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Introduction

The coming to life of the Royal Society in 1660 surely represented an important milestone in the history of

science, not least in Economics. Yet, its founding motto, “Nullius in verba”, could be somewhat misleading.

Words in fact may play an important role in Economics. In order to extract relevant information that words

provide, this thesis relies on state-of-the-art methods from the information retrieval and computer science

communities.

Chapter 1 shows how policy uncertainty indices can be constructed via unsupervised machine learning

models. Using unsupervised algorithms proves useful in terms of the time and resources needed to compute

these indices. The unsupervised machine learning algorithm, called Latent Dirichlet Allocation (LDA), allows

obtaining the different themes in documents without any prior information about their context. Given that

this algorithm is widely used throughout this thesis, this chapter offers a detailed while intuitive description

of its underlying mechanics.

Chapter 2 uses the LDA algorithm to categorize the political uncertainty embedded in the Scottish me-

dia. In particular, it models the uncertainty regarding Brexit and the Scottish referendum for independence.

These referendum-related indices are compared with the Google search queries “Scottish independence” and

“Brexit”, showing strong similarities. The second part of the chapter examines the relationship of these

indices on investment in a longitudinal panel dataset of 2,589 Scottish firms over the period 2008-2017. It

presents evidence of greater sensitivity for firms that are financially constrained or whose investment is to

a greater degree irreversible. Additionally, it is found that Scottish companies located on the border with

England have a stronger negative correlation with Scottish political uncertainty than those operating in

the rest of the country. Contrary to expectations, we notice that investment coming from manufacturing

companies appears less sensitive to political uncertainty.

Chapter 3 builds eight different policy-related uncertainty indicators for the four largest euro area coun-

tries using press-media in German, French, Italian and Spanish from January 2000 until May 2019. This is

done in two steps. Firstly, a continuous bag of word model is used to obtain semantically similar words to

“economy” and “uncertainty” across the four languages and contexts. This allows for the retrieval of all news-

articles relevant to economic uncertainty. Secondly, LDA is again employed to model the different sources

of uncertainty for each country, highlighting how easily LDA can adapt to different languages and contexts.

Using a Bayesian Structural Vector Autoregressive set up (BSVAR) a strong heterogeneity in the relationship

between uncertainty and investment in machinery and equipment is then documented. For example, while
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investment in France, Italy and Spain reacts heavily to political uncertainty shocks, in Germany it is more

sensitive to trade uncertainty shocks.

Finally, Chapter 4 analyses English language media from Europe, India and the United States, augmented

by a sentiment analysis to study how different narratives concerning cryptocurrencies influence their prices.

The time span ranges from April 2013 to December 2018 a period where cryptocurrency prices experienced

a parabolic behaviour. In addition, this case study is motivated by Shiller’s belief that narratives around

cryptocurrencies might have led to this price behaviour. Nonetheless, the relationship between narratives

and prices ought to be driven by complex interactions. For example, articles written in the media about a

specific phenomenon will attract or detract new investors depending on their content and tone (sentiment).

Moreover, the press might also react to price changes by increasing the coverage of a given topic. For this

reason, a recent causal model, Convergent Cross Mapping (CCM), suited to discovering causal relationships in

complex dynamical ecosystems is used. I find bidirectional causal relationships between narratives concerning

investment and regulation while a mild unidirectional causal association exists in narratives that relate

technology and security to prices.
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Alternative thesis format

Along the process of working in this thesis, I have submitted for publication several of its components, and

succeeded in having some of them published. In particular:

1. Azqueta-Gavaldon, A. (2017) Developing news-based Economic Policy Uncertainty index with unsu-

pervised machine learning. Economics Letters, 158, 47-50.

2. Azqueta-Gavaldon, A. (2020) Political Referenda and Investment: Evidence From Scotland. European

Central Bank Working Papers (forthcoming)

3. Azqueta-Gavaldon A, Hirschbühl D., Onorante L., and Saiz L. (2020) Economic policy uncertainty in

the euro area: an unsupervised machine learning approach. No. 2359, European Central Bank Working

Papers.

4. Azqueta-Gavaldon A. (2019). Causal inference between cryptocurrency narratives and prices: Evidence

from a complex dynamic ecosystem. Physica A: Statistical Mechanics and its Applications, Volume

537.

I have tried my best to avoid unnecessary reiteration and repetitions but surely there will be some left.

I apologize for that.

I declare that this thesis has not been submitted for any other degree at the University of Glasgow or

any other institution. The copyright of the work in this thesis rests with the authors. No quotation from

it should be published in any format, including electronic and internet, without the authors prior written

consent. All information derived from this thesis should be acknowledged appropriately.

Andres Azqueta-Gavaldon

Glasgow, September 8, 2020
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Chapter 1

Developing news-based Economic

Policy Uncertainty indices with

unsupervised machine learning

algorithms

1.1 Introduction

Economic Policy Uncertainty (EPU) is attracting much interest. It has been used to understand the behaviour

of a wide range of economic and financial variables: stock prices (Pastor and Veronesi (2012); Brogaard and

Detzel (2015)); risk premia (Pástor and Veronesi (2013)); economic performance (Bachmann, Elstner, and

Sims (2013); Fernández-Villaverde, Guerrón-Quintana, Kuester, et al. (2015)); corporate investment (Gulen

and Ion (2015)); labor market dynamics (Bakas, Panagiotidis, and Pelloni (2016)); and political polarization

(Azzimonti (2018)).

A novel way to compute Economic Policy Uncertainty (uncertainty regarding which or when economic

policies will take place in the short or long future) has recently been developed by Baker, Bloom, and Davis

(2016). The approach is based on calculating the proportion of news articles describing this specific type

of uncertainty over a specific time period. Nevertheless, to rightly find those articles describing Economic

Policy Uncertainty (EPU), a meticulous manual intensive process was needed. Baker, Bloom, and Davis

(2016) engaged 22 research assistants to manually select those articles describing EPU from a pool of 12,000
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articles containing the words “economy” and “uncertainty”.1 To be positively labelled, news articles had

to describe any of the several categories previously selected as composing EPU: fiscal or monetary policy,

healthcare, national security, regulation, sovereign debt & currency crisis, entitlement programs and trade

policy. The positively labelled news articles were then used to find the combination of terms (keywords) that

resulted in the lowest gross error rate (sum of false positive and false negative selection errors). In total, the

process of constructing the index lasted around two years.

This chapter shows how the EPU index can be built using a less costly and flexible approach. To do

so, I use an unsupervised algorithm that automatically annotates news articles with thematic information

without the need for pre-labelled data. The topics produced from a set of news articles describing overall

economic uncertainty are easily matched with the eight categories that compose EPU. Nevertheless, this

approach does not endogenously generate the number of topics implicit in a collection of articles and must

therefore be set exogenously. Therefore, I use a Bayesian model selection process that finds the highest

marginal likelihood of the data (news articles) when different numbers of topics are selected. The resulting

index produced by aggregating only those articles describing EPU closely matches the EPU index produced

using the keywords approach. The computations undertaken in this alternative process take only a few hours.

1.2 Literature review on modelling policy uncertainty

A relative new approach that uses a set of keywords to find the frequency of news articles reporting uncer-

tainty has been found to yield sound measures of different types of economic uncertainty (Baker, Bloom,

and Davis (2016); Azzimonti (2018); Shoag and Veuger (2016); and Tobback, Naudts, et al. (2018)). This

relatively new approach has been viable thanks to the possibility of accessing digitalised media and new

computational methods. Moreover, this method allows the construction of uncertainty indices for several

categories (healthcare, politics, economic policy, finance, etc); for different time frequencies (weekly, monthly

and even daily); and different countries or regions. Nevertheless, the challenge lies in coming up with the

optimal keywords suited to each instance (e.g. type of uncertainty, country or time).

In order to select those keywords with classification power on articles describing economic policy uncer-

tainty, Baker, Bloom, and Davis (2016) undertook a 24 month process consisting in several steps: preliminary

discussion of what economic policy uncertainty actually is, manual classification of a vast amount of news
1By using any form of the terms economy and uncertainty, Baker, Bloom, and Davis (2016) enlisted the articles describing

overall economic uncertainty.
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articles describing overall economic uncertainty, a selection of all policy-related terms encountered in those

news articles describing economic policy uncertainty, and finally, a permutation process to determine those

terms unveiled in the previous step with the highest predictive power.

During the inception phase, the authors read a few hundred articles related to economics and made notes

about a possible classification criteria. In this initial phase, they noted that the greatest challenge came when

selecting the policy related terms. Hence, any form of the terms “economy” and “uncertainty” were found to

be unconditional components of any article describing EPU. At the second stage, 2,000 articles containing

these two keywords were revised to complete the criteria that defines EPU. Along this line, regular meetings

to analyse opinions, grey areas, and points of view were held, resulting in a 65 page book describing the

criteria behind what policy related uncertainty is. Using this book as a guide, they undertook a large scale

audit exercise by previously trained research assistants2 where more than twelve thousand randomly selected

newspaper articles were classified into describing or not EPU. Each positive classification was accompanied

by underlying the policy related terms encountered, where 15 were found to be the most frequent ones. A

permutation process was then applied to all the different combinations of terms (32,000 for 4 or more com-

binations) to test for accuracy, which led to a set of policy related keywords that minimized the gross error

term (amount of false positives and false negatives). Finally, the index was built retrieving the articles from

the 10 most read American newspapers that contained this set of keywords (“economic” or “economy” and

“uncertainty” or “uncertain” and “regulation” or “deficit” or “federal reserve” or “white house” or “congress”

or “legislation”).3

To test the resulting index, this was compared to alternative uncertainty indices such as the VIX index

(0.58 correlation); and the number of times the word “uncertainty” appeared in the Beige book4 (0.54 cor-

relation). However, one drawback with this method that the authors noted is that representative keywords

might vary over time. Along this line, when Baker, Bloom, and Davis (2016) stretched the analysis through

time, 1900 - 2015, two terms were added: “tariff” and “war” since these two terms had a high incidence in

articles describing EPU for the first half of the XX century.

Using also a keyword approach, Azzimonti (2018) created a Partisan Conflict Index (PCI). PCI tracks the

degree of political disagreement among politicians in the news media. Higher index values indicate greater
2Research assistants undertook a training process that consisted in reviewing the guidebook, coding 100 pre-classified articles

and constant feedback.
3The index is the equally weighted total number of articles that contain the keywords over the total number of news per

newspaper across time. Moreover, each source is normalized to have unitarian standard deviation.
4Review of economic activity in the 12 Federal Reserve districts published by the Federal Open Market Committee.
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conflict among political parties, Congress, and the President. A two-stage selection process was used to

come up with the optimal keywords that identify partisan conflict in news articles. Firstly, Azzimonti (2018)

manually selected words normally used in the political economy and political sciences literature that refers

to disagreement. Secondly, three articles per month from this first stage-search were selected at random from

the New York Times during the period 1981-2013 in order to select additional words that could reduce the

incidence of false negatives.

Shoag and Veuger (2016) exploited regional asymmetries on unemployment during the recent crisis in

the USA across states to analyse to what extent policy uncertainty could have explained these differences.

In order to build their policy uncertainty index at the state level, they selected those articles containing

the word “uncertainty” and policy related terms such as “state leaders”, “state law”, “state government”,

“state regulation”, “state regulators”, “state agency”, “state grant”, “state assistance”, “auditor”, “secretary”,

“treasurer”, “gubernatorial”, “tax”, “budget”, “governor”, “legislature”, “lawmaker”, “state capital”, and “repre-

sentative”. They then went on eliminating those articles containing terms reflective of national or sub-state

uncertainty: “washington”, “dc”, “katrina”, “congress”, “president”, “editorial”, “municipal”, “obama”, “bush”,

“federal”, “county”, and “district”. Given that neither Azzimonti (2018) nor Shoag and Veuger (2016) under-

took a classification error measurement of their keywords of choice, a vast knowledge and awareness of the

topic of interest was necessary.

Besides, keywords that are found to be valid for categorizing EPU in a specific country may not be the

most appropriate to use in others. Along this line, Tobback, Naudts, et al. (2018) found that when the key-

words proposed by Baker, Bloom, and Davis (2016) were used to assess EPU in Belgium, some proportion

of articles labelled as discussing this type of uncertainty in Belgium were actually describing events that oc-

curred in China, America or Africa (false positive error).5 Moreover, they also discovered that many articles

which described EPU did not contain the keywords proposed by Baker, Bloom, and Davis (2016), leading to

false negative error.6 In order to correct for this drawback, they used advanced text mining techniques and

classification methods such as modality annotation and Support Vector Machine (SVM) algorithms to build

EPU indices that could adjust better to the singularities of the Belgian economy. Modality annotation con-

sists of searching list of words with a close meaning to the one of interest, for example uncertainty could also

be matched with words such as “doubt”, “wonder” or “unclear”. Along this line, they built a first uncertainty

index with those articles which contained a high degree of words that resemble “uncertainty” and mention
5In addition, 2 out of 83 articles labelled as describing uncertainty did not describe uncertain events.
616 out of 17 labelled as not containing uncertainty did in fact describe uncertainty.
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European or Belgian concerns.7

A second EPU index was then built using a previously classified set of 500 articles that contained the

word “economy” into depicting EPU or not, and SVM to find the combination of keywords with higher dis-

criminatory power. Nonetheless, a problem noted by the authors was the lack of enough pre-classified news

articles in the training set (400 of the 500 in total) which resulted in a “poor” classification power (according

to authors). This highlights the large amount of pre-classified data (and therefore resources) needed when

running sophisticated text mining algorithms such as SVM for classification purposes.

The method proposed in this chapter to characterize EPU is meant to overcome some of the problems

discussed in this section. Given the unsupervised nature of the algorithm used to build EPU indices, the

Latent Dirichlet Allocation (LDA) algorithm, pre-classified data is not required. Moreover, given that we

run the topic modelling in news articles describing overall economic uncertainty, the likelihood that we miss

news articles describing EPU is low (little amount of false negative error). Of course, this process depends

on how well the model can identify our topics of interest and how clear it is to identify them.

1.3 Can news articles capture uncertainty and or risk?

The concept of uncertainty is not a very clear one. Since the pioneering work of Frank Knight, economic

analysis distinguishes from a theoretical point of view uncertainty and risk. Frank Knight formalized this

distinction in his 1921 book: Risk, Uncertainty, and Profit. As he saw it, an ever-changing world brings new

opportunities for businesses to make profits, but it also means there is imperfect knowledge about future

events. According to Knight, risk applies to situations where we do not know whether a given alternative will

materialize, but we know the probability of its occurrence, whereas uncertainty, on the other hand, applies to

situations where we do not know all the information we need to set accurate odds in the first place (Dizikes

(2010)).

According to this perspective then, the main difference between the two concepts is the existence of a

distribution probability function in the case of risk, something non-existent in the case of uncertainty. This

asymmetry explains the different tools that are suggested to model and cope with these two situations,

mostly in the field of investment appraisal: In the case of risk, the analyst relies on the expected utility
7They used only articles that contained the words Belgium; the name of any Belgian politician or political party; and any

name of an European country.
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of the agent involved, based on the information provided by the probability function and the way it im-

pacts on the formation of individual preferences (expected values, statistical variance, standard deviation)

and his/her degree of risk aversion (Arrow-Pratt coefficient). To compare the degree of risk involved in dif-

ferent situations, the procedure provides tools like the certainty equivalent and the concomitant risk premium.

In the case of uncertainty, this is not possible, and the procedure relies on the degree of risk aversion of

the agent implied and how this may be transformed into a state preference approach (Arrow-Debreu model).

From here and together with the analysis of the contingent consequence functions, several criteria appear to

help the decision-maker: Maximin, Minimax, Laplace, Minimum Regret, etc.

This is in any case, in our opinion, a theoretical issue that even at this level is sometimes blurred. A

good example would be the New Palgrave Dictionary of Economics. In the case of both, the risk entry

(Palgrave (1987)) as in the case of uncertainty the distinction is far from been clearly made. For instance

it is stated that: “The phenomenon of risk (or alternatively, uncertainty or incomplete information” (p. 201).

Furthermore, in the real world, the two tend to merge in different situations. For example, when the

probabilities of two different and exclusive alternatives (states of nature) are almost the same (50-50). This

situation is posed in a framework that is similar to applying the Laplace criteria to uncertain situations:

when the probabilities are unknowns, the Laplace criterion assigns the same probability to all the different

possibilities. I guess this was the case of the two referenda analysed in the next chapter: as the polls ap-

proached, the outcome was increasingly uncertain, as the probability of each outcome begun to be almost the

same. The same happens when the number of variables that may influence the final outcome is very large.

Even if each one of them could be treated within a risky framework, the whole set leads indeed towards an

uncertain situation. This can be illustrated with the help of an example. Suppose a firm that is considering

an investment in renewable energies. This is a long term, expensive, and irreversible capital investment. Its

return will depend first on the future price of energy. This will depend, on its turn, on the policies followed

by the government regarding conventional and renewable energies: fiscal policy (taxes, subsidies explicit and

implicit. . . ) and environmental policy (emission caps, carbon markets, etc.). Then it will also depend on

the international price of oil, something that will be affected by socio-political instability, OPEC policies

regarding supply, the appearance of new technologies (fracking), etc. The exchange rate and the domestic

rate of interest will of course also have a saying. And the list can still be continued. Many of these possible

events could in principle be treated as risky outcomes, in fact, there are future markets for quite a few of

them. But even if every one of these variables could be treated separately as a risky issue regarding the
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return of the investment, the complete set makes it more likely to be an uncertain situation. The following

paragraph of a news-article is a very good example, of how risk and uncertainty are treated as synonymous

in the press:

THE Bank of England is making preparations for potential financial instability if Scots back indepen-

dence, following warnings there could be a run on the banks. Governor Mark Carney said uncertainty over

an independent Scotland’s currency was one of the possible risks to the economy. A leading European bank

has warned a Yes vote could see panicked savers start to move their money south of the border within hours.

[The Glasgow Herald, 14 August 2014]

It should be no surprise, therefore, that in colloquial language this distinction is seldom made, and the two

concepts tend to be used indistinctly. In our opinion, this is the case of the press coverage of economic uncer-

tainty, and this is the reason why we have chosen uncertainty as the proper word to cover this phenomenon.

It is our guess that this was also the reason why Baker, Bloom, and Davis (2016) did the same. Take for

instance how they describe Economic Policy Uncertainty: “uncertainty about who will make economic policy

decisions, what economic policy actions will be undertaken and when, and the economic effects of policy ac-

tions (or inactions) – including uncertainties related to the economic ramifications of ‘non-economic’ policy

matters, e.g. military actions. Our measures capture both near-term concerns (e.g. how to fund entitlement

programs), as reflected in newspaper articles).”

Baker, Bloom, and Davis (2016) state that for a news article to be potentially describing economic uncer-

tainty, it must contain any form of the word “economy” and “uncertainty”. In this sense, the above definition

is appealing, yet it does not offer a clear distinction between uncertainty and risk (this second one not even

mentioned): both are treated as equivalent. Therefore we consider that the word “risk ”, would not add to the

study, being implicitly included in the term “uncertainty”. In fact, some economists argue that risk would

be best applied to a highly controlled environment, like a pure game of chance in a casino, and uncertainty

would apply to nearly everything else (Dizikes (2010).

Finally, the relevance of the distinction has to do, among other things, with the issue of how-to advice

as accurately as possible the way the agent should face an uncertain or risky situation in the future. The

purpose of this thesis is, in this sense, somewhat different: the building of a family of economic uncertainty

indices in a more efficient way than the conventional one, and the analysis of the impact that various kind

of uncertainties may have on several economic variables and different countries. This is why I consider that
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there is no problem in, following the usual practice in common language, using the term uncertainty as

comprising also risk. The same can be said about the different theoretical types of uncertainty mentioned

in the literature and not differentiated here: endogenous and exogenous; intrinsic and extrinsic, etc. In the

cases we analyse in this thesis, all of them appear together.

The above paragraphs highlight, in any case, some potential limitations of our approach: when gathering

only news articles that contain the words uncertainty and economy might lose some relevant information

regarding economic risks. I order to go a step further in this direction, Chapter 3 uses a greater set of words

endogenously given by a text mining algorithm with similar semantic forms to those of uncertainty and

economy.

1.4 Introduction to the LDA

The Latent Dirichlet Allocation (LDA) model developed by Blei, Ng, and Jordan (2003) is an unsupervised

machine learning algorithm that learns the underlying topics of a set of documents. It is based on a gener-

ative probabilistic approach to inferring the distribution of words that defines a topic, while simultaneously

annotating articles with a distribution of topics. In other words, each topic is composed of a set of most

probable words while each article is composed of a set of most probable topics. It is an unsupervised al-

gorithm because it learns these two latent (unknown) distributions of the model without the need for prior

information regarding their theme.

In what follows, I will try to illustrate in a very simple manner how the model works. Take for instance an

article from the Financial Times describing the economic consequences regarding Brexit. What I have done

by hand in Figure 1.1 is to characterize this article as a distribution of different topics, show in red, blue, and

orange, which simultaneously are formed by a distribution of words. For example, the red topic is formed by

the words vote, minister and Cameron, being the word vote twice as likely to occur as the word minister and

Cameron across the red topic (0.8 vs. 0.4 probability). This topic seems to belong to the realm of politics,

although as we will see throughout this thesis, it is up to the researcher to label the topics. Similarly, the blue

topic is formed by words such as inflation, sterling, price and pound, being the words inflation and sterling

equally likely to appear in this topic while much more likely to occur than the word price (more than three

times as likely). Finally, the orange topic is shaped by words such as finance, markets and borrowing. Note

that the probabilities assigned to each word (e.g. vote having a probability of 0.08 of appearing in the red

topic) have been assigned in a bit ad hoc fashion with an illustrative purpose. The article-topic distribution
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Figure 1.1: Latent Dirichlet Allocation

is represented by the little histogram in the right-top corner of Figure 1.1. In this example we can see how

the blue topic is around twice as likely to be part of this article than the red topic while three times as likely

as the orange topic (once again, these probabilities are an approximation of the word incidence of each topic).

Of course these distributions are unknown to the algorithm and have to be unveiled by the algorithm

itself using a probabilistic model suited for text. The model recovers these two distributions by obtaining

the model parameters that maximize the probability of each word appearing in each article given the total

number of topics K. The probability of word wi appearing in an article is then given by the formula:

P (wi) =
K∑
j=1

P (wi|Zi = j)P (zi = j) (1.1)

where zi is a latent variable indicating the topic from which the ith word was drawn, P (wi|zi = j) is the

probability of word wi being drawn from topic j and P (zi = j) is the probability of drawing a word from

topic j in the current article. Intuitively, P (w|z) indicates which words are important to a topic, whereas

P (z) states which of those topics are important to an article.
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Another way to intuitively understand what the algorithm does is by taking a look at the data generation

process assumed by it. The data generation process, that is, how the algorithm understands how a text was

written can be represented by a two stage process: i) draw topics from a Dirichlet distribution ϕ ∼ Dir(),

and ii) for every article, draw a distribution over topics θa ∼ Dir(). In short, each word in an article is

chosen according to first selecting a topic and then selecting a word associated to that topic.

The task is therefore to infer these two latent distributions (called Z for simplicity) given our data X and

hyper-parameters Θ by a probabilistic model p(Z|X,Θ). In a slightly more complete format, the posterior

distribution can be represented by all its components: p(z,K, θ|w,α, η), where z is the topic assignment

(the probability of choosing a given topic across the set of articles), K is the number of topics, and θ is the

article-topic distribution. Moreover, the list of words is given by w, and the hyper-parameters of the model

are α and η (later explained in more detail). The joint distribution of these hidden posterior distributions

can be represented by the following equation (Blei, Ng, and Jordan (2003)):

K∏
j=1

p(βk|η)

A∏
α=1

p(θa|α)

N∏
n=1

p(za,n|θa)p(wa,n|za,nβ1,...K) (1.2)

where A is the total number of news articles and N is the total number of unique words across all articles.

The far right product of expression
∏N
n=1 p(za,n|θa)p(wa,n|za,nβ1,...K) represents the probability of assigning

the nth word to a given article. This probability is the product of the two stage probability selection process:

i) the probability of assigning a given article to topic k: p(za,n|θa), and ii) the probability of nominating the

nth word to the article selected in step i: p(wa,n|za,nβ1...K). This second stage process is characterized by

the probability of matching a word from the collection of words wn = {w1, ..., wn} to an article given the

word-to-topic assignment za,n and the per-corpus-topic distribution βk = {β1, ..., βK}.

Figure 1.2: LDA hyperparameters
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The far left component of Equation 1.2, p(βk|η) describes the per-corpus-topic distribution which comes

from the Dirichlet distribution ϕ ∼ Dir() and depends only on the topic hyper-parameter η. The second

term of this equation, p(θa|α), indicates articles-topic distributions. It also comes from a Dirichlet distribu-

tion θa ∼ Dir() which is shaped by the hyper-parameter α. The illustration of the hyperparameters can be

seen in Figure 1.2. High levels of η represent the probability distribution of words to topics being more even,

while a low level of η represents fewer words having a much higher probability of defining that topic than

the rest. Similarly, high levels of α indicate articles containing a similar topic distribution per article while

low levels of α indicate a more disperse distribution.

1.4.1 Selecting the optimal number of topics

Choosing K is essentially a model selection problem. As a Bayesian statistician facing a choice between

different statistical models, we will compute the posterior probability of the different statistical models given

our observed data (the words). In other words, the main element of this posterior probability is the likelihood

of the data given the model, integrated over all parameters in the model. In our case, the data are the words

in the corpus, w, and the model is specified by the number of topics, K, so we wish to compute the likelihood

P (w|k) (Griffiths and Steyvers (2004)).

Nevertheless, this probability cannot be directly estimated, since it requires summing over all possible

assignments of words to topics. For this reason, the probability distribution can only be approximated using

the harmonic mean of a set of values of p(w|z,K), when z is sampled from the posterior distribution (Griffiths

and Steyvers (2004)). The Gibbs sampling algorithm provides such samples, and the values of P (w|z,K)

can be computed from:

P (w|z) =

(
Γ(W |β)

Γ(β)W

)K K∏
j=1

∏
w Γ(nwj + β)

Γ(n
(·)
j +Wβ)

(1.3)

where nwj is the number of times word w has been assigned to topic j in the vector of assignments z, and

Γ(·) is the standard gamma function. To see how to LDA is estimated, please see Appendix I.I.

1.5 Testing the methodology

Having presented the basic methodology we are going to follow in this thesis, it is perhaps convenient to

subject it to some preliminary tests. In this sense, we will first apply this methodology to replicate the Baker,

Bloom, and Davis (2016) uncertainty index and compare the results. Then, we will apply this method to
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construct an EPU index for the UK. Finally, we will perform a very simple exercise to relate EPU with firm

investment in the UK.

1.5.1 Comparison with the standard methodology

The starting point of this experiment is to download all available news articles containing any form of the

terms economy and uncertainty from the following newspapers: The Washington Post, The New York Times,

and USA Today. The retrieval tool used was Nexis, an online database of news articles. The total number

of news articles associated with any form of these two terms from January 1989 to August 2016 was 40,454.

In this corpus (aggregation of all articles) there are over one million unique words.

Next, the data (words) were pre-processed: stopwords are removed (words that do not contain informa-

tive details about an article, see Appendix I.II), all words have been converted to lower case, and each word

has been converted to its root (stemming).

Finally, to find the most likely value of LDA topics K for this specific corpus, I use the likelihood method.

This method consists of estimating empirically the likelihood of the probability of words for a different

number of topics P (w|K). This probability cannot be directly estimated since it requires summing over

all possible assignments of words to topics, but can be approximated using the harmonic mean of a set of

values of P (w|z,K), when z is sampled from the posterior distribution (Griffiths and Steyvers (2004)). This

method indicates that the most likely number of topics in this corpus is K = 30 (Figure 1.3).

Figure 1.3: Number of topics and log-likelihood scores

Figure 1.4 shows each of the 30 topics unveiled by the LDA model in this corpus (see Table 1.6 for the

words captured by the LDA at the Appendix I.II). Topics are represented as circles in the two-dimensional

plane whose centres are determined by computing the distance between topics (see Chuang et al. (2012)). At
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Figure 1.4: Topics unveiled by the LDA

Notes: This figure is produced using the library LDAvis developed by Sievert and Shirley (2014).

first sight it is clear that these topics describe a wide range of economic-related themes: Fiscal Policy, Mon-

etary Policy, Trade, Financial Investment, Stock Market, and Industry to name but a few. On the top left

side of the graph, however, we encounter many topics related to politics and foreign affairs: Elections, Law,

Conflict or Immigration. This should not come as a surprise since economic uncertainty is often produced

by concern or confusion in the political or international agenda. For example, depending on the candidate

elected, taxes will rise, decrease or remain the same. Moreover, international tensions might translate into a

distortion of oil prices or war preparations. Consequently, unbalances in the planned budget or the economic

value chain might arise from these distortions, leading not only to uncertainty in the overall economy but

also to uncertainty regarding the policies that will be adopted.
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Interestingly, many are the topics describing recent events, which could indicate that economic uncertainty

has increased over time. Examples of these topics are: the Great Recession (2008-2012) which started with

the collapse of Lehman Brothers in September 2008 and preceded a massive financial crisis and massive losses

in employment and output worldwide; the European crisis, that was triggered by concerns about debt levels

of some peripheral EU countries, and Healthcare, the Patient Protection and Affordable care Act which was a

major discussion topic in the 2008 Democratic presidential primaries, and went to the Supreme Court in 2012.

Table 1.1: EPU categories matched by topics

EPU subcategory LDA topic Top keywords ( = 0.5)*

Fiscal Policy
Fiscal Policy

(tax, budget, cut, bill, congress, propos,
- Taxes would, spend, legisl, senat, plan, fiscal)
- Government Spend.
Monetary

Monetary Policy
(fed, economi, rate, growth, economist,

Policy inflat, econom)

Healthcare Healthcare
(health, airlin, medic, patient, insur,
hospit, care, doctor)

National Security

Conflict (iraq, war, militari, iraqi, syria,
afghanistan, attack, troop)

Russia (russia, russian, soviet, putin, ukrain,
nuclear, moscow, iran)

Immigration (refuge, immigr, polici, migrant, africa,
cuba, puerto, border)

Regulation Law (court, law, legal, case, justic, rule,
investig, lawyer, judg)

Energy (plant, water, energi, electr, coal,
environment, farm)

-Financial regulation
Stock market (1, percent, 2, 3, fell, 4, rose)

Financial invest.
(stock, market, investor, invest, fund,
yellen, wall)

Sovereign debt
Financial crisis

(bank, loan, financi, debt, credit, lender,
& currency crisis billion, lend, default)

Great recession
(bond, 2008, rate, 2012, 2013, 2011,
2014, 2016, 2009, yield)

Entitlement Programs
Healthcare

(health, airlin, medic, patient,
insur, hospit, care, doctor)

Education
(school, student, colleg, univers, educ,
children)

Trade Policy Trade
(china, chines, japan, india, beij, japanes,
asia, taiwan, asian, currenc, trade, foreign)

Notes: *The relevance of a term (w) per topic (k) is given by w|K) = λ ∗ p(w|k) + (1− λ) ∗ p(w|k)/p(w), where λ ε
{0, 1}, and p(w) is the frequency of a word appearing in the corpus (see Sievert and Shirley, 2014).

As mentioned, Baker, Bloom, and Davis (2016) identify eight categories composing EPU. These categories

appear in Table 1.1 (column 1) together with their equivalent topic (column 2) and the list of representa-

tive words for each topic (column 3). Although for some categories, LDA topics cannot be subdivided as

suggested by those authors (e.g. Taxes and Government Spending is matched by the unique topic Fiscal
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Policy), in other cases, some topics go beyond the categories proposed by them (e.g. National Security

can be unbundled into Conflict, Russia, and Immigration). Moreover, to match the category Regulation, I

selected those topics with the highest word distribution of this term (regulation): Law and Energy.

Once the topics that compose EPU are found, building the EPU index required a few steps. Firstly,

each article was labeled according to its most representative topic (the topic with the highest percentage

in the article). Secondly, a raw count of the number of news articles for every topic in each month was

produced (30 raw time-series). Since the number of news articles is not constant over time, I divided each

raw time-series by the total number of news articles containing the word today each month (the proxy for

the total number of news articles, see Azzimonti (2018)). The EPU index is then the sum of the monthly

normalized time-series of the topics that are assigned to each EPU category. Lastly, the resulting index is

standardized to mean 100 and one standard deviation. I refer to this final time-series as EPU” .

Figure 1.5: Comparison between EPU” (solid line) and EPU (dashed line) indices (January
1989 – August 2016)

Notes: All series are standardized to mean 100 and 1 standard deviation along the period covered.

