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Abstract Constitutive models for the mechanics of soft tissues are typically constructed by
fitting phenomenological models to in vitro experimental measurements. However, a significant
challenge is to construct macroscale soft tissue models which directly encode the properties of
the constituent cells and their extracellular matrix in a rational manner. In this work we present
a general framework to derive multiscale soft tissue models which incorporate the properties of
individual cells without necessarily assuming homogeneity or periodicity at the cell level. The
aim of this thesis is to derive a new model for cardiac soft tissue which we approach by forming
an individual based model. First, we consider a reduced viscoelastic model for each individual
cell and couple this to a network description of a one-dimensional line of cells. We utilise a
discrete-to-continuum approach to upscale this array to form new (nonlinear) continuum partial-
differential equation (PDE) models for the tissue which allows for gradients in the cell properties
along the line. This system is implemented for a test problem inducing a prescribed displacement
at one end of the array (while remaining fixed at the other) for both uniform and non-uniform
stiffness of cells. A cluster of stiffer cells in the centre of the domain (mimicking a cluster of
dead cells in myocardium after an infarction) is investigated and results show that the majority
of the deformation is taken on by the more flexible cells while the stiff cells undergo a minimal
deformation. We extend this model to include the effects of active contraction, to simulate
myocardium behaviour in a periodic domain and we observe a travelling wave of contraction
moving through the domain. For all formulations, the discrete and continuum results agree
well. For the test problem, these systems also agree well with analytical results of the linearised
continuum PDE.

We further extend this model to incorporate cell growth and proliferation to consider the dy-
namics of a proliferating array, examining how assumptions about cell dissipation translate into
different global behaviour. Utilising the theory of morphoelasticity, we introduce cell growth
into the system by multiplicative decomposition of the deformation tensor for each cell into an
unstressed growth phase and an elastic deformation phase. We investigate stress-driven growth,
where a cell grows fastest when it is unstressed and the growth rate reduces under compression
(the set up does not allow the cells to be in tension). In order to assess the effect of cell dis-
sipation on the system, we compare two cases: first, that the dissipation is independent of cell
surface area; and second, that the dissipation coefficient is linearly proportional to the current
cell surface area. We observe that in the latter case, cells pay an extra penalty for enlarging and
overall growth of the array is decreased. We further consider cell proliferation in this system,
with cells dividing when they reach double their initial size. In this case we can predict changes
in the number of cells with time showing that the growth eventually attains a constant rate. Sub-
strate dissipation results in division events becoming localised to the free end of the domain,
replicating the behaviour of a proliferating rim. We also observe that cell proliferation generally
leads to slower growth of the array (except in cases with very small substrate dissipation).

We then extend the approach to a two-dimensional rectangular array of cells atop a fixed



ii

substrate and the upper boundary of cells parallel to this is subject to zero stress, again utilis-
ing a discrete-to-continuum approach to form new (nonlinear) two-dimensional continuum PDE
models. We specify the general formulation where each cell’s deformation must (in general)
be solved numerically, and then focus on two simpler cases where the cell deformation is ap-
proximated as either a uniaxial deformation or a simple shear. For cells undergoing uniaxial
deformation, we consider a time-dependent prescribed deformation along one edge of the rect-
angular domain (while keeping the edge parallel to this fixed) with two different cases for the
boundaries normal to the moving edge. First, we consider zero external stress where the re-
sulting deformation is in all three dimensions and the cell area in contact with the substrate
decreases. Second, we consider the two boundaries normal to the moving edge to be periodic.
In this case, there is no deformation normal to the periodic boundaries, and the prescribed com-
pression on the array is in the out-of-plane direction alone. For a simple shear deformation, we
apply a constant shearing force on one edge of the rectangular array (with the opposite edge held
fixed) and periodic boundary conditions on the remaining two edges. In this case, we prohibit
motion normal to the periodic boundaries, allowing motion only in the direction of the shearing
force. Dissipation in the system results in a transient delay in the transmission of the shearing
force to all the cells in the array. Cells closer to the sheared boundary move ahead of those closer
to the fixed boundary. In this case we show that this deformation can be solved analytically.

We conclude this thesis with an overview of how the approaches developed within can be
extended to produce new models of soft tissue mechanics.
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Chapter 1

Introduction

This thesis develops new mechanical models for soft tissue behaviour by constructing rational
discrete cell-based models in the form of ordinary-differential equations (ODEs) and, utilising
the multiscale asymptotic technique of discrete-to-continuum asymptotics, upscales these dis-
crete systems of ODEs to continuum PDEs. In this chapter, we will introduce the background
behind this project, first by discussing soft tissue modelling (Sec. 1.1). We then consider both
macroscale continuum models (Sec. 1.2) and the more recent focus on modelling biological sys-
tems with discrete formulations (Sec. 1.3). I provide an overview of upscaling and a summary
of a few key techniques in Sec. 1.4. In this work, we investigate the role of growth and prolifer-
ation in soft tissue behaviour, and summarise relevant research and background in Section 1.5.
A summary of the structure of the remainder of this thesis is provided in Sec. 1.6.

1.1 Soft tissue modelling

Physiological systems typically exhibit complicated interaction between tissue and fluid (e.g.
blood flowing through arteries and veins, air flow in the lungs, water flows between cells).
When applying theoretical models to predict the behaviour of such systems it is necessary to
pose constitutive models for the mechanical response of each component. Whilst there are a
wide number of accepted constitutive models for physiological fluids (e.g. blood [1–3]) and
hard tissues (e.g. bone [4]), models for soft tissues are less well characterised.

Soft tissues range from skin and connective tissues to muscles and organs. To model soft
tissues, we must consider the complex structure of the tissue and the cells that form it. Charac-
teristically, these tissues are comprised of large numbers of individual cells, which themselves
contain a (stiff) nucleus, intracellular fluid (cytoplasm), a structural cytoskeleton enclosed within
a membrane (fluid-like sheet enclosing the cell) and filament networks that maintain cell shape
(e.g. actin) [5]; cells are typically deformable but almost perfectly incompressible [6]. The hu-
man body alone has over 200 different types of cells. These cells are tightly packed together
within a structure called the extracellular matrix (ECM) composed of collagen fibres and other

1
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Figure 1.1: Tissues are composed of large number of cells packed together. Cells comprise of a
nucleus, filament networks (e.g. actin), microtubules and a cellular membrane.

structural proteins, which provides structural and biochemical support to cells and helps deter-
mine their behaviour and shape [7]. The structure described here is outlined in Figure 1.1. Cells
bind together via the ECM or by direct attachment to one another at cell junctions [6]. Soft
tissues are therefore inherently multiscale.

The behaviour of multiscale materials has been the subject of extensive investigations since
the 19th century (e.g. [8] [9]). These theories have been utilised in a diverse range of fields, from
biological tissues [10] and biofilms [11], to vascular transport networks [12]. In this wide variety
of disciplines, large-scale volumes (e.g. tissue level) contain a large number of media with small-
scale (e.g. cell level) heterogeneities. Formulating and validating theoretical mechanical models
for soft tissues allows deeper understanding of how these tissues behave and respond to stimuli
and is essential in developing computational tools to simulate applications in the medical field
(e.g. the design of biocompatible prosthetic devices and implants as in [13]). Mathematical
modelling is an important tool in understanding the responses of biological soft tissues and
their irreversible deformations or altered morphology e.g. growth of the heart [14], tumors [15]
(cancer is a tissue disorder due to mutant cells violating rules of social cell growth) and muscle
tissues [4].

Initially, the fields of biomechanics and mechanobiology played an important role in un-
derstanding biological form and function, however the focus was on hard tissues. Translating
from hard to soft tissues is non-trivial. In contrast to hard tissues, soft tissues undergo larger
deformations and the multiphase character of soft tissues plays a critical role [15]. Researchers
in biomechanics later laid out a strategy to characterise the living nature of soft tissues which
shaped the modelling of the deformation of soft tissues: establish a theory with a testable hypoth-
esis, design experiments, calibrate model parameters (parameters fitted to in vitro experimental
measurements) and then validate the model [16, 17].

It is often difficult to fully reconcile in vitro experiments in relatively small samples to the
conditions experienced in vivo. Additionally, soft tissues are difficult to preserve, and ex vivo re-
sponses might vary significantly from in vivo behaviour [18]. This difference might be attributed
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to residual stress [19–21] or to a pronounced active response [22, 23].
Experimental observations by Fung have shown that soft biological tissues exhibit a highly

nonlinear, anisotropic, heterogeneous and large deformation upon physiological loading [24].
The response of soft biological tissues is not only highly non-linear, but time and history depen-
dent and often inelastic [13,25]. Due to the complexity of the behaviour of soft tissues, there is a
challenge to rationally construct macroscale models which encode the properties (e.g. stiffness
or fibre orientation) of the cells and matrix which form the tissue. The macroscale models fitted
to experimental data can only incorporate a homogenized picture of the entire material, making
it difficult to isolate the role of microscale structures and other inhomogeneities. Given these
obvious limitations of macroscale models, there is a need for new continuum models for soft
materials which encode the microscale behaviour in a rational way.

1.2 Continuum models

Tissues are materials comprised of individual discrete objects (cells) at the micro-scale. In this
thesis we consider two ways of constructing tissue models; using an individual-based model
(IBM) (discrete) or as a continuum (locally averaged quantities of cell properties) [26]. We will
review IBMs in Sec. 1.3, but first we will survey a selection of continuum models of soft tissues
in this section. Continuum models are used widely across a variety of soft tissues. In this work,
we are interested in working towards a soft tissue model for the human heart.

Effective modelling of the mechanics of soft biological tissues requires the theory of nonlin-
ear continuum mechanics [27]. Modelling a material in the framework of continuum mechanics
treats the material as a single body (i.e. continuum). The body is considered to be initially at rest
in a reference configuration and material points in the body are described by a position vector
relative to some origin, X. As the body moves and deforms, the material configuration and the
position vector describing material points, x(X, t), changes with time, t. This new configuration
is called the current configuration. The deformation of this material is defined by a deformation
tensor, given by

F= Grad(x). (1.1)

The response of the material is determined by the assumed relationship between strain energy
and deformation, that is, from the choice of strain-energy function, denoted W . This is a scalar
valued function relating the strain energy of a material to the deformation gradient, to define
hyperelastic (ideally elastic) materials. For example, a popular strain-energy function developed
for rubber and applied extensively to soft tissues describes a neo-Hookean material. This strain-
energy function has the two-dimensional form

W =
µ

2
(
λ

2
1 +λ

2
2 −2

)
, (1.2)



CHAPTER 1. INTRODUCTION 4

(a) (b)

spring
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Figure 1.2: (a) Kelvin-Voigt model (spring and dashpot in parallel); (b) Maxwell model (spring
and dashpot in series).

where µ is the shear modulus of the material and λ1 and λ2 are the principal stretches of the de-
formation tensor, F [27]. This model can be used for predicting nonlinear stress-strain behaviour
of materials undergoing deformations.

However, materials are not just elastic, but can also have viscous properties as well. Vis-
coelastic models describe materials that exhibit both viscous (time-dependent resistance) and
elastic responses when undergoing deformation. For example, a Kelvin-Voigt material is a vis-
coelastic material represented by a purely viscous damper and purely elastic spring connected
in parallel (Fig. 1.2a). In this system, the total stress, σT , and the total strain, εT are defined as

σT = σD +σS, (1.3)

εT = εD = εS, (1.4)

where the subscript D indicates the stress-strain in the damper, and the subscript S represents the
stress-strain in the spring. The stress-strain relationship for a Kelvin-Voigt material is given by

σT = EεT +η
dεT

dt
, (1.5)

where E is the elastic modulus and η is the material coefficient of viscosity. If, instead, the
dashpot and the spring were connected in series, the system would describe a Maxwell material
(Fig. 1.2b). In this system, the total stress, σT , and the total strain, εT are defined as

σT = σD = σS, (1.6)

εT = εD + εS, (1.7)

The stress-strain relationship for a Maxwell material is given by

dεT

dt
=

σT

η
+

1
E

dσT

dt
. (1.8)

One advantage of describing soft tissues with continuum models is that techniques for the
mathematical analysis of continuum models (e.g. PDEs) are well developed [26], and for numer-
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ical solutions using finite element techniques, one can also utilise adaptive meshing techniques,
resulting in computational savings. However, existing continuum models fail to resolve cellular
or sub-cellular details [28], and hence have limitations in their applications.

1.2.1 Skin

Early continuum models of biomechanical interest include models for skin. For example, Lanir
and Fung [29] investigated the two dimensional mechanical properties of rabbit skin by imple-
menting biaxial mechanical tests. This research indicated that the biaxial stress-strain relations
were non-linear. These investigations were extended by Fung to develop a pseudo-strain poten-
tial, which allowed derivation of a stress-strain relationship for the skin [30]. This pseudo strain
potential is defined by

ρ0W = f (α,e)+ cexp(F(a,e)), (1.9a)

with

f (α,e) = α1e2
11 +α2e2

22 +2α4e11e22, (1.9b)

F(a,e) = a1e2
11 +a2e2

22 +a3e2
12 +2a4e1e2 + γ0e3

1 + γ2e3
2 + γ4e2

1e2 + γ5e1e2
2, (1.9c)

where W is the strain energy per unit mass, ρ0 is the density of the material in the initial,
undeformed state, e is the Green strain tensor (with i, j-th component ei j and i-th principal strain
ei), and c, αi, ai (i = 1,2,3) and γ are constants (as defined in [30]). This function was fitted
to the exponential experimental data for rabbit skin successfully, when linear elasticity models
were unable to do so.

Further studies have proposed popular constitutive models of the skin (e.g. Li [31, 32]) and
there are numerous theories built in the framework of nonlinear continuum mechanics (e.g. [33–
35]. However, constitutive models of skin need to not only include mechanical and viscoelastic
effects, but must also account for damage and fracture [31]. For example, constitutive laws have
been developed that take into account chemo-mechanobiological modelling for wound healing
(e.g. [36, 37]).

1.2.2 Arterial tissue

The arteries are muscular tubes consisting of three layers: the intima (inner layer), the media
(muscle layer) and the adventitia (connective tissue). Their job is to deliver oxygenated blood
from the heart to tissues around the body. In vivo, arteries are pre-stretched under an internal
pressure load and if one slices an artery open, the resting state of the tube is an open segment
of a circle [38]. Sophisticated models are necessary to take this deformation into account. For
example, Ogden [39] developed a model for hyperelastic materials used to describe the nonlinear
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stress-strain behaviour of complex materials in the form of the strain-energy function

W =
N

∑
p=1

µp

αp

(
λ

αp
1 +λ

αp
2 +λ

αp
3 −3

)
, (1.10)

where N, µp and αp (p = 1, . . . ,N) are material constants and λ1,2,3 are the principal stretches
of the deformation tensor, F. This model was developed in relation to the finite deformation
of solid and tubular cylinders of incompressible isotropic elastic materials (e.g. arteries). This
work was able to predict data from experiments on the torsion and extension of a solid cylinder
of natural rubber [39]. In 2000, Holzapfel, Gasser and Ogden [38] presented their breakthrough
‘HGO’ model, in which a constitutive law for the description of passive mechanical response of
arterial tissue was presented. The strain-energy-function developed here is given by

W =
c
2
(Ī1−3)+

k1

k2
∑

i=4,6

(
exp
(
k2(Īi−1)2)−1

)
, (1.11)

where c,k1,k2 > 0 are stress-like material parameters and Ii (i = 1,4,6) are the invariants of the
right Cauchy-Green deformation tensor, C= FTF, defined by

I1 = λ
2
1 +λ

2
2 +λ

2
3 , (1.12)

I4 = M · (CM) , (1.13)

I6 = M′ ·
(
CM′

)
, (1.14)

where λi (i = 1,2,3) are the principal stretches of F and M and M′ are two distinct preferred
directions in the reference configuration (e.g. fibre directions). Note that since λi (i = 1,2,3) are
the principal stretches, I1 can be interpreted as half of the area of the surfaces of a deformed unit
cube. The strain-energy-function (1.11) consists of the neo-Hookean model for the isotropic
response (the term c(Ī1−3)/2) and an exponential model of the invariants Ī4 and Ī6 which cap-
tures the anisotropic response [38]. This work modelled an artery as a thick-walled nonlinearly
elastic circular cylindrical tube consisting of two layers, each with embedded fibres. This work
emphasised the strong importance of residual stress in the modelling of soft tissues (specifically
arteries), previously highlighted by Chuong and Fung [40]. The HGO model accounted for the
in vitro residual stress by assuming that the unstressed and unstrained configuration of the ma-
terial corresponded to an open sector of a tube, as observed in experiments. An initial bending
is imposed to close the tube, to form a load-free (but stressed) circular cylinder. The HGO
model was later extended to reliably predict passive, time-dependent, three-dimensional stress
and deformation states of healthy young arterial walls under various loading conditions [41] and
to develop the first mathematical model to account for the evolution of the abdominal aortic
aneurysm (a bulge or swelling in the main blood vessel that runs from the heart down through
the chest) [42].
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Figure 1.3: The wall of the heart is constructed from predominantly 3 layers; en-
docardium (inner), myocardium (middle) and pericardium (outer) (left figure from
http://stevegallik.org/sites/histologyolm.stevegallik.org/
images/heartwall.gif)

1.2.3 Cardiovascular tissues

The heart is a muscular organ, the walls of which are made up of three layers: epicardium (outer),
myocardium (middle) and endocardium (inner), shown in Fig. 1.3. The myocardium layer, a car-
diac muscle, makes up the thickest part of the wall. This is composed of cardiomyocytes (cells),
connected end-to-end by intercalated discs. Cardiomyocytes contain myofibrils, a fundamental
contractile unit of muscle cells which contract their length during systole (contraction) and relax
their length during diastole (relaxation). This ability to contract is critical to the cyclic beating of
the heart. Cardiomyocytes form the atria (the chambers where the blood enters the heart) and the
ventricles (the chambers where blood is pumped out of the heart). If blood flow supplying the
heart wall (coronary circulation) is restricted, such as in myocardial infarction, cardiomyocytes
die, which may cause whole portions of myocardium to die. This can cause permanent dam-
age, however research indicates repair may be possible with stem cells [43]. Understanding the
behaviour and structure of cardiomyocytes within the tissue (array) can therefore be extremely
useful. Modelling of the cardiovascular system includes modelling the heart (myocardium soft
tissue) along with the arterial networks. In this section we will outline a selection of relevant
studies.

Early models of cardiac muscle mechanics were modified versions of the skeletal muscle
models of Hill [44, 45] and have evolved from these studies [46]. Arts et al. [47] proposed an
early ventricular model to simulate the mechanics of the left ventricle pump function. Here,
the left ventricle was simulated by a thick-walled cylinder composed of eight concentric shells,
with each cell identified with their own fibre orientation. During a cardiac cycle, the left ventri-
cle twists during systole and untwists during diastole. This twisting motion aids left ventricular
ejection (ejecting blood to the arteries) and the untwisting aids relaxation and ventricular fill-
ing (taking in blood from the arteries). This work highlighted the importance of twisting in the
left ventricle in equalising transmural differences and minimising stress. There are extensive

http://stevegallik.org/sites/histologyolm.stevegallik.org/images/heartwall.gif
http://stevegallik.org/sites/histologyolm.stevegallik.org/images/heartwall.gif
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models for the heart based on a simple cylindrical geometry [47–49]. For example, Hunter [49]
presented myocardial constitutive laws for both the passive and active cardiac muscle mechan-
ics. This model was able to describe experimental results on a variety of tissues from various
species (mainly rat and ferret). Humphrey and Yin [50] presented a model of myocardium with a
thick-walled cylindrical annulus composed of a nonlinear, anisotropic, incompressible material.
This work considered finite deformations including inflation, extension, twist and transmural
shearing. This model was able to predict transmural variations in stress and strain in comparison
with experimental data.

In 2009 Holzapfel and Ogden [51] presented their HO model for passive myocardium. This
model was characterised by the strain-energy function

W =
a

2b
exp(b(I1−3))+ ∑

i= f ,s

ai

2bi

(
exp(bi(I4i−1)2)−1

)
+

a f s

2b f s

(
exp(b f s

(
I8 f s
)2
)−1

)
,

(1.15)
where a,b,a f ,as,b f ,bs,a f s,b f s > 0 are material constants (with the a parameters having di-
mension of stress and b parameters being dimensionless), I1 is the first invariant of the right
Cauchy-Green deformation tensor and

I4 f = f0 · (Cf0) , (1.16)

I4s = s0 · (Cs0) , (1.17)

I8 f s = f0 · (Cs0) , (1.18)

where f0 and s0 are the basis vectors which coincide with the fibre axis direction and sheet
axis direction respectively and C is the right Cauchy-Green deformation tensor, C= FTF. This
model accounts for the fibre direction within myocardium. When applied to simple shear and
biaxial deformations, the model was able to successfully fit to existing experimental data. These
models have the potential to be useful, noninvasive diagnostic tools, demonstrating their impor-
tance in further development.

Fully understanding the human cardiac cycle requires tissue-scale models for the deforma-
tion of the heart wall in response to an active stimulus [15], i.e. active contraction. For example,
Niederer et al. [52] presented the Niederer-Hunter-Smith (NHS) model for active contraction
from a biochemical perspective. Calcium levels play a key role in the activation of contraction
in myocardium, and this work presented a constitutive model for active contraction derived from
a study of calcium activity. Work by Cai et al. [53] presented a model in which the HGO con-
stitutive law was utilised to describe the passive myocardial response, coupled with the NHS
myofilament model to describe the active tension. These such models provide a foundation to
couple the electrophysiology and mechanics in the heart, working towards more accurate cardiac
models.
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1.3 Individual based models

As discussed in the previous section, continuum models typically fail to resolve cellular or
sub-cellular details [28], however, it is straightforward to include these properties along with
heterogeneous cell populations within individual-based models (IBMs) [54, 55], providing a
natural motivation to construct IBMs. In recent years there has been an increasing focus on
biological and physiological IBMs that incorporate a discrete representation of the microscale.
These computational models offer a useful means to investigate and test mechanisms (e.g. cell
sheet dynamics) and have played a key role in the study of cell-cell interactions [56].

There are multiple discrete approaches developed for modelling cell populations [56]. The
simplest discrete models of the mechanical behaviour of tissue are lattice based [57–60], where
cells are constrained to lie on a regular grid. These models consist of a lattice on which a
parameter is defined in each site. Adjacent sites with the same parameter value define a cell,
and the absence of a value represents the medium. Each lattice site can contain at most a single
cell, and rules are set up for determining how cells interact, divide and move. However, these
models do not treat the mechanics of cellular systems realistically. For example, they can involve
moving an entire column or row of cells to accommodate a newborn cell and can therefore
contain instantaneous ‘action at a distance’ (whereby cells are moved in the absence of external
forces or effects) effects [61]. To overcome this, off-lattice, or cell-centre, models along with
vertex models were developed to model cell behaviour in a more realistic fashion.

In cell-centre models, cells are described by a single point (the centre). There are often
two vital components to these models. First, a definition of cell-connectivity, defining which
cells are in contact, and second, a definition of the force between two cells in contact (cell-cell
interaction force) [61]. For example, the overlapping spheres method defined two cells as being
in contact if they are within a certain distance of each other. However, cells in vivo are not
naturally spherical and a model of spherical cells do not pack as closely as cells in reality, hence
other methods have been developed, for example, using ellipsoids [62].

In vertex models, each cell is represented as a two-dimensional polygon, with vertices and
edges shared between adjacent cells. Cells are defined by a location of a finite set of vertices
along with rules defining how any vertex moves based on forces, connecting vertices locations,
neighbouring cell areas, etc [63]. The origins of vertex models stem from inorganic structures
such as foams [64,65] and grain boundaries [66], however a significant challenge when applying
these methods to biological tissues is the ability of cells to grow, divide and die [56].

Work by Fozard et al. [26] developed a discrete one-dimensional vertex based IBM of a
monolayer of tightly packed cells. In this work, cells were described as a bounded region,
defined by the location of their endpoints and had both elastic and viscous mechanical proper-
ties. Cells were subject to drag due to adhesion to a substrate and had fixed neighbours, where
drag forces were linear functions of the vertex velocities. The evolution of this system was
driven by a mechanical free energy, from which force balances on cell vertices were calcu-
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lated. Work by Murray et al. [67] modelled cells as point masses connected by linear springs
in a one-dimensional discrete formulation. These existing models include the forces exerted
by cells on each other and their surrounding medium, however this is usually incorporated in a
simplistic manner with linear springs (e.g. [67]) or with generic force laws based on Hooke’s
law (e.g. [68]). These models also incorporate drag on the system due to substrate adhesion,
however this is usually proportional to vertex speed with a constant of proportionality. However
there is a lack of IBMs of soft tissue cells where forces are derived directly from a continuum
mechanical framework. The most extensive application of IBMs in soft tissue is in the modelling
of epithelium. This is detailed in Sec. 1.3.1 below.

However, one should note that techniques for the mathematical analysis of continuum mod-
els are better developed than those for IBMs [26]. Furthermore, the computational expense of
numerical simulations of IBMs depends on the number of cells in the system, whereas for con-
tinuum models it depends on the spatial discretisation spacing (dictated by the size of the system
relative to the scale on which variations of interest occur) [26]. Additionally, on the global scale,
these materials made of discrete objects behave as a continuous medium that can be described
by elastic strain, stress and velocity gradients [69], hence is it useful to be able to investigate and
consider effects at the macroscale. It is therefore of interest to relate IBMs to continuum models
(in a large cell number limit), which are more efficient. This also allows the measurement of
cell properties to estimate continuum parameters and vice versa. This relation can be achieved
with upscaling techniques (e.g. [26, 67, 68]), which will be discussed in Sec. 1.4.

1.3.1 Epithelial Models

Epithelium is a type of soft tissue which lines the outer surfaces of organs as well as the inner
surfaces of cavities in many internal organs. An example is the epidermis, which is the outer-
most layer of the skin. Epithelial sheets have a highly organised nature and can achieve complex
morphogenetic processes through coordinated movement and rearrangement of individual cells.
Vertex IBMs (described above) are suitable for tightly packed cell sheets where intercellular
space is negligible, as in epithelial tissue cells [56]. Epithelium is widely used in biological
modelling literature; this is due to the accessibility of this tissue. They provide a simple exper-
imental framework and are easy to culture in a monolayer, providing ease of access to data for
comparisons with mathematical models.

While vertex models were initially developed to study inorganic structures [56], Honda and
Eguchi [70] were among the first to use vertex models to study epithelial sheet deformations.
In this work, a monolayer of convex polygonal cells with no gaps or overlaps was presented to
investigate cell boundary length. These models have since been extensively used to investigate
cellular mechanisms and physical mechanics of epithelial monolayer deformations [56], and
there are numerous discrete IBMs for epithelium [26, 54, 63, 71–76].

An important resource for vertex modelling of soft tissue is CHASTE (Cancer, Heart and
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Soft Tissue Environment), which is an open source C++ simulation package for individual-based
modelling of cell populations, specifically applied to soft tissues [61]. For example, Fletcher
et. al. [56] described an approach for implementation of vertex dynamics models within the
CHASTE framework. This work investigated the dynamic behaviour of epithelial sheets by
comparing two formulations of vertex models within the CHASTE environment. The versatility
and generality of this framework has been illustrated using a number of biological examples
(e.g. cardiac electro-physiology [77, 78] and intestinal tissue [54]) with the aim of working
towards guaranteeing the reproducibility of computational results across the field [56].

Nestor-Bergmann et al. [71] used vertex modelling to describe a spatially disordered epithe-
lial monolayer. This work explored the relationship between cell shape and mechanical stress
in epithelium, both at the cellular and tissue levels. Here, cellular forces were derived from
each cell’s own mechanical energy, a similar formulation to previous works (e.g. [63, 70, 75]),
including contractile strength. Farhadifar et al. [63] (using the CHASTE simulation package)
constructed a vertex model to investigate packing geometries and the role of developmental
mechanisms in these biophysical properties of cells. In this model, junctional forces were de-
fined in terms an energy function which described the forces due to cell elasticity, active con-
traction and adhesion (dissipative) molecules. These forces acted to displace the vertices defined
in the model.

A review by Fletcher et al. [56] summarised how vertex models have been used to provide
insight into developmental processes. This work outlined the remarkable progress in exper-
imental studies of epithelial dynamics. Numerous different cell-based modelling approaches
have been developed for studying how processes at single cell level influence collective dynam-
ics in epithelial sheets [79, 80]. In particular, the review surmised that cell based vertex models
have played an increasingly important role in the study of morphogenesis, particularly in epithe-
lial tissues. However, an important challenge is the computational cost, hence systematic and
rational model reduction is critically important [56].

1.4 Upscaling

We have looked at both continuum models and IBMs for soft tissues. We now consider a trans-
lation of an IBM into a continuum model. One useful method is to derive continuum models
exploiting the separation of spatial scales, which is widely used and central to the development
of macroscale theories [81]. The aim of these techniques is to derive equations which govern the
behaviour of the system over spatial scales which are much larger than those on which material
properties vary. Using such upscaling techniques one can derive continuum macroscale models
directly from discrete micro-scale IBMs with appropriate approximations [82, 83].

We will now survey a range of upscaling techniques, which include asymptotic homogeni-
sation (Sec. 1.4.1), mixture theory (Sec. 1.4.2), volume averaging (Sec. 1.4.3) and discrete-to-
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continuum asymptotics (Sec. 1.4.4).

1.4.1 Homogenisation

Asymptotic homogenisation is an upscaling technique that substitutes a region (e.g. tissue)
formed of a fine grid of discrete heterogeneous items (e.g. cells), with an equivalent homoge-
neous region, made up of a single coarse-grid item (i.e. a coarse-scale model). For example,
one can take known equations describing a small region of the material and use these to describe
the entire material, relative to the size of the small region. Homogenisation is typically used in
periodic, porous medium [84] and the main advantage of this approach is that it allows a sig-
nificant reduction of the problem size [85]. Inherent in this method is the compromise between
computational cost and the accuracy of the coarse-scale solution, with the most popular upscal-
ing methods working to balance these competing demands [86]. This approach is described
as being applicable “to all kinds of processes that occur in periodic media” [87] and has been
applied in numerous biological tissues including tumours [88] and bone or tendons [89]. For
example, Penta et al. [89] developed a model for three-dimensional elastic composite materials
using asymptotic homogenisation. This work was able to successfully replicate results from
experimental data from bone tissues.

1.4.2 Mixture theory

Mixture theory is used to describe materials composed of multiple different material types and
hence is used widely in modelling composites in material science. For example, the heart wall is
made up of three layers. To describe the full wall using mixture theory, one can use a weighted
sum (or weighted average) of the strain-energy functions describing each individual layer, to
derive a strain-energy function describing the full material. This method differs from that of
asymptotic homogenisation since the macroscale is a weighted average of heterogeneous mate-
rials, instead of describing the full material with a small area of the domain.

