colleagues show that VEGF causes pulmonary vasodilation and the response is likely 

mediated by the release of NO through activation of PI3K (568). He et al. reported that in 

human internal mammary artery (IMA) and radial artery (RA), VEGF induces similar and 

potent relaxation that by mechanisms dependent on prostacyclin, endothelium-derived 

hyperpolarizing factor (EDHF) and NO (569). It is worth noting that these modulators can 

be closely regulated by Mg2+. For instance, hypomagnesemia has been shown to inhibit 

NO release from coronary endothelium (570); Mg2+ enhances prostacyclin production in 

both ECs and VSMCs (571) and Mg2+ infusion improves endothelium-dependent 

vasodilation in the human forearm (572). The vasculoprotective role of VEGF has been 

further supported by the fact that anti-VEGF chemotherapy in cancer patients is associated 

with significantly increased blood pressure (338). In the current study, we demonstrate that 

VEGF increases the sensitivity of mesenteric arteries to SNP-induced (endothelium 

independent) relaxation. Taking advantage of the mice model of TRPM7 deficiency, we 

show that the VEGF-promoted relaxation is dependent on TRPM7. Application of the 

TRPM7 activator naltriben produces similar effect on SNP-induced relaxation, suggesting 

that TRPM7 might be a potential target for diseases associated with vascular dysfunction. 

Of importance, our experiments show that VEGF promotes Mg2+ influx in VSMCs. Thus, 

we hypothesize that TRPM7 contributes to VEGF-induced vasodilation through Mg2+. 

6.1.3 EGF and VEGF have different effects on VSMCs 

Growth factors are secreted biologically active molecules that stimulate cell 

proliferation and mediate (patho)physiological processes including embryogenesis, wound 

healing and carcinogenesis (573). Growth factors include lipid-soluble steroid hormones 

such as oestrogen, androgen and progestogen which bind to intracellular protein receptors 

or nuclear receptors, and protein growth factors such as VEGF and EGF which bind to cell 

surface receptors (574). There are multiple similarities between VEGF and EGF. Receptors 

of VEGF and EGF (VEGFR and EGFR) belongs to the RTK family and share a common 

molecular architecture. Through activating RTKs, VEGF and EGF trigger similar 

downstream signalling pathways (575, 576). Abnormal activation of RTKs has been found 
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in a wide range of cancers and small molecule agents targeting VEGFR and EGFR are 

important anticancer strategies (307, 575, 576).  

TRPM7 has been involved in the regulation of downstream signalling pathways of  

growth factors (VEGF and EGF), such as the PI3K/AKT pathway (46). Contribution of 

TRPM7 to the PI3K/AKT pathway has been demonstrated in different cell types. In mouse 

chondrocytes, TRPM7 overexpression was associated with upregulation of PI3K p85 

subunit and AKT expression and phosphorylation, effects that were reduced by silencing 

TRPM7 (405) and in lymphocyte TRPM7 was shown to be required for sustained 

PI3K/AKT signalling activation, which is important for cell growth (404). Of importance, 

VEGF and EGF have been shown to induce the activation of PI3K in VSMCs (313, 577). 

Findings from this study demonstrate that VEGF and EGF exert similar effects on TRPM7 

expression and phosphorylation in VSMCs. Thus, we postulate that TRPM7 plays an 

important role in the activation of downstream signalling pathways shared by VEGF and 

EGF in VSMCs, such as the PI3K/AKT pathway.   

However, we also show that VEGF and EGF differently affect VSMCs: 1) VEGF 

promotes accumulation of TRPM7 at the plasma membrane isolated by ultracentrifugation 

in VSMCs while EGF has no effect on TRPM7 movements as observed in HEK cells ; 2) 

at basal level VEGF but not EGF regulates Ca2+ mobilization by TRPM7 specific 

mechanisms; 3) VEGF reduces ERK1/2 phosphorylation in a VEGFR- and TRPM7- 

independent manner while EGF enhances ERK1/2 phosphorylation through EGFR and 

TRPM7 and 4) VEGF potentiates endothelium-independent vascular relaxation by 

mechanisms depending on TRPM7, whereas EGF inhibits endothelium-dependent 

vasodilation in a TRPM7 independent manner. Among these different effects, ERK1/2 