Figure 1.5 shows the evolution of EPU” and the economic policy uncertainty index built using Baker,

Bloom, and Davis (2016) approach: EPU. This last index is produced by retrieving only those articles that

satisfy the following Boolean series: [uncertain OR uncertainty ] AND [economic OR economy ] AND [regu-

lation OR Federal Reserve OR deficit OR congress OR legislation OR white house].8 In order to build the

final time-series, the total number of news articles that contain the above set of keywords is divided by the

total amount of articles that contain the word today per month, and standardize the resulting series to mean
8Note that any form of the above list of words is retrieved. For example, legislator, legislations or legislative are forms of the

word legislation.
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100 and one standard deviation.

The behavior of the two time-series is extremely similar (0.94 correlation), something which seems to

validate our approach. Nonetheless, there are small differences regarding the intensity of some shocks. These

tend to be associated with geopolitical events such as the Gulf War I, 9/11, Gulf War II and the Bush Jr.

election, where the EPU” reacts more abruptly. These differences aside, the cyclical component between the

two series is very similar (0.88 correlation), while the trend component is extremely similar (0.99 correlation).9

We can conclude, therefore, that our index produces the same results as the conventional one developed

by Baker, Bloom, and Davis (2016) while being much more simple to calculate. Certainly less demanding

and efficiency gain.

1.5.2 Policy Uncertainty in the UK

Following this approach, we can construct the Economic Policy Uncertainty for the UK. To do so, first I

download all available news articles describing overall economic uncertainty (those containing any form of

the terms economy and uncertainty) from the following newspapers: The Financial Times and The Times.

The retrieval tool used was again Nexis, an online database of news articles. The total number of news

articles associated with any form of these two terms from January 1997 to June 2017 (both included) was

49,175. In this corpus, aggregation of all articles, there are over one million unique words.

Just as before, the data (words) were pre-processed: stopwords are removed (words that do not contain

informative details about an article, i.e. that or me), all words have been converted to lower case, and each

word has been converted to its root (stemming). Finally, to find the most likely value of topics K for this

specific corpus, I use the likelihood method. This method indicates that the most likely number of topics in

this corpus is K = 30 (see Table 1.2).

Table 1.2: Number of topics and log-likelihood scores

20 30 40 50 60

log P(w | K) -22801686 -20282284 -22342142 -25549671 -27070918

9To compute the correlation between the cyclical and trend components of the two series I used the Hodrick-Prescot filter
with a monthly weighted factor of 129,600.
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Table 1.3 shows each of the 30 topics unveiled by the LDA model in this corpus. The words in italics

correspond to the words most representative to each topic. As we have seen, Baker, Bloom, and Davis (2016)

identify eight categories composing EPU: fiscal and monetary policy, healthcare, geopolitical, regulation, liq-

uidity & currency crisis and entitlement programs. However, not all categories comprising EPU in the USA

are visible using UK data. This is clearly the case of topics such as healthcare. One possible explanation is

that it is not as important for the UK policy as for the USA. The National Health Service (NHS) has not

experienced such a heated debate as the Patient Protection and Affordable Care Act (commonly known as

the Obama Care). It is true that recently the NHS has suffered a debate over its financing and spending,

but not to the extent as the Obama Care. The one latter was a major topic during the 2008 Democratic

presidential primaries, was meant to affect 30 million uninsured people, and was debated at the Supreme

Court.

On the other hand, policy-related affairs in the UK may mean nothing for the USA. This is clearly

the case of the topic political uncertainty. While the UK was suffering from huge uncertainty due to the

Scottish referendum on independence (Sep 2014) and Brexit (Jun 2016), the USA has not experienced such

a degree of political uncertainty. With these issues in mind, I have elaborated to the best of my knowledge

a news-EPU index for the UK. The categories that compose EPU appear at the top of Table 1.3 and are

as follows: fiscal policy, monetary policy, political, geopolitical (Russia + conflict), regulation (regulation +

financial regulation), liquidity, energy, and entitlement programs (pension + employment).

Once the topics that compose EPU are determined, building the news-EPU index required again a few

steps. Firstly, each article was labelled according to its most representative topic (the topic with the highest

percentage in the article). This is true for all cases except for two topics: policy uncertainty and economic

thinking (due to their ambiguity). In the case of an article being most represented by any of these topics, it

will be classified according to the second most influential one. Secondly, a raw count of the number of news

articles for every topic in each month was produced (30 raw time-series). Since the number of news articles

is not constant over time, I divide each raw time-series by the total number of news articles containing

the word today each month (the proxy for the total number of news articles, see Azzimonti (2018)). The

News-EPU index is then the sum of the monthly normalized time-series of the topics that are assigned to

each EPU category.

Figure 1.6 shows the evolution of the overall policy uncertainty index and its sub-indices from Jan 1997 to
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Figure 1.6: Economic Policy Uncertainty in the UK
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June 2017 (both included). Overall policy uncertainty (top graph) exhibits spikes around events known to in-

crease policy-related uncertainty, such as recessions, geopolitical events (e.g. Gulf War II, London bombings

and the Arab Spring) or episodes of high political uncertainty (e.g. the Scottish referendum for independence

and Brexit). Besides, the eight individual components show in detail which category is behind each shock.

For example, fiscal policy and monetary policy uncertainty are responsible for the spike in overall EPU at

the end of 1998, when Britain was discussing whether or not to join the Euro. Moreover, these two cate-

gories also account to a big extent for the rise in uncertainty surrounding Brexit (June 2016). Additionally,

geopolitical uncertainty is behind the advance in overall policy uncertainty at the start of the Gulf War II
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(April 2003), whereas liquidity uncertainty is responsible for the spike around 9/11 which produced a shock

in the financial markets’ liquidity worldwide.

At the individual level, regulation uncertainty composed by adding financial regulation and policy reg-

ulation boosts during the financial crisis and the recent negotiations around Brexit. Additionally, energy

uncertainty does so during episodes of oil prices uncertainty driven by the referendum in Venezuela to re-

elect Hugo Chavez or the bankruptcy of Yukos10 (both took place during March 2004), and the INEOS crisis

(Oct 2013) when INEOS (multinational chemical company) announced the closure of its petrochemical plant

in Grangemouth, Scotland. This event threatened Scottish fuel supply to the whole UK. Furthermore, po-

litical uncertainty ramps up during the Scottish devolution referendum (Oct 1997) in which Scotland gained

its own parliament with devolved powers; the Scottish referendum for independence (Sept 2014); and Brexit

(June 2016). Lastly, entitlement programs uncertainty rose during the Work Capability Assessment (Oct

2008) where new rules where placed to decide whether jobless welfare claimants would be entitled to sickness

benefits, and Brexit (June 2016).

10Yukos was an oil and gas company based in Moscow. Between 2004 and 2007, most of Yukos’s assets were seized and
transferred for a fraction of their value to state-owned oil companies
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1.5.3 The relationship between uncertainty and investment in the UK

Finally, to illustrate in a preliminary way the relationship between investment and uncertainty we will use

the classical investment regression and augment it to include our economic policy uncertainty measures.

Data

We extract firm level data from Datastream, which provides information for listed companies at a quarterly

frequency from 1997 until 2017. The key variables of interest at the firm level are: investment, Tobins Q,

sales growth rates, operating cash flows, and total assets. Investment is measured as capital expenditure

(addition to fixed assets) scaled by total assets (following Gulen and Ion (2015)). Tobins Q is the the ratio

of equity market value plus liabilities market value and equity book value plus liabilities book value. It

captures the opportunity cost of investment for listed companies (see Hennessy, Levy, and Whited (2007)).

Cash flows and sales growth rate have widely been used in previous studies to account for the degree of

financing constraints and to control for investment opportunities respectively (see for example Konings, Ri-

zov, and Vandenbussche (2003); Guariglia (2008)). A positive cash-flows-to-investment sensitivities is often

an indicator of financial constraints, since that firm finds it costly to access external financing and needs

to rely on internal funds (see Fazzari, Hubbard, and B. C. Petersen (1987)). Additionally, positive sales

growth rates signals the company an increase in demand and therefore a higher reward for investment. The

investment and operating cash-flow variables are normalized by beginning of the period total assets.

To be included in the analysis, firms must contain complete records (nonmissing observations) on invest-

ment rate, cash flows, sales, and Tobins’ Q ratio for at least three years in the sample. Also, to control for

the potential influence of outliers, we exclude observations in the 1% tails for each of the regression variables.

Note that these types of rules are common in the literature (see Guariglia (2008); Ding, Guariglia, and

Knight (2013); and Gulen and Ion (2015)). The data used for estimation adds to a total of 432 companies or

10,354 firm-quarter observations. Descriptive statistics of the variables of interest can be seen in see Table 1.4.
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Table 1.4: Descriptive Statistics

Datastream sample

Ii,t/TAi,t−1 0.037
(0.045)

Tobins Q 1.55
(0.79)

CFi,t/TAi,t−1

(0.079)

Sales growth
(0.84)

n 432
N 10,354

Notes: This table reports sample means and standard deviations (in parenthesis) for the variables of interest and
different subgroups. The subscript i indexes firm, and the script t represents time: t = Q1 : 2000−Q2 : 2017.
Ii,t/TAi,t−1 represents investment rate: Ii,t is defined as capital expenditure, TAi,t−1 is total assets at t− 1. Tobin’s
Q is defined as the ratio of equity market value plus liabilities market value over equity book value plus liabilities
book value. CFi,t/TAi,t−1 indexes cash flows over total assets and SGi,t represents sales growth. The sample
includes UK companies with at least less than three years of observations described in the table. Also, outliers are
removed.
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Econometric framework

Problems with endogeneity arise from the fact that business cycles and economic prospects shape both,

investment patterns, and economic policy uncertainty. For example, downward business cycles might increase

credit shortages as well as shifts in policy uncertainty (more about these issues later). Therefore we will

follow Gulen and Ion (2015) and include a set of macroeconomic indicators in the traditional investment

equation:

Iit
TAit−1

= αi + β1Qi,t−1 + β2EPUt−1 + β3
CFi,t−1

TAi,t−2
+ β4SGi,t−1 + β6Mt−1 +QRTt−1 + εit (1.4)

where i = 1, 2, ..., N indexes cross-section dimension and t = 1, 2, ..., T the time dimension. Iit/TAi,t−1

is the ratio between capital expenditure and total assets, αi is firm fixed effects which removes firm-specific

time invariant omitted variables, Qi,t−1 is Tobin’s Q, EPUt−1 indicates the policy uncertainty index or sub-

categories, CFit−1/TAit−2 corresponds to cash flows scaled by total assets and SGi,t−1 is sales growth rates.

QRT term contains a set of quarterly calendar dummy variables meant to control for possible seasonality in

capital investments. Finally, Mt−1 represents additional control variables at the macro level and standard

errors are clustered at the firm level to correct for potential cross-sectional and serial correlation in the error

term εit (M. A. Petersen (2009)).

Given that we want to study the average relationship between uncertainty and investment, time-fixed

effects cannot be incorporated into this basic econometric framework since doing so would absorb all the

explanatory power of the uncertainty indices. To address concerns that results might be driven by time-

dependent factors such as business cycles or year-specific effects, we need to include a battery of macroe-

conomic variables (Mt−1) to account for such effects. The main concern when studying the impact of

uncertainty and investment comes in the form of countercyclical behaviour of policy uncertainty: “[...]during

bad economic outcomes, policy makers often feel increasing pressure to make policy changes” (Gulen and Ion

(2015)). To this end, I use the GDP growth rates to control for business cycles (in line with Azzimonti

(2018); Gulen and Ion (2015); Baker, Bloom, and Davis (2016)).11

Additional concerns appear with respect to other measures of uncertainty. Policy uncertainty is likely to

be correlated with other types of uncertainty. For example, Julio and Yook (2012) showed that investment

tends to drop significantly during election years. For this reason, I add a dummy variable which takes the
11Data on quarterly GDP growth rates is obtained from Eurostat: https://ec.europa.eu/eurostat/data/database.

https://ec.europa.eu/eurostat/data/database
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value 1 if in that quarter a general election was held and 0 otherwise. Besides, we include the implied

volatility index (VFTSE) to control for overall uncertainty. This index is a measure of the stock market

expectations of volatility in the near future and it has been widely used by many studies as a proxy for

overall uncertainty (see for example Baker, Bloom, and Davis (2016); Gulen and Ion (2015)).12

Finally, investment decisions depend to a high extent on expectations regarding the future of the econ-

omy (see for example Helliwell and Glorieux (1970)). For this reason, it is important to control for them,

as expectations might be linked to current policy uncertainty levels: if expectations concerning economic

growth are negative, policy makers will experience an increasing pressure to change certain policies. For this

reason, I include the Consumer Confidence Index (CCI), well known at capturing confidence levels about the

future (this is in line with Gulen and Ion (2015)).13

Note that controlling for Tobin’s Q, cash flows and sales growth rates aim at capturing expected prof-

itability/investment opportunities, that is, the first moments (Gulen and Ion (2015)). In the case that these

first moment effects are not properly accounted for by these variables and the time fixed effects as well as

other macroeconomic variables, we might have biased coefficients. Nonetheless, given that we always use

lagged values of the uncertainty variable with respect to the dependent variable, omitted variables bias is un-

likely. This is because our uncertainty measures are predetermined, which means that its effect is estimated

consistently in our specifications (see Hayashi (2000), p. 109). In addition, this lagging technique also helps

to alleviate any reverse causality concerns.

Results

To facilitate the interpretation of each uncertainty coefficients (EPU and sub-indices), each index has been

normalized by their sample standard deviation. Therefore, each coefficient can be interpreted as the change

in investment rate associated with a one-standard deviation increase in policy uncertainty. To draw compar-

isons of this magnitudes, I also normalize other macroeconomic variables such as the GDP growth rates, the

consumer confidence index (CCI) and the implied volatility index (VFTSE).

Table 1.5 shows that the majority of uncertainty indices are negatively correlated with corporate invest-

ment after controlling for the wide range of variables explained previously (Panel B). Column 1 displays the
12VFTSE data is obtained from Bloomberg.
13Monthly data on the Consumer Confidence Index is obtained from Eurostat. For quarterly intervals, I simply take the

averages.
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coefficients for overall economic policy uncertainty: -0.0004. This coefficient suggests that when overall policy

uncertainty increases by one standard deviation, corporate investment in the following quarter drops by 1.2%

the average investment rate in the sample (0.037). Regarding individual policy uncertainty categories, fiscal

policy, political and entitlement programs uncertainty show the highest negative coefficients: -0.001 for all of

them. This is equivalent to a drop in corporate investment of 2.7% the average investment rate in the sample.

In addition, there are two uncertainty indices that display a positive coefficient rather than a negative

one. These are geopolitical and energy uncertainty. For every unit standard deviation increase in geopo-

litical uncertainty and energy uncertainty, corporate investment increases in the following quarter by 2.7%

and 1.2% respectively. A possible explanation to it is the rise in sales of defense firms when international

conflict arises. Along this line, Caldara and Iacoviello (2018) find that defense companies in the USA, on

average, make an excess return of about 5 percent for more than two years following a Geopolitical risk

shock through a VAR set up. In addition, energy uncertainty which covers events such as legislation changes

towards greener policies might encourage companies to change their production equipment. Nonetheless,

these are just pure speculation and further tests need to be done.
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1.6 Conclusion

This chapter shows how an EPU index may be constructed using an intuitive and quite costless approach

compared to existing methods. The unsupervised nature of the model employed allows classifying large

textual data into topics without the need for pre-classification.

To test the comparison behaviour of our index, we first compare its results with the ones obtained by

Baker, Bloom, and Davis (2016) using the same data. The outcome can be considered promising. The topics

produced from a set of news articles describing overall economic uncertainty are easily matched with the

categories that Baker, Bloom, and Davis (2016) defined compose EPU. The resulting index, produced within

few days, greatly resembles the EPU index produced using the conventional approach which took around

two years to complete. We then apply our methodology to build the EPU index corresponding to the British

economy in the 1997-2017 period. Again, the resulting index seems to capture major uncertainty causing

events. Finally we showed in a preliminary way how the several indices relate to firm level investment.
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1.7 APPENDIX I.I: Estimating the LDA

As we have seen before, this probabilistic machine learning model consists of the joint distribution of hidden

variables z and observed variables x: p(z, x). Inference about this unknown conditional distribution of the

hidden variables is done by estimating the posterior distribution:

p(z|x) =
p(z, x)

p(x)
(1.5)

where the posterior distribution is simply the join distribution (nominator of Equation 1.5) divided by

the marginal probability of what we are conditioning on (denominator of Equation 1.5). Nonetheless, in most

complex probabilistic machine learning models, the denominator is not tractable; that is, it cannot be solved

in terms of a closed-form expression. For this reason one appeals to approximation rather than calculating

the posterior distribution. In the LDA model, the posterior distribution of the latent variables given in the

documents is expressed as:

p(β, θ, z|w) =
p(β, θ, z, w)∫

β

∫
θ

∑
z p(β, θ, z, w)

(1.6)

where the denominator is the marginal distribution of words p(w) and cannot be computed. Therefore,

we have to approximate the posterior distribution of the LDA. There are so far, two know methods:

• Sampling: which relies on Monte Carlo Markov Chains (MCMC) and seeks to generate independent

samples from the posterior distribution.

• Optimizing: which uses Variational Bayes (VB) in order to optimise a simplified parametric distri-

bution to be as close as possible in Kullback-Leiber divergence to the posterior distribution.

One of the advantages of using Variational Bayes over sampling methods is its speed in solving the

algorithm. ”Although the choice of approximate the posterior introduces bias, VB is empirically shown to be

faster than and as accurate as MCMC, which makes it an attractive option when dealing with large datasets”

(Hoffman, Bach, and Blei (2010)). In what follows, we explain in more detail how the VB works and the

two different versions available: the classical VB and the Stochastic or online VB. The latter being the one

used throughout this thesis.

Figure 1.7 represents the basic idea behind Variational Bayes graphically. Recall that the goal is to get

as close as possible to the posterior distribution p(z|x). In order to do so, we postulate a variational family of
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Figure 1.7: Variational Bayes

distributions over the latent variables: q(z; v) which is indexed by the parameter v. Each point in the ellipse

represents a different realization of this variational family. In other words, a different distribution over z.

What the algorithm does is to start with a particular realization of that distribution vinit and adjust the free

parameter v until it finds the closest value to the posterior distribution v∗. Graphically, this optimization

process is represented by the curvature path that connects vinit to v∗. Lastly, the measure of closeness is

given by the Kullback-Leiber divergence: KL(q(z; v∗)||p(z|x)) (more in detail below).

Nonetheless, one of the problems with VB is its inefficiency, since it has to undertake local computations

for each data point and then aggregate these computations to re-estimate the global structure iteratively. To

solve this problem, a more efficient way is to use online or stochastic variation inference. In what follows, we

will borrow from Hoffman, Bach, and Blei (2010) to illustrate the differences between the two and describe

the classical variational Bayes for LDA and then the Online variation inference algorithms.

Batch variational bayes for LDA

In Variational Bayesian inference (VB) for LDA, the true posterior is approximated by a simpler distribution

q(z,Θ, β), which is indexed by a set of free parameters (see Jordan et al. (1999); and Attias (2000)). These

parameters are optimized to maximize the Evidence Lower Bound (ELBO). In Figure 1.7, the ELBO is

represented by the optimization path that connects vinit to v∗. Formally, the ELBO is given by the following

expression:

log p(w|α, η) ≥ L(w, φ, γ, λ) =∆ Eq[log p(w, z, θ, β|α, η)]− Eq[log q(z, θ, β)] (1.7)

Note that maximizing the ELBO is equivalent to minimizing the KL divergence between q(z, θ, β) and the

posterior p(z, θ, β|w,α, η). Following Blei, Ng, and Jordan (2003), we choose a fully factorized distribution

q of the following form:
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q(zdi = k) = φdwdik; q(θd) = Dirichlet(θd; γd); q(βk) = Dirichlet(βk;λk) (1.8)

Worth is mentioning that this posterior over the per-word topic assignments z is parameterized by φ; the

posterior over the per-document topic weights θ is parameterized by γ; and the posterior over the topics β

is parameterized by λ. As a shorthand, we refer to λ as “the topics.” Equation 1.7 factorizes to:

L(w, φ, γ, λ) =
∑
d

{Eq[log p(wd|θd, zd, β)] + Eq[logp(zd|θd)]− Eq[log q(zd)]

+ Eq[log p(θd|α)]− Eq[log q(θd)] + (Eq[log p(β|η)]− Eq[log q(β)])/D} (1.9)

Notice we have brought the per-corpus terms into the summation over documents, and divided them by

the number of documents D. This step will help to derive an online inference algorithm. We now expand the

expectations above to be functions of the variational parameters. This reveals that the variational objective

relies only on ndw, the number of times word w appears in document d. When using VB -as opposed to

MCMC- documents can be summarized by their word counts:

L =
∑
d

∑
w

ndw
∑
k

φdwk(Eq[log θdk] + Eq[log βkw]− logφdwk

− logΓ(
∑
K

γdk +
∑
k

(α− γdk)Eq[log θdk] + logΓ(γdk)

+ (
∑
k

−logΓ(
∑
w

λkw +
∑
w

(η − λkwEq[log βkw] + logΓ(λkw))/D

+ logΓ(Kα)−Klog Γ(Wη)−WlogΓ(η))/D

=∆
∑
d

l(nd, φd, γd, λ), (1.10)

where W is the size of the vocabulary and D is the number of documents. l(nd, φd, γd, λ) denotes the

contribution of document d to the ELBO. L can be optimized using coordinate ascent over the variational

parameters φ, γ, λ (Blei, Ng, and Jordan (2003)):

φdwk ∝ exp{Eq[logθdk] + Eq[log βkw]}; γdk = α +
∑
w

ndwφdwk; λkw = η +
∑
d

ηdwφdwk (1.11)
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The expectations under q of logθ and log β are the following:

Eq[log θdk] = Ψ(γdk) − Ψ(
K∑
i=1

γdi); Eq[log βkw] = Ψ(λkw − Ψ(
K∑
i=1

λki), (1.12)

where Ψ denotes the digamma function (the first derivative of the logarithm of the gamma function).

The updates in equation 1.11 are guaranteed to converge to a stationary point of the ELBO. By analogy

to the Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin (1977)), we can partition

these updates into an ”E” step—iteratively updating γ and φ until convergence, holding λ fixed -and an “M”

step- updating λ given φ. In practice, this algorithm converges to a better solution if we reinitialize γ and φ

before each E step. Algorithm 1 outlines batch VB for LDA.

Algorithm 1: Batch variational Bayes for LDA
Initialize λ randomly.
while relative improvement in L(w, φ, γ, λ) > 0.00001 do

E step:
for d = 1 to D do

Initialize γdk = 1. (The constant 1 is arbitrary.)
repeat

Set φdwk ∝ exp{Eq[logθdk] + Eq[logβkw]}
Set γdk = α+

∑
w φdwkndw;

until 1
K

∑
k |change in γdk| < 0.00001;

end
M step:
Set λkw = η +

∑
d ndwφdwk

end

Online variational inference for LDA

Algorithm 1 has constant memory requirements and empirically converges faster than batch collapsed Gibbs

sampling (Asuncion et al. (2009)). However, it still requires a full pass through the entire corpus for each

iteration. It can therefore be cumbersome to apply to very large data-sets, and is not naturally suited for

settings where new data is constantly arriving. We propose instead an online variational inference algorithm

for fitting λ, the parameters to the variational posterior over the topic distributions β. Our algorithm is

nearly as simple as the batch VB algorithm, but converges much faster for large data-sets.

A good setting of the topics λ is one for which the ELBO L is the highest possible after fitting the per-

document variational parameters γ and φ with the E step defined in algorithm 1. Let γ(nd, λ) and φ(nd, λ)
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be the values of γd and φd produced by the E step. Our goal is then to set λ to maximize the following

expression:

L(n, λ) =∆
∑
d

l(nd, γ(nd, λ), φ(nd, λ), λ), (1.13)

where l(nd, γ(nd, λ) is the dth document’s contribution to the variational bound in equation 1.12. This

is analogous to the goal of least-squares matrix factorization, although the ELBO for LDA is less convenient

to work with than a simple squared loss function.

Online VB for LDA (”online LDA”) is described in Algorithm 2. As the tth vector of word counts nt is

observed, we perform an E step to find locally optimal values of γt and φt, holding λ fixed. We then compute

λ̃, the setting of λ that would be optimal (given φt) if our entire corpus consisted of the single document

nt repeated D times. D is the number of unique documents available to the algorithm, i.e. the size of a

corpus. (In the true online case D →∞, corresponding to empirical Bayes estimation of β.) We then update

λ using a weighted average of its previous value and λ̃. The weight given to λ̃ is given by ρ =∆ (τ0 + t)−κ,

where κ ∈ (0.5, 1] controls the rate at which old values of λ̃ are forgotten and τ0 ≥ 0 slows down the early

iterations of the algorithm. The condition that κ ∈ (0.5, 1] is needed to guarantee convergence. We showed

above that online LDA corresponds to a stochastic natural gradient algorithm on the variational objective

L (Bottou and Murata (2002)).

Mini-batches. A common technique in stochastic learning is to consider multiple observations per

update to reduce noise. In online LDA, this means computing λ̃ using S > 1 observations:

λ̃kw = η +
D

S

∑
s

ntskφtskw (1.14)

where nts is the sth document in mini-batch t. The variational parameters α and η for this document

are fit with a normal E step. Note that we recover the batch VB when S = D and κ = 0.

Hyperparameter estimation. In batch variational LDA, point estimates of the hyperparameters α

and η can be fit given γ and λ using a linear-time Newton-Raphson method. We can likewise incorporate

updates for α and η into online LDA:

α← α− ρtα̃(γt); η ← η − ρtη̃(λ) (1.15)
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where η̃(λ) is the inverse of the Hessian times the gradient 4αl(nt, γt, φt, λ); η̃(λ) is the inverse of the

Hessian times the gradient 4nL; and ρt =∆ (τ0 + t)−κ as elsewhere.

Algorithm 2: Online variational Bayes for LDA

Define ρt =∆ (τ0 + t)−κ

Initialize λ randomly.
for t = 0 to ∞ do

E step:
Initialize γtk = 1. (The constant 1 is arbitrary.)
repeat

Set φtwk ∝ exp{Eq[logθtk] + Eq[logβkw]}
Set γtk = α+

∑
w φtwkntw

until 1
K

∑
k |change in γdk| < 0.00001;

M step:
compute λ̃kw = η +Dntwφtwk
Set λ = (1− ρt)λ+ ρtλ̃

end
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1.8 APPENDIX I.II: Additional Tables and Figures

Stopwords full list retrieved in Python Stopwords = [’i’, ’me’, ’my’, ’myself’, ’we’, ’our’, ’ours’,

’ourselves’, ’you’, ’your’, ’yours’, ’yourself’, ’yourselves’, ’he’, ’him’, ’his’, ’himself’, ’she’, ’her’, ’hers’, ’herself’,

’it’, ’its’, ’itself’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’, ’what’, ’which’, ’who’, ’whom’, ’this’, ’that’,

’these’, ’those’, ’am’, ’is’, ’are’, ’was’, ’were’, ’be’, ’been’, ’being’, ’have’, ’has’, ’had’, ’having’, ’do’, ’does’,

’did’, ’doing’, ’a’, ’an’, ’the’, ’and’, ’but’, ’if’, ’or’, ’because’, ’as’, ’until’, ’while’, ’of’, ’at’, ’by’, ’for’, ’with’,

’about’, ’against’, ’between’, ’into’, ’through’, ’during’, ’before’, ’after’, ’above’, ’below’, ’to’, ’from’, ’up’,

’down’, ’in’, ’out’, ’on’, ’o’, ’over’, ’under’, ’again’, ’further’, ’then’, ’once’, ’here’, ’there’, ’when’, ’where’,

’why’, ’how’, ’all’, ’any’, ’both’, ’each’, ’few’, ’more’, ’most’, ’other’, ’some’, ’such’, ’no’, ’nor’, ’not’, ’only’,

’own’, ’same’, ’so’, ’than’, ’too’, ’very’, ’s’, ’t’, ’can’, ’will’, ’just’, ’don’, ’should’, ’now’]
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Chapter 2

Political Uncertainty and Investment:

Evidence from Scotland

2.1 Introduction

As mentioned in the previous chapter, there is growing acknowledgement that economic policy uncertainty

can have a significant impact on economies, and in particular on firms’ investment decisions. Scotland has

recently experienced two significant episodes where such uncertainty might have been especially pronounced:

the Scottish referendum in September 2014 on independence (secession from the United Kingdom) and the

Brexit referendum in June 2016 (on the UK leaving the European Union). Both of these events were preceded

by extensive and intensive periods of national debate. These debates were often fractious and resulted in

many claims that a ‘Leave’ vote1 (for Scotland to leave the UK or the UK to leave the EU) would result in

widespread economic uncertainty as they would usher in possibly protracted periods of political wrangling

until trading regimes and the wider business environment were resolved.

As Figure 2.1 shows, the Brexit referendum campaign started off more finely balanced than the inde-

pendence referendum campaign in Scotland. However, as the dates of both referenda drew near the polls

narrowed, in some measure as undecided voters decided which way to vote. The solid lines in the figure are

a linear extrapolation of the Remain and Leave votes recorded in various polls through the campaigns (other

extrapolative techniques tell the same story). That apparent convergence in the votes, may itself have been

an additional source of uncertainty and we shall examine that possible effect later. Of course, in the end,
1In the Scottish Independence Referendum (IndyRef for short) the question posed to voters was: ‘Should Scotland be an

independent country?’ The political campaigns were organized around a Yes or No vote. For the EU Referendum the question
was: ‘Should the United Kingdom remain a member of the European Union or leave the European Union?’ The political
campaigns were organized around a vote to Remain or Leave. It is convenient simply to refer to Leave or Remain votes for
either referendum.
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Figure 2.1: Scottish and Brexit Referenda Polls

Notes: Scottish Referendum polls information obtained from YouGov, Survation, Panelbase, Ipsos, BMG and TNS.
Brexit Referendum polls information obtained from the Financial Times (see https://ig.ft.com/sites/brexit-polling/)

Scotland voted to remain in the UK (55% to 45%) whilst the UK voted to leave the European Union (52%

to 48%).

In the case of the Scottish referendum, it may be the case that much of the political (Independence-

related) uncertainty has been solved, or is at least somewhat diminished. On the other hand, significant

changes to devolved fiscal policy (in particular to income tax raising powers) were introduced following the

referendum and so policy uncertainty, a priori, need not have diminished. In other words, fiscal policy in Scot-

land may now diverge from rUK (the rest of the UK, excluding Scotland) in potentially significant ways. And

of course, it is not clear that a second Scottish referendum on independence is off the political agenda. We

will try to examine the extent to which this political (i.e., referendum-related) uncertainty has resolved. So

https://ig.ft.com/sites/brexit-polling/
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far as the EU referendum is concerned, it appears that much uncertainty, political and policy related remains.

The central aim of this chapter goes a step ahead of what was presented in the previous one. Previously

we introduced a more efficient way to compute an economic policy uncertainty index from news articles.

Here, I attempt to identify the underlying sources of political uncertainty and to see which are more delete-

rious to investment: Are referenda an independent source of EPU and, if so, how costly are they? In doing

this, we build on recent research which has established that economic policy itself can create an uncertain

investment environment.

The principal challenge in extending that literature on policy uncertainty is isolating an appropriate

measure of political/referenda-related uncertainty. In the literature, the overall economic uncertainty faced

by a country has been measured using a variety of proxy variables, such as the dispersion in the forecast of

GDP growth, implied volatility indices, or survey-based firm reports of investment uncertainty. A seminal

development has been the news-based Economic Policy Uncertainty index developed by Baker, Bloom, and

Davis (2016). Such indices describe primarily uncertainty concerning which and when economic policies

the government will implement. However, measuring the portion of uncertainty attributable to the political

system and in particular applicable to Scottish issues alone is rather challenging using their approach.

To fill this gap, we use an unsupervised machine learning algorithm to subdivide overall economic uncer-

tainty reported in the news media into different topics following the approach of Azqueta-Gavaldón (2017).

The unsupervised machine learning algorithm called Latent Dirichlet Allocation (Blei, Ng, and Jordan (2003))

studies the co-occurrences of words in news-media articles to frame two distributions: a distribution of words

composing a topic and a distribution of topics for each document (news article). One can then track through

time the evolution of the topics describing the uncertainty measures of interest. In other words, the LDA

approach allows one to decompose economic policy uncertainty into endogenously determined sub-indices,

whilst the unsupervised machine learning algorithm makes the analysis feasible. Hence, there is no need

to read the individual newspaper articles and apportion their content across pre-determined sub-indices.

Nonetheless, given that the topics uncovered by the approach are simply described by a set of words, it is

left to the researcher to justify the labelling of each topic. However, as we describe briefly now, and in more

detail below, it turns out that the LDA approach recovers indices that naturally comprise distinct political

and policy sources of uncertainty.
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For example, in analyzing the Scottish press we label as ‘Scottish political uncertainty’ (IndyRef un-

certainty) that index whose most representative words are independence, SNP [Scottish National Party],

referendum, party, vote, minister, Scotland and election. This index increased steadily from when the UK

Parliament approved the Scottish referendum for independence (January 2012), until its actual occurrence in

September 2014, rising again around mid-2016. Additionally, we label ‘Brexit uncertainty’ that index whose

most representative words are EU, Brexit, European, UK, negotiations, leave, country, membership, single and

trade. That index peaked during the Brexit referendum in June 2016, and at the general election in June 2017.

