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Abstract

This thesis gives a complete description of the Grothendieck group and divisor class
group for large families of two and three dimensional singularities. The main results
presented throughout, and summarised in Theorem 8.1.1, give an explicit description of
the Grothendieck group and class group of Kleinian singularities, their deformations, and
compound Du Val (cDV) singularities in a variety of settings. For such rings R, the main
results assert that there exists an isomorphism G0(R) ∼= Z ⊕ Cl(R), and the class group
is explicitly presented.

More precisely, we establish these results for 2-dimensional deformations of global type
A Kleinian singularities, 3-dimensional isolated complete local cDV singularities admit-
ting a noncommutative crepant resolution, any 3-dimensional type A complete local cDV
singularity, polyhedral quotient singularities (which are non-isolated), and any isolated
cDV singularity admitting a minimal model with only type cAn singularities. We also
provide an example of a large class of higher dimensional quotient singularities for which
this isomorphism does not hold, suggesting that this is a low dimensional phenomenon.

This work requires a range of tools including, but not limited to, Nagata’s theo-
rem, knitting techniques, Knörrer periodicity, the singularity category, and the computer-
algebra system MAGMA. Of particular note is the application of knitting techniques which
leads to independently interesting results on the symmetry of the quivers underlying the
modifying algebras of Kleinian and cDV singularities.
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Chapter 1

Introduction

Fundamentally, mathematicians are interested in the problem of classification which
guides many areas of mathematical research. Mathematicians have numerous ways of
measuring when objects are isomorphic (the same) or not isomorphic (different), and one
method commonly used is that of invariants. An invariant is a property of a mathematical
object, or a class of objects, which remains unchanged after the application of operations
or transformations. Often, invariants are not strong enough to determine when two ob-
jects are isomorphic; instead, they are useful for determining when two objects are not
isomorphic.

In algebraic geometry, one uses algebraic techniques to study geometric objects. In
particular, the algebra determines the geometry, and the geometry determines the algebra,
allowing for a rich study of both. The geometric objects of study are called algebraic
varieties (in our case affine schemes), and traditionally they are viewed as being the
set of solutions of a system of polynomial equations over an algebraically closed field.
The crossover between algebra and geometry can be seen through the association to a
commutative noetherian ring R the algebraic variety SpecR given by the set of all prime
ideals of R.

Suppose that we have two algebraic varietiesX andX ′. Naturally, one might ask, when
are X and X ′ isomorphic? Or, more reasonably, when are X and X ′ not isomorphic? A
good starting point for answering this question is to study the invariants of X and X ′.

1.1 Motivation

When studying varieties, one quickly learns that singular varieties are much worse
behaved than non-singular varieties, but one also learns that this is precisely what makes
them interesting. This thesis is motivated by trying to understand when singular varieties
behave like smooth (i.e., non-singular) varieties. Specifically, we study the invariants
divisor class groups and Grothendieck groups (or K-theory) of certain singularities. These

1



2 CHAPTER 1. INTRODUCTION

are both interesting invariants which, as we show, are more intertwined than one might
expect. In general, neither is easy to compute. Theoretically, one can deduce the class
group from the Grothendieck group. The latter is often easier to compute, but we have
shifted the difficulty to the equally hard problem of extracting the class group from the
Grothendieck group.

To state our main results, we now swap to using more technical language; the relevant
terms are defined in Chapters 2 and 3. Let R be a 3-dimensional Gorenstein ring with
rational singularities. In favourable settings, SpecR admits a crepant resolution; however,
this does not always happen. When SpecR does not admit a crepant resolution, usually
one instead studies minimal models X → SpecR where X is allowed to be mildly singular.
At its root, this thesis is motivated by understanding how homologically similar minimal
models are to crepant resolutions. One tool for measuring this is the singularity category
Dsg(X) of X; see Chapter 7. The singularity category of X is trivial if and only if X is
smooth, so in general for minimal models, Dsg(X) 6= 0.

Conjecture 1.1.1. Let R be a 3-dimensional Gorenstein ring with rational singularities
and X → SpecR a minimal model. Then K0(Dsg(X)) = 0.

This turns out to be connected to, and in fact determined by, problems in commutative
algebra. This motivates our focus on two and three dimensional commutative rings. Now,
let R be a normal noetherian integral domain and write Cl(R) for the class group of R
and G0(R) for the Grothendieck group of modR. Our goal in this thesis is to gain insight
into the following surprising question. When does

G0(R) ∼= Z⊕ Cl(R) (1.1.A)

hold? This turns out to be relevant to the smooth versus singular behaviour discussed
above, and is surprising because it is not typical behaviour in dimensions three and higher.
In this thesis, we look at when (1.1.A) is true, and some situations where it fails. We prove
that this isomorphism holds in a variety of different settings, for example: arbitrary cAn

singularities, arbitrary isolated cDV singularities with noncommutative crepant resolu-
tion(s) (NCCRs), arbitrary cDV singularities with minimal model which has type cAn

singularities, amongst others. Our main results are summarised in Theorem 8.1.1.

1.2 Kleinian singularities

A quotient singularity has the form Y/G, where Y is a smooth variety, and G is a
finite1 group of automorphisms of Y . Our main focus is on the quotient singularities
Cn/G with G a non-trivial finite subgroup of SL(n,C). These quotient singularities are

1We do not consider the infinite case in this thesis.



1.3. THE MCKAY CORRESPONDENCE 3

both Gorenstein [Wat74] and rational [Vie77]. We mainly restrict to quotient singularities
Cn/G in dimension 2 and 3.

Consider the 2-dimensional case, that is C2/G where G is a non-trivial finite subgroup
of SL(2,C). These groups were classified by Klein: there are two infinite families and
three exceptional groups. These quotient singularities are called Kleinian or Du Val sin-
gularities2. Klein proved that the finite subgroups G of SL(2,C) are precisely the binary
polyhedral groups [Kle56]. This information is summarised in the three columns on the
righthand side of Table 1.1.

The (coordinate rings of) Kleinian singularities are defined to be the invariant rings
C[U, V ]G. They are generated by three elements, subject to one relation. In other words,
each ring R is isomorphic to C[u, v, x]/(f) for some irreducible polynomial f . As a con-
sequence, each ring C[u, v, x]/(f) can be seen as functions on a surface in C3 defined by
the zero set of f . Each of these surfaces has a unique singular point at the origin; they
are isolated singularities.

1.3 The McKay correspondence

Consider a finite subgroup G of SL(2,C) and the natural 2-dimensional representation
ω of G. Let ρ0, . . . , ρn be all the irreducible representations of G where ρ0 is the trivial
representation. Furthermore, let mi,j be the multiplicity of ρi in ω⊗ ρj. With this setup
we give a description, following [McK80], of the McKay quiver associated to each finite
subgroup G of SL(2,C).

Definition 1.3.1. The McKay quiver of G, with respect to ω, is the quiver (i.e., directed
graph) with vertices 0, . . . , n corresponding to the irreducible representations ρ0, . . . , ρn,

and mi,j arrows from vertex i to vertex j.

For Kleinian singularities, ω is self-dual and so mi,j = mj,i for all i, j. The McKay
correspondence, due to John McKay in [McK80], shows that there is a one-to-one corre-
spondence between the McKay quivers of the finite subgroups of SL(2,C) and the extended
Dynkin diagrams. This is described in Table 1.1. The five (affine) extended Dynkin dia-
gram types, depicted in Figure 1.1, are Ãn (n ≥ 0) and D̃n (n ≥ 4) with n + 1 vertices, as
well as Ẽ6, Ẽ7, and Ẽ8, where each extended vertex is shown as an empty circle. In each
extended Dynkin diagram, the extended vertex corresponds to the trivial representation
ρ0. The number at each vertex is the dimension of the corresponding representation.

2In the literature, these have many names such as rational double points or ADE singularities.



4 CHAPTER 1. INTRODUCTION

Ãn

1

1 1

. . .
1 1 D̃n

1 2

. . .
2

2

1

1

1

Ẽ6
1 2 3 2 1

2

1

Ẽ7
1 2 3 4 3 2 1

2

Ẽ8
2 4 6 5 4 3 2 1

3

Figure 1.1: The extended Dynkin diagrams [EGH+11]

By removing the extended vertex from an extended Dynkin diagram one obtains a
(simply laced) Dynkin diagram. A quiver is called Dynkin (respectively, extended Dynkin)
if the underlying graph is of ADE Dynkin (respectively, extended Dynkin) type.

From this correspondence it follows that each McKay quiver associated to a Kleinian
singularity is, in fact, the double quiver (see §3.5) of an extended ADE Dynkin diagram
[McK80]. The corresponding diagram appears in the first column of Table 1.1.

Type G |G| f

Ãn Cyclic n ≥ 1, Zn+1 n+ 1 xn+1 + uv = 0

D̃n Binary dihedral n ≥ 4, BD4(n+1) 4(n− 2) x(v2 − xn+1) + u2 = 0

Ẽ6 Binary tetrahedral, T 24 x4 + v3 + u2 = 0

Ẽ7 Binary octahedral, O 48 x3 + xv3 + u2 = 0

Ẽ8 Binary icosahedral, I 120 x5 + v3 + u2 = 0

Table 1.1: The Kleinian singularities and extended Dynkin diagrams
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1.3.1 The geometric McKay correspondence

The McKay correspondence can be interpreted from a geometric point of view; an
in-depth introduction to this may be found in [LW12, Chapter 6]. As before, let G be
a finite non-trivial subgroup of SL(2,C) and R := C[U, V ]G. The variety SpecR is a
Kleinian singularity with an isolated singular point at the origin. An important result in
algebraic geometry, due to Hironaka [Hir64], states that every singular variety SpecR over
a field of characteristic 0 has a resolution of singularities. In other words, there exists a
non-singular variety X and a proper birational map X → SpecR. A minimal resolution
is a resolution f : X → SpecR through which any other resolution factors. We provide
a more in-depth discussion of resolutions of singularities in Chapter 3, with a particular
focus on minimal models and noncommutative crepant resolutions (NCCRs).

In general, a minimal resolution of a variety does not exist, but for surfaces, they do,
and they are unique. As such, it makes sense to talk about the minimal resolution of a
Kleinian singularity. In Figure 1.2, we illustrate the resolution of an A1 Kleinian singular-
ity, where the resolution replaces the singular point at the origin by a circle (indicated in
red).

Figure 1.2: Resolution of the cone singularity A1

To the minimal resolution f : X → SpecR one can associate the exceptional divisor.
The exceptional divisor is a finite chain of curves. The arrangement of these curves is
encoded in the dual graph of the exceptional divisor, in which a vertex replaces each curve,
and an edge connects two vertices if the corresponding curves intersect. For example, the
curve configuration below on the left corresponds to the dual graph on the right.

It is well known that the resulting dual graph is always an ADE Dynkin diagram and that
any ADE Dynkin diagram can be realised as the dual graph of the minimal resolution of
some Kleinian singularity [DV34].
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1.4 Viehweg’s setting

In [Vie77], Viehweg studies singularities of the form

A :=
C[u, v, x1, . . . , xn]

(uv − fa11 · · · fatt )
,

where fi ∈ C[x1, . . . , xn] are irreducible and pairwise coprime, and each ai ≥ 1. Such sin-
gularities are a generalisation of type A Kleinian singularities and we refer to singularities
of this form as being in ‘Viehweg’s setting’. In Chapter 4, we focus on singularities in
Viehweg’s setting, and prove the following results.

Theorem. Let A be the ring defined above, then

(1) Cl(A) ∼= Z⊕t/(a1, . . . , at).

(2) If further the Krull dimension of A is two, then (1.1.A) holds, namely

G0(A) ∼= Z⊕ Cl(A).

This has applications to deformations of Kleinian singularities, explained in §3.5, and
to cAn singularities in Chapter 6.

1.5 Compound Du Val singularities

Until now, we have mainly discussed the 2-dimensional setting. But in this thesis, we
do far more than just look at dimension 2. A natural question to ask is whether part
(2) of the above result generalises to higher dimensions, and a natural way to generalise
Kleinian singularities is to look at compound Du Val singularities. Intuitively, these are
3-dimensional analogues of Kleinian singularities.

For a variety X, write OX for the sheaf of functions on the space, and for p ∈ X write
ÔX,p for the completion of OX,p at the unique maximal ideal. Formally, X is said to have
compound Du Val (cDV) singularities if and only if every ÔX,p is of the form

C[[u, v, x, y]]

(f(u, v, x) + yh(u, v, x, y))

where C[u, v, x]/(f) is a Kleinian singularity and h is arbitrary. One source of such singu-
larities is C3/G where G is one of the finite subgroups of SL(3,C) described in (a) – (e)
below (see, e.g. [dCS17]).
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(a) The cyclic group of order n. That is,

1

n
(1, n− 1, 0) :=

〈ε 0 0

0 ε−1 0

0 0 1

〉 , where ε = e2πi/(n+1).

(b) The dihedral group D2n of order 2n. The group D2n is generated by the matricesε 0 0

0 εn−1 0

0 0 1

 and

0 1 0

1 0 0

0 0 −1

 , with ε = e2πi/n.

(c) The trihedral group (also known as the tetrahedral group) T of order 12. Explicitly,

T =

〈−1 0 0

0 −1 0

0 0 1

 ,

0 1 0

0 0 1

1 0 0

〉 .

(d) The octahedral group O of order 24. Explicitly,

O =

〈0 −1 0

1 0 0

0 0 1

 ,

0 1 0

0 0 1

1 0 0

〉 .

(e) The icosahedral group I of order 60. Explicitly,

I =

〈1 0 0

0 ε 0

0 0 ε4

 ,
1√
5

1 1 1

2 s t

2 t s

〉

where ε = e2πi/5, s = ε2 + ε3 = −1−
√

5
2

and t = ε+ ε4 = −1+
√

5
2

.

By [BIKR08, Proposition 6.1], another source of cDV singularities are rings of the form
C[u, v, x, y]/(uv− f(x, y)), which further justifies our interest in Viehweg’s setting of §1.4.

As is a common theme in this thesis, typically one studies cDVs by reducing back to
dimension 2 (i.e., to Kleinian singularities). This is done via slicing by a generic hyperplane
section. Hence, a cDV is a threefold such that slicing by a generic hyperplane section yields
a Kleinian singularity. As discussed previously, such surface singularities have been studied
intensely and are well understood. Just as with Kleinian singularities, cDVs are classified
into ADE Dynkin type.
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In Chapter 6, we make the following conjecture and prove that both it and the isomor-
phism (1.1.A) hold for cDVs in various settings.

Conjecture 1.5.1 (=6.1.1). Let R be a local cDV singularity. Then

K0(CMR) ∼= Cl(R).

In addition, in §6.5, we provide evidence which supports the idea that (1.1.A) holds
for non-isolated cDVs. Then, in Chapter 7, we prove that (1.1.A) holds for any isolated
cDV singularity which admits a minimal model with only type cAn singularities.

1.6 Organisation of the thesis

Chapters 2 and 3 contain background material, the first covers the more algebraic no-
tions and the second covers the more geometric material. In Chapter 4, we calculate the
divisor class group of rings in Viehweg’s setting and prove that (1.1.A) holds in dimension
two in this setting. These results are an extension of results already known in the local
setting to the much more difficult global setting. In addition, using these results we give a
description of the Grothendieck group of the centre of the deformed preprojective algebra
and prove that it is isomorphic to the description given in [CBH98]. In Chapter 5, we
introduce a knitting algorithm and prove independently interesting results on the symme-
try of the quivers associated to modifying algebras of all Kleinian and cDV singularities.
We use this symmetry in Chapter 6, where we prove results similar to those of Chapter 4
but for 3-dimensional local cDV singularities, generalising the thesis of Navkal [Nav13].
Specifically, we prove that (1.1.A) holds for all isolated local cDV singularities admitting
an NCCR. We also prove (1.1.A) in various other settings, and provide evidence for similar
results in the non-isolated case. In Chapter 7, we prove that (1.1.A) holds for any isolated
cDV singularity which admits a minimal model with only type cAn singularities, and verify
Conjecture 1.1.1 in this case. Finally, Chapter 8 ends with a summary theorem and some
speculations on symplectic reflection groups.

1.7 Notation and conventions

Throughout, we will work over the algebraically closed field C. Unless specified other-
wise, all rings will be noetherian. For a ring Λ, we write:

• mod Λ for the category of finitely generated left Λ-modules;

• proj Λ for the full subcategory of mod Λ consisting of left projective Λ-modules;
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• addM for the full subcategory consisting of all direct summands of all finite direct
sums of M ∈ mod Λ;

• (−)∗ := HomΛ(−,Λ): mod Λ→ mod Λop;

• Db(Λ) for the bounded derived category of mod Λ;

• perf Λ for the full subcategory of Db(Λ) of perfect complexes;

• Dsg(Λ) := Db(Λ)/ perf Λ for the singularity category of mod Λ;

• Ksg
0 (Λ) := K0(Dsg(Λ)) for the Grothendieck group of Dsg(Λ).

When R is a commutative ring, we further write:

• Q(R) for the field of fractions of R, where R is a domain;

• ref R for the full subcategory of modR consisting of reflexive R-modules;

• CMR for the full subcategory of modR consisting of Cohen-Macaulay R-modules;

• HomR(M,N) for the quotient of HomR(M,N) by the set of all morphism factoring
through addR;

• CMR for the stable category of CMR, where the objects are the same as those of
CMR but the morphisms are defined as HomR(M,N);

• Cl(R) for the divisor class group of R;

• G0(R) := K0(modR) for the Grothendieck group of modR;

• G̃0(R) for the reduced Grothendieck group.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Commutative algebra preliminaries

This chapter contains a collection of technical tools from commutative algebra re-
quired for the results in this thesis. Specifically, it includes a brief introduction to Cohen-
Macaulay modules and Gorenstein rings, followed by a more thorough introduction to the
study of divisor class groups of normal noetherian integral domains and algebraic K-theory
with an aim towards defining Grothendieck groups.

2.1 CM modules and Gorenstein rings

Let (R,m) be a local ring and 0 6= M ∈ modR. Then the depth of M is defined as

depthRM := min{i ≥ 0 | ExtiR(R/m,M) 6= 0}.

Maintaining that (R,m) is a local ring, the moduleM is called (maximal) Cohen-Macaulay
(CM) if depthRM = dimR. This definition easily generalises to the non-local (i.e. global)
case. If R is a commutative noetherian ring, then M ∈ modR is CM if Mp is CM for all
prime ideals p of R. Furthermore, R is a CM ring if R is a CM R-module.

For M ∈ modR, denote by addM the full subcategory of all direct summands of
all finite direct sums of M . For M,N ∈ modR let HomR(M,N) be the quotient of
HomR(M,N) by the set of all morphisms factoring through addR. We write CMR for
the stable category of CMR, where the objects are the same as those of CMR, but the
set of morphisms between two objects M and N is defined to be HomR(M,N).

A commutative noetherian ring R is called Gorenstein if the localisation Rp, at each
prime ideal p, is a local ring which has finite injective dimension as an Rp-module. It is
well known that a Gorenstein ring is a CM ring.

Example 2.1.1. Some well-known Gorenstein rings:

C[x1, . . . , xn], C[u, v, x]/(uv − xn), C[u, v, x, y]/(uv − xy).

11
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Definition 2.1.2. A commutative ring R is called equi-codimensional if all its maximal
ideals have the same height.

In this thesis, it is always the case that our rings are either finitely generated over C
or are localisations and completions at a maximal ideal of such rings. As such, the rings
we study are always equi-codimensional [Eis95, 13.4]. Furthermore, when they are CM,
they always admit a canonical module ωR.

2.2 Normal rings and the divisor class group

An integral domain is called normal if it is integrally closed in its field of fractions
[Mat00]. In our applications later, with some exceptions (such as T in Lemma 4.1.4 and
S in Setup 6.4.1), the rings will be both normal and noetherian.

Example 2.2.1. The rings C[x1, . . . , xn] (see [Mat00, Example 1]) and C[x, y, z]/(xy−z2)

(see [Har77, Exercise 6.5]) are both normal rings.

Normal rings have many nice properties; we briefly mention some of them now. A
prime ideal p of an integral domain R is said to have height one if it is non-zero and there
does not exist any prime ideal q such that (0) ( q ( p. We give a method for determining
the height of an ideal later in this section.

Let K be a field and write K× = K\{0}. A mapping on K is called a discrete valuation
ν : K× → Z if ν is a homomorphism ν(xy) = ν(x) +ν(y) and ν(x+ y) ≥ min(ν(x),ν(y)).
Furthermore, the valuation ring of ν can be formed; it consists of 0 and all x ∈ K× such
that ν(x) ≥ 0.

Consider a 1-dimensional noetherian local integral domain (S,m) where m denotes the
unique maximal ideal of S. Let Q(S) be the field of fractions of S. Then the ring S is
called a discrete valuation ring (DVR) if there exists a discrete valuation ν of Q(S) such
that S is the valuation ring of ν. It is known (see, e.g. [AM69]) that m is the set of all
x ∈ Q(S) for which ν(x) > 0. The following proposition (see [AM69, Proposition 9.2])
gives an equivalent way of saying when a ring such as (S,m) is a DVR.

Proposition 2.2.2. Let (S,m) be a noetherian local integral domain of dimension one.
Then S is a discrete valuation ring if and only if there exists an element π ∈ S such that
every non-zero ideal of S is of the form (πk), for some k ≥ 0.