This method has been applied to numerous biological tissues. For example, Byrne and
Preziosi [90] used the theory of mixtures to develop a multiphase model of the growth of a solid
tumour. This model comprised of a solid and liquid phase and results suggested that tumour
growth was not only limited by nutrient availability but also by the stress from the surrounding
tissue. Work by Lang et al. [91] formulated a model for brain tissue, which was considered to
be a mixture of solid and liquid components (e.g. extra- and intra-cellular matrices and water),
to investigate the swelling of slices of brain tissue.
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1.4.3 Volume averaging

Volume averaging is a popular homogenisation technique for multiphase systems [81]. The un-
derlying idea of this method is to develop appropriate macroscopic equations (which hold every-
where in the domain) from microscopic equations which hold at some small point in the domain.
This approach has been extensively applied to porous media [92–94]. Whitaker [95] developed
a method of using volume averaging with closure to derive macroscale equations. Examples of
this homogenisation technique include applications to biological tissues [10], biofilms [11] and
transport in vascular networks [12].

1.4.4 Discrete to continuum asymptotics

The methods of multiscale asymptotics include discrete-to-continuum asymptotics [96], and in-
herent in these methods is the translation of discrete differences into continuum derivatives.
Hence these methods are often used to study differential operators (e.g. [97, 98]). These meth-
ods involve identifying a discrete (micro-scale) model, then assuming parameters vary in space
and time on scales (macro-scales) much larger than the discrete configuration. One can then
expand variables as functions of a very small parameter - usually the ratio of micro and macro
length scales (it is typical in a multiscale problem that characteristic length scales of individual
cells are much smaller than a characteristic length scale of a tissue). If this small parameter is
chosen too large, the macro- and micro-scale systems may not agree. These continuum approx-
imations can be obtained by expanding differences in Taylor series [99, 100]. The method of
discrete-to-continuum asymptotics will be used in this thesis. This approach does not require
a homogeneous problem at the cell level, meaning that cells need not have uniform properties,
providing an advantage over most other upscaling techniques.

The method of discrete-to-continuum asymptotics has been utilised in a variety of models.
For example, Fozard et al. [26] approximated their discrete one-dimensional vertex-based IBM
of a monolayer of cells with a continuum PDE model through expanding Taylor series of differ-
ences to model heterogeneous cell populations in the limit of a large number of cells. This study
found that the error in the continuum approximation was smaller for a system where parameters
of neighbouring cells varied slowly in space than in a system that was spatially periodic (and
varied faster spatially). This model was therefore applicable for even a modest number of cells
if parameters varied slowly in space. Murray et al. [67, 68] used discrete-to-continuum asymp-
totics to construct nonlinear diffusion models for proliferating arrays of large numbers of cells
from a discrete IBM consisting of masses and springs. For simulations for a variety of nonlinear
force laws in the discrete model and their respective diffusion coefficients in the continuum,
excellent agreement is observed between models.

A review by Davit et al. [81] investigated the comparison of volume averaging (specifically,
the method used by Whitaker [95]) and multiscale asymptotics (specifically periodic multiscale



CHAPTER 1. INTRODUCTION 14

F

G A

Stress free virtual 

configuration

Initial stress free 

configuration

Current (stressed)

configuration

Figure 1.4: Decomposition of the deformation tensor, F into growth, G, and elastic, A, compo-
nents.

expansions). The work concluded that although they share similar goals, the nature of the ap-
proaches are slightly different. However, the main differences lie in the methodologies, the
insight provided, the assumptions and algorithms, rather than the results.

1.5 Growth

When modelling any physiological system, including soft tissues, it is a natural to also con-
sider growth and remodelling. Remodelling (and growth) describes changes in properties (e.g.
anisotropy, stiffness, strength) resulting from changes in microstructure over time [17]. Bi-
ological growth is involved in many fundamental biological processes (e.g. morphogenesis,
physiological regulation, pathological disorders) and involves complex interactions across mul-
tiple scales [101]. Growth is the process by which a body increases in size through the addition
of mass and can be localised or restricted to a certain area [102], for example in a cancerous
proliferating rim where growth and proliferation occur only in a localised area [103]. However
there is no unified characterisation of growth that is broadly accepted [15]. Volumetric growth
(growth throughout the bulk of the body) is common in the growth of hearts [104], arteries [105]
and tumours [106].

Continuum mechanics and nonlinear elasticity provides a natural framework to study growth,
from which the theory of morphoelasticity was presented [101, 107]. This theory deconstructs
the deformation tensor, F, into a product of two tensors; viscoelastic deformation, A, and growth,
G. Hence

F= AG. (1.19)
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The deformation is considered to be a two step process. Starting from the initial, stress-free
configuration, the material grows to a configuration which is stress free but not compatible with
the environment. This configuration is called a virtual configuration. The second step is the
elastic response, which can be considered as the problem of fitting the grown material to the
environmental constraints. This step introduces stress, mapping the material from the virtual
configuration to the current configuration. This is illustrated in Fig. 1.4.

This formulation enabled the modelling of growth in various soft biological tissues and is
now commonly used, for example maladaptive cardiac growth [14] or growing tumours [106].
Growth is a key behaviour in cancer, a disorder of tissue renewal due to abnormal growth of
mutant cells. Formulating models for growth of soft tissues will therefore provide insight into
determining what factors affect the behaviours of these key systems. The majority of models for
biological tissue growth focuses on modelling deposition of solid matrix products from a con-
tinuum perspective [107–110]. For example, Work by Kida et al. [111] developed a continuum
mechanical constitutive model of epithelial tissues based in the framework of morphoelasticity,
comparing numerical simulations of the model to experimental results. Klisch et al. [110] pre-
sented a generalised theory of volumetric growth for compressible elastic materials. This work
derived a continuum constitutive model for incremental growth.

Biological tissue growth can refer to cell development not only in terms of an increase in
volume but also in terms of cell division (proliferation), where a parent cell divides to produce
two daughter cells [112]. This process can occur for a number of reasons, such as to preserve
a volume-surface area ratio that allows enough nutrients from the environment to pass into the
cell to sustain it [113].

Both continuum and discrete models for growth and proliferation of cells have been devel-
oped. For example, work by Hywood et al. [114] developed a discrete agent-based stochastic
model where cells were able to grow and divide within a tissue environment. In this work, dis-
crete cells are able to divide and time between divisions for individual cells were implemented
using a probability distribution. The corresponding continuum representation of the proliferat-
ing system was derived using discrete-to-continuum upscaling to describe the average behaviour
of the stochastic proliferation. A further example is the work by Murray [67], in which prolif-
eration is implemented in the discrete model with cells undergoing division, where cells divide
when they reach a certain age. Here, proliferation was accounted for in the continuum model
by adding an appropriate source term to the nonlinear diffusion model. Results showed that an
appropriate source term could adequately describe the resulting cell population from the discrete
model.
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1.6 Structure

In this work we present a general framework to derive multiscale models for soft tissues which
incorporate the properties of individuals cells without assuming homogeneity or periodicity at
the cell level. We approach the problem from a viewpoint of rational mechanics rather than
cell biology, and consider a reduced mechanical model for individual cells (which can deform,
grow and divide) that is grounded in the framework of nonlinear viscoelasticity. We consider
rationally derived non-linear forces based on mechanical constitutive models for individual cells
and couple these to form a network description of arrays of cells, where each cell has indepen-
dent material and mechanical properties. Cells exert forces on their neighbours through shared
boundaries and we consider the dynamics of these arrays, deriving discrete systems of ODEs.
We consider two possible formulations of dissipation due to substrate adhesion. We then utilise
a discrete-to-continuum upscaling to derive new (nonlinear) continuum PDE models for the tis-
sue (array) which allows for gradients in cell properties. This approach has been implemented
in cell signalling [82, 115] and discrete IBM [26, 67] and we extend its use here to soft tissue
mechanics.

In Ch. 2 we consider a single quasi-two-dimensional line of nonlinearly viscoelastic cells
(Fig. 2.1 below). In particular the array is constrained so that one end is fixed, but the other
is subject to a prescribed displacement. These cells necessarily have a finite size, and exert
force on their neighbours along the array, but can also exhibit a force in the transverse direc-
tion. Having constructed and solved the discrete model in Sec. 2.1 we then use the methods
of discrete-to-continuum upscaling to derive a new PDE model for this system in Sec. 2.2. For
static deformation we show that for simple hyperelastic constitutive laws for individual cells
(e.g. Neo-Hookean) we recover the corresponding static model at the macroscale. However, this
discrete-to-continuum approach informs new time dependent models for these tissues, and we
draw comparisons to existing models for viscoelastic tissues. In Sec. 2.3 we illustrate results
for test problems, considering the influence of a time-dependent displacement with uniform and
non-uniform cell shear modulus, to consider the case where a localised region of tissue has very
different mechanical properties, such as in a myocardial infarction. In Sec. 2.4 we extend this
formulation to demonstrate a simple application of this approach to models of the deformation
of the human heart, incorporating an active mechanical stress into the microscale model, which
quantifies macroscale tissue deformation. This allows us to investigate the effect of an active
contractive force in a periodic domain, as an approximation to the deformation of a ring of left
ventricle tissue.

In Ch. 3 we extend the model from Ch. 2 using the theory of morphoelasticity [116] to
include growth in one dimension. The array is constrained so that one end is fixed, but the
other end is subject to zero external stress. We construct the discrete model in Sec. 3.1 and
upscale to derive the corresponding PDE model for this system in Sec. 3.2. In Sec. 3.3.1 we
investigate the role of dissipation in the system, comparing two different dissipative functions
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and the effect they have on the behaviour of the system in terms of the length of the growing
array. In Sec. 3.3.2 we couple cell proliferation with cell growth, implementing a division event
when cells grow to double their initial area. We examine how dissipation translates into different
macroscale deformations, for example, a proliferating rim.

In Ch. 4 we consider a quasi-three-dimensional sheet of nonlinearly viscoelastic cells. We
first consider the discrete formulation for a general deformation in Sec. 4.1 and outline the chal-
lenges of maintaining generality. We then specify the system for two types of deformation:
uniaxial deformation and simple shear. In Sec. 4.2 we consider each cell undergoing a uniaxial
deformation and derive the corresponding upscaled system in Sec. 4.2.9. For a static deforma-
tion we show that for simple hyperelastic constitutive laws for individual cells we recover the
corresponding static model at the macroscale. In this system, one edge of the sheet is fixed
and the parallel edge is subject to a prescribed deformation. We consider two cases for the re-
maining boundary conditions. First, in Sec. 4.2.12, that one is fixed and the other is subject to
zero external stress. Second, in Sec. 4.2.13, we implement periodic boundary conditions on the
remaining two boundaries. In Sec. 4.3 we then consider each cell undergoes a simple shear
deformation and derive the corresponding upscaled PDE model in Sec. 4.3.9. In this system, we
enforce periodicity in one dimension and consider uniformity in cell parameters in this direction,
allowing us to reduce the system to consider a single array of cells. We fix one end of the array
and implement a shearing force at the parallel edge. We enforce no motion perpendicular to the
applied shearing force. In Sec. 4.3.11 we investigate the response of the system subject to forces
of different magnitudes.

Finally, in Ch. 5 we conclude with a summary of the results and findings and consider some
extensions to the work.



Chapter 2

Deformation of a Single Array of Cells

In this chapter we consider the dynamic deformation of a single array of nonlinearly viscoelastic
cells of constant density that are arranged end-to-end along a single line atop a rigid substrate, as
shown in Fig. 2.1. For simplicity the cells are assumed to be of uniform thickness, H (measured
in the direction normal to the substrate, parametrised by the coordinate z), and we assume there
is no deformation in this direction, reducing the three-dimensional system to a two-dimensional
one. The midline of this two-dimensional array is parameterised by the coordinate x (shown as a
dashed line in Fig. 2.1), while the tangential direction (in the plane of the page) is parametrised
by the coordinate y. These cells are assumed to be in contact along their shared edges where
stress can be transmitted. All cells are assumed to be incompressible, which allows us to model
the two-dimensional system with one-dimensional ODEs. We assume the outer edge of the
cell at one end is adhered to a fixed impermeable boundary at x = 0. At the other end of the
array, we denote the location of the outer edge at x = l(t), where we apply a boundary condition
of either prescribed displacement, prescribed force, or periodicity. In the lateral y-direction,
we assume boundary conditions of zero normal and tangential stress on external interfaces. In
practice, the difference in external pressures on soft tissues can be non-zero, but we assume
here that the pressure difference between adjacent layers of constituent cells at the microscale
will be small, and for the purposes of this study is assumed negligible. The system is subject
to substrate dissipation (damping relative to initial position) and Kelvin dissipation (damping
relative to internal viscosity). Although idealised, this model system elucidates the competition
between local elastic deformation at the single cell level to the global mechanical deformation
and expansion of the entire array.

We construct the geometry of N cells, aligned end to end, and first construct discrete IBMs
in Sec. 2.1. This discrete model is upscaled to form a new macroscale PDE model in Sec. 2.2,
where we consider the case of small displacements and also draw comparisons to a static system
derived from an equivalent macroscale model. We investigate this system by considering the
effects of a prescribed deformation at one end of the array in Sec. 2.3 and then extending this
passive formulation to incorporate effects of active contraction in Sec. 2.4.

18
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Figure 2.1: Force diagram of N viscoelastic incompressible 2D cells aligned end-to-end in a
single array. The imposed a fixed boundary at x = 0 (to investigate the system in a test problem)
is represented as a solid wall at the left hand side of the array. The dissipation due to cells
attached to the substrate (in the plane of the page) is represented as a dashpot connected to the
initial position of the cell centre (displayed on a dashed line above the array of cells here for
clarity). See text for more details.

2.1 Discrete Model

We consider a single line of N discrete cells, as shown in Fig. 2.1. These cells are indexed
by the coordinate j ( j = 1, . . . ,N) and the properties of cell j are labelled with a superscript
( j). In general these individual cells can have complicated shapes and are embedded within an
extracellular matrix. For simplicity in this study, we assume that each constituent cell can be
modelled as a cuboid which deforms in a way such that the cell remains cuboidal. Since the
out-of-plane thickness remains constant, each cell is characterised by a length in the x-direction
(along unit vector x̂), denoted by L( j)(t) (with initial value L( j)

0 ), and width in the y-direction
(along unit vector ŷ), denoted by W ( j)(t) (with initial value W ( j)

0 ) for j = 1, . . . ,N. As mentioned
above, the system is assumed to have no displacement or growth in the out-of-plane direction
and so the deformation can be treated as entirely planar; for simplicity in the analysis below
we ignore the out-of-plane direction entirely and present the tensors for stress and strain as two-
dimensional. Denoting the total length of the line of cells as l(t) (which may be either prescribed
or solved for, with initial total length l0), we assume there are no voids and must have

l(t) =
N

∑
j=1

L( j)(t), l(0) = l0 =
N

∑
j=1

L( j)
0 . (2.1)

We assume the cells have uniform density ρ( j) ( j = 1, . . . ,N), and characterise cells by the
position of their centre of mass (which coincides with their geometric centre since the density
is uniform) denoted by x( j)

c = (x( j)
c (t),0), for j = 1, . . . ,N and the position of their boundaries,

denoted by x( j)
b = (x( j−1/2)

b (t),0), for j = 1, . . . ,N + 1, where the index j− 1/2 denotes the
boundary between cells j−1 and j+1 (while the index 1/2 denotes the outer boundary of cell
1 and the index N +1/2 denotes the outer boundary of cell N).

We assume each cell can undergo a nonlinear viscoelastic deformation relative to its geo-
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Figure 2.2: Local reference coordinate system for cell j.

metric centre, while this geometric centre moves according to a global force balance. The local
reference coordinate system for cells (Fig. 2.2) is X( j) = (X ( j),Y ( j)) = (x− x( j)

c (0),y) so that
−1

2L( j)
0 ≤ X ( j) ≤ 1

2L( j)
0 and −1

2W ( j)
0 ≤ Y ( j) ≤ 1

2W ( j)
0 . In the current configuration, the coordi-

nate system for cells is defined by x( j) = χχχ( j)(X( j), t). The mapping χχχ defines the deformation
from the reference to the current configuration. The corresponding deformation gradient tensor
is F( j) = Grad(x( j)), where the gradient operator is defined in the reference coordinate system
X( j).

2.1.1 Deformation

The deformation gradient tensor F( j)(t) for the deformation of a single cell is

F( j)(t) =

[
λ
( j)
1 (t) 0

0 λ
( j)
2 (t)

]
, (2.2)

where λ
( j)
1 (t) and λ

( j)
2 (t) are the principal stretches of cell j ( j = 1, . . . ,N), and

λ
( j)
1 (t) =

x( j+1/2)
b (t)− x( j−1/2)

b (t)

L( j)
0

. (2.3)

In all models we consider a uniaxial deformation, that is, applied deformation is applied in one
direction only.

2.1.2 Incompressibility

The constraint of incompressibility on the deformation implies that det
(
F( j)
)
= λ

( j)
1 λ

( j)
2 = 1,

( j = 1, . . . ,N). Hence λ
( j)
2 =

(
λ
( j)
1

)−1
.
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2.1.3 Rheological Model

We assume that each cell is composed of an elastic component in parallel with a viscous dashpot,
the Kelvin-Voigt rheological model, which has previously been used to model cells (e.g. [117])
(Fig. 2.1).

Since the two components are arranged in parallel, this results in an additive decomposition
of the total Cauchy stress i.e.

σσσ
( j) = σσσ

( j)
e +σσσ

( j)
v , ( j = 1, · · · ,N), (2.4)

f where σσσ
( j)
e and σσσ

( j)
v represent the elastic and viscous components of the Cauchy stress, respec-

tively.

2.1.4 Elastic Stress

The hyperelastic component of the cell deformation follows from an incompressible strain en-
ergy functional,

W
( j)

e = W
( j)

e (λ
( j)
1 ,λ

( j)
2 ), ( j = 1, . . . ,N), (2.5)

where the function W
( j)

e is chosen to satisfy objectivity requirements [118]. We characterise the
elasticity of individual cells by their shear modulus, denoted µ( j) ( j = 1, . . . ,N) and denote µ0

as a typical shear modulus for each cell (for example, the mean value for a healthy cell and in
this chapter we use µ0 = 1). We preserve generality when specifying the model, but show results
below for the incompressible neo-Hookean strain energy functional

W
( j)

e = 1
2 µ

( j)
((

λ
( j)
1

)2
+
(

λ
( j)
2

)2
−2
)
, ( j = 1, . . . ,N), (2.6)

which is often used for modelling biological soft tissues (e.g. [119, 120]).
The corresponding Cauchy stress tensor for cell j is then given by,

σσσ
( j)
e = F( j)∂W

( j)
e

∂F( j)
− p( j)I, ( j = 1, . . . ,N), (2.7)

where p( j) is a Lagrange multiplier interpreted as the elastic pressure j ( j = 1, . . . ,N) [102] and
I is the identity tensor. Since we assume a rectangular deformation for each cell this results in a
diagonal Cauchy stress tensor of the form

σσσ
( j)
e =

[
λ
( j)
1 W

( j)
1 − p( j) 0

0 λ
( j)
2 W

( j)
2 − p( j)

]
, W

( j)
1,2 =

∂W
( j)

e

∂λ
( j)
1,2

, ( j = 1, . . . ,N). (2.8)
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2.1.5 Viscous Stress

Since the deformation is such that cells remain cuboidal, the velocity of deformation is the time
derivative of the stretches in the principal directions, which are spatially uniform across the cell,
denoted by λ̇

( j)
1 and λ̇

( j)
2 ( j = 1, . . . ,N), where the dot notation denotes the time derivative.

Hence the viscous Cauchy stress is

σσσ
( j)
v =

[
2η( j)λ̇

( j)
1 0

0 2η( j)λ̇
( j)
2

]
, ( j = 1, . . . ,N), (2.9)

where η( j) ( j = 1, . . . ,N) is the internal cell viscosity.

2.1.6 Boundary Conditions

The pressure p( j) ( j = 1, . . . ,N) within each cell is determined by applying the boundary condi-
tion of no lateral force on the unconfined edges (parallel to x̂), which gives

p( j) = λ
( j)
2 W

( j)
2 +2η

( j)
λ̇
( j)
2 , ( j = 1, . . . ,N). (2.10)

Using (2.10), the total force on the shared boundary (force per unit length) exerted by an indi-
vidual cell on its neighbours (Fig. 2.3) then takes the form

F( j)
± = F( j)

± x̂ =
∫ 1

2W ( j±1/2)

−1
2W ( j±1/2)

σσσ
( j) · (∓x̂) dy

=∓x̂W ( j±1/2)
(

λ
( j)
1 W

( j)
1 −λ

( j)
2 W

( j)
2 +2η

( j)
(

λ̇
( j)
1 − λ̇

( j)
2

))
, ( j = 1, . . . ,N),

(2.11)

where W ( j±1/2) is the length of the shared boundary between cells j and j±1, min
(

W ( j),W ( j+1)
)

(the minimum value of the widths of cells j and j + 1). However, it is not straightforward to
carry this term through the upscaling for the continuum model, and so we approximate this by
the mean of the cell widths

W ( j±1/2) =
1
2

(
W ( j±1)+W ( j)

)
, (2.12)

where W ( j) =W0λ
( j)
2 . The resultant force at the boundary between cells j and j+1 is

F( j+1/2)
b = F( j)

+ +F( j+1)
− , ( j = 1, . . . ,N−1). (2.13)

This net force drives motion and deformation of the line of cells.



CHAPTER 2. DEFORMATION OF A SINGLE ARRAY OF CELLS 23

Unit (j)

x(j-1/2)(t)
b

x(j+1/2)(t)
b

Unit (j+1)

x(j+3/2)(t)
b

y

x

W(j+1/2)

F+
(j) F-

(j+1)

F+
(j+1)F-

(j)

Figure 2.3: Force balance across boundary between cells j and j+ 1, summing the individual
forces of cell j on cell j+1 and of cell j+1 on cell j.

2.1.7 Substrate Damping

We consider the additional possibility that the cells are binding and unbinding to a substrate that
is fixed in the plane of the page; the resulting force is assumed proportional to the rate of change
of the position of the centre of mass of the cell relative to the substrate, with constant of pro-
portionality K( j), ( j = 1, . . . ,N). The damping is reminiscent of a Stokes drag on a sedimenting
sphere in fluid mechanics, and is attributed to friction due to the ECM [7]. This is equivalent to
each cell having a dashpot connected to a reference point (Fig. 2.1).

2.1.8 Equations of Motion

We apply Newton’s second law to each internal cell. To simplify the equation, we approximate
the motion as being over-damped, since cells usually move in relatively dissipative environments
(e.g. [67, 74, 121, 122]). Hence we neglect inertial effects and the global force balance can be
expressed as

K( j)dx( j)
c

dt
= F( j−1/2)

b +F( j+1/2)
b , ( j = 1, . . . ,N). (2.14)

The cell’s centre of mass is the mean of its boundary positions,

x( j)
c = 1

2

(
x( j−1/2)

b + x( j+1/2)
b

)
, ( j = 1, . . . ,N). (2.15)

2.1.9 Global Boundary and Initial Conditions

To complete the system, we define boundary conditions on the outer boundaries. We investigate
the system by first considering a test problem with simple boundary conditions. For all systems
outlined here, the boundary of cell j = 1 at x = 0 remains fixed and we prescribe the total length
of the line, l(t), so that

x(1/2)
b (t) = 0, x(N+1/2)

b = l(t), for t ≥ 0. (2.16)
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In general, initially the cell boundaries are located at

x( j−1/2)
b =

j

∑
i=0

L( j)
0 , ( j = 1, . . . ,N +1), (2.17)

with x(1/2)
b = 0; however, in the simulations below we assume all cells are initially the same

length L( j)
0 = L0 and width W ( j)

0 = W0 ( j = 1, . . . ,N). This is not a necessary assumption but
significantly simplifies the specification of the model and the upscaling to a continuum model
for Sec. 2.2. In this case, (2.17) reduces to

x( j−1/2)
b = L0 j, ( j = 1, . . . ,N +1). (2.18)

2.1.10 Non-dimensional variables

It is useful to consider the system in terms of non-dimensional variables (denoted with an over-
bar). We consider that the damping parameters are uniform across the array, hence K( j) = K

and η( j) = η ( j = 1, . . .N). We scale time on a pertinent timescale t0 (defined below by the
boundary conditions which, in the case of prescribed displacement this is the rate of the applied
deformation), lengths on L0, pressures on µ0 and forces on µ0L2

0 so that

(x,L( j),W ( j)) = L0(x̄, L̄( j),W̄ ( j)), µ
( j) = µ0µ̄

( j), t = t0t̄, ( j = 1, . . . ,N). (2.19)

This results in the following dimensionless groups

γ̄0 =
W0

L0
, η̄ =

2η

µ0t0
K̄ =

K
2t0µ0

(2.20)

representing the planar aspect ratio of the cells, and the dimensionless viscous and substrate
damping coefficients respectively. We further define the dimensionless domain length, intracel-
lular force across the shared boundary width (force per unit length), cell width, strain-energy
function and cell pressure:

l(t) = L0l̄(t̄), Fb(t) = µ0L0F̄b(t̄), W̄ ( j)(t) =
γ̄0

λ
( j)
1 (t̄)

, W ( j) = µ0W̄
( j), p( j) = µ0 p̄( j).

(2.21)
The non-dimensional system (2.14) takes the form

2K̄
dx̄( j)

c

dt̄
=−W̄ ( j+1/2)

(
σ̄
( j)
1 − σ̄

( j+1)
1

)
−W̄ ( j−1/2)

(
σ̄
( j−1)
1 − σ̄

( j)
1

)
, ( j = 2, . . . ,N−1)

(2.22a)
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where

W̄ ( j±1/2) = γ0

(
λ
( j±1)
2 +λ

( j)
2

)
, (2.22b)

σ̄
( j)
1 = λ

( j)
1 W̄

( j)
1 −λ

( j)
2 W̄

( j)
2 + η̄

(
λ̇
( j)
1 − λ̇

( j)
2

)
, (2.22c)

λ
( j)
1 = x̄( j+1/2)

b − x̄( j−1/2)
b and (2.22d)

λ
( j)
2 =

1

λ
( j)
1

. (2.22e)

The cell centre of mass in terms of cell boundary locations (2.15) in non-dimensional vari-
ables is

x̄( j)
c = 1

2

(
x̄( j−1/2)

b + x̄( j+1/2)
b

)
. (2.22f)

The cell pressure from (2.10) is

p̄( j) = λ
( j)
2 W̄

( j)
2 + η̄λ̇

( j)
2 . (2.22g)

Substituting (2.15) into (2.14) and considering the fixed boundary condition at x = 0 yields

K̄
dx̄( j+1/2)

b
dt̄

= W̄ ( j+1/2)
(

σ̄
( j+1)
1 − σ̄

( j)
1

)
, ( j = 1, . . . ,N−1). (2.22h)

This form of the governing equations is used in numerical solutions of the discrete model.
The boundary conditions for prescribed displacement are

x̄(1/2)
b = 0, x̄(N+1/2)

b = l̄(t̄), (2.22i)

or with a free boundary at one end of the line

x̄(1/2)
b = 0, K̄

dx̄(N+1/2)
b

dt̄
=−W̄ (N)

σ
(N)
1 (2.22j)

where

W̄ (N) = γ0λ
(N)
2 . (2.22k)

The initial condition is x̄( j−1/2)
b (0) = j−1, ( j = 1, . . . ,N +1).

Henceforth, we drop over-bars for notational convenience and consider only non-dimensional
variables in the simulations below.
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2.1.11 Numerical method

The discrete system (2.22) is a closed system of ODEs which is solved numerically using MAT-
LAB solver ode15s with the prescribed displacement boundary condition (2.22i) implemented
as an algebraic constraint. The code to solve this system can be derived from the code in Ap-
pendix A.1 when the growth rate is set to zero (no growth) and the boundary condition at x = l0
for a prescribed displacement is implemented. In simulations throughout we consider a neo-
Hookean material. Due to the additional time-derivative terms in the viscous stress formulation,
we formulate a matrix problem within the solver, such that

Mb
dxb

dt
= fb, (2.23)

where xb which has entries x( j−1/2)
b ( j = 1, . . . ,N + 1), Mb is the N + 1×N + 1 matrix with

first and last diagonal entries equal to one (to implement the boundary conditions, where the
prescribed displacement at the end of the array is implemented as ẋ(N+1/2)

b = l̇(t) where l(t)

is the prescribed deformation) and, for j = 2, . . . ,N, the coefficients of dx( j+1/2)
b

dt terms from the
viscous part of the Cauchy stress (2.9) and the cell pressure (2.10), which take the form

Mb( j, j−1) =−ηW ( j−1/2)
(

1+
(

λ
( j−1)
1

)−2
)

(2.24a)

Mb( j, j) = K +ηW ( j−1/2)
(

2+
(

λ
( j−1)
1

)−2
+
(

λ
( j)
1

)−2
)

(2.24b)

Mb( j, j+1) =−ηW ( j−1/2)
(

1+
(

λ
( j)
1

)−2
)
, (2.24c)

for j = 2, . . . ,N and fb, the vector with components

fb(1) = 0 (2.24d)

fb( j) =−W ( j+1/2)
(

µ
( j)
((

λ
( j)
1

)2
−
(

λ
( j)
1

)−2
)

−µ
( j+1)

((
λ
( j+1)
1

)2
−
(

λ
( j+1)
1

)−2
))

, ( j = 2, . . . ,N),

(2.24e)

fb(N) =−W (N)
µ
(N)

((
λ
(N)
1

)2
−
(

λ
(N)
1

)−2
)
. (2.24f)

This matrix problem is then solved for using the in-built matrix division (backslash) in MATLAB

to solve for dxb/dt.
The MATLAB solver ode15s is a solver for stiff differential algebraic equations (DAEs)

and uses a variable-step, variable-order solver. A study of the solver ode15s can be found
in [123]. In simulations below, the standard absolute, at , and relative error tolerances, rt , were
used (10−6). For larger tolerances (at ≥ 10−2, rt ≥ 10−2) the solutions diverge, however for
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at < 10−2 and rt < 10−2, the solutions converge (Figure 2.4).
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Figure 2.4: Stretch of the N-th cell, λ
(N)
1 , at t = 10. (a) Solutions for relative tolerance values

rt = 10−8 to rt = 1; (b) Solutions for absolute tolerance values at = 10−8 to at = 1.

Numerical solutions of this IBM are discussed in Sec. 2.3 below. This discrete formulation
does not require any regularity or smoothness of material properties, which can be sampled
randomly from an appropriate distribution. However, to construct a continuum (PDE) model of
this arrangement of cells, we must assume that the material properties vary smoothly along the
array over a prescribed lengthscale.

2.2 Upscaling to continuum model (Incompressible Cells)

We now derive a (PDE) continuum model description of the discrete model of Sec. 2.1. In this
approach we utilise discrete-to-continuum upscaling to map the discrete equations (2.22) to a
PDE [82, 115].

