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Abstract 

 

The detection of a single photon at 1270 nm wavelength allows the direct 

monitoring of Singlet Oxygen (1O2), making Singlet Oxygen Luminescence 

Detection (SOLD) a powerful dosimetry technique for photodynamic therapy in the 

treatment of cancer. However, the direct detection of 1O2 emission at 1270 nm 

wavelength is extremely challenging as the 1O2 → 3O2 transition in biological media 

has very low probability and short lifetime due to the high reactivity of singlet 

oxygen with biomolecules. Recent advances in single photon detection providing 

high detection efficiency, low noise single-photon detectors are an important 

innovation in the development of a practical SOLD system for eventual clinical 

use. In this thesis I present a compact fibre coupled SOLD system, using a 

supercontinuum pump source to precisely target exact photosensitizer absorption 

peak wavelengths and single-photon detectors for near-infrared detection by 

benchmarking a superconducting and a semiconductor photon counting detector. 

Both pump laser and detector are intrinsically fibre-coupled making them ideally 

suited for the development of practical singlet oxygen sensor head. The SOLD 

system was used to carry out a series of singlet oxygen time-resolved 

measurements in solution and in live cells. These measurements offer information 

on the photosensitized generation and deactivation of singlet oxygen generated 

by different photosensitizers and microenvironments at the 1270 nm wavelength 

and a first investigation of the 1590 nm singlet oxygen luminescence signal is 

presented.  
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ROI    Reactive oxygen intermediates 

ROS   Reactive oxygen species 

SFQ   Single flux quantum 

Si-CMOS  Silicon complementary metal-oxide semiconductor 

Si-SPAD  Silicon single photon avalanche photodiode 

SMF   Single mode fibre 

SNAP   Superconducting nanowire avalanche photodetector 

SNR   Signal to noise ratio 

SNSPD   Superconducting nanowire single photon detector 

SOLD   Singlet oxygen luminescence dosimetry 

SPAD   Single photon avalanche photodiode 

SPD   Single photon detector 

SQUID   Superconducting quantum interference device 

TAC   Time to amplitude converter 

TCSPC   Time correlated single photon counting 

TES   Superconducting transition edge sensor 

TRPD   Time resolved phosphorescence detection 

UCN   Upconversion nanoparticles 

UV   Ultraviolet 

WCP   Weak coherent pulses 

ZnPc   Zinc Phthalocyanine 
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1. Chapter 1 – Introduction 

 

This PhD thesis presents work carried out for the engineering of a next-

generation optical setup that will potentially be implemented in Photodynamic 

Therapy (PDT) for the treatment of cancer. Clinical photodynamic treatments lack 

efficient dosimetry techniques, something that singlet oxygen’s direct monitoring 

aim to play a key role. Direct monitoring of singlet oxygen is accomplished by 

detecting its weak signature in the 1270 nm wavelength, which was enabled by 

the utilization of advanced single-photon detectors in the near-infrared. Singlet 

oxygen is efficiently generated by molecular oxygen undergoing a photodynamic 

process with the help of organic dyes with specific optical properties. Generation 

of singlet oxygen and detection of its near-infrared luminescence are carried out 

by using a supercontinuum laser source for the activation of oxygen and the 

detection of its emission by superconducting nanowire single-photons detectors 

and InGaAs single-photon avalanche diodes, while the delivery and collection of 

the light is controlled by a carefully engineered fibre-coupled optical head. 

 

1.1 Thesis Structure 

Chapter 2 consists of a comprehensive introduction and literature 

background on all the aspects of this project. It includes details of the singlet 

oxygen generation and deactivation pathways and kinetics, the organic dyes’ 

optical properties and their role in photodynamic therapies, the dosimetry 

techniques, and the importance of singlet oxygen direct dosimetry technique. 

Also, a brief review is given on the single-photon detectors emphasizing on the 

single-photon avalanche diodes and the superconducting nanowire single-photon 

detectors, as well as on the time correlated single photon counting technique that 

is later mentioned for the data acquisition.  

Chapter 3 describes the experimental setup used throughout the project. 

Includes information on the light source, the engineering and optimization of the 

optical head describing the selection of each component, the single-photon 

detectors’ specifications with the characterization setups followed by a 

comparison between the two types. Lastly, the time correlated single photon 
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counting module used for the acquisition of the singlet oxygen signal is described 

and is given information on the fitting of the acquired singlet oxygen decay curves 

that is used for the extraction of lifetimes. 

The solution-based singlet oxygen luminescence results are presented in 

Chapter 4. It starts with an overview of the different dyes used for the excitation 

of molecular oxygen and continues describing the singlet oxygen luminescence 

detection mechanisms and equations. Then singlet oxygen luminescence 

measurements are presented in both 1270 nm and 1590 nm wavelengths, including 

comparison plots between different dyes and various concentrations, providing 

information on the detected signal and its lifetimes. Lastly, singlet oxygen 

measurements in the presence of a well-established singlet oxygen quencher are 

presented. 

In Chapter 5 are presented follow-up experiments in a somewhat more 

biological environment. Singlet oxygen measurements in the presence of an 

optical phantom simulating the scattering of human tissue and the direct 

detection of singlet oxygen from inside normal and cancer cells are the main focus 

of this chapter. Efficient detection of singlet oxygen in a more physiological 

environment is the ultimate test before advancing to real clinical-based 

measurements.  

Chapter 6 is a summary of the conclusions from the experimental chapters 

giving an overview of all the results presented. Also, an outlook is given on the 

possibility of further work, discussing clinical trials, a singlet oxygen microscope, 

alternative singlet oxygen decay pathways and next-generation infrared single-

photon sensors optimized for singlet oxygen luminescence dosimetry. 
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2. Chapter 2 – Background and Literature Review 

 

2.1 Molecular Oxygen and Reactive Oxygen Species 

Molecular oxygen (or dioxygen) O2 first appeared in the Earth’s atmosphere 

roughly 2.5 billion years ago [1, 2].  Oxygen made its appearance due to oxygenic 

photosynthesis, an evolutional need for aerobic respiration by early 

cyanobacteria, which lead to more complex eukaryotic organisms [2]. Since then, 

molecular oxygen plays an important role in the maintenance of life on Earth as it 

is the main molecule in cellular inspiration for all living aerobic organisms, as well 

as in mechanisms that lead to life extinguishing [3]. The reason molecular oxygen 

exhibits such behavior and properties is due to its unique electronic structure. O2 

is a paramagnetic biradical molecule with an open-shell electronic structure and 

an even electron number (two oxygen atoms bound together with 6 outer electrons 

for each atom) and, unlike most molecules, has by default the electronic ground 

state in a spin triplet state (𝑂2(𝑋3𝛴𝑔
−)) [3, 4, 5, 6], thus in chemical reactions, 

oxygen is common to exhibit radical-like behaviour. Ground state molecular 

oxygen has two unpaired electrons in its electronic configuration, as shown in 

Figure 2.1, which follow Hund’s rule and occupy different molecular orbitals [6, 

7]. When excited, molecular oxygen’s excited electronic states are singlet, with 

the two lowest energy singlet states being the 𝑂2(𝑎1𝛥𝑔 ) and 𝑂2(𝑏1𝛴𝑔
+) with 

excitation energies of 7882 cm-1 and 13121 cm-1 respectively [8, 9]. The 

superscript “1” and “3” indicate the molecular electronic state (singlet or triplet), 

the “g” subscript (from the German word gerade) indicate that the molecule’s 

symmetry is even, meaning that the inversion through the centre of symmetry of 

the molecule does not result in a change of sign for the molecular orbital, while 

the Greek letters “Δ” and “Σ” correspond to the orbital angular momentum (ML), 

with ML equal to 2 and 0 for “Δ” and “Σ” respectively [7, 10]. 

Since the 1950s, where Gerschman et al. first noticed that toxic effects in 

aerobic organisms were caused due to oxygen-bearing free radicals, a lot of 

research has been done in this reactive class of oxygen species [7, 11, 12]. These 

highly reactive, endogenous oxygen-containing species have been widely called 

ROS (reactive oxygen species) or ROI (reactive oxygen intermediates). ROI include 
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all the species that have been formed chemically by incomplete reduction of 

molecular oxygen, such as the peroxide (·O2
-2), hydrogen peroxide (H2O2), 

superoxide radical anion (·O2  ̄ ), hydroxyl anion (OH ̄ ) and its neutral form, the 

hydroxyl radicals (·OH ), while with the term ROS, all ROI are included along with 

singlet oxygen (1Δg) and ozone (O3) [13]. By some, ROS also include compounds 

such as peroxyl (·ROO), carobonate radicals (·CO3 ̄ ), alkoxyl (·RO), organic 

hydroperoxides (ROOH), hypochlorous (HOCl), hypoiodous acids (HOI), 

semiquinone (·SQ  ̄ ) and hypobromous (HOBr) [14, 15].  ROS can also be separated 

in free radicals and non radicals [15, 16]. A photophysical process where reactive 

oxygen species are formed via electron transfer actions is characterized as Type I 

process, while the excitation of molecular oxygen molecules and the generation 

of singlet oxygen via energy transfer from a nearby excited molecule (typically 

photosensitizer dyes) is referred to as a Type II photochemical process [4, 17]. 

 

 

Figure 2.1. Diagram illustrating the molecular orbital of ground-state triplet 
molecular oxygen 3𝛴𝑔

− and the first two excited singlet states 1𝛥𝑔 and 1𝛴𝑔
+. 

 

 

2.1.1 Singlet Oxygen  

The term Singlet Oxygen is commonly used for the 1Δg state, the first 

electronic excited state of the molecular oxygen. It was Ellis and Kneser who first 

observed absorption of liquid O2 at ~1261 nm showing the optical transition from 
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the ground state (3𝛴𝑔
−) to the first excited state (1𝛥𝑔) [6, 18]. The relatively low 

excitation energy required for the pairing of the electrons in the same orbital and 

forming the singlet oxygen is about 94 kJ mol-1 (0.98 eV) [4, 7]. However, this 

occupation of the same orbitals with a change in the electron spin, alongside with 

selection rules based on symmetry, parity and angular momentum show that the 

transitions between the electronic states of oxygen are not very probable [4, 19]. 

This is mainly the case for the electronic transitions of an unperturbed oxygen 

molecule. In the case of collision with other molecules or atoms, the perturbed 

oxygen molecule gains some freedom in the transitions as this radiative transition 

forbiddeness is weakened for both absorption and emission [6]. In addition, the 

perturbation of O2 also introduce to the molecule new non-radiative deactivation 

pathways, such as electronical to vibrational energy transfer and the charge 

transferred induced quenching which are calculated to be very effective processes 

in the deactivation of the excited singlet states [6]. Along with the molecular 

studies of the oxygen molecule, over the last decades, several ways of generating 

singlet oxygen have been proposed and researched, such as the direct excitation 

of the oxygen molecules, via chemical reactions or the photosensitized generation 

of singlet oxygen [4, 20-23].  

In a direct excitation of molecular oxygen into a singlet state, a laser is 

used to directly pump into the first or the second electronic excited states, either 

at ~1270 nm (𝑂2(𝑋3𝛴𝑔
−) → 𝑂2(𝑎1𝛥𝑔) ) or at ~765 nm (𝑂2(𝑋3𝛴𝑔

−) → 𝑂2(𝑏1𝛴𝑔
+)). While 

these transitions are of very low probability, in collision dependent perturbations 

caused by the solvents used each time, these transitions appear to be more 

probable [20, 24]. However, direct pumping at 765 nm is preferred over the 1270 

nm excitation wavelength as there is still need for easily accessible fast pulsed 

lasers in the 1270 nm region, but more importantly, there is a spectral window in 

the 765 nm region where absorption by biological compounds and molecules like 

chromophores, or water, is weak [20]. In 2015, a quantified direct excitation of 

molecular oxygen in a time-resolved study was presented by Mikkel Bregnhøj et 

al., using Ti:sapphire femtosecond lasers at 765 nm producing up to 60 mW of 

optical power, PMT detectors for the detection of the 1270 nm phosphorescence 

signal, while for the oxygen containing solutions, solvents known for their ability 

to generate long-lived singlet oxygen were used, such as toluene, D2O, acetonitrile 

and benzonitrile [20]. As for the generation of singlet oxygen through chemical 
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reaction, different pathways have been proposed like the reaction of hypochlorite 

with hydrogen peroxide, the decomposition of hydrogen peroxide, superoxide 

ions, endoperoxides and triphenyl phosphate ozonide, or through the calcium 

peroxide diperoxohydrate which can be easily prepared from hydrogen peroxide 

and calcium chloride [21, 25-29]. However, generating singlet oxygen via chemical 

reactions usually is very complicated, the quantum yield is not as high as singlet 

oxygen generated through other methods, and sometimes the side reactions 

occurred can be a major drawback.  

The third method of singlet oxygen generation mentioned above is the 

photosensitized excitation of the molecular oxygen, and is the method used and 

studied throughout this research. The main concept of this photosensitized 

excitation lies on the electronic energy transfer from an excited dye molecule, a 

so-called photosensitizer (or simply sensitizer), to the ground state oxygen 

molecules. More specifically, the photosensitizer molecule is illuminated with 

light usually from the ultra-violet to the deep-red spectral region and is excited 

(typically achieved via one-photon transition) to a higher energy singlet electronic 

state where there is a chance to undergo intersystem crossing generating a triplet 

electronic state. From this long-lived triplet state, it will decay back to ground 

state via phosphorescence, while there is a chance (depending on the structure 

and properties of each photosensitizer) to transfer energy to ground state oxygen 

molecules and excite them into one of its reactive singlet states [6, 17, 22]. This 

process is favored by the long-lived triplet state of the sensitizer (decay from the 

sensitizer triplet state to ground state is a “forbidden” transition due to quantum 

selection rules). So, this microsecond lifetime (compared to nanoseconds for the 

de-excitation of a sensitizer singlet state) provides enough time for interaction 

with a colliding oxygen molecule.  

A triplet state photosensitizer can react in both ways with the molecular 

oxygen. In Type I reaction free radicals are generated from this excited 

photosensitizer state which interact with oxygen and produce active oxygen 

species such as the superoxide radical anion and others that were mentioned 

earlier. In the case of the Type II mechanism, the triplet state photosensitizer 

slowly decays on the time scale of microseconds and transfers energy to molecular 

oxygen, generating singlet oxygen states [4, 22]. From these excited singlet state, 
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different decay wavelengths occur as it emits near-infrared photons and relaxes 

back to ground state, as shown in Figure 2.2 [30].    

 

 

Figure 2.2. Schematic showing the Jablonski diagram of the excitation and 

luminescence of the photosensitized dye and its transferred energy to molecular 

oxygen, exciting it into singlet states. 

 

The ~1590 nm emission shown in Figure 2.2 corresponds to the transition 

from the first excited electronic state 1𝛥𝑔 to the first vibrational ground state 

3𝛴𝑔
−(v = 1). This photosensitized luminescence of 1O2 was first observed and studied 

by Khan in 1980 [31], and later that year by Salokhiddinov et al. [32] who managed 

to carry out measurements on the 1270 nm and 1588 nm luminescence spectra and 

lifetimes. The latter using a Ge photodetector and a monochromator managed to 

record the band intensities of each emission, showing that 1588 nm emission is 

approximately 60 times weaker than that of 1270 nm. Due to the very weak 

emission intensity, extensive experiments involving the 1588 nm luminescence are 

difficult to carry out, even to this day. In the next chapters, experiments involving 

time-resolved measurements of the 1𝛥𝑔 → 3𝛴𝑔
−(v = 1) at 1588 nm luminescence are 

presented, discussed and compared to the standard 1𝛥𝑔 → 3𝛴𝑔
−(v = 0) at 1270 nm. 

The kinetics for the generation and decay of the singlet oxygen in a 

homogenous system have been reviewed [33] and are described below in simplified 
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steps categorised in three main process groups: a) photosensitizer excitation and 

generation of its triplet state, b) photosensitizer’s triplet state decay and 

generation of excited oxygen molecules, and c) singlet oxygen’s decay and 

quenching. 

a) For the excitation of the photosensitizer molecule from ground singlet state 

to an electronic excited singlet state the kinetics are the following: 

 

Equation 1. Light Absorption and excitation  PS + hvexc → 1PS    (1)  

Equation 2. Fluorescence  
  1PS → PS + hvF     (2)  

Equation 3. Internal Conversion
   1PS → PS     (3)  

Equation 4. Intersystem Crossing
   1PS → 3PS     (4)  

 

b) For the processes regarding the triplet state of the photosensitizer and the 

generation of singlet oxygen: 

 

Equation 5. Phosphorescence    3PS → PS + hvP    (5) 

Equation 6. Non-Radiative Decay
   3PS → PS     (6)  

Equation 7. Energy Transfer
    3PS + O2 → PS + 1O2    (7)  

Equation 8. Other Processes
    3PS + O2 → Other    (8)  

 

c) Finally, for the processes regarding the quenching and decay of singlet 

oxygen: 

 

Equation 9. Radiative decay
    1O2 → O2 + hv    (9) 

Equation 10. Non-Radiative Decay  1O2 → O2     (10) 

Equation 11. Physical Quenching
   1O2 + Q → O2 + Q    (11) 

Equation 12. Other Processes
    1O2 + Q → Other    (12) 

 

Other quantities describing the quantum yields for the production of triplet state 

photosensitizer molecules and singlet oxygen, as well as their lifetimes are 

determined by the equations below [34]. 
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Production quantum yield of the 3PS: 

𝛷𝑇 =  
𝑘𝑖𝑠𝑐

𝑘𝐹+𝑘𝑖𝑐+𝑘𝑖𝑠𝑐
    (13) 

Equation 13. Production quantum yield of triplet state PS 

Where kisc, kF and kic are the rate constants for intersystem crossing, the 

fluorescence from the excited state of the sensitizer and the internal conversion, 

respectively. 

The 3PS lifetime in the absence of molecular oxygen, considering equations 

5 and 6: 

𝜏𝑇
0 =  1 𝑘𝑇

0⁄ =
1

𝑘𝑃+𝑘𝑇,𝑁𝑅
    (14) 

Equation 14. Triplet state PS lifetime in absence of oxygen 

Where kP and kT,NR are the rate constants for the photosensitizer phosphorescence 

and the triplet state non-radiative decay, respectively. 

The 3PS lifetime in the presence of molecular oxygen, determined by 

equations 7 and 8 as: 

𝜏𝑇 =  1 𝑘𝑇⁄ =
1

𝑘𝑇
0+𝑘𝑇,𝑞

𝑂2 [𝑂2]
    (15) 

Equation 15. Triplet state PS lifetime in presence of oxygen 

Where kT,q
O2  is the sum of kT,Δ

O2  and kT,other
O2  which are the rate constants for the 

energy transfer to molecular oxygen and all the other processes occurring in the 

presence of triplet state photosensitizer and oxygen. [O2] is the concentration of 

the oxygen. 

The proportion of the oxygen quenching of the 3PS molecules: 

𝑃𝑇
𝑂2 =

𝑘𝑇,𝑞
𝑂2 [𝑂2]

𝑘𝑇
0+𝑘𝑇,𝑞

𝑂2 [𝑂2]
= 1 −  

𝜏𝑇

𝜏𝑇
0    (16) 

Equation 16. Oxygen quenching by PS triplet state 

 The fraction of PT
O2 that gives singlet oxygen molecules: 

𝑓𝑇,𝛥
𝑂2 =

𝑘𝑇,𝛥
𝑂2

𝑘𝑇,𝑞
𝑂2

      (17) 
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Equation 17. PT
O2 fraction giving 1O2 

The quantum yield for the production of the singlet oxygen molecules:  

𝛷𝛥( 𝑃𝑆)3 = 𝛷𝛵 ×
𝑘𝑇,𝛥

𝑂2 [𝑂2]

𝑘𝑇
0+𝑘𝑇,𝑞

𝑂2 [𝑂2]
= 𝛷𝛵 × 𝑃𝑇

𝑂2 × 𝑓𝑇,𝛥
𝑂2   (18) 

Equation 18. 1O2 quantum yield 

And lastly, the lifetime of the singlet oxygen:  

𝜏𝛥 =  1 𝑘𝛥⁄ =
1

𝑘𝛥
0+∑ (𝑘𝛥,𝑞

𝑄 [𝑄])
𝑖

𝑖

   (19) 

Equation 19. 1O2 lifetime 

Where kΔ
0  is the sum of the rate constants for the radiative and non-radiative decay 

of the singlet oxygen, and kΔ,q
Q

 is the sum of the rate equations for the physical 

quenching of singlet oxygen and all the other processes involved. [Q] is the 

quencher concentration, while i represents all possible quenchers. 

 

2.1.2 The “other” Singlet Oxygen  

As mentioned earlier, the term singlet oxygen is widely given to the first 

electronic excited state, 1𝛥𝑔 (also called singlet delta) [35]. Nevertheless, the 

upper excited state (1𝛴𝑔
+), is also a singlet state and is the second electronic 

excited state above 1𝛥𝑔, also referred to as “singlet sigma” [35, 36].  Singlet sigma 

(1𝛴𝑔
+) is ~63 kJ/mol higher in energy than the singlet delta state, therefore more 

energetic which led to extended studies in the pursuit of a better understanding 

of this state [35, 36]. Transitions between any two of the ground triplet state and 

the excited singlet states are forbidden for electric dipole radiation processes by 

the selection rules, and while transitions between the ground triplet state to any 

of the excited singlet states are also spin forbidden leading to long lifetimes, the 

transition between the singlet sigma and singlet delta states is spin allowed 

making the upper excited state short lived [37]. Minaev et al. proposed a 

theoretical model (that later was experimentally proven by Fink et al.) for the 

transition 1𝛴𝑔
+
→ 1𝛥𝑔. In the case of the isolated molecule this transition is 

forbidden as of magnetic dipole, while when collision perturbations occur the 
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transition is highly affected, getting a more favorable dipole character resulting 

in an intensity enhancement [37-40]. Additionally, the transition probability in the 

perturbed molecule is 6 orders of magnitude larger than the isolated oxygen 

molecule [6]. The lifetime τΣ from singlet sigma to singlet delta is also highly 

affected by the environment with lifetimes ranging from a few picoseconds for 

solvents like water and deuterized water, up to hundreds of nanoseconds for CCl4 

and C2Cl4 [6, 35, 41]. Singlet sigma’s main deactivation pathway is non-radiatively 

to 1𝛥𝑔 state with efficiency close to unity, while in the chance of radiative 

deactivation to the lower singlet state 1𝛥𝑔, it emits near-infrared photons ~1925 

nm and ~765 nm wavelength when decaying to the ground triplet state with 

lifetimes in the timescale of seconds in room temperature [6, 30, 36, 42, 43]. More 

accurately, the 1𝛴𝑔
+
→ 1𝛥𝑔 emission has a measured red peak maximum wavelength 

ranging from 1908 nm (5241 cm-1) for oxygen in the gas phase up to 1936 nm (5165 

cm-1) in CS2 [42]. This indicates how the solvent affects the 1𝛴𝑔
+
→ 1𝛥𝑔 emission 

maximum with a max difference of  28 nm, compared to the much smaller shift of 

~8.8 nm for the 1𝛥𝑔 → 3𝛴𝑔
− transition [42, 44-47], while due to the different 

spectral bands the difference in the transition energies is somewhat equivalent as 

the energy gap for 1𝛴𝑔
+
→ 1𝛥𝑔 is 76 cm-1 and 54 cm-1 for the 1𝛥𝑔 → 3𝛴𝑔

− [42, 44, 45, 

48]. The width of this emission, however, is a controversial subject. Noxon 

indicated that the bandwidth of the emission cannot exceed 5.5 cm-1 at the peak 

half-maximum, while later Fink et al., Chou and Frei and Weldon et al. claimed 

that the emission bandwidth at half-maximum is much broader with values up to 

~90 cm-1 [40, 42, 49, 50].  

 

2.2 Photosensitizers  

Photosensitizers (PS) are organic molecules that are able to absorb light 

energy and transfer it efficiently to neighboring molecules and act as the 

intermediate agent required in phototherapy processes. This process in its early 

state has been known since 1400 BC where sunlight or artificial light later on (UV 

– Visible) was used in the treatment of skin diseases [51]. Phototherapy treatments 

include various dermatological treatments where the photosensitizers are not 

always needed, such as psoriasis, eczema, vitamin D deficiency, in Parkinson’s 
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disease to ease the symptoms, cutaneous T-cell lymphoma and many more [52 - 

54]. In phototherapy treatments where the photosensitizers are employed 

(Photochemotherapy), these are usually UV light activated (5-Methoxypsoralen, 8-

Methoxypsoralen, Trioxsalen) and the medical arena is capable of treating 

psoriasis, mycosis fungoids, HIV- associated dermatoses, pityriasis lichenoides, 

vitiligo and many more dermatological diseases [55, 56]. The combination of light 

and photosensitizer was initially examined as a potential treatment process in the 

early 1900s [57]. This is when the Photodynamic therapy (PDT), a type of 

photochemotherapy, started to emerge. In PDT, the photosensitizer is excited by 

a light source and through its triplet state, it transfers energy to adjacent oxygen 

molecules exciting them into the highly reactive singlet oxygen (as described in 

paragraph 2.1.1). However, photodynamic therapy was not available until the 

1990s when Photofrin (porfimer sodium, a sensitizer in the porphyrin group) was 

clinically approved for the treatment of bladder cancer in Canada. The sensitizers 

mainly used for PDT come from the porphyrinoid group, such as the porphyrin, 

chlorin, texaphyrin, phthalocyanine, pheophorbide and other structures related 

to these dye compounds [56, 58]. Their chemical molecular structures are shown 

in Figure 2.3. Other non-porphyrin photosensitizers are the xanthenes, cyanines, 

anthraquinones, phenothiazines, and curcuminoids [56].  

 

 

Figure 2.3. Chemical molecular structures of the porphyrinoid group dye 

sensitizers and other related structures. 
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To understand better the use and selection of the PSs, first, we need to list 

all the favorable properties a sensitizer should have in order to be ideal for PDT. 

Firstly, the PS should be able to accumulate and stick efficiently in the tumour 

tissue while it should be excreted from the normal tissue rapidly after the 

treatment. Also, an important property is the ability to highly absorb light with 

wavelengths above 700 nm and high molar extinction coefficient (εmax = 50.000-

100.000 M-1 cm-1). The light above 700 nm (in the near infrared) is weakly absorbed 

by endogenous molecules like the hemoglobin (a protein in red blood cells), 

therefore the excitation light has a deeper penetration into the targeted tissue. 