phosphorylation is of our greatest interest. ERK1/2 causes vascular contraction and 

increased ERK1/2 activity has been demonstrated in a number of different animal models 

of hypertension (472, 507). Involvement of TRPM7 in the activation of ERK1/2 depends 

upon cell type. Silencing TRPM7 increases phosphorylation of ERK1/2 and their upstream 

kinases MEK1/2  (400) in ECs, whereas in mouse cortical astrocytes silencing TRPM7 is 

associated with decreased ERK1/2 phosphorylation (124). Understanding how TRPM7 is 

involved in ERK1/2 activity induced by VEGF/EGF has been complicated by the 

observation that VEGF and EGF exert similar effects on TRPM7 

expression/phosphorylation while opposingly regulate ERK1/2 phosphorylation. However, 

in our experiments VEGF promotes TRPM7 accumulation at the plasma membrane of 

VSMCs while EGF has no effect on TRPM7 trafficking in HEK cells. It is worth noting 
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that cellular location of TRPM7 is associated with distinct biological functions, as 

supported by the findings that TRPM7 accumulates at the plasma membrane in response to 

fluid flow and plays a role in pathological response to vessel wall injury (168), and that 

cleaved TRPM7 kinase fragments translocate to the nucleus and mediate gene expression 

patterns (557). Taken together, we believe that VEGF and EGF act as vasoactive agents in 

the vasculature, and distinct effects of VEGF and EGF on ERK1/2 phosphorylation may be 

attributable to the different TRPM7 location upon VEGF/EGF stimulation. 

6.2.1 Dysregulation of EGFR and TRPM7 is involved in hypertension  

Epidermal growth factor receptor (EGFR) and its downstream signalling have been 

widely acknowledged for the influence in cancer development, however, its involvement in 

cardiovascular disease is poorly understood. Accumulating evidence has highlighted the 

EGFR signalling as a critical contributor to hypertension. Enhanced EGFR 

phosphorylation and expression have been observed in experimental hypertension, while 

specific knockout of EGFR in VSMCs is associated with arterial hypotension in mice (314, 

321, 322). Accordingly, EGF has been described as a potent vasoconstrictor by several 

studies (319, 320). Interestingly, in our study we did not observe a regulatory role of EGF 

in vascular contraction. Instead, we show that EGF reduces ACh-induced (endothelium 

dependent) vascular relaxation, a process that does not involve the TRPM7 kinase. 

Ca2+ is the final messenger contributing to the contraction of vascular muscle (520). 

Increased Ca2+ influx leads to augmented vascular tone and enhanced vascular resistance 

(521). Mg2+ negatively regulates vascular tone through its Ca2+ antagonistic property (166). 

Hypomagnesemia and decreased tissue Mg2+ level have been shown in various models of 

experimental hypertension (163-165). We examined EGF-regulated Ca2+ and Mg2+ 

homeostasis in VSMCs from WKY and SHRSP. EGF elevates intracellular Ca2+ in 

VSMCs from both strains and the effect is specifically mediated by TRPM7 in VSMCs 

from SHRSP. These results suggest that TRPM7 is predominantly involved in EGF-

initiated Ca2+ elevation in hypertension, which is consistent with our observation that 

increased TRPM7 expression is present in SHRSP. In addition, our preliminary data also 

show that Ca2+ contributes to the enhanced cell migration observed in VSMCs from 

hypertensive humans compared to normotensive controls.  

Although EGF regulates Mg2+ homeostasis in a similar manner in VSMCs from WKY 

and SHRSP, there is reduced intracellular free Mg2+ at basal level in SHRSP, which 

supports the negative correlation between Mg2+ and hypertension. In addition to the Ca2+ 
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antagonistic property, Mg2+ is able to affect vascular health via mechanisms involving 

nitric oxide and oxidative stress. Mg2+ exerts direct effects on maintaining endothelial 

function, by stimulating endothelial proliferation, enhancing the mitogenic response to 

angiogenic factors and inducing the synthesis of nitric oxide (536). Accordingly, Mg2+ 

supplement lowered arterial blood pressure in nitric oxide synthase (NOS) inhibition-

induced hypertension through restoring the agonist-induced relaxation response of the 

arteries (578). Oxidative stress, defined as an imbalance between oxidants and antioxidants, 

instigates endothelial dysfunction and inflammation and contributes to cardiac and vascular 

abnormalities in different types of CVDs (579). Mg2+ deficiency has been shown to 

induces oxidative stress (580), and Mg2+ supplementation plays protective role through 

reducing oxidative stress in diabetic rats (581), in athletes and in young men with 

sedentary lifestyle (582). 

