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Abstract 

Research aiming to understand pathogens in infection is shifting rapidly towards 

considering not only the individual pathogen but the whole microbial 

community. Therefore, understanding microbial communities through exploring 

the key questions in community ecology, such as the relationship between 

diversity and stability, are relevant here also. Research has made considerable 

progress in characterising microbial communities of different body sites but the 

human oropharynx microbiome is still among the less well known despite its 

importance in hosting various commensal bacteria and being an important entry 

site for pathogenic intrusion. Determining the healthy oropharynx microbiome 

will allow comparison to various disease scenarios and the attributes that change 

a community from a healthy to diseased state. 

This thesis represents the most comprehensive survey of looking at the 

longitudinal bacterial community structure in the oropharynx. Here, analysis was 

done on the bacterial oropharynx microbiome composition, its natural 

fluctuations and stability, and relating these to the changes that occur to the 

microbiome before, during and after an infection. This involved initial swabbing 

of the oropharynx of eighteen baseline-healthy, non-smoking participants weekly 

for a total period of 9 months and sequencing the V1-V2 region of the 16S rRNA 

gene using Illumina MiSeq sequencing. This would determine the community 

make up that is representative of a healthy state. This was then directly 

compared to oropharyngeal samples taken weekly from 12 smokers within the 

same age range for a total period of 6 months to observe the community 

differences between smokers and non-smokers. 

Looking at the healthy participants (non-smokers) alone, the key taxa recovered 

were Firmicutes at phylum level and Streptococcus, Prevotella and Veillonella 

at genus level; these were the most abundant taxa in healthy samples. There 

was variation in taxa within and between participants, but this variability in 

microbial community structure occurred more at genus and OTU level. 

Variability was influenced by changes in health status, although environmental 

factors were also likely to play a role even though they were not investigated 

here. Disturbances to the oropharynx microbiome were shown in participants 

that had cold-related symptoms (negative for viruses) and antibiotic treatment. 
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These communities had decreased diversity (as opposed to high diversity healthy 

communities) and changes in abundances of certain taxa. However, participants 

recovered quickly from these disturbances (within one week after the 

disturbance) in that the microbiome returned to a state similar in community 

composition prior to the disturbance. This showed the oropharynx microbiome of 

baseline-healthy participants to be relatively resilient and stable as samples 

from the same participants were similar on a weekly basis.  

Looking at smokers, they had distinct changes in the bacterial community of the 

oropharynx in comparison to non-smoking healthy participants. This included 

changes in abundance of taxa with increased Bacteroidetes, Proteobacteria and 

Actinobacteria at phylum level and Streptococcus at genus level and increased 

abundances in pathogenic microorganisms such as S. pneumoniae which overall 

affected the functions associated with the bacterial community. These 

communities also appeared stable (regardless of having an altered state) in that 

samples from smoking participants were also similar on a weekly basis, but 

interestingly, were only disrupted during antibiotic treatment and not during an 

infection from samples with cold related symptoms. 

Therefore this thesis provides insight into the oropharynx microbiome of healthy 

participants (non-smokers) and smokers. It examines the stability and resilience 

of the oropharynx microbiome during specific scenarios and identifies the key 

and important taxa in a healthy and unhealthy community. By continuing to 

develop this research it may be possible to identify, treat and restore 

respiratory diseases by examining the oropharynx microbiome through 

identification of taxa and functions. 
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1    Introduction 

Microorganisms are microscopic living organisms including bacteria, viruses, 

protozoa and archaea. Many are abundant in the human body, but only recently 

have the composition, structure and function of the bacterial components of 

these communities at different body sites been investigated (Cho & Blaser, 

2012). Techniques used previously to study microbiology such as culturing were 

limited, with many bacteria (especially anaerobic bacteria) remaining 

uncultivable due to requiring different growth conditions or long incubation 

periods (Jones, 2009). However, advances in culturing due to formation of 

complex and nutrient rich media have now made it possible to culture various 

anaerobic bacteria from the gastrointestinal (GI) tract (Browne et al., 2016). 

There has also been an increase and expansion in non-traditional molecular 

methods such as DNA sequencing (Petrosino et al., 2009) resulting in fast and 

less laborious detailed investigations and analysis of microbial communities in 

the human body, where it has now been discovered that each different body site 

or niche is home to millions of microorganisms living as a community. In order to 

develop understanding of these complex ecosystems it is essential to explore and 

investigate the microbial diversity and variation in a healthy and diseased state 

which will create the basis for subsequent analyses such as identifying key taxa 

responsible for shaping the structure and function of these communities.  

 

1.1 Investigating the microbiome 
 

The term microbiome is a relatively new one, first coined by Joshua Lederberg 

to describe any ecological community of commensal, symbiotic and pathogenic 

microorganisms that share our body space (Hooper, 2001). Microbiota studies 

refer to the identification of bacteria whereas microbiome projects identify 

bacteria, genes and genomes as well as environmental conditions of the 

community. The collection of genes and genomes within a community is also 

known as the metagenome. However the term microbiome is increasingly being 

used in studies that also only refer to the microbial community and so for this 

reason the term microbiome was specifically used in this project to characterise 

the bacterial community and to identify the predicted functions associated with 

16S rRNA gene datasets. Most microbiological studies have historically focussed 
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on investigating the disease causing microorganisms found in the human body, 

with little recognition of the benefits of the residential bacteria. With the 

completion of the human genome sequencing project in 2001 (International 

Human Genome Sequencing Consortium, 2001) discussions regarding a second 

human genome project arose that would detail the microbial genes and genomes 

at particular body sites (Relman & Falkow, 2001) giving an insight into the role 

of endogenous microorganisms in healthy individuals. The benefits of such a 

project would be to understand the organisation of microbial communities all 

over the human body and their potential influence on health. These initial 

studies and findings were pivotal in determining the aims and procedures of the 

Human Microbiome Project (HMP).  

 

1.2 The Human Microbiome Project 
 

In 2008, the National Institute of Health (NIH) led a 5 year wide scale research 

project to determine the components of microbial communities at various body 

sites with the aim to understand the roles of the human microbiome. The NIH 

described the concept of the microbiome as the entire community of microbes 

that inhabit the human body, their genetic elements and their environment 

(Petrosino et al., 2009). The main aim was to characterise the human 

microbiome and its role in health. To achieve this aim, healthy individuals were 

recruited for sampling each individual microbiome (Figure 1.1) to determine if 

individuals shared a core microbiome at the lowest taxonomic level that was 

dependent on body site (species level), and to understand if changes in the 

human microbiome within and between individuals could be correlated with 

changes in human health.  
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Figure 1.1 - The workflow process involved in recruiting and determining the 

microbiome of various body sites in the Human Microbiome Project (HMP). The 

areas tested included 9 oral sites, 4 skin specimens, 1 nostril sample and 1 stool 

sample, with 3 additional samples collected from the vagina in women. 

Sequencing of the 16S rRNA gene was performed using 454 pyrosequencing 

whereas Illumina platforms for metagenomics analysis were selected to explore 

community function. 

 

The HMP also had various goals over the course of the project that would enable 

them to develop a reference set of microbial genome sequences, explore and 

develop new tools and technologies for computational analysis and examine the 

ethical, legal and social implications involved in studying the microbiome. To 

investigate the microbiome, millions of DNA sequences were analysed through 

taxonomic assignment and clustering to identify operational taxonomic units 

(OTU) at the lowest taxonomic assignment, usually genus or species level. An 

example is oligotyping, a process which allows investigation into the diversity of 

closely related bacteria through determining variations in the 16S sequences 

(Eren et al., 2013). It is a supervised computational method that investigates 

and reveals the microbial diversity concealed within OTUs by focussing on the 

variable sites in sequences that contain the most discriminating information. 

This uses Shannon entropy rather than pairwise sequence similarity to discard 

low-entropy nucleotide positions providing ecological information of microbial 

communities. 

 



  23 

 

This investigation produced extensive datasets of which the main results are 

summarised: The microbiota consists of 10-100 trillion symbiotic microbial cells 

(Cho & Blaser, 2012) (Segata et al., 2012). Each body site contains a vast number 

of microbes living as a complex microbiota that vastly exceeds the number of 

human cells. Body sites showed differences in microbial richness (Huse et al., 

2012). At the lowest taxonomic classification level of identifying bacteria to 

genus and species level, the oral site had the most number of shared OTUs 

between healthy people whilst the vagina and skin had the least number of 

shared OTUs when looking at the numbers and percentages of OTUs; an OTU is 

classified as a specific type of bacterium based on sequence similarity, usually at 

a cut off level at 97% identity (Schloss & Westcott, 2011). The abundance of 

microbes and diversity of communities on each body site varied widely amongst 

healthy individuals (Huse et al., 2012). Even though key taxa were present at 

each body site (taxa that were always the most abundant) there was still a lot of 

variation in these abundances within and between healthy individuals. This 

individual variation of bacteria can be a result of natural variation, as well as 

external factors such as diet and lifestyle choices (The HMP Consortium, 2012). A 

core microbiome representing health was not found (Huse et al., 2012). A core 

microbiome was defined as OTUs being present in 100% of samples. However a 

healthy state could not be described by identifying the OTUs (at species level) as 

very few shared OTUs were found across all subjects. The functions of 

communities at different body sites were not influenced by microbial 

abundances (The HMP Consortium, 2012). Even though there was great variation 

in microbial abundances in body sites across individuals, the metabolic pathways 

remained the same suggesting that a community of microbes (rather than 

individual species) are responsible for function. This was shown by Arumugam et 

al., (2011) where healthy individuals were classified into three different 

enterotypes based on the taxa found in their GI tract. These enterotypes were 

each dominated by Bacteroides, Ruminococcus or Clostridiales and Prevotella at 

the genus level and all three enterotypes had the same metabolic pathways such 

as carbohydrate and amino acid metabolism (Turnbaugh & Gordon, 2009). This 

research showed that even though the healthy GI tract had variability in taxa in 

individuals, this did not interfere with the functions provided by that 

community. This study highlighted the importance of investigating the 

abundances of taxa present in addition to the function of communities, but to 
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also understand that variation between individuals is still representative of a 

healthy state.  

 

These initial findings led to a massive increase in microbiome related projects 

where studies explored taxa compositions in specific disease scenarios. The 

microbiome may be responsible for influencing various processes such as 

metabolism (Turnbaugh & Gordon, 2009), immunity (Lozupone et al., 2012) and 

resistance to pathogens (Gao et al., 2014), all of which are beneficial to the 

host. But there is now evidence to also link taxa abundances and microbiome 

changes in various disease states as shown in Table 1.1 which describes 

associations of bacteria with specific diseases. These studies collectively 

highlight the importance of studying the microbiome in health and disease as 

correlations between microbial abundances and disease have been established. 
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Table 1.1 – Microbial abundances associated with specific diseases. 

Disease types Microbial abundances in disease 

Childhood onset asthma H. pylori absent in stomach (Blaser et al., 

2008) 

Colorectal cancer Increases in Fusobacterium spp in colorectal 

tumour tissue (Warren et al., 2012) 

Crohn’s disease Increase in Enterobacteriaceae in biopsies 

taken from the terminal ileum and rectum 

(Gevers et al., 2014) 

Irritable Bowel Syndrome 

(IBS) 

Decrease in Bacteroidetes and increase in 

Enterobacteriaceae in faeces (Distrutti et al., 

2016) 

Periodontitis Higher diversity in communities and increase 

in Spirochaetes from oral cavities (Abusleme 

et al., 2013) 

Psoriasis Increased ratio of Firmicutes to Actinobacteria 

on skin (Zhan et al., 2008) 

Obesity Increased ratio of Firmicutes to Bacteroidetes 

in faeces (Turnbaugh et al., 2009) 

Schizophrenia Increase in lactic acid bacteria in 

oropharyngeal communities (Castro-Nallar et 

al., 2015) 

Vaginosis Higher diversity in communities and a 

reduction in Lactobacillus (Ravel et al., 2013) 

 
Therefore, identifying the taxa at different classification levels in the 

microbiome of a specific body site is only a starting point for understanding its 

influence on the host. Further challenges exist in considering the biotic 

interactions, community assemblage and evolution within these communities 

(Castro-Nallar et al., 2015) (Fierer & Lennon, 2011). In addition, the variation 

present between healthy individuals and its relevance must be investigated to 

fully determine the roles of the microbiome in health and then compare this in 

disease situations.  
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1.3 Understanding the ecology of microbial communities 
 

Microbial ecology investigates communities of microorganisms living together in 

a specific environment and the interactions between them and their 

environment (Konopka, 2009). One goal of ecology is to measure, understand 

and predict biodiversity and function of an ecosystem whereas microbiome 

projects aim to identify the microorganisms present and how their functions 

influence the host. With the increasing microbiome data available there is a 

growing interest to apply ecological theory to analysis and thereby gain an 

improved understanding of why these communities have the structure and 

functions observed. This section will explore the common and increasing 

ecological terms and theories applied to microbiome studies. 

 

The microbiome can affect the host organism in many ways by influencing 

attachment of secondary colonised microorganisms and interacting with 

pathogenic species, consequently affecting risk of disease. Such conclusions 

require an understanding of the ecological processes in microbial communities. 

Resilience is an important term that can be described as measuring the 

fluctuations in a community and its ability to withstand and recover from 

disturbances through looking at community composition; stable communities 

tend to have minimal fluctuations as well as quick recovery from drastic 

community changes. To illustrate the role of ecology in understanding the 

function of the human microbiome, the GI microbiome, a reasonably well-known 

part of the human microbiome, provides a good example. The healthy GI tract 

consists of two main phyla Bacteroidetes and Firmicutes (Turnbaugh et al., 

2009) forming usually a stable community with the former phylum in dominance. 

Bacteroidetes regulates various metabolic activities such as the breakdown of 

substrates and carbohydrate metabolism. A disturbance in this proportion such 

as a decrease in Bacteroidetes and increase in Firmicutes has been associated 

with a predisposition to obesity in humans (Turnbaugh et al., 2009) resulting in 

an unstable and disease prone state. Obese subjects were found to have higher 

levels of Firmicutes and a greater expression of obesity prone genes. Therefore 

the phylum Bacteroidetes may be regarded as a key phylum in shaping the 

community and maintaining the health of an individual whereas an increase in 

Firmicutes may contribute to decreased diversity and instability. Therefore, 



  27 

 

community properties such as abundance, biodiversity and stability (Table 1.2) 

may be key features in linking the human microbiome to health and disease. It is 

crucial to understand how and to what extent these properties shape a 

community in health, disease and post disease, and many of these theories can 

now be tested in microbiome studies (Li & Ma, 2016). The details of important 

processes differ in different communities but the common theme in an 

ecological viewpoint is that it focuses on a wider context than on a single 

species; between-species interactions and/or interactions with the environment 

are considered even if the whole community is not always of interest.  
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Table 1.2 – Key terms in microbial community ecology. 

Ecological 

term 

Definition and importance to microbiome studies 

Colonisation 

resistance 

The process of when a bacterial community forms and maintains a 

barrier for protection from invading pathogens (Robinson et al., 2010) 

Community A group of different microorganisms living together in a particular 

environment (Konopka, 2009) 

Community 

assembly 

Processes that build and shape the community. These processes can 

include dispersal, diversification, environmental selection and 

ecological drift (Costello et al., 2012) 

Dispersal Movement of microorganisms across space (Costello et al., 2012) 

Diversification Evolution of divergent ecological traits (Costello et al., 2012) 

Diversity Species richness and evenness present in a community (Fierer et al., 

2012). This can be broken down into : 

Alpha diversity - diversity measured in a single habitat or community 

Beta diversity – diversity between habitats 

Gamma diversity – diversity of an area that is composed of many 

habitats 

Ecological 

drift 

The processes of birth, death, colonisation and extinction to 

determine the diversity and species of local communities that are 

independent of traits and niches (Rosindell et al,. 2012)  

Environmental 

selection 

Role of the environment in shaping the community (Costello et al., 

2012) 

Functional 

redundancy  

The concept of where the function of a community remains the same 

after a decline of one type of species resulting in other species to 

compensate to provide the same function (Lozupone et al., 2012) 

Relative 

abundance 

Proportion of a microorganism relative to the total number of 

microorganisms in a community 

Resilience Rate of recovery after a disturbance to a community, it can be a 

measure of stability (Robinson et al., 2010) 

Resistance Degree to which a community is unchanged when the environment 

changes, it can be a measure of stability (Robinson et al., 2010) 

Stability The ability of a community to withstand or recover from disturbances 

(Robinson et al., 2010) 

 

Diversity is an important measure in microbiome studies that can be calculated 

in many ways. Alpha diversity can be measured by various indicators that take 

into account species richness (the number of different species present) and 
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species evenness (the spread of the species present). Taking into account the 

species richness and evenness is known as the relative abundance. This includes 

the Shannon-Wiener Index (H) that ranges from values of 0 to 5, with the higher 

value representing higher diversity. Simpson’s Index (D) is a measure of 

dominance and gives the probability that individuals drawn at random from a 

large community belong to different species. Values range from 0 to 1, with the 

higher value representing dominance in the community. On the other hand, beta 

diversity measures the change in species diversity between communities by 

calculating the number of species that are not the same in 2 communities. 

Indices used to calculate beta diversity can measure the similarity and 

dissimilarity of communities by investigating abundances or presence and 

absence data. An example is the Bray-Curtis dissimilarity index which uses 

clustering to determine the dissimilarities between samples using abundance 

data. This gives values ranging from 0 to 1, with a value of 1 indicating 2 

samples not sharing any species and so being extremely dissimilar to each other.   

 

Determining the diversity of communities is important because high diversity 

communities may prevent extinction of bacteria as well as allowing bacteria to 

adapt to changes in the community (reduction or elimination of some species) 

therefore regulating the behaviour and function of communities. Stability on the 

other hand, refers to the ability to withstand and return from disturbances to a 

state similar to before the disturbance and stable communities tend to be highly 

resilient (Fierer et al., 2012). In community ecology, stability has been linked to 

diversity. Since the seminal work by ecologists MacArthur and Elton, low 

diversity has been linked to many diseases, whereas high diversity has been 

linked to a more stable and resilient environment that may be more immune to 

changes (Richardson & Pysek, 2007). Elton argued that the simplest communities 

are more vulnerable to invasion (McCann, 2000) suggesting that high diversity 

communities are more prepared for perturbations due to having more species 

that will respond differently to the perturbation. If this is the case then diversity 

may be responsible for providing functional redundancy as a means to protect 

key processes for community survival (Konopka, 2009). If individual species can 

contribute to a range of functions, the community as a whole may survive on less 

diversity when challenged to still maintain stability as long as they have those 

key species present; also known as the insurance hypothesis (McCann, 2000). 
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High levels of diversity in communities have been seen as beneficial and 

favourable to protect communities from disturbances by broadening the 

sustainable conditions in which the community can endure.  

 

The diversity/stability debate aims to understand whether diversity is associated 

with community stability. This can be tested by identifying perturbations that 

disturb the community to test the resilience and ability to resist invasion, whilst 

observing if any changes to diversity occur throughout the process. Various 

studies suggest a high diversity community is indicative of a healthy and stable 

state (McCann, 2000), whereas low diversity communities represent disease and 

unstable environments. This has been shown in obesity which is linked to a low 

diversity state (Turnbaugh & Gordon 2009). By having a high diversity 

community, the community will still be able to maintain the stability and 

functions of the community. The role of the gut microbiome has also been shown 

to be important in Inflammatory Bowel Disease (IBD) where a low diversity 

community has been observed from the intestinal microbiome of IBD patients in 

comparison to healthy controls. In IBD there are decreases in the abundance of 

anti-inflammatory species such as Faecalibacterium prausnitzii which are known 

to reduce inflammation by releasing anti-inflammatory cytokines and produce 

short chain fatty acids such as butyrate (Khan et al., 2012) which the host 

cannot produce itself. Therefore certain bacteria in the GI tract are needed for 

metabolism and to maintain a healthy state. By having a high diverse 

community, it provides insurance to the community that another species can 

help contribute to the overall functions of the community. However, there are 

exceptions to this theory as the vaginal tract consists of low diversity 

communities dominated by Lactobacillus which is representative of a healthy but 

stable state (Ravel et al., 2013). The onset of vaginosis results in a reduction in 

Lactobacillus and an increase in diversity resulting in decreased stability which 

allows colonisation by other microorganisms and the possibility of other 

infections. More studies investigating this in the microbiome are required to see 

if there is a general pattern of diversity and stability linked to health and 

disease. 
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1.4 Exploring the human oropharynx microbiome 
 

This thesis investigated the human oropharynx microbiome in two groups of 

populations, non-smokers and smokers. The oropharynx (the part of the throat 

immediately below the nasal cavity) was specifically chosen due to the presence 

of commensal bacteria in addition to being an important entry point for 

pathogenic bacteria. 

 

1.4.1 The healthy oropharynx microbiome 
 

The human pharynx consists of three main parts as shown in Figure 1.2. The 

oropharynx is constantly exposed to inhaled and ingested microbes, those 

cleared by mucociliary mechanisms from the respiratory tract and those 

contained in saliva, food and water. It is a niche for various microorganisms 

made up of bacteria, viruses and yeast, with the majority of the community 

dominated by bacteria. The oropharynx is home to various commensal species, 

many belonging to the Streptococcus and Prevotella species but is also a site for 

many pathogenic bacteria such as Streptococcus pneumoniae (Pelton, 2012) 

Haemophilus influenzae and Neisseria meningitides (Gazi et al., 2004). The 

oropharynx is dominated by the specific phyla Firmicutes and Bacteroidetes with 

other phyla (Proteobacteria, Actinobacteria and Fusobacteria) residing at less 

prevalent numbers (Lemon et al., 2010). 

 

 

Figure 1.2 – A representation of the different parts of the human pharynx as 

adapted from Matsuo et al., (2009). 
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1.4.1.1 Diversity and variation in the healthy oropharynx microbiome 

The oropharynx microbiome is a diverse habitat that has previously been shown 

to include a range of 400-800 different taxa from individuals (Lemon et al., 

2010). These individuals varied in the spread of abundance (evenness) in samples 

but samples from the same individual were shown to be more similar in 

comparison to samples from other individuals; there was also greater variation in 

the diversity between individuals. However, individuals did have large intra-

personal variation which was increased at further taxonomic levels showing that 

variation in microbial abundances and taxa within samples is common and 

representative of a healthy state. This highlights the extent of variation in 

microbes within and between individuals but also the importance of identifying 

variation to determine what is considered healthy for individuals. 

1.4.1.2  Microbial community functions in the oropharynx 

Microbiome studies are now focusing on identifying functions of microbial 

communities. This gives an indication of the processes the community 

contributes to in the host in both healthy and diseased states which in turn 

determines how exactly the microbiome changes during a specific disease 

situation and what consequences this has for the host. Literature investigating 

the functions of the oropharyngeal microbial community is limited. Evidence 

regarding the functional diversity of the respiratory tract has shown microbial 

communities from the healthy oropharynx to be associated with pathways 

involved in ATP synthesis and lipid and carbohydrate metabolism (Castro-Nallar 

et al., 2015). Detailed characterisation of the functions associated with 

oropharyngeal microbial communities in health is needed to fully understand 

how variation of microbial communities affects function. This can then be 

compared against disease scenarios to show how the oropharynx microbiome 

affects the host during a specific disease and if this impairs function.  

1.4.2 The diseased oropharynx microbiome 
 

In order to fully understand the potential role of the oropharynx microbiome in 

health, it is also required to investigate the oropharynx microbiome in a 

diseased state. The effects of infections such as the common cold, pharyngitis 

and tonsillitis on the oropharynx microbiome are currently being investigated 
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through exploring and examining the changes that occur in the microbiome 

during these infections. These infections tend to be viral; however, pharyngitis 

and tonsillitis could also be caused by bacterial pathogens. The relationship 

between viral infections and the oropharynx microbiome is gaining interest and 

there has been evidence showing Rhinovirus (one of the viruses responsible for 

the common cold) resulting in increases in Neisseria and Haemophilus in the 

nasopharynx (Hofstra et al., 2015) which possibly leads to secondary bacterial 

infections. In another study, Leung et al., (2012) showed that infection by a 

certain strain of influenza (pH1N1) resulted in a decrease of commensals 

Prevotella and Veillonella and an increase in pathogens such as Pseudomonas 

showing that viral infection does interfere with the host microbiome. However, 

additional studies are needed to explore this relationship in order to fully 

understand the role of viral infections on bacterial populations.  

 

1.4.2.1 Can the oropharynx microbiome be a marker for other illnesses? 

Understanding the oropharynx microbiome in healthy individuals and its response 

to a disturbance could potentially be used as a model for disease scenarios. 

Changes in the oropharynx microbiome (in comparison to a control group) have 

been discovered in patients with laryngeal cancer. Significant differences were 

found in abundances of the following organisms with increases in Fusobacterium 

nucleatum, Fusobacterium sp. oral taxon and Prevotella intermedia with 

reductions in Streptococcus sp. oral taxon and Streptococcus parasanguinis 

(Gong et al., 2014). At the phylum level there was also a significant increase in 

Fusobacteria which is not considered as a dominant phylum of a healthy 

community.  

Changes in the oropharynx microbiome at the phylum and genus level were also 

observed in individuals who suffered from schizophrenia (Castro-Nallar et al., 

2015). Schizophrenic subjects had higher abundances of the fungi Ascomycota 

and lactic acid bacteria such as Lactobacilli (especially Lactobacillus gasseri) 

and Bifidobacterium, as well as a reduction in Neisseria and Capnocytophaga. 

Functionally, schizophrenic patients had an increased number in pathways 

related to metabolite transport systems, whereas controls had more pathways 

involved in energy metabolism (Figure 1.3). This showed that the different 

microbial communities in controls and patients resulted in different functional 
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abilities. However, whether these functions play a role in exacerbating disease 

or symptoms still remains to be discovered especially as schizophrenic patients 

may have completely different behaviours and diets in comparison to control 

groups. This shows that studies investigating the microbiome in a disease and 

control group need to be carefully planned and executed to take into account 

external factors that may influence the results. 

 

Figure 1.3 – The most abundant functional pathways present in schizophrenic 

patients (blue) and the control group (red). The pathway for pyrimidine 

metabolism was an exception in that it was abundant in both groups. 

1.4.3 The effects of smoking on the oropharynx microbiome 
 

The role of the microbiome in disease and the effects of environmental stimuli 

such as smoking are now being investigated. With smoking increasing the risk of 

infectious diseases (Bagaitkar et al., 2008) it is only expected that smoking will 

also alter the microbiome; smoking may promote pathogenic microbial 

colonisation by disrupting mucocilliary processes and impairing host immune 

responses against pathogens (Tamashiro et al., 2009). Charlson et al., (2010) 

reported evidence for the presence of distinct communities in smokers and non-

smokers but this has not been done on a longitudinal basis. The effects of 

cigarette smoke have been explored in the oral cavity with increases in 

Parvimonas, Fusobacterium and Campylobacter species, whereas the oropharynx 

has shown increased abundances in Megasphaera and Veillonella with decreased 

proportions of Fusobacterium and Peptostreptococcus (Charlson et al., 2010). 
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Smokers have also shown increased diversity in their samples – there was an 

increase in pathogens associated with disease, but also microorganisms not 

previously recognised with disease (Charlson et al., 2010). However more 

investigation is required when studying the effects of smoking in all microbiomes 

– there needs to be more focus in how exactly smoking changes the microbiome 

and whether it is a cause or effect process; does the effects of cigarette smoke 

actually kill off some species whilst enabling others to survive, or does smoking 

result in defective host immune responses and increased inflammatory responses 

which in turn changes the microbial community structure enabling infection to 

occur. It is also unknown if the effects of smoking on the microbiome are 

reversible and whether these changes affect the overall function of the 

community. 

 

1.4.4 Significance of the oropharynx microbiome 
 

It is estimated that 6 million deaths occur globally as a result of smoking and 

smoking related causes, whereas acute respiratory infections result in an 

additional 4 million deaths (Ferkol & Schraufnagel, 2014). Smokers also have a 

higher death rate from respiratory diseases compared to non-smokers (Carter et 

al., 2015). Understanding how smoking affects the microbial communities over a 

period of time and the functions associated with the communities is important 

to investigate on any microbiome. However, in order to fully understand the 

effects of smoking, there must be an investigation in non-smoking and smoking 

individuals in both healthy and unhealthy scenarios. Investigating these two 

groups will be the foundation to determine what changes occur to the 

microbiome of a non-smoker during a respiratory infection and what changes 

occur to the microbiome of a smoker during a respiratory infection, as well as 

determining how long these changes last. Therefore, it is of interest to 

understand the structure and stability determinants of the oropharyngeal 

microbial community in non-smokers (both healthy and unhealthy states) and 

smokers. Therefore characterising the oropharynx microbiome of non-smokers 

will improve our understanding of why some individuals become colonised with 

pathogens while others do not.  It is still not known how these microbes interact 

together, the stability of these communities in regards to health and smoker 

status and what changes occur in these communities on a longitudinal basis 
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before, during and after a disturbance (cold symptoms) or infection. This 

research could be a starting point in making a clinical impact, where in the 

future it may be possible to diagnose oropharyngeal disease, restore diseased 

communities from the effects of smoking or even just give an indication of 

overall oropharyngeal health status from looking at the microbial populations 

alone.  

 

1.5 Molecular techniques used to explore microbial 
communities 

 

Modern microbial ecology requires using molecular techniques. The goal of using 

such molecular techniques is to study an entire microbial community sampled 

directly from its natural habitat. DNA-based microbiome studies usually fall into 

two approaches: either a marker gene (targeted amplicon studies) or the entire 

metagenome of the community is sequenced. Research presented in this thesis is 

based on amplicon sequencing of the 16S rRNA gene. 

 

1.5.1 DNA extractions 

Before investigating specific genes, genomic DNA must be isolated from 

bacteria. DNA can be isolated through various commercial kits which either 

involve bead beating to break down cells and expose the genetic material or a 

lysozyme step to hydrolyse the peptidoglycan present in the cell walls. The goal 

of DNA extraction is to have a final volume of DNA which can then be used for 

molecular processes. However there are various drawbacks and challenges in 

using DNA extraction kits. This includes obtaining low concentrations of DNA 

from difficult to lyse samples or low density communities. This can be overcome 

through optimising the DNA extraction protocol or using the bead beating 

protocol rather than lyzosyme based kits to ensure higher DNA concentrations. 