An ideal photosensitizer should have negligible dark-toxicity, meaning that it is 

not cytotoxic in the absence of the activation light, high photostability, high 

triplet state quantum yield (ΦT > 0.4) with triplet energies ET ≥ 95 kJ mol-1, a long 

enough triplet lifetime (τT > 1 μs) so that interaction with oxygen molecules is 

more probable and sufficient reactive oxygen species are generated, and of course 

high singlet oxygen quantum yield (ΦΔ as close to unity as possible). Amphiphilicity 

is also very important so that the sensitizer chemical can efficiently travel in the 

system to the targeted tumour, for which some hydrophilicity is required, while 

in order to diffuse through lipid barriers and bind in the tumour endocellular sites, 

some degree of lipophilicity is necessary [56, 59]. Other favorable properties 

would be the chemical purity of the compound for easier clinical approval, as well 

as minimum manufacturing cost for large-scale production and easy 

reproducibility [22, 56, 59, 60]. Taking into consideration all these requirements, 

it can be deduced that manufacturing such photosensitizer is not an easy task. 

However, many of the photosensitizers available are clinically approved without 

fully satisfying all the requirements, while most of them are currently being tested 

in clinical trials [59].  

Photosensitizers are categorized into three main groups. The first 

generation PSs are mainly porphyrin-based PSs developed in the 1970s, like the 

hematoporphyrin derivative (HpD) and porfimer sodium [59]. While these first 

generation PSs showed that they can efficiently destroy the tumour, were water-

soluble which is important for intravenous delivery, with negligible dark-toxicity 

and very useful for the initial clinical trials, they had some important deficiencies 

they could not overcome. The problem with these PSs were the poor bioavailability 

(the fraction of an administered drug that reaches the systemic circulation), the 
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weak absorption in the red spectral range where the light penetration in tissue is 

deeper, the low extinction coefficients that required larger amounts of the drug, 

accumulation in tumour tissue was not optimal with prolonged photosensitivity 

requiring the patient to avoid sunlight and other high-energy light for more than 

48 hours [59, 61, 62]. These severe drawbacks of the first generation 

photosensitizers led to the development of new or improved compounds. The 

second generation, mostly developed in the late 1980s, included not only a big 

range of new and improved porphyrinoid compounds and porphyrin-based 

structures (shown in Figure 2.3), but also some non-porphyrinoid compounds. In 

the second generation, are also included the metallated derivatives of existing 

photosensitizers such as the Si(IV)-naphthalocyanine (SiNC), the aluminium 

phthalocyanine tetrasulfonate (AlPcS4), zinc phthalocyanine (ZnPc) and tin ethyl 

etiopurpurin (SnET2) without, however, always providing a more efficient 

photodynamic effect [63]. The 2nd generation PSs were developed aiming to 

overcome the deficiencies of the 1st generation and showed improved 1O2 quantum 

yields, higher extinction coefficients and peak absorption wavelengths above 630 

nm. Also, the higher-to-normal tissue concentration and time accumulation of the 

drug led to faster treatments and shorter photosensitivity periods [59]. The 3rd 

generation consists of the development of photosensitizers that focus on the 

longer excitation wavelengths, better tumour selectivity and shorter 

photosensitivity periods. Therefore, much research focusses on the improvement 

of the existing 2nd generation photosensitizers by modifying them with biological 

conjugates (peptides, antibody, antisense) that will assist in the specific targeting 

of the tumour, or by encapsulating them into delivery carriers that will transport 

the PS through the blood and release it on the targeting tumour [59, 64 - 66]. So 

far, however, their low vivo selectivity has prevented them from actual clinical 

trials [67]. 

Some of the limitations of the existing photosensitizers can be overcome 

with the help of nanoparticles. Nanoparticles with typical sizes of 1 - 100 nm can 

be designed to assist existing PSs that are insoluble or hydrophobic by delivering 

them onto the targeted site, transfer the appropriate amount of energy to the PS 

or even act as the PS itself [59, 60]. Depending on the role of the nanoparticles in 

the process of the photodynamic effect, are categorized as active or passive 

nanoparticles [59, 68 – 70].   The nanoparticles offer large surface to volume ratios 
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which lead to an increased amount of PS on the targeted tumour [71, 72], can be 

designed to bestow increased amphiphilicity to the PS and to avoid the early 

release of the PS in the body reducing this way the accumulation of the drug in 

normal tissue, and therefore reduce the overall photosensitivity [73, 74]. Also, 

their surface and can be further engineered to carry various components 

simultaneously like chemotherapy drugs or targeting ligands [68]. Lately, the use 

of certain nanoparticles as downconverting PSs is researched with their ability to 

act as the PS itself and produce ROS. Examples of these downconverting 

nanoparticles are the fullerenes, titanium dioxide (TiO2) and zinc oxide (ZnO). 

Fullerenes (a carbon allotrope in spherical shape usually composed by 60 or 70 

carbon atoms) offer good photostability, effective generation of Type I and Type 

II ROS, low photobleaching and they do not break down [75]. Some of their 

disadvantages, though, is their excitation wavelength that is not optimal for deep 

tissue penetration and their insolubility in water require their attachment to other 

ligands [59, 76-80]. Titanium dioxide (or titania, TiO2) is examined as a potential 

effective PS due to its low toxicity, very good biocompatibility, and photocatalytic 

activity [81]. Titanium dioxide has been tested in vitro and in vivo in animals 

showing promising results, with a major drawback its photoactivation with short-

wavelength UV light [82-90]. Similar to the TiO2 nanoparticles are the zinc oxide 

(ZnO) nanoscaled particles. ZnO nanoparticles studied in various sizes (up to 

100nm) have similar band gap to TiO2, photocatalytic activity and phototoxic 

effects [59, 91, 92]. Zinc oxide has also been used in combination therapies acting 

also as an anticancer drug delivery agent [93]. Similar behaviour is offered by 

certain nanoparticles characterized as energy-transducers. These nanoparticles 

not only are carriers for the PS but also assist in the energy transfer to the PS 

allowing the photoactivation of the PS by light at wavelengths far from the 

absorption region of the photosensitizer. Examples of such nanoparticles are the 

X-ray activatable nanoparticles, upconverting nanoparticles, and semiconductor 

quantum dots [59]. Chen et al. in 2006 proposed a different way of activating 

porphyrin-based PSs in the visible at around 400 nm where the production of ROS 

is much more probable, instead of the weak absorption at 600-800 nm where light 

penetrates deeper into tissue [94]. The idea was to attach to the PSs scintillation 

or persistent luminescence nanoparticles such as BaFBr:Eu2+, Mn2+, LaF3:Ce3+, and 

LaF3:Tb3+, that can be activated with X-ray luminescence (utilizing the practically 
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unlimited penetration of X-rays in the tissue) and emit in the visible at 400 nm, 

500 nm, and 650 nm matching the strong absorption peaks of the porphyrins [59, 

94, 95]. Upconversion nanoparticles (UCN) are also proposed as potential 

assistants to classical sensitizers. UCN are nanosized particles usually comprised 

of ceramic materials doped with actinides, transition metals, or lanthanide ions 

like Er3+, Yb3+, and Tm3+, and have the ability to convert low energy light (e.g. 

near-infrared light with good tissue penetration) to higher energy light, absorbing 

simultaneously multiple low energy photon and emitting in the visible via the anti-

Stokes emission process. These nanoparticles can be used either as efficient PS 

carriers or as an intermediate to activate the chosen PSs located deep into the 

tissue [59, 96, 97]. Lastly, the approach of the quantum dots (QDs) in the 

activation of the PSs and the efficient generation of 1O2 holds great promise. QDs 

usually in the size of just a few nanometres (from 1 to 6 nm) are particles that 

depending on their tunable size and composition can have unique optical 

properties. Therefore, their emission can also be tuned from the UV spectral range 

all the way to the infrared region precisely matching the peak absorption 

wavelength of the selected photosensitizer. Moreover, by altering and modifying 

their surface, better water-solubility and biocompatibility can be achieved for PDT 

applications. Various QDs have been proposed the last years, most of them 

semiconductors such as CdSe, CdS, ZnS, and graphene in zero-dimension 

confinement [59, 98 – 104]. Graphene quantum dots (GQDs) offer a rather versatile 

solution to the low singlet oxygen quantum yields by having a very broad tunable 

absorption band up to the visible region and strong emission at around 680 nm, 

good aqueous dispersibility, low photobleaching, great photostability (superior to 

protoporphyrin IX), and an ideal pH stability. Also, the large Stokes shift of 205 

nm allows the GQDs to self-absorb the emitted light minimizing the interferences 

between the excitation and scattered light. The unique optical properties of the 

GQDs result in a large enough energy gap between the excited singlet state and 

the triplet state, offering an extra 1O2 generation pathway through the intersystem 

crossing, with a combined quantum yield >1 [104].  
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2.3 Photodynamic Therapy and Dosimetry 

The term ‘Photodynamic Therapy’ (PDT) originates from the term 

‘photodynamische Wirkung’ (that means photodynamic effect) conceived by the 

German pharmacologist Hermann von Tappenier in the early 1900s [105]. PDT is 

an emerging treatment of cancer and other diseases (dermatological, skin 

disorders, etc.) where a photosensitizer is applied to the patient systematically or 

topically accumulating on the targeted tissue. The sensitizer is then photo-

activated in situ by a wavelength tuned light source that matches the 

photosensitizer’s peak absorption spectrum and by energy transfer to adjacent 

oxygen molecules, the generated reactive oxygen species act as lethal agents to 

destroy or modify tissue and cells [22, 106, 107]. This photodynamic process was 

described in more detail in paragraph 2.1.1. PDT offers a big advantage over other 

cancer therapies and that is the very accurate tissue destruction limiting the 

effect only to targeted cancer tumours leaving the rest of the normal tissue intact. 

The effect on the tumours is threefold: a direct destruction of the tumour cells by 

the ROS, tumour infarction by damaging the tumour-associated vasculature, and 

a possible immune response activation against the cancer cells [108, 109]. 

However, despite the great cancer cell accuracy and the negligible side-effects, 

PDT is restricted from being widely clinically applied by the difficulty of shining 

light onto the tumour and calculating the right treatment dose for each individual 

treatment. Complex interactions between each patient’s biomolecules, correct 

treatment light, photosensitizer and tissue oxygen concentrations make dose 

quantification difficult, especially for each individual patient. Currently, there are 

four PDT dosimetry methodologies that prevail: a) explicit dosimetry, a technique 

involving the measurement of each PDT component and their incorporation into a 

dose model. However, accurate measurements in light, photosensitizer drug and 

oxygen are not simple and dynamic interactions varying from patient to patient 

and different tumour environments, may alter each one of these measurements 

during the treatment [30, 110 – 115], b) implicit dosimetry, which also requires 

the measurement of at least two of the treatment parameters. These are 

incorporated into a single metric that will preclinically predict the damage on the 

tumour and, therefore, the treatment outcome [30, 112]. Examples of implicit 

dosimetry are the fluorescence spectroscopic measurement of the photoproducts 
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[116 - 118], and more commonly, the photosensitizer photobleaching which is 

based on the monitoring of its fluorescence [112, 119]. Implicit dosimetry based 

on the PS fluorescence and photobleaching is a relatively practical and easy to 

apply dosimetry method which has shown promising results by accurate 

predictions of the singlet oxygen dose and the treatment outcome, however 

cannot be applied to all treatments due to the different properties and singlet 

oxygen generation efficacies of each photosensitizer [120]. c) 

biophysical/biological tissue response monitoring which also require monitoring 

of the treatment so it can predict the damage on the tissue, such as vascular 

shutdown. In this method, it is necessary to observe tissue changes during or right 

after the treatment for the adjustment of the light dose induced and/or the 

photosensitizer dose [121 – 125]. d) direct dosimetry is one of the most promising 

dosimetry methods and is considered the ‘gold standard’ of PDT dosimetry. Unlike 

the complexity of the indirect techniques, in direct dosimetry it is involved only 

one PDT parameter, the measurement of 1O2 that is causing the tumour damage 

[30]. The prevailing method to apply direct 1O2 dosimetry is by the time-resolved 

measurement of 1𝛥𝑔 → 3𝛴𝑔
− transition emitting at 1270 nm, which is the main focus 

of this project [30, 126 – 129]. Other ways to detect 1O2 have been proposed, such 

as the frequency-domain measurement of the 1270 nm transition, the dimol 

emission measurement at 634 nm and by monitoring the 1𝛥𝑔 → 1𝛴𝑔
+ transition at 

1925 nm either by its fluorescence or time-resolved Fourier-transform infrared 

(FTIR) spectroscopy [130 – 132]. However, these means have not been proven 

sufficient and even less practical than the direct 1270 nm singlet oxygen 

luminescence detection (SOLD). The 1O2 luminescence at 1270 nm has been very 

challenging to detect in vivo due to the high reactivity with the biomolecules, 

with short lifetimes of < 1 μs and very low probability at ~ 10-7 [127, 133]. Groups 

attempting SOLD have reported results using different types of single photon 

detectors [30, 128, 134]. However, the quantum efficiency of these detectors was 

poor at 1270 nm (<1 % for photomultiplier tubes and ~25% for single photon 

avalanche diodes), while the dark count rates were too high even when cooled 

down. Such weak and low probability emission requires a very sensitive near-

infrared detector operating at the single photon level, along with the appropriate 

optical components for the delivery of the excitation light and the collection of 

the 1270 nm photons. A more sophisticated “SOLD setup” has been carefully 
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engineered in this project and is described in detail in § 3, utilizing state of the 

art NIR single photon detectors (SPDs) and a fast TCSPC (time correlated single 

photon counting) card module.  

 

2.4 Single Photon Detection 

 

Quantization of light was first proposed by Einstein in 1905 when explaining 

the photoelectric effect [135], which later led to the term ‘photon’. Since then, 

light detection and manipulation technologies keep advancing to a point where 

we are able to generate and detect these single light quanta. Nowadays, single 

photon systems have extended the light detection from the visible to the deep 

infrared region of the electromagnetic spectrum [136]. The relationship between 

energy, E, and wavelength, λ, as shown below is: 

 

𝐸 =
ℎ𝑐

𝜆
      (20) 

Equation 20. Energy and wavelength relation 

Where h is Planck’s constant and c the speed of light in vacuum. As shown in 

equation 20, energy and wavelength are inversely proportional meaning that the 

energy of a single photon is decreasing as we move towards the infrared region. 

High energy photons are easier to detect, in comparison to low energy infrared 

photons which require sensitive single photon detectors.  Detection beyond the 

visible region was not possible, until the introduction of the NIR Photomultiplier 

Tube (PMT) and later the Single-Photon Avalanche Diode (SPAD) and 

Superconducting Nanowire Single-Photon Detector (SNSPD). Such advances in 

single photon detection have paved the way to novel applications, such as depth 

imaging, quantum key distribution systems, quantum information and in life 

sciences, like the singlet oxygen luminescence detection [129, 136].  

In order to characterize a single photon detector, first we need to quantify 

its performance by establishing some parameters. The main parameters commonly 

used are detection efficiency, dark count rate, timing jitter, spectral range, dead 

time and photon number resolution [136, 137].   
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The detection efficiency (η) is one of the primary and most obvious 

performance metrics and is the probability that an incident photon on the detector 

will be registered as an output signal. However, in practice the detection 

efficiency is lower than 100% as the overall system detection efficiency (ηsde) 

consists of the coupling efficiency (ηcoupling) – the photon losses due to the 

absorption, scattering or reflection that prevent photons from reaching the 

detector within the experimental environment, the absorption efficiency 

(ηabsorption) – depending on the material and geometry of the detector, and the 

registering probability (ηregistering) – a probability that the detector will generate an 

electrical output signal after the photon absorption. Considering these 

contributions, the overall system detection efficiency (ηsde) is: 

 

ηsde = ηcoupling × ηabsorption × ηregistering    (21) 

Equation 21. Overall system detection efficiency 

The intrinsic device detection efficiency (ηdde) is: 

 

ηdde = ηabsorption × ηregistering    (22) 

Equation 22. Intrinsic device detection efficiency 

Subsequently, the value of ηsde and ηdde can only be equal when ηcoupling = 1. 

In actual single photon counting experiments the optical coupling is not perfect, 

therefore the term quantum efficiency of the detector is widely used for the 

overall system detection efficiency (ηsde). 

The dark count rate (DCR) is the rate at which a detector will generate a 

false count. False counts can be produced by various noise sources, either internal 

caused by the type of the detector or external such as unwanted stray light from 

a light source. Usually DCR is measured in counts per second (cps) or Hertz (Hz). 

It is important to keep dark count rate low so that the false events are limited, 

and the overall error rate is low contributing in a higher signal to noise ratio (SNR) 

[137].     

Timing jitter (Δt) is defined as the uncertainty in the detection response. 

This variation in time Δt of the absorption of the incident photon and the 

generation of the output electrical pulse is typically given as the Full Width at Half 

Maximum (FWHM) of the distribution, as shown in Figure 2.4. 
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The spectral range of the detector is the region of the electromagnetic 

spectrum in which it is sensitive and capable of detecting photons. It is important 

that the detector is very sensitive at a wavelegth range that will satisfy the needs 

of the experiment. 

The dead time (τd) is the time that the detector needs to reset itself after 

a detection event. In this recovery time the detector is blind and incapable of 

registering true events. Ideally, a detector should have very short dead time as 

this will affect the maximum count rate.  

Photon number resolution (PNR) is the ability of a single photon detector 

to distinguish between one or more absorbed photons that are incident 

simultaneously. This can be achieved either by producing a pulse which is 

proportional to the number of the absorbed photons (e.g. superconducting 

transition edge detectors [138]), or by spatially multiplexing conventional 

detectors in an array and generating an output signal combining all the outputs of 

the array of detectors [139-141]. PNR can be an important asset when it comes to 

quantum photonics applications that advantage from multi-photon states [142]. 

However, most conventional SPDs operate in a binary response meaning that they 

can only distinguish between zero photons or one-or-more photons.  

 

 

Figure 2.4. Example histogram demonstrating the timing jitter in full width at 

half maximum peak height of a SNSPD detection system. Measured timing jitter 

is 118.6 ps. 
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2.4.1 Photomultiplier Tubes  

 

The Photomultiplier tube (PMT) was first demonstrated in 1935 and is the 

first single photon photocathode-based detector that is used until today in various 

applications as the most established photon-counting technology [143, 144, 145].  

A PMT is a vacuum tube with a photocathode, a series of dynodes and an anode. 

The photocathode absorbs the photon and an electron is emitted via the 

photoelectric effect. This electron is then accelerated in an electric field created 

by the voltage applied towards the first dynode and on collision further electrons 

are released towards the next dynode (biased at a higher voltage than the 

previous) where more electrons are ejected. This repeated process on the dynodes 

creates an electron cascade that reaches the anode and generates a large current 

pulse [146]. The number of the electrons that are ejected from each anode is 

dependent on the energy of the accelerated electrons. Therefore, by biasing the 

dynodes in high voltages the electrons receive greater acceleration and higher 

amplification to a factor of the order of 106. The advantage of a PMT unit is its 

very large active detection area (diameter > 10 mm) [136]. An example of a PMT 

design is shown in Figure 2.5. 

 

 

Figure 2.5. Typical design of a photomultiplier tube [145].  
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There are also various PMTs’ designs with emphasis on the different types 

of dynode configuration. Schematics of the different dynode geometries are 

illustrated in Figure 2.6. The type of the dynode along with the size of the 

photocathode and the focusing system are those that define the electrical 

properties of the PMT. The PMT characteristics vs the dynode geometry is shown 

in Table 2.1.  

 

Table 2.1. Photomultiplier tube characteristics vs dynode geometry [146]. 
 

Dynode 

Type 

Rise 

Time 

(ns) 

Fall 

Time 

(ns) 

Pulse 

Width 

(ns) 

Electron 

transit 

time 

(ns) 

Transit 

time 

spread 

(ns) 

Photoelectron 

Collection 

Efficiency 

Linear-

focused 

0.7 to 

3 

1 to 

10 

1.3 to 

5 
16 to 50 

0.37 to 

1.1 
Good 

Circular-

cage 
3.4 10 7 31 3.6 Good 

Box-and-

grid 
<7 25 

13 to 

20 
57 to 70 <10 Very good 

Venetian 

Blind 
<7 25 25 60 <10 Poor 

Fine 

mesh 

2.5 to 

2.7 
4 to 6 5 15 <0.45 Poor 

Metal 

channel 

0.65 

to 1.5 
1 to 3 

1.5 to 

3 

4.7 to 

8.8 
0.4 Good 
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Figure 2.6. Schematics of dynode geometries inside the photomultiplier tube 

[145]. 

 

The spectral range of the PMTs is determined by the material of the 

photocathode used and the thickness uniformity of the photocathode layer that 

affects the sensitivity area of the PMT. Materials like Cs-I, Sb-Cs and Cs-Te cover 

the UV spectral window. Bialkali (Sb-Rb-Cs, Sb-K-Cs), high temperature bialkali 

(Na-K-Sb) and multialkali (Na-K-Sb-Cs) best operate in the visible region, while 

alloys like GaAs(Cs), GaAsP(Cs), InP/InGaAs(Cs) and InP/InGaAsP(Cs) offer 

quantum sensitivity in the near-infrared spectral region. Most PMTs offer good 

quantum efficiency in the UV and visible region. An example is the GaAsP(Cs)-

based photomultiplier tube with peak single photon detection efficiency ~40% at 
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580 nm at ~ 100 cps dark count rate and 300 ps timing jitter at FWHM, while the 

maximum count rate can be up to 10 MHz [146]. Detection in the near-infrared 

region has also been achieved with focus on the telecommunications wavelengths 

(1310 nm and 1550 nm). The reported quantum efficiency at 1550 nm with an 

InP/InGaAs PMT is about 2% when cooled down to 200 K [146].  

 

 

2.4.2 Single-Photon Avalanche Diodes 

The single-photon avalanche diode (SPAD) is a well-established alternative 

to PMTs in the detection of single photons in the visible and the near-infrared. 

SPADs are based on semiconductor materials, with the first SPADs being developed 

in the early 1980s made of silicon [147]. Its operation is based on the change of 

the conducting properties of the semiconductor material with the absorption of a 

photon. When a photon is absorbed, an electron is excited from the valence band 

into the conduction band, leaving a ‘hole’ in its place (Figure 2.7). The creation 

of this electron-hole pair acts as a charge carrier and provides a method for photo-

detection.  

 

 

Figure 2.7. Schematic example illustrating the generation of an electron-hole 

pair with the absorption of a photon. The photon’s energy excites the electron 

into the conduction band, leaving a “hole” in the valence band. 
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In a photodiode, the application of an electric field accelerates the charge 

carriers and creates a measurable photocurrent value. The photodiode structure 

is based on a p-n or p-i-n junction (p-type semiconductor material is positive with 

an excess of ‘holes’, n-type is negative with an excess of electrons and ‘i’ stands 

for the intrinsic or undoped region which is sandwiched between ‘p’ and ‘n’). This 

layer of undoped semiconductor (intrinsic) between the two other doped regions 

in p-i-n junctions provide greater carrier mobility, greater absorption depths, 

while decrease the transit times and reduce the capacitance of the device. The 

avalanche photodiode (APD) structure, which SPADs are based on, has a voltage 

applied so that the n-type semiconductor is at a higher potential than p-type. This 

way, the junction is reverse biased. In a SPAD, the avalanche diode operates in 

Geiger mode meaning that it is reverse biased above its break-down voltage. When 

a photon is absorbed, the carriers that are generated undergo an avalanche gain 

(impact ionization) resulting in a macroscopic breakdown of the junction [136, 

148]. After the detection event, the avalanche is stopped and the device resets 

by lowering the bias voltage below the break-down voltage passively or with the 

help of a quenching circuit, getting ready for subsequent photon detection events 

[136, 147, 149, 150]. In the case of a single photon APD, a single carrier can 

undergo multiplication and trigger a complete break-down of the diode.  

The spectral photodetection range is dependent on the absorbing material. 

SPADs have been demonstrated operating from the UV up to the mid-infrared, with 

their cut-off wavelength being determined by the energy band gap (Eg) of the 

material, as shown in Table 2.2. Silicon SPADs have been used for many decades 

as silicon covers a broad area from 400 nm up to 1000 nm [147]. To extend the 

sensitivity to the telecommunication optical wavelengths, SPADs made of 

semiconductors like germanium (Ge) and indium gallium arsenide (InGaAs) have 

been an active area of development [151 – 156]. 
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Material Band gap (eV) Cut-off wavelength (μm) 

Si 1.14 1.09 

Ge 0.67 1.86 

GaAs 1.43 0.87 

InP 1.35 0.92 

InGaAs 0.75 1.66 

InAs 0.35 3.56 

InSb 0.18 6.93 

HgCdTe 0 < Eg < 1.44 0.86 < λ < ∞ 

 

Table 2.2. Energy band gaps (Eg) and cut-off wavelengths of common 

semiconductor materials in room temperature (300 K). 

 

Silicon SPADs (Si-SPADs) have been widely used because of their useful 

wavelength range in the visible up to near-infrared, as determined by silicon’s 

energy band gap of 1.1 eV, shown to achieve excellent optical characteristics. The 

Si-SPAD structure can be either based on a thick or shallow junction (Figure 2.8). 

A thick junction structure is optimized for higher detection efficiency and low dark 

count rate, while a shallow junction structure emphasizes on the low timing jitter 

and the low bias voltage requirements [157, 158]. Thick junction Si-SPADs have 

shown quantum efficiencies of up to ~77% at ~800 nm, dark count rates as low as 

5 Hz, while FWHM timing jitter is typically at ~400 ps [150, 157, 159, 160]. Shallow 

junction Si-SPADs have a peak quantum efficiency at 550 nm of ~49% and those 

which are blue-shifted can achieve ~30% at 400 nm [161, 162]. The main 

advantage, though, of shallow junction Si-SPADs is their timing properties, 

achieving a timing jitter of 35 ps full width at half maximum [163 – 165]. Si-SPADs 

have also been integrated in Si-CMOS (Silicon complementary metal-oxide-

semiconductor) processes resulting in sensitive large Si-SPAD arrays with 
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integrated electronics, a technology with high impact and usefulness in big 

technological industries like automotive and smartphone manufacture [166 – 170].  

 

 

Figure 2.8. Cross section of a) thick junction SPAD structure, and b) shallow 

junction SPAD [158]. 

