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Abstract 

Rhipicepahlus (Boophilus) microplus is an obligate feeding, hard tick of great economical 

importance in the cattle industry.  Every year billions of dollars of loss is attributed to R.(B) 

microplus, mainly through loss of cattle due to pathogens transmitted such as Babesia 

and Anaplasma, but also through damage to hides from blood-feeding. There is conflicting 

evidence regarding the taxonomic status of R.(B) microplus, however the most recent 

published research has been in support of the reinstatement of R.(B) australis as a 

species distinct from R.(B) microplus.  The way in which some members of the scientific 

community have responded to the designation of separate species has implications for 

vaccine and acaricide research.  In this study, we aimed to resolve the taxonomic status 

of Rhipicephalus (Boophilus) microplus, using morphological and phylogenetic 

approaches. 1,650 Rhipicephalus (Boophilus) microplus ticks from Australia, Thailand, 

South Africa, North and Central America and South America were used in this study. 340 

specimens consisting of 170 R.(B) annulatus (USA) and 170 R.(B) decoloratus (South 

Africa) were also used. To maximize the information obtained from morphological 

observations, three methods were used; a binary scoring system based on previously 

described features, a standard morphometric method, and the more novel approach of 

geometric morphometrics. For the phylogenetic analysis three genes were used; the 

mitochondrial gene COX1 and two functional nuclear genes; Bm86 and βAOR. 

Morphological scoring is the process of assigning a binary value to any feature as being 

present or absent, or satisfying a logical comparator.  For this study the scoring matrix 

was based on previously described sets of morphological criteria used for discriminating 

among species.  Each of the populations for which samples were obtained was tested 

using four two-way analyses, each of which was designed to test whether a sample 

should be classified as one of two possible species: R.(B) australis versus R.(B) 

microplus; R.(B) microplus versus R.(B) annulatus; R.(B) microplus versus R.(B) 

decoloratus; and R.(B) annulatus versus R.(B) decoloratus.  The scoring system was 

highly repeatable for the differentiation of males and females of R. (B) annulatus and 

R.(B) decoloratus from both of R.(B) microplus and R.(B) decoloratus. However, in the 

case of R.(B) australis and R.(B) microplus, clear differentiation was not achieved for 

either male or female ticks. Among females, the Australian population were classified 

almost evenly as R.(B) australis and R.(B) microplus, with 8 individuals showing a mixture 

of features and therefore not able to be classified.  Ticks from the rest of the regions were 

mainly classified as R.(B) microplus, which is to be expected as R.(B) australis is reported 

in Australia.  However, only the Mozo isolates were classified as solely R.(B) microplus. 

The remaining regions included several ticks with mixed features. Six ticks from South 

Africa, and four of the Juarez isolate were classified as R.(B) australis. Among the males 



II 
 

an entirely different pattern emerged.  Most male ticks from all geographical locations 

were classified as either R.(B) australis or showed a mixture of both features, with only a 

small number scoring as R.(B) microplus. 

Morphometrics is the linear measurement from one anatomical landmark to another and is 

a widely-used technique for quantifying phenotypic variation.  Twelve features based on 

previous morphometric work were used.  The results obtained from this study varied 

according to stage and sex.  For the larvae, the Fisher Pairwise comparison showed that 

the Australian ticks tended to have a shorter body length, idiosoma length and narrower 

scutum width.  Among the remaining morphological features, there were no consistent 

patterns in the different populations and species.  A principal components analysis (PCA) 

was undertaken and in PC1 the strongest feature was scutum length and hypostome 

length.  In PC2 the strongest feature was idiosoma length. The PCA of larval stage ticks 

didn’t provide conclusive evidence that R.(B) australis is a distinct species from R.(B) 

microplus, and there was no obvious grouping based on region at all, even when including 

R.(B) decoloratus and R.(B) annulatus.  In relation to the male ticks studied, the Fisher 

Pairwise comparison and the PCA showed that Australian males (presumed R.(B) 

australis) were significantly different from the other isolates.  As with the larvae, no 

patterns were seen in the other populations, based on species or region.  In PC1 palpal 

length measures were the strongest features for differentiation and in PC2 the length of 

the ventral basis capituli had the strongest effect.  The adult female samples yielded a 

mixed result.  There was no real trend in the size of Australian ticks observed from the 

Fisher Pairwise comparison.  However, R.(B) decoloratus tended to be smaller for most of 

the morphological features tested and R.(B) annulatus tended to be larger.  This 

observation was inconsistent with the results from the PCA, in which there was grouping 

of Australian ticks.  Measures of palpal length, width of the basis capituli and the length of 

the dorsal basis capituli were the strongest for differentiation in PC1.  In PC2 the length of 

the ventral basis capituli was the strongest feature for differentiating populations. 

Geometric morphometrics is the quantitative representation of shape using coordinates in 

the form of landmarks, instead of measurements and is intended to give the shape of the 

feature independent of size. Hence it is useful for eliminating the effect of size distortion 

occurring with physiological changes.  Geometric morphometric analysis did not clearly 

and consistently enable the differentiation of any of the populations of ticks in this study. 

Each feature differed among samples in different sets of pairwise relationships. 

Mitochondrial cytochrome oxidase subunit I gene (COX1) has been presented as a 

suitable mitochondrial gene to clarify complex groupings that were not resolved when 

using other mitochondrial genes. COX1 has also been proposed to be the main gene for 
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differentiating between R.(B) microplus and R.(B) australis.  The aims of this study were to 

confirm whether COX1 can be used to resolve complex relationships within the R.(B) 

microplus clade and to determine whether there is justification for the view that R.(B) 

australis is a distinct species from R.(B) microplus.  Maximum likelihood trees were 

constructed with a Bootstrap analysis.  A relaxed clock Bayesian analysis was then 

undertaken to estimate topology and divergence timings, using three ticks found in amber 

covering three genera: Amblyomma, Hyalomma and Ixodes to calibrate the clock.  These 

analyses suggest that R.(B) microplus is a clade, containg five subspecies including R.(B) 

annulatus, R.(B) australis, and three, regionally based clades of R.(B) microplus: 1. All the 

South and Central American isolates together with isolates from Cambodia, Thailand, and 

some of those from Malaysia; 2. Indian and the remaining Malaysian isolates; 3. Most of 

the Chinese isolates.  R.(B) decoloratus shares a common ancestor with R.(B) microplus 

and R.(B) annulatus however it is clearly divergent, appearing to be more related to R. 

bursa.  All proposed groups of R.(B) microplus also appear to have evolved within the 

same time scale (within the last 20 million years). 

Bm86 is the name given to a midgut glycoprotein that is the target antigen of the only 

commercially available vaccine against ticks. All the prior work on this gene has been 

conducted using cDNA and suggests a high degree of sequence variation and the 

presence of different isoforms. The aim was to use genomic DNA to examine the regional 

variation in the Bm86 sequences and to determine whether Bm86 variation segregated 

according to the recently proposed taxonomic re-classification of R.(B) microplus and 

R.(B) australis. After extensive optimization, it was found that all primer sets, including 

those previously published and those designed in this project, failed on the extracted 

genomic DNA from all isolates.  High variability in the published cDNA sequences 

indicated an extremely high mutation rate, which could potentially be linked to variation in 

the function of the protein and its utility as a vaccine immunogen.  Analysis of sequence 

alignments from publicly available databases did not allow grouping of samples by either 

geographical location or proposed taxon.  These findings are in apparent contradiction to 

claims by other researchers that regional variation in the efficacy of the vaccine is 

associated with regional variation in sequence.  

Beta-adrenergic octopamine receptor (βAOR) is a G-protein coupled receptor (GPCR) 

located on the neuronal cell surface and believed to be the main target of the acaricide 

amitraz. Polymorphism in βAOR has been associated with amitraz resistance. 121 

samples from our isolates were sequenced for a length of 183 base pairs in position 95-

277, among which eight SNPs were identified, five of which had not been previously 

described.  It was found that geographical populations did not group based on the βAOR 

gene.  Six of the SNPs were non-synonymous.  When the 2-D structure of the putative 
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βAOR protein was predicted, it was found that all non-synonymous single nucleotide 

polymorphisms (SNPs) caused a change to a residue in the βAOR cytoplasmic pore.  Chi-

square analysis showed that populations that are known to be resistant to amitraz were 

significantly more likely to have one of the non-synonymous SNPs, regardless of 

geographical location. 

In summary, when using the morphological analyses alone, it is not possible to 

consistently differentiate R.(B) microplus from the proposed R.(B) australis. Analysis of 

the COX1 gene supports the differentiation of R.(B) australis from R.(B) microplus, 

however when the gene is analyzed across all isolates, COX1 also showed support for 

R.(B) microplus being a species complex made up of three regional groups, R.(B) 

australis and R.(B) annulatus. The Bm86 gene was not amenable to analysis of gDNA 

and the analysis of published cDNA sequence was not informative and showed no clear 

regional or taxonomic variation. The shared SNPs between the previously documented 

Australian amitraz-resistant population and our South American amitraz-resistant isolates 

provide support for a role of βAOR in amitraz resistance. The presence of the same SNP 

arising independently in resistant isolates on two continents suggests strong selection at 

this locus.  The three novel SNPs that were found in amitraz-resistant populations, having 

amino acid residues located on the intracellular loop 1, provide further support for the link 

between genotype and functional resistance.  
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CHAPTER 1 

Introduction  

Ticks are obligate, blood feeding ectoparasites that feed on a wide range of 

vertebrate hosts (Oliver, 1989). There are currently 896 recognized tick species 

worldwide (Guglielmone et al., 2010), made up of the families Argasidae (soft 

ticks), Ixodidae (hard ticks) (figure 1.1), and Nuttalliellidae which contains one 

species.  The Ixodidae family contains approximately 702 species across 14 

genera; however these numbers are in constant flux due to advances in molecular 

methods and their ability to resolve taxonomic disparities (Guglielmone et al., 

2010).   

 

Figure 1.1: Dorsal view of the two main tick families: Ixodidae (A) and Argasidae (B) 
(Source: Authors own drawing). 

Species of Ixodidae have been well documented to cause substantial economic 

loss to the livestock industry (Jongejan and Uilenberg, 2004).  In particular, the 

Southern cattle tick Rhipicephalus (Boophilus) microplus is known to cause billions 

of dollars of loss to the cattle industry every year (Byford et al., 1992).  

Rhipicephalus (Boophilus) microplus is a single host tick and spends its entire 

parasitic phase on one host animal (normally cattle), often resulting in heavy 

infestations. This may cause substantial damage either through disease 

transmission or via direct mechanical damage due to blood-feeding activities 

(Jonsson, 2006). 
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The reinstatement of R.(B) australis as a species distinct from R.(B) microplus has 

been proposed in recent years, based upon mating studies (Labruna et al., 2009), 

molecular evidence (Labruna et al., 2009, Burger et al., 2014) and on observed 

morphological differences (Estrada-Peña et al., 2012).  The taxonomic status of 

R.(B) microplus has assumed a more practical relevance than it deserves.  This is 

because it has resulted in a tendency of researchers to use distinct species status 

of R.(B) microplus and R.(B) australis as an explanation for differences in the 

results among studies conducted in different regions on a tick that was previously 

considered to be a single species.  An example of this is found in Baron et al. 

(2015). ““The mutation reported by Corley, Jonsson in the β-adrenergic-like 

octopamine receptor seems promising, but its restricted localization to only the 

central part of Queensland in Australia further substantiated our notion to 

investigate the OCT/Tyr receptor instead. Additionally, it has been reported that R. 

microplus in Australia may be a different species and has therefore been re-

classified as R. australis.” Whereas the first quoted sentence that relates to 

isolation and genetic drift is true and a reasonable concern, the belief that simply 

being classified as a distinct species should have any impact on the mechanism of 

drug resistance seems to be unreasonable. In other cases, referees acting for 

journals considering manuscripts on R.(B) microplus or R.(B) australis have 

requested verification that the species of ticks was one or the other of the two. 

This latter was the case in the publication of Kaewmongkol et al. (2015), among 

others. This presents an unreasonable challenge to researchers as so far, a non-

molecular means of definitive differentiation of R.(B) microplus and R.(B) australis 

are not presently available.  
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Life cycles and host preference  

Throughout the life cycle, ticks undergo three different stages of development; 

larva, nymph and adult, all of which require a blood meal in order to moult to the 

next stage (figure 1.2).  

 

Figure 1.2: Life stages of Ixodes ricinus A: Larvae, B: Nymph (unfed and partially engorged), 
C Adult male and D: Adult female (unfed and engorged). (Source: Authors own photograph). 

Larvae range in size depending on the species, but in general can be identified by 

their small size (approximately 0.05mm) and the presence of only six legs.  

Nymphs are larger in size to the larvae, but smaller than adults (adults can range 

in size 2-7mm) and have eight legs, at this stage they begin to resemble the adult 

females but can be distinguished by the absence of a genital aperture on the 

ventral surface (Walker et al., 2003; Walker et al., 2005).  Within the Ixodidae 

three different types of life cycle are observed, dependent on species adaptation to 

host availability and environmental conditions (Daniel et al., 1976). The most 

common of the life cycles is the three host cycle (figure 1.3), during which each 

stage takes a blood meal from a different host before dropping to the ground to 

moult to the next stage (McGarry, 2011).  Adult males do not require taking a large 

blood-meal, unlike the females, and so spend a variable amount of time on the 

host taking small blood meals.  The second type is the two host life cycle (figure 

1.4), during which ticks moult on-host from larva to nymph, after which the nymph 

will then engorge and drop off the host before moulting to adult (Oliver, 1989).  As 
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for the three-host life cycle, the time spent on host by the adult male will vary 

between species.  Finally some Ixodidae species have a one host life cycle; after 

hatching on the ground a larva will attach to a host and proceed to complete its life 

cycle without dropping to moult.  It is only after the adult females have mated, will 

the tick drop off to lay eggs and subsequently die (Sweatman, 1967).  In the one 

host life cycle (figure 1.5), adult males will remain on-host longer than females, 

mating multiple times before they too drop off the host and die.  

 

Figure 1.3: Schematic demonstrating a 3-host life cycles of the Ixodidae. (Source: Authors 
own drawing). 
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Figure 1.4: Schematic demonstrating a 2-host life cycles of the Ixodidae. (Source: Authors 
own drawing). 

 

Figure 1.5: Schematic demonstrating a 1-host life cycles of the Ixodidae. (Source: Authors 

own drawing). 

The Rhipicephaline ticks covered in this thesis; R.(B) microplus, R.(B) australis, 

R.(B) annulatus and R.(B) decoloratus belong to the genus Rhipicephalus and the 

sub-genus Boophilus.  They are all one-host ticks which predominantly parasitize 

cattle and transmit a range of diseases (table 1.1-1.4). 
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Rhipicephalus (Boophilus) microplus 

Table 1.1: Summary of life cycle and hosts of R.(B) microplus (Walker et al., 2003) 

Common 

names 

Hosts Life cycle Pathogens 

transmitted 

Southern Cattle 

tick, Asiatic 

cattle tick, Cattle 

tick  

Primarily Cattle 

 

Also found on: 

horses, sheep, deer 

and water buffalo 

 

Rarely found on: 

marsupials, goats, 

dogs, cats and pigs 

One host: 

 

Parasitic phase 18 – 

35 days, typically 

males are on host for 

longer than 35 days. 

 

Life cycle can be 

completed in 2 

months 

Babesia bovis 

Babesia bigemina 

Anaplasma 

marginale 

Borrelia theileri 

 

Rhipicephalus (Boophilus) annulatus 

Table 1.2: Summary of life cycle and hosts of R.(B) annulatus (Walker et al., 2003) 

Common names Hosts Life cycle Pathogens 

transmitted 

Blue cattle tick, 

Texas cattle 

fever tick, Cattle 

fever tick,  

American cattle 

tick 

Primarily Cattle 

 

Also found on: 

horses and deer 

 

 

Rarely found on: 

sheep, goats, 

humans and 

dogs 

One host: 

 

Parasitic phase 

approximately 3 

weeks. 

 

Life cycle can be 

completed in 2 

months. 

Babesia bigemina 

Babesia bovis 

Anaplasma marginale 

 

  



7 
 

Rhipicephalus (Boophilus) decoloratus 

Table 1.3: Summary of life cycle and hosts of R.(B) decoloratus (Walker et al., 2003) 

Common names Hosts Life cycle Pathogens 

transmitted 

Tropical cattle 

tick, Blue tick 

Primarily Cattle 

 

Also found on: 

horses and 

antelope 

 

Rarely found on: 

sheep, goats and 

humans 

One host: 

Parasitic phase 

approximately 3 

weeks. 

 

 

Life cycle can be 

completed in 2 

months. 

Babesia bigemina 

Anaplasma marginale 

Borrelia theileri 

 

Rhipicephalus (Boophilus) australis  

Table 1.4: Summary of life cycle and hosts of R.(B) australis (Barker and Walker, 2014) 

Common names Hosts Life cycle Pathogens 

transmitted 

Cattle tick Primarily Cattle 

 

Also found on: 

horses, sheep, 

deer and water 

buffalo 

 

 

Rarely found on: 

marsupials, 

goats, dogs, cats 

and pigs 

One host: 

 

Parasitic phase 18 

– 35 days, typically 

males are on host 

for longer than 35 

days. 

 

Life cycle can be 

completed in 2 

months. 

Babesia bovis 

Babesia bigemina 

Anaplasma 

marginale 

Borrelia theileri 
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Identification of individual species 

There are a number of morphological features that can be used in the identification 

of tick species, in order to use these features, it is important to understand 

where/what the features are and the variations that can occur.  For a full guide to 

the morphological terms please see the appendix.  

Rhipicephalus (Boophilus) microplus 

Adult female R.(B) microplus has broad oval porose areas.  The internal margin of 

palp article i is short and distinctly concave with no protuberance.  The ventral 

surface of the hypostome has a typical 4+4 tooth arrangement.  Coxa I have 

distinct, short internal and external spurs, with indistinct spurs on the rest of the 

coxae.  The genital aperture forms a broad ‘U’ shape and is positioned between 

coxae II.  Dorsal setae are said to be short and slender, forming clusters of medial 

alloscutal setae in 2-3 rows (figure 1.6) (Barker and Walker, 2014, Walker et al., 

2003). 

 

Figure 1.6: Morphological features of R.(B) microplus females; A: dorsal. B: ventral. 
(Source: Authors own photograph). 
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Adult males have distinct cornua on the posterior margin of the basis capitulum.  

Both adanal and accessory adanal shields are present, with indistinct spurs that 

are not visible from the dorsal aspect in unfed males.  Adanal shields are squared 

in shape along the posterior border.  A narrow caudal appendage is also present.  

Coxa I have a distinct anterior spur, as well as distinct internal and external spurs.  

Coxae II-IV has indistinct spurs.  Several setae are present on the lateral margins 

of the ventral surface of the capitulum (figure 1.7) (Barker and Walker, 2014, 

Walker et al., 2003). 

 

Figure 1.7: Morphological features of R.(B) microplus males; A: dorsal. B: ventral. C: close 
up of the ventral shields. D: setae on the lateral margin of the capitulum. (Source: Authors 
own photograph). 
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The larvae are broad oval in shape, with no cornua or palp article i.  The basis 

capituli is broadly rounded on the ventral borders.  The hypostome is short and 

broad with a 2+2 teeth configuration.  The scutum is smooth, lacking setae and 

extends to take up approximately two thirds of the dorsal surface.  Cervical 

grooves are present; however they are shallow.  There is a short internal spur on 

coxa I with no spurs on the rest of the coxae (figure 1.8) (Barker and Walker, 

2014, Walker et al., 2003). 

 

Figure 1.8: Morphological features of R.(B) microplus larvae; A: dorsal. B: ventral. Short 
internal spur of coxa I indicated by red arrow. (Source: Authors own photograph). 

  



11 
 

Rhipicephalus (Boophilus) australis 

Based on the re-description outlined by Estrada-Peña et al. (2012); adult female 

R.(B) australis has broad oval porose areas.  The internal margin of palp article i is 

short and distinctly concave with no protuberance.  The ventral surface of the 

hypostome has a typical 4+4 tooth arrangement.  Coxa I have distinct, short 

internal and external spurs, with indistinct spurs on the rest of the coxae.  The 

genital aperture forms a broad ‘U’ shape and is positioned between coxa II.  

Dorsal setae are said to be long and pale, forming clusters of medial alloscutal 

setae in 4-6 rows.  Setae are also said to be present behind the eyes (figure 1.9) 

(Barker and Walker, 2014). 

 

Figure 1.9: Morphological features of R.(B) australis females; A: dorsal. B: ventral. (Source: 
Authors own photograph). 
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Adult males have distinct cornua on the posterior margin of the basis capitulum.  A 

spur is present on the ventral surface of palp article i.  Both adanal and accessory 

adanal shields are present, with indistinct spurs that are not visible from the dorsal 

aspect in unfed males.  A narrow caudal appendage is also present.  Coxa I have 

distinct anterior spurs, visible from the dorsal aspect, as well as distinct internal 

and external spurs.  Coxae II-IV has indistinct spurs.  Setae may be present on the 

lateral margins of the ventral surface of the basis capitulum, when present they are 

very short (figure 1.10) (Barker and Walker, 2014). 

 

Figure 1.10: Morphological features of R.(B) australis males; A: dorsal. B: ventral C: close 
up of the ventral plates. D: ventral mouthparts (ventral spur of palp article i indicated by red 
arrow). (Source: Authors own photograph). 
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The morphological features of the larvae are the same as for R.(B) microplus 

(figure 1.11) (Barker and Walker, 2014). 

 

Figure 1.11: Morphological features of R.(B) australis larvae; A: dorsal. B: ventral. Short 
internal spur of coxa I indicated by red arrow. (Source: Authors own photograph). 
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Rhipicephalus (Boophilus) annulatus 

Adult female R.(B) annulatus have broad oval porose areas.  The tooth 

arrangement on the ventral hypostome is 4+4 and the internal margin of palp 

article i is long and slightly concave.  Both internal and external spurs on coxa I 

are indistinct with spurs absent on coxae II-IV.  The genital aperture forms a broad 

‘U’ shape (figure 1.12) (Walker et al., 2003). 

 

Figure 1.12: Morphological features of R.(B) annulatus females; A: dorsal. B: ventral.  
Lateral margin of palp article i obscured by debris. (Source: Authors own photograph). 
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Adult males have distinct cornua.  On the ventral surface the posterior border of 

the adanal shield is rounded and spurs are indistinct.  The accessory adanal 

shields are indistinct with indistinct spurs.  The caudal appendage is also absent.  

Coxa I have short internal and external spurs, spurs are absent from the rest of the 

coxae (figure 1.13) (Walker et al., 2003). 

 

Figure 1.13: Morphological features of R.(B) annulatus males; A: dorsal. B: ventral C: close 
up of the ventral plates. (Source: Authors own photograph). 
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The body of the larva is broad oval with the basis capitulum slightly convex 

laterally and either straight or slightly convex along the posterior border.  As with 

R.(B) microplus larvae, there are no cornua present and the hypostome is shorter 

than that of R.(B) microplus.  Hypostomal teeth are arranged in a 2+2 formation.  

The scutum is smooth, lacking both punctations and setae.  It takes up 

approximately half the dorsal surface and is broader then it is long.  Cervical 

grooves are present and short (figure 1.14) (Walker et al., 2003). 

 

Figure 1.14: Morphological features of R.(B) annulatus larvae; A: dorsal. B: ventral. (Source: 
Authors own photograph). 
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Rhipicephalus (Boophilus) decoloratus 

Adult female R.(B) decoloratus have narrow oval porose areas.  The internal 

margin of palp article i has a protuberance with setae attached.  The ventral 

hypostome has a 3+3 tooth arrangement.  Coxa I have short distinct internal and 

external spurs, where coxae II-IV have indistinct external spurs.  The genital 

aperture forms a narrow ‘U’ shape (figure 1.15) (Walker et al., 2003). 

 

Figure 1.15: Morphological features of R.(B) decoloratus females; A: dorsal. B: ventral.  C: 
close up of ventral mouthparts, protuberance on internal margin of article i indicated as red 
arrow. (Source: Authors own photograph). 
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Adult males have distinct cornua.  The adanal and accessory adanal plates are 

distinct with distinct spurs that are visible from the dorsal aspect.  The caudal 

appendage is present and narrow.  Coxa I has distinct but short internal and 

external spurs (figure 1.16) (Walker et al., 2003). 

 

Figure 1.16: Morphological features of R.(B) decoloratus males; A: dorsal. B: ventral C: 
close up of the ventral plates. (Source: Authors own photograph). 
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Larvae are broad oval in shape, the scutum is broader then long, finely 

punctuated, containing fine setae.  The scutum also has short, shallow cervical 

grooves and extends approximately half the dorsal surface.  The capitulum is 

straight or slightly undulate along the anterior border and sharply convex and 

protuberant along the lateral borders.  The ventral aspect of the basis capitulum is 

broadly rounded.  Cornua are absent and the hypostome is short with a 2+2 tooth 

arrangement (figure 1.17) (Walker et al., 2003). 

 

Figure 1.17: Morphological features of R.(B) decoloratus larvae; A: dorsal. B: ventral.  
Punctations on the scutum is indicated and appear as a ‘wrinkling’ and ‘pitting’ on the 
scutal surface. (Source: Authors own photograph). 

Distinguishing between the proposed species 

Below is a table summarizing the morphological differences between the four 

species described above based on the morphology outlined in the literature 

(Barker and Walker, 2014, Walker et al., 2003) (table 1.5). 
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Table 1.5: A summary of the morphological difference between the four species of interest; R.(B) microplus, R.(B) australis, R.(B) annulatus and R.(B) 
decoloratus. 

Sex Comparison Image 

Female R.(B) microplus features (A): 

>Dorsal setae are shorter and 

slender. 

>Medial alloscutal setae form 

clusters of 2–3 rows. 

>Setae behind the eyes are 

unapparent/ 

absent. 

 

R.(B) australis features (B): 

>Dorsal setae abundant, long, 

and pale. 

>Medial alloscutal setae are in 

clusters of 4–6 rows. 

>Setae behind the eyes are 

clearly visible. 
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Male R.(B) microplus features (A): 

>Ventral spur absent from palp 

article i.  

>Several setae present on the 
lateral margins of the ventral 
surface of the capitulum. 
 
R.(B) australis features (B): 
>Spur present on the ventral 

surface of palp article i.  

>Setae on the lateral margins 

of the ventral surface of the 

capitulum either very 

short/absent. 
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Female R.(B) microplus features (A): 

>Porose area broad oval. 

>Palp i internal protuberance 

absent. 

 

R.(B) decoloratus features 

(B): 

>Porose area narrow oval. 

>Palp i internal protuberance 

present 
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Male R.(B) microplus features (A): 

>Coxae I spur long. 

>Ventral plate spurs indistinct 

 

R.(B) decoloratus features 

(B): 

>Coxae I spur short. 

>Ventral plate spurs distinct 
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Female R.(B) microplus features (A): 

>Coxae I spurs distinct. 

>Coxae II + III spurs present 

 

R.(B) annulatus features (B): 

>Coxae I spurs indistinct. 

>Coxae II + III spurs absent. 
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Male R.(B) microplus features (A): 

>Coxae I spurs long. 

>Caudal appendage present 

 

R.(B) annulatus features (B): 

>Coxae I spurs short. 

>Caudal appendage absent. 
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Female R.(B) annulatus features (A): 

>Porose area broad oval. 

>Palp i internal protuberance 

absent. 

>Coxae I spurs indistinct. 

>Coxae II + III spurs absent. 

 

R.(B) decoloratus features 

(B): 

>Porose area narrow oval. 

>Palp i internal protuberance 

present. 

>Coxae I spurs distinct. 

>Coxae II + III spurs present. 
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2
8

 

Male R.(B) annulatus features (A): 

>Ventral plate spurs indistinct. 

>Caudal appendage absent. 

 

R.(B) decoloratus features 

(B): 

>Ventral plate spurs distinct. 

>Caudal appendage present. 
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Techniques used to quantify morphology 

There are a number of approaches towards classifying morphology used in tick 

studies and they range from the more traditional to those that have been evolved 

alongside the development of image analysis software.  The aim of these 

approaches is to quantify the phenotypic variation that result from genetic 

variation, excluding where possible, those changes in morphology that result from 

external factors. 

Scoring 

Scoring is a very simple method for comparing morphology.  It does not require 

any special software and can be done by eye using a suitable microscope.  This 

method allows for the comparison of morphology between species that are either 

distantly or closely related, however the morphological characteristics of at least 

one of the species type specimen of interest needs to have been documented 

previously.  It is not a technique widely used in publication, as most studies favour 

morphometrics for a more in-depth insight into morphology; however some studies 

have used this approach, along with phylogenetic data to infer phylogeny 

(Klompen et al., 1997; Beati and Keirans 2001).  Scoring is a technique used 

mainly in the construction of field guides or in the creation of identification keys for 

ticks and allows for easy sorting of tick specimens to then be used for 

morphometric analysis (Walker et al., 2003; Walker et al., 2005; Barker and 

Walker 2014; Hillyard 1996).  In the case of identification keys, as seen in Hillyard, 

1996, descriptive statements are used in the place of a binary system, for example 

‘spur on coxa I overlaps coxa II’, in this case if the answer is yes it may either take 

you to a new set of questions or it might be enough to reach a conclusion on the 

species identification.  If the answer is no then you are led to a new question and 

so on. 

Scoring is the process of giving a feature a value of 1 or 0 depending on whether it 

meets a given set of criteria or not (Klompen et al., 1997; Beati and Keirans 2001).  

This can range from variances in the feature described to whether the feature is 

present or absent.  Klompen et al., 1997 used this technique as part of the re-

evaluation of relationships in the Metastriata, using 82 characters as points for 

comparison.  As this study covered a large number of different species, some of 
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the features had more than two variations and were therefore given a score from 

0-4.  Results from this study mostly supported previous classifications based on 

morphology, with the exception of rejecting the previously proposed monophyly of 

Aponomma and Amblyomma when combined with phylogenetic data.  Beati and 

Keirans, 2001 used a score matrix, along with phylogenetic data to explore the 

systematic relationships among Rhipicephalus and Boophilus.  In this study they 

used 63 characters, giving a score of up to 0-4, again in the cases where features 

had more than two states of being.  In this case the score matrix approach to 

morphology was found to be unsuccessful, where no character was found to be 

consistent.  It was concluded that the high level of variability in the features tested 

with the matrix in Rhipicpehaline and Boophilid ticks made it impossible to reliable 

differentiate between females, however this approach did have a measure of 

success with males and larvae.  The difficulties expressed by Beati and Keirans, 

2001 are one that is still being expressed in more recent studies.  Lempereur et 

al., 2010 have commented that due to the similarities in morphology between 

Boophilid species and the amount of variability observed in those features, 

differentiation is often unreliable, if not impossible. 

Despite the potential problems with this technique, it is still a useful starting point 

for the gross sorting of tick specimens, particularly if they are from the field.  

However caution must be taken when drawing any conclusions of species identity 

based on features that can be observed as being highly variable. 

Morphometrics 

Morphometrics is the measurement of the distance from one anatomical landmark 

to another and is a widely used technique for quantifying phenotypic variation 

(Dujardin 2011).  It can be used to compare different species or to look at 

intraspecies variation, it is also the most common technique seen in publications.  

Morphometrics as a statistical analysis of genetic variability through the variation 

of morphological features can be considered a measure of differences in a 

population and speciation (Sorensen and Footit 1992; Dujardin et al., 1999; 

Dujardin et al., 2000).  The use of morphometrics in medical entomology has been 

used in studies of important vector species such as members of Triatominae and 

Phlebotominae (Dujardin 2011).  Due to the importance of these insects as vectors 

of disease, the correct identification of any of these insects is critical in studies 



 

31 
 

(Dujardin and Slice 2007).  Morphometrics is intended to be used as a tool to 

investigate variation of morphology within a population, however insect studies 

have used it more to describe species based upon a limited number of individuals 

(Dujardin and Slice 2007; Lent and Wygodzinsky 1979; Young and Duran 1994).  

The benefit of using this technique in medical entomology studies is that, unlike 

the score matrix, it does not require specific skills in entomological identification 

(Dujardin and Slice 2007).  Dujardin et al., 1997, successfully used morphometrics 

as part of an entomological surveillance of sylvatic foci of Triatoma infestans in 

Bolivia.  The successful identification of nymphs using seven head measurements 

enabled the researchers to ascertain wether reinfestation of domestic settlements 

was occurring by the same species and further used this information to suggest 

possible mechanisms of reinfestation.   

The further use of morphometrics to monitor the adaptaptive process, as indicated 

by Dujardin et al., 1997 was done by Dujardin et al., 1998.  In this study 

morphometric comparison between the allopatric sylvatic specimens, including a 

holotype, showed an overall reduction in size between sylvatic and domestic 

specimens.  Morphometrics is useful at inferring phylogenetic relationships when 

combined with molecular data, Dujardin et al., 1999 used morphometric analysis of 

Rhododniini to derive phylogenetic patterns.  The morphometric data for this 

organism was found to exhibit non-normality, with a large number of population 

variances, however despite these issues, when this data was combined with data 

obtained from a isoenzyme analysis, 3 novel species groups with the genus 

Rhodnius was detected.  Morphometrics can also be used to investigate 

population dynamics, Patterson et al., 2001, used morphometrics to analyse 

features of the head of several species of Triatoma in order to reconstruct its 

evolutionary history.  Eight head measurements which were then analysed used a 

canonical variate statistical analysis were used to infer the observed relationship 

between old world species and new world species, finding evidence of a possible 

new world ancestry. 

In terms of tick research, morphometrics is widely used much in the same way as 

it is in the broader arthropod studies, ranging from making species 

identifications/descriptions (Abdel-Shafy et al., 2011), exploring morphological 

variation within populations to investigating population dynamics.  Hutcheson et 
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al., 1995, used morphometrics to discriminate Nymph and adults of Ixodes 

scapularis from their northern and southern morphotypes from 6 geographically 

separate popluations.  Morphology analysed varied between sex and stage; 17 

from females, 25 from males and 28 from nymphs.  A CVA was then carried out 

using these measurements, which found that discrimination between the 

populations based on morphological measurements varied between sex, stage 

and canonical variate score (CV).  An example of this was in Nymphs, where CV1 

discriminated the southern morphotype from all the other groups, but CV2 

discriminated the remaining groups based on location, correlating to latitude.  

Ultimately this study supported previous conclusions that I. scapularis is a 

polytypic species with a large geographic distribution in North America.  However, 

when this study was expanded by Hutcheson and Oliver Jr, 1996, the results were 

not consistent, alluding to the potential for irregularities in this method to 

quantifying morphology.  Dietrich et al., 2013 used a combination of body size and 

shape, along with information from microsatellites to see if different populations of 

I. uriae have evolved significant morphological differences.  In this study 255 unfed 

adults and nymphs were analysed.  31 morphological measurements were taken 

from both male and females adults and 29 from nymphs.  A principal component 

analysis (PCA) was then conducted to convert the obserbations made into a set of 

values which could be used to emphasis variation and thus allow patterns in 

correlation to be seen more clearly.  This study found that a large amount of 

variation seen in the morphology was associated with the size of individual ticks, 

but overall body size differed between the populations in adult ticks.  It was 

concluded, along with the genetic data that differences seen between the 

populations reflect host-associated adaptations rather then phenotypic 

plasticity/drift. 

With regard to the reinstatement of R.(B) australis, the morphology was re-

described based on morphometric measurements (Estrada-Peña et al., 2012).  

R.(B) microplus and R.(B) australis  larvae are stated to be distinguishable based 

on body length, body width, scutal width, length of certain setae, palpal length and 

tarsus I length (Estrada-Peña et al., 2012).  Overall it was concluded that the 

larvae of R. (B) microplus are larger, with a wider anterior scutum than those of 

R.(B) australis (Estrada-Peña et al., 2012).  With regard to the males and females, 

the presence or absence of certain features were concluded to be suitable for 
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differentiation.  Although morphometrics is a tried and tested technique and size is 

a variable that should be taken into account when making identifications, it is 

subject to other factors apart from genetic influence.  These factors can be hard to 

account for and greatly impact upon results obtained, so other techniques for 

understanding phenotypic variation must be explored in tick research.  

As with all methods, morphometrics can be subject to errors.  The main error 

causing factor in Morphometrics is metric variation (Dujardin and Slice 2007).  

Metric variation can be caused by a number of different factors including 

physiological status of the specimen, adaptive changes and lastly genetic 

differences (Durjardin 2011).  The phenotypic expression of the genetic difference 

is the factor of interest; however, tick morphology can be greatly impacted upon by 

the physiological and adaptive influences (Dujardin and Slice 2007).  One example 

of this is observed in adult females which may take up to fifteen times their body 

mass as a blood meal.  Additionally, the health of the tick can affect morphometric 

measurements.  In particular ticks that have fed well for a number of generations 

tend to be larger in size then those that have not fed as well, or have been fed on 

tick resistant cattle (Wilson et al., 1990, Wambura et al., 1998).  In these 

situations, a biased conclusion may be reached on species differentiation.  In 

order to remove the environmental impacts on metric variation, it is possible to 

consider taking a ‘wild’ population and lab-rear a colony for analysis; however this 

practice can be influenced by genetic elements such as genetic drift and may 

create a bias on the morphology (Dujardin and Slice 2007).  A proposed method to 

consider the causes of metric variation separately is to consider size and shape 

separately, on the premise that shape would be less affected by environmental 

influences (Dujardin and Slice 2007). 

Geometric morphometrics 

Geometric morphometrics is the quantitative representation of shape using 

landmark coordinates instead of measurements (Dujardin, 2011, Dujardin and 

Slice, 2007).  It aims to describe the shape of the feature, independent of size and 

so is useful for eliminating physiological changes as discussed above.  The major 

goal of this type of approach is to measure the morphological similarity and 

differences of specimens, which can be done in either two or three dimensions.  In 

this approach, linear measurements are not taken, instead a minimum of three 
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landmarks based on Cartesian coordinates (x,y,z) are placed on biologically or 

geometrically homologous points on a morphological feature (Dujardin and Slice, 

2007, Dujardin, 2011).  These landmarks are used to represent shape of the 

feature of interest and can be used to create an outline of the feature by using 

subsequent semi-landmarks to ‘join the dots’.  The advantage of this approach is 

that results can be visualized as change in shape, rather than a table of numbers 

and size is mathematically removed from the analysis, allowing the true shape to 

be considered (Dujardin and Slice, 2007, Dujardin, 2011).  The shape change can 

then be analyzed by software to observe the variation in more than one plane, 

ultimately showing the complexity of difference between populations of the same 

species (Adams et al., 2004).  In some cases however, the size difference may be 

biologically relevant and will be lost when using this technique and so must be 

taken into account.  

This approach to morphology has been widely used in fish biology to compare 

phenotypic variations among different populations (O’Reilly and Horn 2004; Loy et 

al., 2000; Clabaut et al., 2007).  As well as living organisms, geometric 

morphometrics has been used in the study of variation seen in skulls, particularly 

of dog breeds versus wolf breeds (Drake and Klingenberg 2010; Drake 2011).  In 

terms of arthropods, variation in shape has been useful in successfully identifying 

many species of medical importance (Dujardin et al., 2014).  However, this 

approach in arthropods has been found to be mostly useful in the exploration of 

variation, rather then a specific tool for identification (Dujardin et al., 2014). Often 

fly wings are used for comparison as they are flat structures which have features 

lends itself to the consistent placing of landmarks (Dujardin et al., 2014; 

Klingenberg, 2011).   

This approach is relatively unused in tick research, with most work relying on the 

more traditional linear measurement approach.  Where it has been used, 

geometric morphometrics has demonstrated potential in showing the similarities 

and differences between difficult to discriminate species of tick (Clarke and 

Pretorius, 2005, Pretorius and Clarke, 2000, Pretorius and Clarke, 2001).  

