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Abstract

Functional and effective connectivity estimates based on electroencephalography (EEG) and
magnetoencephalography (MEG) are widely used to understand and reveal new insight into
the dynamic behaviour of the brain. However, with a large number of different connectivity
methods that are currently available, there is a lack of systematic comparative studies
including a statistical evaluation of their performance to understand the strengths and
shortcomings of competing methods.
Here, we present a simulation framework to evaluate and compare the performance of
connectivity estimators on simulated, yet realistic electromagnetic recordings. We assess
the ability of various methods to reconstruct cortical networks, while systematically varying
specific parameters which are of significant importance during the simulation, preprocessing
or inverse source reconstruction of realistic EEG recordings. A decisive advantage of
this simulation framework, when compared with models utilised in other studies, is the
integration of volume conduction artifacts. This is achieved by modelling the propagation of
electric or magnetic fields from an electric primary current source through biological tissue
towards measurement sensors. Subsequently, inverse source reconstruction approaches
are applied to estimate the temporal activity patterns of underlying network nodes. The
implementation of these concepts enabled the analysis of parameters involved during forward
modelling and source reconstruction which may affect the estimation of connectivity on the
source level.
The experiments carried out in this work unfold the behaviour of estimators regarding
the effect of signal-to-noise ratio (SNR), length of data sets, various phase shifts between
correlated signals, the impact of regularization used in inverse source reconstruction, errors
in the localization and varying network sizes. For each simulation, strengths and weaknesses
of methods are pointed out. Furthermore, pitfalls and obstacles researchers might come
across when applying particular estimators on EEG recordings are discussed.
Building on the insight gained from simulation studies, the final part of the thesis
analyses the performance of connectivity estimators when applied to resting-state EEG
recordings. Network reconstructions with priority on the alpha frequency band reveal a
default-mode-network (DMN) with dominant posterior-to-anterior information flow. We
detected no significant variations in the amount of correctly identified network links between
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connectivity methods. However, we discuss differences in connectivity spectra that emerged,
which affect the interpretability and applicability of methods.
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Chapter 1

Introduction

1.1 Brain Connectivity Analysis

In recent years, connectivity analysis of neuroimaging data has played a key-role in
understanding the structure and organization of the human brain. Constant development
in the field of neuroimaging techniques and analytical methods allowed deeper and more
comprehensive insights into the complex nature of brain networks and the interaction
between specialised populations of neurons. Brain connectivity is based on two central
principles that form the functional organization of the brain. These principles are
characterized by segregation and integration of information being processed.
Evidence for the proposal that specific functional specialisations are realized by local regions
has been presented by a number of studies (Kolb and Whishaw, 1990, Zeki et al., 1991,
Caramazza, 1992, Tononi, Sporns, and Edelman, 1994). Particular emphasis may be given
to the pioneering work performed by the French researcher Pierre Paul Broca (1824 - 1880).
His research led to the first anatomical indications of specialised information processing in
local brain structures. During his studies of brains of patients suffering from aphasia, he
discovered that lesions in the left frontal region were the cause of the disorder and lead to
the subjects inability to comprehend and formulate language. This findings for the specific
functional specialisation can be confirmed by a number of studies (Duncan and Owen,
2000, Eickhoff et al., 2007, Amunts et al., 2014) that demonstrate that specific brain areas
subserved specific functions.
However, during the last decades, new data have questioned the limitations of that notion
and have uncovered more complex mechanisms of the working brain. A prominent example
is that a coherent perception of the reality cannot be obtained by a collection of specialised
functions alone (Zeki and Shipp, 1988, Tononi, 1998). For that, distributed areas of the
brain need to communicate and their information needs to be combined. This principle of
coordinated functional integration and information transfer (Sporns, 2013) of local neuronal
groups enables the emergence of coherent cognitive and behavioural states.
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The synthesis of both principles creates the framework of complex, large-scale brain
networks with specialised cortical areas that are strongly connected within themselves,
but only share sparse connections to brain areas with different fields of specialisations
(Sporns, 2013).

Figure 1: Schematic illustration of a brain network with specialised strongly connected
cortical areas (b) and sparse connections to different brain areas (c). Reprinted from
Current Opinion in Neurobiology, Volume 23, Issue 2, Sporns Olaf, Network attributes
for segregation and integration in the human brain, Pages 162-171, Copyright (2013), with
permission from Elsevier.

Modes of brain connectivity of large-scale brain networks are divided up into three separate,
but related aspects: structural connectivity, functional connectivity and effective connectivity
(Friston, 1994).

• Structural connectivity (SC), also called anatomical connectivity refers to the
anatomical structure of the brain. The connections between neighbouring neurons and
spatially distant brain regions are defined by white-matter tracts (fibres). These tracks
can be measured by diffusion magnetic resonance imaging (dMRI), also referred to
as diffusion tensor imaging (DTI).
The ability to replicate anatomical connections of an individual, living brain, based
on non-invasive methods has been a major breakthrough in neuroscience. Recent
neuroimaging studies (Iturria-Medina, Sotero, Canales-Rodrı́guez, Alemán-Gómez,
and Melie-Garcı́a, 2008, Gong et al., 2009) have shown that separate cortical areas
are highly connected via an extensive network of pathways.
The network of synaptic connections is by no means static and invariable, as changes
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in the physical pattern of structural links have been observed on longer time scales
(hours, days).

• Functional connectivity (FC) is defined as the temporal correlation of spatially
separated brain areas. It reveals statistical dependencies between distinct neuronal
populations and can be estimated by measuring correlation or covariance, spectral
coherence or phase-locking. The listed methods indicate a certain interaction between
elements of a network, but are not able to point out the direction of the information
flow. However, estimating the direction of information flow is of fundamental
importance for the analysis of brain networks and for the identification and distinction
of transmitting and receiving network nodes.
In contrast to structural connectivity, functional connectivity is highly time dependent
as statistical dependencies may fluctuate on multiple time scales ranging from
milliseconds to seconds.

• Effective connectivity (EC) enhances the information from functional connectivity
about statistical dependencies between neuronal areas, as it provides a measure for the
directional influence of one neural system over another. Causality can be estimated
from network perturbations or time series analysis. EC methods can be divided into
two groups: methods that make use of assumptions and are based on an underlying
theoretical model and methods that can be seen as model-free. Some techniques
also require the definition of structural information to allow estimation of effective
connectivity.

The main focus of this thesis is on methods estimating functional or effective connectivity
collected from electroencephalography (EEG) and magnetoencephalography (MEG)
recordings. To analyse and evaluate interactions between distinct brain regions from
the recorded electrophysiological data, neuroscientists face the considerable challenge of
selecting a suitable approach from a vast number of functional and effective connectivity
methods. Although most of the methods originated from probability theory and related
fields to describe certain time-varying stochastic or random processes, some are based
on completely different approaches which makes it difficult to compare these methods.
Furthermore, each connectivity estimator has its own benefits and limitations and may
require specific conditions to be met in order to provide valid and reliable results. Another
aggravating aspect are the difficulties with regards to the meaningfulness and interpretability
of the outcome of the method applied.
Bearing all this in mind, researchers will find themselves in a situation where they are in
need of reliable and comprehensive scientific sources which are meant as guideposts to
support them in their decision-making process.
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1.2 Critical Discussion

Simulation studies are well suited for this purpose of systematically and objectively
evaluating competing existing and newly proposed algorithms. The key challenge in
simulating real-world systems is the deliberate choice between appropriate approximations
and generalisations of essential features and attributes of the chosen process. In this regard,
an introduction of simplifications to eliminate or reduce dependencies is vital in order to
focus on particular conditions under which different methods perform better. However,
an over-simplification of the real-world model may obscure the fidelity and reliability of
simulations and will lead to difficulties to transfer conclusions from simulation results to
real-world applications.
This chapter will provide an overview and comparison of selected simulation studies to
evaluate the strengths and weaknesses of each study. The publications will be presented
in chronological order, beginning with the earliest paper, which was published in 2007
by Ursino et al. (Ursino, Zavaglia, Astolfi, and Babiloni, 2007). This paper consists
of a simulation study where cortical activity in several regions of interest (ROI) was
modelled based on a neural mass model (NMM) proposed by Wendling et al. (Wendling,
Bartolomei, Bellanger, and Chauvel, 2002) and an experimental study to estimate the
weights of the synaptic links between six ROIs during a finger-movement task. Although
forward modelling and source localization of the simulated cortical activity were not taken
into consideration, the analysis process of experimental data could serve as a guideline for
a comprehensive simulation study. Inverse source localization of experimental EEG data
implied a 4-compartment (brain, skull, scalp and air) boundary element method (BEM;
Fuchs, Kastner, Wagner, Hawes, and Ebersole, 2002) to calculate the cortical activation
at approximately 3000 source locations. To reduce data dimensionality and calculate
waveforms for each region, the activation of sources that are geometrically included in
each ROI were averaged. This approach of applying brain parcellation based on atlases
or functional magnetic resonance imaging (fMRI) research as a basis for whole-brain
connectivity analysis has attracted growing interest in recent years (Fischl et al., 2004,
Eickhoff, Thirion, Varoquaux, and Bzdok, 2015, Fan et al., 2016). It offers a promising
mechanism to evaluate functional and effective connectivity from results obtained by
distributed source analysis methods. In this paper, connectivity strength was estimated via
reconstructing the weight of the synaptic link using normalized power spectra. These were
computed using Welch’s average modified periodogram method (Welch, 1967). Results
indicate the possibility of successfully reconstructing NMMs from power spectral densities.
However, the estimated connectivity strengths have not been contrasted with results of other
connectivity methods, thus making it difficult to assess the performance of the suggested
method.
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In the same year Astolfi et al. (Astolfi et al., 2007) published a paper that follows the exact
same strategy for the generation of the simulated signals using the NMM by Wendling et
al. The network incorporates five ROIs, which are sparsely connected by direct as well as
indirect links with realistic connection strength values as observed in other studies (Büchel
and Friston, 1997). In contrast to the paper by Ursino et al. (Ursino et al., 2007), three
estimators of cortical, effective connectivity were applied to retrieve the correlation factors
between every pair of ROIs: the directed transfer function (DTF; Kamiński and Blinowska,
1991) and its modification the direct directed transfer function (dDTF; Korzeniewska,
Mańczak, Kamiński, Blinowska, and Kasicki, 2003) as well as the partial directed coherence
(PDC; Baccalá and Sameshima, 2001). Similar to Ursino et al. (Ursino et al., 2007),
connectivity estimation was calculated directly using the simulated waveforms from the
NMM without projecting cortical activity to the surface of the scalp and subsequently
applying source reconstruction algorithms. To measure the performance of the connectivity
estimators in varying conditions, the effects of different SNR levels (variation from 1 to 10)
and the length of the datasets (2500 to 15000 samples) was investigated. Fifty repetitions
of each simulation scenario were carried out to ensure sufficient robustness of subsequent
statistical evaluation using analysis of variance (ANOVA). This detailed statistical evaluation
is essential and must be carried out as this allows a qualitative assessment and comparison
of methods. For this reason, this publication can serve as a reference for simulation studies,
however, only a fairly limited number of connectivity methods was taken into account and
the extent of testing potentially significant factors must be expanded.
In 2010, Florin et al. (Florin, Gross, Pfeifer, Fink, and Timmermann, 2010) investigated the
effect of filtering, data decimation and interpolation on multiple connectivity estimators:
transfer function (H), DTF, dDTF, PDC and squared partial directed coherence (sPDC;
Astolfi et al., 2006). In contrast to Ursino et al. (Ursino et al., 2007) and Astolfi et al. (Astolfi
et al., 2007), MEG sensor time-series (96 sensors) were modelled based on multivariate
autoregressive (MVAR) models as suggested by Kus et al. (Kuś, Kamiński, and Blinowska,
2004). Four different types of filters (Butterworth, Chebyshev I and II and elliptic filters)
were applied on the data followed by a statistical analysis using the Mann-Whitney U-test
including Bonferroni correction to correct for an increased number of false positives (type I
errors) due to multiple comparisons. Although this paper was designed with more emphasis
on analysing preprocessing effects on connectivity results, it is worth pointing out the
conception and implementation of the simulations as well as the elaborated subsequent
statistical evaluation.
In contrast to this, the study presented by Wu et al. (Wu, Frye, and Zouridakis, 2011) focuses
entirely on the comparison of multivariate causality measures. Similar to Florin et al. (Florin
et al., 2010), MVAR models were used to generate time-series for 3, 7, 10 and 20 source
networks. The model order, which defines the number of considered preceding time points
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to simulate dependencies between nodes was varied (4, 8, 12 and 16). Moreover, the ratio of
direct and indirect connections between nodes was changed to alter the degree of complexity
for each network size. Besides these parameters, the influence of SNR was investigated.
Connectivity measures considered in this study were Granger Causality (GC; Granger, 1969),
DTF, dDTF, PDC, sPDC and full frequency directed transfer function (ffDTF; Korzeniewska
et al., 2003). This simulation study is an excellent example for measuring and comparing
the impact of multiple parameters on the performance of different connectivity methods.
However, there is no reference to any statistical evaluation of connectivity results to add
mathematical proof for the significance of findings. Furthermore, like all of the studies
introduced so far, Wu et al. (Wu et al., 2011) did not perform forward-modelling of brain
activity on the scalp surface and subsequently apply source reconstruction algorithms to
recover source waveforms. This step is not necessarily required to compare the performance
of connectivity estimators, however this detour involves several problems that also come
into play when looking at real EEG and MEG data. One of these problems is referred to as
volume conduction (Sarvas, 1987), which causes a smearing effect by propagation of the
source signal from the cortex to the outside of the scalp. This is apparently another critical
issue for neuroscientics looking for a suitable connectivity method to analyse their data.
Therefore, it is vital to take the complexity of inverse source reconstruction into account
when designing an appropriate simulation model and not to neglect this problem for reasons
of simplification.
A comparable paper was published in 2012 by Silfverhuth et al. (Silfverhuth, Hintsala,
Kortelainen, and Seppänen, 2012). The performance of six connectivity estimators,
Correlation (COR), magnitude-squared coherence (COH), phase-slope index (PSI; Nolte
et al., 2008), DTF, PDC and transfer entropy (TE; Schreiber, 2000) was compared.
Equivalent to Wu et al. (Wu et al., 2011) and Florin et al. (Florin et al., 2010), time-courses
for the activity pattern of eight ROIs were generated using MVAR models. The effect of
SNR (levels 1, 5 and 10) was examined, as well as the influence of the sampling rate starting
with a maximum rate of 1000 Hz to down-sampled rates of 500 Hz and 250 Hz. Significance
of results was tested by Chi-square tests. However, as already highlighted in the previous
section, Silfverhuth et al., 2012 also reconstructed the connectivity pattern directly on the
generated source waveforms without forward modelling and inverse source reconstruction.
In contrast to all previously introduced publications, the following studies performed
forward modelling to obtain simulated EEG and MEG recordings from known underlying
cortical networks. In his PhD thesis, Drakesmith (Drakesmith, 2012) applies a source
model that strongly differs from the MVAR and NMM presented so far. He simulated a
straightforward cortical network of 1454 dipoles distributed over the whole brain space
and oriented orthogonally to the head surface. Gaussian white noise was added to the
waveforms of all of these sources to model cortical background activity. Bilateral dipoles
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in the two occipital lobes were used to carry 33 Hz sinusoidal waves without any phase
lag between the sources. A smoothing factor was applied to smear activity to surrounding
dipoles. Forward calculations were performed for 64 electrodes for EEG data using a
BEM head model, as well as 148 axial gradiometer sensors for MEG data considering
a single-shell head-model. For estimation of coherence across all voxel combinations,
dynamic imaging of coherent sources (DICS), introduced by Gross et al. (Gross et al.,
2001) was applied. With this approach, the quality of the reconstructed network can be
measured by comparing the connectivity matrices of the original, simulated network and the
reconstructed network. The resulting statistical indicators true positive rate (TPR) and log
false positive rate (FPR) were calculated for a range of thresholds. In order to establish an
easy comparison of the calculated statistics, the log receiver-operating characteristics (ROC)
curve was created by plotting the TPR against the log FPR and integrated to obtain a single
value quantifying the accuracy of each network reconstruction. This statistical approach has
the advantage that it can be seen as threshold-free and it also enables the comparability of
network reconstructions from various connectivity methods.
A set of simulations has been explored in the paper by Haufe et al. (Haufe, Nikulin,
Müller, and Nolte, 2013). This paper covers four experiments that are all based on a source
model with two interacting cortical regions. The first experiment deals with the application
of connectivity estimators (GC, PDC and PSI) on unmixed time series to examine their
performance on noise-free data and also excluding effects of volume conduction. Both of
these effects are included in the second experiment, where 10 additional noise sources were
added to the model. Forward modelling to calculate the signal of 59 EEG sensors was carried
out with a realistically shaped head model (Holmes et al., 1998). For connectivity analysis
on sensor level using GC and PDC, either all 59 channels, or only a subset of 19 electrodes
were used. The third experiment covers the influence of the chosen reference electrode
on connectivity estimators. Therefore, the signal of TP9 or TP10 electrode was subtracted
from data generated in the second experiment to re-reference signals. Besides, the influence
of noise was evaluated with results from PSI, adding noise of 2 different SNR levels (0.24
and 0.75). Finally, the fourth experiment included three distributed source reconstruction
algorithms: weighted minimum norm (WMN; Hämäläinen and Ilmoniemi, 1994), sparse
basis field expansions (S-FLEX; Haufe, Nikulin, Ziehe, Müller, and Nolte, 2009) and
linearly constrained minimum variance (LCMV) beamforming (Van Veen, Van Drongelen,
Yuchtman, and Suzuki, 1997). To reduce the extent of connectivity analysis on distributed
source localizations, ROIs were defined by dividing the voxel space in relation to their
respective distance to 19 EEG electrode positions.
Reduction of source space via ROIs using a standard anatomical or histological brain atlas
or a data-driven technique (Liu, Belliveau, and Dale, 1998, Beckmann, DeLuca, Devlin,
and Smith, 2005, Hauk, Wakeman, and Henson, 2011) is a technique that is often applied
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to retrieve temporal activity pattern for distinct brain areas (Schoffelen and Gross, 2009,
Hassan et al., 2014, Colclough, Brookes, Smith, and Woolrich, 2015, Mahjoory et al.,
2017). A recent study by Farahibozorg et al. (Farahibozorg, Henson, and Hauk, 2018)
focussed on the effect of different anatomical parcellations on connectivity estimation. In
his study, Farahibozorg simulated EEG (70 scalp sensors) and MEG (204 gradiometer, 102
magnetometer) recordings based on cortical networks involving 3, 5, 10 and 15 active nodes.
Temporal activity of sources was defined by sinusoidal signals and random noise with a SNR
of 1 and 3. A three-shell (scalp, outer skull surface and inner skull surface) BEM head model
was used for forward modelling to compute the simulated sensor recordings and during
inverse source reconstruction based on L2 minimum norm (MNE) estimator with loose
orientation constraint (Lin et al., 2004). Subsequently, two adaptive parcellation algorithms,
split-and-merge (SaM) and region growing (RG), described by Gonzalez and and Woods
(Gonzalez and Woods, 2006) were applied on either different average sizes of brain atlas
parcels (Desikan-Killiany, Desikan et al., 2006 and Destrieux, Destrieux, Fischl, Dale, and
Halgren, 2010) or without prior parcellation to reduce source space. Significant connections
of connectivity spectra estimated from magnitude-squared coherence and imaginary part
of Coherency were identified using one-tailed permutation tests. Performance of each
method for the underlying parameter set was evaluated by computing true positive and false
positive rates. Based on this simulation framework, Farahibozorg analysed the similarity
between different parcellation approaches in absence of any significant connectivity patterns
and looked at the accuracy of network reconstructions for random source positions and
connections. Furthermore, it was examined whether results obtained from non-zero-lag
connectivity estimators benefit from data-based parcellation algorithms. This present study
addresses the relation between adaptive source space reduction and connectivity estimation
in a high level of detail and an extent that has so far been lacking in the literature. The
simulation section takes a variety of parameters into account that affect the accuracy and
quality of the connectivity methods. However, as mentioned in the paper, the parcellation
algorithms are heavily dependent on the EEG/MEG data set, the volume conduction model
and the inverse source reconstruction method. Therefore, the results of connectivity
estimation and statistical analysis of a simulation study must be viewed in the overall
context.
The most-recent paper that was taken into account was published in 2019 by Anzolin et al.
(Anzolin et al., 2019). In this paper, a comprehensive simulation pipeline to consolidate
research on the effect of source mixing and to demonstrate the effect of source position, SNR
level and inverse source reconstruction methods on connectivity estimation is presented. A
brain network including three network nodes (sender, receiver and a non-interacting cortical
region) was simulated by using MVAR models. Forward modelling to project activity onto
108 EEG sensors and inverse source reconstruction made use of a highly detailed FEM model
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(Huang, Parra, and Haufe, 2016). The ICBM-NY, or New York Head model is a standardized
volume conductor modelling six different brain tissues (scalp, skull, CSF, gray matter,
white matter and air cavities) based on the ICBM152 anatomical template (Fonov, Evans,
McKinstry, Almli, and Collins, 2009, Fonov et al., 2011). This results in a considerably
increased degree of realism of the conducted simulations, leading to more detailed models
and a more accurate reproduction of real world applications. Source-waveforms of simulated
network sources were reconstructed by applying two distributed inverse source analysis
methods: LCMV beamforming and eLORETA (Pascual-Marqui, 2007). Subsequently,
the exact dipole positions of the simulated sources were used to extract the reconstructed
activity from the distributed solutions at the respective voxel position. However, it should
be noted that both methods provide blurry solutions which diminishes the overall activity
at each voxel. This affects the resulting time-course of active brain regions and therefore
will also affect any connectivity estimation. It is pointed out in the present paper that this
issue can be addressed by reducing the source space via ROIs or data-driven clustering as
recently proposed by Wang et al. (Wang et al., 2018). Similar to the performance measures
presented by Drakesmith (Drakesmith, 2012), connectivity spectra of multivariate Granger
causality and time reversed Granger causality (Haufe et al., 2013, Winkler, Panknin, Bartz,
Müller, and Haufe, 2016) were evaluated using false positive rate (FPR), false negative rate
(FNR), and area under ROC curve (AUC).
While all of the above-mentioned studies imply innovative and advanced approaches, the
studies by Drakesmith (Drakesmith, 2012), Haufe (Haufe et al., 2013), Farahibozorg
(Farahibozorg et al., 2018) and Anzolin (Anzolin et al., 2019) exemplify the importance of
a simulation design with high degree of realism to highlight the pitfalls and obstacles of
connectivity analysis. Building on this, it is of great interest to analyse the influence of a
number of other parameters on functional and effective connectivity analysis.
Further details on all papers introduced in this section can be found in table A1 with respect
to the aspects of source localization, connectivity methods, statistical analysis and examined
parameters.

1.3 Scientific Proposal

Despite the significance of connectivity methods, comprehensive studies comparing the
performance of functional and effective brain connectivity indicators by means of simulated
datasets are either lacking or not sufficiently comprehensive.
The main objective of this work is to fill in this gap by implementing and testing the
performance of a subset of functional, as well as effective connectivity methods under
comprehensive simulated but realistic sets of EEG data. In this context, several scenarios
will be compiled to examine the effect of factors like SNR, data length, network size
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or source reconstruction accuracy. Since connectivity and causality measures based on
multi-channel electrophysiological data are biased by volume conduction artifacts, the
realistic simulation not only covers the generation of lifelike recordings, but also implies
inverse source localization to transform the EEG/MEG recordings into source space for
subsequent connectivity estimation. For easier evaluation and comparison of connectivity
methods, performance indicators will be introduced to enable a clear and informative
presentation of analysis results. Furthermore, a statistical evaluation will help to understand
the strengths and shortcomings of competing methods and will provide assistance in coming
to more informed decisions about which connectivity estimator to employ for a specific
task.

1.4 Outline of the Thesis

Following the introduction and problem formulation, chapter 2 provides an overview
on electrophysiological signal generation and how these signals can be recorded with
EEG and MEG. This chapter also presents mathematical concepts and approaches of
inverse source reconstruction and concludes with an overview of functional and effective
connectivity measures. Chapter 3 illustrates the structure and functionality of the simulation
framework. It provides details on the software and open-source toolboxes used throughout
the entire simulation and analysis process. Furthermore, the possibilities and modular
options to generate electrophysiological signals with specific and desired characteristics are
presented. In the following chapter (chapter 4) the impact of decisive factors on connectivity
estimators is investigated using the presented simulation framework. These factors emerge
and affect results during data acquisition, but also play an important role at further stages of
connectivity analysis. Therefore, parameters influencing data simulation, like SNR and data
length will be taken into account as well as other factors like network size, regularization
and source analysis accuracy. In chapter 5 a connection is established between simulations
and real-life conditions by transferring findings and conclusions derived from analysis of
simulated data on real EEG recordings. Finally, the results of this thesis will be summarized
and critically commented in chapter 6. Remaining analytical questions are discussed and
potential for future research is suggested here.



Chapter 2

Fundamentals

In this chapter, essential principles to understand the formation and composition of
neurophysiological data are presented. It covers the structure and functionality of the
human brain and describes methods and procedures to measure brain activity. Furthermore,
mathematical concepts to analyse cortical recordings are discussed. The strategies to
estimate and reconstruct source activity from neurophysiological data sets are explained in
more detail. On that basis, statistical or causal relationships among distinct brain regions can
be calculated by applying different methods of connectivity estimators. The mathematical
description of these methods, as well as their similarities and differences are covered in this
section.

2.1 Neurophysiology

The electroencephalographic (EEG) or magnetoencephalographic (MEG) signal that is
recorded from the outside of the head implies cortical activity caused by voltage fluctuations
within the neurons of the brain, but also certain types of physiological and non-physiological
artifacts. This section describes the origins of brain signals and their propagation to the
surface of the scalp.

2.1.1 Neural Circuits and Systems

Neurons are the principal cellular elements that consist of a central cell body (soma),
an axon that transfers information via synapses to other neurons, dendrites for receiving
signals from other neurons and an enclosing membrane. Synapses can be excitatory or
inhibitory and either increase or decrease activity in the receiving neuron, respectively.
The dendrites receive information through synapses via neurotransmitters like glutamate,
γ-aminobutyric acid (GABA) or dopamine. When receiving a stimulus, an electric potential
is generated by depolarization of post-synaptic membranes. Figure 2 schematically shows
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signal transmission between two neurons. The current arising from the activation of a
single neuron cannot be detected through the scalp. However, synchronous activation of
large populations of neurons have an additive effect due to their parallel organization. The
strength of the current flow is directly proportional to the number of activated neurons and
produces a detectable electroencephalographic signal.

Figure 2: Neuron A transfers information to neuron B through the axon. The magnified part
shows a synapse connecting both neurons.

The propagation of the current flow from populations of neurons through the brain, scull and
scalp tissues and the cerebrospinal fluid (CSF) to the outside of the head is called volume
conduction. The most significant factors influencing the spreading of currents from the
sources are the geometries and conductivities of the traversed tissues. Mathematical models
can be applied to estimate the propagation of a given cortical activity (see section 2.2.1).

