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Abstract

Third metacarpal bone (MC3) fracture has a massive welfare and economic impact on horse
racing, representing 45% of all fatal lower limb fractures, which in themselves represent more
than 80% of reasons for death or euthanasia on the UK racecourses. Most of these fractures
occur due to the accumulation of tissue fatigue as a result of repetitive loading rather than a
specific traumatic event. Despite considerable research in the field, including applying various
diagnostic methods, it still remains a challenge to accurately predict the fracture risk and
prevent this type of injury. The objective of this thesis is to develop computational tools to
quantify bone adaptation and resistance to fracture, thereby providing the basis for a viable
and robust solution.

Recent advances in subject-specific finite element model generation, for example computed
tomography imaging and efficient segmentation algorithms, have significantly improved
the accuracy of finite element modelling. Numerical analysis techniques are widely used
to enhance understanding of fracture in bones and provide better insight into relationships
between load transfer and bone morphology. This thesis proposes a finite element based
framework allowing for integrated simulation of bone remodelling under specific loading
conditions, followed by the evaluation of its fracture resistance.

Accurate representation of bone geometry and heterogeneous material properties are obtained
from calibrated computed tomography scans.The material mapping between CT-scan data
and discretised geometries for the finite element method is carried out by using Moving Least
Squares approximation and L2-projection. Thus is then used for numerical investigations and
assessment of density gradients at the common site of fracture.

Bone is able to adapt its density to changes in external conditions. This property is one of the
most important mechanisms for the development of resistance to fracture. Therefore, a finite
element approach for simulating adaptive bone changes (also called bone remodelling) is
proposed. The implemented method is based on a phenomenological model of the macroscopic
behaviour of bone based on the thermodynamics of open systems. Numerical results showed
that the proposed technique has the potential to accurately simulate the long-term bone
response to specified training conditions and also improve possible treatment options for bone
implants.

Assessment of the fracture risk was conducted with crack propagation analysis. The potential
of two different approaches was investigated: smeared phase-field and discrete configurational
mechanics approach. The popular phase-field method represents a crack by a smooth damage
variable leading to a phase-field approximation of the variational formulation for brittle
fracture. A robust solution scheme was implemented using a monolithic solution scheme



with arc-length control. In the configurational mechanics approach, the driving forces, and
fracture energy release rate, are expressed in terms of nodal quantities, enabling a fully implicit
formulation for modelling the evolving crack front. The approach was extended for the first
time to capture the influence of heterogeneous density distribution. The outcomes of this
study showed that discrete and smeared crack approximations are capable of predicting crack
paths in three-dimensional heterogeneous bodies with comparable results. However, due to
the necessity of using significantly finer meshes, phase-field was found to be less numerically
efficient.

Finally, the current state of the framework’s development was assessed using numerical
simulations for bone adaptation and subsequent fracture propagation, including analysis of an
equine metacarpal bone. Numerical convergence was demonstrated for all examples, and the
use of singularity elements proved to further improve the rate of convergence. It was shown
that bone adaptation history and bone density distribution influence both fracture resistance
and the resulting crack path. The promising results of this study offer a novel framework to
simulate changes in the bone structure in response to exercise and quantify the likelihood of a
fracture.
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Chapter 1

Introduction

1.1 Motivation and objectives

In the UK, approximately 60% of horse fatalities at racecourses are associated with a
fracture, with the distal limb the most commonly affected site (Parkin et al., 2004). Most
of these fractures occur due to the accumulation of tissue fatigue, as a result of repetitive
loading (Parkin et al., 2005), rather than a specific traumatic event. Remodelling is the
on-going complex biological process of replacing old bone tissue by new bone and thus
repairing the fatigue damage (Hughes et al., 2017). The bone repair is overwhelmed by
load-induced bone densification that also increases brittleness (Loughridge et al., 2017).
Racehorses experience extreme bone remodelling, with intense exercise and excessive loading
of the metacarpal bones resulting in maladaptation. The location of 3rd metacarpal fractures
is remarkably consistent across a large number of racehorses, crack initiation presenting from
the lateral sagittal groove of the distal condyle of the leading forelimb (Jacklin and Wright,
2012; Parkin et al., 2006).

Despite considerable research in the field, including applying diagnostic methods such
as radiography (Bogers et al., 2016; Crijns et al., 2014; Loughridge et al., 2017), magnetic
resonance imaging (Tranquille et al., 2017) and biomarkers (McIlwraith, 2005), it remains a
challenge to accurately predict the fracture risk and prevent this type of significant injury.
The purpose of this thesis is to develop a finite element based framework allowing for integrated
simulation of an equine 3rd metacarpal remodelling under specific exercise regime (boundary
conditions), followed by the evaluation of its fracture resistance. Such an approach may help to
understand better the correlation between exercise intensity, bone adaptation, and fracture risk,
ultimately improving the welfare of the racehorse. The current veterinary practice is based
mostly on experience and intuition without the support of computational models. The efficient

6



and robust numerical tools based on the finite element method can not only assist practitioners
in decision making regarding training regimes but also support of orthopaedic surgeons in
finding the most reliable treatments for patient-specific fractures. The principle aim of the
framework is to utilise methods that have low-complexity, require a minimum number of
parameters, can be easily automatised and at the same time provide high accuracy, robustness
and generality. These features are essential to fit in efficient patient-specific modelling routines
capable of handling many patients within a limited time frame. A schematic of the proposed
modelling framework is depicted in Figure 1.1.

The procedure of building successful finite element models for analysing bones always has to
start with the acquisition of accurate geometry and density data (material properties). Since the
local bone stiffness is directly related to the local mineral density of the bone, the radiopacity
values from CT scanning can be mapped onto finite element mesh. In the first step of building
the framework, methods for mapping bone density are introduced, as shown in Figure 1.1a).
The resulting finite element bone model with proper heterogeneous density distribution is a
starting point for a comprehensive investigation of adaptation and fracture propensity.
Bone’s ability to adapt its density in response to external loading is crucial for maintaining
mechanical integrity and resistance to fracture. Consequently, there is a strong correlation
between stress fractures and the adaptation process (Hughes et al., 2017). Simulation of the
adaptation process can provide important insights into the macroscopic morphology of bone
and changes as a result of intense athletic training. Therefore, to improve the predictive
capability of the framework, a numerical method for simulating long term bone response to
applied loading is included as a second step in the pipeline.

In recent years, the main focus in bone mechanics was in the use of different strength criteria
for the onset of failure. The most commonly adopted ones were based on stress or strain
measures assuming the bone failure under the von Mises, the Drucker-Prager or, maximum
principal stress yield criteria (Keyak et al., 2005; Schileo et al., 2008; Yosibash et al., 2010).
However, these criteria are merely designed to assess the criticality of a preexisting fracture,
and they cannot model propagation and the post-failure response of the bone. In general,
crack propagation can be modelled by a discrete or smeared approach. In the discrete
approach, the crack is represented explicitly on the mesh, whereas in the smeared approach,
the crack is distributed over a damage zone with a finite width. The potential of these two
different techniques is explored in this thesis using the state of the art developments of
phase-field and configurational mechanics for smeared and discrete approaches, respectively.
The phase-field approximation has been used in the past to analyse crack propagation in
heterogeneous materials (Hirshikesh et al., 2019). In contrast, the method to include varying
material properties in configurational force driven approach has not been explored before.
The most robust implementation is used as the last step of the proposed framework to assess
bone resistance to fracture, including the bone’s history of adaptation.

7



a) Density mapping. b) Bone adaptation. c) Crack propagation.

Figure 1.1: Framework for estimating bone fracture resistance. a) density data derived from
Computed Tomography (CT) imaging mapped onto finite element mesh. b) bone adaptation
simulation. c) assessment of fracture resistance and crack propagation analysis.

Another essential aspect of building numerical bone models is the measurement or estimation
of forces exerted on the bones, typically obtained using pressure films or musculoskeletal
modelling methods (Brama et al., 2001; Pang et al., 2012). However, it is out of the scope of
this thesis, and boundary conditions will be based on the literature findings.

In summary, the goal of this study is to develop a robust numerical tool for the estimation of a
fracture risk in response to training regimes. The main objectives are the following:

• Implementation of an efficient strategy for building bone patient-specific finite element
models from widely available medical imaging methods.

• Identification of material properties necessary for an accurate numerical representation
of the equine bone stiffness.

• Building a numerical model to predict adaptation of bone density in response to loading
exercise.

• Investigation of the initiation and propagation of fracture in MC3 bones using state of
the art finite element tools.

• Estimate maximal exercise loading to predict and prevent fatal injuries in racehorses.

1.2 Thesis overview

This thesis comprises of different aspects related to the proposed numerical framework for
analysing bone propensity to fracture. In Chapter 2, a brief literature overview is presented
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with emphasis on the origins of the equine bone fractures and numerical techniques for
analysing bones. Chapter 3 introduces two novel techniques for mapping CT-scan data onto
finite element meshes. The numerical and imaging setups are characterised. Subsequently, the
continuum formulation and numerical aspects of the bone remodelling model are presented
in Chapter 4. Two approaches for approximating bone fracture are considered in this thesis:
The first one - the smeared phase-field method is covered in Chapter 5. In Chapter 6,
the main novelty of this thesis is presented - implicit formulation for crack propagating
in heterogeneous materials using the configurational force-driven approach. In Chapter 7,
implemented bone remodelling formulation is tested on a practical problem of proximal femur
adaptation, followed by a comparative study for both crack propagation approaches. All the
components are subsequently brought together into a single framework, and its performance
is demonstrated using a series of numerical examples. The different aspects of the code are
investigated. Finally, in the last Chapter 8, concluding remarks are depicted to summarise
research contributions. Limitations and future directions of the research are outlined.

Throughout this thesis, matrix-vector notation will be used; all matrices and vectors are
distinguished by bold-faced characters. For 4th order tensors a calligraphic font is utilised.
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Chapter 2

Literature overview

This chapter includes a brief literature overview and is divided into two parts. In the first
section, the fracture mechanism of the equine metacarpal bones is addressed. The literature
on the material properties of bone and horse kinematics are discussed. The second section
focuses on different numerical theories for simulating both bone remodelling and fracture
developed in the past.

2.1 Introduction

Racehorses are trained very intensively to develop the speed and stamina required for racing.
Thanks to adaptation, the structure of their bones changes every day. However, a consequence
of the adaptation process is increased bone density and stiffness. Tissue accumulates in
particular regions, causing increased bone stiffness and fragility. In the UK, a catastrophic
fracture of the equine 3rd metacarpal bone (MC3) is the main reason of euthanasia or death
of horses on the racetrack. Many factors influence the propensity for injuries such as bone
density, training, type of ground surface, or direction of a race. In order to examine the
relationship between these factors and fragility sophisticated computational approach of bone
loading, adaptation and fracture has to be developed.
A schematic drawing in Figure 2.1 shows the steps involved in building subject-specific finite
element models. The first step is the generation of a finite element mesh. Geometry is usually
obtained based on CT or MRI scans provided by clinicians. Acquired images are segmented
and discretised. Subsequently, material property mapping is conducted over all elements in
the mesh. The methods for assigning the properties are discussed in Chapter 3. Material
properties can be determined by mechanical testing and from microscale images, which is
briefly discussed in Section 2.2.3. Musculoskeletal modelling supplies information on forces
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Figure 2.1: Steps involved in construction, analysis, and validation of a patient-specific FE
model of bone (Poelert et al., 2013).

in joints, tendons, and ligaments during gait of a subject, giving the data used as loading and
boundary conditions for numerical bone models (see Section 2.2.4).
In order to build an efficient framework capable of handling many subjects within a limited
time frame, the numerical methods used therein have to be of low complexity, require a
minimum number of parameters while maintaining high accuracy and robustness. In the
proposed framework, two subsequent analyses will be conducted: bone remodelling and
fracture. Numerical methods available in the literature regarding these two phenomena are
discussed in Section 2.3.

2.2 Fractures of the equine 3rd metacarpal

Bone is a remarkable living material. It is heterogeneous, consisting of dense cortical bone
and porous trabecular bone. The bones of the young horses develop following a basic genetic
template. However, it is only when the bone is subjected to mechanical loading that the
process of modelling or adaptation results in the development of the mature bone structure and
shape. When bone then accumulates micro-damage, it is removed by cells called osteoclasts
and subsequently replaced with new bone by building cells - osteoblasts. This ongoing
replacement of old bone tissue by new bone tissue is called remodelling. The racehorse is
an extreme example of this process in which strenuous exercise and excessive loading result
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Figure 2.2: Comparison of the equine and human forelimb. It can be noticed that the limbs
are of different structure and function.

in maladaptation in MC3 bone. A combination of dense bone adjacent to micro-cracks can
ultimately propagate into a fatigue fracture – a lateral condylar fracture.

2.2.1 Anatomy of equine 3rd metacarpal bone

Horses (Equus caballus) are odd-toed ungulates. They bear the weight of their bodies on
odd-number of toes, which in the horse is one hoof that surrounds the distal phalanx. The
distal hindlimb and forelimb are very similar in their structure. This study considers one
particular bone from the front limb – the 3rd metacarpal (MC3). The placement of this bone
with comparison to a human arm is presented in Figure 2.2. It can be noticed that only the
MC3 is not reduced in the horse. Metacarpal II and IV are approximately one-third shorter,
also known as splint bones.
In contrast to the human arm, metacarpals I and V are absent in the horse limb. Proximally
the metacarpals articulate with the small carpal bones, whereas distally MC3 articulates with
proximal phalanx. Together with the proximal sesamoids, they form a metacarpophalangeal
(fetlock) joint (Budras et al., 2003). This joint is especially prone for injury because of the
extensive range of motion, the relatively small surface area (450 mm2, whereas in human
tibiofemoral joint - 700 mm2) compared to body size and the magnitude of forces that occur
during a high-speed gallop. The mean contact stress in the equine fetlock can be more than 10
times higher than that estimated for the human knee during walking (Harrison et al., 2014).
The metacarpal is a stiff, well-developed bone due to its function. It bears loads transferred
through the whole limb. The shape of the bone with essential elements is presented in
Figure 2.3 below. The distal articular surface has two condyles separated by a sagittal ridge,
which articulates with the proximal phalanx groove to limit the fetlock to only the sagittal
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Figure 2.3: Anatomy of MC3 bone. Right forelimb.

plane movement. The proximal aspect of metacarpal III has articular facets on its palmar side,
where the splint bones link. The dorsal side of the proximal end has a tuberosity for muscular
attachment. It is worth to note that tuberosity can be used as a straightforward indication of
the side of the limb in CT imaging (medial or lateral).

2.2.2 Fractures in Thoroughbred racehorses

Two different fracture mechanisms can be distinguished. The first one appears when accidental
load causes critical stress over the strength that bone tissue has achieved during growth and
adaptation (traumatic fracture). The second type of fracture is produced by creep or fatigue.
Bone often bears more or less constant loads for long periods of time and cyclic loads that
may produce microdamage. If the accumulation of microdamage is faster than repair by
remodelling, microcracks can multiply to produce macrocracks leading to a complete fracture.
Clinically, this is often called a stress fracture. It usually occurs in individuals who have
increased repetitive-type physical activities such as soldiers, ballet dancers, joggers, athletes,
and racehorses (Doblaré et al., 2004).

Catastrophic failure of the equine distal limb is the most common cause of euthanasia of
Thoroughbred racehorses on the racetrack. Fractures of the 3rd metacarpal and metatarsal
are responsible for about 25% of cases that end in euthanasia of racehorses in California
and the UK. Most frequently, the site of fracture is the lateral condyle (Jacklin and Wright,
2012; Parkin et al., 2005). Almost all lateral condylar fractures originate from the mid to mid
axial site of the lateral condyle and traverse toward the lateral cortical bone (Figure 2.4a). In
contrast to medial condylar fractures, lateral fractures rarely spiral into the diaphysis (shaft) of
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Figure 2.4: Common metacarpal bone damage in racehorses. a) radiograph of typical fracture
subchondral bone b) palmar view of MC3 with a fracture that has propagated from the lateral
sagittal groove (Harrison et al., 2014).

the MC3. Medial condylar fractures nearly always extend toward the axial aspect of the MC3
(Mc Turlough, 2014).

There have been numerous studies investigating possible risk factors for fractures of racehorses.
Some of them like age, gender, and genetics are hard to control. In contrast, others related
to training and racing can be reduced through proper training, gait modifications, and
biomechanical alterations (e.g., horseshoes). Exact statistics differ between tracks and types of
racing. Investigations based on hoof ground reaction forces by Setterbo et al. (2009) indicated
that synthetic surfaces have the potential for injury reduction in Thoroughbred racehorses.
The distribution of injury between right and left forelimbs varies - Parkin et al. (2006) found
that horses were 6.3 times more likely to injure the leading forelimb. This study will focus on
fatigue fractures, which are usually the result of bone adaptation. Prolonged intense loading
suppresses remodelling, leaving modelling as the only process of maintaining bone strength.
Racehorses with fatigue fractures of the distal MC3 may have reduced porosity associated with
suppressed remodelling while continued adaptive modelling will result in higher densities
on the subchondral bone (Whitton et al., 2010). Cross-sections of distal condyles from 3rd
metacarpal and metatarsal (usually less loaded than MC3 from forelimb, therefore can be
considered as equivalent for less trained horse) are presented below in Figure 2.5.

It can be noticed that MC3 is characterised by areas of high bone density adjacent to areas of
increased porosity (in the sagittal ridge) that create large density gradients within condyle
(Riggs and Boyde, 1991). Such gradients may lead to concentration of shear forces, which can
cause localisation of cracks (Figure 2.5c) and further catastrophic fracture. The sagittal ridge is
not directly loaded during functional weight-bearing, as shown in contact areas investigations
(Brama et al., 2001). Therefore, in this region, a low correlation between bone density and
horse exercise may be expected. Also, joint-pressure measurements confirm that areas of high
load are associated with increased subchondral density (Easton and Kawcak, 2007).

In addition to fractures of the condyles, it is worth to mention fatigue fracture of the dorsal
cortex diaphysis of MC3, which is a component of ’bucked shins’ disease. It occurs in 70%
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Figure 2.5: Cross-sections of subchondral bone. a) distal MC3 from a training horse showing
high porosity at sagittal grooves compared with b) less loaded (adapted) metatarsal bone
c) Radiographs of sections through the condylar surface of MC3, showing fracture localization
at high-density gradients (Firth et al., 2016).

of the population of young thoroughbred horses in training. Bucked shins are the result
of high-strain cyclic fatigue caused by repeated compression loads on a bone that has not
remodelled enough to tolerate the stress placed on it. Stressed bone forms a new weaker layer
of bone at the point of stress. However, only 10% of horses with this syndrome were found to
have a stress fracture (Nunamaker and Ruggles, 2010).

2.2.3 Bone material properties

Bones are the basic elements of the skeletal system. They are built of dense connective tissue
and determine the shape of the body. Most bones have support functions that allow them to
maintain an upright position. Some of them protect other organs against traumas. Another
mechanical function of bones, connected through the joints, is to enable the body movement.
Together with the muscular system, bones constitute a complex mechanism that ensures the
motor functions of the body. In order to fulfil their important role, they must have sufficient
mechanical strength. Thanks to their internal structure, external shape and ability to adapt,
they are very effective structures from an engineers’ point of view. A biological function of
bone is the storage of calcium and phosphorus. Another vital role, is the production of blood
cells in the red marrow within the cavities of individual bones.
Bone tissue is a highly complex multi-scale material, with varying properties on its many
length scales. It is naturally occurring, with properties adapted to its local environment during
growth, making bone tissue an unpredictable material to work with that certainly can not be
described in terms of a single value for a particular materials property.
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The structure of all bones consists of the same essential components. These include mineral,
carbonated hydroxyapatite, the framework protein type I collagen, many other so-called
non-collagenous proteins and water. The material of bones has a hierarchical structure
that changes at different length scales (Sharir et al., 2008). It is also a heterogeneous and
anisotropic material, as its composition, structure, and mechanical properties vary in space.
The combination of these attributes makes bone tissue a challenging material to model
numerically.
Equine MC3 bone, in particular, has exceptional properties compared to other mammals bones.
Maximum physiological strain taking place during extreme activity is generally between
0.0015% and 0.0030% whereas, in racehorses, the compressive strain can reach approximately
0.0078% when measured during fast-galloping on a treadmill (Sharir et al., 2008).
The proper assignment of material properties is essential for FE models. Many empirical
relationships between isotropic Young’s modulus and bone density are available in the
literature. Due to simplification of bone isotropy, they are widely used in FE analyses
(e.g. in Eberle et al. (2013)). Helgason et al. (2008a) reviewed numerous density-elasticity
relations. A large spread in the predicted Young’s modulus was reported. That indicates
complexity in the experimental techniques needed to measure the mechanical properties in
material like trabecular bone. Usually, in order to determine mechanical properties, a bone
specimen is cut out of a whole bone and loaded in a testing machine between the two anvils
as presented in Figure 2.6b) (Les et al., 1994). Recording of load-displacement data allows
for the calculation of parameters like Young’s modulus. Many different testing set-ups have
been applied over the years. Both three and four-point bending tests have been employed to
investigate the mechanical performance of entire bone specimens (Figure 2.6a)). However,
bending tests, in general, better serve as a validation of FE analyses predictions (Taddei et al.,
2007; Trabelsi and Yosibash, 2011). Another effective method for verification of numerical
results is modal analysis (Scholz et al., 2013). Natural frequencies after bone excitation are
measured (by laser vibrometry or accelerometers) and compared with FEM predictions that
can be accomplished by simple solving of an eigenvalue problem.

When anisotropy is considered, the values achieved in the testing described above are
inadequate. The fully anisotropic bone-matrix material tensor can be obtained at the
microlevel by ultrasonic (Rho, 1996) or nanoindentation (Fan et al., 2002) methods. The use
of ultrasonic waves for analysis of bones is a well-known technique. Elastic properties can
be obtained from velocity measurements of transverse and longitudinal waves propagating
in particular directions in the bone specimens. The relations between velocity and elastic
properties originate from the theory of small amplitude wave propagation in solids. In
nanoindentation method, a hard tip, often made of diamond, is pressed into a sample with
unknown properties. The load placed on the indenter tip is increased as the tip penetrates
further into the specimen. This technique enables the measurement of mechanical properties
with a low resolution and allows the measurement of properties in several different directions
at the microstructural level.
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a) b)

Figure 2.6: Simple bone testing techniques. a) 3-point bending of deer metacarpal bone
(Hovagimian et al., 2011). b) trabecular bone compression between two anvils (Leahy et al.,
2010).

Another relatively new method to achieve full stiffness tensor for bone is computational
homogenisation. Based on segmented microCT scans of trabecular specimens, a FE model is
built assuming the isotropy at the micro-level. Young’s modulus is usually achieved from
nanoindentation of a single trabecula. Subsequently, specimens are numerically loaded and
from their response fully homogenised stiffness tensor can be computed (Pahr and Zysset,
2008).
Once anisotropic properties are obtained, material trajectories need to be determined in
order to apply well-oriented elasticity tensor to finite elements. It was found in several
studies (e.g. Tabor and Rokita (2007)) that this might be a hard venture since trabecular bone
morphology cannot be determined by using clinical (non-micro CT) tomography scanning.
Many researchers presented techniques that help to assess the aforementioned trajectories. For
example, Trabelsi and Yosibash (2011) applied a micro-mechanical approach to overcome this
limitation. Trajectories were determined either by the assumption that they follow outer surface
geometry or principal strains. However, the results of FE analyses with both orthotropic and
simple isotropic material properties were very similar. They remained in good agreement with
tests conducted on femur bones with simple loading configuration (typical femur head load
simulating stance position). Equine MC3 is mainly axially loaded; therefore, it is probable
that including anisotropy will not significantly affect the results.

2.2.4 Horse Kinematics

The equine forelimb experiences very large loads during locomotion. The extreme extension
of the metacarpophalangeal joint (fetlock) results in the storage and release of the elastic
strain energy in the long flexor tendons and the suspensory apparatus. This mechanism makes
the distal forelimb act like a passive spring (Harrison et al., 2010). However, such energy
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Figure 2.7: Phases of the stance: blue vector represents Ground Reaction Force (GRF) and
red vector - accelerations (vertical and horizontal) (adopted from Thomason and Peterson
(2008)).

storage requires relatively high forces to be developed by tendons and transferred through
contact in the fetlock joint. Numerous studies have estimated ligament and tendon strain, bone
strains with strain gauges (Merritt et al., 2006), and joint surface pressure distribution in the
metacarpophalangeal joint and surrounding structures. Determining muscle and joint loading
in vivo is challenging and limited for practical and ethical reasons. Contact pressures in the
horse have only been measured ex vivo with the use of pressure mapping sensors (Easton,
2012) or sensitive films (Brama et al., 2001). Both strains and contact pressures were found
to grow with the increasing loading.
Indirect methods, like musculoskeletal modelling, are potentially more potent than invasive
experiments. Models of the musculoskeletal system enable the study of neuromuscular
coordination, analysis of athletic performance, and estimation of loads. A musculoskeletal
model consists of rigid body segments connected by joints. Muscles span these joints and
generate forces and movement. Such models enable to study the effects of musculoskeletal
geometry, joint kinematics, and muscle-tendon properties on the forces and joint moments
that the muscles can produce (Delp et al., 2007). Dynamic simulations are divided into two
types: inverse and forward. An inverse dynamic approach is useful for studying experimental
data, whereas forward dynamics may be used to perform simulated tests. By means of inverse
dynamic simulations, joint moments and forces, muscle forces and strains in the equine
forelimb during swing phase and stance phase of a gait can be derived. A forward approach
typically uses simplified equine models and focuses on general locomotion modelling of the
entire horse.

During galloping, the highest forces and accelerations occur during the stance phase of the
forelimb stride and can be divided into four parts (see Figure 2.7). Approximately the first 7%
of the duration of stance is the primary impact when the hoof hits the ground causing high
decelerations, and the ground reaction force (GRF) increases. Secondary impact accounts for
the next 5-30% of the stance phase and is characterised by the first stage of the loading of
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a)                                        b)                c)

Figure 2.8: a) Horse loaded with markers and accelerometers for gait experiments. b) The
kinematics from markers and ground reaction forces (can be determined by of use force plate
or special horseshoe) c) Final musculoskeletal model with wrapped tendons and ligaments
(Harrison et al., 2014).

the horse’s mass with the leg as it becomes steady placed on the ground. During this phase,
there is a significant increase in force and strain due to a substantial increase in horizontal
acceleration and rapidly increasing GRF. The third stage of the stance, midstance, stands for
30-90% of the stance following impact depending on the speed and gait.
During midstance, the full body weight of the horse is loaded on the limb, and peak vertical
GRFs are achieved. An extremely high vertical GRF occurs during midstance upwards of 2.5
times the body weight. The angle of the metacarpophalangeal joint (fetlock) at midstance
can be close to 90 %. It has been reported that during midstance, MC3 is primarily in axial
compression exerted by resultant forces applied by the proximal sesamoid bones and proximal
phalanx (Merritt et al., 2010). Breakover is the final stage of the stance (85-100 %) where the
hoof lifts at the heels and push off from the ground unloading the limb (Thomason and Peterson,
2008).

Many researchers have reported the magnitudes of resultant forces transmitted by the fetlock
joint (Harrison et al., 2010; Merritt et al., 2006, 2010; Setterbo et al., 2009). However, there
was only one study found, that attempted to estimate the magnitudes and locations of maximum
cartilage pressures (Harrison et al., 2014). Sophisticated subject-specific finite element model
of fetlock joint was developed. Bone, muscle and cartilage geometries were obtained from
a cadaver forelimb using MRI and CT. Tendon and ligament strains, bone kinematics, and
hoof forces were determined from in vitro mechanical experiments on a cadaver limb. Gait
analysis was performed to measure joint kinematics and hoof loading. Example configuration
of such tests is presented in Figure 2.8. Although the model had several limitations (e.g.
bones modelled as rigid bodies), the results of analyses were in satisfactory agreement with
previous studies. It was also reported that models were relatively insensitive to the magnitude
of muscle-tendon forces; thus bone kinematics and net joint torques measured from a gait
analysis experiment can be used with the application of a generic rigid body musculoskeletal
model to determine individual muscle - tendon forces.
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Overall, all of these studies only investigated a few components at once. The variations in
loading schemes between different studies make it difficult to determine the correlations of
data from the literature. The number of animals used in the experiments was usually small,
and the same subjects may not have been used in all analyses. There is also no data reported
about gait experiments conducted at racing speeds. In summary, while building biomechanical
finite element models, some simplifications are inevitable.

2.3 Computational modelling of bones

2.3.1 Bone remodelling

Bones can adapt their local density when subjected to mechanical loading. They can change
their morphology within days as a result of continuous microstructural tissue turnover and
regeneration. Such an adaptation process results in the densification of the bone in regions of
high loading levels and resorption of the material in regions of low loading levels. The first
attempts to describe the mechanism that governs the relationship between bone morphology
and its external mechanical loads were carried out more over than a century ago. The father of
modern biomechanics - Julius Wolff formulated his phenomenological so-called Wolff’s Law
(Wolff, 1870). He postulated the existence of mathematical laws according to which bone
adapts its trabecular structure to external stimuli.

Bone remodelling has a substantial impact on human lives. As previous studies showed
(Menzel and Kuhl, 2012), because of adaptation astronauts in space lose their bone density,
too stiff orthopaedic implants may develop local loss of bone structure, and dental implants
can become loose over time. Athletes in asymmetric sports like tennis often develop much
denser leading arm, which can cause constantly recurring pain. Therefore, the functional
adaptation of bones found much interest of researchers from different disciplines, including
computational mechanics. However, the mass exchange is an uncommon issue in classical
mechanics; thus, the application may be problematic if only standard continuum mechanics
tools are considered.
Numerous approaches to bone remodelling (Podshivalov et al., 2014) have been utilised
over the years. Generally, they can be divided into two main categories: mechanistic
and phenomenological (Poelert et al., 2013). The first one was initially proposed by Frost
(Frost, 1987). This concept assumed that the minimum effective strain has to be exceeded
in order to trigger bone adaptation process. The new material configuration responds
differently to the mechanical environment, inducing a feedback loop between bone mechanical
properties and biological activity. This theory clarifies the foundations of Wolff’s theory.
However, in numerical studies, phenomenological approach was found to be more widely
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used (Hazelwood et al., 2001). Simulations usually assume that the functional stimulus for
adaptation is stress, strain energy or a related factor such as damage. Some investigations were
based on optimality criterion postulating that the tissue adaptation process tries to maintain
the structural integrity of the bone while minimising the required mass (Jacobs et al., 1995).
This technique is widely used in engineering, e.g. to determine the optimal shape of structures.
Another category of models assumed that adaptation is driven by healing micro-cracks and
damage in bone tissue (Doblaré et al., 2004).
Multi-scale approaches in 3D have also been investigated for the bone remodelling problem,
where the macro-scale domain is characterised by homogeneous material properties and
passes information down to the micro-scale Podshivalov et al. (2014). However, such methods
require many parameters on different levels that may be difficult to obtain and validate.
Moreover, multi-scale analyses are still computationally expensive for modelling large scale
problems, like entire bones.

In relatively new approaches, non-constant mass is characterised by single-phase material
within an open-system mechanics framework that allows for local energy-driven creation of
mass (Kuhl et al., 2003). Constitutive parameters used in such models, in particular those
related to the local creation of mass, can be experimentally determined by means of CT-
scanning (Zadpoor, 2013). Nevertheless, accurate data acquisition for subject-specific studies
is a very troublesome task. Many researchers conducted remodelling simulations without
taking into consideration heterogeneity and anisotropy of material as well as complex loading
patterns including forces from muscles, tendons or ligaments (Kaczmarczyk and Pearce,
2011; Kuhl and Steinmann, 2003; Pang et al., 2012; Podshivalov et al., 2014). However,
some studies have shown that even with high uncertainty of the used data, like geometry,
loading conditions or model parameters (Campoli et al., 2014), the results from state of the art
bone remodelling analyses are comparable with bone density levels measured experimentally
(Pang et al., 2012).

2.3.2 Bone fractures

Subject-specific finite element modelling has commonly been used to assess the stresses
and fracture risk of bones (Chen et al., 2010; Helgason et al., 2008a; Taddei et al., 2007;
Trabelsi et al., 2009; Yosibash et al., 2010). The two main components of subject-specific FE
models: model geometry and material properties, can be derived from computed tomography
(CT) datasets (Knowles et al., 2016). Generation of the three-dimensional (3D) geometry of a
bone segment from CT data might be complicated and time-consuming depending complexity
of the considered bone.
Bone tissue is a natural composite material with a hierarchical structure across the scales. On
macroscale bone consist of a very dense cortical bone or porous trabecular bone. The most
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common approximation of such a complex structure assumes that the bone material is elastic,
isotropic and highly heterogeneous, which still makes the modelling of fracture a challenging
task.

In context of fractures, bone tissues developed a number of microstructural mechanisms
to increase its resistance and ultimately prevent failures. The stress/strain curve for bone
typically exhibits a linear elastic phase followed by an inelastic region where the material
yields followed by sudden catastrophic failure in the form of a fracture (Gupta and Zioupos,
2008). Through a number of experiments by Ritchie et al. (2005) and co-workers identified
four major toughening mechanics occurring in cortical bone: crack deflection, crack bridging
by collagen fibres, ligament bridging and diffuse micro-cracking. These phenomena have
been further classified into two classes: intrinsic and extrinsic due to different toughening
effects that they incorporate. Intrinsic corresponds to microstructural damage processes that
act ahead of the crack tip. The experimental studies showed that so-called ’cement lines’
provide weaker crack path than surrounding microstructure, resulting in an inelastic behaviour.
The second class, extrinsic mechanisms operate behind the crack tip, restraining it from from
opening further. The experiments showed that collagen bridging is responsible for increased
fracture toughness as the crack continues to propagate in bone specimens. Therefore, it can be
concluded that in order to fully capture bone tissue behaviour one has to take into account at
least two dissipative phenomena; diffuse cracking that reduces bone stiffness ahead of the
crack front and energy release due to advancing fracture plane. However, in particular cases
the fracture processing zone can be so small with respect to the size of the specimen, that such
mechanisms can be neglected. Classical linear elastic fracture mechanics (LEFM) theory
assumes that yielding zone is infinitely small (which is true only for some materials), therefore
all the dissipated energy is consumed to create new crack surfaces. Materials that exhibit
significant disspation at the crack front in the form of plasticity or diffused cracking cannot
be characterised solely using the linear theory. Moreover, structures made of such materials
demonstrate so called ’size effect’, where small specimens have much higher nominal strength
than large ones Bazant (2000). In order to further consider implications of this phenomenon,
three specimens with deep notches in the middle, made from e.g. bone tissue are presented in
Figure 2.9a). The nominal strength (maximum stress) of these geometrically similar beams
can be presented against the characteristic (dimensionless) size D of the specimen (1, D, D′)
as presented in Figure 2.9b). On the log-log scale, the LEFM failures are represented by a
straight line of slope −1/2, while plasticity and other strength-based failure criteria correspond
to a horizontal line. The presented power laws characterize so called deterministic (energetic)
size effect. Clearly, for both classical approaches: strength-based and LEFM, exist only a
specific range of the specimens sizes in which they are applicable (the closest to experiments).
The size effect curve for nonlinear fracture mechanics bridges these two theories, representing
a transition from one to another. Such formulation introduces a characteristic length scale of
the microstructure, making it appropriate for much larger range of sizes and accurate failure
estimation.
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Figure 2.9: a) Beam specimens of different sizes. b) Size-effect (scaling) power laws for
limiting cases: plasticity theory, linear elastic fracture mechanics (LEFM), transitional curve
for nonlinear fracture mechanics. (Adopted from Bažant (1999))

The whole bone tension tests also exhibit ductile to brittle transition (Gupta and Zioupos, 2008)
due to intrinsic and extrinsic microstructural mechanisms mentioned before. Consequently,
when the considered specimens are relatively small with respect to the size of the fracture
processing zone, as seen in Figure 2.9b), the LEFM alone will vastly overestimate the strength
of the material (left side of the graph). Therefore, it is evident that in case of bones, the
formulation has to include the influence of microstructural effects, like e.g. collagen bridging
and diffuse cracking. One simple computational method to include characteristic length scale
into LEFM, is scaling of the Griffith energy gc parameter according to Irwin’s characteristic
material length (Bažant, 1999; Irwin, 1958):

`0 =
Egc

σ2
0

(2.1)

where E is Young’s elastic modulus and σ0 is yield stress. `0 approximately characterizes the
length of the fracture processing zone. The above formula can be used to adjust the Griffith
energy parameter when the characteristic length scale is known, e.g. from experiments. Such
idea combines the concepts of strength or yield with linear fracture mechanics, which is
essential to properly capture deterministic size effect and predict the failure load for quasibrittle
materials like bones.