Now, consider a normal noetherian integral domain R with field of fractions Q(R).
Write X1(R) for the set of all height one prime ideals of R. In the terminology of [Fos73],
such a ring R satisfies the conditions necessary to be a Krull domain [Bas68, III, Proposi-
tion 7.13]. As such, for each prime ideal p ∈ X1(R) the localisation of R at p, denoted Rp,
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is a DVR. The unique maximal ideal of Rp is pRp. By Proposition 2.2.2, pRp is generated
by a single element, which we will denote πp.

Let νp denote the discrete valuation on Q(R) associated to Rp, so νp : Q(R)× → Z
where Q(R)× is the group of invertible elements of Q(R). The above implies that, for any
x ∈ Q(R)×, x has a unique factorisation x = yπp

νp(x) for some νp(x) ∈ Z and y ∈ R×p .

Theorem 2.2.3. Let R be a normal noetherian integral domain with field of fractions
Q(R) and let x be any non-zero element of Q(R). Then the following hold:

(1) νp(x) = 0 for all but finitely many p ∈ X1(R),

(2) x is an element of R if and only if νp(x) ≥ 0 for all p ∈ X1(R),

(3) x is a unit of R if and only if νp(x) = 0 for all p ∈ X1(R),

(4) x is in the unique maximal ideal pRp of Rp if and only if νp(x) > 0,

(5) R = ∩p∈X1(R)Rp.

Proof. For (1) - (4) see [For17, Theorem 6.2.1] and for (5) see [Mat00, Theorem 11.5].

We define class groups of a ring R using Weil divisors. The following definitions of
Weil divisors, principal Weil divisors, and the divisor class group can be found in many
places and many formats in the literature (see, e.g. [For17], [Bas68], [Fos73]).

Definition 2.2.4. Let R be a normal noetherian integral domain with field of fractions
Q(R) and X1(R) as before. The group of Weil divisors Div(R) of R is defined as the free
abelian group with basis X1(R).

In other words, it is the free Z-module

Div(R) =
⊕

p∈X1(R)

Z · p

on X1(R). By Theorem 2.2.3, there is a homomorphism of groups

div : Q(R)× → Div(R),

defined by
div(x) =

∑
p∈X1(R)

νp(x) · p, (2.2.A)

where νp is the valuation associated with the DVR Rp. In particular, Theorem 2.2.3(3)
implies that the kernel of div is equal to the group R×. It follows that there is an exact
sequence

0→ Ker(div) = R× → Q(R)×
div−→ Div(R)→ Cok(div)→ 0. (2.2.B)
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We have the following result for any element of R.

Corollary 2.2.5. For r ∈ R, we have div(r) =
∑

p∈X1(R),r∈p νp(r)p with all such νp(r) > 0.

Proof. This follows immediately from Theorem 2.2.3(4) and (2.2.A)

Definition 2.2.6. The class group of R is defined to be the cokernel of the homomorphism
div, and is denoted Cl(R).

The exact sequence (2.2.B) becomes

0→ R× → Q(R)×
div−→ Div(R)→ Cl(R)→ 0. (2.2.C)

The image of div is called the group of principal Weil divisors and is denoted Prin(R).
Thus, the divisor class group of R is the group of Weil divisors modulo the principal Weil
divisors.

The divisor class group measures the failure of a ring R to be a unique factorization
domain (UFD). Specifically,

Proposition 2.2.7. [Har77, Proposition 6.2] Let R be a noetherian integral domain.
Then R is a UFD if and only if X = SpecR is normal and Cl(X) = 0.

The Picard group Pic(X) can be viewed as line bundles up to isomorphism, which is
naturally a subgroup of Cl(X). We do not require the language of line bundles in this
thesis, for further details on the topic see [GH94, p. 66]. The following result may also be
found in Hartshorne; see [Har77, Corollary 6.16].

Corollary 2.2.8. Let X be a noetherian, integral, separated locally factorial scheme. Then
there exists a natural isomorphism Cl(X) ∼= Pic(X).

The remainder of this section contains other commutative algebra results required for
the work in this thesis. The following is elementary, see, e.g. [AM69, Chapter 1].

Lemma 2.2.9. Let R be a ring and I an ideal of R. Then the one-to-one correspondence
between ideals of R that contain I and ideals of R/I extends to a one-to-one correspondence
of prime ideals.

The height one prime ideals are crucial in the definition of the divisor class group. The
following theorem (see [Har77, Theorem 1.8A]) gives a method for determining the height
of a prime ideal of a ring R.

Theorem 2.2.10. Let k be a field, and R be an integral domain which is a finitely gener-
ated k-algebra. Then for any prime ideal p in R, we have

ht(p) + dimR/p = dimR.
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Now, we extend Lemma 2.2.9 in such a way that allows us to determine which prime
ideals are the height one prime ideals of R containing a non-zero element of R. The proof
of this theorem is somewhat more involved than one might expect.

Theorem 2.2.11. Let R be an integral domain, s ∈ R a non-zero element and ϕ : R →
R/(s) the quotient map. Then there exists a bijection

{height one prime ideals in R containing s} ϕ∗−→ {height zero prime ideals in R/(s)}.

Proof. By Lemma 2.2.9, there is a bijection

{prime ideals in R containing s} ϕ∗−→ {prime ideals in R/(s)}.

To begin, assume that p ∈ SpecR with ht(p) = 1 and s ∈ p. By definition, ϕ∗(p) = p/(s).
We want to show that ht(p/(s)) = 0. Assume ht(p/(s)) ≥ 1. That is, that there exists
a prime ideal q/(s) ( p/(s). This implies that (s) ⊆ q ( p in R. Since s is non-zero we
have (0) ( q ( p, which tells us that ht(p) ≥ 2. This is a contradiction since we assumed
that ht(p) = 1, and so ht(p/(s)) = 0.

Now, assume that q ∈ SpecR/(s) with ht(q) = 0. We want to show that the preimage
of q has height one. Write p := ϕ−1(q) = {r ∈ R | ϕ(r) ∈ q}. Since R is an integral
domain, (0) ⊂ p is the minimal prime ideal of R. By Lemma 2.2.9, p contains s; as such
p 6= (0). It follows that ht(p) ≥ 1. By Krull’s Hauptidealsatz [AM69, Corollary 11.17],
every prime ideal minimal over (s) has height one. If ht(p) > 1, then there exists a prime
ideal p′ such that (s) ⊂ p′ ( p. But this would imply that p′/(s) ( p/(s) = q and that
ht(q) ≥ 1, a contradiction. Thus ht(p) = 1.

For our purposes a graded ring R =
⊕

i∈NRi is a commutative ring with identity which
decomposes as a direct sum of abelian groups such that RiRj ⊆ Ri+j for i, j ∈ N.

Lemma 2.2.12. If R =
⊕
m≥0

Rm is a commutative graded domain with R0 = k a field,

then R× = k×.

Proof. Let r = r0 + . . . + rm be invertible in R. Then there exists s = s0 + . . . + sn in R
such that rs = 1. Assume that rm, sn 6= 0. Then rs =

∑
j≥0(

∑j
i=0 risj−i) with leading

term (rs)m+n = rmsn. Since R is a domain and rm, sn 6= 0, we have (rs)m+n 6= 0. But
rs = 1 implies that (rs)j = 0 for all j > 0, so n + m = 0. That is, n = m = 0 and hence
r, s ∈ k.

In the following (see [Bul12, Proposition 3.4]), let 〈t〉 be the cyclic subgroup generated
by t.

Proposition 2.2.13. Let T be a UFD and t an irreducible element in T . Then the group
of units in T [t−1] is T× × 〈t〉.



16 CHAPTER 2. COMMUTATIVE ALGEBRA PRELIMINARIES

2.3 Algebraic K-theory

This section includes the definitions necessary for studying algebraic K-theory and
Grothendieck groups. For a thorough exposition on the history of algebraic K-theory,
see [Wei99]. We begin by introducing additive categories, abelian categories, and exact
categories following [Bas68, Chapter 1].

A category C is called an additive category if the following properties hold:

1. C has a zero object,

2. for all X, Y ∈ C, the direct product X × Y exists, and

3. for all X, Y ∈ C, the set of morphisms X to Y has the structure of an abelian group
such that the composition is bilinear.

Let A an be additive category. A functor F : A → B is called additive if F (A) ⊕
F (B) → F (A ⊕ B) is an isomorphism for all A,B ∈ A. Equivalently, F is additive if
F (A ⊕ B) → F (A) ⊕ F (B) is an isomorphism for all A,B ∈ A. For more details on
additive functors see [Sta18, Tag 010M]. An abelian category is defined as an additive
category A in which all kernels and cokernels exist and the natural map Coim(a)→ Im(a)

is an isomorphism for each morphism a in A. An exact category is an additive category
together with a class of distinguished short sequences X → Y → Z, satisfying various
axioms (see, e.g. [Kel96]). These sequences are called exact sequences.

A full exact subcategory of an exact category A is a full additive subcategory B, which
is closed under extensions. That is, if 0 → X → Y → Z → 0 is exact in A and X

and Z are objects in B, then Y is also an object of B [Kel96, §4]. The importance of
full exact subcategories can be understood through the following two facts. First, kernels
of exact functors between abelian categories are full exact subcategories. Second, the
quotient category A/B can be built. This quotient category has the same objects as A,
it is abelian, and there is a canonical exact functor p : A → A/B with kernel equal to B.
In the literature, full exact subcategories are also referred to as Serre subcategories and
the above functor p goes by multiple names, most common are Serre quotient or quotient
functor.

In this thesis, modR denotes the category of all finitely generated R-modules and
projR denotes the category of all finitely generated projective R-modules.

Remark 2.3.1. When R is a ring, modR is an exact category with exact sequences being
all short exact sequences. Similarly, projR is an exact category with exact sequences
being those short exact sequences that exist with all terms in projR. In projR every
exact sequence is split.

https://stacks.math.columbia.edu/tag/010M
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In 1973, Quillen formulated higher algebraic K-theory, defining the higher K-theory of
an exact category. Following [Qui73], we define the zeroth K-group of an exact category
as follows.

Definition 2.3.2. The zeroth K-group K0(E) of an exact category E is defined as the
abelian group generated by the objects [M ] for each isomorphism class of objects of E and
one relation [B] = [A] + [C], where A,B,C ∈ E , for every exact sequence A→ B → C.

Let R be a noetherian ring. In this case, modR is an abelian category. In this thesis
we write G0(R) := K0(modR) for the K-group of the category of finitely generated R-
modules, and K0(projR) for the K-group of the category of finitely generated projective
R-modules. Following standard terminology, the group G0(R) is called the Grothendieck
group of R. In other words,

G0(R) := K0(modR) =
⊕Z[M ]

〈[M ] = [M ′] + [M ′′]〉

for M ∈ modR, as the relations vary over all short exact sequences.

Remark 2.3.3. There is a canonical map K0(projR)→ G0(R), which, by the resolution
theorem of [Qui73, §4, Corollary 2], is an isomorphism if R has finite global dimension. In
general this map is not an isomorphism.

A general property of Grothendieck groups is the following.

Lemma 2.3.4. Let R be a ring, M ∈ modR, and consider a filtration by submodules
0 = M0 ⊆M1 ⊆ . . . ⊆Mn = M. Then, in G0(R)

[M ] =
n−1∑
i=0

[
Mi+1

Mi

]
.

Proof. To prove this, we induct on n. That this holds for n = 1 is clear. Now let n > 1

and consider the sequence

0→M1 →M →M/M1 → 0,

where [M ] = [M1] + [M/M1]. This leads to a filtration

0 = M1/M1 ⊆M2/M1 ⊆ . . . ⊆Mn/M1 = M/M1

of length n− 1. So by induction,

[M ] = [M1] + [M/M1] =
n−1∑
i=0

[Mi+1/Mi] .
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Lemma 2.3.5. Let R be any noetherian ring. Then every element of G0(R) can be written
in the form [M ]− n[R] for some n ≥ 0.

Proof. Let L,N ∈ modR. Note that n[L] = [L⊕n] where n ≥ 0, and n1[L] + n2[N ] =

[L⊕n1 ⊕N⊕n2 ] where n1, n2 ≥ 0.

Now, consider a general element
∑
mi[Li]−

∑
ni[Ni] of G0(R), where mi, ni ≥ 0. This

can be rewritten as [⊕L⊕mi
i ]− [⊕N⊕ni

i ]. For ease of notation denote [⊕L⊕mi
i ] by [X] and

[⊕N⊕ni
i ] by [Y ]. Hence [X]− [Y ] is some general element of G0(R).

Now, taking the syzygy, there is an exact sequence

0→ ΩY → Rn → Y → 0,

so that [ΩY ]− n[R] = −[Y ]. Thus,

[X]− [Y ] = [X] + [ΩY ]− n[R]

= [X ⊕ ΩY ]− n[R].

Writing [M ] := [X ⊕ ΩY ] gives the desired form [M ]− n[R].

Introduced below, the localisation and dévissage theorems of [Qui73] are important
tools that only work for abelian categories. The following result, due to Quillen in [Qui73,
§5, Theorem 5], gives a long exact sequence of K-groups.

Theorem 2.3.6 (Localisation). Let B be a full exact subcategory of the abelian category
A, A/B be the quotient category of A by B and let i : B → A and p : A → A/B denote
the canonical functors. Then there is a long exact sequence

. . .
p−→ K1(A/B)→ K0(B)

i−→ K0(A)
p−→ K0(A/B)→ 0.

Quillen’s dévissage theorem [Qui73, §5, Theorem 4] gives conditions under which two
abelian categories have the same K-theory.

Theorem 2.3.7 (Dévissage). Let A be an abelian category and B a non-empty full subcat-
egory which is closed under subobjects, quotients, and finite products in A. Suppose that
every object M in A has a finite filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = M

with Mi/Mi−1 in B for each i. Then the inclusion functor induces a homotopy equivalence
Ki(B) ∼= Ki(A) for all i.
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2.4 Techniques: Nagata’s Theorem

We introduce a method for computing divisor class groups. LetW be a multiplicatively
closed subset of a normal noetherian integral domain R. Traditionally, Nagata’s Theo-
rem, Theorem 2.4.1 below, states there is a surjective group homomorphism Cl(R) →
Cl(W−1R) with kernel generated by the classes of prime divisors in X1(R)\X1(W−1R).
For more details on this, see [Fos73, Theorems 7.1 and 7.2].

In this section, we provide a more precise version of Nagata’s theorem, following [For17,
Theorem 6.2.4]. This version details a method for computing the divisor class group of a
normal noetherian integral domain. Our results in Chapter 4 and Chapter 6 utilise the
techniques of this section.

Theorem 2.4.1 (Nagata’s Theorem). Let R be a normal noetherian integral domain with
field of fractions Q(R). Let r be a non-zero non-invertible element of R with div(r) =∑

pi∈X1(R) νpi(r) pi, where pi is a height one prime ideal containing r for i = 1, . . . , n.
Then the sequence of abelian groups

0→ R× −→ R[r−1]×
div−→

n⊕
i=1

Z · pi −→ Cl(R) −→ Cl(R[r−1])→ 0 (2.4.A)

is exact.

We include a variation of the proof given in [For17, Theorem 6.2.4], as the method
illustrated will be used for results in Chapter 4.

Proof. Clearly R× ⊆ R[r−1]× ⊆ Q(R)×, and there is a commutative diagram

0 R× Q(R)× Prin(R) 0

0 R[r−1]× Q(R[r−1])× Prin(R[r−1]) 0

δ

div

α

div

(2.4.B)

with exact rows. Notice that this implies that α is surjective. This extends in the obvious
way to the following diagram:

0 0 Ker(α)

0 R× Q(R)× Prin(R) 0

0 R[r−1]× Q(R)× Prin(R[r−1]) 0

Cok(δ) 0 0

δ

div

α

div

(2.4.C)
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By the Snake Lemma, Ker(α) ∼= Cok(δ), thus rewriting the first column of (2.4.B) gives

0 −→ R× −→ R[r−1]× −→ Ker(α) −→ 0. (2.4.D)

Notice that X1(R[r−1]) is the subset of X1(R) containing the prime ideals of height one
in R that do not contain r [For17, Exercise 2.2.15]. Therefore Div(R[r−1]) can be viewed
as the free Z-submodule of Div(R) generated by prime ideals p in X1(R[r−1]). Take β to
be the projection onto Div(R[r−1]) defined by

p 7→

{
0, if r ∈ p

p, otherwise.

Then the diagram

0 Prin(R) Div(R) Cl(R) 0

0 Prin(R[r−1]) Div(R[r−1]) Cl(R[r−1]) 0

α β ∃γ (2.4.E)

commutes, and the rows are exact. We already know that both α and β are surjective.
Therefore γ is surjective. This extends in the obvious way to the following diagram:

0 Ker(α) Ker(β) Ker(γ)

0 Prin(R) Div(R) Cl(R) 0

0 Prin(R[r−1]) Div(R[r−1]) Cl(R[r−1]) 0

α β γ

(2.4.F)

By the Snake Lemma, we obtain an exact sequence

0 −→ Ker(α) −→ Ker(β) −→ Ker(γ) −→ 0. (2.4.G)

By definition, the group Div(R) is free on X1(R). Then, since the only height one primes
that contain r are p1, . . . , pn, the kernel of β is the free subgroup

⊕n
i=1 Z ·pi. From (2.4.E),

we also get the following exact sequence

0 −→ Ker(γ) −→ Cl(R) −→ Cl(R[r−1]) −→ 0. (2.4.H)

Splicing the sequences (2.4.D), (2.4.G), and (2.4.H) gives the sequence (2.4.A), as desired.

This result provides us with what should be a straightforward method for computing
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Cl(R), where R is a normal noetherian integral domain.

2.5 Techniques: Algebraic K-theory

Computing class groups is a difficult task and, in some instances, K-theory is easier
to compute. In this section, we introduce a technique, originally described in [Bas68], for
doing so. We will see several examples in Chapter 4 and Chapter 6 where this approach
works well.

As before, let R be a normal noetherian integral domain with field of fractions Q(R).
Each finitely generated R-module M has a well-defined class [M ] in G0(R). The map
M 7→ [M ] is an additive function (see §2.3) such that any other additive function on
modR factors through it. Define the rank map rkR : modR→ Z as

rkR(M) = dimQ(R)(M ⊗R Q(R)).

Since this is an additive function, it induces a homomorphism G0(R)→ G0(Q(R)) where
G0(Q(R)) ∼= Z. Under this definition rk(R) = 1, thus G0(R) decomposes as

G0(R) = Z · [R]⊕ G̃0(R), (2.5.A)

where G̃0(R) is the kernel of the homomorphism induced by the rank map and is called
the reduced Grothendieck group of R.

Let C be the full subcategory of all M such that M ⊗RQ(R) = 0. Since localisation is
exact, C is an abelian category.

Lemma 2.5.1. If M ∈ C and p ∈ X1(R), then Mp has finite length.

Proof. If p ∈ X1(R) then Rp is a 1-dimensional integral domain with unique non-maximal
prime ideal (0) and unique maximal ideal pRp. Since (Mp)(0) = M(0) = 0, Mp is only
supported at the maximal ideal. It follows that Mp has finite length [Coh03, Chap-
ter 10.10].

In the situation of the lemma, we write lp(Mp) for the length of the Rp-module Mp.

Lemma 2.5.2. Let R be a normal domain, p ∈ X1(R), and a ∈ R nonzero. Then we have
the equality `p(Rp/(a)) = νp(a).

Proof. Since localisation is exact, R/(a) ∈ C. The ring Rp is a DVR with maximal ideal
pRp = (πp). Thus a = uπνp for some unit u ∈ R, where by definition ν = νp(a). Hence

`p(Rp/(a)) = `p(Rp/(π
ν
p)) = νp(a).
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Recall the group Div(R) from Definition 2.2.4 and the exact sequence (2.2.C). It
follows from Lemma 2.5.1 that there exists a map χ : C→ Div(R) given by

M 7→
∑

p∈X1(R)

`p(Mp)[p].

The map χ is an additive function and we denote by the same letter the induced map
K0(C)→ Div(R). From the inclusion C ⊆ modR there is an induced map on Grothendieck
groups K0(C)→ G0(R) whose image is G̃0(R).

We use the following important result (see [Bas68, Chapter IX, Proposition 6.6]) which
shows that there is an induced surjective map c : G0(R)→ Cl(R).

Proposition 2.5.3. Let R be a normal noetherian integral domain with field of fractions
Q(R). Then there exists a unique homomorphism c : G0(R) → Cl(R) such that the dia-
gram

G1(Q(R)) K0(C) G0(R) G0(Q(R)) 0

Q(R)× Div(R) Cl(R) 0

det(∼=) χ

rk

c

div

(2.5.B)

commutes. Moreover, χ and c are surjective homomorphisms.

Proof. For full details of the proof, see [Bas68, Chapter IX, Proposition 6.6]. To see that
c is surjective let p ∈ X1(R) and consider the R-module R/p. Then

c

([
R

p

])
=

∑
q∈X1(R)

`q

((
R

p

)
q

)
[q] = [p].

The map K0(C) → Div(R) → Cl(R) factors through the map K0(C) → G̃0(R) and
so induces a map γ : G̃0(R) → Cl(R). We wish to extend this result to give a more
precise description of the relationship between G0(R) and Cl(R). In the following, we first
determine the generators of G0(R).

Lemma 2.5.4. Let R be a noetherian ring, then G0(R) is generated by modules of the
form [R/p] where p ∈ SpecR.