Pretorius and Clarke, 2000 used this approach to analyse the body shape of male 

and female Hyalomma truncatum and H. marginatum rufipes.  Due to similarities 

observed in their morphology, difficulties in distinguishing between the two species 
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had been reported.  By using 16, repeatable landmarks representing body shape, 

they were able to make observations on the differences in body shape between 

the sexes of the same species.  In another study by Pretorius and Clarke, 2001, 

the same approach was taken to analyse the body shape of both male and female 

Amblyomma gemma, A. variegatum and A. hebraeum. In the case of these three 

species, differentiation can be difficult due to similarities in morphology, along with 

an overlap of distribution.  In this study 17 landmarks were used to outline body 

shape, however the results from this study demonstrated the problem that can be 

observed with a landmarking approach, where errors in landmarking placing 

accounted for the shape variations observed.  Overall it was concluded that the 

shape of the body could not be used to distinguish between these three species 

for either male or female ticks.  Clarke and Pretorius, 2005 expanded on this study 

to use a combination of geometric morphometric analyses and cross-breeding 

studies to investigate the relatedness between the three Amblyomma species.  

Ventral body shape of both sexes for the three species was analysed, as well as 

that of F1 hybrids from the cross-breeding study.  Results showed that A. 

hebraeum was the most different to the other two species, with A. variegatum and 

A. gemma appearing very similar in ventral body shape.  This finding was not 

supported by the mating study, as A. variegatum appeared to not be genetically 

compatible to the other two species, where A. gemma and A. hebraeum were. 

Although these studies indicate potential in this approach to understanding 

morphology, they also indicate potential disadvantages.  Firstly, basing an 

identifcation on one factor alone is probably not going to resolve an identification 

issue.  To overcome any potential bias it would be appropriate to select a number 

of different features to test.  Secondly, the choice of position of landmarks must be 

repeatable as to avoid bias in the shape produced.  The geometric morphometric 

software MorphoJ has the ability to test the repeatability of landmark placing and 

so can reduce this error’s impact on the overall analysis (Klingenberg, 2011).  

Finally, the use of this approach may not be suitable in distinguishing between 

difficult to identify species; however it lends itself more to making an observation 

phenotypic variation observed in populations (Dujardin et al., 2014). 
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Proposed evolutionary pathway of ticks     

Evolution of the Acari 

The Acari are a subclass of Arachnida that contains mites and ticks.  Three orders 

make up the Acari: Acariformes, Parasitiformes and Opilioacariformes.  The 

Parasitiformes contains ticks and some species of mites and is split into 

Opilioacarida, Holothyrida, Ixodida and Mesostigmata (Nava et al., 2009).  The 

hard tick family (Ixodidae), soft tick family (Argsidae) and Nuttalliellidae belong to 

Ixodida.  Nuttalliellidae are considered to be the basal lineage of both Ixodidae and 

Argasidae (figure 1.18) (Nava et al., 2009, Barker and Murrell, 2004).  The family 

Ixodidae is made up of the Prostriata and Metastriata which are further classified 

based on genus; Prostriata contain the genus Ixodes and Metastriata is composed 

of Amblyomma, Haemaphysalis, Hyalomma, Rhipicephalus (and Boophilus) (Nava 

et al., 2009, Barker and Murrell, 2004).  Fossil records show that ticks originated in 

the pre-mid Cretaceous period with both Ixodidae and Argasidae becoming 

established in the mid Cretaceous period (Nava et al., 2009, Poinar Jr and Brown, 

2003).   

 

Figure 1.18: Proposed phylogeny of the subfamilies of ticks (From Barker and Murrell, 2004)  
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The actual evolutionary pathway adopted by these pre-historic ticks is impossible 

to deduce as there are few fossils available, however the main theory proposed 

indicated tick-host associations as the main driving force (Nava et al., 2009).  It 

was suggested that the early ticks fed on reptiles and subsequently went through 

the first major part of their evolution during the late Paleozoic and early Mesozoic 

eras, during which time the climate became warm and humid (Nava et al., 2009).  

It was during this time that the Argasidae and members of the Ixodidae evolved, in 

particular the first species of the genera Ixodes and Haemaphysalis.  This was 

closely followed by the development of Amblyomma and the later evolution of 

Hyalomma and Rhipicephalus found on mammals, in the late Cretaceous and 

Tertiary eras (Nava et al., 2009).  This is one theory, however others suggest that 

instead of reptiles, ticks originally parasitized amphibians and originated from the 

Paleozoic era, further evolving in the Mesozoic, Triassic and Cretaceous periods 

(Nava et al., 2009, Dobson and Barker, 1999, Klompen, 2000, Oliver, 1989, Black 

and Piesman, 1994, Klompen et al., 1996b).   

Evolution of Rhipicephaline ticks 

There are currently 82 accepted species in the genus Rhipicephalus, 5 of which 

belonging to the Boophilus subgenus (Barker and Murrell, 2004, Guglielmone et 

al., 2010).  As the phylogenies of this group have increased in accuracy, it has 

been possible to track certain traits and observe how and when they evolved.  In 

particular, traits such as ornateness, life cycle and origins of ticks have been 

examined (Barker and Murrell, 2004, Murrell et al., 2001b).  The historical 

zoogeography can also be mapped onto the phylogeny of ticks. Most species of 

the Rhipicephalus clade are thought to have originated in the Afrotropical region, 

however there are certain members of the clade that have origins in Palearctic and 

Oriental regions (Barker and Murrell, 2004, Murrell et al., 2000, Murrell et al., 

2001b).  This genus is proposed to have initiated in Africa when it was isolated 

from other regions (Palearctic and Oriental) (Barker and Murrell, 2004).   

It is thought that ancestors of this genus developed and spread throughout Africa 

before the land bridge between Africa and Eurasia was formed, after which the 

Miocene period saw an influx of Rhipicephalus into Eurasia and Asia (Barker and 

Murrell, 2004).  Some studies suggested that Rhipicephalus (Boophilus) originated 

within Europe; however other studies indicated the origins where also in Africa 



 

38 
 

(Barker and Murrell, 2004, Murrell et al., 2000, Murrell et al., 2001b).  When 

looking at the genus, there are clear patterns in relationships that can be observed 

and have been confirmed by use of morphological and molecular approaches.  

Rhipicephalus itself appears to be made up of six main groups (figure 1.19); R. 

pravus group, R. appendiculatus group, R. pulchellus group, R. simus group, R. 

capensis-longus group and finally the R. sanguineus group (Barker and Murrell, 

2004, Murrell et al., 2000, Murrell et al., 2001b).  Additionally there are two other 

sub-genera, including R. digineus and the more recently accepted R. Boophilus 

(Barker and Murrell, 2004, Murrell et al., 2001b).  There is also molecular and 

morphological evidence to suggest that certain members of Rhipicephalus are 

closely related to members of Boophilus, for examples R. digineus, containing the 

species R. evertsi evertsi appears to be phylogenetically closer to members of 

Boophilus (Barker and Murrell, 2004, Murrell et al., 2001b).  Although in terms of 

evolution this relationship is not clear cut, especially when assessing the 

truncation of life cycles, i.e. 3-host to 2-host to 1-host.  It can be observed that R. 

evertsi evertsi, a 2-host tick is more closely related to members of the R. pravus 

group (3-host ticks), than to members of Boophilus (1-host ticks) (Barker and 

Murrell, 2004).   

 

Figure 1.19: Proposed phylogeny of Rhipicephalus derived from both molecular and 
morphological data (from Barker and Murrell, 2004; Murrell et al., 2001b) 

Historical overview of R.(B) microplus 

R.(B) microplus was first described in 1888 by Canestrini, however at this time it 

was described as Haemaphysalis micropla from samples originating in Paraguay 

(Quinlan et al., 1980, Cooley, 1946).  Since then, there has been debate regarding 

the taxonomic status of R. (B) microplus.  In 1899 Fuller collected specimens from 
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Australia and South America and first described R.(B) australis, however R.(B) 

australis was not actively compared and distinguished from R.(B) microplus, but 

was separated based on comparison with African species including R.(B) 

decoloratus (Estrada-Peña et al., 2012).  It has been suggested that this lack of 

separation of R.(B) australis and R.(B) microplus by Fuller and his conclusion that 

Australian and South American specimens were the same species lead to the 

merging of the two species into R.(B) microplus (Estrada-Peña et al., 2012).  In 

1901 discussion regarding the status of R.(B) australis and R.(B) microplus 

ensued with academics split between accepting Fuller’s conclusions and 

considering R.(B) australis as a valid species based on observed differences in 

dentition on the hypostome (Estrada-Peña et al., 2012).  It was during this time 

that Neumann brought forth the suggestion that R.(B) australis was neither a 

separate species nor R.(B) microplus, but a sub-species of R.(B) microplus 

(Estrada-Peña et al., 2012).  In 1962, after observations based on specimens 

obtained from South America, Madagascar and Australia, Uilenberg concluded 

that there was not enough morphological difference to warrant separate species, 

and synonymized R.(B) australis with R.(B) microplus (Estrada-Peña et al., 2012).  

In 1975 R.(B) australis and R.(B) microplus from Australia and South Africa were 

compared again by Londt and Arthur and it was concluded that although 

morphological difference existed they were not prominent enough to support the 

separate species theory (Estrada-Peña et al., 2012).  Up until 1978, all of the 

observations regarding the R.(B) microplus clade, used morphological 

identification only, however a mating study found that when South African female 

R.(B) microplus were crossed with males from Australia, 62% of progeny were 

viable.  When Australian females were crossed with South African males this yield 

dropped to 1.82% thus supporting the theory of two species.  It was concluded that 

South African and Australian populations of R.(B) microplus were in the process of 

diverging into separate species (Spickett and Malan, 1978).   

It is unclear exactly where R.(B) microplus originates from, however it is clear that 

it has become one of the most successful invasive species, being introduced to 

novel geographic locations on imported cattle and establishing stable populations 

globally (Madder et al., 2011, Chevillon et al., 2013).  From an evolutionary 

perspective, R.(B) microplus shows evidence of origins in the Afrotropical and 

Oriental regions, however with a lack of fossil evidence it is hard to determine their 
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exact evolutionary starting point (Barker and Murrell, 2004, Nava et al., 2009).  

The current distribution of R.(B) microplus is substantial including Australia, Africa, 

Asia, America and South America (Madder et al., 2011, Chevillon et al., 2013).  It 

has been suggested, which has been further backed by mating studies that R.(B) 

microplus was introduced to America on imported cattle from Africa (Nava et al., 

2009).  However it is not clear whether these ticks originated in Africa or not, other 

studies have suggested that it originated in Asia and was introduced to Australia, 

Madagascar, South Africa, South America and USA on imported cattle during the 

mid to late 19th century (Madder et al., 2011, Hoogstraal, 1956, Temeyer et al., 

2004).  Australian records have indicated that R.(B) microplus was probably 

introduced to Australia on Banteng cattle imported from Timor and Bali to the 

Northern Territory, in the period 1850-1870 (Angus, 1996).  Since this time it has 

become endemic in northern parts of Western Australia, the Northern territory, 

Queensland and areas of New South Wales (Cutulle et al., 2009). Infested cattle 

were exported from Australia to New Caledonia during the second world war 

resulting in the establishment of populations there (Labruna et al., 2009, Estrada-

Peña et al., 2012).  Other studies suggest that R.(B) microplus originated in India 

(as well as Indonesia), and was introduced into Africa, and possibly South America 

via Indian cattle (Chevillon et al., 2013, Labruna et al., 2009).  The exact origin and 

path of migration is not known, however the general consensus is that R.(B) 

microplus was present in India and Indonesia initially, the evolutionary starting 

point however, is impossible to deduce (Angus, 1996, Chevillon et al., 2013, 

Estrada-Peña et al., 2012).  The distinction of R.(B) microplus and R.(B) australis 

as separate species however would be more consistent with the existence of two 

geographically distinct origins.  What is clear, is the adaptability of R.(B) microplus 

to new locations and new climates, it demonstrates a successful ability to colonize 

new areas, even when closely related species are present (Estrada-Peña et al., 

2006c, Estrada-Peña et al., 2006a, Estrada-Pena et al., 2006b).  An example of 

this is in Western Africa, where introduction of R.(B) microplus on imported cattle 

have not only successfully established populations but has also caused a decline 

in native species such as R.(B) decoloratus in a relatively short period, in areas 

previously free of it (Tonnesen et al., 2004). 
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The Rhipicephaline genomes 

Genome size of the Ixodidae has been found to vary among the genera (Mirsky 

and Ris, 1951, Gregory, 2005).  In general, tick genomes are large, with the 

smallest estimated at being in excess of 1 Gbp (Palmer et al., 1994, Ullmann et 

al., 2005, Geraci et al., 2007, Roe et al., 2014) up to the largest documented of 

R.(B) microplus with an estimated genome size of 7.1 Gigabase pairs (Gbp) 

(Bellgard et al., 2012).  These large genomic sizes have resulted in problems in 

sequencing the entire genome which limits the amount of information that can be 

deduced.  Additional to the overall size of the genome, reported variable rates of 

sequence evolution have negatively impacted the development of molecular tools 

for phylogenetic analysis (Klompen et al., 2007, Roe et al., 2014, Meyer and Hill, 

2014).  Studies into mapping out the Rhipicephaline genome have also 

encountered problems with repetitive DNA, this has caused a particular problem in 

the progress of sequencing R.(B) microplus, which is still not fully annotated 

(Bellgard et al., 2012).  The  R.(B) microplus genome consists 0.82% foldback, 

31% highly repetitive, 38% moderately repetitve and only 30% of unique DNA 

(Ullmann et al., 2005).  This means that the genome is made up of around 70% 

repetitve DNA.  The arrangmenet of this repetitive DNA is similar across Ixodidae 

species, occuring as a mixture of both long and short period conbinations, 

however the majority of the DNA follows a patterns of short periods of repetitive 

DNA (Ullmann et al., 2005). Despite the lack of information available on 

Rhipiecphaline genomes,and infact any of the Ixodidae genomes, what is clear is 

their size and arrangement are different from other arthropods, particularly in the 

case of the amount of moderately repetitive DNA and a lower amount of highly 

repetitive DNA (Ullmann et al., 2005).  Moderately repetitive DNA consists of 

families of sequences that can occur as tandem or dispersed repeats from 1000 to 

over 100,000 copies, they can also include transposable elements and members 

of multigene families (Ullmann et al., 2005).  The diffculty found in fully sequencing 

the R.(B) microplus genome could be attributed to both this higher proportion of 

moderately repetitve DNA and the overall size of the genome. 

In terms of genetic variation, DNA can be separated into two categories; the 

nuclear DNA (chromosomes) and mitochondrial DNA.  
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Nuclear genome  

The nuclear genome is complex, consisting of coding as well as a large amount of 

non-coding DNA.  Nuclear genes are organized on chromosomes in linear 

arrangements, these chromosomes act as a scaffold for replication and regulation 

of gene expression.  In the Ixodidae the chromosome number can range from 12-

35.  Chromosomal determination of sex has been observed to differ among ticks 

(Oliver, 1989, Oliver Jr, 1977, Oliver Jr, 1981, Oliver, 1982a, Oliver, 1982b, Oliver, 

1983).  Many ticks have a typical XX, XY system, however there is a similar 

number of tick species that have an XX, XO system, in which phenotypic sex is 

determined by the level of expression of genes located on the X chromosome 

(Marın and Baker, 1998).   

In the case of R.(B) microplus the XX, XO arrangement is seen, with an autosomal 

(non-sex) chromosome number of 20; diploid number of 22 for females and 21 for 

males (Gunn et al., 1993, Newton et al., 1972, Oliver and Bremner, 1968). 

Autosomes are easily distinguishable from the X chromosomes, which are 

distinctly larger (Gunn et al., 1993).  Based on this, it has been possible to 

distinguish between different members of the sub-genus Boophilus using 

differential staining.  However for observing the amount of variation within 

populations of the same species, this renchique would not be useful. 

Nuclear ribosomal genes are mainly used for uncovering hidden relationships 

within a species (Cruickshank, 2002).  The main locus is composed of three genes 

encoding the 18S rDNA, 5.8S rDNA and 28S rDNA subunits and unlike the 

mitochondrial genes, are separated by two non-coding internal transcribed 

spacers; 18S - ITS1 - 5.8S - ITS2 - 28S (Navajas and Fenton, 2000, Hillis and 

Dixon, 1991).  There are often hundreds of copies of the ribosomal genes on a 

single chromosome and may additionally be found on more than one 

chromosome, resulting in the easy detection of these genes over the single copy 

genes (Navajas and Fenton, 2000). 

Mitochondrial genome 

The mitochondrial DNA, located in the mitochondria, makes up a small proportion 

of an organism’s total DNA.  In the Ixodidae the mitochondrial genome is 

approximately 14-16 kb in length, circular in formation and is composed of 37 
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genes including, 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer 

RNA genes and a non-coding region (Shao and Barker, 2007).   

The mitochondrial genome, in general, has been found to be variable with regard 

to the content and gene arrangement (Meyer and Hill, 2014, Shao et al., 2005, 

Jeyaprakash and Hoy, 2007).  Mitochondrial genes are widely used in molecular 

studies and demonstrate a number of distinct advantages over nuclear genes.  

Firstly the mitochondrial genes have a high copy number, which makes them 

easier to work with as there is more DNA to amplify (Cruickshank, 2002).  

Secondly, mitochondrial genes are inherited only through the maternal parent, and 

along with the lack of recombination observed, can be useful for infraspecific 

discrimination (Cruickshank, 2002, Latrofa et al., 2013, Erster et al., 2013, Navajas 

and Fenton, 2000).    

Sequencing status and state of knowledge including databases 

Genomic databases allow researchers from around the world to combine efforts in 

mapping out genomes of key tick species and have proven invaluable in the 

process of mapping genomes of the ixodidae.  There are a number of different 

databases currently available that allow the user to search well defined genomes 

for an individual species (Lawson et al., 2009).  The majority of these projects 

have focused on tick expressed sequence tags (ESTs) (small fragments of mRNA 

resulting by sequencing performed on randomly selected clones from cDNA 

libraries), particularly from genes transcribed in the salivary glands of species such 

as Ixodes scapularis (Ribeiro et al., 2006), Rhipicephalus appendiculatus (Nene et 

al., 2004) and Amblyomma variegatum (Nene et al., 2002, Wang et al., 2007).  

However, additional ESTs have been isolated from ovaries, salivary glands and 

hemocytes in R.(B) microplus.  There are two databases that have focused on the 

acquisition of data from R.(B) microplus; BmiGI and CattleTickBase.  It should be 

noted that R.(B) australis had not yet been reinstated around the time of the 

database’s launch and CattleTickBase was conducted using the Australian R.(B) 

microplus (currently reinstated as R.(B) australis).   

BmiGI is a database containing information on ESTs derived from different tissues 

of different stages and isolates of R.(B) microplus.  In 2005 the first version of the 

BmiGI database was launched containing a library of complementary DNA (cDNA) 
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synthesized from RNA taken from larvae that had undergone different acaricide 

treatment, as well heat/cold shock, exposure to host odor and infection with 

Babesia bovis (Guerrero et al., 2005).  In the case of the acaricide treatment, tick 

isolates were chosen with variable susceptibility to three main compounds; 

amitraz, pyrethroid and organophosphate.  RNA from eggs, nymphs, adults and 

dissected organs were also included, as well as plasmid DNA taken from 11,520 

cDNA clones (Guerrero et al., 2005).  The first version of the database yielded 

8,270 sequences with a varying degree of associated putative functional 

assignments, based upon available information (Guerrero et al., 2005) 53 of these 

sequences were identified as having a potential role in acaricide resistance (Wang 

et al., 2007).  In the second version of the database, updated 2007 resulted in 

5,373 new additions to the library (Wang et al., 2007).  BmiGI contains a 

significant amount of information on the R.(B) microplus genome, covering a large 

amount of the coding regions. 

CattleTickBase was launched in 2012 as a platform for international collaborators 

to work together to sequence the R.(B) microplus genome.  There are nine 

available datasets on the CattleTickBase website, made up of acquired and 

assembled genomic DNA (gDNA) representing approximately 1.8 Gigabase pairs 

of DNA, which along with the transcriptomic sequence data, represents around 

0.9x coverage of the gene-coding regions (Bellgard et al., 2012).  Ticks used for 

this database were collected from two main areas; USA and Australia.  DNA was 

extracted from eggs of the USA isolate ‘Deutch’ which originates from a lab colony 

formed from a few engorged females taken from a Southern Texas outbreak in 

2001 (Bellgard et al., 2012).  It has been shown that although inbred, members of 

this colony are not genetically homogeneous (Bellgard et al., 2012).  The 

Australian ticks used (larvae and engorged females) were from the ‘N’ strain kept 

by the Department of Employment, Economic Development and Innovation in 

Queensland, Australia (Bellgard et al., 2012, Stewart et al., 1982).   
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Genetic markers and tools 

The understanding of population dynamics and taxonomic relationships within the 

Acari has come a long way since the discovery of tick species by the likes of 

Latreille, Koch and Canestrini.  It has become clear that the differentiation of ticks 

based on morphology alone does not fully encompass the level of diversity now 

observed within and between Ixodidae species.  There are now a large number of 

molecular markers available that can resolve population dynamics at different 

levels, i.e. relationships within genera down to variation between members of the 

same species (Barker and Murrell, 2004).  The difference in the evolution rates of 

markers is what allows for such a diverse toolbox, and there are a number of 

genes used in molecular evolution studies located within mitochondrial and 

nuclear ribosomal DNA (Navajas and Fenton, 2000).   

Mitochondrial genes as markers 

There are three main mitochondrial genes used in phylogenetic studies, these 

ribosomal genes are not separated by internal transcribed spacers, and include 

16S rDNA and 12S rDNA (Cruickshank, 2002).  The third gene comprises 

mitochondrial cytochrome oxidase subunits. 

16S has been found to be useful in studies that are attempting to resolve 

phylogeny at or below the family level, however it is not a good marker for 

resolving phylogenetic relationships between distantly related taxa (Cruickshank, 

2002, Mangold et al., 1998, Norris et al., 1999).  With regard to populations of R. 

(B) microplus, 16 different isolates from America, Africa, Asia and Oceania were 

analyzed using the 16S rDNA gene (Labruna et al., 2009).  This study found that 

isolates from America and Africa were not genetically divergent, however these 

were more divergent from samples obtained from Oceania and Asia (Labruna et 

al., 2009).  Based upon this finding, it was proposed that three separate clades 

were formed; America, Africa and Taiwan formed the first clade, the second 

included Australia, New Caledonia and Indonesia and the final clade clustered an 

Indian strain with members of R.(B) annulatus (Labruna et al., 2009).  This study 

concluded that R.(B) microplus from Australia is different to those from Asia, Africa 

and America.  However, when the 16S sequences were analyzed, independent of 

any other gene, the phylogeny was not resolved.  The conclusion that the 
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Australian population was a separate species was further supported when 

published 16S sequences were analyzed.  This led to the call for the reinstatement 

of R.(B) australis as a separate species (Estrada-Peña et al., 2012).  16S was 

later found to successfully resolve phylogenetic relationships within R.(B) 

microplus, with an 84% bootstrap support for monophyly of the R.(B) microplus 

complex with evidence for two potential clades separating ticks from Asia, Africa, 

South America and Australia from India and China (Burger et al., 2014).  Support 

for the further monophyly of the Australian and Indian ticks within each clade with 

63% and 84% bootstrap support, respectively was also observed (Burger et al., 

2014).  It was concluded however that 16S alone cannot resolve R.(B) microplus. 

As with 16S, 12S has been suggested to be useful for resolution of relationships 

within genera (Norris et al., 1999).  12S  has shown evidence that Rhipicephalus 

and Boophilus are not monophyletic, however it was concluded that this gene 

alone could not resolve the relationship further (Murrell et al., 2000).  Subsequent 

studies used 12S to show that Boophilus was monophyletic and arose from within 

the Rhipicephalus genus, grouping closely with species from the Rhipicephalus 

evertsi group (Beati and Keirans, 2001).  The use of 12S, along with other genes 

resulted in the conclusion that Boophilus should be synonymized with 

Rhipicephalus (Murrell and Barker, 2003b, Murrell et al., 2001b).  12S has been 

found to have evolved slightly faster than 16S; however, despite this, studies that 

have used 12S in conjunction with 16S have demonstrated little resolving power 

difference between the two, and in the case of understanding the relationships 

within the R.(B) microplus clade, both genes revealed that they do not have the 

power alone or combined to resolve R.(B) microplus (Estrada-Peña et al., 2012, 

Labruna et al., 2009, Burger et al., 2014).   

Mitochondrial cytochrome oxidase subunit I gene (COX1) is another gene that has 

proved useful in phylogenetic analysis.  In many studies, COX1 has been used 

along with other mitochondrial genes and has been able to resolve Rhipicephalus 

ticks at genus and species level (Latrofa et al., 2013, Murrell and Barker, 2003b, 

Murrell et al., 2000, Murrell et al., 2001b).  With regard to R.(B) microplus, COX1 

has shown its ability to clarify complex region groupings that are not as clear when 

using other mitochondrial genes, as well as being proposed as the main gene for 

differentiating between R.(B) microplus and R.(B) australis (Burger et al., 2014). 
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Nuclear ribosomal genes as markers 

Studies have found that 18S is more conserved then 16S and so is a suitable tool 

for resolving phylogenies at the family and subfamily levels, with other studies 

showing it to be more suitable than 12S and 16S at this level of analysis 

(Cruickshank, 2002, Klompen, 2000, Norris et al., 1999).  28S has been suggested 

as a gene for resolving phylogenies at a deeper level (Black and Piesman, 1994, 

Black et al., 1997, Crampton et al., 1996, Mangold et al., 1998). 

Although the ribosomal genes have proven effective when differentiating unrelated 

species (Navajas and Fenton, 2000, Kaliszewski et al., 2009), the more rapid 

evolution of the ITS regions have been proposed to be useful when identifying 

between closely related taxa (Navajas and Fenton, 2000, Hillis and Dixon, 1991).  

Despite this, more recent studies have brought to light the unsuitability of using the 

ITS approach to species identification. It was found that using an ITS2 sequence 

for identification between members of the Rhipicephalus spp ultimately yielded 

conflicting results when compared to that of mitochondrial gene-based results 

(Latrofa et al., 2013).   This result was further supported by attempts to resolve the 

R.(B) microplus clade, where ITS2 was found to show little phylogenetic structure 

within the clade, which was revealed when using mitochondrial markers (Burger et 

al., 2014).  Regardless, the use of the ITS2 gene is still considered effective when 

distinguishing between more distinct species (Latrofa et al., 2013, Barker, 1998, 

Burger et al., 2014). 

Many phylogenetic studies have generated data based on mitochondrial 16S 

rDNA, 18S and 28S ribosomal genes (partial and whole), as well as COX1 

(Navajas and Fenton, 2000, Cruickshank, 2002).  However with regard to 

phylogenetic analysis of closely related species, studies have shown that the use 

of ITS2 and COX1 act as a powerful combination, similarly when investigating 

species that are not closely related 18S rDNA and 28S rDNA can be used 

(Cruickshank, 2002).  These findings are generalized across the Acari, with regard 

to the status of R.(B) microplus, it is clear that the strongest tool for resolution is 

the mitochondrial COX1 gene, which has been suggested to be able to distinguish 

between R.(B) microplus and R.(B) australis (Barker and Murrell, 2004, Burger et 

al., 2014).  It is also clear that the nuclear genes that are currently available are 
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not suitable to resolve this issue and so development of novel nuclear markers is 

required (Burger et al., 2014).   

Tick Control 

Ticks and tick-borne diseases cause billions of dollars of economic loss globally.  

The impact of members of the Rhipicephalus genus on the cattle industry makes 

up a large portion of that loss, through damage to hides from tick feeding activity, 

disease transmission and the consequences of blood-feeding on cattle productivity 

(Estrada-Peña and Salman, 2013, Jonsson, 2006).  Tick control is important to 

limit the impact of existing species through eradication programs but is also 

important with regard to controlling the spread of different species into a novel 

area and subsequently establishing.  The introduction of R.(B) microplus into 

Australia from Java in the 1870’s demonstrated the essential need for tick control 

programs as tick fever infected the introduced, British breed, cattle populations 

(Pegram et al., 2000).  Initial attempts at control were the creation of tick 

quarantine lines which demonstrated little effect on the spread of tick borne 

disease (Angus, 1996).  The next step was to introduce cattle dips, in which, 300 

proposed acaricides were trialed including tobacco, soap, soda, Sulphur and 

kerosene, however these first dips proved more effective at killing off the cattle 

being treated than the R.(B) microplus infesting them (Angus, 1996).  Nearly 30 

years after the introduction of R.(B) microplus the first arsenic-based cattle dips 

were introduced, and proved to be an effective method of control (Angus, 1996).  

These arsenic-based dips were subsequently adopted as a control method in 

South Africa and Cuba, however R.(B) microplus resistance to arsenic was 

recognized in Australia in the mid 1900’s (Angus, 1996, Hitchcock and Roulston, 

1955).  Subsequent acaricides were used; DDT, BHC, Diazinon, Dioxathion, 

Coumaphos and Chlorpyrifos, however towards the end of the 1900’s, R.(B) 

microplus became resistant to all (Angus, 1996, Utech et al., 1978a, Wharton and 

Roulston, 1970). As well as Australia, acaricide resistance of R.(B) microplus to 

different acaricide groups has been reported all over the world (table 1.6).  
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Table 1.6: Overview of year of introduction and reported resistance for the main acaricide 
groups used globally to control R.(B) microplus, reproduced from (Roe et al., 2014)  

Acaricide Year Introduced Country Reported 

acaricide 

resistance 

Arsenic 1893 Australia 1936 

Argentina 1936 

Brazil 1948 

Colombia 1948 

Uruguay 1953 

Venezuela 1966 

DDT 1946 Australia 1953 

Argentina 1953 

Brazil 1953 

Venezuela 1966 

Organophosphates/ 

carbamates 

1944 Australia 1963 

Argentina 1964 

Brazil 1963 

Colombia 1967 

Venezuela 1967 

Uruguay 1983 

Mexico 1986 

Formamidine 1975 Australia 1978 

Brazil 1989 

Venezuela 1995 

Colombia 1997 

Argentina 2000 

Mexico 2002 

Pyrethroids 1975 Australia 1981 

Mexico 1993 

Brazil 1995 

Colombia 2000 

Macrocyclic 

lactones 

1981 Brazil  2001 

Mexico 2010 
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Despite the development of resistance, the following acaricides are still applied to 

cattle to kill R.(B) microplus; organophosphates (targets acetylcholinesterase) 

(Fournier and Mutero, 1994), synthetic pyrethroids (targets voltage-gated sodium 

channels) (Soderlund et al., 1995), amidines (targets octopamine receptors) 

(Corley et al., 2013), macrocyclic lactones (targets glutamate-gated chloride 

channels) (Kane et al., 2000), spinosyns (targets nicotinic acetylcholine receptors) 

(Snyder et al., 2007), benzoylphenylureas (targets chitin synthesis) (Oliveira et al., 

2007) and phenylpyrazoles (gamma-aminobutyric acid (GABA)-gated chloride 

channel) (Sammelson et al., 2004).  There have been efforts to develop 

alternatives to synthetic acaricides, however currently, most successful controls 

are in the development of vaccines for cattle against the ticks (Angus, 1996, 

Johnston et al., 1986, Trager, 1939, Galun, 1978, Allen and Humphreys, 1979). 

Genes relevant to control 

A large amount of work has been undertaken into functional genes for tick control.  

The most successful of which was the production of the vaccines Tick-GuardPLUS 

and Gavac™, both based on the tick mid-gut protein Bm86.  A number of other 

genes have been considered for the development of novel vaccines against ticks 

but will not be considered here.  It should be noted that these genes are not 

suitable as taxonomic markers, this is because these genes are subject to 

selection pressure based on treatment with the vaccine in the case of Bm86 and 

the class of acaricdes being used in the case of βAOR.  In terms of the ideal 

taxonomic marker, the substitution rate should be optimum so that it provides 

enough sites to be informative, the problem with genes that evolve too fast is that 

they may undergoe multiple substitutions and thus become saturated 

(Cruickshank 2002).  The mutation rate of genes associated with acaricide 

resistance ahs been previously documented to be very fast (Roe et al., 2014) 

which does not make them suitable for phylogenetic studies. 

Bm86 

Bm86 is an epidermal growth factor (EGF)-like membrane glycoprotein that was 

the basis of the first effective and commercialised vaccine against an arthropod 

parasite, R.(B) microplus.  
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Bm86 is described as a concealed antigen because it is located inside the tick and 

is not secreted in the saliva of the tick in the course of feeding. Hence, most hosts 

are not exposed to the antigen (Ag) and do not develop an anamnestic response 

to it. Consequently, frequently repeated vaccinations are required to maintain titres 

and efficacy.  It was developed from the Yeerongpilly strain of R.(B) microplus 

based in Australia.  Bm86 acts as a protective antigen that was extracted from the 

plasma membrane of gut epithelial cells from partially fed female R.(B) microplus 

(Gough and Kemp, 1993, Rodríguez et al., 1994).  Antibodies to Bm86 in the 

blood meal from vaccinated cattle bind with complement in the blood to cause lysis 

of the tick gut epithelial cells, with subsequent leakage of gut content into the 

haemocoel, resulting in some mortalities, reduced digestive efficiency and 

impaired reproductive performance in the ticks (Rodríguez et al., 1994, Willadsen 

et al., 1989, Johnston et al., 1986, Opdebeeck et al., 1988, Kemp et al., 1989, 

Willadsen et al., 1988). 

The efficacy of the vaccine was measured in terms of effect on number of 

engorged females, number of eggs produced by females and the number of 

successfully hatched larvae.  Early results showed a 20-30% reduction in tick 

engorgement, 30% decrease in engorged tick weight and 60-80% decrease in 

subsequent egg weight.  This equated to an overall reduction of around 90% in 

tick reproductive performance (Willadsen et al., 1995).  The Australian version of 

the vaccine TickGARDPLUS was further tested on lactating Holstein-Friesian dairy 

cows (Jonsson et al., 2000).  This study found that when comparing vaccinated to 

non-vaccinated cattle, there was a 73% reduction in the reproductive index 

(reduction in ticks engorging × reduction in ticks producing eggs × reduction in 

eggs hatching) of ticks on vaccinated cattle compared with controls (Jonsson et 

al., 2000).  Ultimately this resulted in a 56% reduction in the density of ticks in the 

pastures in which vaccinated cattle were held.  The South American version of the 

vaccine GavacTM was found to have variable efficacy when tested on different 

breeds of cattle, where Jersey cattle were found to have a smaller reduction of 

42% in tick burden when compared to the 64% reduction of tick burden in mixed 

breed cattle (Rodríguez et al., 1995a).  In another study using GavacTM a 75% 

reduction in tick burden was observed (Rodriguez et al., 1995b).   
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Regional variation in the responsiveness of R.(B) microplus to the Bm86 vaccine 

has been documented in a number of studies (García-García et al., 1999, 

Willadsen et al., 1995, Garcıá-Garcıá et al., 2000).  Bm86 was sequenced and the 

divergence of the sequences from the Yeerongpilly strain was compared to the 

level of protection obtained from a number of strains of R.(B) microplus (García-

García et al., 1999).    It was found that vaccination of cattle against the 

Argentinean strain A had a protective efficacy of only 10-15% (García-García et 

al., 1999).  From this finding the Argentinean strain A gene, homologous for Bm86, 

was cloned and expressed in Pichia pastoris and named Bm95.  Testing of this 

vaccine on the herds that had shown previous resistance to Bm86 yielded a great 

improvement in efficacy of the vaccine (Garcıá-Garcıá et al., 2000).   

Beta-adrenergic octopamine receptor (βAOR) 

G protein-coupled receptors (GPCRs) are receptor proteins belonging to the seven 

trans-membrane group, located in the membrane of cells.  Their general role is to 

convert physical and chemical extracellular signals into physiological responses 

(Broeck, 2001).  In arthropods, the GPCR family is quite extensive with around 

270 having been described in both Drosophila melanogaster and Anopheles 

gambiae (Brody and Cravchik, 2000, Hill et al., 2002).  With regard to ticks and in 

particular R.(B) microplus, what is known about GPCRs is limited in comparison, 

however research that has been conducted thus far has demonstrated the 

potential for GPCRs as novel acaricide candidates; octopamine-like receptors 

(Baxter and Barker, 1999b), myokinin receptors (Holmes et al., 2003) and 

serotonin receptors (Chen et al., 2004, Corley et al., 2012, Corley et al., 2013).   

Additional research has demonstrated the potential of using genomic databases 

such as the Ixodes genome project (IGP) (Van Zee et al., 2007) for further 

investigation into possible GPCR sequences for a number of tick species 

(Guerrero and Dowd, 2010).  With regard to this bioinformatic study, an additional 

30 possible GPCR candidates were discovered with another 232 indicating GPCR 

activity, thus demonstrating the potential for further investigation into GPCR 

receptors present in the Ixodidae (Guerrero and Dowd, 2010).  More recently, 

Corley et al. (2012), differentiated among some of the putative functions of GPCR 

from R.(B) microplus using degenerate primers created from aligned amino acid 

sequences from similar receptors found in other arthropods.  When 
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phylogenetically analyzed, the results showed that different types of receptors had 

been generated; 5HT7, Muscarinic, GABAB, Dopamine D2 like, Dopamine D1 like, 

Octopamine β-Adrenergic like, Dopamine INDR and Octopamine α-Adrenergic like 

(Corley et al., 2012).     

Beta-adrenergic octopamine receptor (βAOR) is a GPCR located on the neuronal 

cell surface.  Its function is to activate signal transduction pathways within the 

neuronal cells in the presence of neurotransmitters.  When the ligand binds to 

βAOR it causes a conformational change in the shape, this change then triggers 

the activation of associated G-proteins, and signal transduction.  Amitraz 

resistance has been suggested to be associated to a mutation in the βAOR gene 

(Corley et al., 2013).  Expression of βAOR has been found in six tick cell lines, 

originating from four different strains of R.(B) microplus, each with a different 

acaricide resistance (Koh-Tan et al., 2016).  This study also found the potential for 

three different variants in the βAOR gene, one of which was not successfully 

sequenced (Koh-Tan et al., 2016).   

Summary of current taxonomic views on the 
Rhipicephalus (Boophilus) clade using molecular and 
morphological evidence 

Up until 13 years ago Boophilus was considered a genus separate to 

Rhipicephalus; however with further morphological and molecular studies, 

evidence has been suggested to support the theory that Boophilus is synonymous 

with Rhipicephalus (Murrell and Barker, 2003b).  Using a study of 12S and 

cytochrome oxidase I (COX1) mitochondrial DNA sequences, it was found that the 

three species B. microplus, B. decoloratus and B. annulatus formed a clade with 

the Rhipicephaline ticks R. evertsi and members of the species group R. pravus, 

with 93% bootstrap support (Murrell et al., 2000).  However previous studies had 

only shown weak evidence of paraphyly of Rhipicephalus with Boophilus when 

using 12S rDNA (Murrell et al., 1999, Beati and Keirans, 2001), 16S rDNA 

(Mangold et al., 1998) and internal transcribed spacer 2 (ITS2) (Murrell et al., 

2001a).  Additional research that used more than one molecular tool; 12S rDNA, 

COX1, ITS2 and 18S (combined with morphology) found a 99% bootstrap support 

that all five members of the Boophilus genus formed a monophyletic group within 

Rhipicephalus (Murrell et al., 2001b).  With regard to morphological similarities 

studies that have used around 30 morphological features and a simple scoring 
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technique e.g. ornamentation of scutum present: 1 absent: 0 concluded that many 

of the species-defining features found in Boophilus are also shared by 

Rhipicephalus (Murrell and Barker, 2003b).  Conversely, other research has 

indicated that the combination of phenotypic and genotypic data supports the 

genus status of Boophilus and that while the molecular findings irrefutably validate 

the close association of the two genera, the clear morphological differences, as 

well as differences in life cycle should not be discounted (Uilenberg et al., 2004). 