Various theories exist in the literature regarding failure criteria for bone tissue, and it
is now standard practice for researchers to estimate fracture risk within the framework
of FEM. In particular, subject-specific FEM models can potentially quantify the risk of
failure under a given loading scenario. In recent years, the main focus in bone mechanics
was in the use of different strength criteria for the onset of failure. The most commonly
adopted ones were based on stress (Keyak et al., 2005) or strain measures (Schileo et al.,
2008) assuming the bone failure under the von Mises, the Drucker-Prager or maximum
principal strain and maximum principal stress yield criteria (Yosibash et al., 2010). The
experimental validations for such simplified models show that they have a significant spread
in the predicted failure. The percentage error in the majority of studies report is between 10%
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and 20% (van den Munckhof and Zadpoor, 2014). This variation is explained perhaps by their
focus on the local initiation of failure, rather than the complete failure mechanism. The fracture
process of bone is critical, particularly in the case of fatigue fractures (Gupta and Zioupos,
2008). Limitations in previous studies (e.g. use of 2D geometry (Bettamer et al., 2017),
assuming homogeneous bone properties (Gasser and Holzapfel, 2007)), can also explain why
an appropriate model for bone fracture has not been developed previously.

The numerical modelling of fracture can be divided into two categories: smeared and discrete
approaches. The smeared method, or continuum damage, incorporates a damage parameter
into the model that controls the strength of the material. An advantage of this approach is that
it does not require interface tracking since the damage parameter varies continuously over the
domain (see, e.g. de Borst et al. (2004)). Damage approaches were applied to model trabecular
bone damage and fracture in the past (e.g. in Hambli et al. (2012); Hambli (2013a)). Various
implementations of the method showed that it can reproduce force-displacement curves
obtained experimentally in the ovine vertebra or proximal femur bones (Harrison et al., 2013;
Hambli et al., 2012). However, the inherent disadvantage of damage models is high mesh
dependency or spread of the diffused crack over large zones. The lack of failure localisation
can be addressed by various regularisation methods (see, e.g. Londono et al. (2017)).
Closely related to continuum damage models are the phase-field models which have become
extremely popular over the last decade. The major promise behind these models is that they can
overcome some of the limitations presented in the other methods. With phase-field, the fracture
can be described purely with partial differential equations as regularised energy minimisation
problem (Miehe et al., 2010b). Thanks to the introduced length scale parameter l0, phase-field
produces realistic narrow crack bands, which in the limit l0→ 0 should reproduce a discrete
crack. The promising results with this method have been presented for simulating fracture in
humerus bone with heterogeneous material properties (Shen et al., 2019).

In discrete models for fracture, the geometrical discontinuity is modelled by modifying the
geometry of the domain. One of the popular approaches within this family of methods is
exploiting the partition of unity concept like, e.g. the eXtended Finite ElementMethod (XFEM).
XFEM uses enrichment of the standard finite element shape functions with expressions derived
from benchmark analytical solutions which decouple the crack path from the underlying
discretisation (Belytschko and Black, 1999). This approach is robust and has been applied
to bone fracture problems in the past (Gasser and Holzapfel, 2007; Feerick et al., 2013).
However, it is often limited to simple crack paths and using homogeneous material properties.
Lattice element approach (also known as rigid body spring networks) have also been used
to model discrete crack paths for concrete with low computational cost (Bolander and Saito,
1998; Grassl and Jirásek, 2010). Another novel discrete approach in an isogeometric analysis
that introduces knot insertions that lower the order of continuity to introduce cracks in the
considered domain (Hosseini et al., 2014).
In cohesive zone models, the problem of discontinuity in the displacement field is undertaken
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using a priori assumptions regarding the location of potential cracks. Special interface
elements are defined at the beginning of the analysis, which allows for the creation of cohesive
or traction-free boundaries. Ural and Mischinski (2013) analysed crack propagation in human
distal radius using such approach, where cohesive elements were inserted along the expected
crack path, which substantially limits the ability of the approach to model complex fracture
profiles.
One of the simplest methods which can simulate fracture problems is the element deletion
method. It has been used, e.g. in Hambli (2013b) to analyse human proximal femur. In
this approach, there is no need to represent sharp discontinuities since fractured elements
are expressed by a set of elements with zero stress. This method requires modifications in
constitutive equations based on the element size, which causes spurious mesh dependency.
Generally, simulating bone fracture using a discrete family of methods is extremely difficult.
Most of the approaches exhibit bias from the original mesh, require intensive remeshing which
is computationally expensive (especially in complex geometries of bones) or are limited to
homogeneous material cases. Recent advancements in the field of configurational mechanics
promise to overcome these issues. In Kaczmarczyk et al. (2017), a thermodynamically
consistent approach was presented with equilibrium at the crack front expressed entirely in
terms of nodal material forces. The results from example problems showed that the method is
robust, efficient, predicts crack paths without bias from the original mesh, and unlike most the
methods does not introduce any new parameters like length scale. However, the approach
has not been utilised yet to simulate fracture propagation in solids with inhomogeneities like
bones.

2.4 Summary

This chapter presented a brief overview of the literature regarding equine metacarpal bone
fractures, possible methods of data acquisition for related finite element models, techniques
and approaches used in numerical modelling of bone adaptation and bone fractures. The
observations made in this chapter are an essential prerequisite, which enables the choice of
numerical methods used in the developed framework described in the following chapters.
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Chapter 3

Bone imaging and material mapping

In this chapter, two methods for efficient approximation of bone CT scan data onto finite
element meshes are presented. The first approach is a simple but robust L2-projection. The
method is subsequently used for determining density gradients from CT-scans of 18 horses
from three different cohorts. The second presented method is Moving Weighted Least Squares
approximation. It provides the same capability of approximating the noisy CT-scan data onto
the smooth field as L2-projection and also allows for the computation of derivatives. This
feature will be later exploited in configurational force driven crack propagation framework
discussed in Chapter 6. Additionally, a Partial Volume Artifacts correction technique is
proposed for improved accuracy. The performance of both methods is tested on simple
examples.

3.1 Introduction

The first step when building finite element models for analysing bones is to generate
accurate geometry from three-dimensional imaging techniques like computed tomography
(CT) or magnetic resonance imaging (MRI). Many studies in the past have established that
experimentally validated bone FEM models require both high resolution in meshing and
heterogeneous material mapping of bone density (Pakdel et al., 2016). The most widely
adopted and validated method for patient-specific finite element modelling of bone is
BONEMAT program (Viceconti et al., 2004). The algorithm implemented therein interpolates
the CT-scan data (radiopacity) of the voxels mapped from the CT image to the volume of
the FEM mesh, assigning the density and elastic modulus to each individual element. This
results in a constant density within elements leading to a very noisy distribution of material
properties with unrealistically sharp gradients. However, as it will be shown later in Chapter 6
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for efficient and accurate simulation of crack propagation, the heterogeneities within the body
should be smooth. Moreover, smoothly varying density allows for calculations of gradients
which can help to identify potential points of crack initiation.
It is hypothesised that changes in subchondral bone mineral density, induced by the repetitive
cyclical loading in racehorses, are increasing the propensity of fatal injuries such as lateral
condyle fracture of 3rdmetacarpal bones. Many researchers over the years reported significantly
higher bone mineral density at the distal articulating surface in bones of trained horses or with
an already fractured limb (Loughridge et al., 2017; Riggs et al., 1999; Whitton et al., 2010).
Some of them observed the presence of associated high-density gradient at the parasagittal
grooves. However, such gradients have never been quantified. They may be predisposing the
site of the fracture, since rapid changes in mechanical properties within the bone may lead
to concentration of shear forces, causing the localisation of micro-cracks (Riggs and Boyde,
1999). In this section, numerical tools based on Finite Element Method for mapping CT data
and subsequently determining density gradients from CT scans are presented. Developed
techniques are utilised to characterise gradients at the sagittal grooves of the third metacarpal
bone in racehorses with and without lateral condylar fractures.
In FEM simulations, each finite element in the mesh is assigned with material properties. In
the case of analysing bones, it is beneficial to utilise CT scan data that was used to generate
the geometry. Each voxel (3D pixel) of a CT scan contains information about measured
radiopacity in so-called Hounsfield units (HU), which are directly related to the average
stiffness of the bone part enclosed by the voxels. Depending on this relation HU values of a
CT image can be used for density mapping and for determining elastic properties based on
density-elasticity relationships. It was shown that the apparent density can be related to the
mechanical properties of the bones using power-laws.
Subsequently, such relationships can be used to correlate bone density to Young’s modulus.
Poisson’s ratio is usually assumed to be constant ν = 0.3 in hard tissues. It is not clear which
power-law relationship is the most accurate. Many proposed relationships in the literature
often significantly differ from each other (Helgason et al., 2008a). Some of them have
already been used in FEM, validated by experiments and resulted in satisfactory agreement
(Eberle et al., 2013). However, there was only one relation found, that considered equine MC3
(Les et al., 1994). Over three hundred bone specimens from the MC3 were harvested in that
study. Subsequently, CT scans, along with a Cann-Genant K2HPO4 calibration phantom were
obtained (Cann and Genant, 1980). The specimens were compressed until failure to estimate
elastic modulus, which resulted in the following empiric relation.

E = 15100 · ρQCT
2.25 [MPa] (3.1)

Where ρQCT is dipotassium phosphate K2HPO4 equivalent density. Equation 3.1 will be used
throughout this thesis to translate density data into elastic modulus.
Another important issue regarding the assignment of density and mechanical properties is
whether one single value should be assigned to every element or rather vary within the same

27



Figure 3.1: Example data set: Finite Element mesh inside voxels lattice from MetaIO file.

element. A comparison between both approaches showed that the single-value approach
results in slightly more accurate simulation results as compared to the modified method
(Helgason et al., 2008a). Surprisingly, regardless of the discontinuous field of densities (and
further elastic modulus) and a limited number of different material properties, numerical
outcomes were in better agreement with experiments for the less accurate approach. It shows
that methods employing non-constant distribution of material properties within element still
need to be improved. As was previously shown, the choice of the mapping algorithm might be
critical (Poelert et al., 2013) for estimating stresses. Therefore, in this study new approaches
for this application are proposed: L2-projection and MWLS approximation.

3.2 Least-squares mapping

The framework developed in this study allows for reading generated meshes from VTK file
format and CT scans data from MetaIO files (Ahrens et al., 2005). Example dataset presented
in Figure 3.1. MetaIO files consist of a regular grid of equally spaced points depending on
slice thickness and resolution of a CT scan. They represent voxels with assigned HU values.
Within those points, previously generated tetrahedral mesh is placed. The algorithm used by
most of the researches detects voxels inside each finite element and assigns a user-defined
grey value for mapping material properties over mesh (Taddei et al., 2007). In the method
implemented for this study voxels around each Gauss integration point are collected into
sampling cubes. Every finite element has defined integration points whose quantity and
placement inside tetrahedral is correlated with the order of integration. Range of collection is
defined as the cube size parameter presented in Figure 3.2. For each Gauss integration point
of the finite element, a sampling cube is created, and subsequently, data from all consisted
voxels is collected. In the next step, HU values are translated into densities by using relation
presented later in Equation 3.12 and then assigned onto integration point. The representative
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Figure 3.2: Sampling cube around Gauss point for two example sizes. ri is the distance from
the Gauss point to voxel. Cube dimensions are correlated with voxel size.

value from all the voxels surrounding an iteration point is calculating with 1D Gaussian blur
equation:

gs(r) =
1

√
2πσg

exp
−r2

2σ2
g

(3.2)

where r is distance from the integration point presented in Figure 3.2 and σg is the standard
deviation, typically 2. Next, the function is normalised:

ϕ(r) =
gs(r)∑n

i=1 ri
(3.3)

Values of densities from voxels ρ∗ are smoothed into one value ρ by multiplying by weight ϕi :

ρ =

n∑
i=1

ϕiρ
∗
i (3.4)

Gaussian smoothing reduces the noise from CT scan data. It was found that for typical CT-scan
datasets, a number of 3-4 voxels for the sampling cubes width is sufficient. Furthermore,
with the values of densities defined at the integration point level, an L2 projection a.k.a Least
Squares method (LS), is applied to approximate the values into finite elements’ nodes with a
minimum error on the entire domain.

3.2.1 L2 projection

L2-projection is a simple projection of an arbitrary function into a finite element space. It is
often used in the context of FEM analyses when the internal variables need to be projected
from the integration points into nodes, like, e.g. plastic strain in plasticity models.
To approximate a given field, v(X), with L2-projection, the following L2 norm has to be
minimised:

min Jc(vh) : Jc(vh) =
1
2
| |vh − v | |2 (3.5)
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where vh is the approximated value of v. v can be considered here as density acquired from CT
scan data stored at the integration points. Using standard FEM discretisation, the minimisation
of Jc with respect to vh leads to the following linear system of equations:

Klv = fl (3.6)

where Kl is the global stiffness matrix, and v is the vector of approximated values. The system
in Equation 3.6 is calculated on a global level such that:

fl =

n∑
e=1

∫
Ω

ΦΦΦ
Tv dVe

Kl =

n∑
e=1

∫
Ω

ΦΦΦ
T
ΦΦΦdVe

(3.7)

Additionally, the matrix Kl can be augmented with the Laplacian term as follows:

Kl =

n∑
e=1

∫
Ω

ΦΦΦ
T
ΦΦΦ + λl∇XΦΦΦ

T∇XΦΦΦdVe (3.8)

where λl is a length scale parameter, which helps to control the strength of the smoothing.
It is worth to note that in the form presented in Eq. 3.8, the projection becomes weighted
H1-projection. However, since parameter λl is optional, the applied projection is called
L2-projection throughout the thesis.

3.2.2 Comparison with literature

To validate the performance of proposed L2-projection, a randomly selected healthy MC3
bone from veterinary school CT-scan database is used as an example. The geometry is
segmented with a simple threshold filter and subsequently discretised into relatively coarse
mesh consisting of 7554 tetrahedral elements. For assigning the voxel data onto integration
points, a sampling cube of size 3x3x3 was chosen. Additionally, a slight smoothing was
introduced with λl = 0.1. The outcomes of the projection of HU values directly (without
translating to density) are depicted in Figure 3.3b).
In widely used programs like BONEMAT for bone density assignment, all CT scan voxels that
fall inside each mesh element volume are averaged (Zannoni et al., 1999) or integrated into one
constant value throughout the element (Taddei et al., 2007; Helgason et al., 2008a). Results of
such procedure are presented in Figure 3.3a). The comparison of the two approaches reveals
that proposed the L2-projection method results in smooth and far less noisy data assignment
on the finite element mesh. Although, it still has to be validated experimentally, with strain
gauges whether this method can better represent the mechanical response, i.e. stress and
strains of the bones.
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Figure 3.3: Mapped HU voxel data on FEM tetrahedral mesh for equine metacarpal bone
mode. a) Bonemat V3 (Taddei et al., 2007) b) Method proposed in this study.

3.3 Moving Least Squares Approximation

The Moving Weighted Least Squares (MWLS) method is used to construct interpolation
functions on a set of points to approximate a given spatially varying discrete field (in
this case the scalar density field), v(Xi), and is widely used for various meshless meth-
ods (Belytschko et al., 1996). In computer graphics, it is useful to reconstruct a surface
from a set of points (Lancaster and Salkauskas, 1981) through downsampling or upsampling.
Numerous studies have also attempted to utilise the method within the context of Element-Free
Galerkin approach as trial and test functions (Belytschko and Tabbara, 1996; Wong et al.,
2010; Ullah and Augarde, 2013).
In discrete fracture approach presented in this work, the nodal configurational forces G̃h

(see Eq. 6.27) are dependent on the gradient of elastic energy over the change of density,
∂Ψ(X, ρ)/∂X (see Section 6.2.5). Therefore, the approximation of a spatially smooth density
field is important in order to evaluate the configurational forces at the crack front.

3.3.1 Computational implementation

The approximation of a given discrete scalar field v(Xi) with MWLS method at an arbitrary
point Xt can be calculated as follows:

vh(Xt) =

q∑
α=1

pα(Xt)aα(Xt) = pT(Xt)a(Xt) (3.9)

31



where vh(Xt) is the approximated value, p(Xt) is the vector of complete basis functions, and
a(Xt) is the vector of unknowns. It should be noted that in the MWLS method, a(Xt) is
spatially varying rather than being constant as used in conventional Least Squares method.
Moreover, q is the number of approximation functions that are built from Pascal’s tetrahedron.
The monomials are equal to the spatial coordinates Xt, Yt and Zt of the node. For maximum
target order of approximation functions, k, the total number of non-orthogonal approximation
functions is determined by the binomial coefficient as:

q =
(
k + 3

3

)
=
(k + 3)!

6k!
(3.10)

In the current implementation, three types of basis functions are used:

pT(Xt) = pT(Xt,Yt,Zt) = [1], q = 1 and k = 0,

pT(Xt) = pT(Xt,Yt,Zt) = [1,Xt,Yt,Zt], q = 4 and k = 1,

pT(Xt) = pT(Xt,Yt,Zt) = [1,Xt,Yt,Zt,XtYt,YtZt,ZtXt,X2
t ,Y

2
t ,Z

2
t ], q = 10 and k = 2

(3.11)

The derivation of the coefficients for functions in Equation 3.11 can be found in Appendix A

3.3.2 MWLS mapping examples

Here, validation of the implementation of the MWLS method (described in Section 3.3) is
presented via two examples. The first example involves the mapping of an analytical scalar
field onto the nodes of a mesh of a prism. For this case, the relative error between the analytical
input scalar field and MWLS results are compared for three target orders of approximation of
MWLS. In the second example, mapping of CT scan data of a bone onto a mesh is presented.
For this challenging mesh geometry, results of the MWLS method are compared with the
direct CT scan data as well as results of the Least Squares method.

Mapping of an analytical field

The analytical field ( f (x) = x + y2 + z3) is mapped onto the mesh nodes of the prism (see
Figure 3.4a) using the proposed MWLS procedure described in 3.3. The analytical field f (x)
is evaluated at a discrete set of points, v(xi), presented in Figure 3.4b. The FE mesh is placed
within the discrete field (Figure 3.4b), and the spherical domains of influence of each mesh
node are presented (reduced in size for clearer visual presentation) in Figure 3.4c. The size
of the influence domain is determined by increasing its radius until matrix A in Eq. A.4 is
invertible for all mesh nodes. The approximated field data, with its gradient, is saved on
corresponding nodes, as demonstrated in Figure 3.4c for q = 10. Subsequently, the relative

32
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Figure 3.4: a) Finite element tetrahedral mesh. b) Mesh inside analytical discrete field
f (x) = x + y2 + z3. c) Mesh with corresponding nodes and spherical domain of influence. d)
Outcomes of the approximation for q = 10.

a) b) c)
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Figure 3.5: Contour plot of relative error of approximated gradient field for constant a), linear
b) and quadratic c) basis functions. The logarithmic scale represents the magnitude of relative
error.

approximation error between the norm of the analytical gradient of the given field f (x) at the
coordinates of each mesh node and the norm of gradient calculated with MWLS at the same
node is evaluated and presented in Figure 3.5. The error is evaluated for three cases: constant
(q = 1), linear (q = 4) and quadratic (q = 10) basis functions. It is clear from the presented
results in Figure 3.5 that constant functions are not sufficient for evaluating the gradient. The
maximum error for a linear and quadratic basis has values of 10−2 and 10−4, respectively.
These results are satisfactory for the application of mapping data fields onto the mesh and
suggest correctness of the implementation.

Metacarpal bone

In this section, the results of density approximation from CT data are presented. Geometry
and finite element mesh of an equine 3rd metacarpal bone were obtained in ScanIP (Synopsys
Simpleware, Exeter) from medical 3D images. The CT data was subsequently used to
approximate the density values onto the finite element mesh nodes by using the proposed

33



-1024.0 2343.00.0 1000.0
HU

a)

b)

Figure 3.6: Comparison of CT data with the corresponding approximation. a) A cut-view
along the x − y plane for CT scan data and b) density mapped onto FE mesh.

MWLS method. The mesh consisted of 7554 tetrahedral elements. Results of the mapping
procedures are presented in Figure 3.6. Comparison between the proposed MWLS method
and the L2-projection (see Section 3.2.1) is shown in Figure 3.7 for both the density field and
the density gradient field. The density pattern from both methods is very similar. The density
field is continuous. However, classical finite elements used for L2-projection provides only
C0-continuity resulting in piecewise continuous gradients. Density gradients resulting from
the MWLS approximation are smooth, as required for the fracture propagation analysis.

3.4 Partial Volume Artifacts

A common problem arising from CT scanning is the generation of Partial Volume Arti-
facts (Adams, 2009). As a result, the voxel data can be averaged between two materials,
for example, bone and soft tissue as presented in Figure 3.8. Each voxel in a CT image
represents the attenuation properties of a specific material volume; if that volume is comprised
of different materials (e.g. bone and soft tissue), then the resulting CT value is an average
of their properties. Furthermore, all object boundaries are blurred to some extent, and thus
the material in any one voxel can affect CT values of the surrounding voxels. It has been
shown in the past that the reduction of partial volume effects can improve the effectiveness of
bone finite element models acquired from CT data (Peleg et al., 2014). To eliminate mapping
of spurious bone densities, some researchers proposed to either redefine data at any node
on the mesh surface to data assigned on the nearest internal node (Helgason et al., 2008b;
Chen et al., 2010) or resurface the mesh geometry (Peleg et al., 2014).
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Figure 3.7: Mapping results of bone density (left) and magnitude of density gradient (right).
a) Least Squares approximation. b) Moving Weighted Least Squares approximation.

Bone Air/tissueCT slice

Figure 3.8: Example of Partial Volume Artifact at the interface of bone and soft tissue or air.
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Figure 3.9: a) Random ray casting - a method for determining whether a point is outside the
domain. b) A problem when the closest triangle is chosen for the casting direction.

a)

b)

Figure 3.10: Cross-section of MC3 bone (coronal plane) with approximated CT-scan data a)
with Partial Volume Artifacts b) without artifacts.

In this study, a more elegant solution is proposed; every considered CT scan data point
positioned outside the geometry of the bone is simply removed from the domain of influence
(MWLS) or sampling cube (LS). Thereby only points that fall inside the bone geometry are
approximated.
Determining whether a given point is inside a polyhedron is a classic computer graphics
problem. It can be solved by casting a ray originating from the given point to an arbitrary
direction and determine the number of intersections of the ray with the triangles on the skin of
FEM mesh. This was done using Mesh-Oriented datABase library (MOAB) functionality
(Tautges et al., 2004). If the ray intersects an even number of triangles, then the point is
outside the shape. A schematical depiction of this procedure is shown in Figure 3.9a). In
MoFEM implementation standard C++ rand() function was used, however without the seed
in order to ensure that the code remains deterministic. This procedure has to be performed
only once for each domain of influence, and it can be easily parallelised.
Interestingly, the initial idea for making the procedure deterministic was to cast a ray from
each considered voxel point towards the nearest triangle using MOAB functionality. However,
due to FEM discretisation of the geometry, the ray was often cast exactly at the edge of two
triangles, as presented in Figure 3.9b), returning not one, as expected, but two triangles. In
such cases, the assumption on the even numbers of triangles was incorrect. The solution
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Figure 3.11: a) Five burettes containing solutions of dipotassium phosphate (K2HPO4). b)
CT scan slice of bone’s shaft and K2HPO4 calibration phantoms and c) the linear correlation
of HU and phantom concentration.

turned out to be casting the ray in a random direction. According to measure theory, the
probability of randomly picking a rational number from a given set is 0 (Grigoryan, 2008),
which means that casting random number will never coincide with algebraic numbers generated
with constrained Delaunay triangulation used by meshing software. Despite the fact that
computer-generated random numbers are merely pseudo-transcendental, based on the author’s
experience, the method still never fails; hence the procedure will correctly identify points
outside the discretised geometry.
The difference before and after applying the proposed methodology of removing outer points
is demonstrated in Figure 3.10b). The effects of the removal of artifacts are most apparent at
the bone’s shaft. Without the correction (Figure 3.10a)), it is noticeable that bone density
unrealistically decreases close to the outer boundary. The problem is eliminated after applying
the proposed method.

3.5 Assessment of bone density gradient

In this section, the developed L2-projection mapping is applied for characterising gradients at
the sagittal grooves of MC3 bone in racehorses with and without lateral condylar fractures.

3.5.1 Quantitative Computed Tomography

In order to accurately capture bone densities, Quantitative Computed Tomography (QCT)
is typically used. QCT is a medical technique that adopts a standard X-ray Computed
Tomography (CT) scanner with a calibration phantom to convert Hounsfield Units (HU) of the
CT image to bone mineral density values (Adams, 2009). It has been established that QCT
is an accurate tool for measuring bone density in MC3 (Drum et al., 2009). Usually, solid
calibration phantoms are placed in a pad under the patient during scanning. They contain
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a) Control group

b) Fracture group

c) Non-fracture group

Figure 3.12: Coronal slices from CT scans used in this study. a) Control group b) fractured
group (FX) and c) non-fractured contralateral condyle group (NFX).

materials that represent a number of different equivalent bone mineral densities. Calcium
hydroxyapatite (CaHAp) or potassium phosphate (K2HPO4) are often employed as a reference.
By normalizing the HU voxel values against the known density values, a relationship between
CT image and bone density can be established. However, calibration between HU units and
standard phantom requires the assumption that bone density remains linear beyond the density
of phantom (Les et al., 1994).

CT images of the distal condyles of the third metacarpal bone were obtained from 18
Thoroughbred racehorses. The coronal slices of all the scans are presented in Figure 3.12.
Third metacarpal bones were divided into 3 groups (6 of each) based on lateral condyle
status: fractured (FX), non-fractured contralateral condyle (NFX) and control condyles
from horses subjected to euthanasia for reasons unrelated to the third metacarpal bone
(Control). NFX bones were harvested from horses with a developed fracture on the other
side. Following Trabelsi et al. (2009), each bone was scanned with five burettes (calibration
phantoms) containing different concentrations of K2HPO4 ranging from 0 to 300mg/cm3,
see Figure 3.11a). A density value was calculated by using the resulting linear (R2 = 0.99)
correlation between Hounsfield units and phantom concentrations, as presented in Figure
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3.11b). The obtained correlation is expressed as follows:

ρQCT = 0.69HU − 2.45[kg/m3] (3.12)

The cadaver limb specimens were placed on a table, and CT scanned transversely in the
proximal-to-distal direction. Parameters for the scan were set at 120 kVp, 150 mAs of tube
voltage and current, respectively. The resultant CT data comprised a 512 x 512 matrix array
with voxel dimensions of 0.13 x 0.13 x 0.5 mm and consisted of 268 image slices.

3.5.2 Bone segmentation and 3D FE model generation

Using commercially available software ScanIP 7.0 (Simpleware Ltd., Exeter, UK), the distal
end of each MC3 bone was segmented automatically using the same script for every specimen.
First, in the procedure, all CT slices were resampled to cubic voxel sizes of 0.5 × 0.5 × 0.5 mm.
Bone tissue was separated from the surroundings by setting the threshold of 200 to 3000
HU units (similarly to Eberle et al. (2013)). Subsequently, to close the gaps in the bone and
smooth the surfaces Recursive Gaussian Filter was applied with the value of σ = 2.5 in all
directions. Finally, the segmented slices were converted into stereolithographic 3D (STL)
representation of distal condyle, as presented in Figure 3.13.
Next, STL models were discretised with 2nd-order tetrahedral elements in Cubit (Sandia
National Laboratories, Albuquerque, USA) with a constant element size of 3 mm. The
resulting meshes of the distal condyles (Figure 3.13b)) comprised of 30,000 up to 40,000
elements depending on the height of cut-off in the diaphysis. In order to exclude the necessity

a) b)

Figure 3.13: a) Stereolithographic representation of segment distal condyle from example CT
dataset. b) Corresponding FEM mesh obtained in Cubit.

for manual processing of the slices, the fractured fragments of bones in the fracture group
(FX) are excluded from the segmentation procedure. Therefore, it is not possible to estimate
the density gradient within already fractured bones. To achieve this, CT scans of broken limbs
would require ’stitchings’ of fractured fragments, which is a very cumbersome task.
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a) b)a) b)

Figure 3.14: a) Mapping results of bone density on the articular surface. The colours on the
bone indicate measured density. The spherical glyphs indicate high-density gradient values
(magnitude). b) Site of the measurements (palmar site).

3.5.3 Density mapping

For the projection of the density data onto generated meshes, L2-projection method discussed
in Section 3.2.1 was chosen. The sampling cube size was chosen to be 3x3x3, and no
additional smoothing was introduced (λl = 0). The relationship between the bone density ρ
and the HU is taken based on measurements of the phantoms (see Figure 3.11b)). The density
within elements is approximated by the polynomial shape functions of order 3 in this study.
Next, over the entire domain, Least squares approximation problem is solved to produce a
smooth and continuous density field. The spatial variation of density within the elements
allows evaluating a gradient field of one order lower than the main field. Example results of
density mapping with corresponding gradient magnitudes plot of equine distal condyle are
shown in Figure 3.14. Finally, maximum subchondral bone density and gradient magnitude
were assessed in 2 regions: from dorsal to the centre of sagittal on lateral and medial site
(see Figure 3.14b)). All measurement were made in post-processing open-source program
Paraview by using the clip tool and evaluating maximum value within a given region on the
lateral or medial side.

3.5.4 Results

Figure 3.15a) provides a comparison of the mean bone density on lateral and medial site
between the measured bones. It can be observed that bone density is much higher in the
FX condyles compared to the NFX and control condyles; though, there is a high variation
between the values. This difference may represent pathological changes in bone density that
can increase the risk of lateral condylar fractures in racehorses. On the other hand, measured
mean gradients (see Figure 3.15b)) present no significant differences between the groups and
regions of the measurements. Horses with fractured limbs (FX) have the highest maximum
density levels between the groups. No correlation is found between gradient and density for
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Figure 3.15: Measured mean bone density a) and gradients b) on the medial and lateral side
for control, NFX and FX condyles from a CT scan dataset.

control and FX groups; however, a strong correlation (R2 > 0.5) occurs for NFX group on
both lateral and medial sites.

3.6 Summary

This chapter introduced two methods for mapping CT scan data onto finite element meshes:
L2-projection using FEM approximation andmeshlessMWLSmethod. Validation of analytical
field mapped on a simple mesh and comparison with LS method on mapping data from CT
scanning was conducted and proved that both LS and MWLS can be suitable techniques for
the approximation of density field, even with strong gradients. Moreover, MWLS allows for
the computation of derivatives necessary for crack propagation. Nevertheless, the accuracy of
the presented approaches still has to be validated experimentally, for example, in the prediction
of strains in the loaded bone specimen. This study also introduced a new simple methodology
for correcting Partial Volume Artifacts. The presented approach is robust and proved to
effectively eliminate spurious low-density levels at the boundaries of the specimens.
A novel method in quantifying bone gradient is presented in this study. By integrating and
mapping density data derived from CT scanning on a finite element mesh, a possible new risk
fracture factor can be specified. A density gradient study was conducted on 18 equine bones
divided into three categories: control, fractured and non-fractured. However, it was found that
a larger body of specimens might be necessary to find significance and correlation between
the groups. In the current small cohort, it was found that bones with fractures had the highest
density levels on the medial side and a strong correlation was found between the maximum
level of density and magnitude of the gradient in NFX horses.
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Chapter 4

Bone remodelling

This chapter focuses on a phenomenological model for bone remodelling proposed by
Kuhl and Steinmann (2003). It is based on open system thermodynamics which allows for the
exchange of energy and mass with the environment, thus simulating the bone’s natural ability
to adapt to the mechanical conditions. Another important aspect of the model is treating
the bone as a continuum. Simplifying the complex underlying micro-structure makes the
approach attractive from the practical point of view since all the model parameters can be
easily determined through macro-scale mechanical testing and CT-scanning. The governing
equations describing the model are discretised and solved using FEM. The implementation
is verified with numerous benchmark examples, providing a better understanding of the
underlying theory and foundation for the numerical investigation that follows in Chapter 7.

4.1 Introduction

Stress fractures developing in racehorses’ bones are strongly correlated with the remodelling
process (Hughes et al., 2017). The bone’s ability to repair micro-damage caused by cyclical
loading is essential for maintaining mechanical integrity. One of the first mathematical theories
for bone adaptation (Cowin and Hegedus, 1976), based on open system thermodynamics,
has foundations in the theory of poroelasticity. Since this concept was introduced in the
1970s, it has become a popular area of interest within the field of modelling biomechanical
processes. In this approach (unlike classical closed systems), energy, mass, momentum and
entropy can cross the boundary of the body and be exchanged with its environment. Many
derivations and enhancements of this approach have been developed over the years. For
example, based on optimisation theory with an objective function where researchers were
able to capture the functional adaptation of the bones (Harrigan et al., 1996; Jacobs et al.,
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1995; Weinans et al., 1992). The general concept for density evolution within these ap-
proaches is to establish a mechanical stimulus as a trigger for bone adaptation. The stimulus
may take the form of stress (Beaupre et al., 1990; Carter et al., 1996; Doblaré and Garcıa,
2002), strains (Cowin and Hegedus, 1976) or strain energy density (Weinans et al., 1992;
Kuhl and Steinmann, 2003; Kaczmarczyk and Pearce, 2011; O’Connor et al., 2017).
In this contribution, functional adaptation of the equine 3rd metacarpal bone is modelled
by using the approach proposed by Kuhl and Steinmann (2003). Over the years this model
was proven to be stable (Kuhl et al., 2003), efficient (Kaczmarczyk and Pearce, 2011) and
capable of producing quantitatively comparable results with Dual-energy X-ray absorptiometry
(DEXA) scanning when combined with loading given from gait analysis (Pang et al., 2012).
With this method, researchers have been able to simulate bone adaptation in human scapula
(Liedtke et al., 2017), tibia (Pang et al., 2012), humerus (Taylor et al., 2009) and femur with
various surgical implants (Ambrosi et al., 2011; O’Connor et al., 2017) and even explore its
potential in topology optimization (Waffenschmidt and Menzel, 2012). One of the advantages
of these phenomenological models is that they often require a small number of parameters
which can be experimentally determined, for example by using CT imaging (Zadpoor, 2013).
To the best of authors’ knowledge, to date, there is only one report of finite element modelling
equine bones adaptation (Wang et al., 2016). A mechanistic micro-scale model of three-
dimensional cortical bone remodelling was presented, and in-vivo equine data was applied.
The model used the von Mises stress as a stimulus to control microstructural cortical bone
remodelling. The main goal of the present study is to test the hypothesis that micro-damages
and fracture can be modelled at macroscale by using clinically available CT-scanning data.
The motivation for this work, is to generate subject-specific simulations to acquire meaningful
insight into bone fracture resistance for veterinary practitioners. Additional emphasis on
the robustness and efficiency of the implementation is addressed. Numerical methods used
for medical research applications have to fit into heavily time-constrained subject-specific
modelling frameworks in order to handle as many patients as possible (Poelert et al., 2013).

4.2 Continuum formulation for bone
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Figure 4.1: Kinematics of a continuum body in an open system.
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4.2.1 Conservation of mass

Open system thermodynamics approach adopts the kinematics of finite deformations, and
unlike in classical closed systems, energy and mass can cross the boundary of the body.
Density field ρ evolves in the current material configuration X and is defined as:

ρ = ρ(X, t) (4.1)

For the sake of generality, a nonlinear kinematic formulation was chosen. It is worth noting,
that bone in the physiological range only experiences small strains. The motion of the body
is characterised through the nonlinear deformation map ϕ(X, t), which at any given time t,
maps the material coordinates X in the material configuration B0 to its spatial position x in
the current configuration Ωt as presented in Figure 4.1. The physical displacement is:

u = x −X (4.2)

The deformation gradient and the corresponding right Cauchy-Green deformation, character-
istic spatial strain measures take the following representation:

F = ∇Xϕ, C = FTF (4.3)

The determinant of the gradient introduces the Jacobian J = det(F) > 0, which defines
volumetric changes. In the context of bone mechanics, the considered system is open i.e. the
amount of matter contained in a body B0 can change as a result of natural growth. The mass
of a reference body cannot be conserved as in classical closed systems. Considering that basic
phenomenon, the rate of change of the time-dependent material density is in equilibrium with
mass flux R and the locally created mass R0, expressed as:

Ûρ = ∇X ·R + R0 (4.4)

where ρ is mass density and R0 is the locally created mass (Kuhl et al., 2003). Although,
the mass flux R is well established in the literature, it is generally never used for practical
computations (Pang et al., 2012; Liedtke et al., 2017). The mass flux vector can be considered
as an equivalent to the heat flux vector in Fourier’s law for heat conduction. Generally, R is
expressed as the spatial gradient of the density weighted by scalar R0, as follows:

R = R∇Xρ (4.5)

where R0 can be considered as mass conductivity. In the present work, it is assumed that the
mass flux R = 0 (unless otherwise stated), and hence only the local mass source R0 contributes
to the changes in density.
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4.2.2 Conservation of momentum

Bone adaptation is a mechanically driven process, whereby the density field evolves in
response to the mechanical environment Second governing equation, the conservation of
linear momentum balances the density-weighted rate of change of the momentum with the
momentum flux P and the body force b0 = 0.