Interestingly, TRPM7 appears to be vascular protective, because TRPM7+/Δkinase mice 

fused with Ang II present with exaggerated blood pressure, worsening of left ventricular 

function and pronounced cardiac hypertrophy in comparison with Ang II-infused WT mice 

(77). However, it should be noted that the deletion of TRPM7 kinase domain in this animal 

model is global, and TRPM7 as a ubiquitously expressed protein has been involved in the 

physiological functions of several organ systems. Thus, the phenotypes observed in Ang II-

infused TRPM7+/Δkinase mice might be attributed to the dysfunction of TRPM7 in other 

organs such as kidney and heart.  Since TRPM7 acts as a critical chanzyme involved in a 

variety of physiological processes, and global TRPM7 deletion results in embryonic 

lethality, it is not surprising that both TRPM7 deficiency and enhancement can induce 

abnormalities according to the cell type. Recently, Polotsky and colleagues demonstrate 

that leptin, a hormone increased in obese humans, induces hypertension through acting on 

TRPM7 in the carotid body (506). We hypothesize that under physiological conditions, 

TRPM7 is more permeable to Mg2+ in VSMCs and exerts protective effects via Mg2+ in the 

vascular system. While in the context of hypertension, TRPM7 is responsible for agonist 

(e.g. EGF) -induced Ca2+ elevation. We have previously shown that VSMCs treated with 

Ca2+ exhibit reduced TRPM7 in the plasma membrane (141). Enhanced Ca2+ signalling 

might consequently lead to a reduction of TRPM7 in the plasma membrane, which causes 

the reduction of intracellular concentration of Mg2+ in VSMCs. Thus, enhancement of the 

EGFR-TRPM7 signalling might contribute to the development of hypertension through 

aberrant alterations of divalent cations. 

6.2.2 Possible role for TRPM7 in PE   
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Preeclampsia (PE) is a multisystem disorder with clinical manifestations involving 

different organs such as kidneys, liver, brain, heart, lung, pancreas and the vasculature 

(355). PE negatively affects both the mother and foetus. Deleterious effects on foetus 

include growth restriction, preterm delivery, respiratory distress, cerebral palsy, 

necrotizing enterocolitis and still birth (362). For the pregnant women, PE is associated 

with adult respiratory distress syndrome (ARDS), pulmonary oedema, cerebral thrombosis 

or haemorrhage, renal dysfunction, hepatic dysfunction, thrombocytopenia and 

disseminated intravascular coagulopathy (DIC) (350, 355).  

The VEGF family and their receptors have been shown to play an important role in 

normal pregnancy and the pathogenesis of PE. VEGF and PIGF are required for normal 

placental angiogenesis and development (372, 373). Targeted inactivation of a single 

VEGF allele or disruption of genes encoding VEGF receptor 1 (VEGFR1) resulted in 

abnormal vessel formation during embryogenesis leading to embryonic death, and PIGF-

knockout mice display delays in spiral arterial remodelling and placental development 

(583). In the context of  PE, abnormalities of the VEGF-VEGFR system are believed to 

contribute to the pathophysiology of PE (367, 377), and the sFlt-1: PIGF ratio  has been 

used clinically to predict the disease progression and guide treatment (378). In addition, 

inhibition of VEGFR, the classical therapeutic strategy in the management of malignancies, 

is associated with significant cardiovascular toxicities especially hypertension, which 

makes VEGF and its receptor more attractive candidates to explore for a better 

understanding of the pathophysiology of PE (343). 