 

To extend the photon absorption sensitivity beyond silicon’s 1000-1100 nm 

cut-off, there is need for semiconductor materials with smaller energy band gaps 

like indium gallium arsenide (InGaAs) and germanium (Ge). As shown in Table 2.2, 

InGaAs has a 0.75 eV band gap with about 1660 nm cut-off wavelength. The most 

widely used SPAD detector for the short-wave infrared region is the InGaAs/InP 

detector, capable of achieving up to 50% quantum efficiency in the 

telecommunication wavelengths (25-40% at 1550 nm and 50% at 1310 nm), with 

timing jitter values down to 30 ps at FWHM [171 – 174]. InGaAs/InP SPADs’ 

operation is very similar to Si-SPADs but usually they suffer from afterpulsing 

effects and high dark count rates that significantly reduce the overall SNR. To 

overcome this problem, they typically operate in a gated Geiger mode, in which 

the detector is biased only when a photon is expected to arrive (in short ‘gates’). 

Nowadays, there are commercial InGaAs SPADs operating in a free-running mode, 

while dark counts remain low by utilizing a Peltier cooler to keep the device at 

183K [175]. In addition, these detectors can be fabricated to have large active 

detection areas (62.5 μm diameter). Single photon InGaAs SPAD arrays are also an 

active area of research with end goal the design of an efficient multi-pixel single-

photon camera [176]. Pioneering this field is Princeton Lightwave Inc., recently 
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bought by Ford Motor company to incorporate this technology to automotive LIDAR 

(Light detection and ranging) systems [177]. 

Similarly, Ge-SPADs have a narrow band gap at 0.67 eV and their sensitivity 

fades out beyond 1300 nm. However, Ge-SPADs did not show similar characteristics 

to InGaAs-SPADs, suffering from low quantum efficiencies, very high dark count 

rates, afterpulsing effects and poor timing resolution [155, 178]. In the last 

decade, Ge-on-Si SPADs have been examined as a potential InGaAs alternative. 

Work by Lu et al., Aminian et al., and Warburton et al. has shown improved 

quantum efficiency and timing jitter, but still suffering from high dark count rates 

even when in gated mode [179 - 181]. Most recently, work by Vines et al., has 

demonstrated an improved Ge-on-Si SPAD with higher quantum efficiency and 

significantly reduced afterpulsing effects. The detector was cooled down to 125 

K, operating in a Geiger mode with 50 ns ‘gates’ and achieving a quantum 

efficiency in the order of 38% at 1310 nm telecom wavelength but still struck by 

MHz order of magnitude DCR [182]. The decrease in detector’s temperature also 

results to a higher Ge energy band gap and therefore a shorter wavelength cut-

off. At 125 K, germanium’s band gap corresponds to 0.84 eV and a wavelength cut-

off at about 1.48 μm. 

 

2.4.3 Superconducting Detectors 

 

Superconductivity is a state in which a material has zero resistance and 

exhibits perfect diamagnetism. It was discovered in 1911 by H. Kamerlingh Onnes 

who while studying the resistances of pure metals at low temperatures using liquid 

helium, observed the sudden drop of mercury’s resistance at 4.2 K [183]. The 

transition to superconducting state of mercury is shown in Figure 2.9. The 

maximum temperature at which a material allows the electrical current to flow 

with no resistance is called the critical temperature (Tc). Above that value the 

material will return to its normal resistive state. Critical temperatures of known 

superconductor elements and compounds are shown in Table 2.3. However, there 

is also a maximum value of electrical current density (critical current Ic) which 

can keep the material in superconducting state while below critical temperature. 

As the current density moves towards its critical value, the kinetic inductance (Lk) 
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of the material also increases. Additionally, there is a maximum magnetic field 

(critical field Bc) that can be applied to the material before losing its 

superconducting properties. Superconductors (materials that are in 

superconducting state) can be distinguished in Type I and Type II superconductors. 

Their main difference is that in Type I the transition from normal to 

superconducting state happens instantly while in Type II this phenomenon occurs 

“slower” – below critical temperature the superconducting properties increase as 

the temperature is decreased. Also, in Type I superconductors the magnetic field 

is completely excluded up to a critical field, while in Type II some magnetic field 

lines may penetrate through the superconductor. This diamagnetism in Type I 

superconductors was demonstrated in 1933 by Meissner and Ochsenfeld (“Meissner 

Effect”) [184]. The observation of the Meissner Effect was described by the London 

brothers (“London Theory”) in 1935 and was further expanded in 1950 by the 

“Ginzburg-Landau” theory [185, 186].  

 

 

Figure 2.9. Mercury’s sudden resistance drop when cooled to 4.2 K, measured by 

Onnes [183]. 

 

A different approach to the superconducting phenomenon was given by 

Bardeen, Cooper, and Schrieffer (“BCS theory”) in 1957. According to BCS theory, 

superconductivity is explained with the help of the electron-phonon interaction 

forming the so-called “Cooper pairs” [187]. When cooled down below the critical 

temperature, electrons can overcome the Coulomb repulsion and form electron 
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pairs that can travel through the material lattice with no resistance. The material 

must be kept below the critical temperature and critical current for the pairs to 

remain bonded. When temperature or current density exceed their maximum 

value, the Cooper pairs break, superconductivity is destroyed, and the material 

returns to its normal resistive state.   

Utilizing the superconductivity theories and exploiting these unique 

properties, have led to the fabrication of novel sensitive single photon detectors 

that have been an active area of research for the last 20 years. Various 

superconducting detector concepts have been demonstrated, among them the 

superconducting transition edge sensor (TES) and the superconducting nanowire 

single photon detector (SNSPD). 

Element Tc (K) Compound Tc (K) 

Al 1.19 NbN 16 

Be 0.026 NbTiN 10.6-11.8 

Cd 0.55 Nb3Sn 18.1 

Ga 1.09 Nb3Ge 23.2 

Hf 0.13 Cs3C60 19 

Hg 4.15 MgB2 39 

In 3.4 MoSi 7.5 

La 4.8 PbMo6S8 15 

Mo 0.92 YPd2B2C 23 

Nb 9.1 HoNi2B2C 7.5 

Np 0.075 TiN 6 

Os 0.65 WSi 4 

Pa 1.3 UPt3 0.5 

Pb 7.2 UPd2Al3 2 

Re 1.7 (TMTSF)2ClO4 1.2 

Rh 0.0003 (ET)2Cu[Ni(CN)2]Br 11.5 

Ru 0.5 La1.83Sr0.17CuO4 38 

Sn 3.75 YBa2Cu3O6+x 93 

Ta 4.39 Bi2Sr2Ca2Cu3O10+x 107 

Tc 7.8 Tl2Ba2Ca2Cu3O10+x 125 

Th 1.37 HgBa2Ca2Cu3O8+x 135 

Ti 0.5 Hg0.8Tl0.2Ba2Ca2Cu3O8.33 134 

Tl 2.39   

U 0.2   

V 5.3   

W 0.012   

Zn 0.9   

Zr 0.55   

Table 2.3. Critical temperature of known superconductor elements and 
compounds. 
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The superconducting transition edge sensor (TES) is a very sensitive 

bolometer with excellent optical detection characteristics. Its operation is based 

on a superconducting film that is kept at its transition stage, where a slight change 

in temperature will result in a change in resistance [188]. When an incident photon 

is absorbed into the film, the device (biased with constant voltage) gets heated 

leading to a resistance change, such that a current pulse can be read out by a 

SQUID (superconducting quantum interference device) amplifier electronics. A 

schematic of the operation of the TES is illustrated in Figure 2.10. This change in 

the device’s resistance is proportional to the energy absorbed, and therefore to 

the wavelength of the photon absorbed. So, the sensor is able to provide single 

photon spectral resolution or photon number resolution when a fixed wavelength 

is used [189]. 

 

 

 

Figure 2.10. (a) Schematic illustrating the operation of a TES, and (b) when a 

photon is absorbed with the film, the change in temperature leads to a change in 

resistance. 

 

Tungsten-based TESs offer very high quantum efficiency, up to 98% at 1550 

nm when enclosed to a tuned optical cavity, with photon number resolution and 

negligible dark count rates [190 - 192]. However, in actual experiments DCR may 

be higher due to room temperature black-body radiation [193]. Timing properties 

are relatively poor, with typically about 100 ns timing jitter at FWHM and dead 

time in the order of micro-second as it is limited by the thermal time constant of 

the element itself. Improved timing jitter values at FWHM (4 – 10 ns) and dead 
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times (100 ns) have been reported using films with higher transition temperatures 

in cooperation with faster read-out SQUID electronics [194, 195]. TES detectors 

may be difficult to implement in an actual experiment due to their need of 

sophisticated and expensive cryogenics (operate at 50 – 100 mK), however, they 

have already carried out long distance QKD (Quantum key distribution) and 

quantum optics experiments [193, 196, 197]. 

Superconducting nanowire single-photon detectors (SNSPDs or SSPDs) 

were first introduced by G. Gol’tsman in 2001 and since then have been 

implemented in numerous experiments, offering great single-photon sensitivity at 

wavelengths from the visible up to the mid-infrared, sub-Hz dark count rates, pico-

second timing jitters and short recovery times [136, 198]. The detector is made of 

a thin ~5 nm layer deposited onto a substrate (sapphire, MgO or SiO2), patterned 

by electron beam lithography and then etched (usually via reactive ion etch RIE) 

into 100 – 200 nm wide nanowires (typical SNSPD nanowires are made of Nb, NbN, 

NbTiN or the amorphous WSi and MoSi) usually patterned into a boustrophedonic 

meander (up to 20x20 μm2) which increases the active area of the detector and 

assists in the efficient optical coupling [199 - 201]. A typical SNSPD meander is 

shown in Figure 2.11.  

 

 

Figure 2.11. The active area of a 4 nm thick and 120 nm wide NbN nanowire 

patterned into a 10 μm x 10 μm meander [202]. 
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However, this kind of pattern means that the detection efficiency is directly 

dependent on the polarization of the incident light, as nanowires are more likely 

to absorb photons that are polarized parallel rather than those polarized 

perpendicular to them [203]. To negate this effect there have been patterns 

demonstrated that are able to efficiently absorb light in more than one orientation 

[204, 205].  Examples of these patterns are shown in Figure 2.12. Whatever the 

pattern used each time, it is reasonable to aim for large active areas by increasing 

the overall length of the nanowire. However, there are nanowire constrictions 

that prevent that. Due to the increased risk for fabrication errors as the nanowire 

length increases, long nanowires are shown to have limited sensitivity because of 

the smaller cross-sectional area, restricting the ability of the nanowire to carry 

high currents [206]. Also, increased nanowire length means an overall increase in 

the kinetic inductance and therefore longer detector dead times and lower count 

rates [207]. As a result, most SNSPDs are limited to 10-15 μm2 active areas to 

match with the core diameter of a single-mode fibre for infrared wavelengths.  

 

 

Figure 2.12. SNSPD patterns with polarization independent light absorption. (a) a 

wire patterned in two orthogonally oriented meanders, (b) a spiral pattern and, 

(c) a 3D illustration of two meanders stacked orthogonally and its equivalent 

electrical circuit diagram. (a) and (b) from ref. [204], (c) from ref. [205]. 
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Designs that overcome some of the constraints have also been 

demonstrated. An example is the superconducting nanowire avalanche 

photodetector (SNAP) design, shown in Figure 2.13. SNAP devices are basically a 

series of biased superconducting nanowires connected in parallel that when one 

of the nanowires become resistive due to an incident photon, the current will be 

distributed to the rest of the nanowires resulting into a cascade of resistance [208- 

210]. 

 

 

Figure 2.13. (a) A SNAP device with each nanowire distinguished by a different 

colour and, (b) the equivalent electrical circuit [210]. 

 

The operation of SNSPDs is also based on the transition of a superconductor 

to its normal resistive state to create a detection event. More specifically, a 

superconducting nanowire is used and biased below, but close to, its critical 

current Ic while being cooled well below the transition temperature Tc. When an 

incident photon is absorbed, the energy transferred to the superconducting 

nanowire will force local Cooper pairs split apart and form a local resistive 

“hotspot”, which due to the continuous supercurrent that flows through the 

nanowire, will instantly trigger the current density around the “hotspot” to a point 

above its critical current limit of the nanowire, forming that way a growing 

resistive strip along the nanowire as a result of Joule heating. This resistive strip 

generates a voltage drop and a measurement of that drop across the device 
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signifies a detection event. Then, the current is ‘switched’ out of the detector 

with the help of a low resistance shunt resistor which is connected in parallel to 

the device setup and, due to the electron-phonon scattering, the ‘hot’ electrons 

are diffused away of the resistive strip to lose their extra energy restoring the 

area to the superconducting state waiting for the next detection event [198, 211 

– 213]. A schematic of the basic operation principle of the SNSPD is shown in Figure 

2.14.  

 

 

Figure 2.14. The basic operation principle of a SNSPD [137, 212, 213] in two 

times, τ1 for detection event and τ2 for recovery of the nanowire. (i) nanowire in 

superconducting state and current biased just below its critical current. (ii) 

Incident photon creates a “hotspot”. (iii) Supercurrent incapable of flowing 

through the resistive hotspot, increases the current density above the critical 

value. (iv) Creation of a resistive region across the width of the nanowire. (v) 

Electron-phonon scattering expands the resistive region along the nanowire and 

current flow is completely blocked. (vi) Bias current is shunted, and nanowire is 

restored to the superconducting state. From [137]. 

 

While this basic phenomenological device operation model is understood 

across the SNSPD community, recently more sophisticated theoretical modelling 
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has been undertaken, leading to improved understanding and enabling engineering 

of improvements in device performance. These refined models are based on the 

assumption that vortex-antivortex pairs are responsible for the phase transition.  

Holzman and Ivry state that either a) the nanowire gets heated by the photon 

absorption causing a drop in the energy barrier, so that a vortex can penetrate 

the nanowire and since it is biased with current, the vortex penetrates across the 

width of the nanowire disrupting the superconductivity and , b)  a vortex-

antivortex pair is generated with the absorption of a photon and as the nanowire 

is current biased, a Lorentz force is applied on both vortex and antivortex in 

opposite directions. This pair is split when Lorentz force exceeds a certain value, 

causing the nanowire to become resistive and create a measurable detection event 

[214]. However, none of the models can completely explain the detection 

mechanism, as different mechanisms may be undergoing for different materials, 

photon energies and device geometries. 

Continuous progress in the field has established SNSPD as an excellent 

choice in most quantum sensing applications and experiments offering excellent 

detector characteristics. Marsili et al. in 2012 demonstrated 93% quantum 

efficiency at 1550 nm telecommunication wavelength with sub-Hz DCR and low 

timing jitter (<100 ps) [215] and Reddy et al. in 2019 achieved a quantum 

efficiency >96% also at 1550 nm [216], while Shibata et al. in 2015 showed that a 

SNSPD can have extremely low DCR in the order of 10-4 cps (counts per second) 

[217]. In terms of timing properties, SNSPDs have the clear lead with timing jitter 

of 4.6 ps in the near-infrared and 2.7 ps in the visible at 400 nm at FWHM and 

reset time values at 119 ps at telecom wavelengths [218, 219]. As a drawback, 

compared to other single photon detecting technologies, is considered the 

expensive and sophisticated cryo-cooling systems required for cooling at 

temperatures below 5 K for Nb-based alloys and below 2 K for MoSi or WSi. 

Moreover, in the pursuit of efficient near-infrared and mid-infrared cameras, but 

also SNSPDs with larger active areas, SNSPD arrays have been demonstrated of up 

to 64 pixels with great uniformity and large active areas (up to 160 x 160 μm) [220, 

221]. An example of a 64-pixel SNSPD array is shown in Figure 2.15. However, 

apart from the fabrication complexity, a multi-pixel array also faces increased 

heating problems from the extra room-temperature electronics and cables for 

each SNSPD device in the array requiring better cooling systems. The most serious 
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limitation, though, is as the number of SNSPDs increase there is a need of design 

and more complex read-out electronic circuits. Solving these problems, reported 

designs have been attempting to overcome these limitations utilizing SFQ-logic 

(single flux quantum) digital electronic devices [222].  

 

 

Figure 2.15. SEM image of a 64-pixel NbTiN SNSPD array covering a total of 

63μm2 [220]. 

 

 

2.5 Time Correlated Single Photon Counting 

 Time correlated single photon counting (TCSPC) is a single photon 

detection-based measurement technique in which the arrival times of individual 

photons are counted with the help of single photon detector. In TCSPC single 

photons are detected from a periodic light signal, the time of their detection is 

registered, and a waveform is constructed from these time measurements [223]. 

An illustration of a typical TCSPC architecture is shown in Figure 2.16.  
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Figure 2.16. Illustration of a TCSPC setup. 

 

The light source sends repetitive pulses into the TCSPC module that act as 

a start signal, while single photon detection events enable the detector to send 

pulses as stop events. Both signals go through Constant Fraction Discriminators 

(CFDs) that trigger at a constant fraction of the pulse amplitude, eliminating all 

amplitude fluctuations and pulse timing jitters. The outputs from the CFDs are 

sent to a Time-to-Amplitude converter (TAC) that generates an output signal by 

linearly charging a capacitor proportional to the arrival time of the start and stop 

signals. Next, the output voltage from the TAC is amplified by a biased amplifier, 

utilizing a variable gain and offset to adjust to the preferred time window. Then 

the amplified TAC signal is sent to an Analog-to-Digital converter (ADC), where a 

digital output is generated equivalent to the registered time of the photon 

detection event. The amplified signal from TAC is resolved in multiple “bins” (time 

channels) of the same width and is important that the ADC is of high precision to 

avoid noise and distortions in the output histogram. Nowadays, TCSPC devices 

have reduced significantly the timing drifts and jitters operating steadily in the 

sub-ps region [224]. Finally, the output signal from ADC when there is a photon 

detection event, stores the information of the time arrival of the photon into a 

data memory location. As continuous ADC signals are stored in memory locations, 

a final histogram is built up of the photon distribution over time, as shown in 

Figure 2.17. Ideally, all photons emitted by the light source are detected by the 

detector and recorded. However, due to the timing jitter of the electronics and 

dead time of the detector, only one photon (stop pulse) can be registered for each 

start pulse. Usually this is enough for an accurate histogram measurement. 

Sometimes, though, when the light intensity is too high, it is possible that after 
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an excitation pulse period multiple photons are detected in the same period. As a 

result, after the first photon, subsequent photons may be lost leading to a 

distorted waveform. This “pile-up” effect is a serious drawback of TCSPC following 

the Poisson detection probability formulas. A Poisson process is described by the 

rate of detection events in time. To avoid distortions and lifetime errors, the 

detection count rate must not be higher than the 5% of the excitation repetition 

rate. For example, if the light source emits photons at 20 MHz repetition rate, the 

count rate of the detector must be limited to 1 MHz. Usually pile-up effect is the 

main problem of experiments that implement slow light sources (repetition rates 

in the range of kHz) in combination to efficient detectors with long dead times.  

 

 

Figure 2.17. TCSPC illustration explaining how the measurement of individual 

photon times construct the output histogram [224].  
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3. Chapter 3 – Experimental methods 

 

3.1 Introduction 

 

The theoretical background of molecular oxygen, photosensitizers, single 

photon detectors and TCSPC was given in § 2. This chapter describes how all these 

elements are combined to form a sophisticated SOLD setup with emphasis on the 

engineering part of this project. The complete SOLD setup can be categorized in 

four main components: a) the laser source which is required for the precise 

excitation of the chosen photosensitizer, b) the optical setup including all the 

optical components for the manipulation and control of the illumination (delivery) 

light and the near-infrared singlet oxygen (collection) light, c) the detection of 

the singlet oxygen luminescence emission by a single photon detector and, d) the 

TCSPC module that correlates the laser signal with the detection signal to 

generate histograms of the acquired singlet oxygen emission. A schematic of the 

overall SOLD setup is presented in Figure 3.1.  

 

 

Figure 3.1. A schematic of the SOLD setup. Designed by Dr. Nathan R. Gemmell. 
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More specifically, a detailed description will be given of the laser source 

selection, the selected optical components, and the chosen configuration for the 

generation of singlet oxygen and the collection of its near-infrared emission as 

discussed in paragraph 2.1.1. Also, the various single photon detectors used will 

be analyzed along with their characterization processes and information, and 

lastly the TCSPC module characteristics and data acquisition.  

 

3.2 Excitation source 

 

Light source systems play an important role in the PDT and in the dosimetry 

techniques as the light properties must be carefully considered in order to 

efficiently excite the photosensitizer and make most efficient use of the delivered 

optical power, generating as many singlet oxygen molecules as possible. Earlier 

PDT and SOLD studies have been utilizing both laser-based systems and non-laser 

systems. Laser-based systems include argon/dye lasers, metal vapor lasers, solid 

state lasers, optical parametric oscillators (OPOs) lasers and semiconductor diode 

lasers, while non-laser systems are consisted of tungsten filament quartz halogen 

lamps, xenon arc lamps, metal halide lamps, phosphor-coated sodium lamps, 

fluorescence lamps and light emitting diodes (LEDs) [225, 226]. Argon lasers are 

typically coupled to a dye for specific PDT outputs focused on the 630 nm 

wavelength, generating up to 200 mW/cm2 of continuous wave (CW) optical power 

density. Metal vapor lasers with or without being coupled to an external dye have 

a short pulse duration operating as quasi-CW operating from UV to 750 nm 

(depending on the dye) and providing up to 10 W/cm2 and 500 mW/cm2. Solid state 

lasers such as Nd:YAG and KTP:YAG lasers have similar timing and spectral 

characteristics to metal vapor lasers. Solid state OPOs stand out for their ability 

to operate at wavelengths from 250 nm up to 2000 nm and the optical power they 

produce reach the 1 W/cm2. Semiconductor lasers can only be fibre coupled, offer 

PDT-accepted emission wavelengths at 600-950 nm and they can offer up to 700 

mW/cm2 of CW light. Non-laser light sources can also produce a few hundreds of 

mW/cm2 optical power density like lasers, but they typically have a much broader 

emission spectrum which often require the use of additional optics and filters. 
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The light sources mentioned above are perfect candidates for PDT 

therapies, being able to excite a specific clinical photosensitizer and apply a large 

amount of optical power. They are also suitable for most SOLD studies and 

experiments, but they are far from ideal as they have minimum wavelength 

tunability, are CW and/or cannot easily tune their repetition rate and optical 

power. For these reasons, the selected light source for this project is a 

supercontinuum laser source from NKT Photonics (SuperK compact 

supercontinuum laser). In a supercontinuum laser, the supercontinuum generation 

is the process where the laser light is converted to a very broad spectral bandwidth 

light. The optical spectral range of the laser is 450 – 2400 nm with total output 

power at ~110 mW, tunable repetition rates up to 24 kHz with optical output 

pulses <2 ns wide. The supercontinuum laser is coupled to a single line filter from 

NKT Photonics (SuperK Varia tunable single line filter) with tunable wavelength 

from 450 – 800 nm, variable wavelength bandwidth from 10 nm up to 100 nm and 

collimated to a single mode FC-APC fibre. The NKT Photonics supercontinuum laser 

and the single line filter are shown in Figure 3.2. The selection of the specific 

laser and single line filter allows the precise selection of the peak absorption 

wavelength of the chosen photosensitizer, an ideal solution for singlet oxygen 

experiments as most photosensitizers have their excitation peaks in the region of 

500 - 700 nm.  

 

 

Figure 3.2. (a) SuperK compact supercontinuum laser and, (b) SuperK Varia 

single line filter for 450 – 800 nm wavelength. From [227]. 
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In addition, the low repetition rate matches the needs of the experiment 

enabling the acquisition histograms in a 42 μs detection time window after the 

excitation pulse, a lifetime usually longer than singlet oxygen’s lifetime in most 

solvents. The output optical power after the coupling with the single line filter is 

up to 2 mW, depending on the centre wavelength and bandwidth as shown in 

Figure 3.3. The optical power reaching the photosensitizer may be weaker than 

most semiconductor CW diodes or other laser sources used in SOLD experiments, 

but still the optical power is sufficient for the efficient generation of singlet 

oxygen and the unique characteristics a supercontinuum source offers can 

overcome this small flaw. The light from the single line filter is directed to the 

optical setup through a metallic single mode FC-APC fibre. The analog pulse signal 

output is transferred from the supercontinuum laser to the TCSPC module’s sync 

channel giving the ‘start’ signal, as described in paragraph 2.5. Additionally, the 

laser is connected to a PC unit via USB for the easy tuning of all the parameters in 

a software with user interfaces for both laser and single line filter. 

 

 

Figure 3.3. The total optical power emitted by the single line filter as a function 

of wavelength.  
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3.3 Optical Setup 

 

The optical setup was built by carefully selecting the optical parts and 

continuously tweaking and upgrading over the years. An illustration of the optical 

setup is shown in Figure 3.4. The optical setup was not designed in a conventional 

L-configuration of the excitation and the emission collection, it was rather 

designed and built to excite and collect from the same spot. This way the 

alignment of the two beams (excitation visible light and NIR singlet oxygen light) 

was very accurate and by choosing the appropriate optical filters the excitation 

light was blocked from reaching the detector.  

  

 

Figure 3.4. 3D illustration of the optical head. Designed by Dr. Nathan R. 

Gemmell. 