DNA contamination can also be introduced into the sample from any dead 

external bacteria remaining in the kit, which could be especially problematic for 

low density communities. This can be overcome through the use of DNA 

extraction controls where the protocol is run (not using any samples) to help 

determine the contaminating bacteria present in the kits. The controls are 

sequenced along with the samples and any reads present just in the controls are 

manually removed from the samples. 
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1.5.2 The 16S rRNA gene 
 

The gold standard of bacterial identification and community diversity 

characterisation is to sequence the highly conserved 16S rRNA gene which is 

ubiquitous in all prokaryotes (Pace, 1997). The 16S rRNA gene is conserved 

enough to enable the design of PCR (polymerase chain reaction) primers to 

target different taxonomic groups, but also has enough variability to provide 

phylogenetic comparisons of microbial communities (Woese, 1987). All 

prokaryotes contain the 1500 base pair long 16S rRNA gene for protein 

production, making it a useful tool in evolutionary studies. The gene consists of 

conserved regions and 9 hyper variable regions known as V1-V9 (Figure 1.4) 

varying from 50-100 bases; these sequences are used as targets for microbial 

identification and can be amplified through PCR. However there are drawbacks 

in using the 16S rRNA gene as some bacteria have multiple copies of this gene 

resulting in over amplification during PCR resulting in some bacteria being over 

or under represented. However, this can be overcome by statistical analyses to 

take into account over representation of taxa. PCR can also not determine the 

functions of the gene of interest, as PCR only indicates detection of the gene 

amplified. 
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1.5.3 PCR methods 
 

The PCR protocol was developed in 1983 by Kary Mullis (Bartlett & Stirling, 2003) 

in order to multiply genes to a significant concentration that is necessary for 

molecular and genomic analyses. The technique works by producing millions of 

copies of a desired gene within a few hours as shown in Figure 1.5.  

 

 

 

Figure 1.5 – The stages involved in a simple PCR reaction showing the crucial 

steps of denaturation, annealing and extension to produce copies of a target 

gene. 

 

Certain regions of the 16S rRNA gene can be amplified to investigate microbial 

community structure due its occurrence in all prokaryotes. However, as with all 

molecular methods, there are biases associated to it and its efficiency is reliant 

on the quality of the starting DNA, presence of inhibitory substances which can 

be extracted alongside the DNA, as well as other biases that need to be 

considered such as template concentration, number of cycles and chimera 

formation (Janda & Abbott, 2007). However, in spite of this, 16S rRNA gene PCR 

is a fast, effective and reliable technique used in microbiome studies (Petrosino 

et al., 2009).  
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1.5.4 Preparation of a DNA clone library for Sanger sequencing 

Clone libraries are a collection of DNA fragments that are stored in vectors each 

containing a different insert of DNA. Clone libraries are very useful for a 

preliminary observation into the community make up - the creation of a clone 

library for a particular gene such as the 16S rRNA gene is one of the most useful 

and widely used methods for initial community exploration (Leigh, 2010) which 

can then be used for the production of mock communities as the community 

make up is already known. Universal primers targeting the 16S rRNA gene are 

used to amplify the gene of interest. The amplified products are then cloned and 

inserted into E. coli vectors through transformation, with fragments digested 

with restriction enzymes and separated by gel electrophoresis (Figure 1.6).  

 

 

 

Figure 1.6 – The stages involved in preparing a clone library for initial 

community exploration. The 16S rRNA gene is PCR amplified and cloned into an 

E. coli vector in preparation for Sanger sequencing. 
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Due to the differences in DNA content, unique banding patterns are generated 

for each microorganism. Representatives of each different band are identified as 

a single operational taxonomic unit (OTU) - an OTU is classified as a specific 

type of bacterium based on sequence similarity, usually at a cut off level at 97% 

identity (Schloss & Westcott, 2011). Different OTUs are then selected and sent 

away for Sanger sequencing (Sanger & Nicklen, 1977), a technique that involves 

replicating single stranded DNA through the use of DNA polymerases to add 

nucleotides to a growing chain. This is stopped when it randomly incorporates a 

fluorescently labelled dideoxynucleotide (ddNTP) which results in DNA strands of 

different lengths. This process is repeated various times which in turn generates 

a large number of fragments that end in fluorescently labelled bases. The 

fragments run through a thin glass capillary where an electrical charge separates 

the fragments by size; the shorter fragments move faster than the longer 

fragments. The final fluorescent base of each fragment is recorded as it passes 

through the glass capillary allowing the original DNA sequence to be read.  

 

Sanger sequencing remains a useful method; however there are faster, cheaper 

and more efficient sequencing methods in use today. Thousands of clones may 

be required to document the actual richness of the community, hence the 

preferred choice of next generation sequencing (NGS) techniques. Nevertheless, 

clone libraries and Sanger sequencing are still beneficial for preparation of mock 

communities for use as positive controls and quality control for a sequencing 

run. 

 

1.5.5 Next generation sequencing 

DNA sequencing is now routinely used in various fields of study due to the 

introduction of NGS platforms allowing scientists to sequence a large number of 

DNA fragments in a single run. NGS platforms have made it possible to recover 

and characterise genomic material from a wide range of samples, allowing 

microbial community structure to be explored at a cost effective rate. An 

example is shotgun sequencing which allows the sequencing of the whole 

genome by separating the DNA into smaller fragments which can be individually 

sequenced and then reassembled. The advantages of shotgun sequencing are 

that it is a fast process that can produce large amounts of data. The 

disadvantages are that it requires a lot of computing power and errors can occur 
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during reassembly. The reassembly of genomes may also be difficult if there is 

not a reference genome already available. Different sequencing platforms are in 

use for amplicon studies, but they all require extraction of nucleic acids, library 

preparation for sequencing and bioinformatics processing (Vincent et al., 2016). 

However each platform comes with advantages and disadvantages in terms of 

their read length, quantity of data, run time and cost (Table 1.3) all of which 

must be considered when choosing a platform. 
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1.5.5.1 Illumina technology  

Illumina platforms are the most popular and economical NGS platform, 

accounting for 60% of all platforms used (Eisenstein, 2012). Today, five versions 

of Illumina sequencer are commercially available: HiSeq 2500, HiSeq 1000, 

Genome Analyser, Genome Analyser IIx and MiSeq. The Illumina MiSeq 

technology uses a unique paired end strategy where the DNA strand is sequenced 

from both ends with the forward and reverse reads aligned as a read pair to 

increase the length of the sequence reads.  

 

The process of MiSeq amplicon sequencing (Hodkinson & Grice, 2015) involves 

attaching library adapters to DNA fragments (Figure 1.7). The library is loaded 

onto a flow cell where the adapters from the DNA fragments attach to 

oligonucleotide adapters on the flow cell. These fragments are amplified locally 

within clusters to create high densities ready for sequencing, a process known as 

bridge amplification where the single stranded molecule flips over and forms a 

bridge by hybridising to an adjacent complementary primer. This in turn forms a 

double stranded bridge through extension by polymerases, but the double 

stranded DNA is then denatured resulting in single stranded templates. This 

process is repeated many times until a high density cluster is formed ready for 

sequencing. The actual sequencing process uses a reversible terminator based 

method incorporating one base at a time. Flows of 4 different fluorescently dyed 

deoxynucleotides (dNTP) are run over the plate and block incorporation once a 

dNTP attaches to the growing chain which in turn releases a fluorescent signal. 

After signal detection the dyes are cleared and another cycle of reagents is 

added as before allowing identification of the DNA sequence. Illumina 

sequencers are considered the best choice for use in microbiome studies due to 

the fast improving technology, longer read lengths and reasonable cost. 
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Figure 1.7 – The process of MiSeq sequencing as taken from Biggar & Storey, 

2014. 

 

1.5.5.2  Bioinformatics 

Next generation sequencing platforms are now capable of generating a high 

number of reads in a single run with an increased need for improved software to 

be able to handle large datasets. A read refers to a data string of nucleotides A, 

T, C and G that correspond to a DNA sequence. In order to remove low quality 

reads from true reads, a series of bioinformatics processes are necessary to 

produce high quality DNA sequences that can be used for statistical analysis. The 

workflow involves quality filtering of raw sequences which discards reads that do 

not meet the required quality or length thresholds. Reads are also checked 

against chimeric sequences. These are artificial sequences that are produced 

during PCR that do not represent amplicon products. The remaining sequences 

are then clustered into OTUs against a reference database which assigns DNA 

sequences to microbial species. There are various programs available that 

consist of multiple steps to prepare sequencing reads with the most common 

programs described in Table 1.4. AmpliconNoise was chosen due to decreased 

error rates, a greater number of reads and longer read lengths in comparison to 

Mothur (Gaspar & Thomas, 2013).  
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Table 1.4 – Various bioinformatics programs used in amplicon sequencing 

projects. 

Program Description of use 

AmpliconNoise Used mainly for 454 and Illumina generated sequences 

(Quince et al., 2011) and consists of 3 main processes:  

Pyronoise – detects any misreads in sequences 

SeqNoise – removes PCR mutations 

Perseus – removes PCR chimeras 

Mothur Open source software package for bioinformatics data 

processing (Schloss & Westcott, 2011) of raw sequences to 

OTU construction and phylogenetic construction  that can be 

adapted for processing data from various sequencing 

platforms including Sanger, PacBio, IonTorrent, 454 and 

Illumina 

QIIME 

(Quantitative 

insights into 

microbial 

ecology) 

Open source pipeline for analysis from raw DNA sequencing 

data (Caporaso et al., 2011). It can be used on sequences 

from 454 and Illumina platforms.  The processes involve 

demultiplexing and quality filtering, OTU picking, taxonomic 

assignment and phylogenetic reconstruction 

 

Quality control steps can also be added through using mock communities to 

check error rates and ensure the correct sequences are being sequenced. This 

can also be a way to check for any external contamination introduced into 

samples through preparing DNA extraction kit controls. Once reads have been 

filtered and quality checked, rarefaction is then used to assess the species 

richness from sampling depth and reads coverage to determine if all species 

within the community have been sampled. The reads can then be used for data 

analysis. This can include analysis investigating the genetic distance between 

the DNA sequences and testing variables in a statisitical model to investigate 

whether there are any correlations in taxa abundance and specific metadata. 

However there are many issues to take into account when analysing sequence 

data. This includes ensuring there are enough reads present in each sample for 
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sufficient sampling depth which could especially be a concern in samples with 

low reads. It is also important to determine what statistical tests to use and this 

will depend on whether data follows a normal distribution or not; data that has 

unequal samples sizes, a very small size or does not follow a normal distribution 

would require non-parametric tests. However there are disadvantages of using 

non-parametric tests some of which include losing some data and these tests not 

being as powerful in comparison to using parametric tests. Microbiome data can 

be visually analysed through various clustering and ordination methods with the 

statistical testing performed from using univariate and multivariate analysis. 

However, testing for more than one variable in microbiome studies is now 

extremely common especially in hypotheses that concern the effects of 

treatments as well as various factors on bacterial communites. Therefore 

multivariate analysis is useful for studies assessing the association of many 

variables with the microbiome in human health. 

1.5.5.3 Metagenomic techniques: assigning function to communities 

The majority of microbiome studies focus solely on the 16S rRNA gene, even 

though it is now possible to sequence all genes from a community. The benefit 

of this is to gain an insight into the overall function of a community as well as 

the potential functional properties of individual members. This technique is 

known as metagenomics and provides greater and richer data in the description 

and quantification of genes in a microbial community. The increase in 

metagenomic studies has also made it possible to assign predicted functions to 

communities from using only sequences from the 16S rRNA gene that have been 

previously assigned to a functional pathway from earlier metagenomic studies. 

As the 16S rRNA gene is a powerful marker gene as well as more cost effective 

than performing whole metagenome sequencing, this gene can be used to 

predict the functional capabilities of microbial communities based entirely on 

16S rRNA gene datasets. This is the basis of the Tax4Fun package available in R 

(Aßhauer et al., 2015) that is used to estimate the metabolic profile of a 

metagenome based on taxonomic abundance estimates and references using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (a collection of 

databases dealing with identification of genomes and biological pathways). This 

package is useful for initial exploration of the functions which could then be 

further investigated by metagenomic sequencing. This package has also been 
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shown to have greater accuracy in predicting functions of 16S genes in 

comparison to PICRUSt (Aßhauer et al., 2015). However the disadvantages of 

using these packages is that it only predicts function from DNA sequences and 

not from RNA or proteins which are actually used to measure gene expression. 

1.5.6 Implications of using next generation sequencing in 
microbial ecology 

 

The use of NGS in microbial ecology is constantly advancing and expanding at a 

fast rate. However, various issues have occurred. The main issues with NGS 

technology include DNA extraction quality, PCR amplification, computational 

power, storage space, cost and analysis. In order to taxonomically assign DNA 

sequences, it is assumed that the reference database must contain DNA 

sequences that are correctly identified and annotated. However, current 

sequence databases may also be limited and not up to date. Although there are 

various databases such as BLAST, NAST and GenBank to identify and group 

sequences, the quality of these sequences are questionable. A study conducted 

by Clayton et al., (1995) showed that 26% of identical 16S rRNA gene sequences 

in GenBank had random sequencing errors questioning the true accuracy of that 

sequence representing the labelled species. In order to overcome this problem it 

is now reasonable to search a query sequence in at least 2 databases or 

alignment tools to show that the sequence does represent the query sequence. 

In spite of all this, NGS has and will continue to revolutionise and accelerate 

biological and biomedical research, allowing scientists to explore complex and 

new areas of microbiome study.  

 

1.6 Aims and hypothesis 
 

The main aim of this PhD project is to characterise the microbiome of the 

oropharynx in terms of microbial community structure and temporal stability in 

non-smoking individuals and smokers, and to identify the key factors associated 

with infection and recovery from these.  

 

The project will first characterise the oropharynx microbiome in non-smokers. 

This will determine the baseline oropharynx microbiome from healthy samples in 

non-smokers in terms of occurrence and relative abundance of different phyla, 
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genera and OTUs. This will then be compared to unhealthy samples from non-

smokers to determine what happens to the healthy community during a 

disturbance, infection and antibiotic treatment. The stability of the oropharynx 

microbiome in non-smokers will also be addressed. This will determine how 

much temporal variation is there in the oropharynx microbiome, how stable the 

oropharynx microbiome is, how long recovery takes from a disturbance and 

whether diversity is linked to stability.  

 

The next section will then compare the non-smoking microbiome to a smoker’s 

microbiome in terms of phyla, genera and OTU abundance. This will also 

compare the stability of non-smokers and smokers microbiomes to determine if 

smokers have a longer recovery time from a disturbance compared to non-

smokers. Finally the predicted functions of bacterial communities will be 

characterised in non-smokers and smokers to determine whether smokers have 

changed functions in comparison to non-smoking participants. 

 

The significance of investigating this work is that the oropharynx microbiome is 

less defined compared to other body sites but still a very important one to 

consider. Longitudinal studies are needed to determine the fluctuations that 

occur naturally and during disturbances in many participants, but to also 

investigate how the community is constructed first and how it changes. The 

healthy microbiome can then be established and compared to various disease 

scenarios and disrupted communities. For this reason, the main hypothesis for 

this project is as follows – healthy non-smoking participants will have a distinct 

and stable oropharynx microbiome over time, in comparison to a smoker’s 

microbiome which is expected to be unstable with a different microbial 

structure. 
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2 Materials & methods 

2.1 Recruitment and consent of participants 
 

The study was approved by the University of Glasgow Ethics Committee (Ethics 

Application 2012107 & 200140023) and recruitment of participants occurred 

through mass email targeting mostly students.  

 

2.1.1 Non-smoking participants 
 

Eighteen participants between the ages of 18 - 37 (39% male, 61% female) were 

recruited on the basis that they were healthy, non-smokers, had no respiratory 

disease or infection and were not on any long-term medication.  

 

2.1.2 Smoking participants 
 

Twelve smoking participants were recruited (using the same requirements for 

the non-smokers) between the ages of 19 – 40 (17% male, 83% female) on the 

basis that they had no underlying health issues and were not on any long term 

medication. 

 

2.2 Sampling periods and collection 
 

Swabs were collected for non-smoking participants and smokers over two 

separate time periods. The swabbing period for non-smoking participants started 

on 20 January 2013 until end of May 2013, recommencing in September 2013 

until December 2013 to represent semester times, although some participants 

continued to hand in swabs over the summer period. The swabbing period for 

smokers took place from 17 November 2014 to 14 June 2015 giving a sampling 

period of 30 weeks (excluding Christmas holidays). The smokers sampling period 

was shorter than the swabbing period for the non-smoking participants due to 

time and funding restrictions. As non-smokers and smokers were sampled in 

different years, this could also potentially introduce bias into the project, 

especially as non-smokers were also sampled in autumn whereas smokers were 

not. Other factors that could have been different during the two years include 

weather, pollen levels and levels of circulating microorganisms. Prior to 
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sampling, all participants were given a briefing of the project, a swabbing 

demonstration and a consent form to sign. 

 

2.2.1 Non-smoking participants 
 

Participants were provided with 2 swabs – Sigma Transwabs in liquid amies 

(Medical Wire Ltd, UK) for bacterial detection and flocked dry swabs (Copan 

Diagnostics Ltd, UK) for viral detection. Participants were shown how to take a 

swab of the oropharynx and were provided with swabs for practice before the 

official swabbing start date. The swabbing procedure involved washing hands 

before taking the swab, opening the mouth as wide as possible and touching the 

swab over the following areas – tonsil, posterior wall to tonsil as shown in Figure 

2.1. 

 

 

Figure 2.1 – The bacterial swab used for weekly swabbing (Fig. 2.1A) and a 

diagram showing how to take an oropharynx swab (Fig. 2.1B). 

 

This motion was repeated at least 5 times to ensure all the areas of the swab 

were used, with the swab then inserted into transport medium ready for 

storage. Participants were asked to take a swab every Monday morning as soon 

as they got up and before they had breakfast or brushed their teeth, in order not 

to disrupt their microbial community. Participants kept a diary stating the time 

when they took the swab and to record their overall health status. This involved 

noting if they were healthy or had any illnesses or symptoms, whether there had 

been any change in their normal routine (on holiday, change in diet or 

commencing any medication) and if they had touched any other surface in the 

mouth such as teeth, tongue or cheek. It was likely that participants would 

A B 
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become ill during the swabbing period, therefore participants were asked to 

record this and continue taking swabs throughout. During routine weekly 

swabbing, participants used the Sigma Transwabs for bacterial detection only.  

By contrast, if they had a fever, cold symptoms including runny nose, sore throat 

or a cough, illness, flu or were prescribed any antibiotic treatment participants 

were also asked to take a dry swab for viral detection (tested for a respiratory 

screen at Gartnavel hospital). This respiratory screen tested for the following 

viruses – Influenza A, Influenza B, Respiratory Syncytial Virus A, Respiratory 

Syncytial Virus B, Parainfluenza, Adenovirus, Rhinovirus, Human 

metapneumovirus and Coronaviruses NL63, 229E and CC43. 

 

Samples were collected on a weekly basis through a collection box so 

participants could drop off used swabs and collect new ones. Participants 

typically took a swab as soon as they got out of bed and all swabs were received 

before midday. During this period swabs were stored at room temperature in 

Amies transport medium but were frozen at 20°־C if they were not received on 

the same day of swabbing. Bacterial swabs were processed as soon as possible 

(typically within 2 hours after collection) for DNA extractions whereas viral 

swabs were taken immediately to West of Scotland Virology Centre (Gartnavel 

hospital) for a respiratory screen. Participant metadata including the number of 

samples received from each participant throughout the sampling period is shown 

in Table 2.1. 
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Table 2.1 – Summary metadata for non-smoking participants. 

Participant  Age at time of 

sampling 

(years) 

Sex Total 

number of 

samples 

received 

Number of unhealthy and 

antibiotic treated 

samples 

Cold Antibiotics Viral 

HA  26 F 34 2 0 0 

HB  21 M 2 0 0 0 

HC  18 F 16 2 0 0 

HD  23 F 24 0 0 1 

HE  23 F 7 1 0 0 

HF  21 M 22 0 4 1 

HG  20 F 8 1 0 0 

HI  37 F 31 4 0 2 

HJ  21 F 12 1 3 0 

HL  18 F 6 0 1 0 

HM  18 M 14 3 0 0 

HN  19 F 12 1 0 0 

HO  30 F 26 1 0 0 

HQ  21 M 9 1 0 0 

HR  19 M 14 0 0 0 

HS  31 M 30 1 0 0 

HT  23 M 30 0 0 0 

HV  18 F 16 1 0 3 

 

At the end of the sampling period, 313 samples were received in total and 

samples were broken down into the following groups – healthy (n=279 from 18 

participants), cold (n=19 from 12 participants - this includes samples that had 

the symptoms of a cold but were detected as negative for the standard viruses 

tested from the respiratory screen at Gartnavel hospital), antibiotics (n=8 from 3 

participants – this includes samples positive for antibiotic treatment) and viral 

(n=7 from 4 participants – this includes samples with confirmed viruses from the 

respiratory screen). The cold, antibiotics and viral samples were grouped as 

unhealthy samples. Even though the participants on antibiotics were on 

treatment for acne and not because of an infection, they were still categorised 
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with the unhealthy group due to disturbing the community structure. The 

metadata of atypical and unhealthy samples are shown in Table 2.2.  
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Table 2.2 - Metadata for atypical healthy samples and all unhealthy samples 

from non-smoking participants (all samples were included in analysis). 

Oropharyngeal samples are colour coded: green = healthy but with swabbing 

deviations, black = antibiotics, red = cold related symptoms and blue = viral.  

Samples Health status Samples Health status 

HA14 Cold symptoms, dry 

throat 

HI39 Cold, sore throat 

HA26 Runny nose HJ2 250mg erythromycin 

antibiotics twice daily (acne) 

HC9 Hit tooth after swabbing HJ5 250mg erythromycin 

antibiotics twice daily (acne) 

HC11 Touched back of tongue 

slightly before swabbing 

HJ7 250mg erythromycin 

antibiotics twice daily (acne) 

HC18 Cold, sore throat HJ37 Cold, sore throat 

HC44 Cold, sore throat HL3 Antibiotics 

HD9 Rhinovirus – sore throat HM5 Cold, sore throat 

HD27 Swab taken after holiday HM28 Cold, runny nose 

HE12 Cough, sore throat HM31 Cold, runny nose 

HF5 Respiratory synctial virus 

– fever, sore throat 

HN10 Hit tooth during swabbing 

HF10 Swab taken on holiday HN36 Cold 

HF13 Swab taken after holiday HO8 Runny nose 

HF20 Tetracyclines for acne HQ38 Cold 

HF23 Tetracyclines for acne HR14 Dropped swab on desk before 

swabbing1 

HF24 Tetracyclines for acne HS3 Swab taken after breakfast 

HF25 Tetracyclines for acne HS43 Cold, sore throat 

HG6 Cough, sore throat HT12 Swab taken after holiday 

HI2 Cold HV36 Rhinovirus – runny nose 

HI14 Sore throat HV37 Rhinovirus – fever, dry throat 

HI18 Cold, sore throat HV38 Rhinovirus – dry cough 

HI27 Rhinovirus – sore throat HV43 Sore throat 

HI28 Rhinovirus – sore throat 

                                         
1
  Sample included in analysis 
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2.2.2 Smoking participants 
 

Participants were given the same sampling instructions as described in section 

2.2.1, but were also asked to record the rough number of cigarettes smoked per 

week, with Monday as the start of the week. Participant metadata from each 

smoking participant throughout the sampling period is shown in Table 2.3. 

 

Table 2.3 – Summary metadata of smoking participants. 

Smoking 

participant  

Age at time 

of sampling 

(years) 

Sex Number 

of years 

smoking 

Total 

number of 

samples 

received 

Number of 

unhealthy and 

antibiotic treated 

samples 

Cold Antibiotics 

SA  40 M 20 23 0 0 

SB  19 F 5 3 0 3 

SC  19 F 2 23 2 0 

SD  19 F 1 8 1 0 

SE  19 F 5 1 1 0 

SF  19 F 4 19 0 15 

SG  33 M 15 25 0 0 

SH  30 F 13 25 5 0 

SI  30 F 10 24 3 0 

SK  19 F 5 10 2 0 

SL  19 F 3 10 0 0 

SM  19 F 3 6 0 0 

 

At the end of the smokers sampling period, 177 samples were received in total; 

samples were broken down into the following groups – healthy smokers (n=147 

from 12 participants - classified as healthy samples in that there were no 

symptoms of disease or infection), cold (n=14 from 6 participants - this includes 

samples that had the symptoms of a cold but were detected as negative for the 

viruses tested from the respiratory screen at Gartnavel hospital) and antibiotics 

(n=18 from 2 participants – this includes samples positive for antibiotic 

treatment). No viruses were detected from the viral swabs. Cold and antibiotics 

samples were grouped as unhealthy samples as described before with the 
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metadata of atypical and unhealthy samples from smoking participants shown in 

Table 2.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  58 

 

Table 2.4 - Metadata for atypical and unhealthy smoker samples (green = 

healthy with swabbing deviations, black = antibiotics and red = cold related 

symptoms). 

Samples Health status Samples Health status 

SB2 Lymecycline (408mg) one per 

day (acne) 

SF19 Tetralysal (300mg) once a day 

(acne) 

SB3 Lymecycline (408mg) one per 

day (acne) 

SF22 Tetralysal (300mg) once a day 

(acne) 

SB4 Lymecycline (408mg) one per 

day (acne) 

SF23 Tetralysal (300mg) once a day 

(acne) 

SC3 Cough, sore throat SF24 Tetralysal (300mg) once a day 

(acne) 

SC4 Cough SF25 Tetralysal (300mg) once a day 

(acne) 

SD2 Cold symptoms SH2 Touched tongue 

SE3 Cold symptoms, sore throat SH4  Sore throat 

SF9 Tetralysal (300mg) twice 

daily (acne) 

SH5 Sore throat, cold symptoms 

SF10 Tetralysal (300mg) twice 

daily (acne) 

SH8 Cough 

SF11 Tetralysal (300mg) twice 

daily (acne) 

SH9 Cough 

SF12 Tetralysal (300mg) twice 

daily (acne) 

SH18 Cold, sore throat symptoms 

SF13 Tetralysal (300mg) once a 

day (acne) 

SI4 Flu-jab received 

SF14 Tetralysal (300mg) once a 

day (acne) 

SI13 Cold, sore throat 

SF15 Tetralysal (300mg) once a 

day (acne) 

SI14 Cold, sore throat 

SF16 Tetralysal (300mg) once a 

day (acne) 

SI16 Cough 

SF17 Tetralysal (300mg) once a 

day (acne) 

SK3 Cold symptoms, sore throat 

SF18 Tetralysal (300mg) once a 

day (acne) 

SK14 Chesty cough 
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2.3 DNA extractions 
 

DNA was extracted using the QIAamp DNA Mini kit (Qiagen Ltd, UK) following the 

bacteria, swab and tissue protocol (Biesbroek et al., 2012) (Salter et al., 2014) – 

Appendix 1. A negative extraction (containing no sample) was performed each 

time the kit was used. These negative extractions were then sequenced to 

ensure minimal contamination from the reagents in the kit into samples. 

Extracted DNA was quantified using the Qubit and picogreen HS DNA assay 

(Invitogen Ltd, UK). A volume of DNA (5µl) was mixed with 2µl of loading dye on 

a 1% agarose gel (1g agarose to 100ml TBE) along with a 1Kb Invitrogen DNA 

ladder and ran at 100v for 60 minutes to check presence. The DNA was then 

stored at -20°C until required. 

 

2.4 16S rRNA gene PCR 
 

Due to the variability in DNA concentration extracted swabs (a range from 0.2-

50ng/µl), 16S rRNA gene PCR reactions were set up to ensure bacterial DNA was 

present. A 25µl reaction was set up with the following reagents – 12.5µl Bioline 

PCR Mix (Bioline Ltd, UK), 1µl of forward primer (12.5pmol), 1µl of reverse 

primer (12.5pmol), 2µl of DNA template (ensuring a DNA concentration of 10-

15ng depending on initial DNA template concentration) and 8.5µl of DNAse free 

water. The universal prokaryotic 16S primers used were 27F (5’-

GAGTTTGATCCTGGCTCAG-3’) and 1392R (5’-ACGGGCGGTGTGTRC-3’). 

 

The PCR amplification cycle was carried out at the following conditions: 

initial denaturation – at 95°C for 5 minutes, 30 cycles of denaturation at 94°C 

for 1 minute, annealing at 62°C for 1 minute and extension at 72°C for 1 minute. 

A final extension was carried out at 72°C for 10 minutes with a holding stage at 

4°C. A 1% agarose gel was prepared to run 10µl of amplicon product along with a 

1Kb Invitrogen DNA ladder at 100v for 60 minutes to ensure correct length of the 

amplicon product which represents the targeted 16S region (Figure 2.2). A 

positive control was set up using DNA from the mock community. A negative 

control was also set up to show no DNA was present in the PCR reagents and 

resulting in no amplification of the 16S rRNA gene.  
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Figure 2.2 – Diagram of a 16S rRNA gene gel showing the 1365bp amplicon 

product (labelled as samples 1-8) against a 1Kb Invitrogen DNA ladder. 

 

2.5 Preparation of a clone library for Sanger sequencing 
 

A clone library was prepared using the Invitrogen Topo-Seq Kit (Invitrogen Ltd, 

UK) as a quality control step to produce a mock community for future Illumina 

MiSeq runs. The purpose of the mock community was to act as a positive control 

for each MiSeq run to ensure that the correct sequences were being sequenced. 

DNA from 10 participants was mixed together in equal concentrations (3µl of 

5ng) for preparation of a clone library. The DNA was amplified for the 16S rRNA 

gene using specific bacterial primers and the amplicon product was loaded onto 

a 1% agarose gel along with a 1Kb Invitrogen DNA ladder and run for 60 minutes 

at 100V. The full protocol of performing a clone library is shown in Appendix 2. 

 

Each type of OTU (operational taxonomic unit) that had a unique banding 

pattern after restriction enzyme digest (as observed on the gel) was assumed to 

be a different species and was sent for Sanger sequencing to Source Biosciences 

Ltd (Cambridge, UK). In total 96 clones were analysed of which 38 different 

banding patterns were identified and were labelled as different OTUs; these 

OTUs were sent for sequencing. The forward and reverse strands were trimmed 

at each end using a program called DNA Dynamo Sequence Analysis Software 

(BlueTractorSoftware Ltd, UK) to produce a contig sequence which were then 

checked against BLAST (Altschul et al., 1990) to identify each OTU to species or 

genus level; sequences were identified to species level at a >97% identity cut 

off. The mock DNA community was prepared by diluting each OTU to 13ng/µl 

and using 3µl of DNA from 26 chosen OTUs; these were high quality sequences 

that had an overlap of at least 20 base pairs when joining the forward and 

reverse sequences to produce a contig sequence.  