We assume the initial number of cells, N, is large and introduce a small parameter ε =N−1�
1. We are working with non-dimensional variables and lengths have been scaled on L0, the typ-
ical length of a cell (Sec. 2.1.10). Thus we assume that the lengthscale of a typical deformation
is long (O(ε−1)) compared to that of an individual cell (O(1)). The discrete-to-continuum ap-
proach uses Taylor expansions local to each cell to transform discrete differences to derivatives,
which requires that the properties of the individual cells (e.g. µ( j)) vary smoothly across the en-
tire length of the array (i.e. spatial derivatives are O(1)). We define a long wavelength rescaling
of the independent variables in the form

X = εx, T = εt, (2.25a)

so that 0 ≤ X ≤ 1. Note that this choice is not unique, but we make this assumption as it
maintains an O(1) cell velocity and hence this term is retained in the dominant balance. Other
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choices would lead to a different dominant balance (for example, one could choose a different
scaling for t that would leave the viscous terms out of the dominant balance) however these
choices were not considered in this work. In accordance with this rescaling we then express the
cell boundary positions as

x̃( j+1/2)
b (T ) = εx( j+1/2)

b (t), ( j = 0, . . . ,N), (2.25b)

where tilded variables are functions of rescaled time, T . Furthermore, we rescale the time-
dependent descriptors of an individual cell in the form,(

W̃ ( j), L̃( j), λ̃ ( j),W̃
( j)

1,2

)
=
(

W ( j),εL( j),λ ( j),W
( j)

1,2

)
, ( j = 1, . . . ,N). (2.25c)

We further rescale the two dimensionless damping parameters as K = εK̃ and η = ε−1η̃ to en-
sure a dominant balance. We discretise the continuous variable X into N equally sized intervals,
so that X j = j/N = ε j, ( j = 0, · · · ,N), so the rescaled initial positions of the cell centre of mass
and cell boundaries can be expressed as x̃(1/2)

b (0) = 0 with

x̃( j+1/2)
b (0) = X j, x̃( j)

c (T ) = X j−1/2 =
1
2(X j−1 +X j), ( j = 1, . . . ,N). (2.26)

We then express the cell boundary and centre of mass positions as a single continuum function
x̆(X ,T ) such that x̃(1/2)

b (T ) = x̆(0,T ) = 0 and

x̃( j+1/2)
b = x̆(X j,T ), x̃( j)

c = x̆(X j−1/2,T ), ( j = 1, · · · ,N), (2.27a)

as well as continuum representations of the other dependent variables in the model, in the form

W̃ ( j)(t) = W̆ (X j−1/2,T ), λ̃
( j)
1 (t) = λ̆1(X j−1/2,T ), (2.27b)

λ̃
( j)
2 (t)= λ̆2(X j−1/2,T ), W̃

( j)
1,2 (T ) = W̆1,2(X j−1/2,T ), ( j = 1, . . . ,N). (2.27c)

In this case differences in discrete variables can be mapped to derivatives of these continuum
functions using Taylor expansions in the limit as ε → 0 (N→ ∞). From (2.22h), the governing
equation for the continuum strain energy functional W̆ is expanded at X j = jε in the form

εK̃
∂ x̆( jε,T )

∂T
=−W̆ ( jε,T )

(
λ̆1(( j+ 1

2)ε,T )W̆1(( j+ 1
2)ε,T )− λ̆2(( j+ 1

2)ε,T )W̆2(( j+ 1
2)ε,T )

+ η̃
∂

∂T

(
λ̆1(( j+ 1

2)ε,T )− λ̆2(( j+ 1
2)ε,T )

)
− λ̆1(( j+ 3

2)ε,T )W̆1(( j+ 3
2)ε,T )+ λ̆2(( j+ 3

2)ε,T )W̆2(( j+ 3
2)ε,T )

− η̃
∂

∂T

(
λ1(( j+ 3

2)ε,T )−λ2(( j+ 3
2)ε,T )

))
.

(2.28a)
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Taylor expanding the variables about the point X = jε and evaluating the resulting expressions
at X = j+ ε/2 and X = j+3ε/2, we obtain

λ̆1,2(( j+ 1
2)ε,T ) = λ̆1,2( jε,T )+

ε

2
∂ λ̆1,2( jε,T )

∂X
+O(ε2), (2.28b)

λ̆1,2(( j+ 3
2)ε,T ) = λ̆1,2( jε,T )+

3ε

2
∂ λ̆1,2( jε,T )

∂X
+O(ε2), (2.28c)

W̆1,2(( j+ 1
2)ε,T ) = W̆1,2( jε,T )+

ε

2
W̆1,2( jε,T )

∂X
+O(ε2), (2.28d)

W̆1,2(( j+ 3
2)ε,T ) = W̆1,2( jε,T )+

3ε

2
W̆1,2( jε,T )

∂X
+O(ε2), (2.28e)

Substituting (2.28b)-(2.28e) into (2.28a) yields

εK̃
∂ x̆( jε,T )

∂T
=−W̆ ( jε,T )

((
λ̆1( jε,T )+

ε

2
∂ λ̆1( jε,T )

∂X

)(
W̆1( jε,T )+

ε

2
∂ W̆1( jε,T )

∂X

)

−

(
λ̆2( jε,T )+

ε

2
∂ λ̆2( jε,T )

∂X

)(
W̆2( jε,T )+

ε

2

˘∂W 2( jε,T )
∂X

)

+ η̃

(
∂ λ̆1( jε,T )

∂T
+

ε

2
∂ 2λ̆1( jε,T )

∂X∂T
− ∂ λ̆2( jε,T )

∂T
− ε

2
∂ 2λ̆2( jε,T )

∂X∂T

)

−

(
λ̆1( jε,T )+

3ε

2
∂ λ̆1( jε,T )

∂X

)(
W̆1( jε,T )+

3ε

2
∂ W̆1( jε,T )

∂X

)

+

(
λ̆2( jε,T )+

ε

2
∂ λ̆2( jε,T )

∂X

)(
W̆2( jε,T )+

ε

2
∂ W̆2( jε,T )

∂X

)

− η̃

(
∂ λ̆1( jε,T )

∂T
+

3ε

2
∂ 2λ̆1( jε,T )

∂X∂T
− ∂ λ̆2( jε,T )

∂T
− 3ε

2
∂ 2λ̆2( jε,T )

∂X∂T

))
,

(2.28f)

which, upon neglecting O(ε2) terms reduces to and so

εK̃
∂ x̆( jε,T )

∂T
=−εW̆ ( jε,T )

(
− ∂ λ̆1( jε,T )

∂X
W̆1( jε,T )− λ̆1( jε,T )

∂ W̆1( jε,T )
∂X

+
∂ λ̆2( jε,T )

∂X
W̆2( jε,T )+ λ̆2( jε,T )

∂ W̆2( jε,T )
∂X

− η̃

(
∂ 2λ̆1( jε,T )

∂X∂T
− ∂ 2λ̆2( jε,T )

∂X∂T

))
.

(2.28g)
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This can be simplified to give the governing equation

K̃
∂ x̆b

∂T
= W̆

∂

∂X

(
λ̆1W̆1− λ̆2W̆2 + η̃

∂

∂T

(
λ̆1− λ̆2

))
. (2.28h)

Furthermore, we can rescale the continuum independent variables (X ,T ) back to the original
parametrisation of the domain using x = ε−1X , t = ε−1T , K = εK̃ and η = ε−1η̃ . We denote
functions of these variables with the hat notation. We then define

λ̆1,2(X ,T ) = λ̂1,2(x, t) W̆ (X ,T ) = Ŵ (x, t)

x̆(X ,T ) = ε x̂(x, t), W̆ (X ,T ) = Ŵ (x, t).
(2.29)

In this formulation, the principal stretch in the x-direction is

λ̂1(x, t) =
∂ x̂
∂x

, (0≤ x≤ l0), (2.30)

while incompressibility requires that

λ̂2(x, t) =
1

λ̂1
, Ŵ (x, t) = γ0λ̂2, (0≤ x≤ l0). (2.31)

Using (2.22g) total pressure takes the continuum form

p̂(x, t) = λ̂2Ŵ2 +η
∂ λ̂2

∂ t
, (0≤ x≤ l0). (2.32)

From (2.28h), the governing equations for the continuum strain energy functional Ŵ become

K̂
∂ x̂
∂ t

= γ0λ̂
−1
1

∂

∂x

(
λ̂1Ŵ1− λ̂2Ŵ2 +η

∂

∂ t

(
λ̂1− λ̂2

))
, (0 < x < l0). (2.33a)

For the fixed boundary at x = 0, we set

x̂(0, t) = 0, (2.33b)

and for a prescribed displacement, the boundary condition (2.16) becomes

x̂(l0, t) = l(t), (2.33c)

where l(t) is prescribed in (2.22i).



CHAPTER 2. DEFORMATION OF A SINGLE ARRAY OF CELLS 31

2.2.1 Neo-Hookean Material

For a Neo-Hookean material with cell-level strain-energy function (2.6), we have

Ŵ1 = µ̂λ̂1, Ŵ2 = µ̂λ̂2 = µ̂λ̂
−1
1 , (0≤ x≤ l0), (2.34)

where µ̂ is the continuum shear modulus and we obtain the continuum PDE

K
∂ x̂
∂ t

= γ0λ̂
−1
1

∂

∂x

(
µ̂

(
λ̂

2
1 − λ̂

−2
1

)
+η

∂

∂ t

(
λ̂1− λ̂

−1
1

))
, (0 < x < l0), (2.35a)

with boundary conditions (2.33b) and (2.33c) where

λ̂1 =
∂ x̂
∂x

, p̂ = µ̂λ̂
−2
1 −η

∂ λ̂1

∂ t
λ̂
−2
1 , 0≤ x≤ l0. (2.35b)

2.2.2 Small Displacements in a Neo-Hookean Material

We consider small displacements of amplitude, 0 < k1� l0 of the form

x̂ = x+ k1d̂(x, t), (2.36)

where k1d̂(x, t) is the displacement from the initial position. For this analytical investigation, we
set µ̂ = µ constant and uniform in the array. Substituting this in to (2.35a) gives

Kk1
∂ d̂
∂ t

= γ0

(
1+ k1

∂ d̂
∂x

)−1
∂

∂x

{
µ

(1+ k1
∂ d̂
∂x

)2

−

(
1+ k1

∂ d̂
∂x

)−2


+ηk1
∂ d̂
∂ t

1+

(
1+ k1

∂ d̂
∂x

)−2
} (2.37)

which, to leading order is

K
4γ0µ

∂ d̂
∂ t

=
∂ 2d̂
∂x2 +

η

2µ

(
∂ 3d̂

∂x2∂ t

)
. (2.38)

Neglecting terms of O(k2
1), (2.37) reduces to the linearised PDE

ts
∂ d̂
∂ t

=

(
1+ tk

∂

∂ t

)
∂ 2d̂
∂x2 , (0 < x < l̂0), (2.39)

where ts = K/4γ0µ and tk = η/2µ are characteristic relaxation times related to the substrate and
internal viscosity respectively. A similar mechanical model was used by Gracheva and Othmer
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[117] as a model for the motility of a single cell described as a one-dimensional element. In the
limit ts = 0 (no substrate damping), this PDE is reminiscent of the classical linear Kelvin–Voigt
viscoelasticity [124]. Conversely, the limit tk = 0 gives the diffusion equation. We can solve this
system analytically. Substituting the ansatz (2.36) into the pressure in (2.35b) gives

p̂ = µ

(
1−2k1

∂ d̂
∂x

)
−ηk1

∂ 2d̂
∂ t∂x

+O(k2
1). (2.40)

Firstly, for comparison to both the fully nonlinear discrete and continuum results below
(Sec. 2.3.1), we consider a system with substrate damping but no viscous effects (tk = 0). Noting
that x̂ = (1− k1)x is a steady-state solution of (2.39) satisfying x̂(l0) = (1− k1)l0, we again
assume small displacements of typical amplitude 0 < k1� l0, but now take x̂(x, t) = (1−k1)x+

k1ď(x, t), where ď(x, t) is the displacement from the final steady-state solution, thus d̂(x, t) =

d̆(x, t)− x. The PDE (2.39) becomes

ts
∂ ď
∂ t

=
∂ 2ď
∂x2 . (2.41)

The boundary conditions of the prescribed displacement (2.33b) and (2.33c) are

ď(0, t) = 0, ď(l0, t) = l0 exp(−t), (2.42)

where the prescribed deformation boundary condition is chosen to prescribe a smooth exponen-
tial shortening of the domain length for that allows for analytical solutions to be derived easily
(rather then representing any realistic applications). The equivalent function is also used in the
boundary conditions for the discrete and continuum simulations below to allow for comparisons.
The initial condition is

ď(x,0) = x. (2.43)

Using separation of variables, the boundary condition at x = 0 yields

ď(x, t) = csin
(

x
√

P
)

exp
(
−P

ts
t
)
, (2.44)

where c and P are constants. For compatibility with the prescribed boundary conditions at x= l0,
we require P = ts and c = l0/sin(l0

√
ts), and the solution takes the form

ď(x, t) =
l0 sin(x

√
ts)exp(−t)

sin(l0
√

ts)
. (2.45)
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Initially this function takes the form

ď(x,0) =
l0 sin(x

√
ts)

sin(l0
√

ts)
, (2.46)

which, for small values of
√

ts, becomes

ď(x,0)≈ x. (2.47)

Hence the solution (2.45) is only valid in the limit of small ts (and hence, small amounts of
substrate dissipation, K). The pressure (2.40) with (2.45) becomes

p̌(x, t) = µ + k1(η−2µ)

√
tsl0 cos(x

√
ts)exp(−t)

sin(l0
√

ts)
+O(k2

1). (2.48)

Secondly, the linearised PDE for the Kelvin dissipation system with no substrate damping is
obtained from (2.39) with ts = 0. The PDE (2.39) becomes

tk
∂ 3d̂

∂ t∂x2 +
∂ 2d̂
∂x2 = 0. (2.49)

For the boundary conditions (2.33b) and (2.33c), we take the linearised form

d̂(0, t) = 0, and d̂(l0, t) =

−l0
(
3t2−2t3) , (0≤ t ≤ 1),

−l0, (t > 1).
(2.50)

The boundary condition at x = l0 is chosen to give a smooth decrease in domain length for
0 ≤ t ≤ 1 with continuous derivatives at t = 0 and t = 1 to allow for analytical solutions to be
derived easily (rather than representing any realistic applications). The equivalent function is
also used in the boundary conditions for the discrete and continuum simulations below.

Integrating the linear PDE twice with respect to x yields

∂ d̂
∂ t

+
1
tk

d̂ = f1(t)x+ f2(t), (2.51)

where f1(t) and f2(t) are functions of integration, independent of x. At x = 0, the boundary
condition requires f2(t) = 0. Applying the boundary condition at x = l̂0, (2.51) takes the form

∂ d̂
∂ t

+
1
tk

d̂= f1(t)l0 =

6(t2− t)+(2t3−3t2)/tk, (0≤ t ≤ 1),

−1/tk, (t > 1).
(2.52)
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Using an integrating factor for both cases and integrating, we obtain the analytical solution

d̂(x, t) =

−x
(
3t2−2t3) , (0≤ t ≤ 1),

−x, (t > 1).
(2.53)

The pressure (2.40) with (2.53) yields

p̌(x, t) =

µ (1+2k1)
(
3t2−2t3)−6ηk1

(
t2− t

)
, (0≤ t ≤ 1),

µ(1+2k1), (t > 1).
(2.54)

These analytical solutions are compared to predictions of the full nonlinear discrete and contin-
uum systems in Sec. 2.3.1 below.

2.2.3 Comparison to macroscale static model for a long thin strip

We wish to compare the upscaled macroscale continuum tissue model derived in Sec. 2.2.1
with a model derived directly from a continuum framework. We consider a long, thin strip
of continuous, incompressible, hyperelastic material of length l0 and width W0, with constant,
uniform shear modulus, µ . We describe the strip using reference coordinates x = (x,y) with
x along the strip (0 ≤ x ≤ l0) and y perpendicular (−1

2W0 ≤ y ≤ 1
2W0). The deformations in

the x- and y- directions are χ(x,y) and ψ(x,y) respectively, and the incompressible deformation
gradient is

F=

[
∂ χ

∂x
∂ χ

∂y
∂ψ

∂x
∂ψ

∂y

]
(2.55)

We assume this material has strain-energy functional W and Cauchy stress tensor

σσσ = F
∂W

∂F
− p(x,y)I, (2.56)

where p is a Lagrange multiplier analogous to the pressure.
For a long and thin strip, we assume that the strip width, W0, is much less than the length, l0.

Hence
γ =

γ0

N
=

W0

NL0
=

W0

l0
� 1. (2.57)

We take x,χ ∼O(1) and rescale y = γ ỹ, ψ = γψ̃ , where ỹ,ψ ∼O(1) and assume the expansions

(χ̃, p̃) = (χ0(x, ỹ), p0(x, ỹ))+ γ
2 (χ2(x, ỹ), p2(x, ỹ))+O(γ4),

ψ̃ = γψ1(x, ỹ)+ γ
3
ψ3(x, ỹ)+O(γ5).

(2.58)

We assume this form of expansions to capture the asymmetry of the system. Due to the long
thin approximation, lengths in the x-direction are of order 1, while lengths in the y-direction are



CHAPTER 2. DEFORMATION OF A SINGLE ARRAY OF CELLS 35

of order γ , hence we expand χ in even powers of γ and ψ in odd powers of γ . We have,

F=

[
∂ χ0
∂x

1
γ0

∂ χ0
∂ ỹ +γ0

∂ χ2
∂y

γ0
∂ψ1
∂x

∂ψ1
∂ ỹ

]
+O(γ2

0 ), (2.59)

σσσ =

[
1
γ0

∂ χ0
∂y W21+

∂ χ0
∂x W11− p0

1
γ0

∂ χ0
∂ ỹ W22 +

∂ χ0
∂x W12

γ0
∂ψ1
∂x W21

∂ψ1
∂ ỹ W22− p0,

]
+O(γ0), (2.60)

where Wi j = ∂W /∂F ji are O(1). The incompressibility condition, det(F) = 1 requires, to lead-
ing order,

∂ χ0

∂x
∂ψ1

∂y
− ∂ χ0

∂y
∂ψ1

∂x
= 1. (2.61)

We apply the condition of no lateral forcing on the long edges of the strip,

σσσ · e2 = 0, (2.62)

which requires, at O(γ−1
0 )

∂ χ0

∂ ỹ
= 0, (2.63)

and at O(1), requires

p0 =
∂ψ1

∂ ỹ
W22, (2.64)

to leading order, using (2.59). The incompressibility condition then takes the form

∂ψ1

∂y
=

(
∂ χ0

∂x

)−1

. (2.65)

We consider the equilibrium equation
∇ ·σσσ = 0, (2.66)

where ∇ = ( ∂

∂x ,γ
−1 ∂

∂ ỹ). To leading order, this yields the nonlinear ODE

0 =
∂

∂x

(
W11

∂ χ0

∂x
−W22

(
∂ χ0

∂x

)−1
)
, (2.67)

which describes the steady solution of the fully non-linear macroscale continuum PDE system.
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Neo-Hookean material

In the particular case of a neo-Hookean material, with a uniaxial deformation, we have

W11 = µ
∂ χ0

∂x
, W22 = µ

∂ψ1

∂y
. (2.68)

The condition of no normal stress along the long edges of the material, (2.64) with (2.65),
becomes

p0 = µ

(
∂ χ0

∂x

)−2

. (2.69)

Expanding the equilibrium equations to the leading order and substituting for ψ1 and p0 we
obtain

0 = µ
∂ 2χ0

∂x2

(
1+
(

∂ χ0

∂x

)−4
)
. (2.70)

This ODE can be integrated once, giving

µ

((
∂ χ0

∂x

)2

−
(

∂ χ0

∂x

)−2
)

=C (2.71)

where C is an integration constant. Applying boundary conditions of fixed displacement χ0(x =

0) = 0 and χ0(x = l0) = l, this system has a solution of linear displacement

χ0(x) = x

√√√√√ l4− l4
0

2l2l2
0
+

√√√√( l4
0− l4

2l2l2
0

)2

+1 =
l
l0

x, (2.72)

since l, l0 > 0, which is compared to the time-dependent predictions of the discrete and contin-
uum simulations below.

For a prescribed deformed length of l = l0 (1− k1), where k1 represents the fractional de-
crease in length of the array, (2.72) becomes

χ0(x) = x(1− k1), (2.73)

where we have considered only the positive square roots (to avoid negative or imaginary solu-
tions).

2.2.4 Numerical Solutions

The continuum PDE system for Neo-Hookean cells (2.35a) is solved numerically using the
MATLAB solver ode15s along with a spatial discretisation scheme. Note that for specific choices
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of finite difference stencils and number of discretisation points, one can revert back to the dis-
crete formulation, however we do not use these specific stencils here (as we wish to use higher
order stencils). The spatial domain (0≤ x ≤ l0) is divided into n equally sized spatial intervals.
We use a second order centered-finite-difference scheme for the mid-points,

∂ x̂(i)

∂x
=

1
2dX

(
x̂(i+1)− x̂(i−1)

)
+O(dX2) (i = 2, . . . ,n−1), (2.74a)

∂ 2x̂(i)

∂x2 =
1

dX2

(
x̂(i−1)−2x̂(i)+ x̂(i+1)

)
+O(dX2) (i = 2, . . . ,n−1), (2.74b)

where dX = l0/n is the step size and x̂(i) is a discretisation point in the domain (i = 1, . . . ,n). For
the boundary conditions, we use a second order forward or backward finite-difference scheme,

∂ x̂(1)

∂x
=

1
2dX

(
−3x̂(1)+4x̂(2)− x̂(3)

)
+O(dX2), (2.74c)

∂ x̂(n)

∂x
=

1
2dX

(
3x̂(n)−4x̂(n−1)+ x̂(n−2)

)
+O(dX2). (2.74d)

Since variations occur over the lengthscale l0, not the lengthscale O(1), the step-size dX need
not be fine, but rather dX � l0. In simulations below, for small K, dX = 1. However, for larger
K, we use more stencil points due to the boundary layer that forms in the system from the high
levels of dissipation. Hence, variations occur over a smaller boundary lengthscale and in this
system we use dX = 0.05. Convergence for a variety of choices of discretisation points (and
hence, step-size) are discussed below.

Due to the additional time-derivative terms in the viscous stress formulation, we must rear-
range (2.35a) to be compatible with the solver. Note that this equation expands to the form

K
∂ x̂
∂ t
−η

(
∂ 3x̂

∂x2∂ t

(
∂ x̂
∂x

)−1
(

1+
(

∂ x̂
∂x

)−2
)
−2

∂ 2x̂
∂x2

(
∂ x̂
∂x

)−3
∂ 2x̂

∂x∂ t

)

= γ0

(
2

∂ 2x̂
∂x2 µ̂

(
1−
(

∂ x̂
∂x

)−4
))

, (0 < x < l0).

(2.75)
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Applying the stencils (2.74a), this can be written asK +
2η

dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 ∂ x̂(i)n

∂ t

+η

 1
dX

∂ 2x(i)n

∂x2

(
∂x(i)n

∂x

)−4

− 1
dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 ∂ x̂(i+1)

n

∂ t

+η

− 1
dX

∂ 2x(i)n

∂x2

(
∂x(i)n

∂x

)−4

− 1
dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 ∂ x̂(i−1)

n

∂ t

= 2γ0µ
∂ 2x(i)n

∂x2

1+

(
∂x(i)n

∂x

)−4
 , (0 < x < l0).

(2.76)

We can then define this system within the ODE solver as the matrix problem

Mn
dX
dt

= fn, (2.77)

where X has entries of the spatial discretisation points x(i) (i = 1, . . . ,n), Mn is the n×n matrix
with first and last entries equal to one and, for i = 2, . . . ,n−1

Mn(i, i−1) = η

− 1
dX

∂ 2x(i)n

∂x2

(
∂x(i)n

∂x

)−4

− 1
dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 , (2.78a)

Mn(i, i) =

K +
2η

dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 , (2.78b)

Mn(i, i+1) = η

 1
dX

∂ 2x(i)n

∂x2

(
∂x(i)n

∂x

)−4

− 1
dX2

(∂x(i)n

∂x

)−1

+

(
∂x(i)n

∂x

)−3
 . (2.78c)

and fn is the vector

fn =



0
...

2γ0µ
∂ 2x(i)n
∂x2

(
1−
(

∂x(i)n
∂x

)−4
)

...

γ0µ

((
∂x(n)n

∂x

)
−
(

∂x(n)n
∂x

)−3
)


. (2.79)
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at = 10−8 to at = 1
n = 10 29.436232
n = 50 14.750124

n = 100 14.080681
n = 200 13.953633
n = 500 13.920982

n = 1000 13.916439
n = 2000 13.915242

Table 2.1: Values of p̂ (to 6 d.p.) at the last discretisation point (n) at t = 10 for values of the
absolute tolerance, at (with rt = 10−6) for different numbers of discretisation points, n. Note
that these values are identical for identical values of rt with at = 10−6.

The MATLAB solver ode15s chooses temporal step-sizes based on the absolute, at , and
relative, rt tolerances chosen. The error in this system is dominated by the error from the stencil
and spatial discretisation step-size, dX . The numerical scheme outlined in this section converges
to a fixed solution for values from n = 10 to n = 150 for values of absolute tolerances from
at = 10−8 to at = 1 (Table 2.1) and for relative tolerances from rt = 10−8 to rt = 1 (values
identical for Table 2.1 with at = 10−6, hence not duplicated) when considering the pressure, p̂

at the prescribed deformation (the end point in the domain). In the results below, we show the
agreement with both the analytical solutions to the linearised equations from Sec. 2.2.2 and the
discrete system.

Since there is no need for this number of intervals to be the same as the number of discrete
cells in the IBM, this continuum PDE approach can result in a significant computational saving
compared to the IBM when the number of discrete cells is large.

In the results below we compute the continuum pressure (2.31) and stretch (2.32), which are
compared to the discrete simulations.

2.3 Results (Incompressible Cells)

We numerically solve the discrete and continuum systems with γ0 = 1 and µ = 1. We use
N = 100 cells in the discrete systems and n = 100 grid points in the continuum model, unless
otherwise stated.

2.3.1 Case 1: Prescribed deformation

To benchmark our model we consider the case of prescribed displacement at one end of the ar-
ray with no growth. The discrete system of cells aligned in a single array is defined by (2.22h),
subject to boundary conditions (2.22i), defining a fixed boundary at x = 0 and a prescribed dis-
placement at the other end of the domain. The continuum system is defined by (2.35a) with
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boundary conditions (2.33b) and (2.33c).
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Figure 2.5: Solutions for a system of incompressible Neo-Hookean cells aligned in a single array
subject to a prescribed displacement (10% decrease in full array length) with substrate dissipa-
tion. Solutions for N = 100 cells, η = 0 and uniform shear modulus µ = 1. Discrete solutions
(symbols ∗, +,× and4) are displayed with corresponding upscaled continuum solutions (lines)
and analytical solutions (symbols ◦, �, �). (a) Pressure, p(x, t) in the array at t = 0,1,10,1000
with K = 1; (b) Elastic stretch, λ1(x, t) in the array at t = 0,1,10,1000 with K = 1; (c) maxx(p)
at t = 1 for K = 10−5,1,10 (inset: maxx(p) for t = 10 for K = 10−5 to K = 1); (d) minx(λ1), at
t = 1 for K = 10−5,1,10 (inset: minx(λ1) for t = 10 for K = 10−5 to K = 1).

First we consider the system with substrate dissipation only (no viscoelasticity, η = 0), for
various values of K. The length of the domain is prescribed as a saturating function of time,

l(t) = l0(1− k1)+ k1l0 exp
(
− t0

tramp
t
)
, (2.80)

where tramp is the rate of ramping of the prescribed displacement and k1 (constant) represents
the fractional decrease in length of the array. In simulations we choose k1 = 0.1, corresponding
to a 10% strain in the final state and we choose tramp = t0 to simplify (2.80). We compare the
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numerical solutions to the analytical solution in (2.45).
In order to assess the dynamic response of the system, Fig. 2.5 illustrates solutions with

K = 1, showing spatial profiles of pressure (Fig. 2.5a) and stretch (Fig. 2.5b) at various times.
Initially, cells towards the displaced end of the array undergo a large deformation, becoming
compressed with increased pressure (Fig. 2.5a), while those at the fixed end remain relatively
unstressed. Once the prescribed deformation has saturated, the system then relaxes toward equi-
librium with cells at the fixed end becoming increasingly compressed and cells at the displaced
end relaxing to the new equilibrium (Fig. 2.5b). The maximal pressure observed across the
array at a fixed time increases with increasing K (Fig. 2.5c), also reflected in the maximum com-
pression of the array at that time, which decreases with increasing K (Fig. 2.5d). Note that in
all cases, the discrete and continuum solutions agree extremely well, though the analytical solu-
tions, (2.45), do not agree well for large K as the analytical solution is only valid for small K (see
discussion in Sec. 2.2.2). For example, for large enough K (K > 10−2) the maximum pressure
in the array diverges from numerical solutions (Fig. 2.5c), while the minimum stretch profiles
for K > 10−2 appear to oscillate (or wiggle) around the value for K < 10−2 (Fig. 2.5d). In sum-
mary, this figure demonstrates the damping effect of K, outlining the delay of cell response to a
prescribed displacement.

0 20 40 60 80 100

0

50

100

Figure 2.6: Steady state solutions for a system of incompressible Neo-Hookean cells aligned
in a single array subject to a prescribed displacement (10% decrease in full array length) with
substrate dissipation (K = 10−5). Solutions for N = 100 cells (n = 2000 continuum nodes) and
uniform shear modulus µ = 1. Discrete solutions (symbols) are displayed with corresponding
upscaled continuum solutions (line with circles) for t� 1 and static macroscale model solutions
(dash line). The profile in x (discrete, continuum), and χ0 (static macroscale) is displayed against
initial position, x0.

We also compare solutions to this system with the static macroscale model derived in Sec. 2.2.3.
For K = 10−5, the system has saturated by t = 10, and so we compare the spatial profile to that
of the steady solution (2.73). These solutions are displayed in Fig. 2.6 and show an excellent
agreement, with all solutions showing a linear profile in x (since the cells have uniform shear
modulus).

