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Abstract 

Prostate cancer is the most common cancer among men in the UK and is 

characterised by large biological and clinical heterogeneity. There is an urgent 

need for better-personalised patient stratification, for example in accurately 

identifying patients with regional lymph node metastasis. Nodal involvement 

negatively impacts on patient survival outcomes and the current pre-operative 

staging tools to determine the need for extended pelvic lymph node dissection at 

time of radical prostatectomy are far from precise. The primary tumour immune 

microenvironment influences tumour immune editing and therefore disease 

progression. The primary aim of this research was to investigate the in situ 

phenotype of prostate cancer tumour infiltrating immune cells and determine 

their potential as biomarkers for regional lymph node invovlement and further 

explore possible underlying mechanisms for their distribution.   

The discovery tissue microarray comprised of index lesions from 94 patients 

undergoing radical prostatectomy and pelvic node dissection (50 with and 44 

without histologic evidence of pelvic nodal disease respectively, referred to as 

LN+ and LN- thereafter). Two multiplex immunofluorescence panels were 

optimised to comprehensively characterise the immune microenvironment: (1) 

The macrophage and B cell panel includes CD68, CD163, CD20, AE1/3 (PanCK) and 

DAPI and (2) The T lymphocytic panel assays for CD4, CD8, FoxP3, PD-1, AE1/3 

and DAPI. The macrophage (CD68, CD163+), T (CD8+, CD4+) and B (CD20+) cell 

immune cell subpopulations within the malignant epithelium and associated 

stroma were measured and correlated to the nodal status.  Stromal infiltration by 

M1-like macrophages (CD68+CD163-) (p=0.047), CD8 effector (CD8+FoxP3-PD-1-) 

(p=0.008) and CD4 effector (CD4+FoxP3-PD-1-) T cells (p=0.0003, Mann Whitney 

test) were lower in LN+ patients. Stromal CD4 effector immune cell density 

remained a statistically significant independent predictor of lymph node spread in 

multivariate regression analysis (OR= 0.15, p=0.004). Additionally, in an 

independent validation cohort of 184 radical prostatectomy specimens, stromal 

CD4 effector immune cell density predicted the presence of nodal metastasis 

(OR=0.26, p=0.0004). Addition of stromal CD4 effector T cell density to currently 

used clinicopathological factors, namely T stage, PSA level, Gleason score and 

percentage of tumour positive cores, improved the predictive accuracy of current 
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nomograms (from 63.5% to 76.8%, p<0.0001). Tumour infiltrating immune cells did 

not however correlate with common molecular alterations of prostate cancer such 

as ERG overexpression and PTEN deletion. 

Transcriptomic analysis (by HTG EdgeSeq) of the tumour microenvironment was 

performed to assay 1,041 host immune response related genes. Surprisingly, I did 

not observe significant differences in the expression levels of adhesion 

molecules or chemokines (common regulators of immune cell migration) 

between LN+ and LN- cases. Instead, there was significant upregulation (FC>1.5, 

adj p value <0.05) of extracellular matrix components (collagen I, collagen III, 

fibronectin 1) in LN+ tumours, suggesting increased extracellular matrix fibrosis 

to be associated with reduced T lymphocytic infiltration and tumour immune 

evasion. Increased collagen III and fibronectin 1 protein expression were 

confirmed in LN+ patients. Collagen I had increased density score (by second 

generation harmonic), but not overall abundance, in LN+ patients, eluding to a 

disorganised stroma with increased cross-linking and elongated fibres. 

B7-H3 is a newly discovered member of the B7 family of immune checkpoint 

molecules with both immune and non-immune functions. I investigated the 

relationship of B7-H3 to the tumour microenvironment as well as its non-immune 

functions in prostate cancer. Contrast to PD-1, high B7-H3 expression correlated 

with worse clinicopathological patient features: higher T stage (p<0.0001), 

perineural invasion (p=0.01) and lymph node spread (p=0.0006). Furthermore, 

there was significant decrease in migration and invasion in vitro following 

suppressed B7-H3 expression in multiple human prostate cancer cell lines. RNA 

sequencing identified extracellular space chemotactic cytokines and their 

receptors to be highly downregulated genes in PC3M cells with B7-H3 knocked 

out. Future experiments will investigate the mechanistic downstream pathways 

of this phenotype and further evaluate the role of B7-H3 in metastasis in vivo. 

Data presented in this thesis reveal differences in the immune infiltrates, 

particularly CD4 effector (CD4+FoxP3-PD-1-) T cells between LN+ and LN- 

patients. Prospective clinical studies are needed to test the predictive value of 

stromal CD4 effector T cell density in diagnostic prostatic biopsies for regional 

nodal disease. The role of increased extracellular matrix components in 

determining tumour immune infiltrates also warrants additional research. 
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Chapter 1 Introduction 

1.1 Prostate cancer 

1.1.1 Prostate pathology 

The prostate gland is part of the male reproductive system. Histologically, it 

comprises of prostatic glands and connective tissue, ensheathed by a 

fibromuscular layer referred to as capsule (1). The glandular component is 

composed of ducts and acini of luminal cells overlying basal epithelial cells and 

scant scattered neuroendocrine cells (1). The luminal cells contribute to a wide 

variety of secretions for the seminal fluid, including prostatic-specific antigen 

(PSA) (1, 2). The connective tissue is composed of stromal fibroblasts, immune 

cells, nerves, vascular and lymphatic vessels and muscle fibres. All those 

components can give rise to malignancy but the majority of cancers arising in 

the prostate are prostatic acinar adenocarcinomas, commonly referred to as 

prostate cancer (1, 2).  

The precursor lesion of prostate cancer is prostatic intraepithelial neoplasia 

(PIN), which consists of cytologically atypical and abnormally proliferating 

luminal epithelial cells that retain an underlying layer of basal cells (2). Prostate 

cancers have a wide spectrum of histological appearances, ranging from poorly 

differentiated tumours without glandular architecture to well differentiated 

tumours, morphologically similar to benign glands (1, 2). The key feature is the 

loss of basal cell layer underlying the luminal cells. The vast majority of patients 

have multifocal disease, with multiple tumour foci across the entire prostate 

gland (1). Apart from architectural changes, prostate cancer cells also exhibit 

cytological abnormalities, such as nuclear enlargement, prominent nucleoli and 

mitoses (1), which along with immunohistochemical stains are used by 

pathologists for prostate cancer diagnosis.  

1.1.2 Prostate cancer epidemiology 

Prostate cancer (PCa) is the most common cancer in males in the UK, with 

approximately 48,600 new diagnoses each year (3). Currently, one in six males 

will be diagnosed with prostate cancer in their lifetime (4), and the incident 

rate is projected to rise even more by 2035 (3). This rise in diagnoses can be at 
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least partly attributed to advancing population age and increasing PSA testing 

(2, 5). Prostate cancer is also the second most frequent cause of cancer death in 

males the UK, with around 12,000 deaths in 2017 (6). The incidence and 

mortality rates of PCa are similar in other developed countries, including the 

United States (5).  

The most decisive factor for patient prognosis and survival is how advanced the 

tumour is, i.e. the stage of PCa at diagnosis. Patients with stages I and II have 

prostate tumours confined within the prostate gland, whereas patients with 

stage III have prostate tumours that have spread beyond the prostate (2). Stage 

IV prostate tumours have spread to organs outside the prostate (and seminal 

vesicles) and/or have regional nodal and/or distant metastatic deposits (2). In 

the UK, more prostate cancer patients are diagnosed at an early stage (up to 63% 

diagnosed at stage I or II), in which their tumour is still localised in the prostate 

(4). However, this is lower in Scotland, where only 56% of new diagnoses are at 

an early stage, the rest 44% of newly diagnosed patients have locally advanced 

(stage III) or metastatic disease (stage IV) (4). Advancing age, race and a family 

history of PCa are the only established risk factors for PCa, there is no clear link 

to any modifiable risk factors that could aid prevention of the disease (2, 4). 