1300bp 

Positive 
control  

 

Negative 
control  

 

        1       2       3      4        5      6        7      8 

1600bp 
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2.6 Optimisation of 16S rRNA PCR 
 

The V1-V2 region of the 16S rRNA gene was chosen for amplification and 

sequencing. The significance of this region was to try to identify bacterial 

sequences to genus and OTU level and to differentiate the different types of 

Streptococcus species in the oropharynx as research showed the genus 

Streptococcus as a dominant member of the healthy oropharyngeal community 

(Charlson et al., 2010) (Charlson et al., 2011). 

 

Primers were provided by the Sanger Centre (Cambridge, UK) and were specific 

golay barcoded primers covering regions 27F (AGMGTTYGATYMTGGCTCAG) and 

338R (GCTGCCTCCCGTAGGAGT). The total amplicon product expected after PCR 

amplification was 398bp including lengths of adapter and linker sequences. 

Primers were tested in a 25µl PCR assay using the HotStart High Fidelity Taq 

KAPA kit (Anachem Ltd, UK) with the following components: 12.5µl of readymix, 

0.75µl of dNTPs, 1µl of forward primer, 1µl of reverse primer, 1.25µl of dimethyl 

sulfoxide (DMSO), 6.25µl of nuclease free water and 2µl of DNA (DNA from the 

mock community at a concentration of 3ng/µl). Optimisation of the protocol 

included setting up a temperature gradient to determine annealing 

temperatures of primers, increasing primer concentration from 0.3mM to 0.4mM, 

decreasing extension time and increasing the number of cycles from 23 to 26 

cycles to accommodate for low DNA templates as shown in Figure 2.3. 

 
 

 
 
Figure 2.3 – Optimisation gels of the V1-V2 region showing amplicon products 

between 300bp – 400bp at different temperature gradients (from 54°C - 60°C) at 

23 cycles (Fig. 2.3A) and 26 cycles (Fig. 2.3B). 

400bp 

B A 

   54       55       56       57      58          
    54    55    56    57    58     59    60  

400bp 
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2.7 Amplification of V1-V2 region of 16S rRNA gene  
 

All samples were amplified in triplicate and each sample was assigned a 

different barcode to ensure identification during the sequencing process. The 

final optimised PCR reaction (25µl) was carried out at the following conditions: 

initial denaturation – at 98°C for 5 minutes, 26 cycles of denaturation at 98°C 

for 20 seconds, annealing at 54°C for 15 seconds and extension at 72°C for 30 

seconds. A final extension was carried out at 72°C for 1 minute with a holding 

stage at 4°C. A 1% agarose gel was prepared to run amplicon product at 100V for 

60 minutes with a 1Kb Invitrogen DNA ladder (Figure 2.4) to check length of 

amplicon product.  

 

 

Figure 2.4 – Example of a V1-V2 region amplified gel (samples 1-3 done in 

triplicate) at an annealing temperature of 54°C at 26 cycles with necessary 

controls. 

 

2.8 Quality assurance 
 

To reduce PCR biases, all template DNA was diluted to the same concentration 

and 26 cycles were used in each PCR run to reduce non-specific binding with 

appropriate controls in place. A positive (DNA from mock community) and a 

negative control (for each different reverse barcode using nuclease free water) 

was set up for each PCR run. To ensure that the source of bacterial sequences 

was not the swab itself or the DNA isolation reagents, PCR was performed on 

DNA isolated from an unused swab. To confirm that the PCR reagents were not 

the source of bacterial sequences, PCR of the no-template extraction control 

was also performed. Neither of these control PCRs yielded products visible on a 

gel, indicating that there was no or minimal contamination from the swab or 

reagents. Sequencing of the mock community resulted in 93% matched reads for 

400bp 

    1                   2                  3  Negative 
control  

 

Positive 
control  

 

400bp 
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the forward sequences (error rate of 0.9) and 90% matched reads for the reverse 

sequences (error rate of 0.9) using the Bioinformatics tool AMPLImock  

(https://bitbucket.org/umerijaz/amplimock/src) (D’Amore et al., 2016). This is 

a pipeline used to quantify error and matched rates of a mock community 

against known reference sequences. Quality assurance was done through 

presence and absence by identifying species that were present in the mock 

community but this did not account for species abundances.  

 

2.9 Normalisation and pooling of PCR amplicons for 
sequencing 

 

After amplification, each sample had a total volume of 75µl that was run on a 1% 

gel for extraction to clean up the DNA. Gel extractions were performed using the 

Qiagen Gel Extraction kit (Qiagen Ltd, UK) – protocol shown in Appendix 3. After 

the DNA clean up, the concentration of DNA was measured using the Qubit (HS 

DNA assay). Samples with low DNA concentration (less than 2ng/µl) were 

precipitated using ethanol to increase the final DNA concentration. 

 

Each sample was normalised to a concentration of 2.5ng/µl using nuclease free 

water. A mixed pool consisting of 130-150 samples was produced using 2µl of 

each sample. Each pool also consisted of a positive mock community control and 

a negative extraction kit control (Salter et al., 2014). The pool was checked for 

the correct length on a 2% agarose gel using 5µl of amplicon product at 90V for 

40 minutes with a 1Kb Invitrogen DNA ladder as shown in Figure 2.5. Each pool 

was then sent for 2 x 250bp MiSeq sequencing at the Centre for Genomic 

Research at the University of Liverpool to conduct the sequencing. 

 

https://bitbucket.org/umerijaz/amplimock/src
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Figure 2.5 – Example of a final gel showing a mixed pool of 130-150 samples 

(amplicon product roughly at 400bp) against a 1Kb Invitrogen DNA ladder. 

 

2.10 Bioinformatics 
 

Trimming and filtering of paired-end sequencing reads was done using Sickle 

(version 1.2) by applying a sliding window approach and trimming regions where 

the average base quality drops below 20 (Joshi et al., 2011). This applied a 10bp 

length threshold to discard reads that fall below this length. BayesHammer 

(Nikolenko et al., 2013) was used from the SPAdes assembler (version 2.5) to 

error correct the paired-end reads followed by PANDAseq (version 2.4) with a 

minimum overlap of 50bp to assemble the forward and reverse reads into a 

single sequence spanning the entire V1-V2 region (Masella et al., 2012). The 

above choice of software showed a reduction in substitution errors by 77-98% 

with an average of 93.2% for MiSeq datasets (Schirmer et al., 2015). After having 

obtained the consensus sequences from each sample, UPARSE (version 7.0.1001) 

was used (https://bitbucket.org/umerijaz/amplimock/src) for OTU construction 

as described in Edgar, 2013. The approach pools together the reads from 

different samples and adds barcodes to keep an account of the samples these 

reads originate from. The reads are then dereplicated and sorted by decreasing 

abundance and discarding singletons. In the next step, the reads are clustered 

based on 97% similarity. Even though the cluster_otu() command in usearch 

removes reads that have chimeric models built from more abundant reads, a few 

chimeras may be missed, especially if they are present in very low abundance. 

Mixed 

pool 

400bp 

Positive 
control  

 

Positive 
control  

 

Positive 
control  
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Therefore, in the next step, a reference-based chimera filtering step using a 

gold database was used (http://drive5.com/uchime/uchime_download.html) 

that is derived from the ChimeraSlayer reference database in the Broad 

Microbiome Utilities (http://microbiomeutil.sourceforge.net/).  

 

The original barcoded reads were then matched against OTUs with 97% similarity 

(a proxy for species level separation) to generate OTU tables for different 

samples. The representative OTUs were then taxonomically classified against the 

RDP database using the standalone RDP classifier (version 2.6) (Wang et al., 

2007). Phylogenetic distances between OTUs were produced by first using MAFFT 

(version 7.040) (Katoh & Standley, 2013) to align the OTUs against each other 

and then by using FastTree (version 2.1.7) on these alignments to generate an 

approximately-maximum-likelihood phylogenetic tree (Price et al., 2010). The 

OTU table, phylogenetic tree, taxonomic information and metadata were then 

used in multivariate statistical analysis. A summary diagram showing the stages 

involved in the bioinformatics process is shown in Figure 2.6. 

 

 

Figure 2.6 – Stages involved in the bioinformatics workflow from raw data to 

taxonomic classified operational taxonomic units (OTUs). 
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2.11 Statistical analysis 
 

2.11.1 Initial analysis 
 

Results from samples that contained less than 5000 reads were discarded in the 

analysis (for non-smokers and smokers) to allow comparison of all samples with 

enough statistical power. This resulted in 490 samples altogether (313 from 

non-smoking participants and 177 from smoking participants). The relative 

abundance of taxa for each sample was calculated by dividing the read counts 

of that taxon by sample size whereas prevalence was calculated as the 

percentage of samples containing a given taxa. Abundance was shown as the 

count of reads (or percentage of reads) belonging to a particular taxon. 

Statistical analysis was performed in R software (version 3.1.2). Where 

appropriate before specific analyses, the abundance data was normalised 

(McMurdie & Holmes, 2014). 

2.11.2 Community analysis 

Microbial compositional structure was assessed using a non-metric 

multidimensional scaling plot (NMDS) at genus and OTU level (at 3% divergence) 

to determine the differences in communities of all samples of non-smokers and 

smokers. This determined the effects of various variables such as smoker or 

health status on community composition. Here, Bray-Curtis dissimilarity index 

was used which considers bacterial taxon abundance.  Additionally, the 

unweighted UniFrac distance analysis from the Phyloseq package (version 

1.17.2) (McMurdie & Holmes, 2013) was used which takes into account the 

phylogenetic distances (relatedness) of the bacterial taxa through presence or 

absence, without accounting for their proportional representation. A 

covariance ellipse using ordiellipse() and veganCovEllipse() in Vegan (version 

2.4.0) (Oksanen, 2013) was added (95% confidence interval calculated from the 

standard error of the mean of each group) with the centroid of the ellipse 

representing the group mean. Covariance for each group was calculated using 

cov.wt() and the shape of the ellipse was defined by the covariance within 

each group; the bigger the ellipse, the more variability in community structure 

in samples within the group. 
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To find OTUs that were significantly different in abundance between the 

conditions, the DESeq2 package (version 1.12.3) was used (Love et al., 2014). 

This uses a negative binomial GLM to model the abundance data (OTU 

frequencies) and empirical Bayes to shrink OTU-wise dispersions to identify 

OTUs that have log-fold changes between different conditions (at a cut off 

value of P < 0.01). This is then tested by performing a Wald test on shrunken 

log-fold changes and adjusting for multiple comparisons showing P adjusted 

values. 

 

Samples were rarefied to the minimum number of reads (5118) to test for alpha 

diversity. Rarefaction curves were done for each participant showing a 

sampling depth of 5118 reads could be used for adequate coverage. Even 

though some samples saturated at a higher cut off (10,000 reads), a sampling 

depth of 5118 reads was chosen as choosing a higher cut off would result in the 

removal of too many samples. Rarefaction curves were obtained for each 

participant to approximate OTUs detected as a function of sequencing depth.  

The rarefaction curves of selected participants (Figure 2.7) suggest that the 

total number of observed OTUs in samples from participants vary between 100 

and 300 OTUs.  
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Figure 2.7 – Rarefaction curves displayed for selected participants (non-

smokers) choosing a minimum cut off value at 5118 reads. 

 



  69 

 

Alpha diversity at OTU level was investigated to determine the possible 

associations in oropharyngeal community structure from non-smokers and 

smokers. The diversity indices calculated for healthy and unhealthy samples 

(from non-smokers and smokers) were species richness, Shannon H index and 

Simpson index. Statistical testing used aov() from Vegan (version 2.4.0) to 

calculate pair-wise ANOVA (analysis of variation) P values (taking into account 

repeated sampling from participants) which were displayed on top of alpha 

diversity figures.   

 

Co-occurrence networks and sub-community analysis (Williams et al., 2014) 

were produced in healthy samples from non-smokers at genus level to explore 

the interactions between specific genera and identify keystone species.  

2.11.3 Stability analysis 

The Vegan package (version 2.4.0) was used, in particular the two functions 

adonis() for PERMANOVA and betadisper() for the analysis of multivariate 

homogeneity of group dispersions, using Benjamini-Hochberg correction for 

multiple testing to report P values. The variability of microbial community 

structure between participants and health status (for both non-smokers and 

smokers) was also investigated at OTU level using betadisper() to measure the 

distance of each individual sample to that group’s centroid (mean) allowing for 

comparison between participants and the different health groups. To 

understand multivariate homogeneity of groups dispersions (variances) between 

multiple conditions, betadisper() was used. Non-euclidean distances between 

objects and group centroids are handled by reducing the original distances 

(Bray-Curtis or unweighted UniFrac) to principal coordinates and then 

performing ANOVA on them. Adonis() was also used for analysis of variance 

using distance matrices (Bray-Curtis/unweighted UniFrac). This function, 

referred to as PERMANOVA, fits linear models to distance matrices and uses a 

permutation test with pseudo-F ratios, while using the strata command to take 

into account repeated sampling from participants. 

 

The community stability of the microbiome for each participant (non-smokers 

and smokers) was quantified by producing stability plots at OTU level using the 

distances produced from betadisper to display the timeline of sampling and 
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deviations. To address the question about a possible connection between 

community structure (diversity) and stability, community stability was 

quantified by calculating the coefficient of variation (ratio of standard 

deviation to the mean) (Donohue et al., 2016) for each individual participant 

using the distances from betadisper and testing them against diversity variables 

(number of phyla, genera and OTUs) and number of cold disturbances and viral 

infections using Spearman rank correlation analysis. The distances from 

betadisper were also tested in a linear mixed model (LMM) to determine if 

changes in distances could indicate a change in microbial community structure 

before, during and after a disturbance such as a cold. Sampling week (to 

accommodate for potential temporal trends) was fitted as a fixed effect and 

participant ID as a random effect using lme4 (version 1.1-9) and MASS (version 

7.3-44) packages.  AIC values and likelihood ratio testing were used to compare 

models.                                                                                                                                                                                                                                                                                                                                                                                                                              

 

2.11.4 Assigning functions to communities 

Predicted functional profiles of bacterial taxa using 16S rRNA gene sequences 

were identified using the Tax4Fun package (Aßhauer et al., 2015) which links 

sequences with the functional annotation of sequenced prokaryotic genomes 

using a nearest neighbour identification based on a minimum of 16S RNA 

sequence similarity. It works by blasting the OTUs against silva database (all 

prokaryotic KEGG organisms are available in Tax4Fun for SILVA SSU Ref NR 

database release 115 and KEGG database release 64.0) and then utilizing 

ultrafast protein classification (UProC) tool (Meinicke, 2015) to generate 

metabolic functional profiles after normalising the data for 16S rRNA gene copy 

numbers. This shows the pathways as KEGG K numbers which are significantly 

up/down regulated between multiple conditions, as determined through using 

Kruskal-Wallis test showing P values and multiple testing correction (Benjamini-

Hochberg) P adjusted values.  

 

 



  71 

 

3 Characterising the healthy oropharynx 
microbiome of non-smokers 

3.1 Introduction 

High throughput sequencing has revealed each body site harbors a vast number 

of microbes living as a complex microbiome which may contribute to, or even be 

solely responsible for specific roles in the host (Jones, 2009) (Cho & Blaser, 2012) 

functioning like any macrobiotic ecological community. Research is now moving 

on from simple characterisation of the composition in microbiome communities, 

to improving knowledge about functioning of these communities (Robinson et 

al., 2010) and the possible links between the microbiome and health (Cho & 

Blaser, 2012). However, a necessary starting point of understanding any 

microbiome is the identification of the microbes present; investigations into the 

species interactions and putative health implications become possible only then 

(Costello et al., 2012) (Lemon et al., 2010).  

One body site that remains relatively unexplored is the oropharynx. The 

oropharynx is the middle part of the throat and is a component of the upper 

respiratory tract. The oropharynx is a niche for commensal bacteria that is 

constantly exposed to various environmental sources and consequently an 

important entry point for pathogenic bacteria. For instance, upper respiratory 

infections (which affect the nose and throat) are very common in all ages of 

people (Ferkol & Schraufnagel, 2014). It is therefore of interest to know the 

normal oropharynx microbiome which interacts with invading pathogens and 

either prevents or facilitates the growth of them, as well as that of opportunistic 

pathogens normally present. Previous studies (Segata et al., 2012) (Botero et al., 

2014) have shown the oropharynx microbiome to consist of an array of 

microorganisms lining the epithelium and existing as a complex community. Five 

major bacterial phyla have been identified in the oropharynx: Firmicutes, 

Bacteroidetes, Proteobacteria, Fusobacteria and Actinobacteria (Lemon et al., 

2010). Whilst the majority of microbes are commensal in the oropharynx, many 

opportunistic bacteria may be present such as Streptococcus mitis (Mitchell, 

2011) as well as pathogenic bacteria such as Streptococcus pneumoniae and 

Neisseria meningitides (Gazi et al., 2004). Investigating the bacterial 

composition in healthy communities will aid in determining the co-occurrence 
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patterns and whether there are correlations between types of bacteria (Williams 

et al., 2014). This is something that has previously had little recognition in the 

oropharynx although determining these relationships is important for 

characterisation of communities, as well as identifying keystone taxa which 

could be beneficial for therapeutic purposes.  

 

The impact of environmental factors on any microbiome is still poorly 

understood and there is now growing recognition of the importance of these 

factors to try and understand the relationship between the environment and the 

microbiome (Conlon & Bird, 2015). Although not investigated in this study, diet 

has shown to impact the GI tract microbiome (Turnbaugh et al., 2009). Host 

characteristics such as sex and age also affect the microbiome; there is now 

increasing evidence that the microbiome changes as age progresses (Whelan et 

al., 2014) and could also differ in regards to sex (Bolnick et al., 2014). All these 

factors may contribute to differences in microbial communities in healthy people 

and aid in understanding of community structure. 

 

Characterisation studies should also involve longitudinal sampling as this will 

determine what bacteria are present overall in healthy communities in the 

oropharynx and how participants naturally vary in community composition 

(measured by alpha diversity) over a defined time period. There are still minimal 

studies involving longitudinal sampling, but taking samples over various weeks 

also gives an indication of how many samples are needed to sample a naturally 

fluctuating oropharyngeal community in order to recover as many of the taxa 

present, but also determine the natural variation present and investigate the 

cause and effect relationship of certain diseases and disorders. Therefore this 

chapter will explore the community composition of the bacterial oropharynx 

microbiome in healthy samples from non-smoking participants through 

longitudinal sampling. The objectives are listed as follows: to characterise the 

oropharynx microbiome in healthy samples from non-smoking participants, to 

determine how sex and age affects the healthy microbiome and to produce co-

occurrence networks present in healthy samples.  
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3.2 Methods 

3.2.1 Initial exploration of the oropharynx microbiome 

All analyses were carried out using R (version 3.1.2). After sequencing (Chapters 

2.2.1, 2.7, 2.8 & 2.9) all samples below 5000 reads were removed from 

subsequent analyses because of lack of statistical support. This resulted in 313 

samples from healthy participants (n=18).  

Taxonomic classification at phylum, genus and OTU level was done through the 

RDP database classifier using the standalone RDP classifier version 2.6 (Chapter 

2.10). For alpha diversity analysis (such as species richness) samples were 

rarefied using rarefaction to the minimum number of reads (5118). To address 

the question of how many samples from a naturally-fluctuating, healthy 

oropharynx would be needed to capture 100% of taxa recovered per participant 

(at the phylum, genus and OTU level) cumulative box plots were produced. 

Participants that had a minimum of 5 healthy samples were included – this 

involved all participants apart from participant HB. The number of samples per 

participant instead of weeks was used as participants did not hand in a swab 

every week. 

3.2.2 Community composition  

The effects of age and sex were explored in healthy communities through NMDS 

plots using Bray-Curtis distance and unweighted UniFrac distance at OTU level. 

Variance ellipses were added as an indication of the variability of each group; 

the covariance was calculated using cov.wt() in Vegan (version 2.4.0) (Oksanen 

2013) and the shape of the ellipse was defined by the covariance within each 

group (Chapter 2.11.2). Significant difference testing between the different 

groups in the sex and age categories at OTU level was done using PERMANOVA 

(permutational ANOVA) through adonis() in Vegan using the command strata to 

take into account repeated sampling from participants. Due to the small 

sampling size, a cut of P value of < 0.1 was used to determine significance 

between the sex and age categories. The most significant OTUs present in terms 

of differing abundance between the different groups in sex and age were 

determined from a negative binomial GLM and was displayed showing the log 

relative transformation of samples using DESeq() from the DESeq2 package 
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(version 1.12.3) (Love et al., 2014). This uses a negative binomial GLM to model 

the abundance data (OTU frequencies) and empirical Bayes to shrink OTU-wise 

dispersions to identify OTUs that have log-fold changes between different 

conditions (at a cut off value of P < 0.01) (Chapter 2.11.2).  

 

3.2.3 Co-occurrence networks 

Co-occurrence network analyses (Williams et al., 2014) were performed on data 

from healthy samples (non-smokers) to explore the interactions between 

bacteria and to identify important members of the community. Analysis was 

done at the genus level to determine if there were any interactions between 

specific genera. Samples were rarefied to 5118 reads representing the minimum 

number of counts per sample. Co-occurrence patterns were investigated through 

generating a dissimilarity matrix consisting of Spearman correlation coefficients 

to represent co-occurrence between all pairs of genera from samples. Networks 

were produced using the igraph package (version 1.0.1) (Csardi & Nepusz, 2006) 

where microbial taxa were represented as nodes and the presence of a co-

occurrence relationship based on a 0.5 correlation level was represented by 

edges. Keystone taxa were identified as having the largest node size and the 

greatest number of connections to other taxa as used in Williams et al., (2014). 

3.3 Results 

3.3.1 Initial exploration of the healthy oropharynx microbiome 

At the end of the sampling period, 313 samples were received in total, with 279 

designated as healthy due to not having any symptoms of illness (Table 3.1). The 

taxonomic profiling of samples from the oropharynx of individual participants 

identified with RDP classifier revealed 5 to 10 phyla, 20 to 70 genera and 140 to 

340 assignments at OTU level.  
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Table 3.1 – The total number of healthy samples from non-smokers and the 

range in taxa numbers received from each participant.  

 

Cumulative plots showed the total number of taxa detected from each 

participant as a percentage of the participant total thereby indicating the 

minimum number of samples needed from each participant to recover the total 

numbers of different taxa present. There was relatively little variation in this 

between the participants, and a minimum of 2, 3 and 4 samples was needed at 

phylum, genus and OTU level to recover all the taxa present (Figure 3.1). 

 

 

 

 

Participant Healthy 
samples 

Phylum Genus OTU 

Min - 
Max 

Median Min –  
Max 

Median Min - 
Max 

Median 

HA 34 8-10 8 24-61 51 156-299 247 

HB 2 8-8 N/A 36-42 N/A 174-184 N/A 

HC 14 7-9 8 33-58 45 145-294 207 

HD 23 6-9 9 36-66 53 158-299 266 

HE 6 8-9 9 39-55 45 191-279 218 

HF 17 6-9 8 28-51 40 148-261 180 

HG 7 7-8 8 30-48 40 170-245 202 

HI 26 7-9 8 36-58 45 175-335 221 

HJ 8 5-9 8 34-51 44 162-209 192 

HL 5 7-9 8 41-67 46 180-268 210 

HM 11 5-9 7 33-53 36 150-289 177 

HN 11 8-9 8 33-59 42 174-297 211 

HO 25 7-10 8 35-57 44 165-291 204 

HQ 8 7-9 8 38-55 49 201-268 240 

HR 14 7-9 9 38-63 51 189-318 222 

HS 29 8-9 9 35-54 46 175-306 216 

HT 30 7-9 9 36-65 47 167-298 241 

HV 12 6-9 9 33-64 43 147-291 202 
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Figure 3.1 – Box plots showing cumulative percentage of phyla (Fig. 3.1A), 

genera (Fig. 3.1B) and operational taxonomic units (OTUs) (Fig. 3.1C) recovered 

from each participant over subsequent samples (100% = number of taxa 

recovered per participant). Box plots show the minimum, 25th percentile, 

median, 75th percentile and maximum values for the cumulative percentage of 

taxa recovered from consecutive samples within a single participant.  
 

A 

B 

C 
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3.3.2 Community composition of the healthy oropharynx 
microbiome 

At phylum level 99.7% of reads were taxonomically classified with the remaining 

0.3% belonging to unknown or unclassified bacteria. There were 5 main phyla 

that were always present in healthy samples: Actinobacteria, Bacteroidetes, 

Firmicutes, Fusobacteria and Proteobacteria. The occurrence of Spirochaetes, 

TM7, SR1 and Synergistetes was more variable. Considering the abundance of a 

given taxonomic level in a microbiome sample, the most abundant phylum 

overall was Firmicutes (mean ± SEM = 61% ± 1%) followed by Bacteroidetes (16% 

± 1%), Proteobacteria (11% ± 1%), Actinobacteria (7% ± 0.2%) and Fusobacteria 

(5% ± 0.2% (Figure 3.2 & Appendix 4). 

 

Figure 3.2 – Box plot showing the most abundant phyla (n=9) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy samples. 
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At genus level 95% of reads were taxonomically classified with the remaining 5% 

belonging to unknown or unclassified bacteria. At the genus level, the patterns 

of presence and occurrence were similar to the phylum level with the most 

common genera present in all participants. However, some genera have 

conspicuously more variable occurrence (Porphyromonas). Streptococcus (mean 

± SEM = 47% ± 1%) was the most dominant genus in the majority of healthy 

samples followed by Prevotella (9% ± 0.4%) and Veillonella (5% ± 0.2%) (Figure 

3.3 & Appendix 5). 

 

Figure 3.3 – Box plot showing the most abundant genera (n=10) (the rest 

pooled in the category ‘Others’) and the median abundance in each 

participant in healthy samples. 

 

The most abundant OTUs belonged to Streptococcus species reflecting the 

general abundance of their phylum, Firmicutes (Figure 3.4). Some Streptococcus 
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OTUs could be identified to species level, however not all Streptococcus OTUs 

could be identified due to the V1-V2 region not being variable enough for 

adequate species identification. Streptococcus OTUs identified included 

Streptococcus mitis, Streptococcus salivarius and Streptococcus parasanguinis 

which are all commensal but can be opportunistic (Mitchell, 2011). Even though 

some Streptococcus OTUs could be named, there were Streptococcus OTUs from 

the oropharynx that remain unidentified and so could not be determined 

whether they are commensal or pathogenic. 

 

Figure 3.4 – Box plot showing the most abundant operational taxonomic units 

(OTUs) (n=10) with the rest pooled in the category ‘Others’ and the median 

abundance in each participant in healthy samples. 

 

3.3.3  Host characteristics affecting the microbiome 

NMDS plots at OTU level gave an indication of the similarity of community 

composition in males and females (Figure 3.5A) and between the different age 
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groups (Figure 3.5B). There was a visual divide in the communities between 

males and females; however these communities were not significantly different 

using Bray-Curtis distance (P = 0.8) but were significantly different using 

unweighted UniFrac distance (P = 0.07) at a cut off value at P < 0.1. This states 

that overall there was not a difference between the abundance and but there 

was a difference in the presence and absence of OTUs - the oropharynx 

microbiome between males and females differs in that males have different 

OTUs than females. However, further investigation did show specific OTUs being 

significantly different in abundance; females had higher abundances of Sneathia 

and Catonella, whereas males had increased Porphyromonas (Appendix 6).  

 

The NMDS plot for age showed the teens and the thirties group to be the most 

distinct of the groups. Again there was no significant difference in communities 

between the different age groups using Bray-Curtis distance (P = 0.6) but 

significant differences were present using unweighted UniFrac distance (P = 

0.05) which showed communities to be distinct by having different OTUs rather 

than differences in abundance. However, there were specific OTUs that were 

significantly different in terms of abundance between the different age 

categories; the most significant differences in increasing age (from the teenage 

years to twenties and thirties) included a significant increase in the abundance 

of Neisseria, Sneathia and Prevotella with a decrease in the abundance of 

Streptococcus (Appendix 7). This showed that overall the different groups within 

the sex and age categories had similar community composition; Streptococcus, 

Prevotella and Veillonella were the most abundant genera in all healthy 

communities regardless of age or sex. However, communities were significantly 

different in that males and females had different OTUs present, as did the 

separate age groups.  
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Figure 3.5 – Non-metric multidimensional scaling (NMDS) plots using Bray-Curtis 

distance at operational taxonomic unit (OTU) level showing the effects of sex 

(Fig. 3.5A) and age (Fig. 3.5B) on healthy samples (n=279).  

 

3.3.4 Co-occurrence of bacteria in the healthy oropharynx 

Co-occurrence relationships showed co-existence patterns of bacteria in healthy 

samples (Figure 3.6), with only the most significant co-occurrence patterns of 

A 

B 
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taxa shown at a correlation value of 0.5. Most correlations between the taxa 

were positive in that as one taxon increased in abundance, the other taxon 

would also increase in abundance. However a negative co-occurrence pattern 

was observed between unclassified Veillonellaceae and Streptococcus. There 

was a dominant sub-community where Megasphaera, Prevotella, Veillonella and 

unclassified Veillonellaceae had the biggest nodes due to having the most 

connections. These genera were also seen as having the greatest betweenness 

values (as displayed by the betweenness and eigenvalue plots) as they were 

shown to be located on the edge of the betweenness plot showing various 

connections to other nodes. Therefore these genera were seen as important 

members of the healthy oropharynx microbiome. By having the greatest number 

of connections in the co-occurrence network (being connected to the most 

number of nodes) they were shown to be the genera that interacted with other 

taxa the most.  
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Figure 3.6 – A co-occurrence network generated from all healthy samples 

(n=279) at genus level using a correlation value of 0.5. Sub-communities consist 

of various nodes and different genera are defined by colour coded nodes. 

Larger nodes show genera that have the greatest number of connections to 

other genera (through having a lower P value). 