ρÛv = ∇X · P + b0 = 0 (4.6)

where v is the spatial velocity vector and P is the first Piola-Kirchhoff stress:

P =
∂Ψ(F, ρ)
∂F

=

[
ρ

ρ∗0

]n
∂Ψ(F)
∂F

(4.7)

Since the time scale of the evolution in density is much larger than the time scale of the
mechanical problem, the balance equation above is considered in a quasi-static sense, hence
the momentum source b0 = 0.

4.2.3 Constitutive equations

Constitutive relation for the mass source was adopted following Harrigan and Hamilton (1993).
Herein, local mass source R0 is governed by free energy density ψ0:

R0 = c

[ [
ρ

ρ∗0

]−m

ψ0 − ψ
∗
0

]
(4.8)

where ρ∗0 and ψ
∗
0 represent reference values of the density and free energy, respectively. As

will be presented in future examples, both of these coefficients can vary spatially. Parameter
ψ∗0 can be considered as a biological stimulus for remodelling. To better visualise its influence
on density, a schematic graph is presented below: Biological stimulus essentially governs the
threshold of free energy at which density is locally increasing or decreasing. The moment
when free energy reaches the exact value of biological stimulus is referred as a biological
equilibrium state, where for a given loading magnitude, density changes cannot be observed
any more. Whether free energy weighed by relative density (driving force) has a value
greater than biological stimulus ψ∗0 density locally increases, if its lower density degrades.
Coefficient c in Equation 4.8 controls the rate of the remodelling process, and its unit is the
time divided by the length squared. As proposed in (Waffenschmidt and Menzel, 2012), it can
be beneficial to prescribe an upper and lower bound for bone density, thereby avoiding spurious
or non-physical values. In this work, the parameter c, which is conventionally considered to
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Figure 4.2: Influence of biological stimulus parameter. Whether free energy weighed by
relative density (driving force [ρ∗0/ρ]

mψ0) exceeds the defined biological stimulus ψ∗0 density
locally increases, if its below it decreases.

be constant, is replaced by a bell function defined as:

c(ρ) =
1

1 +
[
(ρ− ρmid)/(ρmax − ρmid)

]2b

with ρmid =
ρmax + ρmin

2

(4.9)

ρmax and ρmin where ρmax and ρmin are the maximum and minimum values of ρ, and ρmid

is their average. The bell function (4.9) is illustrated in Figure 4.3 for different values of
the integer exponent, b. Its application and influence on the overall results are elaborated
in Section 7.1. Furthermore, exponent m is a dimensionless scalar, introduced to guarantee

0 ρmin ρmid ρmax
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s/

cm
2 ]

b = 0
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Figure 4.3: Bell function plotted for different values of the integer exponent b. As b→∞,
bell-shape curve becomes infinitely steep at ρmin and ρmax.

uniqueness and stability (Harrigan and Hamilton, 1993) . In the context of porous materials
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like bones, the free energy is equal to:

ψ0 =

[
ρ

ρ∗0

]n

ψneo
0 , (4.10)

where the elastic free energy (Helmholtz) ψ was chosen to be of Neo-hookean type, which
can be expressed in terms of the right Cauchy-Green deformation tensor:

ψneo
0 =

µ

2
[tr(C) − 3] − µ ln(

√
det C) +

λ

2
ln2(
√

det C) (4.11)

µ and ν are the Lamé constants. Moreover, the exponent n typically varies between 1 ≤ n ≤ 3.5
depending on the porosity of the material (Gibson, 2005).

4.2.4 Strong form

Equations 4.6 and 4.4 represent the strong form of the bone remodelling model. They hold for
the entire domain and must be satisfied at every point within that domain. The residuals of
linear momentum balance (ru) and mass conservation (rρ) on the domain B0 can be stated as
follows:

rρ = Ûρ− ∇X ·R−R0 (4.12)

ru = ρÛv − ∇X · P (4.13)

The boundary ∂B0 of the material domain can be divided into Dirichlet boundary pairs ∂Bρ0
and ∂Bu

0 , where the density ρ and displacements u are the initial conditions and also Neumann
boundary pairs of ∂BR

0 and ∂Bσ0 , where the mass flux and tractions are prescribed respectively.
As the essential and natural boundary conditions cannot be assigned simultaneously, the
division is subjected to the following requirements:

∂B
ρ
0 ∪ ∂B

R
0 = ∂B0 and ∂B

ρ
0 ∩ ∂B

R
0 = ∅

∂Bu
0 ∪ ∂B

σ
0 = ∂B0 and ∂Bu

0 ∩ ∂B
σ
0 = ∅ (4.14)

The boundary conditions for the mass flux and the tractions are given by:

R · n = R̃ on ∂BR
0

P · n = t̃ on ∂Bσ0 , (4.15)

with n denoting vector normal to ∂B0. Furthermore, boundaries on the solution for initial
density and displacements are as follows:

ρ = ρ̃ on ∂Bρ0
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u = ũ on ∂Bu
0, (4.16)

where ũ and ρ̃ are imposed values for displacements and densities, respectively.

The initial condition for the density is generally given by:

ρ(X, t = 0) = ρ∗0 (4.17)

However, in this contribution non-uniform, initial distribution is also investigated in Sec-
tion 7.3.1, where the starting density is obtained through mapping CT-scan data as described
in Chapter 3.

4.2.5 Weak form

For the finite element discretisation, the strong form has to be transformed into the weak
form of the partial differential equations. The solution of the weak form equations is required
to hold in a weighted residual sense in the domain, hence much easier to satisfy with the
FEM formulation. The residual statements in Equations 4.12, 4.13 and the corresponding
Neumann boundary conditions are tested by the scalar- (δρ) and vector-valued (δu) functions,
respectively. Following Galerkin, weighting function tests that the equation is satisfied in an
average sense, rather than at each point of the domain. In the presented model, these functions
are in H1 space, which means that the gradient of function has to be square-integrable. The
residuals of the balance of mass gρ and momentum gu are expressed as follows:

gρ(ρ,u, δρ) = 0 ∀δρ in H1(B0)

gu(ρ,u, δu) = 0 ∀δu in H1(B0) (4.18)

After performing integration by parts, applying Green’s formula and inserting the boundary
conditions, the weak form of the balance of mass residual gρ and gu are given by:

gρ =
∫
B0

δρ ÛρdV +
∫
B0

∇Xδρ ·R dV −
∫
∂BR

0

δρR̃ dA−
∫
B0

δρR0 dV

gu =

∫
B0

δuρÛv dV +
∫
B0

∇Xδu · P dV −
∫
∂Bσ

0

δut̃ dA (4.19)
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4.2.6 Time discretisation

For the time discretisation of the governing equations, implicit backward Euler method is
utilised. A time step is defined as ∆t = tn+1 − tn, where tn+1 denotes the next and tn the
current time step. It is assumed that the primary unknowns ρn and un are known at the
actual subinterval tn, and hence equilibrium can be calculated. In the backward Euler time
integration scheme, any first-order material time derivative can be expressed for example as:

Ûρ =
1
∆t
[ρn+1 − ρn] (4.20)

At this point, to numerically solve the system of equations, a monolithic scheme is chosen,
also referred as the node-based approach, where both balance equations are evaluated
simultaneously. The choice is motivated by the fact, that the staggered approach with local
Newton iterations becomes very computationally expensive for large scale problems with a
high order of approximations (Kuhl et al., 2003), which are one of the most important features
exploited in MoFEM (Kaczmarczyk et al., 2020).

4.2.7 Spatial discretisation

For spatial discretisation, the domain of interest B0 is partitioned into nel finite elements Be
0 .

The geometry of each subdomain is interpolated in terms of the local basis functionsΦΦΦ. The
Galerkin method is used for approximation of density and displacement fields.

ρ ≈ ρh =

nel∑
i=1
ΦΦΦ
ρ
i ρi u ≈ uh =

nel∑
j=1
ΦΦΦ

u
j u j

δρ ≈ δρh =

nel∑
i=1
ΦΦΦ
ρ
i δρi δu ≈ δuh =

nel∑
j=1
ΦΦΦ

u
j δu j,

∇Xρ ≈ ∇Xρ
h =

nel∑
i=1
∇XΦΦΦ

ρ
i ρi ∇Xu ≈ ∇Xuh =

nel∑
j=1
∇XΦΦΦ

u
j ⊗ u j

∇δρ ≈ ∇δρh =

nel∑
i=1
∇XΦΦΦ

ρ
i δρi ∇δu ≈ ∇δuh =

nel∑
j=1
∇XΦΦΦ

u
j ⊗ δu j, (4.21)

where nel are the global nodes. ΦΦΦρ and ΦΦΦu are the shape functions for displacement and
density fields respectively and ρ,u, δρ,δu are the nodal values of the respective quantities.
With the above relations at hand, the discrete balance equations can be rewritten as:

rρn+1 =

nel∑
e=1

∫
B0

ΦΦΦ
ρn+1 − ρn

∆t
dV +

∫
B0

∇XΦΦΦ
T ·Rn+1 dV −

∫
∂BR

0

ΦΦΦR̃n+1 dA−
∫
B0

ΦΦΦR0n+1 dV
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ru
n+1 =

nel∑
e=1

∫
B0

ΦΦΦ
uρ

vn+1 − vn

∆t
dV +

∫
B0

∇XΦΦΦ
T · Pn+1 dV −

∫
∂Bσ

0

ΦΦΦt̃n+1 dA (4.22)

Note that in the above equation and the following, superscript ρ and u from shape functionsΦΦΦ
is dropped for readability.

4.2.8 Linearisation

The non-linear coupled system of Equations 4.19 can be solved efficiently by means of iterative
Newton-Raphson method at each time step. Equations 4.13, 4.12 are expressed as a truncated
Taylor series expansion, whereby the residuals at the next iteration (i + 1) have the following
form:

rρi+1 = rρi + dRρ = 0

ru
i+1 = ru

i + dRu = 0 (4.23)

thus the iterative residua dRρ and dRu take the form:

dRρ
i+1 =

∂Rρ
i

∂ρ
∆ρ+

∂Rρ
i

∂u
∆u

dRu
i+1 =

∂Ru
i

∂ρ
∆ρ+

∂Ru
i

∂u
∆u

(4.24)

With the above definitions, iterative stiffness matrices can be expressed:

Kρρ =
∂Rρ

∂ρ
Kρu =

∂Rρ

∂u

Kuρ =
∂Ru

∂ρ
Kuu =

∂Ru

∂u

(4.25)

Calculating the derivatives, results in the following representations:

Kρρ =

nel∑
e=1

∫
Be

0

ΦΦΦ
T 1
∆t
ΦΦΦdV −

∫
Be

0

ΦΦΦ
T ∂R0
∂ρ

ΦΦΦdV +
∫
Be

0

∇XΦΦΦ
T ·R∇XΦΦΦdV

Kρu =

nel∑
e=1
−

∫
Be

0

ΦΦΦ
T ∂R0
∂F
· ∇XΦΦΦdV

Kuρ =

nel∑
e=1

∫
Be

0

∇XΦΦΦ
T ·

∂P
∂ρ
ΦΦΦdV

Kuu =

nel∑
e=1

∫
Be

0

ΦΦΦ
T 1
∆t2 IΦΦΦdV +

∫
Be

0

∇XΦΦΦ
T ·

∂P
∂F
· ∇XΦΦΦdV

(4.26)
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Note that balance of momentum is usually evaluated in a quasi-static sense, taking the simple
form of ∇X · P = 0; hence the mechanical forces can be interpreted as an average daily
loading and consequently, all the terms in Equations 4.22, 4.26 related to changes in velocity
vanish. By assembling all the matrices and vectors, global system of equations can be derived:[

Kρρ Kρu

Kuρ Kuu

] [
∆ρ

∆u

]
=

[
rρ

ru

]
(4.27)

The system is subsequently solved at each time step using the Newton-Raphson method.

4.2.9 Tangent operator

The partial derivatives in Equations 4.26 are trivial to compute, except for derivative of Piola
stress ∂P/∂F. The result of which is a fourth-order elasticity tensor D. It is well-known
that derivation of such operators and the following implementation into the code can be
troublesome and error-prone. Therefore, in this study, automatic differentiation is utilised
by means of ADOL-C library (Walther, 2009). ADOL-C is an open-source C++ library that
applies the operator overloading technique to compute derivatives of arbitrary functions. The
independent variables subject to differentiation are defined using a special type adouble, and
all variables which depend on the independent variable are also be defined using this type.
Constants are considered passive and can be defined using standard types such as double.
To generalize the implementation and fully utilise ADOL-C library, the desired fourth-order
tensor D is directly derived from elastic free energy (Eq. 4.11) by calculating automatic
Hessian operator as follows:

∂2ψneo
0

∂F2 = D (4.28)

Using ADOL-C significantly speeds-up the implementation process and simplifies the
debugging. The additional advantage is the flexibility; since the tangent operator can be
directly obtained from the energy function, it is straightforward to explore more sophisticated
constitutive models, like for example include fibres into the material (Eberlein et al., 2001).
However, for commonly used compressible Neo-Hookean model, the tangent operator can
be found in the literature (Kuhl, 2004). The representation of the analytical solution for
fourth-order tangent operator D requires the introduction of the non-standard dyadic products
⊗̄ and ⊗. Their definition can be expressed component-wise as follows:

{•⊗̄◦}i j kl = {•}ik{◦} jl

{•⊗◦}i j kl = {•}il{◦} j k
(4.29)
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Finally, the fourth-order tangent is specified:

D =
∂P
∂F
= λF−t ⊗ F−t + µI⊗̄I + [µ− λ ln(det(F))]F−t⊗F−1 (4.30)

where µ and ν are the Lamé constants. With analytical solution at hand, it is beneficial to
investigate the numerical efficiency of the automatic differentiation approach. Two simple
problems are computed for that purpose: one with small number degrees of freedom (843
DOFs) calculated on 1 processor and second one significantly larger (35532 DOFs) calculated
on 24 cores. The total CPU time with distinction to solver and assembly time for these two
cases is shown in Figure 4.4. It can be noticed that analyses using automatic differentiation are
about 25 % slower than the analytical formulation due to increased assembly time. However,
for bigger problems with a larger number of elements, the overall assembly time will have much
less computational cost in comparison to solver time; therefore, the difference between the two
implementations should decrease. Nevertheless, considering how greatly ADOL-C simplifies
the implementation process and how much flexibility it provides, it can be recommended for
implementing highly nonlinear problems. Especially where the analytical solution of the
derivative is difficult to obtain. In conclusion, calculating the tangent stiffness matrix from the
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Figure 4.4: Runtime for two simple problems. Time distribution in a different part of the code
for ADOL-C and analytically obtained tangent operator.

constitutive relations can be troublesome. However, the use of automatic differentiation helps
to simplify this process, speeds up the implementation and reduces the possibility of errors at
the cost of a minor increase in the assembly time.
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4.3 Benchmark problems

To validate the implementation, the results of the simple benchmark problems are compared
with the literature.

4.3.1 Parameter sensitivity

Consider a simple one-dimensional, homogeneous tension test, similarly toKuhl and Steinmann
(2003) as presented in Figure 4.5. The following values of parameters are used: elasticity

Figure 4.5: One-dimensional model problem under tension.

modulus E = 1, Poisson’s ratio of ν = 0. The reference density is chosen to be ρ∗0 = 1 and
energy stimulus is ψ∗0 = 1. To ensure uniqueness and stability of the solution, exponents
of growth are m = 3 and n = 2. Time integration is performed with time steps of ∆t = 0.1.
The specimen was axially loaded by multiple step loading function (line f ) as illustrated in
Figure 4.6 below. The corresponding mechanical response proves the high nonlinearity of
the problem. The time-dependent nature of the balance of mass is visualised above. Curves
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Figure 4.6: One-dimensional model problem. Evolution of density ρ0, displacements u and
energy values ψ and relative energy
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ψ.

of primary unknowns demonstrate the relaxation towards biological equilibrium, the state
when density converges to a final value for particular loading magnitude. Figure 4.7a) depicts
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Figure 4.7: Parameter sensitivity with respect to algorithmic exponents n,m and biological
stimulus ψ∗0 .

the sensitivity of the relative changes in density (ρ − ρ∗0)/ρ
∗
0 with respect to combinations

of algorithmic exponents m and n. The relative density differs significantly from one other,
even when the difference n −m = −1 stays the same and is proportional to the reference free
energy ψ∗0 as presented in Equation 4.8. This is because of stress-driven loading, as stated in
Equation 4.10, where the porosity exponent n contributes to the definition of the energy density.
Figure 4.7b) illustrates the influence of the larger values of ψ∗0 initially drives the density
to decrease, whereas smaller ones, as expected, result in increased density formation. An
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Figure 4.8: Parameter sensitivity with respect to reference density ρ∗0 and time step ∆t.

interesting phenomenon can be observed in Figure 4.8a) b), where the influence of reference
density ρ∗0 and time step ∆t is considered. It turns out that for given exponents m = 3 and
n = 2, the value of relative density at equilibrium state is insensitive to the reference density
ρ∗0 parameter and the time step size ∆t as well. Finally, the impact of the coefficient c that
governs the growth velocity as specified in Equation 4.8 is tested (Figure 4.9). It is clear that
for higher values of c the equilibrium is achieved sooner with no impact on the final solution.
In summary, simulations perfectly match the results reported by Kuhl and Steinmann (2003).
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Figure 4.9: Parameter sensitivity with respect to the density evolution velocity c.

4.3.2 Influence of the mass flux

In the subsequent examples, the sensitivity of the solution is investigated with respect to the
mass flux. Unlike in previous simulations wherein the mass flux was assumed to vanish in the
balance of mass Equation 4.4, here, it has the following form:

∂ρ

∂t
= ∇X ·R + R0 with R = R0∇Xρ, (4.31)

where R0 is the mass conduction coefficient. Subsequently, to illustrate the implica-
tions of using this parameter, another one-dimensional problem is considered similarly
to Kuhl and Steinmann (2003), and Kaczmarczyk and Pearce (2011). A unit length bar with
length to width ratio of 1% is modelled with a unit load that generates approximately 250%
stretch. The parameters are chosen to be: E = 1 and ν = 0.2 for Young’s modulus and Poisson
ratio, respectively. The remodelling-related coefficients are ρ∗0 = 1, ψ∗0 = 2, c = 1, n = 2 and
m = 3. To guarantee convergence within the global Newton iteration, the load is applied in
ten steps of 0.1 and then is held constant for another 50 time steps of ∆t until the solution
converges to the equilibrium state. Additionally, to trigger a discontinuous solution, target
energy (biological stimulus) ψ∗0 is increased in five discrete steps of ∆ψ∗0 = 0.25 from the
middle, see Figure 4.10. Such distribution is inducing density jumps, as the lower values of this

Figure 4.10: Discontinuous model problem. Loading and stepwise varying biological stimulus
ψ∗0 from the value of 1.0 in the middle up to the value of 2.0 at both ends of the specimen.
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parameter are compensated with a significant increase in density, as illustrated in Figure 4.11.
Note that the geometry of the bar in figures is stretched in one plane for visualisation purposes.

Figure 4.11: Discontinuous model problem at equilibrium state with reference free energy
parameter distribution imposed. The upper plot depicts density. Contour plot below shows
the mass source (Eq. 4.8).

Furthermore, it can be observed that the developed method can handle discontinuities very well.
Moving on, the influence of the mass conduction coefficient R0 is investigated. The simulation

Figure 4.12: Parameter sensitivity with respect to coefficient R0 that induces the mass influx.

with R0 = 0 results in oscillations close to the density jump. However, by introducing the
mass influx, the density profiles are smoothed. R0 = 1.0 decreases the gradients almost to
zero resulting in constant density distribution. Since the mass conduction coefficient R0 is
operating on a Laplacian term, an additional length scale is introduced into the formulation. It
has an analogous interpretation as the gradient parameter in gradient enhanced continuum
mechanics (Gitman et al., 2010). In summary, including mass influx can be beneficial to
handle discontinuities in the system and help to control the density levels.
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4.3.3 Size effect

In the next example, the effect of smoothing the density distribution will be utilised, to capture
the characteristic size effect of bone microstructure. To study the formation of microstructures,
following Kuhl and Steinmann (2003), example bone geometry with loading, as presented
in Figure 4.14, is considered. The geometry and the magnitude of applied forces have been
scaled by a factor of 0.5 and 2.0. The parameters are chosen to be: E = 100 MPa and ν = 0.2
for Young’s modulus and Poisson ratio, respectively. The remodelling-related coefficients are
ρ∗0 = 1, ψ∗0 = 2N/mm2, c = 1d/cm3, n = 2 and m = 3. The predicted density distribution is

Figure 4.13: Loading conditions for bone size effect study.

identical for the different bone size, as presented in Figure 4.13a). However, incorporation of
previously studied mass flux R with conduction coefficient R0 = 0.1 significantly influences
the density pattern, see Figure 4.13b). The larger structure of bone is characterised by the
formation of sharp, truss-like structures while the small bones show almost homogeneous
density distribution. Therefore, it is evident that by using mass conduction coefficient R0 the
microstructural size effects can be simulated.

Scale: 1
Forces: 1

Scale: 2
Forces: 2

Scale: 0.5
Forces: 0.5

a) b)

Density

Figure 4.14: Development of microstructures predicted by the model with b) and without
a) the mass flux R.

57



4.3.4 Numerical efficiency

As previously stated in Section 4.1, numerical frameworks for medical research applications
aim for maximum efficiency in order to analyse large cohorts of patients in a limited amount
of time. In this subsection, a potential improvement in the developed model’s performance
will be briefly investigated.
Returning to the coupled system of Equations 4.4 and 4.6 solved in this work, it is worth
noting that they are a slight modification of well-known heat equation and nonlinear elasticity
problems. These two PDEs can be classified as parabolic and elliptic, respectively. The
elliptic part will be of special interest here, as for this type of equations iterative multigrid
solvers can be applied. Multigrid methods are one of the most efficient numerical algorithms
for solving sparse systems of linear equations (Bruaset and Tveito, 2006). In many cases of
elliptic PDEs, multigrid can have a remarkable complexity of O(n) to solve a large linear
system with n degrees of freedom. For comparison, in case of dense matrices, a well-known
direct Gaussian elimination method typically will require n3 floating-point operations in
order to solve the same dense system. A multigrid method is constructed from a series of
consecutive discretisations (grids) where the problem is solved starting from the coarse grid,
and subsequently, the errors are transferred onto finer grids. In typical FEM discretisations
building multiple levels of grids often can be troublesome.
However, in MoFEM (Kaczmarczyk et al., 2020), grids can be easily constructed with
hierarchical approximation bases (Ainsworth and Coyle, 2003) at very low cost. In order
to deliver multigrid solver functionality into bone remodelling implementation, a fieldsplit
preconditioner from PETSc (Balay et al., 2018) package is utilised. Fieldsplit provides block
solver functionality, i.e. allows for dividing a problem and apply different preconditioners and
solvers to the appropriate parts of the system. As derived earlier, in bone remodelling model,
the global tangent stiffness matrix has the following block-like structure:[

Kρρ Kρu

Kuρ Kuu

]
(4.32)

Subsequently, in order to use fieldsplit, the following multiplicative preconditioner is applied
to the original matrix: (

I 0
0 K−1

uu

) (
I 0
−Kuρ I

) (
K−1
ρρ 0
0 I

)
(4.33)

The inverse of blockmatrices: K−1
uu andK−1

ρρ is then obtained by internal Krylov preconditioners
which can be of different, more suitable types, like for example aforementioned multigrid.
Moving on, the scalability of the implementation with fieldsplit is investigated. Example 10
time steps of a bone remodelling problem is solved on a high-performance parallel computer
system. The mesh consists of 33,000 finite elements and 113,000 degrees of freedom.
MUMPS (Amestoy et al., 2001) direct solver is utilised in two ways: first on the global system
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and second separately on each field (density and displacement). Solving the problem on
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Figure 4.15: Scalability of bone remodelling implementation for two solver cases.

multiple CPUs demonstrates a speed-up in computation time for both cases, as shown in
Figure 4.15. However, since fieldsplit divides the problem into smaller ones, the direct solver
scales slightly better and saturates (no longer decreases computational time) at around 60
CPUs, in comparison to 48 CPUs when used on a global system. Overall, in both variants, the
total time from a single CPU is reduced by a factor of 20, which means that this particular the
medium-sized problem can be solved in less than two minutes which is rather acceptable for
practical applications. Ultimately, in the future, it is planned to implement a multigrid solver
on the elliptical part (K−1

uu ) and fully take advantage of MoFEM’s hierarchical approximation
bases.

4.4 Bone remodelling and topology optimisation

The following section moves on to compare two conceptually different approaches for
structural design: a classical topology optimisation (TOP) and implemented bone remodelling
formulation. The comparison is motivated by the work of Kuhl et al. (2003) and followers (e.g.
(Waffenschmidt and Menzel, 2012)) who applied an algorithm for the functional adaptation
of hard tissues to find the optimal arrangement of material in various structures. Such class of
problem is often used as benchmark for bone remodelling implementations.

A typical engineering problem seeks to maximise the structural stiffness within a domain to
most efficiently use the given space and the material, while at the same time fulfil particular
constraints like for example volume fraction. The solution for such problems is far from trivial
due to many local minima. Therefore, numerous numerical methods have been implemented
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Material parameters Bone remodelling Topology optimisation
E 1000 MPa c 1.0 d/cm2 f top 0.3
ν 0.3 ∆t 0.01 d mtop 0.2

ρ∗0 0.1 g/cm3 ptop 3
ψ∗0 0.5 N/mm2 λl 0.3
m 3 imax 40
n 2

Table 4.1: Material parameters used for bike frame optimization.

to approximate this problem (Bendsøe and Sigmund, 2003). One of the most commonly
used is the SIMP approach (Solid Isotropic Material with Penalization) (Bendsøe, 1989). In
SIMP, the material properties of each discretisation element in the design domain are relative
to the densities, which varies from 0 to 1. Additionally, the densities are raised to some
power, similarly to bones, where the material properties are found to fit the power-law of
the density (Helgason et al., 2008a). This approach gained its popularity due to exceptional
robustness and ease of implementation. The slight modification has been implemented in
MoFEM and is described in details in Appendix B. Classical optimisation techniques are
not the only ones considered for structural design. To date, several studies have investigated
the bio-inspired approaches, for example, genetic algorithms (Hajela and Lee, 1995), cellular
automaton (Tovar et al., 2006) or neural networks (Yildiz et al., 2003). The bone remodelling
formulation presented in this work has also been proven to qualitatively match the expected
optimal designs (Liedtke et al., 2017; Kuhl, 2004). However, it has never been directly
compared side by side with the results of the topology optimisation itself.

4.4.1 Bike frame

Three simple examples of rectangular panels are considered, following Kuhl and Steinmann
(2003). The bone remodelling approach and SIMP TOP are utilised to find the most effective
shape of the bike frame for certain loading conditions. Material and model parameters are
presented in Table 4.1 below. The design domain of a rectangular shape with 1 unit in length
and 0.5 height and three different loading cases are depicted in Figure 4.16a). Geometry
is discretised with 2717 quadratic tetrahedral elements. The mass flux R is assumed to
be suppressed. The load is applied in a single step load in the first time step and held
constant thereafter. For topology optimisation, the maximal volume fraction is set to 30%,
the penalty parameter is equal to 3 and the length scale coefficient λl = 0.3. The rest of
the parameters are purely algorithmic, as described in Appendix B. imax is the maximum
number of iterations. The simulations of bone remodelling are continued until the density
distribution is completely adapted (biological equilibrium). The resulting density patterns are
demonstrated in Figure 4.16 for bone remodelling b) and topology optimisation c). For bone
remodelling, the regions of resorption, i.e. where (ρ < ρ∗0) are blanked, whereas for TOP,
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a) b) c)

Figure 4.16: Topology optimization - a) geometry, discretisation and loading conditions.
b) Resultant density distributions at equilibrium state. Regions of resorption (ρ < ρ∗0) are
blanked. c) Resultant geometry from topology optimisation f top = 0.3.

the threshold for density is chosen such that the resulting volume matches the desired target
f top. In both cases, the simulation captures the densification effects and clearly identifies
the main load-bearing regions, while degrading material in regions that do not take part in
transferring loads. Both formulations will produce unstable checker-board solutions without
regularisation, in case of remodelling it is exponent m (Eq. 4.8), and in TOP typically various
different filtering techniques are utilised (Lazarov and Sigmund, 2011; Sigmund and Maute,
2013). The algorithm in TOP tends to form sharper contours with a truss-like structure, which
is very desired for engineering purposes. Moreover, the width of these truss elements can
be easily controlled with the filtering parameter, in this case, λl On the other hand, in bone
remodelling, the parameter to control smoothness of the resulting distribution is the mass
conduction coefficient R0 as was previously presented in Section 4.3.2. The demonstrated
examples shown that by introducing the mass conduction (mass flux), the solution of the
density can be smoothed out, even to a homogeneous state. However, the inverse of this
process is not possible in this model. Choosing the negative value of R0 will result in
Helmholtz-like equation, rendering the system of matrices to be ill-conditioned and ultimately
loss of convergence within the Newton iterations. Interestingly, it can be noticed that in TOP
the truss elements have consistently high density along their length in distribution produced.
Whereas in remodelling, mass is added only locally, in the vicinity of the applied boundary
conditions. Moving on, it is worth to remark that TOP is insensitive to the material properties
like Young’s modulus, the magnitude of the force or the scale of the structure, the result
will remain the same. In contrast, in bone remodelling, all the material related parameters:
Young’s modulus E , the reference density ρ∗0 and biological stimulus ψ∗0 have a significant
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Figure 4.17: Crank optimisation example. Geometry, discretisation and loading conditions.
The backside is clamped. Height = 100mm, Length=200mm, width=200mm. Applied
pressure τl = 1.5N/mm2 on a rectangular area of 400mm2

Parameter Parameter
E 3800 MPa c 0.4
ν 0.3 m 3.0
ρ∗0 1.0 g/cm3 n 2.0
ψ∗0 0.01 N/mm2

Table 4.2: Set of material parameters used for the bone remodelling L-shaped crank calcula-
tions.

impact on the result and if not chosen carefully, since the problem is highly nonlinear, it can
lead to divergence.

4.4.2 Three-dimensional L-shaped crank

In the next example, followingWaffenschmidt and Menzel (2012), an L-shaped crank structure
is analysed. The geometry, discretisation to 3597 quadratic tetrahedral elements and boundary
conditions are depicted in Figure 4.17 below. The material parameters used for bone
remodelling are shown in Table 4.2 below. The adaptive time step size ∆t is utilised. For TOP,
the model parameters are the same as in the previous example (Table 4.1). In this analysis,
the loading for bone remodelling is applied in two variants: first - full load in one step and
held constant thereafter and second: the load is applied in four even steps. In both cases,
the analysis is continued until biological equilibrium is achieved. The resulting evolution
of the total energy over time and the produced geometries are demonstrated in Figure 4.18
below. The difference between the two results is significant. The crank that was loaded in
one step achieved noticeably higher stiffness and therefore the resulting topology is more
developed. Additional confirmation of this remark can also be found based on the graph in
Figure 4.18, where is it evident that the model loaded in a stepwise manner has higher total
energy and thus displacements as well. This interesting observation has not been reported
before regarding this model. As it turns out, the bone remodelling is highly history (path)
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Figure 4.18: The evolution of total elastic energy for one-step and multiple-step loaded crank.
The resulting isosurfaces with ρ ≥ ρ∗0.

Figure 4.19: Resulting geometry from topology optimisation (left) and bone remodelling
(right).

dependent problem. Finally, the converged crank shape simulated with the bone model along
with the one obtained from TOP is presented in Figure 4.19. It is clear that shape attained from
TOP maintains structural integrity and resembles a sharp, truss-like geometry to minimise
the deformation and volume. In comparison, the model reacted with a box-like section to
torsion loading arising at the clamped boundary. On the other end of the model, the density
clearly increased, but there is no connection with the rest of the formation. It is worth noting
that the blanked resorbed "bone" regions still contribute to the load-bearing capacity of the
structure. The results of this investigation show that bone remodelling can be applicable
for designing structures with materials with an easily controlled material density like, for
example, with additive manufacturing methods. The density could be interpreted as the
refinement of the infill material, locally increased in the particular regions of the domain.
As for classical structural design, bone remodelling fails in comparison with well establish
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topology optimisation. The resulting geometry simulated with bone density growth only
resembles an optimal design obtained with TOP. The parameters which are used for density
bone growth have biological sense but are difficult to interpret when used for engineering
design. Based on the examples, it can be concluded that bone remodelling model is most
suitable for simulating growth. Overall, the presented phenomenological model tries to mimic
nature’s universal ability to adapt to external conditions. However, based on the observations,
nature only tends to evolve to states that are "good enough", but not necessarily optimal (Milo,
2019).

4.5 Summary

In this chapter, a numerical framework for bone remodelling simulation was presented. All
the parameters used in the model has been tested against various benchmark problems. It
has been shown that the implementation is correct in comparison with the literature. Two
different methods of obtaining the tangent stiffness matrix were demonstrated and compared.
Particular attention was given on the application of density growth model into structural design
problems and similarities with the topology optimisation method. The practical application of
the presented formulation with numerical examples of human and equine bones is provided in
Chapter 7.
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Chapter 5

Phase-field fracture

This chapter introduces to smeared crack approach with phase-field for crack propagation.
Phase-field is a popular formulation for solving fracture mechanics problems with only PDEs.
It is based on potential energy approximation of Griffith brittle fracture functional. Some
details of the implementation are closely elaborated, i.e. derivation of tangent stiffness matrix
and arc-length control method. The main goal is to deliver a simple, robust method for
simulating fracture in heterogeneous materials like bones, thus providing cross-validation of
the novel developments presented in Chapter 6. The performance of the implementation is
verified with several benchmark problems.

5.1 Introduction

The prediction of failure mechanisms in structures due to micro-cracks and their possible
propagation by using numerical methods has been continuously the subject of considerable
attention in science over the years. First significant work in the fracture mechanics was
introduced by Griffith (Griffith, 1921), wherein based of thermodynamics the effect of crack
formation was described by surface energy that is required for the creation of new crack
surfaces. Many numerical methods are available to solve the problem of fracture initiation
and growth. Such methods may be divided into two categories: discrete and diffused ap-
proach. Discrete crack models initially were limited to describe crack formation only on
element boundaries (Ngo and Scordelis, 1967). More recently, in the presence of automatic
mesh generators, the extended finite element method (XFEM) separated the crack path from
underlying mesh, see, e.g. (Belytschko and Black, 1999) where XFEM is applied to brittle
fracture. Another novel approach in isogeometric analysis field introduces knot insertions
that lower the order of continuity to introduce cracks in solids (Hosseini et al., 2014). The
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continuum damage, or diffused crack, the approach incorporates a damage parameter into the
model that controls the strength of the material. An advantage of this approach is that it does
not require interface tracking since the damage parameter varies continuously over the domain
with further improvement by a gradient approach (see, e.g. de Borst et al. (2004)). Closely
related to continuum damage models are the phase-field models. The numerical solution of
this model is based on an approximate energy potential, inspired by the image segmentation
method developed by Mumford and Shah (1989). The study in de Borst and Verhoosel (2016)
showed that the diffusion equation for the phase-field can be considered as a special case a
gradient-damage model.
In the phase-field method, the fracture problem can be described purely by partial differ-
ential equations. The initially proposed variational method based on energy minimisation
by Francfort and Marigo (1998) gained a rapid increase in popularity since it has been revisited
by Miehe et al. (2010b) by introducing new way of crack regularisation. Miehe et al. (2010b)
proposed a thermodynamically consistent framework for crack propagation along with the
efficient numerical implementation in multi-field finite element method formulation. It has
been proven that this method is robust and can accurately and efficiently capture the crack
propagation process. Moreover, a number of phenomena that are difficult to capture in discrete
crack models, like crack branching, merging and nucleation are solved straightforwardly
(Kuhn and Müller, 2010).