Proof. This follows directly from [Eis95, Proposition 3.7].

The next result is described in [Eag68] and included here for completeness.

Lemma 2.5.5. Let R be a noetherian integral domain, p ∈ SpecR, and x ∈ R\p. Then
[R/(p + xR)] = 0 in G0(R).
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Proof. Since p is prime, there is a short exact sequence

0→ R/p
x−→ R/p→ R/(p + xR)→ 0.

This implies that [R/p] = [R/p] + [R/(p + xR)]. Hence [R/(p + xR)] = 0 in G0(R).

Since localisation is exact, it follows that G̃0(R) is generated by all [R/p] where p 6= (0)

is a prime ideal of R. That is, G̃0(R) = 〈[R/p] | ht(p) ≥ 1〉. Now, denote by H the
subgroup of G̃0(R) generated by all [R/p] where ht(p) ≥ 2. In the following proposition
we look at the restriction γ : G̃0(R) → Cl(R) of the homomorphism c : G0(R) → Cl(R)

from Proposition 2.5.3.

Proposition 2.5.6. Let R be a normal noetherian integral domain. Then the map γ is
surjective and induces an isomorphism

G̃0(R)/H ∼= Cl(R).

Proof. Let X1(R) be the set of height one prime ideals of R and p ∈ X1(R). By Proposi-
tion 2.5.3, c is surjective. Notice that, for all p ∈ X1(R), we have [R/p] ∈ G̃0(R). Hence
γ is also surjective.

First, we show that H is in the kernel of γ. Let a ∈ SpecR such that ht(a) ≥ 2. It
follows that

γ

([
R

a

])
=

∑
b∈X1(R)

`b

((
R

a

)
b

)
[b] = 0,

where the second equality comes from the proof of Proposition 2.5.3. Thus, H ⊆ Kerγ.

Hence γ induces a surjection G̃0(R)/H � Cl(R). To prove the statement, we next
construct a left inverse of this induced map. Consider β : Div(R)→ G̃0(R)/H defined by
p 7→ [R/p] +H. We first claim that this factors through Cl(R). This requires us to show
that Prin(R) ⊆ Kerβ.

Let a ∈ R be non-zero. Then div(a) =
∑

p∈X1(R) νp(a)[p]. Since R is a domain the
short exact sequence

0→ R
a·−→ R→ R/(a)→ 0

implies that [R/(a)] = 0, and also that [R/(a)] ∈ G̃0(R). Hence in the quotient G̃0(R)/H,

0 = [R/(a)] +H =
∑

p∈X1(R)

`p(R/(a))[R/p] +H (by Lemma 2.3.4)

=
∑

p∈X1(R)

νp(a)[R/p] +H (by Lemma 2.5.2)

= β(div(a)).
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Thus Prin(R) ⊆ Ker(β) giving an induced map β̃ : Cl(R) → G̃0(R)/H. Moreover, by
inspection β̃ ◦ γ = idG̃0(R)/H , so the surjection γ : G̃0(R)/H � Cl(R) is an isomorphism.



Chapter 3

Noncommutative minimal models

This chapter provides a brief introduction to resolutions of singularities, Auslander-
Reiten (AR) theory, minimal models, and noncommutative crepant resolutions (NCCRs).
In addition, we introduce a large class of examples of singularities coming from [CBH98].
The discussion of minimal models covers material required in Chapter 7, while the discus-
sion of NCCRs and the brief introduction to the Homological Minimal Model Programme
(MMP) involves background information for §6.3. We do not provide many of the techni-
cal details of the Homological MMP, but we provide suitable references for those wishing
to know more about the technicalities. We also note that, throughout this thesis, our
approach to minimal models and resolutions of singularities will be noncommutative.

3.1 Resolving a singularity

Resolving the singularities of a variety Y consists of finding a smooth (i.e., non-singular)
variety X such that there is a proper, birational morphism f : X → Y . Such a map f is
called a resolution of singularities of Y . A major result, due to Hironaka in [Hir64], states
that every singular variety over an algebraically closed field of characteristic 0 admits a
resolution.

With the existence of such resolutions, one might ask if there is a ‘best’ resolution
such that X is as ‘close’ to the original space Y as possible. This question leads to the
notion of a minimal resolution. A minimal resolution is a resolution f : X → Y such that
any other resolution of Y factors through f . In dimension 2, which covers the case of
Kleinian singularities and their deformations, a minimal resolution always exists and is
unique [Lau71, Theorem 5.9]. Unfortunately, as we move to higher dimensions, this is not
necessarily the case; minimal resolutions might not exist. This led Reid to introduce the
notion of ‘crepancy’ in [Rei83]. If f : X → Y is a resolution of Y , then f is called crepant
if the pullback along f of the canonical divisor of Y is the canonical divisor of X.

For resolutions of Kleinian singularities, the notions of crepancy and minimality coin-

25
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cide, so Kleinian singularities admit a unique crepant resolution. But, in higher dimen-
sions, crepant resolutions do not always exist, and when they do, usually they are not
unique.

Remark 3.1.1. Recall the quotient singularities Cn/G of §1.2 where G is a finite subgroup
of SL(n,C).

(a) When n = 2, the singularities are precisely the Kleinian singularities. As discussed
above, a crepant resolution always exists and is unique.

(b) When n = 3, the singularities always admit a crepant resolution but it is usually no
longer unique [BKR01].

(c) When n ≥ 4, such quotient singularities do not necessarily have crepant resolutions,
e.g., the group 1

2
(1, 1, 1, 1); see [Cra01, Example 2.28].

The fact that crepant resolutions of cDV singularities may not be unique and, in fact,
may not exist at all led to the notion of a minimal model, introduced in the next section.

3.2 Minimal models

The basic idea of a minimal model f : X → SpecR, where SpecR is an isolated
complete local cDV singularity (see §1.5), is that crepancy is more important than X

being smooth. Since X is not necessarily smooth, f may not be a resolution. As such,
one is asking for a crepant morphism f where the singularities of X are not ‘too bad’.
Formally, minimal models are defined as follows.

Definition 3.2.1. Let f : X → SpecR be a crepant projective, birational map, where R
is complete local and X has at worst Q-factorial terminal singularities. Then f is called
a minimal model of SpecR.

It is well known that, for a threefold SpecR which is a cDV singularity, minimal models
exist, and there are only finitely many of them [KM87]. Indeed, Gorenstein terminal
singularities are precisely the isolated cDV singularities [Rei83]. For such hypersurfaces,
factorial is equivalent to Q-factorial (see, e.g. [IW14b, Theorem 2.11]). In the next section,
we study modules that have an intimate relationship with minimal models and allow us
to completely understand minimal models of such threefold singularities.

3.2.1 Maximal modifying modules

When R is a commutative ring, we write (−)∗ for the functor HomR(−, R) : modR→
modR and call an R-moduleM reflexive if the natural mapM →M∗∗ is an isomorphism.
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Denote by ref R the full subcategory of modR consisting of reflexive R-modules. Assume
now that R is complete local. We call an R-module M basic if the indecomposable direct
summands Mi of M are mutually non-isomorphic. The following definition of (maximal)
modifying modules was first given in [IW14a, Definition 4.1].

Definition 3.2.2. Let R be an isolated complete local cDV singularity, then

(1) a module M ∈ ref R is called a modifying module if EndR(M) ∈ CMR;

(2) a module M ∈ ref R is called a maximal modifying (MM) module if M is modifying
and, furthermore, if M ⊕ Y is modifying for Y ∈ ref R, then Y ∈ addM ;

(3) ifM is an MM R-module, then EndR(M) is a maximal modification algebra (MMA).

In other words, M is an MM module if

addM = {Y ∈ ref R | EndR(M ⊕ Y ) ∈ CMR}.

Consider an MMA of the form Λ := EndR(M), whereM = M0⊕M1⊕· · ·⊕Mt is a basic
MM R-module, with M0

∼= R and M1, . . . ,Mt the non-free indecomposable summands of
M . All MMAs are derived equivalent and any algebra derived equivalent to an MMA is
also an MMA [IW14a, Corollary 1.17].

To each minimal model of an isolated complete local cDV singularity, Donovan-Wemyss
[DW19] associate a corresponding finite-dimensional algebra, called a contraction algebra.
Although contraction algebras have deformation-theoretic origins, their role in this thesis
comes from the study of MMAs. With this approach, we define contraction algebras
following [DW19, Definition 2.11].

Definition 3.2.3. Given a minimal model f : X → SpecR of an isolated complete local
cDV singularity, let Λ := EndR(M) be the corresponding MMA1. Then the contraction
algebra of f is the stable endomorphism algebra

Λcon
∼= EndR(M) ∼= EndR

(
t⊕

j=1

Mj

)
∼= Λ/ΛeΛ,

where e is the idempotent in Λ corresponding to the summand R of M .

It is useful to keep in mind that just as Λ can be presented as a quiver with relations (see
§3.5) so too can Λcon. The quiver corresponding to Λcon has the same vertices and relations
as those in the quiver of Λ, except the vertex (and hence the relations) corresponding to

1In the context of this thesis, the correspondence of an endomorphism ring such as Λ to an MMA is
best understood through the one-to-one correspondence discussed later in §3.6. For now, just know that
this correspondence exists.
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R are not included. As an example, consider the case of t = 3; then we have the following
corresponding quivers.

1 2

0 3

(a) Quiver of Λ

1 2

0 3

(b) Quiver of Λcon

Note that, for cDV singularities, the contraction algebra corresponding to a minimal
model is finite-dimensional and its quiver is known to be symmetric [Aug19, Proposi-
tion 3.2.10]. These quivers can arise from Auslander-Reiten theory, introduced next.

3.3 Auslander-Reiten theory

The AR-theory introduced in this section will be useful later as it leads to a systematic
method for computing the quiver of an MMA and allows us to determine Grothendieck
groups of complete local rings of finite CM-type.

Let C be an indecomposable CM R-module. Then, an Auslander-Reitein (AR) se-
quence ending in C is a short exact sequence

0→ A→ B
f−→ C → 0

in CMR such that every map D → C in CMR which is not a split epimorphism factors
through f .

As a consequence of AR-duality, it is known (see, e.g. [Yos90, Theorem 3.2]) that
AR-sequences exist in CMR when R is complete local and isolated singularity. Given
this existence, it is possible to attach a quiver to CMR called the AR-quiver. It is a
graph constructed from the isomorphism classes of the indecomposable CMR-modules and
certain maps between them. To define the AR-quiver, we follow [Yos90, Definition 5.2].

Definition 3.3.1. The Auslander-Reiten (AR) quiver Γ of CMR has vertices that are in
one-to-one correspondence with the isomorphism classes of indecomposable CMR-modules
M . To determine the arrows, for each M consider the AR-sequence which ends at M , say

0→ τ(M)→ N
f−→M → 0. (3.3.A)

When R is complete local, we can uniquely decompose the module N into indecomposable
modules as N ∼=

⊕t
i=1M

⊕mi
i . Then, for each i, there are mi arrows from Mi to M in the

AR-quiver of CMR.
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Remark 3.3.2. Consider the ring S := C[U, V ] and a finite subgroup G of SL(2,C). It
is known (see, e.g. [Aus86]) that the AR-quiver of SG is isomorphic to the McKay quiver
of G from §1.3. In higher dimensions, CMR usually has infinitely many indecomposable
modules, whereas the McKay quiver only has finitely many vertices.

Now, suppose that R has finite CM type. Then for each indecomposable module
M1, ...,Mt ∈ CMR, consider the AR-sequence 0 → τ(Mj) → Lj → Mj → 0. Expressing
[Mj]+[τ(Mj)]−[Lj] in terms of [M0], . . . , [Mt] gives a tuple (a0j, . . . , atj) of integers. These
tuples, as j varies between 1 and t, form the AR-matrix Υ : Zt → Zt+1 (for more details,
see [Hol15, Definition 2.3]). The next theorem was originally proven in [AR86], but the
form included here can be found in [Hol15, §1].

Theorem 3.3.3. Let R be a complete local ring with a dualising module and suppose that
R is of finite CM-type. Then there is an isomorphism of abelian groups

G0(R) ∼= CokΥ,

where Υ : Zt → Zt+1 denotes the AR-matrix.

3.4 Noncommutative crepant resolutions

The notion of a smooth noncommutative minimal model, called a noncommutative
crepant resolution, was first introduced by Van den Bergh in [VdB04a, Definition 4.1]; for
full details and references, see [Leu12].

Definition 3.4.1. Let R be a normal Gorenstein domain. A noncommutative crepant
resolution (NCCR) of R is a ring of the form EndR(M), where M is a non-zero reflexive
R-module, such that EndR(M) has finite global dimension, and further is maximal Cohen-
Macaulay as an R-module.

In noncommutative algebraic geometry, NCCRs are one of the nicest kinds of resolu-
tion. The following is a standard example (see, e.g. [VdB04a, Example 1.1]) of an NCCR,
which covers quotient singularities.

Example 3.4.2. Let V be a finite-dimensional vector space and G a finite subgroup of
SL(V ). Write S := Sym(V ) and R := SG. Then EndR(S) is an NCCR of R. By a result
of Auslander [AG60,Aus62] (see also [IT13, Theorem 3.2]), it turns out that EndR(S) is
isomorphic to the skew group ring S#G introduced later in Definition 3.5.2.

Another example is that of the suspended pinch point.
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Example 3.4.3. (The suspended pinch point) Consider the ring

R :=
C[u, v, x, y]

(uv − x2y)
.

Then EndR(R⊕(u, x)⊕(u, x2)), EndR(R⊕(u, x)⊕(u, xy)), and EndR(R⊕(u, y)⊕(u, xy))

are all NCCRs [Wem16, Example 3.11].

The noncommutative Bondal–Orlov conjecture asks if all NCCRs of a fixed R are
derived equivalent. In [IW13, Theorem 1.5], the following holds more generally, but we
restrict to normal Gorenstein domains as they suffice for our purposes.

Theorem 3.4.4. Let R be a Gorenstein normal domain of dimension d.

1. When d = 2, all NCCRs of R are Morita equivalent.

2. When d = 3, all NCCRs of R are derived equivalent.

Recall that there are some situations in which resolutions of singularities exist and are
unique. In the case of NCCRs, they do not necessarily exist, and if they do exist, they are
usually not unique up to isomorphism. The best we can hope for is unique up to Morita
equivalence.

Example 3.4.5. The ring
C[u, v, x, y]

(uv − x2 + y3)

has no NCCR (see, e.g. [BIKR08, Theorem 1.3]) and, by Theorem 3.4.4(1), the ring

C[u, v, x]

(uv − x2)

has unique NCCR (up to Morita equivalence).

3.4.1 Cluster-tilting objects

Full details on Calabi-Yau algebras and cluster-tilting theory can be found in many
places in the literature, see, e.g. [AIR14], [Leu12], [BM06], or [IR08]. For our purposes,
we outline the connection to NCCRs here. Let k be a field. A k-linear Hom-finite exact
category C is d-Calabi-Yau (d-CY) if there exist functorial isomorphisms

DExtd−iC (X, Y ) ∼= ExtdC(Y,X)

for all X, Y in C where D := Homk(−, k). An important class of objects in these categories
are cluster-tilting objects, defined in the following way.
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Definition 3.4.6. Let M be an object of an exact category C.

(1) M is rigid if Ext1
C(M,M) = 0.

(2) M is maximal rigid if M is rigid and, moreover, if M ⊕ Y is rigid for some Y ∈ C
then Y ∈ addM .

(3) M is a cluster-tilting object of C (or simply, cluster-tilting) if it is rigid and further-
more if Ext1

C(M,Y ) = 0 for some Y in C then Y ∈ addM , and also if Ext1
C(Y,M) = 0

then Y ∈ addM .

Equivalently, M is a maximal rigid object of C if

addM = {Y ∈ C | Ext1
C(M ⊕ Y,M ⊕ Y ) = 0},

and M is cluster-tilting if

addM = {Y ∈ C | Ext1
C(M,Y ) = 0} = {X ∈ C | Ext1

C(X,M) = 0}.

The most common example of cluster-tilting objects comes from invariant theory.

Example 3.4.7. As in §1.2, letG be a finite subgroup of SL(n,C) andR := C[[x1, . . . , xn]]G.
If R is an isolated singularity, then the R-module C[[x1, . . . , xn]] is a cluster-tilting object
in CMR; see [Iya07b, Theorem 2.5].

Just as minimal models and their corresponding MMAs are much more general than,
and actually include, the case of NCCRs for cDV singularities, in certain ways modifying
and maximal modifying modules are much more general than rigid and maximal rigid
modules. In fact, when R is 3-dimensional with isolated singularities, modifying modules
recover the notion of rigid modules and MM modules recover the notion of maximal rigid
modules [IW14a, Proposition 5.12].

The following result, due to [Iya07a, Theorem 5.2.1], gives a correspondence between
NCCRs and cluster-tilting objects.

Theorem 3.4.8. Let R be an isolated Gorenstein singularity of dimension d ≥ 2. Then
a CMR-module M gives an NCCR if and only if it is cluster-tilting.

Recall the precise description of G0(R) given in Theorem 3.3.3. This description was
based on the AR-matrix Υ and requires the very strong assumption that R has finite
CM type. In [Nav13, Proposition 7.28], Navkal extends Theorem 3.3.3 by dropping the
finiteness assumptions, at the cost of assuming the existence of a cluster-tilting object.
Fix a basic cluster-tilting object M0⊕ . . .⊕Mt ∈ CMR with M0

∼= R. For j > 0 consider

0→ Ltj → · · · → L1
j → L0

j := Mj → 0
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the higher AR-sequence ending in Mj (for definition, see, e.g. [Nav13, §6.3]). Express-
ing

∑t
i=0(−1)i[Lij] in terms of [M0], . . . , [Mt] gives a tuple (a0j, . . . , atj) of integers. These

tuples, as j varies between 1 and t, form the higher AR-matrix Ω : Zt → Zt+1 (for more de-
tails, see [Nav13, §6.3]). The next theorem was originally proven in [Nav13, Theorem 1.3].

Theorem 3.4.9. Let R be a Gorenstein complete local ring of dimension 3 over an al-
gebraically closed field, which has isolated singularities and admits a cluster-tilting object
(equivalently, an NCCR). Then,

G0(R) ∼= CokΩ

where Ω : Zt → Zt+1 denotes the higher AR matrix.

The main result in [Nav13] uses the above to explicitly describe G0(R) in the case
of type A cDVs which admit NCCR(s). Later, we go further: in §6.3, we show that our
results in Chapter 5 allow us to describe G0(R) for any cDV singularity R that admits an
NCCR, and in §6.4 we also describe G0(R) for all cAn singularities regardless of whether
they admit an NCCR, and regardless of whether they are isolated.

3.5 The deformed preprojective algebra

One way to get larger classes of examples from Kleinian singularities is by studying
not just the singularities themselves, but also their deformations. These deformations
are important not only in geometry but also in representation theory and Lie theory.
Deformations of Kleinian singularities were studied by Crawley-Boevey and Holland in
[CBH98] using deformed preprojective algebras, which we now recall. In general, these
are noncommutative i.e., not-necessarily-commutative rings.

First, we recall the notions of quivers and path algebras. Let Q be a (finite) quiver,
that is, Q is a directed graph consisting of finitely many vertices and arrows. Say there are
n + 1 vertices, then each vertex is labelled i = 0, . . . , n, and each vertex i has the trivial
loop ei : i → i. Let c be an arrow, then the head of c is the vertex where c points to and
is denoted h(c). The tail of c is the vertex where c starts and is denoted t(c). Informally,
we think of c as a map c : t(c) → h(c). The set of vertices is denoted Q0 and the set of
arrows by Q1; both are finite. Fix a field k.

Definition 3.5.1. The path algebra kQ of the quiver Q is the associative k-algebra with
k-basis given by all trivial loops and non-trivial paths in Q. Multiplication is given by
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concatenation of paths2:

pq :=

{
p · q, if h(p) = t(q)

0, otherwise.
eip :=

{
p, if t(p) = i

0, otherwise.
pei :=

{
p, if h(p) = i

0, otherwise.

for all paths p and q. In addition, for i, j ∈ Q0, we have

e2
i = ei and eiej = 0 (i 6= j).

Notice that the ei are orthogonal idempotents in kQ so the sum of the ei’s is the identity
element of kQ, denoted 1kQ. A relation in a quiver Q is a k-linear combination of paths
in Q, each with the same head and tail. Relations can be thought of as telling us that
following a specific path p is the same as following a specific path q. The specified relations
generate a two-sided ideal of kQ. Denote a quiver Q with a set of relations R by (Q,R)

and the path algebra of an associated quiver with relations by kQ/〈R〉.
The double quiver of the quiver Q, denoted Q̄, consists of the vertices and arrows

c : t(c) → h(c) of Q, together with a new arrow c∗ : h(c) → t(c) for each original arrow c.
Let kQ̄ be the path algebra of Q̄. The deformed preprojective algebra is defined in [CBH98,
§2] as the associative algebra

Πλ(Q) = kQ̄/

(∑
c∈Q1

[c, c∗]−
∑
i∈Q0

λiei

)
,

where λ = (λi)i∈Q0 ∈ kQ0 is a weight, c∗ is the double arrow of the arrow c, and [c, c∗] is the
commutator cc∗− c∗c. The preprojective algebra Π := Π0 is a special case of the deformed
preprojective algebra where λ = 0. We write Πλ when the choice of Q is clear.