 

3.4 Discussion 

The healthy oropharynx microbiome was investigated to determine community 

composition, the changes that occur to communities in regards to host 

characteristics such as age and sex, and the interactions of specific taxa within 

these communities. The results showed that Firmicutes and Streptococcus are 

the most dominant phylum and genus in healthy samples which was also seen in 
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previous studies (Segata et al., 2012) (Lemon et al., 2010) (Lazarevic et al., 

2009) and so, these could be considered as important taxa as an indicator of 

health status. In order to fully identify the key Streptococcus species, all 

Streptococcus OTUs must be identified and categorised to commensal and 

pathogenic OTUs (Mitchell, 2011), something that was not possible for these 

samples. However, it was possible to identify the most abundant Streptococcus 

OTUs present in healthy samples which included Streptococcus mitis and 

Streptococcus salavarius.  

 

In this study, sex and age did not dramatically alter the microbiome, even 

though there were significant differences in the presence/absence and 

abundance of specific OTUs in regards to age. The effects of aging on the 

microbiome have been investigated previously showing that the microbiome 

changes as we age and elderly people have distinct communities compared to 

younger adults (Saraswati & Sitaraman, 2014). However, as this study only 

involved adults within specific age ranges (18-37) and did not investigate 

between the different extremes of age (young adults to elderly), only a subset of 

the wider age range was observed and smaller differences between age groups 

could therefore be expected. The communities of males and females also had 

similar microbiomes. Other factors may be responsible for changes in the 

microbiome such as diet. Diet has shown to affect the GI microbiome (David et 

al., 2014) which could also potentially affect the oropharynx microbiome. Males 

and females may have different diets also – males may have more meat 

consumption in their diet compared to females or females may be more aware of 

their diet compared to males. However a study has shown that the same diet in 

males and females has different effects on the GI microbiome showing that the 

host must also influence the microbiome in the different sexes (Bolnick et al., 

2014). Diet could be partly responsible for changes in the microbiome (and 

between the different sex and age groups) but diet was not investigated in this 

study. Therefore the role of sex and age (coupled with diet) requires further 

investigation in how it affects the oropharynx microbiome in healthy 

participants.  

 

Investigating the OTUs in healthy communities improved understanding of the 

bacterial community structure in the oropharynx and the interactions between 
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specific bacteria. This was partly investigated through co-occurrence network 

plots which showed the co-existence patterns of bacteria in healthy samples. In 

healthy communities Prevotella and Veillonella were important gatekeepers in 

that they had the biggest nodes and many edges showing they interacted with 

various bacteria in the oropharynx - these bacteria were also considered 

dominant bacteria as they were usually the most abundant following 

Streptococcus. This may influence the structure of the oropharyngeal community 

as a whole by controlling abundances of other taxa and overall functioning of the 

community. Most of these interactions were also positive, showing that a healthy 

state is created by the presence of these bacteria which in turn increases the 

abundance of other bacteria. Interestingly, in the healthy samples Streptococcus 

was not seen to have any positive significant co-occurrence networks with any 

other taxa at this correlation level even though it has been recognised as the 

most dominant genus in healthy oropharyngeal communities. This could be due 

to only creating co-occurrence networks at genus level indicating that 

Streptococcus species may prefer to interact with other species of 

Streptococcus. There is evidence that Streptococcus species interact in the oral 

tract (Kreth et al., 2009); the commensal S. sanguinis is able to produce 

hydrogen peroxide to inhibit the growth of the pathogenic S. mutans suggesting 

that the oropharyngeal community has a massive sub-community of 

Streptococcus species that are in constant existence and interaction with each 

other. This can be explored further by naming all the Streptococcus OTUs 

present, identifying which OTUs are commensal, opportunistic and pathogenic 

and then creating these co-occurrence networks at both the genus and OTU level 

in healthy samples making it possible to understand the interactions in key 

Streptococcus OTUs present in healthy and eventually unhealthy states. 

 

3.5 Conclusions 

Overall the healthy oropharynx microbiome in non-smoking participants was 

found to be similar at the phylum level with increasing differences at genus and 

OTU level. The most dominant taxa in healthy communities were identified as 

Firmicutes at phylum level and Streptococcus at genus level, but the oropharynx 

microbiome was not majorly impacted by sex and age in this study. Co-

occurrence networks did show interactions of specific bacteria in healthy 
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samples, but this needs to be further explored to show how Streptococcus OTUs 

co-exist in the different health states. 
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4 Characterisation of the unhealthy oropharynx 
microbiome in non-smokers 

4.1 Introduction 

A necessary starting point in understanding any microbiome is the identification 

of the microbes present in a healthy setting. This was explored in Chapter 3 

where the oropharyngeal community composition in healthy samples from non-

smokers was characterised. This provided the foundation of identifying universal 

features of the healthy microbiome such as community composition and the 

most abundant taxa present which can then be directly compared to 

microbiomes in specific disease scenarios. Links between disease and 

microbiome compositions have been reported in a variety of conditions such as 

IBS (Willing et al., 2010) and periodontitis (Abusleme et al., 2013) where 

deviations from the healthy state, dysbiosis, are associated with disease in the 

host.  

There are few studies comparing the healthy oropharynx microbiome to specific 

disease scenarios. The majority of these studies compare the healthy oropharynx 

microbiome to lower respiratory tract diseases that affect the lungs such as 

asthma (Park et al., 2014), chronic obstructive pulmonary disorder (Cabrera-

Rubio et al., 2012) or tuberculosis (Botero et al., 2014). Few studies have 

investigated upper respiratory tract infections such as the impact of viral 

infections like the common cold (Yi et al., 2014) or bacterial infections such as 

tonsillitis (Stenfors et al., 2003) and their impact on the oropharynx microbiome. 

However these studies do not take into account longitudinal sampling and only 

compare a healthy control group to diseased samples. It is important to consider 

the possible effects of upper respiratory tract infections, how they affect the 

whole population and the differing outcomes of disease depending on health 

status or age of the population affected. To improve our understanding of the 

possible role of the oropharynx microbiome in upper respiratory tract infections, 

the issue of causality needs to be addressed, i.e. whether infections follow from 

disturbances or if these are merely associated with them. This requires 

characterising the microbiome through longitudinal sampling and determining its 

overall stability (Chapter 5). 
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This chapter, in contrast, explores the differences in community composition of 

the bacterial oropharynx microbiome in unhealthy samples compared to those 

from the same non-smoking participants when they are healthy. Specifically, 

these differences were characterised during colds, viral infections and antibiotic 

treatment, and compare the alpha diversity (species richness and 

Shannon/Simpson Index) as well as specific beta diversity measures of healthy 

and unhealthy samples. As previous literature has demonstrated diseased states 

resulting in altered, low diversity communities, it is a possibility that this 

pattern will also be seen in the oropharynx. Therefore the objective of this 

chapter is to determine the changes in community composition between healthy 

and unhealthy samples from non-smokers. The hypothesis is that the healthy 

oropharynx microbiome from a non-smoker is a high diversity community 

consisting of keystone species which will become unbalanced during a 

respiratory disturbance (due to loss of keystone species and diversity). 

4.2 Methods 

4.2.1 Initial analysis  

All samples below 5000 reads were removed from analyses resulting in 313 

samples from non-smokers (n=18), of which 34 samples were identified as 

unhealthy samples. The definition of an unhealthy sample is a sample that was 

collected at the time a participant reported symptoms of a disease or illness or 

they were on antibiotic treatment. Even though participants on antibiotics were 

on treatment for acne and not because of an infection, they were still 

categorised with the unhealthy group due to disturbing the community structure. 

These samples were categorised into the following groups: cold (n=19 from 12 

participants), antibiotics (n=8 from 3 participants) and viral (n=7 from 4 

participants). The cold group includes samples from participants self reporting 

symptoms of a cold but were detected as negative for the standard viruses 

tested during the respiratory screen at Gartnavel hospital as described in 

Chapter 2.2.1. The antibiotics group included any participants undergoing 

antibiotic treatment and the viral group included only symptomatic samples with 

confirmed viruses from the respiratory screen.  
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4.2.2 Comparison of community composition between healthy 
and unhealthy samples 

Taxonomic classification at phylum, genus and OTU level was done through the 

RDP database classifier using the standalone RDP classifier version 2.6 (Chapter 

2.10). 

The abundances of specific taxa at phylum and genus level were log transformed 

and tested in a linear mixed model (LMM) to determine if changes in abundance 

could indicate a change in health status. Sampling week (to accommodate for 

potential temporal trends) was fitted as a fixed effect and participant ID as a 

random effect using lme4 package (version 1.1.9) from R (version 3.1.2). 

Species richness at OTU level was also tested in a LMM against sample status 

(healthy and unhealthy) to determine if unhealthy samples had reduced species 

richness overall. 

Local contributions to beta diversity (Vegan, version 2.4.0) in R (version 3.1.2) 

was performed to show dysbiosis of unhealthy communities as described in 

Legendre & De Cáceres, 2013. This method involves measuring beta diversity to 

show the variation in species composition by generating a single number 

estimate of beta diversity in the different health groups. This was done by using 

Hellinger transformation to compute the total sum of squares of the species 

composition from which the local contributions to beta diversity could be 

derived generating the total beta diversity. This generates values known as local 

contributions to beta diversity (LCBD) where a large LCBD value indicates 

samples that have different species composition. This was performed at OTU 

level producing a timeline of samples for each participant displaying the P values 

for the unhealthy samples.  

The abundance changes in community composition between the different health 

groups were tested by identifying the most significant OTUs present in regards to 

health status using the DESeq2 package (version 1.24.0) (Love et al., 2014) in R 

(version 3.1.2). This was determined from a negative binomial GLM to model the 

abundance data (OTU frequencies) and empirical Bayes to shrink OTU-wise 

dispersions to identify OTUs that have log-fold changes between different 



  90 

 

conditions. The cut off value was P < 0.01 with P adjusted values being used for 

multiple comparisons (Chapter 2.11.2).  

Alpha diversity at OTU level was investigated to determine the possible 

associations between health status and oropharyngeal community structure. For 

alpha diversity analysis, samples were rarefied using rarefaction to the minimum 

number of reads (5118). The diversity indices calculated for healthy and 

unhealthy samples were species richness, Shannon H index and Simpson index 

(Chapter 2.11.2). Significant differences between the different health groups 

were measured using aov() from Vegan (version 2.4.0) taking into account 

repeated sampling from participants to calculate pair-wise ANOVA generating P 

values which were displayed on top of alpha diversity figures.   

4.3 Results 

4.3.1 Comparison of the healthy and unhealthy oropharynx 
microbiome from non-smokers 

4.3.1.1 Initial exploration of the unhealthy oropharynx microbiome 

The taxonomic profiling of unhealthy samples from the oropharynx of non-

smoking participants identified with RDP classifier revealed 5 to 9 phyla (median 

= 8), 20 to 70 genera (median = 38) and 100 to 300 assignments at OTU level 

(median = 182) (Table 4.1). This was broadly similar to the taxonomic profiling 

of healthy samples (5 to 10 phyla (median = 9), 20 to 70 genera (median = 45) 

and 140 to 340 OTUs (median = 218), but showing a reduction in OTUs in 

unhealthy samples as determined in a linear mixed model (t value = -5.693, P < 

0.001).   
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Table 4.1 – The total number of unhealthy samples from non-smokers and the 

range in taxa numbers received from each participant. Participants HB, HR and 

HT are excluded due to having no unhealthy samples. 

 

4.3.1.2 Community composition of the unhealthy oropharynx microbiome 

The five main phyla (in terms of abundance) found in the healthy samples 

(Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria) 

were also present in unhealthy samples (cold and viral samples) and antibiotic 

treated samples (Appendix 8) but the abundances between the different health 

conditions were different. There was a decrease in Firmicutes in 9 participants 

(n=12) and an increase in Proteobacteria in 9 participants (n=12) when going 

from a healthy to cold state (Figure 4.1A) whereas the viral group had a 

decrease in Firmicutes in 3 participants (n=4) and an increase in Proteobacteria 

in 2 participants (n=4) (Figure 4.1B). Antibiotic treated samples on the other 

hand showed similar abundances of Firmicutes in comparison to the healthy 

samples, but 2 participants (n=3) did show an increase in the phylum 

Actinobacteria (Figure 4.1C). Overall, when looking at the healthy and unhealthy 

group there was a significant increase in the abundance of the phylum 

Proteobacteria (P = 0.002) and a significant decrease in Bacteroidetes (P = 0.05) 

in unhealthy samples (Table 4.2). No differences between the healthy and 

unhealthy samples were found in the abundances of Firmicutes, Actinobacteria 

or Fusobacteria. 

Participant Total 
samples 

Phylum Genus OTU 

Min -
Max 

Median Min -
Max 

Median Min - 
Max 

Median 

HA 2 8-8 N/A 27-47 N/A 109-245 N/A 

HC 2 7-9 N/A 57-65 N/A 145-294 N/A 

HD 1 9 N/A 60 N/A 272 N/A 

HE 1 7 N/A 28 N/A 113 N/A 

HF 5 5-7 6 29-51 35 111-241 149 

HG 1 8 N/A 42 N/A 214 N/A 

HI 6 7 7-8 30-47 41 144-230 186 

HJ 4 6-8 7 29-44 37 125-198 173 

HL 1 6 N/A 40 N/A 163 N/A 

HM 3 6-8 7 35-44 43 158-206 180 

HN 1 8 N/A 44 N/A 198 N/A 

HO 1 8 N/A 35 N/A 130 N/A 

HQ 1 7 N/A 30 N/A 116 N/A 

HS 1 8 N/A 38 N/A 170 N/A 

HV 4 5-8 7 25-52 42 107-237 187 
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Figure 4.1A – Box plot showing the most abundant phyla (n=9) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy and cold samples. 
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Figure 4.1B – Box plot showing the most abundant phyla (n=9) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy and viral positive samples. 
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Figure 4.1C – Box plot showing the most abundant phyla (n=9) (the rest 

pooled in the category ‘Others’) and the median abundance in each 

participant in healthy and antibiotic treated samples. 

 

 

 

 

 

 

 

 

 

 



  95 

 

Table 4.2 – Summary of the parameter estimates of the linear mixed model 

(LMM) investigating the abundances (response variable) of the five most 

abundant phyla in unhealthy samples compared to healthy samples (reference 

category). Significant P values are shown in bold. 

Unhealthy 

samples 

Estimate Std. Error df t value P value 

Firmicutes 0.028704 0.211088 313 0.136 0.891925 

Proteobacteria 0.9015 0.293 310.4 3.077 0.0023 

Bacteroidetes -0.552464 0.281813 307.71 -1.96 0.0509 

Actinobacteria -0.089296 0.274397 313 -0.325 0.745 

Fusobacteria -0.420947 0.292411 311 -1.44 0.151 

 

At genus level, the most abundant genera in both healthy and unhealthy samples 

(cold and viral) and antibiotic treated samples were Streptococcus, Prevotella 

and Veillonella, but there were marked increases in specific genera such as 

Pseudomonas in comparison to the healthy samples (Appendix 9). When 

comparing the healthy and cold samples (Figure 4.2A) there was a decrease in 

abundances of Streptococcus and Prevotella in 8 and 9 participants respectively 

(n=12). The viral group had 3 participants where the abundance of Streptococcus 

decreased (n=4) and an increase in Neisseria and Haemophilus was observed in 1 

and 3 participants respectively (n=4) (Figure 4.2B). For samples from subjects 

that had undergone antibiotic treatment (Figure 4.2C), 2 participants showed 

decreases in Streptococcus (n=3) and 2 participants had increases in the genus 

Actinomyces (n=2). When looking at the healthy and unhealthy samples overall, 

there was a significant decrease in the abundance of Prevotella in unhealthy 

samples (P = 0.012) with no significant difference in the abundance of 

Streptococcus and Veillonella (P = 0.808 & P = 0.385) (Table 4.3). Therefore, 

unhealthy communities had the same genera present, but the communities 

differed by having different abundances of genera. 
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Figure 4.2A – Box plot showing the most abundant genera (n=10) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy and cold samples. 
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Figure 4.2B – Box plot showing the most abundant genera (n=10) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy and viral positive samples. 
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Figure 4.2C – Box plot showing the most abundant genera (n=10) (the rest pooled 

in the category ‘Others’) and the median abundance in each participant in 

healthy and antibiotic treated samples. 
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Table 4.3 – Summary of the parameter estimates of the linear mixed model 

(LMM) investigating the abundances (response variable) of the five most 

abundant genera in unhealthy samples compared to healthy samples (reference 

category). Significant P values are shown in bold. 

Unhealthy 

samples 

Estimate Std. Error df t value P value 

Streptococcus -0.05 0.21 311.00 -0.24 0.81 

Prevotella -0.77 0.31 312.00 -2.53 0.012  

Veillonella -0.25 0.29 311.00 -0.87  0.39 

Serratia 0.23 0.38 313 0.59 0.55 

Pseudomonas 0.23 0.38 311 4.75 <0.001 

 

OTUs that were the most abundant in healthy samples were also present in the 

unhealthy samples (cold and viral - Figure 4.3A & B) and antibiotic treated 

samples (Figure 4.3C) but at differing abundances in participants. For example, 

participant HM showed an increase in Streptococcus salivarius in the cold 

samples, whereas participant HJ’s cold samples showed a decrease in 

Streptococcus salivarius. Therefore healthy and unhealthy samples had differing 

abundances of OTUs that varied in participants. 
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Figure 4.3A – Box plot showing the most abundant operational taxonomic units 

(OTUs) (n=10) with the rest pooled in the category ‘Others’ and the median 

abundance in each participant in healthy and cold samples. 
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Figure 4.3B – Box plot showing the most abundant operational taxonomic units 

(OTUs) (n=10) with the rest pooled in the category ‘Others’ and the median 

abundance in each participant in healthy and viral positive samples. 
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Figure 4.3C – Box plot showing the most abundant operational taxonomic units 

(OTUs) (n=10) with the rest pooled in the category ‘Others’ and the median 

abundance in each participant in healthy and antibiotic treated samples. 

 
 

4.3.2 Local contributions to beta diversity 

The changes in community composition between the different health conditions 

in non-smoking participants were shown through time plots displaying the local 

contributions to beta diversity (LCBD) (Figure 4.4). Most unhealthy samples 

belonging to the cold group did have greater dysbiosis than other samples 

(shown by significant P values) suggesting that these samples were unique in 

community composition. Changes in community composition were shown in 

antibiotics (n=3, 38% of all antibiotics samples), cold (n=9, 47% of all cold 

samples) and viral samples (n=3, 43% of all viral samples) showing that 
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community composition was significantly changed in these samples. Some 

participants such as HC or HN also produced unhealthy samples (in this case 

categorised as cold) but these samples seemed to have a similar community 

composition to the healthy samples. To determine the specific changes in 

community composition of the unhealthy samples and antibiotic treatment, 

further investigation was done to show the most significant changes in the 

abundance of OTUs in their unhealthy group category (Table 4.4). Change from a 

healthy to a cold state was associated with an increase in the abundance of 

specific Staphylococcus OTUs and Serratia with a decrease in Streptococcus 

OTUs and Prevotella. Antibiotic treatment resulted in a decrease of many OTUs 

including Prevotella and Veillonella with an increase in Enhydrobacter and 

Actinomyces whereas viral infections were associated with an increase in the 

abundance of specific Moraxella OTUs with decreases in Acinetobacter and 

Veillonella OTUs. Viral infection was also associated with increases in 

Haemophilus and Neisseria OTUs.  
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Figure 4.4 - Participant time plots at operational taxonomic unit (OTU) level 

showing local contributions to beta diversity (LCBD) of samples in regards to 

health status. Significant P values are shown for unhealthy samples with the 

greatest changes in community structure. Time points refer to the week of when 

a sample was handed in. Participant HB is excluded due to not having enough 

samples. 
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Table 4.4 – The most significant operational taxonomic units (OTUs) (P adjusted 

values < 0.01) in terms of increasing abundance present in the different health 

groups. Only the 15 most significant OTUs were displayed for the healthy group 

due to the large numbers of significant OTUs, with the cold and viral samples 

only having 10 OTUs significantly increasing in abundance. 

Most significant OTUs (P adjusted value < 0.01) increased in different 

health states 

Healthy Cold Viral Antibiotics 

OTU_53  

Prevotella  

OTU_132 

unclassified_Prevotella  

OTU_433  

Streptococcus  

OTU_64  

Porphyromonas  

OTU_4  

Staphylococcus  

OTU_111  

Unclassified 

OTU_52  

Porphyromonas    

OTU_56  

Granulicatella   

OTU_75 

Fusobacterium  

OTU_104  

Veillonella   

OTU_53  

Prevotella   

OTU_81  

Prevotella  

OTU_130  

Unclassified 

OTU_113 Tannerella 

OTU_76 Acinetobacter 

OTU_751 

Staphylococcus  

OTU_1069 

Staphylococcus   

OTU_965 

Staphylococcus  

OTU_428  

Serratia 

OTU_19  

Neisseria 

OTU_86  

Sneathia 

OTU_1255 

Corynebacterium 

OTU_218 

Treponema 

OTU_14 

Serratia 

OTU_1202 

Unclassifed_ 

Clostridiales 

OTU_1877 

Unclassified_ 

Pasteurella 

OTU_926 

Unclassified_Neisseria 

OTU_1542 

TM7_genera_incertae

_sedis  

OTU_283 

Capnocytophaga  

OTU_1845  

Moraxella 

OTU_1936 

Acinetobacter 

OTU_29 

Moraxella 

OTU_621 

Unclassified_ 

Pasteurellaceae 

OTU_17  

Neisseria 

OTU_847 

Haemophilus 

OTU_69 

Enhydrobacter 

OTU_1871 

Actinomyces 
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4.3.3 Comparison of diversity in healthy and unhealthy 
communities 

A reduced diversity (in terms of both species richness and Shannon H index) at 

OTU level was shown in unhealthy samples (Figure 4.5) with greatest reductions 

in diversity occurring between the healthy and cold group (richness = P < 0.001, 

Shannon H diversity = P < 0.001, Simpson index = P < 0.001) and between healthy 

and antibiotics group (richness = P < 0.001, Shannon H diversity = P < 0.001, 

Simpson index = P = 0.007). Therefore, the healthy group were the most species 

rich and diverse followed by viral, cold and antibiotics, showing that the cold 

and antibiotics group are low diversity communities. The viral group had similar 

species richness and diversity compared to the healthy group. 

 

Figure 4.5 – Alpha diversity measures calculated for all samples at operational 

taxonomic unit (OTU) level. Samples are categorised according to health status 

and significant test results are done through pair-wise ANOVA with results 

shown as significant P values. 
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4.4 Discussion 

Samples from unhealthy subjects (suffering from a cold or viral infection) and 

from those receiving antibiotic treatment showed changes in community 

composition at the three taxonomic levels in comparison to the healthy samples; 

specifically in the abundances of taxa. A particularly prominent pattern was 

Firmicutes dominance in healthy and unhealthy samples, but unhealthy samples 

had increases in abundance in Proteobacteria. However, increases in abundance 

in the phylum Proteobacteria cannot be solely responsible for explaining disease 

or infection as there were also various healthy samples where Proteobacteria 

was the most dominant phylum. This could reflect the variation in taxa 

abundance present in participants as other studies have also shown the healthy 

oropharynx microbiome to be Proteobacteria dominant in abundance (Charlson 

et al., 2011). However, in a given participant, this ratio was more extreme in 

unhealthy samples where there was a higher representation of Proteobacteria in 

comparison to their healthy samples. At genus level there was a significant 

difference in the abundance of Prevotella in unhealthy samples, but there did 

not seem to be a significant difference in the abundance of Streptococcus in 

unhealthy samples, even though other studies have noted a decrease in 

abundance in Streptococcus during respiratory diseases such as chronic 

obstructive pulmonary disorder that directly affects the oropharyngeal 

community (Park et al., 2014). As Streptococcus was the most abundant genus in 

healthy and unhealthy samples, this may account for why no significant 

differences in abundance were observed in respect to health status. 

Streptococcus is a genus that contains various commensal and pathogenic 

species, so there may have been a decrease in the commensal OTUs and an 

increase in pathogenic Streptococcus OTUs. However, as only some of the 

Streptococcus OTUs could be identified to OTU level, it was difficult to 

distinguish between the commensal and pathogenic Streptococcus OTUs and how 

they varied in abundance in healthy and unhealthy samples. 

 

Specific health categories also showed changes in community composition 

showing that antibiotic treatment and colds affect the oropharynx microbiome in 

different ways. Healthy communities had greater abundances of OTUs belonging 

to the genera Streptococcus and Prevotella which were reduced in cold samples. 
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The cold samples had increases in abundance of specific genera and OTUs 

showing dysbiosis and changes in community composition in comparison to the 

healthy samples. Dysbiosis was also observed in the samples from subjects with 

viral infection, with increases in abundance of specific genera such as Neisseria 

and Haemophilus, but these communities were more similar to healthy 

communities. This suggests that viral infection may increase the abundance of 

specific OTUs. Antibiotic treatement resulted in a decrease in OTUs common in 

healthy samples, with exception to a few OTUs belonging to the genus 

Actinomyces that increased in abundance. Therefore, the specific changes in 

community composition in different health groups (and participants) needs to be 

further investigated to show exactly how a healthy community changes during a 

specific disease, infection or disturbance. 

 

In terms of diversity, healthy communities were the most diverse and antibiotics 

treated ones the least which was consistent with other studies as observed in the 

microbiome of the GI tract (Jakobsson et al., 2010). However, participants did 

show variation in healthy samples with changes in diversity and richness, 

sometimes on a weekly basis, but the dominant members of the community such 

as Streptococcus, Prevotella and Veillonella were always present. Even though 

highly diverse communities may be indicative of health, (as healthy communities 

overall had the highest diversity and species richness) there were some cases of 

healthy samples having low diversity communities, even though the overall 

diversity from the participant was not considered low compared to the rest of 

the participants. But from this sampling overall, significant differences in 

diversity were observed between the specific health categories. The diversity in 

different health states needs further investigation and should also take into 

account each individual participant to determine what OTUs still remain and 

what OTUs are removed in all healthy samples of high and low diversity 

communities. 

 

As in most microbiome studies, the causalities are challenging to determine. Do 

changes in the microbiome drive changes in health status or are they merely 

consequences of it? There were clear cases in participants reporting cold related 

symptoms and cold samples showing an increase in abundance in a specific genus 

or a decrease in abundance in Streptococcus. To conclude whether ill health or 
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disease in this case was caused by a specific genus still remains challenging due 

to lack of daily sampling and metadata collection.  However, this study does give 

insight into the changes that occur in the oropharynx microbiome during 

infections and disturbances, which is a starting point in determining if changes in 

the oropharynx are a cause or effect of a certain disease or condition. 

 

4.5 Conclusions 

Unhealthy samples had distinct community structures in comparison to healthy 

samples from non-smokers. These changes included increases in abundance of 

Proteobacteria at phylum level and decreases in abundance of Prevotella at 

genus level. Healthy communities were also the most diverse communities, with 

the cold and antibiotics samples having the least diversity. This shows that the 

oropharynx microbiome is affected by infections and antibiotics resulting in 

altered and low diversity communities. 
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5 Investigating the stability of the oropharynx 
microbiome in non-smoking participants 

5.1 Introduction 

Understanding the factors underlying the structure and composition of microbial 

communities in individuals is challenging due to interpersonal variation and 

fluctuations in composition, especially during disease and early development. 

The first step towards understanding the symbiotic relationships between 

microbes in the oropharynx with their hosts is to characterise the baseline 

healthy microbiome and the differences associated with disease as observed in 

Chapters 3 & 4. This improved understanding of the desired compositional states 

of the healthy microbiome will then determine which features, when disrupted, 

are associated with disease. However, the natural complexity of the 

microbiome, and the presence of intra- and inter-subject variability, further 

complicates the definition of what a “desired” state may look like for a 

population or an individual. But understanding these differences between 

individuals could potentially result in personalised restoration of the microbiome 

as a future clinical treatment. 

Variability in microbial community structure between individuals may arise from 

natural processes (colonisation history), but factors such as diet, lifestyle, 

environmental and host changes also play a role (David et al., 2014). A study by 

Bogaert et al., 2011 showed that variation in healthy individuals is increased at 

genus and species level  making it hard to define a core microbial population due 

to the diversity of OTUs present between individuals, but also due to the fact 

that variation occurred between the different seasons. The extent of variation of 

microbial communities within and between individuals over a period of time is 

still under investigation, but nevertheless very important as it determines the 

true microbial components of a community, as well as identifying the microbes 

that are not regular members of the community. From this, it is possible to 

explore how ones microbiome differs from another whilst examining the rich 

diversity of the community, and investigating whether these differences are 

natural changes or a result of a specific disturbance. It is especially important to 

understand natural variation over time to understand the stability of the 

microbiome and whether instability increases the risk of pathogen susceptibility. 
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Stability can be described as the ability of communities to withstand 

disturbances as well as the similarity of communities in terms of taxon presence 

and abundance. Stability can be measured by microbiome time series projects 

which have the advantage of recording specific metadata and linking microbial 

dynamics to host behavior. 

Understanding the variation in the healthy oropharynx has great importance. 

Further exploration of the community composition of the oropharynx 

microbiome improves the ecological understanding of these communities (Fierer 

et al., 2012). Understanding the relationships between microbes of the upper 

respiratory tract (URT) during perturbations is anticipated to provide insights 

into the pathogenesis of URT infections. It will also aid understanding of the 

effects of stability and resilience on these communities and the process of 

recovery in the oropharynx. Therefore, this chapter explores the extent of 

variation in microbial communities in non-smoking participants. This was 

investigated in different health states whilst observing the changes that occur to 

the oropharynx microbiome before, during and after disturbances to determine 

the stability and resilience in individual microbiomes. The objectives of this 

chapter can be broken down into the following questions: What is the variation 

in oropharyngeal communities? How does the community change before, during 

and after a disturbance? How stable is the microbiome in non-smokers and how 

quickly can the microbiome recover? The hypothesis is that non-smoking 

participants have a stable oropharynx microbiome that can recover quickly from 

disturbances. 

5.2 Methods 

5.2.1 Exploring variation in the oropharyngeal community 

All statistical analysis was performed in R (version 3.1.2). To assess the variation 

of the oropharynx microbiome between the different health groups, a NMDS plot 

using Bray-Curtis distance with variance ellipses (Chapter 2.11.2) was produced 

using Vegan package (version 2.4.0) (Oksanen, 2013). A NMDS plot at OTU level 

was produced showing similarity of community composition in samples with 

regards to health status. The variability in microbial community structure in 

regards to health status was investigated at OTU level using betadisper() in 

Vegan (version 3.1.2) and these distances were used to quantify the extent of 
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variation in each health group through a betadisper box plot (Bray-Curtis 

distance). This measured the distance of each individual sample to that group’s 

centroid (mean) allowing for comparison between the different health groups. 