1.1.3 Prostate cancer progression and clinical management 

PCa is characterised by clinical heterogeneity, ranging from indolent disease 

that can safely be observed to an aggressive, lethal course (5, 7). Key to the 

effective management of this heterogeneous disease is early risk stratification 

(8). Newly diagnosed PCa is assessed using a combination of radiological cancer 

staging (cTNM stage), PSA level and histological characteristics of prostatic 

biopsies including Gleason score (2, 8). The Gleason scoring system is based on 

the tumour architecture, assigning a primary pattern for the most prevalent 

grade and a secondary pattern for the second most prevalent grade. These 

grades range from 1 to 5, 1 being well‐differentiated glands with nodular 

circumscription and 5 being very poorly differentiated tumours with a non-

glandular pattern (2). The Gleason score derives from the addition of those two 

grades. Additional histological markers currently used to predict tumour 

behaviour include perineural invasion and percentage of tumour in biopsy cores 

(tumour quantification) (2).  
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For organ confined or locally advanced disease at the time of diagnosis, there 

are guidelines on patient management according to low (PSA<10 ng/ml and 

Gleason score <7 and cT1-T2a), intermediate (PSA 10-20 ng/ml or Gleason score 

=7 or cT2b) and high risk status (PSA 20 ng/ml or Gleason score >7 or cT2c-T4) 

(2, 8). In men diagnosed with lower risk, treatment options include active 

surveillance, radical prostatectomy (RP) or radiation therapy (2, 8). Patients 

with higher risk disease can be offered RP with or without extended lymph node 

dissection, radiation therapy as well as androgen deprivation therapy (ADT) (2, 

8).  

Some patients are diagnosed with advanced/metastatic disease or subsequently 

develop disease relapse following primary treatment with ADT (4, 7). ADT and 

chemotherapy are standard therapies for metastatic PCa. Suppression of the 

androgen receptor pathway has evolved from the traditional surgical or 

pharmacological castration to newer pharmacological agents, such as 

enzalutamide  and abiraterone acetate, which target the androgen receptor or 

androgen enzymatic biosynthesis respectively (2). Chemotherapy with docetaxel 

or carbazitaxel (with significant risks of toxicities) can extend the life 

expectancy of PCa patients but only by a few months (2, 7).  Patients inevitably 

develop resistant disease despite treatments and metastatic castration resistant 

PCa (mCRPC) remains an incurable disease.  

1.1.4 Prostate cancer clinical challenges 

Even though prostate cancer mortality rates are falling over the last decade (6), 

there are two main clinical areas in need of improvement. Firstly, there is an 

urgent need for better patient stratification in order to prevent over- or under-

treatment of PCa patients (7). Gleason scoring, PSA levels and tumour 

quantification are valuable tools for deciding disease management but they 

cannot adequately distinguish indolent from aggressive tumours. Additional 

prognostic markers are urgently needed to more effectively guide clinical 

decision making, for example in accurately stratifying patients that would 

benefit from extended lymph node dissection at the time of radical 

prostatectomy.  
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The second clinical unmet need is the paucity of therapeutic options for late 

stage mCRPC (2, 7). In other cancer types there has been significant 

advancement in cancer immunotherapy, which harnesses the body’s intrinsic 

immune responses against the tumour (9). Sipuleucel-T, an autologous 

personalised immunotherapy focused on patient’s own dendritic cell maturation 

against specific antigens, was the first immunotherapy agent approved for 

mCRPC (9). However the high cost and modest survival benefits have prevented 

its widespread adaptation to the clinic (9). Other immunotherapy approaches, 

such as immune checkpoint inhibitors, have so far been disappointing in PCa. It 

is possible that better patient selection and understanding of the key 

mechanisms that promote immunosuppression in prostate cancer would improve 

the efficacy of immunotherapy.  

1.1.5 Radical prostatectomy and extended lymph node dissection 

Radical prostatectomy (open, laparoscopic or robotic) is an established curative 

option for patients with early PCa (8). It involves the removal of the entire 

prostate gland and seminal vesicles alongside sufficient surrounding tissue in 

order to obtain a negative surgical margin (2, 8). This procedure can be 

accompanied by an extended pelvic lymphadenectomy in higher risk patients (2, 

8). This includes removal of more than 10 regional lymph nodes overlying the 

external and common iliac artery and vein, medial and lateral to the internal 

iliac artery, and within the obturator fossa (2, 10, 11). Even though extended 

lymph node dissection is necessary for accurate staging and therapeutic benefit 

(12) it does not come without patient complications and economic burden 

associated with extended operation time and hospitalisation (10). Approximately 

20% of patients develop such complications, which include lymphocele, deep 

vein thrombosis, pelvic haematoma, fever, acute urinary retention, pulmonary 

embolism and ureteral injury (10, 13).  

It is challenging for urological surgeons to make personalised patient decisions 

regarding extended lymph node dissection due to the heterogeneity of high-risk 

patients (7, 11). Currently preoperative nomograms based on clinical and 

histological parameters are used, the most popular being the Briganti nomogram 

(11). This is based on pre-operative PSA level, clinical stage, biopsy Gleason 

score and the percentage of positive cores (11). Even though this is considered 
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relatively accurate, it undeniably results in a significant portion of patients 

unnecessarily undergoing nodal dissection (2, 11). The prevalence of 

pathological confirmation of lymph node metastasis in patients undergoing nodal 

dissection ranges from 1 to 26% (10-13). Since extended pelvic lymph node 

dissection is considered for each patient with intermediate or high-risk disease 

undergoing radical prostatectomy, it is evident that better prognostic 

biomarkers for this procedure are urgently needed.  

1.1.6 Molecular Taxonomy of Prostate cancer 

During the past decade, the understanding of PCa genomics has progressed 

substantially (14).  It is increasingly recognised that the clinical heterogeneity 

observed in patients can be attributed to the wide array of genomic aberrations 

observed in PCa. About 50% of primary prostate cancer are characterised by 

juxtaposition of androgen regulated gene TMPRSS2 and ETS family genes (15). 

The most commonly involved member of the ETS family is the transcription 

factor ERG (46%), but also ETV1 (8%), ETV4 (4%) and FLI1 (1%) (15). These fusions 

of androgen regulated gene promoters and oncogenes are collectively the most 

common genetic alterations in PCa and are mostly mutually exclusive (14, 15). 

Whole genome sequencing revealed that these fusions are caused by a complex 

genetic rearrangement called ‘chromoplexy’, in which multiple chromosome 

segments are randomly severed and re-joined with frequent DNA deletions at 

their junction points (2).  

Tumours that lack ETS fusions commonly have mutually exclusive mutations of 

SPOP (11%), FOXA1 (3%) and IDH (1%) genes (15). The 26% of remaining PCa 

tumours were genomically heterogeneous and are driven by yet unknown 

specific genetic or epigenetic aberrations (15). These mutations of primary PCa, 

alongside ETS fusions and are both clonal, early events in PCa oncogenesis (14, 

15). They are followed by a wide array of subclonal changes that provides 

survival benefit and proliferative advantage to the cancer cells. Phosphatase and 

tensin homolog (PTEN) genomic inactivation acts as a negative regulator of the 

PI3K-AKT pathway and occurs in up to 40% of CRPC (16). PTEN loss has been 

repeatedly associated with worse clinical outcome and metastatic disease (17, 

18). PI3K-AKT pathway aberrations are frequently attributed to PTEN 

inactivation and occur in up to 40% of primary tumours (1) and 49% of CRPC (16). 
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They contribute to PCa progression by activating target genes that promote 

cancer cell growth and proliferation (19). Somatic aberrations of DNA repair 

genes occur in approximately 12% of CRPC and include genes involved in 

homologous recombination, such as BRCA1/2 and mismatch repair (16, 20). The 

incidence of mutations affecting cell cycle genes varies significantly between 

primary (5%) (21) and advanced CRPC (21-55%) (16, 20) and include deletions of 

tumour suppressor genes p53, RB1, CDKN1, CDKN2A/B, and CDKN2C, and 

amplifications of oncogenes CDK4 and CCND1. Lastly, in CRPC, the most frequent 

aberrations were found in the androgen receptor (AR) pathway (71%), implying 

that these tumours still depend on AR signalling (20).  