Given an extended Dynkin diagram, choose an orientation to produce a quiver. The
double quivers are depicted in Figure 3.2.

1 2 · · ·

0 i

n n− 1 · · ·

(a) Type Ãn

1 n

2 3 · · · n− 2

0 n− 1

(b) Type D̃n

0

1

2 3 4 5 6

(c) Type Ẽ6

7

0 1 2 3 4 5 6

(d) Type Ẽ7

8

0 1 2 3 4 5 6 7

(e) Type Ẽ8

Figure 3.2: Double quivers of ADE type

2Throughout this thesis a concatenated path such as pq means “p then q”.
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3.5.1 Deformations of Kleinian singularities

As before, let S := C[U, V ] and R := SG be a Kleinian singularity.

Definition 3.5.2. Suppose G is a group acting on a ring S. The skew group ring S#G is
the free S-module with elements of G as a basis where multiplication is extended linearly
by the rule (rg)(sh) = r(g · s)gh for r, s ∈ S and g, h ∈ G. Here g · s is the image of s
under the action of g.

Since the group G acts naturally on the free algebra C〈U, V 〉, we can form the skew
group algebra C〈U, V 〉#G. For more details, see [CB00, §3.7].

Let λ be a weight, that is λ = (λi)i∈Q0 ∈ CQ0 , and let e0 := 1
|G|
∑

g∈G g be the average
of the group elements; e0 is an idempotent and an element of C〈U, V 〉#G. We can identify
the centre of the group algebra Z(CG) with CQ0 . Under this identification there exists
a unique zλ in Z(CG) such that the trace of zλ on ρi is (dim ρi)λi; for a more in depth
explanation see [CBH98]. As in [CBH98], define

Sλ(Q) :=
C〈U, V 〉#G
〈UV − V U − λ〉

and Oλ(Q) := e0Sλe0.

Just as with Πλ, we frequently write Sλ and Oλ when the choice of Q is clear. We can
filter Sλ with U and V in degree 1 and elements of G in degree 0, and this restricts to
a filtration of Oλ [CBH98]. With these filtrations we can consider the associated graded
rings gr Sλ and gr Oλ. Crawley-Boevey–Holland prove the following result in [CBH98,
Lemma 1.1].

Lemma 3.5.3. With the above filtrations, there are isomorphisms:

grSλ ∼= S#G and grOλ ∼= R.

This means that Sλ can be viewed as a deformation of S#G, andOλ as a deformation of
R. Crawley-Boevey–Holland determined many ring theoretic and homological properties
of these deformations; see [CBH98, Lemmas 1.2 and 1.3]. Provided G is non-trivial, the
ring Sλ is always noncommutative and, in general, Oλ is also noncommutative. For us, Oλ

will always be commutative and has Krull dimension 2 since below we will only consider
the case when λ · δ =

∑
i λiδi = 0, see [CBH98, Theorem 0.4(1) and (5)]. Here, δi is the

dimension of the corresponding representation at vertex i (see §1.3).
To determine many of the properties alluded to above, the following result is due

to Crawley-Boevey–Holland [CBH98, Theorem 0.1], who prove that deformations Sλ are
Morita equivalent to deformed preprojective algebras Πλ.

Theorem 3.5.4. There is a Morita equivalence between Sλ and Πλ. This induces an
isomorphism Oλ ∼= e0Πλe0.
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3.6 Homological Minimal Model Program

For this thesis, as we do not require much knowledge of the inner workings of the
Homological MMP, we just give a very brief overview. At a very high level, the goal of the
Homological MMP is to find the ‘best’ (i.e., simplest) approximations of singular spaces.
These ‘best’ approximations are precisely the minimal models.

Although geometric by nature, the Homological MMP provides a purely algebraic out-
put, lifting the correspondence of §1.3 from dimension two to threefold cDV singularities.
In [Wem18, Corollary 6.9], Wemyss shows that for an isolated complete local cDV singu-
larity R, there is a one-to-one correspondence{

basic MM R-module
generators

}
←→

{
minimal models
fi : Xi → SpecR

}
.

Wemyss then considers the situation where the minimal models of SpecR are smooth. In
this case, the above correspondence reduces to the following one-to-one correspondence{

basic cluster-tilting
objects in CMR

}
←→

{
crepant resolutions
fi : Xi → SpecR

}
.

Now, suppose there is an MMA of the form EndR(M), whereM is a basic MM module
withM0

∼= R andM1, . . . ,Mt the non-free indecomposable summands ofM . By the above
bijection, M is in one-to-one correspondence with a minimal model f : X → SpecR. This
extends to a bijection between the indecomposable summands of M and the (exceptional)
curves in the corresponding minimal model. The bijection is illustrated in Figure 3.3.

. . .

C1

C2

C3

M

=

R
⊕
M1
⊕
M2
⊕

. . .
⊕
Mt

X

f

SpecR

Figure 3.3: One-to-one correspondence of non-free indecomposable summands of a basic
MM module M and the (exceptional) curves in the corresponding minimal model.



36 CHAPTER 3. NONCOMMUTATIVE MINIMAL MODELS



Chapter 4

Viehweg’s setting

In this chapter, we study rings of the form

A :=
C[u, v, x1, . . . , xn]

(uv − fa11 · · · fatt )
, (4.0.A)

where the fi ∈ C[x1, . . . , xn] are irreducible and pairwise coprime and each ai is at least
one. In particular, each fi is non-constant. Such rings form part of Viehweg’s setting
(see §1.4). In this chapter we compute the divisor class group of A in general, and the
Grothendieck group of A when n = 1. The main result, Theorem 4.2.2, asserts that in the
global setting, when n = 1, the isomorphism (1.1.A) holds for A. In §4.3, we apply these
results to the centres of type A deformed preprojective algebras.

4.1 Determining class groups using Nagata’s Theorem

In this section, we determine the divisor class groups of A, as above, using Nagata’s
theorem (Theorem 2.4.1). To begin, we require the following.

Lemma 4.1.1. The scheme X = SpecA is reduced and irreducible (equivalently, A is an
integral domain) and it is normal.

Proof. Every hypersurface in affine (n + 2)-space is a complete intersection. Complete
intersections are CM and they are normal if and only if the singular locus has codimension
at least two [Har77, II, Proposition 8.23]. By the Jacobian criterion, the singular locus is
included in the locus (u = v = 0). This subvariety has dimension (n + 2) − 3 = n − 1.
Therefore, the singular locus has codimension at least (n+ 1)− (n− 1) = 2 in X. Hence
A is a normal ring.

We next claim A is a domain. Since A is a normal ring, it automatically decomposes
into a product of normal domains A ∼= A1 ⊕ · · · ⊕ Am [Mat00, Exercise 9.11]. We claim
m = 1. Consider U1 = {u 6= 0} = SpecC[u±1, x1, . . . , xn], (which is connected since

37
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this ring is a domain). Similarly, U2 = {v 6= 0} is connected. Then these are open sets
contained in the smooth locus of X. Thus we have the following two facts:

(a) The complement to U = U1 ∪ U2 has codimension 2 in X.

(b) U1 ∩ U2 6= ∅.

Fact (a) is true since X rU is defined by u = v = fa11 · · · fatt = 0, and so is a hypersurface
in Cn. Fact (b) can be seen by taking u = v = 1 and finding a point in Y = {xi |
fa11 · · · fatt = 1}.

Since U1 and U2 are connected and their intersection is nonempty, U is connected.
Since U is smooth and connected, it is irreducible. Indeed, all stalks of points in U

are regular local rings, which are domains. For any point lying on the intersection of
irreducible components, the local ring at that point is not a domain: it has as many
minimal prime ideals as the number of irreducible components (see part (2) of [Sta18, Tag
00ET]). Hence U is contained in some irreducible component Y of X = SpecA (see,
e.g. part (1) of [Sta18, Tag 004W]). But the irreducible components of SpecA are the
SpecAi, and so U ⊆ SpecAi for some i. Since A is a hypersurface, it is equidimensional;
see the remarks following Definition 10.134.1 of [Sta18, Tag 00S8]. This implies that
dim SpecAi = n+ 1 for all i. Given that we have shown that dimX r U ≤ dimX − 2, it
follows that m = 1.

Note that u ∈ A is a non-zero element and observe that

A[u−1] =
C[u±1, v, x1, . . . , xn]

(v = u−1f1
a1 . . . ft

at)
= C[u±1, x1, . . . , xn].

Therefore, A[u−1] is a UFD. As such, every prime ideal of height one in A[u−1] is principal
[Mat00, Theorem 20.1].

Lemma 4.1.2. The units in A[u−1] are C× × 〈u〉.

Proof. From the above A[u−1]× = C[u±1, x1, . . . , xn]×. Now, take Q = C[u, x1, . . . , xn] and
q = u, so Q[q−1]× = A[u−1]×. By Proposition 2.2.13, Q[q−1]× = Q× × 〈q〉, thus

A[u−1]× = C[u, x1, . . . , xn]× × 〈u〉.

By Lemma 2.2.12, C[u, x1, . . . , xn]× = C× and the result follows.

This result leads to the following description of the units of A.

Lemma 4.1.3. The units in A are C×.

https://stacks.math.columbia.edu/tag/00ET
https://stacks.math.columbia.edu/tag/00ET
https://stacks.math.columbia.edu/tag/004W
https://stacks.math.columbia.edu/tag/00S8
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Proof. By Lemma 4.1.1, A is a domain, so the natural ring homomorphism A → A[u−1]

is injective. Since homomorphisms preserve units this induces an injective map A× →
A[u−1]×. Using this together with Lemma 4.1.2, if a ∈ A×, then a = λuk for some λ ∈ C×

and some k ∈ Z. Necessarily, uk is a unit in A, since a and λ are both units.
Since f1 is not constant it has a root c which is equal to (c1, . . . , cn). Now the ring

homomorphism ϕ : A → A/(u, x1 − c1, . . . , xn − cn) = C[v] sends u to 0. Thus ϕ(uk) =

ϕ(u)k = 0, hence uk cannot be a unit unless k = 0, since homomorphisms preserve units.
Hence k = 0, so a = λ and thus A× = C×.

For the following result consider the ring

T := A/(u) =
C[v, x1, . . . , xn]

(fa11 . . . fatt )
.

Lemma 4.1.4. There are finitely many prime ideals of height zero in T , and they are all
of the form (fi) for some i.

Proof. Suppose that I is a height zero prime ideal in T . Necessarily, fa11 . . . fatt is in I.
Hence there must be some fi ∈ I, which implies that (fi) ⊆ I. But T/(fi) ∼= C[v,x1,...,xn]

(fi)
,

with fi irreducible. Therefore T/(fi) is an integral domain and so (fi) is a prime ideal of
T . Since I has height zero, (fi) = I. This shows that (fi) is a height zero prime ideal, and
all height zero prime ideals are of this form.

Lemma 4.1.4 allows us to give a precise description of the height one prime ideals of
div(u) where div is defined in §2.2.

Lemma 4.1.5. The only prime ideals of height one appearing in div(u) are pi = (u, fi).

Proof. Notice that the ideal pi = (u, fi) is a prime ideal in A since

A/pi ∼=
(
C[u, v, x1, . . . , xn]

(uv − fa11 . . . fatt )

)
/(u, fi)

= C[v, x1, . . . , xn]/(fi)

which is an integral domain since fi is irreducible. Furthermore, C[v, x1, . . . , xn]/(fi) is
the coordinate ring of a hypersurface in An+1, thus dimA/pi = n. By Theorem 2.2.10

ht(pi) + dimA/pi = dimA,

hence ht(pi) = 1. Hence the (u, fi) are height one primes of A, which under A→ A/(u) =

T clearly map to (fi).
By Lemma 4.1.4 the (fi) are all height zero prime ideals of A/(u), hence under the

bijection in Theorem 2.2.11, it follows that the only height one prime ideals of A containing
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u are those of the form pi = (u, fi). By Corollary 2.2.5 these are precisely the height one
prime ideals appearing in div(u).

By Lemma 4.1.5 it follows that div(u) =
∑t

i=1 bi(u, fi) for some positive integers bi.

Lemma 4.1.6. Let ai be the exponents in the defining equation of the ring A and bi the
coefficients defined above. Then bi = ai.

Proof. Without loss of generality, we may assume i = 1. The proof for i > 1 is similar.
Set p1 := (u, f1). We begin by showing that v, fa22 . . . fatt /∈ p1. The methods for proving
this for v and faii are slightly different.

First we show that v /∈ p1. Suppose that v ∈ p1. Then A/p1 = A/(u, f1, v) is
isomorphic to C[x1, . . . , xn]/(f1) which is an integral domain since the fi are irreducible.
It is a ring of dimension n − 1. Therefore, by Theorem 2.2.10, (u, f1, v) = p1 is a height
two prime ideal of A. This contradicts the fact that ht(p1) = 1, thus v /∈ p1.

Next, we show that fa22 . . . fatt /∈ p1. If fa22 . . . fatt ∈ p1 then there exists some i such that
fi ∈ p1. Without loss of generality, we may assume f2 ∈ p1. Then A/p1 = A/(u, f1, f2)

is isomorphic to C[v, x1, . . . , xn]/(f1, f2). As before, factoring by f1 gives a domain since
f1 is irreducible. By assumption f2 /∈ (f1). By Theorem 2.2.10, the Krull dimension of
A/p1 is (n − 1) minus the minimum of the heights of the prime ideals containing f2 in
C[v, x1, . . . , xn]/(f1). Since the latter ring is a domain and f2 is not a unit in this ring,
the height of all prime ideals containing (f2) is at least one. Hence, the Krull dimension
of A/p1 is at most n− 2. This implies that (u, f1, f2) = p1 is not a height one prime ideal
of A. Again, this is a contradiction, thus f2 /∈ p1.

By definition, the element u ∈ Ap1 can be written as sπνp1 (u)
p1 for some unit s ∈ A×p1

and νp1(u) as defined in Theorem 2.2.3. Thus v, f2, . . . , ft are all units in Ap1 and u =

v−1fa11 . . . fatt . This has two consequences. First, p1Ap1 = (u, f1)Ap1 is generated by f1.
So πp1 = f1. Second,

u = fa11 (v−1fa22 . . . fann ),

and thus, νp1(u) = a1. The proof that νpi(u) = ai for i > 1 is identical.

By Lemma 4.1.6, div(u) =
∑t

i=1 ai(u, fi).

Theorem 4.1.7. Let A be as in (4.0.A). Then

Cl(A) ∼= Z⊕t/(a1, . . . , at).

Proof. Together, Lemmas 4.1.2, 4.1.3, and 4.1.6 imply that the exact sequence (2.4.A) can
be rewritten as

0→ A× = C× −→ C× × 〈u〉 −→
t⊕
i=1

Z(u, fi) −→ Cl(A) −→ Cl(A[u−1])→ 0.
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Since A[u−1] is a UFD, Proposition 2.2.7 says that the class group of A[u−1] is trivial.
Hence the above sequence becomes

0→ C× −→ C× × 〈u〉 −→
t⊕
i=1

Z(u, fi) −→ Cl(A)→ 0.

Splicing gives the short exact sequence

0 −→ Z〈u〉 ψ−→
t⊕
i=1

Z(u, fi) −→ Cl(A) −→ 0

where ψ is given by u 7→ div(u). By Lemma 4.1.6, div(u) =
∑t

i=1 ai(u, fi). This simplifies
to the short exact sequence

0 −→ Z γ−→ Z⊕t −→ Cl(A) −→ 0

where γ is given by 1 7→ (a1, . . . , at). It follows that

Cl(A) = Z⊕t/(a1, . . . , at).

4.2 The K-theory of A

In this section, we use algebraic K-theory to compute the divisor class group of type
A Kleinian singularities. In the local case, the isomorphism (1.1.A) was already known
to hold by [Yos90, Lemma 13.3]. In fact, it is known to hold for any 2-dimensional
local integral domain. But here we consider global situations. As such, the result in
Theorem 4.2.2 is new and covers a wider range of rings.

Recall that G0(R) := K0(modR), where modR is the category of finitely generated
left R-modules as in §2.3. The ring A, as in (4.0.A), is equal to

C[u, v, x1, . . . , xn]

(uv − f(x1, . . . , xn))
.

Proposition 4.2.1. Let m be a maximal ideal of A. Then [A/m] = 0 in G0(A).

Proof. By Hilbert’s Nullstellensatz every maximal ideal m of A is of the form

m = (u− a, v − b, x1 − c1, . . . , xn − cn)

for some a, b, c1, . . . , cn ∈ C. Suppose b = 0, and consider the ideal p = (v, x1−c1, . . . , xn−
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cn). Notice that this is a prime ideal of A since

A/(v, x1 − c1, . . . , xn − cn) ∼= C[u],

which is an integral domain. Thus, by Lemma 2.5.5, [A/m] = [A/p + (u− a)A] = 0. The
case of a = 0 follows by symmetry. Hence we can suppose a 6= 0 and b 6= 0. In particular,
since m is a maximal ideal of A, ab− f(c1, . . . , cn) = 0. So, f(c1, . . . , cn) 6= 0.

In order to prove the statement it suffices to find a prime ideal p such that v − b /∈ p

but p+ (v− b)A = m. Consider the ideal p := (x1 − c1, . . . , xn − cn). Setting λ := ab 6= 0,

A/(x1 − c1, . . . , xn − cn) ∼=
C[u, v]

(uv − λ)
∼= C[u, u−1]

where the latter isomorphism is given by v 7→ 1
λ
u−1. This quotient is an integral domain,

so p is a prime ideal. Furthermore,

p + (v − b)A = (x1 − c1, . . . , xn − cn) + (v − b)A

= (v − b, x1 − c1, . . . , xn − cn).

Now we need to show that n := (v − b, x1 − c1, . . . , xn − cn) equals m. Observe that
A/n ∼= C, which is a field. Thus n is a maximal ideal of A and by Lemma 2.5.5, [A/n] = 0.
Since n ⊆ m and n is maximal, it follows that n = m. Thus [A/m] = 0, as desired.

At the outset, we were not expecting the following result.

Theorem 4.2.2. Let A be as in (4.0.A). If A has Krull dimension 2 then (1.1.A) holds,
that is,

G0(A) ∼= Z⊕ Cl(A).

Proof. By Proposition 4.2.1, [A/m] = 0 for all maximal ideals of A. Since A is 2-
dimensional and equidimensional, all of its maximal ideals are height two prime ideals.
Thus, by Proposition 2.5.6, G̃0(A) ∼= Cl(A). Recall that G0(A) decomposes as in (2.5.A)
via the rank map. Hence

G0(A) ∼= Z⊕ G̃0(A)

∼= Z⊕ Cl(A).

In future sections we will evidence other situations in which (1.1.A) holds. In particular,
we will prove that there exists an isomorphism (1.1.A) for certain local cDV singularities.
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4.3 K-theory of deformed preprojective algebras

The techniques of §4.1 and §4.2 work especially well for surfaces coming from deformed
preprojective algebras. The main result of this section gives an explicit isomorphism
between the description given in [CBH98, Theorem 10.2] of the Grothendieck group of the
centre Oλ of the deformed preprojective algebra of a type Ã quiver and our computation
of the Grothendieck group coming from Theorem 4.2.2.

The results in [CBH98] are for general extended Dynkin type. Here, we restrict to
extended Dynkin type Ã. Recall from §3.5.1 the rings Sλ and Oλ where λ = (λ0, . . . , λn).
The ring Oλ has Krull dimension 2 and, assuming λ · δ = 0, it is a commutative ring.

The (finite) root system of type A is the root system of the Lie algebra sln+1. The Car-
tan subalgebra of this Lie algebra can be realised as the vector space h of diagonal matrices
of trace zero. Therefore, the dual space of h is h∗ = SpanC{r0, . . . , rn}/(r0+· · ·+rn). Inside
this complex vector space we have the weight lattice L = SpanZ{r0, . . . , rn}/(r0 + · · ·+ rn)

and the root lattice Q spanned by the set of simple roots ∆ = {r0 − r1, . . . , rn−1 − rn}.
The associated root system is Φ = {ri − rj | i 6= j}. Let 〈−,−〉 denote the natural pairing
between h∗ and h. Now, given a weight λ ∈ h, we define Φλ = {α ∈ Φ | 〈α, λ〉 = 0} and
Qλ = SpanZ Φλ in Q. Write νi := λ0 + · · ·+ λi where i = 0, . . . , n.1

In [CBH98, Lemma 10.1], Crawley-Boevey–Holland show that for all i ≥ 0,

Ki(projSλ) = Ki(Sλ) ∼= Ki(C)Q0 .

They go on to give a full description of K0(Oλ) and G0(Oλ). Set µ = (λ1, . . . , λn), which is
the weight vector λ without the weight at vertex 0. Quillen’s localisation (Theorem 2.3.6)
gives a short exact sequence

G0(Πµ)
ϕ−→ G0(Πλ)→ G0(Oλ)→ 0. (4.3.A)

Let ti be the class of the finitely generated projective module Πλei in G0(Πλ). By [CBH98,
§10], since Πλ has finite global dimension, it follows that G0(Πλ) is a free abelian group
with basis ti where i = 0, . . . , n. The simple Πµ-modules are in bijection with the vertices
i of the quiver of Πµ such that λi = 0 [CBH98, Lemma 6.1]. Write I for the vertex set
of these vertices and denote the corresponding simple modules by Si. These Si have a
resolution over Πλ given by

0→ Πλei →
⊕
a : j→i
in Q̄

Πλej → Πλei → Si → 0. (4.3.B)

1This is the same as in Appendix A, just shifting the index by −1.
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From this resolution it follows that the image of Si in G0(Πλ) is 2ti − ti−1 − ti+1. This
leads to the following result.