In addition, once we compare these two referendum-related; IndyRef and Brexit uncertainty with the

proportion of individuals that Google searched "Scottish Independence" and "Brexit" in Scotland, we observe

strong similarities: 0.78 and 0.81 correlation respectively. The similarity between our referendum-uncertainty

indices and Google Searchers imply two things: i) IndyRef and Brexit indeed capture relevant events related

to these two referenda; ii) given that internet users look for online information when they are uncertain

(Castelnuovo and Tran (2017)), it reassured us that we are capturing uncertainty, understood as the sec-

ond moment, and not just the first moments of beliefs. Furthermore, we label the index ‘Scottish policy

uncertainty’ whose most representative words are Scotland, Scottish, government, budget, public, education,

need, fund, report and tax. That index peaks when the Scottish Parliament approves the minority SNP’s

administration’s budget at the second time of asking (Feb 2009); the Scottish public-sector strikes (November

2011) and Brexit (June 2016).

We examine the relationship between the indices just described and business investment by applying a

standard investment regression to a longitudinal panel dataset formed by 2,589 Scottish firms over the period

2008-2017. To study the most plausible mechanisms through which uncertainty may affect investment, we

investigate whether uncertainty shows the same magnitude on business investment across different types

of companies. First, we distinguish between non-manufacturing and manufacturing firms. The Decision

Maker Panel survey reported that firms in the manufacturing sector are the most likely to move part of their

operations outside the UK due to the uncertainty produced by Brexit (Bloom et al. (2017)). Nonetheless,

more recent evidence suggests that business confidence from the manufacturing sector has increased after

Brexit (see Born et al. (2017)). We find evidence supporting this latter behaviour: investment of Scottish

manufacturing companies correlate less adversely with political uncertainty.

Second, we make a distinction between listed and non-listed companies. Listed companies may be less

likely to suffer from (external) financing constraints than their non-listed counterparts to the extent that
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asymmetric information is less of a problem (Carpenter and B. C. Petersen (2002)). That said, they may

face more risk due to having a larger share of operations abroad, therefore making them especially vulnerable

to referendum uncertainties. Indeed, we observe that the investment of listed companies tend to correlate

more negatively with political uncertainty, although this relationship is not always significant.

To further investigate to what extent the financing constraints channel might be behind this heteroge-

neous relationship, we construct two financing constraints proxy variables commonly used in the literature.

Thus, we use company size and age to reflect the possible impact of external financial constraints whilst the

’coverage ratio’ and ’cash flow’ reflect the possible intensity of internal financial constraints (see Guariglia

(2008)). We find evidence that those firms that are more likely to be financially constrained decrease invest-

ment by more in the presence of uncertainty. This holds mainly among firms with either internal or external

financing constraints confronted with the uncertainty derived by Brexit.

In addition, we consider any differential effects on firms with potentially high degrees of irreversible in-

vestment. The Real-option theory predicts that a rise in uncertainty will have a stronger negative impact on

investment for those firms facing a higher degree of irreversibility of investment (Bernanke (1983); McDonald

and Siegel (1986); A. Dixit (1989); and Bloom (2000)). Drawing on Chirinko and Schaller (2009), we use

depreciation rates to proxy for investment irreversibility. This proxy is motivated by the fact that in addi-

tion to selling capital, firms can reduce their capital stock through depreciation. Therefore firms with low

depreciation rates face higher risks when making capital purchases under uncertainty. Consistent with pri-

ors, we find that firms whose investment is more irreversible are also more vulnerable to political uncertainty.

Finally, we study the connection between the uncertainty derived by the Scottish Referendum for in-

dependence and investment by removing the last two years of the sample (2016-17). We do this in order

to remove the post-referendum uncertainty that might have been originated as a result of Brexit. Brexit,

on the one hand, has induced policy changes at the Scottish level while on the other hand has fuelled the

debate for a second Scottish referendum for independence. Once we remove these two years of the sample

and consider only IndyRef uncertainty up to the year of the Scottish referendum, we observe a negative

and significant correlation with business investment for those companies operating in the border of England.

This suggests that Scottish companies nearer to the border with England were particularly exposed to the

political uncertainty derived by the Scottish Referendum.
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This chapter relates to at least three strands of literature. The first is research on the impact of un-

certainty on investment. Theoretical work on this topic dates to Bernanke (1983) who reveal that high

uncertainty gives firms an incentive to delay investment when investment projects are costly to undo.2 Re-

cent empirical literature (and which we closely follow) is Gulen and Ion (2015) which examine the impact of

economic policy uncertainty on US firms investment over the period 1987:Q1-2013:Q4. They find a signifi-

cantly stronger effect of uncertainty on investment for firms with a higher degree of investment irreversibility

and for firms that are more financially constrained. Other empirical studies connecting political risk/uncer-

tainty and economic activity are Azzimonti (2018) and Jens (2017).

Second, there is literature studying explicitly the impact of referenda. Using a dummy time-dummy ap-

proach (1 for when the referendum took place and 0 otherwise), Dibiasi et al. (2018) finds that the economic

policy uncertainty induced by the 2014 referendum vote on Mass Immigration in Switzerland has reduced

irreversible investment by as much as 25-30% in exposed firms. Also using a timeline approach, Darby and

Roy (2019) examine the impact of the Scottish referendum on stock market volatility. They observed in-

creases in the relative volatility of Scottish companies’ stock returns compared to the rest of the UK when

polls suggested that the referendum result was too close to call. Finally, using a synthetic control method,

Born et al. (2017) find that the Brexit vote has caused a reduction in GDP by approximately 2% by the

second quarter of 2018 and that policy uncertainty accounts for 30% of this effect.

Finally, there is a rapidly growing literature on textual methods to measure a variety of outcomes. In

their seminal contribution, Baker, Bloom, and Davis (2016) use newspaper coverage frequency and simple

dictionary techniques to measure Economic Policy Uncertainty (EPU).3 Hansen, McMahon, and Prat (2017)

use Latent Dirichlet Allocation on the Federal Open Market Committee talks to study communication pat-

terns. Using simple text-mining techniques, Hassan et al. (2019) build a political risk measure as the share of

firm-quarterly conference calls that are devoted to the political risk for the USA.4 They find that increases in

their firm-level measure of political risk are associated with significant increases in firm-specific stock return

volatility and with significant decreases in firms’ investment, planned capital expenditures, and hiring.

The rest of the chapter proceeds as follows: Section 2.2 describes the algorithm and news-media data
2R. K. Dixit and Pindyck (1994) offer a detailed review of the early theoretical literature.
3EPU indices have been replicated with more advanced methods (see Azqueta-Gavaldón (2017) or Saltzman and Yung

(2018)).
4To come up with political topics, they first filter political topics by correlating them to sources with a priori political

vocabulary e.g. political sciences textbooks. They then count the number of instances in which these political-related words
appear together with synonyms of risk or uncertainty.
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used to produce the specific uncertainty indices for Scotland. Section 2.3 presents the data and econometric

framework to study the effects of uncertainty on private investment. Section 2.4 shows the empirical findings.

Section 2.5 contains robustness tests applied to the uncertainty indices, while Section 2.6 concludes.

2.2 Theoretical background

There are three proposed channels by which policy uncertainty influences negatively investment. The first

channel is based on models of the real option effects of uncertainty (Bernanke (1983), McDonald and Siegel

(1986), A. Dixit (1989), and Bloom (2000)). When investment is irreversible (capital can only be resold at

a lower price than its original purchase price), firms will only invest when demand for their products raise

above some upper threshold level. Under uncertainty, this threshold level rises, causing a delay in investment.

The second channel builds from models in which uncertainty influences financing constraints (Gilchrist,

Sim, and Zakrajsek (2013), Arellano, Bai, and Kehoe (2010), and Byrne, Spaliara, and Tsoukas (2016)).

An increase in uncertainty carries a rise in asymmetric information which in turn reduces credit access. A

natural response of firms with difficult access to credit is to cut down on investment.

The third channel has to do with precautionary savings behaviour of consumers which ultimately affects

firms investment (Basu and Bundick (2017), Leduc and Liu (2016), Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramırez, et al. (2011)). To reduce exposure related to the increase in uncertainty and to preserve

a smooth consumption pattern, agents reduce consumption of goods produced by firms when uncertainty

rises. Firms react to this drop in demand by lowering investment. Alternative to these theories, the so

called growth option theory states that firms will actually increase investment as a response to uncertainty

(Bar-Ilan and Strange (1996), Pástor and Veronesi (2006), Kraft, Schwartz, and Weiss (2018), and Segal,

Shaliastovich, and Yaron (2015)). When uncertainty rises, so does expected profits in accordance to the

positive link between risk and returns.

Given that this chapter focuses mainly on unlisted companies, the financing constraint mechanism is

particular relevant here. After all, unlisted companies are more likely to suffer from financing constraints

than listed ones (Carpenter and B. C. Petersen (2002); Beck and Demirguc-Kunt (2006); Guariglia (2008);

and Becchetti, Castelli, and Hasan (2010)). Small and young firms are more likely to suffer from asymmetric

information problems, have higher idiosyncratic risk, lower collateral values in relation to their liabilities,

as well as higher bankruptcy costs and short track records (Schiantarelli (1995)). This problem is likely to

be exacerbated during recessions and high uncertainty periods, as the quality of borrowers deteriorates and
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lenders require higher spread to compensate them from the increased risks in lending (the so called financial

accelerator, see Bernanke, Gertler, and Gilchrist (1994)). Hence, the negative effect of policy uncertainty on

the cost of external financing should be stronger for firms that are closer to default and for firms that face

stronger frictions in the credit market. In a theoretical set up, Doshi, Kumar, and Yerramilli (2017) predict

that the negative effect of uncertainty on investment will be more powerful for financially constrained firms

since they will lower their capacity in a bid to minimize ex-post costs of financial distress.

2.3 Political and policy uncertainty in Scotland

2.3.1 LDA model

To identify the distinctive sources of uncertainty, we use the approach described in Azqueta-Gavaldón (2017).

It would be remember from the last chapter that this approach applies an unsupervised machine learning algo-

rithm to all news-articles describing economic uncertainty in order to unveil their themes. The unsupervised

machine learning algorithm, called Latent Dirichlet Allocation (LDA) and developed by Blei, Ng, and Jordan

(2003), reveals the themes of articles without the need for prior knowledge about their content. Intuitively,

the algorithm studies the co-occurrences of words per articles to frame each topic as a composition of the

most likely words (more likely to appear together) while each article is represented by a distribution of topics.

In other words, LDA is a generative probabilistic model that infers the distribution of words that defines

a topic, while simultaneously annotating each article with a distribution of topics. The model recovers these

two distributions by obtaining the model parameters that maximize the probability of each word appearing

in each article given the total number of topics K. The probability of word wi occurring in an article is:

P (wi) =

K∑
j=1

P (wi|zi = j)P (zi = j) (2.1)

where zi is a latent variable indicating the topic from which the ith word was drawn and P (wi|zi = j)

is the probability of word wi being drawn from topic j. Moreover, P (zi = j) is the probability of drawing a

word from topic j in the current article, which will vary across different articles. Intuitively, P (w|z) indicates

which words are important to a topic, whereas P (z) is the prevalence of those topics within an article. The

goal is therefore to maximize P (wi|zi = j) and P (zi = j) from equation (1). However, direct maximization

turns out to be susceptible of finding local maxima and showing slow convergence (Griffiths and Steyvers

(2004)). To overcome this issue, we use online variational Bayes as proposed by Hoffman, Bach, and Blei
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(2010). This method approximates the posterior distribution of P (wi|zi = j) and P (zi = j) using an alter-

native and simpler distribution: P (z|w), and associated parameters.5

2.3.2 News-article Data

We apply the LDA algorithm to three of the most read Scottish newspapers: The Herald (UK coverage

and based in Glasgow), The Scotsman (UK coverage and based in Edinburgh), and The Aberdeen Press and

Journal (largely Scottish coverage). We use Nexis, an online database of journalistic documents to gather

all news-articles containing any form of the words ‘economy ’ and ‘uncertainty ’ from the three newspapers.

That is, any article that contains the word economist and uncertainties will be collected in our bundle of

news articles. Baker, Bloom, and Davis (2016) argue that these two words are a necessary condition when

building their Economic Policy Uncertainty index. This is because Economic Policy Uncertainty is a sub-set

of economic uncertainty, which is captured by these terms. It should be taken into account that if we do not

limit our selection of articles to those describing economic uncertainty, we take the risk of not identifying

political uncertainty. In the next section we will discuss in more detail how can we be certain that we are

capturing uncertainty, understood as the second moment, and not just the first moments of beliefs.

The total number of news articles associated with any form of these two words from January 1998 to June

2017 (inclusive) was 18,125. In this corpus, the aggregate of all articles, there are over one million words.

Following usual practice in the literature, we preprocess the data (words). Stopwords are removed; that is,

words that do not contain informative details about an article, e.g., that or me. All words are converted to

lower case, and each word is converted to its root (known as ‘stemming’). Finally, to find the most likely

number of topics K, we use a likelihood maximization method. This method consists on estimating empir-

ically the likelihood of the probability of words for a different number of topics P (w|K). This probability

cannot be directly estimated since it requires summing over all possible assignments of words to topics but

can be approximated using the harmonic mean of a set of values of P (w|z,K), when z is sampled from the

posterior distribution (Griffiths and Steyvers (2004)). This method indicates that the most likely number

of topics in this corpus is K = 20 (see Table 2.1). Surely this method is not free of caveats. For example,

it might lead to over-fitting since we are computing the within sample likelihood. In addition, empirical

findings suggest that in some cases, models which perform better on likelihood may infer less semantically

meaningful topics (J. Chang et al. (2009)). Despite these caveats, we will show that topics are easy to

interpret when K = 20. In addition, we will show how we lose interpretation when K = 15 and K = 30 but
5For more details about the implementation see Řehůřek and Sojka (2010).
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obtain very similar results when K = 25.

Table 2.1: Number of topics and log-likelihood scores

10 20 30 40 50 60

log P(w | K) -24502056 -24465226 -24477848 -24485771 -24581108 -24609611

Table 2.2 displays all the 20 topics identified by LDA in our corpus and reports the most representative

words for each topic (recall that words appear in lower cases and root format). A useful method to further

scrutinize how well LDA captures the essence of the corpus is to apply a visual representation of the sizes

and distances between topics in the two-dimensional space. We use the LDAvis method developed by Sievert

and Shirley (2014) to accomplish this task. Figure 2.2 represents each topic as a disc whose area denotes

that topic’s prevalence in the corpus; essentially, the bigger the disk, the more important the topic is in

the corpus. Furthermore, the inter-topic-distances between topics describe the similarities between them.

These distances are given by the Jensen-Shannon divergence and are scaled by Principal Components in the

two-dimensional space (see Sievert and Shirley (2014)); the closer the disks, the more the topics (keywords

with a high probability for that topic) overlap. Furthermore, one observes that most of the information

in the corpus lies within the top right-hand quadrant (top-right corner of Figure 2), indicating a degree of

similarity between most of the topics, as one would expect given that our corpus was constructed to focus

on economic uncertainty. It should be recalled that our interest is not so much in overall economic policy

uncertainty, but in the constituent components of that uncertainty (policy uncertainty, Brexit, and so on).

As we will discuss in more detail below, that quadrant is indeed mostly populated by policy uncertainty

related topics.

It is clear from Figure 2.2 that the two referendum topics (Topics 1 and 12) appear very close together

and even overlap. Even though they are related by some of the most characteristics words associated with

each topic, they are still distinct from each other (two different discs). Also closely aligned are the topics

related to Scottish policy uncertainty (Topic 6), monetary policy uncertainty (Topic 4) and agricultural

policies (Topic 13). More distant to the core topics, but still of some significance in the overall corpus and

still connected with Scottish policy uncertainty, we find topics reflecting labour policies (Topic 9), financial

regulation (Topic 10), and North Sea oil (Topic 8). From all these topics, we choose the three topics centrally

related to political and Scottish policy uncertainty:6

6Although there are other topics related to Scottish policy uncertainty we choose Topic 6 for our study for two reasons. First,
it is the largest of the topics describing Scottish policy uncertainty (9% of the total news describing economic uncertainty) and,
second, it is the closest to the two referendum topics. Also note that while the topic Preferences (Topic 3) seems related to the
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• Scottish Political Uncertainty (IndyRef): independ, snp, mr, referendum, parti, vote, labour,

minist, scotland, elect, campaign, would, sturgeon

• Brexit Uncertainty: eu, brexit, european, britain, europ, union, uk, negoti, leav, countri, member-

ship, singl, trade, brussel

• Scottish Policy Uncertainty: scotland, scottish, govern, budget, busi, univers, public, educ, need,

fund, council, report, tax

Building each time series requires a few extra steps. First, we label each article according to its most

representative topic (the topic with the highest percentage in the article). Next, we produce a raw count of

the number of news-articles for every topic each month (20 raw time-series). Finally, since the number of

news articles is not constant over time, we divide each raw time-series by the total number of news articles

containing the word today each month (the proxy for the total number of news articles, see Azzimonti (2018)).

2.3.3 Uncertainty indices

Figure 2.3 shows the evolution of Scottish political (IndyRef ), Brexit and Scottish Policy uncertainty indices

from Jan 2008 through June 2017. Scottish political uncertainty covers around 10 per cent of all news articles

describing economic uncertainty. It shows spikes when the UK Government legally approved the Scottish

independence referendum for independence (Jan 2012); when the chancellor of the Exchequer George Os-

borne argued that a ‘Yes’ vote meant Scotland giving up the pound (Feb 2014)7; the Scottish referendum for

independence (Sept 2014); and Brexit (June 2016). ‘Brexit uncertainty (4 percent of all economic uncertainty

news) shows peaks at the time of the Brexit referendum (June 2016) and the run-up to the general election of

June 2017. Lastly, Scottish policy uncertainty (9 percent of all economic uncertainty news) peaks when the

SNP (Scottish National Party) budget was approved following initial rejection (Feb 2009); Scottish public

sector strikes (Nov 2011)8, and, most notably in the run up to the Brexit vote (June 2016).

To further validate these uncertainty indices, we compare them with Google searches available via Google

Trends. Google Trends data are freely available in real time and it has been used before to construct un-

certainty indicators. For example, Castelnuovo and Tran (2017) use words associated to uncertainties about

future economic conditions such as “bankruptcy”, “stock markets”, “economic reforms” or “debt stabilization”

two referendums, we do not take it into account for two reasons. In the first instance, its meaning is highly ambiguous and hence
difficult to map to observable economic variables. In addition, once transformed into a time series, see next paragraph, Topic 3
is only weakly correlated with the two referenda uncertainty indices: -0.01 with IndyRef and 0.17 with Brexit uncertainty.

7See http://www.bbc.co.uk/news/uk-scotland-scotland-politics-26166794
8See http://www.bbc.co.uk/news/uk-scotland-scotland-politics-15938970

http://www.bbc.co.uk/news/uk-scotland-scotland-politics-26166794
http://www.bbc.co.uk/news/uk-scotland-scotland-politics-15938970
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to construct an uncertainty index for the United States and Australia. The assumption is that economic

agents, represented by Internet users look for online information when they are uncertain (Castelnuovo and

Tran (2017)). This assumption implies that an increase in the frequency of terms associated to future, un-

certain events results from high periods of uncertainty. With this in mind we compare the Google searches

undertaken only in Scotland of the terms “Scottish Independence” and “Brexit” with our political news-based

uncertainty indices.

As can be seen by the discontinuous red line in Figure 2.3, developments in the Google query "Scottish

Independence" closely resemble those of the IndyRef uncertainty index (0.78 correlation). The first notable

increase in Google searches occurred when the UK Government legally approved the Scottish independence

referendum for independence (Jan 2012). In addition, just like in the IndyRef index, the second most promi-

nent spike takes place when the chancellor of the Exchequer George Osborne argued that a ‘Yes’ vote meant

Scotland giving up the pound (Feb 2014) while the most prominent spike occurs during the Scottish refer-

endum for independence. Even though the No won the Scottish referendum, there are two important spikes

in the Google search and IndyRef in the aftermath of the referendum. The first one occurs in the month of

Brexit: shortly after the Brexit referendum results, the SNP advocated for another Scottish independence

vote on the justification that Scotland voted in favour of the UK staying in the EU by 62% to 38%. The

second one takes places in March 2017 when the Scottish parliament voted to demand a second independence

referendum (69 to 59 votes).9 Nonetheless, this proposition was rejected by the U.K. Prime Minister Theresa

May and therefore a second Scottish Independence Referendum scheduled for Autumn 2018 was cancelled.

In addition, the Google search of the term Brexit and the Brexit uncertainty index are also very similar

(0.81 correlation) both spiking in the month of the referendum and keeping average high levels in the after-

math. Despite these strong similarities, uncertainty indices created via the conventional press are preferred

over created using Google Trends for two main reasons. Firstly, we do not need to impose any query and

therefore risking ad hocness. Secondly, the conventional press-media is likely to lead Google searches, given

that agents react to what they read in the news by searching for additional information online and not the

other way around. In addition to these caveats, Google Trends does not provide an exact measure of the

number of times a given query was formulated, but offers a re-scaled time series from 0 to 100. For example

we do not know whether “Scottish Independence” was searched by 2 million people at its peak (September

2014) or only a few thousands. In both cases, it would display a maximum peak of 100.

9See ttps://www.ft.com/content/195d9986-13d1-11e7-80f4-13e067d5072c

ttps://www.ft.com/content/195d9986-13d1-11e7-80f4-13e067d5072c
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Figure 2.3: Evolution of Uncertainty indices in Scotland (continuous line, left legend) and
the Google searches of Scottish Independence and Brexit (right legend)
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2.4 Firm level data and methodology

2.4.1 Data

We extract the data from the profit, loss and balance sheet section assembled by the Bureau Van Dijk

Electronic Publishing available in the Financial Analysis Made Easy (FAME) dataset. This dataset pro-

vides yearly information on British and Irish companies for the period 2008-2017. To be consistent with the

uncertainty measures, we include in the analysis only companies with registered office address or primary

trading address in Scotland. The companies selected perform in a wide range of industrial sectors: agricul-

ture, forestry, and mining; manufacturing; construction; retail and wholesales; hotels and restaurants; and

business and other services.10

We measure the investment rate as the purchase of fixed tangible assets by the firm over the capital stock

at t− 1. Investment is the difference between the book value of tangible fixed assets at the end of year t and

the end of year t− 1, plus depreciation at t, whilst the capital stock is fixed tangible assets at t− 1.11 The

other two variables of interest are cash flows (CF) which is computed as the sum of firm’s after-tax profits

and depreciation, and sales growth rates (SG).

Definitions of the variables used:

Investment: It is constructed as the difference between the book value of tangible fixed assets (which

include land and building; fixtures and fittings; plant and vehicles; and other fixed assets) of end of year t

and end of year t-1 while adding depreciation of year t.

Capital stock: tangible fixed assets.

Cash flow: It is defined as the sum of after tax profit and depreciation.

Coverage ratio: It is defined as the ratio between the firm’s total profits before tax and before interest

(also referred as Operating Profit or EBIT) and its total interest payments.

10For standard reasons, we exclude companies operating in the financial and regulated sectors.
11Sometimes, investment is normalized by the replacement value of the capital stock and not the capital stock which is

calculated with the perpetual inventory formula (Blundell et al. (1992)). In our sample, this method appeared to lead to vast
trends in investment induced by the initial proxy value of the replacement cost of capital. This is a well-known issue (see
Chirinko and Schaller (2009) for discussion).
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Total assets: It is defined as the sum of fixed assets and current assets.

Finally, we exclude firms that do not have complete records on investment, cash flows, or sales growth

rates, as well as those companies with less than three years of observations. Also, to control for the potential

influence of outliers, we exclude observations in the 1% tails for each of the regression variables. These types

of rules are common in the literature and also aid comparability with previous work (Guariglia (2008); and

Gulen and Ion (2015)). The final data used in the estimation comprises 2,589 companies or 22,769 firm-year

observations. Of these firms, 800 operate in the manufacturing sector and 43 are listed companies (see Table

2.3). Comparing Column 1 and Column 2 in Table 2.3, we can see that even after imposing these several

filters on the data, the final sample is similar to the entire FAME universe for Scottish firms. On average over

the period 2009 to 2017 our sample of companies account annually for around 40% of the total workforce of

interest (total employment less those employed in banking and financial services and the public sector).12

12Specifically, our firms annually on average over the sample employed 524,680 (after removing outliers). The aggregate em-
ployment level in the economy, less that in banking and financial services and the public sector, during the same time period was
on average (annually) 1,342,422, see https://www.gov.scot/Topics/Statistics/Browse/Labour-Market/Local-Authority-Tables.

https://www.gov.scot/Topics/Statistics/Browse/Labour-Market/Local-Authority-Tables
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2.4.2 Econometric framework

To study the relationship between investment and uncertainty, we follow Gulen and Ion (2015) approach and

use the classical investment regression augmented to include political and policy uncertainty measures:

Ii,t
Ki,t−1

= αi + γt + β1PUt−1·Hi + β2Hi,t + β3
CFi,t
Ki,t−1

+ β4SGi,t + εi,t (2.2)

where i = 1, 2, ..., N indexes the cross-section dimension and t = 1, 2, ..., T the time series dimension.

Ii,t/Ki,t−1 is the ratio between investment in fixed tangible assets and the capital stock at the beginning

of the period, αi represents firm fixed effects which captures firm-specific time-invariant omitted variables

and γt is time-fixed effects which controls for time-dependent factors such as business cycles or year-specific

effects which may confound the effect of uncertainty. Standard errors are clustered at the firm level to correct

for potential cross-sectional and serial correlation in the error term εit (M. A. Petersen (2009))

Our coefficient of interest, β1, describes the interaction between the aggregate uncertainty measures,

PUt−1, and a heterogeneous dummy variable capturing firm specific characteristics: Hi. This implies that

we do not study the aggregate relationship of our uncertainty measures and investment, but rather, which

kind of companies are more sensitive to which type of uncertainty. The reason for doing so is twofold. On

the one hand, we do not have enough degrees of freedom at the time dimension (10 years of observations) to

assure robust results regarding the aggregate link between uncertainty and investment. On the other hand,

not interacting the uncertainty measures will not allow us to include time-fixed effects, as they will absorb

all the explanatory power of the uncertainty indices. While one could control for a battery of macroeconomic

variables to account for such effects and leave out the time-fixed effects, given our short sample we risk

running into multicollinearity problems, thus, limiting the number of control variables at the aggregate level

that can be placed in the regression. Nonetheless, having controlled for as many controls as possible without

running into multicollinearity, we find a negative and statistically significant coefficient for our three types

of uncertainty indices (see Appendix II).

Besides, CFi,t/Ki,t−1 corresponds to cash flows scaled by the capital stock at the beginning of the period

and SGi,t stands for sales growth rates. These two variables aim at capturing expected profitability/invest-

ment opportunities, that is, the first moments (Gulen and Ion (2015)). In the case that these first moment

effects are not properly accounted for by these variables and the time and firm fixed effects, we might have

biased coefficients. Nonetheless, given that we always use lagged values of the uncertainty variable with re-

spect to the dependent variable, omitted variables bias is unlikely. This is because our uncertainty measures
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are predetermined, which means that its effect is estimated consistently in our specifications (see Hayashi

(2000), p. 109). In addition, this lagging technique also helps to alleviate any reverse causality concerns.

2.5 Results

2.5.1 Manufacturing and listed companies

Recent surveys indicate stronger adverse effects of the uncertainty derived from Brexit for the manufacturing

sectors compared to the rest of industries. For example, the Decision Maker Panel survey reported that

firms in the manufacturing sector are more likely to move part of their operations outside the UK on account

of uncertainty due to Brexit (Bloom et al. (2017)). Nonetheless, more recent evidence suggests that although

manufacturing-business’ confidence dropped slightly after the Brexit vote, it eventually increased rapidly to

reach average levels well above pre-Brexit levels (see Born et al. (2017)). We, therefore, test whether or

not manufacturing companies have reacted differently than non-manufacturing firms when facing political

uncertainty. As results presented in Panel A from Table 2.4 show, there is evidence that our sample of 800

Scottish manufacturing companies has been less negatively affected by political uncertainty. Nonetheless,

while all the interacted coefficients are positive, only those from IndyRef and Scottish policy uncertainty are

statistically significant.

Another class of firms that might be expected to be more sensitive to Brexit uncertainty is those that

are listed (those whose stocks are publicly traded). Therefore we could expect them to be more negatively

affected by referendum uncertainty. This might be because they are larger and more involved in international

trade. In addition, they are also less likely to suffer from financial constraints compared to their unlisted

counterparts since they may have fewer problems derived from asymmetric information (Carpenter and Pe-

tersen, 2002). Panel B of Table 2.4 shows that although all dummy-listed-variables interacted with each

uncertainty variables are negative, they are not significantly different from zero.

2.5.2 Financing constraints

The financing constraints channel states that an increase in uncertainty exacerbates any underlying asym-

metric information problem. This, in turn, reduces credit access as it becomes more difficult for lenders to

assess the probability of repayment (Gilchrist, Sim, and Zakrajsek (2013); Arellano, Bai, and Kehoe (2010);
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Table 2.4: The Heterogeneous relationship between uncertainty and investment

Dependent variable: Investment rate (Iit/Ki,t−1)
Panel A: Manufacturing versus non-manufacturing companies

IndyReft−1 Brexitt−1 Scot. Policyt−1
(1) (2) (3)

Uncertainty*Manufacturing 0.028∗∗ 0.014 0.026∗

(0.012) (0.013) (0.014)

R2 0.044 0.044 0.044
Panel B: Listed versus non-listed companies

Uncertainty*Listed −0.068 −0.004 −0.019
(0.043) (0.025) (0.026)

R2 0.044 0.044 0.044

N 22,769 22,769 22,769

Firm Fixed Effects yes yes yes

Time Fixed Effects yes yes yes

Clustered id yes yes yes

Notes: In this table, we regress investment rate Iit/Ki,t−1 (Investment in fixed assets scaled by the capital stock at
the beginning of period) on the three types of uncertainty (Scottish political uncertainty, Brexit uncertainty or
Scottish policy uncertainty) interacted with dummy variable for manufacturing and listed firms (panel A and B
respectively). Additional controls are cash flows scaled by the capital stock at the beginning of the period
(CFi,t/Ki,t−1) and sales growth rate (SGi,t). All regressions include firm and time fixed effects, and standard errors
are clustered at the firm level. Standard errors are reported in parentheses. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively.

and Byrne, Spaliara, and Tsoukas (2016)). One would, therefore, expect that companies facing greater dif-

ficulties in accessing credit might cut investment more sharply as uncertainty rises, compared to those with

easier access to credit. As Doshi, Kumar, and Yerramilli (2017) suggest, the adverse effect of uncertainty

on investment will be more powerful for financially constrained firms as they reduce capacity in a bid to

minimize possible ex-post costs of financial distress.

Following the recent literature, we distinguish between internal and external financial constraints. On

the one hand, internal financial constraints operate through restrictions to internal funds generated by the

firm that could otherwise, in principle, be targeted towards investment. Thus, firms with lower levels of

available internally generated funds (e.g., funds directed to debt service) will be more constrained. On the

other hand, external financial constraints operate through various forms of information asymmetries.

Following the approach of Guariglia (2008), we define an external financing constraints dummy variable

based on size and age. The intuition is that younger and smaller firms are more likely to face problems of

asymmetric information given their short track records and collateral levels (Schiantarelli (1996)).13 To this
13A recent empirical study by Hadlock and Pierce (2010) finds that size and age are the best predictors of financing constraints.
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end, we first define company i as Y oungi,t = 1, if its age falls within the lowest quartile of the distribution

of the ages of all firms operating in their sector and zero otherwise. Similarly, we define company i as

Smalli,t = 1, if its total assets fall within the lowest quartile of the distribution of total assets of all firms

operating in their sector, and zero otherwise. The external financing constraints dummy variable is then

represented by those young and small companies Y Si,t.14

We define an internal financial constraints dummy variable based on the level of cash flows and the

coverage ratio. This latter variable is the ratio between firm’s total profits before tax and interest payments

and their total interest payments. It is a measure of the number of times a company could make its interest

payments with its earnings before interest and taxes (Guariglia (2008)). Cash flow, on the other hand, is the

total amount of money being transferred into and out of a business, primarily affecting short-term liquidity.