Alternatively, we consider the system with Kelvin viscoelasticity but no substrate dissipation
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(K = 0). To facilitate comparison with analytical solutions (Sec. 2.2.2), the prescribed length of
the domain is defined by the smooth polynomial function with continuous first derivative

l(t) =

l0
(
1− k1

(
3t2−2t3)) , (0≤ t ≤ tramp

t0
),

l0 (1− k1) , (t > tramp
t0

),
(2.81)

where the constant k1 represents the fractional decrease in length of the array. In simulations
we choose k1 = 0.1 and tramp = t0 (the ramping time). We solve the IBM and PDE models for
various values of η and compare the results with the predictions of the analytical model (2.53).
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Figure 2.7: Solutions for a system of incompressible Neo-Hookean cells aligned in a single array
subject to a prescribed displacement (10% decrease in full array length) with substrate dissipa-
tion. Solutions for N = 100 cells (n = 101 continuum nodes) and uniform shear modulus µ = 1.
Discrete solutions (symbols) are displayed with corresponding upscaled continuum solutions
(lines) and analytical solutions (shapes). (a) Pressure, p(x, t) in the array at t = 0,1,10,1000
with η = 1; (b) Elastic stretch, λ (x, t) in the array at t = 0,1,10,1000 with η = 1; (c) maxx(p)
for t = 0 to t = 3 at η = 10−5,1,10 (inset: maxx,t(p) for t = 0 to t = 10 for η = 10−5 to
η = 10); (d) minx(λ ), for t = 0 to t = 2 at η = 10−5,1,10 (inset: minx,t(λ ) for t = 0 to t = 10
for η = 10−5 to η = 10).
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Figure 2.7 illustrates solutions with η = 10−2, including the pressure (Fig. 2.7a) and the
stretch (Fig. 2.7b). Across all these approaches, the system responds in a spatially uniform man-
ner (Fig. 2.7a,b). Over time, we observe that the maximum pressure across the array, maxx(p)

(Fig. 2.7c), initially increases, reaching a maximum before decreasing again toward equilib-
rium beyond t > 1. This maximum pressure over the entire simulation increases as η increases
(Fig. 2.7c). Also, the temporal profiles in Fig. 2.7c indicate that as η increases, the time where
the maximum occurs approaches the time where the rate of change in length is greatest (t = 0.5
in this case). Similarly, for all values of η the maximal compression across the array, minx(λ ),
(Fig. 2.7d) decreases towards equilibrium.

The results demonstrate an excellent agreement between discrete, continuum and analytical
models in all cases. In summary, this figure demonstrates that, while the visual response of the
systems are identical and spatially uniform, the viscous parameter η affects the internal pressure
of cells. The analytical solutions for this system (derived in Sec 2.2.2) for displacement (2.53)
and pressure (2.54) indicate solutions of stretch and pressure being uniform in x.

2.3.2 Case 2: Non-uniform shear modulus

We consider the prescribed displacement defined in 2.80 with k1 = 0.1. However, we now
consider a non-uniform shear modulus, µ , to consider inhomogeneous cells. We choose a shear
modulus in the form of a normal distribution. Most cells have µ ≈ 1, however a cluster of cells
have a higher shear modulus, µ > 1, to represent a cluster of stiffer cells in the array (e.g. dead
or dying cells following a myocardial infarction, as these cells tend to be stiffer during the first
few weeks following an infarction [125]). The shear modulus takes the form

µ(x) = 1+ exp
(
−(x0−b)2

2c2

)
(2.82)

where b and c are the location of the centre of the peak and the standard deviation of the normal
distribution respectively. In simulations, we choose b = l0/2 and c = l0/10.

In the absence of internal viscous dissipation (η = 0) for K = 1 we observe increased pres-
sure in the cells at the moving boundary as in the case with uniform shear modulus (due to the
dissipation in the system resulting in a lag in force transmission along the array), however we
now observe an increased pressure at the middle of the array, where the cluster of cells with an
increased shear modulus are located (Fig. 2.8a). For smaller values of K, the boundary layer
at the prescribed deformation disappears and the inhomogeneity in the array pressure arises
solely from the inhomogeneity in the shear modulus (Fig. 2.8a inset). For K = 1 the elastic
stretch of the cells is, for early times, shows compression in the cells at the deformed boundary,
while for smaller K we observe that cells with a higher shear modulus undergo less compression
(Fig. 2.8b). Note that for longer times for K = 1 the system relaxes to the equilibrium configu-
ration shown in the case for K = 10−5, with a cluster of cells at the centre less compressed than
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Figure 2.8: Solutions for a system of incompressible Neo-Hookean cells aligned in a single
array subject to a prescribed displacement (10% decrease in full array length) with substrate
damping in the absence of viscous dissipation (η = 0). The system is considered with a non-
uniform µ(x) as defined in (2.82). (a) p(x, t) over x at t = 0,0.5,1,10 for K = 1 (inset with
the case for K = 10−5); (b) λ (x, t) over x at t = 0,0.5,1,10 for K = 1 (inset with the case for
K = 10−5); (c) maxx(p) for t = 0 to t = 10 for K = 10−5,1,10; (d) minx(λ ) for t = 0 to t = 10
for K = 10−5,1,10.

those towards the boundaries of the array. The maximum pressure (Fig. 2.8c) and the maximum
compression (Fig. 2.8d) in the array are larger for larger K.

In the absence of substrate dissipation (K = 0), we observe the pressure profile reflects the
profile of the shear modulus (as was the case for uniform shear modulus) and that for larger
η , the maximum pressure in the array is larger. However, the pressure in the array saturates
to an equilibrium configuration for t > 1 (Fig. 2.9a). We note that the value of this saturation
(maxx(p) ≈ 2.267 for large t) is larger than the system with uniform µ (maxx(p) ≈ 1.235 for
large t), as are the ‘peaks’ of maxx(p). The maximum compression in the array saturates to a
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Figure 2.9: Solutions for a system of incompressible Neo-Hookean cells aligned in a single array
subject to a prescribed displacement (10% decrease in full array length) with viscous damping
in the absence of substrate damping (K = 0). The system is considered with a non-uniform µ(x)
as defined in (2.82). (a) maxx(p) for t = 0 to t = 3 for η = 10−5,1,10 (inset with p(x, t) over x
at t = 0,0.5,1,10 for η = 1); (b) min(λ ) for t = 0 to t = 3 for η = 10−5,1,10 (inset with λ (x, t)
over x at t = 0,0.5,1,10 for η = 1).

lower value (minx(λ ) ≈ 0.88 for large t) than the uniform µ (minx(λ ) = 0.9 for large t) in this
system since the cells at the centre with the larger shear modulus are stiffer, and undergo less
compression, hence neighbouring cells must compress more to accommodate the prescribed de-
formation (Fig. 2.9b). All systems show an excellent agreement between discrete and continuum
solutions.

2.4 Application to cardiac tissue: active contraction

We now apply the one-dimensional modelling framework presented in Sec. 2.1 to model a car-
diac myofibre, the constituent tissue of the human heart. In this framework we ignore the influ-
ence of growth and cell division, which will occur on much longer timescales than an individual
heartbeat. In addition, we now apply periodic boundary conditions to mimic a ring of my-
ocardium. However, this approximation neglects the curvature effects that would arise in a ring
and is only valid when the resting cell length is much smaller than the circumference (length of
the array), i.e. for a large number of cells.

2.4.1 Discrete active contraction model

To incorporate active contraction of individual cells into the discrete model of Sec. 2.1 we
modify the Cauchy stress to include an active contraction component (following [53]) of the



CHAPTER 2. DEFORMATION OF A SINGLE ARRAY OF CELLS 46

form
C( j)

a = b( j)(t)
(

1+
β

2

(
λ
( j)−1

))
, (2.83)

where b( j)(t) is a time-dependent function driven by the underlying electrical signalling and β

is a constant. In particular, we choose the functional form

b( j)(t) = 1+ sin
(

2πωt− t( j)
R

)
, (2.84)

where ω is the frequency and t( j)
R = 2π( j− 1) is the discrete phase ( j = 1, . . . ,N). This form

defines a periodic contractile force propagating across the domain.
The Cauchy stress is given by

σσσ
( j) = σσσ

( j)
e +σσσ

( j)
v +C( j)

a x̂⊗ x̂, (2.85)

where σσσ
( j)
e is the elastic stress component in (2.8) and σσσ

( j)
v is the viscous stress component in

(2.9), x̂ is the unit vector in the x-direction and ⊗ is the tensor product (the contractive force is
implemented purely in the x-direction).

The forcing now takes the form

F( j)
± = F( j)

± x̂ =∓x̂
∫ 1

2W ( j±1/2)

−1
2W ( j±1/2)

(
λ
( j)
1 W

( j)
1 −λ

( j)
2 W

( j)
2 +C( j)

a

)
dy,

=∓x̂ W ( j±1/2)
(

λ
( j)
1 W

( j)
2 −λ

( j)
2 W

( j)
2 +C( j)

a

)
( j = 1, . . . ,N),

(2.86)

and the non-dimensional system becomes

K
dx( j+1/2)

b
dt

=W ( j+1/2)
((

λ
( j+1)
1 W

( j+1)
1 −λ

( j)
1 W

( j)
1

)
−
(

λ
( j+1)
2 W

( j+1)
2 −λ

( j)
2 W

( j)
2

)
+η

( j+1)
(

λ̇
( j+1)
1 − λ̇

( j+1)
2

)
−η

( j)
(

λ̇
( j)
1 − λ̇

( j)
2

)
+C( j+1)

a −C( j)
a

) (2.87a)

for j = 2, . . . ,N. For all systems, we implement a periodic domain, hence we have

x(N+1/2)
b = x(1/2)

b (t)+ l0. (2.87b)
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Neo-Hookean Material

For a Neo-Hookean material with cell-level strain-energy function (2.6), the non-dimensional
system is defined by

K
dx( j+1/2)

b
dt

=W ( j+1/2)
(

µ
( j+1)

((
λ
( j+1)
1

)2
−
(

λ
( j+1)
1

)−2
)
−µ

( j)
((

λ
( j)
1

)2
−
(

λ
( j)
1

)−2
)

+η
( j+1)

λ̇
( j+1)
1

(
1−
(

λ
( j+1)
1

)−2
)
− η̄

( j)
λ̇
( j)
1

(
1−
(

λ
( j)
1

)−2
)
+C( j+1)

a −C( j)
a

)
(2.88a)

for j = 2, . . . ,N, with boundary condition (2.87b).

2.4.2 Continuum active contraction model

To derive the corresponding continuum equation we take the scalings (2.25)-(3.35) and Taylor
expand (2.87a) around jε . We obtain the leading order continuum PDE,

K̃
∂ x̂
∂ t

= Ŵ
∂

∂x

(
λ̂1Ŵ1− λ̂2Ŵ2 +η

∂

∂ t

(
λ̂1− λ̂2

)
+ b̂
(

1+
β

2

(
∂ x̂
∂x
−1
)))

, (2.89)

where b̂ is the upscaled function

b̂ = 1+ sin(2πωt− t̂R) , (2.90)

with t̂R = 2πx.
We implement a periodic domain and periodic boundary conditions corresponding to (2.87b),

by defining
x̂
∣∣∣
X=0

= x̂
∣∣∣
X=1

+ l0. (2.91)

Neo-Hookean Material

For a Neo-Hookean material with cell-level strain-energy function (2.6), we obtain the contin-
uum PDE

K̂
∂ x̂
∂ t

= γ0

(
∂ x̂
∂x

)−1
∂

∂x

(
µ̂

((
∂ x̂
∂x

)2

−
(

∂ x̂
∂x

)−2
)
+ η̂

∂

∂ t

(
∂ x̂
∂x
−
(

∂ x̂
∂x

)−1
)

+b̂
(

1+
β

2

(
∂ x̂
∂x
−1
)))

, (0 < x < l̂0),

(2.92)

with boundary conditions (2.91)
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2.4.3 Results for the active contraction model

The discrete system (2.88a) with boundary condition (2.87b) was solved for N = 100 cells and
active contraction parameter t(i)R = πx(i)0 /N for a Neo-Hookean material. The continuum system
(2.92) with boundary condition (2.91) was solved for n = 50 nodes and t̂R = π x̂0/N. For all
simulations we took γ0 = 1, µ = 1, β =−1 and ω = 1/l0. Both systems were solved for values
from K = 10−5 to K = 10.

For K = 10−2 we observe a travelling wave passing along the array for pressure (Fig. 2.10a)
and elastic stretch (Fig. 2.10b). As the active contraction component forces cells to contract their
length, they compress (λ < 1), resulting in an increased internal pressure (Fig. 2.10a). When
this occurs, the remaining cells in the domain expand (λ > 1) to account for the length lost
due to contraction, resulting in a decreased internal pressure (Fig. 2.10b). Initially (t < 5), the
system adjusts from the equilibrium configuration, reacting to the new contraction force. This
small lag is due to the dissipation from the substrate. Further investigation The system then
reaches a travelling wave with constant magnitudes of peaks and troughs, however we note that
a lag between the contractive force and the cells contraction persists (but becomes constant)
after these initial transients have disappeared. The dissipation in the system causes a delay in
the cells response to the active forcing. The magnitude of the peaks and troughs of the pressure
(Fig. 2.10c) and stretch (Fig. 2.10d) waves decrease as K increases. The differences between
the peaks and troughs are due to the spatial profile of the contraction. A small cluster of cells
contract and the remaining cells (a larger number than that which are contracting) stretch to
account for this, however this stretch is spread between a larger number of cells. The active
contraction forcing results in a travelling wave of compressed cells with heightened pressure
moving through the domain, with remaining cells in a relaxed or stretched state. This is observed
as a bulge in the domain (with colour representing internal cell pressure) in Fig. 2.10e. All results
show an excellent agreement between discrete and continuum systems.

2.5 Summary

In this chapter we have constructed an IBM for a single array of incompressible viscoelastic cells
both with and without active contraction, and derived the corresponding upscaled continuum
PDE equations using discrete-to-continuum asymptotics. To benchmark the system, we con-
sidered the passive response of an applied deformation, demonstrating that increased substrate
dissipation delays force transmission along the line, resulting in larger deformation towards the
end at which the deformation is applied before the system settles to equilibrium. In the absence
of substrate dissipation, a higher viscosity of cells results in heightened pressure during the same
prescribed deformation, however the system is always spatially uniform. For the case of a clus-
ter of stiffer cells in the centre of the domain, the majority of the deformation is taken on by the
softer cells and the array has a larger average internal cell pressure. We then considered a system
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Figure 2.10: Solutions for a system of incompressible neo-Hookean cells aligned in a single
array in a periodic domain subject to an active contraction force, defined in (2.83) and (2.84),
with β = −1, ω = 1/N, t(i)R = 2πx(i)0 /N. The system is considered with a uniform µ = 1 with
substrate damping (K ∈ [10−5,10]), in the absence of viscous dissipation (η = 0). Both discrete
(symbols) and continuum (lines) systems are displayed. (a) internal cell pressure, p, across
the domain, x, for t = 1,5,10 and K = 10−2; (b) cell stretch, λ , across the domain, x, for
t = 1,5,10 and K = 10−2; (c) The maximum (maxx,t(p) - peaks) and minimum (minx,t(p) -
troughs) internal cell pressure across the domain during t = 0 to t = 100 for K = 10−5 to K = 10;
(d) The maximum (maxx,t(λ ) - peaks) and minimum (minx,t(λ ) - troughs) cell stretch across the
domain during t = 0 to t = 100 for K = 10−5 to K = 10; (e) Profiles at t = 1,10,20, with
colour-bars representing internal cell pressure.
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with an active contraction component. In simulations, a wave of contraction passes through the
periodic domain in the form of a travelling wave. For all formulations, we observe excellent
agreement between both discrete and continuum systems.



Chapter 3

Growth and Proliferation of a Single Array
of Cells

In this chapter we extend the single array of nonlinearly viscoelastic cells in Chapter 2 to include
cell growth and proliferation. We again consider cells of constant density and uniform thickness,
H (measured in the direction normal to the substrate, parametrised by the coordinate z), atop a
rigid substrate in a state of plane strain, shown in Fig. 2.1. The midline of this quasi-two-
dimensional array is parameterised by the coordinate x (shown as dashed line in Fig. 2.1), while
the tangential direction (in the plane of the page) is parametrised by the coordinate y. These
cells are assumed to be in contact along their shared edges where stress can be transmitted. All
cells are assumed to be incompressible, but may grow in response to an abundant nutirent in
the surrounding fluid medium (z > H). This is replicated with a stress-dependent growth rate
for each cell, such that if a cell is very compressed, it will stop growing, and if a cell is under
extension, it will grow at a maximum rate. If a particular cell becomes too large (for example
a cell may have difficulty moving enough nutrients and waste across its membrane to cater for
its volume [113]), it is assumed to divide into two daughter cells according to a prescribed law.
To maintain the one-dimensional array we assume the cells divide along their midline parallel to
the y-direction. Although idealised, this model system elucidates the competition between local
growth, proliferation and elastic deformation at the single cell level to the global mechanical
deformation and expansion of the entire array.

For simplicity, at one end of the array we assume the outer edge of the cell is adhered to an
impermeable boundary located along x = 0. At the other end of the array we denote the location
of the outer edge as x = l(t), where we apply a boundary condition of zero external forces. In
the lateral (y-)direction we assume boundary conditions of zero normal and tangential stress
on external interfaces. Although the difference in external pressures can be large, the pressure
difference between adjacent layers of constituent cells will be significantly smaller and for the
purposes of this study is assumed negligible.

We now formulate both (discrete) individual-based (Sec. 3.1) and continuum PDE models

51
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(Sec. 3.2) for this single line of cells.

3.1 Discrete Model (Incompressible Cells)

We consider a single line of discrete cells, as shown in Fig. 2.1. The number of cells may
increase over time, t, due to cell division, so the current number of cells is denoted N(t), with
an initial number N0. These cells are indexed by j ( j = 1, . . . ,N) and the properties of cell j are
labelled with a superscript ( j). In general these individual cells can have complicated shapes and
are embedded within an extracellular matrix. For simplicity in this study, we assume that each
constituent cell can be modelled as a cuboid which deforms subject to a uniaxial deformation
(but deforms in two-dimensions). Hence, since the out of plane thickness remains constant, each
cell is characterised by a length in the x-direction (along unit vector x̂), denoted L( j) (with initial
value L( j)

0 ), and width in the y-direction (along unit vector ŷ), denoted W ( j) (with initial value
W ( j)

0 ) for j = 1, . . . ,N. As mentioned above, the system is assumed to have no displacement or
growth in the out-of-plane (z) direction and so the deformation can be treated as entirely planar;
for simplicity in the analysis below we ignore the out-of-plane direction entirely and present the
tensors for stress and strain as two-dimensional. Denoting the total length of the line of cells as
l(t) (which may be either prescribed or solved for, with initial total length l0), we assume there
are no voids and must have

l(t) =
N

∑
j=1

L( j)(t), l(0) = l0 =
N

∑
j=1

L( j)
0 . (3.1)

We assume the cells have uniform density ρ( j) ( j = 1, . . . ,N), and characterise cells by the
position of their centre of mass (which coincides with their geometric centre since the density is
assumed uniform) denoted x( j)

c = (x( j)
c (t),0), for j = 1, . . . ,N. We also use the index j+1/2 to

denote the boundary between cells j and j+1.
We assume each cell can undergo a nonlinear viscoelastic deformation relative to its geomet-

ric centre, while this geometric centre moves according to a global force balance. The (local)
reference coordinate system for cells is denoted X( j) = (X ( j),Y ( j)) where X ( j) = x− x( j)

c and
Y ( j) = y so that −1

2L( j)
0 ≤ X ( j) ≤ 1

2L( j)
0 and −1

2W ( j)
0 ≤ Y ( j) ≤ 1

2W ( j)
0 . In the current configura-

tion, the coordinate system for cells is defined by x( j) = χχχ( j)(X( j), t). The mapping χχχ defines
the deformation from the reference to the current configuration. Hence, the corresponding de-
formation gradient tensor is defined by F( j) = Grad(x( j)), where the gradient operator for each
cell is measured with respect to the reference coordinate system X( j).
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3.1.1 Cell Growth

We allow for morphological growth of each constituent cell according to a growth tensor G( j)

( j = 1, . . . ,N). For simplicity, we assume this tensor is diagonal G( j) = diag(g( j)
1 ,g( j)

2 ), where
g( j)

1 and g( j)
2 are functions we construct below. In accordance with many similar studies of

morphological growth [107, 116] we assume a multiplicative decomposition of the deformation
gradient tensor, F( j), which can be interpreted as splitting the full deformation into an uncon-
strained growth phase (to a stress free configuration) followed by a viscoelastic rearrangement
phase to fit the boundary conditions (which can generate residual stress), in the form

F( j) = A( j)G( j), ( j = 1, . . . ,N), (3.2)

where A( j) is a tensor describing the viscoelastic deformation of cell j, ( j = 1, . . . ,N). Since (by
assumptions) the deformation is always rectangular, the tensors F( j) and A( j) are diagonal and
can be written in the form

A( j) =

[
α
( j)
1 0

0 α
( j)
2

]
, F( j) =

[
λ
( j)
1 0

0 λ
( j)
2

]
=

[
g( j)

1 α
( j)
1 0

0 g( j)
2 α

( j)
2

]
, (3.3)

where α
( j)
1 and α

( j)
2 (λ ( j)

1 and λ
( j)
2 ) are the viscoelastic (full) principal stretches of cell j ( j =

1, . . . ,N), where

λ
( j)
1 =

x( j+1/2)
b − x( j−1/2)

b

L( j)
0

. (3.4)

These principal stretches must be calculated using a rheological model, as described in Sec. 3.1.3.

3.1.2 Incompressibility

The constraint of incompressibility on the viscoelastic part of the deformation implies that

det
(

A( j)
)
= α

( j)
1 α

( j)
2 = 1, ( j = 1, . . . ,N). Hence α

( j)
2 =

(
α
( j)
1

)−1
.

3.1.3 Rheological Model

We assume that each cell is composed of an elastic component in parallel with a viscous dashpot,
the Kelvin–Voigt rheological model which has previously been used to model cells (e.g. [117]).
Since the two components are arranged in parallel, this results in an additive decomposition of
the total Cauchy stress for each cell in the form

σσσ
( j) = σσσ

( j)
e +σσσ

( j)
v , ( j = 1, · · · ,N), (3.5)
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where σσσ
( j)
e and σσσ

( j)
v represent the elastic and viscous components of the Cauchy stress, respec-

tively.

3.1.4 Elastic Stress

The elastic component of the cell deformation follows from an incompressible strain energy
functional,

W
( j)

e = W
( j)

e (α
( j)
1 ,α

( j)
2 ), ( j = 1, . . . ,N), (3.6)

where the function W
( j)

e is chosen to satisfy objectivity requirements [118]. We characterise the
elasticity of individual cells by their shear modulus, denoted µ( j) ( j = 1, . . . ,N) and denote µ0

as a typical shear modulus for each cell. We preserve generality when specifying the model, but
show results below for the incompressible neo-Hookean strain energy functional

W
( j)

e = 1
2 µ

( j)
((

α
( j)
1

)2
+
(

α
( j)
2

)2
−2
)
, ( j = 1, . . . ,N), (3.7)

which is often used for modelling biological soft tissues (e.g. [119, 120]).
The corresponding Cauchy stress tensor for cell j is then given by,

σσσ
( j)
e = A( j)∂W

( j)
e

∂A( j)
− p( j)I, ( j = 1, . . . ,N), (3.8)

where p( j) is a Lagrange multiplier interpreted as the elastic pressure j ( j = 1, . . . ,N) [102].
Since we assume a rectangular deformation for each cell this results in a diagonal Cauchy stress
tensor in the form

σσσ
( j)
e =

[
α
( j)
1 W

( j)
1 − p( j) 0

0 α
( j)
2 W

( j)
2 − p( j)

]
, W

( j)
1,2 =

∂W
( j)

e

∂α
( j)
1,2

, ( j = 1, . . . ,N). (3.9)

3.1.5 Viscous Stress

Since the deformation is rectangular, we approximate the velocity of deformation by the time
derivative of the stretch in the principal directions, which are spatially uniform across the cell,
denoted α̇

( j)
1 and α̇

( j)
2 ( j = 1, . . . ,N). Hence the viscous Cauchy stress is given by

σσσ v =

[
2η( j)α̇

( j)
1 0

0 2η( j)α̇
( j)
2

]
, ( j = 1, . . . ,N), (3.10)

where η( j) is the internal cell viscosity ( j = 1, . . . ,N).
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3.1.6 Boundary Conditions

The total pressure p( j) ( j = 1, . . . ,N) within each cell is determined by applying the boundary
condition of no lateral force on the unconfined edges (parallel to x̂), which gives

p( j) = α
( j)
2 W

( j)
2 +2η

( j)
α̇
( j)
2 , ( j = 1, . . . ,N). (3.11)

The total force exerted by an individual cell on its neighbours then takes the form

F( j)
± = F( j)

± x̂ =
∫ 1

2W ( j±1/2)

−1
2W ( j±1/2)

σσσ
( j) · (∓x̂) dy

=∓x̂W ( j±1/2)
(

α
( j)
1 W

( j)
1 −α

( j)
2 W

( j)
2 +2η

( j)
(

α̇
( j)
1 − α̇

( j)
2

))
, ( j = 1, . . . ,N);

(3.12)

W ( j±1/2) again represents the length of the shared boundary between cells j and j± 1, which
we approximate by the mean of the cell widths

W ( j±1/2) =
1
2

(
W ( j±1)+W ( j)

)
, (3.13)

where W ( j) =W0α
( j)
2 =W0g( j)

2 α
( j)
2 . The resultant force across the cell boundary between cells

j and j+1 is denoted

F( j+1/2)
b = F( j)

+ +F( j+1)
− , ( j = 1, . . . ,N−1). (3.14)

This net force will drive motion and deformation of the line of cells.

3.1.7 Cell growth rate

Since we are considering a toy problem, in this study we assume that the cell only grows in
the x-direction (g( j)

2 = 1, j = 1, . . . ,N). This is not realistic of the myocardium or typical of
cancerous cells, however we use this assumption to test a simple system. We assume the rate of
growth is dependent on the local stress, with the ODE

dg( j)
1

dt
=

1
2

Gm

(
1+ tanh

(
σ
( j)
1

σ
( j)
0

))
, ( j = 1, . . . ,N), (3.15)

where Gm is the maximum growth rate of an individual cell, σ
( j)
0 (represents the typical com-

pressive stress where growth is suppressed for cell j) and σ
( j)
1 is the principal stress in the
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x-direction, defined by

σ
( j)
1 =

(
α
( j)
1 W

( j)
1 −α

( j)
2 W

( j)
2 +2η

( j)
(

α̇
( j)
1 − α̇

( j)
2

))
, ( j = 1, . . . ,N). (3.16)

In our models the cells are never in extension, so σ
( j)
1 ≥ 1 and the maximal growth rate arises

when the cells are unstressed (σ ( j)
1 = 0) and the growth rate approaches zero as the compression

level increases.

3.1.8 Cell Division

Cells can divide when they become sufficiently large: in this study we assume that once the
volume of an individual cell reaches a target volume, it will divide into two identical daughter
cells. We further assume that the cell divides its mass equally along a line parallel to the y-
direction, with each daughter cell half the total length of the parent cell, while maintaining its
width. At each division, an extra boundary at the midpoint of the divided cell is introduced, and
the number of cells increases by one and the cells are re-indexed to ensure a sequential increase
along the line. In particular, we assume a cell will divide when its current volume, V ( j), becomes
twice its initial (ungrown) value and the resting length of the two new daughter cells is chosen
to be half the resting length of the parent at division. However, this length can differ from the
resting length of the original cells.

3.1.9 Governing Equations

We consider the additional possibility that the cells are binding and unbinding to a substrate
which is fixed in the plane of the page (z = 0): the resulting damping force is assumed pro-
portional to the rate of change of the position of the centre of mass of the cell relative to the
substrate, and the dimensionless function

κ =

(
A( j)

A( j)
0

)m

(3.17)

where A( j) = g( j)
1 g( j)

2 L0W0 is the area of cell j, with some constant of proportionality K( j),
( j = 1, . . . ,N). We will consider two particular cases: where m = 0 and m = 1. This damping is
based on velocity relative to the substrate and can be attributed to friction in the cell movement as
it moves past tissue or fibres in the ECM, hence is proportional to the area of the cell connected
to the substrate. This can be interpreted as each cell having a viscous dashpot connected to some
fixed point in the reference configuration. This setup is shown in Fig. 2.1. In this case, applying
Newton’s second law to each internal cell and neglecting inertial effects, we express the global
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force balance as

κK( j)dx( j)
c

dt
= F( j−1/2)

b +F( j+1/2)
b , ( j = 1, . . . ,N). (3.18)

The cell’s centre of mass location is

x( j)
c = 1

2

(
x( j−1/2)

b + x( j+1/2)
b

)
, ( j = 1, . . . ,N). (3.19)

3.1.10 Global Boundary Conditions

To complete the system we define boundary conditions on the outer boundaries. For all systems
outlined here, the boundary of cell j = 1 at x = 0 remains fixed, so x(1/2)

b (t) = 0. At the other
end of the domain we prescribe zero applied force, such that

F(N+1)
− = 0, (3.20)

which means that the force balance on boundary N +1/2 can be expressed as

F(N+1/2)
b = F(N)

+ . (3.21)

3.1.11 Initial Conditions

Initially the cell boundaries are located at

x(1/2)
b = 0, x( j+1/2)

b =
j

∑
i=1

L( j)
0 , ( j = 1, . . . ,N). (3.22)

However, in simulations below we assume all cells are initially the same length L( j)
0 = L0

( j = 1, . . . ,N) and width W ( j)
0 = W0 ( j = 1, . . . ,N). This is not a necessary assumption but

significantly simplifies the specification of the model and the upscaling to a continuum model
for Sec 3.2. In this case, (3.22) reduces to

x( j−1/2)
b = L0( j−1), ( j = 1, . . . ,N +1). (3.23)

To further simplify the analysis, in this study we assume that the parameters governing vis-
cous damping and those involved in the growth rate function are all uniform along the array, in
the form

K( j) = K, η
( j) = η , G( j)

m = Gm, σ
( j)
0 = σ0, ( j = 1, . . . ,N). (3.24)
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3.1.12 Non-dimensional variables

It is useful to consider the system in terms of non-dimensional variables (denoted with an over-
bar). We scale time on the timescale of growth, G−1

m , lengths on L0, forces per unit length on
µ0L0, pressures and stresses on µ0 so that

(L( j),W ( j)) = L0(L̄( j),W̄ ( j)), σ
( j)
1 = µ0σ̄

( j)
1 , ( j = 1, . . . ,N), (3.25)

t = t̄G−1
m , µ = µ0. (3.26)

This results in the following dimensionless groups

γ̄0 =
W0

L0
, η̄ =

2ηGm

µ0
K̄ =

KGm

2µ0
, σ̄0 =

σ0

µ0
, (3.27)

representing the planar aspect ratio of the cells, and the dimensionless viscous and substrate
damping coefficients and the typical compressive stress where growth is suppressed respectively.
We include this factor of 1

2 in K̄ for simplicity in defining the system in terms of cell boundaries
below. We further define the dimensionless domain length, intracellular force, cell width and
strain-energy function derivatives as

l(t) = L0l̄(t̄), Fb(t) = µ0L0F̄b(t̄), W̄ ( j)(t) =
γ̄0g( j)

2 (t̄)

α
( j)
1 (t̄)

, W
( j)

1,2 = µ0W̄
( j)

1,2 ( j = 1, . . . ,N).