Summarising, there is a refined classification of PCa subtypes based on genetic 

alterations. Interestingly, different genetic backgrounds of PCa have been shown 

to influence the immune composition of the tumour microenvironment in vivo 

via different chemokine expression patterns (22) and inactivation of mismatch 

repair genes have been strongly associated with increased CD8 T cell infiltration 

in patient tumours (23). Also, pro-inflammatory cytokines produced by immune 

cells result in oxidative stress which has be linked to TMPRSS2-ETS gene fusions 

via DNA breaks (24). However, the overall reciprocal interactions between 

different genetic alterations and tumoural immune cell composition is far from 

clear. Better understanding of these relationships would potentially contribute 

to the identifications of novel prognostic as well as predictive biomarkers for 

personalised immunotherapies. 

1.1.7 Stratification of prostate cancer molecular subtypes using 
immunohistochemistry 

The commonest genetic alteration of PCa is the juxtaposition of TMPRSS2 and 

the transcription factor ERG by chromoplexy (15). As a result of this 

translocation, the expression of ERG becomes regulated by androgens and is 

therefore overexpressed in prostatic epithelium. ERG overexpression assessed by 

immunohistochemistry (IHC) has been successfully validated as a surrogate for 

TMPRSS-ERG translocation, with concordance between ERG IHC and Fluorescence 

in situ hybridisation (FISH) or quantitative polymerase chain reaction (PCR) 

above 95% (17, 25-27). Using IHC for detection of genetic alterations is less 
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expensive and time-consuming than FISH as well as more easily transferable into 

the current clinical pathology workflow setting.  

PTEN inactivation is a subclonal event that occurs frequently in PCa and has 

been repeatedly associated with worse clinical outcome and metastatic disease 

(17, 28-30). Interestingly, it is more frequently concomitant with ERG fusion 

cancers (19). Detection of PTEN loss by immunohistochemistry has been well 

established in previous reports and is comparable to the previously gold standard 

FISH detection (17, 18, 31). Even though PTEN is most frequently lost by large 

gene deletions that are detected by FISH (16, 32), less frequent genomic 

alterations, such as gene mutations, small insertions/deletions and epigenetic 

silencing (16, 32) can be detected with IHC only. Also, because PTEN loss is 

commonly heterogeneous in primary prostate tumours (18) using FISH detection 

for gene deletion can be technically challenging and screening for focal loss with 

IHC can be advantageous. Therefore, assessing PTEN expression by IHC is a 

robust and advantageous approach. 

1.2 Tumour microenvironment 

 

1.2.1 Tumour stromal microenvironment 

In cancer, the growth of tumour cells is driven by activation of oncogenic drivers 

and inactivation of tumour suppressors (33).  However, these aberrantly 

proliferating epithelial cells are not in isolation. They depend on reciprocal 

interactions with their surrounding stromal compartment, the tumour 

microenvironment (TME) (33, 34). The TME comprises of several different non-

malignant cells, such as fibroblasts, endothelial cells, pericytes and immune 

cells situated within extracellular matrix (ECM) (34). Crosstalk between cancer 

cells and TME can enhance or inhibit tumourigenesis, invasion and metastasis 

(34).  

 

1.2.2 Tumour immune microenvironment 

Tumour immune microenvironment is a decisive factor in tumour initiation and 

progression. Immune cells can provide tumour promoting as well as tumour 



Chapter 1 22 
 
suppressive signals on epithelial cells via cell contact or secreted molecules (35, 

36). The interaction between cancer and immune cells is called cancer 

immunoediting and encompasses the consecutive phases of tumour elimination, 

equilibrium and tumour escape (36). During tumour elimination the host immune 

system successfully eradicates developing tumours. If tumour cells survive the 

elimination process they enter into an equilibrium phase, in which the immune 

system continues to contain tumour cells without fully eliminating them. Escape 

is signified by the expansion of tumour cells, overcoming the immune system 

(36). The balance between the effectiveness of the immune response and the 

mechanisms adopted by tumours to evade immune recognition and destruction 

determines the overall results (35).   

All solid tumours, including prostate cancer, contain different types of 

infiltrating immune cells that operate in conflicting ways, antagonising as well as 

promoting cancer progression (33). There are currently three main tumour 

immune microenvironment phenotypes that are driven by different biological 

mechanisms and are clinically relevant (35, 37). Firstly, the immune inflamed 

phenotype, also known as ‘hot’ tumours, are characterised by increased immune 

cell infiltration within tumour epithelial cells and surrounding stroma. These 

include immune suppressive cells, such as CD4 T regulatory cells and myeloid-

derived suppressor cells as well as CD4 and CD8 effector cells expressing 

exhaustion markers, such as programmed cell death 1 (PD-1) (35). This profile 

suggests the presence of a pre-existing anti-tumour immune response that has 

been halted, most likely due to immunosuppression within the TME (35, 37).  

Secondly, the immune excluded phenotype is also characterised by immune cell 

infiltration, however these do not penetrate the epithelial cells but are instead 

retained within the tumour-associated stroma (35, 37). This phenotype suggests 

a pre-existing anti-tumour response that has become ineffective due to the 

retention of immune cells away from the target epithelial cells. The limited 

immune cell migration through the tumour stroma can be attributed to altered 

chemokine milieu or mechanical barriers and is responsible for this immune 

phenotype’s tumour eradication failure (35, 37). Lastly, the immune dessert 

phenotype is characterised by a paucity of immune cell infiltration within the 

tumour parenchyma and surrounding stroma. This is the result of absence of pre-
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existing tumour immunity, with a lack of generation of anti-tumour specific T 

cells. The immune excluded and immune desert phenotypes are also known as 

‘cold’ tumours (35, 37). 

All immune cell types may be found within the tumour immune 

microenvironment. These include macrophages, myeloid derived suppressor cells 

(MDSCs), dendritic cells (DCs), B cells, CD4 helper and CD8 T lymphocytes being 

the most commonly encountered. These immune cells can be located within the 

tumour parenchyma, stroma or in organised tertiary lymphoid structures (37, 

38). Innate immune cells (macrophages, MDSCs, DCs) are the first line of defence 

against tumour antigens, and can also exert immune suppressive functions in 

order to maintain tissue homeostasis. DCs are key players that take up antigens 

and migrate to lymphoid organs where they present their antigens to T 

lymphocytes, functioning as a link between innate and adaptive immunity (39). 

Following priming and activation, these lymphocytes can produce an efficient 

antigen specific response against tumour cells. However, there are also effector 

lymphocytes with immune suppressive abilities such as regulatory T cells (39).  

1.2.2.1 Macrophages and myeloid derived suppressor cells 

Macrophages are abundant immune cells of the TME, characterised by high 

plasticity that allows them to shape their phenotype in response to the 

surrounding environmental cues (38). On the one end of the spectrum, tumour 

associated macrophages (TAM) can be M1-like or ‘classical’ TAMs that secrete 

pro-inflammatory cytokines, can present tumour antigens and have a pro-

inflammatory and tumouricidal role. On the other end, M2-like or ‘alternative’ 

TAMs can secrete anti-inflammatory cytokines ( IL‑4, IL-10, and TGFβ) playing an 

immunosuppresive role, promoting angiogenesis and favouring tumour 

progression (38). In reality, TAMs comprise different populations that often share 

features of both those two phenotypes which can change as tumour progresses 

(40).  