 

The optical fibre from the supercontinuum laser (9 μm core size diameter) 

is coupled to a reflective collimator (Thorlabs RC08FC-P01 - protected silver 

reflective collimator 450 nm – 20 μm, 8.5 mm collimated beam) with 33 mm 

reflected focal length (RFL). The visible light from the laser is then filtered by two 

short pass filters with cut-off wavelengths shorter than the generated singlet 

oxygen photons. The first is a hard-coated short pass filter from Thorlabs 
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(FESH0950) with cut-off wavelength at 950 nm and the second is a KG-1 Heat 

absorbing glass from Edmund Optics with wavelength transmission allowance from 

400 nm up to ~1 μm. Both filters allow visible light pass through while they block 

most of the infrared light that may come from the broad laser emission or stray 

ambient light. The filtered visible light is then sent through a dichroic beam 

splitter (Thorlabs DMLP950 – long pass dichroic mirror) which is set at a 45º angle 

with 950 nm cut-on wavelength. Excitation light is diverted by the 45º angle 

dichroic mirror and then focused by an 90º angle off-axis parabolic mirror 

(Thorlabs MPD129-P01 – 90º Off-axis silver protected Parabolic mirror, RFL 50 mm) 

on the side of 4 ml quartz cuvette (Sigma Aldrich – Hellma absorption cuvette) 

filled with photosensitizer. Peak excitation wavelength for the photosensitizers 

used is centred at 522 nm, 540 nm, 645nm, 660 nm and 689 nm. More on the 

photosensitizers is discussed in § 3. The optical power at each wavelength was 

measured by a power meter, while the diameter of the beam spot size on the 

cuvette and the optical power density is calculated as below and are presented in 

Table 3.1: 

𝐵𝑒𝑎𝑚 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 (𝜇𝑚) = 𝐹𝑖𝑏𝑒𝑟 𝑐𝑜𝑟𝑒 (𝜇𝑚)
𝐹𝐿 𝑜𝑓 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑖𝑟𝑟𝑜𝑟 (𝑚𝑚)

𝐹𝐿 𝑜𝑓 𝐶𝑜𝑙𝑙𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 (𝑚𝑚)
     (23) 

Equation 23. Laser beam spot size on cuvette 

and, 

𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑊

𝑚𝑚2) = (
𝐵𝑒𝑎𝑚 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒(𝜇𝑚)∗10−3

2
)

2

∗ 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟(𝑚𝑊) ∗ 1000  (24) 

Equation 24. Laser power density on cuvette 

With 9 μm fibre core diameter, 33 mm collimator focal length (FL) and 50 mm 

focal length of the reflective mirror, the diameter of the beam spot size from 

eq.23 is 13.64 μm. 
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PS centre wavelength Optical power (mW) Optical power density (W/mm2) 

522 nm 1.2 0.175 

540 nm 1.4 0.204 

645 nm 1.8 0.263 

660 nm 1.6 0.234 

689 nm 1.1 0.161 

Table 3.1. Chosen PS peak excitation wavelengths and the optical power and 

power density applied to the PS sample. 

 

The focused beam enters the cuvette with the photosensitizer and the 

photodynamic process generates singlet oxygen which emits 1270 nm and 1590 nm 

photons following the decaying pathways. These near-infrared photons are 

reflected by the same 90º off-axis parabolic mirror towards the dichroic beam 

splitter, where this time the light passes through the dichroic mirror. The 

parabolic mirrors ensure that the focal length of both routes, illumination and 

collection, is the same for optimum overlap. Also, these mirrors ensure that the 

optical setup do not vary as the wavelengths change in either illumination or 

collection. Then the NIR beam is filtered by a long pass filter and a band pass filter 

to block all the unwanted light that may pass through the previous optics.  For the 

1270 nm emission detection the filtering consists of a long pass filter with cut-on 

wavelength at 1200 nm (Thorlabs FELH1200 – premium long pass filter) and a band 

pass filter centred at 1270 nm (Omega Optical – custom ordered Band pass filter, 

90% transmission at 1270 nm ± 4 nm). For further 1270 nm emission measurements, 

four more band pass filters were used around the 1270 nm wavelength: two custom 

ordered band pass filters at 1240 nm ± 4 nm and 1300 nm ± 4 nm from Omega 

Optical and two band pass filters centred at 1200 nm ± 2 nm and 1340 nm ± 2 nm 

from Thorlabs (FB1200-10, FB1340-12).  

For the 1590 nm emission detection similar filtering was used with a long 

pass filter with cut-on wavelength at 1500 nm (Thorlabs FELH1500 – Premium Long 
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pass filter) and a band pass filter centred at 1590 nm ± 2.4 nm (Thorlabs FB1590-

12 – Band pass filter). Similarly to 1270 nm measurements, four more band pass 

filters around the 1590 nm wavelength were used for additional measurements: 

band pass filters with centre wavelength at 1560 nm ± 2.4 nm, 1620 nm ± 2.4 nm, 

1520 nm ± 2.4 nm and 1650 nm ± 2.4 nm from Thorlabs (FB1560-12, FB1620-12, 

FB1520-12, FB1650-12). Finally, the filtered NIR light is collimated by a collimation 

package with 7 mm focal length (Thorlabs RC02FC-P01 – protected silver reflective 

collimator 450 nm – 20 μm, 2 mm collimated beam) coupled to a fibre leading to 

the single photon detector. The collection fibre selection depends on the single 

photon detector used. For measurements with SNSPDs a standard SMF28e fibre 

with ~ 9 μm core diameter was used (Thorlabs P1-SMF28e-FC-2 – single mode patch 

cable, 1260 – 1625 nm, FC/PC, 3 mm Jacket, 2 m long). For measurements utilizing 

the InGaAs detector, the fibre used was a multimode fibre with 62.5 μm core 

diameter provided by the company. The transmission data for the filters and 

mirrors mentioned above are included in Appendix A. 

The overall size of this optical head setup is 20 cm x 15 cm x 5 cm. This size 

is relatively small for a bench-based experiment. However, if it was to be used in 

a clinical therapy, the whole optical sensor head could be further optimized for 

size without sacrificing the collection efficiency, down to the size of a pen.  

 

3.4 Single-Photon Detectors 

 

The detection of the singlet oxygen luminescence was accomplished by two 

types of single photon detector: a superconducting nanowire single photon 

detector (SNSPD) and a single photon avalanche diode (SPAD). SPAD is a well-

established technology for single photon detection experiments in the visible and 

the near infrared, while SNSPD is a newer alternative to existing single photon 

detector achieving incredibly high quantum efficiency and ultra-low timing jitter 

values while keeping the dark count rate low, as described in paragraph 2.4. Both 

detectors can be fibre-coupled and are excellent candidates for singlet oxygen 

luminescence detection experiments, offering great timing properties and high 

quantum efficiency at the desired singlet oxygen emission wavelengths. 

Experimental data are acquired by both detector technologies. Several SNSPDs 
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were used during this project, most of them fabricated by Prof. Robert Hadfield’s 

group and collaborators, while the SPAD used is a commercial InGaAs SPAD 

acquired during the last months of the project as the big increase in the overall 

active detection area coupled to a multimode fibre would increase the collection 

signal more than a SNSPD of higher efficiency. The quantum efficiency of all SNSPD 

detectors was measured at two wavelengths based on the available laser sources 

emitting at standard telecommunication wavelengths 1310 nm and 1550 nm (close 

to the desired 1270 nm and 1590 nm singlet oxygen luminescence). The 

characterization of the SPAD was accomplished using a tunable laser source with 

extended emission from 1340 nm up to 1650 nm. The quantum efficiency of the 

detectors was calculated following the equations below:  

𝐸𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛( 𝐽) =  
ℎ∗𝑐

𝜆
     (25) 

Equation 25. Energy of photon 

Where 𝐸𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛 is the energy of one photon in Joule, ℎ is the Planck constant 

with value 6.62607015 * 10-34 J * s, 𝑐 is the speed of light that equals to 299792458 

m/s and, 𝜆 is the wavelength of the incident photon in nanometers. 

𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 =  
𝐼𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟(𝑊)

𝐸𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛(𝐽)
   (26) 

Equation 26. Photons per second 

𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑓𝑡𝑒𝑟 𝑎𝑡𝑡. =  10
10∗ (𝑙𝑜𝑔10 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑)− 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 (𝑑𝐵))

10    (27) 

Equation 27. Photons after attenuation 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑃ℎ𝑜𝑡𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑠−𝑑𝑎𝑟𝑘 𝑐𝑜𝑢𝑛𝑡𝑠

𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑓𝑡𝑒𝑟 𝑎𝑡𝑡.
  (28) 

Equation 28. Detector quantum efficiency 

Attenuation of the laser output is necessary for the characterization of the 

single photon detectors, as the laser sources used are not true single photon 

sources. The laser pulses are attenuated to generate weak coherent pulses (WCP) 

so that the mean number of the photons produced per laser pulse is smaller than 

1 [162]. The number of photons in each pulse follows the Poissonian statistics and 

the equation that gives the arrival probability is:  
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𝑃(𝑛, 𝜇) =  
𝜇𝑛∗ 𝑒−𝜇

𝑛!
     (29) 

Equation 29. Possibility of photon number in each pulse 

Where 𝑃(𝑛, 𝜇) is the probability of a pulse to be attenuated to a specific value of 

𝜇 containing 𝑛 photons [228, 229]. 

 

3.4.1 Superconducting nanowire single photon detector system 

 

SNSPD systems used in this project were based on NbN and NbTiN chips. To 

operate in their superconducting state, they had to be cooled down below their 

critical temperature. The cooling system is a closed-cycle Gifford-McMahon (GM) 

refrigerator consisted of a 1.5 kW Sumitomo CNA-11C indoor air-cooled compressor 

and a Sumitomo RDK-101D cold-head. The heat transferral medium is high purity 

helium gas, which flows inside two successive GM stages. The first stage reaches 

40 K and the second is further cooled to about 4 K. The cold-head provides 0.1 W 

of cooling power at 4.2 K and is able to reach temperatures < 3 K [230], as shown 

in Figure 3.5.  The compressor is 40 cm x 32 cm x 45 cm placed under the bench 

or in a service room, being separated from the cold-head and connected to the 

base of the refrigerator by two flexible gas lines. The SNSPD devices are placed 

on the cold-head, while thermometers are installed and monitor both GM stages 

and cold-head temperature. The whole refrigerator is housed inside a cylindrical 

vacuum chamber of ~25 cm diameter and 60 cm tall, while the overall weight does 

not exceed 20 kilograms.  
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Figure 3.5. Heat load map for the two-stage Sumitomo RDK-101D cold head. 

Adapted from [231]. 

 

Experiments were also made using a first of a kind miniaturized closed-

cycle refrigerator for the needs of its proof of concept validation. Among other 

practical experiments, singlet oxygen luminescence detection was accomplished 

by a SNSPD mounted and cooled inside this cooling platform. This was a 

demonstrator produced by Dr Nathan Gemmell in collaboration with STFC 

Rutherford Appleton Laboratory for the QuantIC quantum technology hub. The 

cooling system is the prototype for the European Space Agency Planck space 

telescope. The miniaturized cooling system consists of two Stirling stages and a 

Joule-Thompson (J-T) stage on top, reaching a minimum temperature of 4.2 K. 

The cooling power at 4.7 K is 4 mW operating with 4He gas [232]. The miniaturized 

cooling platform in shown in Figure 3.6. 
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Figure 3.6. a) The whole miniaturized cooling platform and, b) a 3D model of the 

top stage with a SNSPD device mounted, fibre coupled and electrically 

connected (provided by Dr Nathan R. Gemmell). 

 

SNSPD based experiments were carried out by various devices available 

during the time of the project. The SNSPDs were characterized by acquiring their 

current-voltage (I-V) curve, the overall quantum efficiency (QE) and their timing 

jitter. Timing jitter is a negligible parameter for the singlet oxygen luminescence 

experiments but as a part of the general characterization of the device that was 

also used in other experiments, it needed to be carried out. Once the SNSPD is 

cooled down to <3 K an I-V curve is required to define the performance of the 

device and help us know at which current value will bias the device to be 

approaching the critical current. The electrical setup for the acquisition of the I-

V curve, as shown in Figure 3.7, is with the help of a load resistance (typically 

~100 kΩ) that defines the current supplied to the SNSPD ( I = Vvoltmeter / Rload ). The 

bias voltage supplied by a SIM 900 voltage is varied as the resistance and current 

is monitored, up to a value that will exceed the critical current Ic. A Python script 

assisted in the monitoring and recording of each value and in generating the I-V 

curve. The shunt resistance that is connected in parallel to the SNSPD is typically 
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much smaller than the device resistance and is added to prevent the device from 

remaining in the resistive state once the superconductivity is destroyed (latching). 

The shunt resistance diverts the current away and helps the device recover its 

superconducting state.  

 

 

Figure 3.7. Experimental setup for the I-V characteristics of the SNSPD. 

 

 An example of the I-V characteristic graph of a SNSPD cooled down to 2.3K 

is shown in Figure 3.8, with a 50 Ω shunt resistance in parallel and a 100 kΩ load 

resistance. In the graph, the transition from the superconducting state to the 

normal resistive state is happening at ~ 20 μA. That means that the SNSPD device 

must be biased just below the critical current of 20 μA in order to operate as a 

single photon detector at 2.3 K. 
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Figure 3.8. I-V characteristics of a SNSPD measured at 2.3 K with a 50 Ω shunt 

resistor. 

 

Next, the system detection efficiency (ηSDE) is calculated using a calibrated 

light source and optically attenuating the output so that it emits weak coherent 

pulses in the single photon level, controlling the incident power reaching the 

detector. By knowing the input power and the wavelength the light source emits, 

quantum efficiency is easily calculated using equations 26 to 28. The experimental 

setup (Figure 3.9) is based on a diode laser source driven by a pulse pattern 

generator (PPG) that its optical pulse output is heavily attenuated by two 

programmable optical attenuators to enter the single photon emission regime and 

control the photon flux onto the active region and a fibre polarizer that may tune 

the polarization of the incident light so that the detector is absorbing as much as 

possible. At the same time, the SNSPD is current biased at a fixed value and 

through a standard readout circuit consisted of a bias tee, a 100 kΩ resistance, a 

50 Ω shunt resistance and a room-temperature amplifier chain the output signal 

pulses from the detector are recorded in a photon counter. While the laser is 

blocked, a certain number of photons for each bias value are still being detected 

and recorded in the photon counter. These values are the dark counts generated 
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by internal or external noise contributions. Subtracting these values from the total 

detected counts and dividing by the total incident photons fed to the detector, as 

in equation 28, the system detection efficiency is calculated. 

 

 

Figure 3.9. Illustration of the experimental setup used for the measurement of 

the system detection efficiency. Black connections illustrate the electrical 

connectivity between the components, while the blue arrows represent the fibre 

connectivity for the travel of light from the laser light source onto the detector. 

 

In Figure 3.10a an example measurement of the quantum efficiency at 1550 

nm of a SNSPD is shown, in comparison to the corresponding dark count rate for 

each bias point. The quantum efficiency has a steep increase at lower bias points 

and then it tends to reach a plateau, while the dark count rate is slowly increasing 

at low current values and then shows a sharp rise.  For practical experiments, a 

system quantum efficiency value is typically accepted if it does not exceed 1000 

dark counts per second. In Figure 3.10b, it is clear that at the bias point where 

the dark count rate reaches the 1000 cps, the respective quantum efficiency is at 

~25%. 
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Figure 3.10. a) Quantum efficiency and dark count rate versus bias current plot 

of a SNSPD device and, b) same plot, zoomed in at bias points around 1000 dark 

counts per second with the corresponding quantum efficiency value. 

 

The timing jitter (Δt), briefly explained in paragraph 2.4, gives the timing 

uncertainty between the detection of a single photon and the generation of an 

electrical output pulse in a practical system. Measurement of the timing jitter of 

a detector gives timing resolution information such as the maximum count rate. 

The experimental setup for the acquisition of the timing jitter value is shown in 
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Figure 3.11. A femtosecond mode-locked fibre diode laser generating narrow 

optical pulses (KPhotonics CNT-1550-TK laser, 50 MHz repetition rate, centre 

wavelength λ = 1560 nm) is connected to a 90:10 beam splitter. The 10% optical 

output is coupled to an InGaAs photodiode (Thorlabs, DET08CFC InGaAs, λ = 800-

1700 nm, <70 ps rise time). The input light detected by the photodiode generates 

an electrical output pulse sent to the SYNC port of a TCSPC module. The 90% 

optical output of the beam splitter sends the light through two programmable 

optical attenuators so that the pulses are attenuated to a single-photon regime. 

The attenuated light is then detected by the SNSPD and an electrical output signal 

is sent to the timing (input) port of the TCSPC card. The TCSPC card is a PicoQuant 

PicoHarp 300 capable of recording pulses within a 4 ps time bin. Recording the 

sync signal pulses and the input signal pulses from the SNSPD, a histogram is 

formed and from the Gaussian fit on the histogram the FWHM timing jitter is 

extracted. Example of the histogram generated and the FWHM value was shown 

earlier in § 2 (Figure 2.4).  

 

 

 

Figure 3.11. The apparatus for the acquisition of the timing jitter of a SNSPD. 
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3.4.2 Single photon avalanche photodiode 

 

The SPAD used for the detection of singlet oxygen luminescence is a 

commercial ID230 InGaAs SPAD from IDQuantique. The operation of SPAD and its 

optical and timing characteristics were discussed in paragraph 2.4.2. The SPAD 

operates in a free-running mode and with the help of a Peltier cooler it can be 

cooled down to 183 K in order to minimize the dark count rate. The overall 

detector active area is 125 μm in diameter, split in half and fibre-coupled to two 

62.5 μm multimode fibres. The SPAD unit connects to a PC and through the IDQ 

software the user can tune the SPAD’s dead time and set the operation 

temperature to either -50 ºC, -70 ºC or -90 ºC, and the quantum efficiency to 10%, 

15%, 20% or 25%. Depending on the chosen quantum efficiency point, the timing 

jitter of the device can be as low as 180 ps FWHM. The operation wavelength of 

InGaAs SPADs ranges from 0.9 μm – 1.7 μm, which makes it ideal for singlet oxygen 

luminescence experiments, offering high detection efficiencies in the desired 1270 

nm and 1590 nm wavelengths. Figure 3.12 is reproduced from IDQ’s ID230 

datasheet, showing the quantum efficiency over the whole wavelength operation 

region. When operation efficiency at 1550 nm is set to 25%, the corresponding 

efficiency at 1270nm is roughly at 29%.  

 

 

Figure 3.12. ID230 InGaAs SPAD quantum efficiency versus wavelength. Maximum 

efficiency at 1550 nm is 25% and at 1270 nm is 29%. Reproduced from [175]. 
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The SPAD underwent further characterization in terms of quantum 

efficiency and dark count rate at different operation temperatures and over a 

wavelength range. The dead time of the SPAD was always set to 42 μs to match 

the histogram time defined by the laser repetition rate. The quantum efficiency 

from 1340 nm up to 1650 nm comparison between the three different operation 

temperatures is shown in Figure 3.13, while the dark count rate for all four QE 

values and operation temperatures is shown in Table 3.2. As expected, the lower 

the temperature SPAD is cooled at, the lower the dark count rate. This means that 

cooling the SPAD at –90 ºC the dark count rate is significantly reduced compared 

to –50 ºC and –70 ºC and is optimum temperature. Dark count rate is also affected 

by the quantum efficiency point as for higher quantum efficiency values; the 

device is biased at higher voltages leading to increased dark counts. Therefore, 

setting the SPAD’s quantum efficiency at the maximum value of 25%, may give 

higher detection sensitivity but at the cost of the increased dark count rate. 

However, in most cases, the dark count rate at 25% QE is still low enough and with 

strong luminescence signal the SNR is not greatly affected.   

 

Figure 3.13. Quantum efficiency scan from 1340 nm to 1650 nm for all three 

SPAD temperatures. 
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Quantum efficiency Dark Count Rate (cps) at stated temperature 

 -50 ºC -70 ºC -90 ºC 

10% 731.1 76.4 11.2 

15% 1513.3 171.1 27.7 

20% - 366.7 52.3 

25% - 558.9 80.5 

 
Table 3.2. Dark count rate in cps for all SPAD’s operation temperatures and 

quantum efficiencies. SPAD operating at -50 ºC was unable to operate biased at 

high values.  

 

By looking at Figure 3.13, the SPAD’s quantum efficiency operating at -70ºC 

is very close to that of -90 ºC. However, the dark count rate at -90 ºC is much 

lower than that at -70 ºC making the former the obvious selection for the 

experiments that followed. At -50 ºC, the dark count rate is much higher even 

when the selected quantum efficiency at 1550 nm is 10% or 15%. Operation at 20% 

and 25% could not be achieved at -50 ºC. In Figure 3.14, the default quantum 

efficiencies are compared over the same wavelength range for each temperature 

point. The actual quantum efficiencies at 1550 nm are very close to the expected 

as indicated by the default quantum efficiency values. The actual quantum 

efficiency trend is also similar to the one provided by the company with the 

highest peak being around 1350 nm. Based on that, it is safe to assume that the 

maximum quantum efficiency that can be achieved at 1270 nm is about 29-30%. 

With these quantum efficiency values at 1270 nm, along with the very low dark 

count rate and the big collection area offered by the size of the chip coupled to a 

multimode fibre, the SPAD is a very good choice for singlet oxygen luminescence 

experiments. 
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Figure 3.14. Quantum efficiency scans from 1340 nm to 1650 nm wavelength 

with SPAD’s default QE at 1550 nm set to 10%, 15%, 20% and 25%. Operation 

temperature is set at a) -50 ºC, b) -70 ºC and, c) -90 ºC. 
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3.5 TCSPC Module 

 

The TCSPC module is a PicoQuant PicoHarp 300 card with a single input 

channel. The supercontinuum laser is connected to the sync channel of the TCSPC 

card and the single photon detector to the timing channel. While running in the 

histogrammer mode, the card correlates signals from the laser and the detector 

and generates histograms proportional to the laser’s repetition rate. Therefore, 

with the supercontinuum laser’s repetition rate of ~24 kHz, the histograms 

generated are in a 42 μs time window. Additionally, the probability of a detection 

event has to be kept low compared to the excitation rate (typically below 5%) to 

avoid pulse pile-up effects. Thus, with the supercontinuum laser running steadily 

at 24 kHz, the overall count rate needs to be up to 1.2 kHz.  The bin width of the 

histogram can be adjusted and can be as small as 4 ps. Small bin widths increase 

the curve resolution but as less counts are recorded per bin, the intensity of the 

bins is much smaller and may lead to less distinguishable shapes. An example 

histogram with bin resolution at 65 ns and acquisition over 60 seconds (646 bins) 

is shown in Figure 3.15.  

 

Figure 3.15. Histogram generated over 60 seconds of acquisition time with 65536 
ps bin width size. 
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 The biexponential decay curves arising from the singlet oxygen signal 

detected are fitted using a singlet oxygen equation involving the two lifetimes, 

the singlet oxygen lifetime, and the photosensitizer triplet state lifetime. The 

fitting of the decay curves allows the extraction of the two lifetime values. The 

formula used to best fit the data set of the recorded singlet oxygen signal is:  

𝐴 ∗
𝑡2

𝑡1−𝑡2
∗ (𝑒

−
𝑡+𝐵

𝑡1 −  𝑒
−

𝑡+𝐵

𝑡2 ) + 𝐶    (30) 

 where A is the amplitude, t1 and t2 correspond to the two lifetime values τΔ and 

τT, and C a constant. The iteration algorithm used to minimize the problems in 

the fitting is the Levenberg-Marquardt algorithm that is commonly used to solve 

non-linear least squares problems for non-linear curve fitting. All lifetimes 

extracted in the singlet oxygen data results presented in the following chapters 

are extracted following the fitting described using the formula above. 
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4. Chapter 4 – 1270 nm and 1590 nm singlet oxygen 

luminescence measurements of photosensitizer solutions 

 

4.1 Introduction 

 

Lately, in clinical applications, such as Photodynamic Therapy, techniques 

like singlet oxygen luminescence dosimetry are of strong interest. Efficient 

detection of singlet oxygen’s signature and properties has been a subject of 

experimental investigation over recent decades. However, detection of singlet 

oxygen’s luminescence in the NIR has been a challenging task due to its weak and 

of low probability emission. Recent advances in the single photon detection 

systems have enabled the engineering of sophisticated setups that greatly increase 

the efficiency and practicality in singlet oxygen detection. Single photon 

detectors, such as SNSPDs and semiconductor SPADs (described in § 3), offer 

unparalleled detection efficiency while as fibre-based systems they provide 

solution to various clinical scenarios with limited geometric collection efficiency. 

In this chapter, singlet oxygen luminescence measurements are presented 

using the experimental setups described in the previous chapter and a variety of 

photosensitizers, including an FDA clinically-approved drug. § 4 starts with a brief 

overview on the selected photosensitizers (their structure, type, chemical and 

optical properties) and follow detailed measurements on the singlet oxygen 

luminescence in the 1270 nm and 1590 nm wavelength by various photosensitizer 

solutions. Experimental data on the intensity of the singlet oxygen signal and the 

lifetimes of singlet oxygen and photosensitizer’s triplet state are presented, as 

well as data utilizing different bandpass filters around the 1270 nm and 1590 nm 

wavelength and singlet oxygen quenching agents, to validate the authenticity of 

the singlet oxygen signature. While the 1270 nm emission is that of highest 

importance and practical use, the detection of singlet oxygen’s 1590 nm emission 

and time resolved measurements of this even weaker decay denote a brand-new 

singlet oxygen dataset. These measurements are of great interest regarding the 

photochemical nature of singlet oxygen and its decay pathways and kinetics. 
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4.2 Chemicals 

 

During this project multiple photosensitizers were used to generate singlet 

oxygen molecules and help study its behaviour in the different microenvironments. 

The initial sensitizer selection was a standard photosensitizer dye, Rose Bengal, 

known for its high quantum yield in the singlet oxygen generation. Later, with the 

implementation of the versatile supercontinuum laser and its tunable single line 

filter, the selection of different wavelengths in the visible enabled the excitation 

of other photosensitizers, such as the Eosin Y, the Methylene Blue, and the Zinc 

Phthalocyanine. A clinically-approved photosensitizer under the trade name 

Visudyne was also tested in solution to give a more plausible approach. All these 

photosensitizer dyes were used in solutions. Solvents like distilled water (H2O), 

ethanol (C2H5OH), methanol (CH3OH), acetone (C3H6O) and dimethyl sulfoxide 

(DMSO - C2H6OS) were used to prepare PS solutions with different chemical 

properties and therefore different microenvironments which affect the generation 

and deactivation of singlet oxygen. Moreover, solutions using deuterium oxide 

(D2O) were prepared, tested, and compared to other solutions as this deuterated 

isotope of water with different nuclear, physical, and chemical properties is 

known to greatly affect the singlet oxygen lifetime. All solutions were prepared 

by simple mixing and stirring in room temperature. For all the singlet oxygen 

solution experiments, a 4 ml quartz Hellma absorption cuvette was used filled 

with 3.5 ml of photosensitizer solution. 

Verteporfin is a benzoporphyrin derivative and a clinically approved 

sensitizer for PDT treatments with the trade name Visudyne. The chemical formula 

is C41H42N4O8 with 1437.6 g/mol molecular mass. Verteporfin has a very broad 

absorption spectrum as shown in Figure 4.1a with strong peaks in the UV and 

visible. The targeted excitation wavelength in PDT treatments is at 689 nm, which 

is towards the NIR where light penetration in tissue is significantly deeper than 

shorter wavelengths [233].  The Visudyne solution for the SOLD experiments was 

prepared with methanol.  
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Figure 4.1. a) Absorption spectrum and b) Chemical formula of Verteporfin. From 

[234] 

 

Rose Bengal is a 4,5,6,7-tetrachloro 2′,4′,5′,7′-tetraiodo derivative of 

fluorescein, an organic dye molecule in the xanthene class. Its chemical formula 

is C20H2Cl4I4Na2O5 with 1017.64 g/mol molecular mass. Rose Bengal has high triplet 

state energy and a very high quantum yield, in the order of 75% [22, 235]. Rose 

Bengal’s peak excitation wavelength is around 550 nm, as shown in Figure 4.2a 

[236]. Rose Bengal’s high singlet oxygen quantum yield and great solubility 

established it as the benchmark photosensitizer of this project. Rose Bengal 

solutions were made using distilled water, deuterated water, ethanol, methanol, 

acetone and DMSO. 