2.1.2 Imaging Methods

EEG sensors placed along the scalp observe the electric potential to non-invasively record
neural activity relative to a reference electrode. Basically, the distribution of electric
potentials depends on the number of neurons that are activated simultaneously and the
similarity of their spatial orientation, as opposed currents would otherwise cancel out each
other (Shibasaki, 2008). Furthermore, activation in deeper cortical areas will result in a
more widespread activation pattern on the scalp due to the aforementioned effect of volume
conduction. Often 64 to 128 recording electrodes are used in research (Oostenveld and
Praamstra, 2001), however, state-of-the-art EEG systems provide electrode caps with up
to 256 channels (Suarez, Viegas, Adjouadi, and Barreto, 2000). With its high temporal
resolution of about 1 millisecond, EEG is able to measure the fast dynamic changes of
active cortical areas that change in the 10 to 100 millisecond range.
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MEG records magnetic flux generated by electrical currents using either magnetometers
or gradiometers (planar or radial) placed above the scalp surface (Cohen, 1968). The
magnetic fields originate from the same underlying voltage fluctuations that evoke the EEG
signal, however, they are less affected by volume conduction than EEG (Hämäläinen, Hari,
Ilmoniemi, Knuutila, and Lounasmaa, 1993). This is mainly due to the fact that MEG is
comparatively insensitive to secondary currents that propagate through the volume conductor
to balance the primary current flow at the neuronal source. Modern MEG systems contain
up to 300 sensors in a helmet shaped sensor array covering most of the head. Magnetic
shielded rooms and active shielding systems are often used to reduce external noise and
enable clear recordings of the magnetic signals emitted by the brain. Like EEG, MEG
systems also record at a high temporal resolution and are therefore also well suited for
analysing time-courses of neurophysiological activity.
Although signals of both neuroimaging techniques originate from the same cortical
processes, MEG sensors are sensitive to magnetic fields perpendicular to the generating
cortical patch, whereas EEG is more sensitive to electric currents flowing orthogonal to the
EEG electrodes.
Besides EEG and MEG, there are other imaging methods that are sensitive to changes in
cerebral blood flow related to neural activity. An increase in cortical activation will lead
to a higher demand for glucose and oxygen in the particular area and therefore trigger an
increased cerebral blood flow to the active region. Positron emission tomography (PET)
detects radiation emitted by a radionuclide (tracer). The concentration of radionuclides
indicates metabolic activity as it corresponds to glucose uptake and the activity at serotonin
and dopamine receptors (Bunge and Kahn, 2009). Functional magnetic resonance imaging
(fMRI) is another imaging method that has become more popular since it does not require
the administration of tracers and provides a higher spatial resolution than PET. It measures
the blood-oxygen-level dependent (BOLD) contrast that is refers to magnetisation changes
of variations of blood oxygenation (Logothetis and Wandell, 2004).
The crucial distinction between PET and fMRI compared to EEG and MEG is the respective
domain in which each technique has the highest resolution (Xue, Chen, Lu, and Dong, 2010).
PET and fMRI benefit from a high spatial resolution, which is in the order of millimetres,
at the cost of a very low temporal resolution, which is in the order of seconds. fMRI is an
indirect, differential measurement since it measures the changes in blood oxygenation in
veins and capillaries surrounding the active brain region, while electromagnetic recording
methods acquire absolute neuronal activity. Moreover, EEG/MEG recordings provide a
very high temporal resolution, as described in the previous section. Their spatial resolution,
however, is in the order of several millimetres or even centimetres depending on the cortical
regions that are to be localized. Furthermore, both imaging methods poorly measure
activity arising below superficial neural structures, whereas fMRI records activity within



Chapter 2. Fundamentals 32

the entire brain volume. Nevertheless, EEG and MEG techniques are more suited for the
analysis of rapid changing cortical networks due to their high temporal resolution. For
this reason, electromagnetic recording methods are of key importance for this work to
measure the performance of various connectivity estimators. However, reconstructing the
temporal changes of brain activity from EEG and MEG recordings is essential to enable
the calculation of correlation between active areas on the level of cortical regions. The next
section of this chapter focusses on this problem and introduces a range of different methods
and techniques.

2.2 Source Reconstruction

Non-invasive electromagnetic recording techniques are significant tools for imaging the
temporal dynamics of neuronal currents. As discussed in the previous section, EEG systems
measure the electrical potentials of the propagated neural current flows on the skin surface,
whereas MEG measures the magnetic flux generated by these electrical currents in a distance
of a few centimetres from the head. The estimation of the location of active cortical patches
and their temporal evolution from the recorded current or magnetic field distribution is
referred to as source reconstruction and is obtained by solving the so-called inverse problem
(Mosher and Leahy, 1999, Baillet, Mosher, and Leahy, 2001; Nunez and Srinivasan, 2006).

2.2.1 Forward Modelling and Inverse Problem

Solving the inverse problem requires the simulation of the electric field potentials for a set
of unit dipoles in a volume conductor model of the head. This approach is called forward
modelling and estimates the contribution of each dipole using the quasi-static approximation
of Maxwell’s equations (Sarvas, 1987, Plonsey and Heppner, 1967, Baillet et al., 2001) for
frequencies below 1000 Hz.
The forward solution to calculate the recorded electric scalp potential VS(r, t) for time t and
sensor position r can be expressed as

VS(r, t) =
∫∫∫

Ω

L(r,r′)G(r′, t)T
δΩ (2.1)

where G is the cortical activity at position r′ for a volume model Ω and L is the lead field
matrix defining the contribution of a unit dipole at G(r′, t) to the scalp potential VS(r, t). L

contains all geometric and conductive information about the different head volume conductor
tissues (scalp, skull, CSF, gray matter and white matter) and needs to be modelled in great
detail to allow accurate and realistic estimations of the measured electromagnetic signals.
Early numerical approaches to solve the forward problem for EEG included volume
conductors using a single homogeneously conducting compartment (Frank, 1952) to model
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the head. Later, models incorporating three (Geselowitz, 1967) and four (Hosek, Sances,
Jodat, and Larson, 1978) concentric spheres, that model the skin, CSF, skull and brain layers
were published. For MEG, a simpler model can be assumed since magnetic fields are less
sensitive to secondary electric currents that propagate through the volume conductor to level
primary electric currents generated by active cortical areas. Based on the assumption that
the volume conductor model is spherically symmetric, an analytical solution for the forward
problem can be derived (Sarvas, 1987).
State-of-the-art algorithms for the numerical calculation of realistic electromagnetic
forwards models usually rely on the boundary element method (BEM; Fuchs, Wagner,
and Kastner, 2001, Akalin-Acar and Gençer, 2004) and the finite element method (FEM;
Yan, Nunez, and Hart, 1991, Wolters et al., 2006). Although both methods make use of
subject-specific anatomical information obtained from magnetic resonance imaging (MRI)
recordings, standardised age-appropriate BEM or FEM head models (Richards and Xie,
2015) can be applied as reasonable approximations for subjects where this information is
not available.
For BEM, the volume between tissues are assumed to be homogeneous and isotropic
conducting, which significantly reduces the computational effort of the forward model.
However, the influence of conductivity inhomogeneities within compartments, e.g., in
the skull compacta and spongiosa or white and gray matter compartment, on source
reconstruction has been shown in several studies (Chauveau et al., 2004, Wolters et al., 2006,
Güllmar, Haueisen, and Reichenbach, 2010). Incorporating anisotropic conductivities in
BE models will lead to an increase in computational power and memory requirement. Most
FE models also assume homogeneity and isotropy within tissues, but can extended more
easily to model anisotropy from e.g. DTI recordings as well as more complex and accurate
geometries.
Solving the inverse problem is inextricably linked to forward modelling and therefore
affected by the degree of realism and accuracy of the head volume conductor model.
Despite the challenges and difficulties arising from the process of source reconstruction,
this step is mandatory for the estimation of connectivity on the source level. The next two
sections present this topic in more detail and give an overview of discrete and distributed
source reconstruction methods.

2.2.2 Discrete Source Reconstruction

The approach of discrete source reconstruction, also often referred to as dipole fitting,
is primarily based on the fact that neural currents flow predominantly perpendicular
to the surface of the cortex due to the perpendicular alignment of the pyramidal cells.
A large number of adjoining, parallel currents are linearly summed up to one current
vector representing the overall neural activity in the respective cortical area (figure 3).
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This activation can be very accurately modelled by a single equivalent dipole (Scherg,
1990). It is defined by three parameters: its position, which is the according centre of the
modelled cortical patch, its orientation, given by the direction of the neuronal current flow,
perpendicular to the surface of the modelled cortical patch and magnitude. The magnitude
of the dipole is expressed as a function of time and describes the neural dynamics of the
modelled region. Due to the high temporal resolution of electromagnetic recording methods,
the quickly changing connectivity patterns of neural networks can then be analysed using
functional and effective connectivity methods.

Figure 3: Example of activation at the cortical convexity (blue) having a predominantly radial
orientation and activation in cortical fissures with a predominantly tangential orientation
(green).

Discrete source localization approaches require a much smaller number of dipoles than
distributed localization methods, as it is assumed that the largest part of the brain is not
active (Scherg and Ebersole, 1993, Baillet et al., 2001).
The forward model for N dipoles can then be formulated as a linear sum from all contributing,
active sources

VS(r, t) =
N

∑
n=1

L(r,n)Sn(t) (2.2)

with Sn(t) describing the source waveform of dipole n at time t. The resulting cost function
is then defined as

min

∥∥∥∥∥VS(r, t)−
N

∑
n=1

L(r,n)Sn(t)

∥∥∥∥∥
2

2

(2.3)

When performing inverse source reconstruction using dipoles, it is recommended to perform
a sequential dipole fitting approach (Scherg, 1992, Scherg and Berg, 1996), which means
that modelling each active cortical regions by a dipole will be performed sequentially.
Thereby it is attempted to find points in time or time intervals in which only one brain area
(or a pair of bilateral brain areas) is active. Assuming a given head model and a random
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starting dipole location and orientation, the initial source waveform of the first dipole is
estimated by applying the inverse of the leadfield matrix L(r,n) to the data VS(r, t)

Sest,n(t) = L−1(r,n)VS(r, t) (2.4)

However, the matrix inversion L−1(r,n) is only defined if the number of columns (given by
the number of sensors in the data matrix VS(r, t)) and number of rows (number of modelled
sources) of the leadfield matrix L would be identical and it would have a maximal rank.
Thus, the pseudo-inverse L+ of the leadfield matrix needs to be computed, which can be
expressed as

L+ = LT (LLT +λ I)−1 (2.5)

using Tikhonov regularization (Tikhonov, Leonov, and Yagola, 1998) with the noise
regularization parameter λ and the identity matrix I to resolve ambiguities and prevent
over-fitting.
The estimated source waveform Sest,n(t) is projected to the scalp surface using the forward
model to calculate the modelled electrical distribution. In an iterative process, the dipole
location and orientation is adjusted until the difference between the modelled data and
measured data in the respective point in time or time interval is minimized by means of
non-linear optimization. Genetic (Goldberg, 1989) or simplex algorithms (Press, Teukolsky,
Vetterling, and Flannery, 2007) are applied to avoid solutions to converge on a local
minimum, but to find the global minimum of equation 2.3. If the measured data requires
fitting more dipoles to model activity in other cortical areas at later time points, the location
and orientation of the fitted dipole will be fixed in the ongoing process.
When modelling brain areas that are in close proximity to each other, but differ by the
direction of the neuronal current flow regional sources can be applied. For the EEG case,
regional sources are dipoles with three orthogonal orientations. In contrast, regional sources
for MEG consist of only two orientations due to the fact that MEG is mainly sensitive to
tangentially oriented sources and is unable to detect radial sources (Hämäläinen et al., 1993,
Baillet et al., 2001). A source localization strategy based on regional sources makes it
possible to separate and model multiple source currents in any direction (Scherg and Berg,
1996).

2.2.3 Distributed Source Reconstruction

Like discrete source reconstruction approaches, distributed source imaging methods also
use dipoles or regional sources as fundamental elements to model cortical activity. However,
the number of sources differs greatly between those two approaches. As already mentioned
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in the previous section, discrete source analysis only models larger cortical areas using a
single dipole per patch to explain activity originating from the respective region. Contrary
to this, in distributed imaging methods dipoles are placed at many locations within the brain
to simultaneously estimate the activity at all those locations. This is further illustrated in
figure 4.

Figure 4: Modelling of cortical brain activity: on the left-hand side the cortical area in a
fissure is modelled by a single dipole (discrete source), whereas on the right-hand side each
small brain segment is represented by a current dipole (distributed source).

Frequently, the dipoles are also arranged in a 3-dimensional grid, where two or three
dipoles with orthogonal orientations represent the activity in a voxel. This is an advantage
compared to discrete imaging methods, since the number of active sources does not have
to be estimated, but will be defined by the density of the grid. For this reason, distributed
source models usually contain significantly more sources than recording sensors. Therefore,
the system in equation 2.2 becomes highly under-determined and requires side constraints
to be defined that allow the preferential selection of optimal solutions. The pseudo-inverse
leadfield matrix is then defined by

L+ = (LT L)−1LT (2.6)

Distributed source reconstruction results obtained by applying minimum-norm estimate
(MNE; Hämäläinen and Ilmoniemi, 1984) tend to be blurred as no spatial filtering is
considered in this method. This is because solutions with the smallest overall energy,
represented by the most superficial sources, are favoured. To overcome this bias, additional
depth weighting may be implemented. This modified method is called weighted-minimum
norm (WMN; Hämäläinen and Ilmoniemi, 1994) and normalizes all sources by a measure
of their amplitudes to reduce localization errors.
Low resolution electromagnetic tomography (LORETA; Pascual-Marqui, Michel, and
Lehmann, 1994) also implies depth weighting and provides images with high smoothness,
due to the use of the 3D Laplace operator.
One major handicap that is common by almost all distributed source imaging methods is
the fact that reconstructed 3D images are blurred and non-focal due to a smearing effect and
crosstalk between neighbouring voxels. This is also the case for electromagnetic recordings
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that represent focal brain activity. To resolve this problem, further imaging methods that
determine a solution iteratively were proposed. These include, among others, standardized
shrinking LORETA-FOCUSS (SSLOFO; Liu et al., 2005) and classical LORETA analysis
recursively applied (CLARA; Iordanov, Hoechstetter, and Berg, 2014, Kovac et al., 2014).
In both approaches, the spatial weighting matrix V reflects the solution found in the previous
iteration step to eliminate activity in grid points that does not exceed a certain threshold.
This process is repeated until a required accuracy or predefined number of iterations is
reached.
In contrast to discrete source reconstruction, results obtained using distributed imaging
methods generally cannot be used directly for subsequent connectivity analysis due to the
large number of dipoles. Therefore, data dimensionality in source space needs to be reduced.
This can be achieved by defining ROIs using a standard anatomical or histological brain
atlas (Babiloni et al., 2005 and Astolfi et al., 2007) or a data-driven technique (Liu et al.,
1998, Beckmann et al., 2005 and Hauk et al., 2011).
An alternative approach to solve the ill-posed inverse problem is to independently scan
for sources within a regular three dimensional grid containing possible dipoles positions
in every single grid point. Like in other inverse source reconstruction methods, a spatial
filter is used. However, beamforming techniques use different spatial filter for each brain
voxel to avoid crosstalk from other areas to affect the estimate of the region of interest as
little as possible. Among the scan approaches, a popular solution can be obtained using
linearly constrained minimum variance (LCMV) beamformers (Van Veen et al., 1997). The
LCMV beamformer attempts to minimize the beamformer output power subject to a unity
gain constraint:

min
Wr

tr
(
W T

r CWr
)

(2.7)

provided W T
r Lr = I3. Wr denotes the dm by 3 spatial filtering matrix, C is the data covariance

matrix and Lr is the dm by 3 leadfield matrix of the model at target location r. The spatial
filter satisfying this equation can be calculated by:

W T
r =

(
LT

r C−1Lr
)−1

LT
r C−1 (2.8)

The beamformer output provides an estimate for the source power X at location r by:

Xr = GrWr (2.9)

To compute a distributed map of activity, this solution can be applied at each source point of
interest.
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2.3 Brain Connectivity Measures

Results obtained from discrete or distributed source analysis methods provide insights on
the spatio-temporal dynamics of cortical areas. They enable modelling and estimating the
number of active brain regions, as well as their location and temporal changes in magnitude.
Building upon this knowledge, various functional and effective brain connectivity estimators
have been proposed to reconstruct and quantify neuronal interactions.
This section presents an overview on commonly used connectivity methods and describes
the main characteristics and features for each of the estimators. The various methods are
grouped into non-directed (functional) connectivity metrics, that provide information on the
statistical dependence between signals without implying information on the directionality,
and, on the other hand, directed (effective) connectivity measures which indicate causal
dependencies among sources.

2.3.1 Autoregressive Modelling

Most methods of effective connectivity are based on the definition that causes must precede
their effects. Wiener (Wiener, 1956) defined the notion of causality as the prediction of a
time-series from another time-series, stressing temporal ordering. He first addressed the
approach to reproduce statistical causal relationships from data, which was later adopted
and applied by Granger (Granger, 1969) to linear bivariate regression modelling in order to
analyse time-series that originated in economics. He also introduced the term of Granger
causality. It was later extended by Geweke (Geweke, 1982) to examine time-series in the
spectral domain. Many effective connectivity methods that have been developed in recent
years are based on interpretations or modifications of this concept.
Due to its limitation to two time-series, the bivariate approach is not applicable to more
complex systems. Simultaneous analysis of multichannel networks is particularly essential in
neuroscience where, in the majority of cases, several active brain regions are interacting via
numerous connections. A multidimensional approach reduces the possibility of erroneous
causality estimations in comparison to a pair-wise analysis, as causality between two
channels can only be calculated correctly if they are not influenced by a third channel
(Granger, 1980).
Moreover, data stationarity is preconditioned to employ autoregression (AR) models.
Electrophysiological signals including EEG and local field potentials (LFPs) are however
highly non-stationary processes. In order to overcome these problems, and to apply
AR models to non-stationary multidimensional datasets, a variety of algorithms have
been established that assemble multivariate regression modelling with overlapping
sliding-window approaches (Ding, Bressler, Yang, and Liang, 2000) and time-variant
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Granger causality (Hesse, Möller, Arnold, and Schack, 2003) have been established.
Multivariate regression modelling offers the possibility to examine the links between all
sources simultaneously. Further, other extensions and modifications of Granger causality
were suggested, that involve non-linear Granger causality (Marinazzo, Pellicoro, and
Stramaglia, 2006).
According to Granger (Granger, 1969), a time-series xi Granger-causes time-series x j if
incorporating past values of xi in the prediction of x j leads to a better prediction above and
beyond consideration of only past values of signal x j alone (Granger, 1969, Ding, Chen,
and Bressler, 2006). This causal influence between time-series x(t) an be measured using
multivariate-autoregressive (MVAR) models. For illustration, a bivariate AR model with
variables xi and x j and N past time points is represented as

xi(t) =
N

∑
n=1

a1,nxi(t−n)+
N

∑
n=1

a2,nx j(t−n)+ εi(t)

x j(t) =
N

∑
n=1

a3,nxi(t−n)+
N

∑
n=1

a4,nx j(t−n)+ ε j(t)

(2.10)

with uncorrelated noise terms εi(t) and ε j(t) and AR model coefficients ak,n describing the
contribution of xi(t) and x j(t) at past time points.
The correct order N of an AR model can be determined by minimizing the Akaike
Information Criterion (AIC; Akaike, 1974) or applying other commonly used criteria
like the Bayesian Information Criterion (BIC; Schwarz, 1978) or Akaike Final Prediction
Error Criterion (FPE; Niedzwiecki and Ciolek, 2017). Depending on the distribution of the
noise terms, approaches like ordinary least squares regression or Yule-Walker equations
may be implemented to estimate the coefficients of AR models (Schlögl, 2006).
The concept of Granger causality can also be applied in the frequency domain (Geweke,
1982) by Fourier transforming equation 2.10(

a1( f ) a2( f )

a3( f ) a4( f )

)(
xi( f )

x j( f )

)
=

(
Ei( f )

E j( f )

)
(2.11)

where the components of the coefficient matrix A( f ) are defined as

a1( f ) = 1−
∞

∑
j=1

a1 je−i f j a2( f ) =−
∞

∑
j=1

a2 je−i f j

a3( f ) =−
∞

∑
j=1

a3 je−i f j a4( f ) = 1−
∞

∑
j=1

a4 je−i f j
(2.12)

To obtain the so called spectral transfer matrix or transfer function H( f ), equation 2.11 can
be rearranged as
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(
xi( f )

x j( f )

)
=

(
Hii( f ) Hi j( f )

H ji( f ) H j j( f )

)(
Ei( f )

E j( f )

)
(2.13)

The transfer function is the inverse of the coefficient matrix H( f ) = A−1( f ) with the
components

Hii( f ) =
1

det(A)
a4( f ) Hi j( f ) =− 1

det(A)
a2( f )

H ji( f ) =− 1
det(A)

a3( f ) H j j( f ) =
1

det(A)
a1( f )

(2.14)

and the elements Hi j( f ) of the transfer matrix describing the information transfer of the
network from channel i to channel j.
Granger causality in the frequency domain as introduced in the preceding section is
based on parametric methods (AR models). An alternative approach is the derivation
with non-parametric methods using Fourier transformation or wavelet based methods.
Non-parametric estimation of the transfer matrix builds upon the factorization of the
cross-spectral density (CSD) matrix (Wilson, 1972) into a noise covariance matrix Σ and
transfer function H( f )

S( f ) = H( f )ΣH∗( f ) (2.15)

where ∗ denotes matrix adjoint. A comparison between parametric and non-parametric
estimation of Granger causality for simulated data with comparable results was done by
Dhamala et al. (Dhamala, Rangarajan, and Ding, 2008). However, non-parametric methods
have the distinct advantage that they do not depend on the estimation of the AR model order.
The choice of an eligible model order can be challenging as it is strongly data dependent
(Kamiński and Liang, 2005). On the downside, the factorization of the transfer function with
non-parametric methods requires smooth gradients of the CSD matrix to assure stability
and convergence.

2.3.2 Measures of Functional Connectivity

A fundamental and widely used method to detect synchronized activation of cortical areas
is coherency. It is defined as the normalized cross-spectrum of two zero-mean time series
xi(t), x j(t) and their Fourier transforms xi( f ), x j( f ) of channels i and j, respectively (Nunez
et al., 1997).
With the cross-spectrum defined as

Si j( f ) =
〈
xi( f )x∗j( f )

〉
(2.16)

where 〈〉 means expected value, coherency is complex valued Chyi, j( f ) ∈ C and is written
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as

Chyi, j( f ) =
Si j( f )√

Sii( f )S j j( f )
(2.17)

Lachaux et al. (Lachaux, Rodriguez, Martinerie, and Varela, 1999) pointed out that
coherency can only be applied to stationary signals since it is usually computed over
multiple trials with the same spectral properties. However, it is rather the interpretation
of coherency results that must consider a stationary as well as a non-stationary process
(Nolte et al., 2004). Furthermore, coherency is a measure that is sensitive to phase and
amplitude correlation. Although the two parameters are mathematically independent from
each other, the phase structure of weak signals can be distorted by noise leading to erroneous
connectivity estimations (Nolte et al., 2004).
Coherence, also known as magnitude-squared coherency, is defined as the absolute value of
coherency

Cohi j( f ) =
∣∣Chyi j( f )

∣∣2 = ∣∣Si j( f )
∣∣2

Sii( f )S j j( f )
(2.18)

The normalization of coherence compensates for large values in the cross-spectral density
matrix that result from large amplitudes. Coherence has a value range bounded by 0 to
1, with lower values indicating less correlation and is used to identify the connection
strength between two signals, but does not discriminate between instantaneous (zero time
lag) correlation and actual time-delayed correlation (Nunez et al., 1997, Haufe et al., 2013).
Another disadvantage of coherence, just as coherency, is its inability to differentiate between
direct and indirect connections. Direct connections describe the information flow from
source 1 to source 2 without an interposed third source, whereas indirect connections
indicate information flow via a third source 3 (figure 5). In order to distinguish, whether
channels are associated by a direct or indirect connection, different techniques are required.

Figure 5: Direct (left side) and indirect (right side) information flow between two source 1
and 2.
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One of the methods that is able to differentiate between direct and indirect links, is partial
coherence. It was introduced by Franaszczuk (Franaszczuk, Blinowska, and Kowalczyk,
1985) and is defined as

PCohi j( f ) =
Mi j( f )√

Mii( f )M j j( f )
(2.19)

where Mi j( f ) denotes the minor of the cross-spectral density matrix Si j( f ). Mi j( f ) is
obtained by calculating the determinant of a sub-matrix formed by deleting the i-th row and
j-th column of Si j( f ).
The above-mentioned functional connectivity methods refer to the cross-spectral density
Si j( f )

Si j( f ) = rir jei(φi−φ j) = rir jei∆φi j (2.20)

with ∆φi j being the phase difference between the signals xi( f ) and x j( f ) at a specific
frequency f . As the CSD matrix is weighted with the product of the signals amplitudes ri

and r j, the connectivity estimations based on the CSD matrix are also amplitude-weighted.
However, it can be helpful to separate the phase component from the amplitude component in
order to investigate how each part effects the relationship between two signals independently.
The phase-locking value (PLV), introduced by Lachaux (Lachaux et al., 1999) is based on
this approach. It is defined as the sum of phase differences between two signals at time t,
averaged over N trials

PLVi j( f ) =
1
N

∣∣∣∣∣ N

∑
n=1

ei(ϕi,n−ϕ j,n)

∣∣∣∣∣ (2.21)

with ϕi,n defining the phase angle of signal i and n indexing the N trials. PLV measures the
variability of the phase difference between two signals within trials. If the phase difference
is stable across the trials, PLV is close to 1, on the other hand, if the signals are independent,
the phase angle will have a uniform distribution and lead to a PLV of 0. As stated earlier
in this section, the phase of a signal is mathematically independent from its amplitude.
However, applying simulated and real data examples, it can be demonstrated that noise can
destroy the phase information of weak signals (Nolte et al., 2004). Therefore, it is possible
that coherence might give better results for the estimation of the phase synchrony between
two signals than the phase-locking value.