Myeloid derived suppressor cells are a heterogeneous population of myeloid 

lineage cells that can be immunosuppressive within the tumour 

microenvironment (38, 39). They consist of monocytes, granulocytes and 

immature myeloid cells which suppress T cytotoxic cells (39, 40).  
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1.2.2.2 Dendritic cells 

DCs are professional antigen presenting cells that are necessary for lymphocyte 

priming and activation. Tissue resident DCs capture antigens, process them and 

transfer them to draining lymph nodes, where they present them to lymphocytes 

(38). Alternatively, soluble antigens are transferred to the lymph node resident 

DCs via lymph fluid and are captured there (38). DCs present the captured 

antigens on major histocompatibility complex (MHCI and MHCII) molecules to T 

cells, resulting in the priming and activation of naive T cell responses against the 

cancer-specific antigens. Finally, the now activated effector T cells leave the 

regional lymph node and migrate to the tumour site (41). In cancer patients, this 

process is perturbed as tumour antigens may not be detected as foreign, 

effector T cells can be inhibited from infiltrating the tumour or factors within 

the TME can suppress the effector cells that are produced (41).  

1.2.2.3 Lymphocytes 

T and B lymphocytes are adaptive immune cells that can exert cell-mediated 

and humoral antigen specific immunity respectively (39). T cells mainly comprise 

of CD8 and CD4 helper T cells. Both subtypes are initially naïve T cells that 

differentiate into effector T cells in secondary lymphoid organs (38). CD8 T 

effector cells are largely cytotoxic CD8 T cells in the TME. They contain 

cytotoxic granules with perforin and granzyme B, which are released on 

interaction with target cells leading to their destruction by direct lysis (42). CD8 

regulatory T cells are also encountered with much lower frequency. CD8 as well 

as CD4 regulatory T cells inhibit anti-tumour immune response by cell contact 

dependent mechanisms and  producing immunosuppressive cytokines (IL-10 and 

TGFβ) (38). They are characterised by expression of nuclear forkhead box P3 

(FoxP3) (43). 

CD4 helper T cells comprise of a constantly expanding list of Th (T helper)  

subsets according to their transcriptional profiles, cytokine secretion and 

biological function (43). Apart from regulatory T cells, Th1 and Th2 polarised 

CD4 T cells play key roles in cancer immunoediting. CD4 Th1 T cells secrete 

inflammatory cytokines, such as IL2 and INFγ, promoting CD8 cytotoxic and 

innate immune cell cytotoxicity as well as antigen presentation (43, 44). In 
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contrast, Th2 CD4 T cells secrete immunosuppressive cytokines, such as IL4 and 

enhance T cell anergy and the tumour promoting activity of M2-like macrophages 

(44, 45). The functional orientation of CD4 helper T cells within the tumour 

microenvironment can favour a pro- or anti-tumourigenic immune response. 

Lastly, B cells are critical for humoral immunity, produce immunoglobulins and 

paracrine factors that can influence neighbouring immune cells (43). 

1.2.2.4 Immune checkpoints 

The adaptive immune system is able to recognise and respond to a variety of 

antigens. To ensure a tight balance is maintained between eradicating harmful 

pathogens and maintaining self-tolerance, T cell activation is finely tuned by 

two independent signals. The first signal is provided by the binding of T cell 

receptor (TCR) to the MHC upon recognition of an antigen. The second one, 

which is antigen independent, is provided by members of the B7 superfamily 

that are expressed on antigen presenting cells (APCs), which bind to their 

receptors on T cells and regulate immune responses by either co-stimulating or 

co-inhibiting them (44). 

Programmed death 1 (PD-1) is a transmembrane glycoprotein expressed on 

lymphocytes, DCs and activated monocytes that generates inhibitory signals and 

supresses activity of T cells upon binding with its programmed death ligands, PD-

L1 or PD-L2 (35). PD-L1 is expressed on a variety of cell types, including tumour 

cells and immune cells whereas PD-L2 is expressed mainly on dendritic cells in 

normal tissues (35).  PD-L1 can by autonomously expressed by tumour cells 

under the influence of oncogenic signalling pathways, known as ‘innate immune 

resistance’ (46). Alternatively, PD-L1 upregulation can be a result of ‘adaptive 

immune resistance’ in response to pro-inflammatory cytokines in order to 

protect tumour cells from CD8 cytotoxic T cell lysis and escape 

immunosurveillance (46) . 

1.2.2.5 Tumour immune microenvironment as a prognostic and predictive 
biomarker 

There is evidence that the immune reaction taking place at the primary tumour 

site has a significant impact on the course of the disease (38, 47). In colorectal 

cancer patients, increased CD8 T cell infiltration at the tumour invasive margin 
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has reproducibly been associated with improved clinical outcome, 

supplementing, if not superseding, the conventional TNM staging (48-51).  These 

observations have been expanded to gene expression analyses of human samples 

and in vivo models in order to investigate the functional relationships of 

different immune cell types in colorectal cancer, highlighting CD4 follicular 

helper and B cells as key players collaborating in the adaptive immune cell 

defence against tumour progression, via specific mediators such as CXCL13 (52).  

In renal cancer, higher percentage of infiltrating natural killer (NK) cells and CD4 

T cells with Th1 orientation were associated with better survival (53). In another 

renal cancer study using multiplex immunofluoresnce (mIF) panels, increased 

CD4 regulatory T cells and PD-1 expressing CD8 T cells within the tumour centre 

and invasive margin respectively were associated with worse survival (54).  In a 

large diffuse large B cell lymphoma study, low CD3 T cell infiltration was 

associated with a lower anti-tumour response expression signature and had an 

unfavourable prognostic impact. Also, tumour cells expressing PD-L1 and PD-1 

expressing T cells had adverse prognostic impact only in patients with high T-cell 

infiltration in close proximity to each other, suggesting a possible exhausted 

anti-tumour immune reaction in those patient (55).  

The importance of immune contexture is underscored not only by the abundance 

of immune infiltrates but also by its spatial context. In pancreatic ductal 

adenocarcinoma (PDAC), the spatial distribution of cytotoxic CD8 T cells in 

proximity to cancer cells correlated with improved patient survival (56). This 

highlights the importance of spatial distribution as when CD8 T cells are 

restricted from the tumour centre they are not associated with better outcomes 

(56, 57), even when they are located at the tumour margin or within the stroma. 

Poor infiltration of CD8 cells was associated with an immunosuppressive 

microenvironment comprising of regulatory lymphocytes, M2-like polarised 

macrophages, PD-L1 positive tumour cells and cancer associated fibroblasts (57). 

The same has been observed in breast cancer patients, where a significant 

proportion of cases with dense NK and lymphocytic infiltrates contained areas 

with large distances between immune cells and tumour cells, suggesting a low 

chance of direct contact and therefore interaction with those cytotoxic effector 

immune cells (58). A study focusing on macrophage heterogeneity in gastric 

cancer using mIF and gene expression analysis showed that the abundance of 



Chapter 1 27 
 
specific macrophage subpopulations and their proximity to tumour cells were 

key for predicting outcome, suggesting that direct contact and/or paracrine 

mediators are important for their function (59).  

Tissue immune profiling is becoming an important tool for identifying predictive 

markers for response to immunotherapy as well as other treatments. In breast 

cancer, specific lymphocyte immune cell infiltration (CD3 T cells, CD8 cytotoxic 

T cells, CD20 B cells) has predicted better response to neo-adjuvant 

chemotherapy and trastuzumab (60-62). In chronic myeloid leukaemia, 

combining the proportion of CD4 helper T cells and PD-1+TIM3− CD8 T cells in 

the bone marrow with clinical parameters improved the prediction of remission 

after tyrosine kinase inhibitor therapy (63).  In melanoma patients, 

characterising the in situ tumour profile using seven immune markers could 

successfully predict the generation of tumour infiltrating lymphocytes (TILs) for 

autologous adoptive T cell therapy (64). In another study, tumours with myeloid 

dominated tumour immune composition were associated with CD8 T cell 

exhaustion and poor response to neo-adjuvant GVAX vaccination in PDAC 

patients (65).   