To date, phase-field has been successfully applied, e.g. to dynamic problems (Borden, 2012),
cohesive fracture (Vignollet et al., 2014), ductile fracture (Miehe et al., 2016), functionally
graded materials (Hirshikesh et al., 2019) and more. An extensive review of phase-field for
fracture can be found in (Egger et al., 2019). More recently, phase-field has also been used
for simulation of crack propagation in bones (Nguyen et al., 2017; Shen et al., 2019), which
is of particular interest of this thesis. It is important to note that the presented phase-field
formulation, is restricted to geometrically linear setting, similarly to the vast majority of
literature which utilises phase-field for brittle fracture. Another reasoning behind this choice
is the efficiency, since the additional nonlinearity could significantly increase the computation
time. Moreover, as previously mentioned in Section 4.2.1, bone even of extreme athletes like
racehorses experiences only small strains up to 0.002% (Davies and Merritt, 2004), which
is within the range of applicability of small strain formulation. Extension to finite strain
kinematics is straightforward if necessary, as presented e.g. in Clayton and Knap (2014).

5.2 Phase-field representation

Consider one-dimensional bar under tension with a discrete crack at x = 0 as presented
in Figure 5.1a). The underlying idea of phase-field is to approximate the discontinuity Γ
with a scalar damage phase-field Γl representing the smooth crack (see Figure 5.1b)). The
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Figure 5.1: a) Schematic representation of a discrete crack with Dirac delta function and b)
phase-field (smeared) representation of a crack with the length parameter l0.

approximated discrete crack Γ can be expressed as a smeared crack Γl with the exponential
function as follows:

d(x) = exp
(
−
|x|
2l0

)
(5.1)

The phase-field variable d ∈ [0,1] indicates damage in the material, where d = 0 characterises
intact material and d = 1 means fully broken. Therefore, it has to satisfy the following
boundary conditions:

d(0) = 1, (5.2)

d(±∞) = 0 (5.3)

The first and the second derivatives of the phase-field function (5.1) with respect to x can be
derived as follows:

dd
dx
= −

sgn(x)
2l0

exp
(
−
|x|
2l0

)
,

d2d
dx2 = −

1
4l2

0
d

(5.4)

With the above definitions, for x , 0, it can be demonstrated that Equation 5.1 is the solution
of the differential equation:

d − 4l2
0

d2d
dx2 = 0 (5.5)

Following (Miehe et al., 2010a), the discrete crack surface Γ can be expressed as the quadratic
functional:

Γ =

∫
Γ

dA =
∫
Ω

1
4l0

(
d2 + 4l2

0

(
dd
dx

)2
)

︸                     ︷︷                     ︸
γl

dV = Γl (5.6)

The minimisation of this functional renders the phase-field smeared crack representation as
given in Equation 5.1. The integrand of Equation 5.6 - γl can be interpreted as a crack surface
density function. The extension to multi-dimensions renders the following expression:

γl =
1

4l0

(
d2 + 4l2

0 |∇d |2
)

(5.7)
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5.2.1 Continuum formulation

Let assume small strains, where elastic energy density is given by the Hooke’s law for an
isotropic linear elasticity, ψel(εεε) =

1
2λ trεεε2 + µ tr

[
(εεε)2

]
, where λ and µ are the Lamé constants.

In the regime of small deformations, where the current spatial domain is indistinguishable
from the reference material domain, the infinitesimal strain tensor has the following form:

εεε =
1
2

(
(∇u)T + ∇u

)
, (5.8)

where u denotes the displacement vector. The potential energy of the brittle fracture in the
Griffith sense (Griffith, 1921) can be expressed in the following form:

Ψ
pot =

∫
Ω

ψel(εεε)dV +
∫
Γ

gc dA, (5.9)

where ψel is the elastic strain energy density function and the fracture energy contribution is
the critical energy release rate gc. It is a well-known material parameter, which indicates the
amount of energy necessary for unit advancement of the crack surface area. Using phase-field
and previously presented surface energy density function γl in Equation 5.7 the fracture energy
contribution can be expressed by: ∫

Γ

gc dA ≈
∫
Ω

gcγl dV (5.10)

5.2.2 Strain energy density split

Next, it is assumed that the elastic energy can be additively decomposed into a damaged and
intact part, ψ0 = ψ

+
0 + ψ

−
0 , so that the degradation function g only acts on the damaged part

(Miehe et al., 2010b):
ψel(εεε,d) = g(d)ψ+(εεε) + ψ−(εεε) (5.11)

This split is motivated by the fact that the tensile strain components contribute to the damage
process that results in a fracture, while the compression strain components do not. Various
forms of a split in the energy density have been investigated by Amor et al. (2009), for example,
it has been demonstrated that volumetric-deviatoric split of the energy might be more suitable
for a shear-type fracture. However, the most commonly used is a spectral decomposition of
strain into positive (tension) and negative (compression) part. The strain tensor can be split as:

εεε = PvΛP−1
v (5.12)

where Pv consists of the orthonormal eigenvectors of εεε and Λ = diag(λ1,λ2,λ3) is a diagonal
matrix of principal strains. Moving on, the positive and negative strains can be calculated as
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follows:
εεε+ = PvΛ+P−1

v (5.13)

εεε− = PvΛ−P−1
v (5.14)

where
Λ = diag(〈λ1〉, 〈λ2〉, 〈λ3〉) (5.15)

Λ− = Λ −Λ+ (5.16)

and 〈·〉 is the Macaulay bracket defined as:

〈x〉 =


x x > 0

0 x ≤ 0
(5.17)

With the above split defined, the tensile (damaged) ψ+ and compressive (intact) ψ− energy
have the following forms:

ψ+(εεε) =
1
2
λ〈trεεε〉2 + µ tr

[ (
εεε+

)2
]

ψ−(εεε) =
1
2
λ(trεεε − 〈trεεε〉)2 + µ tr

[ (
εεε − εεε+

)2
] (5.18)

Note that in case of small strains, where εεε is a symmetric matrix, the matrix of eigenvectors
Pv is orthogonal; hence its inverse can be simply computed as: P−1

v = PT
v .

5.2.3 Degradation function

Similarly to the damage mechanics concepts, in Equation 5.11 a degradation function g(d) is
introduced, which must satisfy the following conditions:

g(0) = 1, g(1) = 0, g(d) > 0 for d , 0, g′(0) = 0, g′(1) > 0 (5.19)

These requirements are implied to provide damage propagation and set the upper constraint of
the phase-field d = 1. A simple quadratic degradation function that meets the restrictions has
the form:

g(d) = (1 − d)2 (5.20)

Such form of the function g(d) is the most widely used in the literature. However, many
different formulas can be utilised (Kuhn et al., 2015). Borden (Borden, 2012) proposed a
cubic function:

g(d) = s((1 − d)3 − (1 − d)2) + 3(1 − d)2 − 2(1 − d)3 (5.21)
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where s > 0 determines the slope of g at d = 1. Implications of choosing either of those
functions have been investigated in (Borst et al., 2015; Vignollet et al., 2014). Essentially,
using the cubic function can reduce the accumulation of strain elastic energy before reaching
critical strain; it is an issue that can is observed with classical 2nd order functions. The
additional parameter s can significantly alter material behaviour, and it has to be carefully
calibrated.

5.2.4 Strong form

Finally, the potential Ψpot
l can be derived by substituting Equations 5.10, 5.11, 5.20, 5.7 into

potential energy (Eq. 5.9) renders the diffused form of the potential energy for brittle fracture:

Ψ
pot
l =

∫
Ω

g(d)ψ+ + ψ− + gc

[
d2

4l0
+ l0 |∇d |2

]
dV (5.22)

In the equilibrium state of the above potential Ψl
pot must be a minimum, which leads to the

following strong form:
∇ ·σσσ(εεε,d) = 0 x ∈ Ω

σσσn = t̄ x ∈ Γt

u = ū x ∈ Γu

gc

(
d

2l2
0
− 2∆d

)
=

dg
dd
H x ∈ Ω

∇d · n = 0 x ∈ Γ

(5.23)

where the history parameter:
H(t) = max

t
ψ+(t) (5.24)

ensures irreversibility such that cracks can only grow (Miehe et al., 2010b). Alternatively, it can
also be imposed by setting d = 0 when d becomes close to zero as reported by (Bourdin et al.,
2008) or by a penalty term to the phase-field equation as described in (Miehe et al., 2010a).
Further, in the strong form (5.23) t̄ and ū are the boundary tractions and displacements,
respectively, such that Γt ∪ Γu = Γ and Γt ∩ Γu = ∅. The Cauchy stress can be expressed as
follows:

σσσ(εεε,d) = g(d)
∂ψ+

∂εεε
+
∂ψ−

∂εεε

σσσ(εεε,d) = g(d)[λ〈trεεε〉I + 2µεεε+] + λ〈−trεεε〉I + 2µεεε−,
(5.25)

where is I is an identity matrix.
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5.2.5 Weak form

The weak form is derived by the standard Galerkin method. Approximation of the field
variables and their derivatives are the following:


u(x) = Nu(x)uh

d(x) = Nd(x)dh


εεε(x) = Bu(x)uh

∂d(x)
∂x

= Bd(x)dh
(5.26)

The resulting set of nonlinear equations is subsequently linearised and solved simultaneously
using a Newton-Raphson iterative scheme. At each iteration i the following linear system of
equations is solved: [

Kdd Kdu

Kud Kuu

]
i

[
δd

δu

]
i+1

=

[
−fint

d

fext − fint
u

]
i

(5.27)

with
fint
d =

∫
Ω

[
gc

(
1

2l0
NT

dNd + 2l0BT
dBd

)
d +

dg
dd
HNT

d

]
dV

fint
u =

∫
Ω

BT
u
∂σσσ

∂εεε
Buu dV =

∫
Ω

BT
uσσσ dV

(5.28)

Kdd =

∫
Ω

gc

(
1

2l0
NT

dNd +BT
dBd

)
+

d2g

dd2HNT
d dV

Kdu =

∫
Ω

dg
dd

Nd
∂H

∂εεε
Bu dV

Kuu =

∫
Ω

BT
u
∂σσσ

∂εεε
Bu dV

Kud =

∫
Ω

BT
u
∂σσσ

∂d
Nd dV

(5.29)

where
∂σσσ

∂d
=

dg
dd

(
λ〈trεεε〉I + 2µεεε+

)
∂H

∂εεε
=

{
λ〈trεεε〉I + 2µεεε+ H ≥ ψ+(t)

0 H < ψ+(t)

(5.30)

Partial derivative ∂σσσ/∂εεε represents the fourth-order elasticity tensor, which can be expressed
as follows:

∂σσσ

∂εεε
= λ [g(d)H(trεεε) −H(− trεεε)] I ⊗ I + 2µ (g(d) − 1)P+ + µ (II + IIs) , (5.31)

where H(·) is a Heaviside function, II and IIs are fourth-order unit tensors such that, for an
arbitrary second-order tensor A:

II : A = A

IIs : A = Asym
(5.32)
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Furthermore, P+ is a projection tensor that has the following property:

P+ : εεε = εεε+ (5.33)

The computation of such tensors is far from trivial, and it is elaborated further in Section 5.2.6.
The monolithic solution scheme is chosen since unlike the staggered scheme, it is insensitive
to the size of load increments and therefore, can be significantly faster (Vignollet et al.,
2014). It is worth to note that the resulting regularised free energy functional (Eq. 5.6) is
non-convex with respect to simultaneously the displacement and the phase-field. Therefore,
the monolithic scheme might be is very unstable at the crack initiation. The phenomenon of
crack length function being discontinuous in time is often referred as brutal crack propagation
(Bourdin, 2007). A few different approaches have been proposed to approach the problem of
non-convexity (Gerasimov and De Lorenzis, 2016; Wick, 2017). However, this is not within
the scope of this study.
Moving on, with consistent tangent stiffness matrix as presented in Equation 5.27 monolithic
scheme attains quadratic convergence rate of Newton iterations. Nevertheless, the Newton-
Raphson method is insufficient after a limit point is reached, e.g. snap-back or unstable
behaviour. For such complex cases, the arc-length method can be used, as proposed, e.g. in
(May et al., 2016).

5.2.6 Derivation of projection tensors

This section described three different methods for obtaining the projection tensor introduced
in tangent stiffness matrix for phase-field (Equation 5.31). The projection tensor P+ from
Equation 5.33 can be calculated with matrix differentiation as follows:

P+ =
∂εεε+(εεε)

∂εεε
. (5.34)

However, as it was presented in Equation 5.13, the positive strain tensor is obtained through
spectral decomposition, which is difficult to differentiate. Theoretically, it is possible to
compute the roots of characteristic polynomial det(εεε − λI) = 0. However, in practice, the
algorithms for calculating the roots of cubic polynomials are known to be numerically inefficient
and prone to truncation errors (Eberly, 2014). Typically, eigenvalues and eigenvectors for
matrices larger than 2x2 are found with iterative algorithms. Therefore, the automatic
differentiation technique with ADOL-C library presented in Section 4.2.9 also cannot be
applied. Ultimately, for the non-trivial task of computing tensor P+, three different methods
have been chosen:

• Centered Finite Difference method
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• Complex-variable method (complex-step)

• The algorithm for the partial derivatives of the eigenvectors with respect to the strain
tensor proposed by (Miehe, 1998).

Centered Finite Difference

One of the simplest methods for calculating derivatives of mathematical functions f (x) is
the finite difference method (FDM). This two-point formula computes the slope of a nearby
secant line. As the small perturbation h approaches zero, the secant approaches the tangent
line. To increase the accuracy for small values of h the secant line is calculated at points
(x + h, f (x + h)) and (x − h, f (x − h)), which also known as Centered Finite Difference method.
The approximation of the derivative of the positive small strain tensor εεε+ can be derived as
follows:

Pi j kl =
∂εεε+i j

∂εεεkl
≈
ε+i j(εεε + hek ⊗ el) − εεε

+
i j(εεε − hek ⊗ el)

2h
(5.35)

Note that, for legibility, Leibniz’s notation has been replaced with index notation. e is the basis
vector, and the tensor product ek ⊗ el results in a tensor which has the (k, l) element equal to
unity. An h parameter is usually a small number around 10−8. The Finite Difference method
is very general and simple to implement. However, in numerical calculations constrained
by machine precision, Finite difference method turns out to be very sensitive to the value of
h. Due to truncation errors, the accuracy of the calculated slopes deteriorates very quickly
(See Table 5.1). This issue can be resolved by using the complex variables (Squire and Trapp,
1998).

Complex-variable method

In contrast to the previous method, a small perturbation h is replaced with a complex number
ih (i =

√
−1). This alternative of Finite Difference method is often called Complex Step

Differentiation. Similarly to Equation 5.35 the approximate derivative has the form:

Pi j kl =
∂εεε+i j

∂εεεkl
≈

Im(εεε+i j(εεε + ih ek ⊗ el))

h
(5.36)

where Im(·) represents the imaginary part. The formula in Equation 5.36 above is almost as
simple to implement as finite difference and does not suffer from truncation errors.
Following (Squire and Trapp, 1998), to further prove the advantage of using complex number,
lets consider simple scalar valued function f (x) = x9/2 at x0 = 1.5 and compute its derivatives
using both methods presented previously. Table 5.1 below shows the absolute errors for
different values of h, ranging from 0.1 to 10−19.As shown in Table 5.1, Finite Difference
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h Finite Difference (Eq. 5.35) Complex Step (Eq. 5.36)
1.00e-01 2.293689646259029e+00 1.205407314009328e-01
1.00e-02 2.182181061612667e-01 1.205606223422251e-03
1.00e-03 2.171300728445757e-02 1.205608212728748e-05
1.00e-04 2.170215376157358e-03 1.205608270993253e-07
1.00e-05 2.170107647749830e-04 1.205606281473592e-09
1.00e-06 2.169935328311112e-05 1.205435751217010e-11
1.00e-07 2.180744331781170e-06 1.207922650792170e-13
1.00e-08 6.687969289487228e-08 0.000000000000000e+00
1.00e-09 1.487965164415073e-06 3.552713678800501e-15
1.00e-10 2.952926937638267e-06 0.000000000000000e+00
1.00e-11 4.736184791909182e-05 3.552713678800501e-15
1.00e-12 1.196087939661084e-03 3.552713678800501e-15
1.00e-13 2.012019413314192e-02 7.105427357601002e-15
1.00e-14 3.788376252714443e-02 3.552713678800501e-15
1.00e-15 1.827290918843122e+00 3.552713678800501e-15
1.00e-16 1.860081273425976e+01 0.000000000000000e+00
1.00e-17 1.860081273425976e+01 3.552713678800501e-15
1.00e-18 1.860081273425976e+01 3.552713678800501e-15
1.00e-19 1.860081273425976e+01 7.105427357601002e-15

Table 5.1: Absolute error of calculated derivative for f (x) = x9/2 for different values of h
using Finite Difference Method and Complex Step.

method reaches the minimum error of ∼ 6.688 · 10−8 half way through the sequence of h and
then the accuracy starts to deteriorate. Complex Step, on the other hand, shows much lower
error for smaller values of h and establishes full double precision accuracy for any h < 10−8.
This confirms that complex step method is accurate even for small values of h whereas the
Finite Difference never achieves full accuracy.

Analytical algorithm for fourth-order isotropic tensor

Miehe (1998) presented an algorithm for the computation of fourth-order isotropic tensor
functions. The functions that take arguments in the spectral form of symmetric second-
order tensors represent a certain class of functions. The derivatives of these functions can
be calculated by exploiting the knowledge of the eigenvectors; in particular the spin of
the orthonormal base. The formula proposed by Miehe applied for the calculation of the
fourth-order projection tensor P can be expressed as:

P+i j kl =

3∑
a=1

3∑
b=1

H(λa)δabnaina jnbknbl

+

3∑
a=1

3∑
b,a

1
2
〈λa〉 − 〈λb〉

λa − λb
nainbj (naknbl + nbknal) ,

(5.37)
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where λa is the eigenvalue and nai is the corresponding i-th component of the eigenvector
na, δab is the Kronecker symbol. In order to avoid splitting the formula in Equation 5.37
into several cases for equal or nearly equal eigenvalues, the following perturbation is applied
(Miehe, 1993). {

λ1 = λ1(1 + h) if λ1 = λ2

λ3 = λ3(1 − h) if λ2 = λ3
(5.38)

where h is a small number 10−8. Thanks to this perturbation, the formula holds for all the
cases of eigenvalues without the need for conditional statements.

5.2.7 Comparison of the methods

In this section, the previously proposed methods for computing the tangent stiffness matrix
(see Section 5.2.6) are compared for their computational efficiency. A small phase-field test
problem consisting of 949 degrees of freedom (DOFs) is considered. The first five loading
steps are calculated. The runtime of the analyses is presented on the bar plot in Figure 5.2,
with distinction to the time spent on matrix assembly and the linear solver. Unsurprisingly,
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Solver
Assembly
Other

a) Analytical b) FDM c) Complex

Figure 5.2: Runtime for a test problem with tangent matrix calculated using three formulas:
a) Analytical, b) Finite Difference Method and c) Complex Step.

the complex step method is the slowest approach since complex multiplication quadruples
the number of floating-point operations. Additionally, the perturbed matrix εεε+i j(εεε + ihek ⊗ el)

is no longer real; thus it requires the computation of the inverse of the Hermitian matrix
Pv for eigendecomposition (see Equation 5.13). However, Complex Step method is only
slightly slower than Finite Difference with the additional advantage of being more accurate
and insensitive to small values of perturbation h. It is also worth to note that all the methods
have enough accuracy to attain quadratic convergence for the Newton method.
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In conclusion, the analytical formula found in the literature is the most efficient method for the
calculation of the tangent stiffness matrix for phase-field. However, it was also shown that
Complex Step method is a robust option for this task and most importantly it can be applied to
a broad number of different constitutive equations without the advanced knowledge of the
mathematical properties of the functions used therein.

5.3 Arc-length control

Newton’s method cannot accurately predict the solution after a limit point is reached. Neither
the force control nor displacement control is able to capture highly nonlinear equilibrium path
as presented in Figure 5.3. If such snap-back or snap-through behaviour is to be expected, an
alternative method should be used instead. Multiple different approaches have been proposed

τ

Actual
solution

Newton’s

u

Figure 5.3: Newton’s method limitation on an example of snap-back and snap-through
behaviour.

in the past for tracing the equilibrium path in nonlinear problems. The most established
method is the arc-length control approach, initially proposed by Riks (1979) and further
improved by Crisfield (1982). Arc-length control provides an additional degree of freedom
τ into the system (Equation 5.27), which is used as a multiplier on the external load vector
fext = τf̂. Additionally, the arc-length function φD = φD(u, τ) constraints the increments of
load factor τ and displacements u such that the load path can be traced. In general case, the
complete set of equations that have to satisfy the equilibrium which can be written as:[

fint − τf̂
φ(u, τ)

]
=

[
0
0

]
(5.39)

The resulting new tangent stiffness matrix has the following form:
KT −f̂

∂φ(u, τ)
∂u

∂φ(u, τ)
∂τ

 (5.40)
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which consists of KT - the stiffness matrix, e.g. from Equation 5.27, f̂ - the load vector and the
derivatives of arc length function (bottom row) with respect to displacement and load factor.
The function φ in arc-length methods have to be related to a monotonically increasing quantity
of the solid (Gutiérrez, 2004). For quasi-brittle materials that quantity can be energy release.
In the absence of any healing effects, the failure always evolves at a positive rate. However, at
the beginning of the loading or in case of solids which exhibit numerous snap-through points,
the evolution of the failure can be very slow. In these cases, the controlled dissipation rate
would have to be to constantly adjusted in order to accurately follow the equilibrium path.
In the recent publication by May et al. (2016), a new arc-length control method based on
both rate of the internal and the dissipated energy has been introduced. The proposed therein
approach requires only two parameters to automatically and precisely trace the equilibrium
path by switching between dissipative and non-dissipative arc-length controls. The derivation
of the approach can be found in Appendix C.

5.4 Benchmark problems

In order to verify the implementation of a phase-field model for brittle fracture, the results
of several benchmark problems are investigated. The following factors are explored: p-
convergence, length scale parameter l0 and type of degradation function g(d).

5.4.1 One-dimensional bar

Consider the one-dimensional unit length (1m) bar as depicted in Figure 5.4. The bar is
fixed on one end and on the opposite end, pressure τf̂ is applied, where f̂ = 1Pa and τ is the
arc-length multiplier.

The geometry is discretised with 24 linear tetrahedral elements which results in 57 degrees of
freedom. Note that for this problem, the solution is homogeneous; therefore, it is considered to
be one-dimensional. The material parameters are E = 1Pa for the Young’s modulus, Poisson’s
ratio ν = 0, Griffith’s energy gc = 1 N/m , length scale parameter l0 = 0.25m. The parameters
for the arc-length control are the following: initial load step ∆τF

1 = 0.15 and ratio a = 0.8. The
resulting load-displacement curve is presented in Figure 5.4. The phase-field and strain field
are both uniform along the bar; therefore the analytical solution for stress can be computed
straightforwardly with the given formula (Wu et al., 2018):

σσσ =

(
gc

gc + l0Eεεε2

)2
Eεεε (5.41)
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It can be noticed that the curve obtained with the finite element method perfectly matches

τf̂

Figure 5.4: Bar subjected to tensile load τf̂.

with the analytical solution (see Eq. 5.41). This specific one-dimensional case is insensitive to
order of approximation or the size of the element. However, it is importation to note that such
uniform solution for phase-field is only stable until stress is lower than critical stress σ ≤ σc

(ascending part of the curve) (Pham et al., 2011).

5.4.2 Notched plate

In the next benchmark example, a square plate of unit length with a notch in the middle, as
presented in Figure 5.6 is subjected to shear force. This is one of the most commonly used tests
for phase-field fracture propagation, it has been analysed for example in (Vignollet et al., 2014;
Miehe et al., 2010a; Borden, 2012; Wu, 2017; Liu et al., 2016). The material parameters are:
E = 210 MPa, ν = 0.3 and gc = 2.7 · 10−3 N/mm. The top surface is loaded with uniform
shear pressure f = 1 MPa and the bottom edge is fixed. Additionally, the top surface and
the initial notch have constrained vertical displacements. To keep relatively small number
of finite elements, the thickness of the plate was chosen to be 0.025 mm. The plain strain
is enforced by constraining the displacements in the z-direction. In order to accurately
capture the crack pattern, the mesh is refined where the crack is expected to propagate. The
discretisation presented in Figure 5.7 using 17188 tetrahedral elements (16481 DOFs), results
in an effective element size of h ≈ 0.012 mm. Therefore, following (Borst et al., 2015) the
length scale parameter is chosen to be l0 = 0.025 mm, unless otherwise stated. The initial step
size ∆τF

1 = 0.1 N and the ratio a which controls switch for the arc-length a = 1. Figure 5.8
demonstrates the crack pattern attained using linear elements and length scale parameter
l0 = 0.025 mm. It is clear that the model is capable of tracking non-planar crack paths. The
resulting load-displacement curve is depicted in Figure 5.9. Linear tetrahedral elements are
well-known to suffer from shear locking (Zienkiewicz et al., 2000). Therefore, the results for
2nd-order elements are also presented for comparison. It can be noticed that linear elements
exhibit only slightly higher stiffness until the post-failure region where it starts to differ
noticeably. This can be explained by the fact that the used mesh refinement does not perfectly
capture the crack path at the end of crack propagation, as can be observed from Figure 5.7
in comparison with Figure 5.8. In future developments, with adaptive mesh refinement, the
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Figure 5.5: Load - displacement curve for the one-dimensional bar under tension with the
comparison to the analytical solution.
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Figure 5.6: Geometry and boundary conditions for the notched plate shear test.

difference should be less apparent. Overall, the results with linear elements have satisfactory
accuracy, and they are often the first choice due to their lower computational cost. Since,
in this case, the considered plate is three-dimensional, unlike in the most examples in the
literature, the results can be only compared qualitatively. Nevertheless, the outcomes are in
good agreement with the results presented, e.g. in Miehe et al. (2010a).
In the following example, the influence of the length scale parameter l0 is investigated. The
same mesh as in Figure 5.7 is analysed with 3 different length scales: 0.05, 0.025 and 0.015
mm. From the load-displacements curves in Figure 5.11 it can be observed that decreasing
length scale, results in increased critical force. Furthermore, results in Figure 5.10 shows that
as expected for the smallest length scale parameter l0 = 0.015 mm the sharpest crack pattern
is attained. Clearly, in phase-field length scale l0 does not only function as a regularising
parameter but also influences the material properties like critical stress.
Several researchers, e.g. Hirshikesh et al. (2019) proposed to choose the length scale
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Figure 5.7: Finite element mesh consisting of 17188 tetrahedral elements, refined in the
vicinity of the expected crack.

Figure 5.8: Phase-field contour plot represents crack patterns for the length scale l0 = 0.025mm.
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Figure 5.9: Load - displacement curve notched for plate example. Note that the displacement
is measured in the top right corner of the plate.

a) b) c)

Figure 5.10: Influence of the length scale parameter for l0 = 0.05 mm a), l0 = 0.025 mm b),
l0 = 0.015 mm c). Iso-volumes below shows the phase-field variable 0.9 ≤ d ≤ 1.
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Figure 5.11: Influence of the length scale parameter l0 on the load-displacement curve for
constant mesh size.

parameter based on known critical stress σ f parameter for brittle materials. In that approach,
l0 is obtained from homogeneous solution for a one-dimensional quasi-static problem.
Computations with l0 adjusted in such way reveal a good agreement with experiments as
presented in Martínez-Pañeda et al. (2018).
Next example considers cubic degradation function as presented in Equation 5.21. From
Figures 5.9 and 5.11, it can be found that the phase-field model using standard quadratic
function exhibits slight softening behaviour before the failure. Such nonlinearity contradicts
with linear elastic behaviour in brittle materials that phase-field intends to simulate. The
source of such phenomenon is the damage that occurs not only in the expected localisation
zones but in the entire domain. It is particularly apparent in Figures 5.8 and 5.10 at the
top right corner of the plate where additional phase-field develops. One of the methods to
mitigate that issue is to use cubic degradation function as proposed in Borden (2012). The
disadvantage of this approach is that additional parameter s is introduced. Vignollet et al.
(2014) demonstrated that for s = 10−2 solution close to linear can be recovered. The results
with quadratic and the cubic degradation functions for the notched plate are compared in
Figure 5.13. Note that, since in the case of cubic degradation function much less dissipation
is introduced, the ratio a parameter that governs the switch between arc-length controls had to
be reduced to a = 0.1.
It can be observed that the cubic degradation function results in a more linear behaviour up to
the peak force. Moreover, the snap-back behaviour is more apparent. The critical force attains
higher value which can be particularly beneficial if the length scale l0 is adjusted according to
the critical stress σ f . Using cubic degradation function would result in choosing larger l0, and
therefore, a much coarser mesh is then necessary to accurately approximate the critical load as
proposed in Miehe et al. (2010b). Furthermore, from the contour plots in Figure 5.12 it is
clear that the phase-field is much less smeared, and unlike in quadratic function, additional
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a) b)

Figure 5.12: Comparison of the quadratic a) and cubic b) degradation functions on phase-field
contours. Note that the scale on both contours is shifted to better visualise spurious damage in
the entire domain with quadratic function a).
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Figure 5.13: Load-displacement curves for the quadratic and cubic degradation functions. In
Equation 5.21 parameter s = 10−2.
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Figure 5.14: Geometry and boundary conditions for plate with hole example.

spurious localisation at the top right corner does not occur. A more in-depth investigation
about degradation functions in phase-field models can be found in (Kuhn et al., 2015).

5.4.3 Plate with an eccentric hole

In this subsection, a numerical example is considered, which features multiple snap-back and
snap-throughs to demonstrate the full capabilities of the implemented arc-length control algo-
rithm. The geometry of the problem is inspired by the example presented in Lorentz and Badel
(2004). The boundary conditions are shown in Figure 5.14. The mesh consists of 22,305 linear
tetrahedral elements, refined in the expected crack propagation zone and the effective element
size h ≈ 0.012mm. Similarly, to the notched plate in the previous section, the geometry is
extruded in the 3rd dimension to 0.025 mm. The plane strain is assumed. The material
parameters are: E = 210 MPa, ν = 0.3, gc = 2.7 · 10−3 N/mm and the length scale l0 = 0.025
mm. Parameters for the arc-length are ∆τF

1 = 0.15 N and ratio a = 0.25. The evolution of the
phase-field variable d is demonstrated in Figure 5.15. Figure 5.16 shows the τ load factor
versus the displacement magnitude of the point taken from the upper middle of the plate. The
circular markers correspond to the snapshots presented in Figure 5.16. The crack initiates
from the left end of the narrower side of the plate and subsequently propagates to the free
surface on the right side. After that, the structure starts another failure mode in which the
left-hand side of the hole develops another crack. Note that no initial notches are introduced.
In the phase-field model for brittle fracture, unlike in linear fracture mechanics (Kuna, 2013),
nucleation can occur in the absence of stress singularities. As previously mentioned critical
stress and crack initiation are related to the length scale parameter l0 (see Amor et al. (2009)
for more details). Overall, the results are in good agreement with the 2D case presented
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Figure 5.15: Load displacement curve for example with the eccentric hole example.

Figure 5.16: Crack propagation at four different snapshots highlighted in Figure 5.15.

85



in Ozdemir (2019).

5.5 Summary

In this chapter, a thermodynamically consistent computational framework for brittle fracture
using phase-field has been outlined. Three different methods are proposed for obtaining a
consistent tangent matrix necessary linearisation. A monolithic solution strategy has been
utilised to simultaneously solve for displacements and the phase-field variables. In order to
accurately and effortlessly trace the dissipative loading path, an arc-length procedure has been
implemented that controls the incremental internal and dissipated energy with an adaptive step
size. The chosen algorithm is robust and requires only two parameters provided by the user.
Additionally, MoFEM’s hierarchical basis functions of arbitrary polynomial order are utilised
to increase the order of approximation without the need to change the finite element mesh. The
investigation conducted herein demonstrates that the phase-field approach is relatively simple
to implement and gives qualitatively comparable results for brittle fracture. In two presented
examples, the equilibrium paths, as well as crack propagation patterns, are consistent with the
literature.
The main drawback of the phase-field models is the necessity of using an enormous number
of elements to approximate the sharp cracks. It is especially apparent in the three-dimensional
setting, where the number of elements grows dramatically. Therefore, further development of
mesh adaptive refinement techniques is crucial for the efficiency of the proposed computational
approach. Another substantial disadvantage is the number of model parameters that can
significantly affect the results, like length scale l0, choice of the degradation function or mesh
element size.
In Chapter 7, phase-field is further investigated for crack propagation in heterogeneous
materials and directly compared to the configurational force driven approach.
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Chapter 6

Configurational force driven fracture
mechanics

The objective of this chapter is to present a discrete crack propagation formulation within
the context of configurational mechanics. The local form of the first law of thermodynamics
provides an equilibrium condition for the crack front, expressed in terms of the configurational
forces and material resistance. Application of the maximal energy dissipation principle
provides the direction of the configurational forces and crack propagation. The main advantage
of the presented approach is that crack release energy is expressed exclusively in terms of nodal
quantities, which enables fully implicit formulation for evolving crack. Stress singularity at the
crack tip is modelled accurately in an unstructured tetrahedral mesh domain by using an old
concept of Quarter Point Elements. Furthermore, the approach is extended to include additional
configurational force contributions originating frommaterial heterogeneities. Performance and
accuracy of the proposed framework are demonstrated by means of representative numerical
simulations.

6.1 Introduction

6.1.1 Material force concept

Most of the known materials, on some scale, cannot be considered as perfect continua, because
they contain numerous defects like microcracks, inclusions, voids or dislocations. To identify
the interaction between these imperfections in the material manifold, the concept of a material
force has been introduced. Similarly, to force acting on a body in physical space, material forces
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Figure 6.1: Schematic definition of physical and material spaces: a) mass under gravity in
physical space; b) inclusion in solid in material space.

characterise forces acting on defects in material space. Following Kienzler and Herrmann
(2012), to illustrate that concept two examples are depicted in Figure 6.1: a particle in physical
space ( 6.1a)) and inclusion in a solid undergoing deformation ( 6.1b)). The physical space is
usually assumed to be Euclidian, homogeneous and not changing in time. The total potential
of a particle at spatial position x in a gravity field g is Ψ = mgx. The physical (or often called
Newtonian) force acting on that particle with mass m has the form:

F = −
∂Ψ

∂x
. (6.1)

In the second example (Fig. 6.1b)) an elastic plate is subjected to tension t and contains an
inclusion at a distance X. In this case, the total energy Ψ depends on several quantities αi and
the position in material space X. The force G acting on a defect is expressed as:

G =
∂Ψ(αi,X)

∂X
. (6.2)

The concept of material forces was introduced by Eshelby (1951). In the original paper
Eshelby recognised that classical theory of elasticity does not desribe forces acting on defects,
inclusions or crack tips. In his work he found that elastic field carries energy momentum tensor,
which can be derived from variational principles like Least Action Principle (Noether, 1971).
In the Eshelby’s thought experiment, force G can be computed by using energy momentum
tensor. Let δξ be an infinitesimal displacement applied on an inclusion surface S as presented
in Figure 6.1 while keeping the same load t on the surface of the solid. The change in the
energy of the system can be expressed as:

δΨ = −δξ

∫
S

(
ΨI − FTσσσ

)
n dA, (6.3)

where n is a vector normal to inclusion surface S, Ψ is the internal strain energy,σσσ is the stress
tensor (e.g. Cauchy) and F - deformation gradient. It can be assumed that energy change δΨ
is equal to work of configurational force G on the infinitesimal (virtual) displacement δξ:

δΨ = δξG (6.4)
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Furthermore, with Equations 6.3 and 6.4 at hand, force G can be expressed as:

G = −
∫

S

(
ΨI − FTσσσ

)
n dA = −

∫
S
Σn dA, (6.5)

where Σ energy momentum tensor, often also called the Eshelby stress tensor. A detailed
and straightforward derivation of can be found in (Eshelby, 1975). Energy momentum
acts in material space and it is analogous to Cauchy stress tensor in physical space. The
material forces are often also referred as quasi-force, driving force, configurational force
or non-Newtonian force. When inertia effects are neglected, the Eshelby stress coincides
with the J-integral (Rice, 1968), which is equal to the strain energy release rate for a crack
in a homogeneous linear elastic body. The concept of the J-integral is directly related to
configurational mechanics as investigated in-depth, e.g. in Gurtin (1999); Maugin (2016).