Morphological and molecular differences among different R.(B) microplus 

populations have been suggested by a number of different studies (Labruna et al., 

2009, García-García et al., 1999, de la Fuente et al., 2000a) that has led to the 

proposal of separate species.  Molecular and fertility studies have been carried out 

in order to determine whether there are in fact separate species within R.(B) 

microplus, a number of which have eluded to the possible separation of the 

Australian strain from the rest of the world (Labruna et al., 2009, Spickett and 

Malan, 1978, Guglielmone et al., 2010).  Molecular analysis using the ribosomal 

ITS2 demonstrated similarities between the Australian strains and the South 

African, Brazilian and Kenyan (Barker, 1998); however in other studies using the 

mitochondrial 12S rDNA, divergence has been observed to separate the 

Australian populations from the South African and Mexican (Campbell and Barker, 

1999).  One study in particular has been the driving force behind the suggestion of 

divergence between Australian isolates and the rest of the geographic strains 

(Labruna et al., 2009); this work was split into two main sections; a mating study 

and the genetic analysis.  The mating study was set up using three geographically 

separate strains of R.(B) microplus; Australian, Argentinean and Mozambican.  

The results from this study indicated that when the Australian strain was crossed 

with the other two strains the offspring that were produced were infertile, but when 

the ticks from Mozambique and Argentina were crossed their offspring were found 

to be fertile.  Therefore concluding that the Australian strain is in fact a separate 

species (Labruna et al., 2009).  The genetic analysis part of this investigation, 

which used 16S rDNA, 12S rDNA and microsatellites yielded no conclusive 

answers with regard to Australian strains being a separate species, never the less 

it was concluded that when combined with the mating study it did provide evidence 

for a separate Australian species (Labruna et al., 2009). 
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The reinstatement of R.(B) australis was subsequently proposed (Estrada-Peña et 

al., 2012) with a more recent study into the morphology paired with 16S rDNA and 

12S rDNA molecular analysis.  In this study larvae and adults obtained from 

Australia were re-described and differentiated from R.(B) microplus using 

measurements from unfed specimens and previously sourced neotype material.  

This study found that although R.(B) australis and R.(B) microplus are clearly 

related, there are distinct morphological differences.  For the males the presence 

of a spur on the ventral surface of article i of the palp is a feature that is found on 

R.(B) australis males only.  Divergent patterns of distribution of setae between the 

two species was also reported.  The study dismissed the importance of the size 

and shape of the adanal shields and coxal spurs due to their high variability and 

potential for incorrect identification (Estrada-Peña et al., 2012).  In addition to the 

morphology, the evolutionary history of R.(B) australis, R.(B) microplus, R.(B) 

annulatus and R.(B) decoloratus was inferred using DNA extractions from 10 male 

and 10 female Australian specimens and sequences already available on 

GenBank.  It was deduced from these findings that the 16S rDNA and 12S rDNA 

phylogenetic analysis supported the re-description of R.(B) australis and when 

paired with previous mating studies demonstrated irrefutable proof for the 

divergence of the Australian strain (Estrada-Peña et al., 2012). 

Project aims 

There is conflicting evidence regarding the taxonomic status of R.(B) microplus, 

however the most recent published research has been in support of the 

reinstatement of R.(B) australis as a species distinct from R.(B) microplus.  This 

thesis aims to apply genetic and morphological studies of tick populations from 

numerous countries, to provide a comprehensive phylogenetic analysis of the 

former Boophilus microplus and its nearest relations.  As a result it aims to 

propose a credible evolutionary framework and determine the extent to which 

genetic divergence within the former species, among geographically distinct 

populations, is likely to lead to functional consequences for vaccine and acaricide 

development. 

The quantification and analysis of the variation within Boophilus clade can be 

separated into two main studies: Morphology: this study consists of three main 

approaches to analysing tick morphology (scoring based on published criteria 
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(Estrada-Peña et al., 2012), morphometric and geometric morphometric).  

Molecular genetics: This study consists of investigating the amount of variation in 

three genes: COX1, a mitochondrial gene, and Bm86 and βAOR, both nuclear 

genes. COX1 has been used to successfully distinguish between members of the 

Boophilus clade previously (Barker and Walker, 2014, Burger et al., 2014).  Bm86 

is a gene of importance, as it is the target gene of current tick vaccines (Kemp et 

al., 1989, Willadsen et al., 1988, Willadsen et al., 1989).  Furthermore regional 

variation of the Bm86 sequence has been documented and linked with the 

variability of the vaccines efficacy (Penichet et al., 1994).  βAOR has been 

suggested to be involved in amitraz resistance and so is a functional gene of 

interest in terms of understanding acaricide resistance (Koh-Tan et al., 2016, 

Corley et al., 2013).      
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CHAPTER 2 

General Materials and Methods 

Tick specimens  

Tick specimens from all locations were assembled; approximately 1,650 individual 

ticks for the morphology study (50 ticks per stage, per sex for each isolate/country) 

and enough individual ticks for 20 DNA extractions per isolate per country (220 

ticks) (table 2.1).  Stages that were used in this study were adults (males and 

females) and larvae were obtained by single time point collections on either 

naturally infested cattle or cattle that were artificially infested in the course of 

maintaining colonies of reference strains.  Nymphs were not included because the 

collection of good quality nymph specimens is usually achieved by artificial 

infestation and collection of fully engorged larvae at the point of moulting, followed 

by incubation in vitro for one or two days. Given the dependence on wild-sourced 

ticks, this was not possible to achieve for the number of samples required for this 

study. In the cases of the ‘wild’ sourced ticks, adult females were in varying stages 

of engorgement. 
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Table 2.1: Summary of information regarding the origin of ticks samples, including information on how and when they were collected. 

Country of 

origin 

Region of origin Isolate Species Date collected Collected by Method of 

collection 

Transportation 

method 

Australia Townsville, Queensland Field 

sample 

R.(B) australis December, 2014 Constantin 

Constantinoiu and 

Robert Hedlefs 

Direct from 

naturally infested 

cattle 

70% ethanol 

sealed tubes 

North 

America 

Mexico 

 

Yucatan  R.(B) microplus  Dr Robert J Miller Lab colony 

(originally from 

Mexico from red 

deer) 

70% ethanol 

sealed tubes 

North 

America 

Texas 

 

Deutch  R.(B) microplus  Dr Robert J Miller Lab colony 

(originally from 

cattle) (R.(B) 

annulatus from 

outbreak in Texas 

on cattle) 

70% ethanol 

sealed tubes 

R.(B) annulatus 

South 

Africa 

Soto village camps, Soto 

village, Eastern cape 

province 

Field 

sample 

R.(B) decoloratus November/ 

December 2013 

Nkululeko 

Nyangiwe 

Direct from 

naturally infested 

cattle/ field drag 

70% ethanol 

sealed tubes 

Bathhurst research station, 

Eastern province 

 

Field 

sample 

R.(B) microplus November/ 

December 2013 

Nkululeko 

Nyangiwe 

Direct from 

naturally infested 

cattle/ field drag 

70% ethanol 

sealed tubes 
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Brazil Eldorado do Sul, Rio Grande 

do Sul (Colony established in 

2010) 

 

Jaguar R.(B) microplus September 2014 Guilherme Klafke Collected after 

natural detachment 

from bovine hosts 

70% ethanol 

sealed tubes 

Brazil Jacareí, São Paulo, Brazil 

(colony established in 2012) 

 

Juarez R.(B) microplus September 2014 Guilherme Klafke Collected after its 

natural detachment 

from bovine hosts 

70% ethanol 

sealed tubes 

Uruguay DIlave Miguel Rubino 

Laboratories 

Mozo R.(B) microplus September 2014 Guilherme Klafke Collected after its 

natural detachment 

from bovine hosts 

70% ethanol 

sealed tubes 

Brazil São Gabriel, Rio Grande do 

Sul (field derived strain 

Research Station) 

 

Sao Gabriel R.(B) microplus September 2014 Guilherme Klafke Collected after its 

natural detachment 

from bovine hosts 

70% ethanol 

sealed tubes 

Thailand Kasetsart University Field 

sample 

R.(B) microplus August 2014 Sathaporn 

Jittapalapong 

Direct from 

artificially infested 

project cattle 

70% ethanol 

sealed tubes 
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DNA extraction protocol 

DNA was extracted from 180 putative R.(B) microplus from 9 locations (table 2.1), 

20 R.(B) decoloratus from South Africa and 20 R.(B) annulatus from Texas. The 

process of DNA extraction from the ethanol-fixed tick specimens was challenging 

with multiple attempts resulting in failure.  The first DNA extraction technique used 

was the Qiagen purification of total DNA from ticks using the DNeasy® blood and 

tissue kit protocol.  Individual tick specimens were placed into separate 1.5 ml 

eppendorf tubes, containing 180 µl buffer ATL (a Qiagen tissue lysis buffer for use 

in purification of nucleic acids) and vortexed thoroughly.  Specimens were then cut 

up in order to allow full lysis (this step is particularly important with regard to the 

tick specimens, as the highly scleretorized integument may prevent release of 

DNA).  The samples were centrifuged briefly before 20 µl of proteinase K was 

added, followed by vortexing and finally by incubation overnight at 56ºC in a 

temperature-controlled shaker.  Samples were then subjected to the DNAeasy kit 

protocol, resulting in a final eluate volume of approximately 60 µl.  

The Qiagen technique, although successfully used on Ixodes ricinus in a previous 

study was found to extract the DNA of R.(B) microplus inconsistently, however 

when it did work, the DNA was found to be of a high quality (A260/280 and 

A260/230 ratios, see DNA quantification).  The inefficacy of the Qiagen protocol 

was thought to arise from the tough nature of integument of R.(B) microplus.  In 

order to compensate for this, different cutting techniques were used to prepare the 

specimen for extraction; crushing the specimen against the tube using a scalpel, 

tearing the specimens apart using two needles and chopping the tick up using a 

scalpel.  It was found that none of these techniques noticeably affected the 

protocol, and were difficult as the ticks were often quite soft.  Based on this a 

drying step was added where ticks were placed into separate 1.5 ml eppendorf 

tubes and dried at 95ºC for 15 minutes in order to remove any ethanol 

contaminating the specimen.  This additional step made it easier to crush the 

specimen against the side of the tube, thus breaking it up better than previously; 

however it did not greatly increase the yield in DNA.  The final stage of 

optimization taken with this protocol was to crush the tick specimen using Qiagen 

stainless steel 5mm beads in a Qiagen TissueLyser II at 30 rpm for 2 minutes; this 

converted the specimen into a fine powder and slightly improved the protocol’s 
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consistency. Nonetheless a large number of ticks subjected to this technique failed 

to yield DNA. 

The second extraction method was based on a method developed in the Animal 

Genetics Laboratory of University of Queensland by Sean Corley. This method 

compromises on purification in favour of yield. In preparation for extraction a “Hair 

Lysis Buffer” (10 ml) was made up using 1 ml 10x PCR buffer, 50 µl MgCl2 (50 

mM), 50 µl Tween20 and 8.9 ml sterlised water.  Individual tick specimens were 

placed into separate 1.5 ml Eppendorf tubes and crushed.  To each of the tubes, 

50 µl of the hair lysis buffer and 0.25 µl Proteinase-K (20 mg/ml) was added.  

Samples were then incubated at 60ºC for 45 minutes then 95ºC for 45 minutes. 

This technique, along with using the drying and ball-bearing stage, was found to 

work far more predictably than the Qiagen protocol; however, the DNA yielded, 

although high in concentration was assessed as being low in quality.  Despite the 

low quality, the second protocol was used for the majority of the specimens.  

DNA quantification  

Extracted DNA was quantified using a Thermo Scientific NanoDrop 1000 

Spectrophotometer.   The first value noted was the concentration (ng/μl), samples 

that yielded very low values, in some cases negative values were deemed 

unsuitable for use in PCR and binned.  Samples that yielded a high concentration 

of DNA were checked for quality by looking at the A260/280 and A260/230 ratios.  

The A260/280 ratio is used to determine protein contamination in the sample; 

aromatic proteins have a strong UV absorbance around 280 nm.  For high quality 

DNA, the A260/280 ratio should fall between 2.1 and 1.8, in samples where the 

ratio is lower than this, protein contamination is indicated.  The A260/230 ratio can 

be used to indicate the presence of other organic contaminants, samples with a 

ratio lower than 1.8 are considered highly contaminated, where samples with a 

ratio close to 2.0 are considered of a high quality. 

Sequencing protocol 

PCR products were then cleaned using the AMPure XP kit before being used in 

the sequencing reaction.  27 μl of AMPure XP was added to 15 μl of PCR product 

and mixed by pipetting.  After 5 minutes incubation at room temperature, samples 
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were placed onto a magnetic plate and left for 2 minutes, until the solution had 

cleared.  The liquid was then removed and 200 μl of 70% ethanol was added and 

vortexed until mixed thoroughly.  The reaction plate was placed again on the 

magnetic plate and left for 2 minutes, until the solution cleared.  The ethanol was 

then discarded and the steps of adding and removing the ethanol were repeated.  

The plate was then allowed to air dry for approximately 20 minutes before 22 μl of 

nuclease-free water was added.  A final check using a 1% agarose gel with 4 μl of 

product was then run to check that the cleanup had not destroyed the PCR 

product. 

Cleaned PCR product was then set up in a new 96-well plate, alternating each 

column with forward and reverse primers (figure 2.1).   

 

Figure 2.1: An excerpt taken from the plate map for plate 1 used in the sequencing of COX1. 
(Source: Authors own drawing) 

A reaction master mix was then set up using the Applied Biosystems kit and the 

following recipe; 10 μl cleaned PCR product, 0.32 μl sequencing primer (10 μM), 

0.5 μl Ready Reaction Mix = BigDye® Terminator v3.1 Cycle Sequencing Kit 

(ABGene #4336917), 3.5 μl 5X Sequencing Buffer (ABGene #4336697) and 5.68 

μl sterile water (to a final volume of 20 μl).  The following protocol was then set up 

on the thermocycler; 10 seconds at 96ºC, 10 seconds at 55ºC, 3 minutes at 60ºC, 

25 cycles of steps 1-3, forever at 10ºC. 

Once complete the sequencing product was cleaned using CleanSEQ.  10 μl of 

CleanSEQ and 85% ethanol was added to each reaction according to table 2.2. 
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Table 2.2: Amount of 85% ethanol used based on the volume of sequence reaction used, in 
the case of the following works 20 μl of sequence reaction was used resulting in 62 μl of 
ethanol being used. 

Sequence Reaction Vol (l) 85% ethanol (l) 

5 31 

10 42 

20 62 

 

The plate was then sealed, vortexed, and pulsed at 1000 rpm for 1 s.  The plate 

was then placed on a SPRI magnet for at least 3 minutes, until the solutions 

became clear.  With the reaction plates still on the magnet, the solution was 

discarded by tipping upside down onto paper towel.  150 μl of 85% ethanol was 

then added to each well and incubated for 30 seconds.  With the reaction plate still 

on the magnetic plate, the ethanol was carefully aspirated, avoiding touching the 

ring of magnetic beads and discarded.  The plate was then air-dried for 10-20 

minutes.  Once all the ethanol had evaporated 40 μl of nuclease-free water was 

added to each well, sealed with a new adhesive seal, vortexed and pulse span at 

1000 rpm for 1 second.  Cleaned plate was then placed on a SPRI magnet and 20 

μl of cleaned product was pipetted into a new semi-skirted plate for use in the 

sequencer.  Empty wells were filled with 20 µl of nuclease-free water.  Plates were 

analyzed using the Applied Biosystems 3130XL Genetic Analyzer.
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CHAPTER 3 

A three-way approach to the analysis of the morphology 
of R.(B) microplus with a view to resolve the validity of 
the proposed species R.(B) australis 

Introduction 

Up until recently Boophilus was considered a genus separate to Rhipicephalus; 

however with further morphological and molecular studies, evidence has been 

suggested to support the theory that Boophilus is synonymous with Rhipicephalus 

(Murrell and Barker, 2003b; Murrell et al., 2001b).  With regard to morphological 

similarities studies that have used around 30 morphological features and a simple 

scoring technique e.g. ornamentation of scutum present: 1 absent: 0 concluded 

that many of the species defining features found in Boophilus are also shared by 

Rhipicephalus (Murrell and Barker, 2003b).   

R.(B) microplus was first described in 1888 by Canestrini, however at this time it 

was described as Haemaphysalis micropla from samples originating in Paraguay 

(Quinlan et al., 1980, Cooley, 1946).  Since then, there has been debate regarding 

the taxonomic status of R.(B) microplus.  Up until 1978, all of the observations 

regarding the R.(B) microplus clade used morphological identification only.  

Differences among R.(B) microplus populations have been suggested by a 

number of different studies that combined both morphological and molecular 

analyses (Labruna et al., 2009, García-García et al., 1999, de la Fuente et al., 

2000a).   

The reinstatement of R.(B) australis was proposed and supported by a study using 

16S rDNA and 12S rDNA molecular analysis as well as morphology (Estrada-

Peña et al., 2012).  In this study larvae and adults obtained from Australia were re-

described and differentiated from R.(B) microplus using measurements from unfed 

specimens and previously sourced neotype material.  This study found that 

although R.(B) australis and R.(B) microplus are clearly related, there are distinct 

morphological differences.  For males the presence of a spur on the ventral 

surface of article I of the palp is a feature is found on R.(B) australis males only.  

Differences in setae patterns between the two species was also reported, which 

although is a valid feature to compare, can be damaged easily during the removal 
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process from the host, not to mention damage occurring while under alcohol.  This 

study goes on further to dismiss the importance of the size and shape of the 

adanal shields and coxal spurs (features that are well documented to be key in 

morphological based identification) due to their high variability and potential for 

incorrect identification (Estrada-Peña et al., 2012).   

Despite the call for the reinstatement of R.(B) australis based upon the 

morphological differences outlined above, it has subsequently been suggested 

that it is impossible to make an unambiguous distinction between R.(B) australis 

and R.(B) microplus based upon morphological criteria alone (Barker and Walker, 

2014).  Morphological features of R.(B) australis and R.(B) microplus were found 

to be too variable to allow for successful differentiation.  They additionally 

commented on the difficulty of distinguishing between these two species and R.(B) 

annulatus, stating that once again the variability in the morphology makes all three 

very difficult to separate (Barker and Walker, 2014).  Other researchers have also 

commented on the difficulties in distinguishing between R.(B) microplus, R.(B) 

annulatus and R.(B) decoloratus due to the lack of morphological differences and 

the variability observed in the features that are used for differentiation (Lempereur 

et al., 2010, Uilenberg, 1962). 

The re-described morphology of R.(B) australis (Estrada-Peña et al., 2012) as well 

as morphological descriptions of R.(B) microplus, R.(B) annulatus and R.(B) 

decoloratus (Barker and Walker, 2014, Walker et al., 2003) will be used as a 

morphological foundation for three studies that are intended to test the validity of 

the reinstatement of R.(B) australis, and explore the variability within and among 

populations. 

This study comprises three approaches to the analysis of tick morphology: 3.1 

classification of ticks according to binary scores based on criteria that have been 

proposed previously to enable differentiation of R.(B) microplus and closely related 

species; 3.2 a complete morphometric analysis of features that have been stated 

to or might have a value for discriminating among species or subspecies; 3.3 a 

geometric morphometric analysis that enables a similar approach to 

morphometrics, however removing the strong effect of size. 
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Materials and Methods 

Samples 

One thousand six hindred and fifty individual ticks were photographed, including 

adult males, females and larvae from South Africa, South America, North America, 

Thailand and Australia (table 3.1).  In study 3.1 only the females and males were 

used, due to the lack of annotation on the larval morphology and the difficulty in 

obtaining nymphs.  In the rest of the studies (3.2-3.3) both adults and larvae were 

used. 

 Table 3.1: Summary of the tick specimens photographed for this study. Country of origin 
including information on the isolate/strain where available in brackets, abbreviation used in 
this study, number of specimens photographed for each sex/stage. 

Country of origin 

(isolate/strain) 

Species Number of ticks photographed 

Females Males Larvae 

South Africa R.(B) microplus 49 50 49 

R.(B) decoloratus 50 50 49 

Brazil (Jaguar) R.(B) microplus 50 10 50 

Brazil (Juarez) R.(B) microplus 44 38 50 

Brazil (Sao Gabriel) R.(B) microplus 45 28 50 

Uruguay (Mozo) R.(B) microplus 40 21 50 

USA (Deutch) R.(B) microplus 50 50 50 

R.(B) annulatus 48 49 49 

Mexico (Yucatan) R.(B) microplus 49 22 50 

Thailand R.(B) microplus 50 50 50 

Australia R.(B) microplus 50 50 50 

 

All ticks collected from the field (Australia and South Africa) were initially identified 

to genus using morphological criteria outlined by Walker et al (2003) for adults and 

Nuttall et al (1926) for larvae.  As a result one African female, previously assigned 

to R.(B) microplus, was re-assigned to the genus Dermacentor and subsequently 

removed from the study.  Two south African larvae, one previously assigned to 

R.(B) microplus and the other R.(B) decoloratus, were also removed from the 

study after being re-assigned to the genus Haemaphysalis.  Any discrepancies at 

species level were addressed in study 3.1. 
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Microscopy and image capture 

The microscope set up used in this project was a Zeiss Stemi 2000-C with zoom 

objective lens magnification ranging from 0.65- 5.0.  Images were taken using a 

Canon 60D DSLR digital camera, modified for use on the microscope using a C- 

mount adapter on the phototube section of the trinocular microscope.  Ticks were 

removed from tubes containing 70% ethanol using needle forceps and dried on a 

paper towel to remove any excess ethanol.  Once ticks were dry they were placed 

onto a S1 stage micrometer with a graticule range of 0.1mm to 10mm.  Lighting 

was provided by the microscope’s own above-platform light as well as a bifurcated 

gooseneck light box, which enabled maximum illumination of the specimen for 

imaging.  Images were taken using remote shutter control to reduce shake and 

improve clarity of the images.  Up to 50 individual tick specimens from each 

population for each stage was photographed, and images were then stored in file-

folders corresponding to the morphological feature imaged, sex/stage and 

geographical location. 

3.1 Differentiation between adult members of the 
Boophilid clade based on a morphological scoring 
system  

Materials and methods 

Binary scoring systems 

The scoring system was based upon the morphological criteria outlined (Barker 

and Walker, 2014, Walker et al., 2003, Estrada-Peña et al., 2012) (table 3.2).  

Four two-way analyses were set up; R.(B) australis versus R.(B) microplus, R.(B) 

microplus versus R.(B) annulatus, R.(B) microplus versus R.(B) decoloratus and 

R.(B) annulatus versus R.(B) decoloratus.  For each morphological feature that 

was assessed a score of either 0 or 1 was given, representing whether the feature 

was absent or present respectively (figure 3.1).  This method was not used on 

larvae, as the suggested features enabling differentiation between R.(B) australis 

and R.(B) microplus are based on measurements of features rather than presence 

or absence of features. 
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Table 3.2: Summary of identifying features used in the score analysis for R. (B) australis, R. 
(B) microplus, R.(B) annulatus and R.(B) decoloratus. 

Species/sex Feature 

R.(B) australis 
(Female) 

Dorsal setae are abundant, long, and pale 
Medial alloscutal setae are in clusters of 4–6 rows 
Setae behind the eyes are clearly visible 

R.(B) microplus 
(Female) 

Dorsal setae in R. microplus are short and slender 
Medial alloscutal setae form clusters of 2–3 rows 
Setae behind the eyes are unapparent/absent 
Coxa I spur is distinct  
Spurs present on coxae II and III 
Porose area is broad oval 
Internal protuberance is absent on palp article I 

R.(B) annulatus 
(Female) 

Coxa I spur is indistinct 
Coxae II and III spurs are absent  
Porose area is broad oval 
Internal protuberance is absent on palp article I 

R.(B) decoloratus 
(Female) 

Coxa I spur is distinct 
Spurs present on coxae II and III 
Porose area is a narrow oval 
Internal protuberance is present on palp article I 

R.(B) australis (Male) Spur present on the ventral surface of palp article I  
Setae on the lateral margins of the ventral surface of the 
capitulum either very short or appear to be absent 

R.(B) microplus 
(Male) 

Ventral spur absent from palp article I  
Several setae present on the lateral margins of the ventral 
surface of the capitulum 
Coxa I spur is long 
Caudal appendage is present 
Ventral plate spurs are indistinct  

R.(B) annulatus 
(Male) 

Coxa I spur is short 
Caudal appendage is absent 
Ventral plate spurs are indistinct  

R.(B) decoloratus 
(Male) 

Coxa I spur is short 
Caudal appendage is present  
Ventral plate spurs are distinct  
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Figure 3.1: Example of scoring of presence of the ventral spur on palp article I (both A and B 
are Thai males); Red arrow shows the location of the ventral spur: A = feature present 
(score = 1), B = feature absent (score = 1). (Source: Authors own photograph).
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Results 

Table 3.3 shows the result of applying the scoring system criteria to the samples of 

female ticks collected as and believed to be R.(B) annulatus and R.(B) 

decoloratus. There was complete agreement in all cases and none of the samples 

examined showed features of more than one species.  Among male ticks, 

however, samples that were collected as being R.(B) decoloratus had features that 

were not consistent with either species, nor with any of the other species for which 

the criteria were defined (table 3.4). 

Table 3.3: Number of female ticks collected as R.(B) annulatus and R.(B) decoloratus 
assigned according to the features listed in Table 3.2: Number of ticks assigned 
unambiguously: 98, ambiguous or incorrect: 0; 100% of ticks unambiguously assigned to 
presumed correct species. 

Population 

(females) 

Number of population classed 

R.(B) annulatus R.(B) decoloratus Mixed 

R.(B) annulatus 48 0 0 

R.(B) decoloratus 0 50 0 

 

Table 3.4: Number of male ticks collected as R.(B) annulatus and R.(B) decoloratus 
assigned according to the features listed in table 3.2: Number of ticks assigned 
unambiguously: 94, ambiguous or incorrect: 0; 100% of ticks unambiguously assigned to 
presumed correct species. 

Population 

(males) 

Number of population classed 

R.(B) annulatus R.(B) decoloratus Mixed Other R 
spp. 

R.(B) 

annulatus 

49 0 0 0 

R.(B) 

decoloratus 

0 45 0 5 

 

When the criteria for differentiating R.(B) decoloratus from R.(B) microplus and 

R.(B) australis were applied to the entirety of the presumed R.(B) microplus and 

R.(B) australis sample set, there was a clear distinction, with the single exception 

of one male from the African sample set, which was not fully consistent with the 

criteria of either R.(B) microplus/R.(B) australis or R.(B) decoloratus (tables 3.5 

and 3.6). 
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Table 3.5: Number of female ticks collected as R.(B) microplus/R.(B) australis scored based 
on the features listed in table 3.2: Number of ticks assigned unambiguously: 427, incorrect 
or ambiguous: 0; 100% of ticks unambiguously assigned to presumed correct species. 

Population 
(females) 

Number of population classed  

R.(B) microplus/ 
R.(B) australis 

R.(B) decoloratus Mixed 

Australian 50 0 0 

African 49 0 0 

Yucatan 49 0 0 

Deutch 50 0 0 

Jaguar 50 0 0 

Juarez 44 0 0 

Mozo 40 0 0 

Sao Gabriel 45 0 0 

Thailand 50 0 0 

 

Table 3.6: Number of male ticks collected as R.(B) microplus/R.(B) australis scored based 
on the features listed in table 3.2: Number of ticks assigned unambiguously: 319, incorrect 
or ambiguous: 1; 99.7% of ticks correctly assigned to species. 

Population 
(males) 

Number of population classed  

R.(B) 
microplus/ 

R.(B) australis 

R.(B) 
decoloratus 

Mixed Other R 
spp. 

Australian 50 0 0 0 

African 49 0 0 1 

Yucatan 22 0 0 0 

Deutch 50 0 0 0 

Jaguar 10 0 0 0 

Juarez 38 0 0 0 

Mozo 21 0 0 0 

Sao Gabriel 28 0 0 0 

Thailand 50 0 0 0 

 

As above, it was also found that R.(B) microplus/ R.(B) australis could be 

distinguished from R.(B) annulatus 100% of the time across all geographical 

regions for the females (table 3.7) using the published criteria.  For 3 males of the 

Yucatan sample the caudal appendage was absent (a R.(B) annulatus feature) 

however the spur of coxa I was long (a R.(B) microplus feature), and so they 

would be classified on the basis of the criteria as likely hybrids of both species. 

The one male that did not fit under either R.(B) microplus/ R.(B) australis or R.(B) 

decoloratus mentioned above, was also found to not be R.(B) annulatus according 

to the criteria outlaid by Walker et al., 2003, and so was hypothesized to belong to 

a different Rhipicephaline species, (table 3.8).  If it were assumed that hybrids are 
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not possible due to non-overlapping ranges, then the classification system would 

be estimated to give a correct and unambiguous assignment for 99.1% of cases. 

Table 3.7: Number of female ticks collected as R.(B) microplus and R.(B) australis scored 
based on the features listed in table 3.2: Number of ticks scored correctly: 427, incorrectly: 
0; 100% of ticks unambiguously assigned to presumed correct species. 

Population 
(females) 

Number of population classed  

R.(B) microplus/ 
R.(B) australis 

R.(B) annulatus Mixed 

Australian 50 0 0 

African 49 0 0 

Yucatan 49 0 0 

Deutch 50 0 0 

Jaguar 50 0 0 

Juarez 44 0 0 

Mozo 40 0 0 

Sao Gabriel 45 0 0 

Thailand 50 0 0 

 

Table 3.8: Number of male ticks collected as R.(B) microplus and R.(B) australis scored 
based on the features listed in table 3.2: Number of ticks scored correctly: 316, incorrectly: 
3; 99.1% of ticks correctly assigned to species. 

Population 
(males) 

Number of population classed  

R.(B) 
microplus/ 

R.(B) australis 

R.(B) 
annulatus 

Mixed Other R 
spp. 

Australian 50 0 0 0 

African 49 0 0 1 

Yucatan 19 0 3 0 

Deutch 50 0 0 0 

Jaguar 10 0 0 0 

Juarez 38 0 0 0 

Mozo 21 0 0 0 

Sao Gabriel 28 0 0 0 

Thailand 50 0 0 0 

 

When using the criteria to differentiate between R.(B) microplus and R.(B) 

australis, in the case of the Australian population of female ticks, 23/50 were 

classified as R.(B) australis, however 27/50 were classified either as R.(B) 

microplus or  a mixture of both.  The rest of the populations scored with the 

majority as R.(B) microplus, however several females presented features of both 

species in all populations except Mozo, which was assigned to R.(B) microplus.  A 

small number of individual females in the South African and Juarez populations 
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also scored as R.(B) australis (table 3.9).  The male ticks demonstrated a different 

overall trend, with the majority of all populations assigned either to R.(B) australis 

or having a mixture of both R.(B) australis and R.(B) microplus features (table 

3.10).  

Table 3.9: Number of female ticks collected as R.(B) microplus/R.(B) australis scored based 
on the features listed in table 3.2: Number of ticks scored correctly: 341, incorrectly: 86; 
79.86% of ticks correctly assigned to species. 

Population 
(females) 

Number of population classed  

R.(B) microplus R.(B) australis Mixed 

Australian 19 23 8 

African 33 6 10 

Yucatan 41 0 8 

Deutch 43 0 7 

Jaguar 47 0 3 

Juarez 33 4 7 

Mozo 40 0 0 

Sao Gabriel 44 0 1 

Thailand 37 0 13 

 

Table 3.10: Number of male ticks collected as R.(B) microplus/R.(B) australis scored based 
on the features listed in table 3.2: Number of ticks scored correctly: 52, incorrectly: 267; 
16.3% of ticks correctly assigned to species. 

Population 
(males) 

Number of population classed  

R.(B) microplus R.(B) australis Mixed 

Australian 1 21 28 

African 9 20 21 

Yucatan 5 5 12 

Deutch 7 17 26 

Jaguar 0 2 8 

Juarez 2 3 33 

Mozo 3 3 15 

Sao Gabriel 2 5 21 

Thailand 3 29 18 
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3.2 Differentiation between members of the Boophilid 
clade based on morphometric analysis 

Materials and methods 

Samples 

Specimens used in this study are listed in table 3.1.  Unique abbreviations used in 

this study are summarized in table 3.11. 

Table 3.11: List of abbreviations used in this study. 

Name Abbreviation 

R.(B) microplus MIC 

R.(B) annulatus ANN 

R.(B) decoloratus DEC 

R.(B) australis AUS 

Population POP 

 

Morphometric measurements taken 

For the morphometric part of the study, twelve anatomical features used in 

previous morphometric studies were used (Abdel-Shafy et al., 2011).  Some 

measurements were unable to be taken due to the condition of the specimens. In 

the case of the females the measurements that were greatly impacted upon were 

the overall body length as well as the idiosoma length and width.  This was due to 

a large number of females being fully or partially engorged, which drastically alters 

the dimensions of the tick’s body.  Measurements were taken of body length, 

idiosoma length, idiosoma width, scutum length, scutum width, width of basis 

capituli, palpal length (left), palpal length (right), length of dorsal basis capituli, 

hypostome length, hypostome width and length of ventral basis capituli (figure 

3.2).  The same measurements were taken from the males with the exception of 

scutal measurements because in males this is the conscutum, which corresponds 

with the idiosoma in females.  Mechanical damage incurred during the collection of 

the specimens, particularly to parts of the mouthparts (palp left and/or right and 

hypostome) was seen in 16% of females, 31% of larvae and 1% of males.  For 

these specimens measurements of the damaged palps and/or hypostome were 

not taken.  Measurements were made using ImageJ software and recorded in an 
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Excel spreadsheet.  In all specimens the limbs were not easily visible and would 

require removal for photographing in detail.  This was deemed impractical due to 

the large number of specimens and so limb measurements were not included.   



 

 

7
6

 

 

Figure 3.2: Summary of the measurements made on specimens for the morphometric study; i: body length (A), idiosoma length (B), idiosoma width (C), 
scutum length (D), scutum width (E), width of basis capituli (F); ii: width of basis capituli (F), palpal length (left) (G1), palpal length (right) (G2), length of 
dorsal basis capituli (H), hypostome length (I), hypostome width (J); iii: length of ventral basis capituli (K). (Source: Authors own photograph).



 

77 
 

Statistics 

Statistical analysis was performed using Minitab 17 Statistical software.  The first 

stage in the statistical analysis was to perform Dixon’s test to check for outliers in 

the three data sets.  

Anderson-Darling normality tests were performed for all variables.  For each of the 

variables, the variance was determined and a test for equal variances for each 

population was applied and overlapping confidence intervals were noted to show 

which variances were similar in each of the populations. Tests of equal variance 

were not applied across species because the numbers of samples in R.(B) 

microplus were several-fold higher than either R.(B) annulatus, R.(B) decoloratus 

or R.(B) australis.  A test for equal variance of feature versus population was 

undertaken.  This was further demonstrated through box plots of feature against 

population showing median confidence intervals, interquartile range, outlier and 

mean.  A one-way anova was then performed to determine whether the features 

were similar in different populations.  A Fisher Pairwise comparison was 

conducted to assess the statistical significane of differences between menas using 

95% confidence interval.  Groups generated are assigned a letter based on the 

distribution of the means, indicating which groups are significantly different.  A 

principal component analysis (PCA) was used to explore the amount of variation 

between the morphological features and then observe how populations and 

species group based on variation. 

Differentiation between larvae of the Boophilid clade using morphometric 
measurements 

Body length, idiosoma width, width of basis capituli, scutum width and the length of 

the right palp were all normally distributed (p=>0.05).  The remaining features 

were not normally distributed according to the Anderson-Darling test. In all cases, 

however, deviation from normality could be attributed to a small number of 

individuals at the extreme ends of the distribution. In the absence of any serious 

deviations from normality, given the number of samples used (544) and in the 

expectation that the dimensions of the anatomical features measured would be 

normally distributed, it was considered that parametric statistical analyses would 

be effective.  
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The standard deviation of each population was determined using Bonferroni 

confidence intervals.  Overlapping confidence intervals showed that the variances 

were similar in each of the populations.  From this Levene’s method was applied to 

test if populations demonstrated equal variances for each morphological feature.  

Bartlett’s test is very accurate for normally distributed data, which also means any 

deviations from normal distribution can cause errors, whereas the multiple 

comparisons and Levene’s method is less sensitive to these deviations.  It is for 

this reason that features that had a p-value <0.05 were tested for equal variances 

using the multiple comparisons and Levene’s method. 

Table 3.12: Test for equal variances for each morphological feature using the Bartlett 
method. 

Morphological feature Test Statistic P-value 

Body length 11.31 0.334 

Idiosoma width 26.30 0.003 

Scutum width 38.12 0.000 

Width of basis capituli 17.22 0.070 

Palpal length (right) 11.36 0.330 

 

All morphological features in table 3.12 were tested for equal variances against 

population using the Bartlett method as they showed normal distribution.  Body 

length, width of basis capituli and palp length (right) all showed equal variances 

with p-values >0.05.  Idiosoma width and scutum width were not equally variable 

(table 3.13). 

Table 3.13: Test for equal variances: morphological feature versus the population (POP) 
using the multiple comparisons method.  

Morphological feature P-value 

Idiosoma length 0.036 

Scutum length 0.001 

Palpal length (left) 0.321 

Length of dorsal basis capituli 0.108 

Hypostome length 0.067 

Hypostome width 0.408 

Length of ventral basis capituli 0.193 
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Table 3.14: Test for equal variances: morphological feature versus the population (POP) 
using the Levene’s method. 

Morphological feature Test Statistic P-value 

Idiosoma length 2.48 0.007 

Scutum length 4.31 0.000 

Palpal length (left) 1.04 0.406 

Length of dorsal basis capituli 1.52 0.129 

Hypostome length 2.00 0.032 

Hypostome width 0.98 0.460 

Length of ventral basis capituli 1.37 0.193 

 

The rest of the morphological features were tested for equal variances using 

multiple comparisons (table 3.13) and Levene’s method (table 3.14).  For most 

features the significance didn’t change between the two tests, however for 

hypostome length equal variance was observed when using the multiple 

comparisons method but not observed with the Levene’s method.  In this case the 

result from the multiple comparison method was taken over the Levene’s, as the 

multiple comparison method is more powerful and the distribution for this feature 

had heavy tails on the normal distribution curve.  Results showed that Idiosoma 

length and scutum length were not equally variable, however the rest of the 

features did show equal variance (table 3.14; 3.15).  All features that showed 

equal variance (p=>0.05) were then tested using a one-way ANOVA (table 3.15).  

Features with a p-value <0.05 were tested using Welch’s ANOVA instead, as this 

test does not assume equal variances (table 3.14). 

Table 3.15: Results from the one-way ANOVA for each morphological feature versus 
population (POP).  Analysis of variance is shown. 

Morphological feature Adj SS Adj MS F value P value 

Body length 0.1026 0.010257 10.86 0.000 

Palpal length (left) 0.003528   0.000353      4.85     0.000 

Palpal length (right) 0.004131   0.000413      4.49     0.000 

Length of dorsal basis capituli 0.001947   0.000195      2.99     0.001 

Hypostome length 0.004433   0.000443      2.91     0.002 

Hypostome width 0.000417   0.000042      1.28     0.241 

Length of ventral basis capituli 0.004688   0.000469     15.44     0.000 
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Table 3.16: Results from the Welch’s ANOVA for each morphological feature versus 
population (POP).  Analysis of variance is shown. 

Morphological feature DF Den F value P value 

Idiosoma length 201.790 16.50 0.000 

Idiosoma width 212.025 13.19 0.000 

Scutum length 213.273 12.39 0.000 

Scutum width 213.137 34.78 0.000 

Width of basis capituli 213.382 10.00 0.000 

 

Hypostome width was the only morphological feature that did not differ between 

populations (p=>0.05) (table 3.16).  The rest of the features, however do vary 

between populations, with a strong significance (all around p-value= 0.000).  The 

means for each population for each morphological feature was compared using a 

Fisher Pairwise comparison (table 3.17). 

Table 3.17: Fisher Pairwise comparisons, grouping information using the Fisher least 
significant difference (LSD) method and 95% confidence interval to assess the statistical 
significance of differences between means.  Means that do not share a letter are 
significantly different. 