 In our study, alterations of VEGFR2 expression and/or phosphorylation are present in 

two animal models of PE, further supporting involvement of the VEGF-VEGFR system in 

PE. Given the importance of the VEGF-VEGFR system in PE, using PIGF and VEGF to 

restore angiogenic balance as potential therapies have been investigated in different 

experimental models of PE. Infusion of  recombinant human PIGF for 5 days via 

intraperitoneal osmotic minipumps has been shown to reduce blood pressure and 

proteinuria and improve glomerular infiltration rate (GFR), associated with decreased sFlt-

1 level in the RUPP model of PE (381). In a model of PE based on sFlt-1 overexpression, 

(379), treatment with recombinant human VEGF121 (rhVEGF121) alleviates symptoms 

and pathological features such as hypertension, proteinuria and glomerular endotheliosis 

without apparent harm to the foetus (386). It is worth noting that although reduced 

bioavailability of serum VEGF and PIGF has been shown in animal models of PE, there is 

a paucity of information about activity of this system in the placenta. Here, we demonstrate 
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that dysregulated VEGFR is present in the placental tissue from animal model of PE. 

Moreover, we show that in the placenta alterations of VEGFR activity are associated with 

changes of Mg2+ transporters MagT1 and TRPM7, downstream targets of VEGF/VEGFR 

that we have demonstrated in the vascular system. 

 PE has been considered a disease with cardiovascular origins, where the placental 

dysfunction is secondary to maternal cardiovascular maladaptation in pregnancy (584). 

Additionally, women with a history of PE have an elevated risk to develop CVDs such as 

hypertension (513). Our group has demonstrated that TRPM7 exerts vasculoprotective 

effects, while the lack of TRPM7 in mice can cause exaggerated hypertension in response 

to Ang II (77), and induce cardiovascular inflammation and fibrosis (112). In the current 

study, we show that VEGF increases TRPM7 expression and phosphorylation in VSMCs, 

with an important role in Mg2+ homeostasis. Moreover, VEGF promotes the sensitivity to 

SNP-induced vessel relaxation in a TRPM7-dependent manner. Thus, we hypothesize that 

TRPM7 might act as an important downstream effector of VEGF, which contributes to the 

pathogenesis of PE when the bioavailability of VEGF is reduced and mediates the 

therapeutic effects of VEGF/PIGF shown in animal model of PE. 

One novel finding of this study is that Mg2+ transporters such as TRPM7 and MagT1 

might have an important role in the development of PE. In line with our findings, gene 

expression of TRPM7 was down-regulated in preeclamptic placenta tissues during preterm 

labour and remained lower at term labour (395). We also found that MagT1, the important 

transporter for Mg2+ influx, was consistently increased in the placental tissue from both 

experimental models of PE. As we discussed earlier, MagT1 might be involved in PE 

through its effects on immune function, while MagT1 could also act as an adaptive and 

compensatory mechanism to rescue the preeclamptic phenotype caused by the 

dysregulation of TRPM7.  

MgSO4 is the mainstream strategy to prevent and treat PE or eclampsia (388, 389), 

however, the underlying mechanisms remain unclear. It has been reported that gene 

expression of TRPM7 and TRPM6 is down-regulated in preeclamptic placenta tissues 

during preterm labour and remained lower at term labour (395), while Vormann et al. show 

that SLC41A1 is significantly overexpressed in placentas of preeclamptic women 

compared to pregnant women without preeclampsia with no significant changes in 

expression levels of TRPM7 and MagT1 (585). Taking advantages of placental tissues 

from two different animal models of PE, we demonstrate that Mg2+ transporters including 
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TRPM7, MagT1 and SLC41A1 are dysregulated in the preeclamptic group. We believe 

that alterations of placental Mg2+ transporters might be involved in the pathogenesis of PE 

and contribute to mechanisms underlying the clinical use of MgSO4 in PE. To further 

explores this, animals can be treated by MgSO4 with or without pretreatment of inhibitors 

of Mg2+ transporters (e.g. TRPM7), and expression of Mg2+ transporters in the placenta or 

other systems such as the vasculature can be examined.  