The intuition for using cash flow to capture internal financing constraints hinges on empirical evidence. Given

that cash flows are the main source of variation in internal funds, firms with low cash flow levels likely have

low levels of internal funds (Cleary, Povel, and Raith (2007)). Therefore, those firms with low levels of cash

flow will find it harder to raise internal funds to finance investment. Nonetheless, a company might have high

levels of cash flow by selling-off its long-term assets or assuming high debt levels (bringing interest payments

up). Thus, we define an internally financially constrained firm as one with low levels of cash flow and a low

coverage ratio levels: lowCF&CRi,t. Just as before, we create a dummy variable for companies with low

levels of cash flows and coverage ratio (company i is lowCFi,t = 1, if its cash flow level falls within the lowest

quartile of the distribution operating in their sector, while company i is lowCRi,t = 1, if its coverage ratio

falls within the lowest quartile of the distribution of the coverage ratio of all firms operating in their sector).

Results regarding financing constraints (Table 2.5) show that only Brexit uncertainty has a statistically

significant coefficient with next’s year firm investment for those companies with higher levels of financing con-

straints. The distinction is particularly strong for Young and Small firms (external financially constrained)

exposed to Brexit uncertainty (Panel A). For those young and small firms, externally financially constrained,

the correlation between uncertainty and next year investment is much higher than for the rest of the firms.

However, once we split the sample into small or young companies independently (Table 2.6), we see that

the relationship is not significant and not always negative. This is because small companies might not be

financially constrained as they might have strong balance sheets with longer track credit history. The same

applies to young companies alone (panel B of Table 2.6); there is no statistical significant relationship on
14The reason we combine these two variables is that size and age may cancel each other. For example, large but young

companies might not face financing constraints due to a larger pool of assets available as collateral while small but old companies
may have a long track record of activity to inform credit institutions.
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Table 2.5: Financial Constraints

Dependent variable: Investment rate (Iit/Ki,t−1)
Panel A: Young and Small firms (externally constrained)

IndyReft−1 Brexitt−1 Scot. Policyt−1
(1) (2) (3)

YS −0.105∗ −0.128∗∗ −0.109∗

(0.062) (0.061) (0.063)

Uncertainty*YS 0.004 −0.080∗∗∗ −0.011
(0.028) (0.028) (0.028)

R2 0.043 0.043 0.043

N 22,290 22,290 22,290
R2 0.043 0.043 0.043
Panel B: Low cash flows and coverage ratio firms (internally constrained)

lowCF&CR 0.084∗∗∗ 0.077∗∗∗ 0.080∗∗∗

(0.022) (0.021) (0.021)

Uncertainty*lowCF&CR −0.0002 −0.032∗ −0.021
(0.018) (0.019) (0.018)

R2 0.046 0.046 0.046

N 14,774 14,774 14,774
Firm Fixed Effects yes yes yes

Time Fixed Effects yes yes yes

Clustered id yes yes yes

Notes: In this table, we regress investment rate Iit/Ki,t−1 (Investment in fixed assets scaled by the capital stock at
the beginning of period) on the three types of uncertainty (Scottish political uncertainty, Brexit uncertainty or
Scottish policy uncertainty) interacted with dummy variables for Young and small firms and those with low levels of
cash flows and coverage ratio (panel A and B respectively). Additional controls are cash flows scaled by the capital
stock at the beginning of the period (CFi,t/Ki,t−1) and sales growth rate (SGi,t). All regressions include firm and
time fixed effects, and standard errors are clustered at the firm level. Standard errors are reported in parentheses. *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.
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the interaction term with uncertainty. In addition, those companies with low cash flows and coverage ratio,

internally financially constrained, display also higher negative correlation with Brexit uncertainty than their

counterparts. Interestingly, we see that those companies tend to have, on average, higher investment rates.

This information is shown by the statistically positive and significant coefficient of the variable lowCF&CR.

This is telling that those companies with lower profits (recall that cash flows and coverage rate are both mea-

sures of profits) display on average higher investment rates throughout the period. This might be explained

by the catching up effect; those companies with lower profits tend to invest more in the subsequent period.

Table 2.6: Financial Constraints, Young and Small

Dependent variable: Investment rate (Iit/Ki,t−1)
Panel A: Small

IndyReft−1 Brexitt−1 Scot. Policyt−1

(1) (2) (3)

Small −0.053∗∗ −0.061∗∗∗ −0.056∗∗

(0.023) (0.023) (0.023)

Uncertainty*Small 0.018 −0.013 0.006
(0.012) (0.018) (0.014)

R2 .035 0.035 0.035
N 22,521 22,521 22,521
Panel B: Young

Uncertainty*Young −0.009 0.013 0.006
(0.011) (0.016) (0.013)

R2 0.035 0.035 0.035
N 22,521 22,521 22,521
Firm Fixed Effects yes yes yes

Time Fixed Effects yes yes yes

Clustered id yes yes yes

Notes: In this table, we regress investment rate Iit/Ki,t−1 (Investment in fixed assets scaled by the capital stock at
the beginning of period) on the three types of uncertainty (Scottish political uncertainty, Brexit uncertainty or
Scottish policy uncertainty) interacted with dummy variables for Young and small firms (panel A and B
respectively). Additional controls are cash flows scaled by the capital stock at the beginning of the period
(CFi,t/Ki,t−1) and sales growth rate (SGi,t). All regressions include firm and time fixed effects, and standard errors
are clustered at the firm level. Standard errors are reported in parentheses. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively.
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2.5.3 Irreversibility of investment

The real-option theory predicts that a rise in uncertainty will have a stronger negative impact on investment

for those firms facing a higher degree of irreversibility of investment (Bernanke (1983); McDonald and Siegel

(1986); A. Dixit (1989); and Bloom (2000)). When investment is irreversible (capital can only be resold at a

lower price than its original purchase price), firms will only invest when demand for their products rise above

some upper threshold level. Under uncertainty, this threshold level rises, causing a delay in investment. To

proxy irreversibility of investment, we follow Chirinko and Schaller (2009) and use the depreciation to capital

ratio. The use of this ratio to proxy irreversibility of investment is motivated by the fact that, in addition to

selling capital, firms can reduce their capital stock through depreciation. As noted by Chirinko and Schaller

(2009), in companies with low depreciation rates, this recourse is sharply limited.

Table 2.7: Irreversibility of investment

Dependent variable: Investment rate (Iit/Ki,t−1)
IndyReft−1 Brexitt−1 Scot. Policyt−1

(1) (2) (3)
Panel A: Irreversible

IRR 0.490∗∗∗ 0.484∗∗∗ 0.490∗∗∗

(0.048) (0.047) (0.048)

Uncertainty*IRR −0.028∗∗ −0.042∗∗∗ −0.008
(0.014) (0.015) (0.016)

R2 0.078 0.078 0.077
N 21,843 21,843 21,843

Panel B: Car Manufacturing
Uncertainty*Car −0.009 0.001 −0.047

(0.090) (0.103) (0.097)

R2 0.035 0.035 0.035
N 22,547 22,547 22,547
Firm Fixed Effects yes yes yes

Time Fixed Effects yes yes yes

Clustered id yes yes yes

Notes: In this table, we regress investment rate Iit/Ki,t−1 (Investment in fixed assets scaled by the capital stock at
the beginning of period) on the three types of uncertainty (Scottish political uncertainty, Brexit uncertainty or
Scottish policy uncertainty)interacted with a dummy variable for irreversibility of investment and car manufacturing
companies (panel A and B respectively). Additional controls are cash flows scaled by the capital stock at the
beginning of the period (CFi,t/Ki,t−1) and sales growth rate (SGi,t). All regressions include firm and time fixed
effects, and standard errors are clustered at the firm level. Standard errors are reported in parentheses. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

To be consistent with the approach used to characterise financing constraints, we define an irreversibility

dummy variable IRRi,t = 1 if a company’s depreciation to capital ratio falls within the lowest quartile of

the distribution of all firms operating in their sector and IRRi,t = 0 otherwise. As predicted by the the-

ory, those firms with a higher degree of investment irreversibility decrease investment more in the face of
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uncertainty compared to those firms with lower degrees of investment irreversibility (Panel A of Table 2.7).

This result is only statistically significant for uncertainty regarding the two referenda. The interactive term

between the dummy variable for investment irreversibility and political uncertainty is particularly high for

Brexit uncertainty compared to IndyRef (-0.042 and -0.028 respectively). We can think of certain industries

more likely to use irreversible investment, like the manufacturing car industry. Nonetheless, in our sample

of 53 manufacturing companies related to the automobile industry, only one in every four is classified as

having irreversible capital. For this reason, one we interact a car manufacturing dummy variable with our

uncertainty indices, we see no significant relationship: panel B of Table 2.7.

2.5.4 Isolating the Scottish Referendum for Independence effect

In this section, we study the relationship between the uncertainty derived from the Scottish referendum

for independence and investment without taking into account the spike in uncertainty after the Scottish

referendum. Recall that Brexit, on the one hand, has induced policy changes at the Scottish level while

on the other hand has fuelled the debate for a second Scottish referendum for independence. For this rea-

son, we want to take into account only the Scottish Independence uncertainty derived until the referendum

and not afterwards. Just as in the previous subsections, we interact several variables with the IndyRef index.

In addition to the variables considered before, we consider whether or not those Scottish companies oper-

ating in the border counties with England have reacted differently to this particular referendum uncertainty

than those established in the rest of Scotland. We believe that those Scottish companies nearer to the border

with England have closer relationships with the English economy compared with those further away, and

hence may be especially exposed to the political uncertainty derived by the Scottish Referendum for inde-

pendence. Company i is classified as being in the border if it is registered or its primary trading address falls

in either of the three bordering counties with England: Berwickshire, Roxburgh, or Dumfries and Galloway.

Column 3 of Table 2.8 shows a much stronger and significant relationship between IndyRef and investment

for companies operating in the border.

Next, we consider whether or not investment from Listed companies is more strongly related to the Scot-

tish referendum for independence alone. Recall that in subsection 2.5.1 we found negative but non-significant

interactive coefficients for listed companies. Nonetheless, previous studies have already documented a signifi-

cant impact of the Scottish independence referendum on Scottish listed companies. This is the case of Darby
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and Roy (2019), which observed increases in the relative volatility of Scottish companies’ stock returns com-

pared to the rest of the UK when polls suggested the referendum result was too close to call. As can be seen

in the first column of Table 2.8, once we consider the uncertainty of the Scottish referendum of independence

alone we find negative and significant coefficients of the interaction between IndyRef and the dummy variable

for listed companies. This seems to indicate that the referendum of independence alone (without taking into

account the uncertainty following the referendum) was more detrimental for listed companies than non-listed.

Besides, and in line with previous results, once the after Scottish referendum uncertainty is not taken

into account we find higher negative coefficients for manufacturing companies (Column 2 of Table 2.8). Also

in line with the findings of the previous section, results display a more detrimental connection between the

Scottish referendum of independence and investment on companies with higher levels of financing constraints

(internal and external) and irreversibility of investment, although only this latter is statistically significant

(Column 6 of Table 2.8).

2.6 Uncertainty Indices Robustness

In this section we consider solving the Latent Dirichlet Allocation algorithm (LDA) with a different number

of topics. Recall that the log-likelihood approach suggested 20 as the optimal number of topics. However,

this measure might lead to over-fitting given that we are computing the within sample likelihood. In ad-

dition, empirical findings suggest that in some cases, models which perform better on likelihood may infer

less semantically meaningful topics (J. Chang et al. (2009)). Therefore, we want to examine whether it is

possible to identify the two referenda topics plus the policy uncertainty in Scotland when using alternative

number of topics closer to 20: i.e. K = 15, 25, 30.

Figure 2.4 shows the word-clouds of political related topics for different values of K. Their sizes represent

the probability of the word occurring in the topic, that is, the larger a word is, the most representative it is

for a given topic. The first thing we notice when moving further away from the optimal number of topics

given by the log-likelihood approach (K = 15 and K = 30) is that there is no longer a separation between

Brexit-related uncertainty and that related to the Scottish referendum for independence. For example, when

K = 15 we find a single topic containing words such as independend, scotland, referendum, eu, and brexit.15

Similarly, when K = 30 there is no detachment between the two referendum topics: words such as referen-

dum, scotland, independence, eu, brexit or membership assemble a unique topic. For this reason, selecting
15Even though this topic can be labelled as overall referendum uncertainty, it renders no validity for our purpose since we

want to isolate the uncertainty produced by each referendum.
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K = 15 or K = 30 renders no validity in our analysis.

Figure 2.4: Word clouds of political topics for different values of k. For each word cloud the
size of a word reflects the probability of this word occurring in the topic

(a) IndyRef k = 20 (b) IndyRef k = 25 (c) Brexit k = 20 (d) Brexit k = 25

(e) Political k = 15 (f) Political k = 30

However, when we set K = 25 the two referendum-related uncertainty topics emerge as two separate

topics: one topic clearly characterizes Brexit uncertainty: brexit, european, uk, negotiation, membership, leav

and vote while a different topic characterizes the Scottish referendum for independence uncertainty: scotland,

independ, referendum, snp. Worth is noting that when we compare the three uncertainty indices (IndyRef,

Brexit and Scottish policy uncertainty) produced when K = 20 and K = 25, we observe a degree of high

correlation among their counterparts: 0.97 between the two IndyRef indices; 0.95 between the two Brexit

indices; and 0.69 between the two Scot.EPU indices (see Figure 2.5). For this reason we argue that even

though having 25 topics is also reasonable, results connecting uncertainty and investment will remain almost

unaltered.
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Figure 2.5: Evolution of the uncertainty measures computed using 20 and 25 topics
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2.7 Conclusion

In this study, we analyze the relationship between three distinctive uncertainty narratives embedded in the

Scottish press, namely Scottish political uncertainty (capturing concerns about an independent Scotland);

Brexit uncertainty ; and Scottish policy uncertainty and private investment dynamics of Scottish firms. To

frame these distinctive sources of uncertainty, we use an unsupervised machine learning algorithm able to

classify news-articles with a range of themes without prior knowledge regarding their content. Results sug-

gests a negative and significant relationship between political uncertainty and investment.

Moreover, we present evidence of greater sensitivity to these uncertainty indices for firms that are fi-

nancially constrained or whose investment is to a greater degree irreversible. Besides, we find that Scottish

companies operating in the border with England are particularly sensitive to Scottish political uncertainty

than those operating in the rest of the country. Finally, and contrary to expectations, we notice that invest-

ment coming from manufacturing companies appear less sensitive to political uncertainty.

The resulting policy implications are important, in particular to the current economic climate. Referenda

are becoming a popular tool for politicians, yet its consequences as a source of uncertainty often escape the

political debate. In this paper, we show not only that referendums are the main source of political and policy

uncertainty but also that they affect private investment independently of their outcome.
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2.8 APPENDIX II: The average relationship between uncertainty and

investment

To study the relationship between our uncertainty measures and average firm business investment, we modify

Equation 2.2 by removing time-fixed effects and incorporating instead a set of macroeconomic controls:

Ii,t
Ki,t−1

= αi + β1PUt−1 + β2
CFi,t
Ki,t−1

+ β3SGi,t + β4Mi,t−1 + εi,t (2.3)

where i = 1, 2, ..., N indexes the cross-section dimension and t = 1, 2, ..., T the time series dimension.

Ii,t/Ki,t−1 is the ratio between investment in fixed tangible assets and the capital stock at the beginning

of the period, αi is a firm fixed effects which captures firm-specific time-invariant omitted variables, PUt−1

indicates the yearly average news uncertainty indices, CFi,t/Ki,t−1 corresponds to cash flows scaled by the

capital stock at the beginning of the period and SGi,t stands for sales growth rates. In addition, we include

Mt−1 as additional macro controls. Just as before, standard errors are clustered at the firm level to correct

for potential cross-sectional and serial correlation in the error term εit (M. A. Petersen (2009)).

Table 2.9: Descriptive statistics uncertainty indices

IndyRef Brexit Scot. EPU VFTSE EPU UK GDP Growth

IndyRef 1
Brexit 0.43 1
Scot. EPU 0.27 0.44 1
VFTSE -0.34 -0.17 0.11 1
EPU UK 0.35 0.85 0.49 0.06 1
GDP Growth 0.21 -0.01 -0.12 -0.43 -012 1

Correlation matrix between the three measures of uncertainty: Scottish political uncertainty (IndyRef),
Brexit uncertainty and Scottish policy uncertainty and other macro/uncertainty measures: the implied
volatility index (VFTSE), UK’s economic policy uncertainty index, Scottish GDP growth rates. All
variables are in monthly frequency except GDP growth rates (quarterly frequency) from Jan 2008 until
June of 2017. Variables are obtained from Scottish government statistics, Bloomberg, Economic Policy
Uncertainty and own calculations.

Given that we want to study the average relationship between uncertainty and investment, time-fixed

effects cannot be incorporated into the basic econometric framework since doing so would absorb all the

explanatory power of the uncertainty indices. To address concerns that results might be driven by time-

dependent factors such as business cycles or year-specific effects, we need to include a battery of macroeco-

nomic variables (Mt−1) to account for such effects. An important concern in the literature when studying

the impact of uncertainty on investment comes in the form of countercyclical behaviour of political/policy
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uncertainty: [...]during bad economic outcomes, policy-makers often feel increasing pressure to make policy

changes (Gulen and Ion (2015)). To this end, we use Scottish GDP growth rates16 to control for business

cycles (in line with Azzimonti (2018); Gulen and Ion (2015); and Baker, Bloom, and Davis (2016)). Unfor-

tunately, GDP growth rates during the sample are positively correlated with the IndyRef index, see Table

2.9. For this reason, we need to be particularly cautious when interpreting the coefficient of IndyRef and

both results with and without GDP growth rates are discussed.17

There are a number of other such issues which we try to address/control for in the subsequent analysis.

These issues are largely concerned with whether or not our political and policy uncertainty indices are really

justified in being so labelled. For example, our political uncertainty indices might be recording risk derived

to a greater or lesser extent from election years, when investment tends to drop (see for instance Julio and

Yook (2012)). In this case, we add a dummy variable which takes the value 1 if during that year a Scottish

parliamentary election occurred and 0 otherwise (in line with Gulen and Ion (2015)). Finally, note that

we include the natural logarithm of the implied volatility index (VFTSE obtained from Bloomberg) which

serves as a proxy for overall uncertainty.

Table 2.10 shows the results from estimating equation (3). To facilitate interpretation, each uncertainty

coefficient has been normalized by its sample standard deviation. Therefore, each coefficient may be inter-

preted as the change in the investment rate associated with a one standard-deviation increase in uncertainty.

Panel A shows the results without controlling for business cycles while Panel B adds Scottish GDP growth

rates to control for them. Overall, our results show that each of the three uncertainty indices is estimated

to relate to investment negatively and highly significantly when entered separately.

Columns (1) through (3) each include only one of the three uncertainty indices. Column (1) reports the

resultsincludingonly IndyRef (Scottish Political) uncertainty. There we observe that a one standard devia-

tion increase in uncertainty implies a drop in investment in the following year of -0.077 when controlling for

GDP growth rates (Panel B). That is equivalent to a decline of 23% in the average firm investment rate for

the whole sample (I/K = 0.34, see Table 2.3). Recall, that GDP growth rates and IndyRef uncertainty are

positively correlated in the run-up to the referendum. Hence, when we exclude GDP growth rates (Panel

A) we estimate the coefficient of the IndyRef index to be -0.028, equivalent to a drop of 8% in the average

firm investment rate for the whole sample. This change in magnitude when excluding GDP growth rates
16Available at http://www.gov.scot/Topics/Statistics/Browse/Economy/PubGDP
17We also tried different measures to control for business cycles such as dummy variables for when GDP growth rates are

positive/negative, and for the UK’s GDP growth rates. With these alternative specifications results, not reported, remain
unchanged.

http://www.gov.scot/Topics/Statistics/Browse/Economy/PubGDP
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only really affects the coefficient on the IndyRef index with other estimated coefficients largely unchanged

following the exclusion of GDP growth. Nevertheless, this suggests that multicollinearity is an issue between

those two variables.18

Column (2) reports the results with only Brexit uncertainty included. Here we see that a coefficient on

uncertainty remains pretty much unchanged when excluding/including GDP growth rates: -0.045 and -0.046

(Panel A and B respectively). These magnitudes are equivalent to a drop in the average investment rate

of 13.2% and 13.5% respectively. Besides, when Scottish policy uncertainty is included alone (column 3),

it reports a coefficient equivalent to 9% average investment rate when excluding the business cycles control

(Panel A) and 10% when including it (Panel B).

Next, we challenge the explanatory power of each referendum uncertainty index by simultaneously con-

trolling for Scottish policy uncertainty (columns 4 and 5).19 It turns out that both coefficients on the

referenda uncertainty indices drop in value. That is especially so for IndyRef when excluding GDP growth

rates, which is no longer significant. This indicates a strong link between IndyRef and Scottish policy un-

certainty: the explanatory power observed when IndyRef was set alone is absorbed completely by Scottish

policy uncertainty. As we will see in the robustness tests below, IndyRef has a negative and significant

coefficient once we replace Scottish policy uncertainty with the UK policy uncertainty. This is not the case

for Brexit uncertainty, which remains statistically significant after controlling for Scottish policy uncertainty

(column 5). Nonetheless, the coefficient on Brexit uncertainty drops from 13% to 8% but remains highly

significant. This indicates also a relationship between the uncertainty caused by Brexit and Scottish policy

uncertainty (being the coefficient of this latter uncertainty no longer significant).

Overall these results expose the gravitational effect that Brexit uncertainty had on the other two in-

dices. This comes as no surprise since Brexit, on the one hand, has induced policy changes at the Scottish

level while on the other hand has fuelled the debate for a second Scottish referendum for independence:

shortly after the Brexit referendum results, the SNP advocated for another Scottish independence vote on

the justification that Scotland voted in favour of the UK staying in the EU by 62% to 38%. In March 2017,
18The Variance Inflation Factor tests that studies multicollinearity issues, reveals values much greater than 10 for IndyRef

when GDP growth rates are included in the regression equation.
19Note that due to multicollinearity problems that arise when placing the two uncertainty indices together, we exclude the

implied volatility index (VFTSE). Using the Variance Inflation Factors we detected values much higher than 10 for the VFTSE
when all controls were placed which indicates pronounced multicollinearity.
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the Scottish parliament voted (69 to 59 votes) to demand a second independence referendum.20 Nonethe-

less, following the decline in SNP votes on the June 2017 UK general election, Nicola Sturgeon announced

that the Scottish government would postpone legislation concerning a second referendum for independence.21

The overarching significance of Brexit uncertainty is apparent when the three uncertainty indices enter

jointly (Column 6). In this setting, only Brexit uncertainty remains negative and significant.22 In this formu-

lation, a one standard deviation increase in Brexit uncertainty foreshadows a drop in the average investment

rate of 12% in the following year. That is barely unchanged to the case when Brexit uncertainty was pos-

tulated as the sole source of uncertainty. To further study how political uncertainty has evolved during and

after the referenda took place, in what follows we incorporate a set of dummy variables aiming to isolate the

two referenda events and also check whether or not simple dummy variables have more explanatory power

than our uncertainty indices.

We firstly undertake this latter exercise by incorporating simple year-dummy variables describing when

the referenda took place. We label these year-dummy variables as SCOTreferendum and BREXITreferendum

(1 in the year the referendum took place and 0 otherwise). To be consistent with our measurements of un-

certainty, all dummy variables are lagged by one year. First, these dummy variables are considered on their

own (columns 1 and 4 of Table 2.11). We observe that although both are negative (except for IndyRef when

GDP growth rates are excluded, column 1 in Panel A), only the coefficient associated with the Brexit referen-

dum is statistically significant. This seems to confirm the insight from Table 5 on the importance of Brexit.23

More importantly, however, once we add our referenda uncertainty measures IndyRef and Brexit (columns

2 and 5 respectively), they prevail over the dummy variables; in all cases only the uncertainty indices are

statistically significant. This holds independently of whether or not we include/exclude GDP growth rates

(Panel A and B). Therefore, we conclude that our uncertainty measures have important explanatory power

over and above simple referendum-year dummies. These results also hold when incorporating a dummy

variable for the period when the Scottish referendum was being legislated 2012-2014.

Next, we investigate whether or not IndyRef displays any effect on investment once the uncertainty after
20See https://www.ft.com/content/195d9986-13d1-11e7-80f4-13e067d5072c.
21See https://www.bbc.co.uk/news/uk-scotland-40415457.
22Once again, we had to drop the implied volatility index and GDP growth rates from the regression equation due to strong

multicollinearity indicated by the Variance Inflation Factors test. For this reason, the results in both panels are the same.
23Note that even though these dummies are included individually, the results are unaltered even when the two dummy

variables are included.

https://www.ft.com/content/195d9986-13d1-11e7-80f4-13e067d5072c
https://www.bbc.co.uk/news/uk-scotland-40415457
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the Scottish referendum is removed. In other words, we sought to isolate the uncertainty that may have

been present in the run-up to the Scottish referendum from any post-referendum uncertainty. Recall that

when IndyRef uncertainty is included on its own (Column 1 of Table 2.10) the size of its estimated coeffi-

cient was substantially larger than when put together with Brexit uncertainty. The implication, therefore,

may be that Scottish political uncertainty was picking up some of the effects of Brexit uncertainty. For

this reason, we now interact IndyRef with a dummy variable that removes any post-Scottish referendum

uncertainty (SCOT2014 = 1 from the beginning of the sample period up until the year of the referendum

and 0 afterwards). To be consistent with our lagged uncertainty measure, this time dummy variable is also

lagged by one year. Column 3 displays the results also controlling for Brexit uncertainty with the dummy

variable BREXITreferendum. The interaction term IndyRef *SCOT2014 turns out to be negative although

not significant. In this setting, a one standard deviation increase in IndyRef, once removing the uncertainty

post-referendum, suggests a drop in investment of 4% in the following year.

All in all, the results presented in these two tables allows us to be somewhat confident that the Scottish

referendum for independence has been costly to investment while extremely confident of the costs regarding

Brexit uncertainty. Recall that the most conservative results regarding IndyRef -excluding the uncertainty

period after the Scottish referendum for independence and business cycles- indicate that only the uncer-

tainty regarding the Scottish referendum for independence foreshadows a drop in average investment rate

in the following year by 4% (although not statistically significant). If we consider the uncertainty of the

aftermath of the Scottish referendum the coefficient is 8% (strong statistically significant). Acknowledging

that IndyRef rose by 1.3 standard deviations from 2012-2014, we can justify the lower-bound effect on in-

vestment produced by the Scottish referendum to be 5.2%. Nonetheless, to shed more light into the possible

effect of the Scottish independence referendum (leaving out the Brexit uncertainty), in Section 6 we con-

duct further tests by removing the last two years of the sample and introducing heterogeneity at the firm level.

Regarding Brexit uncertainty, the most conservative results -including Scottish EPU and excluding GDP

growth rates- foreshadows a drop in average investment rate in the following year by 8% (Column 5 Panel

A Table 2.10) while when the uncertainty enters alone, this magnitude adds to 14% average investment

rate (Column 2 Panel A Table 2.10). Taking into account that Brexit uncertainty rose by 2.65 standard

deviations, the lower-bound Brexit uncertainty effect on investment adds to 21.5%.
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Chapter 3

Economic Policy Uncertainty in the

euro area

3.1 Introduction

One of the main problems that appears when trying to generalize the methodology presented in the previ-

ous chapters to build a family of economic uncertainty indices, is the fact that we narrowed them to the

English language. Nonetheless, different countries would be using different languages and the role of the

words “economy" and “uncertainty" might not be as straight forward as in English. This is the case of the

European Union. With this in mind, this chapter expands on the previous methodology.

Recently the euro area has been affected by an unprecedented number of episodes of uncertainty, includ-

ing the Great Recession (2008-2014); the euro area sovereign debt crisis (2010-2012); the sanctions imposed

on Russia by the European Union (EU) following the Ukraine crisis (March 2014); the Brexit vote (June

2016); and the recent global trade disputes. These episodes have contributed to high levels of policy-related

uncertainty in the euro area. Understanding the sources and dynamics of uncertainty affecting the economy is

valuable for policymakers, including central banks. As we have seen, in response to uncertainty shocks firms

may reduce their investment, hiring or orders from foreign intermediates, leading to a slowdown in trade and

aggregate investment. In turn, consumers may react to increased uncertainty by postponing consumption

and increasing precautionary savings (see for example Giavazzi and McMahon (2012)).

The purpose of this chapter is to measure the effect of the different episodes of policy-related uncertainty

on investment in the euro area. Economic policy uncertainty (EPU) documents the ambiguity regarding who

will make economic policy decisions, and what and when economic policy actions will be undertaken (Baker,
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Bloom, and Davis (2016)). The EPU is built by aggregating different components such as fiscal policy,

monetary policy and geopolitical issues, to name a few. Several studies have reported a strong relationship

between investment and overall policy uncertainty (Baker, Bloom, and Davis (2016); Gulen and Ion (2015);

and Meinen and Röhe (2017)). However, there has not been a study that focuses on specific categories of

policy uncertainty in the euro area. This is mainly due to the limitations involved in creating conventional

EPU indicators.

The first contribution that this chapter makes is to use a method that can consistently categorise the

wide sources of economic uncertainty from the media in a wide range of languages and contexts. We do so

in two steps: first, we characterise news articles describing economic uncertainty using a continuous bag of

words model that represents words as vectors based on their context. This allows us to distinguish the words

most closely related to “economy” and “uncertainty” across four languages, namely German, French, Italian

and Spanish, and therefore to retrieve all those articles relevant to economic uncertainty for each country.

Failing to do so would induce an increase in the number of false negatives, that is, we would not pick up all

the news articles relevant to economic uncertainty.

Second, we use the methodology proposed by Azqueta-Gavaldón (2017) to identify relevant components

of economic uncertainty. This approach uses an unsupervised machine learning algorithm that categorises

news articles into specific categories of economic uncertainty. The unsupervised nature of the algorithm clas-

sifies news articles into topics without the need for previous knowledge on the themes covered in the articles.

The algorithm used is called “Latent Dirichlet Allocation” (LDA) and was developed by Blei, Ng, and Jordan

(2003). It is a generative probabilistic method that recovers two distributions, namely words-per-topic and

topic-per-article distributions. The advantage of this algorithm is that the researcher does not need to come

up with individual lists of keywords for each topic, but can apply this method to uncover the structural

patterns of any text endogenously.

One of the caveats of this method is that the topics recovered in the form of most probable words need to

be interpreted by the researcher. However, in practice the interpretation of topics, even across different lan-

guages, is straightforward. Take for instance monetary policy uncertainty. In our application the lowercase

words after stemming (i.e. keeping only the root of words) that characterise this topic are: “ezb, “noten-

bank”, “geldpolitik”, “zentralbank” or “draghi” for Germany; “taux”, “monetair”, “europ”, “bce”, “central” or

“inflat” for France; “bce”, “tass”, “deb”, “central”, “monetar”, “inflazion” or “drag” for Italy; and “tipos”, “bce”,

“monetaria”, “inflacion”, or “draghi” for Spain. In all languages the words are very similar.
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The spikes in this index coincide with episodes of inflation risks (e.g. during the Iraq war due to concerns

over oil price increase); the euro area sovereign debt crisis (2010-2012); and the Brexit vote (June 2016). In

addition, we examine in detail the evolution of the eight policy-related uncertainty indicators that form the

overall EPU index: fiscal, monetary, political, geopolitical, trade/manufacturing, European regulation, do-

mestic regulation, and energy for each country. We observe increases in the domestic regulation uncertainty

index during events such as the Hartz reforms in Germany, the labour market reforms in Italy and Spain

in 2011 and 2012, and the Macron laws in France in 2015. The geopolitical uncertainty index rose during

the Iraq war (in particular in Spain), the Syrian civil war (in particular in France), and the most recent

tensions between Russia and the EU. Furthermore, the trade uncertainty index has increased steadily since

the beginning of 2018.

As a validation exercise that goes beyond cross-checks of time-events, we use several exogenous indices

(outside our measures) that have a one-to-one mapping (or close to) with our indices. First, we compare our

aggregate EPU index (the aggregation of eight individual categories) with the EPU indicator developed by

Baker et al. (2016), the BBD- EPU index, for each European country under consideration. The BBD-EPU

indices for the four largest euro area countries rely on a list of keywords that are an extrapolation of the ones

used for the United States. Despite the differences in the methodologies, we observe strong correlations at

country level between the two indices (0.69 for Germany, 0.78 for France, 0.67 for Italy and 0.86 for Spain).

Second, we compare a financial uncertainty index created by adding the sub-indices of finance-related topics

with the Eurostoxx implied volatility index (VSTOXX). Once again, we observe a strong correlation between

the two (0.61 correlation). Both of these indices rose during the 9/11 terrorist attacks, the Iraq war, the

financial crisis and the European sovereign debt crisis. We then compare our European trade/manufactur-

ing index (created by adding each country’s trade/manufacturing index) with the world trade uncertainty

indicator created by Ahir, Bloom, and Furceri (2018).1 Although this involves less of a one-to-one mapping

(the WTU is global, while ours is European), these two items display some similarities (0.55 correlation) and

have both remained at relatively high levels since the beginning of 2018.