Morphological feature Population Mean Grouping 

Body length Jaguar  0.59500 A 

Mozo  0.58807 A 

R.(B) decoloratus  0.57202   B 

R.(B) annulatus  0.57141   B 

Yucatan  0.56923   B C 

South Africa  0.56140   B C D 

Thailand  0.55561      C D  

Sao Gabriel  0.55383          D 

Juarez  0.55237          D 

Deutch  0.55079          D 

Australia  0.53074              E 

Idiosoma length Jaguar 0.45184 A 

Mozo 0.43943    B 

R.(B) annulatus 0.43478        B 

R.(B) decoloratus 0.42991        B C 

Yucatan 0.42232             C D 
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Juarez 0.41538                   D 

Deutch 0.41500           D 

Sao Gabriel 0.41338                   D 

South Africa 0.41233                   D 

Thailand 0.41176                   D 

Australia 0.39106                        E 

Idiosoma width R.(B) annulatus 0.42553   A 

South Africa 0.41837   A B 

Juarez 0.41640         B C 

R.(B) decoloratus 0.41406         B C 

Mozo 0.40792              C D 

Australia 0.40474                    D 

Deutch 0.40361                    D E 

Jaguar 0.40152                    D E F 

Sao Gabriel 0.39488                          E F 

Thailand 0.39438                               F G 

Yucatan 0.38594                                     G 

Scutum length 

 

Juarez 0.26036   A 

R.(B) decoloratus 0.25086        B 

R.(B) annulatus 0.25016        B 

Sao Gabriel 0.24940        B C 

Deutch 0.24676        B C 

South Africa 0.24613        B C 

Australia 0.24451        B C 

Yucatan 0.24126             C 

Thailand 0.23272                  D 

Mozo 0.23168                  D E 

Jaguar 0.22432                        E 

Scutum width 

 

R.(B) annulatus 0.36853   A 

Juarez 0.36434   A 

Thailand 0.35442       B 

Mozo 0.35172       B C 

Sao Gabriel 0.35080       B C D 

R.(B) decoloratus 0.34304            C D E 
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Jaguar 0.34254                 D E 

Deutch 0.34168                      E 

Yucatan 0.33838                      E 

South Africa 0.32390                            F 

Australia 0.30280                                G 

Width of basis capituli 

 

South Africa 0.15565   A 

Yucatan 0.15466   A 

Juarez 0.15188   A B 

R.(B) annulatus 0.15010        B C 

Sao Gabriel 0.15004        B C 

Jaguar 0.14954        B C 

Deutch 0.14938        B C 

Australia 0.14937        B C 

Thailand 0.14792            C  

Mozo 0.14248                   D 

R.(B) decoloratus 0.14010                   D 

Palpal length (left) 

 

Deutch 0.07584   A 

R.(B) annulatus 0.07473   A B 

South Africa 0.07225   A B C 

Jaguar 0.07066         B C D 

Mozo 0.06997               C D 

Australia 0.06922               C D 

Sao Gabriel 0.06857               C D E 

R.(B) decoloratus 0.06829                     D E 

Yucatan 0.06774                     D E 

Juarez 0.06703                     D E 

Thailand 0.06503                           E 

Palpal length (right) 

 

South Africa 0.07395   A 

R.(B) annulatus 0.07290   A B 

Deutch 0.07242   A B 

Mozo 0.06852         B C 

Jaguar 0.06841         B C 

Sao Gabriel 0.06757               C 

Yucatan 0.06750               C D 
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R.(B) decoloratus 0.06680               C D 

Juarez 0.06621               C D 

Australia 0.06541               C D 

Thailand 0.06314                     D 

Length of dorsal basis 

capituli 

 

South Africa 0.05314   A 

R.(B) annulatus 0.05247   A 

Mozo 0.05082   A B 

Sao Gabriel 0.05024   A B 

Deutch 0.05016   A B 

Australia 0.05011   A B 

Juarez 0.05003   A B 

Jaguar 0.04948   A B 

Thailand 0.04835         B C 

Yucatan 0.04803         B C 

R.(B) decoloratus 0.04507               C 

Hypostome length 

 

Mozo 0.08230   A 

Deutch 0.07840   A B  

South Africa 0.07730   A B 

Jaguar 0.07686   A B  

Juarez 0.07534         B C 

Sao Gabriel 0.07438         B C 

Yucatan 0.07358         B C 

R.(B) decoloratus 0.07318         B C 

Thailand 0.07311         B C 

Australia  0.07054           B C 

R.(B) annulatus 0.06953               C 

Hypostome width 

 

R.(B) annulatus 0.04130   A 

South Africa 0.04057   A B 

R.(B) decoloratus 0.039889   A B 

Yucatan 0.039818   A B C 

Jaguar 0.039571   A B C 

Juarez 0.039448   A B C 

Sao Gabriel 0.039378   A B C 

Australia 0.03884   A B C 
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Thailand 0.038432         B C 

Mozo 0.038364         B C 

Deutch 0.037167               C 

Length of ventral basis 

capituli 

R.(B) annulatus 0.050755   A 

Deutch 0.049740   A B 

South Africa 0.049104   A B 

Juarez 0.048480         B C 

Yucatan 0.047940         B C 

Australia 0.047816         B C 

Sao Gabriel  0.046460               C 

R.(B) decoloratus 0.044265                    D 

Jaguar 0.043060                    D 

Thailand 0.042531                    D 

Mozo 0.042120                    D 

 

The Fisher pairwise comparison grouped populations based on the comparison of 

the means and assigned groups with a letter.  Means that do not share a letter are 

significantly different.  The population pairwise comparisons that differed 

significantly were inconsistent by feature.  Populations that were significantly 

different for each feature (table 3.17) included; body length: Jaguar and Mozo ticks 

from Australian ticks; idiosoma length: Jaguar ticks from Australian ticks; idiosoma 

width: R.(B) annulatus from R.(B) microplus ticks from Yucatan; scutum length: 

Juarez ticks from Jaguar ticks; scutum width: R.(B) annulatus from Australian 

ticks; width of basis capituli: South African and Yucatan ticks from Mozo and R.(B) 

decoloratus; palpal length (left): ticks from Deutch from Thai ticks; palpal length 

(right): South African ticks from Thai ticks; length of dorsal basis capituli: South 

African ticks and R.(B) annulatus from R.(B) decoloratus; hypostome length: ticks 

from Mozo from R.(B) annulatus; hypostome width: R.(B) annulatus from Deutch 

ticks; length of ventral basis capituli: R.(B) annulatus from R.(B) decoloratus, as 

well as ticks from Jaguar, Thailand and Mozo. 

A principal component analysis (PCA) was used to explore the amount of variation 

between the morphological features and then observe how populations and 

species group based on variation.   
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Table 3.18: Eigenvalues (along with proportion and cumulative values) for the first two 
principal components.  

 PC1 PC2 

Eigenvalue 3.8241   2.0414   

Proportion 0.319 0.170 

Cumulative 0.319 0.489 

 

Table 3.19: Principal components values (PC1 and PC2) for each morphological variable. 

Variable PC1 PC2 

Body length 0.327 0.388 

Idiosoma length 0.195    0.547    

Idiosoma width 0.325    0.191   

Scutum length 0.337    0.092 

Scutum width 0.292    0.264 

Width of basis capituli 0.284    0.032 

Palpal length (left) 0.307   -0.389    

Palpal length (right) 0.331   -0.366    

Length of dorsal basis capituli 0.292   -0.271    

Hypostome length 0.337   -0.256    

Hypostome width 0.227    0.029 

Length of ventral basis capituli 0.125   -0.107 

 

In the first component (PC1), the greatest amount of variation can be observed 

between scutum and hypostome length (both 0.337) and the length of ventral 

basis capituli (table 3.19; figure 3.3).  In the second component (PC2), the greatest 

amount of variation is between idiosoma length and palpal length (left) (table 3.19; 

figure 3.3).  From the loading plot it also clear that there are some groupings 

based on a close correlation, particularly obvious for PC2, where hypostome 

length, length of dorsal basis capituli and both palpal lengths show a close 

correlation (figure 3.3).  This means that in PC1 the strongest features to use to 

distinguish between the populations are scutum length and hypostome length.  In 

PC2 the idiosoma length would be used todifferentiate populations. 
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Figure 3.3: Loading plot output from principal component analysis (PCA) for morphological 
features of larvae. The plot shows the loadings of the first two components, presenting the 
correlations between the variable and the largest two components.  Loadings have been 
multiplied by the standard deviation of the component which makes it viewable as a 
distance. Variables that appear closer together on the plot are more highly correlated. 

A score plot for larvae based on population indicated that it was not possible to 

differentiate the separate populations based on the morphological criteria (figure 

3.4). 
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Figure 3.4: Score plot from principal component analysis (PCA) for larvae based on 
population. A: South Africa, ANN: R.(B) annulatus, D: Deutch, DEC: R.(B) decoloratus, J: 
Jaguar, M: Mozo, O: Australia, S: Sao Gabriel, T: Thailand, Y: Yucatan, Z: Juarez. 

The score plot for larvae based on species showed a trend for R.(B) australis to 

group toward the negative values, indicating that they tend to be shorter (figure 

3.5).  With regard to the rest of the species, no discernable pattern emerged. 
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Figure 3.5: Score plot from principal component analysis (PCA) for larvae based on species. 
ANN: R.(B) annulatus, AUS: R.(B) australis, DEC: R.(B) decoloratus, MIC: R.(B) microplus. 

Differentiation between males of the Boophilid clade using morphometric 
measurements 

Body length and idiosoma length were not normally distributed (p=<0.05) and so 

were not used in the rest of the analysis.  In the case of the larvae, non-normally 

distributed features remained in the rest of the analysis because the data followed 

the normality line, except for a few individuals at the extreme ends.  For body 

length and idiosoma length, this was not the case as a lack of normal distribution 

was seen throughout the graph.    

The standard deviation of each population was tested using the Bonferroni 

confidence intervals.  Overlapping confidence intervals showed that the variances 

were similar in each of the populations.  From this a test for equal variances was 

used to test the equality of variances between the morphological features within 

each population.  Bartlett’s test was used for features that had a p=>0.05, whereas 

the multiple comparisons and Levene’s method was used on features that had a 

p=<0.05. 
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Table 3.20: Test for equal variances: morphological feature versus the population (POP) 
using the Bartlett method. 

Morphological feature Test Statistic P-value 

Idiosoma width 103.38 0.000 

Width of basis capituli 55.58 0.000 

Palpal length (right) 39.22 0.000 

Length of dorsal basis capituli 26.47 0.003 

Length of ventral basis capituli 26.36 0.003 

 

Features tested with the Bartlett method were shown to not be equally variable 

(p=<0.05) (figure 3.20). 

Table 3.21: Test for equal variances: morphological feature versus the population (POP) 
using the multiple comparisons method.  

Morphological feature P-value 

Palpal length (left) 0.007 

Hypostome length 0.001 

Hypostome width 0.001 

 

Table 3.22: Test for equal variances: morphological feature versus the population (POP) 
using the Levene’s method. 

Morphological feature Test Statistic P-value 

Palpal length (left) 3.08 0.001 

Hypostome length 4.89 0.000 

Hypostome width 3.68 0.000 

 

The rest of the morphological features were tested for equal variances using 

multiple comparisons (table 3.21) and Levene’s method (table 3.22).  Equal 

variance was not observed for the rest of the morphological features, for either 

test.  None of the features showed equal variance, so Welch’s ANOVA was used, 

as this test does not assume equal variances (table 3.23). 
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Table 3.23: Results from the Welch’s ANOVA for each morphological feature versus 
population (POP).  Analysis of variance is shown. 

Morphological feature DF Den F value P value 

Idiosoma width 116.899 52.37 0.000 

Width of basis capituli 116.651 60.22 0.000 

Palpal length (left) 117.216 43.31 0.000 

Palpal length (right) 117.757 33.47 0.000 

Length of dorsal basis capituli 120.062 25.51 0.000 

Hypostome length 116.694 35.10 0.000 

Hypostome width 114.204 38.24 0.000 

Length of ventral basis capituli 115.751 24.17 0.000 

 

Welch’s ANOVA showed that all of the features do vary between populations, with 

a strong significance (p-value= 0.000) (table 3.23).  The means for each 

population for each morphological feature was then compared using a Fisher 

Pairwise comparison (table 3.24). 

Table 3.24: Fisher Pairwise comparisons, grouping information using the Fisher least 
significant difference (LSD) method and 95% confidence interval to assess the statistical 
significance of differences between means.  Means that do not share a letter are 
significantly different. 

Morphological 

feature 

Population Mean Grouping 

Idiosoma width DEC 1.4444   A 

ANN 1.4175   A B 

Z 1.4003   A B 

J 1.3903   A B C 

T 1.3844         B 

S 1.2891              C D 

A 1.2746                    D 

M 1.2609                    D E 

Y 1.2004                          E 

D 1.1985                          E 

O 1.0143                               F 

Width of basis 

capituli 

T 0.53122   A 

J 0.5028   A B 
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 ANN 0.49892         B 

Z 0.49418         B  

S 0.45896              C 

A 0.44278              C D 

Y 0.43886              C D 

DEC 0.43532                    D 

M 0.43410              C D 

D 0.42544                    D  

O 0.35104                          E 

Palpal length (left) 

 

Z 0.22784   A 

T 0.21982   A B 

S 0.21286         B C 

J 0.20980         B C D 

ANN 0.20373               C D 

DEC 0.20080                     D  

M 0.19676                     D E 

Y 0.19291                     D E F 

D 0.18992                           E F 

A 0.18294                                 F  

O 0.14096                                    G 

Palpal length 

(right) 

 

Z 0.21592   A 

T 0.21440   A 

J 0.20440   A B 

S 0.19864         B 

DEC 0.19708         B 

ANN 0.19114         B 

Y 0.18536         B C 

M 0.18519         B C 

D 0.17906               C 

A 0.17350               C  

O 0.13766                   D 

Length of dorsal 

basis capituli 

 

T 0.20000   A 

ANN 0.19708   A B 

J 0.19690   A B C D 
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Z 0.19453   A B C 

S 0.18700         B C D 

Y 0.18250               C D E 

M 0.17790                     D E F 

A 0.17202                           E F 

D 0.16682                                F 

DEC 0.16614                                F 

O 0.13112                                    G 

Hypostome length 

 

Z 0.31524   A  

J 0.2842        B C D 

T 0.28052        B 

DEC 0.27582        B C D 

S 0.27143        B C D 

M 0.26857        B C D 

A 0.26398                  D 

ANN 0.26202            C D  

Y 0.22964                       E 

D 0.22454                       E  

O 0.18732                            F 

Hypostome width 

 

Z 0.14268   A  

J 0.13090        B 

S 0.12593        B 

A 0.12473        B 

ANN 0.12452        B 

T 0.12382        B 

M 0.12338        B 

DEC 0.12108        B  

Y 0.10168             C 

D 0.10142             C 

O 0.09808             C 

Length of ventral 

basis capituli 

J 0.16610   A 

Z 0.15984   A B 

Y 0.15523   A B C 

A 0.15426         B C 
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T 0.14918              C D 

D 0.14812              C D 

ANN 0.14633                   D  

O 0.13730                        E 

DEC 0.13518                        E  

M 0.12614                             F  

S 0.11668                                  G 

 

The Fisher pairwise comparison grouped populations based on the comparison of 

the means and assigned groups with a letter.  Means that do not share a letter are 

significantly different.  The Australian population was significantly different for all 

features apart from the length of ventral basis capituli and hypostome width, 

favoring the smaller mean values (table 3.24).  For hypostome width, although the 

Australian population has the smallest mean, it still grouped with ticks from 

Yucatan and Deutch ticks.  The populations that Australian ticks differed from 

varied depending on the feature.  R.(B) decoloratus was significantly different to 

the Australian population for idiosoma width.  For palpal lengths, hypostome length 

and width ticks from Australia were significantly different to ticks from Juarez.  For 

the width of the basis capituli and the length of the dorsal basis capituli, ticks from 

Thailand were significantly different to the Australian populations.  Ticks from 

Juarez were significantly different to ticks from Sao Gabriel for the length of the 

ventral basis capituli. 

A principal component analysis (PCA) was used to explore the amount of variation 

between the morphological features and then observe how populations and 

species group based on variation.   

Table 3.25: Eigenvalues (along with proportion and cumulative values) for the first two 
principal components.   

 PC1 PC2 

Eigenvalue 5.1482   0.9085   

Proportion 0.644    0.114    

Cumulative 0.644    0.757    

 



 

94 
 

PC1 had an Eigenvalues above 1 and so was accepted, PC2 was also used even 

though it was below 1, as it was not far below.  This meant that the first two 

eigenvalues were considered significant for each morphological feature (table 

3.25). 

Table 3.26: Principal components values (PC1 and PC2) for each morphological variable. 

Variable PC1 PC2 

Idiosoma width 0.370   0.047    

Width of basis capituli 0.393    0.066   

Palpal length (left) 0.398   -0.147   

Palpal length (right) 0.392   -0.149   

Length of dorsal basis capituli 0.348   -0.047   

Hypostome length 0.373   -0.198     

Hypostome width 0.328    0.005    

Length of ventral basis capituli 0.170    0.953   

 

In PC1, the greatest amount of variation can be observed between Palpal length 

(left) and the length of ventral basis capituli (table 3.26; figure 3.6).  In PC2, the 

greatest amount of variation is between the length of the ventral basis capituli and 

hypostome length (table 3.26; figure 3.6).  The loading plot indicates that in PC2 

most features, apart from the length of the ventral basis capituli, group (figure 3.6).  

This means that in PC1 the strongest features to use to distinguish the populations 

are both palpal lengths.  In PC2 however, the length of the ventral basis capituli 

would be used. 
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Figure 3.6: Loading plot output from principal component analysis for morphological 
features of males. The plot shows the loadings of the first two components, presenting the 
correlations between the variable and the largest two components.  Loadings have been 
multiplied by the standard deviation of the component which makes it viewable as a 
distance. Variables that appear closer together on the plot are more highly correlated. 

A score plot for males based on population indicated differentiation of the 

Australian population from the others, however no other differentiation of 

populations could be seen (figure 3.7). 
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Figure 3.7: Score plot from principal component analysis (PCA) for males based on 
population. A: South Africa, ANN: R.(B) annulatus, D: Deutch, DEC: R.(B) decoloratus, J: 
Jaguar, M: Mozo, O: Australia, S: Sao Gabriel, T: Thailand, Y: Yucatan, Z: Juarez. 

The score plot for males based on species yielded the same result as for 

population, with the grouping of the Australian ticks clearer than in the score plot 

based on population.  No pattern can be clearly observed for the other three 

species (figure 3.8).  

 

Figure 3.8: Score plot from principal component analysis (PCA) for males based on species. 
ANN: R.(B) annulatus, AUS: R.(B) australis, DEC: R.(B) decoloratus, MIC: R.(B) microplus. 
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Differentiation between females of the Boophilid clade using morphometric 
measurements 

Body length, idiosoma length/width and scutum length/width were not normally 

distributed (p=<0.05) consistently along the line of normal distribution and so were 

not used in the rest of the analysis.  The rest of the features, apart from 

hypostome width were also not normally distributed (p=<0.05), however this effect 

was created by a small number of individuals at the extreme values and was not a 

large deviation, so the decision was made to stick with a parametric analysis, 

without removing the individuals that did not fit on the normal distribution, as this 

would make the results bias.  Hypostome width was normally distributed 

(p=>0.05). 

The standard deviation of each population was tested using the Bonferroni 

confidence intervals.  Overlapping confidence intervals showed that the variances 

were similar in each of the populations.  From this a test for equal variances was 

used to test the equality of variances between the morphological features within 

each population.  Bartlett’s test was used on any feature that was p=>0.05, which 

was only this hypostome width (table 3.27).  The rest of the features with p=<0.05 

were tested for equal variances using the multiple comparisons and Levene’s 

method (table 3.28). 

Table 3.27: Test for equal variances: morphological feature versus the population (POP) 
using the Bartlett method. 

Morphological feature Test Statistic P-value 

Hypostome width 18.11 0.053 

 

When tested with Bartlett’s method, the hypostome width did show equal variance 

(p=>0.05), however it was borderline with p=0.053 (table 3.27). 
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Table 3.28: Test for equal variances: morphological feature versus the population (POP) 
using the multiple comparisons method.   

Morphological feature P-value 

Width of basis capituli 0.000 

Palpal length (left) 0.032 

Palpal length (right) 0.116 

Length of dorsal basis capituli 0.002 

Hypostome length 0.000 

Length of ventral basis capituli 0.000 

 

Table 3.29: Test for equal variances: morphological feature versus the population (POP) 
using the Levene’s method. 

Morphological feature Test Statistic P-value 

Width of basis capituli 6.03 0.000 

Palpal length (left) 1.96 0.036 

Palpal length (right) 1.56 0.116 

Length of dorsal basis capituli 2.59 0.005 

Hypostome length 3.75 0.000 

Length of ventral basis capituli 1.31 0.230 

 

The rest of the morphological features were tested for equal variances using 

multiple comparisons (table 3.28) and Levene’s method (table 3.29).  For most 

features the significance didn’t change between the two tests, however for the 

length of the ventral basis capituli, equal variance was not observed for the 

multiple comparisons method but was observed with Levene’s method.  In this 

case the result from the multiple comparison method was taken over the Levene’s, 

as the multiple comparison method is more powerful and the distribution for this 

feature had heavy tails on the normal distribution curve.  Palpal length (right) 

showed equal variance for both multiple comparison and Levene’s methods 

(p=>0.05).  All other features showed no equal variance (p=<0.05) (table 3.28; 

3.29).  All features that showed equal variance (p=>0.05) were then tested using a 

one-way ANOVA (table 3.30).  Features with p= <0.05 were tested using Welch’s 

ANOVA instead, as this test does not assume equal variances (table 3.31). 
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Table 3.30: Results from the one-way ANOVA for each morphological feature versus 
population (POP).  Analysis of variance is shown. 

Morphological feature Adj SS Adj MS F value P value 

Palpal length (right) 0.3200 0.032002     24.04     0.000 

 

Table 3.31: Results from the Welch’s ANOVA for each morphological feature versus 
population (POP).  Analysis of variance is shown. 

Morphological feature DF Den F value P value 

Width of basis capituli 199.791 41.28 0.000 

Palpal length (left) 195.385 32.24 0.000 

Length of dorsal basis capituli 201.146 53.71 0.000 

Hypostome length 156.332 24.80 0.000 

Hypostome width 159.100 25.55 0.000 

Length of ventral basis capituli 14.6031 4.95 0.004 

 

Results from both the ANOVA (table 3.28) and Welch’s ANOVA (table 3.29) 

showed that all morphological features differed between populations (p=<0.05).  

The means for each population for each morphological feature was then compared 

using a Fisher Pairwise comparison (table 3.32). 
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Table 3.32: Fisher Pairwise comparisons, grouping information using the Fisher least 
significant difference (LSD) method and 95% confidence interval to assess the statistical 
significance of differences between means.  Means that do not share a letter are 
significantly different. 

Morphological 

feature 

Population Mean Grouping 

Palpal length (left) 

 

Y 0.33673   A  

ANN 0.31775        B 

D 0.31176        B  

M 0.29284             C 

J 0.29165             C  

S 0.28730             C 

Z 0.28317             C  

T 0.25906                   D 

O 0.25711                   D E  

A 0.25704                   D E 

DEC 0.24359                         E 

Palpal length 

(right) 

 

Y 0.32771   A  

ANN 0.30544        B 

D 0.29688        B C 

M 0.28269              C D 

J 0.28035                    D E 

S 0.27970                    D E 

Z 0.26525                          E F 

A 0.25751                               F G 

O 0.25720                               F G 

T 0.24844                                    G 

DEC 0.24389                                    G 

Length of dorsal 

basis capituli 

 

Y 0.31337   A  

D 0.26540         B 

ANN 0.25868         B  

M 0.24167              C 

J 0.23839              C 

S 0.22739              C D 

Z 0.21528                    D  

T 0.19570                          E  
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A 0.19263                          E 

O 0.18533                          E F 

DEC 0.17196                               F 

Hypostome length 

 

J 0.4464   A 

Z 0.4445   A 

M 0.4397   A 

S 0.43549   A 

O 0.4330   A B 

ANN 0.4218   A B 

A 0.4052         B C 

Y 0.37957               C D 

DEC 0.3594                     D E 

T 0.34984                           E 

D 0.34390                           E 

Hypostome width 

 

Y 0.20806   A 

S 0.20107   A  

M 0.18982        B 

J 0.18652        B 

A 0.18263        B C 

O 0.17521              C D 

D 0.17135                    D 

ANN 0.17038                    D 

Z 0.16950                    D 

T 0.16869                    D  

DEC 0.15150                         E 

Length of ventral 

basis capituli 

O 0.2543   A B C D 

Y 0.25396   A 

ANN 0.2520   A B C D E F 

D 0.24324   A B C 

J 0.24265   A B C D 

M 0.23850   A B C D E F  

T 0.23126                    D    F 

S 0.23004              C D E F 

Z 0.21400                         E F 
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A 0.2065        B C D E F 

 

When means were compared, the greatest difference was seen between ticks 

from Yucatan and R.(B) decoloratus for both palpal lengths, the length of the 

dorsal basis capituli and hypostome width (table 3.32).  The feature that had the 

least differences between the populations was the length of the ventral basis 

capituli.  For hypostome length ticks from Juarez and Deutch were significantly 

different, however they both grouped with other populations. 

A principal component analysis (PCA) was used to explore the amount of variation 

between the morphological features and then observe how populations and 

species group based on variation.   

Table 3.33: Eigenvalues (along with proportion and cumulative values) for the first two 
principal components. 

 PC1 PC2 

Eigenvalue 3.9533   1.2091   

Proportion 0.565    0.173    

Cumulative 0.565    0.737    

 

Eigenvalues above 1 were accepted, with anything below 1 being omitted.  This 

meant that the first two eigenvalues were considered significant for each 

morphological feature (table 3.33). 

Table 3.34: Principal components values (PC1 and PC2) for each morphological variable. 

Variable PC1 PC2 

Width of basis capituli 0.448   -0.123    

Palpal length (left) 0.455    0.149 

Palpal length (right) 0.453    0.168 

Length of dorsal basis capituli 0.438    0.243    

Hypostome length 0.262   -0.544    

Hypostome width 0.352  -0.260   

Length of ventral basis capituli 0.053    0.715   
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In the first component (PC1), the greatest amount of variation can be observed 

between palpal length (left) and the length of the ventral basis capituli (table 3.34; 

figure 3.9).  In the second component (PC2), the greatest amount of variation is 

between the length of the ventral basis capituli and hypostome length (table 3.34; 

figure 3.9).  From the loading plot it also clear that there is a grouping based on a 

close correlation, observed in PC2, where the length of dorsal basis capituli and 

both palpal lengths show a close correlation (figure 3.14).  This close correlation is 

also in PC1; however the width of the basis capituli also groups.  This means that 

in PC1 the strongest features to use to distinguish the populations are both palpal 

lengths, and potentially the width of the basis capituli as well as the length of the 

dorsal basis capituli.  In PC2 however, the length of the ventral basis capituli is the 

strongest feature by a large amount. 

 

Figure 3.9: Loading plot output from principal component analysis for morphological 
features of females. The plot shows the loadings of the first two components, presenting 
the correlations between the variable and the largest two components.  Loadings have been 
multiplied by the standard deviation of the component which makes it viewable as a 
distance. Variables that appear closer together on the plot are more highly correlated. 

A score plot for females based on population indicated some differentiation of the 

Australian isolates from other populations, however out of the 50 Australian ticks 

obtained; only two were suitably unfed for measuring (figure 3.10).  Two clusters of 
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ticks from Yucatan can also be observed, however the rest of the populations 

appear to group closely together. 

 

Figure 3.10: Score plot from principal component analysis (PCA) for females based on 
population. A: South Africa, ANN: R.(B) annulatus, D: Deutch, DEC: R.(B) decoloratus, J: 
Jaguar, M: Mozo, O: Australia, S: Sao Gabriel, T: Thailand, Y: Yucatan, Z: Juarez. R.(B) 
decoloratus appears absent in this scatter plot sue to the lack of unfed females available for 
measuring.  Numbers of R.(B) australis and R.(B) annulatus were also low for the same 
reason. 

The score plot for females based on species yielded a similar result as for 

population, with the separation of Australian ticks from the other species clearer 

than in the score plot based on population.  No pattern can be clearly observed for 

the other three species (figure 3.11).  
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Figure 3.11: Score plot from principal component analysis (PCA) for females based on 
species. ANN: R.(B) annulatus, AUS: R.(B) australis, DEC: R.(B) decoloratus, MIC: R.(B) 
microplus.  

3.3 Differentiation between members of the Boophilid 
clade based on Geometric morphometric analysis 

Materials and methods 

Morphological features were selected for this study such that they would not be 

affected by the feeding status of the specimen.  This resulted in concentration on 

the shape of highly sclerotized areas; coxae, basis capituli, scutum/conscutum and 

porose area shape in females as well as adanal shield shape in males.  Scutal 

shape was the only feature measured in the larvae, as the boundaries for the other 

features were not clear enough for accurate land marking.  Images were grouped 

based on feature, and where necessary stage/sex and converted to tps files using 

tpsUtil64 software so that landmarks could be placed using tpsDIG264 software.  

Prior to landmarking, scale was set using the S1 stage micrometer with a graticule 

range of 10mm/0.1mm.  Landmarks were selected based on points on the 

specimen that could be located precisely and consistently from one specimen to 

another (figure 3.12). 
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Figure 3.12: Layout of land marking used on the photographs and the standardized 
wireframe for each morphological feature; A: adanal shield shape (males only); B: scutum 
shape (females and larvae only); C: basis capituli shape; D: porose shape (females only); E: 
conscutum shape (males only); F: Coxae I shape. (Source: Authors own photograph). 
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Statistics 

TPS files were imported into MorphoJ 1.06d where a canonical variate analysis 

(CVA) was carried out with a permutation test.  CVA is one of the more common 

types of analysis used in morphometrics, it can be used to identify features that 

best differentiate known groups within multiple groups of specimens.  From the 

CVA output, shape change for region and species could be observed.  The type of 

shape change was based on canonical variate (CV) values (the axes along which 

groups are best discriminated, Zelditch et al 2012) with a cumulative value below 

90% which resulted in CV1 and CV2 shape change used for all morphological 

features.  Mahalanobis distances among groups were also used to distinguish 

which groups were most different and least different from one another.  

Mahalanobis distance is the measure of the distance between a point and the 

distribution, measuring how many standard deviations away the point is from the 

mean of the distribution. 

Landmark repeatability   

A study was carried out in order to determine the level of repeatability when 

placing the landmark on the specimens.  For this study 20 photos were selected 

from the main data set, duplicated and the converted into two TPS files to be 

landmarked using tpsDIG264 software.  By land marking the same 20 photos 

twice, it was possible to then run a CVA in MorphoJ.  Repeatability was judged on 

the distance between the two points for each sample, where each point represents 

the repeated land marking (figure 3.13).  Data points that lay closely to one 

another signified a good level of repeatability, specimens whose data points were 

found to be far apart where checked for correct landmark positioning.  The results 

for this study indicated that the repeatability of land marking for all features was 

consistent and could therefore be applied to the main study. 
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Figure 3.13: Canonical Variate test for adanal shield shape of 20 random males, repeated 
twice (J= Jaguar, M= Mozo, O= Australia, S= Sao Gabriel, Z= Juarez. Numbers in the key 
stands for the individual tick).  Eigenvalues; CV1= 926.64, CV2= 575.61. % Variance; CV1= 
44.63, CV2= 27.72.  Cumulative %; CV1= 44.63, CV2= 72.36.
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Results for Larvae 

Scutum shape 

Results from the CVA shows that R.(B) microplus groups with R.(B) australis and 

R.(B) decoloratus.  There is a small amount of grouping seen with R.(B) annulatus 

and R.(B) microplus from Thailand (figure 3.14).  All populations tended to favor 

the same shape, ranging from -1-1 in CV1 and -1-1 in CV2.   

 

Figure 3.14: Canonical Variate test showing Confidence ellipses for larval scutum shape. 
T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 0.34810943, CV2= 0.24357271. % Variance; CV1= 42.026, CV2= 20.406.  
Cumulative %; CV1= 42.026, CV2= 71.432. 
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The Mahalanobis distances allowed for further examination of the variation in 

scutum shape between populations.  R.(B) microplus ticks from Mozo and Yucatan 

populations were the most different, closely followed by R.(B) microplus from 

Deutch and R.(B) annulatus.  Ticks that were the most similar were from Australia 

and South Africa (table 3.35). 

Table 3.35: Mahalanobis distances for larvae scutum shape among groups. T/m= Thailand 
R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, 
O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) 
microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 0.8115          

D/m 1.5239 0.9863         

J/m 1.7653 1.101 1.2631        

M/m 1.0998 0.9415 1.6326 1.2954       

O/x 0.8776 0.5166 0.8568 1.0678 1.1655      

S/m 1.3553 1.1045 1.0308 1.4882 1.8694 0.7704     

T/m 1.4718 1.0599 1.628 1.2418 1.6349 1.1039 1.1092    

U/a 1.5403 1.2871 2.1238 1.6345 1.589 1.5414 1.7471 0.7483   

Y/m 1.8581 1.3672 1.0359 1.4729 2.1328 1.1807 0.6678 1.2216 1.8977  

Z/m 1.483 1.0924 1.1528 0.842 1.3672 0.7787 0.9944 1.1769 1.7192 1.157 

 

Results for Males 

Conscutum shape 

All populations of R.(B) microplus showed a degree of overlapping for shape 

change in both CV1 and CV2, grouping mainly towards the larger CV values.  

R.(B) annulatus, grouped away from the rest of the populations in CV1, favoring 

shape change towards -4, translating to a conscutum with an absent caudal 

appendage.  R.(B) decoloratus also grouped away from the other populations in 

CV2, favoring shape change towards -2, thus indicating that R.(B) decoloratus 

males have a shorter, wider conscutum then the other species (figure 3.15).  The 

largest amount of variation in shape can be observed in R.(B) microplus ticks from 

the Jaguar population in CV2 (figure 3.15).  The rest of the populations, including 
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R.(B) decoloratus and R.(B) annulatus showed a small, but variable range of 

shape change, with R.(B) annulatus showing the least. 

 

Figure 3.15: Canonical Variate test showing Confidence ellipses for male conscutum shape. 
T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 2.98999232, CV2= 1.48942631. % Variance; CV1= 47.902, CV2= 23.862.  
Cumulative %; CV1= 47.902, CV2= 71.764. 

The Mahalanobis distances allowed for further examination of the variation in 

conscutum shape between populations.  R.(B) microplus from the Sao Gabriel 

population had the most different conscutum shape to R.(B) annulatus.  The 
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populations that had the most similar conscutum shape were Mozo and Juarez 

(table 3.36). 

Table 3.36: Mahalanobis distances for male conscutum shape among groups. T/m= Thailand 
R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, 
O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) 
microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 
3.346          

D/m 
3.8608 2.9442         

J/m 
3.311 1.9913 2.9468        

M/m 
3.1887 1.3707 2.0301 1.6978       

O/x 
4.1962 1.9387 3.9038 3.411 2.506      

S/m 
4.2271 2.4714 3.0484 1.3205 2.1301 3.7087     

T/m 
4.2701 2.1755 1.7598 2.4199 1.6436 3.2915 2.6458    

U/a 
6.1741 4.8965 4.9073 6.1713 5.0202 5.2481 6.4489 5.1046   

Y/m 
4.6622 3.1269 1.0901 3.3188 2.311 4.0627 3.318 1.6018 4.4291  

Z/m 
3.3845 1.1276 2.68 1.2914 1.0774 2.7521 1.8165 1.7644 5.5187 2.8975 

 

Coxal shape 

All populations, apart from R.(B) decoloratus shared a coxa shape favoring 0-2 in 

CV1 and -2-2 in CV2.  R.(B) decoloratus clearly grouped away from rest of the 

populations in CV1, favoring a range of shape from -5- -6, meaning that male 

R.(B) decoloratus have wider, shorter coxa I, with a longer internal coxal spur then 

the other species (figure 3.16).  The largest amount of variation in shape can be 

observed in R.(B) microplus ticks from the Jaguar population in both CV1 and CV2 

(figure 3.16).  The rest of the populations, including R.(B) decoloratus and R.(B) 

annulatus showed far smaller ranges in shape. 
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Figure 3.16: Canonical Variate test showing Confidence ellipses for male coxal shape. T/m= 
Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 3.94136315, CV2= 0.48952585. % Variance; CV1= 76.209, CV2= 9.465.  
Cumulative %; CV1= 76.209, CV2= 85.674. 

Based on the Mahalanobis distances, R.(B) microplus from Yucatan had the most 

different coxa shape to R.(B) decoloratus.  The populations that had the most 

similar coxal shape were R.(B) microplus from Deutch and Jaguar populations 

(table 3.37). 
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Table 3.37: Mahalanobis distances for male coxal shape among groups. T/m= Thailand R.(B) 
microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, Y/m=Yucatan 
R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, O/x= Australia 
R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) microplus, A/d= South 
African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 5.9325          

D/m 6.799 1.9547         

J/m 6.1947 1.989 1.0595        

M/m 5.7775 2.3506 1.7018 1.408       

O/x 5.9266 1.7091 1.7658 1.9469 1.276      

S/m 5.6651 1.1172 1.5565 1.5947 1.8163 1.4264     

T/m 5.6777 2.4756 1.8085 2.0023 2.0483 2.0347 1.5749    

U/a 5.5701 2.5365 2.3775 2.3498 2.3627 2.0783 2.0799 1.8775   

Y/m 7.0099 2.1861 1.4963 2.1852 2.1176 1.6178 1.8455 2.1538 2.7428  

Z/m 5.4673 1.9173 1.4689 1.2435 1.5349 1.7766 1.117 1.2142 1.6904 2.291 

 

Basis capituli shape 

As with conscutum shape, the shape of the basis capituli varied more from R.(B) 

annulatus and R.(B) decoloratus.  R.(B) annulatus differed most in CV2, favoring a 

wider base to R.(B) microplus and R.(B) decoloratus.  R.(B) decoloratus favored 

CV1 values around 4, resulting in a wider then long basis capituli shape.  The 

largest amount of variation in shape can be observed in R.(B) microplus ticks from 

Jaguar in CV1 (figure 3.17).  The rest of the populations, including R.(B) 

decoloratus and R.(B) annulatus showed far smaller ranges in shape. 
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Figure 3.17: Canonical Variate test showing Confidence ellipses for male basis capituli 
shape. T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch 
R.(B) microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo 
R.(B) microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= 
Juarez R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) 
annulatus.  Eigenvalues; CV1= 2.45102814, CV2= 0.62212544. % Variance; CV1= 64.035, 
CV2= 16.254.  Cumulative %; CV1= 64.035, CV2= 80.289. 

Mahalanobis distances showed that R.(B) decoloratus was highly different from all 

other populations, in particular it was most different from R.(B) microplus ticks from 

Mozo.  The most similar basis capituli shape was found on ticks from the 

Australian and Yucatan populations (Table 3.38). 
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Table 3.38: Mahalanobis distances for male basis capituli shape among groups. T/m= 
Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 3.41          

D/m 4.3702 2.0541         

J/m 4.3335 1.9241 2.2223        

M/m 5.729 2.5825 2.7739 2.6325       

O/x 4.924 2.221 2.0148 2.026 1.4693      

S/m 5.229 2.0764 2.4142 1.932 0.9035 1.2042     

T/m 4.589 1.7126 1.4695 1.1483 2.3716 1.8382 1.7503    

U/a 4.4899 2.2506 2.5144 3.4326 2.9728 2.4461 2.6579 2.7758   

Y/m 4.9424 2.0319 1.5278 2.2655 1.4411 0.8339 1.2956 1.6753 2.0731  

Z/m 4.7269 1.9755 2.2056 1.6248 1.4743 1.1827 0.9209 1.7918 2.8921 1.4428 

 

Adanal shield shape 

Ticks from Mozo, Sao Gabriel, Juarez and Jaguar all had very similar adanal 

shield shape in both CV1 and 2.  Ticks from Australian and R.(B) microplus from 

South Africa were found to have the same adanal shield shape in CV1 but slightly 

different in CV2.  R.(B) decoloratus were found to have a completely different 

adanal shield shape in CV1 to the rest of the populations, favoring longer adanal 

shields with more pronounced spurs.  The rest of the populations including R.(B) 

annulatus, were very similar in shape in CV1 but slightly different in CV2, ranging 

between 0-3 (figure 3.18).  As with the other features, the population that had the 

greatest range of adanal shield shape was Jaguar in CV2. 
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Figure 3.18: Canonical Variate test showing Confidence ellipses for male adanal shield 
shape. T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch 
R.(B) microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo 
R.(B) microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= 
Juarez R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) 
annulatus.  Eigenvalues; CV1= 3.10078518, CV2= 1.88715615. % Variance; CV1= 46.994, 
CV2= 28.601.  Cumulative %; CV1= 46.994, CV2= 75.595. 