Eosin Y is also a xanthene dye, 2′,4′,5′,7′-Tetrabromofluorescein. Chemical 

formula is C20H6Br4Na2O5 with 647.89 g/mol molecular weight. Eosin Y has a 

quantum yield of 57% and a high excitation peak wavelength at 522 nm [22, 237]. 

The molecular structure and absorption spectrum of Eosin Y is shown in Figure 

4.2b. Eosin Y was dissolved with distilled water, ethanol, and methanol.  

Methylene Blue, also known as methylthionimium chloride, is a 

phenothiazinium dye with broad absorption spectrum from around 500 nm to 700 

nm and a quantum yield of 52% [22, 235]. Its molecular formula is C16H18ClN3S with 

319.85 g/mol molecular weight. The molecular structure of Methylene Blue and 

its broad absorption spectrum is shown in Figure 4.2c [238]. Solutions were 

prepared by mixing with distilled water, ethanol, methanol and DMSO. The 

selected excitation wavelength for the Methylene Blue solution was at 660 nm.  
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Zinc Phthalocyanine belongs to the big group of Metallophthalocyanines 

(MPcs) with chemical formula C32H16N8Zn with 577.91 g/mol molecular weight. 

Zinc Phthalocyanine (ZnPc) has a long triplet state lifetime with quantum yields 

reaching 53% [239-242]. ZnPc has a strong absorption peak around 650 nm as shown 

in Figure 4.2d [243]. ZnPc powder was only mixed with DMSO.  

 

 

Figure 4.2. Absorption spectra and molecular structures of a) Rose Bengal, b) 

Eosin Y, c) Methylene Blue and, d) Zinc Phthalocyanine [236, 238, 241]. 

 

4.3 Singlet oxygen luminescence detection 

 

The SOLD technique is based on the time resolved phosphorescence 

detection (TRPD) of singlet oxygen. It is a useful spectroscopic tool to monitor 

directly the 1O2 phosphorescence transitions. TRPD gives a variety of information 

on the shape and intensity of the detected phosphorescence signal determined by 

multiple parameters. The production of singlet oxygen molecule and decay in a 

system is described in § 2 in equations 1 through 19.  These equations lead to the 

conclusion that the amount of the generated singlet oxygen per absorbed photon 



4.3 Singlet oxygen luminescence detection  

 

85 
 

is determined by the ability of the photosensitizer molecules to get to the excited 

triplet states, the ability of the oxygen to trap these PS triplet state molecules 

and the efficiency of the energy transfer from the 3PS to the ground state oxygen 

in order to excite it and produce singlet oxygen. These three factors also 

determine the kinetics and intensity of the singlet oxygen phosphorescence signal. 

The experimental detection of the 1O2 phosphorescence signal derives from 

equation (30) and can be described in the following equation:  

 

St = S0 × 
𝜏𝛥

𝜏𝛥−𝜏𝑇
 [ 𝑒

−
𝑡

𝜏𝛥  - 𝑒
−

𝑡

𝜏𝑇 ] 

Equation 30. 1O2 Phosphorescence signal 

Where:     S0 = κkΔ,R [1PS*]0 × ΦΔ, 𝜏𝑇 is the PS triplet state lifetime and, 𝜏𝛥 is the 

singlet oxygen lifetime. 

 

The singlet oxygen phosphorescence signal is defined by the S0, 𝜏𝑇 and 𝜏𝛥. 

In S0, ‘κ’ is the instrument dependent factor, such as the detector single-photon 

detection efficiency and the optical collection efficiency of the system. By 

increasing ‘κ’ through increase in the sample absorbance and/or increase of the 

light source intensity can lead to an increase of the S0, but not indefinitely as 

every setup has an optimum sample absorbance. The kΔ,R is the singlet oxygen 

radiative rate constant and depends strongly on the electrical properties of the 

photosensitizer, such as the polarizability. [1PS*]0 represents the initial 

concentration of all the PS excited states produced by the light pulse. ΦΔ is the 

quantum yield of the singlet oxygen production. This 1O2 quantum yield depends 

on a) the PS triplet state quantum yield ΦΤ (according to eq. 18), determined by 

the electronic structure of the photosensitizer but can also be affected by other 

1PS* quenchers, the fraction of 3PS* trapped by oxygen 𝑃𝑇
𝑂2, which actually reflects 

a competition between the 3PS* natural decay and oxygen quenching. High oxygen 

concentrations and low-viscosity solvents mean high 𝑃𝑇
𝑂2 and, c) the efficiency of 

energy transfer from triplet state sensitizer molecules to ground state oxygen 

molecules, 𝑓𝑇,𝛥
𝑂2, which is determined by the electronic structure of the 

photosensitizer and can be affected by the polarity of the solvent. 
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The photosensitizer triplet state lifetime 𝜏𝑇 is also included in the 1O2 

phosphorescence signal. Photosensitizer’s triplet state quenchers affect the shape 

of the signal. Oxygen is a very efficient triplet state quencher, so PS triplet state 

lifetime is decreased when oxygen concentration is higher, as shown in eq. 15. 3PS 

lifetime is also affected by the solvent viscosity and the oxygen solubility. This 

leads to smaller 𝜏𝑇 values for organic solvents (in the nanoscale region), while in 

water 𝜏𝑇 is typically around 2 μs. By extracting 𝜏𝑇 kinetic information can also be 

gain on its precursor 3PS*. 

The singlet oxygen lifetime 𝜏𝛥 is mostly affected by the presence of 

quenchers. Solvents assist in the deactivation of singlet oxygen through electronic 

to vibrational energy transfer and that makes 𝜏𝛥 extremely solvent sensitive. 

Additionally, as mentioned in § 2, deuterated solvents are proven to lengthen the 

singlet oxygen lifetime.  

 

4.3.1. 1270 nm measurements 

 

Singlet oxygen measurements at 1270 nm wavelength were carried out using 

a 1200 nm long pass filter and a band pass filter centred at 1270 nm ± 4 nm (FWHM 

Bandwidth 20 nm ± 4 nm). To validate that the recorded signal is actually coming 

from the singlet oxygen decay, four more band pass filters were used bracketing 

the central signal at 1270 nm, at 1200 nm, 1240 nm, 1300 nm, and 1340 nm 

wavelength. As the 1270 nm singlet oxygen emission is quite narrow, signal from 

all the other band pass filters should be very weak and tend to zero as we move 

further from the 1270 nm wavelength. As shown in Figure 4.3, the singlet oxygen 

signal sensitized by Rose Bengal is strong with the 1270 nm band pass filter in 

place. With the 1240 nm and 1300 nm band pass filters there is still some signal 

coming through to the detector, which can be explained taking into consideration 

that 1O2 emission and band pass filtering have a finite bandwidth. That means that 

the 1O2 signal and the BP wavelength transmittance may overlap even in a small 

percentage and lead to some optical signal coming through the apparatus and 

being recorded by the detector. The 1200 nm and 1340 nm BP filters as expected 
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block all the singlet oxygen signal. Thus, it is reasonable to infer that the detected 

photons for the 1270 nm measurements come from the 1𝛥𝑔 → 3𝛴𝑔
−(v=0) transition.  

 

 

Figure 4.3. a) 3D plot comparing 1O2 luminescence from 100 μg/ml of Rose 

Bengal in deuterated water with various BP optical filters and, b) a comparison 

plot of total counts integrated under the histograms versus BP optical filter 

centre wavelength. Acquisition time is 60 seconds and SPAD’s detection 

efficiency set to 10%. 

 

Three different photosensitizers were mixed with distilled water, Rose 

Bengal, Eosin Y and Methylene Blue. All three have different peak excitation 
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wavelengths, singlet oxygen quantum yields and optical properties. In Figure 4.4, 

the three solutions are compared in 180 second acquisition histograms and at 100 

μg/ml mass concentration. The 100 μg/ml mass concentration is translated to 

98.27 μM for Rose Bengal, 312.65 μM for Methylene Blue and, 154.35 μM for Eosin 

Y. 

 

Figure 4.4. 180 second histograms comparing Rose Bengal, Eosin Y and Methylene 

Blue in distilled water at 100 μg/ml mass concentration. SPAD detector was set 

to -90 ºC, 10% QE and 42 μs dead time. 

 

Rose Bengal seems to be the more efficient photosensitizer producing the 

most 1O2 signal from the three PSs. This was expected as Rose Bengal has the 

highest singlet oxygen quantum yield of all three, even though the molar 

concentration is lower. Next is Eosin Y and then Methylene Blue. By fitting the 

acquired curves with equation (30), the photosensitizer triplet state lifetime and 

the singlet oxygen lifetime are extracted and can be seen in Table 4.1. 

Distilled water solution Rose Bengal Eosin Y Methylene Blue 

𝝉𝑻 (μs) 2.32±0.03 1.88±0.03 1.67±0.05 

𝝉𝜟(μs) 3.52±0.03 3.59±0.02 3.73±0.03 

Table 4.1. Triplet state lifetimes and singlet oxygen lifetimes for Rose Bengal, 

Eosin Y and Methylene Blue in distilled water. 
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Triplet state lifetimes are close to 2 μs, while the singlet oxygen lifetimes 

are ~3.5-4 μs long with all three values being close to each other. Singlet oxygen 

lifetime (τΔ) should be similar regardless the photosensitizer used in each 

measurement. The reason of having slightly different values outside the stated 

error is attributed to possible fluctuations in the concentration of the prepared 

photosensitizer solution. Singlet oxygen decay is in the microsecond range, a long-

lived decay as predicted from the theory. PS triplet state lifetime is around 2 μs 

as expected in water solutions. In deuterated and organic solvents, singlet oxygen 

lifetime is expected to be even longer and PS triplet state lifetimes even shorter 

with solvents of different viscosity, oxygen concentration and oxygen solubility. 

Note that at the beginning of the histogram of Figure 4.4, a very strong but 

short (nanosecond range) emission is seen. This emission can be a few thousands 

up to hundreds of thousands counts stronger than the actual singlet oxygen signal 

and is present in every acquisition. This sharp peak is translated to the strong 

fluorescence of the photosensitizer emission, either emitting in the spectral 

window of 1270 nm or different wavelengths that pass through the optics. This 

emission is different depending on the experimental setup. Especially solutions 

made of Methylene Blue have a very strong luminescence peak which lead to very 

high count rates and therefore pile-up effects that distort the final shape. For that 

reason, in some cases the optical power coming from the supercontinuum laser is 

decreased to allow the setup to operate below the pile-up threshold point. Also, 

for solutions that exhibit strong 1O2 signal, the SPAD detector is set to the lowest 

possible quantum efficiency value (10%) in order to decrease the input counts. For 

the following plots, this PS luminescence peak may be removed in order to simplify 

data analysis, enabling better curve fitting and more accurate lifetime extraction.    

Apart from distilled water, two more polar protic solvents were tested, 

ethanol and methanol. These organic solvents have different properties from 

distilled water, so major differences in lifetimes were expected to be seen. Singlet 

oxygen signal from solutions by mixing ethanol and methanol with Rose Bengal, 

Eosin Y and Methylene Blue are compared in Figure 4.5.  
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Figure 4.5. 180 second histograms comparing Rose Bengal, Eosin Y and Methylene 

Blue in a) methanol and, b) ethanol at 100 μg/ml mass concentration. SPAD 

detector set to -90 ºC, 10% QE and 42 μs dead time. 

 

 Under the same experimental conditions, the acquired singlet oxygen signal 

from these solutions is clearly stronger with much higher count rate. The solution 

with Rose Bengal is once more the one that stands on top of the other two in terms 

of detected counts, despite its lower concentration compared to the other two 

dyes. Regarding the other two solutions, the Methylene Blue with ethanol and 

methanol seems to generate more singlet oxygen molecules than the one with 
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Eosin Y, something that in the case of the water solutions was the other way 

around. Singlet oxygen generation is affected by the PS triplet state lifetime which 

in the case of organic solvent the PS triplet state lifetime is longer for Methylene 

Blue, in contrast to the distilled water solutions where Eosin Y triplet state 

lifetime is longer.  The extracted lifetimes are close to theoretical values. Triplet 

state lifetime for all solutions is of a few hundred nanoseconds long, unlike the 

microsecond range lifetimes of PS solutions with distilled water. The 1O2 lifetimes 

are significantly longer with values close to 10 μs for methanol solutions and 

around 14-15 μs for ethanol solutions. Lifetime values for all the solutions can be 

seen in Table 4.2. It is clear that both lifetimes are heavily affected by solvent 

properties.  

 

Methanol solution Rose Bengal Eosin Y Methylene Blue 

𝝉𝑻 (μs) 0.38±0.01 0.26±0.03 0.46±0.03 

𝝉𝜟(μs) 9.78±0.004 9.65±0.007 10±0.008 

Table 4.2. Triplet state lifetimes and singlet oxygen lifetimes for Rose Bengal, 

Eosin Y and Methylene Blue in methanol (top) and ethanol (bottom). 

 

Subsequently, two more solvents were used, dimethyl sulfoxide and 

acetone.  These solvents are polar aprotic meaning they have high polarity which 

will make them more reactive and can dissolve photosensitizers that ‘common’ 

solvents cannot. Additionally, it is worth comparing their ability to generate 

singlet oxygen and compare the overall signal and lifetimes with the other 

solutions. Mixing with DMSO three solutions were prepared using Rose Bengal, 

Methylene Blue and Zinc Phthalocyanine, while with acetone only Rose Bengal 

solution was prepared. Acetone is supposed to enhance the singlet oxygen signal 

showing much longer singlet oxygen lifetime. Acetone was also picked as a solvent 

to assist in the testing of singlet oxygen quenching agents like β-carotene which 

Ethanol solution Rose Bengal Eosin Y Methylene Blue 

𝝉𝑻 (μs) 0.49±0.02 0.31±0.03 0.59±0.03 

𝝉𝜟(μs) 14.67±0.01 14.53±0.01 14.5±0.01 
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is presented later on. A comparison plot between RB, MB and ZnPc in DMSO is 

shown in Figure 4.6, as well as a histogram of RB in acetone. Histograms are 

acquired over 3 minutes at 100 μg/ml mass concentration in order to compare to 

the rest of the solutions. 100 μg/ml mass concentration for ZnPc is converted to 

173.04 μM. 

 

 

Figure 4.6. a) 180 second histograms comparing Rose Bengal, Zinc 

Phthalocyanine and Methylene Blue in DMSO at 100 μg/ml mass concentration 

and, b) 180 second histogram with Rose Bengal in acetone at 100 μg/ml mass 

concentration. SPAD detector set to -90 ºC, 10% QE and 42 μs dead time. 

 

 Signal intensity by ZnPc in DMSO appears to be greater than that achieved 

in Rose Bengal and Methylene Blue but by looking at the shape of the emission 
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curve it seems that singlet oxygen lifetime generated by ZnPc in DMSO is much 

shorter. Methylene Blue’s signal in DMSO appears to be weak but the long tail of 

the curve indicates a long singlet oxygen lifetime. The Rose Bengal in acetone 

solution seems to produce not only strong 1O2 signal, but also a very long lifetime. 

All lifetimes extracted from Figure 4.6 curves are grouped and presented in Table 

4.3. While solutions in DMSO generate singlet oxygen signal weaker and similar to 

distilled water solutions, the lifetimes of these decays are closer to the solutions 

with ethanol and methanol. The PS triplet state lifetimes of the DMSO solutions, 

though, are in the microsecond region in comparison to solutions with ethanol and 

methanol which are almost an order of magnitude shorter.  The Rose Bengal in 

acetone, however, appears to be very efficient in generating singlet oxygen 

molecules with long lived decay luminescence. The signal intensity is high, similar 

to the one produced by Rose Bengal in ethanol and methanol, but the singlet 

oxygen lifetime is much longer at 48.93 μs. On the other hand, the PS triplet state 

lifetime of RB in acetone is short in the nanosecond region at ~580 ns, very similar 

to the ethanol solution. 

 

 

 

 

 

Table 4.3. Triplet state lifetimes and singlet oxygen lifetimes for Rose Bengal, 

Zinc Phthalocyanine and Methylene Blue in DMSO (top) and Rose Bengal in 

acetone (bottom). 

 

 Next, a solution with Rose Bengal mixed in deuterated water was prepared 

to test the effect of deuterated solvent in the generation and deactivation of 

singlet oxygen. A comparison of singlet oxygen counts by placing various band pass 

DMSO solution Rose Bengal Zinc Phthalocyanine Methylene Blue 

𝝉𝑻 (μs) 1.76±0.04 1.08±0.02 1.64±0.08 

𝝉𝜟(μs) 8.55±0.02 6.13±0.01 11.19±0.05 

Acetone solution Rose Bengal 

𝝉𝑻 (μs) 0.58±0.14 

𝝉𝜟(μs) 48.93±0.13 
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filters at and around 1270 nm wavelength was made once more for validation 

reasons. In Figure 4.7a is shown the acquired signal of 500 μg/ml (about 500 

micromolar concentration) Rose Bengal in deuterated water by changing only the 

band pass filter each time and 3D plotted and in Figure 4.7b a sum of the total 

counts recorded for each of the band pass filters is presented. 

 

 

 

 

Figure 4.7. a) 3D plot comparing 1O2 luminescence from 500 μg/ml of Rose 

Bengal in deuterated water with various BP optical filters and, b) a comparison 

plot of total counts integrated under the histograms versus BP optical filter 

centre wavelength. Acquisition time is 60 seconds and SPAD’s detection 

efficiency set to 10%. 
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 Similarly, a 100 μg/ml Rose Bengal in D2O solution was prepared to compare 

luminescence signal and lifetimes. The shape of the curve is shown in Figure 4.8 

and the lifetimes extracted are presented in Table 4.4. The most crucial 

comparison is between distilled water and deuterated water, pointing out the 

major effects of deuterated solvent in the generation of singlet oxygen. The signal 

intensity is much higher with the curve peak counting twice as many counts as in 

distilled water. The PS triplet state lifetime in heavy water is slightly shorter at 

2.19 μs compared to 2.32 μs in distilled water. The major difference is expected 

in the singlet oxygen lifetime which is highly affected observing a 10-fold increase 

at 35.19 μs.  

 

 

Figure 4.8. 180 second histogram with Rose Bengal in D2O at 100 μg/ml mass 

concentration. SPAD detector set to -90 ºC, 10% QE and 42 μs dead time. 

 

 

 

 

Table 4.4. Triplet state lifetimes and singlet oxygen lifetimes for Rose Bengal in 

deuterated water. 

D2O solution Rose Bengal 

𝝉𝑻 (μs) 2.19±0.03 

𝝉𝜟(μs) 35.19±0.06 
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 Lastly, a solution of Visudyne in methanol was prepared at a standard 

concentration of 50 mg per 100 ml (500 μg/ml / 347.8 μM). Due to much weaker 

1O2 generation, Visudyne in methanol solution was kept at its initial concentration 

of 500 μg/ml so that a clear curve can be shown and proper fitted for the 

extraction of the two lifetimes, as shown in Figure 4.9. The engineering part of 

the experiment and the acquisition time of 180 seconds, though, were maintained 

intact so that only the one parameter (PS concentration) was changed. So, SPAD 

detector was cooled to -90 ºC with 10 % of quantum efficiency and 42 μs dead 

time. 

 

 

Figure 4.9. 180 second histogram with Visudyne in methanol at 500 μg/ml mass 

concentration. SPAD detector set to -90 ºC, 10% QE and 42 μs dead time. 

 

 

 

Table 4.5. Triplet state lifetimes and singlet oxygen lifetimes for Visudyne in 

methanol. 

 

Despite the fact that Visudyne’s concentration is higher than the previous 

solutions presented above, the singlet oxygen lifetime of 10 μs is at close to the 

methanol Visudyne 

𝝉𝑻 (μs) 0.1±0.23 

𝝉𝜟(μs) 10±0.01 
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singlet oxygen lifetimes from methanol solutions with Rose Bengal, Eosin Y and 

Methylene Blue. By comparing to the previous methanol solutions, the PS triplet 

state lifetime of Visudyne is also at the nanoscale range but slightly shorter at 

100ns.   

Concluding the comparison between the solutions used throughout the 

project, it is worth summing the registered singlet oxygen photon counts in each 

histogram. In Table 4.6 the total counts for each solution indicate the most 

efficient photosensitizer solution regarding the singlet oxygen generation 

capability. Most counts are detected when exciting Rose Bengal in acetone, 

followed by Rose Bengal in deuterated water and ethanol. Regarding the solvent 

effect on singlet oxygen, solutions that efficiently generate singlet oxygen 

molecules with long-lived luminescence are the most efficient, such as acetone, 

D2O and ethanol which show long singlet oxygen lifetimes.  

 

Photosensitizer Solvent Total counts 

Rose Bengal 

Distilled water 

93.818 

Eosin Y 43.707 

Methylene Blue 27.340 

Rose Bengal 

Methanol 

394.538 

Eosin Y 135.786 

Methylene Blue 239.083 

Visudyne 92.307 

Rose Bengal 

Ethanol 

617.612 

Eosin Y 226.485 

Methylene Blue 420.715 

Rose Bengal 

DMSO 

136.840 

Zinc Phthalocyanine 91.852 

Methylene Blue 37.962 

Rose Bengal Acetone 1.112.940 

Rose Bengal Deuterated water 713.848 

Table 4.6. Total singlet oxygen photon counts detected per 180 second 

histograms by all photosensitizer solutions.  
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Amongst the solvents, distilled water appears to be the least efficient. Solvent 

effect may have the biggest impact, but photosensitizer quantum yield also plays 

a role in the overall efficiency. Rose Bengal has the highest quantum yield amongst 

the photosensitizers used and that is depicted in the count difference from the 

rest photosensitizers. 

The acquisitions presented so far are made with solutions of a specific mass 

concentration (100 μg/ml). This allowed the easy comparison between the 

samples at a concentration where singlet oxygen signal is quite strong. In real 

photodynamic therapy treatment scenarios, the actual photosensitizer 

concentration varies with the patient and the chosen type of photosensitizer. 

Typical dosages can vary from 0.075 mg/kg for meta-tetra(hydroxyphenyl)chlorin 

(mTHPC) up to 60 mg/kg for 5-aminolevulinic acid (ALA). The 100 μg/ml mass 

concentration is roughly translated to 126 mg/kg for organic solvents and 100 

mg/kg for distilled water. Despite the fact that these photosensitizers are 

different and not applicable in treatments, the concentration is much higher. For 

that reason and for deeper understanding of the singlet oxygen behavior over the 

PS concentration, a follow-up experiment tests the singlet oxygen signal for 

various mass concentrations of the existing solutions. The initial concentration 

starts at 1 mg/ml down to 0.45 μg/ml for ethanol, methanol and DMSO solvents, 

while for distilled and deuterated water the initial mass concentration starts at 

500 mg/ml down to 0.45 μg/ml. The mass concentration is reduced to half for 

each measurement, resulting in 12 or 11 acquisitions, respectively. This covers a 

broad concentration range from higher than typical concentration values down to 

a point that 1O2 signal is almost vanished. The results are grouped by the 

photosensitizer type. 

 Starting with Rose Bengal, histograms are generated by solutions with 

distilled water, deuterated water, ethanol, methanol and DMSO. Unfortunately, 

histograms from solutions with Rose Bengal dissolved in acetone could not be 

efficiently acquired as acetone is a solvent with high evaporation rate, something 

that would alter the targeted concentration since each acquisition requires at 

least 1-2 minutes and also the fact that most concentration values would cause 

significant pile-up effects, distorting the output data. In Figure 4.10 are shown 

histograms comparing singlet oxygen luminescence signal from Rose Bengal in 

distilled water and deuterated water in decreasing concentrations from 500 μg/ml 
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to 0.45 μg/ml. For Rose Bengal in distilled water where the signal is relatively 

weak and input count rate is well below 5% of sync rate, the SPAD detector was 

operating at -90ºC and 25% quantum efficiency and the acquisition was over 180 

seconds, while for the much stronger and long-lived luminescence from Rose 

Bengal in deuterated water the detector quantum efficiency was set to 10%, the 

supercontinuum laser output was decreased to 10 nm wavelength bandwidth 

(centred at 550 nm with output optical power of 122 μW), so that the input counts 

were not exceeding the upper limit of the timing electronics and acquisition time 

was 60 seconds. 

 

 

Figure 4.10. a) 180 second histogram comparing 1O2 luminescence from Rose 

Bengal in distilled water solutions with decreasing concentrations and, b) 60 

second histogram comparing 1O2 luminescence from Rose Bengal in deuterated 

water solutions with decreasing PS concentrations. 
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 Peak intensity alters as the concentration drops. The change in intensity, 

though, does not go along with the change in the concentration of the 

photosensitizer. From Figure 4.10 it seems that the highest mass concentration of 

500 μg/ml is not the most effective. Especially for Rose Bengal in D2O, the first 

concentration value appears to be inefficient with the following values producing 

more singlet oxygen signal with much longer lifetimes. This trend applies to both 

solutions with the most efficient mass concentration being the 125 μg/ml for Rose 

Bengal in distilled water and 31-15 μg/ml for the deuterated water solution. This 

can be easier noticed in Figure 4.11 where total counts are plotted as a function 

of PS mass concentration. The extracted lifetimes for all concentrations of each 

solution are presented in Table 4.7. Singlet oxygen lifetime from Rose Bengal in 

distilled water seems to not be affected by the change of photosensitizer 

concentration, while the PS triplet state lifetime shows a slight increase. 

However, large error values in low concentration solutions prevent us from 

drawing definite conclusion on the lifetime dependency of RB in water solutions. 

 

 

Figure 4.11. Total counts recorded versus PS mass concentration (μg/ml) for a) 

Rose Bengal in distilled water and, b) Rose Bengal in deuterated water.  
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On the other hand, due to its long singlet oxygen lifetime, Rose Bengal in 

deuterated water changes in concentration leads to greater changes in lifetimes. 