Theorem 4.3.1. Let λ = (λ0, . . . , λn). Assume that λ · δ = 0 and that λi ≥ 0 for all
vertices i = 1, . . . , n. Then

G0(Oλ) =

⊕n
i=0 Zti

(2ti − ti−1 − ti+1 | λi = 0)

and the rank of G0(Oλ) is n + 1− |I|.

Proof. This is precisely the result given in [CBH98, Theorem 10.2] when λ · α = 0 for
some α ∈ Φ. When λ · α 6= 0 for every α ∈ Φ, Oλ is Morita equivalent to Πλ by [CBH98,
Corollary 6.9] and I = ∅. In this case, the left most term of (4.3.A) is zero and the map
G0(Πλ)→ G0(Oλ) is an isomorphism.

In other words, G0(Oλ) ∼= G0(Πλ)/ Im(ϕ) where the map ϕ is as in (4.3.A), which
describes the image of each Πµ-module Si. Using Theorem 4.1.7 we give a Lie-theoretic
description of the class group of Oλ.

Lemma 4.3.2. Let L and Qλ be as above. The class group of Oλ is isomorphic to L/Qλ.

Proof. Combining Theorem 4.1.7 and Theorem A.0.3,

Cl(Oλ) ∼= Z⊕t/(a1, . . . , at) ∼=
t⊕
i=1

Z · si/(a1s1 + · · ·+ atst).

Decompose [0, n] =
⊔t
j=1 Ij, where x, y ∈ Ij if and only if νx = νy. Then |Ij| = aj. So we

define the map L/Qλ → Cl(Oλ) by ri 7→ sj if i ∈ Ij. Then the relation r0 + · · · + rn = 0

becomes a1s1 + · · ·+atst = 0 and the relations generated by Qλ are just saying that ri and
rk are mapped to the same thing if and only if νi = νk. Thus, it is an isomorphism.

Recall that ti denotes the class of Πλei in G0(Πλ). If the minimal imaginary root is
δ =

∑n
i=0 δiti then, since Q̄ has underlying type Ã, we have δi = 1 for all i = 0, . . . , n. In

this case, the rank map on G0(Oλ) sends ti to 1 (more generally, it sends a vector w to
w · δ). The kernel is spanned by all elements ti− tj. Write P for the Z-lattice spanned by
these elements, so that P is the kernel of the rank map. By Theorem 4.3.1,

G0(Oλ) ∼=
⊕n

i=0 Zti
(2ti − ti−1 − ti+1 | λi = 0)

∼= Z⊕ P

(2ti − ti−1 − ti+1 | λi = 0)
,

where the copy of Z in the second line is the image of the rank map. We define an
isomorphism L→ P by ri 7→ ti − ti−1.
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Lemma 4.3.3. Assume that λi ≥ 0 for all i = 1, . . . , n. The isomorphism L→ P extends
to an isomorphism L/Qλ ∼= P/(2ti − ti−1 − ti+1 | λi = 0).

Proof. Note that if λi ≥ 0 for all 1 ≤ i ≤ n, then Qλ is the lattice generated by all ri−ri−1

for all i with νi = νi−1. This is the same as all i such that λi = 0. Moreover, the image of
ri − ri−1 under the map L→ P is 2ti − ti−1 − ti+1. It follows that the image of Qλ under
the isomorphism L → P is precisely the submodule generated by all 2ti − ti−1 − ti+1 for
λi = 0.

Combining Theorem 4.3.1, Lemma 4.3.2, and Lemma 4.3.3 gives our main result in
this section.

Corollary 4.3.4. Let Q̄ be type Ã and assume that λi ≥ 0 for all i = 1, . . . , n. Then

G0(Oλ) ∼= Z⊕ Cl(Oλ),

with Cl(Oλ) ∼= L/Qλ ∼= P/(2ti − ti−1 − ti+1 | λi = 0).

4.4 Limitations of techniques

Initially, the techniques used and described in this chapter appear to be quite promis-
ing. It is possible to use Theorem 2.4.1 to compute the divisor class group of the Kleinian
singularity of type D̃4. Using this method, the class group of such an (undeformed)
Kleinian singularity is Z/2Z⊕Z/2Z. Unfortunately, the method does not appear to work
for D̃n where n > 4. The difficulty occurs in the first step of the process, trying to prove
that an appropriate localisation of the ring is a UFD.

Not only does the use of Theorem 2.4.1 become more complicated when moving past
type A surfaces, but as we will see in Chapter 6, computing class groups and Grothendieck
groups becomes far more difficult in higher dimensions, where there is a significant increase
in the amount of information one needs to track. These challenges aside, we still lift the
results of this chapter to various rings in dimension 3.
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Chapter 5

Knitting

In this chapter, we compute the quiver of EndR(
⊕

i∈I Vi) when R is a Kleinian singular-
ity and {Vi}i∈I is a subset of the CM R-modules. The main result, Theorem 5.2.1, asserts
that the quiver is always symmetric. This fact will be a crucial ingredient in computing
the K-theory of cDV singularities in §6.3.

We use AR-theory and an application of the knitting algorithm to compute these quiv-
ers. In §3.3 we introduced AR-sequences and AR-quivers, remarking that, in dimension
two, the AR-quiver of ADE surface singularities coincides with the McKay quiver. Knit-
ting on this AR-quiver allows us, in Theorem 5.2.4, to give an exact description of the
possible number of arrows between vertices in the quiver of EndR(

⊕
i∈I Vi).

The AR-quivers studied in this chapter are described in Figure 5.1.
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5.1 Knitting algorithm

Let (∆aff)0 be the set of vertices of the extended ADE Dynkin graph ∆aff , and I ⊆
(∆aff)0 a subset which contains the extended vertex 0. Set ΓI := eIΠeI ∼= EndR(

⊕
i∈I Vi)

where Π is the preprojective algebra of ∆aff , eI =
∑

i∈I ei, and R is a Kleinian singularity.
Then ΓI can be written as a quiver with relations, where the vertices are in bijection with
I and the number of arrows between vertices in the quiver of ΓI is determined using the
following knitting algorithm (see, e.g. [Wem11, Corollary 3.3], [IW10]).

Knitting Algorithm 5.1.1. Let j ∈ I and consider the AR-quiver with underlying graph
∆aff .

1. Draw the translation quiver and circle each vertex in I. For example, for D̃7 with
I = {0, 2, 5} the translation quiver with circled vertices is as follows.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

...

2. Starting in the leftmost occurrence of the vertex j, at this vertex j write 1 with a
box around it and write 0 at all other vertices in the same column. Call this the
first column.

3. Consider now the second column, which is the next column to the right of the first
column. Then, for each vertex k in the second column, if there is an arrow from
vertex j to vertex k in the translation quiver, write 1 at this vertex k. Otherwise,
write 0 at this vertex k.

4. Assume that the first l ≥ 2 columns of the translation quiver have been filled. Then,
to fill in the (l + 1)st-column, proceed as follows: the value at a vertex r (in column
l+ 1) is equal to the sum of all the values at vertices s in column l where there is an
arrow from vertex s to vertex r in the translation quiver, minus the value at vertex r
in column l− 1. If any value is circled, then consider it to be equal to 0 (the square
box at vertex j is not considered circled).

5. Repeat step (4) until a value of −1 occurs, then stop.
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6. For each vertex i ∈ I, write rj,i for the sum of the non-negative values at all vertices
i in the translation quiver. The values at these vertices in the translation quiver
should be circled since i ∈ I.

The vertex j with the boxed 1, the vertices with circled values, and with the −1 can all be
used to obtain exact sequences which have various universal properties (see, e.g. [IW10,
4.4]). For our purposes, it suffices to solely pay attention to the circled values. This
becomes apparent in the following result; for further details, see [Wem11, §4].

Theorem 5.1.2. For each vertex i ∈ I, the value of rj,i in the above calculation is precisely
the number of arrows from vertex j to vertex i in the quiver of ΓI .

Remark 5.1.3. This result fixes j and applies the knitting algorithm to produce rj,i. It
is also possible to fix i and knit to obtain ri,j, but this requires us to adapt the algorithm
slightly. We do this as follows: Step (2) begins in the rightmost column of the translation
quiver, and we move left. Step (3) and Step (4) are similar but are achieved by moving
from right to left. As in Step (5), we stop when a −1 occurs. Step (6) is also similar,
that is, for each i ∈ I, write ri,j for the sum of the non-negative values at all vertices i in
the translation quiver. Just as before, for each vertex i, the value of ri,j is precisely the
number of arrows from any vertex i to vertex j in the quiver of ΓI .

We illustrate both algorithms in the following example.

Example 5.1.4. Consider the AR-quiver of D̃6 with vertices labelled 0, . . . , 6 as in Fig-
ure 5.1d. Let I = {0, 1, 3} and suppose we want to determine the number of arrows from
vertex 0 to some vertex i in the quiver of ΓI . We start the knitting algorithm by drawing
the translation quiver from Figure 5.1d, omitting any labels.

Since we are calculating the number of arrows out of vertex 0 in the quiver of ΓI , we
will start the knitting calculation in the leftmost column of the translation quiver and
add more columns to the right as needed. Now, circle all positions corresponding to the
vertices in I. In this example, we circle vertices 0, 1, and 3 repeatedly. In the position of
vertex 0 in the first column place a boxed 1, and in all other vertices in the first column,
write 0.



5.1. KNITTING ALGORITHM 51

1

0

0

0

0

The first column is completely filled in, so we move to the second column. By Step (3),
since there is an arrow from vertex 0 to vertex 2, write 1 as the value at vertex 2 in the
second column. All other vertices in the second column have no arrow from vertex 0, and
so write 0 at all other vertices in the second column.

1

0 1

0

00

0

With the first two columns filled, we proceed to Step (4) to calculate the third column.
In the following illustration the red vertices and arrows are those under consideration.
Observe that vertex 0 in column 3 (the red circled a) has an arrow coming from vertex 2

in column 2 (the red 1) and the value of vertex 0 in column 1 (the red boxed 1) is 1. So,
following the instructions in Step (4), as indicated by the calculation of a below, vertex 0

in column 3 has a value of 0.

1

0 1

0

00

0

a a = 1 − 1 = 0

Similarly, in column 3 the values at vertices 1 and 3 are both 1 (notice that they are
also circled) and the values at 4 and 5 are both 0 (these vertices are not circled).
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1

0 1

0

00

0

0

1

1

0

0

Next, we repeat Step (4). Since the circled 1’s behave as zero, in this example the −1

appears in vertex 2 in column 4 of the translation quiver.

1

0 1

0

00

0

0

1 −1

1

00

0

For Step (6), suppose that i = 1, then sum the values in all occurrences of the circled
vertex 1 in the translation quiver. We see that r0,1 = 1. Similarly, r0,0 = 0 and r0,3 = 1.
Hence, there is precisely one arrow from vertex 0 to vertex 1 in the quiver of ΓI and one
arrow from vertex 0 to vertex 3 in the quiver of ΓI .

Now, to determine the number of arrows to vertex 0 in the quiver of ΓI we repeat the
knitting algorithm but start at vertex 0 in the rightmost column of the translation quiver
and move left. The result of Steps (1)–(5) is summarised by the following diagram.

−1

0

0

1 1

1

00

0

1

0

0

0

0

For Step (6), sum the circled values at each occurrence of the chosen vertex i to see
r0,0 = 0, r1,0 = 1, and r3,0 = 1. Thus, in the quiver of ΓI , there is one arrow from vertex 1

to vertex 0, and one arrow from vertex 3 to vertex 0.
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5.2 Knitting results

In Example 5.1.4 there is a striking symmetry appearing between the knitting calcu-
lations which go left to right and those which go right to left. In fact, combining the final
calculations in Example 5.1.4 gives the following, where the dotted line represents a line
of reflection.

−1

0

0

1 1

1

00

0

1

0 1

0

00

0

0

1 −1

1

00

0

With this depiction it becomes clear that, for i, j ∈ I where I = {0, 1, 3},
# arrows j → i in the quiver of ΓI = rj,i

= sum of values at circled i from centre to right

= sum of values at circled i from centre to left

= ri,j

= # arrows i→ j in the quiver of ΓI .

We use and extend this symmetry in the main result of this chapter, Theorem 5.2.1. For
type A, the line of reflection looks visually different from the one above. In particular, it is
diagonal. Despite this visual difference, it is still a line through the original boxed vertex.

0

n

n− 1

n− 2

...

0

1

0

n

n− 1

...

1

2

1

0

n

...

2

3

2

1

0

...

3

· · ·

· · ·

· · ·

· · ·

. . .

· · ·

0

n

n− 1

n− 2

...

0
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The main result of this chapter shows that the quiver ΓI is always symmetric. That
is, the number of arrows from i to j equals the number of arrows from j to i.

Theorem 5.2.1. For any I ⊆ (∆aff)0, ri,j = rj,i in the quiver of ΓI .

Proof. If i = j, then there is nothing to prove as ri,i = ri,i. So, assume i 6= j. Then
the number of arrows ri,j from vertex i to vertex j in the quiver of ΓI can be calculated
via the knitting algorithm starting in the leftmost column and moving right. In exactly
the same way, the number of arrows rj,i from vertex j to vertex i in the quiver of ΓI can
be calculated via the knitting algorithm starting in the rightmost column and moving
left. As explained above (see, e.g. [Aus86]), the AR-quiver of ADE surface singularities
coincides with the McKay quiver, which, in Figure 5.1 is visibly symmetric. Hence, ri,j
can be obtained from rj,i by reflecting in the line through the original boxed vertex, and
vice versa. Therefore, ri,j = rj,i for all i, j ∈ (∆aff)0 in the quiver of ΓI .

The final result, Theorem 5.2.4, together with intersection theory, is sufficient to obtain
the full quiver of ΓI . However, we refrain from stating the quivers explicitly since in §6.3
we are only concerned with the number of arrows in to and out of vertex 0 in the quiver
of ΓI . To state the final result of this chapter, we require the following lemma.

Lemma 5.2.2. Let ∆ = An, and consider ∆aff . Then, for any I ⊆ (∆aff)0, the quiver of
ΓI is the double of the extended Dynkin diagram of type A|I|−1 (the extended diagram has
|I| vertices), possibly with some loops.

Proof. Write I = {i0, i1, . . . , is, . . . , im} where i0 < i1 < · · · < is < · · · < im. In this
calculation, we wish to determine the number of arrows in to and out of vertex is ∈ I.
Below we will consider subscripts mod m + 1, so im+1 = i0, etc. For ease of reading,
we omit all arrows in the translation quiver. The result of Steps (1)–(5) of the knitting
algorithm is as follows:

is−1

is+1

1

1

1

...

1

0

1 1 · · · 1 0

b 0 · · · −1

0

...

−1

0

where −1 ≤ b ≤ 1. Indeed, regardless of which vertices are in I, the first time a circled
value of 1 will occur will be at vertex is−1 or vertex is+1 (where the subscripts are taken
mod m + 1). The values at all vertices from there on become 0 or −1, as indicated by
the blue lines above. In fact, if |I| > 3 then the only vertices which end up potentially
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having arrows coming from vertex is in the quiver of ΓI are is−1, is, and is+1. Hence, for
any iq ∈ I where iq is distinct from is−1, is, and is+1, there are no arrows from vertex is to
vertex iq in the quiver of ΓI . Thus we need only consider the vertices is−1, is, and is+1.

By inspection, if is−1 = is+1 (which can happen if s = 0 or s = m since the subscripts
are mod m+1) then there are two arrows from vertex is to vertex is−1 = is+1 in the quiver
of ΓI and potentially one loop at vertex is in the quiver of ΓI . While, if is−1 6= is+1 then,
in the quiver of ΓI , there is one arrow from vertex is to vertex is−1, one arrow from vertex
is to vertex is+1, and potentially one loop at vertex is. Hence, the quiver is as stated.

This result is best understood through an example.

Examples 5.2.3. In this example we look at the two situations mentioned in the proof.
The first is when is−1 = is+1 and the second is when is−1 6= is+1.

1. To see what occurs when is−1 = is+1 consider the AR-quiver Ã4. Suppose I1 = {0, 1}
and I2 = {0, 2}, where in both cases is = 0, and is−1 = is+1 is either 1 or 2

respectively. After running the knitting algorithm, we obtain the following.

1

1

1

1

1 0 0

0 0 0

0

−1

0

(a) I1 = {0, 1}

1

1

1

1

1 1 0

1 −1

0

−1

0

(b) I2 = {0, 2}

Figure 5.2: Circled values for varying I in A4

As demonstrated by Figure 5.2a, there are two arrows from vertex 0 to vertex 1 in
the quiver of ΓI1 and no loops. As for the quiver of ΓI2 , from Figure 5.2b, there are
two arrows from vertex 0 to vertex 2 in the quiver of ΓI2 and one loop at vertex 0.

2. To see what occurs when is−1 6= is+1 consider the AR-quiver Ã5. Suppose I3 =

{0, 1, 4} and I4 = {0, 2, 4}. In both cases is = 0 and is+1 = 4, and is−1 is either 1 or
2 respectively. Again, the knitting algorithm gives the following.

1

1

1

1 0

0 0

−1

(a) I3 = {0, 1, 4}

1

1

1

1 1

1 −1

−1

(b) I4 = {0, 2, 4}

Figure 5.3: Circled values for varying I in A5
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From Figure 5.3a, there is one arrow from vertex 0 to vertex 1 and one arrow from
vertex 0 to vertex 4 in the quiver of ΓI3 and there are no loops. As for the quiver of
ΓI4 , from Figure 5.3b, there is one arrow from vertex 0 to vertex 2, one arrow from
vertex 0 to vertex 4, and one loop at vertex 0.

Now, we state the final result. Recall that extended Dynkin diagrams are McKay
quivers, and are often drawn with the dimension δj of the corresponding irreducible rep-
resentation (see §1.3).

Theorem 5.2.4. Let I ⊆ (∆aff)0 and suppose that j ∈ (∆aff)0. Then the number of arrows
r0,j from vertex 0 to vertex j in the quiver of ΓI is either 0, 1, or 2. Furthermore, r0,j = 2

if and only if I = {0, j} and δj = 1.

Proof. We prove this via case-by-case analysis, where Theorem 5.2.1 halves the amount of
work necessary, allowing us to determine only the number of arrows out of vertex 0 in the
quiver of ΓI . In addition, in each of the following cases several vertices are interchangeable,
which, again, lessens the amount of work required. We will note where this occurs. In the
knitting computations below, formally, we say that vertices below vertex i are ‘cut off’
when the algorithm produces 0’s in all rows below vertex i.

1. Consider the AR-quiver Ãn as in Figure 5.1a. This case is covered by Lemma 5.2.2.

2. Consider the AR-quiver D̃4 as in Figure 5.1b. We consider all subsets I ⊆ (∆aff)0 =

{0, 1, 2, 3, 4} which contain 0. Notice that vertices 1, 3, and 4 are effectively inter-
changeable so that I = {0, 1} gives the same circled values in the knitting calculation
as I = {0, 3} and I = {0, 4}. Furthermore, I = {0, 1, 3} gives the same circled values
in the knitting calculation as I = {0, 1, 4}. In addition, if 2 ∈ I then all vertices
other than vertex 0 in the knitting calculation are cut off, and so we get the same
circled values for I = {0, 2, •} where • is any list of numbers 1, 3, and 4.

1

0

0

0

1

0

1

1

1

1

1

1

0

0

−1

(a) I = {0, 1}

1

0

0

0

1

−1

0

0

0

(b) I = {0, 2, •}
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1

0

0

0

1

0

1

1

1

0

0

0

0

−1

(c) I = {0, 1, 3}

1

0

0

0

1

0

1

1

1

−1

(d) I = {0, 1, 3, 4}

Figure 5.4: Circled values for varying I for D̃4

From Figure 5.4a it follows that for I = {0, 1} there are two arrows from vertex 0 to
vertex 1 in the quiver of ΓI (i.e. r0,1 = 2) and one arrow from vertex 0 to itself.

We collate this information in the table below, where the first column corresponds
to the subset I ⊆ (∆aff)0 and the first row to vertices j ∈ (∆aff)0. The values in
the table are the number of arrows r0,j from vertex 0 to vertex j in the quiver of ΓI .
In particular, a value of zero has three different implications. The first, denoted 0,
means j ∈ I and r0,j = 0. The second, denoted 0, means j /∈ I so that r0,j = 0. The
third, denoted 0, means j is possibly in I and, if j ∈ I, then r0,j = 0.

0 1 2 3 4
{0, 1} 1 2 0 0 0
{0, 2, •} 0 0 1 0 0
{0, 1, 3} 0 1 0 1 0
{0, 1, 3, 4} 0 1 0 1 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0, 1, or 2.