It is obvious that the exact composition as well as spatial organisation of the 

immune tissue microenvironment is critical to building and maintaining an 

effective antitumor immune response (35, 39). Therefore characterising the 

exact immune cell composition, functional orientation, tissue density and 

localisation within tumour regions is crucial for elucidating how the immune 

microenvironment affects cancer development and progression.  Furthermore, 

those features may be associated with patient prognosis and response to 

therapies (35, 38, 47). 

1.2.3 Prostate cancer immune microenvironment 

Relative to other cancer types described above, the characterisation of primary 

PCa tumour immune microenvironment has been challenging with conflicting 

results. A detailed summary of the studies on human PCa immune 

microenvironment is presented in Table 1. The reason for their inconsistent 

results lays partly on the study of limited immune cell types (macrophages or 

limited lymphocytic subpopulations), different specimens used (tissue 
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microarrays or whole sections), variable methodologies for protein detection 

(IHC or immunofluorescence), visual quantification assessment (inter and intra 

observer variability), small patient cohorts and measurement of disparate 

outcomes. In addition, very few studies have integrated tumour molecular 

subtyping in relation to immune cell infiltration (25, 66).  

The presence of inflammatory cells in the prostate is well documented (67). PCa 

is generally considered to have a relatively immunologically ‘cold’ 

microenvironment compared to other solid tumour types. However spatial 

distribution and functional orientation are emerging as more important features 

that the mere quantification of immune cells. Interestingly, a recent study using 

deep learning computational analysis on haematoxylin and eosin (H&E) slides 

from TCGA patients, showed that even though PCa was not among the highest 

immune infiltrated cancers it had distinctive structural patterns reflecting the 

nature of immune responses (68).   

The macrophage presence in primary PCa has been investigated in several 

studies with inconsistent results regarding patient survival outcomes (69-73). 

Part of the literature has shown a negative impact of macrophage density to 

patient survival (69, 72). High macrophage density was also predictive of a 

shorter relapse-free survival after ADT (72) and PCa specific death (69). On the 

contrary, high macrophage infiltration has been predictive of prolonged disease-

free survival (73) or has resulted in no difference in patient outcomes (70, 71). 

These studies have been limited by the absence of uniform patient treatment 

and small sample sizes, making it difficult to draw definitive conclusions on the 

significance of macrophages in prostate cancer.  One consistent finding is that 

macrophage infiltration is increased in PCa when compared to normal prostate 

(70, 72, 73), however its clinical significance in PCa progression and survival 

remains unclear. 

There is evidence that prostate cancer induces recruitment of lymphocytes into 

the prostate microenvironment but information regarding precise biological 

functions and their potential reciprocal interactions with tumour cells are very 

limited (67). T regulatory cells are increased in blood as well as tumour tissues 

of PCa patients and have confirmed in vitro immunosuppressive potential (74-

76). Interestingly, CD8 T regulatory cells are also present in PCa TME with cell 
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contact dependent suppressive function (77). Another functionally important 

observation showing negative immune regulatory activity was the expression of 

PD-1 on PCa infiltrating CD8 T lymphocytes (75, 78). These CD8 T cells were 

oligoclonal and antigen driven, suggesting a functional inhibition or exhaustion 

of CD8 T lymphocytes (78). The PD-1 ligand PD-L1 is however rarely expressed on 

prostate cancer tumour cells (79, 80), suggesting that prostate cancer cells do 

not impact on immune cells directly via PD-1/PD-L1 pathway.  

Lymphocytic infiltration of primary PCa is often increased and perturbed 

compared to normal prostate tissue (67) but its prognostic implication remains 

elusive. One of the largest cohort studies found that patients with either high or 

very low numbers of intratumoural CD3 T lymphocytes, but not B-lymphocytes, 

had a shorter relapse-free survival (66). Similarly, poor survival outcomes were 

observed in patients with tumours containing high CD4 (81) and intratumoural 

CD3 and CD8 T lymphocytic infiltration (82), while other studies had opposite 

findings (83, 84). Part of the literature has also shown that high FoxP3 T 

regulatory T cell infiltration was associated with shorter disease free survival 

(85) and increased risk of dying of PCa specific death (86). More recently, 

effector CCR4 expressing T regulatory cells were identified as the subpopulation 

associated with poor survival outcomes (87). The effect of TILs in PCa cancer 

development is complex and their prognostic value may depend on factors 

beyond density, such as specific immune subtype, spatial localisation and 

functional orientation. 

Tumour infiltrating immune cells have previously been identified as prognostic 

and predictive biomarkers in several cancers (38), however in PCa further 

research is necessary. The contradicting results highlight the need for studying 

well defined patient cohorts with similar disease stage, risk status and 

treatments in order to obtain meaningful results. Furthermore, investigation of 

different immune cell subsets, taking into consideration their spatial 

organisation and phenotype combined with high-throughput digital 

quantification will lead to a robust characterisation of PCa tumour immune 

microenvironment. Multiplex immunofluorescence (mIF) with tyramide signal 

amplification (TSA) is a suitable methodology for gaining a better understanding 

of immune-epithelial cell interactions. 
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First Author, 
Year 

Number 
of cases 
studied 

Immune 
marker 

Tissue 
used 

Quanti
fication 

Association with 
clinicopathological 
parameters 

Association with 
clinical outcomes 

Macrophage studies 

Shimura, 
2000 (73) 

81 CD68 Whole 
RP 
sections  

Visual  Patients with high 
MΦ had higher T 
stage and LN 
metastasis  

Patients with high  
MΦ had longer RFS  

Nonomura, 
2011 (72) 

71 CD68 PCa 
biopsies 

Visual  Patients with high 
MΦ had higher T 
stage and GS 

Patients with high  
MΦ had shorter RFS  

Gollapudi, 
2013 (70) 

537 CD68 TMA Visual  Patients with high 
MΦ had higher 
GS 

No association with 
RFS 

Lanciotti, 
2014 (71) 

93 CD68, 
CD163 

Whole 
RP 
sections  

Visual  Patients with high 
M2-like MΦ had 
more frequently 
EPE 

No association with 
RFS 

Erlandsson, 
2019 (69) 

592 CD163 TMA Digital  Patients with high 
MΦ had higher 
GS 

Patients with high 
MΦ had increased 
PCa-specific death  

Lymphocytic studies 

McArdle, 
2004 (81) 

80 CD4  Whole 
RP 
sections  

Visual  None Patients with high 
CD4 T cells had 
shorter PCa-specific 
survival   

Fox, 2007 
(88) 

146 FoxP3 TMA Visual  None No association with 
RFS 

Flamminger, 
2012 (66) 

2,144 CD3 TMA Visual  Patients with high 
CD3 T cells had 
increased ERG 
expression 

Patients with very 
high or low CD3 
lymphocytes had 
shorter RFS 

Flamminger, 
2013 (85) 

2,002 FoxP3 TMA Visual  Patients with high 
T regulatory cells 
had higher T 
stage  

Patients with high 
regulatory T cells 
had shorter RFS  

Davidsson, 
2013 (86) 

735 CD4+ 
FoxP3+  

TMA Visual  None Patients with high 
CD4 regulatory T 
cells had increased 
odds of PCa-specific 
death  

Ness, 2014 
(82) 

535 CD8, 
CD3  

TMA Visual  None Patients with high 
CD3 and CD8 T cell 
had shorter RFS 

Woo, 2014 
(84) 

53 CD20 Whole 
RP 
sections  

Digital  None High risk PCa 
patients with high B 
cells had significantly 
shorter RFS 

Watanabe, 
2019 (87) 

75 FoxP3+ 
CCR4+  

Whole 
RP 
sections  

Visual  Patients with high 
CCR4+Tregs had 
higher T stage 
and GS  

Patients with high 
CCR4+ regulatory T 
cells had shorter 
RFS and OS  

Table 1 Summary of studies characterising human primary prostate cancer immune 
microenvironment 

RP=Radical prostatectomy, MΦ= macrophages, RFS= relapse free survival, GS=Gleason score, 

EPE=extra-prostatic extension, PCa=prostate cancer, OS=overall survival 
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1.3 Multiplex immunofluorescence as a tool for immune 
cell characterisation 

The understanding of spatial cellular composition and heterogeneity of tissues in 

cancer provides vital insights about the biology and clinical progression of the 

disease. Thus, it is imperative to have effective and reliable tools to detect 

different immune cell subtypes within tumour samples. Flow cytometry 

successfully evaluates a large number of markers, however the lack of 

morphology information and inability to use on archival tissue pose significant 

limitations. The gold standard method for in situ protein detection is 

chromogenic immunohistochemistry (IHC) on formalin-fixed paraffin-embedded 

(FFPE) tissues with is followed by visual assessment of antibody reactivity using 

3,3′-Diaminobenzidine (DAB) or equivalent stains. This approach, although 

widespread and relatively cheap has its limitations.  