Populations that shared the most similar adanal shield shape were Mozo and Sao 

Gabriel.  R.(B) decoloratus had adanal shields that were highly different to all other 

populations, however they were the most different from R.(B) microplus from 

Deutch (table 3.39). 
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Table 3.39: Mahalanobis distances for male adanal shield shape among groups. T/m= 
Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 6.0854          

D/m 6.109 4.1301         

J/m 4.9553 2.7885 3.6167        

M/m 4.6037 3.2411 3.245 2.3571       

O/x 5.8575 1.7583 3.6625 2.8458 2.2611      

S/m 4.818 2.3883 3.4026 2.1066 1.5746 1.9198     

T/m 5.2979 3.7814 2.2797 2.9415 2.2362 3.1402 2.2257    

U/a 5.6848 3.8905 3.3628 3.6019 2.2957 2.8478 2.7464 2.3581   

Y/m 5.5555 4.6736 2.8153 3.8984 3.6682 4.3637 3.2282 1.7365 3.4643  

Z/m 5.2074 2.0501 3.6913 2.6561 2.2923 2.0244 1.5806 2.8946 2.8108 3.7742 

 

Results for Females 

Scutum shape 

Most populations were found to overlap, ranging -2-1 in both CV1 and CV2.  

Outlying populations, were R.(B) annulatus and Juarez, which favored a longer 

scutum (CV2) and R.(B) annulatus had longer anterolateral projections (CV1).  

Australia and Deutch varied most in CV1; favoring a wider scutum with longer 

anterolateral projections (figure 3.19).
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Figure 3.19: Canonical Variate test showing Confidence ellipses for female scutum shape. 
T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 0.93364561, CV2= 0.42342295. % Variance; CV1= 54.045, CV2= 24.51.  
Cumulative %; CV1= 54.045, CV2= 78.555. 
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Scutum shape of R.(B) decoloratus varied the most from and R.(B) annulatus.  

The most similar scutum shapes were found in Jaguar and Mozo (table 3.38). 

Table 3.40: Mahalanobis distances for female scutum shape among groups. T/m= Thailand 
R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, 
O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) 
microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 2.0099          

D/m 3.0128 1.9833         

J/m 1.1341 1.9684 2.9752        

M/m 1.2972 1.5677 2.5049 0.5215       

O/x 2.4834 1.776 1.0473 2.5881 2.2104      

S/m 0.7746 1.3665 2.5926 1.0841 1.018 2.0331     

T/m 1.2198 1.1249 2.1744 1.0027 0.613 1.8989 0.8592    

U/a 3.0777 1.6116 2.0754 2.8311 2.3997 2.2482 2.6352 2.0026   

Y/m 1.7253 1.5302 2.136 1.3424 0.9996 1.9267 1.5064 0.7853 1.672  

Z/m 2.6935 1.8377 2.2627 1.8539 1.4324 2.4036 2.2355 1.5918 2.0018 1.5017 

 

Porose shape 

Porose shape was very similar for most of the populations, with most grouping and 

overlapping in the middle range for both CV1 and CV2.  However, three clear 

outlier groups can be observed (figure 3.25), R.(B) annulatus is divergent from the 

rest of the populations in CV1, favoring wider porose, that are angled down.  The 

other two divergent groups were R.(B) decoloratus and Juarez, both divergent in 

CV1, R.(B) decoloratus more so (higher CV1 value) favoring narrower shaped 

porose areas (figure 3.20).
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Figure 3.20: Canonical Variate test showing Confidence ellipses for female porose shape. T/m= Thailand R.(B) microplus, A/m= South African R.(B) 
microplus, D/m= Deutch R.(B) microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, O/x= Australia R.(B) 
australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 1.76019546, CV2= 0.50792563. % Variance; CV1= 68.039, CV2= 19.633.  Cumulative %; CV1= 68.039, CV2= 87.672.
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R.(B) decoloratus had the most different porose area shape from the rest of the 

populations, the greatest difference was seen from R.(B) annulatus (table 3.41).  

Ticks from South Africa had the most similar porose area shape to ticks from 

Jaguar. 

Table 3.41: Mahalanobis distances for female porose shape among groups. T/m= Thailand 
R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, 
O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) 
microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 3.1018          

D/m 4.377 1.5658         

J/m 3.2466 0.6152 1.8342        

M/m 3.2588 0.8053 1.5248 0.8858       

O/x 2.8403 1.0817 2.3819 1.4642 1.7222      

S/m 3.666 1.042 1.2689 1.3467 1.2038 1.6409     

T/m 3.7426 1.1548 1.8887 1.4249 1.5668 1.172 1.6633    

U/a 5.379 2.835 1.6095 2.8423 2.4612 3.8073 2.3893 3.2734   

Y/m 3.3916 0.9228 1.4876 1.443 1.2109 1.1837 1.2891 0.8443 2.9281  

Z/m 2.0135 1.9454 2.7263 2.382 2.0773 1.9586 2.2587 2.658 3.8655 1.9945 

 

Coxal shape 

Coxal shape for the females appeared to be very similar for all populations, except 

R.(B) annulatus, which differed in CV1, favoring a coxal shape absent of spurs and 

concave on the medial aspect (figure 3.21).  The range of coxal shape varied 

between the different populations; however, Juarez showed the greatest amount 

of variation in shape in CV1. 
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Figure 3.21: Canonical Variate test showing Confidence ellipses for female coxal shape. 
T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  
Eigenvalues; CV1= 1.83887515, CV2= 0.70037619. % Variance; CV1= 53.191, CV2= 20.259.  
Cumulative %; CV1= 53.191, CV2= 73.449. 

R.(B) decoloratus had the most different coxa shape, the greatest difference was 

observed from ticks from Thailand (table 3.42).  The most similar coxa shape was 

seen between ticks from Thailand and Yucatan. 
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Table 3.42: Mahalanobis distances for female coxal shape among groups. T/m= Thailand 
R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, 
O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) 
microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d D/m J/m M/m O/x S/m T/m U/a Y/m 

D/m 
6.9056         

J/m 
7.2556 1.5809        

M/m 
6.5377 1.951 2.1516       

O/x 
6.6445 2.4185 2.2892 1.3237      

S/m 
5.9893 1.2261 1.9628 1.6148 2.0069     

T/m 
7.4328 1.5559 1.9275 2.4851 2.4523 2.2833    

U/a 
7.3375 3.8501 3.7108 4.7169 4.3932 4.0003 3.9129   

Y/m 
7.2018 1.2862 1.9774 2.2012 2.1886 2.0224 0.9002 3.9155  

Z/m 
5.9338 1.9845 1.8217 2.3535 2.5296 1.6975 2.3201 4.4453 2.3532 

 

Basis capituli shape 

The shape of the basis capituli was quite variable among populations (figure 3.22).  

Ticks from Yucatan and Deutch tended to share similar variations in shape.  Ticks 

from Juarez, Jaguar, Mozo, Sao Gabriel and R.(B) annulatus, also shared similar 

basis capituli shape.  The two populations that showed the most different basis 

capituli shape were R.(B) decoloratus and Thailand in CV1.  R.(B) decoloratus 

tended to have a shorter basis capituli, with a more concave anterior border (lower 

CV1 values).
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Figure 3.22: Canonical Variate test showing Confidence ellipses for female basis capituli shape. 
T/m= Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) microplus, 
Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) microplus, O/x= 
Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez R.(B) microplus, A/d= 
South African R.(B) decoloratus, U/a= North America R.(B) annulatus.  Eigenvalues; CV1= 
1.09497455, CV2= 0.70030563. % Variance; CV1= 43.483, CV2= 27.81.  Cumulative %; CV1= 43.483, 
CV2= 71.292.
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R.(B) decoloratus basis capituli shape was most different from Mozo, however 

they were also highly different from Sao Gabriel, Thailand, R.(B) annulatus and 

Yucatan populations (table 3.43).  Ticks with the most similar basis capituli shape 

were from Jaguar and R.(B) annulatus. 

Table 3.43: Mahalanobis distances for female basis capituli shape among groups. T/m= 
Thailand R.(B) microplus, A/m= South African R.(B) microplus, D/m= Deutch R.(B) 
microplus, Y/m=Yucatan R.(B) microplus J/m= Jaguar R.(B) microplus, M/m= Mozo R.(B) 
microplus, O/x= Australia R.(B) australis, S/m= Sao Gabriel R.(B) microplus, Z/m= Juarez 
R.(B) microplus, A/d= South African R.(B) decoloratus, U/a= North America R.(B) annulatus 

 A/d A/m D/m J/m M/m O/x S/m T/m U/a Y/m 

A/m 
2.1554          

D/m 
2.9769 2.0288         

J/m 
2.8079 1.0903 1.516        

M/m 
4.0266 2.9047 2.7966 2.0649       

O/x 
2.4294 2.0565 2.3488 2.138 2.6366      

S/m 
3.4441 2.1778 2.5129 1.4303 1.1825 2.6555     

T/m 
4.0129 2.6057 1.439 1.87 2.6492 2.9351 2.7087    

U/a 
3.4285 1.7915 1.8356 0.8711 1.5351 2.4807 1.1249 1.6918   

Y/m 
3.2136 2.7899 1.7907 2.4193 2.6226 1.5106 2.8653 2.3995 2.5205  

Z/m 
2.7903 1.5088 2.0836 1.0683 1.5803 1.8766 0.9819 2.4556 1.0359 2.2761 

 

Discussion  

The first study within which a score matrix was implemented, R.(B) annulatus and 

R.(B) decoloratus were unambiguously differentiated from each other as well as 

from R.(B) microplus and R.(B) australis for females.  This finding contradicted the 

reports that state due to the amount of variation seen in the morphology and the 

lack of points for comparison, differentiation between these Boophilid ticks is often 

inconsistent (Uilenberg, 1962, Lempereur et al., 2010, Barker and Walker, 2014).  

Males were mostly assigned unambiguously, with the exception of three ticks from 

the Yucatan population which were assigned to ‘mixed’, due to their lack of caudal 

appendage, a feature found on R.(B) microplus and not on R.(B) annulatus males.  

The combination of features would imply one of three things:  1) the emergence of 

a new variant, 2) hybridization, 3) a distinct species. Rhipicephalus (Boophilus) 

annulatus and R.(B) microplus are known to form hybrids (Osburn and Knipling, 

1982) the morphology of which has not been previously described, but can be 
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reasonably deduced to contain a mixture of features from both species.  However, 

the potential for hybridization between the Yucatan and R.(B) annulatus 

populations may be possible, it is highly unlikely to have occurred in the 

populations used in this study, as both sets of specimens have come from lab 

colonies originating from different locations (table 2.1). 

In the case of R.(B) australis and R.(B) microplus, clear differentiation for both the 

males and females was inconsistent.  Among females, the Australian population 

was assigned almost evenly to R.(B) australis and R.(B) microplus, with 8 

individuals showing a mixture of features.  This finding would support published 

claims that both species may be present in Australia (Estrada-Peña et al., 2012).  

The majority of the ticks in the rest of the regions were assigned to R.(B) 

microplus, which is to be expected as R.(B) australis is currently proposed to be in 

Australia, New Caledonia, Sumatra and Java (Indonesia), Cambodia, Philippines, 

Tahiti, Papua New Guinea and elsewhere in Asia (Barker and Walker, 2014).  

However, only females from Mozo were assigned exclusively to R.(B) microplus.  

The remaining regions had a number of ticks with mixed features and 6 ticks in 

South Africa, as well as 4 from Juarez were assigned to R.(B) australis.  With 

regard to the males an entirely different pattern emerges.  Most male ticks from all 

geographical locations were assigned to either R.(B) australis or had a mixture of 

both species’ features, with a surprisingly small number scoring as R.(B) 

microplus.  In males, the ventral spur of palp article i proved to be present not only 

in proposed R.(B) australis, but in individuals from most populations.   

The observations suggest the majority of females to be R.(B) microplus and the 

majority of males to be R.(B) australis. This is clearly nonsensical.  Hybridization of 

R.(B) australis and R.(B) microplus, could be potentially occurring in regions such 

as Thailand, where there is the potential presence of both populations (Barker and 

Walker, 2014).  However, this should not be occurring in the regions where R.(B) 

australis is not reported.  This therefore questions the validity of R.(B) australis as 

a morphologically distinct species on the basis of the previously published criteria.  

According to the criteria outlined by Estrada-Peña et al. (2012), the ticks sampled 

from Thailand would be classified as hybrids of R.(B) australis and R.(B) 

microplus.   
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The morphometric analysis showed a high degree of among-population variation 

for most of the traits measured and for almost every trait there were differences 

observed among different populations.  This once again confirms the 

inconsistencies previously observed in the Boophilid ticks (Uilenberg, 1962, 

Lempereur et al., 2010, Barker and Walker, 2014).   There was also more variation 

observed between populations that were supposed to be R.(B) microplus than 

there were between R.(B) microplus and the rest of the species covered.   

For the larvae, the Fisher Pairwise comparison showed Australian ticks trended 

towards a smaller body length, idiosoma length and scutum width.  The findings 

for a smaller body length and narrower scutum width were consistent with those 

proposed in the re-description of R.(B) australis (Estrada-Peña et al., 2012).  For 

the rest of the morphological features, there was no obvious trend between the 

different populations or species.  Different features were found to be suitable to 

differentiate between populations, in PC1 the strongest feature was scutum length 

and hypostome length.  In PC2 the strongest feature was idiosoma length and in 

PC3 it was body length and hypostome length.  The PCA didn’t yield conclusive 

evidence that R.(B) australis should be considered as a separate species from 

R.(B) microplus, and there was no obvious differentiation of any of the species at 

all on a morphometric basis, even for R.(B) decoloratus and R.(B) annulatus. 

For the males, the Fisher Pairwise comparison showed that for the majority of the 

features tested, Australian males were significantly different, trending toward the 

smaller means.  This result was also supported by the score plot from the PCA, 

where clear grouping of the Australian ticks can be observed when males are 

plotted based on species (figure 3.8).  As with the larvae, no patterns were seen in 

the other species, with R.(B) decoloratus and R.(B) annulatus grouping with R.(B) 

microplus.  Features that were found to be strongest for differentiating between 

populations differed between PC1 and PC2.  In PC1 both palpal lengths is 

proposed to be the strongest feature for differentiation and in PC2 the length of the 

ventral basis capituli. 

The females yielded a mixed result.  There was no real trend in the size of 

Australian ticks observed from the Fisher Pairwise comparison.  However, R.(B) 

decoloratus tended to be smaller for most of the morphological features tested and 

R.(B) annulatus tended to be larger.  This observation was not consistent with the 
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results from the PCA, as grouping of Australian ticks can be seen (figure 3.10).  

For differentiating between populations, both palpal lengths, width of the basis 

capituli and the length of the dorsal basis capituli were the strongest.  In PC2 the 

length of the ventral basis capituli was the strongest feature for differentiating 

populations. 

The geometric morphometric analysis also did not clearly and consistently enable 

the differentiation of any of the sample populations of ticks in this study. Each 

feature differed among samples in different sets of pairwise relationships. It’s 

success in previous studies (Pretorius and Clarke 2000; Pretorius and Clarke 

2001; Clarke and Pretorius 2005) indicated its potential as an approach, however 

based on the findings here, the lack of consistent morphological difference 

previously observed for the Boophilid ticks is once again confirmed (Barker and 

Walker, 2014, Uilenburg, 1962, Lempereur et al., 2010).  With this three-way 

approach to understanding the morphological differences of the Boophilid ticks 

covered in this work we can draw the following conclusions.  R.(B) australis and 

R.(B) microplus larvae and males are distinguishable from one another with regard 

to morphometrics, and the differences observed here are supportive of the 

previous findings of Estrada-Peña et al. (2012).  The ventral spur on palp article i 

on males, which was reported by Estrada-Peña et al. (2012) is present, but 

inconsistantly, and is not limited to the Australian population.  Females are 

indistinguishable from one another based on setae patterns, linear measurements 

and shape.  This inconsistency in the resolution of the taxonomic status of R.(B) 

microplus confirms the claims of Barker and Walker (2014), however we have 

found no evidence that the geographical location impacts upon the ability to 

differentiate between R.(B) microplus and R.(B) australis. 

Conclusion 

The most consistent grouping from other populations was observed by R.(B) 

decoloratus across all three analyses, despite reports of difficulty in distinguishing 

between the Boophilid ticks (Uilenburg, 1962, Lempereur et al., 2010).  We 

confirm that there is a vast amount of variation in the morphology of the Boophilid 

ticks covered in this work, and this appears to impact on the consistency and 

success of differentiation of the other three species R.(B) microplus, R.(B) 

australis and R.(B) annulatus.  Rhipicephalus (Boophilus) annulatus, although 
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unambiguously differentiated from R.(B) microplus and R.(B) australis in the first 

analysis, was found to share similar morphology in the other two analyses.  This 

confirms the findings of Barker and Walker (2014), who stated that R.(B) 

microplus, R.(B) australis and R.(B) annulatus were inseparable in their hands.  

We confirm that R.(B) microplus and R.(B) australis are indistinguishable based on 

the morphological criteria outlined by Estrada-Peña et al. (2012), a finding also 

consistent with that of Barker and Walker (2014). Based on our findings on 

morphology alone R.(B) microplus and R.(B) australis appear to be the same 

species, although the Australian population tends to be smaller, and R.(B) 

annulatus appear to be very closely related to R.(B) microplus, differing most 

prominently in males based on the presence/absence of the caudal appendage.  

Rhipicephalus (Boophilus) decoloratus was the most consistently distinct species 

out of the four, however we confirm that the morphology of the Boophilid ticks is 

both highly variable and limited for consistent differentiation. 
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CHAPTER 4 

Phylogenetic analysis of Rhipicephaline ticks using 
cytochrome oxidase subunit I (COX1) gene sequence  

Introduction 

The genus Rhipicephalus has undergone re-organisation in the last 25 years.  Up 

until 13 years ago, the genus Rhipicephalus was considered monophyletic, with a 

common evolutionary ancestor not shared with any other groups, despite a 

number of previous studies suggesting insufficient support (Klompen et al., 1997).  

With the development of molecular techniques, it was confirmed that some 

species of the Rhipicephalus genus are more closely related to species of the 

Boophilus genus then other members of Rhipicephalus (Murrell and Barker, 

2003b).  Evidence to support the synonymizing of Boophilus with Rhipicephalus 

has come mainly in the form of molecular and morphological; however, evidence is 

also observed when considering host preferences and biogeography.  Previous 

studies using 12S rDNA, 16S rDNA and ITS2 genes have shown weak evidence 

supporting the paraphyly of Rhipicephalus and Boophilus (Murrell et al., 1999, 

Mangold et al., 1998, Beati and Keirans, 2001, Murrell et al., 2001a).  However the 

combination of 12S rDNA and COX1 has shown strong support for a clade 

between R. evertsi and R. pravus with three Boophilid species; R.(B) microplus, 

R.(B) annulatus and R.(B) decoloratus with 93% bootstrap support, separate from 

the rest of Rhipicephalus (Murrell and Barker, 2003b, Murrell et al., 2000).  As it 

stands Boophilus is considered a sub-genus of Rhipicephalus. 

The resolution of the taxonomic status of R.(B) microplus with regard to the validity 

of R.(B) australis, has not been straight forward.  The use of ITS2 indicated that 

the Australian ticks could not be separated from other populations of R.(B) 

microplus (Barker, 1998).  This result was contradicted by a later study that used 

12S rDNA which proposed a separation of the Australian ticks from ticks from 

South Africa and Mexico (Campbell and Barker, 1999).  Other studies have used a 

combination of 16S rDNA, 12S rDNA and microsatellites which yielded no 

conclusive results (Labruna et al., 2009).  More recently however, COX1 has been 

proposed to be a suitable mitochondrial gene with the ability to clarify complex 

region groupings that have not been resolved clearly by using other mitochondrial 
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genes (Burger et al., 2014).  Although COX1  has a similar range of application to 

that od ITS2, there is evidence to suggest that it is evolving slightly faster then 

ITS2 and so may be developing polymorphisms that can be used to differentiate 

populations of the same species (Cruickshank, 2002).  However most of the work 

up until now has been done using ticks from a limited number of locations.  In this 

study, we aim to build upon results obtained by previous work (Burger et al., 2014) 

by using a larger number of ticks from more geographical locations, most of which 

have not been previously included in a taxonomic study.   In doing so we aim to 

confirm previous findings that COX1 can be used to resolve complex relationships 

within the R.(B) microplus clade and to determine whether specimens clustered 

according to region.  The second aim of this study was to determine whether R.(B) 

australis should be considered as a separate species from R.(B) microplus. 

Materials and methods 

Tick Samples 

220 samples were used in total, comprising 180 putative R. (B) microplus from 9 

locations table 2.1), 20 R. (B) decoloratus from South Africa and 20 R. (B) 

annulatus from Texas. One cell line (CTVM2), derived from R.(B) microplus, was 

used as a positive control throughout the optimization process.  The tick cell line 

was provided by the Tick Cell Biobank at The Pirbright Institute.  The passage 

level tested, species and instar of origin, geographic origin and acaricide 

resistance status of the parent tick for CTVM2 are listed in table 4.1. 

Table 4.1: Tick cell lines used in the optimisation of COX1 primers. 

Cell line Passage 

level 

tested 

Instar 

of 

origin 

Year 

initiated 

Geographical 

origin (strain) 

Resistance 

status 

Reference 

BME/CTVM2 140 Embryo 1983 Costa Rica 

(Paquera) 

Susceptible (Bell-Sakyi, 

2004) 

 

Primer design 

Primers were designed using CLC Genomics Workbench 7.  All available 

published sequences for R.(B) microplus, R.(B) australis, R.(B) annulatus and 
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R.(B) decoloratus for COX1 were searched and downloaded into CLC Genomics 

from the National Center for Biotechnology Information (NCBI) website (appendix 

table A1).  Sequences were then aligned and primers were designed manually 

using general guidelines (appendix table A2) (Green et al., 2012).  The primers 

that were designed were then submitted to NCBI BLAST to ensure their specificity 

for the target gene. 

When published sequences for the COX1 primers (Murrell et al., 2000, Simon et 

al., 1994, Kambhampati and Smith, 1995) (appendix table A1) were aligned in 

CLC Genomics with sequences for COX1 it was found that there were many 

polymorphisms in the primer binding sites, both among species and within the  

R.(B) microplus  group. As a result, it was decided that the primers would be re-

designed manually using the technique described above. The primers are shown 

in table 4.2. 

Table 4.2: Sequence length and Oligo name of manually designed COX1 primers 

Oligo Name Sequence (5’-3’) 

COI-F1 CAGGAAGATTAATTGGTAATGATC 

(24) 

COI-R1b TAATAGCCCCTGCTAAAACAGG 

(22) 

 

PCR Optimization 

The first stage in end-point polymerase chain reaction (PCR) optimization required 

the testing of the newly designed COX1 primers on all three species (R.(B) 

microplus cell line CTVM2 as positive control, R.(B) annulatus and R.(B) 

decoloratus both extracted from own samples) with two different master mixes: 

master mix 1 (MM1) ddH2O 15μl, Buffer 10x 2.5 μl, MgCl2 1.25 μl, dNTPs (10 

mM) 0.5 μl, forward primer 0.25 μl, reverse primer 0.25 μl, HotStar Taq 0.25 μl and 

master mix 2 (MM2) ddH2O 10 μl, Buffer 10x 2.5 μl, MgCl2 1.25 μl, dNTPs (10 

mM) 0.5 μl, forward primer 0.25 μl, reverse primer 0.25 μl, HotStart Taq 0.25 μl, 

Qmix 5 μl.  Three different annealing temperatures were used; 55ºC, 57ºC and 

59ºC.  Master mix recipes were made up using reagents from the Qiagen HotStar 

Taq plus DNA polymerase kit.   
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A 1.5% agarose gel was run with 5 μl of PCR product from each reaction at 140 

volts for 40 minutes (figure 4.1).  It was found that the COX1 primer set worked 

well on R.(B) microplus with both master mixes and at all annealing temperatures; 

the best conditions for R.(B) annulatus and R.(B) decoloratus was 55ºC and 

master mix 1.  From this it was decided that the COX1 primer set would be used 

on the main DNA plates. 

 

Figure 4.1: Gel photo showing the results obtained from first round of PCR optimization for 
COX1.  ‘MM 1’ = master mix 1, ‘MM2’ = master mix 2. 

The COX1 primer set was tested on R.(B) microplus samples taken from a DNA 

extraction that had low A260/280 ratios (see chapter 2), as the R.(B) microplus 

used in the first optimization step were from cell line CTVM2, that had a high 

concentration and quality of DNA. No bands were observed for the two lower 

quality DNA R.(B) microplus samples with the COX1 primer set (figure 4.2).   
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Figure 4.2: Gel photo showing the results obtained from second round of PCR optimization 
for COX1.  

Subsequently, the COX1 primer set was tested using a Thermo scientific Phusion 

Green Hot Start II High-Fidelity DNA Polymerase kit master mix and protocol.  The 

kit did not require added MgCl2, was designed to overcome PCR inhibition 

problems caused by ethanol, and required a shorter PCR cycle time, as well as 

already having dye in the master mix which would require no added dye to run a 

gel.  The master mix was set up using the Thermo kit recipe (table 4.3).  The PCR 

protocol was set up on the thermocycler; 30 seconds at 98ºC, 10 seconds at 98ºC, 

30 seconds at 55ºC, 30 seconds at 72ºC, steps 2-4 repeated 40 times, 10 minutes 

at 72ºC. 

  



 

138 
 

Table 4.3: Master mix recipe for 20 μl used for third round of PCR optimization for COX1 
primers using the Thermo scientific Phusion Green Hot Start II High-Fidelity DNA 
Polymerase kit. 

Thermo scientific Phusion Green Hot Start II High-Fidelity DNA Polymerase 

kit master mix- 20 μl 

ddH2O 8.4 μl 
5x Phusion green HF buffer 4 μl 
dNTPs (10mM) 0.4 μl 
Forward primer 1 μl 
Reverse primer 1 μl 
Phusion hot start II DNA Polymerase (2 U/μl) 0.2 μl 

+5 μl DNA 

 

The samples used in this PCR were as before with the addition of R.(B) annulatus 

and R.(B) decoloratus. 

 

Figure 4.3: Gel photo showing the results obtained from third round of PCR optimization for 
COX1 primers. 

Strong bands were seen for R.(B) annulatus and R.(B) decoloratus, as well as 

R.(B) microplus (cell line CTVM2) (figure 4.3).  A faint band was also seen for the 
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Australian sample (OZ) which had a low ratio of 1.07, however no band was seen 

for the R.(B) microplus sample from Juarez which had the lowest ratio of -1.59.  It 

was decided to use the Phusion kit for the main DNA plates as it showed to 

successfully amplify even low quality DNA with the COX1 primer set; however, the 

master mix was increased to 50 μl (table 4.4). 

Table 4.4: Master mix recipe for 50 μl for main DNA plates (COX1 primers) using the Thermo 
scientific Phusion Green Hot Start II High-Fidelity DNA Polymerase kit. 

Thermo scientific Phusion Green Hot Start II High-Fidelity DNA Polymerase 

kit master mix- 50 μl 

ddH2O 23.5 μl 
5x Phusion green buffer HF 10 μl 
dNTPs (10mM) 1 μl 
Forward primer 2.5 μl 
Reverse primer 2.5 μl 
Phusion hot start II DNA Polymerase (2 U/μl) 0.5 μl 

+10 μl DNA 

 

This master mix, along with the annealing temperature of 55ºC was then used on 

the 3 main DNA plates. 

Sequencing and Analysis  

PCR products were then cleaned using the AMPure XP kit before being used in 

the sequencing reaction.  Sequences were obtained using the Applied Biosystems 

kit and protocol on an Applied Biosystems 3130XL Genetic Analyzer.  All analysis 

used CLC Genomics Workbench 7.5.2 and all phylogenetic trees were created 

using MEGA 6.06 software using maximum likelihood tree setting. Phylogeny was 

tested using the Bootstrap method, with 500 Bootstrap replication.  Any branches 

with a value of less than 50% were considered unresolved and the branch was 

collapsed.  Goodness of fit was not tested for with a molecular clock, instead 

BEAST 2.4.3 (Drummond and Rambaut, 2007) was used to do a relaxed clock 

Bayesian analysis which allowed the estimation of topology as well as divergence.  

This analysis was conducted based on settings in (Gou et al., 2013).  BEAUti 2.4.3 

was used to generate the XML document needed for running in BEAST 2.4.3.  

Settings for partitions and tip dates were as default based on (Gou et al., 2013); 

site model was set to generalized time reversible (GTR); Gamma Category Count 
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was set at “4 with estimate substitution rate and shape checked”; frequency set to 

“estimated”.  The clock model was set to “relaxed clock log normal”, with the rest 

of the settings as default.  For priors, the default Yule model was used.  Most 

recent common ancestor (MRCA) was calibrated using fossil records discussed 

below.  A normal distribution was used, mean (M) and Sigma (S) were set 

according to the approximate date of the fossil samples; Ixodes: M= 37.5 S= 1.25, 

Amblyomma: M= 27.5 S= 6.25 and Hyalomma: M= 42.5 S= 3.75.  These values 

specified a distribution based on the date range of the fossil samples, with a 

central 95% probability range covering Ixodes 35-40 million years, Amblyomma 

15-40 million years and Hyalomma 35-50 million years.  Two separate Markov 

chain Monte Carlo (MCMC) runs were performed, one of 10 million generations 

and the second of 15 million generations, with sampling every 1000 generations.  

These independent runs were then combined, removing 10% burn-in, using 

LogCombiner 2.4.3.  MCMC samples were checked using Tracer 1.6 (Drummond 

and Rambaut, 2007).  Effective sample size (ESS) values of all parameters were 

checked to be >200, which is considered a sufficient level of sampling.  Sampled 

posterior trees were summarized using TreeAnnotator 2.4.3 and a maximum clade 

credibility tree was created.  The topology created in BEAST was visualized using 

FigTree 1.4.3. 

To calibrate the clock model, three fossils were used which covered three different 

genera. The first genus used was Ixodes, based on Ixodes succineus found in 

amber (35–40 Mya) (Weidner, 1964).  The most recent common ancestors of the 

Ixodes clade used were Ixodes pavlovskyi, Ixodes persulcatus, Ixodes bakeri, 

Ixodes cornuatus, Ixodes ricinus, and Ixodes hirsti.  The second genus covered 

was Hyalomma, based on a un-speciated (ticks identified to genus level) specimen 

found in amber (35–50 Mya) (De La Fuente, 2003).  The most recent common 

ancestors of the Hyalomma clade used were Hyalomma truncatum, Hyalomma 

marginatum, Hyalomma rufipes, Hyalomma lusitanicum, Hyalomma dromedarii, 

Hyalomma asiaticum asiaticum and Hyalomma asiaticum.  The third genus was 

Amblyomma, based on a un-speciated specimen found in amber (15–40 Mya) 

(Poinar, 1992).  The most recent common ancestors of the Amblyomma clade 

used were Amblyomma triguttatum, Amblyomma pattoni, and Amblyomma 

variegatum. 
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Results 

182 out of 220 extracted samples successfully amplified yielding a PCR product of 

around 500 base pairs (bp).  Forward and reverse sequences were aligned a 

maximum likelihood trees were created using sequences obtained from this study 

along with published sequences.  Un-edited sequences (ranging in length from 

301 bp to 1539 bp) and sequences that had all been trimmed to be the same 

length (294 bp) were created to compare the difference in tree output (figure 4.4).  

 

Figure 4.4: Maximum Likelihood tree inferred from COX1 sequences.  Comparison of trees 
created from non-trimmed sequences (A) and sequences trimmed to be the same length, 
with partial sequences omitted (B).  Trees are rooted using Amblyomma variegatum. 
Phylogeny was tested using the Bootstrap method, with 500 Bootstrap replication.  Any 
branches with a value of less than 50% were considered unresolved and the branch was 
collapsed. Bootstrap values visible on figure 4.5-4.9. 
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It was found that the grouping of R.(B) microplus, R.(B) annulatus and R.(B) 

decoloratus trees did not differ materially between the trimmed and untrimmed 

alignments, although the tree for the trimmed sequences had fewer out-groups 

with low bootstrap support.  Some differences were observed between trimmed 

and untrimmed sequences in the broader Rhipicephalus clade (figure 4.4).  It was 

decided based on this that the trimmed tree B would be used for inferring 

phylogeny.   

Any groups with less than 50% bootstrap support were collapsed.  Within the R.(B) 

microplus clade a number of groups can be observed (figure 4.5 A-J).  Group A 

(red) included ticks from Panama (published), Mexico (Yucatan isolate), USA 

(Deutch isolate), and three individual ticks from Brazil (Sao Gabriel isolate) with 

61% bootstrap support.  Group B (dark green) consists of ticks from South 

America (Brazil (published), Sao Gabriel, Jaguar, Juarez and Mozo), Thailand, 

Cambodia (published) and two from Malaysia (published) with a low bootstrap 

support of 52%.  Group C (blue) consisted of a Chinese and two Malaysian 

isolates (both from published sequences), with a 95% bootstrap support.  Based 

on the low bootstrap support for group B, it would be reasonable to consider 

collapsing this group into group C.  These ticks are not that divergent from one 

another and appear to be experiencing a similar amount of genetic change.   

Group D (dark brown) indicates the group comprising published R.(B) australis 

sequences and the Australian samples from this study with 100% bootstrap 

support.  The Australian ticks appear to be divergent from the other populations of 

R.(B) microplus, showing evidence of undergoing a large amount of genetic 

change. Within group D there appear to be two additional group of the Australian 

ticks with 62% and 80% bootstrap support. 

Malaysian isolate KM246877 (pale purple E) was found to be unresolved with 

bootstrap support of 52%.  There appears to be a clear grouping of the published 

Malaysian and Indian ticks (92% bootstrap support) distinct from the published 

Chinese ticks (99% bootstrap support).  Within this group there is a main group of 

Malaysian and Indian (purple F) ticks with bootstrap support of 59%, there are also 

an additional two groups of Malaysian ticks (pale blue G and pale green H) with 

85% and 93% bootstrap support respectively.  Within the Chinese group (yellow I 
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and brown J) there is a divergent group with 62% bootstrap support (yellow I).  

Groups F-H are divergent from the rest of R.(B) microplus (A-C).  
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Figure 4.5: Maximum Likelihood tree inferred from COX1 sequences.  Tree shown here was 
created using the highly stringent sequences (figure 5.4 B). Percentage bootstrap support is 
indicated on each node. Any nodes with <50% support have been collapsed.  Specimens 
sequenced in this study are indicated by the absence of accession number. Data shown 
here is for the entire R.(B) microplus sequences, groups are indicated by colours and 
letters. Conclusion of species identification is shown in black to the right. Position on the 
main tree is shown by the black box to the left.  Individual sequences have been 
amalgamated into a region label where majority of samples fall on the tree (e.g. Sao 
Gabriel), anomalies have retained their original unique label (e.g. SG8).  Tree is rooted using 
Amblyomma variegatum. 
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R.(B) annulatus was found to be closely associated with members of the R.(B) 

microplus clade, branching with 93% bootstrap support (figure 4.6).  It can also be 

seen that R.(B) annulatus is undergoing a similar amount of genetic change as 

R.(B) microplus (I-J).  Within R.(B) annulatus further groups can be observed 

based on geographical location.  Published Iranian sequences group with 86% 

bootstrap support from the published Romanian sequences.  Similarly, R.(B) 

annulatus from Thailand grouped with 94% bootstrap support.  R.(B) annulatus 

from America was found to split into two different groups; the first group with 80% 

bootstrap support included a sequence from Israel; the second grouping with 61% 

bootstrap support.  The amount of genetic change was similar throughout R.(B) 

annulatus clades. 

 

Figure 4.6: Maximum Likelihood tree inferred from COX1 sequences.  Tree shown here was 
created using the highly stringent sequences (figure 5.4 B).  Percentage bootstrap support 
is indicated on each node. Any nodes with <50% support have been collapsed.  Specimens 
sequenced in this study are indicated by the absence of accession number. Data shown 
here is for the Chinese R.(B) microplus sequences in relation to R.(B) annulatus. Position on 
the main tree is shown by the black box to the left.  Tree is rooted using Amblyomma 
variegatum.  
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R.(B) decoloratus is divergent from both R.(B) annulatus and R.(B) microplus with 

100% bootstrap support and therefore a different species (figure 4.7).  Within R.(B) 

decoloratus two small groups diverge with 55% and 69% bootstrap support, 

however these two groups are undergoing a very slow rate of divergence.  R.(B) 

decoloratus with R. bursa, R. pravus and R. evertsi appears to be paraphyletic 

with repect to the res tof the Boophilid clade. 

 

Figure 4.7: Maximum Likelihood tree inferred from COX1 sequences.  Tree shown here was 
created using the highly stringent sequences (figure 5.4 B).  Percentage bootstrap support 
is indicated on each node. Any nodes with <50% support have been collapsed.  Specimens 
sequenced in this study are indicated by the absence of accession number. Data shown 
here is for R.(B) decoloratus sequences, including some other Rhipicephalus species.  
Position on the main tree is shown by the black box to the left.  Tree is rooted using 
Amblyomma variegatum. 
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The rest of the Rhipicephalus genus appears to be supportive of the currently 

accepted theories of organisation, with exception of R. sanguineus and R. 

turanicus, which appear to share a complex relationship (figure 4.8). 

 

Figure 4.8: Maximum Likelihood tree inferred from COX1 sequences.  Tree shown here was 
created using the highly stringent sequences (figure 5.4 B).  Percentage bootstrap support 
is indicated on each node. Any nodes with <50% support have been collapsed.  Specimens 
sequenced in this study are indicated by the absence of accession number. Data shown 
here is for the rest of the Rhipicephalus sequences.  Position on the main tree is shown by 
the black box to the left.  Tree is rooted using Amblyomma variegatum. 

When a maximum likelihood tree is created using published sequences for ITS2 

(Burger et al., 2014) it can be seen that R.(B) australis diverges from R.(B) 

microplus with 86% bootstrap support (figure 4.9).  Similarly, R.(B) annulatus is 

also divergent from R.(B) microplus with 62% bootstrap support.  Divergence of 

R.(B) decoloratus from R.(B) annulatus, R.(B) microplus and R.(B) australis is also 
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supported, with 76% bootstrap support.  In the case of ITS2, R.(B) decoloratus 

does not group with R. bursa and R. evertsi. 

 

Figure 4.9: Maximum Likelihood tree inferred from ITS2 sequences.  Percentage bootstrap 
support is indicated on each node. Any nodes with <50% support have been collapsed.  
Specimens shown here were reproduced from Burger et al., 2014. Tree is rooted using 
Amblyomma variegatum. 

Results from the relaxed-clock Bayesian analysis showed support for the general 

groupings discussed above (figure 4.10).  Groups A-C as seen in figure 4.5, is 

depicted as the green clade in 4.10, with identical sequences being collapsed.  
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Members of this clade appear to have evolved from the same ancestor as R.(B) 

australis at around 7.65 million years (Mya) (95% highest possible density (HPD) 

interval 2.62-14.39 Mya).  The green R.(B) microplus clade diverged 

approximately 3.69 Mya (95% HPD 1.02-7.38 Mya).  Based on this analysis, R.(B) 

australis diverged later at approximately 1.59 Mya (95% HPD 0.15-3.92 Mya).  