Samples that had the greatest distance away from the group centroid were 

considered to have a different community structure as opposed to samples with 

a shorter distance to the centroid. ANOVA was performed on betadisper 

distances where the distance of each individual sample to the centroid (mean) of 

each different health group was assessed and the means compared to determine 

if variation changed according to health status. Tukey’s HSD test was used as a 

post-hoc test after ANOVA to determine which groups differed in variation. 

5.2.2 Exploring the stability of the oropharynx microbiome 

Using distances from betadisper, individual participant graphs were plotted to 

show the distance of each sample to that participant’s centroid (mean). These 

stability plots allowed comparison in distances of all samples within and 

between participants which could determine the degree of change in the 

microbial community during the sampling period. This would also determine 

whether fluctuations could be caused by disturbances such as changes in health 

status. Overall this would give an indication of the stability of a participant’s 

microbiome as peaks (greater distances) over the sampling period can be 

identified. A participant with higher peaks (corresponds to how different the 

microbiome is at different time points) is thought to show a more unstable 

microbiome compared to a participant with smaller consistent peaks. For each 

participant, the difference in distance of the individual sample to that 

participant’s centroid was plotted, making these plots comparable between 

participants. Community stability was quantified by calculating the coefficient 

of variation (ratio of standard deviation to the mean) for each individual 

participant using the distances from betadisper. 

The temporal stability in communities was statistically tested to observe if the 

community structure changed before, during and after a cold/viral disturbance 

through a linear mixed model (LMM) using distances from betadisper. This would 

determine if the community changed only during symptoms or if changes 

occurred before symptoms were present. Sampling week (to accommodate for 

potential temporal trends) was fitted as a fixed effect and participant ID as a 
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random effect using lme4 (version 1.1-9) and MASS (version 7.3-44) packages. 

This would also give an indication of how quickly the community would respond 

to the disturbance and if changes were still apparent to the microbiome after 

the disturbance had cleared and symptoms were no longer present.  

To determine a possible relationship between stability and diversity, the 

coefficient of variation was tested against diversity variables (species richness) 

using spearman correlation to determine any correlation between the overall 

stability of each participant and mean species richness of their communities. 

The resilience (resistance to disturbances) was also tested by using the number 

of cold/viral samples against species richness to characterise its resilience to 

perturbations (Chapter 2.11.3).  

5.3 Results 

5.3.1 Variation in the oropharynx microbiome in health and 
disease 

The variation in communities between the different health groups in non-

smokers was explored (Figure 5.1A). Healthy samples clustered together 

reasonably tightly although dispersion of some samples was observed, the 

differences of which could be due to natural variation from within and between 

participants. As there were uneven samples sizes between the different health 

categories, accurate investigation of the similarity in community structure in 

different health states was challenging. However from visual observation, the 

unhealthy samples were more disperse in that they were located further away 

from each other in comparison to the healthy samples that were clustered closer 

together; this shows that unhealthy groups overall were more variable in 

community structure compared to the healthy group. This was shown in the 

betadisper box plot, displaying which health group had the most variation 

(Figure 5.1B). From this box plot the cold samples showed to have the most 

variation between samples due to the dispersion of samples observed. The 

samples from the cold group were shown to be variable with a greater dispersion 

within samples compared to the healthy group. This would suggest samples from 

participants with the cold had greater changes in community structure compared 

to the healthy samples, as well as each cold sample having distinct communities. 
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ANOVA testing showed that the extent of variation changed in different groups 

(P < 0.001) with significant differences between the healthy and cold groups (P < 

0.001) but not between the healthy and viral groups (P = 0.5), and healthy and 

antibiotics group (P = 0.6). Therefore this showed that variation of microbial 

community structure is affected by health status, with the cold group having the 

most variability and changes in community structure between samples. 
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Figure 5.1 - Variation in microbial community structure in healthy and 

unhealthy groups at operational taxonomic unit (OTU) level. The health status 

is indicated by different colours in the key. Figure 5.1A shows the variance 

ellipse and clustering from the non-metric multidimensional scaling (NMDS) plot 

in each health group and Figure 5.1B shows the median and distribution of 

distance (using betadisper) in samples from the centroid of each group. The P 

value (ANOVA) shows a significant difference in variability between groups. 



  116 

 

5.3.2 Changes in the community structure before, during and 
after a disturbance 

5.3.2.1 Individual responses to disturbances 

The changes in community structure from disturbances for participant HI was 

observed through a NMDS plot (Figure 5.2A). This plot showed clusters of healthy 

samples that were considered stable with similar community composition and 

little changes in the communities on a weekly basis. However outliers were 

observed away from the cluster, some of which could be accounted for through 

changes in health status as participants recorded symptoms of illness for some of 

these samples. Participant HI had various cold symptoms over the duration of 

sampling with 2 samples of a viral infection (Rhinovirus). A taxa plot showing 

community composition in participant HI (Figure 5.2B) revealed a single cold 

sample showing an increase in abundance in the genus Haemophilus; there was 

also an increase in Neisseria during Rhinovirus infection. However viral samples 

looked similar to the healthy samples, indicating that in this case viral infections 

did not have a major impact on the microbiome. There seemed to be a distinct 

change in community structure during disturbances from the cold samples 

(negative for viral infections) with little changes in community structure pre-

disturbance. However, after a cold, the microbial community recovered quickly 

in that it returned back to a normal healthy state (within a week) where the 

post-disturbance sample returned back to a baseline representing health. 
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Figure 5.2 – Non-metric multidimensional scaling (NMDS) plot at operational 

taxonomic unit (OTU) level from participant HI (Fig. 5.2A) showing similarity of 

all samples in regards to health status. Figure 5.2B shows the taxa plot 

displaying the relative abundance of the top 20 most abundant genera. Week 

numbers are represented as sample numbers with cold (C) and viral (V) samples 

shown. Only the top 20 most abundant genera were chosen to give a clear 

visualisation of the most abundant taxa members in the community. 

B 
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5.3.2.2  Individual responses to antibiotic treatment 

The effects of antibiotic treatment on the oropharynx microbiome were also 

investigated through NMDS plots. Participant HF (Figure 5.3A) was on a month 

long prescription of tetracycline antibiotics for treatment of acne whereas 

participant HJ (Figure 5.3B) was on a 6 week prescription of erythromycin, also 

for treatment of acne. In addition, participant HF suffered from a viral infection 

(Respiratory Syncytial Virus) which showed a similar community composition to 

the healthy samples. For participant HF there was a divide in samples between 

the healthy and antibiotic samples, which also occurred for participant HJ. As 

participants were given different antibiotics, it is likely that specific members of 

the microbiome of each participant were affected differently by the antibiotic 

treatment. This is shown in the NMDS plots where participant HF had all 

antibiotic treated samples within the healthy centroid, whereas participant HJ 

had all antibiotic treated samples outside the centroid. This shows that 

antibiotic treatment affects participants very differently. These changes were 

easier to observe when looking at the individual participant’s taxa plots where 

increases in genera Pseudomonas and Actinomyces were found for participant HF 

(Figure 5.3C) and increases in Actinomyces and Acinetobacter for participant HJ 

(Figure 5.3D). However, some antibiotic treated samples were similar in 

composition to the healthy samples and this was seen in both participants. The 

first sample from participant HF on antibiotic treatment (HF20) was dramatically 

altered while the remainder of the antibiotics samples showed a similar 

community composition to the healthy samples. In participant HJ, the first 

antibiotics sample (HJ2) was more similar in community composition to the 

healthy samples, in comparison to the second sample received (sample HJ5) 

where a distorted community structure was observed. The next sample received 

(HJ7) showed an increase in the genus Streptococcus (which is a dominant 

member of the healthy oropharyngeal community) showing that this sample also 

resembled a healthy community. This sample was also similar in community 

composition to sample HJ8, which was a healthy sample received one week after 

antibiotics use. This data showed that antibiotic treatment did impact the 

microbiome, but the microbiome was able to restore itself whilst on treatment 

and recover quickly after treatment (usually within a week) where the 

community returned back to a state similar to samples obtained pre-treatment. 
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Figure 5.3 – Non-metric multidimensional scaling (NMDS) plots of participants HF 

(Fig. 5.3A) & HJ (Fig. 5.3B) at operational taxonomic unit (OTU) level 

demonstrating the degree of variability over the sampling period (variance 

ellipses are calculated from just the healthy samples). In both graphs, the 

starting and end point are marked and the arrows show the direction of sampling 

on a weekly basis. Health status for each plot is depicted through different 

colours in the legend. Taxa plots display the relative abundance of the top 20 

most abundant genera in Participants HF (Fig. 5.3C) and HJ (Fig. 5.3D).  
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5.3.3  Stability of the oropharynx microbiome 

Stability plots for each participant were produced to determine fluctuations 

throughout the sampling period (Figure 5.4). It was found that some participants 

such as participant HC were more consistent in their sampling as each sample 

had a similar distance which reflected that there was a similar change in 

community structure on a weekly basis. Other participants such as participant HS 

had far more deviations with greater peaks suggesting greater changes in 

community structure in comparison to other samples, which not all could be 

accounted for by changes in routine or health status. Therefore, in this case it 

was concluded that participant HC had a more stable microbiome than 

participant HS. The value of stability for each participant was obtained by 

calculating the coefficient of variation (also shown in Figure 5.4) which reflects 

the variation from the long-term mean and so is considered a suitable summary 

statistic as an indication of how stable participants’ oropharyngeal communities 

are. The coefficient of variation for participants were variable, with some 

participants having higher values indicating more changes in community 

structure on a weekly basis which could be regarded as a more unstable state. In 

regards to these values, participant HG had the highest coefficient of variation 

which could be regarded as having a more unstable microbiome (with greater 

changes in the microbial community structure between weeks and therefore 

greater variation overall). In contrast, participant HC was considered to show 

the most stable microbiome due to the lowest coefficient of variation and 

similar minimal changes in the microbial community on a weekly basis (there 

was not much change in microbial community structure over the sampling 

process). As the majority of participants had reasonably low coefficients of 

variations with similar distances, the healthy oropharynx microbiome for each 

participant was considered stable, as there did not seem to be major differences 

in community structure within participants on a weekly basis and most 

deviations in community structure (not all) could usually be linked to a change in 

health status. 
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Figure 5.4 - Individual stability plots for each participant showing the distance 

of each sample (from betadisper) to the participant’s group centroid as well as 

coefficient of variation (CV) values. Disturbances in health status are shown by 

either antibiotics, cold or viral labels (all other samples are considered healthy) 

with the time line of swabbing showing the weeks of when a sample was 

submitted. Participant HB was omitted due to not having enough samples. 
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5.3.3.1 Investigating the temporal stability before, during and after a 
disturbance 

To observe if the community structure changed before, during and after a 

cold/viral disturbance, a LMM was performed using the distances from 

betadisper. The results showed that there was a significant difference in 

community composition in communities one week before the disturbance 

(altered state due to the cold and positive viral samples) (P < 0.001) and during 

disturbance (P < 0.001), but no significant changes were observed in the 

community one week after the disturbance (P = 0.3266) (Table 5.1). This 

demonstrates that changes to the bacterial community were apparent one week 

before symptoms, with communities returning back to normal one week after 

symptoms were no longer present. This highlights the quick recovery from the 

disturbance. From the stability plots the communities showed strong resilience 

in returning rapidly towards the long-term mean composition i.e. shorter 

distance to the centroid showing the oropharynx microbiome to be resilient in 

that it responds and recovers quickly from a disturbance. 

 

Table 5.1 – Parameter estimates from a linear mixed model (LMM) where 

distance (from the betadisper stability plots at operational taxonomic unit (OTU) 

level) was tested against infection variables. Healthy samples are the reference 

category. Significant P values are shown in bold. 

Status of 

infection 

Estimate Std. Error df t value P value 

One week before 

symptoms 

0.05329 0.01428 298.6 3.733 0.000226 

During symptoms 

 

0.06548 0.0122 303 5.368 <0.0001 

One week after 

symptoms 

0.0207 0.02107 299.6 0.982 0.326694 
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5.3.3.2  Is diversity linked to stability? 

The diversity (as measured by species richness and Shannon H index) was shown 

to differ in each participant, especially at lower taxonomic levels. A change in 

diversity has been linked to a change in health status, but the link between 

diversity and stability remains uncertain. To determine a possible relationship, 

the coefficient of variation was tested against diversity variables (Table 5.2) 

using spearman correlation to determine any correlation between the overall 

stability of each participant and mean diversity (species richness) of their 

communities. The results from the spearman correlation and significance testing 

for stability (coefficient of variation) and each diversity variable are as follows: 

CVmeanphyla (-0.1672, P = 0.5211), CVmeangenera (-0.4064, P = 0.1054), CVmeanOTU,     

(-0.053, P = 0.8398), CVnumber of cold/viral disturbances (-0.0463, P = 0.8599). There was 

no obvious relationship between the diversity and stability of the microbiome of 

participants at the three taxa levels. Therefore, from this sampling, diversity is 

not a factor to drive stability as some participants that had high diversity values 

also had high coefficients of variation which could be seen as having more 

variable and unstable microbiomes.  
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Table 5.2 – Mean species richness for all participants and the numbers of 

disturbances identified as used in the diversity/stability test. Participant HB is 

excluded from this table due to not having enough samples. 

 

5.4 Discussion 

The results show that variation in the microbial community structure in the 

oropharynx microbiome occurred within and between participants over the 

timescale of sampling. In most participants, the changes in the microbiome over 

time were usually small fluctuations around a relatively stable microbial 

community. Each participant had a distinct oropharynx microbiome in that there 

was high beta diversity between participants, with abundances of taxa varying 

within and between participants (Fierer et al., 2012). This could also directly 

contribute to each participant having its own stability pattern; however 

variation did occur within participants over time. Variation in bacterial 

community structure is expected due to changes in host and environmental 

Participant 
 

Mean 
number of 
phyla 

Mean 
number 
of genera 

Mean 
number 
of OTUs 

Number of 
disturbances/antibiotics 
throughout sampling weeks 
(n= 45) 

Cold Viral Antibiotics 

HA 8 49 243 2 0 0 

HC 8 46 212 2 0 0 

HD 9 52 250 0 1 0 

HE 8 43 210 1 0 0 

HF 7 40 184 0 1 4 

HG 8 40 204 1 0 0 

HI 8 45 218 4 2 0 

HJ 8 41 184 0 0 3 

HL 8 47 211 0 0 1 

HM 7 39 190 3 0 0 

HN 8 43 216 2 0 0 

HO 8 43 206 1 0 0 

HQ 8 45 226 1 0 0 

HR 9 50 234 0 0 0 

HS 9 45 218 1 0 0 

HT 9 48 235 0 0 0 

HV 8 43 195 1 3 0 
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conditions as well as external factors. As each participant’s oropharyngeal 

community varies over time due to lifestyle, health, age, diet and culture, it is 

crucial to discriminate between the normal perturbations of the human 

microbiome and changes in response to a disturbance. It is this intra- and inter-

subject variability that makes it more difficult to determine a core microbiome, 

especially as not all healthy samples had similar abundances or presence of 

specific OTUs. Even though the majority of healthy samples had a dominant 

member of the community (Streptococcus or Prevotella at genus level), healthy 

samples were variable in terms of prevalence and abundance of taxa and 

community diversity on a weekly basis. This makes it challenging to give an 

accurate definition of what a healthy or desired state is for the oropharyngeal 

community.  

Viral infection (Rhinovirus and Respiratory Syncytial Virus) were not associated 

with changes to the microbiome. However, due to the small number of samples 

from subjects with viral infection, this needs to be further explored, especially 

due to conflicting results published from other studies where viruses do impact 

the oropharynx microbiome (Allen et al., 2014). There is the possibility that the 

cold group did contain viruses in some samples, but these viruses may not have 

been picked up from the respiratory screen because only a selection of viruses 

were tested as well some participants not handing in a viral swab when 

symptoms appeared. Therefore cold samples that were negative for viruses 

tested in the respiratory screen could either be other viruses not detected or 

could be samples that had symptoms occurring from the external environment 

such as irritants or pollen levels. Regardless, the cold samples did show changes 

to the microbiome, with the majority of changes occurring to the community 

structure before and during the symptoms. Even though sampling occurred 

weekly, changes to the microbiome were observed one week before the 

symptoms occurred. The reasons for this may include time required to overcome 

the existing microbial community; this includes the time required for the 

bacteria to multiply to the level required to produce disease and this 

multiplication stage may not result in any symptoms. This pattern was evident 

for most participants when suffering a cold, where the community seemed to be 

disrupted one week before symptoms were noted. One sample had increases in 

bacteria such as Neisseria whereas other samples had increases in Haemophilus 
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which were also present during the cold. However this will also depend on the 

type and severity of infection and how accurate participants were in recording 

symptoms as participants may only have recorded symptoms on sampling days 

and not have recorded any symptoms observed in between sampling days. 

 

Not surprisingly, antibiotic treatment altered the oropharynx microbiome and 

typically resulted in low diversity communities, even when the site of action for 

the antibiotics was not the oropharynx. This was also observed in other studies 

(Jakobsson et al., 2010) showing that antibiotic treatment does result in low 

diversity communities. Antibiotic treatment eliminates specific groups of 

bacteria (due to antimicrobials targeting a limited range of bacteria) and can 

therefore be expected to be changing the microbial populations. One study 

(Santiago et al., 2014) also reported the impact of antibiotic treatment on the 

gut microbiome resulting in increased microbial load specifically gram negative 

bacteria showing the effects of antibiotic treatment on the microbiome are more 

complex than previously thought. Post-antibiotic treatment, the oropharynx 

microbiome recovered quickly showing that it was resilient in that the diversity 

and abundances of taxa were restored again to a state similar to pre-treatment. 

Resilience is usually measured in terms of taxonomic composition; however, 

there should also be consideration in measuring function before, during and 

after a disturbance, as even though changes in taxa occur, this may be even 

more important to show that the community’s role has not changed after a 

disturbance (Jakobsson et al., 2010). Therefore despite disturbances affecting 

the microbiome, the microbiome in all participants was considered stable in that 

even though fluctuations in the community structure were apparent, these 

fluctuations were generally minor with the dominant taxa still present. 

Microbiomes of other body sites such as the skin in healthy participants have also 

shown to be stable (Oh et al., 2016) showing that stable microbiomes may be an 

indicator of health. During specific disturbances the community structure 

changed, but the microbiome was resilient in that it recovered from these 

disturbances quickly, usually within a week.  

 

The diversity-stability relationship was also assessed across participants and 

some participants’ communities were more stable than others. A more diverse 

community is expected to be more resistant to invasion by pathogens (Konopka, 
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2009) and therefore more stable. As some participants had high coefficients of 

variation, as well as high species richness values, no correlation in this case was 

found between diversity and stability. However, various studies in macroecology 

have reported that diverse communities tend to be the most stable ones  

(Loreau & de Mazancourt, 2013) (Lozupone et al., 2012), so this still remains 

unknown for microbiome studies, especially due to the small sample size of 

unhealthy communities in this study. Therefore, the role of diversity in different 

health states is complex and challenging, especially as it is still unknown if a low 

diverse state is the cause or consequence of the disease, and how this affects 

stability. Even though the oropharynx microbiome was found to be stable, 

determining the stability of the oropharynx microbiome over a longitudinal 

period of time was a challenge as samples were not present every week as 

participants did miss some weeks of swabbing. Participants may have also 

inaccurately reported symptoms due to forgetting, being rushed or reporting the 

wrong symptoms. This could explain why some samples had very distinct, 

different communities for which there were no obvious explanations. Overall 

though, it was found that each participant had a distinct oropharynx microbiome 

that was considered stable and resilient to disturbances at the genus and OTU 

level.  

 

5.5 Conclusions 

This chapter shows that healthy participants have stable and resilient 

oropharynx microbiomes. When faced with a disturbance the microbiome 

becomes altered with changes in abundances in taxa. However, the microbiome 

was quick to recover from these disturbances and return back to a normal and 

healthy state usually within a week. Healthy samples from participants were 

dominated by few taxa, with other taxa residing at lower abundances, but there 

was also variation in the abundances in the dominant taxa within and between 

participants. By understanding the extent of variation in healthy participants 

and bacterial abundances before, during and after infection, it may be possible 

in the future to identify respiratory diseases (from further investigations and 

controlled studies) and possibly restore health through investigating how to 

manipulate microbial populations. 
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6 Comparing the community structure and stability of 
the oropharynx microbiome of non-smoking to 
smoking participants 

6.1 Introduction 

Smoking has been associated with many risks; exposure to cigarette smoke 

results in changes in the host’s environmental conditions, disruption in the 

body’s natural defence mechanisms and impaired or reduced host immune 

responses against infections (Van Zyl-Smit et al., 2014). There is also an 

increased risk of respiratory tract infections (Bagaitkar et al., 2008) through 

disruption of commensal bacteria potentially providing an opportunity for 

colonisation and growth of pathogenic microorganisms.  

 

The effect of smoking on any microbiome is a still a topic under investigation; 

the introduction of next-generation sequencing (Petrosino et al., 2009) is 

changing this by enabling quick in-depth analysis of communities from various 

body sites. Studies using this technology have started exploring the effects of 

smoking on the oropharynx microbiome as the oropharynx is one of the first sites 

of contact for cigarette smoke. Results have already shown distinct communities 

between smokers and non-smokers (Charlson et al., 2010). The healthy 

oropharyngeal community consists of Firmicutes and Bacteroidetes as the 

dominant phyla, and Streptococcus, Prevotella and Veillonella the most 

abundant genera (Lemon et al., 2010). In contrast and comparison with non-

smokers, the dominant phyla in the oropharyngeal communities of smokers are 

Actinobacteria and Bacteroidetes with increases in the abundance of the genera 

Megasphaera and Fusobacterium as well as pathogenic Streptococcus species (S. 

pneumoniae). In addition, certain commensal Streptococcus, Prevotella and 

Peptostreptococcus species have a reduced abundance in smokers’ oropharynx 

microbiomes (Charlson et al., 2010). Various pathogens isolated from smokers 

communities have been associated with diseases such as periodontitis (Zeller et 

al., 2014), tonsillitis (Bagaitkar et al., 2008), chronic obstructive pulmonary 

disorder (Erb-Downward et al., 2011) and tuberculosis (Van Zyl-Smit et al., 

2014). 
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The changes in the oropharynx microbiome associated with smoking could also 

affect the stability properties of the community; longitudinal sampling would 

ideally show how the community changes over a defined period of time and in 

response to fluctuations. These changes in a healthy community structure may 

affect the overall stability of the microbiome, something that is relatively 

unexplored. These changes are important as they may determine the outcome or 

recovery from a disturbance or infection, as well as be responsible for making 

communities more susceptible to infections. There have been no studies 

exploring the longitudinal effects of smoking on the microbiome on a weekly 

basis and recovery from infections in comparison to non-smokers. This would 

determine if communities from smokers have specific bacteria responsible for 

increased susceptibility to infection, and also if smoking results in unstable 

communities. Therefore this chapter aims to determine the distinct differences 

in microbial community structure between healthy participants (non-smokers) 

and smokers. The objectives for this chapter are as follows: to compare the 

oropharynx microbiome of non-smoking healthy participants to smokers, to 

determine the changes that occur to the oropharyngeal community during a 

disturbance in smokers, to determine if healthy participants have more stable 

microbiomes compared to smokers and to determine if smokers have a longer 

recovery time from a disturbance (from the cold and viral samples only) 

compared to healthy participants. The hypothesis is that smokers will have a 

changed microbial community structure in comparison to non-smoking 

participants; the smoker’s microbiome will be unstable with increased 

differences in community structure in samples from the same participant and 

the community will take longer to recover from a disturbance. 

 

6.2 Methods 

6.2.1 Initial analysis 

In total, 490 oropharyngeal samples were obtained from 30 participants; 313 

samples from non-smoking participants (n=18) and 177 from smokers (n=12). 

Samples from the non-smokers and smokers were collected over two different 

years (2013 for non-smokers and 2014/2015 for smokers). From the non-smoking 

healthy participants’ samples, 34 samples were identified as unhealthy samples 

which were categorised into the following groups: cold (n=19 from 12 
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participants), antibiotics (n=8 from 3 participants) and viral (n=7 from 4 

participants). The cold group includes samples from participants self reporting 

symptoms of a cold but were negative for the respiratory screen at Gartnavel 

hospital as described in section Chapter 2.2.1. The antibiotics group included 

any participants undergoing antibiotic treatment and the viral group included 

only symptomatic samples with confirmed viruses from the respiratory screen. 

For the smokers, 32 samples were identified as unhealthy samples which were 

categorised into two groups, cold (n=14 from 6 participants) and antibiotics 

(n=18 from 2 participants). There were no positive viral samples from the 

smokers group. The rest of the smoker’s samples were considered as healthy 

samples – a healthy sample from a smoker is classified as one without any 

symptoms of disease or any changes in the normal routine of the participant.  

6.2.2  Microbial community composition 

Statistical analysis was performed in R software (version 3.1.2). Where 

appropriate, the abundance data were normalised (McMurdie & Holmes, 2014) 

before specific analyses. Linear mixed models (LMM) were constructed through 

lme4 package (version 1.1-9) using log transformed abundances on all samples 

from non-smoking participants and smoking participants (healthy and unhealthy) 

to determine differences in abundance of certain taxa between smokers and 

non-smokers. Week was used as a fixed effect as eventhough sampling for non-

smokers and smokers occurred in two different years, the weekly sampling 

procedure that occurred in non-smokers and smokers was the same. Participant 

ID was used as a random effect. 

Microbial compositional structure was assessed using non-metric 

multidimensional scaling plots (NMDS) to determine the differences in 

community composition in regards to smoker and health status. To determine 

the difference in community composition between non-smoking participants and 

smokers, an NMDS plot was produced from only the healthy samples of non-

smokers and smokers. The Bray-Curtis dissimilarity index was applied which 

considers bacterial taxon abundance. Unweighted UniFrac distance analysis from 

the Phyloseq package (version 1.17.2) was also used (McMurdie & Holmes, 2013) 

which takes into account the phylogenetic distances (relatedness) of taxa 

through presence or absence, but without accounting for their proportional 
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representation. A covariance ellipse using Ordiellipse() and veganCovEllipse() in 

Vegan (version 2.4.0) was added (95% confidence interval calculated from the 

standard errors of samples from the mean of each group) with the centroid of 

the ellipse representing the group mean. Covariance for each group was 

calculated using cov.wt() and the shape of the ellipse was defined by the 

covariance within each group - the bigger the ellipse, the more variability in 

community structure in samples within the group. Significant difference testing 

for different groups at OTU level was done using PERMANOVA through adonis() in 

Vegan (version 2.4.0). The significant difference testing for clustering was 

corrected using the command strata to take into account repeated sampling 

from participants. 

To find OTUs that are significantly different between non-smoking and smoking 

participants, DESeq2 package (version 1.24.0) in R (version 3.1.2) (Love et al., 

2014) was used as before. This determined the specific OTUs responsible for 

distinguishing between a non-smoker and smoker’s community by identifying the 

OTUs with the most significant differences in abundance between the two 

groups. This uses a negative binomial GLM fitting on the abundance data (OTU 

frequencies) and empirical Bayes to shrink OTU-wise dispersions to identify OTUs 

that have the log-fold changes between different conditions. Differential 

expressions are tested by performing a Wald test on shrunken log-fold changes 

and are adjusted for multiple comparisons. This results in adjusted P values for 

the most significantly different OTUs between non-smokers and smokers. 

6.2.3  Assessing community diversity 

Samples were rarefied to the minimum number of reads (5118) to test for alpha 

diversity. Alpha diversity at OTU level was investigated to determine the 

possible associations between non-smokers, smokers and health status in 

oropharyngeal community structure. The diversity indices calculated for healthy 

and unhealthy samples from non-smoking participants and smokers were species 

richness, Shannon H index and Simpson index. The aov() from Vegan (version 

2.4.0) was then used to calculate pair-wise ANOVA P values (taking into account 

repeated sampling from participants) which were displayed on top of alpha 

diversity figures.   
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6.2.4  Assessing community stability 

Stability plots were produced as described in Chapter 4.2.3 using betadisper() in 

Vegan (version 2.4.0) where the distance to the centroid (mean) from each 

sample was calculated for each participant showing temporal fluctuations for 

non-smokers and smokers. To determine if community structure changed before, 

during and after a disturbance for non-smokers and smokers, a linear mixed 

model (LMM) was constructed. The community composition of healthy samples 

from smokers was compared to healthy samples from non-smokers (as well as 

the unhealthy samples from non-smokers and smokers) in different infection 

states. The LMM used distances from betadisper to determine if there were 

differences in community structure between non-smokers and smokers. 

6.3 Results 

6.3.1 Comparison of healthy communities from non-smoking 
participants and smokers 

6.3.1.1 Initial analysis of smokers’ samples 

At the end of the sampling period, 177 smoker’s samples were received in total, 

with 145 designated as healthy. The number of samples (healthy and unhealthy) 

received from each smoking participant is shown in Table 6.1. 
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Table 6.1 – Metadata shown for smokers samples including the total number of 

samples (healthy and unhealthy) and the range in taxa numbers (with the 

median shown in brackets) received from each smoking participant. 

 

The taxonomic profiling of samples from the oropharynx of individual smoking 

participants identified with RDP classifier revealed 5 to 9 phyla, 11 to 59 genera 

and 97 to 347 assignments at OTU level which was similar to non-smokers (5 to 

10 phyla, 20 to 70 genera and 140 to 340 OTUs). The species richness at OTU level 

for non-smokers and smokers is shown in Figure 6.1. 

Participant Age Sex 
Total 
samples 

Number 

of years 

smoking 

Average 

number of 

cigarettes 

smoked 

per week 

Phylum Genus OTU 

SA 40 M 23 20 30 5-9 (9) 
11-59 
(46) 

97-347 
(221) 

SB 19 F 3 5 120 8-8 (8) 
42-46 
(42) 

183-199 
(184) 

SC 19 F 23 2 6 6-9 (8) 
32-53 
(44) 

136-254 
(208) 

SD 19 F 8 1 60 5-8 (6) 
28-46 
(37) 

127-225 
(156) 

SE 19 F 1 5 35 N/A N/A N/A 

SF 19 F 19 4 30 6-9 (7) 
30-51 
(41) 

120-260 
(179) 

SG 33 M 25 15 70 7-9 (8) 
29-58 
(53) 

158-295 
(201) 

SH 30 F 25 13 12 7-9 (9) 
31-58 
(44) 

101-313 
(223) 

SI 30 F 24 10 25 6-9 (8) 
29-59 
(46) 

126-279 
(222) 

SK 19 F 10 5 60 8-9 (9) 
40-52 
(47) 

172-279 
(235) 

SL 19 F 10 3 10 8-9 (8) 
41-54 
(46) 

209-286 
(234) 

SM 19 F 6 3 30 7-8 (8) 
45-52 
(50) 

208-236 
(228) 
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Figure 6.1 – Box plot showing species richness at operational taxonomic unit 

(OTU) level for healthy non-smokers (H_Healthy) and healthy smokers 

(S_Healthy) showing there is a significant difference in richness between the 2 

groups as observed by the significant P value. The significant difference testing 

for clustering was corrected due to having repeated sampling from participants. 