2.3.3 Measures of Effective Connectivity

The connectivity methods introduced in the preceding section examine the similarity of
two time-series in a statistical manner and serve as estimators for functional connectivity.
However, they do not disclose the directionality of information flow and cannot estimate
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causal relationships.
Nolte (Nolte et al., 2004) proposed an effective connectivity method to reconstruct causal
relations that is derived from coherency. He suggested to neglect the ”volume-conducted”
real part of coherency and only to look at the imaginary part, because this component
necessarily reflects time lagged interaction between sources and ignores instantaneous
correlation. Furthermore, he states that the imaginary part is insensitive to artifacts of
volume conduction, as volume conduction cannot create an imaginary part. The method
denominated as imaginary part of coherency is expressed as

iChyi j( f ) = imag
(
Chyi j( f )

)
(2.22)

Values of imaginary part of coherency range between −1 and 1, with positive values
indicating that xi occurs earlier than x j and therefore information seems to flow from source
xi to x j. However, the estimation of the directionality for a specific frequency may be
ambiguous in its interpretation, since, for example, a 10 ms advance cannot be distinguished
from a 90 ms delay for a 10 Hz frequency. To overcome this problem, Nolte proposed
another estimator that sums up the information within a frequency band of interest to
robustly determine the direction of causal relationships between time-courses (Nolte et al.,
2008). This estimator is called phase slope index (PSI) and is written as

Ψi j = imag

(
∑
f∈F

Chy∗i j( f )Chyi j( f +δ f )

)
(2.23)

where F denotes the set of frequencies, with frequency resolution δ f , over which the slope
is summed. Due to the fact that the PSI is based on the imaginary part of coherency, it is
insensitive to mixtures of non-interacting sources (Nolte et al., 2004, Nolte et al., 2008).
Furthermore, Nolte compares PSI to Granger causality and points out that PSI is superior in
cases where unidirectional flow and undirected noise are simulated, since Granger causality
fails to differentiate between the two effects.
The following effective connectivity methods are based on the transfer matrix H( f ) and the
noise covariance matrix Σ. Depending on how these matrices are calculated, the respective
methods are seen as model-based (if the matrices are calculated using AR models) or
non-parametric (if Fourier or wavelet based techniques are applied to estimate the matrices).
The frequency-dependent Granger causality (GC; Geweke, 1982, Dhamala et al., 2008) is
expressed as

GCi j( f ) = ln

 S j j( f )

S j j( f )− (∑ii−
∑

2
ji

∑ j j
)
∣∣H ji( f )

∣∣2
 (2.24)

A time-series xi( f ) is defined to Granger-cause time-series x j( f ) for a specific frequency f ,
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if GCi j( f ) is significantly greater than 0.
Another methods that was proposed by Kaminski and Blinowska (Kamiński and Blinowska,
1991) is directed transfer function (DTF)

DT Fi j( f ) = γ
2
i j( f ) =

|Hi j( f )|
N

∑
k=1
|Hik( f )|

(2.25)

DTF is, in contrast to Granger causality, a normalized connectivity estimator ranging from
0 to 1. It can be interpreted as the ratio of the information flow from channel j to i, divided
by the total inflow to channel i. A downside of DTF is its inability in the distinction of
direct and indirect connections between signals. In order to compensate for this weakness
of DTF, Korzeniewska (Korzeniewska et al., 2003) defined two new measures. The full
frequency directed transfer function (ffDTF) represents a different normalization of DTF
and is expressed as

f f DT Fi j( f ) = η
2
i j( f ) =

|Hi j( f )|2

∑
f

N

∑
k=1
|Hik( f )|2

(2.26)

By summation over the whole frequency range, the dependence of the denominator on
frequency is eliminated. However, just as DTF, ffDTF is still not able to detect differences
between direct and indirect connections. Therefore, Korzeniewska introduced the direct
directed transfer function (dDTF; Korzeniewska et al., 2003), which connects information
from partial coherence and the ffDTF

dDT Fi j( f ) = PCohi j( f )× f f DT Fi j( f ) (2.27)

Due to the combination of PCoh, which is able to distinguish between direct and indirect
connections and ffDTF, the strength of only direct connections between two channels will
be exposed. However, partial coherence is prone to an effect called marrying parents of a
joint child (Winterhalder et al., 2005). This refers to the analysis of two (parents) time-series
with a causal relationship to a third (child) time-series. In this case partial coherence,
and therefore dTDF as well, will detect a non-existing causal link between the parents
time-series. dDTF values are in the interval [0; 1], where higher values indicate higher
interaction between the channels.
Partial directed coherence (PDC; Baccalá and Sameshima, 2001) has been introduced to
reconstruct causal relationships in multivariate systems. It is based on Granger causality
and uses the Fourier transformed coefficient matrices of equation 2.12
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PDCi j( f ) = πi j( f ) =
ai j( f )√

N

∑
k=1

aki( f )ak j( f )

(2.28)

The normalization in the equations of the DTF and the PDC is a significant difference
between both analysis techniques. PDC quantifies the connectivity between time-series
j and i with respect to all connections of j to other components of the analysed network,
satisfying the equation

N

∑
i=1

∣∣πi j( f )
∣∣2 = 1 (2.29)

Moreover, PDC, compared to DTF, has the great benefit that the inversion of the coefficient
matrix A is not necessary for its calculation. This not only leads to a computational
advantage, but also the fact that PDC is able to distinguish between direct and indirect
connections (Astolfi et al., 2006). Both estimators, and their derivatives, along with the
incentive to choose one metric over the other, are examined in more detail in Blinowska et
al. (Blinowska, 2011).
More recently, Astolfi (Astolfi et al., 2006) proposed a new variation of PDC called the
squared partial directed coherence (sPDC)

sPDCi j( f ) =
|ai j( f )|2

N

∑
k=1
|ak j( f )|2

(2.30)

The modification of squaring the AR coefficients leads to an increase in the sensitivity of
the PDC (Astolfi et al., 2006).
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Simulation Model

As described in the previous chapter, different functional and effective connectivity
estimators are based on different underlying mathematical concepts or address various
aspects of connectivity. This complicates not only the choice of the connectivity method that
is best suited for a particular type of data analysis, but also makes it difficult to evaluate the
quality of different connectivity results, as a ground truth solution is generally unavailable
for real electromagnetic recordings. For these reasons, it is essential to analyse simulated
data with a predefined ground truth and known properties to be able to identify and compare
strengths and weaknesses of particular methods.
The goal of this work is to compare the performance of various connectivity estimators
based on a simulation framework that meets the following criteria:

• High degree of realism: simulated neurophysiological data generated by a known
architecture provides the possibility to assess the effect of various parameters.
However, in order to enable the transfer of knowledge gained by simulation studies to
real world applications, simulative techniques must not be over-simplified.

• Standardisation: various simulation studies investigating the performance of
connectivity estimators have been proposed in the last decades, with some of them
implying highly differentiated approaches. The degree of technical complexity and
innovation varies considerably between the studies, leading to an essential aggravation
or even impossibility to compare results and findings. For this reason, this work makes
use of well established standards.

• Statistical evaluation: in order to point out significant differences between results and
thus measure the quantitative effect of certain parameters on connectivity estimators
it is essential to carry out statistical tests.

• Expandability: the modular structure of the simulation architecture easily enables
enhancing or exchanging parts of the simulation to use (e.g.) more complex modelling

46
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techniques and implement other inverse source reconstruction methods or connectivity
estimators.

Figure 6: Schematic layout of the simulation pipeline, that is divided into four modules,
covering the domains of signal generation, inverse source reconstruction, connectivity
analysis and statistical evaluation. In the first step (top-left), all characteristics of the
simulated network (blue network links) and the properties of the data set need to be defined,
prior to the computation of the simulated recording via forward modelling (top-right).
Subsequently, inverse source analysis methods are applied to estimate the temporal activity
of active brain regions (bottom-right). The resulting source-waveforms are then used to
reconstruct the network (bottom-left; red network links). Finally, the simulated and the
reconstructed network are statistically compared to obtain a measure for the accuracy and
reliability of each connectivity method.

The working principle and the entire composition of the simulation is shown in figure
6. Prior to the start of the simulation pipeline, various parameters must be defined to
determine the characteristics of the network and the properties of the electromagnetic data,
as well as modelling and analysis techniques. On that basis, the simulation starts with the
generation of the underlying cortical network and calculates the expected EEG or MEG data.
The additional step of forward modelling with subsequent inverse source reconstruction



Chapter 3. Simulation Model 48

allows incorporating and considering parameters and effects that might affect the outcome
of connectivity analysis. The estimated waveforms of active cortical sources are used to
reconstruct the cortical network by applying multiple functional and effective connectivity
methods. As the last step, a statistical evaluation needs to be performed to check for stability
and convergence of the solutions and to test for significant differences when comparing the
reconstructed network against the ground truth.
This section introduces a comprehensive simulation architecture that was designed and
implemented to evaluate and assess connectivity methods. The framework is divided into
four modules that cover the domains of signal generation, inverse source reconstruction,
connectivity analysis and statistical evaluation. The extent and complexity of the individual
simulation stages are described in detail in the following sections.

3.1 Signal Generation

The initial part of the simulation pipeline covers the spatio-temporal characterization of
the cortical network to be modelled, the addition of neural and sensor noise, as well
as the forward modelling, to obtain simulated electromagnetic data. This component
was completely developed using MATLAB 7.4.0.287 (The MathWorks, Inc., Natick,
Massachusetts, United States) and the MATLAB-based open-source toolbox Fieldtrip
(Oostenveld, Fries, Maris, and Schoffelen, 2011).

3.1.1 Definition of Cortical Networks and Neural Noise

The simulation architecture provides two types of models to generate activity for a predefined
number of distinct cortical sources: a multivariate-autoregressive (MVAR) approach and
a model that uses band-pass filtered Gaussian noise time-courses as the basis for cortical
activity.
MVAR models, as introduced in equation 2.11 for the bivariate case, offer the advantage of
defining the time-delayed linear influences from one source to another directly by setting
the respective off-diagonal entries of the coefficient matrix A( f ) to non-zero values. For
the simplified example of only two sources (equation 2.11), a unidirectional influence
of time-series xi(t) on x j(t) can be achieved by setting the coefficients a2( f ,n), with
n ∈ {1, ...,P}, to zero for all time-lags n, while a3( f ,n), with n ∈ {1, ...,P} are generally
non-zero values. This principle can easily be extended to networks consisting of a larger
number of active cortical areas and the required number of time-lags. Because of this high
flexibility and individual adaptability, MVAR models are widely used in the generation of
simulated electromagnetic recordings (Astolfi et al., 2007, Florin et al., 2010, Wu et al.,
2011, Silfverhuth et al., 2012).
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The second option to generate coherent source waveforms is to use a joint signal for
interrelated sources. In this work, a Gaussian white noise signal serves as such a common
input signal, as illustrated in figure 7.

Figure 7: Simulation of coherent activity for two sources located in the left and right
auditory cortex using a band-pass filtered Gaussian noise signal. A band-pass filter (with
a width from 24 Hz to 28 Hz) is applied on a Gaussian white noise signal (a) to obtain a
source waveform centred around the frequency of interest (b). A causal dependency between
signals (c) is created by introducing a phase shift. Individual white noise is added to each
individual waveform (d). Positions of active cortical regions are determined by placing
dipoles in the respective brain areas (e).

By applying a band-pass filter on the base signal with a width covering the frequency range
of interest (figure 7 shows a band-pass filtered signal with a frequency range of interest
from 24 Hz to 28 Hz), only spectral components remain that are of particular focus for
subsequent connectivity analysis. Furthermore, the band-pass filtered signal may be shifted
by a specific phase to simulate uni-directional information flow from one source to another.
In the final step of generation of correlated source waveforms, white noise is then added to
the individual waveforms.
Both approaches take neither the absolute position of the respective source in the human
brain nor the relative position of sources to each other into account and are therefore
completely independent from the position and orientation of the modelled cortical areas.
This allows, on the one hand, an unrestricted choice for the simulation of activated brain
regions and enables the simple adaptation of modelled activity for different simulations
and iterations. On the other hand, studies (Vander, Sherman, and Luciano, 2001, Wen
and Chklovskii, 2005) showed that the relative position of sources to each other and thus,
the distance or wiring length does affect the communication between distinct areas. In
particular, the time lag of information flow between regions is influenced by this parameter.
In the present simulation study, this effect on cortical networks is not considered.
Besides the active regions of the correlated cortical network, further noise sources,
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distributed in the entire brain space, are used to simulate non-correlated background activity.
Locations and orientations of up to 29 regional sources are randomly chosen, as shown in
figure 8. The list of labels and positions for each source is given in table A7.

Figure 8: Position of noise sources (29 regional sources) used to simulate independent
background noise. Regional source were placed randomly with a minimum distance between
sources of at least 20 mm and orthogonal orientations. For the simulation of EEG recordings,
regional sources consisted of dipoles with three orthogonal orientations. In this image, the
surfaces of scalp and brain layers are shown in transparent colour.

Waveforms of these noise sources are defined using three types of noise: Gaussian white
noise, pink noise (noise with a frequency spectrum where the power spectral density is
inversely proportional to the frequency) and real EEG noise. Realistic noise waveforms
were retrieved from an auditory EEG experiment.

3.1.2 Simulation of EEG and MEG Recordings

Forward modelling requires information about the specific head model used in the simulation
process, as well as the EEG or MEG sensor configuration and the position and orientation
of active brain regions to simulate electromagnetic recordings.
Due to the modular design of the simulation architecture, different types of head models are
provided for forward modelling and further models can be integrated without difficulty. The
head models implemented include: single-shell sphere (MEG only, Sarvas, 1987), spherical
3-shell model (Geselowitz, 1967), age-appropriate template models (Richards and Xie,
2015) and individual finite-element models (Yan et al., 1991, Wolters et al., 2006). The
impact of head model selection and accuracy of tissue compartment geometry on EEG
forward modelling has been considered in several studies (Hallez et al., 2007).
In each simulation run, active cortical regions are represented by dipoles. The centre
locations of distinct brain regions are required to be at least 40 mm away from each
other to reduce errors in the correct separation of cortical activity during inverse source
reconstruction. Moreover, dipole locations are restricted to have a maximum source depth,
which is the Euclidian distance between the dipole centre and the cortex surface, of 40 mm.
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For all simulation scenarios, the number of modelled cortical regions, excluding additional
noise sources, ranged between 4 and 10 areas.
EEG and MEG scalp topographies are then computed by summing up the contributions
from all sources using equation 2.2, with electrode positions defined in the 10-5 electrode
placement system (Oostenveld and Praamstra, 2001).
After the scalp topographies for the modelled brain activity of interest and the background
noise have been estimated, the noise signals need to be scaled to the desired signal-to-noise
ratio before combining both topographies to obtain a simulated electromagnetic recording.
SNR is defined as the ratio of signal power PS to the noise power PN . The SNR for a single
sensor is then computed as

SNR =
PS

PN
(3.1)

For multi-trial evoked response recordings, SNR is typically calculated in the time-domain,
resulting in an estimation of signal quality for the entire frequency spectrum. However,
due to the decrease in power with increasing frequency in the spectrum of measured
electromagnetic brain signals, this approach may not reflect the precise proportion of signal
and noise for the selected frequency range of interest. For this reason, the SNR is calculated
in the frequency-domain using the power spectral density of the brain PSDS( f ) and noise
topographies PSDN( f )

SNR( f ) =
PSDS( f )
PSDN( f )

(3.2)

Depending on the frequency range of interest, the respective spectral components of the
noise signal are scaled to obtain the required SNR (figure 9). Simulations considering a
broad yet realistic range of SNR ranging from 0.1 up to 15 are carried out to reveal the
influence of SNR on connectivity estimators (see chapter 4.2).
To provide an undistorted view on the effect of SNR, it should be noted that it is vital
to avoid large differences in the signal-to-noise ratios between single sensors as this may
lead to asymmetries in connectivity estimators like Granger causality. This distortion of
causal dependencies driven by SNR differences has been defined by Haufe et al. as “weak
asymmetries” (Haufe, Nikulin, and Nolte, 2012).

3.2 Inverse Source Reconstruction

Inverse source reconstruction is vital for connectivity analysis, as the interpretation of
connectivity measures from EEG or MEG sensor level data is non-trivial and results do
not necessarily reflect insights in the information flow between interacting cortical regions.
This is mainly due to the effect of volume conduction, which precludes a direct connection
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Figure 9: Waveforms (top) and power spectral density (bottom) of brain and noise signal.
Power spectra of brain signal show a distinct peak for the frequency range of interest (24
Hz to 28 Hz).

and relationship between the sensor time-series and the source waveforms of activated
brain areas (Nunez and Srinivasan, 2006; Haufe et al., 2013). Depth and orientation of
sources have a great influence on how a source is projected to the sensors. Furthermore, the
application of connectivity estimators on sensor data can lead to the detection of spurious
connections (Schoffelen and Gross, 2009, Vinck et al., 2015; Bastos and Schoffelen, 2016).
To resolve these difficulties, inverse source reconstruction methods will be implemented
to reconstruct the temporal dynamics of cortical areas from EEG and MEG sensor data.
However, this approach does not guarantee an error-free identification of the network in the
source space, as the inverse solution is strongly influenced by the selected reconstruction
method and the volume conductor model. Besides, volume conduction effects can also
never be entirely resolved in source space and may lead to spurious connections between
sources (Palva and Palva, 2012). This issue is particularly relevant in the evaluation of
real neurophysiological data. Therefore, it is of great importance to analyse how certain
parameters of inverse source reconstruction affect the results of connectivity estimators.
The simulation framework makes use of brain source montages (Scherg, Ille, Bornfleth, and
Berg, 2002; Scherg et al., 2004) to transform simulated EEG and MEG recordings back into
the source space. Source montages estimate the time-course of active brain regions modelled
by either dipoles or regional sources. Therefore, a spatial filter is applied to separate the
source activities that overlap at the scalp surface, given that the modelled current dipoles
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(and regional sources) account for all active cortical areas (figure 10). Spatial filters of a
source montage modelling multiple active brain regions are computed by generating a linear
inverse operator of the leadfield matrix L (Mosher, Lewis, and Leahy, 1992; Scherg, 1990).
For each source, the spatial filter is designed in a way that it tries to fully recover the source
activity at the respective brain area, whereas activation from different regions in the brain is
completely suppressed (Scherg et al., 2002). The data matrix D for the recorded signals at
scalp surface is described as a linear overlap of N active sources at the respective position r

and source waveform Sn.

D =
N

∑L(r,n)Sn +noise (3.3)

The temporal activity pattern of each source can be reconstructed by inverting the leadfield
matrix L(r,n):

Sn = L−1(r,n)D−L−1(r,n)∗noise (3.4)

Each row of the spatial filter L−1 is a linear operator reconstructing one source waveform.

Figure 10: Transformation of an EEG recording to source space using a source montage.
The topographic map (left) shows the voltage surface distribution for a single time-point. A
brain source montage with 4 current dipoles (middle) is used to separate the spatially and
temporally overlapping surface signals. The resulting source-waveforms (right) represent
the time-varying activity pattern for each of the modelled brain regions.

The application of source montages enables to minimize effects on connectivity estimators
that may occur during forward modelling and inverse source reconstruction. This is essential
for single simulation runs that focus on a parameter that is not associated with source analysis.
On the other hand, this approach offers the option to incorporate parameters that are relevant
for inverse source reconstruction and to simulate errors in the estimated localization and
orientation of active cortical regions.
Like in the forward modelling process, the volume conductor model used for source
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Table 3.1

Taxonomy of connectivity methods implemented in the simulation architecture.

Model-free Model-based
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Amplitude correlation
Power correlation
Coherence Coherence (MVAR)
Phase-Locking Value Phase-Locking Value (MVAR)
Pairwise-Phase Consistency
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Imaginary Part of Coherency Imaginary Part of Coherency (MVAR)
Granger Causality
Granger Causality (MVAR)
Directed Transfer Function
Directed Transfer Function (MVAR)
Partial Directed Coherence
Partial Directed Coherence (MVAR)
squared Partial Directed Coherence

Phase-Slope Index Phase-Slope Index (MVAR)

reconstruction can be selected from several types of head models. It should be noted that
the simulation architecture supports selecting different head models for forward modelling
and inverse source reconstruction to simulate modelling errors produced by the differences
between the volume conductor models. Further deviations, including skull thickness and
electrical conductivities of the head tissues, can be included in simulation runs. This serves
the purpose of creating realistic simulations as in practice, the volume conductor model can
only be an approximation of the true head volume conductor.
Inverse source reconstruction of simulated neurophysiological data using source montages
was performed in BESA Research 6.1 (BESA GmbH, Germany).

3.3 Connectivity Analysis

Estimation of connectivity measures is performed on the source waveforms of active cortical
regions. The systematic analysis includes functional as well as effective connectivity
estimators. Both types of estimators can be further subdivided into model-free methods
and measures that build upon a certain model. Model-based methods make assumptions
regarding the interaction between signals. This includes autoregressive (AR) modelling as
well as the statistical concept of Granger causality. Table 3.1 provides an overview on the
categorization of connectivity analysis methods used in the simulation architecture.
All methods based on AR modelling use a a stepwise least squares estimation to compute
coefficients of the MVAR model. The model order is chosen as the optimizer of Schwarz’s
Bayesian Criterion (Schwarz, 1978).
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Reconstructed source waveforms of active brain regions were split up into trials of 2 s for
connectivity estimation. It should be noted that the performance of connectivity estimates
are biased by epoch length. The severity of the effect depends on the properties of the
underlying data set and varies for different methods as shown in previous studies (Vinck,
Oostenveld, van Wingerden, Battaglia, and Pennartz, 2011, Chu et al., 2012, Bonita et al.,
2014, Fraschini et al., 2016).
The results of a connectivity estimation are visualized as a square matrix of graphs with
number of sources columns and rows, as shown in figure 11. Each graphs displays the
connectivity spectrum (y-axis) for each frequency (x-axis) between the two respective
sources.

3.4 Performance Measures and Statistical Evaluation

After reconstructing the simulated brain network using different connectivity methods,
it is important to assess whether and to what extent the simulated connections between
cortical areas have been correctly recovered. Moreover, particular attention should be
given to spurious connectivity, indicating wrongly reconstructed links between areas that
are have not been defined in the simulated network. Figure 11 shows the connectivity
spectra of Granger causality for a cortical network of 4 sources. Spectra calculated before
forward modelling are indicated in blue, whereas spectra estimated after inverse source
reconstruction are indicated in red.

Figure 11: Comparison of connectivity spectra for Granger causality of simulated brain
network (blue) and reconstructed network (red). The network comprised 4 active brain
regions with a frequency interval of interest of 24 Hz to 28 Hz, indicated by the grey dashed
lines.

Connectivity matrices (also known as correlation matrices) of the simulated and the
reconstructed network measuring the performance of each single connectivity method
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can incorporate methodological errors that may ultimately lead to considerable deviations
in the connectivity estimation. Comparisons among methods are therefore difficult and
must be interpreted only with great caution. To prevent and limit method-based errors, it is
necessary to introduce a ground truth matrix. This binary matrix points out connected and
unconnected nodes as defined in the configuration, at the start of each simulation experiment.
Before applying statistical measures, connectivity spectra of the simulated network are
multiplied with the ground truth matrix to set all spectra for unconnected pairs of network
nodes to zero.
To measure the performance of each connectivity estimator, two approaches were
implemented with both of them emphasizing different aspects of reconstructed networks.
One important feature to depict cortical networks by analysing multi-channel recordings
is to identify links between network nodes. For this reason, a performance measure was
introduced to evaluate the reconstruction rate in terms of a binary classifier.
It should be noted that inverse source reconstruction and connectivity analysis are
considering exactly the same number of active cortical areas that were used to generate
the respective electromagnetic recording. This provides an equivalent representation of all
nodes between simulated and reconstructed networks and allows a comparison of each pair
of nodes.
A measure of correctly or incorrectly identified network links offers only a binary
classification and therefore does not consider the coupling strength between two sources. It
also means that incorrectly identified links are graded in the same way, independently of the
strength of the network connection. For this reason, a second measure is calculated that also
takes the connectivity matrices of the simulated and reconstructed network into account.
The two performance measures are introduced in the following sections.

3.4.1 Binary Classification Testing

The first performance measure focusses on the correctly or incorrectly identified network
links between two nodes of the reconstructed network and compares them to the ground
truth of the simulated network across a range of thresholds. This method provides a binary
classification and is similar to the performance measurement as introduced by Drakesmith
(Drakesmith, 2012). The true positive rate (TPR) and false positive rate (FPR) were
calculated from the comparison of both networks thresholded at 100 equally spaced values
from the minimum to the maximum values in the connectivity matrix. TPR measures
how many true positive results arise among all positive results, whereas FPR specifies the
ratio between false positive results and all negative results. For each threshold level, the
receiver operating characteristic (ROC) curve was created from the values provided by
both metrics. Finally, to summarize the ROC curve into a single number, the area under
the ROC curve (AUC) was calculated integrating the ROC curve using the trapezoidal
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rule. The resulting value quantifies the ability of the test to distinguish between network
reconstructions. Multiple iterations of each simulated scenario need to be carried out to
obtain reliable results for AUC values and to be able to estimate their variance. Therefore,
one of the first simulations must aim at determining the required number of iterations
for subsequent experiments. Results of AUC values for each connectivity estimator are
visualized using boxplots. An example of AUC results for Granger causality are shown in
figure 12.

Figure 12: Result of AUC for Granger causality over varying SNR levels. The central mark
in each box indicates the median and the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers. Outliers are plotted individually using the ’+’ symbol.

3.4.2 Frobenius Norm

The performance indicator based on binary classification outlined in the previous section
constitutes an important input to estimate the quality of a reconstructed network. A
disadvantage of this binary categorization is the fact that incorrectly identified links are
graded in the same way, not taking the coupling strength between two sources into account.
As a consequence, links between sources with very low connections strength are valued in
the same way as links with a high correlation, even though they are not of equal importance
for the entire network.
For this reason, a second measure is calculated that also takes the connectivity matrices
of the simulated and reconstructed network into account. This measure is based on the
Frobenius norm (also known as Schur norm) outlined by Astolfi et al. (Astolfi et al., 2007).
It is a matrix norm derived from the Euclidean norm. The Frobenius norm of a m×n matrix
A is defined as the square root of the sum of the absolute squares of its elements

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|ai j|2 (3.5)

To measure a connectivity estimators performance of correctly reconstructing cortical
networks, the Frobenius norm is calculated between the simulated connectivity matrix Apre

(defined at the start of the respective experiment) and the connectivity matrix Apost for the
reconstructed network, estimated after forward modelling and inverse source reconstruction.
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The distance measure providing a quality indicator of network reconstructions can then be
expressed as

‖Apre( f̄ )−Apost( f̄ )‖F =

√
m

∑
i=1

n

∑
j=1
|apre

i j ( f̄ )−apost
i j ( f̄ )|2 (3.6)

with ai j( f̄ ) specifying the mean connection strength from source i to source j in the
frequency band f̄ .

3.4.3 Analysis of Variance

Both performance measures, AUC and Frobenius norm, enable the classification of the
efficiency and precision of connectivity estimators. In combination with visualizing
results using boxplots, a comparability among different connectivity methods for varying
parameters (e.g. SNR, data-length, etc.) can be achieved. However, it does not become
sufficiently clear whether there are significant differences between distinct methods or
parameter values, since this graph does not serve as qualitative evidence on their statistical
difference. In order to be able to compare the quality of results and to draw conclusions on
systematic effects or random fluctuations, it is necessary to apply further statistical methods
analyses.
Analysis of variance (ANOVA) for a single variable (one-way ANOVA) and multiple,
categorical independent variables (two-way ANOVA) were implemented based on results
from AUC and Frobenius norm to gain such mathematical proof. One-way ANOVAs were
used to determine whether there are any statistically significant differences between the
means of two or more samples. Subsequently, post-hoc tests are carried out to identify the
significance of detected differences. To examine the influence of two or more different
independent variables (e.g. effect of SNR levels and connectivity methods), two-way
ANOVAs need to be applied to reveal not only the main effect of each independent variable
but also if there is any interaction between them.