Following the standard procedure in the literature, we use a structural vector autoregressive (SVAR)

model to document the relationship between business investment proxied by investment in machinery and

equipment and our EPU index and the eight sub-indices. We first compare the responses of investment to

our aggregate EPU index and the one computed through keywords (BBD-EPU). The impact and significance
1See https://www.policyuncertainty.com/wui_quarterly.html

https://www.policyuncertainty.com/wui_quarterly.html
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of our index is higher than the BBD-EPU for all countries except for Germany. In the case of the BBD-EPU

indices, only the ones for Germany and Italy are statistically significant. This highlights the value added of

our method when constructing uncertainty indicators.

In addition, the results display heterogeneity in the relationship between investment and the different sub-

indices across and within countries. For example, while investment in France, Italy and Spain reacts heavily

to political uncertainty shocks, investment in Germany is more sensitive to trade uncertainty shocks. This is

plausible, as France, Italy and Spain have suffered prolonged periods of political instability (e.g. the yellow

vest protests in France, difficulties forming a government in Italy, and the referendum on Catalan indepen-

dence in Spain). With regard to trade uncertainty, which has reached unprecedented high levels recently, it

is not surprising that Germany, as the biggest exporter country in the euro area, is also most vulnerable to it.

This chapter draws on at least two strands of literature. The first concerns research on the impact of

uncertainty on investment. Theoretical work on this topic dates back to Bernanke (1983), who finds that

high levels of uncertainty give firms an incentive to delay investment when investment projects are costly to

reverse.2 Recently developed macroeconomic models also show that uncertainty has a strong impact on the

business cycle. For example, in models with heterogeneous agents, households face periods of high uncer-

tainty in the lower part of the cycle given that uncertainty is endogenously procyclical.3 From an empirical

perspective, there has been an extensive amount of work documenting the detrimental effects of uncertainty

on investment (see for example Gulen and Ion (2015), Meinen and Röhe (2017), Jens (2017) or Azzimonti

(2018)).

Second, there is a rapidly growing body of literature on textual methods to produce quantitative measures

of complex concepts such as uncertainty and risk. In their seminal contribution, Baker, Bloom, and Davis

(2016) used newspaper coverage frequency and simple dictionary techniques to measure EPU.4 Tobback,

Nardelli, and Martens (2017) built an indicator of the degree of “hawkishness" or “dovishness" of the media

perception of the ECB’s tone using semantic orientation and support vector machine text classification. In

addition, they used LDA to detect the dominant topics in the news articles. LDA was also used by Hansen,

McMahon, and Prat (2017) to study communication patterns in the Federal Open Market Committee talks.

Using simple text-mining techniques, Hassan et al. (2019) built a political risk measure as the share of firm
2R. K. Dixit and Pindyck (1994) offer a detailed review of the early theoretical literature.
3For example, in Bayer et al. (2019), there is a reduction in physical investment as a response to the decline in consumption

demand caused by higher uncertainty.
4EPU indices have been replicated using more advanced methods (see Azqueta-Gavaldón (2017) and Saltzman and Yung

(2018).



Chapter 3. Economic Policy Uncertainty in the euro area 80

quarterly conference calls that are devoted to political risk for the United States.5 Finally, Azqueta-Gavaldón

(2020) uses LDA and sentiment analysis to study how narratives propagated by the media influence cryp-

tocurrency prices.

The rest of this chapter is structured as follows: Section 3.2 describes the algorithms and news media

data used to produce the EPU indices for Germany, France, Italy and Spain, and compares the resulting

aggregate indices with the existing ones; Section 3.3 describes in detail the individual components that form

the aggregate EPU index; Section 3.4 displays the empirical findings of the effect of EPU sub-indices on the

real economy; Section 3.5 presents the indices validations checks; and Section 3.6 concludes.

3.2 Data and methods

Figure 3.1 shows the data flow chart describing the process beginning with gathering news articles to mod-

elling individual components of uncertainty as a time series. This is done in a few simple steps: i) collecting

all news articles that contain the words “economy" and “uncertainty"; ii) extending the sample of news ar-

ticles describing economic uncertainty by including those words that are closest semantically to the above

two words in each language (“word2vec" algorithm); iii) running topic modelling algorithms (LDA) to unveil

distinctive topics of economic uncertainty; and iv) forming the time series with these topics.

3.2.1 News articles containing references to economic uncertainty

The first step in creating our indices is to gather all news articles containing any form of the word “economy”

and “uncertainty” (language specific). It should be recalled that the EPU index developed by Baker, Bloom,

and Davis (2016) (BBD) was created using a set of three terms: “uncertainty" or “uncertain”; “economic”

or “economy”; and one of the following policy terms: “Congress”, “deficit”, “Federal Reserve”, “legislation”,

“regulation”, or “White House”. We, in our turn, select those articles containing the first two of these three

terms from the most read newspapers in each country:

• German newspapers: Handelsblatt, Frankfurter Allgemeine Zeitung, Die Welt, Süddeutsche Zeitung

• French newspapers: Le Figaro, Le Monde
5To come up with political topics, they first filter political topics by correlating them to sources using a priori political

vocabulary, e.g. political sciences textbooks. They then count the number of instances in which these politics-related words
appear together with synonyms of “risk" or “uncertainty".
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Figure 3.1: From News to Time-Series
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Notes: The grey circles represent the corpus, i.e. the set of all news articles; “word2vec” stands for the continuous
bag of words model developed by Mikolov et al. (2013); and LDA stands for the Latent Dirichlet Allocation
algorithm developed by Blei, Ng, and Jordan (2003).

• Italian newspapers: Corriere della Sera, La Repubblica, La Stampa

• Spanish newspapers: El País, El Mundo, La Vanguardia

Table 3.1 displays the daily circulation of the seven to eight most read news-papers for each country

considered in this analysis. Note that the selection of news-papers include sports newspapers and tabloids

(media outlets which tend to be on top of the list). Even if we include these media outlets, the total percent-

age of daily distribution (as in 2019) of the media-outlets selected in our analysis amount to 33% in Germany,

41% in France, 54% in Italy, and 39% in Spain (of the seven to eight most read newspapers per country).

Nonetheless, if we exclude the German tabloid newspaper Bild from this count, the media outlets selected

for Germany in our analysis represent 91% of the seven most read newspapers in Germany. If we exclude

the sport-orientated newspaper L’Equipe from the french sample, the percentage increases from 41% to 50%.

Furthermore, if we exclude from the Italian sample the sport-orientated newspaper Gazetta dello Sport, the
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percentage of the news-papers selected for our analysis adds to 59% of the 6 most read Italian newspapers.

Similarly, if we exclude the two sport newspapers from the Spanish sample; Marca and As, the percentage of

the outlet selected amounts to 69% of the most 5 most read Spanish newspapers. All in all, this highlights that

the sample used our analysis is somewhat representative of what the population in each country tend to read.

From January 2000 to May 2019, the total number of news articles containing any form of the word “econ-

omy" and “uncertainty" was 14,695 for Germany, 11,308 for France, 30,346 for Italy and 32,289 for Spain.

However, while the words “economy" and “uncertainty" might be well-suited for the English language, this

might not hold for other languages. Take for instance the case of German, which has various synonyms for the

word “economy" (“Wirtschaft", “Konjunktur", “Volkswirtschaft", “Ökonomie") and the word “uncertainty"

(“Unsicherheit") might not map one-to-one onto the English word “uncertainty".6 Similar complications are

also likely to arise in the other languages considered here. For this reason, we need a flexible tool that can

perform well in language-specific contexts in order to select all news articles that describe overall economic

uncertainty.

To identify the words most similar to “economy” and “uncertainty” for each country (language) we use the

continuous bag-of-words model developed by Mikolov et al. (2013), also known as the “word2vec” algorithm.

Continuous bag-of-words models are based on the idea that words are similar if they themselves appear near

similar words. For example, to the extent that “ECB” or “Fed" tend to appear next to words like “inflation”

or “target” one would infer that the two words “ECB” and “Fed” have similar meanings to one another.

Continuous bag of words models represent words as a vector, with the elements in each vector measuring

the frequency with which other words are mentioned nearby. Given this vector representation, two words

are similar if the inner product of their vectors is large.

The most well-known purpose of “word2vec" is to group the vectors of similar words together in the vector

space. For example, Atalay et al. (2017) use “word2vec" to create a list of words related to routine tasks

in newspaper job advertisements. Using this method, they show that words related to non-routine tasks

have been increasing in frequency, while words related to routine tasks (especially routine manual tasks)

declined in frequency between 1960 and 2000. In our case, we want to retrieve the words most similar to

“economy" and “uncertainty" across the four different languages. The results reveal that the closest words

in German for “Wirtschaft" are “Konjunktur" (0.61), “Volkswirtschaft" (0.59) and “Ökonomie" (0.56) while

for “Unsicherheit" they are “Verunsicherung" (0.73) and “Ungewissheit" (0.63). The number in parenthesis
6For example, in German the word “Ungewissheit" is often used to express the idea that something is unknown.
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Table 3.1: Average daily circulation of the seven most read news-papers in Germany, France,
Italy and Spain as in 2019

GERMANY
News Paper Daily Sold Copies Percentage
Bild 1,182,699 63.1383
Sudeutsche Zeitung 279,079 14.89861
Frankfurter Allgemeine 192,770 10.29101
Handelsblatt 87,560 4.674384
Die Welt 69,957 3.734649
Taz 42,113 2.248199
Neues deutschland 19,010 1.014847

Percentage of selected press 33.59866

FRANCE
News Paper Daily Sold Copies Percentage
Le Figaro 313,837 21.29197
Le Monde 303,613 20.59833
Le Parisen 290,355 19.69885
L’Equipe 245,059 16.62579
Les Echos 129,755 8.803102
Aujourd’hui en France 104,061 7.059918
La Croix 87,289 5.922038

Percentage of selected press 41.8903

ITALY
News Paper Daily Sold Copies Percentage
Gazella dello Sport 3,318,000 27.78662
Corriere della Sera 2,044,000 17.11749
La Repubblica 1,883,000 15.7692
Corriere dello Sport 1,442,000 12.07604
La Stampa 1,133,000 9.488318
Resto del Carlino 1,123,000 9.404572
Il Messagero 998,000 8.357759

Percentage of selected press 54.39243

SPAIN
News Paper Daily Sold Copies Percentage
Marca 1672000 29.40039
El Pais 1,013,000 17.81255
As 772,000 13.57482
El Mundo 671,000 11.79884
La Vanguardia 549,000 9.653596
La Voz de Galicia 514,000 9.038157
ABC 496,000 8.721646

Percentage of selected press 39.26499

Notes: The daily number refers to the average sold editions of the news papers per day in 2019. Information for
Germany is taken from deutschland.de (https://www.deutschland.de/en/topic/knowledge/national-newspapers)
whereas the information for the rest of countries is taken from Statista.com.

https://www.deutschland.de/en/topic/knowledge/national-newspapers
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indicates the vector proximity in the model which ranges from 0 (completely opposite or orthogonal) to

1 (exact synonyms).7 These results seem reasonable, given that, as previously mentioned, “Konjunktur",

“Volkswirtschaft", and “Ökonomie" are straight synonyms of the word “economy", while “Ungewissheit" (un-

known) is often used to refer to a situation when something is not clear and “Verunsicherung" tends to

express a worrisome or a daunting outlook. To see the words retrieved for the rest of the countries, see the

Appendix III.I and for a more detailed account of the word2vec algorithm, see Appendix III.II.

Figure 3.2: Proportion of news articles describing economic uncertainty in the press (contin-
uous line) and GDP growth rates (dotted line) by country.
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Notes: Ratio of the total number of news articles containing words related to “economy” and “uncertainty” over the
total number of news articles containing the word “today”. Quarterly data from Q1:2000-Q1:2019.

As a result, the set of news articles containing the extended list of words related to “economy” and “un-

certainty” increases substantially in each country: from 14,695 to 28,941 in Germany’s press; from 11,308 to

31,434 for France; from 30,346 to 74,144 for Italy; and from 32,289 to 54,550 for Spain. Figure 3.2 shows the

monthly propagation of this set of news articles (scaled by the total number of them containing the word

“today”) 8 per country and GDP growth rate. As can be seen, the proportion of news articles describing

overall economic uncertainty tends to increase during periods of negative growth rates and events related

to geopolitical tensions such as the Iraq war (March 2003) and the recent Brexit referendum (June 2016).

This highlights the fact that they are mainly capturing negative events and therefore we do not expect a
7The results are based on the standard specification in this literature: size=150; window=10; minimum count=2; and

workers=10. For the documentation, see https://radimrehurek.com/gensim/models/word2vec.html
8This is done because the total number of news available in Factiva is only a fraction of the paper press releases, and this

fraction is not constant over time. For example, in one day there might be 60% of the total number of news in the press while
in another day, this ratio might be 90%. Therefore, if we don’t do this, the indices might show false peaks or troughs.

https://radimrehurek.com/gensim/models/word2vec.html
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high level of false positives, e.g. being labelled as characterising rises in economic uncertainty while actually

describing falls in economic uncertainty.

3.2.2 Topic modelling

As explained in previous chapters, before feeding all the data (raw words per document) into the LDA al-

gorithm to obtain unique topics, we need to pre-process them. Stopwords, punctuation, and numbers are

removed. Stopwords are words that do not contain informative details about an article, e.g., “that” or “me”.9

All words are converted to lower case, and each word is converted to its root in a process known as “stem-

ming”.10

As mentioned, in order to unveil the distinctive sources of uncertainty, we use the methodology described

in Azqueta-Gavaldón (2017). This approach applies an unsupervised machine learning algorithm to all news

articles describing economic uncertainty to unveil their topics. The unsupervised machine learning algorithm,

called Latent Dirichlet Allocation (LDA) and was developed by Blei, Ng, and Jordan (2003). It reveals the

topics of articles without the need for prior knowledge about their content (unsupervised). Intuitively, the

algorithm studies the co-occurrences of words across articles to frame each topic as a composition of the most

likely words. In parallel, each article is composed via a distribution of topics. This is done in an unsupervised

way, meaning that the algorithm forms these two hidden (or latent) distributions without any labelling of

the articles or training of the model before the articles are classified.

The only input observed by the algorithm is the number of words per document. The data generation

process (DGP) for each word in each set of documents involves a few simple steps:

1. Select the overall theme of an article by randomly giving it a distribution over topics;

2. For each word in the document:

(a) randomly pick one topic from the topic distribution chosen in step 1;

(b) given that topic, randomly choose a word from this topic.

Iterating the second step generates a document while iterating both the first and the second step generates

a collection of documents. This does not mean that the algorithm assumes knowledge of topics and words
9Note that the list of stopwords is language-specific. We use the NLTK library, see www.nltk.org/
10Stemming is language-specific and to carry it out, we use the SnowballStemmer :

https://www.nltk.org/modules/nltk/stem/snowball.html

https://www.nltk.org/_modules/nltk/stem/snowball.html
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frequencies in them but rather that it uses this simple DGP together with the words from each document to

infer the underlying topic structure: topics as a distribution of words, and articles as a distribution of topics.

The model recovers these two distributions by obtaining the parameters that maximise the probability of

each word appearing in each article given the total number of topics K.

Finally and as previously seen, to find the most likely number of topics K, we use a likelihood maximi-

sation method. This method involves estimating empirically the likelihood of the probability of words for a

different number of topics P (w|K). This probability cannot be directly estimated since it requires summing

over all possible assignments of words to topics but can be approximated using the harmonic mean of a set

of values of P (w|z,K), when z is sampled from the posterior distribution (Griffiths and Steyvers (2004)).

Based on this method we set K to 30 for Germany, France, and Italy, and 40 for Spain.11

3.3 Economic policy uncertainty in the euro area

Baker, Bloom, and Davis (2016) used eight categories to produce their original EPU index for the United

States: monetary policy; healthcare; national security; regulation; sovereign debt; entitlement programmes;

and trade policy. Although some of these categories will be common to our four euro area countries, not all

will have an exact match. On the one hand, there are categories that are not as relevant in Europe as in

the United States. This is the case of healthcare. While there has been some debate over the financing of

healthcare systems in some EU countries, in particular during the sovereign debt crisis, this debate did not

reach the uncertainty levels of Obama Care in the United States. In the case of the United States, healthcare

was a major topic during the 2008 Democratic presidential primaries, as it was meant to affect 30 million

uninsured people and went to the Supreme Court in 2012. In addition, while there have been some military

interventions by EU states, these did not reach the engagement levels of the United States.

On the other hand, there are certain policy-related events that are unique to EU- countries and are not

present in the United States. This is the case of political referenda, such as the Brexit vote or the illegal

Catalan referendum, which have greatly contributed to policy uncertainty but do not match any of the eight

categories described in the original Baker, Bloom, and Davis (2016) index. Further complications arise from

the fact that in the case of the EU, there are policies at the European Union level (e.g. monetary policy), at

the individual country level (e.g. military interventions) and at both the EU and country levels (e.g. fiscal
11The likelihood function was run from 10 to 80 topics in intervals of 10.
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policies in the context of the EU Stability and Growth Pact).

The aim is therefore to select those topics that best describe sources of policy uncertainty in the European

context. We then select eight categories that best suit the European context and are also easy to identify

across our wide range of countries. These categories are: fiscal; monetary; political; geopolitical; trade/man-

ufacturing; European regulation; domestic regulation; and energy. As can be seen in Table 3.2, with the

words that the LDA algorithm gives we can easily label each category/topic. For example, the political topic

is framed by words such as “ministry", “president" or names of heads of states, while the monetary policy

topic contains words such as “ECB", “inflation" and “central bank".

In addition, we observe some interesting differences across countries regarding the stance taken on specific

topics. For example, the words describing the geopolitical category are heavily tuned towards the Russian

conflict in the case of Germany, France and Italy, but not in the case of Spain; words relating to Russian-EU

tensions such as “Russia", “sanctions" and “Ukraine" appear in all geopolitical indices except in the Spanish

one. This is not entirely surprising since the three largest euro area economies (Germany, France and Italy)

experienced the highest export losses with Russia in absolute terms as a consequence of the sanctions im-

posed by the EU. On the other hand, the words in the fiscal category relate to pension and labour reform in

the case of Germany (e.g. “Tarifvertrag" meaning collective agreement or “Rente" meaning pension) while

for the rest of countries they also include budgetary terms (e.g. “deficit").

To form the aggregate EPU time series at the country level, we follow two simple steps. First, we sum

the topic proportions of these eight categories by month. This gives us a raw aggregation of the fraction

of news articles describing EPU per country. Second, we divide each raw aggregation by the total number

of news articles containing the word “today”. Figure 3.3 shows the quarterly EPU indices computed for the

four largest economies in the euro area (blue line) and the BBD-EPU index obtained by Baker, Bloom, and

Davis (2016) (red line). Overall, the time series produced by grouping the EPU topics retrieved by the LDA

algorithm and the BBD-EPU indices are fairly similar (correlations of 0.69 for Germany, 0.78 for France,

0.67 for Italy and 0.86 for Spain).

There are three particular episodes where our EPU picked up in the four major euro area economies. The

first peak occurred in the first quarter of 2003 with the invasion of Iraq. The second peak corresponds to

the European sovereign debt crisis between 2010 and 2012 when the risk premiums of several EU countries

reached historically high levels. Finally, the third peak is found around the Brexit vote in the third quarter
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Table 3.2: Most relevant words representing given by the LDA for each category. Time span:
01:2000 - 05:2019.

height Germany France Italy Spain
Articles = 28,941 Articles = 31,434 Articles = 74,144 Articles = 54,550

Monetary ezb, notenbank, geldpolit, taux, économ, euro, banc, bce, spread, tipos, bce, monetaria,
prozent, zentralbank, fed, monétair, bce, banqu, monetar, deb, drag, inflación, draghi, euro,
europa, euro, stark, inflat, baiss, ralent, tass, central, eurozon, interés, banco,
zins, inflation, draghi croissanc titol, inflazion economía

Fiscal rent, riest, fiscal, impôt, dépens, fiscal, manovr, bilanc, gobierno, ley, medidas,
gewerkschaft, arbeitgeb, financ, budget, milliard, tax, pubblic, spes, tagl, pensiones, fiscal,
hartz, iv, metall, ig, retrait, défic, publiqu, deficit, padoan, reforma, impuestos,
tarifvertrag, zeitarbeit réform, prélev commission presupuestos, déficit

Political spd, cdu, merkel, ministr, président, sarkozy, renz, pd, salvin, premier, pp, rajoy, psoe,
koalition, grun, csu, fdp, gouvern, chef, franc, vot, part, elettoral, leg, cataluña, partido,
kanzlerin, schaubl, macron, réform, elys polit, palazz, president, elecciones, voto,
partei, minist leghist gobierno, presidente

Geopolitical russland, russisch, iran, militair, iran, armé, arab, terror, lib, sir, iran, arab, irán, siria, turquía,
ukrain, putin, sanktion, iranien, syr, turqu, sécur, iraq, guerr, militar, russ, saudí, guerra, ejército,
syri, israel, iran, arabi, irak, guerr, terror, immigr, cines, sanzion, jihad, irak, militar, arabia,
krim, irak, barrel, konflikt migr, réfugi, russ, ukrain saud, tunis, sunn, curd refugiados, islámico

Trade / china, usa, global, produit, agricultur, trump, aut, fiat, diesel, china, rusia, mundial,
Manufacturing trump, weltwirtschaft, commerc, lait, viand, omg, automobilist, produtt, pekín, aranceles,

zoll, strafzoll, iwf, industriel, export, industr, settor, export, comercio, unidos,
weltweit, import, producteur, automobile, competit, pmi, comerciales, ventas,
protektionismus véhicul, psa manifattur, merc, paes diésel, fabricantes, seat

European eu, brexit, britisch, européen, europ, union, europe, ue, german, europea, ue, bruselas,
Regulation london, pfund, austritt, ue, brex, grec, bruxel, tedesc, union, grec, grecia, unión, comisión,

brussel, binnenmarkt, britainn, allemagn, pay, merkel, migrant, comunitario, eurozona,
votum, parlament, irland, euro, commiss, bruxelles, brexit, vot, socios, brexit,
komission referendum, zon referendum, popul, part referéndum

Domestic regier, kommission, syndicat, text, cgt, salari, pag, pension, red, justicia, tribunal,
Regulation nutzungsrecht, schaubl, syndical, tribunal, jurid, gentilon, univers, pdl, supremo, deuda,

rechststaat, justiz, commiss, emploi, enterpris, scuol, sindac, contratt, bancos, crisis, rescate,
dat, kund, internet, travail, embauch sindacal, lavor, sentenz, laboral, sindicatos, ugt,
ausbild, fluchtling, arbeit tribunal universidades

Energy energi, strom, gas, énerg, électr, edf, gaz, ambiental, carbon, energía, climático,
erneuerbar, klimaschutz, nucléair, pétroli, baril, energ, climat, elettr, emisiones, carbón,
rwe, bio, offshor réacteur, carbon, alstom inquin, petrol, gas, baril, gases, electricidad,

petrolifer contaminación

of 2016. For Germany and France we find high uncertainty peaks during and after the Brexit referendum.

This is not entirely surprising since these two countries have stronger trade links with the United Kingdom.12

For Italy and Spain, the EPU indices display the highest level during the sovereign debt crisis, in particular

when the Spanish government requested financial assistance in order to recapitalise its banking sector (third

quarter of 2012), and the financial turmoil that pushed up the Italian spread leading to the resignation of

Berlusconi in favour of the technocrat Mario Monti in Italy (fourth quarter of 2011).

3.3.1 EPU sub-indices

We now describe in more depth our aggregate EPU index and its sub-indices for each country. To make the

validation easier, we display the monthly frequency of each index (as opposed to quarterly frequency as in

Figure 3.3). To show the weights of each sub-index (relative importance), we do not standardise them but

display their raw magnitude multiplied by a factor of 100. For example, when a sub-index i reaches 0.1 in a
12For example, UK imports in 2016 totalled £75.1bn with Germany, £37.6bn with France, £28.0bn with Spain, and £22.6bn

with Italy. See https://www.ons.gov.uk/businessindustryandtrade/internationaltrade/articles/whodoestheuktradewith/2017-
02-21

https://www.ons.gov.uk/businessindustryandtrade/internationaltrade/articles/whodoestheuktradewith/2017-02-21
https://www.ons.gov.uk/businessindustryandtrade/internationaltrade/articles/whodoestheuktradewith/2017-02-21
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Figure 3.3: Evolution of EPU indices produced using LDA and Bloom’s EPU indices for the
four biggest EU economies
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particular month t this would mean that the sum of all topic-article proportions in that given month divided

by the total number of news containing the word “today” is 0.1%.13

Economic policy uncertainty in Germany

Figure 3.4 depicts the main sources of policy uncertainty that Germany has been exposed to in recent years.

As can be seen, the German EPU index effectively identifies several episodes: the 2002 Federal election,

the Iraq war, the sovereign debt crisis and the Brexit vote. Not surprisingly, the spike in EPU uncertainty

during the 2002 Federal election is captured by the political uncertainty index. The 2002 election was heavily

influenced by the poor economic performance in Germany (the country was in a recession), the introduction

of the euro, and the opposition campaign against taxes (particularly on fuel). In 2003, we see an increase in

geopolitical and monetary policy uncertainty. The rise in geopolitical uncertainty coincides with the begin-

ning of the Iraq war (March 2003), while the rise in the monetary policy uncertainty index can be attributed
13Our research shows that around 15% of all news articles contains the word “today"

http://www.policyuncertainty.com
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to two events. First, the Iraq war put upward pressure on oil prices, creating doubts regarding the monetary

policy stance that the ECB should pursue in a context of subdued growth. On the other hand, the clarifica-

tion of the ECB’s monetary policy strategy was interpreted by some observers as a sign of a disappointing

ECB performance.14 In addition, we also observe spikes in the monetary policy uncertainty index from the

beginning of the sovereign debt crisis until Mario Draghi’s famous quote “whatever it takes" (WIT) in July

2012; in 2015, when the ECB expanded its asset purchase programme to include bonds issued by euro area

central governments, agencies and European institutions as part of its non-standard policy measures; and

finally, the extension of the ECB’s asset purchase programme to the corporate sector in March 2016.

The fiscal uncertainty sub-index describes national regulation and it shows the most prominent spike

during the Hartz reforms (H-R) and, to a lesser extent, coinciding with the presentation of the “refugee

integration law" in May 2016 . The H-R aimed at making new types of jobs easier to create (minijobs and

midijobs) and changed welfare benefits, in particular unemployment benefits.15 The “refugee integration law"

presented in May 2016 also aimed at integrating refugees by creating 100,000 “one euro jobs" and training

courses. While the regulation uncertainty index also rose during the Hartz reforms, also reacts to other

regulatory reforms; the major peak in this sub-index took place in Q2:2018 during the coalition agreement

(Koalitionsvertrag). The deal between the CDU/CSU and SPD included measures to cap the pension contri-

bution rate at 20% and set a floor on replacement rates at 48% of average salaries until 2025. These measures

were viewed with scepticism by the IMF.16 The geopolitical uncertainty index captures the tensions between

Russia and the EU, which started as a result of the annexation of Crimea in March 2014.

14See https://www.ecb.europa.eu/press/key/date/2003/html/sp031120.en.html
15They were implemented in several steps: Hartz I-III between January 2003 and 2004, and Hartz IV in January 2005.
16see https://www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-

measures/www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-measures/10025630.fullarticle

https://www.ecb.europa.eu/press/key/date/2003/html/sp031120.en.html
https://www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-measures/www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-measures/10025630.fullarticle
https://www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-measures/www.ipe.com/countries/germany/imf-questions-german-coalition-government-pension-measures/10025630.fullarticle
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Economic Policy Uncertainty in France

The EPU for France (Figure 3.5) has been shaped by four main episodes: i) the Iraq war (March 2003);

ii) the sovereign debt crisis (2010-2012); iii) the Brexit vote (June 2016); and iv) the presidential election

run-off between Macron and Le Pen (April-May in 2017). The first two episodes were the most prominent

in terms of the history of the index.

The sub-indices showing the greatest rise in uncertainty during the Iraq conflict were the geopolitical

uncertainty sub-index and, to a lesser extent, the monetary policy uncertainty sub-index. The highest peak

in the geopolitical uncertainty sub-index occurred in February 2011, around the time the Syrian civil war

began. It should be noted that France played an active role during the Syrian civil war and insisted later

that year that the Syrian president Bashar al-Assad should step down.17

The second episode of high uncertainty corresponds to the EU sovereign debt crisis (2010-2012). This

episode is well captured by the fiscal uncertainty sub-index and partly by the monetary uncertainty sub-index.

Although France did not have high levels of debt, unlike other European countries such as Italy and Spain,

France’s credit default swaps escalated by 300% between January 2010 and November 2011. Furthermore,

the winner of the 2012 general elections, François Hollande, promised to eliminate France’s budgetary deficit

(around 7%) by cancelling enacted tax cuts and exceptions to the wealthy and raising the top tax bracket

rate to 75% for those with an income over EUR 1 million. For this reason, it is not surprising to also see

peaks in the political uncertainty index during this period (May 2012).18

Additional spikes in the fiscal policy uncertainty index occurred during the national election of April-May

2017. The policies proposed by the two candidates – Macron and Le Pen – could not have been more differ-

ent, which explains the rise in uncertainty. While Le Pen proposed to take France out of the euro, increase

welfare benefits, implement a quota to cut immigration by 80%, and introduce more regulated labour reform

and protectionism, Macron advocated for free trade, reform of the labour market to make it more flexible,

pro-immigration policies, less spending and pro-EU policies. 19 It is worth noting that the French EPU index

shows an abrupt peak coinciding with the so-called Macron laws (enacted on August 2015 when Macron was

Minister of the Economy and Finance). These laws set in motion an ambitious project to promote growth

and employment.20 Not surprisingly, the domestic regulation uncertainty sub-index captures this event as
17See for example https://www.theguardian.com/world/2015/nov/14/france-active-policy-syria-assad-isis-paris-attacks-air-

strikes
18See for example https://www.wsj.com/articles/SB10001424052970204369404577206623454813632?mod=googlenewswsj
19see https://www.ft.com/content/fb0ac974-2909-11e7-9ec8-168383da43b7
20see https://www.gouvernement.fr/en/law-on-economic-growth-and-activity.

https://www.theguardian.com/world/2015/nov/14/france-active-policy-syria-assad-isis-paris-attacks-air-strikes
https://www.theguardian.com/world/2015/nov/14/france-active-policy-syria-assad-isis-paris-attacks-air-strikes
https://www.wsj.com/articles/SB10001424052970204369404577206623454813632?mod=googlenews_wsj
https://www.ft.com/content/fb0ac974-2909-11e7-9ec8-168383da43b7
https://www.gouvernement.fr/en/law-on-economic-growth-and-activity
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the highest peak of the index.

Macron’s popularity plummeted in 2018, illustrated by the series of protests that were conducted by

trade union and left-wing activists during the second half of 2018. In May of that year, several thousand

people across France protested against Macron’s reforms of the public sector. The political uncertainty index

displays the highest peak during this month. In October 2018, Macron announced that the carbon tax would

be increased in 2019, triggering the “yellow-vest" protests the following month. This time period coincides

with the highest peak of the energy uncertainty index.
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Economic Policy Uncertainty in Italy

The Italian EPU index is shaped by several events: the stock market downturn of July-Sept 2002; the

sovereign debt crisis, which reached several peaks coinciding with the EU Commission’s deficit target ulti-

matum (August 2011); Berlusconi’s resignation and replacement by the technocratic cabinet led by Mario

Monti (Nov 2011); the Monti-Fornero reforms (June 2012); the Italian constitutional referendum (Decem-

ber 2016); the Italian banking crisis (July 2016); and the 2018 national elections and government coalition

agreement between the Five Star Movement and Lega Nord.

The main difference between our index and that of Baker, Bloom, and Davis (2016) (BBD-EPU) can be

observed in the month following the general election of February 2013 when the anti-establishment party,

the Five Star Movement, became the third largest party with a 25.5% share of the votes. While certainly an

episode of high uncertainty, given their unconventional measures proposed it is hard to see it as the greatest

uncertainty episode in Italy’s historical EPU index, as is the case with the BBD-EPU index. The highest

peak in our index occurs during Berlusconi’s resignation and replacement by Monti in November 2011. In

this month the monetary, fiscal, and political and domestic regulations uncertainty sub-indices all increased.

Monti undertook several reforms in the country, including the well-known Monti-Fornero reforms (June

2012). The Monti-Fornero reforms, which aimed at increasing government income and reassure markets of

the commitment to spending discipline, stopped indexing pensions for inflation above a certain income level

and increased the retirement age to 67.21 These reforms are captured by the domestic regulation sub-index.22

The domestic regulation sub-index also peaked during Italy’s banking crisis, which started in July 2016 when

Monte dei Paschi di Siena failed the European Banking Authority’s stress test. It also peaked during the

constitutional referendum held on 4 December 2016. Regarding the banking crisis, the Italian government

announced that Monte dei Paschi would be helped via a EUR 8.8 milliards government fund through “pre-

cautionary recapitalisation". Talks concerning a bailout of Veneto Banca and Banca Popolare di Vicenza

soon followed, and Italy’s high debt-to-GDP ratio – second only to Greece among euro area countries – raised

concerns that a worsening of Italy’s banking problems could trigger a sovereign debt crisis (Hodson (2017)).