High PS concentrations appear to quench both lifetimes which start to increase as 

the concentration drops. Singlet oxygen lifetime shows a much bigger increase 

than PS triplet state lifetime as the former is about 10 times longer and is affected 

more. Highest recorded singlet oxygen lifetime is 70.3 μs at 15 μg/ml. After that 

point, decrease in mass concentration leads to shorter singlet oxygen lifetimes, 

while the PS triplet state lifetime seems to keep increasing, achieving more than 

a 2-fold increase compared to the highest mass concentration. 

 

PS Mass 
concentration 

Lifetime (μs) RB in H2O RB in D2O 

500μg/ml 
τΔ 3.77±0.01 23.3±0.09 

τΤ 1.72±0.02 1.88±0.08 

250 μg/ml 
τΔ 3.71±0.02 39.3±0.15 

τΤ 1.95±0.02 2.11±0.08 

125 μg/ml 
τΔ 3.74±0.02 46.8±0.2 

τΤ 2.13±0.02 2.31±0.08 

62.5 μg/ml 
τΔ 3.9±0.02 57.9±0.18 

τΤ 2.22±0.02 2.41±0.08 

31 μg/ml 
τΔ 3.88±0.02 60.5±0.28 

τΤ 2.32±0.02 2.44±0.08 

15 μg/ml 
τΔ 3.7±0.03 70.3±0.32 

τΤ 2.54±0.04 2.25±0.09 

7.5 μg/ml 
τΔ 3.79±0.04 67.3±0.3 

τΤ 2.52±0.04 2.37±0.09 

3.7 μg/ml 
τΔ 3.87±0.05 63.3±0.39 

τΤ 2.54±0.06 2.36±0.12 

1.8 μg/ml 
τΔ 3.2±276 70.5±0.59 

τΤ 3.2±274 2.86±0.19 

0.9 μg/ml 
τΔ 3.48±131 46.8±0.46 

τΤ 3.47±130 2.61±0.21 

0.45 μg/ml 
τΔ 3.93±155 20.3±0.51 

τΤ 3.93±154 4.29±0.43 

Table 4.7. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Rose Bengal 

in H2O and D2O at decreasing concentrations. 
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 Similar behaviour is observed in Rose Bengal solutions with methanol, 

ethanol and DMSO. The PS concentration starts at 1 mg/ml down to 0.45 μg/ml. 

Singlet oxygen luminescence from all solutions and different PS mass 

concentrations are compared in 1-minute histograms and are shown in Figure 4.12. 

 

 

Figure 4.12. 60 second histogram comparing 1O2 luminescence from Rose Bengal 

in a) methanol, b) ethanol and, c) DMSO with decreasing PS concentrations. 
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For Rose Bengal in ethanol and methanol solutions, SPAD’s detection efficiency 

was set to 10%, while for Rose Bengal in DMSO the detection efficiency was set to 

25% because of the lower singlet oxygen quantum yield. Laser source’s output 

wavelength bandwidth was kept at 10 nm. Rose Bengal in ethanol and methanol 

show a similar trend with highest peaks achieved by concentrations between      

250 μg/ml and 62.5 μg/ml, while Rose Bengal in DMSO despite the fact that the 

luminescence is weaker, the signal intensity and curve offsets indicating the 

convoluted lifetimes are similar to Rose Bengal in D2O with inefficient high PS 

concentrations, noticeable increases in lifetime and best concentration values 

being between 125 μg/ml to 15 μg/ml.  

 

PS Mass 
concentration 

Lifetime (μs) RB in ethanol RB in methanol RB in DMSO 

1 mg/ml 
τΔ 11.6±0.01 7.3±0.01 - 

τΤ 0.49±0.02 0.35±0.02 - 

500μg/ml 
τΔ 13.5±0.01 9.05±0.01 18±0.69 

τΤ 0.52±0.02 0.36±0.03 3.19±0.25 

250 μg/ml 
τΔ 14.2±0.01 9.79±0.01 10.4±0.15 

τΤ 0.51±0.03 0.36±0.03 3.58±0.2 

125 μg/ml 
τΔ 14.2±0.01 9.98±0.01 8.65±0.06 

τΤ 0.52±0.03  0.39±0.03 2.66±0.07 

62.5 μg/ml 
τΔ 14.6±0.01 9.91±0.01 7.82±0.03 

τΤ 0.48±0.02 0.36±0.03 2.43±0.04 

31 μg/ml 
τΔ 14.3±0.01 9.87±0.01 7.36±0.04 

τΤ 0.54±0.03 0.42±0.03 2.73±0.05 

15 μg/ml 
τΔ 14.7±0.02 10.2±0.01 7.08±0.03 

τΤ 0.51±0.04 0.4±0.03 2.62±0.04 

7.5 μg/ml 
τΔ 14.7±0.02 10±0.01 5.87±0.05 

τΤ 0.51±0.05 0.39±0.03 3.07±0.06 

3.7 μg/ml 
τΔ 13.6±0.03 10.3±0.01 6.06±0.05 

τΤ 0.54±0.06 0.34±0.06 2.77±0.07 

1.8 μg/ml 
τΔ 13.6±0.04 9.6±0.02 5.25±0.1 

τΤ 0.67±0.1 0.51±0.07 3.11±0.13 

0.9 μg/ml 
τΔ 1.2±0.05 10.1±0.03 5.84±0.1 

τΤ 0.47±0.2 0.39±0.14 2.82±0.14 

0.45 μg/ml 
τΔ 12.9±0.07 10.1±0.05 - 

τΤ 0.62±0.8 0.55±0.39 - 

Table 4.8. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Rose Bengal 

in ethanol, methanol and DMSO at decreasing concentrations. 
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Respectively, the total counts versus the PS mass concentration plots indicating 

the most efficient concentration for singlet oxygen generation are shown in Figure 

4.13 and the extracted lifetimes in Table 4.8.  

 

 

Figure 4.13. Total counts recorded versus PS mass concentration for Rose Bengal 

in a) ethanol, b) methanol and, c) DMSO.  

 

 Indeed, the most efficient concentrations are at 62.5 μg/ml for Rose Bengal 

in ethanol and methanol and, 125 μg/ml for Rose Bengal in DMSO. Above and below 

these optimum values overall signal decreases to a lowest point where 1O2 

luminescence is almost vanished. Regarding the singlet oxygen lifetime, in both 

Rose Bengal in ethanol and methanol solutions, the lifetime increases slightly as 

the concentration decreases and towards the lowest concentration values it seems 

to stay the same or suffer a small decrease. The PS triplet state lifetimes seem to 

fluctuate as this lifetime is quite short and fitting errors can be big, but it looks 

like it is increasing with lower concentrations. The increase is the order of 130 – 

200 ns from the highest concentration value to the lowest. In the case of Rose 
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Bengal in DMSO solution, starting from the highest concentration the singlet 

oxygen lifetime decreases as the concentration drops, while it seems to stabilize 

as we move to the lowest concentrations. The PS triplet state lifetime seems to 

not be affected by the change in concentration and fluctuates between ~2.5 – 3.5 

μs. Lifetimes for 1 mg/ml and 0.45 μg/ml of Rose Bengal in DMSO could not be 

extracted as the former lacks a clear intensity peak in order to best fit its curve 

(singlet oxygen lifetime though appears to be even longer than the smaller 

concentrations) and the latter’s lifetimes are extracted with huge errors and 

cannot be trusted.  

 Next, 1O2 luminescence from various concentrations of Eosin Y in distilled 

water, ethanol and methanol are presented. Eosin Y in distilled water is relatively 

weak in producing singlet oxygen compared to Rose Bengal and also, Eosin Y 

saturates faster in distilled water, so a 125 μg/ml mass concentration is selected 

as the initial concentration down to 1.8 μg/ml. Eosin Y in ethanol and methanol is 

significantly more efficient allowing the singlet oxygen luminescence acquisition 

in a wider range of concentrations starting at 1 mg/ml down to 0.45 μg/ml, 

although the signal from the lower concentrations is very weak. SPAD detector 

was set to -90ºC, 42 ps dead time and 25% of quantum efficiency for Eosin Y in 

distilled water solutions and 10% for Eosin Y in ethanol and methanol. Laser’s 

output wavelength bandwidth was set to 10 nm. In Figure 4.14 are shown 60 

second histograms of the Eosin Y solutions in the various concentrations. Unlike 

the Rose Bengal solutions, Eosin Y’s singlet oxygen signal appears to be stronger 

with increased concentration. Therefore, at higher concentrations the peak is 

higher, and the tail of the curve shaped by the lifetimes does not seem to be 

affected much by the decrease of the concentration. However, the relative 

transmissivity of the two solutions is different and this observation may be due to 

different absorption peaks for each photosensitizer (thus different laser energy 

deposited within the collection volumes), as well as slightly different laser powers 

for each excitation wavelength. The total counts detected from each solution and 

concentration are presented in Figure 4.15. For Eosin Y in distilled water, the 

decrease in the photosensitizer concentration leads to a linear decrease in the 

overall singlet oxygen counts. For the other two Eosin Y solutions, this decrease 

in the total counts is nonlinear and appears to be reaching a plateau at 
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concentrations greater than 1 mg/ml and smaller than 0.9 μg/ml where 

luminescence signal gradually disappears.  

 

 

Figure 4.14. 60 second histograms comparing 1O2 luminescence from Eosin Y in a) 

distilled water, b) ethanol and, c) methanol with decreasing PS concentrations. 
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Figure 4.15. Total counts recorded versus PS mass concentration for Eosin Y in     

a) distilled water, b) ethanol and, c) methanol. 

 

 The lifetimes of the Eosin Y solutions as the concentration decreases are 

not greatly affected as seen in Table 4.9. For Eosin Y in ethanol and methanol, 

singlet oxygen lifetime shows a small increase, peaks at around 125 μg/ml and 

then decreases again. For Eosin Y in distilled water, singlet oxygen lifetime 

fluctuates between 3 μs and 4.3 μs. The PS triplet state lifetime for all solutions 

appears to be affected much by the change in concentration. A trend similar to 

singlet oxygen lifetime appears vaguely for Eosin Y in ethanol and methanol PS 

triplet state lifetime, with small changes ranging from 0.27 μs to 0.35 μs for Eosin 

Y in ethanol and from 0.22 μs to 0.28 μs for Eosin Y in methanol. In the case of 

Eosin Y in distilled water, the photosensitizer triplet state lifetime varies from 

1.76 μs to 3.09 μs without distinguishing any concentration related trend.  
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PS Mass 
concentration 

Lifetime (μs) EY in ethanol EY in methanol EY in H2O 

1 mg/ml 
τΔ 13.6±0.01 9.19±0.01 - 

τΤ 0.32±0.03 0.23±0.04 - 

500μg/ml 
τΔ 14.2±0.01 9.37±0.01 - 

τΤ 0.35±0.04 0.27±0.04 - 

250 μg/ml 
τΔ 14.3±0.01 9.52±0.01 - 

τΤ 0.36±0.04 0.24±0.04 - 

125 μg/ml 
τΔ 14.3±0.01 9.8±0.01 4.27±0.03 

τΤ 0.35±0.05 0.28±0.05 1.76±0.06 

62.5 μg/ml 
τΔ 14.3±0.01 9.7±0.01 3.77±0.06 

τΤ 0.31±0.06 0.26±0.05 2.07±0.08 

31 μg/ml 
τΔ 13.7±0.02 9.58±0.01 4.08±0.05 

τΤ 0.31±0.07 0.24±0.06 1.9±0.07 

15 μg/ml 
τΔ 14.1±0.02 9.3±0.01 3.53±0.15 

τΤ 0.29±0.1 0.31±0.1 2.56±0.18 

7.5 μg/ml 
τΔ 13.1±0.02 9.18±0.01 4.34±0.06 

τΤ 0.32±0.23 0.27±0.18 1.81±0.09 

3.7 μg/ml 
τΔ 13±0.03 9.17±0.01 3.1±0.02 

τΤ 0.27±1 0.22±0.21 3.09±0.02 

1.8 μg/ml 
τΔ - 8.71±0.02 4.3±0.44 

τΤ - 0.24±0.94 2.98±0.65 

Table 4.9. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Eosin Y in 

ethanol, methanol, and distilled water at decreasing concentrations. 

 

 Histograms of singlet oxygen luminescence with Methylene Blue show a very 

strong peak with short lifetime at the start of the histogram, as mentioned earlier. 

For this reason, for all Methylene Blue solutions the SPAD quantum efficiency was 

set to the lowest value 10% and the laser’s wavelength bandwidth to 10 nm, so 

that the input counts are kept within the pile-up threshold. Methylene blue 

solutions used were with distilled water, ethanol and methanol at concentrations 

starting from 1 mg/ml down to 0.45 μg/ml, as shown in Figure 4.16. All histograms 

were acquired over 60 seconds. Compared to previous solutions with Rose Bengal 

and Eosin Y, the luminescence signal from the Methylene Blue solutions is 

considerably weaker, especially for the distilled water solution. However, 

lifetimes and total counts vs concentration plots can be extracted from the 

histograms to assist in  
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Figure 4.16. 60 second histograms comparing 1O2 luminescence from Methylene 

Blue in a) distilled water, b) ethanol and, c) methanol with decreasing PS 

concentrations. 
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the study of these solutions. The lifetimes are shown in Table 4.10 and the total 

counts as a function of mass concentration in Figure 4.17.  Total singlet oxygen 

luminescence counts recorded by Methylene Blue in distilled water vary with the 

PS concentration. As the photosensitizer concentration decreases the 

luminescence signal increases reaching an optimum value at 62.5 μg/ml where the 

total counts are almost double in number. After that point the signal starts to drop 

again. The lifetime of the singlet oxygen luminescence extracted from all 

concentration solutions appears to fluctuate around 4 μs with the three lowest 

concentrations showing an increasing trend of this lifetime. The PS triplet state 

lifetime seems to not be affected much as all solutions have a τT in the range of 1 

– 1.8 μs. 

 

 

Figure 4.17. Total counts recorded versus PS mass concentration for Methylene 

Blue in a) distilled water, b) ethanol and, c) methanol. 
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 The total luminescence counts from Methylene Blue in ethanol and 

methanol show a smaller increase in counts compared to the distilled water 

solution until they also reach the 62.5 μg/ml mass concentration. Then they 

appear to decrease again linearly. Between the two solution with the organic 

solvents, Methylene Blue in methanol is roughly 40% less efficient than the solution 

with ethanol.  

  

PS Mass 
concentration 

Lifetime (μs) MB in ethanol MB in methanol MB in DMSO 

1 mg/ml 
τΔ 12.4±0.01 8.55±0.01 4.29±0.09 

τΤ 0.38±0.06 0.30±0.08 1.56±0.2 

500μg/ml 
τΔ 13.5±0.02 9.03±0.01 3.92±0.07 

τΤ 0.37±0.06 0.27±0.07 1.59±0.12 

250 μg/ml 
τΔ 14.2±0.16 9.59±0.01 3.9±0.07 

τΤ 0.35±0.06 0.39±0.06 1.78±0.12 

125 μg/ml 
τΔ 14.4±0.02 9.74±0.01 3.93±0.06 

τΤ 0.35±0.06 0.38±0.06 1.64±0.09 

62.5 μg/ml 
τΔ 14.7±0.02 10.3±0.01 3.58±0.07 

τΤ 0.42±0.06 0.31±0.07 1.87±0.1 

31 μg/ml 
τΔ 14.7±0.02 10.4±0.01 3.74±0.06 

τΤ 0.35±0.06 0.28±0.07 1.72±0.1 

15 μg/ml 
τΔ 15.1±0.02 10±0.01 3.52±0.07 

τΤ 0.42±0.07 0.31±0.06 1.72±0.11 

7.5 μg/ml 
τΔ 15.2±0.02 10.4±0.01 4.26±0.04 

τΤ 0.38±0.07 0.25±0.07 1.01±0.1 

3.7 μg/ml 
τΔ 14.2±0.02 10.4±0.02 3.79±0.09 

τΤ 0.35±0.09 0.29±0.08 1.66±0.16 

1.8 μg/ml 
τΔ 14.1±0.03 9.85±0.02 4.65±0.07 

τΤ 0.28±0.14 0.27±0.11 1.16±0.18 

0.9 μg/ml 
τΔ 13.2±0.03 9.42±0.02 4.47±0.12 

τΤ 0.40±0.23 0.26±0.24 1.54±0.36 

0.45 μg/ml 
τΔ 12.1±0.05 - 5.73±0.21 

τΤ 0.47±0.75 - 1.88±2.25 

Table 4.10. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Methylene 

Blue in ethanol, methanol, and distilled water at decreasing concentrations. 

 

The singlet oxygen lifetimes of these solutions follow the same trend; 

increases up to a peak point (at 7.5 μg/ml for MB in ethanol and 31 – 7.5 μg/ml 



4.3 Singlet oxygen luminescence detection  

 

112 
 

for MB in methanol) and then starts decreasing again. Singlet oxygen lifetimes are 

very similar to the ones produced by the previous solutions with Rose Bengal and 

Eosin Y, around 14 μs for ethanol solutions and 10 μs for the methanol solutions. 

PS triplet state lifetimes from Methylene Blue are also in the nanoscale range.  For 

solutions in ethanol τT is around 400 ns and around 300 ns for the methanol ones. 

 Next, Zinc Phthalocyanine in DMSO was tested in decreasing concentration 

values. Starting mass concentration was at 1 mg/ml down to 1.8 μg/ml where 

singlet oxygen signal is almost completely lost. SPAD detector was set to 10 % of 

quantum efficiency with 10 nm laser output wavelength bandwidth. 60 second 

histograms were acquired for all mass concentrations and are presented in Figure 

4.18a, while the corresponding plot with the summed counts over the ZnPc mass 

concentrations is shown in Figure 4.18b.  

 

 

 

Figure 4.18. a) 60 second histograms comparing 1O2 luminescence from Zinc 

Phthalocyanine in DMSO and, b) Total counts recorded versus PS mass 

concentration for Zinc Phthalocyanine in DMSO. 
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 By looking at the shape of the curves, 1 mg/ml mass concentration solution 

does not seem to generate much singlet oxygen, while subsequent values at        

500 μg/ml and 250 μg/ml show higher peaks and then start dropping steadily as 

the concentration is halved. However, the offset of these curves indicates longer 

lifetime for higher concentrations with the first one appearing to overcome all the 

following concentrations. Affected by both intensity and lifetime, the most 

efficient concentrations for ZnPC in DMSO are the 1 mg/ml and 500 μg/ml as shown 

in Figure 4.18b. Then as the concentration decreases the total counts recorded 

are also decreased nonlinearly. At low concentrations, the total counts seem to 

be slowly approaching zero. 

 

PS Mass concentration Lifetime (μs) ZnPc in DMSO 

1 mg/ml 
τΔ 11.4±0.05 

τΤ 1.87±0.09 

500μg/ml 
τΔ 7.94±0.02 

τΤ 1.13±0.04 

250 μg/ml 
τΔ 6.55±0.02 

τΤ 1.17±0.04 

125 μg/ml 
τΔ 6.24±0.02 

τΤ 1.22±0.04 

62.5 μg/ml 
τΔ 5.74±0.02 

τΤ 1.05±0.04 

31 μg/ml 
τΔ 5.31±0.02 

τΤ 1.09±0.06 

15 μg/ml 
τΔ 5.5±0.03 

τΤ 1.07±0.1 

7.5 μg/ml 
τΔ 5.44±0.03 

τΤ 0.95±0.2 

3.7 μg/ml 
τΔ - 

τΤ - 

1.8 μg/ml 
τΔ - 

τΤ - 

Table 4.11. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Zinc 

Phthalocyanine in DMSO at decreasing concentrations. 
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 Both singlet oxygen and PS triplet state lifetime appear to drop as the 

concentration decreases, as shown in Table 4.11. ZnPc’s mass concentration at     

1 mg/ml show the highest singlet oxygen lifetime being 11.4 μs long. The 

corresponding PS triplet state lifetime starts at 1.87 μs and decreases as well 

reaching to a sub-microsecond value of 950 ns. The last two mass concentrations 

by producing quite weak 1O2 luminescence signal, the acquired curve shape could 

not be fitted so lifetimes where unable to extract or would give a more than 

acceptable error value.  

Lastly, Visudyne in methanol solution was tested in various concentrations. 

The initial 500 μg/ml mass concentration was diluted down to half until it reaches 

0.1 μg/ml. As mentioned earlier, singlet oxygen luminescence from this solution 

is very weak, so the SPAD detector was set to 25 % detection efficiency and the 

laser’s output wavelength bandwidth to 100 nm to increase the optical power 

reaching to the solution. As shown in Figure 4.19a, the highest concentrations of 

500 and 250 μg/ml seem quite efficient generating enough singlet oxygen and 

recorded curves have sharp peaks. The next two solutions at 125 and 62.5 μg/ml 

mass concentration stand out from the rest solutions, but the shape of the curves 

have a hint of onset and offset, tending to single exponential decay. This indicates 

photosensitizer’s inability to efficiently generate singlet oxygen at these 

concentrations. Below these concentrations, the signal vanishes, and the decay is 

a single exponential without any certainty that the detected counts come from 

singlet oxygen luminescence photons. This can also be observed in Figure 4.19b 

where the total counts after 15 and 7.5 μg/ml reach a plateau and are stabilized 

at a value where solution with plain methanol also has. Therefore, the counts 

recorded for these solutions possibly come from methanol luminescence and not 

from singlet oxygen photons generated through the Visudyne photosensitizer. 

Also, due to weak or no luminescence signal the singlet oxygen and photosensitizer 

triplet state lifetimes cannot be extracted. The lifetimes for high concentration 

were given in Table 4.5. However, the fact that singlet oxygen luminescence signal 

from a clinically approved photosensitizer such as Visudyne can be efficiently 

monitored even at the high concentrations is very promising for future studies and 

eventual clinical use. 
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Figure 4.19. a) 60 second histograms comparing 1O2 luminescence from Visudyne 

in methanol at decreasing concentration and, b) Total counts recorded versus PS 

mass concentration for Visudyne in methanol. 
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4.3.2 1590 nm measurements 

 

 Singlet oxygen emission at 1590 nm wavelength is also monitored, and time 

resolved experiments have been carried out for the first time. This emission is due 

to the transition 1𝛥𝑔 → 3𝛴𝑔
−(v = 1) from the first excited singlet state to a 

vibrational state above the ground state. Compared to the 1270 nm emission, this 

1590 nm decay is expected to be at least an order of magnitude weaker, without 

significant changes in the singlet oxygen and photosensitizer triplet state 

lifetimes. However, by being in a different spectral window in the near-infrared, 

various emissions from the solvents themselves are affecting the detected signal 

and may alter the extracted lifetimes. Regarding the optical setup, the excitation 

path remains intact and only the long-pass and band-pass optical filtering in the 

collection path change to adapt to the new wavelength. A 1500 nm cut-on long-

pass optical filter is mounted to exclude all photons below 1500 nm and especially 

the much stronger 1270 nm singlet oxygen luminescence. The band-pass optical 

filter is centred at 1590 nm (FWHM Bandwidth 12 nm ± 2.4 nm), while validation 

experiments including band-pass optical filters spanning the 1590 nm wavelength 

are centred at 1560 nm, 1620 nm, 1520 nm and 1650 nm wavelengths. Due to the 

much weaker emission probability and intensity, all acquisitions were 10 minutes 

long and SPAD detector was set to maximum quantum efficiency at 25%. Because 

of the longer acquisition time and high quantum efficiency leading to higher dark 

count levels, histograms presented are dark count corrected, showing only the 

detected photon counts from the targeted solution. 

 Starting with Rose Bengal as the photosensitizer dissolved in distilled water, 

I observed that the recorded histogram curve is lacking the typical onset and offset 

of the singlet oxygen biexponential decay. Changing the solution to deuterated 

water whose optical properties are somehow closer to distilled water, the same 

decay curve was observed but with higher intensity and clearly longer lifetime, as 

shown in Figure 4.20. Carrying out the same acquisition with Rose Bengal in an 

organic solvent this time, like ethanol, the expected biexponential singlet oxygen 

decay was observed. This leads to the assumption that distilled and deuterated 

water’s optical properties in the specific wavelength are affecting the output 

optical signal. Water’s absorptance in the ~1500-1600 nm wavelength range is 
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much higher than in the 1200-1300 nm wavelength range. It is possible that strong 

absorption in water masks the singlet oxygen luminescence signature over the first 

microseconds.  

 

 

Figure 4.20. 10-minute histogram of 1590 nm wavelength luminescence signal 

from Rose Bengal in distilled and deuterated water.  

 

Like with the 1270 nm emission, 1590 nm wavelength validation experiments were 

carried out by using different band-pass optical filters to validate that the 

detected photon are actually coming from the singlet oxygen 1590 nm emission. 

Two solutions where chosen for this type of experiment, Rose Bengal in ethanol 

which seems to generate enough signal and deuterated water whose luminescence 

decay signal may not look like the normal singlet oxygen biexponential decay curve 

but the detected signal is stronger and longer than that of Rose Bengal in distilled 

water and there is some singlet oxygen emission in that long decay. So, as can be 

seen in Figure 4.21, the counts recorded from Rose Bengal in ethanol with the 

1590 nm bandpass optical filter clearly stand out from the rest of the bandpass 

filters by a factor of 4 in total counts. The corresponding comparison for the Rose 

Bengal in deuterated water also shows that most counts are gathered for the 1590 

nm bandpass filter, with the 1560 nm wavelength evident as a secondary signal. 
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Photon counts at 1560 nm and 1520 nm wavelengths are more than expected, but 

as mentioned the luminescence from the deuterated water itself is possible to 

give that many counts, with the 1590 nm wavelength adding the long-lived 

luminescence from singlet oxygen’s decay and standing out from the rest. 

Moreover, having in mind that this electronic to vibrational state decay is roughly 

60 times weaker than the 1270 nm emission and dark count level from ambient 

light or electronic noise is closer to the weak singlet oxygen detected photon count 

level. Nevertheless, recorded counts at 1590 nm wavelength are standing out so 

it is reasonable to conclude that most of these photon counts arise from the 1𝛥𝑔 

→ 3𝛴𝑔
−(v = 1) transition.  

 

 

Figure 4.21. Total counts versus BP optical filter centre wavelength comparison 

plot from a) 500 μg/ml Rose Bengal in ethanol and, b) 500 μg/ml Rose Bengal in 

deuterated water.  
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As luminescence signal at 1590 nm wavelength is weak, solutions that are not very 

efficient at the 1270 nm wavelength could not generate enough singlet oxygen 

photons to be detected in the 1590 nm wavelength. This includes all solutions with 

distilled water as the solvent and also due to the lack of proper decay curve, as 

explained before, their data could not be properly analyzed. Therefore, time-

resolved measurements were carried out for Rose Bengal, Eosin Y and Methylene 

Blue dissolved in ethanol and methanol. Also Rose Bengal in acetone was tested 

as the most efficient solution considering its ability to generate singlet oxygen 

molecules and long lifetimes at the 1270 nm wavelength. It should be noted that 

because of the high evaporation rate of acetone, the different concentrations of 

the Rose Bengal in acetone solutions were made separately and not diluting down 

the initial solution of high concentration. Starting mass concentration for all  

solutions tested is the same as before, diluting down to 15 μg/ml or 7.5 μg/ml. 