Chapter 4

Simulations

In this chapter, the performance of functional and effective connectivity estimators under
several conditions is evaluated. Various simulation runs are performed to assess the effect
of specific parameters that are of vital importance during the simulation, preprocessing and
analysis of realistic EEG recordings. A statistical analysis, as introduced in section 3.4, is
applied to the results obtained in each of the experiments to point out significant differences
and characteristics of the connectivity estimators.
Nine simulation experiments are presented in this chapter. Section 4.1 evaluates the
required number of iterations for each simulation run to obtain robust and stable results. In
section 4.2 the influence of the signal-to-noise ratio (SNR) is shown. The simulation run
outlined in section 4.3 takes multiple data lengths into account and tests the effectiveness of
connectivity estimators over varying data intervals. Section 4.4 considers source connections
with different phase shifts. The sections 4.5 and 4.7 deal with the positions of cortical
sources and investigate the differences between random source positions versus fixed
source positions for each iteration (section 4.5) and demonstrate the influence of source
localization errors on connectivity estimators (section 4.7). The main focus of the experiment
presented in section 4.6 is put on the regularization constant (RC) used during inverse source
reconstruction. Section 4.8 considers networks with varying numbers of active cortical
sources and connections between them. The last simulation covered by this chapter (section
4.9) evaluates the effect of varying numbers of sensors that are taken into account during
inverse source reconstruction.
Each of the following chapters, describing single simulation experiments, are divided
into three parts: the ”Simulation Setup” section describes the selected parameters of the
respective simulation, for example the number of network sources or the head model used
for forward modelling or inverse source reconstruction. It should be noted that some key
parameters are not kept constant, but vary due to deviating conditions and requirements
between experiments. For example, regularisation may be changed to improve source
analysis for different networks. The common set of connectivity estimators, that are
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assessed for each of the eight experiments, are coherence, DTF, PDC and Granger causality.
Besides, the simulations analysing the effect of SNR (section 4.2), data length (section 4.3)
and phase shifts (4.4) also evaluate the performance of imaginary part of coherency. The
findings of connectivity estimation comparing the simulated and the reconstructed network
are presented in the ”Results” section. Moreover, this part of each simulation chapter also
shows the outcome of Frobenius norm and AUC visualized using boxplots. Conclusions
and implications with regard to the respective focus of the particular simulation run are
outlined in the ”Discussion” section.
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4.1 Simulation I - Convergence and Stability

The first simulation scenario is used for verification and calibration of the entire simulation
pipeline, as well as to determine the required number of iterations per simulation run to
produce reliable and reproducible results. Furthermore, this is also essential for defining
settings and preferences for future simulations.

Simulation Setup

The simulated cortical network consisted of four dipoles as shown in figure 13. Sources one
and two were connected in a frequency range of 24 Hz to 28 Hz using a common band-pass
filtered Gaussian noise signal, whereas the sources three and four remained unconnected.
The coordinates and orientations of each source are listed in table A2. To simulate cortical
background noise, 20 noise sources, carrying white noise signal, were distributed in the
brain space.

Figure 13: Top view of head model and network used in simulation I - Convergence and
Stability. The network consists of four nodes with a bidirectional connection between
sources one (red) and two (green). A concentric three-shell (brain, skull and scalp
compartment) head model was used for forward modelling and inverse source reconstruction.
Fiducials (nasion, left and right pre-auricular points) are indicated as purple spheres.

Forward modelling and inverse source reconstruction was performed based on a three-shell
head model (see figure 13) defining the brain, skull and scalp compartments with
conductivity values of 33 mS/m, 0.40 mS/m and 33 mS/m, respectively. EEG potentials at
31 scalp electrodes were simulated with 13 SNR values ranging from 0.1 to 15. The labels
and coordinates of the EEG sensors are indicated in table A9. Each simulated data set has a
total length of 100 s at a trial length of 2 s and a sampling rate of 256 Hz.
Inverse source reconstruction was realised using a source montage with identical
dipole positions and orientations as used for forward modelling to avoid errors due to
mislocalization of active cortical regions. A regularization factor of 5% was applied.
For the number of iterations, 11 levels (10 iterations to 200 iterations) were chosen to
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determine the required number of iterations for future simulations. In each iteration, a data
set with the characteristics mentioned above was generated and analysed. An overview on
the settings for this simulation is shown in table 4.1.

Table 4.1

Overview of key parameters and settings for simulation I -
Convergence and Stability. The parameter examined in this
simulation is indicated in bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 10 - 200
Head model Concentric three-shell
Regularization 5%
Localization error 0 mm
Connectivity methods Coherence, DTF, PDC and GC

Results

In this section, the results of Frobenius norm and AUC values for multiple number of
iterations levels are shown using boxplots. It is assumed that the quality of network
reconstruction depends on the quality of the simulated EEG signal. Therefore, results
with different SNR levels are shown in the following boxplots. The assumption that there
is a correlation between the SNR of a simulated recording and the quality of a network
reconstruction needs to be verified in a subsequent simulation run.

Figure 14 shows Frobenius norm over multiple number of iterations levels (10 to 200
iterations per run) for several signal-to-noise ratios (Figure 14a: 0.1, figure 14b: 0.5, figure
14c: 1, figure 14d: 10). Connectivity methods are colour-coded: coherence (red), DTF
(orange), PDC (green) and Granger causality (blue).
Frobenius norm results demonstrate that the performance of network reconstructions
depends on the number of iterations per simulation run, the SNR of the data set, but
also on the respective connectivity measures that are applied. As already mentioned above,
the effect of SNR will be looked at in more detail in a subsequent simulation run. However,
it must be noted that network reconstructions greatly improve for higher SNR values,
particularly for coherence and to some extent also for DTF and PDC. Granger causality, on
the other hand, provides robust and reproducible results even for lower SNR values.
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(a) SNR: 0.1 (b) SNR: 0.5

(c) SNR: 1 (d) SNR: 10

Figure 14: Frobenius norm over number of iterations for coherence (red), DTF (orange),
PDC (green) and Granger causality (blue). Each sub-plot depicts the results for a specific
SNR: a) 0.1, b) 0.5, c) 1, d) 10. For illustration purposes, boxplots of connectivity estimators
are slightly offset for the respective number of iterations.

When focusing on the required number of iterations, the skewness pattern of each single
boxplot indicates whether a major part of all observations are concentrated on one end of the
scale, or whether results are evenly distributed, indicating a sufficient number of iterations.
This is of particular importance for lower SNR values, as illustrated by results of coherence
in figure 15a (SNR: 0.1). For a small number of iterations (10 to 70 iterations), the median
does not symmetrically split the interquartile range (IQR). A similar pattern can also be
found for DTF for 10 to 40 number of iterations, although the effects are not as profound as
they are for coherence since the value range of DTF is more narrow. Results of PDC are
almost identical to results of DTF. For Granger causality, such a differentiation between
varying number of iterations is not possible, as results strongly converge, even for only 10
iterations and show an extremely limited range. The spread of results, represented by the
vertical distance between the smallest value (lower whisker) and the largest value (upper
whisker), including outliers, is independent of the number of iterations. However, results
show a growing convergence as the range of observations decreases with higher SNRs.
An equivalent visualization for area under ROC curve (AUC) visualizing results of
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(a) SNR: 0.1 (b) SNR: 0.5

(c) SNR: 1 (d) SNR: 10

Figure 15: Area under ROC curve over number of iterations for coherence (red), DTF
(orange), PDC (green) and Granger causality (blue). Each sub-plot depicts the results for a
specific SNR: a) 0.1, b) 0.5, c) 1, d) 10.

coherence, DTF, PDC and Granger causality for several SNRs over number of iterations
is presented in figure 15. However, AUC boxplots cannot be assessed and interpreted as
intuitively as Frobenius norm boxplots. Since AUC is based on the ROC curve that is
formed by plotting the sensitivity (true positive rate) and specificity (true negative rate) of
the classifier against each other as a function of a threshold criterion, the AUC and both
statistical performance measures of a binary classification test are subject to the same degree
of uncertainty.
Despite the difficult interpretability of AUC boxplots, parallels can be drawn between the
results emerging from Frobenius norm and AUC. In line with evidence from Frobenius
norm, the median does not evenly divide the IQR for smaller number of iterations (from 10
up to 60 iterations). This effect becomes particularly apparent for lower SNRs (0.1 and 0.5).
Moreover, the distance between the opposite ends of the whiskers, indicating the data range,
is stable across varying number of iterations for a constant SNR. In contrast an increase in
SNR will lead to a decrease in data range.
In addition to the visualization of results using boxplots, it is essential to take a look at
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the connectivity spectra of simulated and reconstructed networks for each connectivity
estimator to be able to critically assess and validate the results of AUC and Frobenius norm.
Figure 16 shows connectivity spectra for the information flow from source 1 to source 2 for
coherence, DTF, PDC and Granger causality.

(a) Connectivity spectra of coherence for 10 (left), 50 (middle) and 100 (right) iterations.

(b) Connectivity spectra of DTF for 10 (left), 50 (middle) and 100 (right) iterations.

(c) Connectivity spectra of PDC for 10 (left), 50 (middle) and 100 (right) iterations.

(d) Connectivity spectra of Granger causality for 10 (left), 50 (middle) and 100 (right)
iterations.

Figure 16: Connectivity spectra of simulated (blue) and reconstructed (red) networks for
coherence, DTF, PDC and Granger causality indicating the information flow between source
one and source two. Spectra were retrieved from data sets of 100 s length and an SNR of
0.5.

The graphs show high connectivity in the frequency range of interest (24 Hz to 28 Hz) only
and are stable among different number of iterations. Connectivity values of reconstructed
networks (red) almost reach the same level as for the simulated networks (blue) indicating
a high quality of network reconstructions. Furthermore, the level of connectivity values
outside the frequency range of interest are rather low and enable an effortless identification
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of correlated sources within certain frequency bands even for a visual inspection of the
connectivity spectra by the researcher.

Discussion

The goal of this simulation was not necessarily to point out similarities and differences of
connectivity measures or to evaluate which estimator performs best for different number of
iterations, rather than to identify a tangible number of iterations that enables reliable and
converging results for all connectivity estimators used in the simulations. Since subsequent
simulation scenarios will cover a wide range of SNR values, data lengths and other values
affecting the performance of each method, it is vital to choose a high number of iterations
to obtain trustworthy results also for complex cases with low SNRs and short data sets.
Results of Frobenius norm, as well as AUC, show that coherence requires a larger number
of iterations than DTF and Granger causality to attain exact and reliable results. To avoid
the assignment of varying numbers of iterations for different connectivity estimators in
succeeding simulation experiments, which might adversely affect the statistical analysis
and interpretation of results, a highest common denominator must be determined. For all
configurations that were examined in this simulation run, a number of iterations of 100
proved to be more than sufficient to obtain reproducible and consistent results. Moreover,
it provides enough margin for subsequent simulations to retrieve accurate results when
analysing shorter data sets.
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4.2 Simulation II - Signal-to-Noise Ratio

In this experiment, it is examined whether and to what extent the performance of connectivity
estimators is affected by the characteristics and quality of electrophysiological recordings.
The key parameter to generate and evaluate data with predefined properties in this simulation
scenario is the signal-to-noise ratio (SNR).

Simulation Setup

This simulation used a similar brain network consisting of four dipoles as introduced
in section 4.1. However, the information flow between sources was slightly modified.
Connections from source one to two and from source three to four were modelled in the
frequency range of 24 Hz to 28 Hz with a phase-delay of 9.6 ms between connected areas.
The dipole positions and network connections are illustrated in figure 17. The detailed
settings for this experiment are listed in table 4.2.

Figure 17: Head model, dipole locations and network connections used in simulation II -
Signal-to-Noise Ratio. Information flow from source one (red) to two (green) and from
source three (blue) to four (yellow) was simulated. A realistic standardised FEM head
model (BESA Research 6.1) was used to perform forward modelling as well as inverse
source reconstruction. Fiducials (nasion, left and right pre-auricular points) are indicated as
purple spheres.

Cortical background noise was simulated by distributing 20 noise dipoles in the brain space.
All noise sources carried white noise signals that were randomly generated for each of
the 100 iterations. In order to estimate the effect of SNR on network reconstructions, the
simulation was performed for 14 different SNR levels ranging from 0.1 up to 15. The



Chapter 4. Simulations 68

scaling of the noise topographies was carried out in the frequency domain after forward
modelling activities from noise and network dipoles for 31 scalp channels, with sensor
labels and positions outlined in table A9 in the appendix. Each data set consisted of a 100 s
recording at a sampling rate of 256 samples per second.
Reconstruction of cortical activity was carried out based on a source montage with four
dipoles located at locations and orientations equivalent to the simulated sources and a
regularization factor of 2%.

Table 4.2

Overview of key parameters and settings for simulation II -
Signal-to-Noise Ratio. The parameter examined in this simulation is
indicated in bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Realistic standardised FEM head model
Regularization 2%
Localization error 0 mm
Connectivity methods Coherence, imaginary part of coherency,

DTF, PDC and GC

Results

Boxplots of Frobenius norm (figure 18) and area under ROC curve values (figure 19) show
a non-linear increase of accuracy over all connectivity methods with an increase of SNR.
Above a certain threshold no further significant improvements in accuracy can be achieved.
Results indicate that coherence methods are more strongly impaired by lower SNR levels
(0.1 to 2) than other methods. As expected, and as a validation of the pipeline, simulations
including directional information flow can be reproduced best by methods based on Granger
causality.
Figure 18 indicates that Granger causality shows lowest Frobenius norm over the entire SNR
range, even for poor signal-to-noise ratios (0.1 and 0.25), where all other methods generate
significantly higher Frobenius norm results. As a result of the fact that Granger causality is
least prone to noise, it shows less improvement for higher SNR values as other methods in
absolute terms, but still provides slightly better network reconstructions for higher SNR.
Frobenius norm for all methods converges towards a low limiting Frobenius norm value of
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Figure 18: Semi-logarithmic plot of Frobenius norm over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) for 100 s data sets. For illustration purposes, boxplots of connectivity estimators are
slightly offset for the respective SNR level.

Figure 19: Semi-logarithmic plot of area under ROC curve over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) for 100 s data sets.

approximately 0.07 ± 0.02. Variance of results, indicated by the vertical distance between
the lower and upper whisker also decreases for all methods for higher SNR values.
AUC results indicate higher accuracy of imaginary part of coherency compared to other
methods over all SNR values, followed by coherence, DTF and PDC. However, due to the
simple binary classification of the comparison between simulated and reconstructed network
over multiple connectivity thresholds, the ROC is unable to distinguish between a correctly
reconstructed connection between cortical areas in the frequency range of interest or a
connection obtained by chance due to a generally high noise level over the entire frequency
range. Connectivity graphs illustrate and highlight the quality of a network reconstruction
and should be taken into account to draw conclusions when evaluating AUC, as well as
Frobenius norm boxplots.
Figure 20 shows information flow from source one to source two and from source three
to source four over the entire frequency range for the connectivity estimators coherence,
imaginary part of coherency, DTF, PDC and Granger causality. The noise level for coherence
is relatively large compared to noise level of Granger causality over the entire frequency
range. For this reason, peaks identifying correlated sources for specific frequencies
vanish, which makes a visual detection of connected or unconnected cortical areas rather
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Source one to source two Source three to source four
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Figure 20: Connectivity spectra of simulated (blue) and reconstructed (red) networks for
different connectivity estimators indicating the information flow from source one to source
two (left column) and from source three to source four (right column). Spectra were retrieved
from data sets of 25 s length and an SNR of 1.0.

complicated and error-prone. Spectra of DTF and PDC show higher noise level compared
to Granger causality but provide a more sufficient degree of stability and accuracy than
coherence. Results of imaginary part of coherency are substantially better than DTF or
PDC, showing lower noise level over the entire frequency range and more prominent peaks
for in the frequency band of interest. Imaginary part of coherency and Granger causality
achieve comparable results. Differences between those two estimators are rather small and
difficult to observe.
The output value range of Granger causality depends on the analysed data set and
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computational settings. In this case, Granger causality provides relatively low connectivity
values, but is still able to suppress noise outside the frequency range of interest. This
robustness towards low SNR enables easier and more accurate determination of correlated
sources compared to other methods.

Discussion

The results demonstrated in this simulation suggest that increasing SNR levels led to better
network reconstructions for all tested connectivity estimators. To assess the advantages
and disadvantages of each method, it is reasonable to divide the entire range of analysed
SNR values into two intervals: low SNR values ranging from 0.1 to 2 and high SNR values
ranging from 2.5 to 15. For higher SNR values, all estimators perform considerably better
and are able to provide sufficient and reliable network reconstructions. Results of Frobenius
norm show that the difference in network reconstruction between methods at high SNR
values are very slight. Moreover, a further increase of SNR starting from a level of 2.5 led
only to minor improvements in accuracy of network reconstructions.
On the other hand, this is in strong contrast to the results obtained for the low SNR range.
Granger causality provides stable reconstructions out of data with poor SNR, whereas all
other methods, in particular coherence and imaginary part of coherency, produce partially
very different results. Furthermore, connectivity spectra of these estimators contain a high
degree of noise over the entire frequency spectrum which makes it difficult to detect peaks
of true information flow. However, these connectivity methods can effectively benefit from
an increase in SNR and tend to converge towards a limiting value. For such an increase in
SNR the difference between Granger causality and other estimators becomes less significant
and noticeable.
This simulation clearly shows that the quality of data sets influence the choice of connectivity
estimators. Consistent and robust network reconstructions for data with low SNR can be
provided by imaginary part of coherency, Granger causality, DTF and PDC, whereas
connectivity spectra obtained from coherence must be interpreted and evaluated with care.
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4.3 Simulation III - Data Length

The previous simulation considered the effect of SNR on connectivity estimation for a fixed
data length. The experiment presented in this chapter will add another aspect and examine
the influence of data length with varying signal to noise ratio on connectivity estimators.
The most important point of this analysis is the question whether it is possible to compensate
for poor data with relatively low SNR by using longer data sets. Derived from this, provided
that this statement can be confirmed, the question arises of how long data epochs with a
given low SNR are required to retrieve similar results as compared to shorter data set with
higher SNR.

Simulation Setup

The configuration of this experiment is identical to the simulation setup used for generating
data of the SNR study in simulation II (chapter 4.2). Table 4.3 shows the chosen
configuration for the current study. In this simulation, the framework was enhanced to
also incorporate varying data length to generate recordings consisting of 2 s up to 200 s
at a constant trial length of 2 s. The network consisted of 4 dipoles (see table A2) with 2
connections simulating information flow from source one to two and from source three to
four. Like the simulation carried out in chapter 4.2, this simulation was performed for 14
SNR levels ranging from 0.1 up to 15 for each data length. 20 sources carrying white noise
signals were distributed in brain space to simulate cortical background noise.
Inverse source reconstruction was performed using an equivalent source montage consisting
of 4 dipoles and a constant regularization factor of 2%.

Table 4.3

Overview of key parameters and settings for simulation III - Data Length.
The parameter examined in this simulation is indicated in bold type.

Parameter

Data length 2 s - 200 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Realistic standardised FEM head model
Regularization 2%
Localization error 0 mm
Connectivity methods Coherence, imaginary part of coherency,

DTF, PDC and GC
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Results

The results of this simulation with varying data length found clear support for the assumption
that longer data sets generally improve the accuracy and stability of network reconstructions.
This applies to all connectivity estimators used throughout this experiment. Figure 21 shows
Frobenius norm boxplots of coherence, imaginary part of coherency, DTF, PDC and Granger
causality over logarithmic data lengths ranging from 2 s to 200 s at SNR values of 0.1, 1
and 10.

(a) SNR: 0.1

(b) SNR: 1.0

(c) SNR: 10

Figure 21: Frobenius norm over logarithmic data length for coherence (red), imaginary part
of coherency (purple), DTF (orange), PDC (green) and Granger causality (blue) at different
SNR levels (top: 0.1, middle: 1.0, bottom: 10).

This figure clearly shows that interquartile ranges (IQR) are reduced with longer epochs
and higher SNR values for all methods. Particularly for long data sets of 100 s and 200
s, no differentiation can be made between various SNR levels as far as IQR is concerned.
Consequently, it can be concluded that all connectivity algorithms provide more stable
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results with an increase of data length.
Comparing the accuracy of a single connectivity method for several data lengths and
SNR levels or between multiple connectivity estimators, it becomes obvious that there
are considerable differences in how precise and consistent methods perform. For longer
data sets, accuracy converges towards a certain limit, depending on SNR and connectivity
method.
For coherence, longer data epochs cannot compensate for poor data quality (SNR: 0.1).
The variation of reconstruction accuracy does decrease with longer data length, but an
improvement in the average accuracy level is only feasible to a certain limit. Further
optimization in network reconstruction is only possible with data sets of higher quality,
implying a higher SNR. Results of DTF, PDC and Granger causality also tend to converge
to a specific limit for increasing data length, however, this limit is significantly lower than
that of coherence or imaginary part of coherency. This difference becomes less pronounced
for data with higher SNR (SNR 10).
Results of Frobenius norm provide another case demonstrating that Granger causality
outperforms coherence, imaginary part of coherency, DTF and PDC, since it is less strongly
impaired by shorter data sets than other methods. Moreover, for methods like coherence
and imaginary part of coherency long data epochs cannot compensate poor data quality.
Calculations of area under ROC curve (AUC) for this simulation are shown in figure 22.
Equivalent to the illustration of Frobenius norm (figure 21), the boxplots present AUC
over logarithmic data length for three SNR levels with a colour-coded classification of the
corresponding connectivity estimators.
In line with previous simulations, AUC provides consistent, yet not entirely compatible
results compared to Frobenius norm. With the exception of results for Granger causality,
AUC indicates a decrease in variance and an increase in accuracy of connectivity
reconstructions using longer data sets or data with higher SNR for all methods. Furthermore,
figure 22 demonstrates that the accuracy of network reconstructions converges towards a
certain limit and hence connectivity estimators will not continue to provide more accurate
results by adding more data to the analysis.
AUC results for Granger causality suggest that this method is unable to correctly detect
connections between distinct brain areas, since there is only negligible or no improvement
in variance and accuracy for increasing SNR as well as for increasing data length. That is
inconsistent with the results from Frobenius norm that showed a best overall performance
for Granger causality. To resolve this contradiction, it is essential not only to concentrate
exclusively on statistical results provided by Frobenius norm and AUC, but also to take
a look at the corresponding connectivity spectra for each method. Figure 23 depicts the
connectivity spectra of simulated (blue) and reconstructed (red) networks for coherence,
imaginary part of coherency, DTF, PDC and Granger causality at three different data lengths
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(a) SNR: 0.1

(b) SNR: 1.0

(c) SNR: 10

Figure 22: Area under ROC curve over logarithmic data length for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) at different SNR levels (top: 0.1, middle: 1.0, bottom: 10).

(left column: 10 s, middle column: 50 s, right column: 100 s) and a constant SNR of 1.
Each individual graph shows the information flow from source three to source four over the
entire frequency band, whereas the simulated link between the sources is apparent in the
frequency range of 24 Hz to 28 Hz.
Since connectivity spectra are the basis for the statistical analysis of network reconstructions,
they are directly related to the results of Frobenius norm and AUC and may support with
their explanation and clarification.
Spectra of all methods show a significant decrease in variation of noise with higher data
length for simulated as well as for reconstructed networks. For coherence, the average noise
level does not completely decline when having more data available, instead it converges at
a particular level depending on the SNR. This also explains the convergence of Frobenius
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Figure 23: Connectivity spectra of coherence, imaginary part of coherency, DTF, PDC and
Granger causality indicating information flow from source three to source four of simulated
(blue) and reconstructed (red) networks at different data lengths (left: 10 s, middle: 50 s,
right: 100 s) and constant SNR of 1.

norm and AUC at higher data lengths. To have the limit value reduced further, it is
necessary to use data with higher SNR. Imaginary part of coherency, DTF, PDC and
Granger causality are not affected by poor SNR values to that extent. Those estimators
provide noisy connectivity spectra for short data sets (10 s), but both, the variance of the
retrieved spectra and the average noise level are constantly reduced with longer data. The
minimisation and suppression of noise in the connectivity spectra enables an effortless and
accurate detection of peaks even via visual assessment. Whereas for coherence, the average
noise level is too high for the peaks to protrude from the remaining spectrum.
The relatively poor performance of Granger causality shown in the results of AUC (figure 22)
cannot be attributed to major deviations in the connectivity spectra between the simulated
and reconstructed network. This imprecision of AUC resides more in the methodological
limitations of the method based on the selection of the threshold that is chosen for the
calculation of TPR and FPR and also due to the inaccuracy of the ROC curve for a large
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ratio of negatives to positives (Clark and Webster-Clark, 2008). To compensate for this
effect, Clark and Webster-Clark proposed the logarithmic receiver-operator characteristic
curve as a method of scaling the ROC curve.

Discussion

Results of this experiment confirm and extend the findings revealed in the SNR simulation
(section 4.2). The analysis found evidence that accuracy and stability of network
reconstructions increase to a certain extent with longer data sets for all estimators. In
particular the variance of connectivity spectra could be minimized constantly. However, it
could also be clarified that long data epochs cannot compensate poor data quality.
Methods like coherence and imaginary part of coherency could only provide an improvement
in the average accuracy level to a certain limit depending on the SNR. A further increase in
accuracy was only possible with higher quality data sets. On the other hand, connectivity
spectra of DTF, PDC and Granger causality, were able to benefit from longer data which
lead to a minimisation and elimination of noise over the entire frequency range. This not
only has the advantage of easier identification of information flow between distinct brain
areas, but also avoids inadequate or incorrect evaluation.
Regarding the limitations of connectivity estimators to provide consistent and robust network
reconstructions for data sets with low SNR, high importance must be attached to accurate
and thorough data acquisition to obtain high quality data. A further argument in favour of
data quality over quantity is the fact that it is generally not possible to refine connectivity
results by simply providing longer data.
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4.4 Simulation IV - Phase Difference

Previous simulations were based on networks with a fixed, predefined phase delay between
correlated brain areas. For simulations SNR (section 4.2) and data length (section 4.3),
a phase delay of 9.6 ms between sources with a simulated transmission of information
was determined. This corresponds to a shift of 25% of the average cycle length (T) at an
frequency range of interest from 24 Hz to 28 Hz.
In this simulation, it is examined whether there is a dependency between the performance of
particular connectivity estimators and the duration of phase delays. Furthermore, the effect
of lower or higher phase delays on results of network reconstructions will be evaluated.

Simulation Setup

The simulation included source activity emerging from four dipoles, that were placed in
source space as shown in figure 17. To generate source waveforms, white noise signals
were bandpass filtered, with filter boundaries ranging from 24 Hz to 28 Hz. For simulations
including phase differences, one bandpass filtered signal of a pair of correlated source
waveforms was shifted by a fraction (0/8, 1/8, 2/8, ... 7/8) of the cycle length T of the
average frequency of interest. For an average frequency of interest of 26 Hz, the duration of
T is calculated according to

T =
1000
favg

=
1

26 Hz
= 38.462 ms (4.1)

Consequently, the time-lag ∆t between connected brain areas with a phase-shift of 1/8 of
the cycle length is

∆t1/8 =
T
8
≈ 4.81 ms (4.2)

A concentric three-sphere volume conduction model was used to model the measurable EEG
potential at 31 electrode positions. The complete list of sensor labels including positions is
shown in table A9. Each data set consisted of 100 iterations with 50 trials at a length of 2 s
and a sampling rate of 256 samples per second. To add noise to the simulation, 20 dipoles
that carried white noise signal were randomly distributed in source space. EEG potentials
were likewise calculated by projecting these time-courses on the scalp based on the same
head model and were scaled to obtain the desired SNR levels (0.1, 0.25, 0.5, 0.75, 1, 2, 2.5,
5, 7.5, 10 and 15).
As in previous simulations, reconstructing the time-dependent activity in cortical space
was done using a discrete source reconstruction method: a source montage consisting of
four network nodes was applied to retrieve the source waveforms for each active brain area.
The position and orientation of each node was identical to the ones as used for forward
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calculations. Finally, connectivity estimators were calculated to evaluate information flow
between network nodes. The quality of each connectivity evaluation was rated using
Frobenius norm and AUC. A list of parameters for the current experiment is given in table
4.4.