The information that can be obtained from traditional IHC is confined to a low 

number of markers per tissue section, usually limiting the classification of 

immune cells to up to two markers, e.g. CD4+ FOXP3+ regulatory cells. 

Furthermore, this information is obtained from consecutive tissue sections, 

making it difficult to relate cells to each other and more importantly using 

unnecessarily precious clinical tissue. This approach cannot resolve mixtures of 

chromogens if the target antigens spatially overlap to reliably study co-

localisation. Its assessment remains challenging, as it is time consuming, 

subjective, often poorly reproducible and dependent on the experience of the 

observer (89). This is done by using binary (positive versus negative), tiered (0, 

1+, 2+, and 3+) or semi quantitative (Histo-score) scoring systems, which are 

unable to discern subtle differences of protein expression and provide only rough 

estimates of immune cell counts (90). In order to dissect the biological processes 

that take place and deliver more accurate patient stratification and prognosis, 

tumours need to be characterised more comprehensively, combining cellular 

information with intact spatial context of the surrounding microenvironment.  

Multiplex immunofluorescence (mIF) has been a great asset in immune profiling 

of the tumour microenvironment because it overcomes the limitations of 

traditional chromogenic IHC (91). The benefits of multiplexing lie in collecting 

maximal information from a single tissue section - it allows the simultaneous 
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examination of 5 or more different biomarkers (92). Therefore, cell populations 

can be classified accurately and their spatial associations and frequency of 

marker co-expression can be determined (92). A key component for the success 

of this technology is pairing the multiplex fluorescence staining with 

multispectral imaging (MSI). Using a ‘spectral library’, MSI separates overlapping 

fluorophore spectra (including auto fluorescence) enabling accurate fluorophore 

quantitation for each marker on a FFPE samples. In addition, sophisticated 

software (i.e. InForm) have been developed for these type of image outputs and 

can be incorporated for an automated analysis workflow.   

We used the tyramide system amplification (TSA) methodology, in which the 

primary antibody binds to the antigen of interest, which is then bound to a 

horseradish peroxidase (HRP)-conjugated secondary antibody to the host species. 

With the addition of tyramide-fluorophore system, HRP activates the fluorophore 

and tyramide binds to tyrosine residues on or immediately around the epitope 

through covalent bonds (92). This allows for heat mediated removal (stripping) 

of primary and secondary antibodies whereas the fluorophore remains bound to 

the tissue allowing staining with more pairs of primary-secondary antibodies of 

the same species (Figure 1) (92). In this way, several antibodies of the same 

species can be used, simplifying the protocol requirements.  Furthermore, 

fluorescent signals are more amenable to quantitation because of their linear 

and additive nature and relatively well-defined emission spectra. This linear 

responsiveness allows for more objective and reproducible intensity quantitation 

(92). Finally, TSA methodology is ideal for detection of low abundance targets, 

like scarce immune subpopulations present.  

While this technique is providing many benefits compared to traditional IHC it is 

essential to follow extensive optimisation and be aware of possible pitfalls. 

Firstly, all antibodies used need to be validated with conventional chromogenic 

staining and confirm sensitivity and specificity of the staining. The fluorophores 

used need to be chosen carefully so that they have minimal bleed through. Each 

antibody needs to be paired with the optimal fluorophore based on the signal 

intensity and signal/noise ratio. As a general rule, low abundance targets are 

best paired with the brightest fluorophores. Finally, the optimal sequence in 

which the antibodies will be added has to be determined. Repetitive rounds of 
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heating can compromise the integrity of some antigens and weaken the 

fluorophore signal. Therefore, most sensitive targets and fluorophores impacted 

the least by microwaving should be added early on. Lastly, it is good practice to 

compare singleplex with multiplex staining in order to account for ‘antigen 

sheltering’, whereby existing tyramide-fluorophore deposits may preclude 

subsequent deposition of tyramide-fluorophores if their target is located in their 

vicinity (92).  

The mIF methodology has robustly been validated in mouse (93, 94) and in a 

larger extent in human FFPE tissues in previous studies (91, 95-97). It has 

gradually progressed from manual to automated staining to become less time 

consuming and avoid the risk of human error leading to staining variability (98, 

99). Additionally, previous work has confirmed its reliability showing a high 

correlation between mIF and other established methodologies, such as 

conventional chromogenic IHC (91, 97, 98, 100, 101) or flow cytometry (65, 93). 

More recent studies have expanded the capabilities of this method, increasing 

the number of markers up to 12 (65), using whole-slide tissue imaging and 

analysis (102) and combining fluorescent with chromogenic staining (102, 103).   

 

 

Figure 1 Multiplex immunofluorescence with tyramide signal amplification method 
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The multiplex immunofluoresnce using tyramide signal amplification methodology lies in the 
covalent bonds developing between tyramide and tissue that allow for heat induced removal of the 
non-covalently bound primary and secondary antibodies. Iterative rounds of staining allow for the 
visualisation of up to seven markers on the same tissue section. 

 

1.4 B7-H3 immune checkpoint molecule 

1.4.1 Immune function of B7-H3 

As a new member of the B7 superfamily, B7-H3 (CD276) was first identified in 

2001 (104). It is a type I transmembrane protein that contain an immunoglobulin 

(Ig) extracellular domain, a transmembrane domain and a short intracellular 

domain. Its expression can be induced on mature dendritic cells, T cells, B cells, 

macrophages, monocytes and natural killer cells (104, 105). Whilst B7-H3 protein 

expression is limited in normal tissues (106), it is overexpressed in different 

types of tumours, including PCa, pancreatic and breast cancer (107-109), making 

it a promising target for immunotherapies. Further research has confirmed that 

there are two main isoforms, 2Ig-B7-H3 and 4Ig-B7-H3, being the dominant forms 

in mouse and human respectively (105). Human 4Ig- B7-H3 structure is the result 

of an exon duplication that contains two immunoglobulin-like V and C domains, 

whereas 2Ig-B7-H3 contains a single V and C domain (110, 111).  

B7-H3 was initially reported to function promoting the TCR mediated CD4 and 

CD8 T cell proliferation and inducing IFN-ɣ production (104, 105). In a lymphoma 

mouse model, injection of B7-H3 expressing plasmid into the tumour, resulted in 

a complete regression of 50% of tumours which was dependent on cell mediated 

cytotoxic CD8 T and NK anti-tumour immune response (112). In an orthotopic 

colon cancer murine model, intratumoural injection with adenovirus expressing 

mouse B7-H3 resulted in a reduction of tumour size and metastatic foci. Treated 

mice had significantly higher IFN-γ producing tumour specific CD8 T cells (113). 

Another study showed that in a transgenic adenocarcinoma mouse prostate 

(TRAMP) model, ablation of B7-H3 lead to an increased tumour burden and 

regulatory T cell infiltration (114).  