Groups F-H (figure 4.6) is colored purple in figure 4.10.  This group, made up of 

published Malaysian and Indian R.(B) microplus sequences, diverged 3.49 Mya 

(95% HPD 0.69-7.86 Mya).  Groups I and J (figure 4.5) made up of published 

Chinese sequences, colored yellow (figure 4.10) appears to have diverged 1.72 

Mya (95% HPD 0.12-4.25 Mya).  This group shared a common ancestor with R.(B) 

annulatus (red, figure 4.10) 9.75 Mya, diverging around 3.98 Mya (95% HPD 1.31-

7.69 Mya).   Both the Chinese (yellow), R.(B) annulatus (red) and Malaysian/Indian 

(purple) clades share a common ancestor 11.22 Mya (95% HPD 4.72-18.62 Mya).  

R.(B) decoloratus (blue) is highly divergent from the rest of the Boophilid ticks 

covered in this work, sharing a common ancestor 28.73 Mya but diverging 1.39 

Mya (95% HPD 0.07-3.67 Mya).  16.69 Mya (95% HPD 8.2-26.72 Mya) R.(B) 

decoloratus shared a common ancestor with R. bursa and R. evertsi.  The genus 

Rhipicephalus appears to have formed 50.53 Mya (95% HPD 29.74-67.33 Mya).  

Along with members of Boophilus, three species of Rhipicephalus; R. bursa, R. 

evertsi and R. pravus appear to have diverged from the rest of Rhipicephalus at 

around 29.38 Mya (95% HPD 15.72-44.2 Mya) (A figure 4.10).   

Figure 4.10: A: Chronogram created from the molecular dating analysis conducted in 
BEAST 2.4.3 and edited in FigTree 1.4.3.  Shaded bars represent the 95% highest posterior 
density interval for divergence estimates. Clades/groups (figure 4.5) are indicated by colour; 
Green= group A-C, Blue= group D (R.(B) australis), Pink= Malaysian KM246877, Purple= 
groups F-H, Yellow= groups I + J, Red= R.(B) annulatus, Blue= R.(B) decoloratus. A-H 
indicates the times at which genera formed:  A: Boophilus (including some Rhipicephalus) 
29.38 Mya (95% HPD 15.72-44.2 Mya) B: Rhipicephalus 50.53 Mya (95% HPD 29.74-67.33 
Mya) C: Amblyomma 28.93 Mya (95% HPD 18.98-38.92 Mya) D: Dermacentor 31.45 Mya (95% 
HPD 12.84-51.87 Mya) E: Hyalomma 40.2 Mya (32.93-47.49 Mya) F: Haemaphysalis 36.03 Mya 
(18.92-54.03 Mya) G: Ixodes 37.55 Mya (35.18-40.03 Mya) H: Ornithodoros 14.18 Mya (5.4-
25.18 Mya). B: Close up image of group A.
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Discussion 

This phylogenetic analysis of COX1 sequences is consistent with the 

reinstatement of R.(B) australis as previously proposed (Estrada-Peña et al., 

2012).  There is also evidence to suggest that R.(B) microplus is a clade 

composed of five groups including R.(B) australis and R.(B) annulatus.  The first 

group (A-E, figure 4.5) has a world-wide distribution, including R.(B) microplus 

from South America, North America, South Africa, Thailand and published 

sequences from Cambodia, Malaysia and one from China.  The second group (D, 

figure 4.5) consists of R.(B) australis.  The third group (F-H, figure 4.5) consists of 

published Indian and Malaysian samples.  The fourth group (I+J, figure 4.5) is 

composed exclusively of Chinese samples.  R.(B) annulatus shares a common 

ancestor with the Chinese group (I+J, figure 4.5), diverging approximately 9.75 

Mya (figure 4.10) indicating that R.(B) annulatus is probably monophyletic with 

R.(B) microplus.  These groupings support the observations made previously 

(Burger et al., 2014), where it was proposed that R.(B) microplus is a complex 

made up of R.(B) australis, R.(B) annulatus and two R.(B) microplus clades; A: 

Brazil, China and Cambodia; B: China. The later findings of Low et al (2015) 

proposed an additional clade, named clade C, made up of Malaysian and Indian 

specimens are also supported. With the addition of the sequences generated in 

this study, it is possible to expand on this proposed complex, increasing the size of 

R.(B) microplus clade A, with the addition of multiple locations.   

R.(B) decoloratus shares a common ancestor with R.(B) microplus and R.(B) 

annulatus, diverging approximately 28.73 Mya, however it appears to be 

monophyletic with to R. bursa, R. evertsi and R. pravus (figure 4.10).  This 

supports the findings from previous studies that proposed the synonymizing of 

Boophilus with Rhipicephalus (Klompen et al., 1997, Murrell and Barker, 2003b, 

Murrell et al., 2001a).   

The maximum likelihood tree for the nuclear gene ITS2 broadly supports the 

findings for COX1 (figure 4.9) (Burger et al., 2014).  However, due to the lack of 

ITS2 published sequences covering the geography used in this study, it is hard to 

confirm completely the relationships discussed.   In general, ITS2 shows evidence 

that R.(B) australis and R.(B) annulatus share a common ancestor with R.(B) 

microplus, and are therefore are probably monophyletic with R.(B) microplus. 
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The question then arises as to what the relationship is of these groups within the 

R.(B) microplus clade, and what they should be called.  The first suggestion is that 

the R.(B) microplus is made up of sub-species.  However, first the term 

subspecies needs to be defined (Mayr and Ashlock, 1969).  One interpretation is 

that subspecies should be less divergent then species.  In the case of the 

chronogram created here (figure 4.10), based on the dates given, the groups 

discussed, including R.(B) australis and R.(B) annulatus, are diverging too long 

ago.  Another interpretation of subspecies is a group that can successfully 

interbreed with another group, producing fertile offspring, but do not in practice 

due to geographical isolation.  If this definition is accepted, then further work in the 

form of a mating study, where several crosses spanning the group would be 

needed. 

It should also be noted that within species divergence times appear very high 

because of the lack of recent calibration points. The evolutionary rates that can be 

inferred in this analysis tend to be time scale dependent and therefore may be 

biased.  There are a number of reasons that this bias may arise, purifying 

selection, ancestral polymorphisms, calibration errors and sequence errors, to 

name but a few (Ho et al., 2015).  In the case of this work, a mixture of sources 

was used for the acquisition of tick specimens.  Selected strains from research 

stations, ticks direct from the field as well as ticks taken from the field and 

maintained in a laboratory environment which have not undergone selection 

pressures, were all used in this analysis and could influence the diversity 

observed.   

Conclusion 

Overall, this study supports the reinstatement of R.(B) australis.  R.(B) microplus is 

potentially made up of 5 groups; one group that’s made up of specimens from 

around the world, R.(B) australis, Malaysian/Indian group, Chinese group and 

R.(B) annulatus.  The taxonomic status of these groups requires further 

investigation with two potential outcomes.  Either R.(B) microplus is a complex 

clade made up of several different sub-species, or all 5 groups are in fact separate 

species and the validity of the name R.(B) microplus as well as which group it 

belongs to will need re-addressing.  There is an assumption that because the type 

specimen R.(B) microplus comes from South America then all sequences from 
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South America represent that species.  However, if the latter is true, then the type 

specimen for R.(B) microplus which is currently accepted as being discovered by 

Canestrini in 1887 in Chaco australe, Paraguay, may not be the type specimen.   

A number of taxonomic relationships can be observed from this analysis, firstly 

R.(B) australis (pale blue, figure 4.10) is monophyletic with the top R.(B) microplus 

group (green, figure 4.10).  R.(B) annulatus can be seen to be monophyletic with 

the Chinese group of R.(B) microplus (yellow, figure 4.10).  R.(B) decoloratus 

(blue, figure 4.10) is paraphyletic to the rest of Boophilus covered in this analysis, 

and monophyletic with R. bursa and R. evertsi.  This observation supports 

previous studies that called for Boophilus to be synonymized with Rhipicephalus. 
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CHAPTER 5 

Variation in genomic nucleotide sequence of the Bm86 
gene in R.(B) microplus ticks from multiple geographical 
locations 

Introduction 

Bm86 is a concealed glycoprotein antigen that is expressed in the midgut of the 

tick and, is the basis of the only vaccine against ticks that has been available 

commercially.  Tick GARDPLUS was one version of the vaccine, developed and 

available for use in Australia from the 1990’s but was discontinued; Gavac was 

developed in South America and is still currently available (Freeman et al., 2010).  

The vaccine has been shown to variably reduce the number of ticks engorging and 

the reproductive rate of those that do engorge for ticks of the species, R.(B) 

microplus, R.(B) decoloratus, R.(B) annulatus, R. appendiculatus, Hyalomma 

anatolicum anatolicum and H. dromedarii (Odongo et al., 2007, Pipano et al., 

2003, de Vos et al., 2001).  Bm86 was first identified as a potentially protective 

antigen in the late 1980’s (Rodríguez et al., 1994, Willadsen et al., 1989, Johnston 

et al., 1986, Opdebeeck et al., 1988, Kemp et al., 1989, Willadsen et al., 1988), 

Using immunogold labeling, it was found that Bm86 was located mainly on the 

microvilli of digest cells within the ticks midgut (Gough and Kemp, 1993).   

Since the introduction of several commercial vaccines based on the antigen, 

variability in the responsiveness of R.(B) microplus in different regions have been 

observed (García-García et al., 1999, Willadsen et al., 1995, Garcıá-Garcıá et al., 

2000).  Studies have set out to investigate why the efficacy is so variable.  One 

proposed theory is the presence of a divergence in the amino acid sequence 

between recombinant Bm86 vaccine and native Bm86 expressed in ticks from 

different geographical locations (Freeman et al., 2010).  It has also been proposed 

that there is an inverse correlation between efficacy of the vaccine and variation in 

the Bm86 sequence (García-García et al., 1999). 

A number of Bm86 homologues were identified and analyzed from a range of ticks 

representing the soft ticks (Argasidae) and the hard ticks (Ixodidae) (Nijhof et al., 

2010).  Results from this study indicated that Hyalomminae were embedded within 

the Rhipicephalinae, which was previously proposed in a review on the 
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systematics of ticks, published the year before (Nava et al., 2009).  A clear 

difference between Bm86 homologues of Prostriate (Ixodes) and Metastriate 

(Hyalomma, Amblyomma, Decoloratus, Haemaphysalis and Rhipicephalus) was 

also observed.  A clear grouping based on species of R.(B) microplus, R.(B) 

decoloratus and R.(B) annulatus with 99%, 100% and 96% Bootstrap support 

respectively was observed.  There was also some divergence within the R.(B) 

microplus group, with the Mexican (FJ456928) (Canales et al., 2009) and Brazilian 

(EU352677) (Andreotti et al., 2008) Bm86 sequences grouping with 96% 

Bootstrap support.   

Bm86 has been sequenced from a number of different locations and compared to 

the original Yeerongpilly strain.  Polymorphism among geographically separate 

R.(B) microplus has been reported to be associated with the reduced effectiveness 

of the vaccines (García-García et al., 1999).  Reports questioning the efficacy of 

the Bm86 derived from Australian R.(B) microplus against R.(B) microplus strains 

in South America has supported the questioning of the validity of the taxonomic 

status of R.(B) microplus in Australia (Labruna et al., 2009).  In Argentina, the 

original vaccine, based on Bm86 was cloned in Australia from Yeerongpilly strain 

ticks and had a reported very low protective efficacy (10-15%) against the 

Argentinean Strain A of R.(B.) microplus.  The Argentinean strain A Bm86 was 

subsequently cloned and expressed in Pichia pastoris and named Bm95.  Testing 

of this vaccine was alleged to yield a great improvement in efficacy of the vaccine 

on herds with low protection from Bm86 (Garcıá-Garcıá et al., 2000).   

Differences in the Bm86 sequences have been reported between R.(B) microplus 

from the USA, Australia and Brazil (Freeman et al., 2010) further supporting the 

theory of geographic variation.  Another study aimed to determine the level of 

Bm86 polymorphisms within Thailand in order to ascertain a relationship between 

sequence variation and vaccine effectiveness on Thai R.(B) microplus 

(Kaewmongkol et al., 2015).  This study found that sequences grouped based on 

their regional location within the country.  All sequences were found to be distinct 

from those reported in South America for R.(B) microplus and only one group of 

Thai ticks grouped closely with the original Australian Yeerongpilly strain 

(Kaewmongkol, et al., 2015).  This study was the first to demonstrate regional 
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variation in the Bm86 gene coherently within a country and demonstrates the need 

for similar investigation in other locations. 

It has been claimed (de la Fuente et al., 2000; Ali et al., 2016; Garcıá-Garcıá et al., 

2000; Garcıá-Garcıá et al., 1999) as well as discussed in informal discussions and 

conferences, that the variation in vaccine efficacy that has been observed was 

partly or fully attributable simply to the fact that distinct species are being 

considered, without reference to whether sequence variation conformed 

differences among the proposed species. This concept was further driven by the 

proposal for reinstatement of the species R.(B) australis (Estrada-Peña et al., 

2012).   

At present, the relationship between Bm86 sequence and function is unclear.  

Only transcript sequences and expressed sequence-tag (EST) are available in the 

public domain, as of yet there is nothing available on the Bm86 gene genomic 

sequence.  Because all the work undertaken so far on the gene has made use of 

cDNA synthesized from RNA and the existing sequences in public database show 

indications of multiple splice variants in this gene, we decided to examine genomic 

DNA sequence in a limited region of the gene, to determine whether there was 

variation in the gene that clustered according to the proposed new classification.  

In this study, we attempted to amplify the Bm86 gene from genomic DNA 

extracted from three Boophilid tick species; R.(B) microplus (multiple locations), 

R.(B) annulatus (USA) and R.(B) decoloratus (South Africa).  The locations 

covered for R.(B) microplus were; Australia, South Africa, South America (Jaguar, 

Mozo, Sao Gabriel and Juarez), North America (Mexico, Texas) and Thailand 

(table 2.1). 

Proposed structure of Bm86 

Bm86 is an epidermal-growth factor (EGF)-like membrane glycoprotein found on 

the surface of cells in the midgut of ticks (Gough and Kemp 1993).  Its function 

and structure is not fully understood, however there are some theories regarding 

the architecture of this gene.  A basic glycoprotein comprises a polypeptide chain 

made up of the intracellular domain, the hydrophobic amino acid domain (inserted 
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in the lipid bilayer of the cell membrane) and an extracellular domain, attached to a 

carbohydrate (Montreuil, 1980) (figure 5.1).   

 

Figure 5.1: The structure of a basic glycoprotein. (Source: Authors own drawing) 

The research group that first pioneered studies behind the discovery of Bm86 first 

suggested its structure.  Initially it was found that the amino acid sequence shares 

similarities with previously characterized proteins; a putative protective antigen 

from Plasmodium falciparum (homology was short but significant) and an 

epidermal growth factor precursor molecule, with which it shared an extended and 

highly significant homology (Willadsen et al., 1989).  Another feature that was 

observed was a high proportion of cysteine residues, which is characteristic of 

extracellular proteins, in particular cell surface proteins (Willadsen et al., 1989).  

The amino acid configuration of Bm86 was predicted in more detail in the same 

year.  Based on the cDNA sequence, it was thought that Bm86 contains 650 

amino acids, made up of a 19 amino acid signal sequence, a 23 amino acid 

hydrophobic region (adjacent to the carboxyl terminus) and a repeated pattern of 6 

cysteine residues.  The latter feature alluded to the potential presence of several 

epidermal growth factor-like domains, and further confirmed Bm86 similarity with 

EGF-like proteins (Rand et al., 1989).  It wasn’t until 1993 did the location of Bm86 

get confirmed.  By using immunogold labeling, it was found that Bm86 was located 

on the microvilli of digest cells (Gough and Kemp, 1993).  With the location 

confirmed, it has been possible to narrow the theories on what the function of 



 

159 
 

Bm86 is, however further work was required on its structure.  The nature of the 

anchorage of Bm86 to the digestive cells has been discovered to be via a glycosyl-

phosphatidyl inositol (GPI) linkage to the extracellular surface of the cell 

(Richardson et al., 1993).  This study also further confirmed the presence of 66 

cysteines, indicating the presence of multiple epidermal growth-like domains 

(Richardson et al., 1993).   

The proposed structure of Bm86 is that it is made up of a signal peptide region 

followed by two EGF-like domains, a partial EGF-like domain, six EGF-like 

domains and then a GPI anchor.  Potential O-linked carbohydrate additions are 

suggested to be located close to the GPI anchor and potential N-linked 

carbohydrate additions are proposed at EGF-like domain two and three, partial 

EGF-like domain and in between EGF-like domain six and seven (Nijhof et al., 

2010) (figure 5.2). 

 

Figure 5.2: Proposed structure for Bm86. Red box ‘S’: signal peptide, dark blue boxes: 
epidermal growth factor (EGF)-like domains, light blue box: partial EGF-like domain, yellow 
box ‘GPI’: glycosyl-phosphatidylinositol (GPI) anchor, vertical line: potential O-linked 
carbohydrate additions, ‘Y’: potential N-linked carbohydrate additions. The numbers 
corresponds to the amino acid positions of the start and end of each protein domain. 
Reproduced from (Nijhof et al., 2010). 

Materials & Methods  

There are a number of published Bm86 sequences in the public domain (appendix 

table A3).  In this part of the study both partial and complete sequences were 

imported from the National Center for Biotechnology Information (NCBI) GenBank, 

and aligned using CLC Genomics Workbench 7.5.2.  All phylogenetic trees were 

created using MEGA 6.06 software using Construct/test neighbor-joining tree 

setting. Phylogeny was tested using the Bootstrap method (with a 500 Bootstrap 

replication).  Any branches with a value of less than 50% were considered 

unresolved and the branch was collapsed.  
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Tick samples 

220 samples were used in total, comprising 180 putative R.(B) microplus from 9 

locations table 2.1), 20 R. (B) decoloratus from South Africa and 20 R.(B) 

annulatus from Texas. Two cell lines (BME/CTVM 2 and BME/CTVM 5), derived 

from R.(B) microplus, was used as a positive control throughout the primer 

optimization process.  The tick cell lines were provided by the Tick Cell Biobank at 

The Pirbright Institute.  The instar of origin, geographical origin and acaricide 

resistance status of the parent tick for all cell lines used are listed in table 5.1.   

Table 5.1: Tick cell line used in this study, including information on tick cell lines; 
BME/CTVM 6, 23 and 30 covered in the discussion. 

Cell line Instar 

of 

origin 

Year 

initiated 

Geographical 

origin (strain) 

Resistance status Reference 

BME/ 

CTVM 2 

Embryo 1983 Costa Rica 

(Paquera) 

Susceptible (Bell-Sakyi, 

2004) 

BME/ 

CTVM 5 

Embryo 1983 Colombia 

(Paso Ancho) 

Resistant to 

organophosphates, 

organochlorines 

and Amitraz 

(Bell-Sakyi, 

2004) 

BME/ 

CTVM 6 

Embryo 1983 Colombia 

(Paso Ancho) 

Resistant to 

organophosphates, 

organochlorines 

and Amitraz 

(Bell-Sakyi, 

2004) 

BME/ 

CTVM 

23 

Embryo 2005 Mozambique Unknown (Alberdi et al., 

2012a) 

BME/ 

CTVM 

30 

Embryo 2005 Mozambique Unknown (Alberdi et al., 

2012a; Alberdi 

et al., 2012b) 

 

Primer design 

No known genomic sequences are available and the previous work undertaken on 

this gene were all done using cDNA (appendix table A3).  All available published 

sequences were used to create an alignment, and were found to be variable in 
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length.  In particular identification of spliced exons in the alternate transcript in the 

Mozambique strain EU191620 (Canales et al., 2008) was observed.  By using 

M29321 (Rand, 1989) as a reference sequence a section from 1-585bp was 

selected as a target region for amplification.  This segment was searched using 

BLAST against the whole genome shotgun (wgs) contigs (overlapping reads with 

no gaps), restricted to the Rhipicephalus genus (taxid 34630) (figure 5.1).   

 

Figure 5.3: BLAST results for Bm86 isolate GenBank accession number: M29321 (Rand et 
al., 1989) against all available ESTs. Three within exon regions identified labelled as region 
1-3. The positions of region 1: 192-226, 2: 340-370 and 3: 517-571. 

Three regions where sequences can be seen to overlap were identified to lie 

within exons (figure 5.3).  It is not known how long the exons/introns are or where 

their boundaries lay, therefore only the sequences within the three regions 

identified were used to design the primers as they were most likely to produce 

Bm86 gene specific primers, without amplifying unwanted DNA from other genes.  

To attempt to check that this was unlikely to occur, the designed primers (table 

5.2) were checked using primer-Blast for specificity.  It is also likely that an intron 

or introns of unknown length or lengths might exist between the identified regions 

so more than one set of manually designed primers, in the form of degenerate 

primers, would be required to increase the probability of successful PCR 

amplification of Bm86 genomic sequence.    
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Table 5.2: Manually designed Bm86 primer sequences and regions based on figure 5.3 

Oligo 

Name 

Sequence (5’-3’) Region of location  

(figure 4.1) 

Bm86-F1 ATGTACTTCAATGCTGCTG (19) Within region 1 

Bm86-R1a CGTCCGATGCTTCGCAG (17) Around region 2 

Bm86-F2a GACGATCTAACGCTACAATGC (21) Around region 2 

Bm86-F2b GACACTCTAACGCTACAATGC (21) Around region 2 

Bm86-R2 AGACACGTGGTAGGGACAC (19) Between region 2 and 3 

(closer to region 3) 

 

F2a and F2b are similar but not identical primers designed to be used together as 

degenerate primers allowing variations in the target gene to be amplified.  The 

degenerate primers are designed to cover the variations expected from all four 

species R.(B) microplus, R.(B) australis, R.(B) annulatus and R.(B) decoloratus.   

PCR optimisation using Qiagen HotStar Taq plus  

The newly designed Bm86 primers were tested on all three species (R.(B) 

microplus cell line CTVM2, R.(B) annulatus and R.(B) decoloratus all extracted 

from own samples) using the Qiagen HotStar Taq plus DNA polymerase kit.  Each 

25 μl reaction volume consisted of 2.5 μl of 10X buffer, 0.5 μl of 10 mM dNTPs, 

0.25 μl each of 10 mM forward and reverse primers and 0.25 μl of HotStar Taq. 

Optimization of PCR was also tested with additional Q solution added to each 

reaction as recommended by manufacturer’s instructions for potentially high GC-

rich content. 

Both reaction mixes (with and without Q solution) were tested at annealing 

temperature of 55ºC, 57ºC and 59ºC.   

PCR Optimisation using Phusion 

The master mix was set up using the Thermo kit recipe (table 5.3).  The PCR 

protocol was set up on the thermocycler; 30 seconds at 98ºC, 10 seconds at 98ºC, 

30 seconds at 55ºC, 30 seconds at 72ºC, steps 2-4 repeated 40 times, 10 minutes 

at 72ºC. 
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Table 5.3: Master mix recipe for 50 μl for main DNA plates using the Thermo scientific 
Phusion Green Hot Start II High-Fidelity DNA Polymerase kit. 

Thermo scientific Phusion Green Hot Start II High-Fidelity DNA Polymerase 

kit master mix- 50 μl 

ddH2O 23.5 μl 
5x Phusion green buffer HF 10 μl 
dNTPs (10mM) 1 μl 
Forward primer 2.5 μl 
Reverse primer 2.5 μl 
Phusion hot start II DNA Polymerase (2 U/μl) 0.5 μl 

+10 μl DNA 

 

Both Bm86 primer sets were then tested again on R.(B) microplus (cell line 

BME/CTVM 2), testing the two different 5X Phusion Green buffers; HF and GC, 

supplied with the kit at different annealing temperatures (52ºC, 57ºC and 59ºC).   

Additional published primers were tested using both the Phusion and the Qiagen 

kits (table 5.4). 

Table 5.4: Sequence length and Oligo name of published Bm86 primers, including 
information on which annealing temperature was chosen for the PCR. 

Oligo Name Sequence (5’-3’) Annealing 

temperature 

(ºC) 

Reference 

Bm86-F3 ATGCGTGGCATCGCTTTGTT 

(20) 

53ºC (Freeman et 

al., 2010) 

Bm86-R5 TTTCAGCAGCATTGAAGTAC 

(20) 

Bm86-IntFor ATCGACAAAGCTGCTATTGTCC 

(22) 

58ºC (Freeman et 

al., 2010) 

Bm86-IntRev TTTCTCTGCTATGAGTCTTGCC 

(22) 
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Agarose Electrophoresis 

For all PCR, a 1.5% agarose gel was run with 5 μl of PCR product from each 

reaction at 140 volts for 40 minutes, with additional 6X Type I loading dye added 

where necessary.   

Results 

Currently published sequence information 

An initial construct/test neighbor-joining tree using a Bootstrap analysis was 

inferred using all 100 published Bm86 sequences (appendix table A3).  These 

sequences were first aligned in CLC Genomics Workbench 7.5.2 and were found 

to vary in length from 258-2225 bp.  The alignment was then exported from CLC 

Genomics Workbench 7.5.2 as a fasta alignment before being imported into 

MEGA 6.06 where the construct/test neighbor-joining tree using a Bootstrap 

analysis was created.  Trees were then rooted using R. appendiculatus and 

checked for sequences from the same location that shared the same amount of 

genetic change within the same group on the tree.  These sequences did not differ 

in SNPs and so were removed from the alignment, leaving one example from each 

region for each group on the tree.  The construct/test neighbor-joining tree was 

then repeated creating a more coherent tree (figure 5.4). 
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Figure 5.4: Construct/test neighbor-joining tree inferred from unedited published Bm86 
sequences (appendix table A3).  Specimens from the same location that demonstrated the 
same amount of genetic change within the same group has been removed. Percentage 
bootstrap support is indicated on each node. Only nodes with >50% support show value of 
support. Strain/isolate is indicated by the first set of brackets where necessary. The tree is 
rooted using R. appendiculatus. 

There is no clear differentiation of populations of R.(B) microplus based on the 

Bm86 sequences used for this tree.  There mostly appears to be a mix of 

geographical location, with the exception of the Thai sequences which tended to 

group with 80% Bootstrap support (figure 5.4).  The South American, Australian 

and USA sequences tended to share groups and demonstrated a similar amount 

of genetic change.  R.(B) microplus and R.(B) annulatus didn’t appear to be 

distinguishable from one another based on Bm86 sequences.  R.(B) decoloratus 

was divergent from both R.(B) microplus and R.(B) annulatus with 74% Bootstrap 

support.  The Brazilian Camcord (AF150889) (de la Fuente et al., 2000) and Porto 
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Alegre (AY785808) (Sossai et al., 2005) strains showed a very different amount of 

genetic change compared to the rest of the tree.  When checking the alignment in 

CLC Genomics Workbench 7.5.2, this difference can be accounted for by how 

incomplete, and poorly aligned these sequences were compared to the rest. 

A second construct/test neighbor-joining tree using a Bootstrap analysis was 

constructed using the same sequences, but in this instance sequences were 

edited from position 278 to 1077, resulting in a final sequence length of 794-797 

bp.  This length represented the shortest, most complete sequence that aligned 

with the reference sequence M29321 (Rand, 1989).  Five partial sequences: India 

(Chennai) DQ131539 (Anbarasi et al., unpublished), Brazil (Camcord) AF150889 

(de la Fuente et al., 2000), Brazil (Alegre) AY785811 (Sossai et al., 2005), Brazil 

AY785808 (Sossai et al., 2005) and Brazil AY785809 (Sossai et al., 2005) were 

excluded.  As with the first tree, sequences from the same location that shared the 

same amount of genetic change within the same group on the tree were removed.  

The resulting tree has more sequences then the first (figure 5.4), this is because 

the edited tree appeared to show more genetic diversity then the un-edited. 
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Figure 5.5: Construct/test neighbor-joining tree inferred from edited published Bm86 
sequences (appendix table A3).  Specimens from the same location that demonstrated the 
same amount of genetic change within the same group has been removed. Percentage 
bootstrap support is indicated on each node. Only nodes with >50% support show value of 
support. Strain/isolate is indicated by the first set of brackets where necessary. The tree is 
rooted using R. appendiculatus. 
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As with the first tree, no clear grouping of R.(B) microplus can be seen, with the 

exception of the ticks from Thailand.  In this tree, more Thai sequences were 

included as a greater amount of variation amongst the population became more 

obvious with the trimmed sequences.  Multiple groups can be seen in this tree for 

the Thai samples, ranging in Bootstrap support from 55-100%.  R.(B) annulatus 

grouped with 87% Bootstrap support and appears to share a common ancestor 

with the Thai samples.  R.(B) decoloratus grouped away from both R.(B) microplus 

and R.(B) annulatus with 100% Bootstrap support.  The Australian strain (M29321) 

diverged with Mozambique (FJ809946) with 61% Bootstrap support (figure 5.6).  

Variations can be seen in the Brazilian samples, with a number of groups’ 

observable (figure 5.6).  Both Bugre strains from Brazil (AY785798 and 

AY785799) were found to diverge with 95% Bootstrap support.  The Colombian 

strain Palma del vino (AY766044) diverged with the Brazilian strains Colorado do 

oeste (AY785807) and Coxim (AY785790) with 63% Bootsrap support.  Brazilian 

strains Colorado do oeste (AY785807) and Coxim (AY785790) further diverged 

from Colombian strain Palma del vino (AY766044) with 74% Bootstrap support.  A 

final grouping of Brazilian strains Betim (AY785796) and Porto Alegre (AY785795) 

grouped with 52% Bootstrap support and with such a low percentage can be 

considered unresolved. 
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Figure 5.6: Close up of Construct/test neighbor-joining tree inferred from edited published 
Bm86 sequences for South America, USA and Australia (figure 5.5).  Specimens from the 
same location that demonstrated the same amount of genetic change within the same group 
has been removed. Percentage bootstrap support is indicated on each node. Only nodes 
with >50% support show value of support. Strain/isolate is indicated by the first set of 
brackets where necessary. The tree is rooted using R. appendiculatus but not shown in this 
close up. 

A number of insertions and deletions were also observed in these trimmed 

sequences.  An insertion of 3bp was found in both R. appendiculatus sequences 

starting at position 424 (figure 5.7).  This insertion was different for both 
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sequences; AGC for FJ809944 (Nijhof et al., 2009) and AAG for FJ809945 (Nijhof 

et al., 2009). 

 

Figure 5.7: Position of insertions for both R. appendiculatus sequences, indicated by the 
red box. 

A section of 6 bp deletion at position 311, was observed in four R.(B) annulatus 

sequences; EU979530 (Shahein et al., unpublished), HQ014401 (Freeman et al., 

2010), HQ014400 (Freeman et al., 2010) and HQ014399 (Freeman et al., 2010) 

(figure 5.8).  This 6 bp deletion was also observed in the USA R.(B) microplus 

sample HQ014395 (Freeman et al., 2010). 

 

Figure 5.8: Position of deletions for six R.(B) microplus sequences, indicated by the red 
box. 

The aligned sequences showed a large amount of variation, with approximately 

350 different SNPs.  There was evidence of alternative splicing in the Mozambique 

strain (EU191620) from 554-619.  Insertion/deletions (indels) were also observed 

for a number of R.(B) annulatus (EU979530, HQ014401 and HQ014400) and 

North American R.(B) microplus (HQ014399 and HQ014395) from 556-561 (figure 

5.8).  There was also a large deletion between 310 and 375 observed in one of the 

Mozambique sequences EU191620 (Canales et al., 2008). 
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PCR Optimization using Qiagen HotStar Taq plus 

The first stage in end-point polymerase chain reaction (PCR) optimization required 

the testing of the newly designed Bm86 primers on all three species (R.(B) 

microplus cell line BME/CTVM2, R.(B) annulatus and R.(B) decoloratus both 

extracted from own samples)  

The Bm86 set of primers that was found to work best was Bm86 primer set 1 

(Bm86-F1 + Bm86-R1a) which produced a strong single band for R.(B) microplus 

at all three annealing temperature when master mix 1 was used (figure 5.9).  

Bm86 primer set 2 (Bm86-F2a/ Bm86-F2b + Bm86-R2) was found to produce a 

strong band for R.(B) microplus at 57ºC when master mix 2 was used.  When 

master mix 1 was used, multiple bands were present.  From this it was decided 

that the Bm86 primer set 1 would be used on the main DNA plates. 

 

Figure 5.9: Gel photo showing the results obtained from first round of PCR optimization for 
both Bm86 and COX1.  ‘MM 1’ = master mix 1, ‘MM2’ = master mix 2, ‘Bm86 1’ = Primer set 
F1 +R1a and ‘Bm86 2’ = Primer set F2a/F2b + R2. 
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The Bm86 primer set (Bm86-F1 + Bm86-R1a) was repeated using master mix 1 

with an annealing temperature of 52ºC in an attempt to obtain bands for R.(B) 

annulatus and R.(B) decoloratus (figure 5.10). 

 

Figure 5.10: Gel photo showing the results obtained from second round of PCR optimization 
for both Bm86 (primer set F1 +R1a) and COX1.  

For this Bm86 primer set, it was found that the lower annealing temperature was 

too low and resulted in multiple bands for R.(B) decoloratus and R.(B) microplus 

(figure 5.10).   

PCR Optimisation using Phusion Green Hot Start II  

It was then decided to use a Thermo scientific Phusion Green Hot Start II High-

Fidelity DNA Polymerase kit master mix and protocol.  The kit did not require 

added MgCl2, was designed to overcome PCR inhibition problems caused by 

ethanol and required a shorter PCR cycle time, as well as already having dye in 

the master mix which would require no additional dye to run a gel.  



 

173 
 

 

Figure 5.11: Gel photo showing the results obtained from third round of PCR optimization 
for both Bm86 primer sets; F1 +R1a and F2a/F2b +R2. (‘HF’ = 5X Phusion Green buffer HF 
and ‘GC’ = 5X Phusion Green buffer GC).  Results are set in pairs where the first well 
contains R. (B) microplus (cell line CTVM 2) with tested buffer and second well contains 
negative control. 

Both Bm86 primer sets yielded multiple bands when the Phusion kit was used, 

regardless of buffer and annealing temperature used (figure 5.11).  The Qiagen kit 

was re-tested with R.(B) microplus (cell line CTVM2), R.(B) microplus (cell line 

BME/CTVM 5) and two extracted samples; OZ (Australia) and Mex (Mexico).  

Results from that PCR (figure 5.12) showed that the Qiagen kit, when used with an 

annealing temperature of 55 ºC, yielded strong single bands at the correct length 

for the two R.(B) microplus cell lines; however, no bands were seen for the 

Australian or Mexican samples.  

 

Figure 5.12: Gel photo showing the results obtained from fourth round of PCR optimization 
for Bm86 primer set F1 +R1a (‘-‘ = negative control, ‘2’ = contains R. (B) microplus cell line 
CTVM 2 of which there are two and ‘5’ = contains R. (B) microplus cell line CTVM 5). 
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The final step in optimizing the Bm86 protocol was to attempt the PCR using two 

primer sets used in published work (table 5.4) using both the Qiagen and Phusion 

protocols described previously.   

The Phusion kit once again produced multiple bands; however, no bands were 

observed when the Qiagen kit was used (figure 5.13).  

 

Figure 5.13: Gel photo showing the results obtained from fifth round of PCR optimization for 
Bm86 primer sets F3 +R5 and IntFor + IntRev. ‘-‘ = negative control, ‘2’ = contains R. (B) 
microplus cell line CTVM 2 , ‘5’ = contains R. (B) microplus cell line CTVM 5, ‘P’ = Phusion 
protocol and master mix used and ‘Q’ = Qiagen protocol and master mix used. 

Primer set Bm86-F1 + Bm86-R1a proved to be the most consistent at producing 

bands when used with the Qiagen kit at an annealing temperature of 55ºC, 

however when the primer set was used on the main DNA plates it failed with 

almost all the extracted DNA.  It was concluded that the method by which the ticks 

were preserved resulted in some degradation in the genomic DNA, which is 

supported by the low-quality scores observed from the NanoDrop readings 

(chapter 2).   
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Discussion   

Our attempts to obtain Bm86 sequence data from gDNA extracted from ethanol 

preserved ticks collected for this study were not successful. This was likely a result 

of inadequate DNA quality. However, an analysis of published cDNA sequences 

revealed a large number of polymorphisms which suggests that the primer sets 

designed in this study were not suitable. 

For the published sequence data, grouping of Bm86 from R.(B) microplus 

according to geographical location was only evident for Thailand (figure 5.5).  

There was also a large amount of sequence variation between the Thai samples, 

as reported previously (Kaewmongkol et al., 2015).  R.(B) decoloratus and R. 

appendiculatus demonstrated distinct groups from R.(B) microplus and R.(B) 

annulatus.  R.(B) annulatus also formed a distinct group with 87% Bootstrap 

support, but was also found to group closely with the Thai samples.  Again, this 

finding was previously reported (Kaewmongkol et al., 2015).    

The amount of variation observed in the rest of the R.(B) microplus specimens 

indicates that the gene is highly polymorphic, and the Australian isolate is 

divergent from the rest of the samples (>50% Bootstrap support).  Whether this 

divergence is enough to support the findings of García-García et al., 1999; 2000 

within which it was proposed that a vaccine derived from Australian ticks lacked 

efficacy on some South American tick populations is not yet convincing.  The fact 

that there is evidence from previous studies indicating a similar efficacy of the 

Australian derived Bm86 vaccine on other species including R.(B) decoloratus, H. 

anatolicum anatolicum and H. dromedarii (de Vos et al., 2001), also disaudes the 

concept that efficacy is linked to sequence variation based upon species.   

Previous work demonstrating the phylogenetic relationships between species and 

region grossly shows concensus with the trees created in this study (Nijhof et al., 

2010).  These studies indicated that Bm86 grouped mainly based on species 

(R.(B) microplus, R.(B) annulatus, R.(B) decoloratus and R. appendiculatus) but 

regional variation was not obvious (Nijhof et al., 2010).  Some regional variation 

was observed with Mexican and Brazilian samples grouping away from 

Mozambique and Australian samples with 96% Bootstrap support.  This was again 

similar to what was found in this study (figure 5.6),  however the work done here 
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included many more sequences, acting to shed light on the extent of variation in 

the Bm86 gene.  The Indian Chennai isolate was previously found to have 97% 

homology with the reference Australian strain (Anbarasi et al., 2014), however 

when aligned with all the sequences, it was found to only be partial and was 

omitted.  Polymorphisms have also been documented in South American strain of 

R.(B) microplus (Sossai et al., 2005).  In this study, it was found that Alegre and 

Betim strains were the most divergent from both the Bm86 reference and Bm95.  

In this study, Alegre and Betim strains diverged with only 52% Bootstrap support 

but with such a low level of support were considered unresolved.  It is clear there 

is still a large amount of information on the Bm86 gene still lacking in annotation.  

Although in this study we have attempted to scratch the surface, it is clear that 

there is a need for further investigation into the variation of Bm86 both regionally 

within countries and between geographically separate locations.   

There are a number of different primers that have been used in the Bm86 literature 

(appendix table A3); however, these have all been used on cDNA.  In this study, 

these primers along with a set that were designed in-house were tested on 

genomic DNA extracted from tick samples and from established tick cell lines.   

With regard to the extracted tick DNA, all primer sets failed and it was concluded 

to be due to the quality of the DNA extracted, however without knowledge of the 

actual gene structure of Bm86, it is difficult to design primers suitable for this 

study.  The primers were also used on six R.(B) microplus tick cell lines from the 

Tick Cell Biobank at The Pirbright Institute, in another project within the group.  It 

was found that for two of the cell lines (BME/CTVM23 and BME/CTVM30) (table 

5.1) sequencing revealed further nucleotide variation, despite only one band 

observed on the gel (figure 5.14).  This could have been caused by the fact that 

the cell lines are composed of multiple individuals, and as previous studies have 

indicated (Kaewmongkol et al., 2015), there can be variation in the Bm86 

sequence from ticks of the same species from the same geographical location.  
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Figure 5.14: Evidence of multiple sequences taken from a section of the Bm86 gene for tick cell lines CTVM23 and CTVM30 shown by red boxes from 
forward primer (top) and reverse primer (bottom).
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The sequenced data from the cell lines was aligned with the published Bm86 

sequences (appendix table A3).  As with the published data, a large number of 

SNPs and indels were observed in the tick cell line sequences (figure 5.15).  Cell 

line BME/CTVM2 appeared to only align in partial segments.  This could be due to 

the lack of information regarding the size and arrangement of the Bm86 gene, 

particularly the number and size of the exons and introns present in the gene.  