(3.28)
The final non-dimensional system takes the form

2κK̄
dx̄( j)

c

dt̄
= W̄ ( j+1/2)

(
σ̄
( j+1)
1 − σ̄

( j)
1

)
−W̄ ( j−1/2)

(
σ̄
( j)
1 − σ̄

( j−1)
1

)
, ( j = 1, . . . ,N),

(3.29a)

where

W̄ ( j+1/2) = γ0

(
g( j+1)

2 α
( j+1)
2 +g( j)

2 α
( j)
2

)
, ( j = 1, . . . ,N), (3.29b)

σ̄
( j)
1 = α

( j)
1 W̄

( j)
1 −α

( j)
2 W̄

( j)
2 + η̄

(
α̇
( j)
1 − α̇

( j)
2

)
, ( j = 1, . . . ,N), (3.29c)

α
( j)
1 =

x̄( j+1/2)
b − x̄( j−1/2)

b

g( j)
1

and α
( j)
2 =

1

α
( j)
1

, ( j = 1, . . . ,N). (3.29d)

The cell centre of mass in terms of cell boundary locations (3.19) in non-dimensional vari-
ables is

x̄( j)
c = 1

2

(
x̄( j−1/2)

b + x̄( j+1/2)
b

)
. (3.29e)
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The cell pressure from (3.11) is

p̃( j) = α
( j)
2 W

( j)
2 + η̄α̇

( j)
2 . (3.29f)

Substituting (3.29e) into (3.29a) and applying the fixed boundary condition at x = 0 we compute

κK̄
dx̄( j+1/2)

b
dt̄

= W̄ ( j+1/2)
(

σ̄
( j+1)
1 − σ̄

( j)
1

)
, ( j = 1, . . . ,N−1). (3.29g)

This form of the governing equations in used in numerical solutions of the discrete model.
The stress dependent growth rate (3.15) has non-dimensional form

dg( j)
1

dt̄
=

1
2

(
1+ tanh

(
σ̄
( j)
1

σ̄0

))
, ( j = 1, . . . ,N). (3.29h)

The boundary conditions take the form

x̄(1/2)
b = 0 κK̄

dx̄(N+1/2)
b

dt̄
=−W̄ (N)

σ̄
(N)
1 (3.29i)

where

W̄ (N) = γ0g(N)
2 α

(N)
2 . (3.29j)

The initial condition is

x̄( j−1/2)
b (0) = ( j−1), ( j = 1, . . . ,N +1). (3.29k)

Henceforth, we drop over-bars for notational convenience and consider only non-dimensional
variables in the simulations below.

3.1.13 Numerical method

As in chapter 2, the discrete system (3.29) is a closed system of ODEs which is solved numeri-
cally using MATLAB solver ode15s. The MATLAB code for this system is outlined in Appendix
A.1 for a system in the absence of proliferation (without division). Due to the viscous stress
component, the equation of motion (3.29a) includes the term α̇

( j)
1 ( j = 1, . . . ,N), which is de-

fined by

dα
( j)
1

dt
=

1

g( j)
1

(
dx( j+1/2)

b
dt

−
dx( j−1/2)

b
dt

)
−

dg( j)
1

dt

(
x j+1/2

b − x j−1/2
b

)
, ( j = 1, . . . ,N). (3.30)
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However, the definition of ġ( j)
1 ( j = 1, . . . ,N) in (3.29h) along with (3.29c), also includes the term

α̇
( j)
1 ( j = 1, . . . ,N) within σ

( j)
1 in the tanh function. Hence the system is not straight-forward

to solve. In order to solve this system for xb, due to the additional time-derivatives from both
the viscous stress component and the growth rate, one must solve the system with α̇

( j)
1 as an

intermediate variable. We form a vector of length 3N +1, defined byxb

g1

α̇αα1

 (3.31)

where xb is the vector of boundary locations (x( j+1/2)
b ; j = 0, . . . ,N), g1 is the vector of the

growth function in the x-direction (g( j)
1 ; j = 1, . . . ,N) and α̇αα1 is the vector of the rate of change

of elastic stretch in the x-direction (α̇( j)
1 ; j = 1, . . . ,N). MATLAB solver ode15s is used to solve

for all three variables, with solutions for α̇αα constructed as an algebraic constraint in the solver,
defined by

dα
( j)
1

dt
−
(

g( j)
1

)−1
(

dx( j+1/2)
b
dt

+
dx( j−1/2)

b
dt

)

+
(

g( j)
1

)−2 dg( j)
1

dt

(
x j+1/2

b − x j−1/2
b

)
= 0, ( j = 1, . . . ,N).

(3.32)

Given α̇
( j)
1 ( j = 1, . . . ,N), the cell momentum equations are then expressed as a matrix problem

for the rate of change of the cell boundary locations, ẋ( j+1/2)
b ( j = 1, . . . ,N). Once these are

known, we can solve the ODEs for x( j+1/2)
b explicitly.

We input the initial conditions for xb as defined in (3.29k), g( j)
1 (0) = 1 ( j = 1, . . . ,N) and use

fsolve to find an initial value for α̇
( j)
1 consistent with the governing equations subject to the

initial conditions.
Numerical solutions of this IBM are discussed in Sec. 3.3 below. This discrete formulation

does not require any regularity or smoothness of material properties, which can be sampled
randomly. However, to construct a continuum (PDE) model of this arrangement of cells, we must
assume that the material properties vary smoothly along the array over a prescribed lengthscale.

3.2 Upscaling to Continuum Model (Incompressible Cells)

We now describe the discrete model of Sec. 3.1 using a (PDE) continuum model to facilitate a
macroscale description. In this approach we utilise discrete-to-continuum upscaling to map the
discrete equations (3.29) to a PDE [82, 115], similar to chapter 2.

To facilitate this upscaling we assume the initial number of cells is large and introduce a
small parameter ε = N−1

0 � 1. We assume that the lengthscale of a typical deformation is long



CHAPTER 3. GROWTH AND PROLIFERATION OF A SINGLE ARRAY OF CELLS 61

(O(ε−1)) compared to that of an individual cell (O(1)), and so take a long wavelength rescaling
of the independent variables in the form

X = εx, T = εt, (3.33a)

so that 0≤ X ≤ 1. Note that this reduction maintains an O(1) cell velocity. In accordance with
this rescaling we then express the cell boundary positions as

x̃( j+1/2)
b (T ) = εx( j+1/2)

b (t), ( j = 0, . . . ,N), (3.33b)

where tilded variables are discrete functions of rescaled time, T . Furthermore, we rescale the
discrete time-dependent descriptors of an individual cell in the form,(

g̃( j)
1,2,W̃

( j), L̃( j), α̃( j),W̃
( j)

1,2

)
=
(

g( j)
1,2,W

( j),εL( j),α( j),W
( j)

1,2

)
, ( j = 1, . . . ,N). (3.33c)

Note that we do not scale W (y-direction) as we do L (x-direction) so as to create a long, thin
material so that the ratio of length scales is the aspect ratio of the system. We further rescale the
two dimensionless damping parameters as K = εK̃ and η = ε−1η̃ to ensure a dominant balance.

We discretise the continuous variable X into N equally sized intervals, so that X j = j/N,
( j = 0, · · · ,N), so the rescaled initial positions of the cell centre of mass and cell boundaries can
be expressed as x̃(1/2)

b (0) = 0 with

x̃( j+1/2)
b (0) = X j, x̃( j)

c (T ) = X j−1/2 =
1
2(X j−1 +X j), ( j = 1, . . . ,N). (3.34)

We then express the cell boundary and centre of mass positions as a single continuum function
x̆(X ,T ) such that x̃(1/2)

b (T ) = 0

x̃( j+1/2)
b = x̆(X j,T ), x̃( j)

c = x̆(X j−1/2,T ), ( j = 1, · · · ,N), (3.35a)

as well as continuum representations of the other dependent variables in the model, in the form

W̃ ( j)(t) = W̆ (X j−1/2,T ), g̃( j)
1,2(T ) = ğ1,2(X j−1/2,T ), (3.35b)

α̃
( j)(t) = ᾰ(X j−1/2,T ), W̃

( j)
1,2 (T ) = W̆1,2(X j−1/2,T ), ( j = 1, . . . ,N). (3.35c)

As before, differences in discrete variables are mapped to derivatives of these continuum func-
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tions using Taylor expansions. The governing equation becomes

εK̆κ̆
∂ x̆( jε,T )

∂T
=−W̆ ( jε,T )

(
ᾰ1(( j+ 1

2)ε,T )W̆1(( j+ 1
2)ε,T )− ᾰ2(( j+ 1

2)ε,T )W̆2(( j+ 1
2)ε,T )

+η
∂

∂T

(
ᾰ1(( j+ 1

2)ε,T )− ᾰ2(( j+ 1
2)ε,T )

)
− ᾰ1(( j+ 3

2)ε,T )W̆1(( j+ 3
2)ε,T )+ ᾰ2(( j+ 3

2)ε,T )W̆2(( j+ 3
2)ε,T )

−η
∂

∂T

(
ᾰ(( j+ 3

2)ε,T )− λ̆2(( j+ 3
2)ε,T )

))
.

(3.36)

where

ᾰ1,2(( j+ 1
2)ε,T ) = ᾰ1,2( jε,T )+

ε

2
∂ ᾰ1,2( jε,T )

∂X
+O(ε2), (3.37)

ᾰ1,2(( j+ 3
2)ε,T ) = ᾰ1,2( jε,T )+

3ε

2
∂ ᾰ1,2( jε,T )

∂X
+O(ε2), (3.38)

W̆1,2(( j+ 1
2)ε,T ) = W̆1,2( jε,T )+

ε

2
W̆1,2( jε,T )

∂X
+O(ε2), (3.39)

W̆1,2(( j+ 3
2)ε,T ) = W̆1,2( jε,T )+

3ε

2
W̆1,2( jε,T )

∂X
+O(ε2). (3.40)

Substituting these expansions into (3.36) and simplifying yields

κ̆K̃
∂ x̆
∂T

= γ0ğ2ᾰ
−1
1

∂

∂X

(
ᾰ1W̆1− ᾰ2W̆2 + η̃

∂

∂T
(ᾰ1− ᾰ2)

)
, (0 < X < 1). (3.41)

We define continuum boundary conditions as follows. For the fixed boundary at x = 0, we define
x̆(0,T ) = 0. At the free boundary, (3.29i) gives

εκK̃
∂

∂T
(x̆+O(ε)) =−γ0ğ2ᾰ

−1
1

(
ᾰ1W̆1− ᾰ2W̆2 + η̃

∂

∂T

(
ᾰ1− ᾰ

−1
1
))

, (X = 1), (3.42)

which, to leading order, yields

ᾰ1W̆1− ᾰ2W̆2 + η̃
∂ ᾰ1

∂T

(
1+ ᾰ

−2
1
)
= 0, (X = 1). (3.43)

Finally, we rescale the continuum independent variables (X ,T ) back to the original parametri-
sation of the domain using x = ε−1X , t = ε−1T , K = εK̃ and η = ε−1η̃ , and map the dependent
variables according to

ğ1,2(X ,T ) = ĝ1,2 (x, t) , W̆1,2(X ,T ) = Ŵ (x, t) x̆(X ,T ) = ε x̂(x, t), (3.44a)

W̆ (X ,T ) = Ŵ (x, t), ᾰ(X ,T ) = α̂(x, t), λ̆1,2(X ,T ) = λ̂1,2(x, t). (3.44b)

In this formulation, the continuum description of the full and elastic principal stretches are
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respectively, to leading order, given by

λ̂1(x, t) =
∂ x̂
∂x

, α̂1(x, t) =
1
ĝ1

∂ x̂
∂x

, (0≤ x≤ l0), (3.45)

with resulting continuum constraints

λ̂2(x, t) =
ĝ2

α̂1
, α̂2(x, t) =

1
α̂1

, Ŵ (x, t) = γ0λ̂2, (0≤ x≤ l0). (3.46)

The total pressure takes the continuum form

p̂(x, t) = α̂2Ŵ2 +η
∂α̂2

∂ t
, (0≤ x≤ l0). (3.47)

The upscaled governing equations (3.41) for a general strain energy functional, Ŵ , take the
form

κ̂K
∂ x̂
∂ t

= γ0ĝ2α̂
−1
1

∂

∂x

(
α̂1Ŵ1− α̂2Ŵ2 +η

∂

∂ t
(α̂1− α̂2)

)
, (0 < x < l0), (3.48a)

where Ŵ1 and Ŵ2, are the upscaled continuum functions of W
( j)

1 and W
( j)

2 respectively. The
fixed boundary at x = 0 is defined by x̂(0, t) = 0 and the free boundary, (3.43) is replaced by

α̂1Ŵ1− α̂2Ŵ2 +η
∂

∂ t
(α̂1− α̂2) = 0, (x = l0). (3.48b)

Lastly, the continuum representation of the growth function (3.15) reduces to the form

dĝ1

dt
=

1
2

(
1+ tanh

(
σ̂1

σ0

))
, (0≤ x≤ l0), (3.49)

where

σ̂1 = α̂1Ŵ1− α̂2Ŵ2 + η̂
∂

∂ t
(α̂1− α̂2) , (0≤ x≤ l0). (3.50)

3.2.1 Neo-Hookean Material

For a Neo-Hookean material with cell-level strain-energy function (3.7), we obtain the contin-
uum PDE

κ̂K̂
∂ x̂
∂ t

= γ0ĝ2

(
∂ x̂
∂x

)−1
∂

∂x

(
µ̂
(
α̂

2
1 − α̂

−2
1
)
+η

∂

∂ t

(
α̂1− α̂

−1
1
))

, (0 < x < l0), (3.51a)
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with boundary conditions

x̂ = 0, (x = 0), (3.51b)(
α̂

2
1 − α̂

−2
1
)
+η

∂

∂ t

(
α̂1− α̂

−1
1
)
= 0, (x = l0), (3.51c)

where

α̂1 = ĝ−1
1

∂ x̂
∂x

. (3.51d)

3.2.2 Numerical Solutions

The continuum PDE system for Neo-Hookean cells (3.48a) is solved numerically using a semi-
discretisation scheme and the MATLAB solver ode15s. The spatial domain (0 ≤ x ≤ l0) is
divided into n equally sized spatial intervals, and the spatial discretisation stencils chosen have
an error of O(n−2). This code is presented in Appendix A.1. This numerical scheme converges
to a fixed solution as the spatial grid is refined (for larger n) and, in the results below, we show
good agreement with the discrete system.

Due to the viscous stress component, the equation of motion (3.48a) includes the term ∂ α̂1
∂ t

which is defined by

∂ α̂1

∂ t
=

1
ĝ1

∂ 2x̂
∂x∂ t

− 1
ĝ2

1

dĝ1

dt
∂ x̂
∂x

, (0≤ x≤ l0). (3.52)

However, as in the discrete system, the definition of ∂ ĝ1
∂ t in (3.49), also includes the term ∂ α̂1

∂ t

within the σ̂1 term (3.50) inside the tanh function. Hence the system is not straight-forward
to solve. We deal with this issue in an analogous manner by first solving for ∂ α̂/∂ t and, by
constructing a matrix problem, solving for the rate of change of x̂. Only then can we solve for x̂

explicitly.
For spatial discretisation we utilise n discretisation points and a second order centered-finite-

difference scheme for the mid-points,

∂ x̂(i)

∂x
=

1
2dX

(
x̂(i+1)− x̂(i−1)

)
+O(dX2) (i = 2, . . . ,n−1), (3.53a)

∂ 2x̂(i)

∂x2 =
1

(dX)2

(
x̂(i−1)−2x̂(i)+ x̂(i+1)

)
+O(dX2) (i = 2, . . . ,n−1), (3.53b)

where dX = l0/n is the step size and x̂(i) is a discretisation point in the domain (i = 1, . . . ,n). For
the boundary conditions, we use a second order forward and backward finite-difference scheme
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to avoid using points outside the domain,

∂ x̂(1)

∂x
=

1
2dX

(
−3x̂(1)+4x̂(2)− x̂(3)

)
+O(dX2), (3.53c)

∂ x̂(n)

∂x
=

1
2dX

(
3x̂(n)−4x̂(n−1)+ x̂(n−2)

)
+O(dX2). (3.53d)

There is no need for this number of intervals to be the same as the number of discrete cells
in the IBM, so this continuum PDE approach can result in a significant computational saving
compared to the IBM when the number of discrete cells is large.

In the results in Sec. 3.3 below we compute the continuum pressure (3.45) and stretch (3.47),
which are compared to the discrete simulations.

3.3 Results: Cell growth (Incompressible Cells)

In this section we consider unconstrained growth of a line of cells for various K and η . Cell
growth is defined by (3.15) and (3.49) in the discrete and continuum systems respectively. In
simulations below we choose σ0 = 0.1 and γ0 = 1. We use an initial N = 100 cells in the discrete
system unless otherwise stated.

We implement a cell division law in Sec. 3.3.2 , such that, for every growing cell, when a
cell’s area is twice the initial value (A( j) = 2A( j)

0 ), it divides into two identical daughter cells
of exactly half the current length of the parent cell such that the two daughter cells occupy the
same space as the parent cell. Each daughter cell has an initial resting length of 1

2L( j)
0 g( j)

1 for j

the cell that divided. The daughter cell starts growing due to their individual prescribed growth
functions and the process is repeated.

3.3.1 Case 1: Stress dependent cell growth (no proliferation)

In this section we consider stress-driven growth of the line of cells (with growth rate defined by
(3.15) and (3.49) in the discrete and continuum systems, respectively). In order to assess the
dynamics of growth in the presence of dissipation, Figure 3.1 considers the change in length
of the array and the accompanying stretch profiles for various K and η . In the absence of
internal dissipation (η = 0) we observe a linear increase of the domain length in time for all
K (Fig. 3.1a). The rate of elongation increases with decreasing K (c.f. the length of the array
attained by t = 100 decreases as K increases, Fig. 3.1a inset), as cells at the fixed end undergo a
larger compression with larger K, as the forces between cells are transmitted along the line more
slowly (Fig. 3.1b). Cells at the fixed end (x = 0) are more compressed (and hence, stressed)
than those at the free boundary, which are almost unstressed (Fig. 3.1b). Hence, the growth rate
of cells towards the fixed end (x = 0) will decrease due to their increased stress, and grow at a
slower rate than cells at the free boundary.
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Figure 3.1: Solutions for a system of incompressible Neo-Hookean cells aligned in a single array
subject to stress-driven growth. Solutions for N = 100 cells and uniform shear modulus µ = 1,
σ0 = 0.1, with κ = 1. Discrete solutions (symbols) are displayed with corresponding upscaled
continuum solutions (lines). (a) Length of the domain for K = 10−5,10−3,10−2,10−1,1, η = 0
for t = 0 to t = 100 (inset: length of the domain at t = 100 for K = 10−5 to K = 1) ; (b)
Stretch, α , at t = 10 for K = 10−5,10−2,1 and η = 0 (inset: elastic stretch across the domain at
t = 0,1,5,10 for K = 10−2); (c) Length of array for t = 0 to t = 100 for η = 1 and K = 0,10−2

(inset: length of array at t = 100 for η = 10−5 to η = 1 with K = 0 or K = 10−2); (d) Stretch, α ,
at t = 10 for η = 0.1,1,10 and K = 10−2 (inset: maximum compression in the array, minx(α),
for η = 0.1,1,10 and K = 10−2 for t = 0 to t = 20).

In the absence of substrate dissipation (K = 0) the length of the array again increases linearly
with time, identically for values from η = 10−5 to η = 100 (Fig. 3.1c). For K chosen small the
total array length again increases linearly with time (identically for values of η from 10−5 to 100)
but is shorter as the damping localises the motion to the free end of the array. For small K, the
system experiences compression due to damping and reaches a steady profile of compression,
with cells at x = 0 more compressed than those at the free end (Fig. 3.1d). The time taken to
reach this steady compression profile increases with η (Fig. 3.1d inset).

In order to assess the role of substrate dissipation in localising the deformation, in Figure
3.2 we explore the two different choices of the function κ , namely m = 0 and m = 1. Lin-
ear dependency of κ on area (m = 1) results in slower (sublinear) growth compared to m = 0
(Fig. 3.2a) for both discrete and continuum models, and greater maximal compression for the
same K (Fig. 3.2b). Since the dissipation is now proportional to cell area, as a cell grows it
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Figure 3.2: Solutions for a system of incompressible Neo-Hookean cells aligned in a single
array subject to stress-driven growth. Solutions for N = 100 cells (n = 101 continuum nodes)
and uniform shear modulus µ = 1 with κ = A(t). Discrete solutions (∗, +, ×, ◦) are displayed
with corresponding upscaled continuum solutions (solid lines) and discrete (·, �, ., ?) and
continuum (dash lines) solutions for comparison with κ = 1. System in the absence of viscous
dissipation (η = 0): (a) Length of the domain for K = 10−5,10−3,10−2,1, η = 0 for t = 0 to
t = 100; (b) Stretch at t = 0 for K = 10−5,10−2 and η = 0.

is subject to an increase in dissipative forces, slowing the growth rate of the cell. Hence, this
figure demonstrates that substrate dissipation proportional to cell area results in slower growth
and greater maximal compression of the array.

3.3.2 Case 2: Stress dependent cell growth with proliferation

In order to assess how cell proliferation influences the rate of elongation of the array, Figure
3.3 considers the discrete model with a proliferation rule, where an individual cell is assumed
to divide into two identical daughter cells when the volume of the parent cell has grown to
twice the initial value (A( j) = 2A( j)

0 ). With proliferation, the length of the array (Fig. 3.3a,b)
and the number of cells (Fig. 3.3a,b inset) grow linearly in time for long times for all K and for
either choice of the dissipation function κ (m = 0 or m = 1). However, the rate of elongation
is greater for smaller K (Fig. 3.3a,b) as the compressive stress is low enough to allow growth
(c.f. Fig 3.1b). For K = 10−5, the compressive stress is sufficiently low that the proliferation
remains distributed across the entire array (Fig. 3.3c illustrates the relative location of division
events) meaning that in this case only proliferation can result in faster growth of the array. We
note the kinks in Fig. 3.3c in the temporal profiles of the division event locations demonstrate a
wave of division events propagating down the array of cells such that all cells divide one after
the other. By t ≈ 2.5, all cells have undergone one division. The next set of division events starts
at t > 2.5. However, from this point, all new sets of division events begin (that is, the cell at
x = l(t) divides) before the previous set has finished (that is, before the cell at x = 0 has divided
the same amount of times as the other cells). When this new set of divisions starts, we observe
a kink in the previous line of division events, at the moment they begin to overlap. For example,
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Figure 3.3: Solutions for a discrete system of incompressible Neo-Hookean cells aligned in a
single array subject to stress-driven growth with substrate dissipation and cell division at A( j) =
2. Solutions for N0 = 100 cells and uniform shear modulus µ = 1. (a) Domain length, L(t),
against t on a log-log scale for cases with and without proliferation, for κ = 1 and κ = A(t)
(inset: the number of cells, N, on a log-log scale for κ = 1) for K = 10−5 for t = 0 to t = 18;
(b) Domain length, L(t), against t on a log-log scale for cases with and without proliferation, for
κ = 1 and κ = A(t) (inset: the number of cells, N, on a log-log scale for κ = 1) for K = 10−2

for t = 0 to t = 1000; (c) Division event location, xd , relative to current domain length, L(t)
for m = 0 and K = 10−5 for t = 0 to t = 18; (d) Division event location, xd , relative to current
domain length, L(t) for m = 0 and K = 10−2 for t = 0 to t = 1000.

we observe a kink the third set of division events (t ≈ 8) when the fourth set of division events
begins and, more subtly, at t ≈ 10.1 when the fifth set of division events begin. The start of
a new set (line) of division events across the domain has a small halting effect on any current
set of division events. It would make an interesting investigation in future work to consider the
magnitude of this effect, and why it arises. However, for K ≥ 10−4 (shown here for K = 10−2),
the rate of elongation is substantially faster for m = 0 compared to m = 1 (Fig. 3.3b). In these
cases, the behaviour with κ = 1 and no proliferation elongates most quickly as the system is
not paying extra dissipation penalty for enlarging cells, and proliferation becomes localised to
the free end of the domain (Fig. 3.3d). Note that Fig. 3.3d identifies divisions occurring away
from the free end of the domain, which demonstrate that cells that were initially growing end
up closer to the fixed end of the array, however were able to grow enough initially to eventually
meet the division requirement, even with a slower growth due to compression at later times. In
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summary, this figure demonstrates that cell proliferation generally leads to slower growth of the
array (except in cases with very small substrate dissipation).

3.4 Summary

In this chapter we have utilised the theory of morphoelasticity [101, 107] to construct an IBM
for a line of cells incorporating cell growth, and derived a corresponding continuum PDE model
using discrete-to-continuum asymptotics. We investigated the role of dissipation on the system
by considering two different dissipation functions, one constant and one dependent on the area
of the cell in contact with the substrate. We conclude that substrate dissipation proportional to
cell are results in slower growth and greater maximal compression of the array in most cases, due
to the extra dissipative penalty paid by enlarging cells. For substrate dissipation (in the absence
of internal dissipation) the array length increases linearly with time. Similarly, for internal
dissipation in the absence of substrate dissipation, the array length also increases linearly with
time, identically for all values of viscous dissipation constant η . Incorporating proliferation
into the system, for all cases except extremely small values of substrate damping, proliferation
becomes localised to the free end of the domain, mimicking the behaviour of a proliferating rim.
A proliferating rim is of interest due to the behaviour of cancerous cells. Previous research on
spherical clusters of cells (e.g. a tumor) show a characteristic structure of a proliferating rim
and a necrotic core, where cells grow (and divide) outwards and at the centre can die [103]. We
have therefore been able to reproduce a proliferating rim behaviour purely from a mechanical
formulation of the system, in contrast to previous works in which this behaviour arises due to
nutrient and cell-density profiles (e.g. [103]) or by constructing a model with discrete areas of
proliferating, quiescent and necrotic cells (e.g. [126]).



Chapter 4

Two- and Three-Dimensional
Discrete-to-Continuum Models

We now extend the geometry from Chapter 2 to three spatial dimensions to consider a three-
dimensional sheet of incompressible nonlinearly elastic cells of constant density, arranged in an
initially rectangular array atop a rigid substrate, as shown in Fig. 4.1. The array is constructed in
an initial configuration of M identical rows of N cuboidal cells (i.e. M rows of the single array
from Chapter 2).

We first formulate a discrete individual-based model (Sec. 4.1) and outline challenges in the
general formulation. We then specify the cell deformation to first consider a uniaxial deforma-
tion (Sec. 4.2) for each cell, where one outer edge of the array is fixed and the outer edge parallel
to it is subject to a prescribed deformation. This deformation is applied in one direction (uniaxial
deformation) however the cells respond by deforming in all three dimensions. We consider two
possibilities for the final two boundaries. Firstly, we impose symmetry of deformation along
one of the edges perpendicular to the fixed edge and impose zero external stress in the other.
Second, we assume that the two outer edges perpendicular to the fixed edge are periodic. We
then move on to consider cells undergoing a simple shear deformation (Sec. 4.3) and investigate
the response of the system when one outer edge is fixed and the other edge parallel to this is
moved at a constant speed. This formulation reduces this particular model to two-dimensions,
similar to Chapters 2 and 3..

4.1 The model

We consider a quasi-three dimensional sheet of discrete cells atop a substrate, as shown in
Fig. 4.1a. In the plane of the substrate, one edge of the array is parametrised by the coordinate x,
while the direction normal to this is parametrised by the coordinate y, with the z-direction nor-
mal to the substrate. On z = 0 we assume no motion in the z direction, while on the remaining
surface normal to z we assume a boundary condition of zero stress. Cells are in contact along

70
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Figure 4.1: Geometrical set up of a quasi-three dimensional sheet of discrete cells. (a) three-
dimensional rectangular cells; (b) vertex-model set up for four-sided cells in the (x,y) plane.

their shared edges, where stresses are transmitted (Fig. 4.1b). All cells are assumed to be in-
compressible, which imposes a local constraint on each cell deformation. We assume cell edges
normal to z = 0 can slip past each other with no friction, hence the problem can be represented
as a planar system in the (x,y) plane, as deformation in the third dimension can be implicitly
solved for with the constraint of incompressibility. This reduces the system to a quasi-three
dimensional model.

We consider an initially rectangular array of M rows of N discrete cells. These cells are
indexed by the coordinate j ( j = 1, . . . ,N) in the x-direction and k (k = 1, . . . ,M) in the y-
direction. The properties of cell j,k are labelled with a superscript ( j,k). In general these
individual cells can have complicated shapes and are embedded within an extracellular matrix.
For simplicity we assume that each constituent cell can be modelled as a quadrilateral prism
which deforms in a manner which allows it to remain in contact with its nearest neighbours
(i.e. ignore bending of all edges in this formation). In the general formulation, a cell may not
always have the same neighbour. A significant challenge would be to keep track of which cells
are in contact. Here, we assume only small deformations and that that cells neighbours remain
constant. In the (x,y) plane these cells are four-sided shapes. We denote the outer unit normal
of edge i as n( j,k)

i (i = 1,2,3,4), as outlined in Fig. 4.1b.
We assume the cells have uniform density ρ , and characterise cells by the position of their

centre of mass (which coincides with their geometric centre since the density is uniform) denoted
x( j,k)

c = (x( j,k)
c (t),y( j,k)

c (t), 1
2H( j,k)(t)), for j = 1, . . . ,N and k = 1, . . . ,M, where H( j,k) is the

height (in the z-direction) of cell ( j,k).
The (local) reference coordinate system for cells is denoted X( j,k) = (X ( j,k),Y ( j,k),Z( j,k))

where X ( j,k) = x− x( j,k)
c , Y ( j) = y− y( j,k)

c and Z( j,k) = z− 1
2H( j,k), so that −1

2L( j,k)
0 ≤ X ( j,k) ≤

1
2L( j,k)

0 , −1
2W ( j,k)

0 ≤ Y ( j,k) ≤ 1
2W ( j,k)

0 and −1
2H( j,k)

0 ≤ Z( j,k) ≤ 1
2H( j,k)

0 , where L( j,k)
0 , W ( j,k)

0 and
H( j,k)

0 are the cells initial length (x-direction), width (y-direction) and height (z-direction), re-
spectively. In the current configuration, the coordinate system for cells is defined by x( j,k) =

χχχ( j,k)(X( j,k), t) and the corresponding deformation gradient tensor is defined by F( j,k)=Grad(x( j,k)),
where the gradient operator is measured with respect to the reference coordinate system X( j,k)
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and the mapping χχχ( j,k) defines the deformation from the reference to the current configuration.

4.1.1 Elastic Deformation

We assume each cell undergoes a nonlinear elastic deformation, with deformation gradient F( j,k).
The constraint of incompressibility implies det

(
F( j,k)

)
= 1. We wish to maintain generality and

so do not yet define the form of the deformation gradient.

4.1.2 Elastic Stress

The elastic deformation of cell ( j,k) follows from an incompressible strain energy functional

W ( j,k) = W ( j,k)
(

λ
( j,k)
1 ,λ

( j,k)
2 ,λ

( j,k)
3

)
, ( j = 1, . . . ,N; k = 1, . . . ,M). (4.1)

We characterise the elasticity of individual cells by their shear modulus, denoted µ( j,k), ( j =

1, . . . ,N; k = 1, . . . ,M), and denote µ0 as a typical shear modulus (for example, the mean value
for a healthy cell and in this chapter we use µ0 = 1) for cells in the array.

The corresponding Cauchy stress tensor for cell ( j,k) is then given by

σσσ
( j,k) = F( j,k)∂W ( j,k)

∂F( j,k)
− p( j,k)I, ( j = 1, . . . ,N; k = 1, . . . ,M) (4.2)

where p( j,k) is a Lagrange multiplier interpreted as the internal pressure of cell ( j,k).