To summarize, our studies identify TRPM7 as a novel signalling target of growth 

factor VEGF and EGF in the vascular system. In particular, we demonstrate that i) VEGF 

and EGF through their receptors (RTK) influence TRPM7 expression, phosphorylation and 

cellular location in VSMCs, important in the regulation of ion homeostasis such as Mg2+ 

and Ca2+, ii) TRPM7 is both upstream and downstream of growth factor/RTK in VSMCs 

and the direct interaction between TRPM7 and EGFR occurs in the cell membrane and is 

regulated by EGF in a c-Src-dependent manner, iii) TRPM7 is critically involved in the 

activation of RTK downstream cascades such as ERK1/2, a process consequently 

contributing to EGF-induced VSMC migration and proliferation, iv) TRPM7 differently 

contributes to EGF- and VEGF- regulated vascular reactivity, as EGF reduces ACh-

induced (endothelium-dependent) vascular relaxation independently of TRPM7 kinase 

while VEGF promotes vessel sensitivity to SNP-induced/endothelium-independent 

vascular relaxation via the TRPM7 kinase and v) the RTK-TRPM7 crosstalk may have 

significant clinical relevance, as dysregulation of the EGFR-TRPM7-ERK pathway is 

observed in VSMCs from hypertensive rats and aberrant expression of VEGFR-TRPM7 is 

identified in placenta from animal model of preeclampsia. 

6.3 Limitations of the study  

The study has highlighted the involvement of TRPM7 in growth factors VEGF- and 

EGF- triggered downstream signalling pathways in VSMCs and a possible role of TRPM7 

in PE. Different pharmacological inhibitors of TRPM7 including 2-APB and NS8593 and 

VSMCs derived from TRPM7 kinase-deficient mice were used to explore how TRPM7 

contributes to ERK1/2 activation, Ca2+ and Mg2+ homeostasis, cell migration and 

proliferation, and vascular reactivity. It was also demonstrated that VEGF and EGF 

regulate another Mg2+ transporter MagT1. In order to confirm that all the effects observed 

on VSMCs are specifically mediated by TRPM7 rather than MagT1, experiments with the 

modulation of MagT1 activity should be performed in VSMCs. Currently, there are no 
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available pharmacological inhibitors of MagT1, and thus gene silencing approaches should 

be considered in future studies.  

Ca2+ and Mg2+ are intracellular messengers involved in a wide variety of vital cellular 

processes. TRPM7 and its property acting as Ca2+- and Mg2+- permeable channel have 

been shown to play important roles in different cell types. In this study, we demonstrate 

that VEGF and EGF regulate Ca2+ and Mg2+ homeostasis through TRPM7, however, the 

importance of Mg2+ and Ca2+ in ERK1/2 activation, cell migration and proliferation, and 

vascular reactivity has not been thoroughly investigated. To study whether TRPM7 

mediates growth factors-regulated cellular signalling and cell functions through Ca2+
 and 

Mg2+, the metal ion chelators such as EGTA and EDTA should be used in some 

experiments.  

To study the role of TRPM7 in VEGF- and EGF- induced signalling and cellular 

functions, we used pharmacological inhibitors of TRPM7 including 2-APB and NS8593. 

However, 2-APB is known to inhibit the Ca2+ permeable channel TRPM2, and NS8593 

can inhibit SK channels. The usage of the two pharmacological inhibitors in most 

experiments may raise concerns over their specificity. To improve the quality of this study, 

other techniques such as gene silencing mediated by small interfering RNAs should be 

utilised in some experiments. In addition, to further highlight the importance of TRPM7 in 

vascular system, specific knockout of TRPM7 in VSMCs using the Cre-lox system could 

be considered. 

To investigate the role of the VEGFR-TRPM7 axis in PE, we show that VEGF 

upregulates TRPM7 and subsequently mediates ion homeostasis in VSMCs and 

demonstrate that dysregulation of VEGFR and TRPM7 is present in preeclamptic placentas. 

However, VSMC is not the primary component of placenta and there is a paucity of 

information on serum levels of VEGF and PIGF in this study. The alteration of TPRM7 

observed in preeclamptic placenta could not be directly linked to the dysregulation of 

VEGF/VEGFR. To further investigate whether VEGF/VEGFR exerts similar regulatory 

effects on TRPM7 in placenta, experiments should also be designed and performed 

properly in trophoblast, which is the major component of placenta, and serum levels of 

VEGF/PIGF in the two models need to be examined. Data about PE present in this study 

are still preliminary, and additional studies should be performed to support our hypothesis.   

Finally, the sample size in some experiments is relatively small, which may lead to a 

low statistical power and low reproducibility. To produce more conclusive results, some 
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experiments such as the migration and proliferation study in VSMCs from SHRSP rats 

need to be repeated with a targeted sample size of at least 6. 
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