3. Consider the AR-quiver D̃5 with vertices labelled as in Figure 5.1c. We consider all
subsets I ⊆ (∆aff)0 = {0, 1, 2, 3, 4, 5} which contain 0. If 2 ∈ I then all vertices other
than vertex 0 in the knitting calculation are cut off and so we get the same circled
values in the knitting calculation for I = {0, 2, •} where • is any list of numbers
1, 3, 4, and 5. If 3 ∈ I then vertices 4 and 5 in the knitting calculation are cut off.
Thus, the circled values for I = {0, 3, •} where • is any list of numbers 4 and 5 in
the knitting calculation are the same. Similarly, the circled values for I = {0, 1, 3, •}
where • is any list of 4 and 5 are the same. It follows that we need only consider
the specific cases shown in Figure 5.5.
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1

0 1

0 0

0

0

1 0

1 1

1

0

0 1

1 0

0

1

1 −1

0 0

0

(a) I = {0, 1}

1

0 1

0 0

0

−1

0

0

(b) I = {0, 2, •}

1

0 1

0 0

0

0

1 0

1 0

0

0

−1

0

(c) I = {0, 3, •}

1

0 1

0 0

0

0

1 1

1 1

1

1

0 0

1 1

0

0

0

−1

(d) I = {0, 4}

1

0 1

0 0

0

0

1 1

1 1

1

1

0 0

1 0

1

0

0

−1

(e) I = {0, 5}

1

0 1

0 0

0

0

1 −1

1 0

0

(f) I = {0, 1, 3, •}

1

0 1

0 0

0

0

1 0

1 1

1

0

0 0

0 0

−1

(g) I = {0, 1, 4}

1

0 1

0 0

0

0

1 0

1 1

1

0

0 0

0 −1

0

(h) I = {0, 1, 5}

1

0 1

0 0

0

0

1 1

1 1

1

1

0 −1

0 0

0

(i) I = {0, 4, 5}

1

0 1

0 0

0

0

1 0

1 1

1

0

0

−1

(j) I = {0, 1, 4, 5}

Figure 5.5: Circled values for varying I for D̃5
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As before, in the following table the first column corresponds to the subset I ⊆
(∆aff)0 and the first row to vertices j ∈ (∆aff)0. The values in the table are the
number of arrows r0,j from vertex 0 to vertex j in the quiver of ΓI where 0, 0, and
0 are as above.

0 1 2 3 4 5
{0, 1} 1 2 0 0 0 0
{0, 2, •} 0 0 1 0 0 0
{0, 3, •} 0 0 0 1 0 0
{0, 4} 1 0 0 0 2 0
{0, 5} 1 0 0 0 0 2
{0, 1, 3, •} 0 1 0 1 0 0
{0, 1, 4} 0 1 0 0 1 0
{0, 1, 5} 0 1 0 0 0 1
{0, 4, 5} 1 0 0 0 1 1
{0, 1, 4, 5} 0 1 0 0 1 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0, 1, or 2.

4. Consider the AR-quiver D̃6 with vertices labelled as in Figure 5.1d. We consider all
subsets I ⊆ (∆aff)0 = {0, 1, 2, 3, 4, 5, 6} which contain 0. Notice that vertices 5 and
6 in the knitting calculation are interchangeable so that, in the knitting calculation,
I = {0, 5} gives the same circled values as I = {0, 6}, and I = {0, 1, 5} gives the
same circled values as I = {0, 1, 6}. In addition, if 2 ∈ I then all vertices other
than vertex 0 in the knitting calculation are cut off and so we get the same circled
values in the knitting calculation for I = {0, 2, •} where • is any list of numbers
1, 3, 4, 5, and 6. We continue on in this way where, if 3 ∈ I, then vertices 4, 5 and
6 in the knitting calculation are cut off. Hence, the circled values are the same for
I = {0, 3, •} where • is any list of numbers 4, 5 and 6. If 4 ∈ I then vertices 5 and
6 are cut off, giving the same circled values for I = {0, 4, •} where • is any list of
numbers 5 and 6. Therefore we need only consider the specific cases illustrated in
Figure 5.6, where we have used similar shortened notation to before.

1

0 1

0

00
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1 0

1

10

0
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0
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0 1
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1 −1
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00

0

(a) I = {0, 1}
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1

0 1
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0

(b) I = {0, 2, •}

1
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0

0
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0

0

(c) I = {0, 3, •}

1
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0

00

0

0

1 1

1
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0

1

0 −1
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00

0

(d) I = {0, 4, •}
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0

(e) I = {0, 5}
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0

00

0

0

1 −1

1

00

0

(f) I = {0, 1, 3, •}
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1
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0
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0

0

(g) I = {0, 1, 4, •}
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(h) I = {0, 1, 5}
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0
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1 1
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0
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0

0
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0

0

(i) I = {0, 5, 6}

1

0 1

0

00

0

0

1 0

1
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0

0 0

0

−11

1

(j) I = {0, 1, 5, 6}

Figure 5.6: Circled values for varying I in D̃6
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This leads to the following table where 0, 0, and 0 are as above.

0 1 2 3 4 5 6
{0, 1} 1 2 0 0 0 0 0
{0, 2, •} 0 0 1 0 0 0 0
{0, 3, •} 0 0 0 1 0 0 0
{0, 4, •} 1 0 0 0 1 0 0
{0, 5} 1 0 0 0 0 2 0
{0, 1, 3, •} 0 1 0 1 0 0 0
{0, 1, 4, •} 0 1 0 0 1 0 0
{0, 1, 5} 0 1 0 0 0 1 0
{0, 5, 6} 1 0 0 0 0 1 1
{0, 1, 5, 6} 0 1 0 0 0 1 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0, 1, or 2.

5. Now consider the general case of D̃n for n ≥ 7. As previously, the shape of the AR-
quiver splits the analysis into the following cases, where the values in the columns
are obtained by extending the knitting calculations vertically.

0 1 2 3 4 5 · · · n− 2 n− 1 n
{0, 1} 1 2 0 0 0 0 0 0 0
{0, 2, •} 0 0 1 0 0 0 0 0 0
{0, 3, •} 0 0 0 1 0 0 · · · 0 0 0
{0, 4, •} 1 0 0 0 1 0 0 0 0

...
...

...
{0, n− 2, •} 1 0 0 0 0 0 1 0 0
{0, n− 1} 1 0 0 0 0 0 0 2 0
{0, 1, 3, •} 0 1 0 1 0 0 · · · 0 0 0
{0, 1, 4, •} 0 1 0 0 1 0 0 0 0

...
...

...
{0, 1, n− 2, •} 0 1 0 0 0 0 1 0 0
{0, 1, n− 1} 0 1 0 0 0 0 0 1 0
{0, n− 1, n} 1 0 0 0 0 0 · · · 0 1 1
{0, 1, n− 1, n} 0 1 0 0 0 0 0 1 1

6. Consider the AR-quiver Ẽ6 with vertices labelled as in Figure 5.1e. We consider all
subsets I ⊆ (∆aff)0 = {0, 1, 2, 3, 4, 5, 6} which contain 0. If 1 ∈ I, then all vertices
other than vertex 0 in the knitting calculation are cut off and so we get the same
circled values for I = {0, 1, •} where • is any list of numbers 2, 3, 4, 5, and 6. If
3 ∈ I, then vertex 2 is cut off so that the circled values of {0, 2, 3} are the same as
those of {0, 3}. We continue on in this way. Thus, the circled values for I = {0, 4, •}
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where • is any list of numbers 2, 3, 5, and 6 are the same. Finally, if 5 ∈ I, then ver-
tex 6 in the knitting calculation is cut off. Hence we only need to consider the subsets
{0, 1, •}, {0, 2}, {0, 3, •}, {0, 4, •}, {0, 5, •}, {0, 6}, {0, 2, 5, •}, {0, 2, 6}, {0, 3, 5, •}, and
{0, 3, 6, •}. These are shown in Figure 5.8 where we have used similar shortened no-
tation as above.
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Figure 5.8: Circled values for varying I for Ẽ6

The table is as follows

0 1 2 3 4 5 6
{0, 1, •} 0 1 0 0 0 0 0
{0, 2} 1 0 2 0 0 0 0
{0, 3, •} 0 0 0 1 0 0 0
{0, 4, •} 0 0 0 0 1 0 0
{0, 5, •} 0 0 0 0 0 1 0
{0, 6} 1 0 0 0 0 0 2
{0, 2, 5, •} 0 0 1 0 0 1 0
{0, 2, 6} 1 0 1 0 0 0 1
{0, 3, 5, •} 0 0 0 1 0 1 0
{0, 3, 6, •} 0 0 0 1 0 0 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0, 1, or 2.

7. Consider the AR-quiver Ẽ7 with vertices labelled as in Figure 5.1f. We consider all
subsets I ⊆ (∆aff)0 = {0, 1, 2, 3, 4, 5, 6, 7} which contain 0. If 1 ∈ I then all vertices
other than vertex 0 in the knitting calculation are cut off and so we get the same cir-
cled values for I = {0, 1, •} where • is any list of numbers 2, 3, 4, 5, 6, and 7. We con-
tinue on in this way. Hence, the circled values for I = {0, 2, •} where • is any list of
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numbers 3, 4, 5, 6, and 7 are the same. If 3 ∈ I, then the circled values for I = {0, 3, •}
where • is any list of numbers 4, 5, 6, and 7 are the same. If 4 ∈ I, then the circled val-
ues for I = {0, 4, •} where • is any list of numbers 5 and 6 are the same. If 5 ∈ I, then
vertex 6 in the knitting calculation is cut off. Hence we only need to consider the sub-
sets {0, 1, •}, {0, 2, •}, {0, 3, •}, {0, 4, •}, {0, 5, •}, {0, 6}, {0, 7}, {0, 4, 7, •}, {0, 5, 7, •},
and {0, 6, 7}. These are shown in Figure 5.10 where we have used similar shortened
notation as above.
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Figure 5.10: Circled values for varying I for Ẽ7
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The table is as follows

0 1 2 3 4 5 6 7
{0, 1, •} 0 1 0 0 0 0 0 0
{0, 2, •} 0 0 1 0 0 0 0 0
{0, 3, •} 0 0 0 1 0 0 0 0
{0, 4, •} 0 0 0 0 1 0 0 0
{0, 5, •} 1 0 0 0 0 1 0 0
{0, 6} 1 0 0 0 0 0 2 0
{0, 7} 0 0 0 0 0 0 0 1
{0, 4, 7, •} 0 0 0 0 1 0 0 1
{0, 5, 7, •} 0 0 0 0 0 1 0 1
{0, 6, 7} 0 0 0 0 0 0 1 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0, 1, or 2.

8. Consider the AR-quiver Ẽ8 with vertices labelled as in Figure 5.1g. We consider
all subsets I ⊆ (∆aff)0 = {0, 1, 2, 3, 4, 5, 6, 7, 8} which contain 0. If 1 ∈ I, then all
vertices other than vertex 0 in the knitting calculation are cut off and so we get the
same circled values for I = {0, 1, •} where • is any list of numbers 2, 3, 4, 5, 6, 7, and 8.
We continue on in this way, where if 2 ∈ I, then all vertices other than 0 and 1 are cut
off in the knitting calculation. If 3 ∈ I, then all vertices except 0, 1, and 2 are cut off.
If 4 ∈ I, then vertices 5, 6, 7, and 8 are cut off. If 5 ∈ I, then vertices 6, 7, and 8 are
cut off and if 6 ∈ I then vertex 7 is cut off. Hence, we need only consider the subsets
{0, 1, •}, {0, 2, •}, {0, 3, •}, {0, 4, •}, {0, 5, •}, {0, 6, •}, {0, 7}, {0, 8}, {0, 6, 8, •}, and
{0, 7, 8}. These are shown in Figure 5.13 where we have used similar shortened
notation as above.
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Figure 5.13: Circled values for varying I for Ẽ8
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The table is as follows

0 1 2 3 4 5 6 7 8
{0, 1, •} 0 1 0 0 0 0 0 0 0
{0, 2, •} 0 0 1 0 0 0 0 0 0
{0, 3, •} 0 0 0 1 0 0 0 0 0
{0, 4, •} 0 0 0 0 1 0 0 0 0
{0, 5, •} 0 0 0 0 0 1 0 0 0
{0, 6, •} 0 0 0 0 0 0 1 0 0
{0, 7} 1 0 0 0 0 0 0 1 0
{0, 8} 0 0 0 0 0 0 0 0 1
{0, 6, 8, •} 0 0 0 0 0 0 1 0 1
{0, 7, 8} 0 0 0 0 0 0 0 1 1

Hence, the number of arrows from vertex 0 to any vertex j ∈ (∆aff)0 in the quiver
of ΓI is always 0 or 1.

Using case-by-case analysis, the statement follows.

In the following chapter, we use these results to calculate the K-theory of cDV singu-
larities.
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Chapter 6

Compound Du Val singularities

In this chapter, we study local cDV singularities and investigate their class groups
and Grothendieck groups. Our focus here is on the local; considering the category of all
non-local cDV singularities would, in particular, include the category of all smooth affine
3-folds, and it is not reasonable to expect to be able to compute even the class group
in such generality. We remark that local cDVs are automatically hypersurfaces; see §1.5.
Therefore a singularity being cDV implies it is Gorenstein and hence CM.

6.1 Conjecture and generalities

The main results of this chapter consist of proofs of both (1.1.A) and the following
conjecture in various general situations.

Conjecture 6.1.1. Let R be a local cDV singularity. Then

K0(CMR) ∼= Cl(R).

The following lemma will be useful.

Lemma 6.1.2. For any local ring R there is an exact sequence of groups

0→ 〈[R]〉 → K0(CMR)→ K0(CMR)→ 0. (6.1.A)

Furthermore, this sequence splits if R is a local integral domain. Hence, in that case,
K0(CMR) ∼= 〈[R]〉 ⊕K0(CMR) where 〈[R]〉 ∼= Z.

Proof. For details on this, see [AR86, Chapter 3]. We have 〈[R]〉 ∼= Z since integral
domains have a rank function sending the equivalence class of R to 1.

It is known (see, e.g. [Yos90, Lemma 13.2]) that for a local ring R,

G0(R) := K0(modR) ∼= K0(CMR), (6.1.B)

71
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so we use these interchangeably. To prove that both (1.1.A) and Conjecture 6.1.1 hold
will also require the following.

Lemma 6.1.3. Let R be a local integral domain. Then K0(CMR) ∼= Cl(R) if and only if
G0(R) ∼= Z⊕ Cl(R).

Proof. Assume K0(CMR) ∼= Cl(R). By Lemma 6.1.2, since R is a local integral domain,
K0(CMR) ∼= 〈[R]〉 ⊕K0(CMR). Under our assumption, this implies

K0(CMR) ∼= Z⊕ Cl(R).

Therefore, using the equality (6.1.B), G0(R) ∼= Z⊕ Cl(R).
Now, assume G0(R) ∼= Z⊕ Cl(R). Again, by Lemma 6.1.2, since R is a local integral

domain, we also have G0(R) ∼= Z⊕ K0(CMR). Cancelling Z factors, K0(CMR) ∼= Cl(R)

follows.

This shows that Conjecture 6.1.1 is equivalent to the isomorphism (1.1.A).

Remark 6.1.4. As stated, Lemma 6.1.3 requires R to be an integral domain. We will see
the importance of this requirement in §6.4.

6.2 Symmetric quivers for cDV singularities

In this section we apply our results from Chapter 5 to quivers of modifying algebras
for cDV singularities. We require the following technical setup.

Setup 6.2.1. Let R be a complete local cDV singularity, and M = M0 ⊕M1 ⊕ · · · ⊕Mt

any basic modifying module, where M0
∼= R and the Mi are the non-free indecomposable

summands of M . Set Λ := EndR(M).

We can present Λ as a quiver with relations, where the vertices are labelled 0, . . . , t

corresponding to the modules M0, . . . ,Mt. In general, the quiver of a ring EndR(M)

where R is a Gorenstein 3-fold is not symmetric. However in the cDV Setup 6.2.1, the
main result of this section, Theorem 6.2.5, proves that the quiver of Λ is symmetric. To
do this requires the ‘slicing’ technique as explained in [Wem18].

From §3.6, we know Λ is derived equivalent to some X in a crepant partial resolution
f : X → SpecR. Briefly, the idea is that we ‘slice’ X → SpecR by a generic central
element g ∈ R. By Reid’s general elephant principle [Rei83, Theorems 1.1 and 1.14], this
slicing gives

Xg X

Spec(R/g) SpecR

φ ϕ



6.2. SYMMETRIC QUIVERS FOR CDV SINGULARITIES 73

In particular, R/g is an ADE singularity and φ is a partial crepant resolution. This slicing
technique behaves very nicely; it allows us to consider both M ∈ CMR and M/gM ∈
CMR/g, and for g generic, Λ/g is isomorphic to EndR/g(M/gM). Furthermore, this
extends to indecomposable summands of M and M/gM ; that is, the summand Mi slices
to Mi/gMi for i = 0, . . . , t [Wem18, §5.3]. By the McKay correspondence Mi/gMi is
precisely one of the CM modules corresponding to a vertex in an ADE Dynkin diagram.

Lemma 6.2.2. Let Λ be as in Setup 6.2.1. Then the quiver of Λ/g is symmetric, where
g is a generic central element.

Proof. Write radR for the radical of R. As explained in [IW18, Lemma 5.19]1, and as
above, for generic g ∈ radR, R/g is a Kleinian singularity. Furthermore

Λ/g ∼= EndR/g(M/g).

By Theorem 5.2.1, the quiver of Λ/g is symmetric.

It is known (see, e.g. [Seg08, §1]) that the number of arrows between two vertices is
given by the dimension of the corresponding Ext group of the vertex simples. Let Si
denote the simple modules corresponding to vertices i = 0, . . . , t.

Lemma 6.2.3. Let Λ be as in Setup 6.2.1 and g a generic central element. The action of
g on Ext1

Λ(Sj, Si) is trivial for i 6= j. Furthermore,

dim Ext1
Λ/g(Sj, Si) = dim Ext1

Λ(Sj, Si)

Proof. As explained in [Rot09, Theorem 7.35], elements of Ext1
Λ(Sj, Si) can be thought of

as equivalence classes of short exact sequences

0→ Si → B → Sj → 0.

By construction, it suffices to show that gB = 0 for any such module B.

Now, write radR for the radical of R, which is equal to the unique maximal ideal since
R is local. Then necessarily g ∈ radR, since if g /∈ radR then g would be a unit and
we would have R/g = 0. Furthermore, by [Lam01, Corollary 5.9], radR ⊆ rad Λ so that
g ∈ rad Λ. It follows that gSi = 0 and gSj = 0. Since Si is simple, either gB = 0 or
gB = Si. If gB = Si, then multiplication by g gives an isomorphism B/Si = Sj → Si.
However, i 6= j, so this is a contradiction. Hence, gB = 0 and B is a Λ/gΛ-module. Hence
the first statement holds.

1Their statement is for type A, but their proof is general.



74 CHAPTER 6. COMPOUND DU VAL SINGULARITIES

It follows that the extension

0→ Si → B → Sj → 0

of Λ-modules is automatically an extension of Λ/g-modules, so the second statement holds.

Remark 6.2.4. Lemma 6.2.3 is not true if i = j.

Now we prove the main result of this section.

Theorem 6.2.5. Let R and Λ be as in Setup 6.2.1. Then the quiver of Λ is symmetric.

Proof. By Lemma 6.2.3, provided i 6= j,

dim Ext1
Λ/g(Sj, Si) = dim Ext1

Λ(Sj, Si).

Hence, the quiver of Λ/g is the same as the quiver of Λ, possibly removing some loops.
Combining with Lemma 6.2.2, it follows that the quiver of Λ is symmetric.

6.3 Isolated cDV singularities with NCCR

The main result of this section, Theorem 6.3.6, uses our results from §6.2 to prove that
both (1.1.A) and Conjecture 6.1.1 hold for isolated cDV singularities admitting NCCR(s).
This extends results of Navkal [Nav13] to cover any ADE type, not just type A. Crucially,
we do not need to rely on manipulating the precise form of the equation defining R. For
this section, we maintain the following setup.

Setup 6.3.1. Let R be an isolated complete local cDV singularity which admits an NCCR
Λ := EndR(M), whereM = M0⊕M1⊕· · ·⊕Mt is basic, M0

∼= R, and theMi are non-free
indecomposable submodules of M .

Now, we compute the Grothendieck group of a ring R as in Setup 6.3.1. We remark
that, by Theorem 3.4.8,M is automatically cluster-tilting. Hence, the approach of [Nav13]
is applicable.

Theorem 6.3.2. Let R and Λ be as in Setup 6.3.1. Then

G0(R) ∼= Z⊕(t+1).

Proof. Assume R is an isolated d-dimensional Gorenstein complete local ring with NCCR
Λ. Write S0, . . . , St for the simple left Λ-modules. Following [Nav13, Proposition 7.15],
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the rows of the higher AR-matrix Ω in Theorem 3.4.9 can be written as2,

Ωlj =
d∑
i=0

(−1)i dim(ExtiΛ(Sj, Sl)).

Since R is Gorenstein and Λ is an NCCR, it follows that Λ is d-CY; for further details,
see [IR08, Proposition 2.4(3) and Theorem 3.2(3)]). Hence, there are natural isomorphisms

ExtiΛ(Sj, Sl) ∼= DExtd−iΛ (Sl, Sj),

where D := Homk(−, k). Returning to Setup 6.3.1, where d = 3,

Ωlj =
3∑
i=0

(−1)i dim(ExtiΛ(Sj, Sl))

= − dim Ext3
Λ(Sj, Sl) + dim Ext2

Λ(Sj, Sl)− dim Ext1
Λ(Sj, Sl) + dim Ext0

Λ(Sj, Sl)

= − dim HomΛ(Sl, Sj) + dim Ext1
Λ(Sl, Sj)− dim Ext1

Λ(Sj, Sl) + dim HomΛ(Sj, Sl)

(by CY duality)

= dim Ext1
Λ(Sl, Sj)− dim Ext1

Λ(Sj, Sl) (by Schur’s lemma)

Since R is a cDV singularity, by Theorem 6.2.5, this is zero, since it is known (see,
e.g. [Seg08, §1]) that Ext1 between simple modules determines the arrows in the quiver.
Hence Ω = 0, so by Theorem 3.4.9,

G0(R) ∼= Cok(0) ∼= Z⊕(t+1).