Low mass concentrations are not as low as the ones in the 1270 nm measurements, 

mostly because of the inability of detecting enough luminescence signal to stand 

above the dark count rate or generate a clear biexponential curve to be further 

studied.   

 Starting with Rose Bengal, three solutions were prepared mixed with 

ethanol, methanol and acetone with initial mass concentration at 1 mg/ml. Rose 

Bengal in ethanol and methanol were diluted down to 15 μg/ml, while Rose Bengal 

in acetone down to 7.5 μg/ml. Figure 4.22 shows plots of singlet oxygen 

luminescence produced by these three solutions at decreasing concentrations and 

plots correlating the total counts of each histogram with each concentration 

value. All histograms were acquired over 600 seconds. Solutions of Rose Bengal in 

ethanol and methanol in high concentrations are the most efficient. Higher than 

500 μg/ml mass concentration, the total counts tend to reach a plateau, while as 

it gets halved the total counts drop almost linearly. For Rose Bengal in acetone, 

the singlet oxygen luminescence signal is much stronger with long lifetime as 

expected from the 1270 nm wavelength results. Unlike the other two solutions, 

though, total counts increase with the decrease of the mass concentration and 

maximizes at 125 μg/ml before it starts decreasing again. Comparing the best 

concentration for each solution, the Rose Bengal in ethanol produces two times 

the total counts of Rose Bengal in methanol, while the one in acetone is about 2.5 
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times the total counts of the Rose Bengal in ethanol, exhibiting similar yield to 

the 1270 nm measurements.   

 

 

Figure 4.22. 600 second histograms comparing 1590 nm 1O2 luminescence at 

decreasing concentration for Rose Bengal in a) ethanol, c) methanol, e) acetone 

and Total counts recorded versus PS mass concentration for Rose Bengal in b) 

ethanol, d) methanol and f) acetone.  
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 The extracted lifetimes from the curves above are presented in Table 4.12. 

Singlet oxygen and PS triplet state lifetime values are similar to the 1270 nm 

corresponding lifetimes as expected for each solvent. In all three solutions, the 

singlet oxygen lifetime increases as the concentration drops, reaching a maximum 

value at 62.5 – 31 μg/ml and then tends to decrease again. The 1O2 lifetime from 

Rose Bengal in methanol peaks at 10.9 μs, the Rose Bengal in ethanol as expected 

longer at 14.8 μs and the Rose Bengal in acetone exhibits a prolonged lifetime 

reaching 53.3 μs. The photosensitizer triplet state lifetime, however, appears to 

increase with lower concentrations. For all cases, it starts in the nanoscale range 

and keeps increasing, even achieving lifetimes in microseconds.   

 

PS Mass 
concentration 

Lifetime (μs) RB in ethanol RB in methanol RB in acetone 

1 mg/ml 
τΔ 10.1±0.02 6.86±0.02 15.8±0.02 

τΤ 0.54±0.07 0.44±0.11 0.1±1.7 

500μg/ml 
τΔ 11.9±0.02 7.94±0.03 23.9±0.04 

τΤ 0.58±0.07 0.51±0.13 0.44±0.23 

250 μg/ml 
τΔ 13.9±0.03 9.41±0.03 30.4±0.55 

τΤ 0.74±0.09 0.57±0.18 0.56±0.19 

125 μg/ml 
τΔ 14.2±0.03 10.9±0.05 37±0.08 

τΤ 0.74±0.1 0.66±0.25 0.74±0.22 

62.5 μg/ml 
τΔ 14.8±0.05 10.9±0.07 43±0.07 

τΤ 0.86±0.18 0.79±0.52 0.79±0.27 

31 μg/ml 
τΔ 14.7±0.09 10±0.16 53.3±0.19 

τΤ 1.59±0.33 1.39±1.24 0.96±0.3 

15 μg/ml 
τΔ 14.1±0.19 - 48.9±0.21 

τΤ 2.5±1.23 - 0.87±0.38 

Table 4.12. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Rose Bengal 

in ethanol, methanol, and acetone at decreasing concentrations. 

 

The singlet oxygen luminescence from Methylene Blue and Eosin Y in 

ethanol and methanol at decreasing concentration is shown in Figure 4.23. By 

looking at the luminescence peaks at histograms from Methylene Blue in ethanol 

and methanol, it is clear that the signal is stronger than that of Rose Bengal 

solutions. Eosin Y solutions appear to be very inefficient and even acquisitions 
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Figure 4.23. 600 second histograms comparing 1590 nm 1O2 luminescence at 

decreasing concentration for Methylene Blue in a) ethanol, c) methanol and 

Eosin Y in e) ethanol, g) methanol (left hand side figures). The total counts 

recorded versus PS mass concentration for Methylene Blue in b) ethanol, d) 

methanol and Eosin Y in f) ethanol, h) methanol (right hand side figures). 
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over 10 minutes are not enough to produce a distinguishable curve. Comparing the 

total count versus photosensitizer concentration plots, total counts acquired by 

Methylene Blue solutions gradually decrease as the concentration decreases, while 

for Eosin Y total counts also decrease but seem to be reaching a plateau towards 

the lower mass concentrations at 15 - 7.5 μg/ml. The extracted lifetimes, shown 

in Table 4.13, show singlet oxygen values proportional to the solvent used for each 

solution, following the same trends and levels with Rose Bengal ethanol and 

methanol solutions. Nevertheless, the photosensitizer triplet state lifetimes do 

not increase with decreasing concentration like Rose Bengal solutions, they appear 

to slightly fluctuate between 400 – 560 ns for Methylene Blue in ethanol and 460 – 

660 ns for Methylene Blue in methanol. Due to weak luminescence, though, 

lifetimes from low concentration solutions have big error values. Accordingly, 

solutions with Eosin Y in ethanol have big error values for PS triplet state lifetimes, 

while lifetimes from Eosin Y in methanol could not be extracted.  

 

PS Mass 
concentration 

Lifetime (μs) 
MB in 

ethanol 
MB in 

methanol 
EY in ethanol 

1 mg/ml 
τΔ 9.75±0.02 8.18±0.03 11.3±0.04 

τΤ 0.56±0.34 0.66±0.8 0.56±4.29 

500μg/ml 
τΔ 10.9±0.03 8.43±0.03 12±0.06 

τΤ 0.43±0.36 0.58±0.49 0.98±0.89 

250 μg/ml 
τΔ 11±0.03 9.13±0.03 12.6±0.11 

τΤ 0.43±0.41 0.54±0.4 1.22±1.59 

125 μg/ml 
τΔ 11.9±0.03 8.96±0.03 13.1±0.03 

τΤ 0.55±0.44 0.51±0.41 1.26±2.34 

62.5 μg/ml 
τΔ 12.1±0.03 8.93±0.03 10.6±0.2 

τΤ 0.4±0.66 0.55±0.46 1.13±6.13 

31 μg/ml 
τΔ 13±0.04 9.77±0.04 1.12±0.39 

τΤ 0.41±18.24 0.54±0.58 1.93±1.58 

15 μg/ml 
τΔ 13±0.04 9.51±0.05 - 

τΤ 0.36±2.35 0.46±0.96 - 

7.5 μg/ml 
τΔ 12±0.05 10±0.07 - 

τΤ 0.1±2.22 0.56±1.98 - 

Table 4.13. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from Methylene 

Blue in ethanol and methanol and, Eosin Y in ethanol at decreasing 

concentrations. 



4.3 Singlet oxygen luminescence detection  

 

124 
 

4.3.3 1O2 luminescence in the presence of a quencher 

 

 The behaviour of singlet oxygen in the presence of a carotenoid species, 

and β-carotene in particular, was studied. Β-carotene is an organic carotenoid 

pigment found abundant in plants, fruits, even in human serum and tissue, and is 

the reason why photosynthetic organisms that are photosensitized by chlorophyll 

are protected from the lethal effects of the sunlight and oxygen combination. β-

carotene is an efficient triplet sensitizer quencher and most importantly a singlet 

oxygen quencher [247]. However, β-carotene quenching of the triplet 

photosensitizer is not responsible for this inhibitory effect in the photochemical 

reaction of singlet oxygen. Singlet oxygen interacts with β-carotene and undergoes 

physical quenching through direct energy transfer between the two molecules. 

Energy from the excited singlet molecular oxygen is transferred to β-carotene 

molecules deactivating oxygen into its ground state and producing triplet excited 

β-carotene [245 - 246].  Chemical quenching of singlet oxygen by carotenoids is 

also possible but the contribution to the total quenching rate is minor [247].  

 So, to test the anti-oxidant effects of β-carotene on photosensitized singlet 

oxygen, various dosages of β-carotene powder (536.87 g/mol molecular weight) 

were introduced to existing photosensitizer solution. Because of β-carotene 

insolubility in most common solvents, the solution chosen was 30 μg/ml Rose 

Bengal in acetone. Rose Bengal in acetone as shown earlier is one of the most 

efficient solutions for generating singlet oxygen molecules with long 1O2 lifetime. 

The amount of β-carotene was increased in each measurement starting with 5.7% 

of the total concentration up to 57.1%. The histograms were acquired over 60 

seconds and the SPAD’s detection efficiency was set to minimum (10%) due to the 

high detection rate. In Figure 4.24, the singlet oxygen luminescence from Rose 

Bengal in acetone with no added β-carotene is compared to luminescence from 

solutions with β-carotene in increasing concentration. Even with a small amount 

of β-carotene the luminescence intensity is greatly decreased, and the singlet 

oxygen lifetime is obviously much shorter. As the β-carotene concentration 

increases the luminescence drops and at 57.1% appears that singlet oxygen is 

completely quenched. The extracted lifetimes for each curve are presented in 

table 4.14.  
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Figure 4.24. 60 second histogram comparing 1270 nm 1O2 luminescence from Rose 

Bengal in acetone solutions with added β-carotene. SPAD detector’s detection 

efficiency was set to 10%. 

 

β-carotene in solution Lifetime (μs) RB in acetone 

0% 
τΔ 54.8±0.12 

τΤ 0.65±0.1 

5.7% 
τΔ 3.66±0.01 

τΤ 0.35±0.03 

14.3% 
τΔ 2.27±0.01 

τΤ 0.36±0.03 

28.6% 
τΔ 0.53±0.18 

τΤ 0.38±0.24 

42.9% 
τΔ 0.43±0.6 

τΤ 0.43±0.6 

57.1% 
τΔ - 

τΤ - 

Table 4.14. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from 30 μg/ml 

Rose Bengal in acetone with increasing concentration of β-carotene. 
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Singlet oxygen produced in Rose Bengal in acetone is long lived at 54.8 μs. 

With the addition of the β-carotene quencher, the lifetime drops by an order of 

magnitude with small concentrations and as the quencher concentration 

increases, the singlet oxygen lifetime decreases by an order of magnitude more, 

dropping at a few hundreds of nanoseconds. The physical quenching of β-carotene 

is very efficient even for small concentrations in the photosensitizer solution with 

the energy transfer from singlet oxygen to the quencher molecules speeding up 

the deactivation process. Rose Bengal’s triplet state lifetime also appears to be 

quenched by β-carotene with the lifetime dropping by 300 ns after the first β-

carotene addition and then stabilizing at this lifetime range of 350-430 ns.  

 

4.4 Conclusions 

 

 Singlet oxygen luminescence was efficiently detected through 

photosensitizer excitation at two different singlet oxygen emission wavelengths 

centred at 1270 nm and 1590 nm. 1270 nm emission is much more probable with 

higher intensity than the 1590 nm emission which describes the deactivation of 

singlet oxygen into a vibrational state. In both cases, multiple photosensitizers 

were tested and their efficiencies in the overall singlet oxygen signal detected 

were compared. Also, the singlet oxygen lifetime (τΔ) and the photosensitizer 

triplet state lifetime (τT) were hugely affected by the environment the 

photodynamic process is taking place in, which in this case is the solution 

consisting of the photosensitizer and the solvent used each time.  Organic solvents 

generate more singlet oxygen molecules than distilled water with singlet oxygen 

lifetime significantly longer, with the best one tested being the acetone. 

Deuterated water was also tested, with similar performance to acetone and much 

longer singlet oxygen lifetime compared to standard water. Subsequently, singlet 

oxygen luminescence was acquired by solutions with photosensitizers in different 

concentrations. Singlet oxygen lifetime in most cases is longer with lower PS 

concentrations, while the signal intensity is usually stronger with higher 

photosensitizer concentrations. The convolution of these two parameters lead to 

the optimum concentration value in terms of total singlet oxygen photon 

detection. Lastly, singlet oxygen was generated, and its luminescence was 
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acquired in the presence of a known singlet oxygen quencher, β-carotene. Small 

concentrations of β-carotene were added in a solution of Rose Bengal dissolved in 

acetone and the signal intensity was immediately reduced while the singlet oxygen 

lifetime was dramatically shortened due the physical quenching applied by the 

presence of the β-carotene molecules. 
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5. Chapter 5 – Singlet oxygen optical phantom and live 

cell experiments 

 

5.1 Introduction 

 

 Following the engineering of an efficient SOLD setup and the successful 

detection of 1O2 luminescence (Chapter 4) the next development step is to move 

singlet oxygen monitoring closer to a PDT clinical case. Therefore, two sets of 

experiments were carried out and are presented in this Chapter. The first set 

(section 5.2) involves 1O2 luminescence detection by introducing an optical 

phantom to the existing photosensitizer solutions in order to simulate the 

scattering effects of the human tissue and the second set (section 5.3) targets the 

detection of singlet oxygen photons from live cells. The optical phantom used was 

a lipoprotein suspension (Intralipid emulsion), while for the live cells two different 

cell lines were used, normal NIH3T3 fibroblast cells and KPC pancreatic cancer 

cells. Data from Rose Bengal in distilled water and deuterated solutions with 

increasing concentration of Intralipid emulsion are presented. Starting with low 

concentration and increasing towards an established milestone optical phantom 

concentration, the singlet oxygen behaviour is studied in the presence of the light 

scatterer. Thereinafter, 1270 nm singlet oxygen luminescence is monitored in live 

cultured cells incubated with Rose Bengal, experimenting with parameters such 

as well volume, incubation time, photosensitizer concentration, light exposure 

time and various pH levels. These initial SOLD experiments in live cells act as a 

benchmark for future physiological experiments, providing information and 

answers on the key question whether the existing SOLD setup is able to detect 

singlet oxygen NIR luminescence from single cells but also, to establish whether 

the photodynamic effect applied to these cells is capable of causing cell necrosis. 

 

5.2 SOLD measurements in the presence of scattering 

 Intralipid emulsion (C60H115NO10P+, 1041.5 g/mol molecular weight) is a 

lipoprotein suspension based on soybean oil and is widely used as a scattering 
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agent to simulate the light scattering of tissue [248]. Intralipid is used as a highly 

diffusing optical phantom added at increasing concentration in the photosensitizer 

solution in order to simulate singlet oxygen generation and deactivation in an 

environment close to realistic biological conditions.  Intralipid concentration at 

about 2% by mass is a point where it closely represents the optical properties and 

light scattering of tissue [249]. This kind of diffusion is expected in vivo as light 

and singlet oxygen molecules are interacting with proteins and other 

biomolecules. Therefore, sensing singlet oxygen luminescence at 2% of Intralipid 

concentration is crucial and could act as a benchmark for possible follow up 

physiological experiments.  

 The optical phantom was mixed with three solutions in total, Rose Bengal 

in distilled water, Rose Bengal in deuterated water and Visudyne in methanol. The 

photosensitizer mass concentration for Rose Bengal in distilled water was 100 

μg/ml, 50 μg/ml for Rose Bengal in deuterated water and for the less efficient 

Visudyne in methanol the mass concentration was 500 μg/ml, while the InGaAs 

SPAD detector’s quantum efficiency was set to 10% for the Rose Bengal solutions 

and 15% for the Visudyne solution. In addition, histogram acquisition time for Rose 

Bengal solutions was 60 seconds and 180 seconds for the Visudyne solution. The 

selection of quantum efficiency, mass concentration and acquisition time for each 

solution was made considering the ability of each one in generating enough singlet 

oxygen luminescence before and after the addition of Intralipid so that there is no 

pile-up effect with the initial solution and in Intralipid concentrations close to 2%, 

singlet oxygen luminescence would be detected.  In Figure 5.1 the singlet oxygen 

luminescence histogram from Rose Bengal in distilled water is presented at 

increasing Intralipid concentration and the corresponding plot with the total 

histogram counts comparison of each Intralipid concentration. The dark count rate 

level is added as a reference. In total four concentrations of Intralipid are tested 

up to 2%. The luminescence intensity drops as the Intralipid concentration 

increases. In the 2% of Intralipid curve, the luminescence appears to be weak and 

the decay is not biexponential. However, the overall signal is much stronger than 

the corresponding from the DCR itself, meaning that this single exponential decay 

comes from the singlet oxygen emission through the phantom medium. This can 

also be verified by the long tail of the decay similar to that of the 1.14% Intralipid 

concentration, leading to the conclusion that the PS triplet state lifetime is too 
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short to assist in the formation of the onset of the typical biexponential decay. 

The summed counts from each solution show a decrease in the total counts as the 

Intralipid concentration in the mixture is increased, starting almost linearly and 

then decreasing at a lower rate. Despite the fact that at Intralipid concentration 

of 2% or higher the decay curve recorded is not biexponential, summing the counts 

detected we get a number much higher than the DCR level which is almost zero. 

This indicates that singlet oxygen luminescence signal can be detected at 

Intralipid concentrations of the targeted benchmark of 2% and beyond and can be 

further boosted with higher detector quantum efficiencies. 

  

 

Figure 5.1. 60 second histogram of a) 1O2 luminescence and b) total count 

comparison from 100 μg/ml Rose Bengal in distilled water with added Intralipid 

emulsion at increasing concentration.  
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More information on the effect of Intralipid emulsion in the photosensitizer 

solution can be obtained by extracting the lifetimes of the acquired histograms. 

So, in Table 5.1 can be seen that the increasing Intralipid concentration in the 

solution leads to lengthening of the singlet oxygen lifetime. The singlet oxygen 

lifetime of Rose Bengal in distilled water is extracted for the solution without the 

scatterer and steadily increases with added Intralipid emulsion achieving a singlet 

oxygen lifetime of 10.1 μs long at 2% concentration. The photosensitizer triplet 

state lifetime (τT) does not show such a dramatic change as τΔ. A small decrease 

in τΤ is observed at the first two Intralipid concentrations, while in the 1.14% 

concentration τΤ slightly increases with a bigger error in lifetime extraction and 

at 2% τΤ cannot be extracted at all.  

 

Intralipid concentration Lifetime (μs) RB in distilled water 

0% 
τΔ 3.24±0.06 

τΤ 2.67±0.07 

0.2% 
τΔ 4.52±0.03 

τΤ 2.42±0.04 

0.86% 
τΔ 6.85±0.03 

τΤ 2.16±0.06 

1.14% 
τΔ 8.93±0.04 

τΤ 2.32±0.13 

2% 
τΔ 10.1±0.02 

τΤ - 

Table 5.1. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from 100 μg/ml 

Rose Bengal in distilled water with Intralipid emulsion at increasing 

concentration. 

 

After the successful detection of 1O2 luminescence signal from Rose Bengal 

in distilled water at 2% of Intralipid concentration, a solution of Rose Bengal in 

deuterated water was tested at increasing Intralipid concentration. As shown in 

Chapter 4, Rose Bengal in deuterated water is very efficient in exciting molecular 

oxygen which slowly decays back to triplet ground state over ~40 – 70 

microseconds, depending on the photosensitizer concentration. In Figure 5.2 it is 

shown that luminescence intensity drops as the Intralipid concentration increases, 
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similar to the distilled water solution shown earlier. The Intralipid concentration 

for this solution was increased up to 4%. At 2% or higher concentration the decay 

curve loses the onset phase, while the offset seems to be longer as the Intralipid 

concentration increases. This lengthening of the curve tail shows an increase in 

the singlet oxygen lifetime, as expected after the trend observed in the Rose 

Bengal in distilled water with Intralipid solutions. The total counts appear to drop 

exponentially with increased Intralipid concentration. The dark count rate level is 

also added, with total counts just a few thousand fewer than the 4% concentration 

solution. 

 

 

Figure 5.2. 60 second histogram of a) 1O2 luminescence and b) total count 

comparison from 50 μg/ml Rose Bengal in deuterated water with added Intralipid 

emulsion at increasing concentration. 
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The Intralipid emulsion in Rose Bengal in deuterated water affects the 

singlet oxygen lifetime similarly to the distilled water solution. Because the τΔ in 

deuterated solutions is longer by more than one order of magnitude, the increases 

in lifetime are bigger as the Intralipid solids increase in number, compared to 

other solvents. As seen in Table 5.2, the singlet oxygen lifetime is about 51 μs long 

without any scatterer added and at 2% of Intralipid concentration the lifetime is 

increased to 86.5 μs. The lifetime for the curves generated by solutions with more 

than 2% Intralipid concentration could not be extracted as the curves could not be 

correctly fitted.  Regarding the photosensitizer triplet state lifetime, with the 

addition of Intralipid shows an increase for the two first concentration values and 

then slightly decreases. Unfortunately, τΤ for 2% or more could not be extracted 

so it is hard to draw definitive conclusions on the effect of Intralipid solids on the 

PS triplet state lifetime.   

 

Intralipid concentration Lifetime (μs) RB in deuterated water 

0% 
τΔ 51.2±0.2 

τΤ 2.2±0.07 

0.29% 
τΔ 54.5±0.29 

τΤ 3.1±0.12 

0.57% 
τΔ 61.9±0.59 

τΤ 3.52±0.17 

1.14% 
τΔ 63.8±0.78 

τΤ 3.39±0.27 

2% 
τΔ 86.5±1.16 

τΤ - 

3.14% 
τΔ - 

τΤ - 

4% 
τΔ - 

τΤ - 

Table 5.2. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from 50 μg/ml 

Rose Bengal in deuterated water with Intralipid emulsion at increasing 

concentration. 

 

Next, the effect of Intralipid emulsion on a different photosensitizer was 

tested, Visudyne in methanol. The switch to an organic solvent for this solution 
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means that different optical properties should be expected compared to standard 

water-based solutions. Therefore, an extra acquisition was made with plain 

methanol to be used as a control solution. In Figure 5.3, the histogram compares 

the acquisition curves and total counts from 500 μg/ml Visudyne in methanol with 

Intralipid emulsion at increasing concentration with the control solution and the 

dark counts. By adding a small amount of Intralipid, the detected photons 

decrease dramatically and keep decreasing with increasing concentrations but 

with a much smaller rate. It is worth noting that a relatively clear biexponential 

  

 

Figure 5.3. 180 second histogram of a) 1O2 luminescence and b) total count 

comparison from 500 μg/ml Visudyne in methanol with added Intralipid emulsion 

at increasing concentration. 
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decay curve with the addition of 2% of Intralipid is obtained compared to the water 

solutions presented earlier. The summed counts for the 2% concentration are 

greater than but close to the counts recorded from the plain methanol indicating 

that a portion of the detected counts is coming from the solvent itself. However, 

the rest of the counts are actually singlet oxygen photons detected through the 

scattering medium. The singlet oxygen lifetime from this solution with added 

Intralipids behaves differently from that observed from the water solutions, as the 

Intralipid concentration changes. Singlet oxygen lifetime from Visudyne in 

methanol sees a decrease from 10 μs to 7 μs just by adding a small amount of 

Intralipid and then keeps getting shorter at a lower rate with higher Intralipid 

concentration and finally at 2% concentration this lifetime is 6.51 μs. The 

photosensitizer triplet state lifetime is short at 200 ns as expected from a 

methanol solution and shows a general increase without major changes as the 

concentration increases. However, the lifetime errors for τΤ is relatively big while 

for the 2% concentration the uncertainty is so large the lifetime cannot be 

extracted at all. 

 

Intralipid concentration Lifetime (μs) RB in distilled water 

0% 
τΔ 10±0.01 

τΤ 0.19±0.13 

0.2% 
τΔ 7±0.01 

τΤ 0.16±0.18 

0.57% 
τΔ 6.86±0.02 

τΤ 0.24±0.16 

1.14% 
τΔ 6.76±0.02 

τΤ 0.41±0.41 

2% 
τΔ 6.51±0.02 

τΤ - 

Table 5.3. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from 500 μg/ml 

Visudyne in methanol with Intralipid emulsion at increasing concentration. 

 

The reason for the drop in luminescence counts in all cases is the high 

diffusion of the excitation and singlet oxygen 1270 nm light into a larger volume 

caused by the Intralipid emulsion, an area bigger than the collection area leading 

collection optics to collect light from a much smaller fraction. Also, introducing 
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the Intralipid emulsion into the photosensitizer solution, the singlet oxygen signal 

is being quenched via additional deactivation processes and pathways enabled by 

its interaction with the Intralipid solids. An efficient deactivation pathway caused 

by Intralipids acting as a singlet oxygen quencher and interacting with Visudyne in 

methanol could explain the massive drop in luminescence signal and also the 

shortening of the singlet oxygen lifetime. In any case, the SOLD setup proved to 

be able to detect singlet oxygen photons even at 2% of Intralipid concentration by 

using some of the least efficient photosensitizer solutions like the Rose Bengal in 

distilled water and Visudyne in methanol. The acquired luminescence signal could 

be increased even more by applying higher optical power and increasing the 

detector’s quantum efficiency, something that was avoided in the first place due 

to the high count rate at zero or low Intralipid concentration and for the needs of 

the detailed study of the effect of the scattering medium on the photosensitized 

singlet oxygen.  

 

5.3 Live cells experiment 

For the live cell experiment two different cell lines were cultured, NIH3T3 

fibroblast cells and KPC cells. Fibroblasts are the most common mammalian 

connective tissue cells and the KPC model which is a pancreatic cancer cell line 

where KPC stands for: Kras, p53, and Cre. Kras and p53 are two genes that are 

often mutated in human pancreatic tumours. Cre is a special tool gene that is used 

to control where Kras and p53 are turned on. Cell culture was carried out by Dr. 