 

6.3.1.2 Community composition of healthy samples from non-smoking 
participants and smokers 

The most abundant taxa from healthy samples from smoking participants 

included Firmicutes (mean proportion of the whole sample ± SEM = 50% ± 2%), 

Bacteroidetes (18% ± 1%), Proteobacteria (13% ± 2%), Actinobacteria (13% ± 1%) 

and Fusobacteria (3% ± 1%) (Appendix 10 & Appendix 11). However, comparison 

of abundances from healthy (smoker) and healthy (non-smoker) samples showed 

smokers to have significant increases in abundance of all phyla apart from 

Fusobacteria (Table 6.2) showing that community differences in abundance 

between smokers and non-smokers were present at the phylum level. 
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Table 6.2 – Linear mixed model (LMM) parameters investigating the abundances 

(response variable) of certain phyla in healthy samples from smokers compared 

to healthy samples from non-smokers (reference category). Significant P values 

are shown in bold. 

Smokers 

samples 

Estimate Std. Error df t value P value 

Firmicutes 0.3350 0.1115 424 3.0060 0.002 

Proteobacteria 0.6834 0.2946 307 2.3200 0.02 

Bacteroidetes 0.7542 0.1949 25.9 3.8700 <0.001 

Actinobacteria 0.9916 0.1809 27 5.4830 <0.001 

Fusobacteria -0.0746 0.2845 22.3 -0.2620 0.796     

 

At genus level, healthy samples from smoking participants had the most 

dominant genera of Streptococcus (39% ± 2%), Prevotella (12% ± 1%) and 

Actinomyces (5% ± 1%) (Appendix 12 & Appendix 13). When comparing 

abundances of healthy samples (smokers) to healthy samples (non-smokers), 

smokers had significant increases in abundance in the genera Streptococcus (P = 

0.005) and Prevotella (P = 0.001) (Table 6.3).  

Table 6.3 – Linear mixed model (LMM) parameters investigating the abundances 

(response variable) of certain genera in healthy samples from smokers compared 

to healthy samples from non-smokers (reference category). Significant P values 

are shown in bold. 

Smokers 

samples 

Estimate Std. Error df t value P value 

Streptococcus 0.3130 0.1129 424 2.7720 0.005 

Prevotella 0.7884 0.2137 25.4 3.6890 0.001  

Veillonella 0.3341 0.1957 25.1 1.7080 0.1 

 

The most abundant OTUs belonged to Streptococcus species again reflecting the 

general abundance of their phylum, Firmicutes (Appendix 14). The most 

abundant OTUs identified included Streptococcus mitis, Streptococcus salivarius 

and Streptococcus parasanguinis which were also the most dominant OTUs in the 

healthy samples from non-smoking participants. 
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To determine the overall difference in community composition between non-

smoking participants and smokers, an NMDS plot was produced from only the 

healthy samples from non-smokers and smokers, where samples from each group 

clustered separately. This was characterised by differences in abundance of 

OTUs using Bray-Curtis distance (Figure 6.2A) and presence and absence of 

different types of OTUs using unweighted UniFrac distance (Figure 6.2B).  

Significant differences were observed for both distances (Bray-Curtis, P < 0.001; 

unweighted UniFrac, P < 0.001) showing that non-smoking participants and 

smokers differ in the abundances of OTUs and in the presence and absence of 

specific OTUs.  

These changes at OTU level were investigated to determine whether non-

smokers and smokers have a different composition of OTUs in their oropharynx 

microbiomes. Smokers have increased abundances of opportunistic and 

pathogenic microorganisms as shown in Table 6.4 which shows the 10 most 

significant OTUs in terms of differing abundance found between the healthy 

samples (from non-smoking participants and smokers). Smokers had increased 

abundances of specific OTUs that were potentially pathogenic, and decreased 

abundances of certain OTUs including commensals such as Neisseria oralis.  
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Figure 6.2 – Non-metric multidimensional scaling (NMDS) plots at 

operational taxonomic unit (OTU) level showing microbial community 

compositions of only the healthy samples in regards to smoker status. 

Variance ellipses were added by calculating the covariance for each group 

was calculated by cov.wt() and the shape of the ellipse was defined by the 

covariance within each group. Figure 6.2A uses Bray-Curtis distance whereas 

Figure 6.2B uses unweighted UniFrac phylogenetic distances. 

A 

B 
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Table 6.4 - The 10 most significant operational taxonomic units (OTUs) in terms 

of differing abundances found between the healthy samples from non-smoking 

participants and smokers. The abundance of the OTUs in smokers (whether 

increasing or decreasing) is shown through representation of arrows. 

OTU Abundance 
in smokers 

Adjusted 
P value 

Description 

OTU_216 
Porphyromonas 
gingavalis strain 
W83 

 <0.001 Major pathogen in 
periodontitis (Nelson et al., 
2003) - smoking increases 
risk of periodontal disease 
(Zeller et al., 2014) 

OTU_60 
Streptococcus 
agalactiae 

 <0.001 Commensal and pathogen 
involved in sepsis and 
pneumonia (Tettelin et al., 
2002) 

OTU_66 
Streptococcus 
pyogenes strain 
M1 

 <0.001 Pathogen that causes tonsillitis 
(Bagaitkar et al., 2008), 
pharyngitis and scarlet fever 
(Ferretti et al., 2001) 

OTU_82 
Enterococcus  
faecalis 

 

 <0.001 Some strains highly resistant to 
antibiotics known as 
vancomycin resistant 
Enterococci (Kristich & Rice, 
2009) 
Linked to oral cancer through 
increased release of hydrogen 
peroxide (Boonanantanasarn et 
al., 2012) 
Also found in periodontitis 
(Wang et al., 2012) 

OTU_192 
Bifidobacterium 
longum 

 <0.001 Commensal with some strains 
used as a probiotic in food and 
drinks (Sugahara et al., 2015) 

OTU_17 
Neisseria oralis 

 <0.001 Healthy commensal found in 
the oral tract 

OTU_8 
Chryseobacterium 

 <0.001 Common bacteria found in 
water and environmental 
sources 

OTU_857 
Fusobacterium 
necrophorum 
subsp. 
funduliforme 

 <0.001 Present in the oropharynx in 
healthy individuals but has 
been involved in tonsillitis 
(Jensen et al., 2007) 

OTU_13 
Corynebacterium  
propinguum 

 

 <0.001 Present in the oropharynx but 
has been involved in lower 
respiratory tract infections 
(Díez-Aguilar et al., 2013) 

OTU_29 
Moraxella 
nonliquefaciens 

 <0.001 Usually a commensal, can 
become pathogenic (Marrs, 
2016) 
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6.3.2 Comparison of unhealthy communities from non-smoking 
participants and smokers 

6.3.2.1 Community similarity in healthy and unhealthy samples from non-
smokers and smokers 

For both non-smoking participants and smokers, the communities changed when 

there was a disturbance in health status as observed through NMDS plots at Bray-

Curtis distance (Figure 6.3A) and unweighted UniFrac distance (Figure 6.3B). For 

non-smoking participants the community structure was altered when changing 

from a healthy to unhealthy state (Bray-Curtis, P = 0.005; unweighted UniFrac, P 

= 0.02). Colds were more associated with changes in abundances of OTUs 

whereas antibiotic treatment resulted in changes of the presence or absence of 

specific OTUs. For smokers, a change in health status also resulted in a change in 

community structure, but this was only significant for changes in abundance 

rather than presence or absence of OTUs when using a value of P < 0.1 for 

significance (Bray-Curtis, P = 0.07; unweighted UniFrac, P = 0.6). These changes 

were more apparent in the antibiotics group, as the cold samples from smokers 

showed similar community compositions to the healthy samples from smokers. 

Samples also clustered according to smoker and health status; healthy 

communities from non-smokers and smokers had tight clustering, whereas 

samples from the unhealthy groups (with the exception of cold samples from 

smokers) were more spread out from each other and had more variability in 

community structure compared to samples representing healthy states. However 

the antibiotic samples from both non-smoking participants and smokers seemed 

to have a similar community composition compared to the other samples 

showing that the effects of antibiotic treatment on non-smoking participants and 

smokers were similar. 

For the smoker’s samples only, a change in community structure was not 

observed in regards to how many cigarettes smokers smoked per week on 

average. This was apparent in both NMDS plots using Bray-Curtis and unweighted 

UniFrac distances (Bray-Curtis, P = 0.9; unweighted UniFrac, P = 0.8) where 

communities did not cluster according to the number of cigarettes smoked per 

week.  
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Figure 6.3 – Non-metric multidimensional scaling (NMDS) plot using Bray-Curtis 

dissimilarity index (Fig. 6.3A) showing differences in abundances of operational 

taxonomic units (OTUs) in regards to smoker and health status and the number of 

cigarettes smoked per week in relation to the size of circles – larger circles 

denote a greater number of cigarettes smoked weekly as opposed to smaller 

circles (smoker samples only). Figure 6.3B uses unweighted UniFrac phylogenetic 

distances showing presence and absence of OTUs in regards to smoker and health 

status and the number of cigarettes smoked per week (smoker samples only).  

A 

B 
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The specific differences in the unhealthy samples from non-smoking participants 

and smokers were investigated. The community composition in unhealthy samples 

from smokers showed a decrease in Firmicutes and Proteobacteria (compared to 

unhealthy samples from non-smokers) but these changes in abundance were not 

significant (Table 6.5). 

Table 6.5 – Linear mixed model (LMM) parameters investigating the abundances 

(response variable) of certain phyla in unhealthy samples from smokers 

compared to unhealthy samples from non-smokers (reference category). 

Unhealthy 

samples 

Estimate Std. Error df t value P value 

Firmicutes -0.1102 0.2882 66 -0.3820 0.7030 

Proteobacteria -0.5650 0.5634 17.71 -1.0030 0.3290 

Bacteroidetes 0.7738 0.4048 66 1.9110 0.0600 

Actinobacteria 0.4699 0.5600 14.71 0.8390 0.4149 

Fusobacteria -0.5936 0.4817 66 -1.2320 0.2220 

 

Unhealthy samples from smokers had Streptococcus (38% ± 4%), Prevotella (15% ± 

1%) and Serratia (8% ± 4%) as the most abundant genera (Appendix 15). However 

smokers showed no significant differences in the abundances in Streptococcus but 

a significant increase in Prevotella (P = 0.013) was observed in comparison to the 

unhealthy samples from non-smoking participants (Table 6.6). 

Table 6.6 – Linear mixed model (LMM) parameters investigating the abundances 

(response variable) of certain genera in unhealthy samples from smokers 

compared to unhealthy samples from non-smokers (reference category). 

Significant P values are shown in bold. 

Unhealthy 

samples 

Estimate Std. Error df t value P value 

Streptococcus -0.04024     0.31260   4.52 -0.129   0.903 

Prevotella 1.18553     0.46705 66 2.538    0.013 

Veillonella -0.17916     0.52267 12.29  -0.343    0.737 
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6.3.2.2  Comparison of diversity in healthy and unhealthy communities from 
non-smoking participants and smokers 

The diversity of samples in regards to smoker and health status was investigated 

using alpha diversity measures to observe changes in alpha diversity in regards to 

smoker and health status (Figure 6.4). In non-smoking participants at OTU level, 

significant differences were observed using pair wise ANOVA for richness and 

diversity measures. This was observed between the healthy and cold samples 

(species richness: P < 0.001, Shannon H index: P = 0.01, Simpson index: P 

<0.001) and healthy and antibiotics samples (species richness: P < 0.001, 

Shannon H index: P = 0.001, Simpson index: P = 0.007) showing that healthy 

samples (from non-smokers) had the greatest richness and diversity and 

unhealthy samples had the least richness and diversity. Looking at the smoker’s 

samples alone at OTU level, the healthy and cold samples from smokers had no 

significant differences in species richness, Shannon H diversity or Simpson index 

showing that these groups were similar in terms of richness and diversity. 

Significant differences were observed in species richness between the antibiotics 

and cold samples at OTU level (P = 0.003) with samples obtained during 

antibiotic treatment having reduced richness compared to the cold samples but 

there were no significant differences in Shannon H or Simpson diversity. A 

significant difference was also observed in Shannon H diversity between the 

antibiotics and healthy samples from smokers at OTU level (P = 0.003) with 

antibiotics having reduced diversity, but not species richness or Simpson 

diversity. Overall this shows at OTU level the healthy samples from non-smoking 

healthy participants were more diverse than the healthy samples from smokers 

(species richness: P = 0.01, Shannon H index: P <0.001, Simpson index: P < 

0.001), but the cold samples from smokers was shown to be the most rich and 

diverse. Diversity was impacted by health status where antibiotics use resulted 

in lower diversity in both non-smoking participants and smokers, whereas cold 

samples were associated with reduced richness and diversity in non-smokers but 

increased richness and diversity in smokers. 

 

 



  143 

 

Figure 6.4 – Alpha diversity measures at operational taxonomic unit (OTU) 

level. Samples are categorised by health and smoker status. Significance testing 

was performed using pair wise ANOVA with significant P values shown above. 

 

6.3.3 Comparing the stability of the oropharynx microbiome in 
non-smoking participants and smokers 

6.3.3.1 Stability of the oropharynx microbiome in non-smoking participants 
and smokers 

A combined stability plot for non-smoking participants and smokers showed the 

fluctuations of the oropharynx microbiome on a weekly basis and the changes in 

community structure during a disturbance (Figure 6.5). As determined before, 

non-smoking participants had disturbances that could be related to changes in 

health status, from which they would recover quickly, showing that the 

microbiome was resilient (Chapter 5). Smokers also had changes in health status 

which were determined by greater peaks – more so for samples collected during 

antibiotic treatment than for samples collected during colds. However, visually 

there seemed to be greater peaks present in smokers which were not related to 

reported changes in health status or routine. The coefficient of variation gave a 

numerical stability representation for each participant. The coefficient of 

variations determined for the non-smoking participants ranged from 12% to 26% 
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and 9% to 29% for smokers. The variability in community structure was apparent 

within and between participants from both groups (although visually there 

seemed to be greater variability between smoking participants). Instead, it was 

concluded that each participant had a stable microbiome regardless of smoker 

status, as even though smokers had an altered microbial community when 

compared to non-smoking healthy participants, the microbiome was still 

relatively stable over the weeks of sampling and the coefficient of variation 

values for participants from both groups were generally low. 
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Figure 6.5 - Stability plots for all participants using distances from betadisper – 

non-smoking healthy participants are identified as starting with H, whereas 

smokers start with S. Time points indicate the week of when a sample was 

handed in and peaks refer to altered communities as identified by having a 

greater distance away from the centroid. Participant’s HB and SE are omitted 

due to not having enough samples. 
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6.3.3.2  Is smoking associated with changes in community resilience after a 
disturbance? 
 

An LMM was constructed using the distances from betadisper showing that there 

were differences in community structure between non-smoking participants and 

smokers (Table 6.7). There were significant differences between the healthy 

communities from smokers and non-smoking participants (P = 0.05), one week 

before symptoms (P < 0.001) and during symptoms (P < 0.001) when compared to 

non-smoking participants. There were no significant differences when comparing 

the healthy smoker samples to any other smoker’s samples during the different 

health states. Therefore, for the smoker’s samples the time required for 

recovery from a cold could not be investigated. 

 

Table 6.7 – Linear mixed model (LMM) parameters comparing the healthy 

samples from smokers (reference category) to different health states in smokers 

and non-smoking participants. The response variable is the distances from 

betadisper which represents differences in community structures. Significant P 

values are shown in bold. 

Status of 

infection 

Estimate Std. Error df t value P value 

Smokers: One 

week before 

symptoms 

0.015 0.026 447.3 0.566 0.571 

Smokers: During 

symptoms 

-0.019 0.019 454.5 -1.047 0.296 

Smokers: One 

week after 

symptoms 

0.017 0.026 447 0.638 0.524 

Healthy 0.025 0.013 28.8 1.977 0.057 

Healthy: One week 

before symptoms 

0.078 0.019 124.6 4.126 <0.001 

Healthy: During 
symptoms 

0.09 0.017 89.9 5.167 <0.001 

Healthy: One week 
after symptoms 

0.043 0.025 266.1 1.692 0.092 
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6.4 Discussion 

The oropharynx microbiome of a smoker is distinct to the oropharynx 

microbiome of a non-smoking participant. Similar studies have also identified 

these differences with increased abundances of Fusobacteria and Actinobacteria 

at phylum level (Charlson et al., 2010). A higher percentage of  Firmicutes, 

Actinobacteria, Bacteroidetes and Proteobacteria was observed in smokers, with 

increased abundances of potentially pathogenic microorganisms such as 

Porphyromonas gingavilis, Streptococcus pyogenes and Fusobacterium 

necrophorum, all of which have been implicated in oral and respiratory tract 

diseases such as periodontitis and pharyngitis (Camelo-Castillo et al., 2015) 

(Zeller et al., 2014). Smoking seems to distort healthy microbial communities 

through changing abundances of bacteria; this can be through either a reduction 

in commensal bacteria or overgrowth of opportunistic pathogens (Wu et al., 

2016), which may affect the overall structure and functioning of the community. 

Increased abundances of potentially pathogenic OTUs were associated with 

certain oral and respiratory tract diseases like periodontitis (Nelson et al., 2003) 

and pharyngitis (Bagaitkar et al,. 2008).  

 

The smoker’s community was distorted during a disturbance, but more from 

antibiotics treatment rather than a cold. The community structure changed in 

both non-smoking participants and smokers on antibiotic treatment showing that 

antibiotics use results in a disruption of the microbiome which was also seen in 

other studies (Jakobsson et al., 2010). For samples collected when cold 

symptoms were present, non-smoking participants displayed a change in 

community structure when shifting from a healthy to cold status, but this was 

not observed for smokers. From this it can be assumed that smokers have a 

permanent altered state (which may even be more stable than non-smokers) 

with higher abundances of pathogenic microorganisms, and so their healthy 

samples are similar in community composition to the cold samples. 

 

The diversity of the oropharyngeal microbiome of non-smoking participants and 

smokers was also investigated and showed healthy samples from non-smokers to 

be significantly more diverse than the healthy samples from smokers in terms of 

species richness and Shannon H and Simpson diversity. The cold samples from 
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the smokers were also similar in diversity to the healthy samples from the 

smokers; this again confirms the similarity in community composition between 

these two groups. The cold samples from smokers were shown to be the most 

diverse overall at OTU level when compared to all other groups from smokers 

and non-smoking participants and this could be due to increased transient and 

unknown bacteria – other studies have also reported smokers’ communities to be 

more diverse than non-smokers (Charlson et al., 2010) with these studies 

suggesting that smokers may have greater resilience than non-smokers. However 

other studies have reported smokers to have less diverse communities when 

sampling in the oral tract (Camelo-Castillo et al., 2015) suggesting the role of 

diversity in smokers in the oropharynx and other body sites requires further 

investigation. Regardless, these results showed that smokers had differing 

diversity values (and OTU abundances) compared to non-smoking participants.  

 

Participants from both groups were found to have different microbial community 

compositions that were stable as communities’ had similar compositions on a 

weekly basis regardless of smoker status as confirmed through the stability plots. 

The coefficient of variation values in the non-smoking participants ranged from 

12% to 26% and 9% to 29% in smokers, showing that the values were relatively 

similar; therefore it could not be stated that smokers have a more unstable 

microbiome as previously hypothesised. Non-smoking participants had high 

resilience in that they recovered quickly from a disturbance (either antibiotic 

treatment) however this could not be investigated for the smokers as the 

participants that were undergoing antibiotic treatment were still continuing 

treatment at the end of the sampling period so it could not be determined how 

quickly communities recovered again. The community structure of non-smoking 

participants changed one week before a disturbance but did not for smokers; 

this suggests smokers have an altered but relatively stable state that is not 

changed during a disturbance. However, even if distinct changes did occur 

during infection, it would not be possible to determine whether the pathogen 

was present before the participants recorded symptoms, or if the microbiome 

was disturbed prior to the infection which facilitated the disease. As the 

majority of smoking participants had been smoking for a number of years (the 

average of years smoking prior to this study was 7) it could well be that initial 

smoking may make the microbiome less stable at first, but could eventually 
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settle to an altered stable state. The effects of initial smoking on the 

oropharynx microbiome were not investigated in this study. 

 

This sampling showed the distinct changes in the bacterial community structure 

of the oropharynx in non-smoking participants and smokers. Sampling for 

smokers was limited to a total period of 6 months (as compared to a total 

sampling period of 9 months for non-smoking participants). A smaller sample size 

for the smokers made it more difficult to perform longitudinal sampling and 

determine stability patterns as there were fewer samples to investigate for each 

participant. Interestingly though, a similar number of unhealthy samples was 

received from smokers (n=32) and non-smokers (n=34) in a shorter time frame 

suggesting that smokers are more vulnerable or susceptible to illness. However, 

no viral infections were confirmed for the smokers, even though it may be that 

that cold samples were positive for viruses that were not picked up in the 

respiratory screen. This could be due to weekly sampling missing the onset of 

the viral infection, but also due to participants, as the number of viral swabs 

received from smokers was low compared to the number of viral swabs received 

from non-smoking participants. This shows that the effect of viral infection on 

the smoker’s oropharynx microbiome still requires investigation.  

 

6.5 Conclusions 

These findings identify the characteristic patterns of microbial communities in 

smoking and non-smoking participants. Specific OTUs were found to have 

increased abundances in the smokers group and these were Porphyromonas 

gingavilis, Streptococcus pyogenes and Streptococcus agalactiae which are all 

pathogens involved in oral and respiratory tract infections. Smokers and non-

smoking participants also had different responses to deviations of the healthy 

state; non-smokers had high resilience with quick recovery, whereas smokers did 

not display changes to their microbiome during periods of a disturbance, 

suggesting a permanent altered state. Even though variability in community 

structure occurred within and between all participants, each participant’s 

microbiome was still stable regardless of smoker status. These results indicate 

that smokers do have stable but altered microbiomes compared to non-smoking 

participants. 
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7 Determining the function of the oropharynx 
microbiome 

7.1 Introduction 

As amplicon-based markers are widely used for microbiome studies, the 

prediction of the functional capabilities of these communities from 16S rRNA 

data sets would be extremely useful. For instance, by investigating the functions 

associated with microbial community structures it is possible to establish 

whether presence of certain taxa affects microbiome function, as well as 

explore functions associated with microbial communities of different health 

conditions (Shreiner et al., 2016). This not only provides information about the 

structure and general function of the community, but also investigates to what 

extent microbial variation between people might be associated with variation in 

its function. If this is observed, then this opens up the possibility for developing 

therapeutic tools where microorganisms can be used to restore or alter 

communities and thereby affect their functions in disease scenarios. Therefore 

investigating and understanding the functions associated with microbial 

communities are now becoming a very important area of research for 

microbiome studies. Improved methods for this have recently become available 

using the Tax4Fun package in R, (Aßhauer et al., 2015) which enables prediction 

of the functional community profile of 16S rRNA gene data by linking 16S rRNA 

gene sequences to already identified functions of sequences from genomes 

based on a minimum 16S rRNA sequence similarity.  

Several authors have explored the functions of the bacterial communities of the 

oropharynx by comparing it to some diseased state. Castro-nallar et al., (2015) 

explored the microbial and functional diversity between a control and 

schizophrenic group. There were significant differences between the abundance 

of specific taxa, with an increase in the abundance of lactic acid producing 

bacteria in the oropharynx of schizophrenics. The taxonomic changes in 

communities resulted in altered expression of pathways in the control and 

schizophrenic group. Control groups had significantly increased expression levels 

of pathways involved in energy metabolism such as ATP synthesis which was 

lowered in schizophrenic patients. The schizophrenic group had significantly 

increased expression levels of pathways involved in environmental information 
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processing such as glutamate transport, which had reduced expression levels in 

the control group. Schizophrenia has been linked to disturbances in the 

neurotransmitters glutamate and dopamine (Moghaddam & Javitt, 2012), 

suggesting that bacterial communities may also influence or exacerbate 

symptoms of this condition by having increased expression levels of these 

pathways in their communities.  

However, the functional roles of the oropharynx microbiome are still not well 

defined highlighting the need for more studies focusing on both taxonomic 

composition and functional diversity of the oropharynx in healthy participants. 

This information can then be used in disease scenarios, comparing how 

functional profiles of the oropharynx differ during upper respiratory infections, 

disturbances such as antibiotic treatment as well as lifestyle factors like 

smoking. Smoking has been shown to result in altered community structures in 

the oropharynx when compared to non-smoking participants (Chapter 6), yet 

there is still very little information on whether smoking affects the functional 

roles of the oropharynx microbiome. 

This chapter will explore the predicted functions associated with the 16S rRNA 

gene from the oropharynx of healthy and unhealthy samples from non-smokers, 

as well as a comparison of just the healthy samples from non-smokers and 

smokers. The objectives of this chapter are to address the following questions: 

what predicted oropharyngeal functions are associated in non-smoking 

participants, and do smokers have changed oropharyngeal functions compared to 

non-smokers. 

7.2 Methods 

All samples were processed as described in the methods chapter (Chapter 2). To 

predict functions associated with oropharynx samples, functional profiles of 16S 

rRNA gene sequences were identified using the Tax4Fun package (version 0.3.1) 

(Aßhauer et al., 2015) in R (version 3.1.2) which links 16S rRNA gene sequences 

with the functional annotation of sequenced prokaryotic genomes using a 

nearest neighbour identification based on a minimum sequence similarity. This 

involves (i) annotating the representative sequences of the OTUs against the 

SILVA database, (ii) transforming the annotated 16S rRNA profile to its 
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equivalent KEGG (Kyoto Encyclopedia of Genes and Genomes) taxonomic profile 

using a precomputed association matrix, (iii)  normalising the abundance of 

KEGG organisms by 16S rRNA copy number, and (iv) combining the normalised 

KEGG abundance profile with precomputed functional profiles of KEGG 

organisms (obtained with UProC; Meinicke, 2015) to predict the functional 

profile of the microbial community under study. This generates a relative 

abundance of KEGG orthology (KO) identifiers associated with each sample 

depending on matches of the representative sequence from each OTU to KEGG 

organisms. All prokaryotic KEGG organisms are available in Tax4Fun for SILVA 

SSU Ref NR database release 115 and KEGG database release 64.0. The 200 most 

abundant predicted KO identifiers were selected for the comparisons of the 

conditions of interest. Statistically significant differences in relative abundances 

of predicted functions between conditions were estimated using Kruskal-Wallis 

tests with Benjamini- Hochberg correction for false discovery rate, with a 

significance level of P < 0.05. For this study, 16S rRNA gene sequences were used 

to predict functional community profiles between healthy and unhealthy 

samples from firstly non-smoking participants and then between the healthy 

samples from non-smoking participants and smokers. Figures show the top 20 

most significant results as displayed on a log transformed scale for visualisation.  

7.3 Results 

7.3.1 Predicted functions associated with the healthy 
oropharynx microbiome 

From previous chapters it has been determined that different community 

compositions exist in the different health groups of non-smoking participants 

(Chapters 3 & 4). These changes in community composition could potentially 

affect the functions associated with the communities. The predicted functional 

properties of oropharyngeal communities from the different health groups (as 

shown as the abundances of KO pathways/enzymes) were explored. The 

significant differences in abundances of KO’s between the health groups showed 

which predicted functions were associated when going from a healthy to 

unhealthy state (as described by cold and viral samples) and a disturbed state 

(antibiotics samples). When observing the 20 most significantly different 

predicted functions between the healthy and cold samples, higher abundances in 
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KO’s were seen in the enzymes/pathways associated with the healthy samples 

(Figure 7.1), showing that these enzymes are present and required in healthy 

and unhealthy samples. Specific pathways that were significantly different 

between the healthy and cold samples include the pathway K06610 MFS 

transporter which is involved in sugar transport across membranes (Pao et al., 

1998) and K06969 23S rRNA (cytosine1962-C5)-methyltransferase which is an 

enzyme involved in ribosome production (Purta et al., 2008) (Table 7.1). The 

lower abundance of KO’s associated with enzymes/pathways in the cold samples 

may be an effect of this kind of disturbance/infection with cold samples having 

lower abundances of OTUs as opposed to baseline abundances of OTUs in the 

healthy samples. 
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Figure 7.1 – Predicted functional profiles showing the top 20 most significantly 

different relative abundances of KO’s (kyoto encyclopedia of genes and genomes 

orthology) shown by P values between healthy (blue) and cold (red) samples 

from non-smokers. Box plots are plotted showing the median (and the 25th and 

75th percentiles) abundance of KO for each health group. 
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Table 7.1 – The kyoto encyclopedia of genes and genomes orthology (KO) 

numbers and description of the enzymes/pathways identified in healthy and cold 

samples as shown in Figure 7.1. 

KO 

numbers  

Pathways 

K06610  MFS transporter, SP family, inositol transporter 

K09704  uncharacterized protein 

K12373  hexosaminidase 

K01364  streptopain 

K07238  zinc transporter, ZIP family 

K00634  phosphate butyryltransferase 

K00657  diamine N-acetyltransferase 

K00847  fructokinase 

K03768  peptidyl-prolyl cis-trans isomerase B (cyclophilin B) 

K03816  xanthine phosphoribosyltransferase 

K04041  fructose-1,6-bisphosphatase III 

K06969  23S rRNA (cytosine1962-C5)-methyltransferase 

K09686  antibiotic transport system permease protein 

K10536  agmatine deiminase 

K16211  maltose/moltooligosaccharide transporter 

K07025  putative hydrolase of the HAD superfamily 

K00980  glycerol-3-phosphate cytidylyltransferase 

K03734  FAD:protein FMN transferase 

K00282  glycine dehydrogenase subunit 1 

K00941  hydroxymethylpyrimidine/phosphomethylpyrimidine kinase1 

 

There were also significant differences in abundance of KO enzymes/pathways 

between the healthy and viral samples (Figure 7.2). There were various KO’s 

that had higher abundance in the viral samples than the healthy samples such as 

the enzyme K00007 D-arabinitol 4-dehydrogenase (Table 7.2) which is involved in 

fructose metabolism. From the enzymes identified in Figure 7.2 & Table 7.2, 

only K00002 alcohol dehydrogenase (involved in degradation of aromatic 

compounds) and K00075 UDP-N-acetylmuramate dehydrogenase (carbohydrate 

metabolism) had increased abundance in the healthy samples.  However, viral 
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samples also had significant increases in abundance in other KO enzymes not 

shown in Figure 7.2 or Table 7.2. This included the magnesium and cobalt 

transport protein CorA which has been implicated in virulence during infection 

(Kersey et al., 2012) and therefore had a reduced abundance in healthy samples. 