The constitutional referendum held in Italy on 4 December 2016 represented an ambitious project. Voters

were asked whether they approved a constitutional law amending the Italian Constitution to reform the com-

position and powers of the Italian parliament, as well as the division of powers between the state, the regions
21See https://www.ft.com/content/db0a1d22-3363-11e8-b5bf-23cb17fd1498
22See https://www.economist.com/europe/2012/03/24/montis-labour-law-tangle

https://www.ft.com/content/db0a1d22-3363-11e8-b5bf-23cb17fd1498
https://www.economist.com/europe/2012/03/24/montis-labour-law-tangle
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and administrative bodies. The proposed reform was rejected with 59% of the votes. Not surprisingly, the

political uncertainty sub-index rose during this event.

Since early 2018 with the formation of the Five Star Movement and Lega Nord coalition government,

there have been disagreements between the EU and Italy. For example, at the end of September 2018 the

governing coalition announced its 2019 budget, which increased deficit spending to 2.4 percent of GDP. This

triggered a response by the European Commission. These events are captured by the fiscal uncertainty sub-

index, which shows major spikes in December 2018. Further large spikes are also visible in the geopolitical

uncertainty sub-index during the Syrian civil war, although these are not as pronounced as in the case of

France. Interestingly, we also observe increases in the energy uncertainty sub-index in 2011 (February to

March 2011), most likely as a consequence of the Libyan turmoil. Libya, a former Italian colony, had always

been a central focus of Rome’s foreign policy and one of the largest suppliers of oil and natural gas to

Italy. In March 2014, the geopolitical uncertainty index rose once again, most likely as a consequence of the

annexation of Crimea and the second Libyan civil war.
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Economic policy uncertainty in Spain

The Spanish EPU index is shaped by three main events: i) the Iraq war at the beginning of 2003; ii) the

sovereign debt crisis (2010-12) with its pinnacle during the period of banking recapitalisation (June 2012);

and iii) the illegal illegal Catalan referendum (Oct 2017).

The high level of uncertainty during by the Iraq war (March 2003) is reflected in the geopolitical un-

certainty and monetary policy uncertainty sub-indices. As mentioned before, there were some concerns

regarding an increase in oil prices and the possible interventions of the ECB. While there is no doubt that

the Iraq war was a major source of uncertainty, some people questioned BBD-EPU initial EPU index for

presenting it as the highest uncertainty point in the history of the index. For example, while revising the

index by incorporating new keywords and new media sources, Ghirelli, Pérez, and Urtasun (2019) found the

highest point of the index to occur during the period of banking recapitalisation (June 2012). This is also

in line with our own index.

During this time, Spain experienced a sovereign debt crisis (2010-12) with the Spanish risk premium

reaching all-time highs. We can observe three sub-indices rising during this period, namely those relating

to fiscal policy, monetary policy and domestic regulation uncertainty. All indices peaked when the Spanish

government requested financial assistance from the EU for banking recapitalisation (June 2012).23 Another

important episode recorded by the fiscal and domestic regulation uncertainty sub-indices is the Spanish labour

reform of September 2010. This reform was an early attempt towards tackling the protracted unemployment

problem. It included measures such as the suspension of collective agreements (making it possible for

employers and workers to suspend collective agreements in case of economic downturns); a reduction in

the compensation payments for layoffs; and cheaper dismissals for companies facing losses. Finally, the

Catalan crisis sparked a debate on autonomous regional powers both in Catalonia and at the national

level. Consequently, the Catalan referendum declared illegal but held in October 2017 was accompanied

by an increase not only in the political uncertainty sub-index, but also in uncertainty regarding domestic

regulation.

23The European Stability Mechanism provided Spain with up to EUR 100 milliards in assistance, although in the end it only
needed EUR 41.3 milliards. Two disbursements were made, in December 2012 and February 2013 respectively.
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3.4 EPU and economic activity

3.4.1 Model Specification and Identification

Following the standard approach in the literature, we will investigate next the relationship between policy

uncertainty and investment in a structural vector autoregression (VAR) framework.

We follow again the procedure of Baker, Bloom, and Davis (2016) and specify a VAR using the natural

logarithm of EPU, the quarter-on-quarter growth rate of the stock market index, the shadow short term

interest rate (SSR) for the euro area24, the quarterly growth rate of real investment in machinery and equip-

ment as a proxy for business investment and the quarterly growth rate of real GDP. Including the stock

market index mitigates concerns of endogeneity because stock markets are forward-looking and stock prices

react to all sources of information (Baker, Bloom, and Davis (2016)). The data for each stock market index

comes from Datastream, while the rest of the data is obtained from Eurostat.

The VAR is run at quarterly frequency. The estimation period is Q1 2000-Q1 2019. We estimate the

model as the pth-order VAR:

yt = B1yt−1 + ...Bpyt−p + ut (3.1)

ut ∼ N(0,Σ), (3.2)

where yt denotes a q × 1 vector of endogenous variables, ut a q × 1 vector of errors, and B1..., Bp, and

Σ represent matrices of suitable dimensions containing the unknown parameters of the model, coefficients

of lagged endogenous variables (B1..., Bp), and the covariance matrix (Σ). Since the VAR model is esti-

mated using quarterly data, we follow the common practice in the literature and include three lags. To

overcome possible “overfitting” issues we employ Bayesian estimation techniques. Note that “overfitting"

might be an issue given our relatively short sample period, i.e. quarterly data and 19 years of observations.

In this respect, we use an independent normal-inverse Wishart prior, assuming that β ≡ vec(c, γ,B1, ..., Bp)

is normally distributed and that Σ has an inverse Wishart distribution with scale S and ν degrees of freedom:

24Following the common practice in the literature, we use the shadow short rate (SSR) (see Meinen and Röhe
(2017)). The SSR aims to measure the accommodation in monetary policy when the short rate is at the zero
lower bound (ZLB). The SSR is obtained from Leo Krippner’s website at the https://www.rbnz.govt.nz/research-and-
publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy/comparison-of-
international-monetary-policy-measures

https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy/comparison-of-international-monetary-policy-measures
https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy/comparison-of-international-monetary-policy-measures
https://www.rbnz.govt.nz/research-and-publications/research-programme/additional-research/measures-of-the-stance-of-united-states-monetary-policy/comparison-of-international-monetary-policy-measures
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β ∼ N(b,H) (3.3)

Σ ∼ IW (S, ν) (3.4)

The prior for β is the Minnesota-type. We then assume that the prior distribution for β is defined such

that E[(Bl)ij ] = 1 for i = j and l = 1 and 0 otherwise, while all other elements in b are set to zero. Specifi-

cally, i refers to the dependent variable in the ith equation, j to the independent variable in that equation,

and l to the lag number. The diagonal elements of the diagonal matrix H are defined as ( λ1
lλ3

)2 if i = j

and (σiλ1λ2
lλ3σj

)2 if i 6= j. The prior parameters σ are specified using ordinary least squares (OLS) estimates of

univariate AR(1) models. More specifically, σi and σj denote the standard deviations of error terms from

the OLS regressions. Given that our dependent variable is in growth rates, we do not include either a trend

or a constant.

The hyperparameters λ1 to λ3 are set in accordance with standard values commonly used in the liter-

ature.25 For the inverse Wishart distribution prior, the degrees of freedom υ amount to T + q + 1, with

T denoting the sample length. The scale parameter S is a q diagonal matrix with diagonal elements σ2
i .

Lastly, a Gibbs sampling approach is employed to generate draws of β and Σ from their respective marginal

posterior distribution. In this respect, we simulate 10,000 draws and discard the first 90% as a burn in.

To calculate the impulse-response function, as in Baker, Bloom, and Davis (2016) the structural shocks

are identified using a Cholesky decomposition based on the following variable ordering: EPU, stock price

index, shadow short rate, investment in machinery and equipment and GDP.

3.4.2 Results

Figure 3.8 displays the relationship between investment in machinery and equipment for the euro area and

the different sub-indices of the EPU. Here the aggregate index at the euro area level is the weighted sum

of the different country components. For example, to obtain the euro area monetary policy uncertainty

index, we sum each of the monetary policy uncertainty indices of the four countries. Similarly, we construct

aggregate indices for the eight sub-indices and the aggregate EPU index.

Overall, we observe a strong and significant impact of increases in EPU uncertainty on business invest-

ment proxied by investment in machinery and equipment in the euro area. This significant negative impact
25That is, we set hyperparamenters λ1 = 0.2, λ2 = 0.5, and λ3 = 1
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Figure 3.8: Impulse-response functions of machinery and equipment investment in the euro
area (EA) to shocks in EPU index and its components
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Notes: SVAR-estimated impulse response functions for machinery and equipment investment to a positive EPU
shock (one standard deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using
the Cholesky decomposition with the variables in the following order: log(EPU), ∆(log(EuroStoxx price index)),
shadow short rate (SSR), ∆(log(M&E)) and ∆(log(GDP)), where ∆ indicates first differences or quarterly growth
rates. Fit to quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval.

lasts four quarters and rebounds after the fifth quarter. This is consistent with the idea that once uncertainty

is resolved, firms increase investment to satisfy pent-up demand (Gulen and Ion (2015)). In addition, we

observe that only some uncertainty sub-indices have a particularly detrimental effect on investment in the

euro area. These are domestic regulation, political, monetary and fiscal uncertainty. In contrast, we find that

geopolitical, trade and energy uncertainty barely have any significant negative effects on investment. The

relationships between uncertainty and investment that we see at the aggregate (euro area) level might be,

nevertheless, heterogeneous at the country level. For this reason, we then run the same VAR exercise feeding

data at the country level. Figures 3.13, 3.14, 3.15, 3.16 show the impulse response functions (IRFs) for each

EPU category (and aggregate) for Germany, France, Italy and Spain respectively. The top left panel of these

figures shows the aggregate effect of EPU on investment. The blue line represents the dynamics of investment

in response to one shock of our EPU index while the red line reflects the dynamics of investment using the
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BBD-EPU indices (the old version of the BBD-EPU in the case of Spain).26 Altogether, the responses of

investment to overall policy uncertainty are negative. However, the impact and significance of our index

seems higher than that of the BBD-EPU indices for all countries except for Germany. It is worth noting

that in the case of the BBD-EPU indices, only the indices for Germany and Italy are statistically significant.

This highlights the value added of our method when constructing uncertainty indices.

Regarding each individual category, we observe some interesting heterogeneity. For example, the results

display a particularly strong effect of the trade uncertainty sub-index on Germany’s investment while not

for the other countries. This is not entirely surprising given that, as the biggest exporter of the euro area,

we would expect Germany to be especially vulnerable to trade disputes. Regarding the political uncertainty

index, we observe the opposite effect: this matters for all countries except for Germany. This again is plausi-

ble since France, Italy and Spain have suffered prolonged periods of political instability. Regarding the fiscal

uncertainty index, we observe that it is only relevant for France while not for Germany, Spain or Italy. This

is a bit puzzling given that Spain and Italy have undergone significant episodes of fiscal distress. Nonetheless,

much of the uncertainty registered during this period is captured by the monetary or domestic regulation

uncertainty sub-indices. As such, we observe a particularly strong effect of monetary policy uncertainty on

Italy’s investment.

In addition, domestic regulation shows a strong impact only for Italy and Spain, the two countries that

experienced banking rescues and major fiscal and labour reforms. Furthermore, we observe that the Euro-

pean regulation uncertainty index has only a negative effect in Italy and Spain although it is not statistically

significant in the case of Spain. Finally, we observe that the geopolitical and energy uncertainty indices show

no or only a negligible impact on investment in all countries.

3.5 Robustness checks

3.5.1 Uncertainty indices

To assess whether news articles – and in particular the set chosen in our exercise – are valid for measuring

uncertainty, we draw a comparison with uncertainty indices that roughly represent ground truths. We iden-

tify ground truth with an accurate and alternative index with which we can compare our indices. This is

the case for financial uncertainty, represented by implied volatility indicators such as the VIX for the United
26Note that for Spain, we use the original uncertainty index:

https://www.policyuncertainty.com/europe_monthly.html

https://www.policyuncertainty.com/europe_monthly.html
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States, VFTSE for the United Kingdom, and the VSTOXX for Europe.

Implied volatility indices are based on stock market data, are forward-looking and are often referred to

as the “investor fear gauge" (Whaley (2000)). Most importantly, implied volatility indices are often used

as a proxy for financial uncertainty (see, for example, Baker, Bloom, and Davis (2016) and Gulen and Ion

(2015)). We compare the European implied volatility index, VSTOXX, with a financial uncertainty index

computed by adding all those finance-related topics retrieved by the LDA. With this purpose in mind, we

select those topics that are characterised by the following words:

• German financial uncertainty: dax, prozent, akti, punkt, bors, analyst, anleg, leitindex, index,

rendit, anleg, fond, anleih, investment

• French financial uncertainty: bours, indic, cac, investisseur, march, séanc, street, wall, valeur,

semain, point, actionnair, group, capital, fusion

• Italy financial uncertainty: bors, rialz, dollar, wall, street, listin, titol, fed, merc, azionar, investitor,

mediagroup, banc, carig, soc, azion, mps

• Spain financial uncertainty: bolsa, inversores, ibex, puntos, mercado, dólares, wall, street, banco,

entidad, bankia, millones, entidades, cajas, bbva

Panel (a) of Figure 3.17 shows the evolution over time of the index computed by aggregating the topics

above and the European implied volatility index, the VSTOXX. Overall, we see a strong similarity between

the two indices, with a 0.61 correlation. The first major spike reported by both indices took place at the time

of the 9/11 terrorist attacks, which produced a shock in the financial markets’ liquidity worldwide (Posner

and Vermeule (2009)). Note that this spike is more abrupt in the index computed by aggregating topics than

the VSTOXX. The main reason behind these differences might be that while news reported in the media is

cumulative over a whole month, the index reported by the VSTOXX is an average over the whole month. In

this case, the early decision of the Federal Reserve to provide liquidity, thereby enabling payments to firms

and individuals, calmed the markets a few days after the terrorist attacks.

The most prominent spike in the VSTOXX index corresponds to the beginning of the recent financial

crisis. Here we observe an interesting phenomenon; while the VSTOXX shows a major spike, it is just above

average in the case of the one computed using LDA. It should be noted that we have pre-selected those news

articles describing economic uncertainty. We think the explanation might lie in the fact that at the beginning

there was no clear idea of whether this financial shock would have substantial effects on the real economy.
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In support of this argument, we observe that in the next major spike, i.e. the one which occurred during

the sovereign debt crisis of August 2011, our index increases more abruptly than the VSTOXX. This seems

to support the evidence that the index produced by aggregating finance-related topics (within the economy

uncertainty spectrum) is somehow more tuned towards the real economy rather than purely financial events.

In addition, we compare the European trade uncertainty sub-index computed by aggregating those topics

under the trade/manufacturing category with the world trade uncertainty index developed by Ahir, Bloom,

and Furceri (2018). We are aware that this latter index is less close to being a ground truth than the former

ones given that it is computed at the global level rather than at the European level. Despite these differences,

however, we observe some resemblance in the form of a 0.55 correlation. Most notably, both indices show a

strong upward trend from mid-2018 onward when the China-US trade disputes emerged.

3.5.2 Uncertainty and the economic activity

This section runs further tests to assess how our uncertainty indicators might be linked to additional eco-

nomic variables. In particular we are interested on the possible implications of uncertainty on consumption.

As we have seen trough-out this thesis, chapters 1 and 3 in particular, the precautionary saving channels

states that increases in uncertainty are related to increases in aggregate rates of saving and therefore drops

in consumption. Early evidence suggests that the presence of forward-looking consumers gradually adjust

precautionary savings in response to changing uncertainty (see for example Hahm and Steigerwald (1999)).

We obtain the real private consumption expenditure growth from Eurostat, which measures consumer

spending on goods and services. Private consumption includes all purchases made by consumers, such as

food, housing (rents), energy, clothing, health, leisure, education, communication, transport as well as hotels

and leisure services such as restaurant or sports services. It also includes durable goods (such as furniture

or cars), but not households’ purchases of dwellings, which are counted as household investment. Given

that private consumption is a main component of the Gross National Product (GDP), we include private

consumption in our VAR by replacing GDP. This is done to avoid multicollinearity issues between the two

variables which will be detrimental for capturing the dynamics of the system.

Just as before, we estimate of the following ordered variables: logarithm of EPU, the quarter-on-quarter

growth rate of the stock market index, the shadow short term interest rate (SSR) for the euro area, the

quarterly growth rate of real investment in machinery and equipment as a proxy for business investment
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Augmented VAR setup

{ Uncertainty }
{ Stock market index }
{ Shadow short term rate }
{ Investment }
{ Private real consumption }

and the quarterly growth rate of real consumption. Just as in section 3.4 we estimate the VAR by in-

cluding three lags and an independent normal-inverse Wishart prior with a Minnesota-type prior for the β

component. Figures 3.9, 3.10, 3.11, and 3.12 show the impulse response functions for the different com-

ponents of overall EPU indicators for Germany, France, Italy and Spain respectively. Overall we observe

negative ans significant impacts of uncertainty on consumption. When it comes to individual components,

it is not surprising to see higher effects for those domestic-related uncertainty indices on consumption rather

than those internationally related. For example, French consumption is highly negatively affected by political

uncertainty whereas Italian consumption displays higher sensitivity to domestic regulation uncertainties. Po-

litical uncertainty in France is highly linked to general strikes such as the yellow vest protests (October 2018).

Besides, Spanish consumption is also more negatively influenced by domestic regulation and political

uncertainties. Recall that these two uncertainty indices have captured events related to major employment

reforms, general elections and the the Catalan referendum declared illegal but held in October 2017. Fur-

thermore, private investment in the case of Germany reacted strongly to trade uncertainty whereas this is

not the case for consumption. Consumption seems to react more strongly to monetary uncertainty which

displays prominent spikes during Germany’s recession of 2001-2002.
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Figure 3.9: IRF of real consumption in Germany to shocks in German EPU index and its
components

(a) EPU shock on Cons. (b) Monetary shock on Cons. (c) Fiscal shock on Cons.

(d) Political shock on Cons. (e) Geopolitical shock on Cons. (f) Trade shock on Cons.

(g) EU regula. shock on Cons.
(h) Domestic regula. shock on

Cons. (i) Energy shock on Cons.

Notes: SVAR-estimated impulse response functions for real consumption to a positive EPU shock (one standard
deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using the Cholesky
decomposition with the variables in the following order: log(EPU), ∆(log(EuroStoxx price index)), shadow short rate
(SSR), ∆(log(M&E)) and ∆(log(Consumption)), where ∆ indicates first differences or quarterly growth rates. Fit to
quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval.
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Figure 3.10: IRF of real consumption in France to shocks in French EPU index and its
components

(a) EPU shock on Cons. (b) Monetary shock on Cons. (c) Fiscal shock on Cons.

(d) Political shock on Cons. (e) Geopolitical shock on Cons. (f) Trade shock on Cons.

(g) EU regula. shock on Cons.
(h) Domestic regula. shock on

Cons. (i) Energy shock on Cons.

Notes: SVAR-estimated impulse response functions for real consumption to a positive EPU shock (one standard
deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using the Cholesky
decomposition with the variables in the following order: log(EPU), ∆(log(EuroStoxx price index)), shadow short rate
(SSR), ∆(log(M&E)) and ∆(log(Consumption)), where ∆ indicates first differences or quarterly growth rates. Fit to
quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval.
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Figure 3.11: IRF of real consumption in Italy to shocks in Italian EPU index and its compo-
nents

(a) EPU shock on Cons. (b) Monetary shock on Cons. (c) Fiscal shock on Cons.

(d) Political shock on Cons. (e) Geopolitical shock on Cons. (f) Trade shock on Cons.

(g) EU regula. shock on Cons.
(h) Domestic regula. shock on

Cons. (i) Energy shock on Cons.

Notes: SVAR-estimated impulse response functions for real consumption to a positive EPU shock (one standard
deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using the Cholesky
decomposition with the variables in the following order: log(EPU), ∆(log(EuroStoxx price index)), shadow short rate
(SSR), ∆(log(M&E)) and ∆(log(Consumption)), where ∆ indicates first differences or quarterly growth rates. Fit to
quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval.
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Figure 3.12: IRF of real consumption in Spain to shocks in Spanish EPU index and its
components

(a) EPU shock on Cons. (b) Monetary shock on Cons. (c) Fiscal shock on Cons.

(d) Political shock on Cons. (e) Geopolitical shock on Cons. (f) Trade shock on Cons.

(g) EU regula. shock on Cons.
(h) Domestic regula. shock on

Cons. (i) Energy shock on Cons.

Notes: SVAR-estimated impulse response functions for real consumption to a positive EPU shock (one standard
deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using the Cholesky
decomposition with the variables in the following order: log(EPU), ∆(log(EuroStoxx price index)), shadow short rate
(SSR), ∆(log(M&E)) and ∆(log(Consumption)), where ∆ indicates first differences or quarterly growth rates. Fit to
quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval.
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3.6 Conclusions

The aim of this chapter was to extent the previous analysis and include different languages when building

economic uncertainty indices. To this end, we have run the unsupervised machine learning algorithm on news

articles describing overall economic uncertainty on the German, French, Spanish and Italian newspapers. To

overcome the problem posed by the use of four different languages and the role in each one of them of the

words economy and uncertainty, we have applied the word2vec model. This model allows to discover words

with similar contextual meaning in each of the four languages. The we have been able to endogenously ex-

tract individual uncertainty components and to assess their weight on the overall EPU. In this sense, we find

that while the fiscal policy uncertainty component was quite significant for Spain and Italy when the sustain-

ability of public finances was an important issue, it barely played any role in the case of Germany and France.

Using the distinct measures unveiled by the algorithm, we document heterogeneity in the relationship

between aggregate investment in equipment and machinery and our EPU sub-indices. While investment for

France, Italy and Spain reacts heavily to political uncertainty, Germany’s investment is more sensitive to

trade uncertainty. In addition, Spanish and Italian investment is highly tuned towards domestic regulation

uncertainty.

Our results have two main implications. First, they suggest that when building text-based economic

policy uncertainty measures, even with press media using a language other than English, it is useful to use

techniques beyond word counting. In this respect, we have shown how using a continuous bag of words

model makes it possible to retrieve those articles relevant to economic uncertainty for each country, while

LDA can be useful when categorising the individual components of EPU. Second, our results highlight the

heterogeneity in the relationship between different types of uncertainty and the real economy. Regulators

and politicians should then be aware of which type of uncertainty is materialising since, depending on the

source, they will be more or less detrimental to the real economy.
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3.7 APPENDIX III.I: Additional Tables and Figures

word2vec results:

• wirtschaft: (0.61) konjunktur; (0.59) volkswirtschaft; (0.56) ökonomie

• unsicherheit: (0.73) verunsicherung, (0.63) ungewissheit

• économie: (0.40) conjoncture

• incertitude: (0.53) flou, (0.52) inquiétud

• economia: (0.38) congiunturali

• incertezza: (0.56) instabilitá, (0.49) preoccupazione

• economía: (0.58) economico

• incertidumbre: (0.65) inquietud, (0.55) desconfianza
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Figure 3.13: IRFs of investment in machinery and equipment to shocks in EPU and compo-
nents for Germany
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Notes: SVAR-estimated impulse response functions for machinery and equipment investment to a positive EPU
shock (one standard deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using
the Cholesky decomposition with the variables in the following order: log(EPU), ∆(log(DAX stock price index)),
shadow short rate (SSR), ∆(log(M&E)) and ∆(log(GDP)), where ∆ indicates first differences or quarterly growth
rates. Fit to quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval. The red
line and bands represent the IRF computed using the Baker et al. (2016) aggregate EPU (BBD).
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Figure 3.14: IRFs of investment in machinery and equipment to shocks in EPU and compo-
nents for France
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Notes: SVAR-estimated impulse response functions for machinery and equipment investment to a positive EPU
shock (one standard deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using
the Cholesky decomposition with the variables in the following order: log(EPU), ∆(log(CAC40 stock price index)),
shadow short rate (SSR), ∆(log(M&E)) and ∆(log(GDP)), where ∆ indicates first differences or quarterly growth
rates. Fit to quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval. The red
line and bands represent the IRF computed using the Baker et al. (2016) aggregate EPU (BBD).
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Figure 3.15: IRFs of investment in machinery and equipment to shocks in EPU and compo-
nents for Italy
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Notes: SVAR-estimated impulse response functions for machinery and equipment investment to a positive EPU
shock (one standard deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using
the Cholesky decomposition with the variables in the following order: log(EPU), ∆(log(Italian stock price index)),
shadow short rate (SSR), ∆(log(M&E)) and ∆(log(GDP)), where ∆ indicates first differences or quarterly growth
rates. Fit to quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval. The red
line and bands represent the IRF computed using the Baker et al. (2016) aggregate EPU (BBD).
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Figure 3.16: IRFs of investment in machinery and equipment to shocks in EPU and compo-
nents for Spain
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Notes: SVAR-estimated impulse response functions for machinery and equipment investment to a positive EPU
shock (one standard deviation). The SVAR is estimated using Bayesian methods and the shocks are identified using
the Cholesky decomposition with the variables in the following order: log(EPU), ∆(log(IBEX35 stock price index)),
shadow short rate (SSR), ∆(log(M&E)) and ∆(log(GDP)), where ∆ indicates first differences or quarterly growth
rates. Fit to quarterly data from Q1:2000 - Q1:2019. The blue bands represent the 68% confidence interval. The red
line and bands represent the IRF computed using the Baker et al. (2016) aggregate EPU (BBD).
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Figure 3.17: Additional uncertainty indices
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(a) Financial Uncertainty and VSTOXX

Trade Uncertainty (0.55 correlation)
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(b) Trade Uncertainty and WTU

Notes: For comparison purposes, all series are standardised to mean 100 and 1 standard deviation. Panel (a)
compares the financial uncertainty index computed by aggregating those finance-related topics per country and the
Eurostoxx implied volatility index (VTOXX). Panel (b) compares the trade uncertainty computed by aggregating
those trade/industry-related topics and the world trade uncertainty index available at:
https://www.policyuncertainty.com/wui_quarterly.html

https://www.policyuncertainty.com/wui_quarterly.html
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3.8 APPENDIX III.II: Word2vec in detail

In this Appendix, we will explain the word2vec algorithm in some more detail. There are two versions of

the algorithm; the continuous bag of words model and the Skip-gram model. In the continuous bag of word

architecture, the model uses the current word to predict the surrounding window of context words, whereas

under the skip-gram architecture it weights nearby context words more heavily than more distant context

ones. In this chapter we have relied on the first version of the algorithm. The reason for doing so is the

higher speed and the fact that according to the authors, the only advantage of skip-gram is higher accuracy

when infrequent words appear in the text. Something which is definitely not our case, given that we are

interested in representing two of the most common words in the text: uncertainty and economy. In order to

describe the architecture behind this algorithm, I will borrow from Rong (2014) and use their terminology.

We will start from its simplest version: assuming only one word per context, later on moving to a more

realistic set up where we will consider several context words.

In its simplest form, the continuous bag of words model (CBOW) “word2vec" is a skip-gram single layer

neural network model that attempts to predict a target word (say “uncertainty") using a single context or in-

put word (see Figure 3.18). More specifically, it uses the one hot encoding of the input word and measures the

output error compared to the one hot encoding of the target word (“uncertainty"). A one hot word encoding

is the representation of each word in the vocabulary as a vector: if the given word exists in the document, that

element is marked as 1, otherwise, it’s 0. This, therefore, is essentially a Boolean bag-of-words. In this sense,

in the process of predicting the target word, the algorithm learns the vector representation of the target word.

Figure 3.18: A simple CBOW model with only one word in the context

Source: Rong (2014)

In Figure 3.18, the input or the context word is a one hot encoded vector of size V . The hidden layer
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contains N neurons and the output (or target word) is again a V -length vector where the elements are the

softmax values (a log-linear classification model). Besides, Wvxn is the weight matrix that maps the input

x into the hidden layer (V ∗ N dimensional matrix), and W ′nv is the weight matrix that maps the hidden

layer outputs into the final output layer (N ∗ V dimensional matrix). Note that the hidden layer neurons

sends the weighted sum of inputs to the next layer. It is important to note that in this set up there is no

activation function such as sigmoid, tanh or ReLU and therefore the only non-linearity component is given

by the softmax calculations in the output layer.

More specifically, each row of W is the N -dimension vector representation vw of the associated word of

the input layer. Formally, row i of W is vTw . Given a context word (e.g. a word surrounding the target word)

and assuming xk = 1 as well as xk′ = 0 for k′ 6= k, we have

h = W Tx = W T
(k,·) := vTwI (3.5)

which is essentially copying the k-th row of W to h. vwI is the vector representation of the input word

wI . This implies that the link (activation) function of the hidden layer units is simply linear (i.e., directly

passing its weighted sum of inputs to the next layer). Also note that from the hidden layer to the output

layer, there is a different weight matrix W ′ = {w′ij}, which is an N ×V matrix. Using these weights, we can

then compute a score uj for each word in the vocabulary:

uj = v′wj
Th, (3.6)

where v′wj is the j-th column of the matrix W ′. Furthermore, we can use the softmax to obtain the

posterior distribution of words, which is a multinomial distribution:

p(wj |wI) = yj =
exp(uj)∑V
j′=1 exp(uj′)

, (3.7)

where yj is the output of the j-th unit in the output layer. When we substitute (3.5) and (3.6) into (3.7),

we obtain

p(wj |wI) = yj =
exp(v′wj

T vwI )∑V
j′=1 exp(v

′
wj
T vwI )

, (3.8)

Note that vw and v′w are two different representations of the word w. vw comes from rows of W ,

which is the input→hidden weight matrix, whereas the v′w is obtained from columns of W ′ , which is the
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hidden→output matrix. In what follows, we will refer to vw as the “input vector”, whereas v′w as the “output

vector” of the word w.

Update equation for hidden→output weights

The next step is deriving the weight update equation for this model, obtained through backpropagation.

Recall that backpropagation is the computation of the gradient of the loss function with respect to the

weights of the network. Although the actual computation is impractical (something that will be explained

below), we will do the derivation to gain insights on this original model with no distortions applied. Note

that our training objective is to maximize (3.8), the conditional probability of observing the actual output

or target word wO (denote its index in the output layer as j∗ ) given the input context word wI with regard

to the weights. In other words, we want to maximize the conditional probability of the word “uncertainty"

given its context word, say “economy", with regards to the weights. If these two words, tend to appear closer

in the text, this resulting conditional probability will be higher. This maximization problem can written as

maxp(wO|wI) = max(yj∗) = max(logyj∗) = uj∗ − log
∑

V j′ = 1exp(u′j) := −E (3.9)

where E = logp(wO|wI) is our loss function (we ultimately want to minimize E), and j∗ is the index of

the actual output word in the output layer.27 Let us now derive the update equation of the weights between

hidden and output layers. Taking the derivative of E with regard to j-th unit’s net input uj , we obtain:

∂E

∂uj
= yj − tt := ej (3.10)

where tj = 1(j = j∗), i.e., tj will only be 1 when the j-th unit is the actual output word, otherwise

tj = 0. Note that this derivative is simply the prediction error ej of the output layer. We follow by taking

the derivative on w = ij in order to obtain the gradient on the hidden→output weights.

∂E

∂w′ij
=
∂E

∂u
· ∂uj
∂wij

= ej · hi (3.11)

Therefore, using stochastic gradient descent, we obtain the weight updating equation for the hidden→output

weights:

w′ij
(new) = w′ij

(old) − η · ej · hi· (3.12)

or
27Take into account that this loss function can also be understood as a special case of the cross-entropy measurement between

two probabilistic distributions.
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w′ij
(new) = w′ij

(old) − η · ej · hforj = 1, 2, ..., V. (3.13)

where η > 0 represents the learning rate, ej = yjtj , and hi is the i-th unit in the hidden layer; and

v′wj is the output vector of wj. Note that this updated expression implies that the algorithm first goes

through every possible word in the vocabulary, it then checks its output probability yj , and then compares

yj with its expected output tj (either 0 or 1). If yj > tj (meaning it is “overestimating”), then we subtract

a proportion of the hidden vector h (i.e., vwI ) from v′wj , thus moving v′wj farther away from vwI ; if yj < tj

(“underestimating”, which is true only if tj = 1, i.e., wj = wO) we add some h to v′w0, thus making v′w0

closer28 to vwI . If yj is very close to tj , then according to the update equation, very little change will be

made to the weights. Note, again, that vw (input vector) and v′w (output vector) are two different vector

representations of the word w.