Table 4.4

Overview of key parameters and settings for simulation IV - Phase
Difference. The parameter examined in this simulation is indicated in
bold type.

Parameter

Data length 100 s
Phase difference 0/8 - 7/8
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Concentric three-sphere
Regularization 5%
Localization error 0 mm
Connectivity methods Coherence, imaginary part of coherency,

DTF, PDC and GC

Results

Frobenius norm results for the connectivity estimators coherence, imaginary part of
coherency, DTF, PDC and Granger causality are illustrated in figure 24. Each subfigure
shows the results of connectivity reconstructions for a specific phase difference between
connected nodes, ranging from no phase shift (figure 24a) to a phase shift of 7/8 of the
cycle length (figure 24h).
Comparisons between results with phase differences shifted by a half wavelength of the
frequency of interest (0/8 and 4/8, 1/8 and 5/8, 2/8 and 6/8, 3/8 and 7/8) reveal that
Frobenius norm values are on the same level for each pair within each method. Coherence
and imaginary part of coherency constitute an exception to this pattern. For coherence,
results for phase differences 1/8 compared to 5/8 and 3/8 compared to 7/8 differ from each
other. Moreover, minor deviations can be determined for phase differences 0/8 compared
to 4/8.
Coinciding with findings of previous simulations, DTF, PDC and Granger causality show
consistent behaviour over all phase lags with only small changes in variance and only few
outliers for lower SNR. In general, it can be stated that results of Frobenius norm, depicting
the accuracy of network reconstructions, are stable over the entire range of SNR levels and
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(a) Phase difference: 0/8

(b) Phase difference: 1/8

(c) Phase difference: 2/8

(d) Phase difference: 3/8

Figure 24: Semi-logarithmic plot of Frobenius norm over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) at phase differences ranging from 0/8 to 3/8.

all phase differences.
Compared to Granger Causality, results of imaginary part of coherency are more variable,
depending on the respective phase difference. For phase shifts of 0/8, 3/8, 4/8 and 7/8,
imaginary part of coherency provides accurate and reliable results that are almost on the
same level as results from Granger Causality. However, for phase shift of 1/8, 2/8, 5/8 and
6/8, results of imaginary part of coherency are less consistent.
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(e) Phase difference: 4/8

(f) Phase difference: 5/8

(g) Phase difference: 6/8

(h) Phase difference: 7/8

Figure 24: Semi-logarithmic plot of Frobenius norm over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) at phase differences ranging from 4/8 to 7/8 (cont.).

As shown in the simulation focussing on SNR (section 4.2), coherence is more impaired
by SNR than other connectivity estimators. There is a non-linear increase of accuracy for
coherence for low SNR levels (0.1 to 2). However, with better data quality, no further
significant improvements in accuracy can be achieved above an SNR of 2.
Corresponding results of AUC over SNR for multiple phase differences are shown in figure
25.
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(a) Phase difference: 0/8

(b) Phase difference: 1/8

(c) Phase difference: 2/8

(d) Phase difference: 3/8

Figure 25: Semi-logarithmic plot of area under ROC curve over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) at phase differences ranging from 0/8 to 3/8.

Compared to the results of Frobenius norm, AUC boxplots show a significantly higher
proportion of variance and inaccuracy. Especially at low SNR levels of 0.1 to 2, it is not
possible to give reliable statements on the relative performance of connectivity estimators.
From an SNR of 2, results are converging at a high AUC level and show no significant
differences between methods over the remaining SNR spectrum. Particularly striking are
the AUC boxplots of coherence for the phase differences 5/8 (figure 25f) and 7/8 (figure
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(e) Phase difference: 4/8

(f) Phase difference: 5/8

(g) Phase difference: 6/8

(h) Phase difference: 7/8

Figure 25: Semi-logarithmic plot of area under ROC curve over SNR for coherence (red),
imaginary part of coherency (purple), DTF (orange), PDC (green) and Granger causality
(blue) at phase differences ranging from 4/8 to 7/8 (cont.).

25h). They expose considerably different results for an SNR range of 0.5 to 2.5 that are
not apparent in the results of DTF, PDC and Granger causality and also not reproducible in
the remaining phase differences. For imaginary part of coherency, results of AUC reveal
a particular vulnerability in case of no phase shift (figure 25a) and for a phase shift of
half wavelength (π-phase) of the frequency of interest (figure 25e). This behaviour for
non-delayed connections or π-phase interactions between sources is a defining characteristic
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of imaginary part of coherency (Nolte et al., 2004, Stam and Reijneveld, 2007).

Discussion

The objective of this experiment was to determine whether differing phase-lags in the
information flow between connected brain areas influence the quality and reliability of
network reconstructions.
Results obtained from this simulation demonstrate that all connectivity estimators, except
for coherence and imaginary part of coherency, are insensitive to the duration of phase
differences. Data generated for this experiment included a variation of SNR levels. This
enabled the analysis of network reconstructions over a broad SNR range and confirmed
results according to the simulation examining the effect of SNR (section 4.2). For low SNR
values ranging from 0.1 to 2, significant differences between connectivity estimators could
be observed, whereas for higher SNR values ranging from 2.5 to 15, all methods provide
consistent and reliable network reconstructions for all phase differences.
Results of Frobenius norm and AUC of coherence show a stronger impact of phase
differences as outlined in the previous section. However, these deviations are limited
to lower SNR values and do not occur for SNR values of 2.5 and higher.
Imaginary part of coherency provides substantially more reliable and accurate results than
coherence. However, this estimator was proposed to eliminate volume conduction effects
for estimation of connectivity in sensor space (Nolte et al., 2004). Therefore, it is only
sensitive to correlations between sources with a non-zero or or non-π-phase time-lag (Stam
and Reijneveld, 2007). In this simulation, results of AUC confirmed that imaginary part of
coherency is unable to detect correlated sources for phase shifts of 0/8 and 4/8.
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4.5 Simulation V - Randomized versus Fixed Source

Positions

This simulation will focus on the variability of network reconstructions caused by variations
in dipole positions. In each single iteration of all previous simulations, a dipole model with
fixed positions for activated brain areas was used. This ensured that potential effects of
source positions, which could contribute to the outcome of the network analysis, were
minimized allowing an unbiased estimation of the respective parameter to be tested.
However, in neuroscientific research, the number and locations of active brain areas is
strongly dependent on the particular question being addressed and the experiments carried
out to answer them.
Therefore, the simulation described in this section will examine the effect of varying source
positions on the accuracy and variability of network reconstructions. This also aims to
respond to the question on whether it is possible to transfer results and insights obtained
from fixed dipole models to completely different source compositions.

Simulation Setup

As with the previous simulations, this experiment will also make use of a source model
including four dipoles. However, the positions and orientations of the dipoles will be
recomputed and assigned randomly for each single iteration. To avoid and prevent errors
in inverse source reconstruction, the following essential conditions need to be fulfilled for
every permutation: this simulation will focus on superficial sources, therefore the maximum
depth of dipoles, defined by the distance between the cortical surface and the dipole location,
will be restricted to 40 mm. Furthermore, a minimum depth of 5 mm is required. For reliable
separation of cortical activity during inverse source reconstruction, distinct brain areas need
to have a distance of at least 40 mm from each other. Otherwise, source montages might
not be able to distinguish activity from neighbouring brain areas and incorrectly estimate
the respective source waveforms. Figure 26 shows four different dipole configurations that
were calculated during the experiment and fulfil the above-listed criteria.
The number of dipoles used in this simulation was kept constant. Varying the number
of active brain regions is part of a subsequent simulation. In addition to the four dipoles
modelling brain activity, 20 noise sources carrying white noise signals where distributed
in brain space to simulate background activity for multiple SNR levels ranging from 0.1
to 15. Simulated EEG recordings with an electrode layout consisting of 31 sensors (table
A9) were generated for multiple data lengths from 2 s up to 200 s. To reconstruct the source
waveforms from EEG data sets, inverse source reconstruction based on source montages
was applied. It is worth noting that source montages had to be adopted for each iteration
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Figure 26: Four randomly selected network configurations from all the dipole models
generated during the simulation. Positions and orientations of each dipole were randomly
assigned for each iteration. Forward modelling and inverse source reconstruction were
carried out based on a realistic standardised FEM head model (BESA Research 6.1).

depending on the randomized dipole configuration to avoid errors for the position and
orientation of each source. The analysis of source localization errors is also part of a
successive experiment. For each source montage, a regularization factor of 1% was defined.
After estimation of temporal cortical activity, connectivity methods were applied to
reconstruct simulated dependencies between distinct brain areas. As in the simulations
described before, statistical tests were performed to enable quantitative decisions about the
effect of randomized source positions on connectivity estimators. Results are presented
in the following section using Frobenius norm and AUC comparing the outcome of this
simulation to a previous experiment that was based on a similar four dipole model with
fixed positions and orientations. Settings for this experiment are outlined in detail in table
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4.5.

Table 4.5

Overview of key parameters and settings for simulation V - Randomized
versus Fixed Source Positions. The parameter examined in this simulation
is indicated in bold type.

Parameter

Data length 2 s - 200 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Position of network nodes Fixed vs. randomized
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Realistic standardised FEM head model
Regularization 1%
Localization error 0 mm
Connectivity methods Coherence, DTF, PDC and GC

Results

This section compares connectivity analysis results of networks with randomized positions
to networks with fixed positions. Figure 27 depicts the two different models.

Figure 27: Network configurations for randomized (left) and fixed dipole positions (right).
The visualization of randomized position and orientations shows superimposed source
locations for a total of 10 out of 100 iterations.

In order to point out the differences between randomized and fixed source position,
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connectivity spectra of multiple methods are visualized in figure 28. This figure illustrates
the simulated (blue spectra) and reconstructed (red spectra) information flow from source
one to source two over the entire frequency spectrum. Graphs shown on the left column
are multiple superimposed reconstructions based on the randomized dipole model, whereas
graphs on the right column are based on a fixed dipole model.

Random Fixed

Coherence

Granger causality

DTF

PDC

Figure 28: Simulated (blue) and reconstructed (red) connectivity spectra of coherence, DTF,
PDC and Granger causality describing the information flow from source one to source two.
Network reconstructions used randomized dipole positions (left column) and fixed source
positions (right column). Spectra were calculated from data sets of 100 s length and an SNR
of 1.

From the figure it is clear that the connectivity spectra of the simulated cortical networks,
indicated in blue, are identical independent of the dipole model for all estimators. This result
was to be expected, due to the fact that none of the connectivity methods take the positions
of active brain areas or the relative distance between correlated regions into account.
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Comparing the spectra of each method for both source models, only the network
reconstructions using coherence show a significant difference. There is less variation
for fixed source positions. Randomized source positions show large variation not only for
frequencies outside of the frequency range of interest, but also for the 24 Hz to 28 Hz
interval, that contains the modelled information flow from source one to source two. In
contrast spectra of Granger causality, DTF and PDC show no significant differences when
comparing the two dipole models (random vs. fixed). Moreover, results of these methods
based on the randomized model indicate a good overall suppression of noise which enables
an easy identification of peaks in the connectivity spectra.
The significant difference between the randomized and fixed dipole model that only occurs
for coherence is even more pronounced when applying statistical measures on connectivity
reconstructions to calculate Frobenius norm and AUC. Results for several connectivity
estimators are displayed in figure 29 showing Frobenius norm and figure 30 illustrating
AUC.
Frobenius norm and AUC show no significant differences for DTF, PDC and Granger
causality between both dipole models, except for a larger number of outliers in the case
of randomized source positions. The variance observed in the connectivity spectra of
coherence for random dipole locations lead to larger interquartile ranges in Frobenius and
AUC boxplots. This effect is most prominent for an SNR range of 0.1 to 2 and will attenuate
for higher SNR values.

Discussion

The goal of this experiment was to demonstrate the effect of random dipole locations
and orientations on connectivity estimators. Results showed that the quality of network
reconstructions for randomized dipole positions is equivalent to results obtained for fixed
positions from previous simulations.
Results from coherence represent an exception to this rule. It could be shown that
connectivity spectra, as well as statistical measures based on coherence contain a
significantly higher variance for randomized source locations. Apart from this, the quality of
network reconstructions will improve with larger SNR values for all connectivity estimators.
This is consistent with what has been found in preceding simulations which were based on
dipole models with fixed positions and orientations.
It must be pointed out that the source montages (Scherg et al., 2002) used for inverse source
reconstruction were a decisive factor for a correct and comprehensive reconstruction of
cortical networks. This approach allowed to correctly separate activity from distinct cortical
areas even in cases where neighbouring dipoles were located relatively close to each other.
One of the requirements predefined by the simulation setup was to provide a minimum
distance of at least 40 mm between active cortical areas. Therefore, reconstructions of the
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(a) Coherence

(b) DTF

(c) PDC

(d) Granger causality

Figure 29: Semi-logarithmic plot of Frobenius norm over SNR comparing results of random
source positions (red) versus fixed souce positions (blue) for coherence, DTF, PDC and
Granger causality.

source waveforms provided sufficient accuracy to achieve reliable and consistent results
during connectivity analysis.
The main conclusion that can be drawn is that dependencies of specific factors on the quality
of network reconstructions obtained from dipole models with a fixed dipole model can
be applied to other dipole positions and locations. This finding is however based upon
the premise that an appropriate inverse source reconstruction method is applied to allow a
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(a) Coherence

(b) DTF

(c) PDC

(d) Granger causality

Figure 30: Semi-logarithmic plot of area under ROC curve over SNR comparing results of
random source positions (red) versus fixed souce positions (blue) for coherence, DTF, PDC
and Granger causality.

correct and unmixed estimation of source waveforms for active brain regions.
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4.6 Simulation VI - Regularization

Regularization is applied to solve inverse problems (e.g. inverse source reconstruction) to
solve ill-posed problems or to prevent overfitting. Within the simulation framework, it is
used in brain source montages (Scherg et al., 2002; Scherg et al., 2004) to estimate cortical
activity from simulated electrophysiological data. Equation 2.5 describes the calculation of
the inverse leadfield matrix using Tikhonov regularization involving the noise regularization
parameter λ . This approach enables the separation of cortical activity and the suppression
of cortical background noise. However, the level of regularization to achieve best results in
inverse source reconstruction for the underlying data set may not be directly evident. On the
one hand, low regularization provides a good separation of cortical activity from distinct
cortical regions, but leads to poor noise level for source waveforms. On the other hand,
high regularization enables the suppression of background noise but may not fully separate
activity originating from different brain areas.
With regard to connectivity estimators, these parameters are likely to have a significant
influence on the quality and reliability of network reconstructions. Therefore, this simulation
will investigate the effect of regularization on connectivity methods.

Simulation Setup

To analyse the influence of regularization constant (RC) a cortical network based on four
dipoles that were placed in the source space as shown in figure 31 was simulated. Information
flow from source 1 to 2 and from source 3 to 4 was modelled by introducing joint band-pass
filtered white noise signals for coupled sources. The filtered signals of sources 2 and 4 were
shifted by a fraction of 25% of the average cycle length (T) at a frequency range of interest
from 24 Hz to 28 Hz. This resulted in a phase delay of 9.6 ms between sources with a
simulated uni-directional transmission of information. Moreover, independent white noise
signals were added to the time-courses of each node.
A concentric 3-sphere volume conduction model (figure 31) was used to model the
measurable EEG potential at 31 electrode positions (table A9). Cortical background noise
was simulated by randomly distributing 20 dipoles only carrying white noise signal in source
space. EEG potentials were likewise calculated by projecting these time-courses on the
scalp based on the same head model and were scaled to obtain the desired SNR levels from
0.1 to 15. During inverse source reconstruction based on source montages, different levels
of regularization constants were applied. 14 factors ranging from 0% to 20% (0%, 0.1%,
0.15%, 0.2%, 0.3%, 0.5%, 0.7%, 1%, 1.5%, 2%, 5%, 10%, 15% and 20%) were used in
the calculation of the truncated singular value decomposition (TSVD, see equation 2.5). To
obtain stable and reproducible results, 100 iterations were carried out per regularization
level. For each iteration, a fixed data length of 100 s was simulated. Table 4.6 gives an
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Figure 31: Illustration of 3-shell (brain, skull and scalp compartment) head model and
cortical network consisting of four dipoles (table A2). This configuration was used in the
current experiment during forward modelling to simulate EEG data and for inverse source
reconstruction. Information flow was modelled from source one (red) to source two (green)
and from source three (blue) to source four (yellow). Fiducials are indicated as purple
spheres.

overview on the configuration for this simulation.
Estimation of the reconstructed cortical network was done using multiple connectivity
estimators. A subsequent statistical analysis resting on Frobenius norm and AUC revealed
their performance and dependency regarding regularization.

Table 4.6

Overview of key parameters and settings for simulation VI -
Regularization. The parameter examined in this simulation is
indicated in bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Concentric three-sphere
Regularization 0% - 20%
Localization error 0 mm
Connectivity methods Coherence, DTF, PDC and GC



Chapter 4. Simulations 94

Results

As emphasized in the last section, the choice of the best regularization value for a specific
data set results in a trade-off between noise suppression and sufficient separation of brain
activity from different cortical regions. To gain a first insight into the dependency between
connectivity estimations and regularization levels, figure 32 shows connectivity spectra
for several methods and regularization factors from 0% to 10%. Each graph visualizes
superimposed the calculated information flow from source one to source two for 10 out of
100 iterations.

Coherence DTF PDC Granger causality

0%

0.5%

2%

10%

Figure 32: Superimposed connectivity spectra of 10 out of 100 iterations showing simulated
(blue) and reconstructed (red) information flow from source one to source two for coherence,
DTF, PDC and Granger causality. Each row represents a different level of regularization
ranging from 0% to 10%. Connectivity estimation of visualized data was performed on data
sets with a length of 100 s and SNR of 1.

From the connectivity spectra of coherence, it becomes clear that an increase in
regularization will decrease correlation outside the frequency range of interest. Thus,
simulated correlation in the range of 24 Hz to 28 Hz can be detected more easily with high
RC values, since connectivity peaks stand out over noise spectrum more prominently. The
variation of superimposed spectra remains unchanged even for high regularization.
No significant differences can be observed in the connectivity spectra of DTF, PDC and
Granger causality. In contrast to coherence, these three methods provide good noise
suppression beyond the frequency range of interest, regardless of the chosen regularization
factor. The finding that methods like DTF, PDC and Granger causality are more resistant
to noise that coherence has already been depicted in preceding simulations. For Granger
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causality, coupled sources are therefore easy to identify due to correlated frequencies having
approximately 8 times the value of non-correlated frequencies (outside frequency band of
interest). Interestingly, Granger causality also shows that the average connectivity between
24 Hz to 28 Hz is slightly higher for larger RC values. The effect is particularly noticeable
when comparing the spectra for 2% and 10% regularization and might be due to the source
waveforms being less correctly separated when using high regularization values during
inverse source reconstruction.
To test this hypothesis, results of statistical analysis need to be evaluated. Figure 33 shows
Frobenius norm boxplots of coherence (red), DTF (orange), PDC (green) and Granger
causality (blue) over regularization values from 0.1 to 20% plotted on a logarithmic scale
for three SNR values of 0.1 (top), 1 (middle) and 10 (bottom).

(a) SNR: 0.1

(b) SNR: 1

(c) SNR: 10

Figure 33: Semi-logarithmic plot of Frobenius norm over regularization constant [%] for
coherence (red), DTF (orange), PDC (green) and Granger causality (blue).

Results indicate that connectivity methods are affected differently to changes of
regularization. Particularly for a low SNR value of 0.1, the graphs display a distinct
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difference in the quality of network reconstructions when comparing DTF, PDC and Granger
causality to the results of coherence. Granger causality provides the best results over
all regularization factors in terms of accuracy and stability, followed by DTF and PDC.
Coherence shows an improvement in reconstruction for increasing regularization up to a
certain limit. Further increase leads to a decline in network reconstruction. This value
of optimal reconstruction is dependent on SNR, with higher SNR values requiring lower
regularization. For data sets with an SNR of 0.1, a regularization factor of approximately
10% provided best results, whereas for data sets with a higher SNR of 10, significantly less
regularization of about 2% to 5% was required to achieve an optimal outcome. A slight
decrease in accuracy of network reconstruction could also be observed for DTF, PDC and
Granger causality, but only for data sets with high SNR (10) in combination with very high
regularization factors (≥ 15%).
Statistical results of area under ROC curve (AUC) for this experiment are illustrated in
figure 34. Corresponding to Frobenius norm (figure 33), graphs show a semi-logarithmic
plot of AUC over regularization for three SNR levels with a colour-coded classification for
the corresponding connectivity estimators.
The dependency between regularization and SNR and their effect on connectivity methods
is more difficult to identify for AUC compared to the straightforward and efficient results
of Frobenius norm. Since AUC is based on a binary classification test to summarize a
connectivity methods ability to correctly identify links between distinct areas, it is less
sensitive to relative changes of correlation than Frobenius norm.
Nevertheless, AUC boxplots also indicate a deterioration of network reconstructions for
coherence with high regularization. Below this threshold, no significant improvement in the
accuracy and reliability of connectivity estimations can be determined. For data sets with
higher SNR, all methods provide more precise and stable results.
AUC boxplots of coherence reveal inaccuracies for higher regularization values (≥ 10%)
depending on SNR. This inaccuracy of AUC calculations is due to the methodological
limitations of the method rather than a strongly declining performance of network
reconstruction. The reason for this is the predominant share of negatives to positives
and the choice of the threshold for the computation of TPR and FPR. A modification of the
AUC calculation proposed by Clark and Webster-Clark (Clark and Webster-Clark, 2008)
that uses a semi-logarithmic scaling of the receiver-operator characteristic curve could be
implemented to eliminate these inaccuracies.

Discussion

This simulation was designed to reveal the effect of regularization on connectivity methods.
Moreover, a side issue that should be outlined was the dependency between regularization
and SNR and their interaction during network reconstructions.
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(a) SNR: 0.1

(b) SNR: 1

(c) SNR: 10

Figure 34: Semi-logarithmic plot of AUC over regularization constant [%] for coherence
(red), DTF (orange), PDC (green) and Granger causality (blue).

In order to demonstrate this, data sets with different SNR values from 0.1 to 15 were
analysed using source montages that incorporated regularization factors ranging from 0%
up to 20%. On the basis of this model, it could be shown that the degree of regularization
chosen during inverse source reconstruction is crucial for network reconstructions and
depends on data quality. It emerged that connectivity methods are affected differently
by changes in regularization. A particularly significant impact was shown for coherence,
whereas DTF, PDC and Granger causality showed almost no influence of regularization on
network reconstructions. Coherence provided an enhancement in accuracy for increasing
regularization up to a specific threshold depending on SNR. Further increase led to a decline
in network reconstruction. Other methods did not show any alteration when increasing
regularization. Only in cases with very high SNR (10) and excessive regularization (≥ 15%)
DTF, PDC and Granger causality also indicated a slight decrease in accuracy.
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4.7 Simulation VII - Source Localization Error

In the analysis and evaluation of EEG and MEG recordings, much importance and value
is generally attached to inverse source localization and a most accurate prediction of the
position of active brain regions. However, it is not known to which extent source localization
errors influence the quality of network analysis. Therefore, this simulation was aimed to
analyse effects of poor and insufficient source reconstruction.
Preceding experiments used identical dipole positions for forward modelling and during
inverse source reconstruction applying the respective source montage. This procedure was
necessary since the main focus was put on parameters like data length, signal-to-noise ratio
or phase difference. For this reason, errors in source localization had to be minimized to
obtain an unbiased view on the dependency of connectivity estimators on the particular
parameter to be analysed in the respective simulation.
This section is concerned exclusively with the influence of systematic errors in the
localization of active cortical areas to answer the question to which extent correctness and
accuracy of network reconstructions are affected by deviations in source positions. Moreover,
simulated electrophysiological data sets will be analysed using different regularisation
constants during inverse source localization. This serves to investigate whether errors
in the estimation of dipole positions can be compensated by lower or higher levels or
regularization.

Simulation Setup

The simulation is based on a four dipole model, with positions kept fixed during forward
modelling (see table 4.7 for a detailed list of parameters). Generated data sets for each
of the 100 iterations consisted of a data length of 100 seconds and a sampling rate of 256
samples per second. As described in previous simulations, EEG potentials of 20 randomly
positioned noise sources carrying white noise signals were calculated by projecting the
time-courses onto the scalp using a concentric 3-sphere volume conduction model. The
resulting noise topographies were scaled and added to the network topographies to obtain
SNR levels ranging from 0.1 to 15 in the frequency range of interest (24 Hz to 28 Hz).
To add systematic, predefined errors during source reconstruction, source montages (Scherg
et al., 2002) no longer maintained identical positions as used for forward modelling.
Coordinates of each source were altered by a randomly generated error term to create
a systematic deviation between the simulated dipole model and the source montage with a
maximum variance of 25 mm per node. Figure 35 illustrates different error levels ranging
from 3 mm to 25 mm. It should be noted that the deviations from the original coordinates
correspond exactly to the indicated error term. Therefore, the positions of dipoles that were
used for inverse source localization do not fall within the outlined error sphere but precisely
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on the sphere’s edge.

(a) 3 mm (b) 6 mm (c) 9 mm

(d) 12 mm (e) 25 mm

Figure 35: Representation of source models with four dipoles used for generating source
montages with error terms ranging from 3 mm to 25 mm. For each simulation, the respective
deviation was added to the positions of each source as described in table A2. Each
graph shows superimposed source positions for 30 of the 100 iterations carried out in
this simulation. The sphere for the respective localization error of each dipole is displayed
slightly transparent.

Furthermore, inverse source reconstruction was performed applying source montages
including localization errors and different regularization factors ranging from 0% to 20%.
Another critical parameter of inverse source analysis that needs to be considered is the
orientation of active brain areas. Ideally, a perfect estimation of cortical activity matches
the orientation of the simulated dipole activity. A deviation between the orientation of the
simulated and the reconstructed dipole will lead to a modification of the source waveform
and therefore influence subsequent network reconstructions. As shown in figure 35, the
orientations of dipoles used for source reconstruction remained unchanged to focus solely
on the effect of errors in dipole positions.
Multiple connectivity estimators were applied on the estimated temporal cortical activity to
reconstruct dependencies between distinct brain areas. On this basis, statistical tests were
carried out to measure the effect of source localization errors on network reconstructions.
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Table 4.7

Overview of key parameters and settings for simulation VII - Source
Localization Error. The parameter examined in this simulation is
indicated in bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4
Number of noise nodes 20
Number of electrodes 31
Number of iterations 100
Head model Concentric three-sphere
Regularization 0% - 20%
Localization error 3 mm, 6 mm, 9 mm, 12 mm, 25 mm
Connectivity methods Coherence, DTF, PDC and GC

Results

Results presented in this section depict the performance of connectivity estimators with
regard to particular source localization errors. As a first indicator, connectivity spectra
indicating the information flow from source one to source two are illustrated in figure 36.
From the connectivity spectra, it becomes apparent that reconstructions using Granger
causality and DTF are not significantly influenced by an increase of source localization error.
Peaks of high correlation, particularly in the frequency range of interest (24 Hz to 28 Hz),
are quite prominent. Coherence, on the other hand, shows a noticeable increase in variance
over the entire frequency range with higher error values. As already demonstrated in earlier
simulations, peaks of large coherence are hard to detect due to high noise level beyond the
frequency range of interest. Nevertheless, using data sets with higher SNR, noise can be
diminished allowing easier identification of correlation with more prominent peaks.
Results of the statistical analysis of connectivity spectra for data sets with a SNR of 1 and a
data length of 100 s are shown in figure 37, illustrating Frobenius norm, and in figure 38
displaying AUC.
Both figures confirm the assumption that was established when analysing and evaluating
connectivity spectra (figure 36). Thus, only results of coherence provide significantly higher
variance for larger source localization deviations, whereas results of DTF, PDC and Granger
causality show no effect at all. Most importantly, statistical evaluation of all connectivity
estimators found no evidence that the average accuracy level of network reconstructions
was significantly reduced for any source localization errors. Furthermore, with regards to
the result of different connectivity methods, it can be stated that Granger causality provides
the most accurate and reliable network reconstructions.