Remark 6.3.3. Note that the proof of Theorem 6.3.2 shows, that under the hypothesis
of the theorem, dim ExtiΛ(Sj, Sl) = dim ExtiΛ(Sl, Sj) for all i, j, and l.

The use of ‘t’ both here and in §4.1 has been done intentionally to highlight the exis-
tence of a relationship between G0(R) and Cl(R). To prove that (1.1.A) holds in this set-
ting we need to describe Cl(R) in a similar fashion to G0(R). This is done in Lemma 6.3.5.
To prove this, we require the following general result, see [VdB04b, Lemma 4.2.1].

Lemma 6.3.4. Let f : X → SpecR be a projective birational map between normal noethe-
rian schemes such that, in codimension two, f is an isomorphism. The pushdown functor
f∗ restricts to an equivalence between the category of reflexive X-modules and the category
of reflexive R-modules.

From §3.6, recall that the non-free indecomposable summands of an MM module N
(such as the fixedM in Setup 6.3.1) are in one-to-one correspondence with the exceptional

2Where Navkal writes n we write d− 1, and our indices begin at 0 instead of 1.
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curves in the corresponding minimal model(s) of R. Thus, if N = N0⊕ · · ·⊕Nt is an MM
R-module, then there are precisely t exceptional curves.

Lemma 6.3.5. Let R be an isolated complete local cDV singularity, then Cl(R) ∼= Z⊕t.

Proof. By the Homological MMP (see §3.6), there exists a minimal model f : X → SpecR

corresponding to N . This minimal model may or may not be a crepant resolution. Since
R is a cDV singularity, f is an isomorphism in codimension 2 [VdB04b, Lemma 4.2.1]. So,
Lemma 6.3.4 gives a group isomorphism

Cl(X)
∼−−−−→ Cl(R)

via pushdown f∗. It is known (see, e.g. [Har77, II.6.16]) that there exists an isomorphism
Cl(X) ∼= Pic(X) since the singularities of X are locally factorial. This extends to a third
isomorphism Pic(X) ∼= Z⊕t, by [VdB04b, Lemma 3.4.3]. Combining,

Cl(R) ∼= Z⊕t,

where t is the number of curves above the origin.

The above result holds for a more general setting than Setup 6.3.1, since it only requires
N to be an MM R-module. This includes, as a special case, the situation where M is a
cluster-tilting object. We will need this greater generality in Chapter 7.

Now, we prove that both (1.1.A) and Conjecture 6.1.1 hold when R is any isolated
cDV singularity admitting an NCCR (equivalently, admitting a crepant resolution).

Theorem 6.3.6. Let R be as in Setup 6.3.1. Then Conjecture 6.1.1 and (1.1.A) both
hold, that is,

K0(CMR) ∼= Cl(R) and G0(R) ∼= Z⊕ Cl(R).

Proof. We prove the second isomorphism as follows. Combining Theorem 6.3.2 and
Lemma 6.3.5, both G0(R) and Cl(R) can be described by the number of non-free in-
decomposable summands of the cluster-tilting module M , so

G0(R) ∼= Z⊕(t+1) ∼= Z⊕ Z⊕t

∼= Z⊕ Cl(R).

The first isomorphism then follows from Lemma 6.1.3.

6.4 Arbitrary type A cDV singularities

In this section, we focus on arbitrary complete local cDV singularities of type A. In
particular, this covers cDV singularities with and without NCCRs and also cDV singulari-
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ties that need not be isolated. Unlike the previous section, we do not require the existence
of an NCCR (equivalently, crepant resolution), as the techniques here are very different.
For example, the results of this chapter heavily depend upon Knörrer periodicity. As
such, this section generalises the results of [Nav13] in two directions, (1) existence of a
cluster-tilting object is no longer required, and (2) the singularities are not necessarily
isolated.

The fact that we study type A cDV singularities means we specifically know the equa-
tion in question. In the main result of this section, Theorem 6.4.6, we prove that both
(1.1.A) and Conjecture 6.1.1 hold for 3-dimensional singularities R as described in the
following setup.

Setup 6.4.1. Define S and R as

S :=
C[[x, y]]

(f)
and R :=

C[[u, v, x, y]]

(uv − f)

where f = fa11 · · · fatt , fi ∈ C[[x, y]] and the fi are irreducible and pairwise coprime and
each ai is at least one.

We remark that R is a complete local cDV singularity of type A, and all cDV singu-
larities of type A have this form (see, e.g. [AGZV88, §11.1, Morse Lemma]). Furthermore,
while S is not an integral domain, R is an integral domain. This subtle fact affects how
we approach proving that (1.1.A) and Conjecture 6.1.1 hold under Setup 6.4.1.

Let pi := (fi)/f be the minimal prime ideals of S. Since Spi is a 0-dimensional Artinian
ring with unique maximal ideal mi := piSpi , any finitely generated Spi-moduleM is a finite-
dimensional Spi/mi-vector space [AM69, Chapter 2]. Hence, by [AM69, Proposition 6.10],
M must have finite length as an Spi-module. Moreover, the length of M as an Spi-module
is equal to the dimension of M as an Spi/mi-vector space. In other words, dimSpi/mi

(M ⊗S

Spi) = `pi(M ⊗S Spi). We abbreviate this notation, using the fact that S⊗S Spi
∼= Spi (see,

e.g. [AM69, Proposition 3.5]). Hence `pi(S⊗S Spi) = `pi(Spi).
In the following result, we extend the equivalence of dimension and length, asserting

an equivalence between `pi(Spi) and ai in the polynomial f .

Lemma 6.4.2. `pi(Spi) = ai.

Proof. Let S, pi, and mi be as defined above. Since Spi is a local ring it follows that `pi(Spi)

is the smallest r such that mr
i = 0, where r ∈ N. By definition of mi, this is the smallest

r such that f ri = 0 in Spi . This occurs if and only if there exists some g /∈ pi such that
gf ri = 0S. That is, gf ri ∈ 〈f〉 where g /∈ (fi). Since C[[u, v]] is a UFD, necessarily r = ai.
Therefore `pi(Spi) = ai.

Lemma 6.4.3. Let S be as in Setup 6.4.1. Then G0(S) ∼= Z⊕t.
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Proof. Let M ∈ mod S, then Mpi ∈ mod Spi . The length function `pi : mod S → Z is an
exact functor on mod S, so `pi induces a group homomorphism ρ : G0(S)→ Z⊕t given by
[M ] 7→ (`p1(Mp1), . . . , `pt(Mpt)). This homomorphism is surjective since

(S/pi)pj
∼= Spj/piSpj =

Spi/piSpi , if i = j,

0, otherwise.

So that S/pi 7→ (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the ith position.

To show that ρ is an injective homomorphism recall from Lemma 2.3.5 that every
element of G0(S) can be written as an element of the form [M ] − n[S] for some n ≥ 0.
Suppose that [M ]− n[S] ∈ Ker(ρ). Then under ρ

[M ]− n[S] 7→ (`p1(Mp1)− n `p1(Sp1), . . . , `pt(Mpt)− n `pt(Spt)) = 0.

By dévissage (see Theorem 2.3.7), choose a prime filtration 0 = M0 ⊂M1 ⊂ · · · ⊂Mt = M

of M . Then `pi(Mpi) is equal to the number of times S/pi appears as a factor in the
chosen filtration of M . Furthermore, Lemma 2.3.4 tells us that any element of G0(S)

is equal to the sum of all factors of the chosen filtration. By [Mat00, p. 260], since
S is a complete noetherian local ring, it is excellent. Hence, by [Yos90, Lemma 13.4],
automatically [S/m] = 0. Combining these facts gives

[M ] =
t∑
i=0

`pi(Mpi)[S/pi] and [S] =
t∑
i=0

`pi(Spi)[S/pi].

Hence

[M ] =
t∑
i=0

`pi(Mpi)[S/pi]

=
t∑
i=0

n `pi(Spi)[S/pi] (since [M ]− n[S] ∈ Ker ρ)

= n
t∑
i=0

`pi(Spi)[S/pi] = n[S].

Thus [M ] − n[S] = 0 so ker(ρ) = 0, hence ρ is injective. Therefore ρ is an isomorphism,
giving G0(S) ∼= Z⊕t.

Lemma 6.4.4. Let S be as in Setup 6.4.1. Then

K0(CM S) ∼= Z⊕t/(a1, . . . , at).
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Proof. Since S is a local ring, by Lemma 6.1.2, there is an exact sequence

0→ 〈[S]〉 → K0(CM S)→ K0(CM S)→ 0.

Since S is not an integral domain this sequence is not necessarily split. However, we still
have an isomorphism K0(CM S) ∼= K0(CM S)/〈[S]〉. Since K0(CM S) ∼= K0(mod S) :=

G0(S), it follows that
K0(CM S) ∼= G0(S)/〈[S]〉. (6.4.A)

By Lemma 6.4.2, `pi(S) = ai, so that under the group homomorphism ρ of Lemma 6.4.3,
[S] 7→ (a1, . . . , at). Combining this with (6.4.A) gives the desired isomorphism.

The following relies on Knörrer periodicity from [Kn87] which provides us with an
equivalence between the CM S-modules and the CM R-modules.

Corollary 6.4.5. Let R be as in Setup 6.4.1. Then

K0(CMR) ∼= Z⊕t/(a1, . . . , at).

Proof. By Knörrer periodicity CMR ∼= CM S [Kn87, Theorem 3.1], so the result follows
immediately from Lemma 6.4.4.

Notice that under the isomorphism ρ of Lemma 6.4.3, it is not true that G0(S) ∼=
Z ⊕ K0(CM S). That is, (1.1.A) does not hold for S, verifying Remark 6.1.4. However,
by Lemma 4.1.1 R is an integral domain, so we can compute G0(R) using K0(CM S) ∼=
K0(CMR).

Theorem 6.4.6. Let R be as in Setup 6.4.1. Then Conjecture 6.1.1 and (1.1.A) both
hold, that is,

K0(CMR) ∼= Cl(R) and G0(R) ∼= Z⊕ Cl(R).

Proof. By Corollary 6.4.5

K0(CMR) ∼= Z⊕t/(a1, . . . , at).

Then, similar techniques to ours in Theorem 4.1.7 shows that our class group result also
holds in the complete local case (see, e.g. [DH13, Proposition 4.3]), so that Cl(R) ∼=
Z⊕t/(a1, . . . , at). Hence there is an isomorphism K0(CMR) ∼= Cl(R). Furthermore, by
Lemma 6.1.3, since R is an integral domain, G0(R) ∼= Z⊕ Cl(R) follows.

6.4.1 Failure of isomorphism (1.1.A) in higher dimensions

Viehweg’s setting is motivated by deformed Kleinian singularities; as such, we would
expect them to behave in a similar way to Kleinian singularities. Our results show that the
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existence of the isomorphisms (1.1.A) is a two and three dimensional phenomena. Specif-
ically, it does not hold for the general Viehweg setting, as the following counterexample
demonstrates.

Example 6.4.7. Let

B :=
C[x, y, z]

xy − z2
and C :=

C[u, v, x, y, z]

uv = xy − z2
.

Both B and C are integral domains (see Lemma 4.1.1) so we do not need to worry about
the issues of Remark 6.1.4. By Theorem 4.2.2, G0(B) ∼= Z⊕Cl(B) and K0(CMB) ∼= Cl(B)

which is isomorphic to Z/2Z. Using Knörrer periodicity [Kn87, Theorem 3.1], we have
K0(CMB) ∼= K0(CMC). Hence,

G0(C) ∼= Z⊕K0(CMC)

∼= Z⊕K0(CMB)

∼= Z⊕ Cl(B)

∼= Z⊕ Z/2Z.

But, by Theorem 4.1.7, Cl(C) ∼= 0, so clearly G0(C) 6∼= Z⊕ Cl(C).

6.5 Polyhedral singularities

In this section, we apply the results of Brown and Lorenz [BL96] to show that (1.1.A)
holds in the setting of polyhedral quotient singularities Zn for all n, D2n for n ≤ 100, T,
O, and I. These are the subgroups of SL(3,C) as given in §1.5. In particular, this gives
examples of non-isolated cDV singularities of a variety of ADE types where (1.1.A) holds.
Although these quotient singularities admit an NCCR, they are all non-isolated, and so
the techniques of §6.3 do not apply.

Let G be a finite subgroup of SL(3,C), S = C[X1, X2, X3], and write R := SG. The
main result of [BL96, §0] gives a description of the Grothendieck group G0(R) of finitely
generated R-modules. As noted at the end of [BL96], Lorenz implemented a computer
programme, using GAP3, which computes the Grothendieck group of invariant rings.
Following his approach, we used MAGMA to implement such a programme (see Appendix B).
Through our implementation, we have gathered evidence of the existence of a relationship
between G0(R) and Cl(R) in numerous settings, including many not described in the
previous chapters. We parse through the relevant data in the cDV setting now, with some
other settings being described in §8.2.

An element g ∈ G is called a pseudoreflection on V if dimC(V g) = n − 1 [Ben93,
Chapter 2, §2.6]. Let J be the normal subgroup of G generated by the pseudoreflections
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on V . Then there exist isomorphisms

Cl(R) ∼= H1(G/J, (SJ)×) ∼= Hom(G/J,C×).

For details, see [BL96, §4.4]. In our case, J is trivial since G is a subgroup of SL(3,C).
These isomorphisms give a straightforward way of computing Cl(R). Let Gab :=

G/[G,G] denote the abelianisation of G, where [G,G] denotes the commutator subgroup.
Then it is well known that Hom(G/J,C×), the Pontryagin dual of G/J , is isomorphic to
Gab. Hence, Cl(R) ∼= Gab.

Proposition 6.5.1. Consider R := SG, where G is either a polyhedral quotient singularity
Zn for all n, D2n for n ≤ 100, T, O, or I as given in §1.5. Then R is a non-isolated cDV
singularity where (1.1.A) holds. That is, G0(R) ∼= Z⊕ Cl(R).

Proof. For the cyclic group given in (a), R ∼= C[u, v, x, y]/(uv−xn). This is a special case
of §4.1 and §6.4 so that, by Theorem 4.1.7, Cl(R) ∼= Z/nZ. This is also clear from the
fact that Cl(R) ∼= Gab. Furthermore, by Theorem 6.4.6, G0(R) ∼= Z⊕ Z/nZ.

For the subgroup D2n given in (b), for all even n, Cl(R) ∼= Gab ∼= Z/2Z ⊕ Z/2Z and
for all odd n, Cl(R) ∼= Gab ∼= Z/2Z. For D2n where n ≤ 100 we use MAGMA to compute the
Grothendieck group of R. In all such cases, for even n, G0(R) ∼= Z ⊕ Z/2Z ⊕ Z/2Z and
for odd n, G0(R) ∼= Z⊕ Z/2Z.

While the subgroups given in (a) and (b) correspond to infinite families of subgroups,
the subgroups given in (c), (d), and (e) (T, O, and I, respectively) are three specific
groups. So, we can use MAGMA to compute the Grothendieck group and class group of R
when G is one of T, O, or I. In fact, the calculation of Cl(R) for such rings is also clear
from the McKay quiver using the number of one-dimensional representations calculated
in [dCS17, §2]. In the McKay quiver of T there are 3 one-dimensional representations, and
the only group of order 3 is Z/3Z, hence the class group is Z/3Z. Similarly, in the McKay
quiver of O there are 2 one-dimensional representations and the only group of order 2 is
Z/2Z. Finally, in the McKay quiver of I there is 1 one-dimensional representation and the
only group of order 1 is the trivial group.

We use the generators defined for each of the subgroups T, O, and I as input for the
programme of Appendix B. The output data from this code gives G0(R). We collate this
data in Table 6.1.
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Group G Order G0(R) Cl(R)
Cyclic n Z⊕ Z/nZ Z/nZ

Dihedral D2n 2n, n ≤ 100 even Z⊕ Z/2Z⊕ Z/2Z Z/2Z⊕ Z/2Z
Dihedral D2n 2n, n < 100 odd Z⊕ Z/2Z Z/2Z
Trihedral T 12 Z⊕ Z/3Z Z/3Z
Octahedral O 24 Z⊕ Z/2Z Z/2Z
Icosahedral I 60 Z 0

Table 6.1: Data for finite subgroups of SL(3,C) given in §1.5(a) – (e)

Comparing the data of the third column against the data of the fourth column shows
that, for each G considered, G0(R) ∼= Z⊕ Cl(R).



Chapter 7

Minimal models

In this chapter, we study (noncommutative) minimal models and investigate their class
groups and Grothendieck groups. Our focus here is on proving that (1.1.A) holds for a
ring R as in the following setup.

Setup 7.0.1. Let f : X → SpecR be a minimal model where R is an isolated complete
local cDV singularity and X has only factorial (equivalently, Q-factorial) cAn singularities.

This setup includes all isolated cDV singularities that admit an NCCR (§6.3), and also
arbitrary isolated cAn singularities. To prove that (1.1.A) holds in this setting, we require
the language of minimal models and MM modules of §3.2 as well as the Homological
MMP notions discussed in §3.6. In this language, f is a minimal model with only type A

singularities.
We set some notation. Under Setup 7.0.1, by the bijection given in §3.6 we auto-

matically have a corresponding basic MM R-module M = M0 ⊕ M1 ⊕ · · · ⊕ Mt, with
M0
∼= R and M1, . . . ,Mt the non-free indecomposable summands of M , such that X is

derived equivalent to Λ := EndR(M). Let Db(cohX) and perf X be as in §1.7. From
this derived equivalence, it follows that Db(cohX) is equivalent to Db(mod Λ). Write
Dsg(X) := Db(cohX)/ perf X and define Ksg

0 (X) as the Grothendieck group of the idem-
potent completion of Dsg(X); for full details, see [PS, Property 0].

The first result of this chapter is an application of Lemma 6.3.5 to Setup 7.0.1, giving
a description of the class group of R based on the number of curves above the origin.

Lemma 7.0.2. Let X and R be as in Setup 7.0.1. Then

Cl(R) ∼= Z⊕t.

Proof. This follows immediately from Lemma 6.3.5.

As X and Λ are derived equivalent, it will be particularly useful to have a description
of K0(proj Λ) which is similar to that of Cl(R) given above.

83
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Lemma 7.0.3. Let Λ := EndR(M) as above. Then

K0(proj Λ) ∼= Z⊕(t+1).

In particular, K0(proj Λ) is torsion-free.

Proof. Since R is a local ring, K0(proj Λ) is based by the classes of finitely generated
projective Λ-modules [FS75]. Furthermore, M is a basic MM module with t + 1 inde-
composable summands and these summands are in bijection with the indecomposable
projective Λ-modules. Hence K0(proj Λ) ∼= Z⊕(t+1).

In the next result, we determine Ksg
0 (X). Later, we will see that this result allows us

to prove that there exists an isomorphism K0(X) ∼= G0(X), even though X is not smooth.

Lemma 7.0.4. Let X be as in Setup 7.0.1, then

Ksg
0 (X) ∼=

n⊕
j=1

K0(CM ÔX,pj),

where {p1, . . . , pn} are the singular points of X. Furthermore, Ksg
0 (X) = 0.

Proof. Since R is complete local, Dsg(X) is automatically idempotent complete [BK12,
Lemma 3.1]. This and the fact thatX has only isolated singularities implies that Dsg(X) ∼=⊕n

j=1 CM ÔX,pj by [IW14b, Theorem 3.2(2)]. Therefore

Ksg
0 (X) ∼=

n⊕
j=1

K0(CM ÔX,pj). (7.0.A)

Recall that X has only factorial cAn singularities. This implies that all the local rings
ÔX,pj are isolated cDV singularities of type cAn which are UFDs. Furthermore, these are
precisely the rings R of Setup 6.4.1 with t = 1 and a1 = 1. Hence, by Lemma 6.4.4, for each
j = 1, . . . , n we have K0(CM ÔX,pj) ∼= Z and so K0(CM ÔX,pj) = 0 for each j = 1, . . . , n.
Combining with (7.0.A), Ksg

0 (X) = 0.

Remark 7.0.5. This result shows that Setup 7.0.1 provides a suitable setting for X to
behave as if it is smooth. As mentioned in Conjecture 1.1.1, this is expected to occur more
generally.

Now, recall the language of contraction algebras from §3.2.1. Let e be the idempotent in
Λ corresponding to the summand R of M . Then eΛe ∼= EndR(R) ∼= R and Λ/ΛeΛ ∼= Λcon.
By [PV14, Example 2.9], there is a recollement of categories

mod Λcon
inc−→ mod Λ

e(−)−−→ modR, (7.0.B)
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where inc is the inclusion functor and e(−) := HomΛ(eΛ,−); both are exact. In fact,
by [PV14, Proposition 2.7], mod Λcon is a full exact subcategory of mod Λ and e(−) is
naturally equivalent to the quotient functor mod Λ→ mod Λ/mod Λcon. Hence, modR ∼=
mod Λ/mod Λcon. By Theorem 2.3.6, it follows that (7.0.B) lifts to K-theory giving a long
exact sequence ending with

. . .→ K1(modR)→ K0(mod Λcon)→ K0(mod Λ)→ G0(R)→ 0. (7.0.C)

In particular, K0(mod Λ)→ G0(R) is surjective.