This is important for designing primers, as with unknown intron/exon length it is 

impossible to know what size product will be amplified and if it will be specific 

enough to produce insight into the Bm86 gene.  It is also potentially a transcript 

variant that hasn’t previously been isolated; however, this is just a speculation 

without further annotation available on the gene. 
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Figure 5.15: Example of the amount of variation observed in the cell lines CTVM2, CTVM5 and CTVM6.  SNPs highlighted in blue. 
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Conclusion 

The aim of this chapter was to describe variation in the Bm86 gene, and determine 

whether the variation is in any way partitioned according to species or is 

independent of it.  As expected, it mostly seems to be independent of the 

proposed species and regional classification, particularly with regard to the 

proposed R.(B) australis vs R.(B) microplus. There are researchers who are 

claiming that the Australian strain derived vaccine does not work on South 

American ticks because they are different species and have sequence differences. 

The work done in this study shows that the Bm86 gene is highly polymorphic, is 

probably expressed as different isoforms, and previous studies on vaccine efficacy 

show results that cannot possibly be explained by simple polymorphisms in the 

cDNA sequences that have been published so far. While there are many 

alternative explanations for these results, they suggest a hypothesis that the 

apparent high degree of intronic variation, particularly seen in the BME/CTVM cell 

cultures, might be relatively more important with respect to the expression of the 

gene and likely vaccine efficacy than variation in the sequence.  It is clear that the 

Bm86 story is a complicated one with evidence of indels, transcript variants and 

alternative splicing to name but a few problems, the overall issue with working on 

this gene is the lack of knowledge of the actual gene structure.  Without knowing 

the size of the gene itself, let alone the position/size of its introns and exons, the 

designing of optimal primers becomes impossible.  For work to progress on this 

gene it needs to be understood in better depth so that all the issues discussed 

above can be resolved.



 

181 
 

CHAPTER 6 

Variation in genomic nucleotide sequence of the βAOR 
gene in R.(B) microplus ticks from multiple geographical 
locations 

Introduction 

R.(B) microplus is a tick that has major economic impact on the cattle industry, 

infecting an estimated 75% of cattle worldwide (Sales-Junior et al., 2005).  Due to 

the combination of the one-host cycle and short generation interval of 

approximately two months under favourable environmental and climatic conditions, 

R.(B) microplus has become resistant to acaricides at a rapid rate.  Rhipicephalus 

(Boophilus) microplus has become resistant to a large number of currently used 

acaricides across the world (table 1.5), with some strains having developed 

resistance to all commonly used acaricides (Reid, 1989).  Acaricide resistance has 

evolved via several mechanisms, the most common of which is modification of the 

target site and metabolic resistance (Abbas et al., 2014, Guerrero et al., 2014, 

Guerrero et al., 2012).   

G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that 

convert signals received in the extracellular domain into physiological responses in 

the cellular domain (Broeck, 2001).  In terms of arthropods, the GPCR family is 

quite extensive with around 270 different types having been described in both 

Drosophila melanogaster and Anopheles gambiae genomic research (Brody and 

Cravchik, 2000, Hill et al., 2002).  Regardless of the diversity of type and function, 

the structure of GPCRs is relatively uniform and heptahelical, with 7 trans-

membrane domains (Broeck, 2001, Probst et al., 1992, Bockaert and Pin, 1999).  

The extracellular domain contains an N-terminus, followed by seven 

transmembrane (TM) α-helices (TM1-TM7) connected by three intracellular (IL1-

IL3) and three extracellular loops (EL1-EL3), ending with a C-terminus in the 

intracellular domain (Yeagle and Albert, 2007). The tertiary structure folds in such 

a way to resemble a barrel, causing the seven transmembrane helices within the 

plasma membrane to form a cavity, which acts as a ligand-binding domain (Yeagle 

and Albert, 2007).  Ligand binding at the extracellular side of the receptor leads to 

conformational changes in the cytoplasmic side (Warne et al., 2011).  The 
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transmembrane domain (TM) 5 and 6 move out, further into the cytoplasm.  Ligand 

binding has been proposed to create an active receptor conformation that interacts 

with the heterotrimeric G-protein (made up of alpha, beta and gamma subunits) to 

form a ternary complex of agonist, receptor, and G-protein (Broeck, 2001).  This 

then triggers a series of events; GTP is exchanged for GDP on the G-protein alpha 

subunit (Strange, 1999); the G-protein alpha subunit GTP and G-protein beta 

subunit then dissociate from the receptor; either or both subunits can then go on to 

regulate the activity of effector proteins (e.g. enzymes) within the cell.  Re-

association of the subunits occurs when GDP hydrolyses back into GTP (Broeck, 

2001).   

Previous studies in insects have demonstrated that octopamine receptors are the 

target for formamidine-based acaricides, such as amitraz (Baxter and Barker, 

1999b, Hollingworth and Lund, 1982).  In insects, octopamine receptors can be 

classified into three main types; tyraminergic, alpha-adrenergic-like and beta-

adrenergic-like (Evans and Maqueira, 2005).  Corley et al (2012) identified 8 

distinct GPCR from R.(B) microplus using a targeted, degenerate primer PCR 

approach and presented a phylogenetic analysis of the family of genes. They 

argued that the product of βAOR was the most likely target of amitraz. Subsequent 

work (Corley et al., 2013) showed that the entire coding sequence lay within a 

single exon of 1644 bp, and identified two SNPs, both non-synonymous, within the 

gene. One of these SNPs (A181T) was tightly associated with resistance to 

amitraz in an extended field trial. The second SNP (T185C) was from a population 

of unknown resistance status. Further diversity in this gene was demonstrated by 

Koh-Tan et al. (2016), using in vitro cell cultures of ticks. In that study, a 36 bp 

insertion was identified at position 190 in a cell culture from a resistant isolate of 

ticks from Latin America. The existance of a new, related gene was also inferred 

from consistent multiple primer binding sites and ambiguous sequence 

information.   

The overall aim of this study was to quantify regional and taxonomic variation in 

the βAOR gene among R.(B) microplus ticks from multiple geographical locations 

(table 6.1).  We also included the North American R.(B) annulatus and South 

African R.(B) decoloratus samples by way of comparison. 
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Materials and methods 

Tick specimens and their acaricide resistance status 

220 samples were used in total, comprising 180 putative R.(B) microplus from 9 

locations table 6.1), 20 R.(B) decoloratus from South Africa and 20 R.(B) 

annulatus from Texas.  All specimens had variable resistance status, in the case 

of the Australian, Thai and South African ticks, specimens were collected wild from 

the the field and so resistance status was unknown.  The rest of the specimens 

were selected strains from research groups consisting of ticks direct from the field 

and maintained in a laboratory environment, as well as lab colony ticks that have 

been selected and maintained for their resistance status (table 6.1).  

  



 

184 
 

Table 6.1: Resistance status of ticks used.  For the Australian, Thai and South African ticks 
the resistance status is unknown as these species were taken from wild populations. 

Location/strain Abbreviation 

used 

Species Resistance status 

Australia OZ R.(B) australis Unknown 

Thailand T R.(B) microplus Unknown 

South Africa AF R.(B) microplus Unknown 

DM R.(B) 

decoloratus 

Unknown 

North America  RA R.(B) annulatus Susceptible  

Central America/ 

Yucatan  

AY R.(B) microplus Strong resistance: 

Pyrethroids and Ivermectin. 

Weak resistance: Amitraz 

and Organophosphates.  

North America/ 

Deutch 

AD R.(B) microplus Susceptible 

South America/ 

Sao Gabriel 

SG R.(B) microplus Pyrethroid, 

Organophosphates and 

Amitraz 

South America/ 

Mozo 

MO R.(B) microplus Susceptible 

South America/ 

Juarez 

JU R.(B) microplus Strong resistance: All 

compounds 

Fluazuron susceptible  

South America/ 

Jaguar 

JA R.(B) microplus Strong resistance: All 

compounds 
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Primers  

Primers used in this study were those developed by (Koh-Tan et al., 2016) (table  

6.2). These primers were designed to produce an amplicon of 183 bp. 

 

Table 6.2: Sequence length and Oligo name of βAOR primers (Koh-Tan et al., 2016). 

Oligo Name Sequence (5’-3’) 

βAOR For GAAATCTGACGGACGAGGAA  

(20) 

βAOR Rev GCGACACGATGAAGTAGTTG  

(20) 

 

PCR  

The first stage in end-point polymerase chain reaction (PCR) was carried out using 

the Qiagen HotStar Taq plus DNA polymerase kit.  A standard master mix of 

ddH2O 15 μl, Buffer 10x 2.5 μl, MgCl2 1.25 μl, dNTPs (10 mM) 0.5 μl, forward 

primer 0.25 μl, reverse primer 0.25 μl, HotStar Taq 0.25 μl was used.  PCR 

conditions were: 95 °C for 5 minutes; 35 cycles of 95 °C for 1 minute, annealing 

temperature 55°C for 1 minute and 72 °C for 1 minute; and final extension at 60 °C 

for 30 minutes.  A 1.5% agarose gel was run with 5 μl of PCR product from each 

reaction at 140 volts for 40 minutes to check results after each DNA plate was run.  

PCR products were then cleaned using the AMPure XP kit before being used in 

the sequencing reaction.   

Sequencing 

Plates containing cleaned PCR product were set up for the sequencing reaction 

using Applied Biosystems kit and protocol.  They were then analyzed using the 

Applied Biosystems 3130XL Genetic Analyzer.  All sequences analysis was done 

using CLC Genomics Workbench 7.5.2 and all phylogenetic trees were created 

using MEGA 6.06 software using construct/test neighbor joining tree setting, 

including the published sequences (Corley et al., 2013, Koh-Tan et al., 2016). 
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Statistics and other analysis 

All statistics were performed using Minitab 17 Statistical software.  A chi-square 

test was run to determine the frequency of mutations in the susceptible and 

resistant populations.  Membrane-spanning domains were predicted using 

TMHMM Server at the Center for Biological Sequence Analysis, Technical 

University of Denmark (http://www.cbs.dtu.dk/services/TMHMM/).  The predicted 

2-D structure of the βAOR protein and any deviation due to non-synonymous 

SNPs was created by TMRPres2D (Spyropoulos et al., 2004). 

Results 

βAOR was successfully amplified from 85 samples, spanning all the species (R.(B) 

microplus, R.(B) annulatus and R.(B) decoloratus), across the geographical 

regions (table 6.1).  The resulting amplicon was 183 bp, however these sequences 

were trimmed to 177 bp as the beginning and end of the sequences were poorly 

amplified.  Eight distinct SNPs were identified in the samples that were sequenced 

in this study. Results showed no grouping of βAOR sequence according to 

location or species (figure 6.1).  However, a number of different SNPs can be 

observed, both previously published and new.  The majority of samples aligned 

with the genomic reference strain for βAOR (JN974909) (Corley et al., 2013) and 

so individual samples were collapsed into region (i.e. more than one ‘SG’ sample 

became Sao Gabriel).  Most SNPs were observed in the resistant South American 

populations of Jaguar, Juarez and Sao Gabriel.  Two individuals from Jaguar were 

found to share a SNP at position T185C with an Australian isolate from a 

population of unknown resistance status (Corley et al., 2013) (figure 6.1). Three 

ticks from Jaguar and Juarez were also found to share a SNP at position A181T 

with another Australian isolate (Corley et al., 2013).   
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Figure 6.1: Construct/test neighbor joining phylogenetic tree inferred from βAOR sequences 
generated in this study and published sequences (Koh-Tan et al., 2016, Corley et al., 2013). 
Tree is unrooted. AD: North American (Deutch) R.(B) microplus, SG: South American (Sao 
Gabriel) R.(B) microplus, JA: South American (Jaguar) R.(B) microplus, RA: North American 
R.(B) annulatus, JU: South American (Juarez) R.(B) microplus and DM: South African R.(B) 
decoloratus. 
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In total eight different single nucleotide polymorphisms (SNPs) were found in the 

populations tested (table 6.3). A181T, T185C and A225G were also found in 

previous studies (Corley et al., 2013, Koh-Tan et al., 2016).  A225G was 

previously found in R. appendiculatus, R. evertsi and R. sanguineus and this is the 

first time it has been reported in R.(B) decoloratus.  T123C, C126T and A225G 

were found to be synonymous.  Despite the 36 bp insertion in the tick cell line 

BME/CTVM6 (Koh-Tan et al., 2016) it was still found to group with the rest of the 

cell lines, as well as the majority of the sequences generated in this study 

including reference sequence (JN974909). 

Table 6.3: Identified SNPs from βAOR sequences. Position from start codon, base pair 
substitution and consequence are given. 

Position from 

coding sequence 

start codon 

SNP Amino Acid Sample 

123 T → C Synonymous  DM11, DM20 

126 C → T Synonymous DM11, DM20 

181 A → T I → F JA17, JA4, JU17, 

JU18, JU12, JA9, 

DM11, DM20, 

JA11, JA8 

185 T → C I → T SG1, SG4, JA11, 

JA8 

225 A → G Synonymous DM11, DM20 

263 A → C Y → S JA13, SG3, JA6, 

JA2, RA1, SG2, 

JA18, SG7, SG1 

264 C → A Y → S JA13, SG3, JA6, 

JA2, RA1, SG2, 

JA18, SG7, SG1 

265 T → A F → I AD13 

 

The SNPs at positions A263C and C264A are both predicted to, cause a tyrosine 

to serine mutation (table 6.3).  T265A caused a change from phenylalanine to 

isoleucine.  These substitutions changed the characteristics of the amino acid in 
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the chain, from an aromatic compound to a hydroxylic compound in the case of 

serine and an aliphatic compound in the case of isoleucine.   

The 2-dimentional structure of the βAOR protein was predicted for the reference 

protein and then compared with that of the protein with amino acid substitution 

(figure 6.2-6.4). 

 

Figure 6.2: Predicted 2-D structure of the βAOR protein created using TMRPres2D 
(Spyropoulos et al., 2004). 
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It was found that A263C and C264A caused the same amino acid substitution, 

located directly on the first Intracellular loop (IL1) within the cytoplasmic domain, 

indicated by the red arrow (figure 6.3).   

 

Figure 6.3: Predicted 2-D structure of the βAOR protein showing the consequence for 
A263C and C264A, highlighted in red box, indicated by the red arrow created using 
TMRPres2D (Spyropoulos et al., 2004). 
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T265A was found to cause an amino acid substitution directly next to A263C and 

C264A, it too was located directly on IL1, indicated by the red arrow (figure 6.4).   

 

Figure 6.4: Predicted 2-D structure of the βAOR protein showing the consequence for 
T265A, highlighted in red box, indicated by the red arrow created using TMRPres2D 
(Spyropoulos et al., 2004). 

Any shape change in the protein structure was not observed by either substitution 

in the 2-D images created (figure 6.3 and 6.4).  This does not discredit the 

potential for shape change caused by the SNPs as what is presented here is a 

prediction in one plain, shape change may be occurring in a different field of view. 

A chi-square test was performed to determine the frequency of mutations in the 

susceptible and resistant populations, excluding populations of unknown acaricide 

resistance status (table 6.4).  Results showed that populations that are resistant 

are highly significantly likely to have one of the SNPs.   
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Table 6.4: Chi-square test results indicating the frequency of mutations in the susceptible 
and resistant populations. 

Pearson Chi-Square DF P-value 

22.426 1 0.000 

Likelihood ratio Ch-Square DF P-value 

25.227 1 0.000 

 

Discussion 

Eight putative SNPs were found, three of which had been previously described 

(Corley et al., 2013; Koh Tan et al., 2016) but there was no grouping of 

polymorphisms according to either geographic or proposed taxonomic origin.  

A225G was previously described by Koh Tan et al., 2016 in other species of 

Rhipicephalus (R. appendiculatus, R. evertsi and R. sanguineus) and had not 

been previously described in R.(B) decoloratus.  Two other SNPs; A181T and 

T185C had been previously described by Corley et al., 2013 in Australian 

populations of R.(B) microplus, one of which was known to be resistant to amitraz 

(A181T) and one of which came from a region in which resistance to amitraz is 

common (T185C).  In this study A181T and T185C were reported in two R.(B) 

decoloratus individuals as well as ticks from the South American isolates Jaguar, 

Juarez and Sao Gabriel, all of which are known to be resistant populations.   

The other five SNPs found had not been previously described.  Two of the SNPs 

were synonymous and thus had no translational effect on the protein structure of 

βAOR.  The remaining three SNPs were found to have consequence on the amino 

acid structure.  A263C and C264A both changed tyrosine to serine and T265A 

changed phenylalanine to isoleucine.  When the 2-D structure of the βAOR protein 

was predicted for these SNPs it was found that they all caused a direct change to 

IL1 within the cytoplasmic domain of βAOR.  Previous predictions of the 2-D 

structure of A225G found the location to be within the extracellular domain (Koh-

Tan et al., 2016).  The 2-D structure of the βAOR protein indicating the position of 

the 36 bp insertion, found it introduced 12 amino acids into the first 

transmembrane, thus extending the extracellular domain (Koh-Tan et al., 2016).  If 

these changes are considered with regard to the function of GPCR, the extension 

of the extracellular domain was hypothesized to result in an obstruction of binding 

sites to formamidines and thus potentially confer resistance to them (Koh-Tan et 
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al., 2016).  It has been reported that small changes in primary structure can have a 

large impact on the function of GPCRs, even when the change in structure occurs 

in areas that are not directly involved in the G-protein interaction (Broeck, 2001).  

Based on this it is not unreasonable to hypothesize that change in the primary 

structure observed in this study may change the shape of IL1 substantially enough 

to affect the function of this receptor.  Whether this translates into Amitraz 

resistance directly, is unlikely, however it is potentially a step in a complicated 

process to developing Amitraz resistance in these ticks.  Populations that are 

known to be resistant to Amitraz are significantly more likely to have one of these 

SNPs regardless of geographical location, which further supports the role of these 

SNPs in developing Amitraz resistance.  This gene could be undergoing 

epigenetic selection pressures, however the question would be is it heritable?  

Based on the evidence gathered here, the suggestion is yes, as the development 

of acaricide resistance is occurring in a population.   

The finding of A181T and T185C was novel, and its presence in a number of 

different populations is consistent with positive selection.  To detect whether this is 

the case a number of different statistical tests could be used.  Three main 

approaches could be used, either using divergence data, a combination of 

divergence and polymorphism data or by using polymorphism data (Zeng et al., 

2006).  Using the data genetrated in this study, a haploid test or a site by site 

frequency spectrum test could be used.  A hapoloid test could be used to verify the 

neutral theory of molecular evolution, which predicts that genomic regions evolving 

at high rates will also have high levels of polymorphism within a species (Hudson 

et al., 1987) and thus tests wether or not the mutations are effected by positive 

selection.  The problem with this approach is that all mutations are assumed to be 

selectively neutral, which in the case of βAOR is not a suitable assumption to 

make as it is unlikely to be undergoing genetic drift.  A site by site frequency 

spectrum test looks at the distribution of the proportion of regions where the 

mutation is at frequency ‘x’ (Zeng et al., 2006).  This approach assumes that there 

is no selection, accounts for the possibility for different sites of mutation and can 

be split into three main variant classes; low, intermediate and high into order to 

give bigger picture on the arrangement of polymorphisms (Zeng et al., 2006).  For 

this test to be conducted, more samples would be needed than were generated in 

this study. 



 

194 
 

Conclusion 

Overall it is clear that βAOR does not group based on geographic location or 

putative species. The shared SNPs between the Australian population and South 

American isolates support the evidence of the role of βAOR in Amitraz resistance, 

especially with the same SNP (A181T and T185C) arising differently at different 

sites within South America.  The three novel SNPs that were reported also 

indicates a more direct role of βAOR in resistance as in previous studies the 

mutations reported were located in the extracellular domain.  With amino acid 

substitutions occurring on the G-protein binding sites, it is possible to hypothesize 

that these mutations may cause conformational changes to the intracellular loop 

and so affect the way it interacts with the G-proteins. 
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CHAPTER 7 

General discussion and conclusion 

Summary introduction 

The recently flagged changes in the taxonomic status of R.(B) microplus have 

assumed considerable practical importance. It has become common for scientists 

to use distinct species status of R.(B) microplus and R.(B) australis as an 

explanation for differences in the results among studies conducted in different 

regions on a tick that was previously considered to be a single species (Baron et 

al., 2015). Some have also begun to query the validity of reports that do not 

specify whether the subject is R.(B) microplus or R.(B) australis (e.g. 

Kaewmongkol et al. 2015). The belief that being classified as a distinct species 

should have any impact on the mechanisms of drug resistance or efficacy of a 

vaccine seems unreasonable, unless the taxa were genetically much more distant, 

than one would expect given their obvious phenotypic similarities. A generic 

expectation that the subject of a research report should be unequivocally defined 

as R.(B) microplus or R.(B) australis also presents a challenge to researchers if 

there is no effective, non-molecular means of definitive differentiation.   

This project set out to apply genetic and morphological studies of tick populations 

from around the world to provide a phylogenetic analysis of R.(B) microplus and its 

nearest relations.  We look to propose a credible evolutionary framework and 

determine the extent to which genetic divergence within the former species, 

among geographically distinct populations, is likely to lead to functional 

consequences for vaccine and acaricide development. 

Two main approaches to the quantification and analysis of the variation within 

Rhipicephalus (Boophilus) clade were taken.  The morphology study consisted of 

three main analyses; scoring based on published criteria, morphometrics and 

geometric morphometrics.  The molecular study consisted of investigating the 

amount of variation for three genes of interest, the mitochondrial gene; COX1 and 

two nuclear functional genes; Bm86 the only gene currently used as a target for 

vaccines and βAOR, a gene with relevance to acaricide resistance.  



 

196 
 

General Discussion 

Using morphological and phylogenetic analysis to resolve Rhipicephalus 
(Boophilus) microplus based on geographical location 

Differentiation between the adult members of the Boophilid clade, based on a 

morphological scoring system was set up as four two-way analyses; R.(B) 

australis versus R.(B) microplus, R.(B) microplus versus R.(B) annulatus, R.(B) 

microplus versus R.(B) decoloratus and R.(B) annulatus versus R.(B) decoloratus.  

The morphological criteria assigned to the R.(B) australis versus R.(B) microplus 

analysis was based upon the published re-description outlined by Estrada-Peña et 

al. (2012).  All subsequent analyses were based on morphological criteria, as 

described in Walker et al., 2003.  Each morphological feature assessed was 

assigned a score of either 0 or 1, representing whether the feature was absent or 

present respectively.  This preliminary study was designed to set the framework 

for the subsequent analyses in chapters 3-6, and enabled initial verification of 

specimen identification, which was important for the specimens that were collected 

from the field.   

Results indicated that male and female R.(B) annulatus and R.(B) decoloratus are 

easily distinguished from one another, as are males and females of R.(B) 

microplus and R.(B) decoloratus.  R.(B) microplus and R.(B) annulatus were also 

consistently identified for females correctly, however in the case of three R.(B) 

microplus males, the caudal appendage was absent despite having a long spur on 

coxa I, resulting in a score indicating a mixture of features.  These findings were 

contradictory to previous reports that stated that due to the similarities in 

morphology observed between the Boophilid species and variability observed 

within species, differentiation was cumbersome and unreliable (Uilenburg, 1962, 

Lempereur et al., 2010).   

R.(B) australis and R.(B) microplus were not clearly differentiated for either males 

or females.  Among females, the Australian population was assigned almost 

evenly to R.(B) australis and R.(B) microplus, with 8 individuals showing a mixture 

of features.  However, only Mozo was assigned solely to R.(B) microplus, the rest 

of the regions had ticks with mixed features and 6 ticks in South Africa, as well as 

4 in Juarez were scored as R.(B) australis.  Most male ticks, however, were 

assigned as either R.(B) australis or with a mixture of both species features, with a 
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surprisingly small number scoring as R.(B) microplus, for all geographical 

locations.   

Barker and Walker (2014) stated that they could not unambiguously differentiate 

between R.(B) microplus, R.(B) australis and R.(B) annulatus using morphology 

independent of geography.  However, the currently proposed distribution of R.(B) 

australis indicates that it is not solely an Australian tick.  Populations of R.(B) 

microplus from Cambodia, Philippines, Indonesia, New Caledonia, Borneo, New 

Guinea, Tahiti and parts of Southeast Asia are all now proposed to be reinstated 

to R.(B) australis (Ali et al., 2016).  This means that potentially in regions such as 

Thailand, R.(B) australis may occur alongside populations of R.(B) microplus.  

With populations of both species living within the same region it is possible that 

hybridization may be the reason for the mixture of features observed.  However, 

this does not seem to be a reasonable explanation for the mixture of 

morphological features observed in some of the South American populations, 

especially considering that they are not from the field.  The finding that proposed 

R.(B) australis specific features were found in South American populations, 

undermines the proposition that R.(B) australis is a morphologically distinct 

species from R.(B) microplus (Ali et al., 2016, Estrada-Peña et al., 2012).   

The morphometric study was designed to expand the level of detail with regard to 

differentiation of the Boophilid ticks, by quantifying the phenotypic variation 

previously observed between R.(B) microplus, R.(B) australis, R.(B) annulatus and 

R.(B) decoloratus.  It was also designed to test the criteria outlined by Estrada-

Peña et al. (2012) on multiple populations of R.(B) microplus.  Additional features 

were explored as potential points of differentiation between the populations of 

R.(B) microplus and R.(B) australis.  The Fisher Pairwise comparison results for 

larvae showed Australian ticks trended towards a smaller body length, idiosoma 

length and scutum width, confirming the reported smaller body length and 

narrower scutum width proposed in the re-description of R.(B) australis (Estrada-

Peña et al., 2012).  For the rest of the morphological features, there was no 

obvious trend between the different populations/species and the PCA didn’t yield 

any conclusive evidence that R.(B) australis is a separate species from R.(B) 

microplus, in fact there was no obvious grouping of species at all, even for R.(B) 

decoloratus and R.(B) annulatus.   
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The Fisher Pairwise comparison and PCA for males showed that Australian ticks 

were significantly different.  No patterns were seen in the differentiation based on 

the other species.  Based on the Fisher Pairwise comparison R.(B) decoloratus 

females tended to be smaller for most of the morphological features tested and 

R.(B) annulatus tended to be larger, with no differences observed between R.(B) 

microplus populations and R.(B) australis. However, this was not supported by the 

PCA, as grouping of Australian ticks was observed.  The ambiguity and indeed 

variability observed in the morphological features tested here substantiate the 

claims that differentiation between Boophilid species is inconsistent (Barker and 

Walker et al., 2003, Uilenburg, 1962, Lempereur et al., 2010).   

The third part of this study intended to take a novel approach towards 

understanding tick morphology. Geometric morphometrics is the quantitative 

representation of shape using geometric coordinates instead of measurements.  It 

aims to give the shape of the feature independent of size and so is useful for 

eliminating physiological changes.  This could potentially be useful as it eliminates 

the bias of size, which can occur as a result of feeding.  Previous studies that have 

used this technique and have found it to be a powerful approach to observing 

differences in morphology between species (Pretorius and Clarke, 2000, Pretorius 

and Clarke, 2001, Clarke and Pretorius, 2005).   

Despite having a difference in scutum length, the overall scutal shape for larvae 

did not differ significantly based on species or population.  Based on the 

Mahalanobis distance among groups however, Uruguay (Mozo) and Mexico 

(Yucatan) had the most divergent scutum shape (2.13, p=<0.001), whereas South 

African and Australian ticks had the most similarly shaped scutum (0.516, 

p=<0.001).  Grouping of males for species and location was highly variable across 

the features tested.  Overall R.(B) decoloratus had the most differently shaped 

morphology, particularly for adanal shield.  Some grouping was also seen for R.(B) 

annulatus, mainly for conscutum shape, which can be explained by their lack of 

caudal appendage, although the lack of coxal spurs also resulted in a difference 

for coxa I shape.  Grouping of R.(B) decoloratus and R.(B) annulatus was also 

observed in shape of the basis capituli and coxa I shape, respectively for females, 

but grouping based on location was not clear.  Porose shape was found to differ in 

shape across the species/locations, in particular R.(B) decoloratus and R.(B) 
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annulatus grouped away from R.(B) microplus and R.(B) australis.  These findings 

indicate that the geometric morphometric analysis did not clearly and consistently 

enable the differentiation of any of the sample populations of ticks in this study. 

Each feature differed among samples in different sets of pairwise relationships. It’s 

success in previous studies (Pretorius and Clarke, 2000, Pretorius and Clarke, 

2001, Clarke and Pretorius, 2005) indicated its potential as an approach, however 

based on the findings here, the lack of consistent morphological difference 

previously observed for the Boophilid ticks is once again confirmed (Barker and 

Walker et al., 2003, Uilenburg, 1962, Lempereur et al., 2010).  With this three-way 

approach to understanding the morphological differences of the Boophilid ticks 

covered in this work we can draw the following conclusions.  R.(B) australis and 

R.(B) microplus larvae and males are distinguishable from one another with regard 

to size, and the differences observed here are supportive of the previous findings 

of Estrada-Peña et al. (2012).  The ventral spur on palp article i on males, which 

was reported by Estrada-Peña et al. (2012) is present, but inconsistently, and is 

not limited to the Australian population.  Females are indistinguishable from one 

another based on setae patterns, linear measurements and shape.  This 

inconsistency in the resolution of the taxonomic status of R.(B) microplus confirms 

the views of Barker and Walker (2014), however we found no evidence that the 

geographical location impacts upon the ability to differentiate between R.(B) 

microplus and R.(B) australis. 

Within the last 25 years the genus Rhipicephalus has undergone a degree of re-

organization. The common evolutionary ancestor for this genus was thought to be 

unique to the Rhipicephalus genus, however with the development of molecular 

techniques it has been found that some Rhipicephaline species are more related 

to Boophilid species (Murrell and Barker, 2003b).  The strongest support for the 

paraphyly of Rhipicephalus and Boophilus has come from combining 12S rDNA 

and COX1 (Murrell and Barker, 2003b, Murrell et al., 2000) and as a result 

Boophilus is now considered to be a sub-genus of Rhipicephalus.  With regard to 

R.(B) microplus, Burger et al (2014) presented results that indicated that COX1 

could resolve complex regional groupings, indicating that R.(B) microplus was 

composed of two clades and a separate grouping of R.(B) australis was also 

reported.   
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In this study, we built upon results of previous work by Burger et al. (2014) by 

using a larger number of ticks from more geographical locations, most of which 

have not been previously included in a taxonomic study of this nature.   In doing so 

we aimed to confirm that COX1 can be used to resolve complex relationships 

within the R.(B) microplus clade and to determine whether specimens clustered 

according to region.  Maximum likelihood trees were constructed with a bootstrap 

analysis and a relaxed clock Bayesian analysis was undertaken to estimate 

topology and divergence timings. The maximum likelihood trees indicated that 

R.(B) microplus is a clade composed of five groups including R.(B) australis and 

R.(B) annulatus.  The first group has a world-wide distribution, including R.(B) 

microplus from South America, North America, South Africa, Thailand and 

published sequences from Cambodia, Malaysia and one from China.  R.(B) 

australis makes up the second group.  The third group consists of published Indian 

and Malaysian samples.  The fourth group is composed exclusively of Chinese 

samples.  R.(B) annulatus was found to share a common ancestor with the 

Chinese group.  These groupings support the observations made previously 

(Burger et al., 2014), where it was proposed that R.(B) microplus is a complex 

made up of R.(B) australis, R.(B) annulatus and two R.(B) microplus clades; A: 

Brazil, China and Cambodia; B: China. The later findings of Low et al. (2015) 

proposed an additional clade, named clade C, made up of Malaysian and Indian 

specimens are also supported. With the addition of the sequences generated in 

this study, it is possible to expand on this proposed complex, increasing the size of 

R.(B) microplus clade A, with the addition of multiple locations.   

R.(B) decoloratus appears to share a common ancestor with R.(B) microplus and 

R.(B) annulatus, diverging approximately 29 Mya.  However, it appears to be 

monophyletic with R. bursa, R. evertsi and R. pravus.  This supports the findings 

from previous studies that proposed the synonymizing of Boophilus with 

Rhipicephalus (Klompen et al., 1997, Murrell and Barker, 2003b, Murrell et al., 

2001a).   

The relationship that these groups have with one another within the R.(B) 

microplus clade needs to be examined in finer detail.  A possible suggestion is that 

the R.(B) microplus species complex is made up of 5 sub-species.  The sub-

species should be less divergent than species (Won and Hey, 2005).  Based on 
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the dates reported in this study, the divergence of the groups discussed, including 

R.(B) australis and R.(B) annulatus, happened too long ago.  Another 

interpretation of subspecies is a group that can successfully interbreed with 

another group, producing fertile offspring, but do not in practice due to 

geographical isolation (Mayr and Ashlock, 1991).  If this definition is accepted, 

then further work in the form of a mating study, where several crosses spanning 

the group would be needed.  Csordas et al. (2016) report on one of the few studies 

that made insights into variability of R.(B) microplus within Brazil.  Broadly 

speaking, the Brazilian R.(B) microplus have been reported to fall within clade A, 

however the molecular characterization, using COX1, of R.(B) microplus for five 

different regions within Brazil concluded that different regions have populations 

with distinct haplotypes (Csordas et al., 2016).   

Variation in genomic nucleotide sequences of the Bm86 and βAOR genes in 
Boophilid ticks from multiple geographical locations 

The concealed antigen, Bm86, is the basis of the only commercially available 

vaccine against ticks.  Since the introduction of commercial vaccines based on the 

antigen, variability in the efficacy against populations of R.(B) microplus in different 

regions have been reported (García-García et al., 1999, Willadsen et al., 1995, 

Garcıá-Garcıá et al., 2000).  A proposed divergence in the amino acid sequence 

between recombinant Bm86 vaccine and native Bm86 expressed in ticks from 

different geographical locations has been suggested as one possible cause for 

efficacy variation (Freeman et al., 2010).  It has also been proposed that there is 

an inverse correlation between efficacy of the vaccine and variation in the Bm86 

sequence (García-García et al., 1999).  At present, there is no clarity on the link 

between sequence variation and function for Bm86.  Only transcript sequences 

and expressed sequence-tag (EST) are available in the public domain, as yet 

there is nothing available on the Bm86 gene genomic sequence.  The genomic 

DNA sequence in a limited region of the gene was isolated for examination to 

determine whether there was variation in the gene that clustered according to the 

proposed new classification.  The amplification of the Bm86 gene was attempted 

from genomic DNA extracted from three Boophilid tick species; R.(B) microplus 

(multiple locations), R.(B) annulatus (USA) and R.(B) decoloratus (South Africa).   
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Our attempts to sequence Bm86 from gDNA extracted from ethanol preserved 

ticks collected for this study were not successful. It was hypothesized that this was 

a result of inadequate DNA quality. However, analysis conducted on published 

cDNA sequences revealed a large number of polymorphisms.  This suggests that 

without knowing the exon/intron boundaries, the primer set which was designed 

may not have worked. 

Bm86 published sequences did not demonstrate grouping of R.(B) microplus 

according to geographical location, except for R.(B) microplus from Thailand.  

There was also a large amount of sequence variation between the Thai samples, 

as reported previously (Kaewmongkol et al., 2015).  R.(B) decoloratus and R. 

appendiculatus demonstrated distinct groups from R.(B) microplus and R.(B) 

annulatus.  R.(B) annulatus also formed a distinct group with 87% Bootstrap 

support, but was also found to group closely with the Thai samples.  Again, this 

finding was previously reported (Kaewmongkol et al., 2015).   The primers were 

also used on six R.(B) microplus tick cell lines from the Tick Cell Biobank at The 

Pirbright Institute and were found to contain further nucleotide variation for cell 

lines BME/CTVM23 and BME/CTVM30.  This could have been caused by the fact 

that the cell lines are composed of multiple individuals, and as previous studies 

have indicated (Kaewmongkol et al., 2015), there can be variation in the Bm86 

sequence from ticks of the same species from the same geographical location.  

Additional sequence variants were observed when cell line sequences were 

aligned with published sequences.  BME/CTVM2 was the only cell line that 

appeared to align in partial segments.  With a lack of information regarding the 

size and arrangement of the Bm86 gene and the number and length of introns and 

exons, an unreliable primer set can result.  It is also potentially a transcript variant 

that hasn’t previously been isolated; however, this is just a speculation without 

further annotation available on the gene. 

The amount of variation observed in the rest of the R.(B) microplus specimens 

indicates that the gene is highly polymorphic, and the Australian isolate is 

divergent from the rest of the samples (>50% Bootstrap support).  Previous work 

demonstrating relationships between species and region grossly show consensus 

with the trees created in this study (Nijhof et al., 2010).  These studies indicated 

that Bm86 grouped mainly based on species (R.(B) microplus, R.(B) annulatus, 
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R.(B) decoloratus and R. appendiculatus) but regional variation was not obvious 

(Nijhof et al., 2010).  Some regional variation was observed with Mexican and 

Brazilian samples grouping away from Mozambique and Australian samples with 

96% Bootstrap support.  This was again similar to what was found in this study,  

however we included many more sequences, expanding upon the amount of 

variation observed in the Bm86 gene.  The Indian Chennai isolate was previously 

found to have 97% identity with the reference Australian strain (Anbarasi et al., 

2014), however when aligned with all the sequences, it was found to only be 

partial and was omitted.  Polymorphisms have also been documented in South 

American strain of R.(B) microplus (Sossai et al., 2005).  In this study, it was found 

that Alegre and Betim strains were the most divergent from both the Bm86 

reference and Bm95.  Alegre and Betim strains diverged with only 52% Bootstrap 

support but with such a low level of support were considered unresolved.  It is 

clear there is still a large amount of information on the Bm86 gene still lacking in 

annotation.   

Previous studies in insects have demonstrated that octopamine receptors are the 

target for formamidine-based acaricides, such as amitraz (Baxter and Barker, 

1999; Hollingworth and Lund, 1982).  In insects, octopamine receptors can be 

classified into three main types; tyraminergic, alpha-adrenergic-like and beta-

adrenergic-like (Evans and Maqueira, 2005).  Corley et al. (2012) identified 8 

distinct GPCR from R.(B) microplus using a targeted, degenerate primer PCR 

approach and presented a phylogenetic analysis of the family of genes. They 

argued that the product of βAOR was the most likely target of amitraz. Subsequent 

work (Corley et al., 2013) showed that the entire coding sequence lay within a 

single exon of 1644 bp, and identified two SNPs, both non-synonymous, within the 

gene. One of these SNPs (A181T) was tightly associated with resistance to 

amitraz in an extended field trial. The second SNP (T185C) was from a population 

of unknown resistance status. Further diversity in this gene was demonstrated by 

Koh-Tan et al. (2016), using in vitro cell cultures of ticks. In that study, a 36 bp 

insertion was identified at position 190 in a cell culture from a resistant isolate of 

ticks from Latin America. The existence of a new, related gene was also inferred 

from consistent multiple primer binding sites and ambiguous sequence 

information.   
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The overall aim of this study was to quantify regional and taxonomic variation in 

the βAOR gene among R.(B) microplus ticks from multiple geographical locations 

(table 6.1).  We also included the North American R.(B) annulatus and South 

African R.(B) decoloratus samples by way of comparison. 

Eight putative SNPs were found, three of which had been previously described 

(Corley et al., 2013; Koh Tan et al., 2016) but there was no grouping of 

polymorphisms according to either geographic, or proposed taxonomic origin.  

A225G was previously described by Koh Tan et al., 2016 in other species of 

Rhipicephalus (R. appendiculatus, R. evertsi and R. sanguineus) and had not 

been previously described in R.(B) decoloratus.  Two other SNPs; A181T and 

T185C had been previously described by Corley et al., 2013 in Australian 

populations of R.(B) microplus, one of which was known to be resistant to amitraz 

(A181T) and one of which came from a region in which resistance to amitraz is 

common (T185C).  We reported A181T and T185C in two R.(B) decoloratus 

individuals as well as ticks from the South American isolates Jaguar, Juarez and 

Sao Gabriel, all of which are known to be resistant populations.   