Chapter 4. Simulations 101

Coherence DTF PDC Granger causality

3 mm

6 mm

9 mm

12 mm

25 mm

Figure 36: Connectivity spectra showing simulated (blue) and reconstructed (red)
information flow from source one to source two for coherence, DTF, PDC and Granger
causality. Each row represents a different level for the source localization error (3 mm to 25
mm) based on a regularization constant of 1%. Data sets with a length of 100 s and SNR of
1 were evaluated for this visualization.

Building on the results from the current simulation, it was also examined if localization
errors made during inverse source reconstruction may be compensated by adjusting the
regularization constant. Network reconstructions using coherence will be applied to
demonstrate this effect, since it is most prone to source localization effects compared
to other methods. Figure 39 illustrates the outcome of this evaluation.
It shows Frobenius norm for different, colour-coded source localization errors over
regularization constant in logarithmic scale. As shown in the simulation focussed on
regularization before (chapter 4.6), it could also be demonstrated in this example that
network reconstructions can be significantly improved with increasing regularization. This
applies to the stability of connectivity estimations, indicated by more narrow interquartile
ranges, as well as to the overall accuracy, due to lower median values. However, this is only
valid to a certain degree of regularization. In this example, the optimal regularization value
for a data set with SNR 0.1 (figure 39a) is at approximately 15%. For data sets with better
SNR, less regularization is required to obtain optimal results for network reconstructions.
For a SNR of 1, best estimations were provided by a regularization factor of 10% and for data
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(a) Coherence (b) DTF

(c) PDC (d) Granger causality

Figure 37: Frobenius norm over localization errors for coherence (red), DTF (orange),
PDC (green) and Granger causality (blue) of data sets with a length of 100 s and SNR of 1.
Results used for this visualization were based on a source montage with a regularization
constant of 1%.

sets with a SNR of 10 a regularization of 2% to 5% provided strongest results. Increasing
this value even further will lead to a deterioration of results. The optimal regularization value
depends primarily on the SNR of the respective data set. This corresponds to the findings
from the previous simulation that demonstrated the dependence between regularization and
SNR and the influence of both parameters on network reconstructions.

Discussion

This simulation considered the effect of source localization errors on the performance
of connectivity methods. It could be demonstrated that there is no significant decline in
accuracy and precision of network reconstructions with an increase of localization error for
all estimators. However, larger localization errors lead to an increase of variance and less
reliability. Coherence was particularly affected by erroneous localization of active brain
regions, whereas methods like DTF, PDC and Granger causality showed no significantly
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(a) Coherence (b) DTF

(c) PDC (d) Granger causality

Figure 38: AUC over localization errors for coherence (red), DTF (orange), PDC (green)
and Granger causality (blue) of data sets with a length of 100 s and SNR of 1. Results used
for this visualization were based on a source montage with a regularization constant of 1%.

difference for larger errors, with Granger causality outperforming all other methods.
Furthermore, it was examined whether an increase in regularization might lead to an
improvement in the accuracy of network estimations. By focusing on coherence, it became
apparent that the regularization factor to obtain an optimal network reconstruction depends
on the SNR of the underlying data set. This dependency was shown before in a previous
simulation analysing the effect of RC, and could also be transferred to this experiment
including localization errors.
It is worth noting that a dipole used to model the activity of a particular active brain region
is defined by its position, that may be deviating from the actual location, but also by its
orientation. The present simulation dealt with errors for the position of a dipole, however,
its orientation was not altered. Both parameters are essential for the estimation of the
temporal activity pattern of cortical areas. Hence, it would be instructive to carry out another
simulation that focuses on the effect of orientation errors on network reconstructions.
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(a) SNR: 0.1

(b) SNR: 1

(c) SNR: 10

Figure 39: Semi-logarithmic plot of Frobenius norm over regularization constant [%] for
coherence. Source localization errors are colour-coded: 3 mm (red), 6 mm (purple), 9 mm
(orange), 12 mm (green), 25 mm (blue). The analysed data set implied a SNR of 0.1 (top),
1 (middle) and 10 (bottom).
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4.8 Simulation VIII - Network Size

In this final experiment, the main focus is on the size of complex neural networks, defined by
the number of active sources involved in the exchange and transfer of information. Previous
simulations were based on a network model consisting of a fixed number of four dipoles.
However, the amount of active cortical areas in a neural network may easily exceed this
number. This does not only make inverse source reconstruction more difficult, but also
complicates the estimation of correlated areas. Therefore, this simulation is designed to
determine the effect of network size by analysing networks with different number of active
brain regions.
Another important characteristic of networks is the number of connections between network
nodes. A differentiation is made between direct and indirect connections between active
sources (see figure 5). Some connectivity estimators take the simultaneous information
flow between more than two nodes into account, while other methods may only calculate
the correlation between two distinct sources at a time. The simulated number of direct and
indirect connections amongst nodes defines the complexity of a network. The difficulty of
accurate network reconstructions consists of the partial influence of indirect connections
and their differentiation from direct information flow between network nodes. For this
simulation, it must be ensured that the complexity of networks is kept at a comparable level
to allow drawing conclusions regarding the number of active nodes.

Simulation Setup

In order to evaluate the influence of network size on the quality of network reconstruction,
networks with sizes from 4 nodes to 10 nodes were simulated and analysed. A detailed
description of source positions is part of the appendix of this thesis: 4 nodes: table A2,
6 nodes: table A3, 8 nodes: table A4, 10 nodes: table A5. Figure 40 illustrates the
dipole positions and information flow for the different networks. The relative number of
connections, defined by the ratio of existing connections divided by the the number of
possible connections within a network was kept constant at about 16% to obtain an equal
complexity for all networks. Table 4.8 gives an overview on the connection matrices for
each network size as well as the number of simulated connections, number of possible
connections and the respective ratio. The phase delay for links between network nodes is
expressed as a fraction of the average cycle length (T). All connections were simulated to
occur within a frequency band of 24 Hz to 28 Hz, resulting in an average cycle length of 26
Hz.
Based on these network configurations, EEG data sets of 100 s at a sampling rate of 256
samples per second and 64 electrodes were created. The complete list of sensors labels and
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Table 4.8

Connection matrices for all cortical networks used in this simulation experiment. The
matrix coefficients indicate the phase shift between connected nodes as a fraction of the
average cycle length (T) at a frequency range of interest from 24 Hz to 28 Hz.

Nodes Connection matrix NC NPC Ratio

4


0 T/4 0 0
0 0 0 0
0 0 0 T/4
0 0 0 0

 2 12 16.7%

6



0 T/4 T/5 0 T/6 0
0 0 0 0 0 0
0 0 0 T/4 0 T/6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


5 30 16.7%

8



0 T/4 0 0 T/5 0 T/4 0
0 0 0 0 0 0 0 0
0 0 0 T/4 0 T/5 T/4 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

T/6 0 T/6 0 0 0 T/4 0


9 56 16.1%

10



0 0 0 0 0 0 0 T/5 0 0
0 0 0 0 0 0 T/5 0 0 0
0 0 0 0 0 0 0 T/5 0 0
0 0 0 0 0 0 T/5 0 0 0
0 T/5 0 0 0 0 0 0 0 0
0 0 T/5 T/5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

T/5 T/5 0 0 T/6 0 T/4 0 0 0
0 0 T/5 T/5 0 T/6 0 T/4 0 0



15 90 16.7%

NC = number of connections, NPC = number of possible connections
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(a) 4 network nodes (b) 6 network nodes

(c) 8 network nodes (d) 10 network nodes

Figure 40: Overview of cortical networks implemented in this experiment to analyse the
effect of network size on connectivity estimators. Arrows indicate direct connections
between the respective network nodes. Fiducials (nasion, left and right pre-auricular points)
are indicated as purple spheres.

positions is given in table A10. Forward modelling was performed based on a three-shell
concentric spherical volume conduction model. SNR was varied from 0.1 to 15. 100
iterations were carried out for each of these parameter combinations to obtain stable and
reliable results.
For inverse source reconstruction, source montages were created with identical locations
and orientations for all network nodes and the same three-shell head model as used during
forward modelling. Furthermore, a regularization factor of 2% was used to estimate source
waveforms for each source.
Subsequently, multiple connectivity methods were applied to reconstruct information flow
between network nodes. Accuracy and stability of reconstructions for each estimator were
measured by applying Frobenius norm and AUC. An overview on the configuration for this
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simulation is shown in table 4.9.

Table 4.9

Overview of key parameters and settings for simulation VIII -
Network Size. The parameter examined in this simulation is
indicated in bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 0.1 - 15
Number of network nodes 4, 6, 8, 10
Number of noise nodes 20
Number of electrodes 64
Number of iterations 100
Head model Concentric three-sphere
Regularization 2%
Localization error 0 mm
Connectivity methods Coherence, DTF, PDC and GC

Results

This section presents the performance of connectivity methods depending on the network
size, starting with connectivity spectra of coherence, DTF, PDC and Granger causality
illustrated in figure 41 for a six-node network. It shows the superimposed spectra of 10 out
of 100 iterations for the respective estimators. Connectivity estimations for all possible links
within the entire network are displayed resulting in a visualization of a six by six connectivity
matrix. Simulated direct connections of real information flow between two distinct areas
are highlighted by an additional frame around the respective spectrum. Calculations were
performed based on a data set with SNR of 2.
Connectivity spectra of coherence (figure 41a) show relatively high correlation over the
entire frequency band for almost all pairs of network nodes. Due to the high SNR of
2, peaks indicating information flow can be visually recognized. However, coherence is
not able to distinguish between direct and indirect connections. Therefore, many false
positive links are found by coherence before forward modelling (blue spectra) as well as
after inverse source reconstruction (red spectra). Moreover, forward and inverse modelling
does attenuate the spectra calculated after source reconstructions, but the deviation is rather
low. Spectra of Granger causality (figure 41b) also indicate that this method could not
fully distinguish between direct (1 to 3, 3 to 4 and 3 to 6) and indirect (1 to 4 and 1 to
6) information flow amongst nodes. However, in contrast to coherence, it reconstructed
all simulated links and did not show any indication of false positive correlation between
other network nodes. Another advantage of Granger causality, that was already outlined
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(a) Coherence

(b) Granger causality

Figure 41: Connectivity spectra for simulated (blue) and reconstructed (red) networks of
coherence (top) and Granger causality (bottom). Correlations between nodes shown in this
graph are based on a network with 6 sources, as illustrated in figure 40b. Connectivity
estimation of visualized data was performed on data sets with a length of 100 s and SNR of
2. Simulated direct connections between nodes are accentuated by a bold frame.

in previous experiments is the suppression of noise outside the frequency range of interest.
Network reconstructions obtained by DTF (figure 41c) largely coincide with spectra of
Granger causality. DTF also revealed difficulties in differentiating direct from indirect
connections, indicating information flow from source 1 to source 4 and from source 1 to
source 6. However, the overall noise level of DTF spectra are higher compared to Granger
causality. Slightly superior results are achieved with PDC (figure 41d). In contrast to DTF
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(c) DTF

(d) PDC

Figure 41: Connectivity spectra for simulated (blue) and reconstructed (red) networks of
DTF (top) and PDC (bottom) (cont.).

and Granger causality, this estimator is able to distinguish direct from indirect connections.
The main disadvantage of this method is the high noise level over the entire frequency range,
particularly for connected network nodes (e.g. for information flow from source 1 to source
3 and from source 1 to source 5). This makes a visual inspection of PDC spectra more
difficult and prone to errors.
Spectra of network reconstructions for other network sizes showed similar results with
coherence indicating a large number of false positive connections. To measure the overall
performance of connectivity methods, Frobenius norm and AUC were calculated. Figure 42
shows Frobenius norm for coherence, DTF, PDC and Granger causality over network size.
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The respective boxplots for AUC are illustrated in figure 43.

Figure 42: Frobenius norm of coherence (red), DTF (orange), PDC (green) and Granger
causality (blue) over network size. Results are based on data sets with a length of 100 s and
SNR of 2.

Figure 43: AUC of coherence (red), Granger causality (blue), DTF (orange), PDC (green)
and Granger causality (blue) over network size. Results are based on data sets with a length
of 100 s and SNR of 2.

Results of Frobenius norm indicate that an increase in network size leads to a larger distance
between the simulated and the reconstructed network. However, it must be noted that results
in figure 42 are not normalized by the number of network nodes. For a network with four
nodes, Frobenius norm is computed by comparing the spectra of all 12 possible connections,
whereas for a network consisting of 8 nodes, the number of possible connections increases
to 56 (see table 4.8). Therefore, the deterioration as illustrated in the results of Frobenius
can largely be explained by this effect. Furthermore, there is no indication of an increase of
variance for larger network sizes. When focusing on the results from AUC, no significant
change in accuracy or stability can be observed for larger networks.

Discussion

This simulation investigated the effect of network size on connectivity estimators. It was
demonstrated that an increase in network size and therefore a larger number of possible
connections make it difficult for methods like coherence to identify existing links between
nodes and determine unconnected nodes correctly. Granger causality, DTF and also
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PDC performed well in reconstructing simulated links and only had minor difficulties
distinguishing direct and indirect connections. Due to low noise level over the entire
frequency band, connectivity spectra of Granger causality were easy to evaluate and led to
less error-prone results.
However, it must be stressed that an accurate and stable inverse source reconstruction is
crucial for a subsequent connectivity estimation. In this series of experiments, source
montages were used to minimize the effect of erroneous source localization and to enable
an undistorted view on other important parameters. Such an error-free source reconstruction
may not be possible when analysing real EEG and MEG data sets. Furthermore,
reconstructing network sources becomes increasingly complicated with larger number
of active nodes.
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4.9 Simulation IX - Number of EEG Sensors

The number of electrodes placed on the surface of the head is an another critical factor for
the reconstruction of cortical networks. Studies show that the number of EEG sensors has a
substantial effect on the accuracy of localized source positions (Song et al., 2015) and the
quality of brain network reconstructions from EEG recordings (Hassan et al., 2014).
Currently available EEG systems provide a large bandwidth of number of sensors ranging
from only a few sensors up to high-density (hd) EEG systems with 256 channels. The
choice of the system also often depends on the area of applications. In research applications,
one can easily use EEG systems with 64 electrodes or more, whereas for practical or clinical
applications, there may be stronger restrictions due to maintenance and upkeep cost of
systems with a large number of sensors or the preparation time for EEG recordings.
In this simulation, electrode configurations from 16 to 256 sensors will be used to determine
the effect of number of sensors on connectivity estimators. As described in the simulation
study by Song et. al (Song et al., 2015), the number of sensors strongly affects source
localization results and the reconstruction of the temporal activity pattern for each active
brain region. Since source-waveforms serve as input data for connectivity methods to
estimate network connections, a deterioration of the network reconstruction due to incorrect
source localization is to be expected. This effect was also demonstrated in simulation VII -
Source Localization Error (chapter 4.7) with larger localization errors leading to an increase
of variance and less reliability of network reconstructions.

Simulation Setup

This simulation is based on a brain network model consisting of eight dipoles as introduced
in simulation VIII - Network Size (chapter 4.8). Figure 44 illustrates the dipole positions and
network connections for the respective nodes. Connections between cortical nodes for this
network were designed to mainly consist of a posterior-to-anterior pattern of information
flow. A detailed overview on the positions and orientations of sources is given in table A4
in the appendix of this thesis.
Cortical background white-noise signal was simulated by adding 20 noise sources to the
simulation distributed evenly in brain space. For every electrode configuration, 100 data sets
were computed with noise sources carrying random white noise signal for each iteration.
Scaling of the noise topographies to obtain a SNR of 1 for each data set was carried out in the
frequency domain after forward modelling activities from noise and network dipoles for 16
to 256 scalp channels. The sensor labels and positions for EEG setups consisting of 16 (table
A8), 31 (table A9), 64 (table A10), 128 (according to the 10− 5 electrode configuration
as proposed by Oostenveld and Praamstra, 2001) and 256 electrodes (according to Suarez
et al., 2000) are listed in the appendix. Figure 45 provides a topographic view on the five
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Table 4.10

Overview of key parameters and settings for simulation IX - Number of
EEG Sensors. The parameter examined in this simulation is indicated in
bold type.

Parameter

Data length 100 s
Signal-to-noise ratio 1
Number of network nodes 8
Number of noise nodes 20
Number of electrodes 16 - 128
Number of iterations 100
Head model Realistic standardised FEM head model
Regularization 1%
Localization error 0 mm
Connectivity methods Coherence, imaginary part of coherency,

DTF, PDC and GC

Figure 44: Front-left and top view of head-model including network nodes and connections
used in this simulation. Arrows indicate direct connections between the respective network
nodes. Fiducials (nasion, left and right pre-auricular points) are indicated as purple spheres.

different sensors layouts.

Each simulated data set consisted of a 100 s recording at a sampling rate of 256 samples per
second.
Reconstruction of cortical activity was carried out based on a source montage with eight
dipoles located at locations and orientations identical to the simulated sources and a
regularization factor of 1%.
In contrast to previous simulations in which the reconstructed cortical network was compared
with the simulated network in order to make statements about the accuracy and reliability
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(a) 16 electrodes (b) 31 electrodes (c) 64 electrodes

(d) 128 electrodes (e) 256 electrodes

Figure 45: Sensor configurations for 16 to 256 electrodes (red spheres) used in this
simulation. Detailed labels and positions of sensors for each layout are outlines in the
appendix of this thesis.

of connectivity estimators, further statistical analyses were carried out in this experiment.
This evaluation relates in particular to the parameter set based on an electrode layout of 64
sensors. The extended statistical analysis is based on the comparison of the reconstructed
data with connectivity thresholds obtained from phase-randomized surrogate data (Theiler,
Eubank, Longtin, Galdrikian, and Doyne Farmer, 1992, Prichard and Theiler, 1994), a
method designed to test for non-zero information transfer in a dynamical system. Instead
of a direct permutation of samples which would entirely destroy the correlation structure
of source-waveforms, only the phases of each time-series are randomized to preserve their
amplitude distribution. Each realization of surrogate data is obtained by transforming
source-waveforms after inverse source reconstruction into the Fourier domain where the
phases of the Fourier coefficients are randomly permuted before finally applying the inverse
Fourier transform. Connectivity estimators are then recomputed. The resulting connectivity
threshold of each iteration was calculated in two different ways: a) by calculating the mean
in the frequency range of interest (24 Hz to 28 Hz) and b) by determining the maximum
connectivity value over the entire frequency range. Repeating this procedure many times
generates the empirical distribution against which the reconstructed value of the connectivity
estimator is compared. In this simulation, 1000 iterations were computed to obtain
distributions for both approaches based on a significance level of p = 0.05 for rejection
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of the null hypothesis. Frobenius norm and area under ROC curve were determined for
the comparison between the reconstructed cortical network and the connectivity thresholds.
This additional analysis was only carried out for the simulation with 64 sensors. The
statistical comparison between the simulated and reconstructed network as used in previous
simulations, however, was applied to all parameter sets of this experiment.
In the further course of the chapter, the different statistical evaluations are abbreviated as
follows:

• TFree: threshold free approach contrasting the connectivity spectra of the simulated
and the reconstructed network as outlined in section 3.4.

• TMean: statistical evaluation based on thresholds obtained by computing mean
connectivity in the frequency range of interest.

• TMax: comparison of the reconstructed connectivity spectra with thresholds derived
from determining the maximum connectivity value over the entire frequency range.

Furthermore, the analysis of different statistical methods includes results of additional
connectivity estimators. Network reconstructions based on computations of dDTF (2.27)
and sPDc (2.30) were carried out for the data set including 64 sensors.

Results

This section presents the performance of connectivity methods depending on how many
EEG sensors were taken into account during inverse source reconstruction. As a first
measure, connectivity spectra indicating the information flow from source one to source
two for all numbers of EEG sensor levels are illustrated in figure 46.
Each plot shows the superimposed spectra of 10 out of 100 iterations for the respective
connectivity method. For the selected connection from source one to source two, an
information flow was simulated in the frequency range of 24 Hz to 28 Hz. This connection
is clearly recognizable in the spectra of the simulated network (blue curves) for all
estimators. Superimposed spectra of reconstructed networks (red curves), however, show
clear differences between the respective number of channels. No distinct peak can be
determined in the corresponding frequency range for all connectivity spectra based on
16 channels. When 31 or more scalp electrodes are taken into account during inverse
source reconstruction peaks of high correlation are more prominent and can be recognized
more easily. As already demonstrated in previous experiments, DTF and PDC tend to
produce spectra with higher noise level over the entire frequency range compared to Granger
causality. Despite the high noise levels of DTF and PDC, peaks of high correlation in the
frequency range of interest can be clearly identified without much effort.
With an increase in number of channels, the variance of the connectivity spectra for DTF,
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Coherence DTF PDC Granger causality
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256

Figure 46: Connectivity spectra showing simulated (blue) and reconstructed (red)
information flow from source one to source two for coherence, DTF, PDC and Granger
causality. Each row represents a different number of EEG sensors (16 to 256 channels) used
during source analysis based on a source montage with a regularization constant of 1%.

PDC and Granger causality can be reduced. Coherence, on the other hand, does not show
a noticeable decrease in variance over the entire frequency range with higher numbers of
sensors. Due to a constant SNR level for all simulations, the mean noise level is not reduced
for all methods if more scalp electrodes are taken into account.
Statistical analysis results contrasting differences in the accuracy of network reconstructions
depending on the number of used sensors are shown in figure 47, illustrating Frobenius
norm, and in figure 48, displaying AUC.
Boxplots of Frobenius norm and AUC provide a clearer representation of the quality of
network reconstructions than connectivtiy spectra, which may be difficult to interpret. Both
figures clearly indicate that the accuracy of the network reconstruction increases with a
higher number of sensors for all connectivity estimators.
Figure 47 shows that PDC provides lowest Frobenius norm values, even for small numbers
of sensors (16 and 31 sensors), followed by DTF and Granger causality. Coherence, on the
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Figure 47: Frobenius norm of coherence (red), DTF (orange), PDC (green) and Granger
causality (blue) over number of EEG sensors. Results are based on data sets with a length
of 100 s and SNR of 1.

Figure 48: AUC of coherence (red), DTF (orange), PDC (green) and Granger causality
(blue) over number of EEG sensors. Results are based on data sets with a length of 100 s
and SNR of 1.

other hand, provides a significantly higher deviation from the simulated network. There is
a non-linear improvement in the results for all methods with an increase in the number of
sensors, with results of all estimators converging against a limiting Frobenius norm value.
An increase in the number of electrodes from 16 to 31 and from 31 to 64 sensors yields
a significant improvement in the accuracy of network reconstruction. However, a further
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increase up to 128 or even 256 sensors led only to minor benefits regarding the precision
of connectivity estimators. Variance of results, indicated by the vertical distance between
the lower and upper whisker remains stable for all methods regardless of the number of
electrodes used during source reconstruction.
Results based on AUC (figure 48) confirm the findings derived from Frobenius norm
boxplots. Statistical evaluation based on AUC also validate a convergence to a limiting
value with an increasing number of sensors. Results of DTF, PDC and Granger causality do
not indicate any significant differences between these methods and provide a more sufficient
degree of stability and accuracy than coherence. The non-linear improvement in network
reconstruction with an increase in the number of sensors can also be observed for AUC.
The statistical evaluations listed in the paragraph above built on a comparison of the
simulated network with the reconstructed network across a range of thresholds. In the
following, additional statistical assessments are shown which represent an alternative to
this approach. These computations are based on connectivity thresholds obtained from
phase-randomized surrogate data. The data set including an electrode layout of 64 sensors
was used for this evaluation.
Figure 49 shows connectivity spectra of coherence, DTF, dDTF, PDC, sPDC and Granger
causality for a connected pair of sources and for an unconnected pair of sources.

In addition to the simulated (blue curves) and reconstructed (red curves) connectivity spectra,
limits defining the thresholds for spurious and real information flow have been added for
each connection. The limiting value defined by computing TMean is indicated by green
dashed lines, whereas the threshold obtained from evaluating the TMax is indicated by
orange dashed lines. TMax thresholds are consistently above TMean values and should
therefore be seen as a more conservative estimate.
For the simulated connection from source one to source two, only the largest connectivity
values that are in the frequency range of 24 Hz to 28 Hz are above TMax. In addition,
connectivity estimation indicate real information flow around a frequency of 120 Hz that
exceed the threshold but have not been simulated. TMean values are well below TMax
for all methods. Due to the liberal thresholds, connectivity values repeatedly exceed this
limit over the entire frequency range. It is therefore less suitable to correctly differentiate
between spurious connectivity and real information flow.
The connection from source two to source six represents an example of a network links that
does not imply any simulated information flow. Due to overall lower connectivity values
compared to the example with a simulated connection between sources, both thresholds are
providing lower limits for all connectivity estimators. Spectra of DTF, dDTF, PDC, sPDC
and Granger causality do not exceed the TMax threshold, whereas connectivity estimation
based on coherence wrongly indicates a significant correlation in the frequency range of
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Source 1 to source 2 Source 2 to source 6

Coherence

DTF

dDTF

PDC

sPDC

Granger
causality

Figure 49: Connectivity spectra showing simulated (blue) and reconstructed (red)
information flow for a connected pair of sources (left column) and for an unconnected
pair of sources (right column) for coherence, DTF, dDTF, PDC, sPDC and Granger
causality. Dashed lines indicate thresholds obtained from phase randomized surrogate
data via computation of TMean (green) or calculation of TMax (orange).
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interest (24 Hz to 28 Hz) as well as for frequencies around 65 Hz. Similar trends can only
be identified for sPDC. As in the previous example, TMean is less conservative than TMax.
As a result, connections exceeding the thresholds for specific frequencies across the entire
spectrum may be considered significant.
Newly added connectivity estimators, dDTF and sPDc are based on a modified derivation
or normalization of DTF and PDC, respectively. The comparisons of connectivity spectra
between DTF and dDTF or PDC and sPDC show only negligible differences between the
methods.
Figures 50 and 51 illustrate results for Frobenius norm and AUC, comparing the three
different statistical evaluations: threshold free approach (TFree), thresholds based on mean
connectivity in the frequency range of interest (TMean) and maximum connectivity value
over the entire frequency range (TMax).

(a) Threshold free (b) Mean connectivity (c) Maximum connectivity

Figure 50: Frobenius norm over 64 EEG sensors for coherence (red), DTF (orange), dDTF
(purple), PDC (green), sPDC (yellow) and Granger causality (blue). Statistical evaluation
was performed using TFree (50a) and threshold based approaches TMean (50b) and TMax
(50c) derived from phase randomized surrogate data.

(a) Threshold free (b) Mean connectivity (c) Maximum connectivity

Figure 51: AUC over 64 EEG sensors for coherence (red), DTF (orange), dDTF (purple),
PDC (green), sPDC (yellow) and Granger causality (blue). Statistical evaluation was
performed using TFree (50a) and threshold based approaches TMean (50b) and TMax (50c)
derived from phase randomized surrogate data.