6.1.2 Material forces in fracture mechanics

The past two decades have seen a growing interest in configurational force approach for
analysis of material imperfections (Maugin, 2016) and in particular for evaluating the forces
driving crack advancement (Kaczmarczyk et al., 2017; Steinmann et al., 2001). In order to
simulate full crack propagation, multiple thermodynamically consistent frameworks have
been presented which utilise the principle of maximal dissipation at the crack tip for brittle
materials (Guerses and Miehe, 2009; Kaczmarczyk and Pearce, 2011). Ozenc et al. (2016)
proposed an algorithm based on the principle of local symmetry to model dynamic crack
bifurcation phenomenon using configurational force approach. One of the main difficulties
of nodal-force-based is the need for resolving the evolving discrete crack geometry within
the finite element mesh. The topological changes in the mesh can create distorted, poor
quality elements, leading to numerical errors. To mitigate this problem, initially, r-adaptive
mesh alignment method was proposed, e.g. in Miehe and Gürses (2007); Guerses and Miehe
(2009) with further enhancements to preserve the mesh quality proposed in Kaczmarczyk et al.
(2014). More recently, a mesh cutting algorithm has been presented in Pearce (2019) in
which the nodes on the crack front are always moved exactly according to the equilibrium.
Subsequently, the elements in the way are cut and remeshed.
However, such discrete approach has never been used to effectively assess configurational
forces in heterogeneous bodies with cracks. This work brings all together new developments
in configurational mechanics framework for fracture and extends it with the capability of
analysing implicit, energy consistent crack propagation in heterogeneous materials like bones.
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6.2 Energy consistent framework for crack propagation

6.2.1 Preliminaries

Figure 6.2 shows an elastic body with an initial crack in the reference domain B0. As a
result of loading, the crack extends, and the body deforms elastically. Working within the
framework of configurational mechanics (Kienzler and Maugin, 2014; Kaczmarczyk et al.,
2014), it is convenient to decompose this behaviour into solely an extension of the crack in
the material domain Bt followed by elastic deformation only in the spatial domain Ωt . The
former is described by the mapping from the reference domain to the material domain Ξ,
while the mapping describes the latter from the material to the spatial domain ϕ. The material

Current material
domain

Spatial domain

Reference material
domain

ϕ(X, t)

Φ(χ, t)

χ

X x

H h

Bt

B0

Ωt

F = hH−1

Ξ(χ, t)

Figure 6.2: Decomposition of crack propagation in elastically deforming bone.

coordinates X are mapped onto the spatial coordinates x via the familiar deformation map
ϕ(X, t). The physical displacement is:

u = x −X (6.6)

The reference material domain describes the body before the crack extension. Ξ(χ, t) maps
the reference material coordinates χ onto the current material coordinates X, representing a
configurational change, i.e. extension of the crack due to advancement of the crack front. Φ
maps the reference material coordinates χ onto the spatial coordinates x. The current material
and spatial displacement fields are given as:

W = X − χ and w = x − χ (6.7)
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H and h are the gradients of the material and spatial maps and F the deformation gradi-
ent (Kaczmarczyk et al., 2014), defined as:

H =
∂Ξ

∂χ
, h =

∂Φ

∂χ
, F =

∂ϕ

∂X
= hH−1 (6.8)

The time derivative of the physical displacement u and the deformation gradient ÛF (material
time derivative) are given as (Kaczmarczyk et al., 2014):

Ûu = Ûw − F ÛW ÛF = ∇X Ûx = ∇X Ûu = ∇X Ûw − F∇X ÛW (6.9)

6.2.2 First and second laws of thermodynamics

The first law of thermodynamics can be expressed as∫
∂Bt

Ûu · tdS =
∫
∂Γ
γ ÛAΓ +

d
dt

∫
Bt

Ψ(F, ρ)dV (6.10)

where the left-hand side is the power of external work, the first term on the right-hand side
is the rate of crack surface energy, and the last term is the rate of internal energy. t is the
external traction vector, γ is the surface energy [Nm−1], ÛAΓ is the change in the crack surface
area, and Ψ is the volume-specific free energy. The crack surface Γ comprises two crack faces
and a crack front ∂Γ - see Figure 6.3. In Kaczmarczyk et al. (2017), a kinematic relationship

Lt(ξ)

Bt
C

∂Γ

Γ−

Γ+
∂Bt

C

Γ−

Γ+
N+

N− Ln(η)

Figure 6.3: Crack construction. In 2D (left) and in more detail in 3D (right).

between the change in the crack surface area ÛAΓ and the crack front velocity ÛW was derived as:

ÛAΓ =
∫
∂Γ

A∂Γ · ÛWdL (6.11)

where A∂Γ is a dimensionless kinematic state variable that defines the orientation of the
current crack front that can be considered a unit vector normal to the crack front and tangential
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to the crack surface. In deriving this expression, it was recognised that any change in the
crack surface area ÛAΓ in the current material space can only occur due to motion of the crack
front. Making use of Equations 6.9 and 6.11, and given that d ÛV = ∇X ·WdV , Eq. 6.10 can be
reformulated as:∫

∂Bt

(
Ûw · t − ÛW · FTt

)
dS =

∫
∂Γ
γA∂Γ · ÛWdL +

∫
Bt

(
P : ∇X Ûw + Σ : ∇X ÛW + finh · ÛW

)
dV

(6.12)
where

Σ = Ψ(F, ρ)I − FTP(F, ρ), and finh =
∂Ψ

∂ρ

����
(F=const)

∂ρ

∂X
(6.13)

Σ is the Eshelby stress tensor, and finh is an additional fictitious force that drives the crack
front from dense to less dense material as a result of variations in the density field. The first
Piola Stress tensor P, in case of heterogeneous materials has the same form as presented in
Eq. 4.7: P = [ρ/ρ∗0]

n ∂Ψ(F)/∂F. The spatial conservation law of linear momentum balance is
repeated here:

∇X · P = 0 ∀X ∈ Bt, Pn = t ∀X ∈ ∂Bσt , (6.14)

where ∂Bσt is the region of the boundary where tractions are applied. The equivalent material
momentum balance is expressed as:

∇X · Σ = finh ∀X ∈ Bt, Σn = FTt ∀X ∈ ∂Bσt (6.15)

It is important to note that finh = 0 in the case of homogeneous materials, with uniform
density distribution. After applying the divergence theorem to Eq. 6.12 and recognising the
momentum balance laws, following Kaczmarczyk et al. (2017) a local form of Eq. 6.12 is
established, which represents an expression for the equilibrium of the crack front as

ÛW · (γA∂Γ −G) = 0 (6.16)

where the configurational force G is the driving force for crack propagation:

G = lim
|L|→0

∫
Ln

ΣN dL (6.17)

From Equation 6.16, it is clear that the crack front is in equilibrium when the crack is not
propagating, i.e. material velocity ÛW at the crack front is zero, or when the crack front
is propagating, and the configurational force is in equilibrium with the material resistance
γA∂Γ. It should be noted that crack front equilibrium is unaffected by material heterogeneities
and does not depend on finh. All terms in Eq. 6.16 are only evaluated at the crack front.
However, it will be shown in Section 6.2.5 that, in a discrete setting, calculation of the nodal
configurational forces involves a volume integral of the density gradient.
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6.2.3 Fracture process

In the present work, bone is considered to be perfectly brittle. The likelihood of fracture is
evaluated for the direction of crack propagation that results in maximum energy dissipation.
Healing processes or additional dissipation arising from cohesive forces or plastic flow due
to crack opening, as observed in quasi-brittle materials, are not taken into account. Future
extension of the present model could include such processes, e.g. accounting for finite fracture
zone.
Since Eq. 6.16 has more than one solution at equilibrium, depending on whether the crack
does or does not propagate, the formulation is supplemented by a straightforward criterion for
crack growth, equivalent to Griffith’s criterion (Kaczmarczyk et al., 2017):

φ(G) = G ·A∂Γ − gc/2 ≤ 0, (6.18)

where gc = 2γ is a material parameter specifying the critical threshold of energy release per
unit area of the crack surface Γ, also known as the Griffith energy. For a point on the crack
front to satisfy the crack growth criterion, either φ < 0 and ÛW = 0, or φ = 0, ÛW , 0 and
γA∂Γ = G. The crack will propagate only when crack release energy is equal to material
toughness (and will be arrested when it is lower than toughness). The condition that the crack
release energy is greater than the material toughness is an inadmissible state. The direction
of fracture propagation is constrained by the second law of thermodynamics. In the context
of bones, it is assumed that fracture takes place relatively fast compared to the process of
adaptation (with no healing), such that non-negative dissipation at the crack front can be
expressed as:

Dmax = γ ÛW ·A∂Γ = ÛW ·G ≥ 0 (6.19)

For brittle fracture, from all possible crack propagation directions, the one which maximises
dissipation of energy is chosen, leading to the following equation:

γA∂Γ = G, (6.20)

where the magnitude of G can be interpreted as the crack release energy gc = 2γ,

gc/2 = G ·A∂Γ (6.21)

It should be noted that the well-established stress intensity factors are not applicable in the
case of heterogeneous materials since it requires the existence of an analytical solution for the
stress field in the vicinity of the crack front that is independent of the arbitrary distribution of
density. Similarly, the use of J-integral requires integration over the closed surface without
inhomogeneities (including heterogeneous density distribution), except for the crack front
itself and therefore not applicable in this case. Finally, it is worth noting that the current
framework is formulated within the realm of large displacements and large strains; hence it is

93



generally valid under any assumption for strains and displacements.

6.2.4 Density field

The previous subsections have shown that fracture modelling of heterogeneous materials is
influenced by the density distribution in the material configuration. This density field can
be generated from either a) a bone adaptation analysis, solving Eq. 4.5,4.6 (see Section 4.2),
or b) subject-specific data (geometry and material properties) available from, for example,
computed tomography (CT) scans (see Section 3.5.1). In the numerical examples presented in
Section 7.3.2, both sources of density data are used.
Previous examples in the literature of subject-specific modelling to assess the stresses and frac-
ture risk of bones can be found in (Poelert et al., 2013; Helgason et al., 2008a; Yosibash et al.,
2010). Most algorithms that use voxel data have simply averaged (Zannoni et al., 1999)
or integrated data onto finite elements, thereby supplying a constant density within their
volume (Taddei et al., 2007; Schileo et al., 2008) which results in a very irregular density
distribution.

In order to evaluate the configurational forces at the crack front, it is necessary to have a
spatially smooth density field. As shown in Eq. 6.13, the inhomogeneous force appearing in
the first law of thermodynamics, requires a computation of the density gradient. Therefore, the
density function has to be at least C1-continuous in order to provide continuous derivatives. To
achieve required smoothness, discrete density data will need to be approximated as a smooth
density field, and this will be achieved by adopting the Moving Weighted Least Squares
(MWLS) method. This mapping approach is chosen since it offers higher regularity (i.e.
higher derivatives exist) than when the field is directly approximated on the finite element
mesh. More details about MWLS implementation are given in Section 3.3.2. Moreover,
higher regularity is also essential for the tangent stiffness matrix, where the second derivative
of the density field ∂2ρh/∂X2 appears.

6.2.5 Discretisation

Three-dimensional domains are discretised with tetrahedral finite elements. Fields are
approximated in the current material and current spatial spaces with hierarchical basis
functions of arbitrary polynomial order, following the work of Ainsworth and Coyle (2003).

Xh(χ, t) =ΦΦΦ(χ)X̃(t), xh(χ, t) =ΦΦΦ(χ)x̃(t) (6.22)

Wh(χ, t) =ΦΦΦ(χ) Û̃W(t), wh(χ, t) =ΦΦΦ(χ) Û̃w(t) (6.23)
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where Φ are shape functions, superscript h indicates approximation and (·̃) nodal values.
Moreover, the smoothed density field is approximated by MWLS shape functions:

ρh,MWLS(X, t) = ΦMWLS(X)ρ̃ρρh(Ξ(χ), t) (6.24)

It should be noted that shape functions ΦMWLS(X) are evaluated at current material points, X,
rather than reference points, χχχ, as presented in Eq. 6.23 with the property of partition of unity.
Since the density field is evaluated at X, the approximation is independent of changes of the
material configuration (i.e. changing mesh).
The residual force vector in the discretised spatial domain is expressed in a classical way as:

rhs (ρ̃ρρ(t), x̃(t)) = τfhext,s − fhint,s = τ
∫
∂Bh

t

ΦΦΦ
TfextdS −

∫
Bh
t

∇XΦΦΦ
TPh,MWLSdV = 0, (6.25)

where τ is the unknown scalar load factor, fhext,s is the vector of externally applied forces and
fhint,s is the vector of internal forces. The discretisation of Eq. 6.16 establishes the material
counterpart to Eq. 6.25, expressed as

rhm(ρ̃ρρ(t), x̃(t)) = fhres − G̃h = 0 (6.26)

G̃h is the vector of nodal configurational forces only on nodes on the crack front, with the
integration restricted to elements adjacent to the crack front:

G̃h =

∫
Bh
t

∇XΦΦΦ
T
ΣΣΣ

h,MWLSdV +
∫
Bh
t

ΦΦΦ
T ∂Ψ

h,MWLS

∂ρh,MWLS

(
∂ρh,MWLS

∂X

)
dV (6.27)

These configurational forces are the driving force for crack propagation. It should be noted
that the second term of G̃h reflects the influence of the spatially varying density. In the case of
a homogeneous material, this second term would be zero. It should also be noted that this
is only the case for the discretised configurational forces and that the continuum equivalent
(Eq. 6.17) is unaffected by variation in the density field.
Let the whole surface ∂Bh

t of the body domain, Bh
t , at current material configuration be

discretised by non-overlapping triangles Ti whose collection is defined as:

T :=

{
T ∈ ∂Bh

t : Ti ∩ Tj = ∅ and ∂Bh
t =

t∑
i

Ti

}
(6.28)

where t is the total number of triangles on ∂Bh
t . Furthermore, crack front is approximated

by edges Γh, defined similarly to triangles, but with one dimension lower. With the above at
hand, the triangulated domain can be defined with triangles that are part of body boundary
and adjacent to the crack front as:

Sh
Γ :=

{
X ∈ T : ∂T ∩ Γh , ∅

}
(6.29)

95



Next, Zfront is a matrix comprising direction vectors along the crack front that are normal to
the crack front and tangent to the crack surface, and it can be defined as follows

Zfront =

∫
Sh
Γ

ΦΦΦ
T ∂Ah

Γ

∂X̃
dL (6.30)

The crack surface tangent vector Zfront is evaluated by only integrating over Sh
Γ
that defines

the area of those triangular finite elements that discretise the crack surface Γh adjacent to the
crack front ∂Γh.

Ah
Γ = ‖N(X̃)‖ =






εi j k
∂Φα

p

∂ξi

∂Φ
β
r

∂ξ j
X̃α

p X̃ β
r






 (6.31)

where α, β ∈ {0, . . . ,Nbase} are numbers of base functions, i, j,p,r ∈ {0,1,2} are material
indices and ε is Levi-Civita tensor. Moreover, the total number of degrees of freedom on
element is 3(Nbase + 1) and the units of Zfront are [m−1]. N are the normals to the crack
surface Γ. Therefore, multiplication of Zfront with nodal crack release energy gc results in the
evaluation of crack configurational forces:

fhres =
1
2
(Zfront)

Tg̃h (6.32)

where g̃h = 1gc is a vector of size equal to the number of nodes on the crack front. The Griffith
configurational force can be considered as a crack resistance. Combining Eqs. 6.32 and 6.27
equilibrium at the crack front can be evaluated through the residual:

rh
m =

1
2
(Zfront)

Tg̃h − G̃h = 0 (6.33)

Subsequently, by multiplying Eq. 6.33 on both sides with Zfront and solving for g̃h the
expression below is obtained:

gh = 2
[(

Zfront(Zfront)
T)−1

Zfront
]

G̃h (6.34)

The nodal configurational forces G̃h are evaluated at the crack front nodes. Moreover, the
dimension of the configurational nodal force is [J/m], but Griffith crack release energy should
be in units [J/m2]. That discrepancy disappears in-plane stress analysis, where configurational
forces are divided by the thickness of the body. The magnitude of nodal configurational forces
at the crack front node is the value of J-integral. In the case of 3D analysis, to remove that
discrepancy in units, some researchers divide adjacent edges into half (Guerses and Miehe,
2009). However, that gives the correct value for crack release energy only for straight crack
fronts.
It can be noticed that by comparison of Eq. 6.34 with Theorem 1(3.) in Ainsworth (2001)
nodal Griffith surface energy g̃h could be interpreted as a Lagrange multiplier constraining the
crack area growth. Furthermore, dimension term in square brackets on the left-hand side of
Eq. 6.34 is [1/m] which multiplied by the dimension of configurational force [J/m] gives the
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dimension of crack release energy, i.e. [J/m2]. Thereby, the main advantage of the presented
approach is that crack release energy is expressed exclusively in terms of nodal quantities,
which enables the implicit formulation of crack propagation algorithm.

6.2.6 Arc-length control

Following Kaczmarczyk et al. (2017), the discretised balance equations are solved iteratively
using the Newton-Raphson method for the spatial and material displacements. To trace an
equilibrium path which may exhibit snap-through and snap-back phenomena, an arc-length
control is adopted. The global system of equations is augmented with a load control equations
that constraints the crack area increment for each load step. The additional residual vector
which has to be satisfied is defined as

rτ =
∑

k

(
Zfrontxn

)
k
−

∑
k

(
ZfrontX̃i+1

n+1

)
k
− ∆AΓ = 0 (6.35)

where ∆AΓ is the target increment of the crack area and k is the crack front node.

6.2.7 Linearised system of equations

The residual Equations 6.26 6.25 and 6.35 are linearised in a classical procedure for the
Newton-Raphson method. Since the material residual is non-zero only for nodes on the crack
front, herein the material nodal positions X̃ are decomposed into those at the crack front X̃ f

and the rest of the mesh X̃b i.e. X̃ = X̃ f ∪ X̃b. The resulting linear system of equations for
iteration i and load step n + 1 is expressed as:

∂x̃rhs ∂τrhs ∂X̃ f
rhs ∂X̃b

rhs

0 0 ∂X̃ f
τh 0

∂x̃rhm 0 ∂X̃ f
rhm 0

∂x̃fhq 0 ∂X̃ f
fhq ∂X̃b

fhq





δx̃i+1

δτi+1

δX̃i+1
f

δX̃i+1
b


= −



rhs

rτ

rhm

fhq


(6.36)

where the vector fhq is associated with material positions X̃b. In addition, the system in
Equation 6.36 is augmented with mesh quality control and shape-preserving constraints and
their corresponding degrees of freedom and Lagrange multipliers. These additional equations
ensure high quality the constantly changing mesh and preserve the surfaces of the material
domain, including the surfaces of the crack. For more details, see Kaczmarczyk et al. (2017).
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a) b)

c) d)

Figure 6.4: a) Nodal configurational force. b) Crack front extension. c) Mesh reconstruction
around the tip. d) MWLS mapping onto new material points.

At the beginning of each new load step, the material configuration is updated to the current
material configuration, utilising the Total Arbitrary Eulerian-Lagrangian approach.

6.2.8 Crack topology resolution

Continuous crack surface evolution requires constant adjustments into finite element mesh
during the analysis. In this work, the new crack front is generated by moving the nodes
in the direction to establish equilibrium, resulting in maximum energy dissipation (see
Eq. 6.19). The mesh is not split, or the connectivity changed. Once the quality of the
elements deteriorates, typically after 3-4 advancements, the mesh is cut by the resulting new
crack surfaces. Subsequently, the crack surface is remeshed; the surrounding elements are
trimmed and merged. These procedures are executed in an iterative manner to minimise
the number of distorted elements in the new mesh. Nevertheless, the reconstructed crack
surface can occasionally still contain mediocre quality elements (Jacobian J < 0.1), however,
this deficiency is compensated by the use of higher-order and p-adaptive elements within
hierarchical basis framework (Kaczmarczyk et al., 2020; Ainsworth and Coyle, 2003). Finally,
after rebuilding the mesh around the crack surfaces, the field of material parameters (density)
is mapped onto new elements. The data is stored on the vertices of a background mesh which
does not change throughout the analysis. During the assembly process for each new step, using
meshless MWLS, the data is approximated from the neighbour vertices to any considered
material point of the new mesh. A schematic procedure of this process is shown in Figure 6.4.
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6.2.9 Singularity element

In order to accurately determine parameters like stress intensity factors, it can be useful to
reproduce the singular stress field at the crack front. However, conventional finite elements
that adopt polynomial approximation functions are unable to do this. In this work, a new
type of finite element with hierarchical approximation functions that overcome this problem
is shortly presented. The idea is inspired by the so-called quarter-point elements, initially
developed in the 1970s, whereby the mid-node of all edges connected to the crack tip node
were shifted to the quarter-point (Barsoum, 1976; Henshell and Shaw, 1975). The result of
such a shift is a nonlinear mapping between natural (isoparametric) and local coordinates
ξ → x which produces the square root singularity. Stress and strain fields are dependent on
the radial function of the crack tip, reaching infinity as r → 0.

An example derivation of Quarter Point Element for one dimensional case is presented in Ap-
pendixD. The influence of this approach for tetrahedral elements is investigated in Section 6.3.1.

6.3 Benchmark problems

6.3.1 Stress intensity calculations

In this section, two numerical examples are presented to examine the calculation of config-
urational forces. First, a simple quasi-two-dimensional plate with homogeneous material
distribution is considered. The convergence study utilises an analytical solution as a reference.
Second, the singularity elements are used for the same plate problem, and their influence on
the rate of convergence is presented.

The stress intensity factors are commonly used in fracture mechanics to predict stress intensity
at the crack tip. They identify the influence of deformation and help to provide empirical
failure criterions for brittle materials. The stress intensity K from finite element solutions is
typically obtained as a post-processing step in linear stress analysis and well known analytical
formulas utilising the value of energy release G (Zehnder, 2007). In case of plane stress, the
relation looks as follows:

G = K2
(

1
E

)
(6.37)

where E is the Young’s modulus. The energy release associated with the crack growth is
then computed by using J-integral (Shih et al., 1986), which in quasi-static and homogeneous
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material case is defined as follows:

J = lim
Γ→0

∫
Γ

(
ΨI −σσσ ·

∂u
∂x

)
n dΓ (6.38)

It can be noticed that the J-integral without inertial contributions or heterogeneities is
equivalent to energy release calculated in Equations 6.13 and 6.17. In order to compute
material force G, a simple linear elastic problem with existing crack is solved. From resulting
displacements, G at the crack tip is calculated using the integral in Eq. 6.27. Finally, with the
relation in Eq. 6.37 stress intensity factors can be obtained.

Finite plate with a horizontal crack

This example involves a finite plate with height, hpl = 10, thickness tpl = 1 and half width
bpl = 2.5 and a horizontal through-thickness crack with half width apl = 1, as presented
in Figure 6.5a). All input parameters presented are dimensionless. The plate is spatially
discretised using 1384 tetrahedral elements and subjected to uniaxial stress in the longitudinal
direction, as indicated in Figure 6.5b). Displacements are constrained on three vertices
of the plate to prevent rigid body motion. The purpose of this analysis is to calculate

Horizontal
through-
thickness
crack

Elementswith
global order pg

Elementswith
local order pl + pg

σ = 1

σ = 1

2apl = 2

2bpl = 5 t pl
= 1

h p
l
=

10

a) b)

Figure 6.5: Finite plate with a horizontal crack. a) Plate geometry and through-thickness
crack. b) Applied uniaxial stress σ and finite element mesh where elements presented with
grey colour have the approximation order pg and elements that have vertices at the crack tip,
presented with yellow colour, have the approximation order pl + pg.

the Mode I stress intensity factor KI and compare the results to the following analytical
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solution (Rooke and Cartwright, 1976) for an infinite plate:

KI = σ
√
πapl


1 − apl

2bpl
+ 0.326( apl

bpl
)2√

1 − apl
bpl

 , (6.39)

where σ is the applied stress. Young’s modulus E and Poisson’s ratio ν are 1000 and 0.3,
respectively. Hierarchical approximation basis functions allow for usage of elements with
different orders of approximation. Hence, the influence of local and global p - refinement is
investigated. In general, all tetrahedrons of the mesh have a global order of approximation,
pg, with some elements subjected to a local refinement of order pl. pl + 1 to pl + pg. When
pl+ pg ≤ 3, two types of tetrahedral elements are consideredwhere local order of approximation
is increased to pl + pg only at elements with vertices at the crack tip as presented in Figure 6.5b.
Otherwise, a number of groups of tetrahedrons with different orders of approximation are
considered. Similar to the case where pl + pg ≤ 3, the first group of elements is composed
of the tetrahedrons with vertices at the crack tip and have approximation order pl + pg. The
second group of elements is consisted of the tetrahedrons adjacent to the first set elements,
with approximation order that is one less than the previous set, i.e. pl + pg − 1. This process
continues for each next adjacent group of tetrahedrons until the approximation order reaches
the global order of approximation, pg. All analyses presented were run using the same mesh
with p-refinement varying from 1st-order to 6th-order so that pl + pg ≤ 7. The Mode I stress
intensity factor, KI, can be calculated directly from the output configurational forces using the
following relationship:

KI =
√

GIE (6.40)

where GI is the change of elastic strain energy per unit area of crack growth, calculated using
Eq. 6.17. In this simple plane strain case, the configurational force vector G is aligned with
the crack, therefore the first component of the vector can be used to compute stress intensity
in Mode I. The deformed shape of the plate is illustrated in Figure 6.6. From the graph, it
is evident that, for the same coarse mesh and number of nodes, the solution can improve
drastically when the order of approximation is increased. The well-known pathological nature
of the 1st order solution due to shear locking is observed since a much higher error than
other orders is computed. The minimum achieved error is 0.50% for all the cases with total
order of approximation pl + pg = 7. Therefore, it can be observed that the same level of
accuracy can be accomplished when using a low order of global approximation with only local
p - refinement as with high order on the entire mesh. Moreover, by looking at the number
of degrees of freedom, it can be observed that using higher-order elements locally results to
the same accuracy at a much lower cost of computation time since the global matrix is much
smaller.
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Figure 6.6: Convergence plot for stress intensity factor KI Error (%) versus no. of DOF
(log10) and deformed shape of the plate (bottom left).

Influence of singularity elements

The same problem as in Section 6.3.1 is investigated. This time, however, singularity on
tetrahedral elements around the crack front are applied. Based on the results in Figure 6.7,
it is evident that using singularity elements improves the convergence rate significantly and
lowered the error by order of magnitude, from 0.50% down to 0.028%. However, it can be
seen from the plot in Figure 6.7 that for each pl + pg combination, just after reaching the
minimum error, it starts increasing again. This observation suggests that the solution cannot
be further improved beyond that point only by enhancing the order of approximation. Possibly,
by refining the mesh and changing the model length (to better replicate the infinite plate used
to determine the analytical solution), the error could be decreased even more. Nevertheless,
this is considered sufficiently accurate for the purpose at hand.
Overall, these results indicate that it is of great benefit to use the singularity elements since
they improve the accuracy of the solution with no extra cost. Furthermore, the difference in
execution time for the analysis with and without their inclusion was negligible.

6.3.2 Configurational forces in a heterogeneous body

So far, the numerical examples have assumed homogenous material properties. The next
section considers the effect of heterogeneous material. Considering the same problem of the
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Figure 6.7: Convergence plot for stress intensity factor KI Error (%) versus no. of DOF
(log10).

finite plate with horizontal crack, a density field ρ(x, y, z) = 0.125y + 1 is directly assigned to
the integration points of each tetrahedral element. The distribution of the density varying
between 1.05 and 1.55 is depicted in Figure 6.8.

As expected, configurational forces are induced at the crack tip under load, and these are
influenced by the non-uniform density distribution (see Eq. 6.15). However, the stress
intensity factors or J-integral in the case of heterogeneous materials are difficult to calculate
or obtain experimentally (Fischer et al., 2014). Due to the inhomogeneities the J-integral
becomes path dependent and require special correction terms to be computed (Eischen,
1987; Chang-chun et al., 2002). An exception is the particular case of functionally graded
materials (Kim and Paulino, 2002). A straightforward verification can be performed by using
a simple numerical differentiation method like centered Finite Difference Method (FDM).
Following Griffith’s work (Griffith, 1921), the energy release rate for crack growth can be
calculated as the change in elastic strain energy per unit area of crack growth:

GI =
∂ψ

∂apl
(6.41)

where ψ is the elastic energy of the system, and apl is the crack length. This derivative can be
calculated using FDM as:

∂ψ

∂apl
= lim
∆apl→0

ψ(apl + ∆apl) − ψ(apl − ∆apl)

2∆apl
(6.42)
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Figure 6.8: Convergence of error in release energy rate from Finite Difference Method.
Density distribution (bottom right).

where the elastic strain energies ψ(apl ± ∆apl) can be obtained simply by running two addi-
tional analyses of the finite plate with horizontal cracks of lengths: (a + ∆apl) and (a − ∆apl),
where ∆apl is a very small value. Next, knowing the resulting release energy with the
crack length of apl, a relative error can be calculated. Twenty-four analyses for different
levels of p - refinements and values of ∆apl ) have been performed in order to determine
the error in the release energy. The results are presented in Figure 6.8. It is apparent from
the plot that with increasing levels of p-refinement, the error in release energy is converg-
ing down to 0.3%. It is worth noting that for a homogeneous case, similar accuracywas attained.

In the next test the above problem is repeated for a more difficult case - a strong horizontal
gradient of the density field defined as: ρ(x, y, z) = 10x + 1. The distribution of the density on
the plate, varying between 1.0 and 51.0, is depicted in Figure 6.9. Nevertheless, the results
for three different values of ∆apl, similarly to the previous case, are converging with each
p-refinement to 1.8% error. Achieving higher precision with FDM validation is difficult due
to the accumulation of truncation, approximation and discretisation errors. Therefore, it can
be deduced that the presented implementation allows for estimation of release energy for
heterogeneous domains with a satisfactory level of accuracy.
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Figure 6.9: The convergence of error in release energy rate from the Finite Difference Method
with horizontal gradient. Density distribution (bottom right).

6.3.3 Crack propagation in heterogeneous two-dimensional plate

To demonstrate the performance of the implementation for full crack propagation for quasi-
static loading, a numerical example is presented, which considers a thin plate subjected to
the 3-point loading. The dimensions of the specimen are 0.5 x 0.5 x 0.02mm. The model
is spatially discretised using 2nd order tetrahedrons. The vertical force with magnitude of
1000 N is applied in the middle top of the plate applied on 0.02 x 0.02mm area. The material
density is prescribed by function of spatial coordinates: ρ(x, y, z) = 2x + 1. Similar to bones,
Young’s modulus depends on the density in a power-law model of the form: E = aρn MPa,
where coefficients a and n are chosen to be 9200 and 2, respectively. Poisson ratio ν is equal
to 0.3 and critical Griffith energy release parameter gc = 1N/mm The crack is initialised in
the middle bottom of the plate with length of 0.025mm. The analysis is conducted for three
different meshes consisting of 1340, 5145 and 10341 elements. Figures 6.10 and 6.11a)
shows that configurational forces are driving the crack in the direction opposite to the density
gradient.
It should be noted that the crack path is smooth even for a coarse mesh. The load-displacement
curves in Figure 6.11b) demonstrate that the results for the consecutive refinements are
converging. The presented value of displacement is known as the generalised displacement
and does not represent a particular point on the structure, but its value is work conjugate to the
applied forces and is calculated as ug = 2Ψ/τf, where f = 1N is the reference force, and Ψ is
the total elastic energy integrated over the domain, τ is the arc-length load factor, and ug is the
generalised displacement. These results indicate the ability of the formulation to accurately
and robustly predict crack paths for heterogeneous bodies without bias from the original mesh.
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Figure 6.10: a) Geometry and boundary conditions for plate example. b) Contours of crack
evolution on a map of P11 stress.
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Figure 6.11: Heterogeneous 3D plate. a) model geometry with predicted crack, material
distribution and coarse discretisation with 1340 tetrahedral elements. b) load-displacement
response for three consecutive h-refinements.
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6.4 Summary

This chapter presented a formulation for brittle fracture in elastic solids within the context of
configurational mechanics that includes the influence of heterogeneous density distribution.
Configurational forces are the driver for crack propagation, and it was shown that in order
to evaluate these forces correctly forces at the crack front it is necessary to have a spatially
smooth density field, with higher regularity than if the field is directly approximated on
the finite element mesh. Therefore, density data is approximated as a smooth field using a
Moving Weighted Least Squares method, that allows for the computation of higher-order
derivatives. Numerical convergence was demonstrated for a simple finite plate, and the use of
singularity elements was shown to further improve the rate of convergence. Furthermore, the
calculated release energy rate was verified using centered FDM. The numerical example of
plate heterogeneous material properties have been presented to demonstrate both the accuracy
and robustness of the formulation.
In the next Chapter 7, the demonstrated configurational force driven approach is utilised for
analysing release energy and crack propagation in adapted bones.
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Chapter 7

Numerical investigations

The objective of this chapter is to assess the current state of development of the implemented
framework in the form of numerical examples. In the first example, the remodelling of a
proximal femur is considered. The developed model is utilised for assessment of the long-
time response of the proximal femur bone to a hip replacement treatment. Subsequently, a
comparative study of discrete and smeared approaches for approximating fracture is conducted.
The presentation and discussion of the numerical results provide an insight into the potential
of both methods for simulating large-scale crack propagation problems with homogeneous
and heterogeneous material properties. Finally, a full framework for estimating bone fracture
resistance is demonstrated. It combines all the advancements presented in Chapters 3, 4
and 6 to simulate training regime exerted on the equine MC3 bone and the following crack
propagation.

7.1 Simulation of proximal femur adaptation

The proposed finite element framework has to be able to predict bone density distributions
of horses undergoing specific trainings, as stated in Section 1.1. The accurate estimation
of the bone stiffness is essential for calculating its resistance to fracture and possible injury
prevention. In order to validate predictive capabilities of the used bone remodelling model, a
well-studied hip-replacement procedure is considered and its long term influence on the density
distribution. Total hip replacement is a common surgical procedure, where the damaged
proximal end of the femur is replaced by a prosthesis, typically a metal ball attached to a stem
inserted inside the bone. The method is very effective for fixing major fractures for elderly
patients. However, long-term studies show that in active young people, such implantation
can cause stress shielding in the bone (Kronick et al., 1997). When loads are carried by the
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significantly more stiff metal stem, the surrounding bone tissue exhibits intense remodelling
leading to the loss of the density and ultimately painful loosening of the implant. Therefore,
an efficient and accurate FEM simulation of the long-term bone response can be an invaluable
tool to support decision making for patient-specific treatments.

7.1.1 Proximal femur example

In this subsection, followingKuhl and Balle (2005) the functional adaptation of proximal femur
without implants is considered. The previously presented bone remodelling implementation
(see Chapter 4) is augmented with the option to include linear elastic elements that are not
subjected to the change of material properties in time (like an implant). Bone geometry
and the applied loading cases are illustrated in Figure 7.1. Since limited data is accessible
for the three-dimensional loading conditions, only a 2D case is investigated (2D extruded).
However, the extension to 3D is straightforward. Material and model parameters, based on

a) b) c)

1

1

2

2 3

3

Figure 7.1: Proximal femur adaptation: geometry and loading cases. Load case 1 corresponds
to the load condition for the midstance phase of gait, while load cases 2 an 3 represent the
extreme cases of abduction and adduction.

Kuhl and Steinmann (2003); Kaczmarczyk and Pearce (2011), are presented in Table 7.1.

Parameter Parameter
E 500 MPa c 1.0 d/cm2

ν 0.2 m 3.0
ρ∗0 1.2 g/cm3 n 2.0
ψ∗0 0.01 N/mm2

∆t 0.1 d

Table 7.1: Material parameters used for functional adaptation of proximal femur.