Although initially reported to function as a co-stimulator of T cell response, 

mainly from in vivo studies, the current body of evidence strongly supports the 

role of B7-H3 as a co-inhibitor, contributing to immune cell evasion.  With 
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regards to murine B7-H3, mice treated with a blocking anti- B7-H3 antibody 

showed decreased growth of PDAC (108), melanoma and lymphoma (115), which 

depended on the cytotoxicity of NK and CD8+ T cells (108, 115). A study using 

pancreatic and lung syngeneic mouse models showed improved anti-tumour 

immunity with anti-B7-H3 blockade that was orchestrated by CD8 cytotoxic T 

cells (116). In a recent study chimeric antigen receptor T cells (CART) targeting 

2Ig and 4Ig B7-H3 isoforms was developed. Targeting PDAC, ovarian and 

neuroblastoma in vitro reduced tumour proliferation via increase of the cytolytic 

activity and IFN-γ and IL-2 release (117). Validating this in in vivo orthotopic and 

metastatic xenograft models, as well as patient derived xenografts, confirmed 

that administration of CART B7-H3 controlled tumour growth (117).  

Accumulating evidence also indicates that human B7-H3 acts as a co-inhibitory 

factor of immune responses. A study investigating the consequences of B7-H3 

and T cell interaction using different experimental conditions showed that B7-H3 

negatively regulated naïve and activated T cells, reduced IL-2, Th1 and Th2 

cytokine production (118). Another study showed DCs isolated from non-small 

cell lung cancer (NSCLC) patients had upregulated B7-H3 and reduced T cell 

proliferation in mixed lymphocyte reactions compared to healthy controls (119). 

In neuroblastoma, B7-H3 expressed at the tumour cell membrane was shown to 

exert a protective role from NK cell mediated lysis by interacting with a still 

undefined inhibitory receptor expressed on NK cells. A bispecific anti-CD3 x anti-

B7-H3 antibody armed with activated T cells was synthesised recently (120) and 

showed increased cytotoxicity against human cancer cells in vitro and in vivo, at 

least partly due to increased IFN-ɣ, TNF-a and IL-2 secretion (120, 121). B7-H3 

was also used as a target of antibody-drug conjugate therapy that exhibited 

potent tumouricidal and anti-metastatic activity in human lung, cancer and 

breast human tumour xenografts targeting tumour and tumour vasculature (106). 

Another humanised anti-B7-H3 (MGA271) IgG1 monoclonal antibody showed 

potent antibody-dependent cellular cytotoxicity (ADCC) in vitro and in 

xenografts against a variety of B7-H3 expressing tumours (122). MGA271 is 

currently under evaluation in a phase I study for several B7-H3 expressing 

tumours, including PCa (123). 
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In summary, while initially B7-H3 immune function was controversial, current 

consensus supports its classification as a co-inhibitory molecule of T-cell 

activity. It is conceivable that the contradicting results may be due to 

interactions with both inhibitory and stimulatory receptors, therefore the co-

stimulatory or co-inhibitory effect could prevail depending on the experimental 

system used. There is the possibility that B7-H3 may interact with different 

affinities to several receptors and exert different functions. Also, differences 

between known as well as potentially unknown mouse and human isoforms or 

splice variants may affect its function and data derived from mouse studies may 

not be transferable to humans. So far, the only potential receptor of murine B7-

H3 identified was Triggering receptor expressed on myeloid cell-like transcript 2 

(TREML2) (124, 125). TREML2 is a modulator of innate and adaptive immune 

responses and its binding to B7-H3 lead to enhancement of CD8 T cell response 

(124, 125). However, later studies have disproved the engagement of human B7-

H3 to this receptor (118). The binding partner of B7-H3 on immune cells remains 

elusive.   

1.4.2 Non- immune function of B7-H3 

Apart from the immune regulatory function, B7-H3 has been shown to have a 

non-immunological role in cancer progression. For the first time in 2008, 

downregulation of B7-H3 with siRNA resulted in up to 50% decrease of cell 

adhesion to fibronectin and up to 70% in vitro decrease of migration and invasion 

in melanoma and breast cancer cells (126). Further in vitro studies showed that 

silencing of B7-H3 lead to reduction of cell adhesion to fibronectin, migration 

and invasion in PCa (127). This was further validated in vivo by reduction of 

tumour metastasis in nude mice harbouring PDAC xenografts (108). Of note, a 

few studies have also associated B7-H3 with increased tumour proliferation in 

vitro (128, 129) and tumour growth in mouse orthografts (130).  

Further studies identified regulation of matrix metalloproteases (MMPs) as one of 

the downstream pathways involved. In a melanoma study, stable knock out (KO) 

of B7-H3 decreased migration and invasion in vitro and metastasis in in vivo 

xenograft models (130). It also showed that B7-H3 KO reduced the expression of 

known key metastasis players, such as matrix metalloproteinases 2 (MMP2), 

phosphorylation of STAT3, secretion of IL-8 and increased the expression of 
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tissue inhibitors of metalloproteinase 1 & 2 (TIMP1&2) (130). A study using 

overexpression and silencing of B7-H3 in bladder cancer cell lines, showed B7-H3 

promoted cell migration and invasion by upregulating MMP2 and MMP9, at least 

partly via the PI3K/AKT/STAT3 signalling pathway (131). B7-H3 overexpression in 

osteosarcoma was associated with poor prognosis, inversely correlated with CD8 

T cell infiltration, promoted invasion in vitro and upregulated expression of 

MMP2 (132). B7-H3 also promoted migration and invasion in colorectal cancer in 

vitro and enhanced MMP9 expression by upregulation of Jak2/Stat3 pathway 

(133).  

In other tumour types, modulation of epithelial to mesenchymal transition (EMT) 

markers appears to be the dominant downstream pathway of B7-H3 mediated 

functions. In hepatocellular carcinoma, B7-H3 overexpression correlated with 

metastasis and poorer survival, and silencing of B7-H3 significantly decreased 

migration and invasion in vitro (134). This was accompanied by decreased 

expression of MMP2, MMP9 and epithelial to mesenchymal transition (EMT) 

markers that could be attributed at least partially to a decreased 

phosphorylation of STAT3 and Jak2 (134). B7-H3 overexpression in NSCLC 

patients correlated with LN and distant metastasis, transient silencing of B7-H3 

reduced in vitro cell proliferation, migration and invasion and expression of EMT 

markers (135). A study on colorectal cancer cells using overexpression and KO 

cell lines for B7-H3 showed that B7-H3 promoted in vitro and in vivo 

migration/invasion and EMT by activating the PI3K-AKT pathway and 

upregulating SMAD1 (136). 

A few other possible downstream targets of the invasive phenotype associated 

with B7-H3 have been under investigation. A study focused on soluble B7-H3 

(sB7-H3) and showed that pancreatic cancer cells released sB7-H3 according to 

their membranous bound levels. Exposure to sB7-H3 lead to an increase in 

migration and invasion through the TLR4/NF-κB pathway and its downstream 

targets, IL-8 and Vascular endothelial growth factor (VEGF) (137). A study on 

gastric cancer human cell lines reported the direct interaction with the 

chemokine receptor CXCR4 and potential contribution of phosphorylation of AKT, 

ERK and Jak2/STAT3 (138). 
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B7-H3 is also shown to play a role in resistance to cancer chemotherapy drugs. 

B7-H3 silencing enhanced gemcitabine cytotoxicity in vitro and in vivo PDAC by 

inducing apoptosis and downregulating anti-apoptotic protein survivin (139). B7-

H3 also induced sensitivity to paclitaxel in vitro and in vivo breast cancer, at 

least partially by regulating phosphorylation of the Jak2/Stat3 pathway and 

downstream targets Mcl-1 and survivin (140). In colon cancer cell lines, 

overexpression of B7-H3 inhibited drug-induced apoptosis and showed increased 

Jak2/STAT3 phosphorylation, upregulation of anti-apoptotic proteins bcl-2 and 

bcl-xl and down-regulation of pro-apoptotic protein Bax (128). Finally, in a 

recent study, B7-H3 increased chemoresistance of breast cancer cells by 

regulating stem cell enrichment through major vault protein mediated MEK 

activation (141). Summarising, the role of B7-H3 in cancer progression as well as 

in normal biologic functions extends far beyond its first reported 

immunoregulatory abilities.  