In comparison to the microbiome from the cold samples, the microbiome from 

viral samples had an increase in abundance in KO enzymes and pathways 

required for everyday processes but also in enzymes/pathways involved in 

virulence. 

Figure 7.2 - Predicted functional profiles showing the top 20 most significantly 

different relative abundances of KO’s (kyoto encyclopedia of genes and genomes  

orthology) shown by P values between healthy (red) and viral (blue) samples 

from non-smokers. Box plots are plotted showing the median (and the 25th and 

75th percentiles) abundance of KO for each health group. 
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Table 7.2 - The kyoto encyclopedia of genes and genomes orthology (KO) 

numbers of the enzymes/pathways identified in healthy and viral samples as 

shown in Figure 7.2. Asterisks represent KO enzymes/pathways that had the 

highest abundance in viral samples. 

KO 

Numbers 

Pathways 

K00002 alcohol dehydrogenase 

K00004* butanediol dehydrogenase / meso-butanediol dehydrogenase / 

diacetyl reductase 

K00007* D-arabinitol 4-dehydrogenase 

K00023* acetoacetyl-CoA reductase 

K00035* D-galactose 1-dehydrogenase 

K00039* ribitol 2-dehydrogenase 

K00059* 3-oxoacyl-[acyl-carrier protein] reductase 

K00075 UDP-N-acetylmuramate dehydrogenase 

K00104* glycolate oxidase 

K00109* 2-hydroxyglutarate dehydrogenase 

K00114* alcohol dehydrogenase (cytochrome c) 

K00115* glucose dehydrogenase (acceptor) 

K00121* S-(hydroxymethyl)glutathione dehydrogenase / alcohol 

dehydrogenase 

K00124* formate dehydrogenase iron-sulfur subunit 

K00126* formate dehydrogenase subunit delta 

K00127* formate dehydrogenase subunit gamma 

K00146* phenylacetaldehyde dehydrogenase 

K00151* 5-carboxymethyl-2-hydroxymuconic-semialdehyde 

dehydrogenase 

K00154* coniferyl-aldehyde dehydrogenase 

K00155* NAD-dependent aldehyde dehydrogenases 

 

Antibiotic treatment on the other hand was associated with a reduced 

abundance in KO enzymes/pathways that had higher abundances in the healthy 

samples (Figure 7.3). The enzymes/pathways identified in both groups of 

samples (Table 7.3) are involved in everyday processes such as membrane 
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transport (K11077 mannopine transport system permease protein). But the 

reduction in all pathways in the antibiotic treated samples, an example being 

the production of flagella for bacteria (K02383 flagellar protein FlbB) is perhaps 

due to the antibiotic treatment eliminating groups of bacteria. This showed that 

in comparison to the predicted baseline abundance of these KO 

enzymes/pathways in the healthy samples, antibiotic treatment resulted in 

reduced abundance of pathways, most likely a result of antibiotic treatment 

killing bacterial populations. 
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Figure 7.3 - Predicted functional profiles showing the top 20 most significantly 

different relative abundances of KO’s (kyoto encyclopedia of genes and genomes 

orthology) shown by P values between healthy (blue) and antibiotic treated 

samples (red) from non-smokers. Box plots are plotted showing the median (and 

the 25th and 75th percentiles) abundance of KO for each health group. 
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Table 7.3 - The kyoto encyclopedia of genes and genomes orthology (KO) 

numbers of the enzymes/pathways identified in healthy and antibiotic treated 

samples as shown in Figure 7.3.  

KO 

numbers  

Pathways 

K00254  dihydroorotate dehydrogenase 

K04747  nitric oxide reductase NorF protein 

K06963  tRNA acetyltransferase TAN1 

K11077  mannopine transport system substrate-binding protein 

K11078  mannopine transport system permease protein 

K11131  H/ACA ribonucleoprotein complex subunit 4 

K11889  type VI secretion system protein ImpN 

K15234  citryl-CoA lyase 

K07055  tRNA wybutosine-synthesizing protein 2 

K13967  N-acetylmannosamine-6-phosphate 2-epimerase / N-

acetylmannosamine kinase 

K03626  nascent polypeptide-associated complex subunit alpha 

K09006  uncharacterized protein 

K13829  shikimate kinase / 3-dehydroquinate synthase 

K00844  hexokinase 

K10670  glycine reductase 

K02383  flagellar protein FlbB 

K03047  DNA-directed RNA polymerase subunit D 

K07049  TatD-related deoxyribonuclease 

K07268  opacity associated protein 

K10115  maltooligosaccharide transport system permease protein 

 

Overall these results show that various KO enzymes and pathways predicted from 

the 16S rRNA gene are shared between healthy, unhealthy and antibiotic treated 

samples from non-smoking participants. Disturbances affected the functions of 

the oropharynx microbiome in different ways, by having reduced abundances of 

KO enzymes/pathways in cold samples, increased abundances in viral samples 

(as well as having increased functions involved in virulence) and reduced 

abundances in antibiotic treated samples. 
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7.3.2 Do smokers have changed functions in the oropharynx? 

Analysis of the top 20 most significantly different KO’s between the healthy 

samples from non-smoking participants and smokers are shown in Figure 7.4. 

This showed that non-smoking participants and smokers had the same pathways 

identified such as roles in amino acid or carbohydrate metabolism, but smokers 

had increased abundances of KO’s. However, smokers were found to have 

reduced abundances of certain functions (Table 7.4) compared to those of non-

smoking participants. This included pathways for production of single-stranded 

DNA specific exonucleases (K07462) and the DNA mismatch repair protein MutL 

(K03572) which is not shown in the 20 most significant results. Both of these 

enzymes play a role in correcting errors after DNA replication and are vital for 

DNA repair (Skaar et al., 2002). Therefore, smokers had reduced abundances in 

KO pathways that were involved in DNA repair. 

Although smoking resulted in increased abundances in pathogenic bacteria 

(Chapter 6), it also affected the functions involved in bacterial pathogenesis and 

survival by having reduced abundances of KO enzymes/pathways involved in 

virulence and resistance. An example being the K06158 ATP binding cassette 

which is involved in virulence such as transportation of toxic molecules 

(Davidson et al., 2008) where there was reduced abundances in smokers. This 

was also seen in the copper resistance phosphate response regulator CusR which 

provides natural resistance to copper which is toxic to bacteria (not shown in the 

20 most significant results), with reduced abundance levels being observed in 

smokers (Munson et al., 2000). Therefore these results suggest smoking can 

actually influence the replication and survival of bacteria during colonisation by 

reducing abundances of some virulence factors which may affect the outcome of 

infection and pathogenesis.  
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Figure 7.4 - Predicted functional profiles showing the top 20 most significantly 

different relative abundances of KO’s (kyoto encyclopedia of genes and 

genomes orthology) shown by P values between healthy samples from non-

smokers (red) and smokers (blue). Box plots are plotted showing the median 

(and the 25th and 75th percentiles) abundance of KO for both groups. 
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Table 7.4 - The kyoto encyclopedia of genes and genomes orthology (KO) 

numbers of the enzymes/pathways identified in only the healthy samples from 

non-smoking participants and smokers as shown in Figure 7.4. Asterisks 

represent KO enzymes/pathways that had increased abundances in the healthy 

samples from smokers in comparison to the healthy samples from non-smoking 

participants. 

KO 

numbers  

Pathways 

K01964  acetyl-CoA/propionyl-CoA carboxylase 

K03679  exosome complex component RRP4 

K03684* ribonuclease D 

K05838*  putative thioredoxin 

K07462  single-stranded-DNA-specific exonuclease 

K10805* acyl-CoA thioesterase II 

K09136*  ribosomal protein S12 methylthiotransferase accessory factor 

K00982*  glutamate-ammonia-ligase adenylyltransferase 

K01792*  glucose-6-phosphate 1-epimerase 

K10113*  maltooligosaccharide transport system substrate-binding protein 

K13288* oligoribonuclease 

K08300*  ribonuclease E 

K02438*  glycogen operon protein 

K06158  ATP-binding cassette, subfamily F, member 3 

K01494*  dCTP deaminase 

K01011*  thiosulfate/3-mercaptopyruvate sulfurtransferase 

K01632*  fructose-6-phosphate phosphoketolase 

K07339  mRNA interferase HicA 

K14153*  hydroxymethylpyrimidine kinase 

K05831  LysW-gamma-L-lysine/LysW-L-ornithine carboxypeptidase 

 

7.4 Discussion 

This study has shown the oropharynx microbiome to have various predicted 

functions involved in metabolism, protein synthesis and DNA repair. 

Metagenomic analysis has shown a wealth of data reporting how functions from 

bacterial communities in the GI tract promote a healthy state in the host 
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(Gerritsen et al., 2011). This includes bacteria in the GI tract having metabolic 

activities that lead to the production of important nutrients such as short-chain 

fatty acids, vitamins and amino acids, which humans are unable to produce 

themselves (Wong et al., 2006). Therefore the bacterial communities in the 

oropharynx may also interact with the human host not just in defence but also in 

metabolic or immune response activities. 

 

Healthy and unhealthy samples from non-smoking participants showed largely 

the same predicted functions, however, there were functions associated with 

virulence and pathogenesis in the unhealthy samples which may be a result of 

higher abundances of pathogenic bacteria. Smokers also had significant 

differences in KO’s or predicted functions compared to non-smoking 

participants. As cigarette smoke contains carcinogens, toxins and oxidants, it is 

expected that this would disrupt microbial communities through inducing 

cellular damage and host changes such as inflammation which could change 

functions (Bagaitkar et al., 2008). This study showed reduced abundances in the 

predicted functions of DNA synthesis and repair mechanisms in bacteria from 

smokers (compared to non-smoking participants) showing that smoking does 

affect the oropharynx microbiome in terms of pathogenic microorganisms and 

the functions associated. Cigarette smoke has been linked to increased DNA 

mutations and DNA abnormalities in buccal cells (Tan et al., 2008) suggesting 

that the oropharyngeal microbial populations in smokers may also have reduced 

functions of DNA repair (which may arise due to increased DNA mutations) 

especially as enzymes such as MutL are extremely important in preventing 

mutations from becoming permanent in dividing cells (Li, 2008). However there 

were numerous predicted functions present in both groups that are necessary for 

everyday processes but in general there was an increased abundance in smokers.  

 

The purpose of predicting functions of the oropharynx microbiome is to 

determine if differences in functional diversity of the microbiome can contribute 

to specific diseases. Associations have already been reported in schizophrenia 

where schizophrenic patients’ pathways were significantly involved in 

environmental information processing whereas controls had higher proportions of 

pathways involved in energy metabolism (Castro-Nallar et al., 2015). However to 

truly understand the functional differences between health and disease, there 
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must first be an investigation and understanding in whether the changed state of 

the microbiome is the cause or effect of the disease. This can only be 

determined through longitudinal sampling over a range of healthy and diseased 

subjects to explore community composition and transcriptomics to measure 

function. Once this has been established, functional differences may then be 

used for the development of biomarkers in health or disease. 

 

The advantages of using the Tax4Fun package is that 16S rRNA sequencing is 

more cost-efficient than whole-genome shotgun sequencing, especially for initial 

exploration into the functions of the community. The disadvantage is that it only 

predicts the functional profile related to what is available in the reference 

database, therefore prediction is limited. Other disadvantages also incluce strain 

differences within OTUs and no actual measurement of expression. As this is 

based on predicting functional profiles, the validity of the functional profiling 

has not been investigated; therefore the coverage of taxonomic assignments 

needs to be investigated to check the reliability of the predictions. In order to 

gain a better representation of the functions associated with any microbiome, 

metagenomics and transcriptomics would need to be performed which would 

identify functions associated with genes from bacteria as well as the other 

microorganisms recovered from the oropharynx. It would also be interesting to 

look at participants who had recently started smoking (as all smokers 

participants had been smoking for at least over a year) and to determine when 

exactly the functions began to change. This would involve doing longitudinal 

sampling again for non-smoking participants and smokers and doing functional 

profiles for each sample on a weekly basis to determine how long it takes for 

changes to occur and if all participants’ functional profiles change in the same 

way. Longitudinal sample would also give an estimate to how long recovery 

would take for a changed microbiome to return back to normal after stopping 

smoking. However, initial exploration of the predicted functions associated with 

the healthy oropharynx microbiome show these communities to be involved in 

various pathways. Disruption of these communities (either through illness or 

smoking) do show changes in these functions, suggesting respiratory infection or 

smoking results in changed functions. 



  166 

 

7.5 Conclusions 

Non-smoking participants had increased abundances of KO’s (predicted 

functions) that were reduced in the unhealthy samples or in antibiotic treated 

samples. Smokers also had different functional profiles including reduced 

abundances of KO pathways involved in DNA repair, suggesting that bacterial 

communities in smokers were prone to DNA mutations. Therefore the 

microbiome of non-smoking communities has various predicted functions that 

are changed during disturbances including smoking and antibiotic treatment. 
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8 Conclusions and future work 

The purpose of this PhD project was to develop the ecological knowledge and 

understanding of bacterial communities isolated from the oropharynx of non-

smoking participants and smokers. Understanding these dynamics will provide 

opportunities to improve knowledge and information regarding the community 

structure of the healthy oropharynx microbiome and the changes that occur 

during respiratory infections and disturbances. More specifically, this thesis 

addressed the following questions: 

What is the community composition of the healthy oropharynx microbiome in 

non-smokers? 

How does the community change during a disturbance and antibiotic treatment? 

How stable is the community and how does this change over a defined period of 

time? 

How does the oropharynx microbiome of a non-smoker compare to a smoker’s 

microbiome? 

What functions are predicted to be associated with the oropharynx microbiome 

in non-smokers and smokers? 

Overall, this PhD project has shown that the healthy oropharynx microbiome of a 

non-smoker consists of a diverse community of taxa that is similar at phylum and 

genus level between participants. The changes that occur during a disturbance 

are distinct and require further investigation in how the microbiome affects the 

host and health status. 

8.1 Conclusions 

8.1.1 Characterisation of the healthy and unhealthy oropharynx 
microbiome in non-smokers 

Investigation into the microbiome of the oropharynx showed the healthy 

oropharynx microbiome to be Firmicutes and Streptococcus dominated at 

phylum and genus level, respectively. Participants had broadly similar bacterial 

community structures at phylum level with increasing differences at genus and 

OTU level. Healthy communities overall were the most diverse, with samples 

taken when participants had a cold or were undergoing antimicrobial treatment 
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having less diversity, which was consistent in other studies where diseases 

seemed to have the least diversity in microbiome compositions in comparison to 

their healthy counterparts (Lozupone et al., 2012). The microbiomes from 

healthy samples consisted of various bacteria existing together which were 

investigated through co-occurrence networks. These showed interactions of 

bacteria in healthy states; some competing, whilst others were mutual. In 

microbiomes from healthy samples all genera were involved in positive 

interactions, in that as one genus increased in abundance then so did another 

genus. These interactions may be a factor to why taxa are assembled in these 

proportions to maintain a homeostatic status. A disorder in these proportions 

may be a result of disturbed interactions between genera, either through 

presence or increased abundance of other genera altering the community as a 

whole. This may be the case in unhealthy samples, but the abundances in 

communites may also fluctuate in healthy and unhealthy settings so 

overrepresented taxa in unhealthy situations may also be a result of bacteria 

adapting. But, investigation of these networks in healthy samples did allow 

identification of the important drivers or key genera present in the community. 

And so, rather than focusing on determining a core microbiome in the healthy 

oropharynx, the project focused on identifying the most abundant phyla and 

genera in healthy and unhealthy communities; for the healthy communities 

these were Streptococcus, Prevotella and Veillonella at genus level. Taxa were 

more variable at OTU level, but there was still identification of certain OTUs 

such as S. mitis that were always present in participants. This species has 

previously been described as a dominant community member of the healthy 

oropharynx (Mitchell, 2011).  Variation in OTUs within and between participants 

could be a result of host and lifestyle factors (David et al., 2014), but lifestyle 

factors such as diet, alcohol consumption or activities performed were not 

recorded and so this study cannot determine how much of the external 

environment affects and influences characterisation and variation in the 

oropharynx microbiome. 

Characterisation of the unhealthy samples showed different community 

structures – the microbiome of samples that tested positive for viruses had 

increases in bacteria such as Haemophilus and Neisseria which was also observed 

in other studies (Hofstra et al., 2015). The microbiome of virus-negative samples 
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collected during colds had increases in Haemophilus, Neisseria and Serratia 

whereas the microbiome of samples collected during antibiotic treatment had 

increases in Pseudomonas and Actinomyces. Overall viral infection was not 

associated with major changes to the oropharynx microbiome, perhaps due to 

the fact that there was a small sample size of viruses (n=8) received. However, 

whether or not a pathogen can cause infection depends on the balance of 

microbiome homeostasis and abundances of pathogens. This homeostasis of 

commensal bacteria such S. mitis or S. salivarius (determined as the most 

abundant OTUs in healthy participants) may keep pathogenic species such S. 

pneumoniae or H. influenzae residing at low levels (Santagati et al., 2012) – H. 

influenzae was shown to be present in the majority of healthy samples but 

increased abundances were noticeable during colds and viral infections. 

Therefore opportunistic or pathogenic species may already be well established in 

the resident microbiome at levels that will not cause an infection or disease, but 

do increase in abundance either before the onset of infection or during disease 

or infection. The loss of protective species may be the cause of this and 

detrimental to the microbiome resulting in an altered community. Therefore the 

result of studies exploring healthy and diseased scenarios identifies the presence 

or absence of specific bacteria that are predictive of, or the cause of disease. 

8.1.2 Stability and recovery of the healthy oropharynx 
microbiome 

Investigating the individual stability patterns of the microbiomes of non-smoking 

participants showed participants to have stable oropharynx microbiomes in that 

each participant had a community structure that was relatively similar on a 

weekly basis and the fluctuations (as observed from the stability plots) that did 

occur between weeks were usually small. This was how stability was defined in 

this study; an unstable microbiome would be one that had different community 

structures weekly and greater fluctuations between samples from the same 

participants. Even though there was variation in community structure present in 

samples within and between participants, the oropharynx microbiome was still 

resilient to disturbances in that it returned towards their long-term average 

state within a week of recovering after disturbances; this has also been observed 

in other studies where oropharynx samples have been taken from the same 

participant after a noted period of time showing similar community structures in 
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the two samples (Charlson et al., 2011). However there is a need to understand 

the immigration and emigration patterns of microbes in healthy and unhealthy 

states to understand the variation present in the healthy oropharynx 

microbiome. For example, is post-infection recovery driven by ecological forces 

such as migration rates and competitive exclusion or does the host play an active 

role in rebuilding a stable ecosystem? The microbiome is involved in resilience 

against pathogens, but is also involved in immune regulation and barrier 

defence. Therefore the host may impact the microbiome of various body sites 

and host-microbiome interactions are being explored most notably in the 

microbiome of the GI tract using mouse models (Kostic et al., 2013). However, 

how it impacts the assembly, stability and resilience of microbial communities in 

the oropharynx needs investigating. The oropharynx is constantly exposed to the 

external environment and is influenced by respiratory and gastrointestinal 

processes of which bacteria are adapted to. Therefore the crosstalk between the 

host and the oropharynx microbiome could be involved in influencing the 

outcome of a disease or infection. 

 

Stable communities may contain keystone taxa (Streptococcus, Prevotella and 

Veillonella in the healthy samples), and if these keystone taxa are lost, this may 

result in abrupt changes to the community (Fierer et al., 2012). In unhealthy 

samples, there were increased abundances in Haemophilus or Serratia and a low 

diversity community. Streptococcus was still present but did not show any 

significant difference in abundance between the healthy and unhealthy samples, 

whereas a significant reduction in Prevotella was observed in the unhealthy 

samples. Therefore a combination of taxa may be responsible for promoting a 

healthy stable community. High biodiversity has shown to promote stable 

communities  in various ecosystems ranging from plants to fish (McCann, 2000), 

but no relationship between bacterial diversity and stability was observed in this 

study. All microbiomes are subject to perturbations over the course of normal 

development, ageing and disease, so all this needs to be considered when 

determining what makes a community stable whilst taking into account the 

natural variation present. 

Even though there were similarities in microbial composition between healthy 

participants, participants still had differences in abundances and 
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presence/absence of taxa which makes it more challenging to use individual 

variation in finding therapeutic options and treating disease. It may be that 

each individual needs to be studied in health and response to a disease to 

determine which bacteria respond and how the microbiome recovers overall. A 

standardised bacterial community to restore a healthy state may not be useful 

if healthy individuals vary in their bacterial communities and so personalised 

treatments may be required.  

 

8.1.3 Comparison of the oropharynx microbiome in non-smokers 
and smokers 

When comparing the healthy non-smoking microbiome to a smoker’s 

microbiome, smokers were found to have high diversity communities (similar to 

healthy participants) that were distinct in community structure from non-

smoking healthy participants. Charlson et al., (2010) observed smokers’ 

communities to be significantly more diverse than non-smokers in that there was 

greater species richness and samples had high Shannon H indexes. This could be 

due to smokers having more potentially pathogenic species (Bagaitkar et al., 

2008) or an increase in transient species, especially as smokers were shown to 

have an increased abundance in Chryseobacteria which is a common 

environmental bacterium (Salter et al., 2014). Specific OTUs were found to have 

increased abundances in the smokers group and these were Porphyromonas 

gingavilis, Streptococcus pyogenes and Streptococcus agalactiae which are all 

pathogens involved in oral and respiratory tract infections (Abusleme et al., 

2013) (Santagati et al., 2012). Other studies have also reported different 

community structures in smokers with increased abundances in specific genera 

such as Megasphaera, Streptococcus, Veillonella and Actinomyces (Charlson et 

al., 2010) whereas this study showed increases in Streptococcus, Prevotella and 

Porphyromonas. This shows that smoking results in altered oropharyngeal 

communities, and also affected individuals in different ways by altering 

abundances. However this may depend on the participant’s individual 

community structure prior to smoking.  

 

Smokers and non-smoking participants also had different responses to 

disturbances; non-smokers had high resilience with quick recovery whereas 

smokers did not display changes to their oropharynx microbiome during periods 
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of a disturbance which suggests a permanently altered state. As a result, this 

permanently altered state may suggest that the smoker’s microbiome is more 

stable during disturbances which may make them more resilient. Smokers may 

also have more “invaders” which colonise the oropharyngeal community 

increasing susceptibility to infection (Bagaitkar et al., 2008).  Regardless of the 

different community structure compared to non-smokers, the smokers’ 

oropharynx was still seen as stable as samples did not drastically change in 

community composition over a weekly basis (which was also observed in healthy 

non-smoking participants). However smokers may be more at risk of respiratory 

disease due to having higher abundances of potentially pathogenic bacteria in 

their oropharynx microbiome. 

 

8.1.4 Predicted functions of the non-smoking and smoking 
oropharynx microbiome 

The predicted functions of bacteria from the oropharyngeal communities were 

investigated in the different health groups in non-smoking participants and 

between smokers and non-smokers. Various functions were predicted from the 

healthy oropharynx microbiome deemed as necessary in bacteria (that are vital 

functions) such as protein synthesis to carbohydrate metabolism. In terms of the 

different health groups, healthy participants had increased abundances of KO’s 

that resulted in higher levels of most enzymes/pathways in comparison to 

participants with a cold. This could be due to the healthy group having increased 

diversity of OTUs as well as increased abundances of Streptococcus, Prevotella 

and Veillonella OTUs. Microbiomes from virus-positive samples had increased 

abundances of certain KO enzymes/pathways that were needed for everyday 

processes but also involved in virulence. Antibiotics usage on the other hand 

resulted in reduced abundance of the majority of pathways/enzymes in 

comparison to the healthy groups, which may be indicative of antibiotics 

eliminating certain groups of bacteria as there were many OTUs that had 

reduced abundances in comparison to the healthy groups (Langdon et al., 2016).  

 

The bacterial communities in smokers was associated with different predicted 

functional profiles including reduced abundances of KO pathways/enzymes 

involved in DNA repair, suggesting that bacteria from smoker’s samples were 

prone to DNA mutations. Smoker’s communities had higher abundances of 
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pathogenic bacteria than non-smokers which may contribute to the different 

functional profiles observed in the smoker’s communities. Further investigation 

is required in understanding if reduced abundances of the DNA repair pathways 

in smokers (and other pathways) affect health and the bacteria that influence 

this. Determining the predicted functions of bacteria in healthy samples from 

non-smokers can show what predicted functions are associated with healthy 

communities and which can become changed during a disturbance or smoking. 

Microbiome studies need to address the similarities and differences among 

participants in both microbial taxa and functional pathways; changes in gene 

expression and functions can be investigated by transcriptomics which could lead 

to the use of biomarkers to identify disease. 

8.2 Limitations and drawbacks of this study 

The strengths of this study included longitudinal analyses, a reasonable number 

of non-smoking participants and use of high-throughput technology; however the 

limitations included the modest sample size especially in unhealthy samples and 

sequencing depth. In this study, a cut off of 5000 reads for each sample was 

used which still resulted in adequate community coverage. This is important in 

drawing conclusions regarding species richness, diversity or relative abundance 

of community members detected. A larger read size would have been ideal, but 

regardless of this, these results still show that valid conclusions were drawn at a 

cut off of 5000 reads. A larger sample size would also have resulted in more 

samples in the healthy as well as unhealthy groups, especially as some 

participants only had 1 unhealthy sample. As a result the differences observed in 

the unhealthy microbiome may have been due to natural variation, hence the 

importance of collecting metadata for each sample. The ratio of males to 

females in smokers and non-smokers were also different, with more females 

participating and more samples collected from females than males. This resulted 

in uneven sample sizes in categories which may influence the data as the 

changes in the microbiome may have been observed in females rather than 

males due to having more samples.  Having more samples would also address the 

differences of the normal microbiome between males and females. Microbiome 

studies should consider power tests and sample size to ensure there are enough 

samples present in categories ensuring greater statistical power to show a 

biological difference. 
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Another limitation was that it was not possible to identify all OTUs to species 

level through only sequencing the V1-V2 region, even though some Streptococcus 

OTUs could be named. By sequencing a larger region such as the V1-V3 region, 

more OTUs could be further identified, especially as there are various 

commensal and pathogenic bacteria present within the same genus. An example 

is Streptococcus in the oropharynx; various commensal and pathogenic 

Streptococcus species exist in the oropharynx and characterisation studies need 

to address which species are the most abundant in health and disease. However, 

sequencing larger regions also depend on the technologies capable of doing so, 

and the literature available supporting this. The V1-V2 region in this study was 

deemed acceptable due to the literature supporting use of this primer set in 

oropharynx studies in classifying Streptococcus to species level (Chakravorty et 

al., 2008). 

 

External contamination may have been introduced into the samples either 

through the participant or from sample/sequencing processing, hence the need 

for strict metadata collection and negative controls for DNA extraction kits and 

PCR processes. Previous studies have shown that contamination can be 

introduced through extraction processes either through kits or water (Salter et 

al., 2014) amplifying taxa that are ubiquitous in the environment. This is 

particularly a problem from low biomass sites, where low template DNA 

concentration is competing for amplification with contaminating DNA (Biesbroek 

et al., 2012). In order to reduce this issue, specific steps were taken such as 

ensuring initial DNA template concentrations of 15ng/µl per sample pre PCR 

amplification, sequencing of negative controls and removal of taxa that were 

present in the negative controls from all other samples. The negative control in 

this study had a low number of sequenced reads (<1000) and necessary steps 

were followed to distinguish contaminating bacteria from actual bacteria 

representative of the oropharynx microbiome. Contaminating bacteria were 

assessed on whether they were found in the extraction controls, mock 

community, in high or low abundance and matched against studies listing 

common contaminating bacteria in microbiome studies (Salter et al., 2014). 

Additionally, background contaminating bacteria may also have been accounted 

for by qPCR but this was not done in this study. However, this only applies to 

contaminating bacteria from extraction kits and so there is a possibility that the 
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participant may have introduced contaminating bacteria into the sample either 

through dropping the swab, hitting other surfaces in the mouth or through 

inefficient swabbing technique or handling of swab which may have not been 

reported.  

 

An epidemiological limitation is that non-smokers and smokers were sampled in 

different years. Therefore some of the differences observed in the non-smokers 

and smoker’s microbiome may be due to differences between years and 

sampling months. These differences could be attributed to outbreaks of 

influenza, temperature changes and seasonal changes such as fluctuating pollen 

levels. However, as other research studies reported similar findings when 

comparing the non-smokers and smokers microbiome, this shows that there must 

also be other factors other than the different sampling years responsible for 

these differences in microbiome composition. 

 

In regards to stability, even though the microbiome was found to be stable in all 

participants, determining the stability of the microbiome over a longitudinal 

period was a challenge as samples were not present every week as participants 

did miss some weeks of swabbing. Participants were given strict swabbing 

instructions to reflect the oropharynx microbiome. However, they may have also 

inaccurately reported symptoms due to forgetting, being rushed or reporting the 

wrong symptoms. This could explain why some samples that had no associated 

symptoms of disease or illness had very distinct, different communities for which 

there were no obvious explanations.  

 

Lastly, as microbiome based studies are based on observations, there is still the 

question of linking these observations in changes in community structure to the 

cause or effect of the disease. This is a limitation in most microbiome studies 

where there is limited information or data to determine whether the changes in 

the microbiome are caused by the disease or an effect of the disease. As this 

sampling was done on a weekly basis, it was not possible to determine the exact 

changes that occurred during the health disturbance (to do this, daily sampling 

would be required) and therefore this is a limitation of the current study. 