The two-dimensional model is extruded in the third direction by 5 mm, and plane strain
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Load Value Direction Value Direction
case Type of loading (N) (deg) (N) (deg)
1 Midstance phase of gait 2317 24 703 28
2 Extreme abduction 1158 -15 351 -8
3 Extreme adduction 1548 56 468 35

Table 7.2: Loading conditions on proximal femur.

boundary conditions are applied. The loads are applied to a small surface area to prevent the
occurrence of singularities. Figure 7.2 illustrates the density distribution with respect to the
prescribed loading scenario. Since all these cases never occur at the same time, final density
pattern can be obtained by calculating the maximum density for all three cases separately as
illustrated in Figure 7.3a). Next, as commonly reported in the literature a superposition of
all three load cases is assumed to present an average daily loading. Figure 7.3b) shows the
predicted density pattern at t = 20, when the biological equilibrium state is reached. Results
illustrate the development of a region of dense trabecular bone bearing the compressive stress
from the applied forces through the femoral head and neck, a second region of denser bone
across the top of the femur, the formation of a lower density region with a triangular shape
(Wards triangle) and a dense cortical shaft on the outer layers. Despite all the simplifications,
the resulting structural arrangement is in a good agreement with the one observed from CT
scans presented in Figure 7.3c). However, it is important to note that while simulating bone
functional adaptation, a detailed knowledge of the actual loading situation is essential. By
assuming that all three cases occur simultaneously in some loading conditions forces could
balance each other, which does not take place in nature. Therefore, density patterns in Figures
7.3a) and b) are noticeably different. The representation of average daily loading exerted on the
bones for numerical simulation remains an open challenged in computational biomechanics.

7.1.2 Proximal femur in presence of an implant

Finally, the proposed algorithm is utilised to predict density after total hip surgery of proximal
femur presented in the previous section. Parameters of the analysis are the same as earlier
(see Table 7.1). Virtually inserted prosthesis as presented in Figure 7.4 is assumed to be
made of titanium, same as in Kuhl and Balle (2005), with the following elastic parameters:
E = 110000 MPa and ν = 0.3. The stiff implant tends to transfer a significant portion of
the loading from the joints and muscles to the distal portion of the implant stem. At the
distal tip of the stem, forces are transferred to the outer bone shaft. The resulting high stress
concentration induces an increase of bone mass at the distal tip of the prosthesis.
Furthermore, since almost the entire loading is carried by the proximal regions, the femur
experiences so-called stress shielding, resulting in local resorption of bone. In conclusion, the
presented method is clearly capable of virtually predicting the patient’s specific response to
various medical strategies.
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Figure 7.2: Density distribution for load cases 1, 2 and 3.
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Figure 7.3: Predicted density distribution on the proximal femur. a) by calculating the
maximum density form cases 1, 2 and 3 combined and b) by assuming all three load cases are
applied at the same time. c) CT scan slice of a femur.

7.2 Comparison of smeared and discrete approaches for
fracture

The main goal of the proposed framework is to utilise formulations that are robust, reliable and
at the same time provide high accuracy for various conditions and bone geometries (as stated
in Section 1.1). Such features are necessary to provide efficient tools for medical practitioners,
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Figure 7.4: a) Geometry and initial density of proximal femur after total hip replacement.
b) Density evolution in the presence of an implant.

handling many patients, often within short amount of time. The fracture mechanics approach
for estimating the propensity for fracture of equine athletes has to be carefully chosen in
order to fit such requirements. Therefore, two relatively new approaches for simulating crack
propagation, not fully explored in the literature, are considered for the application in the
proposed framework.

This section presents a comparison between smeared and discrete methods to approximate
a crack presented in the previous chapters. Numerical examples show the capabilities and
limitations of both approaches. A special emphasis is placed on the implementation aspect and
performance of both methods for simulating crack propagation in inhomogeneous materials
like bones. A similar comparative study has been conducted in Steinke et al. (2016), where
authors investigated the same methods for the application of dynamic fracture simulations.
In Kuhn and Müller (2016) a procedure to calculate configurational forces in the phase-field
model is presented. The main discussion of fracture mechanisms in heterogeneous materials
provides new insights into underlying processes affecting the evolution of fracture. The
simulations therein showed that as long as cracks propagate smoothly, the observed evolution
of fracture in the phase-field model compares well with the crack driving forces. It was also
pointed out that smeared approach enables simulation of crack propagation in case of layered
structures or containing interfaces.
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a) b)

Figure 7.5: a) Phase-field smeared approximation and b) discrete representation of a crack
with configurational mechanics.

7.2.1 Differences and similarities

Implementation aspect

Schematic representation of the two approaches in a continuum is depicted in Figure 7.5.
Both implementations for phase-field and configurational force approach has been described
in details in Chapters 5 and 6, respectively. The phase-field method belongs to the family
of smeared approach methods. The crack is resolved by minimisation of the regularised
energy functional by additional field variable. Thanks to this idea, it is possible to simulate
phenomena like nucleation, propagation, branching and crack arrest by solving a coupled
system of equations (see Eq. 5.23) on the volume without any additional equations. In
configurational force method presented in this thesis, to simulate propagation, two balance
equations have to be satisfied in the volume (Eq. 6.14 and 6.15) and additional constraints
like Griffith criterion (Eq. 6.18) or maximum dissipation inequality (Eq. 6.19) at the crack
front nodes.
The governing equations for both approaches are thermodynamically consistent. They can
be solved using a monolithic scheme, augmented with arc-length equation (Eq. 5.40 and
Eq. 6.35). However, as previously mentioned, due to non-convexity of the related free-energy
functional in phase-field, typically a robust but slowly converging staggered solution scheme
is chosen (see Section 5.2.5).

Irreversibility of the crack

To enforce the irreversible nature of the cracks, many different techniques have been developed
for phase-field. In this study, the decrease of the phase-field variable, i.e. crack healing
is prevented by introducing a historic variable H(t) (Eq. 5.24). In the discrete approach
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presented herein, irreversibility is accomplished by satisfying the maximal dissipation principle
(Eq. 6.19), i.e. material forces will never move crack front backwards.

Crack resolution

Any crack propagation inherently requires sufficiently fine mesh to resolve evolving disconti-
nuity within the domain. However, discrete and smeared approaches have different demands
in that regard. In phase-field, the need to resolve the small length scale l0 to the diffusive crack
approximation (ideally l0→ 0) demands extremely fine meshes. Therefore, an adaptive local
mesh refinement is essential for any efficient implementation of the phase-field for fracture
(Lee et al., 2016). In contrast, the configurational mechanics framework for crack propagation
does not require fine meshes. Since the algorithm has to adjust the mesh anyhow, it is possible
to start the analysis with a very coarse mesh. The additional mesh smoothing and mesh cutting
algorithms used in the implementation presented in this work ensure that the discrete crack
surface has a satisfactory resolution. Although it has not been implemented in this work,
adaptive mesh refinement in phase-field is much more troublesome due to the necessity of
efficient projection of the historic variables after refinement. In the configurational approach,
the crack driving forces are stored at the nodes of the crack front, therefore, their calculation
for adapting mesh is straightforward.

Crack initiation and branching

The theory of material forces always requires a pre-existing crack to evaluate the driving forces
at the tip. In this work, a definition of an arbitrary cutting surface is required at the beginning
of each analysis that will define initial crack in the considered domain (see, e.g. in Figure 7.18).
Moreover, simulating the crack branching phenomenon would require a definition of additional
criterion as presented in Ozenc et al. (2016) and an additional algorithm to partition the
discrete crack surface. On the contrary, the smeared method like phase-field, can reproduce
nucleation and branching of the cracks in a straightforward manner. No additional equations
are required.

Post-processing

The material force approach avoids the need for post-processing since configurational forces
and the fracture energy release rate, are expressed exclusively in terms of nodal quantities. The
quantities like crack front length, crack surface or stress intensity factors area can be naturally
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Figure 7.6: Boundary conditions for plate under tension. Thickness of the plate t = 0.05.
Units in mm.

calculated. In smeared approaches, an additional post-processing effort is necessary to identify
and measure the resulting crack geometry. Typically, an iso-volume of the phase-field is
calculated (or iso-curve in 2D) using threshold values d = 0.9,0.95 or 0.99. However, it is
worth to note that the obtained volume (or curve) is not always continuous. A more in-depth
investigation about the resulting crack length can be found in Borst et al. (2015).

Heterogeneities

As previously mentioned, phase-field can effectively tackle various heterogeneities (see, e.g.
(Nguyen et al., 2015)) or layered structures without any modifications into the formulation.
Configurational mechanics approach is currently limited to smoothly spatially varying
inhomogeneities (see 6.15). Moreover, since the mesh in the material domain is constantly
changing to resolve new crack surfaces, it is then necessary to store data about heterogeneous
material properties (Young’s modulus or density) on the background mesh and approximate it
onto new mesh after each mesh reconstruction.

7.2.2 Comparative numerical examples

To directly compare the performance of both methods, three numerical examples of crack
propagation in brittle materials are presented. Fist example considers homogeneous material
properties, the second one heterogeneous, and the third one includes varying Griffith energy
gc parameter. In all the cases, crack propagation for brittle fracture problem is applied to
the three-dimensional plate with a notch on the right-hand side undergoing tensile loading
as presented in Figure 7.6. The domain is fixed at the bottom and has constrained lateral
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Figure 7.7: Discretisation meshes for configurational mechanics a) and phase-field approach
b). Note that an initial crack is introduced by cutting the mesh with a rectangular plane. In
all cases, quadratic tetrahedral elements are used. For phase-field the mesh element size is
chosen such that h ≈ 0.01 mm, i.e. 2h ≈ l0.

movement. The material parameters are E = 210MPa, ν = 0.3, gc = 1 · 10−3N/mm . An
additional set of parameters for phase-field are: length scale parameter l0 = 0.02mm, quadratic
degradation function g(d) = (1 − d)2, arc-length parameters ∆τF

1 = 0.2 and a = 0.1 (see
Section 5.3). The only parameter necessary for configurational mechanics approach is the
target increment of the crack area ∆AΓ = 1 · 10−4 for the arc-length method (see Eq. 6.35)
which is a further advantage of this approach. The step size for both methods is chosen such
that the typical load step takes ~7 Newton iterations to converge. The meshes presented in
Figure 7.7 consist of 1150 and 17933 quadratic tetrahedral elements for material force driven
and phase-field method, respectively.

Homogeneous case example

The load-displacement curves and the development of the approximated fractures for both
methods are shown in Figures 7.9 and 7.8, respectively. As expected, the applied tensile load
extends the initial notch until it reaches the opposite edge of the plate and splits it into two
pieces.
From the curves in Figure 7.9, it can be observed that the structure exhibits snap-back behaviour
after reaching the critical load. It is clear that phase-field dissipates energy at the onset of
failure; therefore, the solution deviates from linear fracture mechanics result obtained with
configurational force approach. To mitigate that difference, the cubic degradation function
could be used, introducing another material parameter s, which would have to be adjusted
(Vignollet et al., 2014).
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Figure 7.8: a) Propagation of the phase-field variable d for the plate and b) discrete crack
surfaces obtained with configurational mechanics.

However, it was found that by switching to cubic function, the monolithic solver struggles
to converge at the peak-force region. This problem is almost never mentioned in the case
of 2D analyses, e.g. in May et al. (2016); de Borst and Verhoosel (2016); Liu et al. (2016).
It is known that, due to non-convexity of the underlying functional in phase-field, Newton-
Raphson scheme performs poorly. Several strategies have been proposed to address this (see
Section 5.2.5), like, e.g. arc-length control utilised in this work. However, this example
confirms that arc-length can enhance the robustness only in specific conditions and fails when
e.g. 3D geometry and cubic degradation function is used, like in the example presented
herein. Overall, considering the limitations of the phase-field method, the results form both
approaches are in very good agreement. Note that, the value of displacement presented in
Figure 7.9 (and the following examples) is known as the generalised displacement and does
not represent a particular point on the structure, but its value is work conjugate to the applied
forces and is calculated as ug = 2Ψ/τf, where f = 1N is the reference force, and Ψ is the
total elastic energy integrated over the domain, τ is the arc-length load factor, and ug is the
generalised displacement.

Finally, the execution time for both methods is compared in Figure 7.10. Unsurprisingly,
due to the requirement of much finer meshes, the smeared approximation is up to 20 times
slower than configurational mechanics approach for this particular problem. The difference
would possibly decrease noticeably when adaptive mesh refinement is used for phase-field.
For a more fair comparison, the example with configurational mechanics is repeated using
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Figure 7.9: Load factor τ versus representative displacement ug for phase-field and material
force driven example.

the same mesh as presented in Figure 7.7. It can be noticed that runtimes, in this case, are
almost identical, proving that both implementations have similar performance and the great
advantage of material force approach arises from the formulation. The numerical result was
indistinguishable from the one obtained with the coarse mesh; therefore, it is not shown. It is
worth to note that the solution time in material force approach depends mainly on the number
of nodes at the crack front.

Heterogeneous case example

In the next example, spatially varying material properties are considered. The density
field is expressed as: ρ(x, y, z) = 9y2 + 1 (see Figure 7.11a)) and simple correlation on the
Young’s modulus is introduced such that E(ρ) = ρE0, where E0 = 210MPa. The remaining
material and model parameters are the same as in the previous example. The influence of
the heterogeneous material properties on resulting crack path and load-displacement curves
is depicted in Figures 7.11 and 7.12a), respectively. The results show that the gradient of
density makes the crack to slightly curve towards the softer part of the solid. Similarly to the
homogeneous case, the outcomes from both methods show very good agreement.

Note that for inhomogeneous materials, the critical fracture gc should also be varying in the
domain. Several research groups in the biomechanics community have argued for a strong
correlation between the density and the energy release rate (Shen et al., 2019). This has not
been implemented yet in the configurational mechanics approach. In contrast, the application
in phase-field is straightforward.
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Figure 7.10: Execution time on 12 CPUs for configurational mechanics approach (CM) using
coarse and fine meshes and phase-field method (PF).
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Figure 7.11: Crack propagationwith heterogeneousmaterial properties. a) Density distribution.
b) Phase-field variable evolution. c) Discrete crack path.
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Figure 7.12: Force versus displacement curves. a) For phase-field and configurational force
approach. b) Phase-field using spatially varying gc parameter.

In the next example, once again, heterogeneous material properties are applied as in Fig-
ure 7.11a) and additionally, parameter gc is correlated to density such that gc(ρ) = ρ

0.1N/mm.
The results are compared with the previous case where gc was constant in Figure 7.12b).
Although the imposed correlation between Griffith energy and density is very weak, the
difference in the load-displacement curves is noticeable. It was also shown recently in proximal
humerus bone fracture investigation that the assumption of constant gc led to quite different
fracture patterns than the one obtained experimentally (Shen et al., 2019). Therefore, it can
be concluded that for future investigation, the appropriate inhomogeneous law is necessary to
accurately capture the complex bone fracture profiles.
In the spirit of using the least complex and numerically efficient methods for the developed
framework, the configurational mechanics approach is chosen for a case study of MC3 bone
fracture resistance assessment presented in the following section.

7.3 Fracture resistance of MC3 bone following adaptation

7.3.1 Metacarpal adaptation

This subsection considers the bone adaptation and its influence on the propensity for fracture
of an equine 3rd metacarpal bone (MC3). The proposed density growth model is applied
to a subject-specific three-dimensional, full-scale model of equine MC3 bone derived from
CT scanning. Three cases are studied, all using the same material parameters presented
in Table 7.3. Stiffness and porosity values are derived from mechanical tests (Les et al.,
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1994), whereas other values are from previous studies of the human tibia (Pang et al., 2012;
Waffenschmidt et al., 2012). Each case considers a different function for the parameter c that
defines the rate of bone adaptation used to compute the mass source, R0, according to Eq. 4.8.
In Case 1, c is constant. For Case 2 and Case 3 different bell functions (Eq. 4.9 are used. The
parameters for each case are presented in Table 7.4.
The finite element mesh used in all cases comprises 17041 tetrahedral elements. It was
generated by discretising the segmented geometry from CT scan data - see Figure 7.13. The
initial density is chosen to be homogeneous since, in the thermodynamic-based model, the
starting density does not have a significant effect on the final bone density distribution (similar
to other models at biological equilibrium (Kuhl and Steinmann, 2003)). Boundary conditions
are simplified to two representative forces (5 [kN] each) spanning over a small area based on
pressure film studies (Brama et al., 2001), as demonstrated in Figure 7.13. The two forces are
often considered in the literature as an equivalent of joint peak force at the mid-stance of a
horse gait. They are applied by linearly increasing their magnitude within the first 5 time steps
and held constant thereafter. It is worth to note that the applied load should be considered as
averaged long term forces mimicking mechanical load on the bone over a long time period.
Furthermore, displacement degrees of freedom at the proximal end are fixed. In reality,
metacarpal bone articulates with proximal phalanx bone (P1). Adaptive time-stepping scheme
(using PETSc (Balay et al., 2018)) is used in all the simulations with an initial time step
∆t = 0.5 [days(d)], maximum time step of ∆tmax = 50 [d] and minimum of ∆tmin = 0.05 [d].

Parameter Description Value
E Young’s modulus 4700 [MPa]
ν Poisson ratio 0.3 [−]
ρ∗0 Initial density 1.0 [g/cm3]
ψ∗0 Target energy density 0.0275 [MPa]
c Density growth velocity 1.0 [d/cm2]
m Algorithmic exponent 3.25 [−]
n Porosity exponent 2.25 [−] (Les et al., 1994)

Table 7.3: Material parameters used for the simulations of 3rd metacarpal bone adaptation
(Waffenschmidt et al., 2012; Les et al., 1994).

Case c b ρmax ρmin

1 1 - - -
2 Eq. (4.9) 1000 2.5 [g/cm3] 0.3 [g/cm3]

3 Eq. (4.9) 30 1.8 [g/cm3] 1.0 [g/cm3]

Table 7.4: Presentation of three cases input parameters for the evaluation of coefficient c to
compute mass source, R0, as presented in Eq. 4.8. All cases have common material input
parameters presented in Table 7.3.

Results of Case 1 are presented in Figure 7.14a), where density maps at five different points in
time (0, 10, 40, 100, 700) [d] are visualised. Significant densification occurred immediately
after reaching the maximum level of the loading, particularly in the proximity of the applied
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Figure 7.13: Finite element mesh of the equine 3rd metacarpal bone. The subject specific
three-dimensional mesh consists of 14,041 quadratic tetrahedral elements and 70,901 degrees
of freedom. To simulate the peak load of a gallop, 5 kN forces are applied on the lateral and
medial side of the distal condyle.

forces, associated with high levels of strain energy. Conversely, areas with low levels of
strain energy experience a reduction in density. After 100 [d], biological equilibrium was
achieved, and no further changes in density took place. The resulting maximum density is
2.8 [g/cm3] and the minimum is close to zero. The maximum density for Case 1 is noticeably
higher than in the actual equine bones (Yamada et al., 2015), and the minimum density is
unrealistically close to zero. There is clearly a need to somewhat constrain upper and lower
bounds for density in order to produce more realistic outcomes. To achieve this, the bell
shape function presented in Eq. 4.9 is used for the next two analyses (Case 2 and Case 3).
The results for Case 2 are plotted in Figure 7.14b). The last converged step takes place at
t = 93 [d]. By setting a high value of b, the transition between densities is very sharp, and
the algorithm encounters convergence difficulties, even with adaptive time-stepping, and
biological equilibrium cannot be achieved in this case. For Case 3, a more moderate value
for the exponent in the bell function was chosen along with a narrower density range than
those chosen for Case 2 (see Table 7.17). The plot presented in Figure 7.14c) demonstrates
how these values influence the results of the analysis. It is evident that with a much lower
value for the exponent b, the algorithm no longer has problems converging. Furthermore,
reducing the range between the upper and lower bounds of density has a significant impact on
the results. The dense cortical shaft on the dorsal side of the bone is less dense and covers a
much larger region. Furthermore, unrealistically low values of densities have been eliminated.
However, as with the previous case, the overall solution converges to the same mass (and
density distribution) as in Case 1, albeit requiring significantly more time steps.
To validate whether the utilised discretisation is sufficient, a convergence study is conducted.
The same analysis, as presented in Case 1 (see Figure 7.14a)) is carried out using 1st and 3rd

order elements. The comparison of the results in Figure 7.15a) shows the minimal difference
between p-refinements.
In the next example, instead of using constant initial density ρ∗0, the data from CT-scan
is mapped onto the mesh using L2-projection described in Section 3.2.1. The results in
Figure 7.15b) show, as expected, that in the equilibrium, the resulting mass is almost exactly
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Figure 7.14: Change in bone mass over time for 3 cases (see Table 7.4). Density distribution
contours in 3rd metacarpal bone at five snapshots in time in a) and at the last converged step
for b) and c).
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the same as in the homogeneous case. Thereby proving that the used phenomenological model
is insensitive to the initial density state.
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Figure 7.15: a) Convergence study. Evolution of the total mass of the bone using 1st, 2nd
and 3rd order tetrahedral elements. b) Density evolution using constant initial density ρ∗0
(homogeneous) and heterogeneous initial density obtained from CT-scan data.

Furthermore, at the equilibrium stage, density was measured in the region of the sagittal
grooves, as demonstrated in Figure 7.16a), the most frequent site of fracture initiation in
MC3 bone. Simultaneously, the density of the bone in the same region of a cadaver horse
limb was derived from the CT scan using quantitative computed tomography with calibrated
dipotassium phosphate phantoms (see Chapter 2). The density profiles along the line presented
in Figure 7.16 are in satisfying agreement. Although the density levels are mostly different
in the entire bone, due to simplified boundary conditions, at least in the regions where the
pressures are applied, i.e. sagittal grooves the density levels are quantitatively comparable
with the measurements. It is particularly important since the majority of the fracture originates
from these regions.
When adaptation converges to an equilibrium state, an interesting phenomenon can be observed.
For each density level, there is a corresponding value of constant strain energy density ψ. This
result is a direct consequence of the constitutive Eq. 4.8 i.e. when expression therein is equal
to 0. This feature can be visualised by plotting the strain energy density on the contours of
constant density levels, as presented in Figure 7.17.

7.3.2 Fracture risk and energy release of equine metacarpal

In this section, the configurational force driven approach for fracture is utilised for the
assessment of MC3 bone’s likelihood for fracture. As previously introduced in Chapter 6, to
achieve this additional configurational forces arising from inhomogeneities (see Section 6.2.2)
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Figure 7.16: Comparison of the bone mineral density measured from CT and FEM results
(right) at the region of interest (left).
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Figure 7.17: Case 1: Biological equilibrium state. a) Density map. b) Contours of density.
c) Strain energy plotted on the contours of density.
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associated with spatially varying bone density are introduced into the formulation. This
allows for the accurate assessment of the likelihood of a crack to propagate and to simulate
the subsequent propagation of fractures in the bone.
An additional goal is to investigate bone fracture at different stages of bone adaptation, utilising
the results from bone adaptation analysis. Similar concepts of combined adaptation and
fracture analyses have been presented before (Hambli et al., 2013). However, it utilised a
different adaptation model (Huiskes et al., 2000) and continuum damage mechanics approach
for fracture, both of which require many more parameters to calibrate. The problem of bone
adaptation and crack propagation or calculation of crack release energy has different boundary
conditions and geometry. To solve the staggered coupled problem, initially, bone adaptation
is simulated under long-term effective loads applied without initial crack. Subsequently, an
initial crack is placed on the resulting mesh to compute the effect of short-term loads or
extreme cycling loading. The two different remodelling and crack propagation meshes are
tailored for each type of problem analysed, respectively. Note that in the presented approach,
one can load initial density from CT scans, run bone adaptation analysis and subsequently
introduce crack to calculate the release energy. It is also possible to load densities directly
onto the mesh with a prescribed fracture. In each case, initial density is approximated using
MWLS and then projected on the current material configuration.

7.3.3 Fracture energy release in bone using CT scan data

This numerical example considers the same bone as presented in Section 7.1. An initial crack
was generated in the mesh using a cutting plane, as shown in Figure 7.18. A notch is situated at
the origin of the most common location of lateral condyle fracture (Jacklin and Wright, 2012).
The numerical analyses were undertaken using three meshes consisted of 6069, 10032 and
21189 tetrahedrons and repeated for 1st, 2nd and 3rd-order of global and local p - refinement at
the crack tip. Boundary conditions and material parameters remain the same as in Table 7.3.
The magnitude of the applied forces is also the same; however, in this case, the load is
considered as a quasi-static case.
K2HPO4 calibration phantoms are used to convert the greyscale values fromCT to bonemineral
density. The phantoms consist of five burettes with reference densities, as shown previously
in Section 3.5.1. The mechanical material properties are mapped onto the integration points
of the metacarpal mesh using the MWLS method described in Section 3.3. Applying load
induces configurational forces at the crack front, as shown in Figure 7.19. The direction
of the vectors also indicates the direction of crack propagation. The values of numerically
predicted maximal nodal energy release rates in Mode I (crack opening) for subsequent
meshes are plotted in Figure 7.20. It can be seen that, for the same mesh, as the order of
approximation increases, the energy release rate converges. A crack will propagate when
the energy release rate G equals the material’s resistance to crack extension, gc. Assuming
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Figure 7.18: Bone geometry with mapped density from CT using MWLS approximation. In
order to calculate the configurational forces, an initial crack is introduced by cutting the mesh
with a circular surface. The cutting algorithm is not limited to planar cracks.
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Figure 7.19: Crack surface and vectors of material (crack driving) forces at the front.
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Figure 7.20: Convergence plot of maximum configurational force in Mode-I versus no of DOF
(log10) for subsequent discretisations and p - refinements. The results are mesh independent
since they all converge to the value for energy release of approximately GI = 0.9 [kJ/m2] for
increasing orders of approximation.
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Figure 7.21: The resulting density distribution from the bone adaptation analysis is approxi-
mated directly onto integration points of the mesh used for fracture analysis using MWLS
method described in Section 3.3. The cutting circular plane used to create an initial crack is
also shown.

gc = 2.0 [kJ/m2] (Gasser and Holzapfel, 2007; Yan et al., 2008) it can be estimated that this
particular metacarpal bone with this initial crack can sustain loading of approximately 2.2
times greater before a fracture starts to propagate.

7.3.4 Fracture energy release in bone using simulated density data

The previous example is extended to investigate the likelihood of fracture in an equine
metacarpal bone at different phases of adaptation during training. However, this time, densities
from a bone adaptation analysis (Section 7.1) are mapped onto the mesh consisting of 6069
elements, as shown in Figure 7.21. The same geometry and boundary conditions as in the
previous example are used. The resulting energy release rate at different points in time of
bone adaptation is illustrated in Figure 7.22 for three different local p - refinements. It can be
observed that the variation in energy release rate for increased orders of approximation at the
crack front is minimal. The numerical outcomes capture the general trend of increasing release
energy rate over time. It can be noticed that by introducing a notch in the resorption zone,
where no loading is applied, the configurational force attains larger values. This indicates that
over time the bone becomes more prone to fracture in this specific region.

7.4 Crack propagation in MC3 bone

In this section, a full crack propagation for predicted density distributions is simulated. The
magnitude of applied forces (Figure 7.13) is controlled by the crack area increment during
each load step. The initial finite element mesh is the same as previously, as it is locally refined
with the crack front advancement. The assumed bone’s Griffith energy is equal to 2.0 [kJ/m2]
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Figure 7.22: Fracture energy release rate over time during bone adaptation for three local
p - refinements.

for the entire domain. The crack front nodes are moved only when the magnitude of crack
driving forces is in equilibrium with the material resistance (Eq. 6.17). All five cases (time
snapshots) are solved for 2nd order of approximation. The numerically predicted crack paths
are shown in Figure 7.24. It can be seen that the crack has initially planar shape and then
curves towards the lateral side of the bone. Load factor versus crack area plots are shown
in Figure 7.23. Consistent with the previous analysis in Section 7.3.4, the metacarpal bone
shows an increased propensity for fracture, i.e. for the same crack area, remodelled bone
requires much lower force (load factor) to induce crack propagation. Low-density levels at the
biological equilibrium (t = 90 and t = 200) also alternate the crack path, as can be observed
the crack starts to curve much earlier than in the initial stages of remodelling.

As previously demonstrated (in Figure 6.7), modelling singularity can significantly improve
the accuracy of the configurational forces at the crack front. In the next example, a bone with
heterogeneous density distribution mapped from CT scan data is considered. The same CT
scan data as in Figure 7.18 is used. In Figure 7.25a) results from crack analysis with and
without Quarter Point elements are depicted. It is evident that an accurate stress state at the
tip has a negligible impact on the full crack propagation analysis and the resulting load factor.
From the load-crack area curves in Figure 7.25b), it can be observed that including density
data from CT scans have a significant impact on the predicted load factor and crack path
as well. Finally, the h and p convergence is investigated. The results presented in Figures
7.26a) and 7.26b) show good numerical convergence for consecutive refinements. It can
be concluded that this formulation predicts crack path accurately with minimal effect from
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Figure 7.23: Load factor versus crack area for different moments in time during bone adaptation
analysis. Bone density distribution influenced both load factor and the resulting crack surface.

Figure 7.24: Crack surface evolution in equine 3rd metacarpal

the original mesh or order of approximation. The simulated crack path compares well with
fractures observed in radiographs (Whitton et al., 2010), especially considering oversimplified
loading conditions. The direct comparison of the numerically predicted crack with a crack
segmented from a CT scan data and a radiograph can be found in Figure 7.27.
In the future considerations, it would be beneficial to test the sensitivity of the load-displacement
curves on the placement and direction of applied forces and the initial crack.
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Figure 7.25: Load factor versus crack area for a) with and without singularity element and
b) homogeneous versus heterogeneous density distribution.
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Figure 7.26: Load factor versus crack area. Global a) h - refinement and b) p-refinement.

7.5 Summary

This chapter presented FEM simulations to investigate bone adaptation model, comparative
study of phase-field and configurational approaches for fracture, calculation of the fracture
resistance, and crack propagation in the bone.
The first example considered bone remodelling formulation in a practical application -
assessment of the proximal femur response to a hip replacement surgery. The results showed
that the formulation has the capability of predicting bone density patterns and identifying
potential problems with patient-specific treatments.
Subsequently, it was shown that discrete and smeared crack approximations developed in
this work are able to predict fracture in heterogeneous materials. The essential aspects of
both methods were compared. Although, due to its high computational cost requirements,
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a) b) c)

Figure 7.27: a) Numerically predicted crack. b) Bone with fracture segmented from CT scan
data. c) Radiograph of a MC3 fracture.

phase-field has only been used for analysing simple problems. It can be concluded that,
when perfectly brittle materials with smooth heterogeneities are considered, the proposed
configurational force driven approach is superior to smeared approaches. Its computational
cost is an order of magnitude lower, requires far fewer parameters and satisfies linear fracture
mechanics assumptions, unlike phase-field where an additional dissipation takes place prior to
failure.
In the last section, several numerical examples were presented to illustrate each aspect of the
proposed framework to estimate bone fracture resistance following adaptation. The first set of
analyses, considered bone remodelling of an equine 3rd metacarpal. It was found that the
model accurately simulates the complex bone adaptation mechanism in bones. Application of
a bell function to enforce bounds on density levels in the constitutive model did not provide
rigid constraints for density levels but merely slowed down the convergence to the biological
equilibrium process. Nevertheless, it may still become useful when one tries to fit the model
parameters into the actual density data form CT scanning in defined periods of time. One
could also constrain density bounds by introducing and calibrating mass influx to the balance
of mass equation (Sharma and Robertson, 2013).
Nonetheless, bones in living organisms are never fully load adapted (Christen et al., 2014).
Therefore, achieving a biological equilibrium that results in unrealistic levels of density should
never take place in a real case scenario. Overall, more work has to be done towards identifying
detailed boundary conditions and calibrating model parameters. Numerical convergence was
demonstrated for all examples. It was also confirmed that improved accuracy of the stress at
the tip thanks to Quarter Point Elements, had no impact on the crack propagation analysis
and the resulting crack path. Another example demonstrated how mechanical loading and
subsequent adaptation influence the resistance to bone fracture. Therefore, this framework
will be a useful tool in understanding fractures in MC3 bone and ultimately preventing
catastrophic fractures. The entire framework presented in this work can be executed on parallel
computer systems. Supplementary data (CT scans, mesh files, command lines) necessary to
reproduce the results of the numerical examples can be found in Lewandowski (2019). The
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bone adaptation, phase-field and configurational fracture mechanics are submodules in the
MoFEM library (Kaczmarczyk et al., 2020).
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Chapter 8

Conclusions

Development of finite element models for biological applications is a very complicated process.
Unlike that in typical engineering research subjects, there is still very little knowledge of
the material properties. Another issue is the lack of a proper definition of the boundary
conditions. Constraints are mostly explicit when analysing engineering objects such as
concrete beams or steel frames under different loading conditions. However, in a living
body, it is challenging to define loads accurately. Model geometry suffers from inaccuracies
in scanning as well as segmentation process. Results from such models could potentially
include an increasing number of errors since the data collected from each stage of the model
creation encompasses high uncertainty data (Campoli et al., 2014). Available information is
usually subject-specific or gathered for a relatively small population of subjects and cannot be
generalised. Subsequently, even if one manages to overcome the obstacles above, there is a
need for validation of such models, which will also have to deal with similar difficulties. Over
the years, many frameworks have been developed to quantify such uncertainty levels, which
might considerably increase the credibility of computational models (Wille et al., 2016). CT
scanning on living horses limbs is still too cumbersome to be used as a standard diagnostic
tool. To the best author’s knowledge, there is a limited number of facilities that can perform
CT scanning for horses without the necessity for anaesthesia.
Nevertheless, the outcomes of this study can bring new insight in the area of catastrophic injuries
to improve the welfare of the thoroughbred racehorse. The successful application of developed
framework would enable the introduction of interventions for veterinary practitioners, such as
suggestions for training regimes based on known risk factors for lateral condylar fractures that
could reduce the probability of fracture in racehorses.

The first task of this thesis was to build an understanding of the current state of the art of FEM
techniques for analysing bone fracture resistance. The aim was to identify the key features of
a patient-specific framework capable of incorporating accurate 3D data from CT-scanning,
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simulating long term bone response to the proposed training regime and ultimately predicting
the risk of fracture. The difficulty was to establish a balance between the essential components
to provide accurate predictions and what could practically be executed in a patient-specific
modelling routine within a limited time window. This was achieved by choosing efficient
computational methods and the establishment of a consistently low level of complexity for the
models to build a robust framework.

The procedure of building a finite element model for analysing bone always has to start with
data acquisition. In Chapter 3, a three-dimensional imaging technique known as QCT scanning
was applied to obtain accurate geometries of the equine bones and estimate their mineral
density. Furthermore, two novel methods for mapping density data onto finite element meshes
were proposed. The first method - L2-projection was used to investigate density gradients
at a common site of fracture for three groups of equine limbs. Although the method has
a potential of robustly identifying possible fracture risk factor (like high-density gradient),
it was found that a small cohort of specimens was insufficient to make any meaningful
conclusions. The preliminary results indicated moderate correlation between high density and
density gradients at the common site of fracture. The second presented method - meshless
MWLS does not use standard FEM discretisation and provides density field approximation
with high regularity. This essential feature allows further for calculation of material forces
in heterogeneous materials and ultimately efficient implicit crack propagation simulation
within the configurational mechanics framework. Nevertheless, the accuracy of the presented
approaches still has to be validated experimentally, for example, in the prediction of strains in
the loaded bone specimen.

To simulate a long-term bone response to mechanical loading, a formulation for bone
remodelling using open system thermodynamics framework was implemented. It has been
shown that the chosen approach is capable of predicting realistic density profiles in hard
tissues in response to over or underload. Benchmark examples demonstrated correctness of
the implementation in comparison with the literature and also the stability and scalability
of the utilised monolithic solution scheme. Two different methods of calculating consistent
tangent matrix were presented. Additionally, the performance of the model was compared
with a simple topology optimisation algorithm proposed in Appendix B. It was found the
utilised formulation has the density predictive capabilities and necessary robustness to use it
diagnostic tools like in the proposed framework.

With accurate bone density profiles and material properties derived through QCT scanning or
bone remodelling simulations, the next natural step in the proposed framework is to estimate
the fracture resistance. In Chapters 5 and 6, two approaches were proposed for simulating
crack propagation and estimating critical load factors in heterogeneous bones.
The first one was the popular phase-field method, where the crack is represented by a smooth
damage variable leading to a phase-field approximation of the variational formulation for
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brittle fracture. To trace the nonlinear response, the implementation was augmented with an
adaptive arc-length control method based on the rates of the internal and the dissipated energy.
Furthermore, the potential of three different methods for obtaining consistent tangent matrix
was explored. The heterogeneity of the material can be captured straightforwardly by using
spatially varying material properties as local variables. The performance and correctness of
the proposed phase-field formulation of fracture were demonstrated by means of representative
numerical examples. The investigation showed that the adopted formulation gives good results
in comparison with the literature. Even though the model was found to be very robust, it is
also very sensitive and computationally expensive.
In the second discrete approach for fracture, configurational forces are the driver for crack
propagation. The crack-driving forces, and corresponding fracture energy release rate, are
expressed exclusively in terms of nodal quantities, avoiding the need for post-processing
and enabling a fully implicit formulation for modelling the evolving crack front. In order to
evaluate the forces correctly at the crack front for inhomogeneous materials, it was shown
that it is necessary to have a spatially smooth density field, with higher regularity. Therefore,
density data was approximated as a smooth field using a Moving Weighted Least Squares
method. Moreover, to improve the accuracy of the calculated nodal crack driving forces,
singular stress state was modelled using Quarter Point element concept. The convergence and
validation tests were conducted. It was found, that with the proposed formulation, a remarkable
accuracy of the calculated energy release can be achieved, even with coarse meshes. Moreover,
it was also shown that the method can compute energy release in heterogeneous materials.