Update equation for input→hidden weights

Having obtained the updated equations for W ′, we can now move on to W . Along this line, we take the

derivative of E with respect the output of the hidden layer, obtaining the following expression:

∂E

∂hi
=

V∑
j=1

∂E

∂ui

∂uj
∂hi

=

V∑
j=1

ej · w′ij := EHi (3.14)

where hi is the output of the i-th unit of the hidden layer; uj is defined in (3.6), the net input of the

j-th unit in the output layer; and ej = yjtj is the prediction error of the j-th word in the output layer. EH,

a N -dimensional vector, is the sum of the output vectors of all words in the vocabulary weighted by their

prediction error. Next, we will take the derivative of E with respect to the different elements ofW . But first,

recall that the hidden layer performs a linear computation on the values from the input layer and therefore

expanding the vector notation in (3.5) we get:

hi =

V∑
k=1

xk · wki (3.15)

When we take the derivative of E with regard to each element of W , we obtain the following:

∂E

∂wki
=
∂E

∂hi
· ∂hi
∂wki

= EHi · xk (3.16)

The previous equation is equivalent to the tensor product of x and EH, i.e.,
28Here when I say “closer” or “farther”, we mean using the inner product instead of Euclidean as the distance measurement.
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∂E

∂W
= x⊗ EH = xEHT (3.17)

from which we obtain a V ×N matrix. Since only one component of x is non-zero, only one row of ∂E
∂W

is non-zero, and the value of that row is xEHT , an N -dim vector. We obtain the updated equation of W as:

v(new)
w I = v(old)

wI
− ηEHT (3.18)

where vwI is a row of W , the “input vector” of the only context word and therefore the only row of W

whose derivative is non-zero. All the other rows of W will remain unchanged after this iteration because

their derivatives are zero. More intuitively, given that the vector EH is the sum of the output vectors of all

words in the vocabulary weighted by their prediction error (ej = yjtj), Equation 3.18 could be understood

as adding a portion of every output vector in vocabulary to the input vector of the context word. If, in

the output layer the probability of a word wj being the output word is overestimated (yj > tj), then the

input vector of the context word wI will tend to move farther away from the output vector of wj ; conversely

if the probability of wj being the output word is underestimated (yj < tj), then the input vector wI will

tend to move closer to the output vector of wj . On the contrary, if the probability of wj is fairly accurately

predicted, then it will have little effect on the movement of the input vector of wI . The movement of the

input vector of wI is therefore determined by the prediction error of all vectors in the vocabulary; the larger

the prediction error, the more significant effects a word will exert on the movement on the input vector of

the context word.

As we iteratively update the model parameters by going through context-target word pairs generated

from a training corpus, the effects on the vectors will accumulate. We can imagine that the output vector

of a word w is “dragged” back-and-forth by the input vectors of w’s co-occurring neighbors, as if there are

physical strings between the vector of w and the vectors of its neighbors. Similarly, an input vector can

also be considered as being dragged by many output vectors. This interpretation resembles gravity, or force-

directed graph layout. Along this line of reasoning, the equilibrium length of each imaginary string is related

to the strength of co-occurrence between the associated pair of words as well as the learning rate. Only after

many iterations, the relative positions of the input and output vectors will stabilize.

Multi-word context

Finally, lets consider the CBOW model with a multi-word context setting which is represented in Figure

3.19. In this set up, when computing the hidden layer output, instead of directly copying the input vector
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Figure 3.19: The CBOW model with several words in the context

Source: Rong (2014)

of the input context word, the CBOW model takes the average of the vectors of the input context words. It

then uses the product of the input→hidden weight matrix and the average vector as the output.

h =
1

C
W T (x1 + x2 + · · ·+ xC) (3.19)

h =
1

C
(vw1 + xw2 + · · ·+ xwC )T (3.20)

where C is the number of words in the context, w1, ··, wC are the words in the context, and vw is the

input vector of a word w. The loss function for this multi-word context is therefore:

E = −logp(wO|wI,1, · · ·, wI,C) (3.21)

= uj∗ + log
V∑
j′=1

exp(u′j) (3.22)

= v′wTO · h+ log
V∑
j′=1

exp(v′wj · h) (3.23)

which closely resembles the objective of the one-word-context model (3.9) except that now h is different,
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as defined in (3.20) instead of (3.5). Moreover, the updated equation for the hidden→output weights remains

the same as that for the one-word-context model (3.13):

v′w
(new)
j = v′w

(old)
j − η · ej · h for j = 1, 2, · · ·, V (3.24)

Finally, we need to apply this to every element of the hidden→output weight matrix for each training

instance. The update equation for input→hidden weights is similar to (3.18), except that now we need to

apply the following equation for every word wI,c in the context:

v′w
(new)
I,c = v′w

(old)
I,c −

1

C
· η · EHT for c = 1, 2, · · ·, C (3.25)

where wI,c is the input vector of the c-th word in the input context; η is a positive learning rate; and EH

= ∂E
∂hi

is given by (3.14). The intuitive understanding of this update equation is the same as that for (3.18).
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Chapter 4

Causal inference between

cryptocurrency narratives and prices:

evidence from a complex dynamic

ecosystem

4.1 Introduction

In the previous chapters, we have analyzed how press news can help to build an uncertainty index in a more

efficient manner. We have also shown the impact that economic uncertainty has on the overall economy

through its effects on private investment. Furthermore, we have been able to distinguish between differ-

ent drivers of economic uncertainty in some European countries, and their relationship with investment.

However, it may also be the case that the way and the intensity with which the press covers some specific

economic issues triggers the very uncertainty it was meant just to reflect. In this second case, the direction

of causality is reversed: instead of the occurrence of some unexpected factor being reflected in a sudden spike

of press news (something that, as we have seen, helps to construct the corresponding uncertainty index), now

the appearance of an unusual press coverage of some given economic issue, and the way it is presented, is

the factor behind an increase in economic uncertainty. Here, then, the causality goes the other way around:

from the press coverage to economic uncertainty.

Bitcoin, and cryptocurrencies in general, can be a very good illustrative example. The appearance of

Bitcoin and its evolution is a fairly recent economic phenomenon. The press in general, and the economic
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press in particular, has certainly reacted to it by covering widely its evolution and acceptance rates. It is

of course to be expected that the sharp and sudden changes in Bitcoin prices will attract the attention of

the media. But, to what extent are those changes in prices caused by the very way the press is covering

the phenomenon? To what extent is the importance given to it in the press (for example, by the number

of articles) and, much more relevant, the way the issue is presented (in terms of the sentiment surrounding

it), the really important factor in explaining these price changes? The intuition is that the causality runs

both ways: sharp changes in prices explain the upsurge in media coverage of the phenomenon, but the way

the media covers the issue also explains this same change in prices. Needless to say, these abrupt changes in

cryptocurrency prices are not only a consequence as well of economic uncertainty, but also can be one of its

drivers. The way in which the press covers a given issue (Bitcoins) may influence its economic performance

(Bitcoin prices) may seem plausible. To prove it rigorously and in a convincing manner, however, is a much

more demanding task.

The purpose of this chapter is, precisely, to explore this reverse causality: i.e., to what extent the way and

the intensity with which the press covers some economic issues may be one of the reasons for its economic

performance. This is something that can easily be connected to economic uncertainty: to what extent is

economic uncertainty not only reflected in media coverage, but is also caused by the way the media covers

some specific economic issues? Of course, to analyse this, one needs to enter the new and stimulating field

of narrative economics.

The chapter is then structured as follows: section 4.2 presents a brief review of the major items con-

stituting the field of Narrative Economics. Section 4.3 describes the algorithm and data used to uncover

the narratives relating to cryptocurrencies. Section 4.4 presents the empirical framework used to study the

causal effects of narratives and prices and gives a description of the data. Section 4.5 shows the empirical

findings, while Section 4.6 offers a conclusion.

4.2 A case study: Narrative Economics and Cryptocurrencies

4.2.1 Narrative Economics

Narrative Economics is a field that has recently experienced a remarkable surge of attention. Although dif-

ferent and well-known authors have been dealing with it in in several ways for some time, there is little doubt

that the seminal work of Shiller is to a great extent responsible for this. His presidential address delivered at
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the 129th annual meeting of the American Economic Association, in January 2017, and published afterwards

in the American Economic Review (Shiller (2017)) is one of the most cited articles in this field.

It is possible, however, to distinguish at least three different ways in which the analysis of economic

narratives has entered the study of economic issues. Probably the most intuitive way through which nar-

rative enters the economic field is by way of competing narratives trying to explain some given economic

phenomenon from different and diverging paradigmatic approaches. This is the case, for instance, of the

different approaches to the Industrial Revolution, as analyzed by Barca (2011). Stefanie Barca confronts in

her paper the conventional approach that frames the Industrial Revolution within a tale of human progress

and the overcoming of the limits posed by nature with an alternative socio-environmental perspective, that

stresses the social costs of the Industrial Revolution and the balance of power that it implied. The same could

be said of the work of Alexander (2011) about the market economy and the way it is presented. Alexander

compares the traditional way of describing the functioning of the “market economy” and its agents, deprived

of any moral meaning and centered on efficiency issues, with the approach adopted by what he calls the

New Economic Sociology. This new economic sociology tries to answer the question posed by Zelizer (1994):

“How does market deal with those aspects of society that are regulated by sentiment and value, not price”

Alexander (2011)). As part of the same methodological approach we could consider these works that, instead

of confronting theoretically-grounded divergent and usually opposite narratives, simply try to complete the

conventional ones with new and distant historical facts that seem, at first sight, non related to what the

analyst wants to explain. David (1985) applied this approach many years ago in attempting to explain the

endurance of the QWERTY keyboard against all odds: “It is sometimes not possible to uncover the logic (or

illogic) of the world around us except by understanding how it got that way. A path-dependent sequence of

economic changes is one of which important influences upon the eventual outcome can be exerted by tempo-

rally remote events, including happenings dominated by chance elements rather than systematic forces”. And,

he adds: “In such circumstances historical accidents can neither be ignored, nor neatly quarantined for the

purpose of economic analysis” (David (1985)).

In a more technical context, and closer to our approach in this thesis, several years ago narratives were

also used to build some indices that helped to analyze the impact of different economic policy measures.

C. D. Romer and D. H. Romer (2010), for instance, constructed an index of monetary policy based on the

analysis of the narratives of the Federal Open Market Committee (FOMC) directives: know as the “narrative

approach”. Boschen and Mills (1995), a few years later, and using Romer and Romer index, together with

some others also based on this kind of narratives, proved their usefulness in the analysis of monetary policy.
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More recently, combining computational linguistics, topic modelling, and dictionary methods, Hansen and

McMahon (2016) analyze also the impact of FOMC communications on the economy by distinguishing those

statements that describe the state of the economy from those that capture the forward looking views of the

committee (how they see interest rates decisions in the future).

C. D. Romer and D. H. Romer (2010) developed a methodology based on narratives to solve the problem

of simultaneity in identification problems. A case in point was the one corresponding to the impacts of

tax cuts on GDP. The problem appeared when tax cuts were accompanied by other economic shocks that

also had an impact on GDP. To isolate the impact of tax cuts on GDP, C. D. Romer and D. H. Romer

(2010) analyzed the narratives that accompanied these tax cuts to be able to disentangle those that were

“endogenous” (a response to economic events) from those that could be considered as truly “exogenous” (a

new policy orientation). Cloyne (2013), for example, followed their methodology in studying the impact of

tax cuts in the United Kingdom.

The approach of Shiller is, however, somewhat different, and is the one we would like to explore. Instead

of comparing competing narratives or relying mostly on official sources to disentangle the characteristics of

different variables, he broadens the field of vision and focuses on the accompanying narratives that were

shaping public opinion during the period in which the economic phenomenon to be explained appeared.

In what follows, we will rely heavily on his paper. The main purpose of Narrative Economics in Shiller’s

approach is, then, to shed some new light on some particular economic events by looking at the different

stories that were told at the moment of their inception and appearance, and that are usually overlooked

by traditional historiography. As Shiller puts it: “By narrative economics I mean the study of the spread

and dynamics of popular narratives, the stories, particularly those of human interest and emotion, and how

these change through time, to understand economic fluctuations.” (Shiller (2017)). Furthermore: “The field

of economics should be expanded to include serious quantitative study of changing popular narratives. To

my knowledge, there has been no controlled experiment to prove the importance of changing narratives in

causing economic fluctuations.” (Shiller (2017)). Shiller then goes to apply these narratives to explain some

very important economic and political events: the Depression of 1920-21, the Great Depression of the 1930s,

the Great Recession of 2007-2009, and the time right after the US 2016 presidential election, as well as

the surprising success of the Laffer Curve. The first difficulty we encounter when moving into this field is,

precisely, the very definition of its subject. In this sense, Shiller states the following:
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“I use the term narrative to mean a simple story or easily expressed explanation of events that many people

want to bring up in conversation or on news or social media because it can be used to stimulate the concerns

or emotions of others, and/or because it appears to advance self-interest. To be stimulating, it usually has

some human interest either direct or implied. As I (and many others) use the term, a narrative is a gem for

conversation, and may take the form of an extraordinary or heroic tale or even a joke. It is not generally a

researched story, and may have glaring holes, as in “urban legends.” The form of the narrative varies through

time and across tellings, but maintains a core contagious element, in the forms that are successful in spread-

ing.” (Shiller (2017))

As can be realized from this approach, the media in general, and the press in particular, plays the most

relevant role in the spreading of these narratives. Not only do they cover particular events or aspects of

the economy, but the sentiment with which these issues are presented also shapes the way popular opinion

accepts them as either positive or negative phenomena. And this fact is of great importance: “When in doubt

as to how to behave in an ambiguous situation, people may think back to narratives and adopt a role as if

acting in a play they have seen before. The narratives have the ability to produce social norms that partially

govern our activities, including our economic actions.” (Shiller (2017)). As Alexander had already stated,

“Emotionally laden meaning is an a priori to action: it provides the broad patterns within which particu-

lar decisions will be made”, whereas, on the other hand, “Economic actors, whether institutions, markets,

states, or individuals, engage in performances that project meanings” (Alexander (2011). The case we want

to analyse in this chapter is, precisely, a good example of this: how the sentiment with which the press cov-

ers different events about cryptocurrencies affects their prices. The path ahead, nevertheless, is a difficult one:

“Narrative economics, to the extent that it has ever been practiced by scholars, has had a poor reputation.

In part, it may be due to the fact that the relation between narratives and economic outcomes is likely to be

complex and time varying. The impact of narratives on the economy is regularly mentioned in journalistic

circles, but without the demands of academic rigor. The impact of journalistic accounts of narratives may

have been connected to aggressive forecasts which often proved wrong. But, the advent of big data and of better

algorithms of semantic search might bring more credibility to the field. Research in economics is already on

its way to finding better quantitative methods to understand the impact of narratives on the economy. Textual

search is a small but expanding area in economic research.” Shiller (2017).
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4.2.2 Cryptocurrency narratives

“The best examples now of irrational exuberance or speculative bubbles is bitcoin. And I think that has to do

with the motivating quality of the bitcoin story.” Robert Shiller, 05 Sept 2017.1

As previously stated, there is a growing acknowledgement that narratives have an impact on economic

activity (Akerlof and Snower (2016); and Shiller (2017)). ”Stories motivate and connect activities to deeply

felt values and needs. Narratives ’go viral’ and spread far, even worldwide, with economic impact” (Shiller

(2017)). Moreover, the relationship between news and asset prices is well established. Goh and Ederington

(1993) have already documented that negative news associated with deteriorating financial prospects have

an effect on stock returns. Nonetheless, regarding the effect of positive versus negative news, we find two

contradictory results. On the one hand, Bomfim (2003) has found that positive surprises affecting the mon-

etary policy target (news) tend to have a larger effect on volatility than do negative surprises. On the other

hand, Gande and Parsley (2005) found that, while sovereign spreads did not react to positive news (positive

ratings), they did react to negative ones.

Besides, there exists a certain amount of research that studies the price dynamics of cryptocurrencies.

Empirical work on this topic dates back to Kristoufek (2013), who found a strong link between queries on

Google Trends or Wikipedia and Bitcoin prices. Additionally, Garcia et al. (2014) have identified two positive

feedback loops that led to Bitcoin price bubbles: one driven by word of mouth and the other by new Bitcoin

adopters. Yelowitz and Wilson (2015) have collected Google Trends data to reveal four possible Bitcoin

user profiles: computer programming enthusiasts, speculative investors, libertarians and criminals. Phillips

and Gorse (2018) document the relationship between Bitcoin price changes and topical discussions on social

media. Lastly, Begušić et al. (2018) point out that Bitcoin returns, in addition to being more volatile, also

exhibit heavier tails than do stocks.

It is therefore debatable as to what extent narratives are responsible for the recent exceptional volatility

in cryptocurrency prices. For example, Bitcoin prices went from $2,000 in July 2017 to almost $20,000 by

December of the same year before falling to $6,000 in April 2018. While some individuals see Bitcoin as a fad

and an example of irrational exuberance or speculative bubble (Detrixhe (2017)), a much more enthusiastic

view also co-exists; that Bitcoin represents fundamental transformation of money where transactions are not

controlled by any estate (Antonopoulos (2016)). In addition, technological innovations behind cryptocurren-

cies (such as the blockchain) have also generated excitement.
1See Detrixhe (2017)
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4.2.3 Methodologies

To obtain the narratives related to cryptocurrencies, I use the machine learning algorithm called Latent

Dirichlet Allocation (LDA) and described in Chapter 1. I run the LDA algorithm for all news articles that

describe cryptocurrencies (those containing any form of the terms bitcoin or cryptocurrency) from worldwide

business press: The Financial Times, The Economist, The Economic Times, Business Insider and The Wall

Street Journal. The total number of news articles associated with any form of these two terms from March

2013 to December 2018 was 4,503. Consistent with previous studies, I filter the textual data by removing

stopwords (e.g. me, or, the, a) and uni-characters, convert all words into lower cases, and transform each

word into its root (stemming). In this way, the LDA model reveals ten topics in this corpus.2

Table 4.1 shows all the 10 narratives revealed by the LDA. The two more mentioned of all correspond

to narratives related to financial investment, in which we find words such as trade, investor, market, asset

or ico (Initial Coin Offering), stock, bond, investor, or sale. These two narratives add up to 29.2% of all

cryptocurrency-related news. The second-largest narrative, producing 12.5% of all cryptocurrency-related

news, describes the technical or newly established business that has been formed around the technology. In

this case, words such as blockchain, technolog, startup, venture (most likely referring to venture capital) make

up this topic. The next two narratives describe regulatory themes. The first of these is orientated to political

legislation: rule, administr, polici or congress are among the most representative words here while the second

describes banking regulation; words such regul, launder, trade, rule or tax frame this narrative. They will be

together and therefore making a single one. Finally, we find two security-crime orientated narratives: hacker,

ransomwar, secur, breach, cybersecur, arrest, crimin or lawyer being among the words characterising these

topics. Once again, they will be treated as a single one. It is worth noting that there are three additional

narratives that were not selected since they do not fall in any of the four categories of interest.3

2Note that the log-likelihood approach (Griffiths and Steyvers (2004)) retrieved 40 as the optimal number of topics. I decided
to go for 10 topics for two reasons: firstly, interpretability of the topics (which depends on the words that compose them) was
not higher when using 40 topics than 10; and, secondly, given that I am interested in broader narratives it is more convenient
to use fewer topics (as opposed to using many topics that I then group into common themes), as long as interpretability is not
an issue.

3Although the narrative assets might resemblance investment, it seems more speculative as words such say, like or even are
among the selected words.



Chapter 4. Causal inference between cryptocurrency narratives and prices: evidence from a complex

dynamic ecosystem
132

T
a
bl

e
4.

1:
C
ry
pt
oc
ur
re
nc
y
N
ar
ra
ti
ve
s

C
at

eg
or

y
L
ab

el
%

S
T
op

W
or

ds
L
D

A

In
ve
st
m
en
t
I

16
.4

0.
07

cr
yp
to
cu
rr
,
fu
nd

,
tr
ad
e,

in
ve
st
or
,
m
ar
ke
t,
se
c,

in
ve
st
,
ex
ch
an

g,
off

er
,

F
in

an
ci

al
co
in
,
et
f,
to
ke
n,

bi
tc
oi
n,

cr
yp
to
,
fu
tu
r,

as
se
t,
fir
m
,
ic
o,

ac
co
rd
,
et
he
re
um

In
ve

st
m

en
t

In
ve
st
m
en
t
II

12
.8

0.
07

st
oc
k,

bo
nd

,
m
ar
ke
t,
ye
ar
,
ra
te
,
ch
in
a,

qu
ar
te
r,

bi
lli
on

,
gr
ow

th
,

oi
l,
ex
pe
ct
,
ro
se
,
pr
ic
e,

in
de
x,

yi
el
d,

an
al
ys
t,
in
ve
st
or
,
pr
ofi

t,
sa
le
,
ga
in

T
ec

hn
ol

og
y

T
ec
hn

ol
og
y

12
.5

0.
09

bl
oc
kc
ha
in
,
te
ch
no

lo
g,

co
m
pa
ni
,
st
ur
tu
p,

ve
nt
ur
,
bu
si
,
pa
rt
ne
r,

us
e,

in
c,

bu
ild

,
nv
id
ia
,
fin

te
ch
,
w
or
k,

fir
m
,
de
ve
lo
p,

le
dg
er
,
eb
ay
,
te
ch
,
m
ill
io
n,

in
ve
st
,
si
lic
on

P
ol
it
.
R
eg
u.

12
.5

0.
07

tr
um

p,
pr
es
id
,
st
at
e,

el
ec
t,
po
lit
,
pa
ym

en
t,
go
ve
rn
,
de
m
oc
ra
t,
re
pu

bl
ic
an

,
ru
le
,

R
eg

ul
at

io
n

ad
m
in
is
tr
,
se
na

t,
po
lic
i,
vo
te
,
co
un

tr
i,
am

er
ic
an

,
w
as
hi
ng
to
n,

ob
am

a,
co
ng
re
ss

F
in
an

c.
R
eg
u.

12
.3

0.
06

bi
tc
oi
n,

cu
rr
en
c,

vi
rt
ua

l,
ba
nk
,
ex
ch
an

g,
pa
ym

en
t,
re
gu
l,
m
on

ey
,
tr
an

sa
ct
,
se
rv
ic
,

ce
nt
ra
l,
fin

an
ci
,
la
un

de
r,

ac
co
un

t,
w
it
hd
ra
w
,
tr
ad
e,

de
po
si
t,
ru
le
,
m
er
ch
an

t,
ta
x

Se
cu
ri
ty

7.
4

0.
05

at
ta
ck
,
in
di
a,

ha
ck
er
,
ra
ns
om

w
ar
,
co
m
pu

t,
ha
ck
,
in
di
an

,
cy
be
r,

se
cu
r,

da
ta
,
br
ea
ch
,

S
ec

ur
it
y

cy
be
rs
ec
ur
,
ra
ns
om

,
no

rt
h,

vi
ct
im

,
so
ft
w
ar
,
w
an

na
cr
i,
rs
,
sy
st
em

,
ta
rg
et
,
in
fe
ct

C
ri
m
e

5.
5

0.
03

m
t,
go
x,

si
lk
,
ul
br
ic
ht
,
pr
os
ec
ut
or
,
ro
ad
,
sh
re
m
,
ar
re
st
,
ka
rp
el
,
in
di
ct
,
al
le
ge
dl
i,

ch
ar
g,

co
ur
t,
ba
nk
ru
pc
i,
cr
im

in
,
en
fo
rc
,
lib
er
ti
,
to
ky
o,

la
w
ye
r,

co
m
pl
ai
nt
,
bi
tc
oi
n

O
th
er

to
pi
cs

A
ss
et
s

12
0.
09

bi
tc
oi
n,

go
ld
,
va
lu
,
lik
e,

bu
bb
l,
m
on

ey
,
m
in
e,

m
in
er
,
ev
en
,
sa
y,

cu
rr
en
c,

ti
m
e

C
or
po

ra
ti
on

s
6.
2

0.
1

ph
on

e,
fa
ce
bo
ok
,
go
og
l,
w
ils
on

,
vi
de
o,

te
sl
a,

m
us
k,

ap
p,

tw
it
te
r,

w
or
d,

pr
iv
ac
i

U
nk

no
w
n

2.
5

0.
09

cr
ai
g,

di
m
on

d,
je
w
el
ri
,
ch
ri
st
i,
di
e,

ge
m
,
st
ud

en
t,
in
co
rr
ec
tli
,
co
lle
ct
or
,
ar
t,
ir
a

N
ot

es
:
M
os
t
re
pr
es
en
ta
ti
ve

w
or
ds

fo
r
ea
ch

to
pi
c
di
sp
la
y
by

th
e
LD

A
al
go
ri
th
m
,l
ab

el
lin

g
of

ea
ch

na
rr
at
iv
e,

Se
nt
im

en
t
sc
or
e
(S

),
an

d
pe

rc
en
ta
ge

of
ea
ch

na
rr
at
iv
e
on

th
e
co
rp
us

(%
).

In
di
vi
du

al
na

rr
at
iv
es

ar
e
gr
ou

pe
d
in
to

fo
ur

br
oa
de
r
ca
te
go
ri
es
.



Chapter 4. Causal inference between cryptocurrency narratives and prices: evidence from a complex

dynamic ecosystem
133

4.2.4 Sentiment Analysis

Words seem to have quite a role to play in economic analysis. Note, however, that words as we have been

using them so far do not say anything that indicates the sentiment within which the news have been framed.

This is important because the way the press coverage affects prices depends not only on the intensity of the

coverage itself (e.g. the number of articles), but also the way the news is presented: i.e., whether in a positive,

neutral or in a negative mood. As Shiller puts it: “There should be more serious efforts at collecting further

time series data on narratives, going beyond the passive collection of others’ words, towards experiments that

reveal meaning and psychological significance.” (Shiller (2017)). Because, as Alexander stresses: “. . .markets

response reflects a judgement about the moral qualities of those economic actors who wish to act in its name”

(Alexander (2011), p. 484). In this sense, and to cover this absence in a very preliminary and simple way, I

will rely on a new line of research that combines sentiment analysis with topic modelling to account for the

tone of the narratives (see Hansen and McMahon (2016), Saltzman and Yung (2018) or Larsen and Thorsrud

(2019).

Following Larsen and Thorsrud (2019), I build each narrative-sentiment time series in a few simple steps.

Firstly, I find the sentiment in each news-article using TextBlob, a publicly available library for natural lan-

guage processing developed by Loria (2018).4 TextBlob goes beyond simply counting negative vs. positive

words in an article by taking into account negation (e.g. not great will be rightly assessed as a negative

sentiment) and modifier words (e.g. very before bad will intensify the sentiment of bad). This tool retrieves

a measure between -1 (negative sentiment) and 1 (positive sentiment). Secondly, to correctly assess the

sentiment behind a particular topic, I match the overall article-sentiment score to the most representative

topic in the article.5

The average sentiment score across topics is displayed in the fourth column of Table 4.1. This score in

articles describing investment or technology (0.07 and 0.09, respectively) is slightly higher than the aver-

age sentiment score in articles reporting security issues (0.04). Note that TextBlob is a dictionary-based

approach, in the sense that it averages the sentiment score of words (called the polarity score) in a text.

For this reason, as the size of the text increases, the score will tend to stay around the zero score (and

not towards the extreme values -1 or 1). This is because larger texts will tend to discuss more diverse
4see https://textblob.readthedocs.io/en/dev/
5To illustrate this last step, imagine that we have a news-article with the following topic composition: 80% investment and

20% security. Let the overall sentiment of this article be very positive (e.g. it is describing huge gains of investors in the
cryptocurrency market). Since we want to match the overall sentiment of the article to the topic investment, we first classify
that article according to its most representative topic. If we do not do this, both topics (investment and security) will be
allocated a positive sentiment.

https://textblob.readthedocs.io/en/dev/
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topics while shorter texts will be more limited to few topics. Regarding the sentiment, longer texts may

mention positive sentiments towards one topic while negative sentiment towards other topics, making the

overall text neutral (see Amplayo, Lim, and Hwang (2019)). To illustrate this point with an example, con-

sider the following news-article from the The Wall Street Journal and published on the 24th of January 2017:

Under heightened scrutiny from regulators, China’s three largest bitcoin exchanges will seek to rein in

speculation in the virtual currency by charging trading fees. BTCC, Huobi and OKCoin plan to charge cus-

tomers 0.2% per transaction starting at noon Tuesday, each said on its website. All three said the change

aims to further curb market manipulation and extreme volatility. Central-bank officials started investigating

the exchanges this month, after allowing them to operate largely unregulated in recent years. Last week, reg-

ulators at the People’s Bank of China said the two exchanges in Beijing, Huobi and OKCoin,

had improperly engaged in margin financing and failed to impose controls to prevent money

laundering, while the central bank’s Shanghai branch separately said BTCC had gone beyond

its business scope by offering capital services. Margin financing involves lending money to investors

so they can increase bets. Analysts said authorities’ big worry is that people could use bitcoin to move money

out of China. The central bank has been trying to restrict capital outflows to help stabilize the value of the

Chinese yuan. The exchanges got together and said, ’Let’s do this,’ said Bobby Lee, chief executive officer of

BTCC. The officials had suggested that trading fees would alleviate some of their concerns, he said. Huobi

declined to comment on whether the action was coordinated. OKCoin wasn’t available to comment. China’s

three exchanges account for the majority of global bitcoin trading.

The overall sentiment score of this text is 0.0063 whereas that of the boldface text is -0.16. The score

of each word has been given by the Pattern module6 which uses a lexicon of a 100,000 known words and

their part-of-speech tag, along with rules for unknown words based on word suffix (e.g., -ly for an adverb)

and context (surrounding words). This approach is fast and although not always accurate given that many

words are ambiguous and hard to capture with simple rules, gave an overall accuracy of about 95% on a

corpus trained on the Wall Street Journal (Loria (2018)).

To go a bit deeper into the sentiment score retrieved by this tool, Figure 4.1 shows the “violin plots” of

the sentiment across topics. The sentiment of those news-articles describing technological innovations shows

the highest average sentiment level (the centred dot) while its tail is skewed towards the positive sentiment.

In this sense, Shiller already mentions the connection between market bubbles and technological innovation:
6See https://www.clips.uantwerpen.be/pages/pattern-enparser

https://www.clips.uantwerpen.be/pages/pattern-en##parser
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Figure 4.1: Sentiment visualization
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“In a stock market bubble, these might be stories of the companies with glamorous new technology and of the

people who created the technology.” (Shiller (2017)). Although the sentiment distribution of the news-articles

that describe investment is bit higher on average than for other sentiments, its tail still leans towards the

negative spectrum. This is also the case with the sentiment around the security narrative.

Now, in order to find the link between the way the press covers the news about cryptocurrencies and

their prices, we need to analyse the evolution over time of both of them. To obtain the time series data of

the press coverage, I sum each topic proportion (augmented by its sentiment) per month. This retrieves a

measure of the intensity of each topic and its sentiment over time. Finally, given that the total number of

articles on the online platform is not constant over time, I divide each time series by the total number of
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articles containing the word today for each month (as the proxy for the total number of articles: as explained

in Chapter 1). Note that I merge the two narratives describing investment into one by summing the final

time series (after having accounted for the sentiment and the overall number of news articles). The same is

done for the two narratives relating to regulation.

4.3 Methodology and data description

4.3.1 Convergent Cross Mapping

Most techniques for causal inference in time series fall into two broad categories: those related to trans-

fer entropy and those related to Granger causality. Convergent Cross Mapping belongs to the first group,

transfer entropy, and should be used to identify causal interactions between time series in situations where

Granger causality is known to be invalid: i.e. in dynamic systems that are “nonseparable”. Nonseparable

systems occur when variables are coupled and cannot be analysed separately: i.e. a given variable could not

have existed without the other or its dynamics are strongly attached to another variable. This is the case

of news articles describing the cryptocurrency phenomena and cryptocurrency prices where the first would

have not existed if there were no cryptocurrencies in the first place. This is not the case of the narratives

studied in the previous chapter and investment dynamics because they are independent of each other (sepa-

rable systems). For example, news regarding Brexit would have taken place independently of firm investment.

In the fewest possible words, transfer entropy models account for causal interactions between two time

series by measuring if the history of one time series can be used to “map” the history of another time series.

This “mapping” is done through state-space reconstructions (SSR): a non-linear technique which uses lagged

variables of a single time series to reconstruct an attractor (or shadow manifold) for the time series involved

in the system (see Packard et al. (1980) and Takens (1981)). The causality between two time series would

be measured based on the quality of the attractor or shadow manifold: how well the motion of the manifold

recovers the dynamics of the time series involved in the system.