Theorem 7.0.6. There is a composition of surjections θ : K0(proj Λ) → K0(mod Λ) →
G0(R). Furthermore, θ is an isomorphism.

Proof. By [PS, Lemma 1.10], there is an exact sequence of K-theories ending with

K0(X)
PD−−→ G0(X)→ Ksg

0 (X)→ 0, (7.0.D)

where PD is the canonical morphism induced by perf X ⊂ Db(X). Since X is derived
equivalent to Λ, by Lemma 7.0.3 and Lemma 7.0.4 it follows that there exists a surjection

Z⊕(t+1) ∼= K0(proj Λ) � K0(mod Λ),

where K0(proj Λ) is torsion-free. In addition, from (7.0.C), there automatically exists a
surjection

K0(mod Λ) � G0(R).

Composing these surjections gives a surjection

θ : Z⊕(t+1) � G0(R).

Now, suppose θ is not an isomorphism. Since Ker θ is a subgroup of Z⊕(t+1), it cannot
have torsion. Thus, Ker θ has rank at least one, so that, from the short exact sequence

0→ Ker θ→ Z⊕(t+1) → G0(R)→ 0,

the rank of G0(R) must be strictly less than t+ 1.
But, by Proposition 2.5.3, Z⊕Cl(R) is always a quotient of G0(R). By Lemma 7.0.2,

Cl(R) ∼= Z⊕t, therefore G0(R) has Z⊕(t+1) as a quotient. In particular, the rank of G0(R)

has to be at least t + 1, a contradiction. Hence, θ must be an isomorphism, giving
G0(R) ∼= Z⊕(t+1).

Combining Lemma 7.0.2 and Theorem 7.0.6, the main result of this chapter is an
immediate corollary.
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Corollary 7.0.7. Let X and R be as in Setup 7.0.1. Then (1.1.A) holds, that is,

G0(R) ∼= Z⊕ Cl(R).

Additionally, the next two corollaries follow immediately from Theorem 7.0.6.

Corollary 7.0.8. Let Λ be as above, then K0(proj Λ) ∼= K0(mod Λ). In particular,
K0(mod Λ) is based by projectives and is finitely generated.

Corollary 7.0.9. Let X and R be as in Setup 7.0.1. Then the canonical morphism PD
of (7.0.D) is an isomorphism. That is,

K0(X) ∼= G0(X).

Remark 7.0.10. If Λ has finite global dimension (equivalently, X is smooth) then K0(X) ∼=
G0(X). Corollary 7.0.9 is interesting precisely because K0(X) ∼= G0(X) even when X has
infinite global dimension.



Chapter 8

Conclusion

We conclude this thesis with a summary of the proven results. Superficially, the results
of this thesis can be viewed as computing class groups and Grothendieck groups of Kleinian
and compound Du Val (cDV) singularities. On a deeper level, we do a number of things.

(1) We extend (locally) known results in dimension 2 to a global setting.

(2) We give results in dimension 3 for both isolated and non-isolated cDV singularities.

(3) We prove fundamental and independently interesting results for surface singularities
and their quivers.

(4) Finally, in Chapter 7, we show that MMAs behave precisely as they were designed
to behave. That is, they behave as if they are smooth.

8.1 Summary Theorem

The following theorem simply summarises all the results of this thesis relevant to the
isomorphism (1.1.A).

Theorem 8.1.1. There exists an isomorphism G0(R) ∼= Z⊕ Cl(R) when

(1) dimR = 2 and R has only type A Kleinian singularities,

(2) dimR = 3 and R is an isolated complete local cDV singularity admitting NCCR(s),

(3) dimR = 3 and R is an arbitrary type A complete local cDV singularity,

(4) dimR = 3 and R is an isolated complete local cDV such that there exists a minimal
model f : X → SpecR where X has only factorial cAn singularities.

(5) R = SG, where G is a polyhedral quotient singularity Zn for all n, D2n for n ≤ 100,
T, O, or I as given in §1.5.
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Proof. (1) is Theorem 4.2.2, (2) is Theorem 6.3.6, (3) is Theorem 6.4.6, (4) is Corol-
lary 7.0.7, and (5) is Proposition 6.5.1.

8.2 Speculations

Another interesting class of quotient singularities comes from a finite group acting
symplectically on a symplectic vector space. Such quotient singularities play an important
role in representation theory e.g., in the theory of rational Cherednik algebras introduced
by [EG02]. Specifically, let G be a subgroup of GL(h) generated by complex reflections.
Then G acts on h, so it also acts on the complex vector space V = h⊕ h∗. Such complex
reflection groups G were classified by Shephard-Todd in [ST54]. A special case is the
symmetric group Sn, which can be thought of as a real reflection group acting on its
reflection representation h.

Using the MAGMA code in Appendix B we calculate the Grothendieck group, reduced
Grothendieck group, and class group of R = C[V ]Sn for suitable values of n. As we have
seen throughout this thesis, the Grothendieck group retains interesting representation
theoretic and geometric interpretations.

n G0(R) G̃0(R) Cl(R)

2 Z⊕ Z/2Z Z/2Z Z/2Z
3 Z⊕ Z/6Z Z/6Z Z/2Z
4 Z⊕ Z/2Z⊕ Z/12Z Z/2Z⊕ Z/12Z Z/2Z
5 Z⊕ Z/2Z⊕ Z/60Z Z/2Z⊕ Z/60Z Z/2Z
6 Z⊕ Z/2Z⊕ Z/6Z⊕ Z/60Z Z/2Z⊕ Z/6Z⊕ Z/60Z Z/2Z
7 Z⊕ Z/2Z⊕ Z/6Z⊕ Z/420Z Z/2Z⊕ Z/6Z⊕ Z/420Z Z/2Z
8 Z⊕Z/2Z⊕Z/2Z⊕Z/12Z⊕Z/840Z Z/2Z⊕Z/2Z⊕Z/12Z⊕Z/840Z Z/2Z
9 Z⊕Z/2Z⊕Z/6Z⊕Z/12Z⊕Z/2520Z Z/2Z⊕Z/6Z⊕Z/12Z⊕Z/2520Z Z/2Z
10 Z⊕Z/2Z⊕Z/2Z⊕Z/6Z⊕Z/60Z⊕

Z/2520Z
Z/2Z⊕Z/2Z⊕Z/6Z⊕Z/60Z⊕
Z/2520Z

Z/2Z

Table 8.1: Data for R := C[V ]Sn where Sn is the symmetric group on n symbols

The data in Table 8.1 are examples where (1.1.A) clearly is false. Nonetheless, the
data contains intriguing information. We give the following conjecture, where V = h⊕h∗.

Conjecture 8.2.1. The reduced Grothendieck group of C[V ]Sn has order n!.

In Table 8.2, we include data for the exceptional irreducible complex reflection groups
(that is, the Shephard-Todd groups) wherem is the Shephard-Todd number and − denotes
no data; for further details, see, e.g. [Coh76], [ST54]. The data seem to exhibit interesting
phenomena as well.



8.2. SPECULATIONS 89

m G0(R) G̃0(R) Cl(R)
4 Z⊕ Z/24Z Z/24Z Z/3Z
5 Z⊕ Z/3Z⊕ Z/3Z⊕ Z/24Z Z/3Z⊕ Z/3Z⊕ Z/24Z Z/3Z⊕ Z/3Z
6 Z⊕ Z/2Z⊕ Z/24Z Z/2Z⊕ Z/24Z Z/6Z
7 Z⊕ Z/3Z⊕ Z/6Z⊕ Z/24Z Z/3Z⊕ Z/6Z⊕ Z/24Z Z/3Z⊕ Z/6Z
8 Z⊕ Z/4Z⊕ Z/24Z Z/4Z⊕ Z/24Z Z/4Z
9 Z⊕ Z/2Z⊕ Z/4Z⊕ Z/48Z Z/2Z⊕ Z/4Z⊕ Z/48Z Z/2Z⊕ Z/4Z
10 Z⊕ Z/12Z⊕ Z/24Z Z/12Z⊕ Z/24Z Z/12Z
11 Z⊕ Z/2Z⊕ Z/12Z⊕ Z/48Z Z/2Z⊕ Z/12Z⊕ Z/48Z Z/2Z⊕Z/12Z
12 Z⊕ Z/2Z⊕ Z/24Z Z/2Z⊕ Z/24Z Z/2Z
13 Z⊕ Z/2Z⊕ Z/2Z⊕ Z/48Z Z/2Z⊕ Z/2Z⊕ Z/48Z Z/2Z⊕ Z/2Z
14 Z⊕ Z/6Z⊕ Z/24Z Z/6Z⊕ Z/24Z Z/6Z
15 Z⊕ Z/2Z⊕ Z/6Z⊕ Z/48Z Z/2Z⊕ Z/6Z⊕ Z/48Z Z/2Z⊕ Z/6Z
16 Z⊕ Z/5Z⊕ Z/120Z Z/5Z⊕ Z/120Z Z/5Z
17 Z⊕ Z/10Z⊕ Z/120Z Z/10Z⊕ Z/120Z Z/10Z
18 Z⊕ Z/15Z⊕ Z/120Z Z/15Z⊕ Z/120Z Z/15Z
19 − − −
20 Z⊕ Z/3Z⊕ Z/120Z Z/3Z⊕ Z/120Z Z/3Z
21 Z⊕ Z/6Z⊕ Z/120Z Z/6Z⊕ Z/120Z Z/6Z
22 Z⊕ Z/2Z⊕ Z/120Z Z/2Z⊕ Z/120Z Z/2Z
23 Z⊕ Z/2Z⊕ Z/2Z⊕ Z/30Z Z/2Z⊕ Z/2Z⊕ Z/30Z Z/2Z
24 Z⊕ Z/2Z⊕ Z/2Z⊕ Z/84Z Z/2Z⊕ Z/2Z⊕ Z/84Z Z/2Z
25 Z⊕ Z/3Z⊕ Z/3Z⊕ Z/72Z Z/3Z⊕ Z/3Z⊕ Z/72Z Z/3Z
26 Z⊕ Z/6Z⊕ Z/6Z⊕ Z/72Z Z/6Z⊕ Z/6Z⊕ Z/72Z Z/6Z
27 Z⊕ Z/6Z⊕ Z/6Z⊕ Z/180Z Z/6Z⊕ Z/6Z⊕ Z/180Z Z/2Z
28 Z⊕Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z⊕

Z/6Z⊕ Z/12Z⊕ Z/24Z
Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕
Z/6Z⊕ Z/12Z⊕ Z/24Z

Z/2Z⊕ Z/2Z

29 Z⊕Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/2Z⊕
Z/4Z⊕ Z/16Z⊕ Z/240Z

Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕
Z/4Z⊕ Z/16Z⊕ Z/240Z

Z/2Z

30 Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/60Z ⊕
Z/240Z

Z/2Z⊕Z/2Z⊕Z/60Z⊕Z/240Z Z/2Z

31 − − −
32 − − −
33 Z ⊕ Z/2Z ⊕ Z/2Z ⊕ Z/2Z ⊕

Z/36Z⊕ Z/360Z
Z/2Z⊕Z/2Z⊕Z/2Z⊕Z/36Z⊕
Z/360Z

Z/2Z

34 − − −
35 Z ⊕ Z/2Z ⊕ Z/6Z ⊕ Z/12Z ⊕

Z/360Z
Z/2Z⊕Z/6Z⊕Z/12Z⊕Z/360Z Z/2Z

36 − − −
37 − − −

Table 8.2: Data for Shephard-Todd groups
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Appendix A

The centre of the deformed
preprojective algebra

Let Q be a quiver and Q̄ be the double of Q. From §3.5, recall that the deformed
preprojective algebra is defined to be

Πλ(Q) = kQ̄/

(∑
c∈Q1

[d, c]−
∑
i∈Q0

λiei

)
,

where d = c∗ is the double of the arrow c, Q0 is the set of all vertices, and Q1 is the
set of all arrows. We refer to λ = (λi)i∈Q0 as the parameters. In this appendix, we only
consider quivers with underlying extended Dynkin type Ãn, which have n + 1 vertices
labelled i = 0, ..., n, and arrows ci : i→ (i + 1) and di : (i + 1)→ i. This quiver is shown
in Figure A.1.

1 2 ...

0 i

n n− 1 ...

c1d0 c2

d1 d2

ci−1c0

dn

di−1

cicn

dn−1

cn−1

dn−2

cn−2 di

Figure A.1: Dynkin diagram Ãn

In this case the defining relations are di−1ci−1 − cidi = λiei for all i ∈ Q0. In addition,
throughout this appendix we will assume that

∑
i∈Q0

λi = 0.
In this appendix we consider the spherical subalgebra e0Πλe0 and give an explicit

description of e0Πλe0 as a ring of the form A defined in Chapter 4. By Theorem 3.5.4,
e0Πλe0

∼= Oλ.
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Proposition A.0.1. The elements

u = c0c1 · · · cn−1cn,

v = dndn−1 · · · d1d0, and

x = c0d0

generate e0Πλe0.

Proof. First, notice that u, v, and x each start and end at vertex 0, so they are contained
in e0Πλe0. As explained on page 611 of [CBH98], there is a filtration {Fk | degree k ≥ 0} of
the deformed preprojective algebra Πλ which is uniquely defined by putting the ei in degree
zero and the arrows in degree one. This restricts to a filtration of e0Πλe0. Furthermore,
by Lemma 3.5.3 it follows that the associated graded algebra of e0Πλe0 is e0Π0e0 which is
isomorphic to the type Ãn Kleinian singularity C[u, v, x]/(uv−xn+1) [CBH98, Theorem 0.1].
By inspection, we know that the images of u, v, and x generate e0Π0e0.

Let B be the subalgebra of e0Πλe0 generated by u, v, and x. We need to show that
B = e0Πλe0. Define a filtration Gk on B by restriction, that is, a filtration Gk = Fk ∩ B.
Then the associated graded map grB → gr e0Πλe0

∼= e0Π0e0 is an embedding. It is also
surjective by assumption. Hence grB → e0Π0e0 is an isomorphism, and so B ↪→ e0Πλe0 is
an isomorphism using [MR01, Corollary 7.6.14].

To give a presentation of the ring e0Πλe0 requires the following technical result.

Lemma A.0.2. If j ≥ 1, then

c0c1 · · · cjdj · · · d1d0 = (c0d0) ·
j∏

k=1

(c0d0 − (λ1 + ...+ λk)e0).

Proof. We begin with the base case. Let j = 1, then we have

c0c1d1d0 = (c0d0)(c0d0 − λ1e0)

= (c0d0)
j∏

k=1

(c0d0 − (λ1 + . . .+ λk)e0).

So, the base case holds. Now, assume that the following holds for some j ≥ 1, namely

c0c1 · · · cjdj · · · d1d0 = (c0d0) ·
j∏

k=1

(c0d0 − (λ1 + ...+ λk)e0).

We want to show that it holds for j + 1. Observe, that

c0c1 · · · cj+1dj+1 · · · d1d0 = c0(c1 · · · cj+1dj+1 · · · d1)d0.
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By the induction hypothesis applied to the vertex 1, we rewrite this as

c0

[
(c1d1) ·

j∏
k=1

(c1d1 − (λ2 + ...+ λk+1)e1)

]
d0.

Using the relation d0c0− c1d1 = λ1e1, we substitute each c1d1 with d0c0−λ1e1. Therefore,

c0

[
(c1d1) ·

j∏
k=1

(c1d1 − (λ2 + ...+ λk+1)e1)

]
d0

= c0

[
(d0c0 − λ1e1) ·

j∏
k=1

(d0c0 − λ1e1 − (λ2 + ...+ λk+1)e1)

]
d0.

Since e1d0 = d0e0, the above is

= (c0d0)(c0d0 − λ1e0) ·
j∏

k=1

(c0d0 − λ1e0 − (λ2 + ...+ λk+1)e0)

= (c0d0) ·
j+1∏
k=1

(c0d0 − (λ1 + ...+ λk)e0).

So, our claim holds for j + 1.

We are most interested in the j = n special case of Lemma A.0.2, which asserts that

uv = c0c1 · · · cndn · · · d1d0

= (c0d0) ·
n∏
k=1

(c0d0 − (λ1 + ...+ λk))

=
n+1∏
k=1

(x− (λ1 + . . .+ λk)).

It follows that there is an induced map R→ e0Πλe0, where

R :=
C[u, v, x](

uv −
n+1∏
k=1

(x− (λ1 + . . .+ λk))

) .
The following is the main result of this appendix.

Theorem A.0.3. The map R→ e0Πλe0 is an isomorphism.

Proof. The ring R is a 2-dimensional ring of the form A defined in Chapter 4, so by
Lemma 4.1.1, it is an integral domain. By [CBH98, §0], e0Πλe0 is also a 2-dimensional
integral domain.

Proposition A.0.1 shows that the map R → e0Πλe0 is surjective. Let a be the kernel
of this map. Since e0Πλe0 is a domain, a is a prime ideal. If ht(a) = m then, by Theo-
rem 2.2.10, dim e0Πλe0 = dimR−m. In other words, 2 = 2−m, thus ht(a) = 0. However,
R is a domain, so the only height zero prime ideal is 0. Hence, R ∼= e0Πλe0.
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Appendix B

Computing the Grothendieck group
using MAGMA

The MAGMA code below computes the Grothendieck group (and divisor class group) of
rings R = SG, such as those discussed in this thesis. Below, the input variable G is always
a subgroup of GL(n,C) = GL(h). The function Groth can compute the Grothendieck
group and class group in two settings:

1. (G, 1), then Groth computes the Grothendieck group of the invariant ring C[h]G.

2. (G, 2), then Groth computes the Grothendieck group of the invariant ring C[h⊕h∗]G,
where h∗ is the dual of h. This code is useful where G is a complex reflection group.

1 NaturalRep := function(G, ans);
2 CR:= CharacterRing(G);
3 if ans eq 1 then
4 trCl:=[Trace(Classes(G)[i][3]) : i in [1..#Classes(G)]];
5 V:= CR ! trCl;
6 elif ans eq 2 then
7 trCl:=[Trace(Classes(G)[i][3]) : i in [1..#Classes(G)]];
8 trClInv :=[Trace(Transpose(Classes(G)[i][3]^(-1))) : i in [1..#

Classes(G)]];
9 h:= CR ! trCl;

10 hdual:= CR ! trClInv;
11 V:= h + hdual;
12 end if;
13 return V;
14 end function;
15 //----------------------------------------------------------------
16 Groth:= function(G,ans);
17 V:= NaturalRep(G,ans);
18 g:=[**];
19
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20 for i in [1..Ngens(G)] do
21 Append (~g, G.i);
22 end for;
23 cl:= SubgroupClasses(G);
24 table:= CharacterTable(G);
25

26 l:=#cl;
27 repSubgrp :=[**];
28 norm:=[**];
29 h:=[**];
30 nh:=[**];
31 trivH:=[**];
32

33 repSubgrp :=[h‘subgroup : h in cl | Order(h‘subgroup) ne 1];
34 l:=#repSubgrp;
35

36 for i in [1..l] do
37 norm[i]:= Normalizer(G,repSubgrp[i]);
38 h[i]:= CharacterTable(repSubgrp[i]);
39 nh[i]:= CharacterTable(norm[i]);
40 end for;
41

42 k:=[];
43 sirr:=[];
44 vh:=[];
45 extpow :=[];
46 aHsum:=[];
47 aH:=[];
48 aHG:=[];
49 induced :=[];
50 ps:=[];
51

52 for i in [1..l] do
53 sirr:=[char: char in nh[i] | InnerProduct(PrincipalCharacter(

repSubgrp[i]), Restriction(char , repSubgrp[i])) eq 0 ];
54

55 W:= Restriction(V, norm[i]);
56

57 blh:=[char : char in nh[i] | (InnerProduct(char , W) ne 0) and (
InnerProduct(Restriction( char , repSubgrp[i] ), PrincipalCharacter(
repSubgrp[i])) eq 0)];

58

59 blhchar :=[InnerProduct(char , W)*char : char in blh];
60

61 vh:=&+ blhchar;
62
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63 if vh[1] le 1 then
64 t:=[ x : x in Generators(repSubgrp[i]) ];
65 Append (~ps, t[1]);
66 end if;
67

68 p:=[[0]] cat [[1 : k in [1..j]] : j in [1..Degree(vh)]];
69

70 aH:=&+[(-1)^(j-1)*Symmetrization(vh , p[j]) : j in [1..Degree(vh)+1
]];

71

72 aHG:=[aH * char : char in sirr];
73

74 for elt in aHG do
75 Append (~induced , Induction(elt , G));
76 end for;
77

78 list:=[InnerProduct(induced[k], table[j]) : j in [1..#table], k in [
1..#induced ]];

79 A:= Matrix(Integers (), #induced , #table , list);
80 end for;
81

82 groth := [0 : j in [1..(#table - #ElementaryDivisors(A))]] cat
ElementaryDivisors(A);

83

84 abGroth := AbelianGroup(groth);
85 F:= TorsionSubgroup(abGroth);
86

87 sg:=sub< G | [G ! p : p in ps] >;
88 pseudorefl := NormalClosure(G, sg);
89 classGrp := AbelianQuotient(G/pseudorefl);
90

91 return groth , F, classGrp;
92 end function;
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