In the penultimate chapter of this thesis, the full potential of the developed framework was
assessed in the form of practical numerical examples. The first analysis of a proximal femur
with implant showed that utilised formulation for bone remodelling has the capability of
predicting bone density patterns that are in good comparison with structural arrangement
observed on CT scans. Subsequently, a comparative study was conducted in order to evaluate
the performance of both implemented methods for approximating fracture in heterogeneous
materials. It was concluded that in the current state of development, the configurational
force approach is more suitable for the framework. It introduces fewer parameters and works
effectively on coarse meshes. It is worth to note, that these two very different approaches
gave very similar results for benchmark problems incorporating heterogeneous material
properties. This outcome further proves that the proposed configurational approach correctly
calculates energy release and without the bias from the original mesh. In the last section,
numerical examples demonstrated the performance and accuracy of the proposed framework
for analysing equine MC3 bone. Numerical convergence was demonstrated for all examples,
and the use of singularity elements was shown to further improve the rate of convergence.
However, it was also confirmed that improved accuracy of the stress at the tip had no
impact on the crack propagation analysis and the resulting crack path. The final example
demonstrated how mechanical loading and subsequent adaptation influence the resistance to
fracture. The numerical results reproduced the maladaptation phenomenon, where the intense
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bone remodelling increases the propensity to fracture in metacarpal bones. Moreover, the
simulated crack path using density data from CT scans compared well with fractures observed
in radiographs. Ultimately demonstrating that the proposed framework can be a useful tool in
understanding fractures in bone and preventing catastrophic fractures.

In summary, the goal of this study was to develop a robust numerical framework for the
estimation of a fracture risk of MC3 bone followed by adaptation. The main achievements of
this thesis are the following:

• Incorporation of efficient and accurate mapping strategies to represent heterogeneous
bone material properties for finite element models.

• Efficient implementation of bone adaptation algorithm based on open system thermody-
namics to predict density levels in response to exercise.

• Deployment of three-dimensional phase-field formulation for brittle fracture with robust
arc-length control.

• Novel application of configurational mechanics for modelling fracture extended to
include the influence of heterogeneous bone density distribution.

• Assessment of the potential of the developed framework in evaluating bones’ propensity
to failure.

8.1 Limitations and future work

The methods presented in this thesis have several important limitations. Considerably
more work has to be done to determine bone loading since using simplified input results
in unrealistically low densities in non-load-bearing regions. Multiple load cases can be
critical in modelling bone adaptation (Geraldes et al., 2016). In the future, the forces should
be obtained by using gait data and musculoskeletal analysis (Delp et al., 2007) combined
with, e.g. finite element mortar contact formulation (Athanasiadis et al., 2018). Another
method for predicting loading conditions is to solve an inverse problem to bone adaptation.
Promising results have been reported in that field by using machine learning methods like
Neural Networks (Campoli et al., 2012).
Another limitation of the proposed scheme is the requirement for manual generation and
meshing of bone geometry models that often requires commercial software. In future, it
would be beneficial to explore methods for automatic segmentation and meshing as proposed,
e.g. in Trabelsi and Yosibash (2011). The model generation should be fully automatic and
require minimum human interaction to handle many specimens within a limited time frame.

137



The current fracture approximation approaches do not take into account nonlinear cohesive
mechanisms like collagen fibre bridging at the crack tip (Yang et al., 2006). Therefore, the
calculated release energy or load factor with presented approaches might be overestimated.
More research is also required to calibrate material parameters, like heterogeneous Young’s
modulus coefficients, including bone anisotropy, or parameters regarding constitutive relations
for bone adaptation.
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Appendix A

Moving Weighted Least Squares basis
functions

For each node, the process to evaluate the vector of unknownsa(Xt) =
[
a1(Xt),a2(Xt), . . . aq(Xt)

]
in Eq. 3.9 involves consideration of neighbouring points of the discrete field v(Xi) and a
weight function w(r) is constructed, where r is the normalised radial distance from the node
defined as r = | |Xt −X| |/dmi so that 0 < r ≤ 1, where dmi is a scaling parameter. An example
of an arbitrary weight function for a 2D domain is presented in Figure A.1. Values of the
given discrete field v(Xi) are presented with dots, and the positions where v(Xi) is mapped
(i.e. nodes) are presented with circles. Furthermore, the node under consideration is located
at the origin of a cylindrical local coordinate system with r and w axes. For the 2D case,
the weight function is visually represented as a 3D surface (shaded area) resulting from full
rotation around w axis of the 1D weight function, w(r), represented as a solid line. The
boundary of the domain of influence of w(r) is represented by a dashed circle (r = 1). w(r)
is equal to zero outside the domain of influence. Many types of weight functions can be
used for the MWLS method. A one-dimensional quartic spline, commonly used in meshless
methods (Belytschko et al., 1996), was chosen for the current work:

w(| |Xt −Xi | |/dmi) = w(ri) =


1 − 6r2

i + 8r3
i − 3r4

i for ri ≤ 1

0 for ri > 0
(A.1)

Its derivative with respect to the material coordinates is:

dw
dXt
=

dw
dri

dri

dXt
=

1
dmi


(−12ri + 24r2

i − 12r3
i ) for ri ≤ 1,

0 for ri > 0
(A.2)

Here ri = | |Xt −Xi | |/dmi is the normalised radial distance of point i from the node divided by
scaling parameter dmi. This coefficient is governing the size of influence domain. With the
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Figure A.1: 2D schematic example of arbitrary weight function of a node located with position
vector Xt. Points of the discrete field v(Xi) are presented with dots and points that v(Xi) is
mapped are presented with circles. The function is smooth, non-negative, reaches maximum
at the Xt and decreases with distance | |Xt −Xi | |. The boundary of the domain of influence of
the weight function is presented with dashed ellipsoid (circle on 2D plane) and the function
takes a constant value of zero outside of it.

above tools at hand, the vector of unknowns a(Xt) associated with the node can be evaluated
through minimisation of the weighted discrete L2 norm:

Jc(Xt) =
1
2

nw∑
i

w(ri)

(
vh(Xt) − v(Xi)

)2
=

1
2

nw∑
i

w(ri)

(
pT(Xi)a(Xt) − v(Xi)

)2
(A.3)

where v(Xi) is the value of the given discrete field at point i amongst the nw points located
within the domain of influence of the node and pT(Xi) is the vector of shape functions of the
point i. Minimisation of Jc with respect to a leads to a system of linear equations as:

A(Xt)a(Xt) = B(Xt)v (A.4)

where matrices A(Xt) and B(Xt) are of size (q × q) and (q × nw) and defined as follows:

A(Xt) =

nw∑
i

w(ri)p(Xi)pT(Xi)

B(Xt) =
[
w(r1)p(X1),w(r2)p(X2), . . . ,w(rnw)p(Xnw)

] (A.5)

and v is (nw × 1) vector of the given field values at the points within the influence domain
given as:

v =
[
v(X1),v(X2), . . . ,v(Xnw)

]T (A.6)

It should be noted that parameter dmi is chosen to include sufficient nw points such that the
resulting matrix A is not singular. Next, Eq. 3.9 combined with Eq. A.4 can be rewritten as:

vh(Xt) =

nw∑
i=1

ωi(Xi)vi = ω
T(Xt)v (A.7)
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where ω(Xt) is a resulting vector of shape functions associated with the node, defined as

ωT(Xt) = pT(Xt)A−1(Xt)B(Xt) (A.8)

It is also necessary to approximate the density’s gradient in the material domain. Therefore,
the first derivative of the shape function with respect to the material coordinates is derived in
direction X j :

ωT
,j = pT

,jA
−1B + pT(A−1

,j B +A−1B,j) (A.9)

The commas in the subscripts denote the partial derivative, and the inverse of the material
derivative of matrix A is evaluated as

A−1
,j = −A−1A,jA−1 (A.10)

The above equations for calculating derivatives are computationally demanding. However, it
was found that with the purpose at hand, i.e. considering only small strains regime where the
reference material domain is indistinguishable from the current domain, a local form of the
derivative is sufficient, and it can be computed as follows:

ωT
,j = pT

,jA
−1B (A.11)

The local second derivative can be simply computed as:

ωT
,j k = pT

,j kA−1B (A.12)

It is worth noting that for any node located at Xβ, MWLS shape functions do not satisfy
Kronecker delta property, i.e. ωi(Xβ) , δiβ. The values obtained from the MWLS approxi-
mation are not the same as the given field values, i.e. vh(Xβ) , v(Xβ) as presented with a
1D example in Figure A.2. Since the MWLS shape functions do not satisfy Kronecker-delta

X

vh(X)v

Xβ

vh(Xβ)v(Xβ)

0

Figure A.2: 1D example of moving least squares method.

property on the boundaries of the problem; it can be quite a challenge to enforce essential
boundary conditions. However, here the approximation is used for simple mapping; hence
this deficiency can be neglected.
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Appendix B

Topology optimisation

Topology optimisation is a mathematical method for optimising the material distribution
within a domain, for a given set of boundary conditions and constraints to maximise the
performance of the structure. Over the years, many different approaches have been developed,
including density penalisation, level set, topological derivative, phase-field or evolutionary
methods. An extensive overview can be found in Sigmund and Maute (2013).

B.1 Implementation

The topology implementation problem presented herein is based on popular Solid Isotropic
Material with Penalisation (SIMP) (Bendsøe and Sigmund, 2003) method, where the objective
is to minimise the compliance of the considered domain Ω as follows

min
ρ

: c(ρ) =
n∑

e=1
uT

e Ke(ρ)ue

s.t. :
n∑

e=1

∫
Ω

ρdVe = f topV

: 0 < ρmin ≤ ρ ≤ 1

: K(ρ)u = f

(B.1)

where K is the global stiffness matrix, u vector of displacements, f is the nodal force vector,
ρ is the element density (design variable), Ve and V is the element volume and volume of
the entire domain, respectively. f top is the desired volume fraction parameter. The element
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stiffness Ke is calculated as follows:

Ke =

∫
Ω

(ρ)p
top
∇XΦΦΦ

TD∇XΦΦΦdVe (B.2)

where ptop is the penalisation coefficient (typically ptop = 3), and D is the 4th order elasticity
tensor. The optimisation problem in Eq. B.1 is solved with the Lagrange multipliers method.
The derivative of the objective function with respect to design variables has the form:

∂L

∂ρ
= −uT

e
∂Ke

∂ρ
ue + λbVe (B.3)

where L is the Lagrangian and λb is the Lagrange multiplier. The condition of optimality can
be expressed as follows: 

∂L

∂ρ
≥ 0 if ρ = ρmin

∂L

∂ρ
= 0 if ρmin < ρ < 1

∂L

∂ρ
< 0 if ρ = 1

(B.4)

Furthermore, the Optimality Criteria algorithm can be applied with a heuristic iteration scheme
for the design variables defined as:

ρn+1 =

(
1
λbV

uT ∂Ke

∂ρ
u
)η
ρn (B.5)

where n is the iteration number and η is a numerical damping coefficient, typically η = 0.5.
Additionally, a move limit is imposed (often mtop = 0.2) at each iteration to ensure the stability
of the algorithm. At each iteration ρn+1 has to satisfy the following inequality:

max (ρn −mtop, ρmin) ≤ ρ
n+1 ≤ min (ρn +mtop,1) (B.6)

The nonlinear solution for multiplier λb is obtained through bisection method. ρmin is imposed
to avoid zero stiffness elements, typically ρmin = 0.001.

B.2 Density filtering

To prevent the checkerboard pattern and ensure mesh-independency of the solution for topology
optimisation problems, typically filtering techniques on density ρ or sensitivity ∂c/∂ρ are
applied (Bourdin, 2001). Most of the methods in the literature require information about
the neighbour elements, which makes them difficult to partition and parallelise for efficient
multiple CPU computations. Therefore, more recently, a new family of filters based on
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Helmholtz-type differential equations has emerged (Lazarov and Sigmund, 2011).
The basic idea behind filters inspired by Helmholtz PDE is to solve the following differential
equation:

− λl∇
2
X ρ̃+ ρ̃ = ρ (B.7)

with Neumann boundary condition imposed on the surface of the domain as follows:

∂ρ̃

∂n
= 0 (B.8)

where ρ̃ is nodal density and λl can be considered as the length scale parameter. After finding
the densities ρ for each element, that satisfy the constraints in Eq. B.1 through bisection
method, the PDE in Eq. B.7 can be solved with standard FEM discretisation resulting in the
following system of linear equations for the unknown values of the filtered density field:

K f ρ̃ = p f (B.9)

where the matrix K f and vector p f is obtained as follows:

K f =

n∑
e=1

∫
Ω

λl∇XΦΦΦ
T∇XΦΦΦ +ΦΦΦ

T
ΦΦΦdVe

p f =

n∑
e=1

∫
Ω

ΦΦΦ
TρdVe

(B.10)

Note that with the presented formulation, non-constant density within the elements can be
used. The performance of this approach is demonstrated in the next section in the form of
representative numerical examples.

B.3 Numerical examples

In this section, the capabilities of the discussed topology optimisation are presented. Two
cantilever problems are considered: in 2D and 3D. The loads and the domain dimensions are
shown in Figure B.1. The meshes consist of 1385 and 39761 structured quadratic tetrahedral
elements for 2D and 3D, respectively.
Note that in the realm of hierarchical approximation basis, the order on the elastic and density
filtering problems can be set independently. The problem parameters are: Young’s modulus
E = 1000 MPa, Poisson ratio ν = 0.1, move limit mtop = 0.2, penalty parameter ptop = 3 and
desired volume fraction f top = 0.3. The results for 2D cantilever for different values of length
scale parameter λl are shown in Figure B.2. For λl = 0, which basically means no filtering,
as expected - an unstable checkerboard-like solution is obtained. In the following cases, it
can be noticed that by decreasing λl finer and sharper truss-like elements can be obtained.
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Figure B.1: Domain and boundary conditions for 2D and 3D examples. The dimensions are:
10x5mm for 2D case and 10x5x5mm for 3D case. In 2D unit nodal force is applied and in 3D
spatially varying line load on bottom right edge, such that: f (x, z, y) = 10 − z2 N.

0.00 1.000.50
Density

a) b)

c) d)

Figure B.2: Design variable for 2D cantilever after 20 iterations. a) λl = 0 b) λl = 1 c) λl = 0.1
d) λl = 0.01.

The results with λl = 0.1 are in good agreement with the MATLAB code demonstrated in
Sigmund (2001).
In the second example, inspired by Aage and Lazarov (2013), a 3D cantilever design problem
is analysed. The parameters chosen are the same as in the 2D case, apart from the length scale
parameter, where λl = 0.1 is used. The results in Figure B.3 show every 5th iteration of the
compliance minimisation steps. Note that the presented formulation can generate complex
structure shapes with high resolution using relatively coarse meshes.
The examples presented before utilised isotropic filtering, i.e. λl is a scalar. However, it is
possible to replace that quantity with a tensor that will smear the design variable ρ differently
in desired directions. In order to demonstrate this feature, the same cantilever as previously is
considered with scalar λl = 0.2 (see Fig. B.4a)) and a tensor expressed as:

λl =


0.01 0 0

0 0.01 0
0 0 0.2

 (B.11)
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Figure B.3: Evolution of design variable ρ for every 5th iteration. Iso-volume plot showing
ρ > 0.35.

a) b)

Figure B.4: Resulting topology with a) isotropic filter λl = 0.2 and b) anisotropic filter
(Eq. B.11). Iso-volume plot showing for ρ > 0.35.

This will enforce filtering mainly in the z-direction. The results after 50 iterations for both
filters are demonstrated in Figure B.4. The demonstrated anisotropic filtering can be beneficial
in case of designing structures for extrusion or additive manufacturing methods where the
strength of the parts depends highly on the direction of the material deposition.

B.4 Summary

This contribution presented a simple implementation of the topological optimisation using
SIMP algorithm. A Helmholtz-type PDE anisotropic filter was utilised, allowing for efficient
parallelisation of the approach. The source code can be found in Lewandowski (2020).
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Appendix C

Arc-length based on the internal and the
dissipated energy rates

Dissipated energy control

Following the second law of thermodynamics, the behaviour of the adiabatic dissipative
process can be expressed in the local form as follows:

ÛD = σσσ Ûεεε − Ûψ ≥ 0, (C.1)

where ÛD is the rate of dissipation and ψ is the energy density stored in the bulk per unit volume.
It is assumed that internal energy is dependent on damage parameter d (see Equation 5.11).
Therefore, following May et al. (2016), the derivative of energy density with respect to time
can be computed as:

Ûψ = σσσ Ûεεε +
∂ψ

∂d
Ûd (C.2)

and
Ûψ =

1
2
σσσ Ûεεε +

1
2
Ûσσσεεε. (C.3)

With no discontinuities in the solid, the global form of the second law of thermodynamics can
be written as:

ÛED =

∫
Ω

ÛDdV =
∫
Ω

1
2
σσσ Ûεεε −

1
2
ÛσσσεdV =

∫
Ω

−
∂ψ

∂d
ÛddV (C.4)

where ÛED is the rate of dissipated energy. Furthermore, knowing that εεε = Buu and fint =∫
Ω

BT
uσσσdV, the second integral in equation C.4 can be expressed as:

ÛED =
1
2
Ûufint −

1
2

uÛfint (C.5)
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Next, the equilibrium Equation 5.39 can be applied and the dissipation rate ÛED is replaced
with the rate parameter ÛτD

1
2
(τ ÛuT − ÛτuT)f̂ − ÛτD = 0. (C.6)

Using the mid-point rule, time discretised form of the Equation C.6 can be used as the
constraint in Equation 5.39 in the following way:

φD(u, τ) =
1
2
(τ0uT − τuT

0 )f̂ − ∆τ
D (C.7)

where∆τD is considered as the prescribed step size, i.e. the amount of energy dissipated within
one load increment. τ0 and u0 are the converged values for the load factor and displacements
of the previous step.

Internal energy control

In this subsection, another arc-length function is introduced. Typically at the beginning of
the loading or unloading, before the damage mechanisms are activated, the rate of the energy
dissipation is very low. In these conditions, a more suitable internal energy-based arc-length
will be used.
Once again, assuming no discontinuities in the solid, the 5.39 can be expressed in the global
form of the second law to render the rate of the internal energy ÛU:

ÛU =

∫
Ω

ÛψdV =
1
2
(τ ÛuT + ÛτuTf̂ (C.8)

Next, similar to Equation C.7 the mid-point rule is applied and ÛU is replaced with parameter
∆τF , which yields the following arc-length function:

φU(u, τ) =
1
2
(τuT − τ0uT

0 )f̂ − ∆τ
U (C.9)

where ∆τU is considered as the prescribed step size, i.e. the amount of internal energy which
has to be introduced in one load increment. τ0 and u0 are the converged values for the load
factor and displacements of the previous step. The Equation C.9 is utilised when there is no
increase in the dissipation.
In the algorithmic setting, it is worth noting that in the very first iteration of the analysis, the
displacement u = u0 = 0 rendering the tangent stiffness matrix to be singular. Therefore, in
the first increment, the following simple constraint function is used:

φF
1 = (τ − ∆τ

F
1 ) = 0 (C.10)

where ∆τF
1 is the parameter that has to be specified. Such constraint is equivalent to τ = ∆τF

1 ,
similarly to force control increment. From the first iteration, u1 and τ1 are known, therefore,
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the rate of the internal energy can be evaluated as follows:

∆τU
1 =

1
2
τ1uT

1 f̂. (C.11)

Furthermore, ∆τU
1 is used in the consecutive load increments. The second parameter, after∆τF

1 ,
is the ratio a that needs to be prescribed. This parameters determine whether the arc-length
algorithm has to switch from internal energy-based to the dissipation based constraint function.
The ratio a is defined as follows:

a =
∆τD

∆τU . (C.12)

In order to find the suitable value of this parameter, May et al. (2016) suggest starting the
analysis assuming a large value of a and subsequently assign to a a value that is smaller
than ∆τD/∆τU from the last converged increment. Fortunately, this procedure can be easily
automatised; therefore, practically only one parameter is necessary to start the calculation
with the arc-length control. The fully detailed derivation of the procedure presented above
can be found in May (2016).

C.0.1 Algorithmic treatment

The final form of the global system of equations (see Equation 5.27) augmented with the
arc-length control for phase-field fracture has the following form:


Kdd Kdu 0
Kud Kuu −f̂
0T hT w

 i


δd

δu
δτ

 i+1

=


−fint

d

τfext−fint
u

φ(τ,u)

 i

, (C.13)

where
w =

∂φ

∂τ
, h =

∂φ

∂u
. (C.14)

The algorithm presented in the previous section is summarised in Figure 1 below. In order to
improve the robustness of the algorithm, an adaptive step size is applied. In subsequent load
steps the initial constraint ∆τU

1 is multiplied by the following factor:

∆τU
1 = ∆τ

U
1

√
id

i + 1
, (C.15)

where i is the number of previously converged iterations and id is the optimal number of
iterations for the Newton-Raphson method, typically 5 (Gutiérrez, 2004). The parameter id is
usually adjusted by the user.
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Load ∆τF
1 and ratio a from input parameters;

n = 0;
InternalEnergyArclength= true;
while n < nmax do

i = 0;
while error > 10−8 do

if n == 1 then
φF

1 = τ1 − ∆τ
F
1 ;

else
if InternalEnergyArclength == true then

φU = 1
2

(
τi

n+1uiT

n+1 − τnuT
n

)
f̂ ;

else
φD = 1

2

(
τi

nuiT

n+1 − τn+1uT
n

)
f̂ ;

end
end
error = error(ui+1

n+1, τ
i+1
n+1);

i = i + 1;
end
if n == 1 then

∆τU
1 =

1
2τ1uT

1 f̂;
∆τU = ∆τU

1 ;
else

if InternalEnergyArclength == true then
∆τD = 1

2
(
τnuT

n+1 − τn+1uT
n
)

f̂;
if ∆τD > a∆τU

1 then
InternalEnergyArclength = f alse;
InternalEnergyNegative = f alse;
∆τD = a∆U

1 ;
end

else
∆τU = 1

2
(
τn+1uT

n+1 − τnuT
n
)

f̂;
if ∆τU < 0 and InternalEnergyNegative == f alse then

InternalEnergyNegative = true;
else

if ∆τU > ∆τU
1 and InternalEnergyNegative == true then

InternalEnergyArclength = true;
∆τU = ∆τU

1
end

end
end

∆τU
1 = ∆τ

U,D
√

id
i+1 ; // Scale step size for adaptivity;

end
n = n + 1;

end
Algorithm 1: Algorithm for the arc-length control.

The algorithm begins with assigning prescribed parameters: ratio a and ∆τF
1 . After the first

simple force control step, the resulting internal energy ∆τU
1 is computed and used as a step

size for the energy-based arc-length control φU . When the amount of dissipated energy ∆τD

surpasses the value of a∆U
1 which occurs in the vicinity of a failure, the loading process
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switches to dissipation based (φD) control. In case of complex problems with multiple
snap-backs and snap-throughs, the arc-length can switch back to energy control when ∆τU < 0
flag is triggered and subsequently when increment in internal energy becomes greater than in
the initial step: ∆τU > ∆τU

1 . Additionally, after each converged step, the initial step ∆τU
1 is

adjusted based on the number of previous iterations (see Eq. C.15).
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Appendix D

One-dimensional Quarter Point Element

For simplicity, the concept of the quarter-point element is briefly described by means of 1D
2-nd order finite element with hierarchical base shape functions. Global configuration of 2-nd
order element with nodes 0, 2 and 1 is schematically presented in Figure D.1a) where node 0
coincides with the crack tip. Furthermore, the natural coordinate system of the element is
presented in Figure D.1c), and the corresponding standard shape functions N0, N2 and N1 are
presented in Figure D.1b). Let the demonstrated element be a quarter-point type; the distance

Opposite
crack
surfaces

l

0 1
rq 0 1

N0 N2 N1

0 +1

ξ

a) b) c)

Figure D.1: 1D 2-nd order quarter-point element with standard shape functions:a) global
configuration, b) base shape functions, c) natural coordinates.

between node 0 with nodes 2 and 1 is given by radial coordinate rq (see Figure D.1a)). The
position of the middle node 2 is controlled by the parameter κ. In this section, the concept of
2-nd order quarter-point element formulation with standard shape function is extended to the
case of hierarchical shape functions. A more detailed description for higher dimensions can
be found in, for example, (Nejati et al., 2015). For elements adjacent to the crack tip in the
material configuration, the approximated material displacement field W, using hierarchical
shape functions (up to 2nd order), is expressed as:

W(ξ) =
2∑

a=0
Na(ξ)W(a) = (1 − ξ)W(0) + ξW(1) + κ(1 − ξ)ξW(2) (D.1)
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where the natural coordinate 0 ≤ ξ ≤ 1 and N2 = κN0N1 = κξ(1 − ξ). The introduction of the
parameter κ leads to a nonlinear mapping between the natural and physical coordinates and
results in the desired singular stress and strain field at the crack tip. In standard isoparametric
formulation, the element geometry can also be interpolated using the same approximation
functions. Thus, the physical distance from the crack tip is expressed as:

rq(ξ) =
2∑

a=0
Na(ξ)r

(a)
q = ξl + κξ(1 − ξ)l (D.2)

where rq(ξ = 0) = 0 at the crack tip and rq(ξ = 1) = l. Setting κ = −1 results in the following
relationship:

rq = ξl − ξ(1 − ξ)l = ξl ⇒ ξ =

√
rq

l
, (D.3)

This yields the following radial dependence for displacements and strains:

W(rq) =W(0) +
(
−W(0) +W(1) −W(2)

) √
rq

l
−W(2)

rq

l

εεε(rq) =
∂W
∂rq
=

(
W(0) +W(1) −W(2)

) 1
2

√
l
rq
+W(2)

1
l

(D.4)

Expressions in Eq. D.4 have the necessary terms to reproduce rigid body motion and pass
the patch tests, as well as the desired singularity at the crack tip due to the existence of the
term 1/

√
rq. This will enable the elements adjacent to the crack front to reproduce the strain

singularity resulting in an accurate finite element solution.

153



Bibliography

N. Aage and B. S. Lazarov. Parallel framework for topology optimization using the method of
moving asymptotes. Structural and Multidisciplinary Optimization, 47(4):493–505, 2013.

J. E. Adams. Quantitative computed tomography. European Journal of Radiology, 71(3):
415–424, 2009.

J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large data visualization.
The visualization Handbook, 717, 2005.

M. Ainsworth. Essential boundary conditions and multi-point constraints in finite element
analysis. Computer Methods in Applied Mechanics and Engineering, 190(48):6323–6339,
2001.

M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured tetrahedral meshes.
International Journal for Numerical Methods in Engineering, 58(14):2103–2130, 2003.

D. Ambrosi, G. Ateshian, E. Arruda, S. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D.
Humphrey, R. Kemkemer, E. Kuhl, and others. Perspectives on biological growth and
remodeling. Journal of the Mechanics and Physics of Solids, 59(4):863–883, 2011.

P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A Fully Asynchronous Multifrontal
Solver Using Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis and
Applications, 23(1):15–41, 2001.

H. Amor, J.-J. Marigo, and C. Maurini. Regularized formulation of the variational brittle
fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and
Physics of Solids, 57(8):1209 – 1229, 2009.

I. Athanasiadis, Z. Ullah, Ł. Kaczmarczyk, and C. Pearce. Mortar contact formulation for
hierarchical basis functions. June 2018.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T.
Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang.
PETSc Web page. 2018.

154



R. S. Barsoum. On the use of isoparametric finite elements in linear fracture mechanics.
International Journal for Numerical Methods in Engineering, 10(1):25–37, 1976.

Z. P. Bažant. Size effect on structural strength: a review. Archive of applied Mechanics, 69
(9-10):703–725, 1999.

Z. P. Bazant. Size effect. International Journal of Solids and Structures, 37:69–80, 2000.

G. Beaupre, T. Orr, and D. Carter. An approach for time-dependent bone modeling and
remodeling-application: A preliminary remodeling simulation. Journal of Orthopaedic
Research, 8(5):662–670, 1990.

T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999.

T. Belytschko and M. Tabbara. Dynamic fracture using element-free Galerkin methods.
International Journal for Numerical Methods in Engineering, 39(6):923–938, 1996.

T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods:
an overview and recent developments. Computer Methods in Applied Mechanics and
Engineering, 139(1-4):3–47, 1996.

M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural
optimization, 1(4):193–202, Dec. 1989.

M. P. Bendsøe and O. Sigmund. Theory, methods and applications. Topology optimization.
Springer, Berlin, 2003.

A. Bettamer, R. Hambli, S. Allaoui, and A. Almhdie-Imjabber. Using visual image measure-
ments to validate a novel finite element model of crack propagation and fracture patterns
of proximal femur. Computer Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization, 5(4):251–262, 2017.

S. H. Bogers, C. W. Rogers, C. Bolwell, W. Roe, E. Gee, and C. W. McIlwraith. Quantitative
comparison of bone mineral density characteristics of the distal epiphysis of third metacarpal
bones from Thoroughbred racehorses with or without condylar fracture. American Journal
of Veterinary Research, 77(1):32–38, 2016.

J. Bolander and S. Saito. Fracture analyses using spring networks with random geometry.
Engineering Fracture Mechanics, 61(5-6):569–591, 1998.

M. J. Borden. Isogeometric analysis of phase-field models for dynamic brittle and ductile
fracture. Thesis, Aug. 2012.

D. Borst, S. May, and J. Vignollet. A numerical assessment of phase field models for brittle
and cohesive fracture : G -Convergence and stress oscillations. 52:72–84, 2015.

155



B. Bourdin. Filters in topology optimization. International Journal for Numerical Methods in
Engineering, 50(9):2143–2158, 2001.

B. Bourdin. The variational formulation of brittle fracture: numerical implementation and
extensions. In A. Combescure, R. De Borst, and T. Belytschko, editors, IUTAM Symposium
on DiscretizationMethods for Evolving Discontinuities, IUTAMBookseries, pages 381–393.
Springer Netherlands, 2007.

B. Bourdin, G. A. Francfort, and J.-J. Marigo. The Variational Approach to Fracture. Journal
of Elasticity, 91(1):5–148, 2008.

P. Brama, D. Karssenberg, A. Barneveld, and P. Van Weeren. Contact areas and pressure
distribution on the proximal articular surface of the proximal phalanx under sagittal plane
loading. Equine Veterinary Journal, 33(1):26–32, 2001.

A. M. Bruaset and A. Tveito, editors. Numerical solution of partial differential equations on
parallel computers. Number 51 in Lecture notes in computational science and engineering.
Springer, Berlin, 2006.

K.-D. Budras, W. O. Sack, and S. Rock. Anatomy of the Horse: An Illustrated Text.
Schlütersche, 2003.

G. Campoli, H. Weinans, and A. A. Zadpoor. Computational load estimation of the femur.
Journal of the Mechanical Behavior of Biomedical Materials, 10:108–119, June 2012.

G. Campoli, B. Bolsterlee, F. van der Helm, H. Weinans, and A. A. Zadpoor. Effects of
densitometry, material mapping and load estimation uncertainties on the accuracy of
patient-specific finite-element models of the scapula. Journal of The Royal Society Interface,
11(93):20131146, 2014.

C. E. Cann and H. K. Genant. Precise measurement of vertebral mineral content using
computed tomography. Journal of Computer Assisted Tomography, 4(4):493–500, 1980.

D. Carter, M. Van der Meulen, and G. Beaupre. Mechanical factors in bone growth and
development. Bone, 18(1):S5–S10, 1996.

W. Chang-chun, H. Peixiang, and L. Ziran. Extension of j integral to dynamic fracture of
functional graded material and numerical analysis. Computers & Structures, 80(5):411–416,
2002. doi: 10.1016/S0045-7949(02)00013-5.

G. Chen, B. Schmutz, D. Epari, K. Rathnayaka, S. Ibrahim, M. Schuetz, and M. Pearcy. A
new approach for assigning bone material properties from CT images into finite element
models. Journal of Biomechanics, 43(5):1011–1015, 2010.

P. Christen, K. Ito, R. Ellouz, S. Boutroy, E. Sornay-Rendu, R. D. Chapurlat, and B. Van Riet-
bergen. Bone remodelling in humans is load-driven but not lazy. Nature communications,
5:4855, 2014.

156



J. D. Clayton and J. Knap. A geometrically nonlinear phase field theory of brittle fracture.
International Journal of Fracture, 189(2):139–148, 2014.

S. Cowin and D. Hegedus. Bone remodeling I: theory of adaptive elasticity. Journal of
Elasticity, 6(3):313–326, 1976.

C. Crijns, A. Martens, H.-J. Bergman, H. van der Veen, L. Duchateau, H. van Bree, and
I. Gielen. Intramodality and intermodality agreement in radiography and computed
tomography of equine distal limb fractures. Equine Veterinary Journal, 46(1):92–96, 2014.

M. A. Crisfield. Accelerated solution techniques and concrete cracking. Computer Methods
in Applied Mechanics and Engineering, 33(1):585–607, Sept. 1982.

H. Davies and J. Merritt. Surface strains around the midshaft of the third metacarpal bone
during turning. Equine Veterinary Journal, 36(8):689–692, 2004.

R. de Borst and C. V. Verhoosel. Gradient damage vs phase-field approaches for fracture:
Similarities and differences. Computer Methods in Applied Mechanics and Engineering,
312:78–94, 2016.

R. de Borst, J. Remmers, A. Needleman, and M.-A. Abellan. Discrete vs smeared crack
models for concrete fracture: Bridging the gap. International Journal for Numerical and
Analytical Methods in Geomechanics, 28(7-8):583–607, 2004.

S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman,
and D. G. Thelen. OpenSim: Open-Source Software to Create and Analyze Dynamic
Simulations of Movement. IEEE Trans. Biomed. Engineering, 54(11):1940–1950, 2007.

M. Doblaré and J. Garcıa. Anisotropic bone remodelling model based on a continuum
damage-repair theory. Journal of Biomechanics, 35(1):1–17, 2002.

M. Doblaré, J. Garcıa, and M. Gómez. Modelling bone tissue fracture and healing: a review.
Engineering Fracture Mechanics, 71(13-14):1809–1840, 2004.

M. G. Drum, C. M. Les, R. D. Park, R. W. Norrdin, C. W. McIlwraith, and C. E. Kawcak.
Correlation of quantitative computed tomographic subchondral bone density and ash density
in horses. Bone, 44(2):316–319, 2009.

K. L. Easton. Effect of bone geometry on stress distribution patterns in the equine Metacar-
pophalangeal joint. Thesis, Colorado State University, 2012.

K. L. Easton and C. E. Kawcak. Evaluation of increased subchondral bone density in areas of
contact in the metacarpophalangeal joint during loading in horses. American Journal of
Veterinary Research, 68(8):816–821, 2007.

S. Eberle, M. Göttlinger, and P. Augat. An Investigation to Determine if a Single Validated
Density-Elasticity Relationship Can Be Used for Subject Specific Finite Element Analyses
of Human Long Bones. Med Eng Phys, 35(7):875–83, 2013.

157



R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer. An Anisotropic Model for Annulus
Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies. Computer
Methods in Biomechanics and Biomedical Engineering, 4(3):209–229, Jan. 2001.

D. Eberly. A Robust Eigensolver for 3x3 Symmetric Matrices. page 22, Dec. 2014.

A. Egger, U. Pillai, K. Agathos, E. Kakouris, E. Chatzi, I. A. Aschroft, and S. P. Triantafyllou.
Discrete and Phase Field Methods for Linear Elastic Fracture Mechanics: A Comparative
Study and State-of-the-Art Review. Applied Sciences, 9(12):2436, Jan. 2019.

J. W. Eischen. Fracture of nonhomogeneous materials. International Journal of Fracture, 34
(1):3–22, 1987. doi: 10.1007/BF00042121.