However, it should be noted that it was not possible to know the frequency of 

the fluctuations of the oropharynx microbiome beforehand, and a balance 
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between what was reasonable to ask from the participants and the aim of 

covering a relatively long time period had to be found. Another way to approach 

the question of cause or effect in microbiome studies would be to use an animal 

model where the effects of a certain disease through inoculation and the 

changes in community structure can be observed. This could be a possibility 

especially in determining if certain taxa can cause respiratory disease and if 

certain key taxa can restore the oropharynx microbiome. 

 

Therefore to improve the study there would need to be a larger sample size with 

more participants to ensure greater statistical power and reliability of results. 

There would need to be strict swabbing procedures and metadata collection to 

be able to link diseased samples to their symptoms. To also try and address the 

cause and effect of diseases on the microbiome, animal models can be used to 

determine how the microbiome responds to specific disturbances. Sampling 

should also be continued longitudinally, daily rather than weekly to try and 

capture the changes that occurred to the microbiome that may have been 

missed when sampling on a weekly basis. 

 

8.3 Significance and wider implications of the current 
study 

One of the key challenges in any microbiome study is to determine whether and 

how a given microbiome affects human health (Cho & Blaser, 2012). Microbiome 

studies commonly focus on characterising microbial communities in specific 

disease states or trying to determine the changes that occur during the course of 

a disease. However, demonstrating causality between the microbial variation 

and pathology instead of mere association is often extremely difficult as 

controlled experiments are not yet practical in most cases. However controlled 

studies showing a cause and effect response has been demonstrated through the 

use of faecal studies to restore the microbiome of the GI tract (Aroniadis & 

Brandt, 2014). In this study, the healthy oropharynx microbiome was 

characterised using longitudinal sampling and respiratory disturbances such as 

the common cold were investigated by linking back to metadata which allows 

establishing the timeline of events. This design allowed not only determining 

what would constitute a healthy oropharyngeal microbial community, but also 

investigating how the community changed during a disturbance and on antibiotic 
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treatment. Therefore the cause and effect relationship was not investigated, but 

this is the only study (to date) that has looked at the oropharynx microbiome 

over a defined period of time on a weekly basis. This is also the only study to 

determine how the community changes before, during and after a disturbance, 

again providing novel information on how the microbiome changes during a 

disturbance, and its recovery time and resilience. 

Another significant finding of this thesis was determining the changes that 

occurred to the microbiome of smokers in comparison to non-smokers and 

investigating the stability and recovery from a health disturbance of the two 

groups. The changes observed were present in abundances and 

presence/absence in taxa and function showing distinct changes in the 

oropharynx microbiome between smokers and non-smokers. Smokers also 

responded differently during a disturbance in that significant differences were 

not observed before, during or after a disturbance suggesting that smokers may 

possibly have a permanent altered microbiome. This is the only study 

investigating the stability of the smokers’ microbiome over a defined period of 

time and the weekly changes that occur during a disturbance. 

Therefore, the significance of this project overall is that it has provided new 

knowledge about the oropharynx microbiome in non-smoking participants and 

smokers. This knowledge provides a solid starting point for further 

investigations; for instance, to first develop deeper understanding on the 

ecological interactions between bacteria now known to be present and 

fluctuating in abundance, and perhaps in future, once the fluctuations of the 

microbiome members are understood better, this knowledge could be used to 

manipulate or restore a person’s microbiome during or after a respiratory 

disease. A smoker’s microbiome could also be manipulated to mimic the 

microbiome of a non-smoker. 

This thesis may be used as increased knowledge of the oropharynx microbiome 

to improve diagnosis of disease states. This could result in treatments such as 

probiotic supplementation (with the necessary taxa) to restore microbiome 

balance that may be a useful and necessary treatment against respiratory 

disease and infections. The future work required for this project is as follows: 

longitudinal sampling and characterisation of the oropharynx microbiome over a 
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long period of time (daily and weekly sampling over months to years) in healthy 

participants (non-smokers with no underlying disease) to understand natural 

variation of taxa in healthy people, daily sampling to catch progress of recovery 

from confirmed infections while ensuring large sample sizes of healthy and 

unhealthy samples and production of metagenomic profiles of the oropharynx in 

healthy participants and specific diseased scenarios (and altered communities 

such as smoking) through sequencing of all genes in the community rather than 

just focussing on one gene – this will also detail the viruses, archaea and 

eukaryotic microorganisms that also inhabit the oropharynx.  

8.4 Future for microbiome studies 

As microbiome studies are on the increase, there are now various new issues 

that need to be considered and addressed. Determining what microbes are there 

is no longer enough, there needs to be an understanding of the ecology of these 

communities (Costello et al., 2012). For example it is still uncertain whether the 

microbiome can help protect the host from infection or whether it can aid in 

developing infection. How are these communities built, what defines the 

structure and how do these communities change in time? Microbial ecology is 

important as it provides an understanding of how microbes interact with each 

other, if diversity affects the stability of communities and whether patterns of 

co-existence are observed among microbiomes and if this is indicative of health 

and disease. Microbial ecological theory also impacts pharmaceuticals, food 

production, diagnosis/treatment and industrial applications (Ursell et al., 2012). 

The future of investigating the healthy microbiome involves understanding 

natural variation in taxa and function in healthy participants (Lloyd-Price et al., 

2016), how various factors such as age, sex and diet affects variation, whether 

observed differences are the cause or effects of a certain disease, and the 

potential restoration of microbial ecology - either through restoring certain taxa 

in healthy hosts or increasing biodiversity. Microbiome studies also need to 

address how to manipulate the microbiome through intervention trials. This 

could be through a probiotic drug which would require long-term follow up to 

determine how the microbiome responds to the intervention. This would 

determine the differences in microbiome structure before, during and after the 

intervention, with the necessary controls in place. Therefore there will always 

be a need to identify the taxonomic compositions of the microbiome, but it may 
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also be useful and necessary to start focussing on functions and finding target 

pathways in healthy scenarios as well as those that have altered expression 

levels in diseased states. 

 

8.5 Concluding remarks 

The work presented in this thesis provides a better understanding of the 

oropharynx microbiome in healthy non-smokers, and how this community is 

affected by respiratory infections and disturbances. It showed the oropharynx 

microbiome to be a stable community over time, with distinct differences 

apparent between the oropharynx of non-smokers and smokers, in both 

community composition and predicted function. Using the information gathered 

in this thesis, alongside future research, it may be possible in future to diagnose 

and treat respiratory disease through analysing and manipulating the oropharynx 

microbiome. 
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Appendix 1  
 

QIA-AMP DNA extraction protocol 
 

1. Store swabs in transport medium during transport to the laboratory.  

If swabs are not processed immediately they should be stored at 2-8°C for up to 

24 hours. Any period longer than this will be require storage at ­20°C. 

 

2. All swabs should be vortexed to ensure dispersal of microorganisms from swab 

to fluid.  

 

3. Remove swab and place in a 2ml microcentrifuge tube. Centrifuge swab tip at 

5,000 x g or 8,000rpm to remove any remaining fluid in the tube.  

After centrifugation remove swab tip and transfer 1ml of suspension fluid into 

the same 2ml microcentrifuge tube and centrifuge for 10 minutes at full speed 

(20,000 x g; 14,000rpm). 

 

4. Suspend pellet in 180µl of enzymatic lysis buffer (20mg/ml lysozyme or 

200μg/ml lysostaphin; 20mM TrisHCl, pH 8.0; 2mM EDTA; 1.2% Triton). 

If there is no pellet formed or pellet formation is very small, remove as much 

supernatant as possible without touching the bottom of the tube and add 180μl 

of enzymatic lysis buffer to the same microcentrifuge tube. 

 

5. Incubate for at least 30 minutes at 37°C. 

 

6. Add 20μl Proteinase K and 200μl Buffer AL. Mix by vortexing for 10 seconds. 

 

7. Incubate at 56°C for 1 hour. If using a heat block, vortex the tube for 10 

seconds every 10 minutes. 

 

8. Centrifuge for a few seconds to remove drops from inside the lid. 

 

9. Incubate the 2ml microcentrifuge at 70°C for 10 minutes. If using a heat block 

vortex the tube for 10 seconds every 3 minutes to improve lysis. 
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10. Centrifuge for a few seconds to remove drops from inside the lid. 

 

11. Add 200µl ethanol (96-100%) to the sample and mix by vortexing for 10 

seconds. 

 

12. Centrifuge for a few seconds to remove drops from inside the lid. 

 

13. Carefully transfer the lysate from the 2ml microcentrifuge tube into a 

QIAamp Mini spin column (2ml collection tube).  

Close the cap and centrifuge at 8000 x g (6000rpm) for 1 minute (if the lysate 

has not completely passed through the 2ml column after centrifugation, 

centrifuge at a higher speed until the QIAamp Mini spin column is empty). 

Place the QIAamp Mini spin column in a clean 2ml collection tube and discard 

the tube containing the filtrate. Transfer any remaining lysate from the 2ml 

microcentrifuge tube and repeat as above. 

 

14. Add 500µl of Buffer AW1 to the QIAamp Mini spin column. Close the cap and 

centrifuge at 8000 x g (6000rpm) for 1 minute. Place the QIAamp Mini spin 

column in a clean 2ml collection tube and discard the tube containing the 

filtrate. 

 

15. Add 500µl of Buffer AW2 to the QIAamp Mini spin column. Close the cap and 

centrifuge at 8000 x g (6000rpm) for 1 minute. Place the QIAamp Mini spin 

column in a clean 2ml collection tube and discard the tube containing the 

filtrate. 

 

16. Centrifuge at full speed (20,000 x g; 14,000rpm) for 3 minutes to dry the 

membrane. 

 

17. Place the QIAamp Mini spin column in a clean 1.5ml microcentrifuge tube 

and discard the collection tube containing the flow-through. Carefully open the 

lid of the QIAamp Mini spin column and apply 50μl Buffer AE (having 2 

centrifugation steps of 25μl Buffer AE and a final re-elution step increases DNA 

yield). 
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18. Close the lid and incubate at room temperature for 5 minutes. Centrifuge at 

full speed (20,000 x g or 14,000rpm) for 1 minute. 

 

19. Qubit. 

 

20. Run 10µl of DNA extract with 2µl loading buffer on a gel to check purity 

(best to run extractions on a 1% gel -1g agarose to 100ml TAE or TBE.) 

If using Bioline mix reagents loading gel does not need to be used on the gel. 

 

21.  Run at 100v for 50 minutes. 

 

22. Store DNA at -20°C until required. 
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Appendix 2  

Production of an rDNA clone library  

 

Production of PCR products: 

 

1. Set up the following 50µl PCR reaction:  

 

25µl Bioline PCR mix 

1µl primer (forward and reverse) at 12.5pmol each 

2µl DNA template 

21µl water 

Total Volume 50µl 

 

2. The PCR reaction should run under the following conditions:  

 

Initial denaturation - 95°C for 5 minutes 

35 cycles of denaturation - 94°C for 1 minute 

Annealing - 62°C for 1 minute 

Extension - 72°C for 1 minute 

Final Extension - 72°C for 10 minutes 

 

3. Check the PCR product by agarose gel electrophoresis to ensure production of 

a single discrete band. 

 

QIA gel extraction kit protocol – extraction and purification of DNA from 

agarose gels: 

 

1. Cut DNA fragment from the agarose gel with a scalpel. 

 

2. Weigh the gel slice in a colourless tube.  

Add 3 volumes of buffer QG to 1 volume of gel (100mg - 100µl).  

For >2% agarose gels, add 6 volumes of Buffer QG. The maximum amount of gel 

slice per QIAquick column is 400mg; for gel slices >400mg use more than one 
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QIAquick column.  

 

3. Incubate at 50°C for 10 minutes. 

Vortex every 2-3 minutes to dissolve the gel. 

 

4. After the gel slice has dissolved completely, check that the colour of the               

mixture is yellow (similar to Buffer QG without dissolved agarose). If the colour 

of the mixture is orange or violet, add 10μl of 3M sodium acetate, pH 5.0, and 

mix. The colour of the mixture will turn yellow. 

 

5. Add 1 gel volume of isopropanol to the sample and mix (if the agarose gel 

slice is 100mg, add 100μl isopropanol).  

 

6. Place a QIAquick spin column in a provided 2ml collection tube. 

 

7. To bind DNA, apply the sample to the QIAquick column and centrifuge (1   

minute). Discard flow-through and place QIAquick column back in the same 

collection tube. 

 

8. Add 300ml of buffer QG to QIAquick column and centrifuge for 1 minute to 

remove all traces of agarose. 

 

9. To wash, add 300ml of Buffer PE to QIAquick column (stand for 2-5 minutes) 

and centrifuge for 1 minute. 

 

10. Discard the flow-through and centrifuge the QIAquick column for an 

additional 1 minute at > 10,000 x g (13,000rpm). 

 

11. Place QIAquick column into a clean 1.5ml microcentrifuge tube. 

 

12. To elute DNA, add 30μl of Buffer EB (10mM TrisCl, pH 8.5) to the centre of 

the QIAquick membrane and centrifuge the column for 1 minute at maximum 

speed. For an increased DNA concentration, let the column stand for 5 minutes, 

and then centrifuge for 1 minute. 
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Production of lunia bertani broth and agar plates: 

 

For 500ml broth: 

5g – Tryptone 

2.5g – Yeast agar 

5g – NaCl 

Add water to make a total volume of 500ml and autoclave. 

When broth has cooled add 5ml of Kanamycin. 

 

For 200ml agar plates: 

Add 3g of agar in 200ml of water and autoclave. 

When agar has cooled add 2ml of Kanamycin. 

Flame the bottle top using a Bunsen burner. 

Pour into plates. 

Flame agar plates to get rid of any bubbles. 

Let plates harden and store in fridge. 

 

Performing TOPO cloning reaction: 

 

1. Set up the following reaction:  

Fresh PCR product – 0.5 - 4µl 

Salt solution - 1µl 

Water – add to a total volume of 5µl 

TOPO vector - 1µl 

Total volume - 6µl 

The cloning reaction can be stored overnight at -20°C. 

2. Mix the reaction gently and incubate for 30 minutes at room temperature 

(22°C - 23°C). 

 

3. Place the reaction on ice ready for the next step. 

 

Transforming cells: 

 

1.  Warm selective plates to 37°C prior to spreading. 
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2.  Add 2µl of the TOPO cloning reaction into a vial of OneShot®Chemically 

competent E. coli and mix gently. 

 

3.  Incubate on ice for 30 minutes. 

 

4.  Heat shock the cells for 30 seconds at 42°C without shaking. 

 

5.  Immediately transfer the tubes to ice. 

 

6.  Add 250µl of S.O.C medium.  

 

7. Cap the tube tightly and shake the tube horizontally (200rpm) at 37°C for 1 

hour. 

 

8. Spread 10-50µl from each transformation on a pre-warmed selective plate. To 

ensure even spreading of small volumes, add 20µl of S.O.C medium (plate two 

different volumes to ensure that at least one plate will have well-spaced 

colonies). Spread at least 5 plates in total. 

 

9. Incubate plates at 37°C (ampicillin plate should produce colonies within 8 

hours whereas kanomycin plates should be incubated overnight). 

 

10. An efficient TOPO cleaning reaction should produce several hundred 

colonies. Pick 100-200 colonies for analysis. 

 

Analysing transformants: 

 

1. Pick 100-150 colonies for analysis. 

 

2. Aliquot 500µl of LB kanamycin into a 96 deep well plate. 

 

3. By the flame of a Bunsen burner, using a pipette and clean tip, pick up a 

single colony and inoculate a well in the deep well plate. Incubate overnight 

with shaking at 37°C at 200rpm. 
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4. Screen the colonies the next day for the correct insert. 

 

5. Remove 200µl of each sample in the deep well plate (96 samples altogether) 

to be amplified using the M13F and M13R primers. 

 

6. Set up the following PCR reaction to ensure the samples take up the vector:  

Biomix – 10µl 

M13F primer – 0.5µl 

M13R primer – 0.5µl 

Water - 7µl 

DNA - 2µl 

Total volume = 20µl 

 

The reaction should run for 25-30 cycles at the following conditions:  

95°C – 5 minutes 

94°C – 1 minute 

55°C – 1 minute 

72°C – 1 minute 

72°C – 10 minutes 

 

Run a gel at 100v for 60 minutes to ensure that each sample has taken up the 

plasmid.  

 

Restriction digest: 

 

1. Do a restriction digestion on all 96 samples. 

 

2. Set up the following reaction:  

PCR reaction - 5µl 

Hae 111 restriction digest – 0.1µl 

Water – 8.4µl 

Buffer – 1.5µl 

Total volume = 15µl 

 

3. Centrifuge tubes and incubate at 37°C for 4 hours. 
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4. Prepare a 2% gel for all 96 isolates (add 3µl of loading dye to the 15µl   

reaction). Run the gel at 100v for 90 minutes. 

 

5. From the gel group isolates into OTUs depending on the same banding 

patterns. Each type of OTU will be sent for Sanger Sequencing.  

 

6. Grow each OTU selected for Sanger Sequencing overnight in 5ml of LB and 

kanamycin (37°C, 200rpm for 20-24 hours). 

 

Plasmid extractions: 

 

1. Extract the DNA from the plasmid using the Invitrogen Purelink Quick Plasmid 

MiniPrep Kit. 

 

2. Centrifuge 1–5ml of the overnight LB-culture (5 minutes at 5000rpm). 

 

3. Add 250μl Resuspension Buffer (R3) with RNase A to the cell pellet and 

resuspend the pellet until it is homogeneous. 

 

4. Add 250μl Lysis Buffer (L7). Mix gently by inverting the capped tube until the 

mixture is homogeneous. Do not vortex. Incubate the tube at room temperature 

for 5 minutes. 

 

5. Add 350μl Precipitation Buffer (N4). Mix immediately by inverting the tube or 

for large pellets by vigorously shaking the tube, until the mixture is 

homogeneous. Do not vortex. Centrifuge the lysate at >12,000 × g for 10 

minutes. 

 

6. Load the supernatant from step 4 onto a spin column in a 2ml wash tube. 

Centrifuge the column at 12,000 × g for 1 minute. Discard the flow-through and 

place the column back into the wash tube. 

 

7. Add 500μl Wash Buffer (W10) with ethanol to the column. Incubate the 

column for 1 minute at room temperature. Centrifuge the column at 12,000 × g 
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for 1 minute. Discard the flow-through and place column back into the wash 

tube. 

 

8. Add 700μl Wash Buffer (W9) with ethanol to the column. Centrifuge the 

column at 12,000 × g for 1 minute. Discard the flow-through and place the 

column into the wash tube. Centrifuge the column at 12,000 × g for 1 minute. 

Discard the wash tube with the flow-through. 

 

9. Place the spin column in a clean 1.5ml recovery tube. Add 75μl of preheated 

TE Buffer (TE) to the centre of the column. Incubate the column for 1 minute at 

room temperature. 

 

10. Centrifuge the column at 12,000 × g for 2 minutes. The recovery tube 

contains the purified plasmid DNA. Discard the column. Store plasmid DNA at 

4°C (short-term) or store the DNA in aliquots at −20°C (long-term). 

 

Long term storage: 

 

1.  Streak out the original colony on LB plates. 

 

2.  Isolate a single colony and inoculate into 1-2ml of LB. 

 

3.  Grow overnight until culture is saturated. 

 

4.  Mix 0.85ml of culture with 0.15ml of sterile glycerol and transfer to a 

cryovial. 

 

5.  Store at -80°C. 
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Appendix 3  

QIAGEN QIA gel extraction kit protocol  

 

1. Cut the DNA fragment from the agarose gel with a scalpel. 

 

2. Weigh the gel slice in a colourless tube. Add 3 volumes of buffer QG to 1 

volume of gel (100ml - 100µl). For example, add 300μl of Buffer QG to each 100 

mg of gel. For >2% agarose gels, add 6 volumes of Buffer QG. The maximum 

amount of gel slice per QIAquick column is 400mg; for gel slices >400mg use 

more than one QIAquick column. 

 

3. Incubate at 50°C for 10 minutes. 

 

4. After the gel slice has dissolved completely, check that the colour of the 

mixture is yellow (similar to Buffer QG without dissolved agarose). If the colour 

of the mixture is orange or violet, add 10μl of 3M sodium acetate, pH 5.0, and 

mix. The colour of the mixture will turn to yellow. 

 

5. Add 1 gel volume of isopropanol to the sample and mix (if the agarose gel 

slice is 100mg, add 100μl isopropanol).  

 

6. Place a QIAquick spin column in a provided 2ml collection tube. 

 

7. To bind DNA, apply the sample to the QIAquick column and centrifuge for 1 

minute. 

 

8. Discard flow-through and place QIAquick column back in the same collection 

tube. 

 

9. Add 0.5ml of Buffer QG to QIAquick column and centrifuge for 1 minute to 

remove all traces of agarose. 

 

10. To wash, add 0.75ml of Buffer PE to the QIAquick column and centrifuge for 

an additional 1 minute. 
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11. Discard the flow-through and centrifuge the QIAquick column for an 

additional 1 minute at > 10,000 x g (13,000rpm). 

 

12. Place QIAquick column into a clean 1.5ml microcentrifuge tube. 

 

13. To elute DNA, add 50μl of Buffer EB (10mM TrisCl, pH 8.5) to the centre of 

the QIAquick membrane and centrifuge the column for 1 minute at maximum 

speed. For an increased DNA concentration, add 30μl elution buffer to the 

centre of the QIAquick membrane, let the column stand for 1 minute, and then 

centrifuge for 1 minute. 
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Appendix 4 

Supplementary Table 3.1  

Supplementary Table 3.1 – Descriptive statistics of the most abundant phyla 

from normalised communities in healthy samples. 

 

 

 

 

 

 

 

 

 

 

 Firmicutes Bacteroidetes Proteobacteria Actinobacteria Fusobacteria 

samples 279 279 279 279 279 

min 0.147 0.008 0.003 0.004 0.001 

max 0.946 0.558 0.614 0.219 0.230 

range 0.799 0.549 0.611 0.214 0.229 

sum 169.21 43.57 29.99 19.85 12.575 

median 0.612 0.142 0.063 0.063 0.032 

mean 0.606 0.156 0.107 0.071 0.045 

SE.mean 0.009 0.005 0.007 0.002 0.002 

CI.mean 
(0.95) 

0.019 0.011 0.014 0.005 0.004 

var 0.027 0.010 0.014 0.001 0.001 

std.dev 0.164 0.100 0.121 0.044 0.041 

coef.var 0.271 0.640 1.130 0.619 0.919 
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Appendix 5 

Supplementary Table 3.2  

Supplementary Table 3.2 – Descriptive statistics of the top 5 most abundant 

genera from normalised communities in healthy samples. 

 

 

 

 

 

 

 

 

 

 Streptococcus Prevotella Veillonella Neisseria Actinomyces 

samples 279 279 279 279 279 

min 0.061 0.002 0.004 0 0.002 

max 0.899 0.498 0.312 0.548 0.163 

range 0.838 0.495 0.307 0.548 0.161 

sum 131.2 26.42 16.27 14.92 11.26 

median 0.469 0.077 0.049 0.022 0.031 

mean 0.470 0.094 0.058 0.053 0.040 

SE.mean 0.011 0.004 0.002 0.005 0.001 

CI.mean (0.95) 0.022 0.008 0.004 0.009 0.003 

var 0.035 0.005 0.001 0.007 0.001 

std.dev 0.187 0.075 0.041 0.084 0.033 

coef.var 0.399 0.796 0.708 1.581 0.825 
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Appendix 6 

Supplementary Figure 3.1 

 
 
Supplementary Figure 3.1 – Plot showing the differences in microbiome 

composition regarding sex in healthy samples (n=279). Negative binomial GLMs 

were performed using DESeq2 package to show the 30 most significant OTUs and 

the log relative abundance of each OTU in males (M) and females (F).  
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Appendix 7  

Supplementary Figure 3.2 

 
 
Supplementary Figure 3.2 - Plot showing the differences in microbiome 

composition due to age in healthy samples (n=279). Negative binomial GLMs were 

performed using DESeq2 package to show the 30 most significant OTUs and the 

log relative abundance of each OTU in three different age categories – teens, 

twenties and thirties. 
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Appendix 8 

Supplementary Table 4.1  

Supplementary Table 4.1 – Descriptive statistics of the top 5 most abundant 

phlya from normalised communities in unhealthy samples. 

 

 

 

 

 

 

 

 

 

 

 

 Firmicutes Bacteroidetes Proteobacteria Actinobacteria Fusobacteria 

samples 34 34 34 34 34 

min 0.138 0.003 0.002 0.002 0.001 

max 0.966 0.467 0.825 0.184 0.285 

range 0.828 0.462 0.823 0.182 0.284 

sum 17.44 3.305 9.351 2.308 1.419 

median 0.512 0.087 0.121 0.059 0.014 

mean 0.513 0.097 0.275 0.067 0.041 

SE.mean 0.043 0.017 0.052 0.009 0.011 

CI.mean 
(0.95) 

0.089 0.034 0.106 0.019 0.021 

var 0.065 0.009 0.093 0.003 0.003 

std.dev 0.256 0.099 0.306 0.056 0.061 

coef.var 0.498 1.021 1.114 0.827 1.471 
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Appendix 9 

Supplementary Table 4.2 

Supplementary Table 4.2 – Descriptive statistics of the top 5 most abundant 

genera from normalised communities in unhealthy samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Streptococcus Pseudomonas Prevotella Serratia Veillonella 

samples 34 34 34 34 34 

min 0.043 0 0.001 0 0.001 

max 0.932 0.699 0.165 0.776 0.191 

range 0.889 0.699 0.164 0.776 0.189 

sum 13.06 1.947 1.815 1.680 1.645 

median 0.322 0.0001 0.042 0.001 0.033 

mean 0.384 0.057 0.053 0.049 0.048 

SE.mean 0.041 0.028 0.008 0.030 0.008 

CI.mean 
(0.95) 

0.083 0.057 0.017 0.062 0.016 

var 0.057 0.027 0.002 0.032 0.002 

std.dev 0.240 0.165 0.051 0.179 0.048 

coef.var 0.625 2.880 0.964 3.635 0.999 
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Appendix 10 

Supplementary Figure 6.1  

 

 

Supplementary Figure 6.1 – Box plot showing the most abundant phyla (n=10) 

and the mean relative abundance in healthy (red) and unhealthy (blue) 

samples from smoking participants.   
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Appendix 11 

Supplementary Table 6.1 

Supplementary Table 6.1 – Descriptive statistics of the most abundant phyla 

from normalised communities of smokers. Healthy communities are denoted by 

SH and unhealthy communities by SUH. 

 

 

 

 

 

 

 

 

 

 Firmicutes Bacteroidetes Actinobacteria Proteobacteria Fusobacteria 

Health SH SUH SH SUH SH SUH SH SUH SH SUH 

samples 145 32 145 32 145 32 145 32 145 32 

min 0.012 0.126 0.011 0.002 0.003 0.008 0.001 0.001 0.001 0.001 

max 0.949 0.904 0.975 0.382 0.811 0.351 0.943 0.832 0.661 0.120 

range 0.937 0.778 0.964 0.379 0.808 0.343 0.943 0.831 0.661 0.120 

sum 73.12 16.19 26.80 5.789 19.37 3.236 19.33 5.677 4.677 0.766 

median 0.523 0.511 0.157 0.166 0.085 0.071 0.041 0.054 0.014 0.014 

mean 0.504 0.506 0.184 0.180 0.133 0.101 0.133 0.177 0.032 0.023 

SE.mean 0.016 0.034 0.012 0.020 0.012 0.015 0.016 0.045 0.005 0.004 

CI.mean 
(0.95) 

0.033 0.070 0.025 0.042 0.024 0.030 0.031 0.092 0.011 0.010 

var 0.041 0.038 0.023 0.013 0.022 0.007 0.037 0.066 0.004 0.001 

std.dev 0.203 0.196 0.154 0.116 0.151 0.085 0.194 0.257 0.071 0.028 

coef.var 0.402 0.387 0.836 0.644 1.131 0.846 1.458 1.451 2.188 1.176 
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Appendix 12 

Supplementary Figure 6.2 

Supplementary Figure 6.2 – Box plot showing the most abundant genera (n=9) 

(with the rest pooled in the ‘Others’ category) and the median abundance in 

healthy (red) and unhealthy samples (blue) from smoking participants. 
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Appendix 13 

Supplementary Table 6.2 

Supplementary Table 6.2 – Descriptive statistics of the top 5 most abundant 

genera from normalised communities in healthy samples from smokers (SH). 

 

  

 

 

 

 

 

 

 

 

 

 Streptococcus Prevotella Actinomyces Veillonella Neisseria 

Health SH SH SH SH SH 

samples 145 145 145 145 145 

min 0.007 0.002 0.001 0.001 0.001 

max 0.801 0.452 0.281 0.244 0.428 

range 0.793 0.449 0.279 0.243 0.428 

sum 56.18 17.22 8.102 7.759 4.596 

median 0.387 0.108 0.035 0.041 0.007 

mean 0.387 0.118 0.055 0.053 0.031 

SE.mean 0.016 0.007 0.004 0.004 0.005 

CI.mean (0.95) 0.031 0.015 0.008 0.008 0.011 

var 0.037 0.008 0.002 0.002 0.004 

std.dev 0.193 0.092 0.054 0.050 0.063 

coef.var 0.498 0.778 0.976 0.938 2.012 
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Appendix 14  

Supplementary Figure 6.3 

 
Supplementary Figure 6.3 – Box plot showing the most abundant OTUs (n=10) 

(with the rest pooled in the ‘Others’ category) and the median abundance in 

healthy (red) and unhealthy samples (blue) from smoking participants.  
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Appendix 15 

Supplementary Table 6.3 

Supplementary Table 6.3 – Descriptive statistics of the top 5 most abundant 

genera from normalised communities in unhealthy samples from smokers (SUH). 

 

 

 

 

 

 

 

 

 

 Streptococcus Prevotella Serratia Actinomyces Veillonella 

Health SUH SUH SUH SUH SUH 

samples 32 32 32 32 32 

min 0.086 0.001 0 0.003 0.001 

max 0.878 0.372 0.795 0.176 0.168 

range 0.791 0.370 0.795 0.173 0.167 

sum 12.28 4.903 2.839 1.522 1.377 

median 0.346 0.142 0.001 0.035 0.028 

mean 0.383 0.153 0.088 0.047 0.043 

SE.mean 0.036 0.019 0.041 0.007 0.006 

CI.mean (0.95) 0.074 0.040 0.083 0.015 0.013 

var 0.042 0.012 0.053 0.001 0.001 

std.dev 0.206 0.111 0.231 0.044 0.038 

coef.var 0.537 0.726 2.612 0.931 0.896 
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