Frobenius norm boxplots show great agreement between the three statistical methods. For
coherence, DTF and PDC in particular, the results of TFree, TMean and TMax are almost
identical. Due to the more conservative values, the results of TMax indicate a slightly
larger difference between the thresholds and the reconstructed network than TMean. This
is particularly evident for Granger causality, which provides significantly lower Frobenius
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norm for TMean than TFree and TMax. It is worth noting the high consistency between
TFree and TMax.
Findings of AUC presented in figure 51 are more difficult to compare. TMean and TMax
provide mean AUC values instead of boxplots since each iteration enables only a single
comparison between the respective threshold and connectivity spectrum. The results of
TMean and TMax lead to similar conclusion that all connectivity estimators can only
very poorly reconstruct the simulated connections between network sources. However,
connectivity spectra shown in figure 49 must be taken into consideration to correctly interpret
these results. Thresholds from TMean are less conservative and therefore susceptible to
improperly indicated connections between network nodes that have not been simulated.
This leads to a large number of false positives. In contrast to TMean, the poor performance
of the connectivity methods for TMax is due to the highly conservative thresholds this
statistical evaluation provides. Therefore, only a few of the simulated connections between
sources are correctly identified as such. This results in a small number of true positives,
affecting the true positive rate (sensitivity) used in the ROC curves. More meaningful
findings are achieved with TFree. From these results it is clear that DTF, dDTF, PDC, sPDC
and Granger causality are able to reconstruct the simulated cortical network most accurate
and reliable. The outcome of these estimators are substantially better than coherence, which
shows significantly worse results with a higher variance.

Discussion

This simulation was designed to reveal the effect of number of EEG sensors on the
performance of connectivity methods. In order to investigate this effect, data sets with
16 up to 256 sensors were simulated involving a cortical network consisting of 8 nodes.
On the basis of this experiment, it could be shown that the number of sensors that are
taken into account during inverse source reconstruction is of great importance for network
reconstructions. This analysis found evidence for an improvement in accuracy and precision
of network reconstructions with an increase of number of sensors for all estimators.
Connectivity methods provide significantly better results for an increase in number of
electrodes from 16 to 31 and from 31 to 64 sensors. A further increase only led to negligible
improvements. This non-linear trend was demonstrated both in results of Frobenius norm
and AUC. Overall these findings are in accordance with findings reported by previous
studies indicating considerably superior results when increasing the number of sensors
(Hassan et al., 2014).
However, the optimal number of sensors mainly depends on the algorithm that is applied
to localize and reconstruct cortical activity from scalp data but is also related to other
parameters used in the analysis pipeline of EEG and MEG data. Many studies have shown
that at least 64 to 128 EEG sensors are required to achieve satisfactory results to localize
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cortical activity (Lantz, Grave de Peralta, Spinelli, Seeck, and Michel, 2003, Song et al.,
2015) or reconstruct functional networks (Hassan et al., 2014).
Moreover, this experiment included further statistical methods to assess the accuracy
and reliability of connectivity estimators. Reconstructed spectra were compared against
thresholds obtained from phase-randomized surrogate data (Theiler et al., 1992, Prichard
and Theiler, 1994) to distinguish between spurious connectivity and real information flow.
Thresholds were derived by computing mean connectivity in the frequency range of interest
or determining the maximum connectivity value over the entire frequency range. Both
approaches were compared to a threshold free approach contrasting the connectivity spectra
of the simulated and the reconstructed network. The impact of the respective statistical
technique was different for the performance measures used in the simulation. Similar
patterns of results were obtained for Frobenius norm. In contrast, AUC showed significantly
different values depending on how strict the thresholds were defined.



Chapter 5

Application of Connectivity Measures

to EEG Recordings

The usefulness and knowledge of the results from the simulation studies will be demonstrated
by analysing resting-state connectivity EEG recordings on the source level.

Oscillations in the alpha frequency range (7-14 Hz) were first observed by Berger (Berger,
1929) using EEG recordings. Activity within this alpha band, represents fluctuations in
cortical excitability (Romei et al., 2008) triggered by selective attention (Klimesch, Sauseng,
and Hanslmayr, 2007, Jensen and Mazaheri, 2010). The modulatory role of alpha has been
shown for multiple modalities, such as the visual (Ploner, Gross, Timmermann, Pollok,
and Schnitzler, 2006, Snyder and Foxe, 2010), somatosensory (Della Penna et al., 2004,
Haegens, Handel, and Jensen, 2011) and auditory domain (Bastiaansen, Böcker, Brunia,
de Munck, and Spekreijse, 2001, Weisz, Hartmann, Müller, Lorenz, and Obleser, 2011)
and has been linked to perceptual consequences including vigilance (Papadelis et al., 2007,
Schubert, Haufe, Blankenburg, Villringer, and Curio, 2009) and fatigue (Simon et al., 2011).
These studies modulate alpha activity in a repeatable, task-evoked experimental design by
controlled manipulation of selective attention. However, these techniques are not applicable
for the analysis of resting-state data due to the absence of a controlled manipulation, which
makes the reconstruction of underlying cortical networks particularly problematic.
Nevertheless, resting-state networks (RSNs) have been successfully reconstructed in recent
years with fMRI data (Biswal, Yetkin, Haughton, and Hyde, 1995), combined fMRI and EEG
(Mantini, Perrucci, Del Gratta, Romani, and Corbetta, 2007), fMRI and MEG (de Pasquale
et al., 2010), MEG (Hillebrand, Barnes, Bosboom, Berendse, and Stam, 2012, Florin and
Baillet, 2015, Hillebrand et al., 2016) and EEG (Pascual-Marqui et al., 2014).
In this chapter, we analyse publicly available EEG recordings (Trujillo, Stanfield, and
Vela, 2017) and attempt to reconstruct information flow of a RSN with dominant
posterior-to-anterior connection pattern in the alpha frequency band. This network has been
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analysed and studied in detail by Hillebrand et al. (Hillebrand et al., 2016). In this study,
an atlas-based time-domain beamformer (Hillebrand et al., 2012) was applied to transform
MEG sensor data to source space for a predefined grid with equidistant spacing of 2 mm.
To reduce data dimensionality, ROIs were defined from the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002), resulting in a single time-series per ROI.
Subsequently, phase transfer entropy (PTE; Lobier, Siebenhühner, Palva, and Palva, 2014)
was applied to reconstruct information flow between ROIs. In table S4 of the supplementary
information material of this work, Hillebrand lists the 100 strongest connections between
pairs of regions in the alpha2 (10 - 13 Hz) and theta (4 - 8 Hz) band in rank order.
This work focusses on the 10 strongest connections of the default mode network in the alpha2
frequency band to compare network reconstructions obtained from different connectivity
estimators. Due to the restriction of taking only a subset of the most pronounced network
links into account, the total number of cortical areas involved in the DMN can be narrowed
down to 8 nodes. Table 5.1 lists the 8 brain regions and their corresponding abbreviations
that are used in this study.

Table 5.1

Brain regions involved in the information transfer of the 10 strongest
network connections in the alpha2 DMN.

Cortical region Abbreviation

Anteriorcingulate and paracingulate gyri, right ACG right
Calcarine fissure and surrounding cortex, left CAL left
Calcarine fissure and surrounding cortex, right CAL right
Cuneus, left CUN left
Cuneus, right CUN right
Inferiorfrontal gyrus, triangular part, right IFGtriang right
Superiorfrontal gyrus, medial part, left SFGmed left
Superiorfrontal gyrus, medial part, right SFGmed right

The 10 most significant connections identified by pairs of sending and receiving nodes of
the alpha2 network are listed in table 5.2.
The following sections of this chapter introduce the dataset (section 5.1), present the data
analysis process (section 5.2), including pre-processing, inverse source reconstruction and
connectivity analysis and illustrate results of network reconstructions obtained by different
connectivity measures (section 5.3). Finally, a discussion on the performance and differences
between estimators is provided in section 5.4.
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Table 5.2

List of 10 strongest connections
of the alpha2 network in rank
order according to Hillebrand et
al. (Hillebrand, Barnes, Bosboom,
Berendse, and Stam, 2012).

Source node Target node

CAL left IFGtriang right
CUN left ACG right
CAL left SFGmed left
CAL left ACG right
CUN left IFGtriang right
CUN right IFGtriang right
CUN right ACG right
CUN left SFGmed right
CAL right SFGmed left
CUN left SFGmed left

5.1 Datasets

The complete set of EEG recordings was shared by Trujillo et al. (Trujillo et al., 2017)
and can be freely downloaded at the Texas Data Repository Dataverse (available from:
https://dataverse.tdl.org/). The dataset includes recordings from 16 healthy subjects (aged
18-26) from the Texas State University. Each participant underwent 8 minutes of resting
state EEG recording in a seated position in a darkened room. One minute epochs with eyes
open and eyes closed were recorded alternatingly, resulting in a duration of four minutes for
both conditions. During data acquisition, subjects remained in a relaxed, yet awake state.
Written informed consent was obtained from each participant.
The subjects’ continuous EEG were recorded using 72 active Ag/AgCl electrodes (67 scalp
channels and 5 polygraphic channels) in the international 10/5 system (Jurcak, Tsuzuki,
and Dan, 2007), as illustrated in figure 52 with the sensors either attached to a BioSemi
electrode headcap or via freestanding electrodes. Labels and positions of sensors are listed
in table A11 in the appendix of this thesis.
A BioSemi ActiveTwo amplifier system with a resolution of 24-bit ADC (analog to
digital converter) recorded the signal of each electrode at a sampling rate of 2048 Hz
and down-sampled it to 256 Hz. The signals of each scalp electrode was referenced to a
common mode sense (CMS) sensor placed between electrodes PO3 and POZ.
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Figure 52: Sensor configuration of BioSemi headcap with 72 electrodes.

5.2 Method

Similar to simulated data sets described in chapter 4, real EEG data was analysed
using BESA Research 7.0 June 2018 (BESA GmbH, Germany) and the open-source
toolbox Fieldtrip (Oostenveld et al., 2011) in combination with MATLAB 7.4.0.287 (The
MathWorks, Inc., Natick, Massachusetts, United States).

Preprocessing

Preprocessing of raw EEG data was done in BESA Research 7.0. During an initial visual
inspection of each data set, bad channels as well as muscle and other artifacts were marked
and the corresponding samples were excluded from further data analysis. Subsequently,
each data file was scanned to detect and reject artifact-loaded channels and trials according
to three criteria:

• Amplitude criterion: excludes trials that exceed the defined threshold (default: 120µV )
from further processing.

• Gradient criterion: defines the maximum difference (default: 75µV ) between two
neighbouring time samples within a trial for a given channel.

• Low Signal criterion: rejects epochs during which the signal is smaller than the
specified threshold (default: 0.01µV ).



Chapter 5. Application of Connectivity Measures to EEG Recordings 128

Due to differences in the quality of EEG recordings between subjects, the default thresholds
were adjusted for some data sets to exclude more artifact-loaded trials.

Inverse Source Reconstruction

Reconstruction of the 10 strongest connections of the alpha2 default mode network is based
on a source configuration with 8 active brain regions. The AAL atlas (Tzourio-Mazoyer
et al., 2002) was used to define the volume of distinct cortical areas. In line with the
inverse source reconstruction technique applied in the simulations, each active brain region
was represented by a single dipole. This reduction of data dimensionality also provides a
more concise and informative approach for later calculation of connectivity. Coordinates
of sources were defined by calculating the centroid for the respective region, by taking
all voxels of the related brain area into account. To estimate the predominant orientation
for each voxel position, Hillebrand used a scalar-type beamforming technique (Hillebrand
et al., 2012). This approach is most accurate and reliable only if individual anatomical
information is available for each subject (Sekihara and Nagarajan, 2008, Steinsträter,
Sillekens, Junghoefer, Burger, and Wolters, 2010). For this experiment, no individual
MRI recordings were available to compute subject-dependent head models. Therefore,
orientations of active brain regions were chosen to be radial, based on a four-shell spherical
head-model (Scherg et al., 2002). The resulting dipole model provided the basis for source
montages that were used to transform sensor data into brain space and to calculate the
time-dependent activity of each brain region. In addition to the 8 dipoles representing the
DMN, 3 regional sources were added (middle temporal gyrus left, superior temporal gyrus
right and supplementary motor area right) in order to explain background activity from
unmodelled brain areas. Adding these noise sources lead to a less noisy and more reliable
estimation for the time-courses of network nodes. Figure 53 illustrates the resulting source
configuration.
For the calculation of the source montages, a four-shell (brain, CSF, skull and scalp)
spherical head model (Berg and Scherg, 1994) was applied. To provide adequate values
for bone conductivities of adults, a conductivity ratio (CR) of radial skull conductivity and
brain conductivity of 1 : 80 was chosen. This CR produces comparable locations in depth
compared to a standardised, 3 compartment (brain/CSF, skull and scalp) isotropic FEM
head-model with default parameters. Furthermore, the regularization constant was set to
1% for all dipoles. After applying the resulting source montage on the pre-processed data
sets, the time-courses of each network node were exported to MATLAB for subsequent
connectivity estimation.
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Figure 53: Positions of network nodes (colour-coded) involved in the alpha2 DMN.
Additional noise sources are indicated in black colour. The coordinates and orientations of
each source are listed in table A6.

Connectivity Analysis

Connectivity analysis was performed in MATLAB using several functional and effective
connectivity estimators. Computations were executed based on the same source-code used
for simulated data sets in chapter 4.
Reconstruction of brain networks was performed based on the temporal cortical activity
of each network node obtained by inverse source reconstruction. For each subject, a data
interval of 100 s was used as input to evaluate dependencies between distinct brain areas.

Statistical Analysis

In contrast to simulated data sets, the accuracy and reliability for the real EEG data analysis
is challenging to estimate because the ground truth is not known. Despite the fact that
the DMN has been extensively analysed in previous studies providing a high level of a
priori knowledge, it is nevertheless particularly difficult to correctly interpret results of
connectivity estimators and to draw correct conclusions. Moreover, connectivity methods
based on a model-based or non-parametric estimation of the transfer matrix and the noise
covariance matrix have a non-linear dependency to the data from which they are derived.
Therefore, the distribution of connectivity estimates for each method must be determined
individually for every subject to distinguish real connections from spurious connectivity.
In order to define thresholds for the statistical significance of connectivity values, a
non-parametric statistical test using surrogate data (Prichard and Theiler, 1994, Schreiber
and Schmitz, 2000) was applied. The time-series of the eyes-closed condition for each
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subject were Fourier transformed. Magnitudes of the Fourier coefficients remained
unchanged, but the phases were shuffled randomly. Subsequently, the inverse Fourier
transformation was calculated to create new surrogate time-series. Connectivity estimation
was performed for the surrogate data sets. This process was repeated 100 times to obtain
an empirical distribution for all connectivity methods under the condition that the null
hypothesis of no correlation between network nodes is true. It should be noted that this
statistical evaluation usually requires a higher number of iterations (typically 1000 iterations)
in order to obtain a uniform distribution. Due to the high computational effort, however,
this number was reduced to 100 repetitions. Based on a significance level of p = 0.05,
method-based thresholds were computed and connectivity values below the thresholds were
defined as spurious interactions and discarded.

5.3 Results

Results presented in this section outline the performance of connectivity estimators to
correctly reconstruct the 10 most prominent connections of the alpha2 DMN.
Connectivity spectra indicating the information flow between the two most prominent
connections (CAL left to IFGtriang right and CUN left to ACG right) are illustrated in
figure 54. This visualization shows the superimposed results of all subjects for different
connectivity estimators.
Spectra of all methods show well recognisable peaks in the alpha2 frequency range for
both network connections, although it is evident that the connection between CAL left
and IFGtriang right is much less pronounced than the connection between CUN left and
ACG right. Moreover, it is also clearly noticeable that the onset of the peaks start even
earlier at approximately 6 to 7 Hz. This communication between network nodes in the
alpha1 band (8 to 10 Hz) consists mainly of posterior-to-anterior patterns of information
flow and coincides with findings from Hillebrand et al. (Hillebrand et al., 2012). This figure
also demonstrates the advantage of Granger causality over other connectivity estimators in
being able to successfully suppress noise outside the frequency range of interest, which was
already outlined in the simulation studies.
The statistical evaluation carried out during the analysis of simulated data sets was also
applied on the connectivity results of real EEG data to calculate the performance of each
connectivity method regarding the accuracy and reliability of network reconstructions.
For all simulations carried out in this thesis (chapter 4), Frobenius norm and area under
ROC curve (AUC) were calculated by comparing the simulated network (ground truth)
to the reconstructed network. Evidently this was not possible for real EEG data, due to
the unavailable ground truth. Therefore, Frobenius norm was calculated comparing the
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CAL left to IFGtriang right CUN left to ACG right

Coherence

Granger Causality

DTF

PDC

Figure 54: Superimposed connectivity spectra of all subjects for coherence, Granger
causality, DTF and PDC over a frequency range of 1 to 45 Hz. Graphs indicate the
information flow from CAL left to IFGtriang right (left column) and from CUN left to ACG
right (right column). The frequency range of the alpha2 DMN (10 to 13 Hz) is indicated by
vertical bars.

network reconstructions to the subject-dependent connectivity thresholds obtained via phase
randomization. Figure 55 shows results of Frobenius norm for coherence, Granger causality,
DTF and PDC.

Figure 55: Frobenius norm of coherence (red), DTF (orange), PDC (green), and Granger
causality (blue).
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Boxplots of Frobenius norm indicate significant differences between methods, with Granger
causality providing the most accurate connectivity estimations with the lowest deviation and
variance compared to the computed thresholds. A one-way analysis of variance (ANOVA)
was carried out to compare the Frobenius norm measures of connectivity estimators (table
5.3). This analysis confirmed the presence of a statistical difference between connectivity
methods (F(3,60) = 96.13, p < 0.0001). A Scheffe post-hoc test further indicated that
results from Granger causality (M = 0.433, SD = 0.160) and coherence (M = 1.624,
SD = 0.242) differed significantly from all other methods at p < 0.05. No significant
difference relationship between PDC (M = 1.237, SD = 0.189) and DTF (M = 1.248,
SD = 0.192) was found.

Table 5.3

Result of one-way ANOVA test showing the variation between
connectivity estimators for results of Frobenius norm.

SS df MS F Prob > F

Methods 12.08 3 4.0267 96.13 < 0.0001

Residual 2.5133 60 0.0419

Total 14.5932 63

SS=sum of squares, df=degrees of freedom, MS=mean square

Similar to the binary performance test area under ROC curve (AUC) used in the simulation
studies, network reconstructions of real EEG data were evaluated regarding the ability to
correctly reconstruct the 10 most prominent connections of the alpha2 DMN. The number
of reconstructed links for each connectivity estimator is illustrated in figure 56.

Figure 56: Boxplots of coherence (red), DTF (orange), PDC (green), and Granger causality
(blue) presenting the number of correctly reconstructed network links for the 10 most
prominent connections of the alpha2 DMN.

In contrast to results of Frobenius norm, boxplots for the number of correctly reconstructed
network connections did not indicate significantly different performances for any of the
methods. On average, all methods were able to reconstruct approximately 7 out of the 10
network links (coherence: M = 7.063, SD = 2.135; DTF: M = 6.750, SD = 2.077; PDC:
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M = 7.125, SD = 2.315; Granger causality: M = 6.750, SD = 2.165). This was confirmed
in a one-way ANOVA test (F(3,60) = 0.13, p = 0.9538) as displayed in table 5.4. Due to
the lack of a significant result no further post-hoc tests were performed.

Table 5.4

Result of one-way ANOVA test showing the variation between
connectivity estimators for the amount of correctly identified
network connections.

SS df MS F Prob > F

Methods 1.922 3 0.6406 0.13 0.9538

Residual 302.688 60 5.0448

Total 304.609 63

SS=sum of squares, df=degrees of freedom, MS=mean square

5.4 Discussion

This chapter investigated the ability of connectivity estimators to reconstruct a subset of
posterior-to-anterior connections which are apparent in the alpha2 frequency range (10
- 13 Hz) of the DMN. Publicly available eyes-closed, resting-state data containing 16
subjects was used to transfer findings from simulated data sets onto the analysis of real
electrophysiological recordings.
In summary, analysis results showed that all connectivity estimators performed well in
correctly reconstructing information flow between distinct brain areas. On average, each
method identified approximately 7 out of the 10 most prominent network links of the DMN
for all subjects. A statistical analysis of the amount of correctly reconstructed network
connections provided no evidence of significant differences between estimators. It is worth
noting that the selection and design of the analytical process to reconstruct the alpha2
network was made without conducting a preliminary review of the data set. The choice of
the data set was driven on the sole criterion of a resting-state experimental design including
an eyes-closed condition. Given these circumstances, results of connectivity estimators
have to be assessed even more positively. However, the reduced network consisted of the 10
strongest connections of the alpha2 DMN (Hillebrand et al., 2016). An advanced analysis,
also incorporating information flow with weaker connectivity strength, may lead to more
complex and differentiated results.
Moreover, it was demonstrated that connectivity spectra of Granger causality provided
lower noise levels over the entire frequency band than other estimators. This aspect was
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also verified with results of Frobenius norm indicating a significantly lower deviation
from connectivity thresholds compared to coherence, DTF and PDC. Due to this integral
characteristic, a visual inspection of connectivity spectra obtained from Granger causality
may lead to less error-prone conclusions and implications.



Chapter 6

Conclusion

In this thesis, functional and effective connectivity methods were tested for their performance
and efficiency under various conditions when applied to neural recordings. An overview
of electromagnetic recording techniques was given in chapter 2.1 describing non-invasive
methods to measure brain activity. The decisive parameter for reconstructing temporal
changes of brain activity is the temporal and spatial resolution of a recording method. For
this reason, the present work focused on the analysis and reconstruction of coherent cortical
networks from EEG recordings, due to its higher temporal resolution compared to other
techniques.
This chapter will discuss known limitations of the simulation model introduced in chapter 3
and present possible solutions. Further enhancements of the simulation model incorporating
alternative connectivity measures and state-of-the art modelling techniques to resolve some
of the restrictions depicted in the previous section are proposed. Furthermore, results of
the eight simulation studies described in chapter 4 and the outcome of the analysis of real
resting-state data in chapter 5 will be reviewed. Based on these considerations, advanced
analyses of particular parameters affecting the reconstruction of cortical networks will be
suggested.

Simulation model

After introducing state-of-the-art methods of inverse source reconstruction and brain
connectivity measures in chapter 2, a simulation model to generate realistic electromagnetic
recordings with a predefined underlying cortical network and known characteristics was
presented in chapter 3. It proposes a modular, standardised framework that enables a
transparent and comprehensible approach to generate data sets with specific properties. This
has allowed us to focus on particular parameters and to reveal their impact on the accuracy
and reliability of network reconstructions using different connectivity estimators.
Despite the efforts made, there are limitations of the simulation model that shall be addressed
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in future research. Firstly, Gaussian white noise signals were added to simulate background
brain activity. A more realistic approach would be to define time-series of noise sources
with pink noise (1/ f noise) which has a power spectral density (PSD) that is inversely
proportional to the frequency of the signal. Such a 1/ f spectrum depicts a more accurate
description of spontaneous cortical activity in humans for MEG and EEG recordings
(Linkenkaer-Hansen, Nikouline, Palva, and Ilmoniemi, 2001).
The simulation provides two models to generate correlated signals for active brain
areas: a multivariate-autoregressive (MVAR) approach and a model based on band-pass
filtered Gaussian noise time-courses. Both types only allow a simulation of linear
interactions between nodes. Enhancing the framework to support non-linear interactions
will enable investigating differences between linear and non-linear connectivity estimators
like mutual information (Shannon and Weaver, 1949) and transfer entropy (Schreiber,
2000). Furthermore, advanced modelling techniques may provide a way to produce more
realistic brain signals and will also reflect more accurate yet simple representations of
coupled neuronal populations. Possible realisations of more complex neural mass models
(NMM) have been suggested by Wendling et al. (Wendling et al., 2002) and Spiegler et al.
(Spiegler, Knösche, Schwab, Haueisen, and Atay, 2011). Due to the modular structure of
the simulation framework, sophisticated models can easily be integrated by enhancing the
respective function for the generation of time-courses for active brain areas.
Another important aspect for the generation of most realistic neurophysiological recordings
is the choice of the head model, as outlined in the forward modelling and inverse source
reconstruction section (section 2.2.1). The simulations carried out in chapter 4 were based
on a concentric spherical 3-shell or a realistic standardised FEM head model. However,
more complex, age-appropriate template models (Richards and Xie, 2015) and individual
finite-element models (Wolters et al., 2006) can easily be used both to simulate and to
reconstruct sources. These models allow for a more precise description of the geometries and
conductivities of different head tissues (skin, skull spongiosa and compacta, cerebrospinal
fluid, gray and white matter), resulting in a better quality of the forward model.
Finally, it should be pointed out that the simulation comprises a large number of functional
as well as effective connectivity methods. However, there are many other estimators which
have not been considered in this thesis and new methods are continuously being developed.
In order to evaluate objectively the benefits and drawbacks of new estimators, it is essential
to add them to the portfolio and benchmark their performance against other connectivity
methods.