4.1.3 Boundary Conditions

The pressure within each cell, p( j,k) ( j = 1, . . . ,N; k = 1, . . . ,M), is determined by applying the
boundary condition of no lateral force on the upper surface (perpendicular to ẑ) which gives

0 =
∫

z=H( j,k)
σσσ

( j,k) · ẑ dA( j,k), (4.3)

where A( j,k) is the cross-sectional area in the (x,y) plane of cell ( j,k).
The force exerted from cell ( j,k) on the edge i is given by

F( j,k)
i =

∫
σσσ

( j+1,k) ·n( j,k)
i dS( j,k)

i , (i = 1, . . . ,4), (4.4)

where S( j,k)
i represents the area of the edge with outer unit normal n( j,k)

i (i = 1, . . . ,4).
We denote the external force on edge i from the neighbouring cell as F( j,k)

i′ , which is given
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by

F( j,k)
i′ =

∫
σσσ

(p,q) ·n(p,q)
i′ dSi′, (4.5)

where (p,q) are the indices of the cell whose edge i′ is the same as edge i of cell ( j,k) and
n(p,q)

i′ =−n( j,k)
i . Hence the resultant force across the cell edge i is denoted

F( j,k)
ei = F( j,k)

i +F(p,q)
i′ . (4.6)

These net forces drive the motion and deformation of the array of cells.

4.1.4 Governing Equations

We assume that the cells are binding and unbinding to a substrate which is fixed in the plane of
the page: the resulting damping force is assumed proportional to the dimensionless function of
the cell cross-sectional area in contact with the substrate

κ
( j,k) =

(
A( j,k)

A( j,k)
0

)m

, ( j = 1, . . . ,N; k = 1, . . . ,M), (4.7)

and the rate of change of the position of the centre of mass of the cell relative to the substrate,
with constant of proportionality K( j,k) ( j = 1, . . . ,N; k = 1, . . . ,M). Applying Newton’s second
law and neglecting inertial effects, we express the global force balance at the cell centre-of-mass,

κ
( j,k)K( j,k)dx( j,k)

c

dt
=

4

∑
i=1

F( j,k)
ei , ( j = 1, . . . ,N; k = 1, . . . ,M), (4.8)

where F( j,k)
ei is the force balance across the shared edge i, defined by (4.6).

However, it is difficult to compute a generalised σσσ ( j,k) for this system. A significant chal-
lenge is to keep track of cell vertices as the cell deforms as the force balance is at the centre
of mass. The system requires additional constraints at each vertex to ensure cells meet per-
fectly and there are no gaps. It could be better to formulate this as a vertex model in terms of
vertex locations (possible in one-dimension), however this would make it difficult to formulate
dissipation and would require resolution of the stress singularities at the corners.

Instead, we make approximations to construct a consistent model in the form of simple
assumptions about how the cell centre and the cell’s vertices are related. Hence, we will consider
two simple deformations of each cell to define this relation and allow cells to remain in contact
with their nearest neighbours. First we assume cells undergo a simple uniaxial deformation in
Sec. 4.2, and second we consider cells undergoing a simple shear deformation in Sec. 4.3.
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Figure 4.2: Geometrical set up of M rows of N elastic cells aligned end to end.

4.2 Uniaxial deformation

In order to define the deformation and Cauchy stress (and hence, governing equations) for each
cell, we assume that each constituent cell from Sec. 4.1 can be modelled as a cuboid with a
rectangular cross-section in the (x,y) plane, which deforms uniaxially. In a similar manner to
Chapters 2 and 3 we use the index ( j+1/2,k) to denote the boundary between cells ( j,k) and
( j+1,k) and the index ( j,k+1/2) to denote the boundary between cells ( j,k) and ( j,k+1).

The length of a cell in the x-direction (along unit vector x̂) is given by

L( j,k) = x( j+1/2,k)
b − x( j−1/2,k)

b , ( j = 1, . . . ,N;k = 1, . . . ,M), (4.9)

(with initial value L( j,k)
0 ), where x( j+1/2,k)

b ( j = 0, . . . ,N; k = 1, . . . ,M) defines the x-coordinate
of the boundary between cell ( j,k) and ( j+ 1,k). The width of a cell in the y-direction (along
unit vector ŷ) is given by

W ( j,k) = y( j,k+1/2)
b − y( j,k−1/2)

b , ( j = 1, . . . ,N;k = 1, . . . ,M), (4.10)

(with initial value W ( j,k)
0 ), where y( j,k+1/2)

b ( j = 1, . . . ,N; k = 0, . . . ,M) defines the y-coordinate
of the boundary between cell ( j,k) and ( j,k+1/2). The height of a cell in the z-direction (along
unit vector z) is denoted H( j,k) (with initial value H( j,k)

0 ), for j = 1, . . . ,N and k = 1, . . . ,M.
In this configuration, each cell has four outward unit normals in the form

n( j,k)
1 =−n( j,k)

3 = x̂, ( j = 1, . . . ,N;k = 1, . . . ,M)

n( j,k)
2 =−n( j,k)

4 = ŷ, ( j = 1, . . . ,N;k = 1, . . . ,M),
(4.11)

as shown in Fig. 4.2.
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4.2.1 Elastic Deformation

We assume each cell undergoes a nonlinear elastic deformation, with deformation gradient F( j,k)

of the form

F( j,k) =

λ
( j,k)
1 0 0

0 λ
( j,k)
2 0

0 0 λ
( j,k)
3

 , ( j = 1, . . . ,N; k = 1, . . . ,M), (4.12)

where λ
( j,k)
1 , λ

( j,k)
2 and λ

( j,k)
3 are the principal stretches of cell ( j,k) ( j = 1, . . . ,N; k = 1, . . . ,M),

and

λ
( j,k)
1 =

x( j+1/2,k)
b − x( j−1/2,k)

b

L( j,k)
0

, λ
( j,k)
2 =

y( j,k+1/2)
b − y( j,k−1/2)

b

W ( j,k)
0

, ( j = 1, . . . ,N;k = 1, . . . ,M).

(4.13)

4.2.2 Incompressibility

The constraint of incompressibility implies det
(
F( j,k)

)
= 1. Hence

λ
( j,k)
3 =

1

λ
( j,k)
1 λ

( j,k)
2

, ( j = 1, . . . ,N;k = 1, . . . ,M), (4.14)

and so we use this constraint to eliminate λ
( j,k)
3 from the final equations in favour of the other

stretches.

4.2.3 Elastic Stress

When specifying the model, we consider the incompressible Neo-Hookean strain energy func-
tional for each cell

W ( j,k) = 1
2 µ

( j,k)
((

λ
( j,k)
1

)2
+
(

λ
( j,k)
2

)2
+
(

λ
( j,k)
3

)2
−3
)
, ( j = 1, . . . ,N; k = 1, . . . ,M).

(4.15)
The Cauchy stress (4.2) takes the simple form

σσσ
( j,k) = F( j,k)

(
F( j,k)

)T
− p( j,k)I, ( j = 1, . . . ,N; k = 1, . . . ,M) (4.16)

=


µ( j,k)

(
λ
( j,k)
1

)2
− p( j,k) 0 0

0 µ( j,k)
(

λ
( j,k)
2

)2
− p( j,k) 0

0 0 µ( j,k)
(

λ
( j,k)
3

)2
− p( j,k)

 . (4.17)
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4.2.4 Boundary Conditions

Applying the condition (4.3) of zero external stress on z = H( j,k) yields

p( j,k) = µ
( j,k)

(
λ
( j,k)
3

)2
= µ

( j,k)
(

λ
( j,k)
1 λ

( j,k)
2

)−2
, ( j = 1, . . . ,N; k = 1, . . . ,M), (4.18)

and hence the only non-zero components of σσσ are

σ
( j,k)
11 =µ

( j,k)
((

λ
( j,k)
1

)2
−
(

λ
( j,k)
1 λ

( j,k)
2

)−2
)
, ( j = 1, . . . ,N; k = 1, . . . ,M), (4.19a)

σ
( j,k)
22 =µ

( j,k)
((

λ
( j,k)
2

)2
−
(

λ
( j,k)
1 λ

( j,k)
2

)−2
)
, ( j = 1, . . . ,N; k = 1, . . . ,M). (4.19b)

The force from cell ( j,k) on cell ( j±1,k) is given by

F( j,k)
x± =

∫ H( j±1/2,k)

0

∫ 1
2W ( j±1/2,k)

−1
2W ( j±1/2,k)

σσσ
( j,k) · (∓x̂) dy dz, (4.20)

=∓H( j±1/2,k)W ( j±1/2,k)
σ
( j,k)
11 x̂, (4.21)

where W ( j±1/2,k) represents the length in the y-direction of the shared boundary between cells
( j,k) and ( j±1,k), which we approximate by the mean of the cell widths

W ( j±1/2,k) = 1
2

(
W ( j,k)+W ( j±1,k)

)
, ( j = 1, . . . ,N; k = 1, . . . ,M) (4.22)

where W ( j,k) = W0λ
( j,k)
2 , and H( j±1/2,k) represents the length in the z-direction of the shared

boundary between cells ( j,k) and ( j± 1,k), which we approximate by the mean of the cell
heights

H( j±1/2,k) = 1
2

(
H( j,k)+H( j±1,k)

)
, ( j = 1, . . . ,N; k = 1, . . . ,M) (4.23)

where H( j,k) = H( j,k)
0 (λ

( j,k)
1 λ

( j,k)
2 )−1 is the current cell height.

The force from cell ( j,k) on cell ( j,k±1) is given by

F( j,k)
y± =

∫ H( j,k±1/2)

0

∫ 1
2 L( j,k+1/2)

−1
2 L( j,k+1/2)

σσσ
( j,k) · (∓ŷ) dx dz (4.24)

=∓H( j,k±1/2)L( j,k±1/2)
σ
( j,k)
22 ŷ (4.25)

where L( j,k±1/2) represents the length of the shared boundary between cells ( j,k) and ( j,k±1),
which we approximate by the mean of the cell lengths

L( j,k±1/2) = 1
2

(
L( j,k)+L( j,k±1)

)
, ( j = 1, . . . ,N; k = 1, . . . ,M) (4.26)
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where L( j,k) = L0λ
( j,k)
1 .

The resultant force across the cell boundary between cells ( j,k) and ( j+1,k) is denoted

F( j+1/2,k)
bx

= F( j,k)
x+ +F( j+1,k)

x− , ( j = 1, . . . ,N−1; k = 1, . . . ,M) (4.27)

while the resultant force across the cell boundary between cells ( j,k) and ( j,k+1) is denoted

F( j,k+1/2)
by

= F( j,k)
y+ +F( j,k+1)

y− , ( j = 1, . . . ,N; k = 1, . . . ,M−1) (4.28)

These net forces drive the motion and deformation of the array of cells.

4.2.5 Discrete governing equations

The governing equation (4.8) along with the forces (4.27) and (4.28) yield the equations

κ
( j,k)K

dx( j,k)
c

dt
= H( j+1/2,k)W ( j+1/2,k)

(
σ
( j+1,k)
11 −σ

( j,k)
11

)
+H( j−1/2,k)W ( j−1/2,k)

(
σ
( j,k)
11 −σ

( j−1,k)
11

)
,

(4.29)

κ
( j,k)K

dy( j,k)
c

dt
= H( j,k+1/2)L( j,k+1/2)

(
σ
( j,k+1)
22 −σ

( j,k)
22

)
+H( j,k−1/2)L( j,k−1/2,k)

(
σ
( j,k)
22 −σ

( j,k−1)
22

)
,

(4.30)

(for j = 1, . . . ,N; k = 1, . . . ,M), where σ
( j,k)
11 , σ

( j,k)
22 are defined in (4.19a) and (4.19b) respec-

tively, λ
( j,k)
1 and λ

( j,k)
2 are defined in (4.13) and H( j±1/2,k±1/2), W ( j±1/2), L( j,k±1/2) are as de-

fined in (4.44a), (4.44b) and (4.44c) respectively. Note that these equations are analogous to
those presented in Chs. 2 and 3.

4.2.6 Initial Conditions

Initially, the cells are arranged in a rectangular array, where all cells are the same size and
shape (cuboidal, with a rectangular cross section in the (x,y) plane). The geometry of the cell is
initially defined by

x( j−1/2,k)
b (0) =

j

∑
i=1

L( j,k)
0 , ( j = 1, . . . ,N +1; k = 1, . . . ,M), (4.31a)

y( j,k−1/2)
b (0) =

k

∑
i=1

W ( j,k)
0 , ( j = 1, . . . ,N; k = 1, . . . ,M+1), (4.31b)

H( j,k)(0) = H( j,k)
0 , ( j = 1, . . . ,N; k = 1, . . . ,M+1). (4.31c)
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with x(1/2)
b = 0 and y(1/2)

b = 0. In the simulations below we assume all cells are initially the same
length L( j,k)

0 = L0, width W ( j,k)
0 =W0 and height, H( j,k)

0 = H0 ( j = 1, . . . ,N; k = 1, . . . ,M). This
is not a necessary assumption but significantly simplifies the specification of the model and the
upscaling to a continuum model for Sec 4.2.9. In this case, (4.31a) reduces to

x( j−1/2,k)
b (0) = L0( j−1), ( j = 1, . . . ,N +1; k = 1, . . . ,M), (4.32a)

y( j,k−1/2)
b (0) =W0(k−1), ( j = 1, . . . ,N; k = 1, . . . ,M+1), (4.32b)

H( j,k)(0) = H0, ( j = 1, . . . ,N; k = 1, . . . ,M+1). (4.32c)

4.2.7 Discrete global boundary conditions

To fully specify the problem we must specify boundary conditions on all four outer edges (x = 0,
x = l0, y = 0, y = w0). For all systems, we constrain the edge of the array along x = 0 to enforce
no displacement in the x-direction, and prescribe a displacement at the edge of the array at x= l0,
such that

x(1/2,k)
b = 0, x(N+1/2,k)

b = l(t), (k = 1, . . . ,M). (4.33)

Similar to Chapter 2, we consider a prescribed deformation over a a timescale tp. We con-
sider two different choices for the remainder of the global boundary conditions. Firstly in
Sec. 4.2.12, we consider a test problem with simple boundary conditions, and assume

y( j,1/2)
b = 0, (4.34)

with a boundary condition of no external stress, such that

F( j,M+1)
y− = 0, ( j = 1, . . . ,N), (4.35)

meaning the force balance on boundaries ( j,M+1/2) can be expressed as

F( j,M+1/2)
by

= F( j,M)
y+ , ( j = 1, . . . ,N). (4.36)

and hence

κ
( j,M)K

dy( j,M)
c

dt
=−H( j,M)L( j,M)

σ
( j,M)
22

+H( j,M−1/2)L( j,M−1/2)
(

σ
( j,M)
22 −σ

( j,M−1)
22

)
, ( j = 1, . . . ,N).

(4.37)
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Secondly in Sec. 4.2.13, we assume the domain is periodic in the interval 0≤ y≤ y0, so

y( j,M+1/2)
b (t)− y( j,M+1/2)

b (0) = y( j,1/2)
b (t), ( j = 1, . . . ,N). (4.38)

4.2.8 Non-dimensional variables

It is useful to consider the system in terms of non-dimensional variables (denoted with an over-
bar). We scale time on the timescale of prescribed deformation tp (similar to Chapter 2), lengths
on L0, forces per unit area on µ0L2

0 and pressures and other stress-like parameters on µ0, such
that

(x( j,k)
c ,y( j,k)

c L( j,k),W ( j,k),H( j,k)) = L0(x̄( j,k), ȳ( j,k), L̄( j,k),W̄ ( j,k), H̄( j,k)),

µ
( j,k) = µ0µ̄

( j,k), W ( j,k) = µ0W̄
( j,k), ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.39)

and

x( j−1/2,k)
b = L0x̄( j−1/2,k)

b ( j = 1, . . . ,N +1; k = 1, . . . ,M),

x( j,k−1/2)
b = L0ȳ( j,k−1/2)

b ( j = 1, . . . ,N; k = 1, . . . ,M+1).
(4.40)

This results in the following dimensionless groups

γ̄0 =
W0

L0
, β̄0 =

H0

L0
K̄( j,k) =

K( j,k)

t0µ0L0
, ( j = 1, . . . ,N; k = 1, . . . ,M), (4.41)

representing the planar aspect ratio of the cells and the dimensionless substrate damping coeffi-
cient. We further define

l(t) = L0l̄(t̄), Fb(t) = µ0L2
0F̄b(t̄), σσσ = µ0σ̄σσ ,

L̄( j,k)(t) = λ
( j,k)
1 (t̄) W̄ ( j,k)(t̄) = γ̄0λ

( j,k)
2 (t̄),

H̄( j,k)(t̄) =
β̄0

λ
( j,k)
1 (t̄)λ ( j,k)

2 (t̄)
, Ā( j,k)(t) = γ̄0λ

( j,k)
1 λ

( j,k)
2 , ( j = 1, . . . ,N; k = 1, . . . ,M).

(4.42)
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The final non-dimensional system takes the form of the ODEs

κ
( j,k)K̄( j,k)dx̄( j,k)

c

dt̄
= H̄( j+1/2,k)W̄ ( j+1/2,k)

(
σ̄
( j+1,k)
11 − σ̄

( j,k)
11

)
+ H̄( j−1/2,k)W̄ ( j−1/2,k)

(
σ̄
( j,k)
11 − σ̄

( j−1,k)
11

)
, ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.43a)

κ
( j,k)K̄( j,k)dȳ( j,k)

c

dt̄
= H̄( j,k+1/2)L̄( j,k+1/2)

(
σ̄
( j,k+1)
22 − σ̄

( j,k)
22

)
+ H̄( j,k−1/2)L̄( j,k−1/2,k)

(
σ̄
( j,k)
22 − σ̄

( j,k−1)
22

)
, ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.43b)

where

H̄( j±1/2,k) =
β̄0

2

(
1

λ
( j,k)
1 λ

( j,k)
2

+
1

λ
( j±1,k)
1 λ

( j±1,k)
2

)
, ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.44a)

W̄ ( j±1/2,k) =
γ̄0

2

(
λ
( j,k)
2 +λ

( j±1,k)
2

)
, ( j = 1, . . . ,N; k = 1, . . . ,M), (4.44b)

L̄( j,k±1/2) =
1
2

(
λ
( j,k)
1 +λ

( j,k)
1

)
, ( j = 1, . . . ,N; k = 1, . . . ,M). (4.44c)

The prescribed deformation boundary conditions (4.33) take non-dimensional form

x̄(1/2,k)
b = 0, x̄(N+1/2,k)

b = l̄(t), (k = 1, . . . ,M). (4.45)

with either a zero-external stress boundary condition at y = w0 (4.37),

κ̄
( j,M)K

dȳ( j,M)
c

dt̄
=−H̄( j,M)L̄( j,M)

σ̄
( j,M)
22

+ H̄( j,M−1/2)L̄( j,M−1/2)
(

σ̄
( j,M)
22 − σ̄

( j,M−1)
22

)
, ( j = 1, . . . ,N),

(4.46)

or periodicity across 0≤ y≤ l0 (4.38),

ȳ( j,M+1/2)
b (t)− ȳ( j,M+1/2)

b (0) = ȳ( j,1/2)
b (t), ( j = 1, . . . ,N). (4.47)

The initial condition is given by

x̄( j−1/2,k)
b (0) = ( j−1), ( j = 1, . . . ,N +1; k = 1, . . . ,M), (4.48)

ȳ( j,k−1/2)
b (0) = (k−1), ( j = 1, . . . ,N; k = 1, . . . ,M+1), (4.49)

H̄( j,k)(0) = β̄0, ( j = 1, . . . ,N; k = 1, . . . ,M+1). (4.50)
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Henceforth, we drop over-bars for notational convenience and consider only non-dimensional
variables.

4.2.9 Upscaling to continuum

We now describe the discrete model of Sec. 4.2.8 using a (PDE) continuum model to facilitate a
macroscale description. In this approach we utilise discrete-to-continuum upscaling to map the
discrete equations (4.43) to a PDE [82, 115].

We assume the initial number of cells in the x- and y-directions are of the same order, i.e.
O(ν0) = 1 (where ν0 = M/N) and that this number is large, and introduce a small parameter ε =

N−1� 1. We assume that the lengthscale of a typical deformation is long (O(ε−1)) compared
to that of an individual cell (O(1)). This approach uses Taylor expansions local to each cell to
transform discrete differences to derivatives, which requires that the properties of the individual
cells (e.g. µ( j,k), K( j,k)) vary smoothly across the sheet, hence we assume that the lengthscale of
variations in material properties are also O(ε−1). For simplicity we also assume K( j,k) = K and
µ( j,k) = µ are uniform across the sheet. We take a long wavelength rescaling of the independent
variables in the form

X = εx, Y = εy, T = εt, (4.51)

so that 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1. Note that this reduction maintains an O(1) cell velocity. We
then rescale the cell boundary positions according to

x( j,k)
c (t) = ε

−1x̃( j,k)(T ), ( j = 1, . . . ,N; k = 1, . . . ,M), (4.52a)

y( j,k)
c (t) = ε

−1ỹ( j,k)(T ), ( j = 1, . . . ,N; k = 1, . . . ,M), (4.52b)

where tilded variables are functions of rescaled time, T . Furthermore, we rescale the discrete
properties for an individual cell,

(W,W0,L,L0,H0,H)( j,k) =
(
ε
−1W̃ ,ε−1W̃0,ε

−1L̃,ε−1L̃0, H̃0,H
)( j,k)

, ( j = 1, . . . ,N; k = 1, . . . ,M).

(4.52c)

with l0 = ε−1 l̃0 = L̃0, and w0 = ε−1w̃0 = ν0W̃0. Note that we do not scale H (z-direction) as
we do L and W (x- and y-direction respectively) so as to create a long and wide, thin material
so that the ratio of length scales is the aspect ratio of the system. This is similar to Chapters 2
and 3, however now the thickness is used for the aspect ratio rather than width. We rescale the
dimensionless damping parameter K as K = εK̆ to ensure a dominant balance.

We discretise the continuous variable X into N equally sized intervals, so that X j = j/N,
( j = 0, . . . ,N), and discretise the continuous variable Y into M equally sized intervals, so that
Yk = k/M, (k = 0, . . . ,M), so the rescaled initial positions of the cell centre of mass and cell
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boundaries can be expressed as x̃(1/2,k)
b (0) = 0 (k = 1, . . . ,M) with

x̃( j+1/2,k)
b (0) = X j, x̃( j,k)

c (0) = X j−1/2 =
1
2(X j−1 +X j), ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.53)

ỹ( j,k+1/2)
b (0) = Yj, x̃( j,k)

c (0) = Yk−1/2 =
1
2(Yk−1 +Yk), ( j = 1, . . . ,N; k = 1, . . . ,M),

(4.54)

We then express the cell boundary and centre of mass positions as a single continuum function
x̆(X ,T ) such that x̃(1/2,k)

b (T ) = 0 (k = 1, . . . ,M)

x̃( j+1/2,k)
b = x̆(X j,Yk,T ), x̃( j,k)

c = x̆(X j−1/2,Yk,T ), ( j = 1, . . . ,N, ; k = 1 . . . ,M),

(4.55)

ỹ( j,k+1/2)
b = y̆(X j,Yk,T ), ỹ( j)

c = x̆(X j,Yk−1/2,T ), ( j = 1, . . . ,N, ; k = 1 . . . ,M),

(4.56)

as well as continuum representations of the other dependent variables in the model, in the form

W ( j,k)(T ) = W̆ (X j,Yk,T ), x̃( j+1/2,k)
b = x̆(X j+1/2,Yk,T ), W̃ ( j,k)(t) = W̆ (X j,Yk,T ),

H̃( j,k) = H̆(X j,Yk,T ), κ
( j,k) = κ̆(X j,Yk,T ), ( j = 1, . . . ,N; k = 1, . . . ,M).

(4.57)

In this case differences in discrete variables can be mapped to derivatives of these continuum
functions using Taylor expansions. Hence, expanding about ( jε,kε), (4.43b) and (4.43b) be-
come

κ̆εK̆
∂ x̆
∂T

=

(
H̆ + ε

∂ H̆
∂X

+O
(
ε

2))(W̆ + ε
∂W̆
∂X

+O
(
ε

2))((
σ̆11 + ε

∂ σ̆11

∂X
+O

(
ε

2))− σ̆11

)
+

(
H̆− ε

∂ H̆
∂X

+O
(
ε

2))(W̆ − ε
∂W̆
∂X

+O
(
ε

2))(
σ̆11−

(
σ̆11− ε

∂ σ̆11

∂X
+O

(
ε

2))) ,

(4.58a)

κ̆εK̆
∂ y̆
∂T

=

(
H̆ + ε

∂ H̆
∂Y

+O
(
ε

2))(L̆+ ε
∂ L̆
∂Y

+O
(
ε

2))((
σ̆22 + ε

∂ σ̆22

∂Y
+O

(
ε

2))− σ̆22

)
+

(
H̆− ε

∂ H̆
∂Y

+O
(
ε

2))(L̆− ε
∂ L̆
∂Y

+O
(
ε

2))(
σ̆22−

(
σ̆22− ε

∂ σ̆22

∂Y
+O

(
ε

2))) .

(4.58b)
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Note that

σ̆11 = µ

(
λ̆

2
1 −

(
λ̆1λ̆2

)−2
)
, (4.58c)

σ̆22 = µ

(
λ̆

2
2 −

(
λ̆1λ̆2

)−2
)
, (4.58d)

and hence the governing equations simplify to

κ̆K̆
∂ x̆
∂T

= H̆W̆ µ
∂

∂X

(
λ̆

2
1 −

(
λ̆1λ̆2

)−2
)
, (4.58e)

κ̆K̆
∂ y̆
∂T

= H̆L̆µ
∂

∂Y

(
λ̆

2
2 −

(
λ̆1λ̆2

)−2
)
, (4.58f)

where H̆ = β0

(
λ̆1λ̆2

)−1
, W̆ = γλ̆2 and L̆ = λ̆1. The continuum stretches, to leading order, are

given by

λ̆1(X ,Y,T ) =
∂ x̆
∂X

, λ̆2(X ,Y,T ) =
∂ y̆
∂Y

. (4.59)

Furthermore, we can rescale the continuum independent variables (X ,Y,T ) back to the orig-
inal parametrisation of the domain using x = ε−1X , y = ε−1Y and t = ε−1T , with

λ̆1,2,3(X ,Y,T ) = λ̂1,2,3(x,y, t), W̆ (X ,Y,T ) = Ŵ (x,y, t),

κ̆(X ,Y,T ) = κ̂(x,y, t) x̆(X ,Y,T ) = x̂(x,y, t), y̆(X ,Y,T ) = ŷ(x,y, t),

W̆ (X ,Y,T ) = Ŵ (x,y, t), H̆(X ,Y,T ) = Ĥ(x,y, t), (0≤ x≤ l0; 0≤ y≤ w0).

(4.60)

In the continuum formulation, the description of the full and elastic principal stretches are
respectively, to leading order, given by

λ̂1(x,y, t) =
∂ x̂
∂x

, λ̂2(x,y, t) =
∂ ŷ
∂y

, (0≤ x≤ l0; 0≤ y≤ w0), (4.61)

and the constraint of incompressibility takes the continuum form

λ̂3(x,y, t) =
1

λ̂1λ̂2
, (0≤ x≤ l0; 0≤ y≤ w0). (4.62)

while the pressure takes the continuum form

p̂(x, t) = µ

(
1

λ̂1λ̂2

)2

, (0≤ x≤ l0; 0≤ y≤ w0). (4.63)

The upscaled continuum governing equations equivalent to the discrete system (4.29) for a
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uniaxial deformation in a neo-Hookean material take the form

κ̂K
∂ x̂
∂ t

= 2β0γ0µ

(
∂ x̂
∂x

)−1
∂

∂x

((
∂ x̂
∂x

)2

−
(

∂ x̂
∂x

)−2(
∂ ŷ
∂y

)−2
)
, (0≤ x≤ l0; 0≤ y≤ w0),

(4.64a)

κ̂K
∂ ŷ
∂ t

= 2β0µ

(
∂ ŷ
∂y

)−1
∂

∂y

((
∂ ŷ
∂y

)2

−
(

∂ x̂
∂x

)−2(
∂ ŷ
∂y

)−2
)
, (0≤ x≤ l0; 0≤ y≤ w0).

(4.64b)

The continuum approximations of (4.33) and (4.34) are given by

x̂(0,y, t) = 0, x̂(l0,y, t) = l(t), (0≤ y≤ w0),

ŷ(x,0, t) = 0, (0≤ x≤ l0),
(4.65)

with the continuum approximation of (4.37), a free boundary at y = w0;(
∂ ŷ
∂y

)2

−
(

∂ x̂
∂x

)−2(
∂ ŷ
∂y

)−2

= 0, (0≤ x≤ l0; y = w0) (4.66)

or the continuum approximation of (4.38), a periodic boundary at y = w0 in the form

ŷ(x,0, t) = ŷ(x,w0, t)− ŷ(x,w0,0), (0≤ x≤ l0). (4.67)

4.2.10 Small displacements in a neo-Hookean material

We linearise the solutions (assuming κ̂ = 1 and β0 = γ0 = 1) by taking x̂ = x+ k1â(x,y, t) and
ŷ = y+ k1b̂(x,y, t) where k1� 1, and â and b̂ are the displacements of x̂ and ŷ respectively. To
leading order, the governing equations (4.64) become

K
∂ â
∂ t

= 4

(
2

∂ 2â
∂x2 +

∂ 2b̂
∂x∂y

)
, (0≤ x≤ l0; 0≤ y≤ w0) (4.68a)

K
∂ b̂
∂ t

= 4

(
2

∂ 2b̂
∂y2 +

∂ 2â
∂x∂y

)
, (0≤ x≤ l0; 0≤ y≤ w0). (4.68b)

Note that if we make â and b̂ independent of y, (4.68a) takes the form of (2.39) with η = 0. The
boundary conditions (4.65) and (4.66), take the form

â(0,y) = 0, â(l0,y) =
l(t)− l0

k1
, (4.69)

b̂(x,0) = 0, 2
∂ b̂
∂y

+
∂ â
∂x

= 0, (0≤ x≤ l0; y = w0). (4.70)
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Assuming steady-state solutions (∂/∂ t = 0) we differentiate (4.68a) by y and (4.68b) by x

and manipulate to obtain

0 =
∂ 3â

∂x2∂y
, (0≤ x≤ l0; 0≤ y≤ w0), (4.71)

0 =
∂ 3b̂

∂y2∂x
, (0≤ x≤ l0; 0≤ y≤ w0). (4.72)

Integrating, and implementing the initial and boundary conditions, we obtain â =−x and b̂ = y
2 ,

and so

x̂ = x(1− k1), ŷ = y
(

1+
k1

2

)
. (4.73)

4.2.11 Numerical method

The discrete system (4.29) is a closed system of ODEs which is solved numerically using MAT-
LAB solver ode15s. Numerical solutions of this IBM are discussed in Sec. 4.2.12 for one free
bounday and Sec. 4.2.13 for a periodic boundary.