To illustrate this, consider the canonical Lorenz system presented in Figure 4.2 which displays a cou-

pled dynamic system (or nonseparable system) formed by three differential equations: dX
dt = −σY + σX;

dY
dt = −XZ + ρX − Y ; and dZ

dt = XY − βZ. In this set up, each component depends on the state and

the dynamics of the other two components since they are formed by lagged information of the other two

variables. Moreover, M represents the manifold for the original system which consists of the set of the
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Figure 4.2: Lorenz System

Source: Sugihara, May, et al. (2012)

trajectories of the time series in the three dimensional space. That is, each point in the manifold represents

the values of the three time series in a given time. Moreover, Mx and My are the two shadow manifolds

built using lagged values of x and y respectively. The shape of the manifold (which resembles the wings of a

butterfly) is determined by the complexity of the interactions that form the system; e.g. non-linear dynamic

relationships. For example, the presence of positive correlation dynamics of two variables in a given period

of time while negative in a different period of time produce the two different wings of the manifold (the

negative slope of the left wing in manifoldM and the concurrent slope in the right wing). These interactions

tend to exist in complex, dynamic ecosystems. For example, in a predator–prey ecosystem, the increase

in the prey population will lead to an increase in the predator population for a given period of time, but

there will be a turning point where the increase in the predator population will lead to a drop in the prey

population. Therefore, whereas the interactions between the predator and prey populations were positive for

a given period of time (positive correlation), they will be negative for a consecutive time period (negative

relationship).

Each point in the manifold can be projected into a time series. Figure 4.3 illustrates how three time

series can be plotted as a shadow manifold. The second and third time series are just a displacement of

the first time series by an amount τ . Given that they belong to the same dynamic model, they will form

an attractor that spins around two points. Takens Theorem says that we should be able to use these three

time series as new coordinates and reconstruct a shadow version of the original manifold. Each point in the

three-dimensional reconstructed manifold can be thought of as a time segment with different points captur-

ing different segments in the history of variable X. The reconstructed manifold is then the collection of the

historical behaviour of X.
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Figure 4.3: Shadow Manifold projections to time series

Source: Sugihara, May, et al. (2012)

In addition, Takens theorem gives us a one-to-one mapping between the main manifold connecting all

three variables (M in Figure 4.2) and the reconstructed shadow manifolds Mx and My (constructed using

only the lags or variables X and Y respectively). In other words, the shadow manifolds Mx and My preserve

essential mathematical properties of the original system, such as the topology of the manifold. For example,

the points near Mx (the red dot in Figure 4.2) will correspond at some point to values that are close to My

(the green dot). More importantly, this one-to-one mapping between the original manifold and the recon-

structed shadow manifolds Mx and My allows us to recover states of the original dynamic system by using

lags of just a single time series (Sugihara, May, et al. (2012)). This characteristic is used to determine if two

time series variables belong to the same dynamic system and are thus causally related.

Finally, because Mx and My map one-to-one to the original manifold M , they also map one-to-one to

each other. This implies that the points that are nearby on the manifold My correspond to points that are

also nearby on Mx (e.g. they are in the same wing of the manifold). We can demonstrate this principle by

finding the nearest neighbours in My and using their time indices to find the corresponding points in Mx.

These points will be nearest neighbours on Mx only if the variables x and y belong to the same dynamic

system. Thus, we can use the nearby points on My to identify the nearby points on Mx. This allows us

to use the historical record of Y to estimate the states of X and vice-versa. This method is often referred

to as cross-mapping. Moreover, with a longer time series the reconstructed manifolds are denser, nearest

neighbours are closer, and the cross map estimates increase in precision. The increase in precision, often

referred as convergent, is the practical criterion for detecting causation between two time series.7 Therefore,
7To see the graphical illustration of the projections see: https://www.youtube.com/watch?v=6i57udsPKmst=73s

https://www.youtube.com/watch?v=6i57udsPKms&t=73s
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for two time series to be CCM-causally linked, two conditions need to be satisfied:

Cross-mapping:

If the time series data from each variable, say x and y, can be used to obtain the shadow manifolds Mx

and My that are approximations to the true attractor. In other words, these two variables are connected

because they are part of the same dynamical system given that they both represent a dimension in the

state-space.

Convergence:

If x causes y, then the estimate of x obtained from My should improve as the number of points sampled

from My becomes larger (larger libray size). This is because the library of samples will become a more

accurate representation of the attractor, and the nearest neighbour points will be closer and closer to yt.

In a bit more detail, the CCM algorithm may be written in terms of five steps (McCracken and Weigel

(2014)):

1. Create a Shadow Manifold X

Given an embedding dimension E (number of lags), the shadow manifold of X, called X , is created

by associating an E-dimensional vector (also called a delay vector) to each point Xt in X, i.e., Xt =

Xt, Xtτ , Xt2τ , ..., Xt(E1)τ . The first such vector is created at t = 1 + (E1)τ and the last is at t = L where L

is the number of points in the time series (also called the library length).

2. Find the Nearest Neighbors

The minimum number of points required for a bounding simplex in an E-dimensional space is E + 1. Thus,

the set of E + 1 nearest neighbors must be found for each shadow manifold X̃. For each X̃, the nearest

neighbor search results in a set of distances that are ordered by closeness d1, d2, ..., dE+1 and an associated

set of times t̃1, t̃2, ..., t̃E+1. The distances from X̃t are:

di = D(X̃t, X̃t̃i
) (4.1)

where D(X̃t, X̃t̃i
) is the Eucledian distance between vectors X̃t and X̃t̃i

.
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3. Create Weights

Each of the E+1 nearest neighbors are to be used to compute an associate weight. These weights are defined

as:

wi =
ui
N

(4.2)

where ui = e−di/d1 and the normalisation factor is N =
∑E+1

j=1 ui.

4. Find Y |X̃

A point Yt in Y is estimated using the weights calculated above. This estimate is:

Y |X̃ =

E+1∑
i=1

wiYt̃i (4.3)

5. Compute the Correlation

The CCM correlation is the squared Pearson correlation coefficient between the original time series Y and

an estimate of Y made using its convergent cross-mapping with X, and labeled as Y |X̃:

CY X = [ρ(Y, Y |X̃)]2 (4.4)

Note that the CCM algorithm depends on the embedding dimension E and the lag time step τ . A

dependence on E and τ is a feature of most state space reconstruction (SSR) methods, so an E and τ

dependence is not unexpected. How we recover E and τ will be explained in the following section.

4.3.2 Data pre-processing and description

I proxy cryptocurrency prices according to the exchange rate between the US dollar and Bitcoin (using a

natural logarithmic scale) which is obtained from Coindesk.8 As the leader of cryptocurrencies, Bitcoin

prices strongly correlate with other major cryptocurrency prices and, most importantly, have been available

for a longer period of time. This allows me to stretch the time period as much as possible.

Following the recommendations of C.-W. Chang, Ushio, and Hsieh (2017), I pre-process the time series

data in two steps. Firstly, I remove any linear trends of each time series (prices and narratives) using the
8See www.coindesk.com.

www.coindesk.com
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conventional regression method.9 Secondly, each time series is normalised to zero mean and unit variance; in

this way I ensure that all variables have the same level of magnitude for comparison and avoid constructing

a distorted state-space. It is worth noting that the frequency of the time series is monthly. I have chosen

to use monthly data as there are a lot of missing observations in the narratives; that is, articles concerning

cryptocurrencies were not written on daily basis.10 This is especially the case in data from the first months

of Bitcoin existence. Any vector containing missing data is also omitted during computation. Therefore,

missing data implies an unavoidably negative influence on the performance of CCM (C.-W. Chang, Ushio,

and Hsieh (2017). In addition, I find no periodicity nor a cyclical component in the time series. This is

important, since failing to account for strong seasonality when it exists will produce distortions in the man-

ifolds (see Deyle et al. (2016)).

Figure 4.4: Narratives and prices
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Notes: Solid blue lines correspond to the four narratives unveiled by the LDA algorithm (the left-hand legend)
while red dotted line correspond to the natural logarithm of Bitcoin prices (the right-hand legend). All of the series
are linearly detrended using regressions and the outcome is standardise to mean 0 and unit standard deviation.

Figure 4.4 shows the evolution of monthly prices and narratives from April 2013 to December 2018.

Overall, we can see a co-movement between the evolution of these narratives and prices. This is especially

the case during the two sharpest rises in Bitcoin prices (in early 2014 and end of 2017). However, an im-

portant distinction arises: while investment and technological narratives display the highest peak during the
9Alternatively, one could take the first differences of each time series to guarantee stationarity. However, taking the first

differences would remove information relating to any long-run relationship between the series (Brooks (2019)). For this reason,
I prefer to use a regression approach in orded to guarantee stationarity.

10Note that only 62% of the days in our sample contain articles written about cryptocurrencies.
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second sharpest rise in prices (at the end of 2018, when prices almost reached $20,000) this is not the case

for the two most dismissive narratives (Regulation and Security). We observe that the Security narrative

barely shows any increases during this time; however, it does when Bitcoin prices stagnate. The biggest

spike for the Security narrative occurs during February 2014; this was when Mt. Gox, the world-leading

Bitcoin exchange at the time, announced that 85,000 Bitcoin belonging to customers were missing. During

this month, Mt Gox suspended trading, closed its exchange service, and filed for bankruptcy protection from

its creditors.11 Given the legal implications, it is not surprising to see a spike in the Regulation narrative

also during this month. The second-biggest peak in the regulation narrative occurred in December 2017,

when Bitcoin futures were launched thanks to the Gain regulatory approval. The second-biggest spike in

the security narrative takes place in May 2017, when the exchange Binance reported that 7,000 Bitcoin were

stolen; this revelation caused Bitcoin prices to drop by around 5%.12

Before formally testing any pair-wise causal relationships via CCM, I briefly present the optimal em-

bedding dimensions of the variables used for the manifold reconstruction. The embedding dimensions are

equivalent to the lags used for the reconstruction of the manifold. Failing to find the optimal number of

embeddings will result in poorly reconstructed states. If the number of embeddings falls short, reconstructed

states will overlap, causing it to appear to be the same even though they are not (Ye et al. (2016)). This, in

turn, will result in poor forecast performance because the system behaviour cannot be uniquely determined

in the reconstruction. Therefore, to find the optimal number of embedding dimensions, it is common to rely

on the prediction skill methodology (Ye et al. (2016)). Following Sugihara and May (1990), I use the Simplex

Projection which uses the nearest-neighbor forecasting method.13

Using these optimal embedding dimensions, we can identify any nonlinearity in the system. I do so by

using the S-maps function14 which applies the nonlinear tuning parameter Θ to determine the strength of the

weighting when fitting the local linear map. As can be seen in Panel B of Figure 4.5, there is an initial rise in

the forecast skill when Θ > 0 and a consequently drop. This is indicative of nonlinear dynamics as allowing

the local linear map to vary in state-space produces a better description of state-dependent behaviour (Ye

et al. (2016)).

11see https://www.ft.com/content/6636e0e8-a06e-11e3-a72c-00144feab7deaxzz2v8w0y2mI
12See https://www.coindesk.com/hackers-steal-40-7-million-in-bitcoin-from-crypto-exchange-binance
13To identify the optimal embedding dimension E for each standardized time series, I use the function simplex() Ye et al.

(2016) As can be seen in Panel A of Figure 4.5, the optimal number of embeddings varies across time series, suggesting that
the dynamics of the system might be high dimensional (Ye et al. (2016)).

14See s_map() function of the rEDM library (Ye et al. (2016)).

https://www.ft.com/content/6636e0e8-a06e-11e3-a72c-00144feab7de##axzz2v8w0y2mI
https://www.coindesk.com/hackers-steal-40-7-million-in-bitcoin-from-crypto-exchange-binance
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Figure 4.5: Optimal embedding dimension and nonlinearities as a function of forecast skill
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4.4 Empirical results

4.4.1 Baseline results

Figure 4.6 shows the results when applying CCM to Bitcoin prices and different narratives. Overall we observe

bi-directional causal relationships between narratives and cryptocurrency prices. That is, price dynamics in-

fluence the propagation of news-articles describing the cryptocurrency phenomenon while simultaneously,

narratives influence price dynamics. However, the strength of causal relationships depends strongly on the

narrative. As such, results suggest that cryptocurrency prices promote news characterizing investment and

regulation while not promoting those describing technology or security issues. This can be explained by

the fact that price changes directly affect investment, at the same time putting pressure on policymakers

to adopt new regulations. For example, increases in prices will signal higher adoption levels, as a result of

which regulatory institutions might be more prone to acting.

We also observe that the investment narrative affects price dynamics, although the strength of this effect

is lower than that from prices to narratives: as the library size increases, so does the cross-mapping skill

(the property of convergence); however, values at the end of the library size are further from 1 than in the

opposite direction of the causality. This seems to indicate that the press acts as a signal booster of events

related to investments, that is, it reacts to price dynamics by describing the investment side. This increase
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in investment-related news will auspicious further price changes. In addition, we also perceive a causal

effect from the regulation narrative to prices. This is not surprising, since Kristoufek (2015) has already

documented that regulation from China has had a negative impact on prices. Regarding the causal effects

between prices and the technological or security narrative, the results are hard to interpret. The technolog-

ical narrative seems to affect prices more than the other way around,15 but values for the cross-map skill

remain very low. Finally, prices do not seem to affect the security narrative (i.e., there is no property of

convergence), while the results the other way around (the effect of the security narrative on prices) might be

not statistically significant (with low values in the cross-map skill). For this reason, we need to test whether

these results are statistically significant.

Figure 4.6: Convergent Cross Mapping results between narratives and Bitcoin prices. Corre-
lation coefficient (y-axes) as a function of the library size (x-axes).
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Notes: Discontinuous lines represent two standard deviations. In the conventional labelling of CCM ’prices
cross-map Topics’ is interpreted as ’Topic causes prices’.

15In both cases we observe convergence and a stronger causal link from narratives to prices than the other way around.
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Endorsed by Ye et al. (2016), I use the randomisation tests with a surrogate time series to assess whether

or not these causal effects are significant. This test compares the output produced by the CCM (cross map

skill as a function of the library size) for the actual model and an alternative model generated through a

surrogate time series under different null models (see Figure 4.7).16 Confirming my suspicions, I observe

weak significance in the causal link between the technological narrative and prices at the 90% confidence

level. This is because the cross-map skill of the actual model is fairly close to that produced by the surrogate

one for different library sizes. The same occurs for the security narrative.

Figure 4.7: Test of significance of the baseline results
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Notes: To test for the significance of cross map effects, I use randomization tests with surrogate time series.

16In order to know whether the recovered information about X is unique to the real data rather than just a statistical property
of Y we generate surrogates of Y. We then compute cross mapping from surrogates of Y to the actual X from the null distribution
of multiple surrogates to pull the 90% quantile for testing significance.
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4.4.2 Daily Observations

Figure 4.8: Convergent Cross Mapping results between narratives and Bitcoin prices. Corre-
lation coefficient (y-axes) as a function of the library size (x-axes). Daily observations.
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Notes:These figures show the analysis using daily observations. For those days where there is no topics discussed in
the press about the cryptocurrencies, the value is 0. Discontinuous lines represent two standard deviations. In the
conventional labelling of CCM ’prices cross-map Topics’ is interpreted as ’Topic causes prices’.

In this subsection we consider the same analysis but using daily observations. Recall that our preferred

specification employs monthly observations due to the concerns that missing data, specifically at the begin-

ning of the sample, could distort the reconstruction of the manifold. To deal with none available data we will

use the value 0 in all days where we have no observations in the narratives (topics discussed in the press).

Moreover, we use the same technique as in section 4.3.2. to calculate the optimal embedding dimensions of

the shadow manifold.

As can be seen in Figure 4.8 there is a bidirectional causal link between financial news and cryptocur-

rency prices. Just as when using monthly observations, the causality runs much stronger from cryptocurrency

prices to narratives than vice versa. This is also the case with the technological narrative, albeit now the

causal link is much weaker. Interestingly, daily news about regulatory changes seem to cause cryptocurrency

prices movements, whereas this is not so the other way around (no causal link from cryptocurrency prices to
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regulation news). This contrast the results obtained when employing monthly data; here there was a causal

link running from prices to regulatory news. Our interpretation here is that when prices oscillate heavily,

regulators are more prone to act by introducing new regulations. For this reason, there is a causal link at

the monthly interval running from prices to regulatory news. Nonetheless, this process might not happen

contemporaneously and that is why at the daily frequency we find no such direction of causality.

4.4.3 Granger causality test

A natural way to contrast these results is to use conventional methodologies such as the Granger causality

(GC) test. Although, as earlier explained, this test assumes the separability of the system and is, therefore,

not suited to complex dynamical ecosystems, it is worth comparing the results from both methodologies.

Given that the GC test is very sensitive to the number of lags chosen, I present results for 3, 6, and 12

lags. As can be seen in Table 4.2, results retrieved by the pairwise GC tests slightly resemble those of CCM.

The only narrative that shows to Granger-cause prices is the investment narrative. However, this test does

not acknowledge that prices cause narratives relating to investment. While prices do Granger-cause the

regulation narrative, no causality is shown the other way around. Lastly, and perhaps more surprisingly is

the fact that prices Granger-cause the security narrative.

Table 4.2: Granger causality tests

Direction of Investment Technology Regulation Security
causality Narrative Narrative Narrative Narrative

Prices (3 lags) ← 0.067 * 0.708 0.707 0.635
Prices (3 lags) → 0.226 0.064 * 0.001 *** 0.038 **

Prices (6 lags) ← 0.142 0.954 0.381 0.742
Prices (6 lags) → 0.271 0.199 0.003 *** 0.004 **

Prices (12 lags) ← 0.024 ** 0.763 0.539 0.13
Prices (12 lags) → 0.329 0.353 0.050 * 0.168

Notes: P-value reported. *** Significant at 1%; ** Significant at 5%; * significant at 10%. Monthly data used.
Prices refer to the natural logarithm of Bitcoin prices. In the lines in which the direction of causality is ←, the null
hypothesis is that the corresponding narrative does not Granger-causes Bitcoin prices. When the direction of
causality is →, it is the other way around.
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4.5 Conclusion

Establishing to what extent this narrative diversity has caused price changes has been the main endeavour of

this chapter. The relationship between narratives and prices ought to be driven by complex interactions. For

example, articles written in the media about a specific phenomenon will attract or detract new investors de-

pending on their content and tone (sentiment). In this case, the media might be a driver of prices. However,

the press might also play a booster role; it reacts to price changes by increasing the coverage of a given topic.

For this reason, one phenomenon cannot be understood without the other, indicating the non-separability

of the system. As such, one of the main challenges that arises when examining non-separable ecosystems is

how to find the tools that are best suited to their study.

To formally test the relationship between narratives and prices, I have used a relatively new causal in-

ference method suited to complex dynamical systems: Convergent Cross Mapping (CCM). CCM relies on

state-space reconstructions meaning that it directly recovers the dynamics of the system from the time series

data, without assuming any set of equations governing the system. CCM infers patterns and associations

from the data instead of using a set of parametric equations that might be impractical when the exact mech-

anisms are unknown or too complex to be characterized with existing datasets. The intuition behind these

kind of more flexible models is that if the dynamics of one variable can be forecasted by the time print of the

other, there is a causal relationship. Each variable can identify the state of the other in the same way that, for

example, information about past prey populations can be recovered from the predator time series, and vice

versa (Sugihara, May, et al. 2012). Unlike other conventional techniques like the Granger causality test, CCM

does not assume a pure stochastic system where variables are totally independent (separable) from each other.

To quantify the propagation of the main narratives, I have used an unsupervised machine- learning algo-

rithm on news-media articles that contain words related to cryptocurrencies. As it is already well known, the

algorithm is unsupervised in the sense that it infers the themes of a set of documents without any need for

labelling the articles or training the model before the articles are classified. With the help of this algorithm,

I unveil four distinctive narratives running from April 2013 to December 2018. These narratives describe

events related to investment, technology, crime, and regulation. While the first two narratives rise during

sharp increases in cryptocurrency prices, it is noted that the latter two do so during price stagnation.

Overall, I have found interesting bi-directional causal relationships between narratives and cryptocurrency

prices. That is, price dynamics influence the propagation of news articles describing the cryptocurrency phe-

nomenon while, simultaneously, narratives influence price dynamics. However, the strength of these causal
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relationships is not homogeneous among the various narratives. Results suggest that cryptocurrency prices

have the strongest causal impact on news relating to investment and regulation and the least impact on news

relating to technology or security issues. The former phenomenon can be explained by the fact that price

changes directly affect investment (either positively or negatively) while putting pressure on policymakers to

adopt new regulations. I also find that the investment narratives affect price dynamics, although the strength

of the relationship is lower than that from prices causing narratives. Therefore, the press seems to act as a

signal booster for events relating to investments as it reacts to price dynamics by describing the investment

side, leading to further auspicious changes in prices. A similar situation occurs with the Regulation narrative;

this is also found to influence prices, albeit at a lower degree than prices influencing the Regulation narrative.

In any case this has been, as I said, a preliminary and very simple way to introduce the analysis of

how narratives in the press are influenced and also influence cryptocurrency prices. Taking into account the

public opinion climate that prevailed at the moment when these cryptocurrencies appeared and developed, it

will be surely of the greatest interest to analyze in more depth the competing narratives accompanying this

development from a public moral point of view and its impact on their markets. To quote again Shiller and

Alexander: “. . . we have passed, by 2007, a euphoric speculative immoral period like the Roaring Twenties.”

(Shiller (2017)) and “There is a “new mentality” aimed at achieving people’s happiness’ in a manner that is

free from moral anxiety. Such moral hedonism leads to economic policies of spend, spend, spend”. (Alexander,

2011, p. 485).
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Chapter 5

Summary, research impact, and

future research

5.1 Overview

Throughout this thesis we have explored several channels in which narratives, embedded in the press media

have real economic consequences. To do so, we have used state-of-the-art text mining techniques that allow

for the extraction of relevant information from news articles. The first chapter described in detail the most

widely used algorithm throughout this thesis: the Latent Dirichlet Allocation. The main purpose of this algo-

rithm is to cluster text into different themes or topic. It does so in an unsupervised manner, meaning that the

algorithm infers the thematic information of any text without the need for pre-labelled data. Furthermore,

and in order to validate the usefulness of this algorithm in an economic context, the first chapter dedicates its

second part to replicate the economic policy uncertainty index developed by Baker, Bloom, and Davis (2016).

This former and innovative index was built from an extensive pool of manually classified data (around 12,000

news articles) and the resulting index was constructed from a list of keywords with classification power. Con-

trary to this approach, building the economic policy uncertainty index with unsupervised machine learning

models allows the researcher to endogenously extract the themes of any set of documents, and then select

the relevant topics. The topics of interest are those which describe any issue regarding economic policies

(monetary, fiscal, trade etc). The resulting index developed with unsupervised machine learning strongly

matches the original one: 0.94 correlation. To illustrate the potential of these techniques, the last part of

this chapter shows the relationship between economic policy uncertainty sub-indices and investment in the

UK. The results show a higher sensitivity of firm-level investment and uncertainty regarding fiscal, politi-

cal and entitlement programs across the 432 listed British firms analysed during the period Q1:2000-Q2:2017.
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In the future we would like to apply alternative models to the LDA in order to extract meaningful themes

regarding policy uncertainty. In particular, we think that it would be worth exploring Latent Semantic Al-

location model (LSA) and even more promising, the dynamic version of the LDA. The dynamic LDA can

be used to analyze the evolution of topics over time. It is therefore an extension of the standard LDA but

provides a qualitative window into the contents of a large document collection. With this technique one could

model explicitly the dynamics of the topic relating to policy uncertainty. For example, many of the topics

discussed throughout this thesis contain words which are strongly conditioned to a certain period of time,

e.g. “Berlusconi” or “Merkel” for political uncertainty in Italy and Germany respectively (Chapter 3). With

Dynamic LDA, these words would be representative of the topic (by having a higher weight) only in a given

period of time while words unconditional to time: e.g. “president”, “parliament” or “minister” would have

in principle a constant weight over time. Therefore with this methodology classify new articles describing

economic uncertainty into its category.

A further problem related to every news-based uncertainty indicator is that the different sources of un-

certainty/risk might not be displayed using the words “uncertainty” and “economy”. This might be because

the word “uncertainty” in the text might be related to a very specific issue rather than to all topics in the

text. For example, the LDA algorithm” may compose an article that contains the words “uncertainty” and

“economy” with “political”, “monetary” and “fiscal” themes. It could be the case, nonetheless, that a closer

look at the text will realize that uncertainty in the article only refers to one particular theme, say “political”

uncertainty, but not to the other two. One way to solve this problem could be to use semantic distances

retrieved by “word-embedding” models. This type of models can find how semantically close are two words,

e.g. “uncertainty” and “budget”, by modelling each word based on its surrounding words. In this line, only if

the word “uncertainty” appears near the word “budget”, these two words will be considered as semantically

close. Of course some modelling tuning is required for this technique to work, such as taking into account

the number of contextual words, the maximum distance between the current and predicted word within a

sentence, or the dimensionality of the word vectors.

The second chapter runs the Latent Dirichlet Allocation algorithm in the Scottish press to characterize

political uncertainty spilled by the Scottish referendum for independence (September 2014), and the Brexit

referendum (June 2016). After having built them, we first validate these referendum-related indices by com-

paring their similarities to the Google search queries “Scottish independence” and “Brexit”. In both cases,

the correlation is pretty high. We then examine the relationship of these indices with investment with the

help of a longitudinal panel of 2,589 Scottish firms over the period 2008-2017. We present evidence of greater
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sensitivity to these uncertainty indices for firms that are financially constrained or whose investment is to a

greater degree irreversible. Besides, we find that investment of the Scottish companies located on the border

with England have a stronger negative correlation with Scottish political uncertainty than those operating

in the rest of the country. Finally, and contrary to expectations, we notice that investment coming from

manufacturing companies appears less sensitive to political uncertainty.

Overall, we believe that this exercise proves the validity of the methodology being used. Nevertheless,

there are several ways that it could be improved. One way would be by contrasting these results with the

ones obtained from a different data set; i.e. Datastream (a global financial and macroeconomic data platform

providing data on worldwide companies). This would increase the number of time observations (which would

take place quarterly instead of yearly) but at the price of losing representativeness (as a lower number of

firms are available on Datastream). On the other hand, it would be interesting to assess the changes in our

indices, if any, when introducing additional press coverage: e.g. The Financial Times or The Times. Finally,

another category of firms that could be interesting to analyse with regards to the role of uncertainty on

investment would be the export-oriented enterprises. Although already tested with no relevant results found

(when using the proportion of abroad sales), we would like to dig into this issue a bit further.

The third chapter models economic policy uncertainty (EPU) on the four largest euro area countries,

proving that LDA can easily accommodate a wide range of languages, such as German, Italian, French and

Spanish. The uncertainty indices computed from January 2000 to May 2019 capture episodes of regulatory

change, trade tensions and financial stress. In an evaluation exercise, we use a structural vector autoregres-

sion model to study the relationship between different sources of uncertainty and investment in machinery

and equipment as a proxy for business investment in those countries. We document strong heterogeneity

and asymmetries in the relationship between investment and uncertainty across and within countries. For

example, while investment in France, Italy and Spain reacts strongly to political uncertainty shocks, in Ger-

many, investment is more sensitive to trade uncertainty shocks.

It would certainly be worthwhile extending our sample of countries to cover some European countries

outside the euro area, e.g. Poland would be a very good case in point. It would also be of interest to find

out whether the application of the Skip-gram model (a word embedding model) discovers more uncommon

words related to ‘economy’ and ‘uncertainty’ in any of the four languages covered, although we believe this

to be highly unlikely. What would be much more promising in our opinion would be to expand the analysis

in this chapter by including firm-level data. This would contrast the results obtained at the macro-level.
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Chapter 4 moves the analysis one step forward. After having relied on press articles to build several

indices of economic policy uncertainty, we explore now whether the way the press covers some specific issues

might have an impact on their economic performance. This chapter explores the causal relationship between

narratives propagated by the media and cryptocurrency prices. Firstly, the LDA algorithm unveils four

cryptocurrency-related narratives: investment, technological innovation, security breaches and regulation.

Secondly, after including their tone (sentiment) in the analysis, we apply the Convergent Cross Mapping

(CCM) model to assess the causal relationship between narratives and prices. The results suggest bidirec-

tional causal relationships between narratives concerning investment and regulation while a unidirectional

causal association exists in narratives that relate technology and security to prices. Therefore, this work

connects with the recent economic literature that relates consumer behaviour to narratives.

This is a first attempt that may improve substantially by doing further research in several directions.

First, it could be interesting to study more than the four topics dealt with in our exercise, although prelim-

inary work in this sense does not show any relevant change. Second, it could be worthwhile to apply the

word embedding models to unveil sentiment around cryptocurrencies as an alternative method to TextBlob.

Finally, we would really like to explore the influence that different stories about speculative behaviour, such

as the ‘casino-economy’, and financial profiteering, that were widespread at the launch of cryptocurrencies,

could help in understanding the prevailing narratives or the context in which narratives appeared.

5.2 Research impact

The first part of the first chapter, which was published in Economics Letters has received not only a sub-

stantial number of citations but also opened a new venue for extensive research. The US economic policy

uncertainty indices generated in this work have been used by several studies to deepen the understanding

of the role of uncertainty. For example, Husted, Rogers, and Sun (2019), used the monetary uncertainty

index to validate their monetary policy uncertainty index built in the standard way (using keywords). When

our monetary uncertainty index obtained from the unsupervised machine learning model is set in the same

structural VAR instead of theirs, they also observe a negative and statistically significant effect on invest-

ment. More recently, Xie (2020) used our aggregate EPU index to assess the effectiveneness of generating

uncertainty indices via a Wasserstein Index Generation model (WIG).
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Additionally, there have so far been two studies that use the exact methodology presented in Chapter

1 (Azqueta-Gavaldón (2017)) to assemble uncertainty indicators. This is the case of Crocco, Dizioli, and

Herrera (2019) and Echevarria (2019) which build economic policy uncertainty indices for Uruguay and Spain

respectively. This latter work showed that not only the recent illegal Catalonian referendum, but also Brexit

and the global trade tensions have contributed greatly to the Spanish economic policy uncertainty in the

recent years.

The second chapter has been summarized in several blogs including Agenda Publica, a news-paper blog

attached to El Pais (the most read news-paper in Spain) and which diffuses knowledge generated in univer-

sities and research centres. The summary, in Spanish, can be found in Azqueta-Gavaldon (2018).1

Lastly, the methods and results of the 3rd chapter have been used by the European Central Bank to

quantify the uncertainty generated by the recent trade tensions between the USA and China. Although the

specifics of this project cannot be discussed because of the confidentiality policy of the European Central

Bank, the Economic Bulletin Box published in August 2019 gives a glimpse of it; see Azqueta-Gavaldon et al.

(2019).

5.3 Research in progress

We are already working on some lines that extend the research presented in this thesis. It is worth men-

tioning for instance, Azqueta-Gavaldon and Osbat (2020, Mimeo). This paper asks whether inflation-related

information embedded in the media can nowcast or forecast inflation. More specifically, we ask how does

the media reports inflation developments and whether or not it can help us in understanding how economic

agents form their inflation expectations. While there have been a lot of studies analysing how the news media

is related to inflation (see Lamla and Lein (2015); Dräger (2015); or Dräger and Lamla (2017)), none so far,

to our knowledge, have undertaken an exhaustive understanding on what information is reported. Are news

media articles describing inflation about the past, present or future? Are they describing rises or decreases

in inflation? What are the different issues around inflation being reported? To achieve this complex level

of information characterization, we will rely on word embedding models. As explained in Chapter 3, word

embedding models represent words as a vector, with the elements in each vector measuring the frequency

with which other words are mentioned nearby. Given this vector representation, two words are similar if

the inner product of their vectors is large. In this sense, we can compute the inner product of the words
1See http://agendapublica.elpais.com/afectan-los-referendos-a-la-inversion-la-evidencia-de-escocia/

http://agendapublica.elpais.com/afectan-los-referendos-a-la-inversion-la-evidencia-de-escocia/
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“inflation” and “tomorrow” to study the temporal reference on inflation. In other words, if the inner product

is closer to 1 (0), the term “inflation” is contextually closer (distant) to the word “tomorrow”. To validate

the reliability of this method, we compute the inner product between the words “inflation” and “increase”

per month and compare it to monthly inflation data in Italy. The logic behind doing this is simple. We

expect that in months when inflation rises (decreases) the inner product between these two words would be

higher (lower). This turns out to be the case. The correlation between these two time-series is 0.54, which

may prove that this simple technique could capture information of whether inflation is peaking or decreasing.

* * *

We may conclude by saying that, throughout this thesis, we have tried to explore the usefulness of press

articles in building an index of economic uncertainty. We have used an unsupervised machine learning model

to do so in the most efficient manner as possible, and we have applied it to characterise the different com-

ponents of economic uncertainty and their impact on firms’ investment in different European countries and

regions. We have also had a look at the possibility that the way the press uses different narratives to cover

different economic issues may have an impact on their performance.

I think I am reasonably aware of the shortcomings that our analysis suffers from, the alternative method-

ologies that could also have been tried, and the several ways forward that would warrant future research. I

have had, however, to keep this work under acceptable levels in terms of time, scope, and space, at the cost

of not pursuing certain alleys any further. I can only hope that at the end I have been able to achieve an

acceptable equilibrium in this sense, but this is something only the reader can judge.
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