Simulation studies

The simulations described in chapter 4 were designed to illustrate the impact of some of the
most widely discussed parameters involved in the analysis and reconstruction of cortical
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networks. They cover the effect of noise at different intensities, differences in the length of
data taken into account, various phase shifts between correlated signals, the impact of the
regularization factor used in inverse source reconstruction, deviations in the localization of
dipole positions, varying network sizes and number of sensors used during inverse source
reconstruction. Each simulation revealed common effects of the examined parameter on
connectivity methods but also identified systematic differences between estimators.
The initial simulation (chapter 4.1), based on the simulation framework introduced in chapter
3, focussed on the number of required iterations to obtain reliable and converging results for
all connectivity estimators in subsequent simulations. It was demonstrated that connectivity
methods like DTF and Granger causality require less iterations to produce exact and reliable
results compared to coherence. Based on the conclusions drawn from this experiment, 100
iterations were identified as a tangible number of repetitions to obtain reproducible and
consistent results. All succeeding simulation experiments build on this determined value for
all parameter combinations and connectivity methods.
Simulations demonstrating the effect of SNR (chapter 4.2) indicated that increasing data
quality generally led to better network reconstructions for all connectivity estimators.
However, this analysis found evidence that Granger causality, DTF and PDC provide more
accurate and reliable results for data with low SNR compared to connectivity spectra
obtained from coherence which include a high degree of noise over the entire frequency
spectrum. Overall these findings are in accordance with findings reported in previous studies
(Astolfi et al., 2007, Wu et al., 2011, Silfverhuth et al., 2012, Hincapié et al., 2016). Results
presented by Wu et al., 2011 lead to a consistent conclusion that Granger causality provides
most reliable results and is not affected by manipulations of the SNR. Furthermore, it was
demonstrated that connectivity methods can effectively benefit from an increase in SNR
and tend to converge towards a limiting value. A similar pattern of results was obtained by
Silfverhuth et al., 2012. In this paper, a strong effect was proven when increasing the SNR
at generally lower levels (from 1 to 5 or even 10), but no statistically significant effect was
obtained when increasing the SNR at higher levels (from 5 to 10). In general, this aspect
of the study stresses the crucial importance of precise data acquisition to record data with
optimal SNR.
Results from the experiment analysing the effect of SNR accord with the finding from
simulations with varying data length as outlined in chapter 4.3. It was shown that taking
more data into account increased the accuracy of coherence and imaginary part of coherency
only up to a certain limit depending on the SNR of the data set. A higher precision was only
possible with higher quality data. Extensive results carried out indicate that connectivity
spectra of all estimators, coherence in particular, show a significant decrease in variation
of noise with higher data length for simulated as well as for reconstructed networks. DTF,
PDC and Granger causality are not affected by poor SNR values to that extent. These basic
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findings are consistent with previous research (Astolfi et al., 2007, Fraschini et al., 2016).
Moreover, the study by Fraschini et al., 2016 indicated that shorter epochs not only led
to a decreased efficiency of connectivity methods but also show less clear (more blurred)
connectivity patterns.
In addition, simulations were carried out to examine parameters directly connected to inverse
source localization and the reconstruction of temporal activity for active brain regions. A
detailed and comprehensive description of EEG source imaging techniques and pitfalls can
be found in the review papers by Grech et al., 2008 and Michel and Brunet, 2019.
Chapter 4.6 investigated the effect of regularization on the performance of connectivity
methods. In general, regularization is necessary to stabilize the inverse solution of the
ill-posed problem. However, over-regularization leads to spatial blurring and may mask
activity from weaker signals (van Vliet, Liljeström, Aro, Salmelin, and Kujala, 2018).
In the experiment, it was demonstrated that the degree of regularization required for
accurate network reconstructions depends on the quality of recordings. Results obtained
in this simulation tie well with previous studies analysing the effect of regularization on
source estimation (Haufe et al., 2011, Hincapié et al., 2016), but go beyond previous
reports, disclosing the effect of regularization on network reconstructions. An increase in
regularization resulted in a higher accuracy up to a specific threshold. Further increase
led to a decline in network reconstruction. It should be noted that DTF, PDC and Granger
causality particularly robust and insensitive to inadequate values of regularization and only
dropped in performance in case of excessive regularization combined with high SNR data.
Another simulation with focus on inverse source imaging examined the dependency between
source localization errors and network reconstructions (chapter 4.7). From this simulation
it was confirmed that larger localization errors deteriorate the variance and reliability of
connectivity methods. Significantly decreased performance could be observed for coherence.
DTF, PDC and Granger causality showed no significantly difference for larger errors, with
Granger causality outperforming all other methods. Furthermore, this study showed the
relationship between localization errors and regularization and demonstrated that results
suffer from an incorrect or not properly optimized regularization. This effect of source
localization on connectivity methods has previously been assessed only to a very limited
extent. Recently, Mahjoory et al. (Mahjoory et al., 2017) presented a comprehensive
overview of the effect of source reconstruction parameters on functional and effective
source connectivity estimates. This study compares several localization methods from
various toolboxes regarding the consistency between source reconstruction parameters.
However, a more detailed analysis regarding errors in source localization is not taken into
account. Collectively, results from Mahjoory et al. and this experiment provide additional
information for researchers and highlight promising aspects that future research could
continue to explore.
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The simulation on number of active network nodes (section 4.8) revealed that an increase
in network size complicates a reliable and accurate identification of relationships between
nodes. It was shown that a larger number of sources, including a higher number of possible
connections may impede a methods ability to correctly identify existing links between nodes.
In order to maintain a comparability between the simulated networks with different numbers
of nodes, the ratio of connected nodes to possible connections was kept constant. Superior
results are seen by Granger causality, DTF and PDC, which produced reliable results in
reconstructing simulated links and only revealed minor inconsistencies distinguishing direct
and indirect connections. Overall, connectivity spectra of Granger causality contained a
low noise level over the entire frequency band, resulting in a straight-forward identification
of network links. When comparing our results to those of Wu et al. (Wu et al., 2011), it
must be pointed out the performance comparison of connectivity methods in this paper
did not take forward modelling and inverse source reconstruction into account. However,
findings from this study are directly in line with results from this simulation. More recently,
Farahibozorg et al. (Farahibozorg et al., 2018) looked at the sensitivity of parcellation
methods for network consisting of 3, 5, 10 and 15 nodes and varying number of connections.
It was shown that an increase of both, network size and network complexity (number of
connections between active sources) lead to a deterioration of network reconstruction. The
effect of network complexity was not outlined in section 4.8. However, future studies should
aim to replicate and enhance the results based on these findings and to examine the effect of
network complexity on the performance of a variety of connectivity estimators.
The final simulation (section 4.8) revealed that an increase in network size complicates a
reliable and accurate identification of relationships between nodes. Therefore, simulated
data sets with 16 to 256 numbers of EEG sensors were analysed. The evaluation of this
data leads to the conclusion that the number of sensors which are taken into account during
source reconstruction is of vital importance for network reconstructions. Overall, results
demonstrate an improvement in accuracy and precision of network reconstructions with
an increase of number of sensors for all estimators. Increasing the number of sensors
at a relatively low level (16 to 31 sensors) led to a strong improvement in network
reconstruction. However, a further increase from 64 to 128 or 256 sensors only provided
minimal improvements. These results are consistent with previous studies that indicated
more accurate and consistent results when increasing the number of sensors for localization
of cortical activity (Lantz et al., 2003, Song et al., 2015) or for reconstruction of functional
networks (Hassan et al., 2014).
One of the objectives of this work was to explore the effect of parameters on connectivity
methods. The simulation studies carried out revealed dependencies and interrelationships
between variables future studies can benefit from. Nonetheless, there are still unanswered
questions which need to be addressed in future research. In addition to the examination
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of source localization errors, further simulations should analyse the effect of deviations
in reconstructed dipole orientations. In this context, it is to be expected that a difference
between the simulated and reconstructed orientation may have an even stronger influence on
connectivity estimators than erroneous dipole localizations. Inverse source reconstruction in
general is a vitally important element for subsequent connectivity analysis. In the studies
outlined in the introductory overview and comparison of simulation experiments (chapter
1.2), other approaches to estimate active brain regions and to compute their temporal
activity were presented. Connectivity estimation based on results from LCMV beamforming
(Colclough et al., 2015, Anzolin et al., 2019) and MNE (Farahibozorg et al., 2018) are among
the most common used distributed source reconstruction methods and should therefore be
included in future research. Furthermore, a comparison between distributed and discrete
source reconstruction approaches, as used in this thesis, would be helpful to unravel any
differences. However, a comprehensive comparison study of source analysis methods and
their implications and influence on connectivity estimators remains briefly addressed in
the literature. Therefore, future research is required to strategically examine the effect of
different source reconstruction approaches on connectivity estimators.
An apparent simplification of the studies is the number of sources modelled by the sources
montages, as well as their positions and orientations which matches the simulated active
regions in all but one of the experiments. This high degree of overlap cannot be ensured
when analysing real MEG or EEG data sets. Nonetheless, it reduces the influence of source
reconstruction parameters and allows an undistorted examination of other factors that are
involved in the entire processing pipeline. In order to make it easier to generalize results
and transfer insights onto other data sets, this approach can be enhanced by e.g. creating
more generic source montages based on histological brain atlases.
Moreover, a comparison between network reconstructions derived from EEG and MEG
data may provide an interesting research question for subsequent experiments. This work
was mainly dedicated to the analysis of EEG data. Therefore, more research is needed to
recognise similarities and differences between those functional neuroimaging techniques.

Real EEG data analysis

The aim of chapter 5 was to transfer knowledge and implications gained from the
simulations studies onto the evaluation of real electrophysiological recordings. Resting-state
EEG recordings were analysed to illustrate the presence of a network with dominant
posterior-to-anterior information flow in the alpha frequency band, which has been outlined
in previous studies (Hillebrand et al., 2016).
The comparison of network reconstructions using various connectivity estimators did not
indicate any significant differences in the ability of each method to correctly identify
information flow between distinct cortical regions. In addition, real EEG data analysis
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confirmed findings from simulated data that Granger causality tends to produce connectivity
spectra with lower noise levels over the entire frequency band compared to coherence, DTF
and PDC. This is particularly beneficial in the case of a visual inspection of spectra, leading
to less error-prone evaluations and interpretations of results.

On the basis of the knowledge and experience gained during this PhD, a software
application called BESA Connectivity 1.0 (available from: https://www.besa.de/products/)
was being developed at BESA GmbH. This program includes multiple algorithms to perform
time-frequency analysis and connectivity estimation for EEG/MEG data. For time-frequency
decomposition of signals, two approaches are provided: complex demodulation (Papp
and Ktonas, 1977) and wavelet analysis (Morlet and complex Mexican Hat wavelet).
Subsequently, various connectivity measures like coherence, imaginary part of coherency,
DTF, PDC or Granger causality may be computed to detect information flow between
distinct network nodes. Screenshots of the application, illustrating results of time-frequency
decomposition and connectivity estimation on sensor and source level, are shown in figure
57 in the appendix of this thesis.

In conclusion, results and findings of this thesis delivered guidelines and recommendations
that allow researchers to choose appropriate connectivity estimators. Furthermore, the
present work revealed dependencies between the accuracy of network reconstructions and
properties of the neurophysiological data set to be processed or other parameters involved
in the computational analysis. Notably, the method that has proven most effective for
a majority of the different simulations was Granger causality. It produced reliable and
consistent results even for short recordings or qualitatively inferior data. Beyond that, the
results presented in this work provide additional insights on the performance of various
connectivity measures, researchers and future studies will benefit from.



Appendix

(a) Topographic representation of a
time-frequency decomposition calculated
using Complex Demodulation.

(b) Connectivity matrix showing imaginary part
of coherency for a source montage including 11
network nodes.

(c) 3D visualization (back-left view) of
imaginary part of coherency on sensor level.
EEG sensors are displayed as red discs.

(d) 3D visualization (top view) of Granger
causality on source level. Active brain areas
are represented by (colour-coded) dipoles.

Figure 57: Screenshots of BESA Connectivity 1.0.
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Table A2

Coordinates and orientations (in Talairach coordinate system) for a brain network
consisting of 4 nodes used throughout several simulations in this work.

Coordinates Orientations
Label Type x y z x y z

1 Dipole −35.89 −48.27 1.09 −0.58 −0.80 −0.07
2 Dipole −34.78 24.98 8.19 −0.63 0.77 0.07
3 Dipole 35.89 −48.27 1.09 0.66 −0.74 −0.07
4 Dipole 34.78 24.98 8.19 0.69 0.71 0.06

Table A3

Coordinates and orientations (in Talairach coordinate system) for a brain network
consisting of 6 nodes used in simulation VII (chapter 4.8).

Coordinates Orientations
Label Type x y z x y z

1 Dipole −35.90 −66.97 −0.73 −0.42 −0.90 −0.08
2 Dipole −36.15 34.37 9.14 −0.80 0.59 0.05
3 Dipole 35.77 −66.78 −0.73 0.42 −0.90 −0.08
4 Dipole 35.90 34.02 9.14 0.80 0.59 0.05
5 Dipole −47.51 −13.90 14.78 −0.26 −0.45 −0.85
6 Dipole 47.51 −13.90 14.78 0.26 −0.45 −0.85

Table A4

Coordinates and orientations (in Talairach coordinate system) for a brain network
consisting of 8 nodes used in simulation VII (chapter 4.8).

Coordinates Orientations
Label Type x y z x y z

1 Dipole −35.76 −67.12 −0.73 −0.42 −0.90 −0.08
2 Dipole −35.76 34.78 9.14 −0.79 0.60 0.05
3 Dipole 35.76 −67.12 −0.73 0.42 −0.90 −0.08
4 Dipole 35.76 34.78 9.14 0.79 0.60 0.05
5 Dipole −47.51 −13.90 14.78 −0.27 −0.45 −0.84
6 Dipole 47.51 −13.90 14.78 0.27 −0.45 −0.84
7 Dipole 0.00 −71.17 35.13 0.00 −0.80 0.59
8 Dipole 0.00 30.77 45.62 0.00 0.90 0.42
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Table A5

Coordinates and orientations (in Talairach coordinate system) for a brain network
consisting of 10 nodes used in simulation VII (chapter 4.8).

Coordinates Orientations
Label Type x y z x y z

1 Dipole −35.76 −67.13 −0.73 −0.42 −0.90 −0.08
2 Dipole −35.76 34.78 9.14 −0.80 0.59 0.05
3 Dipole 35.76 −67.13 −0.73 0.42 −0.90 −0.08
4 Dipole 35.76 34.78 9.14 0.78 0.61 0.05
5 Dipole −47.51 −13.90 14.78 −0.25 −0.46 −0.84
6 Dipole 47.51 −13.90 14.78 0.27 −0.44 −0.85
7 Dipole 0.00 30.73 45.01 0.00 0.76 0.63
8 Dipole 0.00 −71.17 35.13 0.00 −0.88 0.47
9 Dipole −25.41 −21.32 47.22 −0.71 −0.11 0.69
10 Dipole 25.41 −21.32 47.22 0.71 −0.04 0.70

Table A6

Coordinates and orientations (in Talairach coordinate system) of network nodes involved
in the alpha2 DMN including 3 additional noise sources.

Coordinates Orientations
Label Type x y z x y z

ACG right Dipole 5.97 31.32 21.52 0.00 −0.95 −0.29
CAL left Dipole −8.87 −75.47 2.80 0.00 0.99 −0.03
CAL right Dipole 12.48 −70.90 6.23 0.00 0.99 −0.13
CUN left Dipole −8.09 −78.82 21.20 0.00 0.97 −0.22
CUN right Dipole 9.96 −78.05 22.49 0.00 0.97 −0.21
IFGtriang right Dipole 44.44 24.90 20.07 −0.77 −0.50 −0.36
SFGmed left Dipole −6.68 41.38 35.83 0.00 −0.92 −0.38
SFGmed right Dipole 6.28 42.75 35.76 0.00 −0.94 −0.31
Noise left RS −55.83 −10.98 −2.87 0.00 0.00 0.00
Noise right RS 55.83 −10.98 −2.87 0.00 0.00 0.00
Noise central RS 0.00 −22.87 60.98 0.00 0.00 0.00
RS = regional source
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Table A7

Coordinates (in Talairach coordinate system) of
noise sources.

Coordinates
Label Type x y z

TAL RS −50.66 13.52 −5.71
A1L RS −42.95 −12.95 −27.00
TPL RS −50.66 −43.60 −11.25
Fp1L RS −23.65 48.47 4.09
FL RS −33.82 32.70 25.80
FC1L RS −20.98 4.74 54.29
FC5L RS −49.43 5.79 22.18
CL RS −39.59 −20.86 43.12
CP1L RS −20.98 −48.40 49.13
CP5L RS −49.43 −42.26 17.52
PL RS −33.82 −69.40 15.90
O1L RS −23.65 −79.99 −8.35
FpM RS 0.00 52.65 17.35
FM RS 0.00 30.24 47.30
CM RS 0.00 −22.87 60.98
PM RS 0.00 −71.79 37.41
OpM RS 0.00 −87.03 3.81
Fp2R RS 23.65 48.47 4.09
FR RS 33.82 32.70 25.80
FC2R RS 20.98 4.74 54.29
FC6R RS 49.43 5.79 22.18
CR RS 39.59 −20.86 43.12
CP2R RS 20.98 −48.40 49.13
CP6R RS 49.43 −42.26 17.52
PR RS 33.82 −69.40 15.90
O2R RS 23.65 −79.99 −8.35
TAR RS 50.66 13.52 −5.71
A2R RS 42.95 −12.95 −27.00
TPR RS 50.66 −43.60 −11.25
RS = regional source
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Table A8

Electrode labels and coordinates for a sensor
configuration consisting of 16 electrodes.
Coordinates are given in head coordinate system.

Coordinates [mm]
Electrode label x y z

Ele FP1 −26.30 80.80 33.00
Ele FP2 26.30 80.80 33.00
Ele F4 46.30 57.20 78.40
Ele Fz 0.00 61.10 95.00
Ele F3 −46.30 57.20 78.40
Ele T7 −84.90 0.00 33.00
Ele C3 −61.10 0.00 95.00
Ele Cz 0.00 0.00 120.90
Ele C4 61.10 0.00 95.00
Ele T8 84.90 0.00 33.00
Ele P4 46.30 −57.20 78.40
Ele Pz 0.00 −61.10 95.00
Ele P3 −46.30 −57.20 78.40
Ele O1 −26.30 −80.80 33.00
Ele Oz 0.00 −84.90 33.00
Ele O2 26.30 −80.80 33.00
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Table A9

Electrode labels and coordinates for a sensor
configuration consisting of 31 electrodes.
Coordinates are given in head coordinate system.

Coordinates [mm]
Electrode label x y z

Ele FP1 −26.30 80.80 33.00
Ele FP2 26.30 80.80 33.00
Ele F3 −46.30 57.20 78.40
Ele F4 46.30 57.20 78.40
Ele C3 −61.10 0.00 95.00
Ele C4 61.10 0.00 95.00
Ele P3 −46.30 −57.20 78.40
Ele P4 46.30 −57.20 78.40
Ele O1 −26.30 −80.80 33.00
Ele O2 26.30 −80.80 33.00
Ele A1 −66.90 −3.50 −16.40
Ele A2 66.90 −3.50 −16.40
Ele F7 −68.70 49.90 33.00
Ele F8 68.70 49.90 33.00
Ele T7 −84.90 0.00 33.00
Ele T8 84.90 0.00 33.00
Ele P7 −68.70 −49.90 33.00
Ele P8 68.70 −49.90 33.00
Ele Fz 0.00 61.10 95.00
Ele Pz 0.00 −61.10 95.00
Ele P9 −62.30 −45.30 0.00
Ele P10 62.30 −45.30 0.00
Ele FC1 −31.90 31.90 108.00
Ele FC2 31.90 31.90 108.00
Ele FC5 −75.00 28.80 63.60
Ele FC6 75.00 28.80 63.60
Ele T1 −76.00 27.60 9.70
Ele T2 76.00 27.60 9.70
Ele CP5 −75.00 −28.80 63.60
Ele CP6 75.00 −28.80 63.60
Ele Cz 0.00 0.00 120.90
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Table A10

Electrode labels and coordinates for a sensor configuration consisting of 64 electrodes.
Coordinates are given in head coordinate system.

Coordinates [mm] Coordinates [mm]
Electrode
label

x y z Electrode
label

x y z

Ele FP1 −26.30 80.80 33.00 Ele FPz 0.00 84.90 33.00
Ele AF7 −49.90 68.70 33.00 Ele FP2 26.30 80.80 33.00
Ele AF3 −34.50 74.10 59.40 Ele AF8 49.90 68.70 33.00
Ele F1 −24.40 60.40 90.60 Ele AF4 34.50 74.10 59.40
Ele F3 −46.30 57.20 78.40 Ele AFz 0.00 79.40 66.40
Ele F5 −62.00 53.90 57.90 Ele Fz 0.00 61.10 95.00
Ele F7 −68.70 49.90 33.00 Ele F2 24.40 60.40 90.60
Ele FT7 −80.80 26.30 33.00 Ele F4 46.30 57.20 78.40
Ele FC5 −75.50 29.00 62.20 Ele F6 62.00 53.90 57.90
Ele FC3 −57.50 30.60 90.60 Ele F8 68.70 49.90 33.00
Ele FC1 −31.90 31.90 108.00 Ele FT8 80.80 26.30 33.00
Ele C1 −33.20 0.00 114.20 Ele FC6 75.50 29.00 62.20
Ele C3 −61.10 0.00 95.00 Ele FC4 57.50 30.60 90.60
Ele C5 −79.40 0.00 66.40 Ele FC2 31.90 31.90 108.00
Ele T7 −84.90 0.00 33.00 Ele FCz 0.00 33.20 114.20
Ele TP7 −80.80 −26.30 33.00 Ele Cz 0.00 0.00 120.90
Ele CP5 −75.50 −29.00 62.20 Ele C2 33.20 0.00 114.20
Ele CP3 −57.50 −30.60 90.60 Ele C4 61.10 0.00 95.00
Ele CP1 −31.90 −31.90 108.00 Ele C6 79.40 0.00 66.40
Ele P1 −24.40 −60.40 90.60 Ele T8 84.90 0.00 33.00
Ele P3 −46.30 −57.20 78.40 Ele TP8 80.80 −26.30 33.00
Ele P5 −62.00 −53.90 57.90 Ele CP6 75.50 −29.00 62.20
Ele P7 −68.70 −49.90 33.00 Ele CP4 57.50 −30.60 90.60
Ele P9 −59.00 −49.50 0.00 Ele CP2 31.90 −31.90 108.00
Ele PO7 −49.90 −68.70 33.00 Ele P2 24.40 −60.40 90.60
Ele PO3 −34.50 −74.10 59.40 Ele P4 46.30 −57.20 78.40
Ele O1 −26.30 −80.80 33.00 Ele P6 62.00 −53.90 57.90
Ele Iz 0.00 −77.00 0.00 Ele P8 68.70 −49.90 33.00
Ele Oz 0.00 −84.90 33.00 Ele P10 59.00 −49.50 0.00
Ele POz 0.00 −79.40 66.40 Ele PO8 49.90 −68.70 33.00
Ele Pz 0.00 −61.10 95.00 Ele PO4 34.50 −74.10 59.40
Ele CPz 0.00 −33.20 114.20 Ele O2 26.30 −80.80 33.00
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Table A11

Electrode labels and coordinates for a sensor configuration consisting of 72
electrodes (67 scalp channels and 5 polygraphic channels). Positions of sensors
are given in spherical coordinates, defined in degrees by the azimuth and the
elevation angle.

Coordinates [°] Coordinates [°]
Electrode label Azimuth Elevation Electrode label Azimuth Elevation

FP1 −92.00 −72.00 AFz 69.00 90.00
AF7 −92.00 −52.00 Fz 46.00 90.00
AF3 −74.00 −67.00 F2 50.00 68.00
F1 −50.00 −68.00 F4 60.00 51.00
F3 −60.00 −51.00 F6 75.00 41.00
F5 −75.00 −41.00 F8 92.00 36.00
F7 −92.00 −36.00 FT8 92.00 18.00
FT7 −92.00 −18.00 FC6 71.00 21.00
FC5 −71.00 −21.00 FC4 50.00 28.00
FC3 −50.00 −28.00 FC2 32.00 45.00
FC1 −32.00 −45.00 FCz 23.00 90.00
C1 −23.00 0.00 Cz 0.00 0.00
C3 −46.00 0.00 C2 23.00 0.00
C5 −69.00 0.00 C4 46.00 0.00
T7 −92.00 0.00 C6 69.00 0.00
TP7 −92.00 18.00 T8 92.00 0.00
CP5 −71.00 21.00 TP8 92.00 −18.00
CP3 −50.00 28.00 CP6 71.00 −21.00
CP1 −32.00 45.00 CP4 50.00 −28.00
P1 −50.00 68.00 CP2 32.00 −45.00
P3 −60.00 51.00 P2 50.00 −68.00
P5 −75.00 41.00 P4 60.00 −51.00
P7 −92.00 36.00 P6 75.00 −41.00
P9 −115.00 36.00 P8 92.00 −36.00
PO7 −92.00 54.00 P10 115.00 −36.00
PO3 −74.00 67.00 PO8 92.00 −54.00
O1 −92.00 72.00 PO4 74.00 −67.00
Iz 115.00 −90.00 O2 92.00 −72.00
Oz 92.00 −90.00 M1 −120.00 25.00
POz 69.00 −90.00 M2 120.00 −25.00
Pz 46.00 −90.00 Nz 112.00 90.00
CPz 23.00 −90.00 LVEOG n.a. n.a.
FPz 92.00 90.00 RVEOG n.a. n.a.
FP2 92.00 72.00 LHEOG n.a. n.a.
AF8 92.00 52.00 RHEOG n.a. n.a.
AF4 74.00 67.00 NFPz n.a. n.a.
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Akalin-Acar, Z., & Gençer, N. G. (2004). An advanced boundary element method (bem)
implementation for the forward problem of electromagnetic source imaging. Physics

in Medicine and Biology, 49(21), 5011–5028.

Amunts, K., Hawrylycz, M. J., Van Essen, D. C., Van Horn, J. D., Harel, N., Poline, J.-B.,
De Martino, F., Bjaalie, J. G., Dehaene-Lambertz, G., Dehaene, S., Valdes-Sosa, P.,
Thirion, B., Zilles, K., Hill, S. L., Abrams, M. B., Tass, P. A., Vanduffel, W., C., E. A.,
& Eickhoff, S. B. (2014). Interoperable atlases of the human brain. NeuroImage, 99,
525–532.

Anzolin, A., Presti, P., Van De Steen, F., Astolfi, L., Haufe, S., & Marinazzo, D. (2019).
Quantifying the effect of demixing approaches on directed connectivity estimated
between reconstructed eeg sources. Brain Topography, 32, 655–674.

Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalá, L. A., de Vico Falliani, F.,
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Steinsträter, O., Sillekens, S., Junghoefer, M., Burger, M., & Wolters, C. H. (2010).
Sensitivity of beamformer source analysis to deficiencies in forward modeling. Human

Brain Mapping, 31(12), 1907–1927.

Suarez, E., Viegas, M. D., Adjouadi, M., & Barreto, A. (2000). Relating induced changes
in eeg signals to orientation of visual stimuli using the esi-256 machine. Biomedical

Sciences Instrumentation, 36, 33–38.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing
for nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear

Phenomena, 58(1–4), 77–94.

Tikhonov, A. N., Leonov, A. S., & Yagola, A. G. (1998). Nonlinear ill-posed problems.
Chapman & Hall.

Tononi, G. (1998). Consciousness and complexity. Science, 282(5395), 1846–1851.

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating
functional segregation and integration in the nervous system. Proceedings of the

National Academy of Sciences, 91(11), 5033–5037.

Trujillo, L. T., Stanfield, C. T., & Vela, R. D. (2017). The effect of electroencephalogram
(eeg) reference choice on information-theoretic measures of the complexity and
integration of eeg signals. Frontiers in Neuroscience, 11.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in
spm using a macroscopic anatomical parcellation of the mni mri single-subject brain.
NeuroImage, 15(1), 273–289.

Ursino, M., Zavaglia, M., Astolfi, L., & Babiloni, F. (2007). Use of a neural mass model for
the analysis of effective connectivity among cortical regions based on high resolution
eeg recordings. Biological Cybernetics, 96(3), 351–365.

Van Veen, B., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of
brain electrical activity via linearly constrained minimum variance spatial filtering.
IEEE Transactions on Biomedical Engineering, 44(9), 867–880.

van Vliet, M., Liljeström, M., Aro, S., Salmelin, R., & Kujala, J. (2018). Analysis of
functional connectivity and oscillatory power using dics: From raw meg data to
group-level statistics in python. Frontiers in Neuroscience, 12.



Bibliography 165

Vander, A. J., Sherman, J. H., & Luciano, D. S. (2001). Human physiology: The mechanisms

of body function (8th ed.). McGraw-Hill.

Vinck, M., Huurdeman, L., Bosman, C. A., Fries, P., Battaglia, F. P., Pennartz, C. M., &
Tiesinga, P. H. (2015). How to detect the granger-causal flow direction in the presence
of additive noise? NeuroImage, 108, 301–318.

Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., & Pennartz, C. M. (2011). An
improved index of phase-synchronization for electrophysiological data in the presence
of volume-conduction, noise and sample-size bias. NeuroImage, 55(4), 1548–1565.

Wang, S. H., Lobier, M., Siebenhühner, F., Puoliväli, T., Palva, S., & Palva, J. M. (2018).
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