The continuum PDE system for Neo-Hookean cells (4.64) is solved numerically using a
semi-discretisation scheme where finite-difference formulae for spatial derivatives are substi-
tuted into the PDEs which are solved numerically using MATLAB solver ode15s. The spatial
domain (0 ≤ x ≤ l0, 0 ≤ y ≤ w0) is divided into n and m equally sized spatial intervals in the x

and y direction respectively. We discretise spatial derivatives using second order centred finite
differences, for any variable û

∂ û(p,q)

∂x
=

1
2dX

(
û(p−1,q)− û(p+1,q)

)
+O(dX2) (p = 2, . . . ,n−1;q = 1, . . . ,m), (4.74a)

∂ û(p,q)

∂y
=

1
2dY

(
û(p,q−1)− û(p,q+1)

)
+O(dY 2) (p = 1, . . . ,n;q = 2, . . . ,m−1), (4.74b)

∂ 2û(p,q)

∂x∂y
=

1
4dXdY

(
û(p−1,q−1)− û(p−1,q+1)− û(p+1,q−1)

+ û(p+1,q+1)
)
+O(dX2dY 2) (p = 2, . . . ,n−1;q = 2, . . . ,m−1),

(4.74c)

where dX = l0/n is the step size in the x-direction and dY = w0/m is the step size in the y-
direction and the superscript (p,q) represents the p-th discretisation point in the x direction and
the q-th discretisation point in the y direction. For the boundary conditions, we use a second
order forward and backward finite-difference stencils (to ensure only points within the domain
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are used) in the form,

∂ û(1,q)

∂x
=

1
2dX

(
−3û(1,q)+4û(2,q)− û(3,q)

)
+O(dX2), (q = 1, . . . ,m), (4.74d)

∂ û(n,q)

∂x
=

1
2dX

(
3û(n,q)−4û(n−1,q)+ û(n−2,q)

)
+O(dX2), (q = 1, . . . ,m), (4.74e)

∂ û(p,1)

∂y
=

1
2dY

(
−3û(p,1)+4û(p,2)− û(p,3)

)
+O(dY 2), (p = 1, . . . ,n), (4.74f)

∂ û(p,n)

∂x
=

1
2dX

(
3û(p,n)−4û(p,n−1)+ û(p,n−2)

)
+O(dY 2), (p = 1, . . . ,n), (4.74g)

The discretisation scheme used in this system was a second-order centred finite-difference
scheme. In simulations we used n = 50 and m = 50 discretisation points, however there is no
need for this number of intervals to be the same as the number of discrete cells in the IBM. This
continuum PDE approach can result in a significant computational saving compared to the IBM
when the number of discrete cells is large.

In the results below we compute the continuum pressure and stretches, which are compared
to the discrete simulations.

4.2.12 Results Case 1: Free boundary condition along y = w0

We solve the discrete and continuum systems with γ0 = β0 = 1 and µ = 1. We use M = 10 by
N = 10 (hence ν0 = 1) cells to investigate the model in a small toy problem. We consider two
different forms of the dissipation function: κ( j,k) = 1 and κ( j,k) = A( j,k) for j = 1, . . . ,N; k =

1, . . . ,M. We consider a system with a prescribed displacement of the form

l(t) = l0 (1− k1)+ k1 exp(−t) , (4.75)

where k1 (constant) represents the fractional decrease in length of the array in the x-direction. In
simulations we consider a range of values for k1.

The typical response of the system is shown in Fig.4.3. The system responds to the defor-
mation in the x-direction in both other dimensions (Fig. 4.3a). This indicates that cells are able
to change their height (in the z-direction) and hence the cross-sectional area in the (x,y) plane
in contact with the substrate does not remain constant (however the volume of each cell remains
constant due to the incompressibility constraint). Hence we observe a slight difference between
the dissipative choices m= 0 and m= 1. We note that the choice m= 1 is a more realistic choice,
since dissipation due to a substrate would be proportional to the area of the cell in contact to the
substrate, rather than a fixed value. In response to this deformation, the cell area in contact with
the substrate decreases, i.e. A( j) ≤ 1, and hence the resistance to motion due to the substrate
decreases for m = 1 compared to m = 0 (i.e. dissipative effects are greater for m = 0). This is
outlined in the maximum pressure across the sheet (maxx,y(p)), as this saturates to equilibrium
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Figure 4.3: Solutions for a discrete system of incompressible Neo-Hookean cells aligned in a
two-dimensional array subject to a prescribed displacement at x = l0. Solutions for N = 10,
M = 10, cells and uniform shear modulus µ = 1. (a) The array, with fill-colour representing
the internal cell pressure, is displayed for t = 1,2,5,100 for k1 = 0.1, K = 1 and κ = A; (b)
The maximum pressure in the array, maxx,y(p) for K = 1 and k1 = 0.01,0.05,0.1 for both dis-
sipative systems, κ = 1,A( j); (c) The mean (inset: maximum) error between assumed shared
boundary width, W ( j+1/2.k), and real shared boundary width, for K = 1 and displacement
k1 = 0.01,0.05,0.1,0.2; (d) The ratio of the average stretch in the z-direction and the average
stretch in the y-direction (mean(λz)/mean(λy)) for K = 1 and displacement k1 = 0.01,0.05,0.1.

faster for m = 1 (Fig. 4.3(b)).
We define the error in calculated and actual shared boundaries between neighbouring cells,

W ( j+1/2,k),
Werr =

∣∣∣W ( j+1/2,k)−W ( j+1/2,k)
s

∣∣∣ , (4.76)

where W ( j+1/2,k)
s is the numerically calculated length of the shared boundary between cells ( j,k)
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and ( j+1,k) ( j = 1, . . . ,N−1; k = 1, . . . ,M), defined by

W ( j+1/2)
s = min(y( j,k+1/2)

b ,y( j+1,k+1/2)
b )−min(y( j,k−1/2)

b ,y( j+1,k−1/2)
b ). (4.77)

As depicted in Fig. 4.3(a) at t = 5, we clearly see cells towards the upper layer and the prescribed
displacement end, are disjoint from neighbouring cells. We calculate the shared boundary as the
average widths of the cells either side of the boundary. The error in this assumption relative to
the actual shared boundary in the simulations is outlined in Fig. 4.3(c). This error remains small
for most values of k1, but the maximum error (which occurs in cell (N,M)) increases for larger
deformations (k1 = 0.2,0.1).

Fig. 4.3(d) shows the ratio between the principal stretches in the y and z direction, aver-
aged over all cells in the sheet (meanx,y(λ2) and meanx,y(λ3) respectively). For these parameter
values, the system accounts for the prescribed deformation (compression) in the x direction by
shortening the cells in the y and z directions. In this case we observe that the deformation occurs
mainly in the z direction (presumably due to the dissipative penalty associated with deformation
in y), with the stretch in the z direction larger than that in the y direction (Fig. 4.3d).

4.2.13 Results Case 2: Periodic boundary condition

We now consider the same system as Sec. 4.2.12, defined by (4.38) in the discrete model and
(4.67) in the continuum system, but instead impose that the domain 0 ≤ y ≤ w0 is periodic.
This configuration mimics a three-dimensional cylinder. However, similar to Sec. 2.4.1, this
approximation neglects curvature effects and would only be valid when the resting width of
cells (in the y-direction) is much smaller than the circumference (length of the array in the y-
direction), i.e. for large M. In simulations we consider a range of values for k1.

In this case, the response to the prescribed deformation in the x-direction is accounted for
completely in the z-direction, with cells changing their thickness (Fig. 4.4a) but not their widths.
That is, the system exhibits no motion of deformation in the y-direction (the width of the array),
driven by the enforcement of periodicity. Cells close to the prescribed deformation undergo
a larger compression than those closer to x = 0, which remain in equilibrium until forces are
eventually transmitted across cell boundaries (Fig. 4.4a). As in Chapter 2, this delay is driven by
substrate dissipation. As expected, the mean thickness across the sheet increases as k1 increases
(Fig. 4.4b). This is also reflected in the mean pressure across the cells in the sheet (Fig. 4.4c).

4.3 Simple shear deformation

We now make the assumption that each constituent cell from Sec. 4.1 can be modelled as a
cuboid such that the initially rectangular cross-section in the (x,y) plane undergoes a simple
shear deformation parallel to the x-direction. Each cell is characterised by their angle of shear,
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Figure 4.4: Solutions for a discrete system of incompressible neo-Hookean cells aligned in a
two-dimensional array subject to a prescribed displacement at x = l0, with a periodic boundary
condition at y = w0 (y = 0). Solutions for N = 10, M = 10, cells, K = 1 and uniform shear
modulus µ = 1. (a) The array, with colour representing cell pressure, for t = 1,2,5,10 and
k1 = 0.5; (b) The mean height of all cells in the array, meanx,y(z), for t = 0 to t = 10 for
k1 = 0.01,0.05,0.1; (c) The average pressure of all cells in the array, meanx,y(p), for t = 0 to
t = 10 for k1 = 0.01,0.05,0.1.

denoted θ ( j,k) (with initial value 0) measured relative to edge perpendicular to the shear defor-
mation. Each cell has initial length L( j,k)

0 (along unit vector x̂), width W ( j,k)
0 (along unit vector

ŷ) and height H( j,k)
0 (along unit vector ẑ) for j = 1, . . . ,N and k = 1, . . . ,M. We assume cells

cannot slide over each other and remain in contact with their original neighbours, however this
is not necessarily how cells would behave in real life.

We apply the constraint of no motion of the cell centre of mass in the ŷ direction and assume
the domain 0≤ x≤ l0 is periodic. Hence, we may consider only one column of cells without loss
of generality, i.e. j = 1 and we may drop the index j, reducing the problem to a two-dimensional
model, similar to Chapters 2 and 3. Note that this is only true if the cell properties are invarient
in the x direction. This results in each row having uniform shear modulus, µ( j,k) = µ(k), angle of
shear, θ ( j,k) = θ (k), and pressure, p( j,k) = p(k). Since the deformation is purely simple shear, the
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length, width and height of each cell remains constant, with L(k) = L(k)
0 , W (k) = W (k)

0 , H( j,k) =

H(k)
0 . This system is outlined in Fig. 4.5.

y

Unit (k)W0

L0

x(k)(0)
c

x

x(k)
c

x(M)
c

Unit (M)

x(1)
c

Unit (1)

θ
(k)

FA

x(k)
e

x(M)(0)
c

x(M)
e

x(M)
e

Figure 4.5: Set up of M elastic cells aligned end to end subject to a shearing force on the outer
boundary of cell M. Cell k has shearing angle θ ( j,k), centre of mass position x( j,k)

c and experi-
ences no motion in the y-direction. All cells have uniform, constant length, L0, and width, W0.
The system is subject to substrate dissipation (damping relative to initial position), represented
by a dashpot connected to the initial position of the cell centre of mass.

4.3.1 Elastic deformation

We assume each cell undergoes an incompressible nonlinear elastic deformation due to a pre-
scribed shearing force with deformation gradient tensor (as defined in [27]) of the form

F(k) =

1 tanθ (k) 0
0 1 0
0 0 1

 , (k = 1, . . . ,M), (4.78)

The incompressibility constraint, det
(
F(k)
)
= 1 is immediately satisfied.
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4.3.2 Elastic Stress

When specifying the model, we consider the incompressible neo-Hookean strain energy func-
tional, as in (4.15). The corresponding Cauchy stress tensor takes the form

σσσ
(k) =


µ(k)

(
1+ tan2 θ (k)

)
− p(k) µ(k) tanθ (k) 0

µ(k) tanθ (k) µ(k)− p(k) 0
0 0 µ(k)− p(k)

 . (4.79)

4.3.3 Boundary Conditions

Enforcing no motion in the y-direction by balancing forces yields

0 =

(∫ H0

0

∫ 1
2 L0

−1
2 L0

σσσ
(k) · ŷdxdz

)
·y,

= µ
(k)− p(k), (k = 1, . . . ,M).

(4.80)

This also satisfies the condition (4.3) of zero external stress on surfaces perpendicular to ẑ (z 6= 0)
and so we find

p(k) = µ
(k), (k = 1, . . . ,M). (4.81)

Hence, the only non-zero components of the Cauchy stress are

σ
(k)
11 =µ

(k) tan2
θ
(k), (k = 1, . . . ,M), (4.82a)

σ
(k)
12 = σ

(k)
21 =µ

(k) tanθ
(k), (k = 1, . . . ,M). (4.82b)

The force from cell (k) on cell (k±1) is given by

F(k)
y± =

∫ H0

0

∫ 1
2 L0

−1
2 L0

σσσ
(k) · (∓ŷ)dxdz =∓H0L0µ

(k) tanθ
(k)x̂, (k = 1, . . . ,M). (4.83)

The force at the boundary (k+1/2) is given by

F(k+1/2)
b = F(k)

y++F(k+1)
y− , (k = 1, . . . ,M−1), (4.84)

where F(M+1/2)
b is defined below by the global boundary condition at y = w0.

4.3.4 Discrete governing equations

In this system we take the dissipative function with m = 0 since the area in contact with the
substrate will always be constant and consider only the dissipative constant of proportionality
K(k) (k = 1, . . . ,M). The discrete governing equation (4.8) along with the forces (4.83) for a
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simple shear deformation take the form

K(k)dx(k)c

dt
= H0L0

(
µ
(k+1) tanθ

(k+1)−µ
(k−1) tanθ

(k−1)
)
, (k = 2, . . . ,M−1). (4.85)

4.3.5 Initial Conditions

Initially, the cells are arranged in a single rectangular array (column) where all cells are the same
size and shape (cuboidal, with a rectangular cross section in the (x,y) plane), and we define the
origin (x = 0) at initial midpoint of the column of cells, such that

x(k)c (0) = 0, (k = 1, . . . ,M), (4.86)

y(k)c (0) =−1
2W (k)

0 +
k

∑
i=1

W (k)
0 , (k = 1, . . . ,M), (4.87)

H(k)(0) = H(k)
0 , (k = 1, . . . ,M). (4.88)

In simulations below we assume all cells are initially the same length L(k)
0 = L0, width W (k)

0 =

W0 and height H(k)
0 = H0 (k = 1, . . . ,M). this is not necessary but significantly simplifies the

specification of the model and upscaling in Sec. 4.3.9. In this case, (4.86) reduces to

x(k)c = 0, (k = 1, . . . ,M), (4.89)

y(k)c =W0
(
k− 1

2

)
, (k = 1, . . . ,M), (4.90)

H(k) = H0, (k = 1, . . . ,M). (4.91)

4.3.6 Discrete global boundary conditions

We impose a shearing force along the upper boundary of cell M at y = w0, FA = FAx̂, such that

F(M+1/2)
b = F(M)

y+ +FA, (4.92a)

which results in

K(k)dx(M)
c

dt
= FA−H0L0µ

(M−1) tanθ
(M−1). (4.92b)

We fix the boundary at y = 0 such that y(1/2)
b (t) = 0 and at x = 0 such that

K
dx(1)c

dt
= H0L0

(
µ
(2) tanθ

(2)−µ
(1) tanθ

(1)
)
. (4.92c)
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4.3.7 Angle of shear

We introduce the variable x(k)e to describe the midpoint of the upper boundary of cell k in the
x-direction, defined by

x(k)e = 2x(k)c − x(k−1)
e , (k = 2, . . . ,M) (4.93)

with x(1)e = 2x(1)c . We may define

x(k)e = 2
k

∑
i=1

(−1)k−ix(i)c . (4.94)

Using trigonometric identities for a right angled triangle, we deduce

tanθ
(k) =

2
W0

(
x(k)e (t)− x(k)c (t)

)
=

1
W0

(
x(k)e (t)− x(k−1)

e (t)
)
, (k = 1, . . . ,M). (4.95)

4.3.8 Non-dimensional variables

We again wish to consider the system in terms of non-dimensional variables (denoted with an
overbar). For simplicity, we assume K(k) = K (k = 1, . . . ,M). We scale time on a pertinent
timescale t0 (defined below), lengths on L0, forces on µ0L2

0 and pressures on µ0 such that

t = t0t̄, x(k)c = L0x̄(k)c , µ
(k) = µ0µ̄

(k), FA = µ0L2
0F̄A, (k = 1, . . . ,M), (4.96)

and we have the following dimensionless groups

γ̄0 =
W0

L0
, β̄0 =

H0

L0
, K̄ =

K
t0µ0L0

, (k = 1, . . . ,M). (4.97)

Since there is no obvious inherent timescale in this system, we are able to choose t0 = K/µ0,
such that the non-dimensional discrete governing equation (4.85) reduces to

dx̄(k)c

dt̄
= β̄0

(
µ̄
(k+1) tanθ

(k+1)− µ̄
(k−1) tanθ

(k−1)
)
, (k = 2, . . . ,M−1). (4.98a)

The boundary condition (4.92b) takes the form

dx̄(M)
c

dt̄
= F̄A− β̄0µ̄

(M−1) tanθ
(M−1). (4.98b)

and the boundary condition (4.92c) becomes

dx̄(1)c

dt̄
= β̄0

(
µ̄
(2) tanθ

(2)− µ̄
(1) tanθ

(1)
)
. (4.98c)
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Furthermore, the constraint (4.93) becomes

x̄(k)e = 2x̄(k)c − x̄(k−1)
e , (k = 2, . . . ,M) (4.98d)

and so the tangent to the shear angle takes the non-dimensional form

tanθ
(k) =

2
γ0

(
x̄(k)e (t)− x̄(k)c (t)

)
=

1
γ0

(
x̄(k)e (t)− x̄(k−1)

e (t)
)
, (k = 1, . . . ,M). (4.98e)

The initial condition (4.89) takes non-dimensional form

x̄(k)c (0) =
1
2
, (k = 1, . . . ,M), (4.98f)

ȳ(k)c (0) = γ̄0
(
k− 1

2

)
, (k = 1, . . . ,M), (4.98g)

H̄(k)(0) = β̄0, (k = 1, . . . ,M). (4.98h)

Henceforth, we drop over-bars for notational convenience and consider only non-dimensional
variables in the simulations.

4.3.9 Upscaling

As in previous chapters, we now upscale the discrete model (4.98) to a continuum PDE descrip-
tion using discrete-to-continuum asymptotics.

We assume the initial number of cells in the y-direction is large and introduce a small param-
eter ε = M−1� 1. We assume that the lengthscale of a typical deformation is long (O(ε−1))
compared to that of an individual cell (O(1)). This approach uses Taylor expansions local to
each cell to transform discrete differences to derivatives, which requires that the properties of
the individual cells (e.g. µ(k), K(k)) vary smoothly across the entire array (i.e. derivatives with
respect to Y are O(1)). For simplicity we also assume and µ(k) = 1 across the array. To maintain
an O(1) cell velocity we also rescale t = ε−1T . We then rescale the cell centre-of-mass positions
according to

x(k)c (t) = x̃(k+1/2)(T ), x(k)e = x̃(k), y(k)c (t) = ε
−1ỹ(k)(T ), (k = 1, . . . ,M), (4.99)

where tilded variables are functions of rescaled time, T .
We introduce a continuous variable, Y ∈ [0,γ0], which parametrises the (unstressed) initial

configuration of the system, such that Yk = γ0(k− 1/2)ε (k = 1, . . . ,M). We express discrete
variables and parameters in the IBM as continuum functions of Y and T such that

x̃(k)c (t) = x̆(Yk,T ), x̃(k)e = x̆(Yk+1/2,T ),

ỹ(k)c (t) = y̆c(Yk,T ), θ
(k)(t) = θ̆(Yk,T ), (k = 1, . . . ,M).

(4.100)
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Expanding Taylor series and taking the leading order, the governing equation (4.98a) with
(4.98e) becomes

∂ x̆
∂T

= 2β0µ
∂

∂y

(
tan θ̆

)
+O (ε) , (0 < y < w0). (4.101)

The boundary condition (4.98b) takes the form

ε
∂ x̆
∂T

= FA−β0µ tan θ̆ +O(ε), (y = w0), (4.102)

which to leading order gives

0 = FA−β0µ tan θ̆ , (y = w0), (4.103)

The angle of shear, (4.98e), to leading order, becomes

tan θ̆ =
1
γ0

∂ x̆
∂y

, (0≤ y≤ w0). (4.104)

Furthermore, we can rescale the continuum independent variables (Y,T ) back to the original
parametrisation of the domain using y = ε−1Y and t = ε−1T , with

x̆(Y,T ) = x̂(y, t), y̆(Y,T ) = ŷ(y, t), (0≤ y≤ w0). (4.105)

In the continuum formulation, the non-dimensional pressure is

p̂(y) = 1, (0≤ y≤ w0). (4.106)

and the governing equation (4.98a) takes the form

∂ x̂
∂ t

= 2
β0

γ0

∂ 2x̂
∂y2 , (0 < y < w0). (4.107a)

with boundary conditions

x̂(0, t) = 0, (4.107b)

with the prescribed shear condition (4.98b) taking the form

FA−
β0

γ0

∂ x̂
∂y

= 0, (y = w0). (4.107c)
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4.3.10 Analytical Solutions

We set x̂ = FAy+ g(y, t), where g(y, t) is some unknown function. We rescale y = y̆β0/γ0 and
t = t̆β0/γ0. Substituting this in to (4.107) yields

∂g
∂ t̆

=
∂ 2g
∂ y̆2 , (0 < y̆ < w0γ0

β0
) (4.108)

with boundary conditions (4.107b) and (4.107c) given by

g = 0, (y̆ = 0), (4.109)

∂g
∂ y̆

= 0, (y̆ = w0γ0
β0

). (4.110)

We use separation of variables, with g = T (t̆)Y (t̆) where T (t̆) is some function of t̆ and Y (y̆)

is some function of y̆ to be determined. Substituting this in to (4.108) and manipulating yields

T ′

T
=

Y ′′

Y
=−k2, (4.111)

where k is a constant and ′ and ′′ denotes the first and second derivatives of a function with
respect to its argument, respectively. Hence we obtain two equations to solve. First, we consider
the ODE for T . We have

T ′

T
=−k2, (t̆ ≥ 0), (4.112)

which has solution
T = T0 exp(−k2t̆), (t̆ ≥ 0), (4.113)

where T0 is the initial value of T . Second, we consider the corresponding ODE for Y ,

Y ′′

Y
=−k2, (4.114)

with Y (0) = 0 and Y ′(w0γ0
β0

) = 0. Substituting the ansatz Y = Asin(ky̆)+Bcos(ky̆) and applying
the boundary conditions yields B = 0 and either

k =
β0(2 j+1)π

2w0γ0
( j ∈ Z) or k = 0. (4.115)

Hence,

g(y̆, t̆) =
j=∞

∑
j=−∞

a j exp(−k2
j t̆)sin(k jy̆), (0≤ y̆≤ 1), (4.116)
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and the full analytical solution is given by

x̂ = FAy+
j=∞

∑
j=−∞

a j exp

(
−

k2
j β0

γ0
t

)
sin
(

k j

w0
y̆
)
, (0≤ y≤ w0), (4.117)

where a j are set by initial conditions.

4.3.11 Results: Simple Shear

We solve the discrete and continuum systems with γ0 = β0 = 1 and µ = 1. We investigate the
response of the system to an applied shearing force FA = 0.01,0.1,1,10 for M = 10 cells (we
investigate a small number of cells to investigate the model for small times using a small toy-
problem - we also demonstrate some results for M = 50 cells and show the slower response of
the system for larger number of cells).

Cells close to y = w0, where the shearing force is applied, respond to the applied forcing
first. As in previous examples, there is a delay in this force being transmitted down the array due
to the substrate dissipation and so the column of cells curves in the y-direction. For long enough
times, all cells align with the same angle of shear as the system saturates towards equilibrium
(Fig. 4.6a,b,c). The delay in force transmission results in a transient difference in shear angles
along the array (Fig. 4.6b), where cells close to the applied force are initially more sheared than
those close to the fixed boundary (y = 0). This difference increases as the applied force, FA,
increases. The angle of shear in the steady solution of the system increases with increasing
applied force (Fig. 4.6b inset). While the discrete and continuum systems saturate towards the
same equilibrium solution, Figure 4.6c highlights a slight difference in the dynamics of the two
systems in the transient behaviour of the shear angle, where the difference between the maximum
and minimum shear amounts in the column is larger for early times in the discrete system than
in the continuum system. For early times, the displacement across the domain is a non-linear
function of y. The displacement becomes linear in y for long times, as expected (Fig. 4.6d). For
a larger number of cells, this non-linear behaviour takes longer to saturate to a steady solution
as forces must be transmitted along a larger number of cells (Fig. 4.6d inset). This behaviour is
reflected in the spatial profile of the shear angle in Figure 4.6e). For all simulations, the discrete
and continuum agree well, with agreement better for a smaller FA or for larger times.
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4.4 Summary

In this chapter we have constructed a quasi-three dimensional IBM for a sheet of hyperelas-
tic cells subject to prescribed deformation along one edge. We have outlined the challenges
in defining a self-consistent model for a general deformation and strain-energy functional. To
simplify the analysis we introduced (simple) specific deformations for each cell: uniaxial defor-
mation or simple shear. We derived the corresponding continuum PDE models using discrete-
to-continuum asymptotics for each system and investigated the passive response subject to a
prescribed deformation. The agreement between discrete and continuum systems for uniaxial
deformation was good, and the system exhibited a three-dimensional deformation in response
to a prescribed compression in one direction: for our parameter choices, the surface area of the
cell in contact with the substrate is not constant, and so the choice of dissipative function is
important. In the simple shear formulation, the dissipative forces result in a transient difference
in shear angles along the array, and so the column of cells is curved in the y-direction for early
times. The agreement between discrete and continuum systems was good, however we observe
a slight difference in the dynamics of the two systems in the transient behaviour of the shear
angle.
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Figure 4.6: Solutions for M = 10 cells subject to simple shear. (a) Profiles for FA = 1 at t =
150; (b) Maximum difference in shear angle in the array for FA = 0.01,0.1,1,10 (inset: mean
shear angle in array); (c) Shear angle of all cells (discrete, dashes) and at discretisation points
(continuum, lines) for t = 0 to t = 150 (inset: displacement); (d) Spatial profile of displacement
t = 1,10,50,100 for F = 1 (discrete, symbols; continuum, lines) (inset: M = 50); (e) Spatial
profile of shear angle at t = 1,10,50,100 for F = 1 (discrete, symbols; continuum, lines).



Chapter 5

Discussion

This work has proposed an alternative formulation of discrete IBMs compared to the current
framework of cell IBMs (discussed in Chapter. 1, e.g. [26,67,68]). This approach has previously
been used to model epithelial tissues, and we now apply this to other soft tissues. We have
formulated a new discrete IBM derived in the framework of rational continuum mechanics rather
than incorporating forces exerted by cells simplistically with linear springs (e.g. [67]) or with
generic force laws (e.g. [68]).

These mechanical formulations focus on an individual cell at the microscale, and consider
force balances across cell boundaries, rather than equations of motion derived based on energy
minimisation as considered in vertex models, outlining a new approach for creating soft tissue
cell IBMs. The general framework presented in Chapter. 2 means that both discrete and con-
tinuum systems can easily be implemented for any isotropic strain-energy functional, making it
applicable to a wide array of materials, or more realistic strain-energy functions for myocardium
or other soft tissue.

In this work we utilised discrete-to-continuum asymptotics [96] to derive new continuum
macroscale PDE models. This method was utilised as it has the advantage of not requiring
a homogeneous or periodic problem at the cell level, allowing us to consider heterogeneous
cell properties and capturing this detail in the upscaled equations, which is an advantage over
the usual homogenisation techniques. The agreement between discrete and continuum systems
across all models is excellent. These agreements demonstrate how the new PDE models formu-
lated can accurately replicate the results of the IBMs considered, indicating the robustness of
this upscaling approach.

The models presented in this thesis are simplified approximations of soft tissue, neglecting,
for example, transmural pressure differences, or the fibrous nature of soft tissues. To develop
these models further, one should extend the framework to include more complex characteristics
(e.g. fibres, curvature effects) and ECM to more accurately represent the make-up of biological
soft tissues. This would enable progression towards a full three-dimensional model, encapsulat-
ing more properties and characteristics of biological soft tissue.

100
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We conclude this thesis with a summary of the results. First we considered a quasi-two-
dimensional array of incompressible viscoelastic cells, maintaining generality in the strain-
energy-functional in both discrete and continuum formulations in Chapter 2. We implemented
this system for the specific case of a neo-Hookean strain energy function, to investigate the sys-
tem’s passive response subject to a prescribed deformation on the array in Sec. 2.3.1. The static
version of the upscaled PDE with a neo-Hookean strain energy function can equally be derived
from a continuum model with a long, thin beam approximation. The analytical solutions of this
continuum model agree well with numerical solutions of the upscaled PDE (Fig. 2.6). However,
we are able to capture the non-linear time-dependent behaviour by deriving the time-dependent
upscaled PDE. For higher values of the dissipation constant, the response to the prescribed de-
formation was more non-uniform, as forces were transmitted slower between cells (Fig. 2.5).
For a system with viscoelasticity in the absence of dissipation, the response of the systems are
spatially uniform and the effect of the viscous parameter can be seen in the internal cell pres-
sure before the deformation saturates (Fig. 2.7c). We considered a case with non-uniform shear
modulus across the array, representing a rigid cluster of cells towards the centre of the domain
to mimic a section of dead cells in a tissue, for example, post myocardial infarction in the my-
ocardium. In this case, the deformation is carried by the softer cells in the array which undergo
a larger deformation to account for the lack of deformation in the stiffer cells. This shows cells
in the surrounding area of a cluster of stiffer (or dead) cells bear a greater load in deformations
(Fig. 2.9). This model was then further extended in Sec. 2.4 to investigate active contraction in a
periodic domain, which resulted in travelling waves of contracted (shorter, wider) cells through
the domain, with the remaining cells stretching to account for the contracted cells (Fig. 2.10).
For all cases considered in this chapter, the discrete and continuum systems demonstrated ex-
cellent agreement.

To investigate the role of growth and proliferation, in Chapter 3 we used the theory of mor-
phoelasticity to incorporate growth into the quasi-two-dimensional array of cells [107, 116]. In
this system, we considered two formulations of dissipation function: a constant of proportional-
ity and one dependent on the current cell area. We consider a stress-dependent growth function,
where maximum growth occurs when a cell is unstressed (as we do not consider cells in exten-
sion in this model). In Sec. 3.3.1, we investigated the system with growth and no proliferation.
In the absence of internal viscoelasticity, a linear increase of the domain length was observed
for all choices of dissipative functions and values (Fig. 3.1a). This rate of elongation is slower
for dissipation proportional to cell area. In this case, cells exhibit slower growth as they are
paying an extra dissipation penalty for changing their area (Fig. 3.2). In the absence of sub-
strate dissipation, the array length also increases linearly with time, at an identical rate for all
values of the viscous parameter. However, for a small amount of substrate dissipation, the time
taken for the system to reach a steady level of compression increases with the viscoelastic coef-
ficient (Fig. 3.1d). In all systems, the discrete and continuum models agree well. In Sec. 3.3.2,
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we formulate a novel proliferation model by implementing a division event in the discrete cell
growth model, whereby a growing cell divides into two daughter cells when it reaches double
the initial area. We conclude from comparisons with a system without proliferation that cell pro-
liferation generally leads to slower growth of the array, except in cases with very small substrate
dissipation (Fig. 3.3a,b). Furthermore, for a system with sufficient substrate dissipation, we ob-
serve a proliferating rim, with division occurring only towards the free end (Fig. 3.3d). This
proliferating rim behaviour is arising purely from the mechanical formulation of this model,
in contrast with previous works investigating proliferating rims due to nutrient and cell-density
profiles (e.g. [103]) or by constructing a model with discrete areas of proliferating, quiescent
and necrotic cells (e.g. [126]).