J. Eshelby. The elastic energy-momentum tensor. Journal of elasticity, 5(3-4):321–335, 1975.

J. D. Eshelby. The force on an elastic singularity. Phil. Trans. R. Soc. Lond. A, 244(877):
87–112, 1951.

Z. Fan, J. G. Swadener, J. Y. Rho, M. E. Roy, and G. M. Pharr. Anisotropic properties
of human tibial cortical bone as measured by nanoindentation. Journal of Orthopaedic
Research, 20(4):806–810, 2002.

E. M. Feerick, X. C. Liu, and P. McGarry. Anisotropic mode-dependent damage of cortical
bone using the extended finite element method (XFEM). Journal of the Mechanical
Behavior of Biomedical Materials, 20:77–89, 2013.

E. C. Firth, M. Doube, and A. Boyde. Changes in mineralised tissue at the site of origin of
condylar fracture are present before athletic training in Thoroughbred horses. 0169(April),
2016.

F. D. Fischer, J. Predan, R. Müller, and O. Kolednik. On problems with the determination
of the fracture resistance for materials with spatial variations of the young’s modulus.
International Journal of Fracture, 190(1):23–38, 2014.

G. A. Francfort and J. J. Marigo. Revisiting brittle fracture as an energy minimization problem.
Journal of the Mechanics and Physics of Solids, 46(8):1319–1342, Aug. 1998.

H. M. Frost. Bone "mass" and the "mechanostat": a proposal. The Anatomical record, 219(1):
1–9, 1987.

T. C. Gasser and G. A. Holzapfel. A numerical framework to model 3-D fracture in bone tissue
with application to failure of the proximal femur. In IUTAM Symposium on Discretization
Methods for Evolving Discontinuities, pages 199–211. Springer, 2007.

D. M. Geraldes, L. Modenese, and A. T. M. Phillips. Consideration of multiple load cases is
critical in modelling orthotropic bone adaptation in the femur. Biomechanics and Modeling
in Mechanobiology, 15(5):1029–1042, Oct. 2016.

158



T. Gerasimov and L. De Lorenzis. A line search assisted monolithic approach for phase-field
computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering,
312:276–303, 2016.

L. J. Gibson. Biomechanics of cellular solids. Journal of Biomechanics, 38(3):377–399, 2005.

I. M. Gitman, H. Askes, E. Kuhl, and E. C. Aifantis. Stress concentrations in fractured
compact bone simulated with a special class of anisotropic gradient elasticity. International
Journal of Solids and Structures, 47(9):1099–1107, 2010.

P. Grassl and M. Jirásek. Meso-scale approach to modelling the fracture process zone of
concrete subjected to uniaxial tension. International Journal of Solids and Structures, 47
(7-8):957–968, 2010.

A. A. Griffith. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 221
(582-593):163–198, 1921.

A. Grigoryan. Measure theory and probability. Lecture Notes, October, page 122, 2008.

E. Guerses and C. Miehe. A computational framework of three-dimensional configurational-
force-driven brittle crack propagation. Computer Methods in Applied Mechanics and
Engineering, 198(15-16):1413–1428, 2009.

H. Gupta and P. Zioupos. Fracture of bone tissue: the ’hows’ and the ’whys’. Medical
Engineering & Physics, 30(10):1209–1226, 2008.

M. E. Gurtin. Configurational Forces as Basic Concepts of Continuum Physics. Springer
Science & Business Media, 1999.

M. A. Gutiérrez. Energy release control for numerical simulations of failure in quasi-brittle
solids. Communications in Numerical Methods in Engineering, 20(1):19–29, 2004.

P. Hajela and E. Lee. Genetic algorithms in truss topological optimization. International
Journal of Solids and Structures, 32(22):3341–3357, Nov. 1995.

R. Hambli. Micro-ct finite element model and experimental validation of trabecular bone
damage and fracture. Bone, 56(2):363 – 374, 2013a.

R. Hambli. A quasi-brittle continuum damage finite element model of the human proximal
femur based on element deletion. Medical & Biological Engineering & Computing, 51
(1-2):219–231, Feb. 2013b.

R. Hambli, A. Bettamer, and S. Allaoui. Finite element prediction of proximal femur fracture
pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Medical
Engineering & Physics, 34(2):202 – 210, 2012.

159



R. Hambli, E. Lespessailles, and C.-L. Benhamou. Integrated remodeling-to-fracture finite
element model of human proximal femur behavior. Journal of the Mechanical Behavior of
Biomedical Materials, 17:89–106, Jan. 2013.

T. P. Harrigan and J. J. Hamilton. Finite element simulation of adaptive bone remodelling:
A stability criterion and a time stepping method. International Journal for Numerical
Methods in Engineering, 36(5):837–854, 1993.

T. P. Harrigan, J. J. Hamilton, J. D. Reuben, A. Toni, and M. Viceconti. Bone remodelling
adjacent to intramedullary stems: an optimal structures approach. Biomaterials, 17(2):
223–232, 1996.

N. M. Harrison, P. McDonnell, L. Mullins, N. Wilson, D. O’Mahoney, and P. E. McHugh.
Failure modelling of trabecular bone using a non-linear combined damage and fracture
voxel finite element approach. Biomechanics and Modeling in Mechanobiology, 12(2):
225–241, 2013.

S. M. Harrison, R. C. Whitton, C. E. Kawcak, S. M. Stover, and M. G. Pandy. Relationship
between muscle forces, joint loading and utilization of elastic strain energy in equine
locomotion. The Journal of experimental Biology, 213:3998–4009, 2010.

S. M. Harrison, R. C. Whitton, C. E. Kawcak, S. M. Stover, and M. G. Pandy. Evaluation
of a subject-specific finite-element model of the equine metacarpophalangeal joint under
physiological load. Journal of Biomechanics, 47(1):65–73, Jan. 2014.

S. J. Hazelwood, R. Bruce Martin, M. M. Rashid, and J. J. Rodrigo. A mechanistic model
for internal bone remodeling exhibits different dynamic responses in disuse and overload.
Journal of Biomechanics, 34(3):299–308, 2001.

B. Helgason, E. Perilli, E. Schileo, F. Taddei, S. Brynjolfsson, and M. Viceconti. Mathematical
relationships between bone density and mechanical properties: a literature review. Clinical
biomechanics, 23(2):135–146, 2008a.

B. Helgason, F. Taddei, H. Palsson, E. Schileo, L. Cristofolini, M. Viceconti, and S. Brynjolfs-
son. A modified method for assigning material properties to FE models of bones. Medical
Engineering & Physics, 30(4):444–453, 2008b.

R. Henshell and K. Shaw. Crack tip finite elements are unnecessary. International Journal for
Numerical Methods in Engineering, 9(3):495–507, 1975.

Hirshikesh, S. Natarajan, R. K. Annabattula, and E. Martínez-Pañeda. Phase field modelling
of crack propagation in functionally graded materials. Composites Part B: Engineering,
169:239–248, July 2019.

S. Hosseini, J. J. C. Remmers, C. V. Verhoosel, and R. d. Borst. An isogeometric continuum
shell element for non-linear analysis. Computer Methods in Applied Mechanics and
Engineering, 271:1 – 22, 2014.

160



H. Hovagimian, C. Molica, and K. Billiar. Osteoporotic equine bone modeling: 3-point
bending of deer metacarpal bone. 2011 IEEE 37th Annual Northeast Bioengineering
Conference NEBEC, (1):1–2, 2011.

J. M. Hughes, K. L. Popp, R. Yanovich, M. L. Bouxsein, and R. W. Matheny Jr. The role
of adaptive bone formation in the etiology of stress fracture. Experimental Biology and
Medicine, 242(9):897–906, 2017.

R. Huiskes, R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces
on maintenance and adaptation of form in trabecular bone. Nature, 405(6787):704–706,
2000.

G. Irwin. Fracture strength relative to onset and arrest of crack propagation. In Proc ASTM,
volume 58, pages 640–657, 1958.

B. Jacklin and I. Wright. Frequency distributions of 174 fractures of the distal condyles of
the third metacarpal and metatarsal bones in 167 Thoroughbred racehorses (1999–2009).
Equine Veterinary Journal, 44(6):707–713, 2012.

C. R. Jacobs, M. E. Levenston, G. S. Beaupré, J. C. Simo, and D. R. Carter. Numerical
instabilities in bone remodeling simulations: the advantages of a node-based finite element
approach. Journal of Biomechanics, 28(4):453–459, 1995.

L. Kaczmarczyk and C. J. Pearce. Efficient numerical analysis of bone remodelling. Journal
of the Mechanical Behavior of Biomedical Materials, 4(6):858 – 867, 2011.

Ł. Kaczmarczyk, M. M. Nezhad, and C. Pearce. Three-dimensional brittle fracture:
configurational-force-driven crack propagation. International Journal for Numerical
Methods in Engineering, 97(7):531–550, 2014.

Ł. Kaczmarczyk, Z. Ullah, and C. J. Pearce. Energy consistent framework for continuously
evolving 3d crack propagation. Computer Methods in Applied Mechanics and Engineering,
324:54–73, Sept. 2017.

Ł. Kaczmarczyk, Z. Ullah, K. Lewandowski, X. Meng, X.-Y. Zhou, I. Athanasiadis, H. Nguyen,
C.-A. Chalons-Mouriesse, E. Richardson, E. Miur, A. Shvarts, M. Wakeni, and C. Pearce.
MoFEM: an open source, parallel finite element library. The Journal of Open Source
Software, 2020. http://mofem.eng.gla.ac.uk.

J. H. Keyak, T. S. Kaneko, J. Tehranzadeh, and H. B. Skinner. Predicting proximal femoral
strength using structural engineeringmodels. Clinical Orthopaedics and Related Research®,
437:219–228, 2005.

R. Kienzler and G. Herrmann. Mechanics in Material Space: with Applications to Defect and
Fracture Mechanics. Springer Science & Business Media, Dec. 2012.

161



R. Kienzler and G. A. Maugin. Configurational mechanics of materials, volume 427. Springer,
2014.

J.-H. Kim and G. H. Paulino. Finite element evaluation of mixed mode stress intensity
factors in functionally graded materials. International Journal for Numerical Methods in
Engineering, 53(8):1903–1935, Mar. 2002.

N. K. Knowles, J. M. Reeves, and L. M. Ferreira. Quantitative computed tomography (QCT)
derived bone mineral density (BMD) in finite element studies: a review of the literature.
Journal of Experimental Orthopaedics, 3, 2016.

J. Kronick, M. Barba, and W. Paprosky. Extensively coated femoral components in young
patients. Clinical Orthopaedics and related research, (344):263–274, 1997.

E. Kuhl. Theory and Numerics of Open System Continuum Thermodynamics: Spatial and
Material Settings. UKL LTM / T. Techn. Univ., 2004.

E. Kuhl and F. Balle. Computational modeling of hip replacement surgery: Total hip
replacement vs. hip resurfacing. Technische Mechanik, 25(2):1–8, 2005.

E. Kuhl and P. Steinmann. Theory and numerics of geometrically non-linear open system
mechanics. International Journal for Numerical Methods in Engineering, 58(11):1593–
1615, 2003.

E. Kuhl, A. Menzel, and P. Steinmann. Computational modeling of growth. A critical review,
a classification of concepts and two new consistent approaches. Computational Mechanics,
32(1-2):71–88, 2003.

C. Kuhn and R. Müller. A continuum phase field model for fracture. Engineering Fracture
Mechanics, 77(18):3625–3634, Dec. 2010.

C. Kuhn and R. Müller. A discussion of fracture mechanisms in heterogeneous materials
by means of configurational forces in a phase field fracture model. Computer Methods in
Applied Mechanics and Engineering, 312:95–116, 2016.

C. Kuhn, A. Schlüter, and R. Müller. On degradation functions in phase field fracture models.
Computational Materials Science, 108:374–384, Oct. 2015.

M. Kuna. Basics of Fracture Mechanics. In M. Kuna, editor, Finite Elements in Fracture
Mechanics: Theory - Numerics - Applications, Solid Mechanics and Its Applications, pages
21–151. Springer Netherlands, Dordrecht, 2013.

P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods.
Mathematics of computation, 37(155):141–158, 1981.

B. S. Lazarov and O. Sigmund. Filters in topology optimization based on Helmholtz-type
differential equations. International Journal for Numerical Methods in Engineering, 86(6):
765–781, 2011.

162



P. D. Leahy, B. S. Smith, K. L. Easton, C. E. Kawcak, J. C. Eickhoff, S. S. Shetye, and
C. M. Puttlitz. Correlation of mechanical properties within the equine third metacarpal
with trabecular bending and multi-density micro-computed tomography data. Bone, 46(4):
1108–1113, 2010.

S. Lee, M. F. Wheeler, and T. Wick. Pressure and fluid-driven fracture propagation in porous
media using an adaptive finite element phase field model. Computer Methods in Applied
Mechanics and Engineering, 305:111–132, 2016.

C. M. Les, J. H. Keyak, S. M. Stover, K. T. Taylor, and A. J. Kaneps. Estimation of material
properties in the equine metacarpus with use of quantitative computed tomography. Journal
of Orthopaedic Research, 12(6):822–833, 1994.

K. Lewandowski. Supplement data for Numerical investigation into fracture risk of bone
following adaptation. Dec. 2019.

K. Lewandowski. MoFEM-TopologyOptimization-Module-v0.1.0. Feb 2020.

H. Liedtke, A. McBride, S. Sivarasu, and S. Roche. Computational simulation of bone
remodelling post reverse total shoulder arthroplasty. arXiv preprint arXiv:1705.08324,
2017.

G. Liu, Q. Li, M. A. Msekh, and Z. Zuo. Abaqus implementation of monolithic and staggered
schemes for quasi-static and dynamic fracture phase-field model. Computational Materials
Science, 121:35–47, Aug. 2016.

J. Londono, L. Berger-Vergiat, and H. Waisman. An equivalent stress-gradient regularization
model for coupled damage-viscoelasticity. Computer Methods in Applied Mechanics and
Engineering, 322:137 – 166, 2017.

E. Lorentz and P. Badel. A new path-following constraint for strain-softening finite element
simulations. International Journal for Numerical Methods in Engineering, 60(2):499–526,
2004.

A. Loughridge, A. Hess, T. Parkin, and C. Kawcak. Qualitative assessment of bone density at
the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and
without condylar fracture. Equine Veterinary Journal, 49(2):172–177, 2017.

E. Martínez-Pañeda, A. Golahmar, and C. F. Niordson. A phase field formulation for hydrogen
assisted cracking. Computer Methods in Applied Mechanics and Engineering, 342:742–761,
Dec. 2018.

G. A. Maugin. Configurational forces: thermomechanics, physics, mathematics, and numerics.
Chapman and Hall/CRC, 2016.

S. May. Splines for damage and fracture in solids. Thesis, University of Glasgow, Aug. 2016.

163



S. May, J. Vignollet, and R. de Borst. A new arc-length control method based on the rates of
the internal and the dissipated energy. Engineering Computations, 33(1):100–115, Mar.
2016.

N. Mc Turlough. Condylar fractures in horses – a review. Veterinary Ireland Journal, 4(4):
205–211, 2014.

C. McIlwraith. Use of synovial fluid and serum biomarkers in equine bone and joint disease:
a review. Equine Veterinary Journal, 37(5):473–482, 2005.

A. Menzel and E. Kuhl. Frontiers in growth and remodeling. Mechanics Research Communi-
cations, 42:1–14, 2012.

J. S. Merritt, C. R. Burvill, M. G. Pandy, and H. M. S. Davies. Determination of mechanical
loading components of the equine metacarpus from measurements of strain during walking.
Equine Veterinary Journal, 38(SUPPL.36):440–444, 2006.

J. S. Merritt, M. G. Pandy, N. A. T. Brown, C. R. Burvill, C. E. Kawcak, C. W. McIlwraith,
and H. M. S. Davies. Mechanical loading of the distal end of the third metacarpal bone
in horses during walking and trotting. American Journal of Veterinary Research, 71(5):
508–514, 2010.

C. Miehe. Computation of isotropic tensor functions. Communications in Numerical Methods
in Engineering, 9(11):889–896, 1993.

C. Miehe. Comparison of two algorithms for the computation of fourth-order isotropic tensor
functions. Computers and Structures, 66(1):37–43, 1998.

C. Miehe and E. Gürses. A robust algorithm for configurational-force-driven brittle crack
propagation with r-adaptive mesh alignment. International Journal for Numerical Methods
in Engineering, 72(2):127–155, 2007.

C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent crack
propagation: Robust algorithmic implementation based on operator splits. Computer
Methods in Applied Mechanics and Engineering, 199(45-48):2765–2778, 2010a.

C. Miehe, F. Welschinger, andM. Hofacker. Thermodynamically consistent phase-field models
of fracture: Variational principles andmulti-field FE implementations. International Journal
for Numerical Methods in Engineering, 83(10):1273–1311, 2010b.

C. Miehe, F. Aldakheel, and A. Raina. Phase field modeling of ductile fracture at finite
strains: A variational gradient-extended plasticity-damage theory. International Journal of
Plasticity, 84:1–32, Sept. 2016.

D. S. Milo. Good Enough: The Tolerance for Mediocrity in Nature and Society. Harvard
University Press, June 2019.

164



D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on Pure and Applied Mathematics, 42
(5):577–685, 1989.

M. Nejati, A. Paluszny, and R. W. Zimmerman. On the use of quarter-point tetrahedral
finite elements in linear elastic fracture mechanics. Engineering Fracture Mechanics, 144:
194–221, 2015.

D. Ngo and A. Scordelis. Finite element analysis of reinforced concrete beams. In Journal
Proceedings, volume 64, pages 152–163, 1967.

L. Nguyen, S. Stoter, T. Baum, J. Kirschke, M. Ruess, Z. Yosibash, and D. Schillinger.
Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis
of CT-based bone structures. International Journal for Numerical Methods in Biomedical
Engineering, 33(12):e2880, 2017.

T. T. Nguyen, J. Yvonnet, Q. Z. Zhu, M. Bornert, and C. Chateau. A phase field method to
simulate crack nucleation and propagation in strongly heterogeneous materials from direct
imaging of their microstructure. Engineering Fracture Mechanics, 139:18–39, 2015.

E. Noether. Invariant variation problems. Transport Theory and Statistical Physics, 1(3):
186–207, 1971.

D. M. Nunamaker and A. J. Ruggles. The Bucked-Shin Complex. Diagnosis and Management
of Lameness in the Horse: Second Edition, pages 953–960, 2010.

J. O’Connor, L. A. Borges, F. P. Duda, and A. G. da Cruz. Bone density growth and
the biomechanics of healthy and prosthetic femur. Journal of the Brazilian Society of
Mechanical Sciences and Engineering, 39(10):3743–3756, 2017.

I. Ozdemir. An alternative implementation of the incremental energy/dissipation based
arc-length control method. Theoretical and Applied Fracture Mechanics, 100:208–214,
Apr. 2019.

K. Ozenc, G. Chinaryan, and M. Kaliske. A configurational force approach to model the
branching phenomenon in dynamic brittle fracture. Engineering Fracture Mechanics, 157:
26–42, 2016.

D. H. Pahr and P. K. Zysset. Influence of boundary conditions on computed apparent elastic
properties of cancellous bone. Biomechanics and Modeling in Mechanobiology, 7(6):
463–76, 2008.

A. Pakdel, J. Fialkov, and C. M. Whyne. High resolution bone material property assignment
yields robust subject specific finite element models of complex thin bone structures. Journal
of Biomechanics, 49(9):1454–1460, 2016.

165



H. Pang, A. P. Shiwalkar, C. M. Madormo, R. E. Taylor, T. P. Andriacchi, and E. Kuhl.
Computational modeling of bone density profiles in response to gait: a subject-specific
approach. Biomechanics and modeling in mechanobiology, 11(3-4):379–390, 2012.

T. Parkin, P. Clegg, N. French, C. Proudman, C. Riggs, E. Singer, P. Webbon, and K. Morgan.
Analysis of horse race videos to identify intra-race risk factors for fatal distal limb fracture.
Preventive Veterinary Medicine, 74(1):44–55, 2006.

T. D. H. Parkin, P. D. Clegg, N. P. French, C. J. Proudman, C. M. Riggs, E. R. Singer, P. M.
Webbon, and K. L. Morgan. Horse-level risk factors for fatal distal limb fracture in racing
Thoroughbreds in the UK. Equine Veterinary Journal, 36(6):513–519, 2004.

T. D. H. Parkin, P. D. Clegg, N. P. French, C. J. Proudman, C. M. Riggs, E. R. Singer, P. M.
Webbon, and K. L. Morgan. Risk factors for fatal lateral condylar fracture of the third
metacarpus/metatarsus in UK racing. Equine Veterinary Journal, 37(3):192–199, 2005.

C. Pearce. Crack propagation in nuclear graphite. 2019.

E. Peleg, R. Herblum, M. Beek, L. Joskowicz, M. Liebergall, R. Mosheiff, and C. Whyne. Can
a partial volume edge effect reduction algorithm improve the repeatability of subject-specific
finite element models of femurs obtained fromCT data? Computer methods in biomechanics
and biomedical engineering, 17(3):204–209, 2014.

K. Pham, H. Amor, J.-J. Marigo, and C. Maurini. Gradient Damage Models and Their Use to
Approximate Brittle Fracture. International Journal of Damage Mechanics, 20(4):618–652,
May 2011.

L. Podshivalov, A. Fischer, and P. Z. Bar-Yoseph. On the Road to Personalized Medicine:
Multiscale Computational Modeling of Bone Tissue, volume 21. 2014.

S. Poelert, E. Valstar, H. Weinans, and A. A. Zadpoor. Patient-specific finite element modeling
of bones. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, 227(4):464–478, 2013.

J. Y. Rho. An ultrasonic method for measuring the elastic properties of human tibial cortical
and cancellous bone. Ultrasonics, 34(8):777–783, 1996.

J. R. Rice. A path independent integral and the approximate analysis of strain concentration
by notches and cracks. Journal of applied mechanics, 35(2):379–386, 1968.

C. Riggs, G. Whitehouse, and A. Boyde. Structural variation of the distal condyles of the
third metacarpal and third metatarsal bones in the horse. Equine Veterinary Journal, 31(2):
130–139, Mar. 1999.

C. M. Riggs and a. Boyde. Effect of exercise on bone density in distal regions of the equine
third metacarpal bone in 2-year-old thoroughbreds. Equine Veterinary Journal. Supplement,
30:555–60, 1999.

166



C. M. M. Riggs and A. Boyde. Effect of exercise on bone density in distal regions of the
equine third metacarpal bone in 2-year-old thoroughbreds. Equine Veterinary Journal., 30
(555-60), July 1991.

E. Riks. An incremental approach to the solution of snapping and buckling problems.
International Journal of Solids and Structures, 15(7):529–551, Jan. 1979.

R. O. Ritchie, J. H. Kinney, J. J. Kruzic, and R. K. Nalla. A fracture mechanics and mechanistic
approach to the failure of cortical bone. Fatigue & Fracture of Engineering Materials &
Structures, 28(4):345–371, 2005.

D. P. Rooke and D. J. Cartwright. Compendium of stress intensity factors. Procurement
Executive, Ministry of Defence. H. M. S. O. 1976, 1976.

E. Schileo, F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models
implementing a maximum principal strain criterion are able to estimate failure risk and
fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2):356–367,
2008.

R. Scholz, F. Hoffmann, S. von Sachsen, W. G. Drossel, C. Klöhn, and C. Voigt. Validation of
density-elasticity relationships for finite element modeling of human pelvic bone by modal
analysis. Journal of Biomechanics, 46(15):2667–2673, 2013.

J. J. Setterbo, T. C.Garcia, I. P. Campbell, J. L. Reese, J.M.Morgan, S.Y.Kim,M.Hubbard, and
S. M. Stover. Hoof accelerations and ground reaction forces of Thoroughbred racehorses
measured on dirt, synthetic, and turf track surfaces. American Journal of Veterinary
Research, 70(10):1220–1229, 2009.

A. Sharir, M. M. Barak, and R. Shahar. Whole bone mechanics and mechanical testing.
Veterinary Journal, 177(1):8–17, 2008.

G. B. Sharma and D. D. Robertson. Adaptive scapula bone remodeling computational
simulation: Relevance to regenerative medicine. Journal of Computational Physics, 244:
312–320, July 2013.

R. Shen, H. Waisman, Z. Yosibash, and G. Dahan. A novel phase field method for modeling
the fracture of long bones. International Journal for Numerical Methods in Biomedical
Engineering, 35(8):e3211, 2019.

C. Shih, B. Moran, and T. Nakamura. Energy release rate along a three-dimensional crack
front in a thermally stressed body. International Journal of fracture, 30(2):79–102, 1986.

O. Sigmund. A 99 line topology optimization code written in matlab. Structural and
Multidisciplinary Optimization, 21(2):120–127, 2001.

O. Sigmund and K. Maute. Topology optimization approaches: A comparative review.
Structural and Multidisciplinary Optimization, 48(6):1031–1055, Dec. 2013.

167



W. Squire and G. Trapp. Using Complex Variables to Estimate Derivatives of Real Functions.
SIAM Review, 40(1):110–112, Jan. 1998.

C. Steinke, K. Ozenc, G. Chinaryan, and M. Kaliske. A comparative study of the r-adaptive
material force approach and the phase-field method in dynamic fracture. International
Journal of Fracture, 201(1):97–118, 2016.

P. Steinmann, D. Ackermann, and F. Barth. Application of material forces to hyperelastostatic
fracturemechanics. II. Computational setting. International Journal of Solids and Structures,
38(32-33):5509–5526, 2001.

Z. Tabor and E. Rokita. Quantifying anisotropy of trabecular bone from gray-level images.
Bone, 40(4):966–972, 2007.

F. Taddei, E. Schileo, B. Helgason, L. Cristofolini, and M. Viceconti. The material mapping
strategy influences the accuracy of CT-based finite element models of bones: an evaluation
against experimental measurements. Medical Engineering & Physics, 29(9):973–979, 2007.

T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. MOAB: a mesh-oriented
database. SAND2004-1592, Sandia National Laboratories, Apr. 2004. Report.

R. Taylor, C. Zheng, R. Jackson, J. Doll, J. Chen, K. Holzbaur, T. Besier, and E. Kuhl. The
phenomenon of twisted growth: humeral torsion in dominant arms of high performance
tennis players. Computer Methods in Biomechanics and Biomedical Engineering, 12(1):
83–93, 2009.

J. J. Thomason and M. L. Peterson. Biomechanical and Mechanical Investigations of the
Hoof-Track Interface in Racing Horses. Veterinary Clinics of North America: Equine
Practice, 24(1):53–77, 2008.

A. Tovar, N. M. Patel, G. L. Niebur, M. Sen, and J. E. Renaud. Topology Optimization Using
a Hybrid Cellular Automaton Method With Local Control Rules. Journal of Mechanical
Design, 128(6):1205–1216, Nov. 2006.

N. Trabelsi and Z. Yosibash. Patient-specific finite-element analyses of the proximal femur
with orthotropic material properties validated by experiments. Journal of Biomechanical
Engineering, 133(6):061001, 2011.

N. Trabelsi, Z. Yosibash, and C. Milgrom. Validation of subject-specific automated p-FE
analysis of the proximal femur. Journal of Biomechanics, 42(3):234–241, 2009.

C. Tranquille, R. Murray, and T. Parkin. Can we use subchondral bone thickness on high-field
magnetic resonance images to identify Thoroughbred racehorses at risk of catastrophic
lateral condylar fracture? Equine Veterinary Journal, 49(2):167–171, 2017.

Z. Ullah and C. Augarde. Finite deformation elasto-plastic modelling using an adaptive
meshless method. Computers & Structures, 118:39–52, 2013.

168



A. Ural and S. Mischinski. Multiscale modeling of bone fracture using cohesive finite elements.
Engineering Fracture Mechanics, 103:141–152, 2013.

S. van den Munckhof and A. A. Zadpoor. How accurately can we predict the fracture load of
the proximal femur using finite element models? Clinical Biomechanics, 29(4):373–380,
2014.

M. Viceconti, M. Davinelli, F. Taddei, and A. Cappello. Automatic generation of accurate
subject-specific bone finite element models to be used in clinical studies. Journal of
Biomechanics, 37(10):1597–1605, 2004.

J. Vignollet, S. May, R. De Borst, and C. V. Verhoosel. Phase-field models for brittle and
cohesive fracture. Meccanica, 49(11):2587–2601, 2014.

T. Waffenschmidt and A. Menzel. Application of an anisotropic growth and remodelling
formulation to computational structural design. Mechanics Research Communications, 42:
77–86, 2012.

T. Waffenschmidt, A. Menzel, and E. Kuhl. Anisotropic density growth of bone - A
computational micro-sphere approach. International Journal of Solids and Structures, 49
(14):1928–1946, 2012.

A. Walther. Getting Started with ADOL-C. In U. Naumann, O. Schenk, H. D. Simon, and
S. Toledo, editors, Combinatorial Scientific Computing, Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

X. Wang, C. D. L. Thomas, J. G. Clement, R. Das, H. Davies, and J. W. Fernandez. A
mechanostatistical approach to cortical bone remodelling: an equine model. Biomechanics
and Modeling in Mechanobiology, 15(1):29–42, 2016.

H. Weinans, R. Huiskes, and H. Grootenboer. The behavior of adaptive bone-remodeling
simulation models. Journal of Biomechanics, 25(12):1425–1441, 1992.

R. C. Whitton, G. D. Trope, A. Ghasem-Zadeh, G. A. Anderson, T. D. Parkin, E. J. Mackie,
and E. Seeman. Third metacarpal condylar fatigue fractures in equine athletes occur within
previously modelled subchondral bone. Bone, 47(4):826–831, 2010.

T. Wick. Modified newton methods for solving fully monolithic phase-field quasi-static brittle
fracture propagation. Computer Methods in Applied Mechanics and Engineering, 325:
577–611, 2017.

H. Wille, M. Ruess, E. Rank, and Z. Yosibash. Uncertainty quantification for personalized
analyses of human proximal femurs. Journal of Biomechanics, 49(4):520–527, 2016.

J. Wolff. The classic on the inner architecture of bones and its importance for bone growth.
Clinical Orthopaedics and Related Research, 50:389–450, 1870.

169



K. C.Wong, L.Wang, H. Zhang, H. Liu, and P. Shi. Meshfree implementation of individualized
active cardiac dynamics. Computerized Medical Imaging and Graphics, 34(1):91–103,
2010.

J.-Y. Wu. A unified phase-field theory for the mechanics of damage and quasi-brittle failure.
Journal of the Mechanics and Physics of Solids, 103:72–99, June 2017.

J.-Y. Wu, V. P. Nguyen, C. T. Nguyen, D. Sutula, S. Bordas, and S. Sinaie. Phase field modeling
of fracture. Advances in Applied Mechancis: Multi-scale Theory and Computation, 52,
2018.

K. Yamada, F. Sato, T. Higuchi, K. Nishihara, M. Kayano, N. Sasaki, and Y. Nambo.
Experimental investigation of bone mineral density in Thoroughbreds using quantitative
computed tomography. Journal of Equine Science, 26(3):81–87, 2015.

J. Yan, A. Daga, R. Kumar, and J. J. Mecholsky. Fracture toughness and work of fracture
of hydrated, dehydrated, and ashed bovine bone. Journal of Biomechanics, 41(9):1929 –
1936, 2008.

Q. Yang, B. N. Cox, R. K. Nalla, and R. Ritchie. Fracture length scales in human cortical
bone: the necessity of nonlinear fracture models. Biomaterials, 27(9):2095–2113, 2006.

A. Yildiz, N. Oztürk, N. Kaya, and F. Oztürk. Integrated optimal topology design and shape
optimization using neural networks. Structural and Multidisciplinary Optimization, 25(4):
251–260, Oct. 2003.

Z. Yosibash, D. Tal, and N. Trabelsi. Predicting the yield of the proximal femur using
high-order finite-element analysis with inhomogeneous orthotropic material properties.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 368(1920):2707–2723, 2010.

A. A. Zadpoor. Open forward and inverse problems in theoretical modeling of bone tissue
adaptation. Journal of the mechanical behavior of biomedical materials, 27:249–261, 2013.

C. Zannoni, R. Mantovani, and M. Viceconti. Material properties assignment to finite element
models of bone structures: a new method. Medical Engineering & Physics, 20(10):735–740,
1999.

A. T. Zehnder. Lecture notes on fracture mechanics. Cornell University, 20:22, 2007.

O. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor. The Finite Element Method:
Solid mechanics. Butterworth-Heinemann, 2000.

170


	2020LewandowskiThesis cover sheet (1) (8)
	2020LewandowskiPhD
	Nomenclature
	1 Introduction
	1.1 Motivation and objectives
	1.2 Thesis overview

	2 Literature overview
	2.1 Introduction
	2.2 Fractures of the equine 3rd metacarpal
	2.2.1 Anatomy of equine 3rd metacarpal bone
	2.2.2 Fractures in Thoroughbred racehorses
	2.2.3 Bone material properties
	2.2.4 Horse Kinematics

	2.3 Computational modelling of bones
	2.3.1 Bone remodelling
	2.3.2 Bone fractures

	2.4 Summary

	3 Bone imaging and material mapping
	3.1 Introduction
	3.2 Least-squares mapping
	3.2.1 L2 projection
	3.2.2 Comparison with literature

	3.3 Moving Least Squares Approximation
	3.3.1 Computational implementation
	3.3.2 MWLS mapping examples

	3.4 Partial Volume Artifacts
	3.5 Assessment of bone density gradient
	3.5.1 Quantitative Computed Tomography
	3.5.2 Bone segmentation and 3D FE model generation
	3.5.3 Density mapping
	3.5.4 Results

	3.6 Summary

	4 Bone remodelling
	4.1 Introduction
	4.2 Continuum formulation for bone
	4.2.1 Conservation of mass
	4.2.2 Conservation of momentum
	4.2.3 Constitutive equations
	4.2.4 Strong form
	4.2.5 Weak form
	4.2.6 Time discretisation
	4.2.7 Spatial discretisation
	4.2.8 Linearisation
	4.2.9 Tangent operator

	4.3 Benchmark problems
	4.3.1 Parameter sensitivity
	4.3.2 Influence of the mass flux
	4.3.3 Size effect
	4.3.4 Numerical efficiency

	4.4 Bone remodelling and topology optimisation
	4.4.1 Bike frame
	4.4.2 Three-dimensional L-shaped crank

	4.5 Summary

	5 Phase-field fracture
	5.1 Introduction
	5.2 Phase-field representation
	5.2.1 Continuum formulation
	5.2.2 Strain energy density split
	5.2.3 Degradation function
	5.2.4 Strong form
	5.2.5 Weak form
	5.2.6 Derivation of projection tensors
	5.2.7 Comparison of the methods

	5.3 Arc-length control
	5.4 Benchmark problems
	5.4.1 One-dimensional bar
	5.4.2 Notched plate
	5.4.3 Plate with an eccentric hole

	5.5 Summary

	6 Configurational force driven fracture mechanics
	6.1 Introduction
	6.1.1 Material force concept
	6.1.2 Material forces in fracture mechanics

	6.2 Energy consistent framework for crack propagation
	6.2.1 Preliminaries
	6.2.2 First and second laws of thermodynamics
	6.2.3 Fracture process
	6.2.4 Density field
	6.2.5 Discretisation
	6.2.6 Arc-length control
	6.2.7 Linearised system of equations
	6.2.8 Crack topology resolution
	6.2.9 Singularity element

	6.3 Benchmark problems
	6.3.1 Stress intensity calculations
	6.3.2 Configurational forces in a heterogeneous body
	6.3.3 Crack propagation in heterogeneous two-dimensional plate

	6.4 Summary

	7 Numerical investigations
	7.1 Simulation of proximal femur adaptation
	7.1.1 Proximal femur example
	7.1.2 Proximal femur in presence of an implant

	7.2 Comparison of smeared and discrete approaches for fracture
	7.2.1 Differences and similarities
	7.2.2 Comparative numerical examples

	7.3 Fracture resistance of MC3 bone following adaptation
	7.3.1 Metacarpal adaptation
	7.3.2 Fracture risk and energy release of equine metacarpal
	7.3.3 Fracture energy release in bone using CT scan data
	7.3.4 Fracture energy release in bone using simulated density data

	7.4 Crack propagation in MC3 bone
	7.5 Summary

	8 Conclusions
	8.1 Limitations and future work

	A Moving Weighted Least Squares basis functions
	B Topology optimisation
	B.1 Implementation
	B.2 Density filtering
	B.3 Numerical examples
	B.4 Summary

	C Arc-length based on the internal and the dissipated energy rates
	C.0.1 Algorithmic treatment

	D One-dimensional Quarter Point Element
	Bibliography