Marie Cutiongco. Microscope images of fibroblast cells and KPC cancer cells are 

shown in Figure 5.4.  

 

Figure 5.4. Microscope images of a) NIH3T3 fibroblast cells and, b) KPC cancer 

cells exposed to Rose Bengal. Images captured by Dr. Marie Cutiongco. 
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Cells were cultured and then incubated with Rose Bengal. For the 

illumination of the cells with the excitation light, the cells were placed in cell 

culture plates with wells of specific volume in the system shown in Figure 3.4. 

Since these experiments require much smaller containers compared to the 

standard solution cuvette, initial experiments included tests with various plates 

with wells of different volume containing Rose Bengal solutions in different mass 

concentrations. Figure 5.5 shows the total counts from the singlet oxygen 

luminescence acquired from the Rose Bengal in distilled water solution using three 

different well volumes (50 μl, 100 μl and, 200 μl). Rose Bengal’s mass 

concentrations used were 500, 250, 100, 50, 25, 12.5 and 6.25 μg/ml.  

 

 

Figure 5.5. Singlet oxygen luminescence counts from Rose Bengal in distilled 

water solution at dropping concentrations whilst comparing signal from different 

solution volumes (50, 100, 200 μl). Each acquisition was 60 seconds. The SPAD 

detection efficiency set to 25% at -90 °C.  

 

Next, in order to understand the incubation of the cells with Rose Bengal 

molecules a test was required to monitor the absorbance of Rose Bengal by the 

cells over time and at different mass concentrations. Therefore, cells exposed to 

Rose Bengal were measured after 1 hour, 3 hours, 6 hours, and 22 hours, as shown 
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in Figure 5.6. The absorbance measurement of the Rose Bengal uptake by the 

normal and the cancer cells was carried out by Dr. Marie Cutiongco. In both cell 

lines, the Rose Bengal uptake was higher for the 500 μg/ml mass concentration 

and in most  

 

 

 

Figure 5.6. Rose Bengal absorbance by normal and cancer cells over 22 hours and 

at different Rose Bengal concentrations. The lines between points for each Rose 

Bengal concentration are a guide to the eye. Data acquired by Dr. Marie 

Cutiongco.  

 

solutions the highest absorbance occurs when exposed for 3 hours. At 6 hours a 

significant drop is observed reaching a plateau and showing no more changes in 
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the photosensitizer absorbance. For normal cells, 500 μg/ml is closely followed by 

the 250 μg/ml solution and then the 100 μg/ml, while for cancer cells the 500 

μg/ml has the highest Rose Bengal absorbance standing out from the rest of the 

solutions, followed by 100 μg/ml and then the 250 μg/ml. In low Rose Bengal 

concentration cancer cells, the highest uptake is observed during the first hour of 

exposure. Pictures from the Rose Bengal uptake measurements are included in 

Appendix B. 

 After determining the proper well volume and the Rose Bengal exposure 

time, the cells incubated with photosensitizer were taken for testing. As a start, 

the signal acquired by these cells at 1270 nm was compared to signal through other 

bandpass filters to validate that the photons detected are coming from the singlet 

oxygen emission. A plot comparing the total counts detected by cancer cells 

incubated with Rose Bengal at five different bandpass centre wavelengths is shown 

in Figure 5.7. Total counts detected using the 1270 nm bandpass optical filter 

clearly stand out from the rest of the measurements with the other bandpass 

filters, validating the singlet oxygen signature in the luminescence detection 

measurements. 

 

 

Figure 5.7. Comparison plot of total counts acquired from the cancer cells 

incubated with Rose Bengal versus the BP optical filter centre wavelength. 

Acquisition time is 60 seconds and SPAD’s detection efficiency set to 25%. 
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 The next step was to compare the counts acquired by cells incubated with 

Rose Bengal to other solutions with or without any photosensitizer added. Equal 

volume wells were filled with solutions of Rose Bengal in distilled water, Rose 

Bengal dissolved in standard cell culturing media (without cells), Rose Bengal with 

plain cells dissolved in cell media (cells were not incubated with the Rose Bengal), 

incubated cells with Rose Bengal in the cell media, cells in cell media without any 

Rose Bengal and, plain cell media. All these different solutions were illuminated 

and counts were recorded under the same laser and detector conditions. The total 

counts comparison between the different solutions are presented in Figure 5.8. As 

expected, Rose Bengal in distilled water solution produces the most singlet oxygen 

photon counts, followed by the Rose Bengal dissolved in cell media instead of the 

distilled water. Close to the latter is the solution with cells (not incubated with 

RB) in cells media and added Rose Bengal. The total singlet oxygen counts from 

normal cells incubated with Rose Bengal is about 50% weaker than the 

corresponding solution with cells and Rose Bengal without being incubated inside 

the cells, while the singlet oxygen signal from pancreatic cancer cells is about 

30%. This decrease in the signal when Rose Bengal is incubated inside the cells is 

expected as the photosensitizer molecules are no longer dissolved in some solvent 

(cell media), but instead are located inside the cell membrane where protein and 

other singlet oxygen quenching components are [250]. Also, the environment 

where the cells are cultured, the cell media, include FBS (fetal bovine serum) a 

common serum type used in cell culture because of its high content of embryonic 

growth promoting factors. The serum is known to be an efficient singlet oxygen 

quencher leading to shortened singlet oxygen lifetime. The last three acquisitions 

from plain cell media, plain cells in cell media without any photosensitizer added 

and the dark count rate level are included to differentiate the singlet oxygen 

signal level generated by the Rose Bengal incubated cells from the signal coming 

from control solutions without any singlet oxygen luminescence. Between the 

singlet oxygen counts recorded by the normal cells and cancer cells incubated with 

photosensitizer, the cancer cells appear to be about 50% more efficient than the 

normal cells, registering ~10000 more counts as shown in Figure 5.8.  
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Figure 5.8. Total count comparison between a) normal, b) pancreatic cancer 

cells incubated with Rose Bengal and various control solutions. The conditions 

are presented in order maximum to minimum total counts (left to right). Rose 

Bengal concentration is the same for the different solutions. Acquisition time is 

60 seconds and SPAD detection efficiency set to 10%. 
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 In order to mitigate the huge quenching of the singlet oxygen signal by the 

serum in the cell media, the serum was removed from the solution after the 

growth of the cells. This allowed the efficient collection of the singlet oxygen 

photons generated inside the Rose Bengal incubated cells without the quenching 

components. As shown in Figure 5.9, the shape of the singlet oxygen signal by 

normal and cancer cells in cell media is very similar to the standard Rose Bengal 

in water solution. Both cell lines were exposed to Rose Bengal for 3 hours, washed 

out and then added in cell media where the serum was later removed. 

Luminescence from cancer cells is slightly stronger with a more distinguishable 

peak. This variation in the shape is depicted in the extracted lifetimes shown in 

Table 5.4.  

 

 

Figure 5.9. 600 second histogram of 1O2 luminescence signal by normal and 

cancer cells incubated with Rose Bengal in cell media without serum. Cells were 

exposed to Rose Bengal for 3 hours. SPAD detector set to -90 ºC, 25% detection 

efficiency and 42 μs dead time. 
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 The singlet oxygen luminescence signal from Rose Bengal incubated cancer 

cells in cell media with the serum was also recorded and is plotted in Figure 5.10 

alongside the corresponding without the serum in the cell culturing media. Singlet 

oxygen luminescence in the presence of a serum is heavily quenched and singlet 

oxygen lifetime is significantly shorter.   

 

 

Figure 5.10. 600 second histogram of 1O2 luminescence signal by cancer cells 

incubated with Rose Bengal in cell media with and without serum. Cells were 

exposed to Rose Bengal for 3 hours. SPAD detector set to -90 ºC, 25% detection 

efficiency and 42 μs dead time. 

 

 1O2 lifetime in a serum-free cell environment is typically in the range of τΔ 

in H2O (~3.0–3.5 μs) or even longer depending on where the photosensitizer is 

located inside the cell [251]. As shown in Table 5.4, τΔ in serum-free cell media is 

very similar to the H2O τΔ values at 3.55 μs for the pancreatic cancer cells and 
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considerably longer at 4.45 μs for the normal fibroblast cells. The difference in 

the τΔ lifetime between normal and cancer cells can be explained considering the 

different singlet oxygen diffusion from the cell nucleus and cell membrane over 

to extra-cellular environment and possible different spatial localization of the 

Rose Bengal. When serum is present though, the singlet oxygen lifetime is heavily 

affected by this extra-cellular component and is significantly shorter at 510 ns. 

This could also indicate that the Rose Bengal is mostly concentrated in the outer 

regions of the cell rather than in the cell nucleus.  

 

Lifetime (μs) 
Normal cell in cell 

media without 
serum 

Cancer cell in cell 
media without 

serum 

Cancer cell in 
cell media with 

serum 

τΔ 4.45±0.09 3.55±0.2 0.51±0.04 

τΤ 3.01±0.14 3.55±0.2 - 

Table 5.4. 1O2 (τΔ) lifetimes and PS triplet state (τΤ) lifetimes from normal and 

cancer cells incubated with Rose Bengal in cell media with and without serum.  

 

 Apart from the singlet oxygen luminescence detection, the status of the 

cells was also checked after a few hours or even days. Due to the photodynamic 

effect, the cells were expected to die after a reasonable amount of time. 

However, that wasn’t the case for some of the cell batches. In fact, some of the 

cells died after the illumination period, but most of the batches were still alive 

even after a few days. This inconsistency in the cell necrosis after the 

photodynamic effect they underwent, could be due to two possible reasons. First, 

the cells in serum-free cell media were not able to survive without the serum. So, 

after the SOLD measurements the serum was added once again and that is maybe 

the factor that managed to keep the cells alive even after the photodynamic effect 

that lasted up to 30 minutes. The second reason is because of the laser beam spot 

size and the actual optical power applied on the cell surface. The beam spot size, 

as calculated in § 4, is 13.64 μm wide and covers a small portion of the overall 

well area. That means that only a few cells were illuminated with ~1.4 mW of 

optical power (at 540 nm, the excitation wavelength of Rose Bengal), an optical 

power value that is much smaller anyway than that applied in physiological 
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photodynamic therapies. An attempt to illuminate the whole well surface was 

made by increasing the distance between the reflective mirror and the well, so 

that the beam was off-focus and the spot size was increased covering a much 

larger area.  However, this also resulted in a much weaker optical power density 

and it would be difficult for the applied light to generate enough singlet oxygen 

and cause efficient photodynamic effects. Microscope pictures from the cells are 

included in Appendix B, showing their status after the laser illumination and 

monitoring for 8 days. 

 

5.4 Conclusions 

 

Singlet oxygen luminescence was successfully detected in solutions containing 

an optical phantom in different concentrate ons, to simulate the light scattering 

effects of human tissue. Measurements were carried out using Rose Bengal in 

distilled water and deuterated water and, Visudyne in methanol adding increasing 

amounts of Intralipid emulsion. In all three solutions, singlet oxygen was 

efficiently detected even at 2% of Intralipid concentration, an established 

milestone optical phantom concentration simulating the optical properties of 

human tissue. Additionally, in some cases the SOLD setup was able to detect 

singlet oxygen luminescence even at concentrations greater than 2% of Intralipid. 

The second part of this chapter concerns experiments in which singlet oxygen is 

generated and its emission is detected from the inside of the cells. Two different 

types of cells were used, normal fibroblast and KPC cancer cells. Initially, a series 

of experiments were carried out to establish the ideal parameters for the SOLD 

measurements, including photosensitizer uptake from the cells and the volume of 

the well where cells are cultured. Then, singlet oxygen luminescence was 

efficiently detected in a variety of different solutions including solutions with 

plain photosensitizer, plain cell media and cells not exposed to photosensitizer, 

which were used as control solutions and to be compared to singlet oxygen signal 

from cells incubated with photosensitizer. While singlet oxygen photon counts 

were registered from cells incubated with photosensitizer, the time-resolved 

measurements appeared to be harder to record due to the high quenching from 

serum contained in the cell media, which is essential in the cell culturing process. 
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So, in order to record singlet oxygen decay histograms, serum was removed for 

the light exposure period of the cells and singlet oxygen biexponential decay was 

efficiently recorded and was compared to cell solutions with serum. Moreover, 

singlet oxygen lifetime (τΔ) from normal and cancer cells without serum was 

extracted and compared the much shorter singlet oxygen lifetime of cells in cell 

media with serum. After the SOLD measurements, cells were monitored for up to 

8 days. The photodynamic effect should be responsible for the cell death, but that 

was not observed for all the cells exposed to light. The main reason for cells not 

dying during or after the process was attributed to the low optical power applied 

onto them, in combination with the overall light beam spot not being able to cover 

the entire well area so that all the cells are undergone the photodynamic process 

simultaneously.  
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6. Chapter 6 – Outlook  

 

6.1 Conclusions 

 

 This thesis presents work on a sophisticated optical setup capable of 

efficient photosensitized generation of singlet oxygen and single photon detection 

of its luminescence. Aim of this project was the engineering of a versatile setup 

utilizing next generation fibre-coupled single photon detectors that can 

potentially be used in clinical photodynamic therapies providing valuable real time 

information on the dosimetry of the drug administrated to the patient.  

 Chapter 1 gave a brief introduction to the work and a layout of the structure 

of the thesis. 

 Chapter 2 consists of a background and literature review of the various 

aspects included in this thesis. The photochemistry of singlet oxygen, the 

photosensitizers and a brief background on the photodynamic therapy was 

described in the first part of this chapter. Subsequently, a background on the 

different single photon detectors was given focusing on the single photon 

avalanche diode and superconducting nanowire single photon detectors that were 

used in this project. Lastly, some theory on the time-correlated single photon 

counting techniques and modules was given, explaining the means of the singlet 

oxygen luminescence data acquisition described in the following chapters. 

 Chapter 3 gives a detailed look at all the components selected for the 

experimental setup. The chapter starts with a brief background on the various 

light sources used in photodynamic therapy and explains the selection of the 

supercontinuum laser source used for the experiments. Similarly, the careful 

selection of the optical filters and mirrors consisting the optical head were 

discussed and the laser’s visible light delivery onto the sample and generated 

singlet oxygen’s near-infrared light collection was explained. Then, the two types 

of single photon detectors used throughout the project were analysed. First, the 

superconducting nanowire single photon detector inside the close-cycled cooling 

system and the experimental configuration for the characterisation of each SNSPD 

device, gathering information on the I-V characteristics, the single photon 

detection efficiency at various wavelengths, the dark count rate and timing 
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properties such as the FWHM timing jitter of the device. The second single photon 

detector used is a commercial InGaAs SPAD characterised for the 1550 nm 

wavelength. Carrying out a series of measurements, its detection efficiency and 

dark count rate at a wider spectral range and different operation temperatures 

were acquired. A more general comparison was made between the SNSPD and 

SPAD detector and explained which detector proved to be better for obtaining the 

best possible results in this specific singlet oxygen project. Lastly, the TCSPC 

module was presented and discussed giving an insight of the singlet oxygen 

luminescence measurement data formats, while also it explained the fitting of the 

singlet oxygen biexponential curve for the extraction of the two lifetimes. 

 Chapter 4 focusses on the singlet oxygen luminescence detection in 

solution. The chapter begins by presenting the various photosensitizers used and 

gives information on the structure and absorption spectra of each one. The 

chapter continues by explaining the SOLD technique and the singlet oxygen 

phosphorescence signal equation.  A series of measurements in the 1270 nm 

wavelength band is then presented, showing singlet oxygen luminescence 

histograms and lifetime tables extracted from solutions of different 

photosensitizers and solvents, and a general comparison is made between the 

results comparing the efficiency of each solution and the two lifetimes. 

Additionally, a series of measurements is presented with the same solutions but 

in decreasing mass concentration, discussing the effect of the concentration 

change in the overall luminescence signal and the lifetimes. Time-resolved 

measurements of singlet oxygen luminescence in the 1590 nm wavelength are 

presented for the first time, carrying out the same experiments performed at 1270 

nm wavelength and a comparison is made regarding the luminescence signal and 

the lifetime values extracted. The last part of the chapter shows the singlet 

oxygen signal acquisition in the presence of a known quencher, β-carotene. The 

β-carotene is added in increasing concentration into the solution and the singlet 

oxygen signal and its lifetime is observed to drop dramatically. 

 Chapter 5 is the continuation of the singlet oxygen luminescence 

measurements moving the experimental conditions closer to a real biological 

environment. Singlet oxygen signal was generated in a solution with increasing 

concentration of Intralipid emulsion. This optical phantom at about 2% of 

concentration simulates the optical scattering properties of human tissue, in 
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which the singlet oxygen was activated, and its luminescence was efficiently 

detected. The second part of this chapter deals with singlet oxygen luminescence 

detection from two types of living cells, normal fibroblast cells and pancreatic 

cancer cells. Various measurements were carried out regarding the 

photosensitizer uptake time and concentration from the cells and 1270 nm 

luminescence detection measurements were carried out for a series of wells with 

different parameters so that a comparison can be made to the signal from the 

cells with incubated photosensitizer. Finally, histograms were generated from 

singlet oxygen signal inside the cells and lifetime values were extracted.  

 

6.2 Future work  

 

 A complete optical setup optimized for singlet oxygen measurements was 

demonstrated through characterisation to be quite efficient. The current platform 

gives high collection rates and is versatile enough to try out different detector 

configurations and experimental scenarios. However, the existing setup can be 

further improved and optimised for different singlet oxygen luminescence 

monitoring scenarios.  

 

6.2.1 SOLD setup configuration 

 

As photonic technology keeps moving forward, the introduction of new 

components could enable the next breakthrough in the singlet oxygen sensing. 

Regarding the optical setup, while the optical head including all the mirrors and 

optical filters appear to be well designed, improvements on the light source or 

the near-infrared single photon detector are feasible. A drawback of the existing 

supercontinuum laser is the weak optical output power. Despite the fact that the 

centre wavelength tuning and low repetition rate offered by this supercontinuum 

laser are ideal for SOLD experiments, an increase in the overall optical power 

delivered to the sample would be able to generate much more singlet oxygen 

molecules leading to higher detection rate. A second improvement of the existing 

setup could be the replacement of the collection optical fibre (SMF-28e) with a 
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custom optical fibre specially optimized for the 1270 nm wavelength (ideally a 

multi-mode fibre for increased collection area), so that the collection will be as 

efficient as possible. For the single photon detector, there is plenty of room for 

improvement as photon counting technologies are constantly advancing. The 

factors that affect the overall singlet oxygen signal detection is the detection 

efficiency of the detector in the 1270 nm wavelength band and the active 

collection area of the detector chip. The latter proved to be very important in the 

overall light collection and is the reason the InGaAs SPAD was eventually used over 

the SNSPD, despite the higher detection efficiency of the SNSPD. SNSPDs offer high 

detection efficiencies but the active area is significantly smaller than other 

detector types. The ideal scenario would be a SNSPD array, consisted of 4 or more 

pixels that would increase the overall size of the detector, and optimized for 1270 

nm wavelength photons. The case of a SNSPD array would also solve the problem 

with the pulse ‘pile up’ effect as the total count rate would be divided by the 

number of the detector pixels. Respectively, InGaAs SPAD arrays would potentially 

be a great fit in the current setup increasing further the detection area and also 

form a multi-pixel singlet photon camera in the near-infrared spectral region. 

Additionally, other types of NIR SPADs are gathering much research focus, such as 

the SiGe-SPAD mentioned in §2. SiGe-SPAD is a very promising alternative to the 

InGaAs SPAD that can eventually offer high quantum efficiency near the wanted 

1270 nm wavelength.  

 

 

Figure 6.1. Schematic of the setup. The hollow core of the fibre can be filled 

with photosensitizer while illuminated to generate singlet oxygen molecules that 

will be detected by the other end of the fibre. Figure modified from [252]. 
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 A different approach of 1O2 luminescence detection was proposed by 

Williams et al., where the photosensitized singlet oxygen can be generated and 

detected inside an optofluidic system using a 15 cm hollow-core photonic crystal 

fibre (HC-PCF) [252]. An example diagram of a HC-PCF experimental setup is 

shown in Figure 6.1. This alternative could allow efficient detection of singlet 

oxygen even in small quantities and detection of 1O2 luminescence intracellularly 

[253]; this approach is attractive for clinical therapy, making the optical setup 

less bulky with an interchangeable fibre-optic probe. 

 

6.2.2 1590nm and 1920nm wavelength bands 

 

  An interesting area of future research was presented in this thesis, 

continuing fundamental studies in two different singlet oxygen emission 

wavelengths, at 1590nm and 1920nm. Measurements were demonstrated in this 

thesis on the 1𝛥𝑔 → 3𝛴𝑔
−(v = 1) transition, emitting at ~1590nm wavelength. Time-

resolved measurements allowed a deeper understanding of this much weaker 

singlet oxygen emission. Additional experiments can be carried out and provide 

useful information on the photochemistry of singlet oxygen. An interesting 

experiment would involve direct excitation of molecular oxygen with powerful 

1270 nm light and detection of the 1590 nm emission. Also, the optical head setup 

could be easily modified to a T-setup configuration where two different pathways 

could simultaneously detect both 1270 nm and 1590 nm emission and make a more 

trustworthy comparison on the intensity and probability between the two signals. 

Similarly, next generation fast SNSPDs with single photon sensitivity in the mid-IR 

could potentially be able to detect the picosecond long 1𝛴𝑔
+
→ 1𝛥𝑔 emission at 

~1920 nm wavelength [254, 255]. This would require a picosecond fast SNSPD with 

optical cavity tuned around 2 μm, close to 1920 nm wavelength and a couple of 

alterations in the current optical setup, like a 1920 nm bandpass optical filter (also 

maybe a long-pass optical filter with cut-on wavelength >1600 nm, to block any 

1270 nm and 1590 nm light) and a more suitable collection fibre for wavelengths 

towards the mid-IR such as standard SMF2000. Time-resolved measurements in the 

singlet sigma state would be brand-new science in the photochemistry field of 
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molecular oxygen, like the 1590 nm emission, and could be examined as a possible 

alternative to 1270 nm emission for detection in future clinical trials, as 1920 nm 

photons are in a spectral range where there should be less absorption by the 

biomolecules. In this thesis time resolved singlet oxygen luminescence 

measurements have been carried out for the first time at 1590 nm using an SNSPD.  

These studies can be followed up using next generation SNSPDs.  SNSPD offer a 

pathway to high speed low noise photon counting in the mid-infrared:  this makes 

study of longer wavelength emission from the singlet oxygen system (for example 

1920 nm wavelength) in principle feasible. 

 

6.2.3 Singlet oxygen live cell microscope 

 

 In §5 were presented initial experiments with singlet oxygen luminescence 

detection in live cells. Further improvements and modifications in the whole setup 

could better tune it for biological experiments. An optimized singlet oxygen 

microscope for live cell studies would introduce new possibilities in the singlet 

oxygen detection from live cells. The ocular lens can be replaced with one of the 

fibre-coupled single-photon detectors, the illuminator (light source) with a 

different light source matching the photosensitizer’s peak excitation wavelength, 

while the filters are easily replaced with others of more suitable wavelengths for 

SOLD experiments. A powerful addition would be a photon counting camera such 

as the Princeton Lightwave InGaAs SPAD camera (mentioned in section 2.4.2) or 

an optimized SNSPD array [177, 221, 222]. The singlet oxygen cell microscope 

would provide real-time monitoring of the illumination of the cells and possible 

cell necrosis by the photodynamic effect. It could also provide topological 

information on the photosensitizer accumulation and diffusion inside the cell.  

 

6.2.4 Fibre-optic dosimetry head for PDT  

 

 The end goal of this SOLD research is the implementation of the whole 

optical setup in clinical trials and its test with more clinically-approved 
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photosensitizers in clinical trials with test animals and in the end phase with 

humans. The need of a direct monitoring of the PDT treatment and the efficient 

regulation of the drug in the patient lead to the need of practical setups that act 

as a routine tool and will assist the treatment in making it as efficient as possible.  

Current setup is ready to be incorporated in standard PDT treatments as a fibre-

optic dosimetry/treatment head as it will provide direct PDT dosimetry and also, 

potentially a 1O2 luminescence imaging system. 
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Appendix A 

 

- Transmission data for the filters and mirrors used in the optical setup. 

 

 

A.1. Transmission of short pass optical filter Thorlabs (FESH0950). 

 

 

A.2. Transmission of short pass optical filter Edmund Optics (KG-1). 
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A.3. Transmission and reflectance of the dichroic mirror Thorlabs DMLP950. 

 

 

A.4. Transmission of long pass optical filter Thorlabs FELH1200. 
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A.5. Transmission of custom band pass optical filter Omega Optical 

(1270±4nm). 

 

 

A.6. Transmission of long pass optical filter Thorlabs FELH1500. 
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A.7. Transmission and Optical density of band pass optical filter Thorlabs 

FB1590-12. 
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Appendix B 

 

- Microscope images from normal fibroblast cells with incubated Rose Bengal 

in decreasing concentration. Cell exposure time to Rose Bengal was 3 hours. 

 

 

B.1. Images of Rose Bengal uptake by NIH3T3 fibroblast cells. Rose Bengal 

concentration is a) 500 μg/ml, b) 250 μg/ml, c) 100 μg/ml, d) 50 μg/ml, e) 25 

μg/ml and, f) 12.5 μg/ml. Scale bar applies to all images. Microscope images 

captured by Dr. Marie Cutiongco. 
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- Microscope images from KPC cancer cells with incubated Rose Bengal in 

decreasing concentration. Cell exposure time to Rose Bengal was 3 hours. 

 

 

B.2. Images of Rose Bengal uptake by KPC cancer cells. Rose Bengal 

concentration is a) 500 μg/ml, b) 250 μg/ml, c) 100 μg/ml, d) 50 μg/ml, e) 25 

μg/ml and, f) 12.5 μg/ml. Scale bar applies to all images. Microscope images 

captured by Dr. Marie Cutiongco. 
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- Microscope images of KPC cancer cells exposed to different durations of 

laser illumination. Cells were exposed to Rose Bengal for 3 hours and the 

final concentration is 100 μg/ml. 

 

 

B.3. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco directly after the experiment. 
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B.4. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco 1 day after the experiment. 
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B.5. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco 2 days after the experiment. 
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B.6. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco 3 days after the experiment. 
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B.7. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco 5 days after the experiment. 
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B.8. Microscope images of KPC cancer cells exposed to laser light for 0, 5 and 

15 minutes (top to bottom). Microscope images captured by Dr. Marie 

Cutiongco 8 days after the experiment. 
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