In chapter 4 we then formulated a three-dimensional sheet of nonlinearly elastic cells of
constant density atop a rigid substrate. First we considered the case where each cell undergoes a
uniaxial deformation (Sec. 4.2) and investigated the response to a prescribed displacement. We
observed a deformation in all three dimensions and that the cross sectional area in contact with
the substrate decreased, hence the dissipative effects were reduced for dissipation proportional to
cross sectional area in contact with the substrate (Fig. 4.3). We then implemented this system in
a periodic domain (Sec. 4.2.13) and observed deformation in only one dimension (other than the
prescribed deformation) (Fig. 4.4). For both of these systems, the agreement between discrete
and continuum models was very good. Lastly, we considered the three-dimensional sheet with
the assumption that each cell was subject to a simple shear deformation. We observed that for a
larger shear force, there was a larger non-uniformity in shear angle across the domain (Fig. 4.6b).
The discrete and continuum saturate towards the same equilibrium solution, however we observe
a slight difference in the dynamics of the two systems in the transient behaviour of the shear
angle (Fig. 4.6c). For early times, the spatial profile of displacement is non-linear, but becomes
linear (spatially) for longer times, as expected.

A number of assumptions have been made to simplify the models presented in this thesis.
Some natural extensions to this work would be to address these in order to relax any assumptions
and approximations made, to build a more realistic model. The main assumptions and extensions
will now be discussed.

• We assume that the external pressure on the cells is zero. This is implemented in Chapters
2 and 3 by setting the external pressure above and below (in the y-direction) the array
equal to zero, while in Chapter 4 this is implemented by setting the external pressure on
the upper surface normal to the z = 0 plane to be zero. We rationalise this assumption
by considering pressure differences between parallel lines of cells is small and therefore
neglected. However, this is not entirely realistic. For example, in the heart the pressure
inside the chamber (due to the blood flow) is higher than the pressure outside the heart
wall. A simple extension to this model would be to consider a non-zero external pressure
on cells, to better mimic the conditions in myocardium.
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• We assume simple deformations (uniaxial and simple shear) of a cuboidal cell in all mod-
els. One should be able to consider more complex deformations (e.g. a combination of
shearing and stretching). In Chapter 4, this would also include the added challenge of
keeping track of cell vertices and keeping track of cell neighbours (which could change).
If one were to consider a different shape of cell (e.g. sphere) then the model would need to
redefine the rules on what surfaces the cells interact with one a. In this work, we approxi-
mated this contact surface as the average of the cell widths, however the minimum widths
of the cells interacting is a more accurate value. For other shapes, a new approximation
would be needed to define the shared surface over which cells are interacting.

• We model cell viscoelasticity using a linear Kelvin-Voigt model. This model describes
creep compliance (an increase in plastic strain under constant stress) but fails to describe
stress relaxation (a decrease in stress under constant strain) [127]. The linear Kelvin-Voigt
(and Maxwell) model is unable to capture multiple relaxation times [127], a disadvantage
when modelling materials which are inherently multiscale (e.g. soft tissues). Soft tissues
exhibit highly complex viscoelastic behaviour, and this simplistic model cannot accurately
describe real soft tissue responses [128]. In future work, one should investigate alterna-
tive ways to model cell viscoelasticity (e.g. a combination of Maxwell and Kelvin-Voigt
or non-linear models) and compare the system with one using a Maxwell model for vis-
coelasticity.

• In Chapter 3 we assume growth only in one-dimension to test the model as a toy prob-
lem. This formulation can be easily extended to growth in two-dimensions, since we have
maintained generality in the derivation of the governing equations.

• In Chapter 3, we consider only one form of growth rate and one division law. One could
consider a growth rate developed from experimental data, or consider an alternative di-
vision law. For example, cells tend to divide when they reach a size where their surface
area is no longer able to take in enough nutrients for the cell’s volume [6] - i.e. when the
surface area to volume ratio is small. Implementing this law could lead to a more realistic
proliferation model.

Another extension to this work would be to develop a continuum description of the prolif-
eration model in Sec. 3.3.2. In previous works (e.g. [67]) proliferation has been modelled as a
source term in the continuum equations, however in the current formulation one could construct
a semi-continuum model by implementing a division event into the continuum growth model
to replicate the proliferating system. Furthermore, it would be interesting to formulate a model
incorporating both the mechanical response from the systems outlined in this thesis, and the
nutrient- or cell-density -dependent proliferation models readily available, to investigate how
the competition between these factors influences both the proliferating rim, and each other.
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In conclusion, the work in this thesis has developed a new IBM for an array of cells based on
the framework of rational continuum mechanics. Using discrete-to-continuum upscaling tech-
niques we have formulated new continuum PDE models which have been applied to investigate
active contraction, cell growth and proliferation. This work provides a framework on which to
build more complex models of soft tissues.



Appendix A

Listing of Matlab Codes

A.1 Growth

The following code solves the system outlined in Sections 3.1 and 3.2 for the results in Section
3.3.1 for the discrete and continuum systems of a quasi-two dimensional array of a single line
of incompressible neo-Hookean cells, with stress-driven growth and substrate dissipation.

1 %% Growth (With K)

2 % Roxanna Barry

3 % University of Glasgow

4 %

5 % Numerical Solution for single line of Neo-Hookean

6 % incompressible cells, with stress-dependent growth and

7 % substrate dissipation.

8 %

9 % Either Free boundary condition, or constrained boundary

10 % can be chosen in the ODE and PDE functions at the end of

11 % the code (make sure to change in both the ode solvers and

12 % the initial condition solvers for a0)

13 %

14 % kappa = A is defined, for kappa=1 follow instructions in

15 % solver comments at the end of the code

16

17 function GrowthWithK

18

19 tic

20

21 %% System Parameters

22

23 %

105
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24 % % Discrete System

25 %

26

27 % Number of cells

28 N = 100;

29 % Shear modulus

30 mu = 1;

31 % Resting/initial width of cells

32 W0=1;

33 % Resting/initial length of array

34 l0 = N;

35 % Non-dimensional length-width ratio

36 gam0 = W0;

37 % % Number of points in parameter space plots

38 param = 15;

39 % Non-dimensional Stokes Damping Coefficient

40 Ks = 1e-2*ones(1,param);

41 % Non-dimensional Kelvin Dissipation Coefficient

42 % % linspace

43 etas = logspace(-5,2,param);

44

45 % Time Span

46 dt = 0.01;

47 tspan = 0:dt:10;

48

49 % Initialise matrix storage for data

50 maxp = zeros(length(tspan),param);

51 minp = zeros(length(tspan),param);

52 minalpha = zeros(length(tspan),param);

53 maxsig = zeros(length(tspan),param);

54 minsig = zeros(length(tspan),param);

55 maxg1 = zeros(length(tspan),param);

56 ming1 = zeros(length(tspan),param);

57 L = zeros(length(tspan),param);

58

59 %

60 % % Continuum System

61 %

62 % Discretisation Points

63 nc = 101;

64 % Discretisation Step Size
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65 dX = l0/(nc-1);

66 % Continuum Time Span

67 Tspan = tspan;

68

69 % % Initialise matrix storage for data

70 maxphat = zeros(length(Tspan),param);

71 minphat = zeros(length(Tspan),param);

72 minalphahat = zeros(length(tspan),param);

73 maxsighat = zeros(length(tspan),param);

74 minsighat = zeros(length(tspan),param);

75 maxg1hat = zeros(length(tspan),param);

76 ming1hat = zeros(length(tspan),param);

77 Lhat = zeros(length(Tspan),param);

78

79 %% Initial Conditions

80

81 %

82 % % Discrete System

83 %

84

85 % Cell boundary locations

86 x0=0:1:l0;

87 % Initial Condition growth

88 g0 = ones(1,N);

89 % Define homeostatic stress value

90 sig0 = 1;

91 % Initial guess for a=dalpha/dt

92 a0 = -0.5*ones(1,N);

93

94 %

95 % % Continuum System

96 %

97

98 % Discretisation point locations

99 X0 = 0:dX:l0;

100 % Initial Condition growth

101 G0 = ones(1,nc);

102 % Initial guess for ahat=dalphahat/dt

103 A0 = -0.5*ones(1,nc);

104

105
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106 %% Loop over K/eta values

107

108 for loop = 1:param

109

110 % Non-dimensional Stokes Damping Coefficient

111 K = Ks(loop);

112 % Non-dimensional Kelvin Dissipation Coefficient

113 eta = etas(loop);

114

115 % % Initial Condition

116 % Discrete

117 % Solve for initial guess consistent with system

118 a = fsolve(@ICdisc,a0);

119 % Full Initial condition of x and g

120 ic = [x0,g0,a];

121 % Continuum

122 % Solve for initial guess consistent with system

123 A = fsolve(@ICcont,A0);

124 % Full Initial condition of X and G

125 IC = [X0,G0,A];

126

127 %% Solve the ODE/PDE System

128

129 %

130 % % Discrete System

131 %

132

133 % Alter mass matrix to account for algebraic constraint

134 % for d(alpha)/dt

135 m = eye(3*N+1,3*N+1);

136 for mit = 2*N+2:3*N+1

137 m(mit,mit) = 0;

138 end

139 % If eta = 10 use values: a=1e-8, r=1e-4;

140 % else use: a=1e-4, r=1e-3.

141 a = 1e-6;

142 r = 1e-4;

143 options = odeset(’Mass’,m,’AbsTol’,a,’RelTol’,r);

144 [t,x] = ode23t(@NHBdry_ODE_SG_AW, tspan, ic,options);

145

146 %
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147 % % Continuum System

148 %

149

150 % Alter mass matrix to account for algebraic constraint

151 % for d(alpha)/dt

152 M = eye(3*nc,3*nc);

153 for Mit = 2*nc+1:3*nc

154 M(Mit,Mit) = 0;

155 end

156 % If eta = 10 use values: a=1e-8, r=1e-4;

157 % else use: a=1e-4, r=1e-3.

158 A = 1e-6;

159 R = 1e-4;

160 Options = odeset(’Mass’,M,’AbsTol’,A,’RelTol’,R);

161 [T,X] = ode15s(@NHBdry_contODE_SG_AW, Tspan, IC,Options);

162

163

164 %% Growth

165

166 % % Discrete

167 g1 = x(:,N+2:2*N+1);

168 maxg1(:,loop) = max(g1,[],2);

169 ming1(:,loop) = min(g1,[],2);

170

171 % % % Continuum

172 g1hat = X(:,nc+1:2*nc);

173 maxg1hat(:,loop) = max(g1hat,[],2);

174 ming1hat(:,loop) = min(g1hat,[],2);

175

176 %% Formulating Data to Save

177

178 %

179 % % Discrete System

180 %

181

182 xcpos=zeros(length(t),N);

183 for it4=1:N

184 xcpos(:,it4) = (x(:,it4+1) + x(:,it4))/2;

185 end

186

187 % Array Length
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188 L(:,loop) = x(:,N+1);

189

190

191 % % Continuum System : Average Widths

192 Xpos = X;

193 for it6=1:nc

194 Xpos(:,it6) = X(:,it6) - X(:,1);

195 end

196 X=Xpos;

197

198 % Array Length

199 Lhat(:,loop) = X(:,nc);

200

201 %

202 % % Pressure and Stress and Elastic Stretch

203 %

204

205 sig = zeros(length(Tspan),N);

206 p = zeros(length(Tspan),N);

207 alpha = zeros(length(Tspan),N);

208 sighat = zeros(length(Tspan),nc);

209 phat = zeros(length(Tspan),nc);

210 alpht = zeros(length(Tspan),nc);

211

212 for i = 1:length(t)

213

214 [s, pe, aa, dg] = NHBdry_ODE_SG_AW_psig(t(i),x(i,:)’);

215

216 [sh,ph,ah,dgh] = NHBdry_contODE_SG_AW_psighat(T(i),X(i,:)’);

217

218 sig(i,:) = s;

219 p(i,:) = pe;

220 alpha(i,:) = aa;

221 dg1dt(i,:) = dg;

222

223 sighat(i,:) = sh;

224 phat(i,:) = ph;

225 alpht(i,:) = ah;

226 dg1hatdt(i,:) = dgh;

227

228 end
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229

230 % Discrete

231 minalpha(:,loop) = min(alpha,[],2);

232 maxp(:,loop) = max(p,[],2);

233 minp(:,loop) = min(p,[],2);

234 maxsig(:,loop) = max(sig,[],2);

235 minsig(:,loop) = min(sig,[],2);

236

237 % Continuum

238 minalphahat(:,loop) = min(alpht,[],2);

239 maxphat(:,loop) = max(phat,[],2);

240 minphat(:,loop) = min(phat,[],2);

241 maxsighat(:,loop) = max(sighat,[],2);

242 minsighat(:,loop) = min(sighat,[],2);

243

244 %

245 % % Save data for each simulation

246 %

247 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGD_D_x.dat’],’x’)

248 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGC_C_x.dat’],’X’)

249 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGD_D_alph.dat’],’alpha’)

250 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGC_C_alph.dat’],’alpht’)

251 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGD_D_sig.dat’],’sig’)

252 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGC_C_sig.dat’],’sighat’)

253 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGD_D_p.dat’],’p’)

254 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGC_C_p.dat’],’phat’)

255 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGD_D_t.dat’],’t’)

256 save([’K’ num2str(K) ’eta’ num2str(eta) ’_SGC_C_T.dat’],’T’)

257

258 % keep track of how many simulations have been completed & saved

259 disp([’Sim ’ num2str(loop) ’ of ’ num2str(param) ’ completed’])

260

261 end

262

263 %

264 % % Save Parameter Data

265 %

266 save(’D_SG_Ks.dat’,’Ks’)

267 save(’D_SG_etas.dat’,’etas’)

268 save(’D_SG_MaxP.dat’,’maxp’)

269 save(’C_SG_MaxP.dat’,’maxphat’)
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270 save(’D_SG_MinP.dat’,’minp’)

271 save(’C_SG_MinP.dat’,’minphat’)

272 save(’D_SG_MinAlpha.dat’,’minalpha’)

273 save(’C_SG_MinAlpha.dat’,’minalphahat’)

274 save(’D_SG_MaxSig.dat’,’maxsig’)

275 save(’C_SG_MaxSig.dat’,’maxsighat’)

276 save(’D_SG_MinSig.dat’,’minsig’)

277 save(’C_SG_MinSig.dat’,’minsighat’)

278 save(’D_SG_Maxg1.dat’,’maxg1’)

279 save(’C_SG_Maxg1.dat’,’maxg1hat’)

280 save(’D_SG_Ming1.dat’,’ming1’)

281 save(’C_SG_Ming1.dat’,’ming1hat’)

282 save(’D_SG_L.dat’,’L’)

283 save(’C_SG_Lhat.dat’,’Lhat’)

284

285 toc

286

287 %% IN SCRIPT FUNCTIONS

288

289 %% Discrete ODE

290

291 function dudt = NHBdry_ODE_SG_AW(~,u)

292

293 % Define growth

294 growth1 = u(N+2:2*N+1);

295 % Define boundary locs

296 xb = u(1:N+1);

297

298 % % Cell stretches

299 stretch = (xb(2:N+1)-xb(1:N));

300 alph = (stretch./growth1);

301 % Cell width (incompressibility constraint)

302 growth2 = 1;

303 Width = growth2*gam0./alph;

304

305 % % Define dgdt

306 fg1 = 1/2*(...

307 1 + tanh(sig0*(...

308 mu*(alph.^2 - alph.^(-2)) ...

309 + eta*(1 + alph.^(-2)).*u(2*N+2:3*N+1) ...

310 ))...
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311 );

312

313 % % define dxdt

314 % Shared boundary width

315 Wforce=1/2*(Width(1:N-1)+Width(2:N));

316 % Initialise Force Vector for dxbdt

317 fxb = zeros(length(xb),1);

318 % Force balance at boundaries

319 fxb(2:N) = -Wforce.*(mu*(alph(1:N-1).^2 - alph(1:N-1).^(-2))...

320 - mu*(alph(2:N).^2 - alph(2:N).^(-2))...

321 + eta*(...

322 + u(2*N+2:3*N).*( 1 + alph(1:N-1).^(-2) ) ...

323 - u(2*N+3:3*N+1).*( 1 + alph(2:N).^(-2) ) ...

324 )...

325 );

326

327 % Free boundary (for fixed boundary, comment out)

328 fxb(N+1) = -Width(N)*(...

329 mu*(alph((N))^(2)-alph((N))^(-2))...

330 + eta*( 1+alph(N)^(-2) )*u(3*N+1) ...

331 );

332

333 % New force for COM formulation

334 fs = zeros(N+1,1);

335 fs(2:N+1) = fxb(1:N)+fxb(2:N+1);

336

337 % Mass matrix

338 % for kappa=K ::Mxb(q,q)=Mxb(q,q-1) = K

339 % for kappa=K*A ::Mxb(q,q)=Mxb(q,q-1)=K*growth1(q-1)*growth2

340 Mxb = eye(N+1,N+1);

341 for q = 2:N+1

342 Mxb(q,q) = K*growth1(q-1)*growth2;

343 Mxb(q,q-1) = K*growth1(q-1)*growth2;

344 end

345

346 % define dxdt

347 dxdt = Mxb\fs;

348

349 % % Define relation for d(alpha)/dt, g1, x

350 falpht = u(2*N+2:3*N+1) ...

351 - growth1.^(-1).*((fxb(2:N+1)-fxb(1:N))) ...
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352 + alph./growth1.*fg1;

353

354 % Define full dudt

355 dudt = zeros(length(u),1);

356 dudt(1:N+1) = dxdt;

357 dudt(N+2:2*N+1) = fg1;

358 dudt(2*N+2:3*N+1) = falpht;

359

360 end

361

362

363 %% Continuum PDE

364

365 function dUdT = NHBdry_contODE_SG_AW(~,U)

366

367 % Define growth

368 gro1h = U(nc+1:2*nc);

369 gro2h= 1;

370 % Define boundary locs

371 xbhat = U(1:nc);

372

373 % Spatial derivative stencils

374 % x

375 dxbhatdx = zeros(nc,1);

376 dxbhatdx(2:nc-1) = (xbhat(3:nc) - xbhat(1:nc-2))/2/dX;

377 dxbhatdx(1) = ( -3*xbhat(1) + 4*xbhat(2) - xbhat(3) )/2/dX;

378 dxbhatdx(nc) = (3*xbhat(nc) - 4*xbhat(nc-1) + xbhat(nc-2))/2/dX;

379

380 % alpha

381 alphht = dxbhatdx./gro1h;

382

383 dalphhtdx = zeros(nc,1);

384 dalphhtdx(2:nc-1) = (alphht(3:nc) - alphht(1:nc-2))/2/dX;

385 dalphhtdx(1) = (-3*alphht(1) + 4*alphht(2) - alphht(3))/2/dX;

386 dalphhtdx(nc) = (3*alphht(nc)-4*alphht(nc-1)+alphht(nc-2))/2/dX;

387

388 dalphhtdtdx = zeros(nc,1);

389 dalphhtdtdx(2:nc-1) = (U(2*nc+3:3*nc) - U(2*nc+1:3*nc-2))/2/dX;

390 dalphhtdtdx(1) = (-3*U(2*nc+1) + 4*U(2*nc+2) - U(2*nc+3))/2/dX;

391 dalphhtdtdx(nc) = (3*U(3*nc) - 4*U(3*nc-1) + U(3*nc-2))/2/dX;

392
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393 % % Initialise Force Vector for dg1dt

394 fg1hat = 1/2*(...

395 1 + tanh(sig0*(...

396 mu*(alphht.^2 - alphht.^(-2)) ...

397 + eta*(1 + alphht.^(-2)).*U(2*nc+1:3*nc) ...

398 ))...

399 );

400

401 % % Initialise Force Vector for dxbdt

402 fxbhat = zeros(length(xbhat),1);

403 % Force balance at boundaries

404 fxbhat(2:nc-1) = gro2h*gam0./alphht(2:nc-1).*...

405 ( 2*mu*( (alphht(3:nc) - alphht(1:nc-2))/2/dX ) ...

406 .*( alphht(2:nc-1) + alphht(2:nc-1).^(-3) ) ...

407 + eta*((1 + alphht(2:nc-1).^(-2)).*...

408 dalphhtdtdx(2:nc-1) - 2*alphht(2:nc-1).^(-3)...

409 .*dalphhtdx(2:nc-1).*U(2*nc+2:3*nc-1)) );

410 % Free boundary (for fixed boundary, comment out)

411 fxbhat(nc) = -gam0*gro2h/alphht(nc)*...

412 (mu*(alphht(nc)^2 - alphht(nc)^(-2))...

413 + eta*( (1+alphht(nc)^(-2))*U(3*nc) ) )/K;

414 % for kappa=K ::fxbhat = fxbhat/K;

415 % for kappa=K*A ::fxbhat = fxbhat/K./gro1h(2:nc-1)/gro2h;

416 fxbhat = fxbhat/K./gro1h/gro2h;

417

418 % Alg constraint for d(alpha)/dt

419 fahat = zeros(nc,1);

420 fahat(2:nc-1) = U(2*nc+2:3*nc-1) - 1/2/dX*(fxbhat(3:nc) ...

421 - fxbhat(1:nc-2))./gro1h(2:nc-1)...

422 + gro1h(2:nc-1).^(-1).*fg1hat(2:nc-1).*alphht(2:nc-1);

423 fahat(1) = U(2*nc+1) ...

424 - 1/2/dX*( -3*fxbhat(1)+4*fxbhat(2)-fxbhat(3) )/...

425 gro1h(1)+ gro1h(1)^(-1)*fg1hat(1)*alphht(1);

426 fahat(nc) = U(3*nc) ...

427 - 1/2/dX*( 3*fxbhat(nc)-4*fxbhat(nc-1)+fxbhat(nc-2) )/...

428 gro1h(nc)+ gro1h(nc)^(-1)*fg1hat(nc)*alphht(nc);

429

430 % % Next define full dudt

431 dUdT = zeros(length(U),1);

432 dUdT(1:nc) = fxbhat;

433 dUdT(nc+1:2*nc) = fg1hat;
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434 dUdT(2*nc+1:3*nc) = fahat;

435

436 end

437

438

439 %% Discrete Pressure, Stress, Stretch and Growth Rate

440

441 function [st, pr, al, fg1] = NHBdry_ODE_SG_AW_psig(~,u)

442

443 % Define growth

444 growth1 = u(N+2:2*N+1);

445 % Define boundary locs

446 xb = u(1:N+1);

447

448 % % Cell stretches

449 stretch = (xb(2:N+1)-xb(1:N));

450 al = (stretch./growth1);

451

452

453 st = mu*(al.^2 - al.^(-2)) ...

454 + eta*(1 + al.^(-2)).*u(2*N+2:3*N+1);

455

456 pr = mu*al.^(-2) + eta*al.^(-2).*u(2*N+2:3*N+1);

457

458 fg1 = 1/2*(...

459 1 + tanh(sig0*(...

460 mu*(al.^2 - al.^(-2)) ...

461 + eta*(1 + al.^(-2)).*u(2*N+2:3*N+1) ...

462 ))...

463 );

464

465

466 end

467

468

469 %% Continuum Pressure, Stress, Stretch and Growth Rate

470

471 function [sth, prh, alh, fg1h] = NHBdry_contODE_SG_AW_psighat(~,U)

472

473 % Define growth

474 growth1hat = U(nc+1:2*nc);
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475 % Define boundary locs

476 xbhat = U(1:nc);

477

478 % First Derivative

479 % x

480 dxbhatdx = zeros(nc,1);

481 dxbhatdx(2:nc-1) = (xbhat(3:nc) - xbhat(1:nc-2))/2/dX;

482 dxbhatdx(1) = (-3*xbhat(1) + 4*xbhat(2) - xbhat(3))/2/dX;

483 dxbhatdx(nc) = (3*xbhat(nc) - 4*xbhat(nc-1) + xbhat(nc-2))/2/dX;

484

485 % alpha

486 alh = dxbhatdx./growth1hat;

487

488 sth = mu*(alh.^2 - alh.^(-2)) ...

489 + eta*(1 + alh.^(-2)).*U(2*nc+1:3*nc);

490

491 prh = mu*(alh.^(-2)) + eta*alh.^(-2).*U(2*nc+1:3*nc);

492

493 fg1h = 1/2*(...

494 1 + ...

495 tanh(sig0*(...

496 mu*(alh.^2 - alh.^(-2)) ...

497 + eta*(1 + alh.^(-2)).*U(2*nc+1:3*nc) ...

498 ))...

499 );

500

501

502 end

503

504 %% Discrete Initial Condition for Alpha

505

506 function dudt = ICdisc(u)

507

508 % Define growth

509 growth1 = g0;

510 % Define boundary locs

511 xb =x0;

512

513 % % Cell stretches

514 stretch = (xb(2:N+1)-xb(1:N));

515 alph = (stretch./growth1);
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516 % Cell width (incompressibility constraint)

517 growth2 = 1;

518 Width = growth2*gam0./alph;

519

520 % % Define dgdt

521 fg1 = 1/2*(...

522 1 + tanh(sig0*(...

523 mu*(alph.^2 - alph.^(-2)) ...

524 + eta*(1 + alph.^(-2)).*u ...

525 ))...

526 );

527

528 % % define dxdt

529 % Shared boundary width

530 Wforce=1/2*(Width(1:N-1)+Width(2:N));

531 % Initialise Force Vector for dxbdt

532 fxb = zeros(length(xb),1);

533 % Force balance at boundaries

534 fxb(2:N) = -Wforce.*(mu*(alph(1:N-1).^2 - alph(1:N-1).^(-2))...

535 - mu*(alph(2:N).^2 - alph(2:N).^(-2))...

536 + eta*(...

537 + u(1:N-1).*( 1 + alph(1:N-1).^(-2) ) ...

538 - u(2:N).*( 1 + alph(2:N).^(-2) ) ...

539 )...

540 );

541

542 % Free boundary (for fixed boundary, comment out)

543 fxb(N+1) = -Width(N)*(...

544 mu*(alph((N))^(2)-alph((N))^(-2))...

545 + eta*( 1+alph(N)^(-2) )*u(N);

546

547 % can use kappa = K for initial condition

548 fxb=fxb’/K;

549

550 % % Define relation for d(alpha)/dt, g1, x

551 falpht = u ...

552 - growth1.^(-1).*((fxb(2:N+1)-fxb(1:N))) ...

553 + alph./growth1.*fg1;

554

555 % Next define dudt

556 dudt = falpht;
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557

558 end

559

560

561 %% Continuum Initial Condition for Alpha

562

563 function dUdT = ICcont(U)

564

565 % Define growth

566 gro1h = G0;

567 gro2h= 1;

568 % Define boundary locs

569 xbhat = X0;

570

571 % First Derivative

572 % x

573 dxbhtdx = zeros(nc,1)’;

574 dxbhtdx(2:nc-1) = (xbhat(3:nc)-xbhat(1:nc-2))/2/dX;

575 dxbhtdx(1) = (-3*xbhat(1)+4*xbhat(2)-xbhat(3))/2/dX;

576 dxbhtdx(nc) = (3*xbhat(nc)-4*xbhat(nc-1)+xbhat(nc-2))/2/dX;

577

578 % alpha

579 alphht = dxbhtdx./gro1h;

580 dalphhtdx = zeros(nc,1)’;

581 dalphhtdx(2:nc-1)=(alphht(3:nc)-alphht(1:nc-2))/2/dX;

582 dalphhtdx(1) =(-3*alphht(1)+4*alphht(2)-alphht(3))/2/dX;

583 dalphhtdx(nc)=(3*alphht(nc)-4*alphht(nc-1)+alphht(nc-2))/2/dX;

584

585 % dalpha/dt

586 dalphhtdtdx = zeros(nc,1)’;

587 dalphhtdtdx(2:nc-1) = (U(3:nc) - U(1:nc-2))/2/dX;

588 dalphhtdtdx(1) = ( -3*U(1) + 4*U(2) - U(3) )/2/dX;

589 dalphhtdtdx(nc) = ( 3*U(nc) - 4*U(nc-1) + U(nc-2) )/2/dX;

590

591 % % Initialise Force Vector for dg1dt

592 fg1hat = 1/2*(...

593 1 + tanh(sig0*(...

594 mu*(alphht.^2 - alphht.^(-2)) ...

595 + eta*(1 + alphht.^(-2)).*U ...

596 ))...

597 );
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598

599 % % Initialise Force Vector for dxbdt

600 fxbhat = zeros(length(xbhat),1);

601 % Force balance at boundaries

602 fxbhat(2:nc-1) = gro2h*gam0./alphht(2:nc-1).*...

603 ( 2*mu*( (alphht(3:nc) - alphht(1:nc-2))/2/dX ) ...

604 .*( alphht(2:nc-1) + alphht(2:nc-1).^(-3) ) ...

605 + eta*(...

606 (1 + alphht(2:nc-1).^(-2)).* dalphhtdtdx(2:nc-1) ...

607 - 2*alphht(2:nc-1).^(-3).*dalphhtdx(2:nc-1).*U(2:nc-1) ...

608 ) );

609 % Free boundary (for fixed boundary, comment out)

610 fxbhat(nc) = -gam0*gro2h/alphht(nc)*...

611 (mu*(alphht(nc)^2 - alphht(nc)^(-2))...

612 + eta*( (1+alphht(nc)^(-2))*U(nc) ) )/K;

613

614 % can use kappa=K for initial condition;

615 fxbhat = fxbhat’/K;

616

617 % Alg constraint for d(alpha)/dt

618 fahat = zeros(nc,1)’;

619 fahat(2:nc-1) = U(2:nc-1) - 1/2/dX*(fxbhat(3:nc) ...

620 - fxbhat(1:nc-2))./gro1h(2:nc-1)...

621 + gro1h(2:nc-1).^(-2).*fg1hat(2:nc-1).*dxbhtdx(2:nc-1);

622 fahat(1) = U(1) ...

623 - 1/2/dX*( -3*fxbhat(1)+4*fxbhat(2)-fxbhat(3) )/...

624 gro1h(1)+ gro1h(1)^(-2)*fg1hat(1)*dxbhtdx(1);

625 fahat(nc) = U(nc) ...

626 - 1/2/dX*( 3*fxbhat(nc)-4*fxbhat(nc-1)+fxbhat(nc-2) )/...

627 gro1h(nc)+ gro1h(nc)^(-2)*fg1hat(nc)*dxbhtdx(nc);

628

629 % Next define dudt

630 dUdT = fahat;

631

632 end

633

634 end
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