The other five SNPs found had not been previously described.  Two of the SNPs 

were synonymous and thus had no translational effect on the protein structure of 

βAOR.  The remaining three SNPs; A263C, C264A and T265A were found to have 

consequence on the amino acid structure.  A263C and C264A both changed 

tyrosine to serine and 265 changed phenylalanine to isoleucine.  When the 2-D 

structure of the βAOR protein was predicted for SNPs it was found that they all 

caused a direct change intracellular loop (IL) 1 within cytoplasmic domain of 

βAOR.  Previous predictions of the 2-D structure of A225G found the location to be 

within the extracellular domain (Koh-Tan et al., 2016).  The 2-D structure of the 

βAOR protein indicating the position of the 36 bp insertion, found it introduced 12 

amino acids into the first transmembrane domain, thus extending the N-terminal 

extracellular domain (Koh-Tan et al., 2016).  If these changes are considered with 

regard to the function of a GPCR, the extension of the extracellular domain was 

hypothesized to result in an obstruction of binding sites to formamidines and thus 

potentially confer resistance to them (Koh-Tan et al., 2016).  Previous studies 

have shown that small changes in primary structure can have a large impact on 

the function of GPCRs, even when the change in structure occurs in areas that are 
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not directly involved in the G-protein interaction (Broeck, 2001).  Based on this it is 

not unreasonable to hypothesize that change in the primary structure observed in 

this study might change the shape of IL1 substantially enough to affect the 

function of this receptor.  Populations that are known to be resistant to amitraz are 

significantly more likely to have one of these SNPs regardless of geographical 

location, which further supports the role of thesis SNPs in developing amitraz 

resistance. 

Final Conclusions 

In this work, we found that ticks from USA, Mexico, Brazil, Uruguay, South Africa 

and Thailand belonged to clade A of the R.(B) microplus species complex.  

Although the presence of clade A in North and South America is not surprising, we 

expanded the detail of its reported range in the Americas and further extended it to 

Thailand.  The presence of R.(B) microplus clade A in Thailand raises potential 

questions about how these clades could be overlapping geographically to the 

extent that they appear to.  The presence of R.(B) australis is reported to be in 

Australia, New Caledonia, Sumatra and Java (Indonesia), Cambodia, Philippines, 

Tahiti, Papua New Guinea and elsewhere in Asia (Barker and Walker, 2014).  

However, based upon the findings from COX1, specimens sequenced from 

Cambodia grouped with R.(B) microplus clade A.  This along with the Thai 

specimens, suggests that in some countries in Asia, R.(B) microplus and R.(B) 

australis are both present.  Based on morphology, it is not possible to differentiate 

between the R.(B) microplus clades and R.(B) australis consistently, however the 

mixture of morphological features observed in Thailand, which was not consistent 

in males and females, may elude to cross-breeding of the two groups in areas 

where both are present.  However, the presence of the spur on the ventral surface 

of palp article i, a feature reportedly unique to R.(B) australis males, was also 

observed in lab colony male specimens from parts of South America.  The 

presence of this spur in these specimens would not occur if it was indeed a R.(B) 

australis specific feature.  Additional overlapping of geography can also be 

observed for the other clades of R.(B) microplus.  Proposed clade A and B from 

Burger and Barker (2014) demonstrates distinct overlapping in China and 

potentially in other parts of Asia.  Members of clade B was also suggested to be 

present in Northern India (Barker and Walker, 2014), which would overlap in India 

with the presence of clade C, proposed by Low et al. (2015).   
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Burger and Barker (2014) first suggested that R.(B) annulatus was a clade of the 

R.(B) microplus species complex.  The evidence seen from phylogenies inferred 

from COX1, combined with the reported ambiguity in the morphology, resulting in 

inconsistent differentiation between R.(B) annulatus and R.(B) microplus 

(Uilenburg, 1962, Lempereur et al., 2010) supports the assigning of R.(B) 

annulatus to the species complex.  In contrast, the first part of the morphological 

study conducted in this work, found that R.(B) annulatus and R.(B) microplus could 

be differentiated unambiguously for both males and females, based on the 

morphological criteria outline by Walker et al (2003).  However, a more thorough 

examination of the morphology in the subsequent techniques confirmed previous 

reports on the inconsistent and highly variable morphology, although some 

differentiation was still possible.  When all three approaches towards 

understanding, morphology is combined, it is evident that R.(B) annulatus is 

closely related to R.(B) microplus. Rhipicephalus (Boophilus) decoloratus on the 

other hand is morphologically and molecularly distinct from both R.(B) annulatus 

and R.(B) microplus. 

The support for a R.(B) microplus species complex has now been established in 

three separate studies.  Based upon COX1, R.(B) microplus comprises Clade A 

(Burger and Barker, 2014): China (Yunnan Province), Brazil, Cambodia, Africa, 

with the addition of: Mexico, USA (Texas), Uruguay, Thailand, Panama and 

Malaysia; Clade B (Burger and Barker, 2014): China (Henan, Hubei and Guizhou 

Provinces), Sri Lanka, northern India and elsewhere in Asia; Clade C (Low et al., 

2015): Malaysia and India; R.(B) australis and R.(B) annulatus.  Separation of 

clades A-C is not supported by morphology (i.e. they are morphologically indistinct 

from one another), however it does support the inclusion of R.(B) australis and 

R.(B) annulatus within the species complex. 

The groupings of R.(B) microplus discussed above were found to have no 

relationship with the variation observed in both the Bm86 and βAOR sequences.  

Variations observed in the Bm86 gene, as expected, were independent of the 

proposed species and regional classification.  The work done in this study shows 

that the Bm86 gene is highly polymorphic, is probably expressed as different 

isoforms, and previous studies on vaccine efficacy show results that are unlikely to 

be completely explained by simple polymorphisms in the cDNA sequences that 
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have been published so far.  The apparent high degree of intronic variation, 

observed in the cell lines, might provide an alternative explanation in terms of 

gene expression for variation in vaccine efficacy. 

The shared SNPs between the Australian population and South American samples 

support the likely role of βAOR in amitraz resistance, especially with the same 

SNP arising differently at different sites within South America. The possibility that 

amitraz-resistant ticks designated as R.(B) microplus and R.(B) australis might 

share the same mutation that has previously been associated with amitraz 

resistance (and other, similar mutations) reinforces the fact that the evolutionary 

forces of selection, gene flow and genetic drift are likely more important from a 

functional perspective than their arbitrary species or subspecies distinction.   
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APPENDIX 

Tick morphology 

The body of an unfed tick is flattened dorsoventrally and divided into two sections.  

The anterior gnathosoma features the mouthparts including; the hypostome, palps 

and basis capituli (figure A1) (Walker et al., 2003).  The palps of the gnathosoma 

are composed of 4 segments called palp articles, numbered i-iv (see glossary of 

terms) (Walker et al., 2003).  The palps function as sensory organs that assist in 

finding a host.  The hypostome is located between the palps and is the feeding 

apparatus of the tick (Walker et al., 2003).  At the proximal tip of the hypostome 

are two highly sclerotized segmented appendages called the chelicerae.  On the 

chelicerae are a number of tooth-like structures arranged on a triangular-shaped 

plate which act as the cutting tool, creating the opening in the host’s skin allowing 

the hypostome to be inserted.  The basis capituli of the gnathosoma is a large 

fused coxa that allows movement of the mouthparts independent from the body 

(Walker et al., 2003). 

 

Figure A1: Dorsal surface of an Ixodid tick, showing the major divisions of the body 
(Source: Authors own drawing).  
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The posterior idiosoma includes the main bulk of the body, to which the legs are 

connected.  On the dorsal surface, a sclerotized plate can be observed.  In adult 

tick this plate can be used to distinguish between the sexes; on males, the plate 

dominates the dorsal surface and is called the conscutum, in females the plate is 

called the scutum and is relatively small, taking up approximate a third of the 

dorsal surface and thus allowing for full engorgement.  If eyes are present they are 

located on the lateral border of the scutum/conscutum, normally at the level 

between the second and third legs.  As well as the scutum/conscutum the dorsal 

surface may also have a number of grooves, either located anteriorly (cervical 

grooves) or posteriorly (posteromedial grooves).  The posterior wall of the 

idiosoma may also have a number of uniform grooves giving it a ‘pie-crust’ effect, 

which are called festoons.  Along with the festoons, other protrusions may be 

seen, in the case of certain members of the Rhipicephalus genus, caudal 

appendages may be observed, as well as the spurs from the ventral plates (figure 

A2) (Walker et al., 2003).   

 

Figure A2: Dorsal view of a female (A) and male (B) Ixodid tick, showing the visible features. 
(Source: Authors own drawing). 
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On the ventral surface of the idiosoma, the legs are attached via coxa.  In females 

the genital opening is located centrally between coxa III or coxa IV.  In both sexes 

the anus is located posteriorly to coxa IV (figure A3).  As with the dorsal surface, 

there are a number of grooves on the ventral surface; the genital groove is located 

in the anterior portion of the surface, in females this groove goes around the 

genital groove anteriorly (figure A3 drawing A).  The anal groove is associated with 

the anus and in certain genera this will circle the anus posteriorly and in others it 

will circle anteriorly.  Large openings surrounded by a tear-shaped sclerotized 

plate, called spiracles are located posterior-lateral to coxa IV.  These structures 

are the site of respiration.  Additional sclerotized plates may be seen on certain 

males; these plates are called adanal shields and can vary in number and may 

have a number of posterior projecting spurs of varying length on them (figure A3 

drawing B).  Festoons and caudal appendages are also visible from the ventral 

surface (figure A3) (Walker et al., 2003). 

 

Figure A3: Ventral view of a female (A) and male (B) Ixodid tick, showing the visible 
features. (Source: Authors own drawing). 
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Key morphological features 

Adanal shields (Ventral plates)  

The adanal shields are a group of plates that can be absent, indistinct or distinct 

on the ventral surface of the idiosoma in males.  They are paired plates located 

laterally to the anus and are often accompanied by a secondary pair of smaller 

plates called accessory shields which are located laterally to the adanal shields 

(figure A4).  There are a number of different variations that can be observed in 

these plates.  Firstly the posterior margin of the main adanal plates can be 

rounded or squared, as seen in figure A4 image A; the overall shape may be 

narrow trapezoid or broad and curved, as seen in figure A4 images B and C.  The 

accessory adanal shields may be absent, small or large (accessory adanal shields 

are present in figure A4 images A-C) (Walker et al., 2003).  An additional pair of 

ventral plates may be observed in some males of the Hyalomma genus, these 

plates are located posteriorly to the adanal shields (Not picture in figure A4) 

(Walker et al., 2003).   

 

Figure A4: Examples of the different types of ventral plates; A: adanal and accessory plate 
present, posterior border of adanal plates are squared with spurs are indistinct 
(Rhipicephalus (Boophilus) annulatus). B: adanal and accessory plate present, posterior 
border of adanal plates are squared with distinct spurs that are visible from the dorsal 
surface (Rhipicephalus (Boophilus) decoloratus). C: adanal and accessory plate present, 
posterior border of adanal plates are rounded with spurs indistinct (Rhipicephalus 
(Boophilus) microplus). (Source: Authors own photograph). 
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As well as the size and shape of the plates themselves, spurs may be present on 

the posterior border of the ventral plates.  These spurs may be distinct (figure A4, 

image B and C) or indistinct (figure A4, image A) and depending on their length 

may be visible from the dorsal surface (Walker et al., 2003).  The function of these 

plates and the spurs that can be associated with them is currently not known.  

Their position and the presence of spurs could be hypothesized to have a role in 

the mating, however due to the positioning of the male tick during mating; this 

surface does not seem to come into contact with the ventral surface of the female. 

Anal groove 

The anal groove is a small depression in the integument that is either absent or 

indistinct and is located on the ventral surface.  It forms a loop around the anus 

either posteriorly (figure A5, image B and C) to the anus or in the case of Ixodes, 

anterior to the anus (figure A5, image A) (Walker et al., 2003).  This feature can be 

found in both male and female ticks.  As well as its position, its alignment can also 

be used in identification; possible shapes include long and parallel/diverging 

(figure A5, image B) or short and converging (figure A5, image C) (Walker et al., 

2003).  No functional significance is known. 

 

Figure A5: Examples of the different types of anal grooves; A: posterior groove (Ixodes 
ricinus). B: anterior groove (Haemaphysalis intermedia). C: anal groove absent 
(Rhipicephalus (Boophilus) microplus). (Source: Authors own photograph).
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Auriculae 

Auriculae are paired lateral protrusions located on the lateral margins of the 

ventral basis capituli.  They can either be distinct (figure A6, picture B) or indistinct 

(figure A6, picture A) but can also vary greatly in shape.  This feature can be 

useful, when it is present, in distinguishing between closely related species (e.g. 

Ixodes) (figure A6) (Walker et al., 2003).  No functional significance is known. 

 

Figure A6: Position of the auriculae on the ventral surface of the basis capituli; A: auriculae 
is absent (Amblyomma variegatum). B: auriculae are present and indicated by the red arrow 
(Ixodes ricinus). (Source: Authors own photograph). 
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Basis capituli 

The basis capituli is located posterior to the palps/hypostome and anterior to the 

idiosoma.  The lateral margin of the basis capituli can be either straight (as in 

Dermacentor, ‘Der’, figure A7), medium angular (as seen in Amblyomma, ‘Am’, 

figure A7) or distinctly angular (as seen in Rhipicephalus, ‘Rhi’, figure A7), which 

can also vary between the sexes.  The basis capituli also has other features used 

in identification including porose areas and cornua on the dorsal surface and the 

auriculae on the ventral surface (Walker et al., 2003).  The variability in the form of 

the basis capituli may be linked to the size and arrangement of the plaps and thus 

to the preferred host and the type of hide that the mouthparts have to pierce.  

Based upon this, it is possible to hypothesise that those tick species feeding 

onhosts with a thick hide may benefit from having a wider, sturdier basis capituli.  

However the functional significance of the variation seen in figure A7 has not been 

determined. 

 

Figure A7: Examples of the different shapes of basis capituli between seven genera; Am: 
Amblyomma. Rhi (Boo): Rhipicephalus (Boophilus). Der: Dermacentor. Hae: Haemaphysalis. 
Hya: Hyalomma. Ixo: Ixodes. Rhi: Rhipicephalus. (Source: Authors own photograph). 
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Caudal appendage  

The caudal appendage is a protrusion located on the posterior border of the 

idiosoma.  It can be variable in size and is visible from the dorsal and ventral 

sides.  This feature is either absent (figure A8, image C); narrow (figure A8, image 

A) or broad (figure A8, image B) (Walker et al., 2003).  The functioinal significane 

of the caudal appendage is not known. 

 

Figure A8: Examples of caudal appendage; A: narrow (Rhipicephalus (Boophilus) 
microplus). B: Broad (Rhipicephalus pulchellus). C: absent (Rhipicephalus (Boophilus) 
microplus). (Source: Authors own photograph). 

Cornua 

Cornua are a pair of projections located on the posterior border of the basis 

capituli.  When they are present they are either distinct (figure A9, image B) or 

indistinct (Walker et al., 2003).  Figure A9, image A shows the absence of the 

cornua. There appear to be no functional relevance to the presence of the cornua. 

 

Figure A9: Position of cornua on the dorsal basis capituli; A: Indistinct (Haemaphysalis 
inermis). B: distinct (Rhipicephalus (Boophilus) microplus). (Source: Authors own 
photograph). 
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Coxae 

In adults there are four coxae (I-IV) located on the ventral surface of the idiosoma.  

Spurs may be present on all or some of the coxae and there are either internal, 

external or both types of spur present (figure A10) (Walker et al., 2003).   

 

 

Figure A10: Arrangement of the four coxae and the position of the internal and external 
spurs (Amblyomma americanum). (Source: Authors own photograph). 

Coxal spurs can be either long (figure A11, image B) or short (figure A11, image 

A) and either indistinct (figure A11, image A) or distinct (figure A11, image B) 

(Walker et al., 2003).   
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Figure A11: Types of spurs that can be observed indicated by the red arrow; A: short and 
indistinct (Rhipicephalus (Boophilus) microplus). B: Long and distinct (Rhipicephalus 
(Boophilus) decoloratus). (Source: Authors own photograph). 

Coxa I can have the most variation with regard to the spurs.  A spur on the anterior 

surface of coxal I (figure A12, image A) may be visible from the dorsal aspect 

(figure A12, image B) (Walker et al., 2003).   

 

Figure A12: Anterior spur on coxa I, indicated by the red arrow, from the ventral aspect (A) 
and dorsal aspect (B) (Rhipicephalus (Boophilus) decoloratus). (Source: Authors own 
photograph). 

The pairing of the internal and external spurs on coxa I can also be indicative in 

identification. Spurs can either be single, varying in length (figure A13, image A), 
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paired and equal (figure A13, image B) or paired and unequal (figure A13, images 

D and E), or absent altogether (figure A13, image C) (Walker et al., 2003).   

 

Figure A13: Variations observed in the pairing of spurs on coxa I; A: single spur (Ixodes 
ricinus). B: equal and paired (Hyalomma marginatum). C: absent (Haemaphysalis inermis). 
D: small and unequal (Amblyomma variegatum). E: unequal (Amblyomma americanum). 
(Source: Authors own photograph). 

The size of coxa IV can also vary from species to species.  In some males this 

coxa can be very large compared to the rest of the coxae (figure A14, image A).  

Additionally the internal spur on this coxa, when present, can range in length from 

short to long (figure A14, image D and E) (Walker et al., 2003).  The coxae are 

articulation points for the legs, the functional relevance of the spurs however, is 

not known. 
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Figure A14: Variation observed on coxa IV; A: enlarged coxa IV (Dermacentor andersoni 
male). B: Normal sized coxa IV (Dermacentor andersoni female). C: spur absent from coxa 
IV (Amblyomma variegatum). D: short spur on coxa IV (Amblyomma testundinarium). E: 
Long spur on coxa IV (Amblyomma americanum). (Source: Authors own photograph). 

Dorsal idiosoma grooves 

A number of grooves are present on the dorsal surface of the idiosoma. Cervical 

and scapular grooves are located on the anterior portion of the idiosoma.  Cervical 

grooves are located medially, with the scapular grooves positioned in a more 

lateral position.  These two sets of grooves form the borders of two depressions 

called the cervical field (figure A15).  The cervical field depression can vary in the 

depth of the depression, the shape and the texture.  With regard to the texture, a 

number of pits called punctations varying in size and distribution may be present 
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(Walker et al., 2003).  In the image shown in figure A15, the scapular groove 

shown is distinctly visible, and a large number of punctations varying in size can 

also be observed. 

 

Figure A15: Position of the grooves located on the dorsal idiosoma (Hyalomma 
marginatum). (Source: Authors own photograph). 

Additional grooves may also be present along the lateral borders of the idiosoma, 

running posteriorly.  These lateral grooves can vary in length (long and short), 

depth (indistinct and distinct) and texture (smooth with no punctations, wrinkled or 

distinctly punctate).  In the case of the image shown in figure A15, these lateral 

grooves are long, distinct, and wrinkled.  A number of posterior grooves may also 

be present, if present these can be indistinct or distinct and in some Hyalomma 

males may cause ridges in the conscutum surface.  Additional grooves located on 

the posterior margin called festoons may be present.  The festoons can vary in 

number and size, in some species the central festoon appearing larger than the 

rest (Walker et al., 2003).  The functional significance of these grooves are not 

known, it could however be surmised that they play some sort of role in preventing 

the ticks body from drying out, acting to trap moisture to the integument. 
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Hypostome 

The hypostome is a pair of blades used for feeding on the host.  It is located within 

the palps and contains a number of hypostomal teeth on the ventral surface, the 

number and arrangement of which can be used in some identifications.  A 3+3 

(figure A16, image B) or 4+4 (figure A16, image A) arrangement of the teeth is 

normally observed (Walker et al., 2003). 

 

Figure A16: Position and arrangement of the hypostomal teeth, Rhipicephalus (Boophilus) 
microplus image A and Rhipicephalus (Boophilus) decoloratus, image B. (Source: Authors 
own photograph). 

Legs 

There are four pairs of legs attached to the ventral surface of the idiosoma by the 

coxae.  The legs are composed of a number of articulating limbs starting at the 

body with the coxae and then the trochanter, femur, genu, tibia, tarsus and 

pulvillus (figure A17).  The legs themselves can vary in colour and size but key 

features can be observed on the trochanter and the tarsus.  On trochanter I there 

may be a large triangular-shaped spur pointing posteriorly which can be either 

short or long when present.  Tarsus I may vary in shape around the position of the 

Haller’s organ, a feature often used in distinguishing between females of Ixodes 

(Walker et al., 2003).  The front pair of legs are important for host seeking.  Ticks 

will climb up vegetation and quest for host, waving their front two legs in the air.  

Ticks have a small pore located on the tarsus of the first pair of legs called the 

Haller’s organ (figure A17).  This sensory pit is composed of chemoreceptors that 

allow the questing tick to detect slight changes in chemical composition of the air 
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around them, such as would be caused by the presence of a host and exhaled 

host carbon dioxide (Needman and Teel, 1991). 

 

Figure A17: Structures of the leg (Leg I shown).  Spur on trochanter I is absent, in this 
species of Ixodes a ‘hump’ is present near the Haller’s organ, in other specimens this 
feature may be tapered or stepped. (Source: Authors own photograph). 

Palps 

Palps are made up of four segments called articles which can vary in shape and 

size.  Palp article i is located at the base of the palp and is the articulation point of 

the palp with the basis capituli.  In some species a protuberance may be observed 

on the internal margin of this palp.  Additionally the internal margin may be long 

and slightly concave or short and distinctly concave.  Article ii can vary greatly in 

size in relation to the size of the other articles from all small, article ii broad or 

article ii long.  It may also have a dorsal spur, ventral spur or a lateral extension.  

All these features may be present or absent.  Article iii can have a ventral spur that 

projects posteriorly towards articles ii and i and finally article iv is located on the 

ventral aspect of article iii.  Article iv does not have any features useful for 

identification and is used as a sensory organ (figure A18) (Walker et al., 2003).  

Although not involved in the uptake of blood during feeding, the palps contain 

sensory organs thought to be involved in taste and smell (Waladde and Rice, 

1982). 
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Figure A18: Position of the palp articles; A: dorsally. B: ventrally (Rhipicephalus (Boophilus) 
microplus).  Variation in the palp articles between genera can be seen in figure A7. (Source: 
Authors own photograph). 

Porose areas 

The porose areas are pitted areas located on the dorsal aspect of the basis 

capituli of female ticks.  Their shape and areas of separation can be used in 

distinguishing among females of closely related species.  The shape of the porose 

area can vary from narrow oval (figure A19, image B) to broad oval (figure A19, 

image A) and the area separating them can be narrow (figure A19, image B) or 

broad (figure A19, image A) (Walker et al., 2003).  The porose areas are a feature 

specific to females, theiy function as openings of the accessory glands, which 

secrete a substance that is thought to have lubricant (Feldman-Muhsam and 

Havivi 1963) and potentially anti-autoxidant properties (Atkinson and Binninton 

1973). 

 

Figure A19: Position of the porose area indicated by white arrow and variation in shape; A: 
broad oval (Rhipicephalus (Boophilus) microplus). B: narrow oval (Rhipicephalus 
(Boophilus) decoloratus). (Source: Authors own photograph). 
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Setae 

A number of hair-like structures called setae can be found all over the body of an 

Ixodid tick, the thickness, length and number of which can be used in identification.  

However this feature is easily damaged during specimen collection.  It can also 

become brittle and easily removed when specimens are stored in ethanol.  Setae 

can be found in a number of locations, firstly, a group of setae may be located on 

a protuberance on the internal margin of palp article i.  This group of setae is seen 

in R.(B) decoloratus and can be used to distinguish it from R.(B) annulatus and 

R.(B) microplus when visible.  Postpalpal setae are located on the ventral basis 

capituli, caudal to the palps.  Medial alloscutal setae (figure A20) are located on 

the dorsal idiosoma, posterior to the scutum and may be thin and colourless 

(figure A20, image B) or thick and white (figure A20, image A) and arranged in 

dense rows of 4-6 (figure A20, image A) or thinner rows of 2-3 (figure A20, image 

B).  Scutal setae may also be present (not pictured) on the bulk of the scutum, 

behind the eyes or in males on the lateral margins of the capitulum.  These setae 

can appear long and pale or short and slender (Walker et al., 2003).  The function 

of the setae is not fully understood, however it can be surmised that they may play 

a role in preventing the tick from losing too much water by acting to trap moitures 

to the integument.  

 

Figure A20: Example of variation of the medial alloscutal setae indicated by the white 
arrows; A: long, pale and abundant (Rhipicephalus (Boophilus) australis). B: short, slender 
and sparse (Rhipicephalus (Boophilus) microplus). (Source: Authors own photograph). 
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Scutum/ Conscutum  

The sclerotized plate located on the dorsal aspect of the idiosoma may dominate 

the entire surface in males (conscutum) (figure A21, images B and D) or take up 

approximately a third of the dorsal aspect in females (scutum) (figure A21, images 

A and C).  The scutum can vary in shape amongst the females of different genera; 

being narrow (figure A21, image C) or broad (figure A21, image A) at the base, 

having either smooth (figure A21, image C) or wavy (figure A21, image A) lateral 

edges and either straight (figure A21, image C) or convex (figure A21, image A) 

overall appearance.  For both males and females ornamentation (figure A21, 

images A and B) may be observed with the potential addition of enameling (figure 

A21, images C and D) (Walker et al., 2003).  The function of the 

scutum/conscutum is not fully understood, due to its thickness and toughness it is 

possible to suggest that its role may be to protect the tick, particularly if the tick 

gets groomed off by the host.   

 

Figure A21: Examples of scutum/conscutum variation; A+B: female and male, 
ornamentation with enamel absent (Rhipicephalus pulchellus). C+D: female and male, minor 
ornamentation with enameling present (Amblyomma americanum). Scutum shape: A: broad 
posterior tip with convex and wavy lateral borders. C: narrow posterior tip with straight and 
smooth lateral borders. (Source: Authors own photograph).
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Table A1: Published primer sequences available for COX 1. 

Gene/Locus Species GenBank 
accession number 

Forward 
primer name 

Forward primer Reverse primer 
name 

Reverse primer Reference 

COX 1 R.(B) 
annulatus 

AF132825 
 

TW-J-1302 
 

GTTAACAAACTAG
TAGCCTTCAAAG 
 

C1-N-2009 
 

GATCAAACAAATA
AGGGTA 
 

(Murrell et al., 2000) 

COX 1 R.(B) 
decoloratus 

AF132826 
 

TY-J-1449 
 

AATTTACAGTTTA
TCGCCT 
 

C1-N-2312 
 

CATACAATAAAGC
CTAATA 
 

(Murrell et al., 2000) 

COX 1 R.(B) 
microplus 

AF132827 
 

C1-J-2180 
 

AACATTTATTTTG
ATTTTT 
 

C1-N-2191 
 

(Simon et al., 1994) (Murrell et al., 2000) 

COX 1   TY-J-1460 
 

(Simon et al., 1994) 
 

  (Murrell et al., 2000) 

COX 1   C1-J-1718 
 

(Simon et al., 1994)   (Murrell et al., 2000) 

COX 1   TY-J-1460 
 

TACAATTTATCGC
CTAAACTTCAGC
C 
 

C1-N-2191 
 

CCCGGTAAAATT
AAAATATAAACTT
C 
 

(Simon et al., 1994) 

COX 1   C1-J-1718 
 

GGAGGATTTGGA
AATTGATTAGTTC
C 
 

  (Simon et al., 1994) 

COX 1   C1-J1632 
 

TGATCAAATTTAT
AAT 
 

 (Simon et al., 1994) (Kambhampati and 
Smith, 1995) 

COX 1     C1-N-2191 
 

GGTAAAATTAAAA
TATAAACTTC 
 

(Simon et al., 1994) 
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Table A2: Primer design, adapted from (Green et al., 2012). 

Property Optimal design 

Base composition G + C content should be between 40% and 60%, with an even distribution of all four bases along the length of the primer (e.g. no polypurine 
or polypyrimidine tracts and no dinucleotide repeats).  If possible, avoid GC-rich stretches, which are prone to forming secondary structures. 

Length The region of the primer complementary to the template should be 18-30 nucleotides in length.  Members of a primer pair should not differ in 
length by >3 bases.  Primers shorter in length than 18 nucleotides will tend to bind non-specifically to complex template DNAs (e.g. genomic 
DNAs).  Primers >30 nucleotides in length have an increased probability of forming secondary structures such as hairpin loops. 

Internally repeated and 
self-complementary 
structures 

Ensure that the primers contain no inverted repeat sequences of self-complementary sequences >3 bp in length.  Sequences of this type 
tend to form hairpin structures that can suppress binding of the primer to its target sequence. 

Complementarity 
between members of a 
primer pair 

The 3’-terminal sequences of one primer should not be able to bind to any site on the other primer.  Because primers are present in high 
concentrations in PCR, even weak complementarity between them can cause hybrid formation and the consequent amplification of primer 
dimers.  These molecules can be real nuisances because they can compete for DNA polymerase and dNTPs and can suppress 
amplification of the true target DNA.  Formation of primer dimers can be reduced by careful primer design and by using hot start or 
touchdown PCR and/or by the use of specially formulated DNA polymerases (e.g. AmpliTaq Gold; Applied Biosystems).  If all else fails try 
adding formamide or dimethyl sulfoxide (DMSO) to the PCR mix and re-optimize the concentration of Mg

2+ 
in the PCR by setting up a series 

of test PCRs containing different amounts of the divalent cation. 

Melting temperature 
(Tm) 

The optimum Tm of the duplex formed between a primer and its target is between 55ºC and 60ºC. The Tms of the primers in a PCR should 
not differ by more than 2-3 centigrade degrees.  Most software for primer design uses equation-based nearest-neighbour thermodynamic 
theory.  A first-order approximation of the melting temperature of oligonucleotides with >25 bases can be calculated from the Wallace rule 
(Wallace et al., 1979): 

Tm = 2ºC(A+T) + 4ºC(G+C) 
Where A, G, C and T are the number of occurrences of each nucleotide. 

GC clamp The presence of G or C bases within the last 5 bases from the 3’ end of primers helps promote tight binding of the 3’ end of the target 
sequence because of the stronger hydrogen-bonding of G and C bases.  Priming efficiently and specificity are increased if the 3’-terminal 
residue is G.  However, greater than three Gs or Cs should be avoided in the last five bases at the 3’ end of the primer. 

Adding restriction sites 
and other useful 
sequences to the 5’ 
termini of primers 

Useful sequences not complementary to the target DNA can be added to the 5’ termini of oligonucleotide primers.  However, terminal and 
subterminal restriction sites are cleaved poorly by restriction enzymes; thus, the length of the primer should be extended by at least 3 
nucleotides beyond the restriction site.  The NEB catalog contains information on the efficiency with which different restriction enzymes 
cleave sites near the termini of DNA molecules. 

False priming Target sequences should be searched (http://www.ncbi.nlm.nih.gov/BLAST/) for cross-homology with the oligonucleotide primers.  False 
priming at cross-homologous sites increases the level of nonspecific amplification.  
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Table A3: Published sequences, and where available primer sequences for Bm86. 

Reference Gene/Locus Species Strain GenBank 
acension 
number 

Forward primer 
name 

Forward primer Reverse primer 
name 

Reverse primer 

(Kaewmongkol 
et al., 2015) 

Bm86 R. australis/ 
R.microplus 

Yeerongpilly, 
Australia 

M29321 For ATGCGTGGCA
TCGCTTTATT 

Rev GTTTAGCCCA
ACTATCTTTAT
TTGACATC 

Bm86 R. microplus S1 KJ995882     

Bm86 R. microplus C1 (M1) KJ995883     

Bm86 R. microplus C2 (M2) KJ995884     

Bm86 R. microplus C3 (M3) KJ995885     

Bm86 R. microplus N1 KJ995886     

Bm86 R. microplus N2 KJ995887     

Bm86 R. microplus N3 KJ995888     

Bm86 R. microplus N4 KJ995889     

Bm86 R. microplus N5 KJ995890     

Bm86 R. microplus N6 KJ995891     

Bm86 R. microplus N7 KJ995892     

Bm86 R. microplus N8 KJ995893     

Bm86 R. microplus N9 KJ995894     

Bm86 R. microplus N10 KJ995895     

Bm86 R. microplus N11 KJ995896     

Bm86 R. microplus NE1 KJ995897     

Bm86 R. microplus NE2 KJ995898     

Bm86 R. microplus NE3 KJ995899     

Bm86 R. microplus NE4 KJ995900     

Bm86 R. microplus NE5 KJ995901     

Bm86 R. microplus NE6 KJ995902     

Bm86 R. microplus NE7 KJ995903     
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Bm86 R. microplus NE8 KJ995904     

Bm86 R. microplus NE9 KJ995905     

Bm86 R. microplus NE10 KJ995906     

Bm86 R. microplus NE11 KJ995907     

Bm86 R. microplus NE12 KJ995908     

Bm86 R. microplus NE13 KJ995909     

Bm86 R. microplus NE14 KJ995910     

(Cunha et al., 
2011) 

Bm86 R. microplus Campo Grande EU352677.1 BmCG-EcoRI-
F1 

CGGAATTCTC
ATCCATTTGCT
C 

BmCG-NotI-R1 GCGGCCGCAG
CACTTGACTT 

(Freeman et al., 
2010) 

Bm86 R. microplus Yeerongpilly, 
Australia 

M29321.1 For ATGCGTGGCA
TCGCTTTGTT 

Rev GGTGTTCGAT
GTAAGCGTGA
TG 

Bm86 R. microplus Maverick1, 
South Texas 
(USDA-APHIS-
VS) 

HQ014400 Bm86for685 GACGAAAGAA
GCTGGGTT 

Bm86rev605 CCAGGAGAGC
AATAGGAGTC 

Bm86 R. annulatus Kinney1, South 
Texas (USDA-
APHIS-VS) 

HQ014401 Bm86for1650 GTACCACATG
CAACCCTAAA 

  

Bm86 R. annulatus Starr3, South 
Texas (USDA-
APHIS-VS) 

HQ014385 Bm86 internal 
forward 

ATCGACAAAG
CTGCTATTGTC
C 

Bm86 internal 
reverse 

TTTCTCTGCTA
TGAGTCTTGC
C 

Bm86 R. microplus Zapata2, South 
Texas (USDA-
APHIS-VS) 

HQ014386     

Bm86 R. microplus Webb1, South 
Texas (USDA-
APHIS-VS) 

HQ014387     

Bm86 R. microplus Starr5, South 
Texas (USDA-
APHIS-VS) 

HQ014388     

Bm86 R. microplus Zapata3, South 
Texas (USDA-

HQ014389     
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APHIS-VS) 

Bm86 R. microplus Webb2, South 
Texas (USDA-
APHIS-VS) 

HQ014390     

Bm86 R. microplus Zapata5, South 
Texas (USDA-
APHIS-VS) 

HQ014391     

Bm86 R. microplus Zapata10, South 
Texas (USDA-
APHIS-VS) 

HQ014392     

Bm86 R. microplus Zapata1, South 
Texas (USDA-
APHIS-VS) 

HQ014393     

Bm86 R. microplus Zapata12, South 
Texas (USDA-
APHIS-VS) 

HQ014394     

Bm86 R. microplus Hidalgo1, South 
Texas (USDA-
APHIS-VS) 

HQ014395     

Bm86 R. microplus Starr1, South 
Texas (USDA-
APHIS-VS) 

HQ014396     

Bm86 R. microplus Starr2, South 
Texas (USDA-
APHIS-VS) 

HQ014397     

Bm86 R. microplus Zapata11, South 
Texas (USDA-
APHIS-VS) 

HQ014398     

Bm86 R. microplus Dimmit1, South 
Texas (USDA-
APHIS-VS) 

HQ014399     

(Nijhof et al., 
2009) 

Bm86 R. microplus Australia M29321 
(AAA30098) 

(AMN-For) CGTCCCGACT
TGACCTGC 

(AMN-Rev) AGGAGCGGCT
GAACAGTTTG 

Bm86 R. microplus Mozambique  FJ809946     
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Bm86 R. annulatus Mozambique  EU191621 
(ABY58969) 

    

Bm86 R. annulatus Mozambique  EU191620 
(ABY58968) 

    

Bd86-2 R. decoloratus  DQ630524 
(ABG21131) 

    

Ra86-1 R. 
appendiculatus 

 FJ809944     

Ra86-2 R. 
appendiculatus 

 FJ809945     

(Canales et al., 
2008) 
 

Bm86 R. microplus  EU191620 CZABM5 ACTCGAGAAA
AGAGAGTCAT
CCATTTGCTCT
GACTTCGG 

CZABM3 GGCAGGTCTG
TTTTTGCTCA 

Ba86 R. annulatus  EU191621     

Bd86 R. decoloratus  EU191622     

(Sossai et al., 
2005)  

Bm86 R. microplus  M29321 S GGCAGGTCTG
TTTTTGCTCA 

AS TGAAAGTAAC
CCGAGCAAGG 

Bm86 R. microplus Venda Nova do 
Imigrante (VNI) 

AY766041     

Bm86 R. microplus Alegre2  AY766042     

Bm86 R. microplus Alegre1  AY766043     

Bm86 R. microplus Caraibas  AY766045     

Bm86 R. microplus La Paz  AY766046     

Bm86 R. microplus Las Cejas  AY766047     

Bm86 R. microplus SJose´1  AY785783     

Bm86 R. microplus SJose´2  AY785784     

Bm86 R. microplus Mozo  AY785785     

Bm86 R. microplus Paraiba do Sul 
(PSul) 

AY785786     

Bm86 R. microplus SLuiz  AY785787     

Bm86 R. microplus SSAlto  AY785788     



 

 
 

2
3
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Bm86 R. microplus MClaros1  AY785789     

Bm86 R. microplus Coxim  AY785790     

Bm86 R. microplus Itaqui  AY785791     

Bm86 R. microplus SLivra  AY785792     

Bm86 R. microplus Butia AY785793     

Bm86 R. microplus SGabriel  AY785794     

Bm86 R. microplus PAlegre  AY785795     

Bm86 R. microplus Betim1  AY785796     

Bm86 R. microplus Betim2  AY785797     

Bm86 R. microplus Bugre1  AY785798     

Bm86 R. microplus Bugre2  AY785799     

Bm86 R. microplus Vicosa (UFV) AY785800     

Bm86 R. microplus Sao Miguel do 
Anta (SMA) 

AY785801     

Bm86 R. microplus Jaboti  AY785802     

Bm86 R. microplus SCarlos  AY785803     

Bm86 R. microplus Guara´  AY785804     

Bm86 R. microplus Teresina  AY785805     

Bm86 R. microplus Tucuruı´  AY785806     

Bm86 R. microplus COeste  AY785807     

Bm86 R. microplus MClaros2  AY787167     

Bm86 R. microplus Vene A  AY848824     

Bm86 R. microplus Vene B  AY848825     

(de la Fuente et 
al., 2000a)  

Bm86 R. microplus Yeerongpilly, 
Australia 

 oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

Bm86 R. microplus Camcord  oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 



 

 
 

2
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3

 

Bm86 R. microplus Tuxpan  oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

Bm86 R. microplus Aldama  oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

Bm86 R. microplus Mora  oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

Bm86 B. annulatus   oligo 2888 ATTGAGCGTA
CCACATGCAA
CCCTAA 

oligo 629/bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

(Rodríguez et 
al., 1994)  

Bm86 B. microplus   bmt-1 GTCTAGAGGA
ATCATTTGCTC
TGACTTC 

bmt-3 CCTTGATTTCC
ATGGACAATA
GCAGC 

Bm86 B. microplus   bmt-4 GCTGCTATTG
TCCATGGAAA
TCAAGG 

bmt-2 CCAGATCTTTA
AGCACTTGAC
TTTCCAGGAT
C 

(García-García 
et al., 1999) 
 

    1572-1598 ATTGAGCGTA
CCACATGCAA
CCCTAA 
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