1.4.3 B7-H3 immune checkpoint in prostate cancer 

Assessment of B7-H3 expression in large cohort of 823 PCa patients treated with 

RP showed variable degree of B7-H3 expression in 93% of the tumours. High 

expression was present in 26% of cases and significantly associated with 

extracapsular extension, seminal vesicle invasion, cancer recurrence, and PCa 

related death (107). In a separate study of 338 men treated with RP, high B7-H3 

expression significantly correlated with adverse pathological features and cancer 

progression after surgery (142). B7-H3 expression was maintained in bone 

metastases, even after ADT treatment (143) and its high expression correlated 

with biochemical recurrence after salvage radiation therapy (SRT) in recurrent 

PCa (144).  
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Chapter 2 Materials and methods 

2.1 Reagents  

The details of all reagents used in the following experiments are listed in Table 

2. 

Reagent Cat number Supplier 

Xylene X/0250/17 Fisher Chemicals 

Ethanol absolute 20821.365 VWR Chemicals 

Methanol 20846.326 VWR Chemicals 

EDTA  (Ethylenediaminetetraacetic acid)  D10700153 Thermo Fisher Scientific 

Tri-sodium-citrate S/3320/60 Thermo Fisher Scientific 

Hematoxylin solution modified acc. to Gill III 105174 Merk 

Hydrogen Peroxide 30-32% (w/w) H/1800/15 Fisher Chemicals 

Parafilm ‘M’ PM-996 Bemis 

RPMI-1640 medium 1640 Sigma-Aldrich 

FBS (fetal bovine serum)  10270 Thermo Fisher Scientific 

L-glutamine 25030 Thermo Fisher Scientific 

Trypsin solution from porcine pancreas T4549 Sigma-Aldrich 

DMSO (dimethyl sulfoxide) D/4121/PB08 Fisher Scientific 

BSA (Bovine Serum Albumin)  A3059-506 Sigma 

MOPS SDS running buffer NP0001 Thermo Fisher Scientific 

Immobilon-FL PVDF Membrane IPFL00010 Merk 

Amersham ECL Western Blotting Detection 
Reagent 

RNP2106 GE Healthcare Life 
Sciences 

Pierce ECL Plus Western Blotting Substrate 32132 Thermo Fisher Scientific 

Halt™ Protease and Phosphatase Inhibitor 
Cocktail (100X) 

78440 Thermo Fisher Scientific 

PhosSTOPTM Phosphatase Inhibitor Cocktail  4906837001 Roche 
Bradford Assay 5000006 Biorad 

RNase Zap AM9780 Invitrogen 

2-mercaptoethanol M-3148 Sigma 

Opti-Mem 31985070 Thermo Fisher Scientific 

Lipofectamine RNAiMAX  13778-150 Thermo Fisher Scientific 

Matrigel 354234 Corning 

Transwell Boydon Chamber 3422 Corning 

Calcein AM 1430 Invitrogen 

 Table 2 Commonly used reagents 

 

 

2.2 Solutions and buffers 

The composition of buffers and solutions used in the following experiments are 

listed in Table 3. Tris Buffered Saline and Tween (TBST), Tris Buffered Saline 

(TBS) and Phosphate Buffered solution (PBS) buffers were provided by our core 

facility services at the Beatson Institute. 
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Solutions and buffers  Composition  

Tris Buffered Saline and Tween 
(TBST)  

25mM Tris-HCl pH7.4  
137mM NaCl  
5mM KCl  
0.1% Tween-20  

Tris Buffered Saline (TBS) 
 

25mM Tris-HCl pH 7.4 
137mM NaCl 
5mM KCl 

Phosphate Buffered solution (PBS)  170mM NaCl  
3.3mM KCl  
1.8mM Na2HPO4  
10.6mM KH2PO4  
pH7.4  

5% goat serum IHC blocking solution 5% goat serum (Dako) 
1% BSA  
0.1% Triton in TBS  

RIPA Cell Lysis Buffer (for protein 
extraction)  

Tris 1M pH7.6  
NaCl 4M  
Triton 10%  
Deoxycholaate 10%  
SDS 10%  
Sodium Orthovanadate 100mM  
Sodium Fluroride 0.5M 
Protease and phosphatase Inhibitor 
Cocktail  
PMSF 50mM 
PhosSTOP  
dH20  

 Table 3 Working solutions and buffers 

 

2.3 Human tissue  

 

2.3.1 Construction of intermediate/high risk discovery primary 
prostate cancer tissue microarray  

Formalin-fixed, paraffin-embedded (FFPE) histologic sections from intermediate 

and high-risk PCa patients who underwent RP and extended regional 

lymphadenectomy with curative intent (half with and half without evidence of 

nodal disease) were retrospectively identified between 4th June, 2008 and 23rd 

January, 2018 at the Queen Elizabeth University Hospital in NHS Greater Glasgow 

and Clyde. I reviewed all H&E stained histologic sections and when necessary 

slides were double checked by a specialist Uropathologist (Dr J. Salmond). The 

index prostate cancer lesion was marked for each case and three 1 mm thick 

tissue cores were punched out and transferred onto a tissue microarray (TMA) 

format. PCa commonly has multiple distinct foci, the index lesion was selected 

as the largest focus according to the pathology report (7). The work described 

here is carried out in accordance with approval from the West of Scotland 
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Research Ethnics Committee (REC) 4 granted to the NHSGGC Bio-repository and 

Pathology Tissue Resource II (REC reference: 16/WS/0207). 

This format was chosen because TMAs have an inherent capacity to process 

hundreds of tumour specimens at once (145). Two hundred and eighty two cores 

were distributed among three blocks, each containing 94 tumour samples. There 

were 10 control tissue cores on each block including tissue from tonsil, lymph 

node, kidney, liver, skin, breast cancer, lung cancer and normal prostate tissue 

from two different patient samples. From the resultant TMA paraffin blocks, 3 

µm serial histologic sections were prepared. The first set of sections was 

routinely stained with H&E and presence of cancer was confirmed. The cores 

were further analysed only when more than 60% of the core contained tumour 

glands.  

The patients’ selection for inclusion in the discovery TMA was based on their 

intermediate and high-risk status. Clinicopathological information were 

extracted from the pathology report including total number of excised lymph 

nodes at surgery, peak pre-operative PSA (ng/dl), age at diagnosis, pathological 

tumour stage (pT) according to the 7th edition of American Joint Committee on 

Cancer (AJCC), Gleason score and perineural invasion (PNI). Follow up 

information was retrieved from the medical records and included overall survival 

(OS), cancer-specific survival and relapse-free survival (RFS), defined as rise of 

PSA (≥0.2 ng/dl) in two consecutive measurements or presence of distant 

metastases. The first PSA value above or equal to 0.2 ng/mL was used to define 

the time of relapse. Patients without evidence of tumour relapse were censored 

at the last follow-up.  

2.3.2 Validation intermediate/high risk primary prostate cancer 
tissue microarray 

We established a collaboration with Professor George Thalmann (Department of 

Urology, University of Bern, Switzerland) and obtained an incidence primary 

prostate PCa TMA containing intermediate and high-risk tumours for validation of 

findings from the discovery TMA. This TMA included treatment naïve, newly 

diagnosed prostate cancer patients who underwent RP. Tissue cores of 0.6 µm 

were taken from the index prostate cancer lesion of each patient and were 
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distributed in one block. Four µm serial histologic sections were cut and sent to 

us alongside anonymised patient clinical information. The first set of sections 

was stained with H&E and cores were further analysed only when more than 60% 

was cancerous.  

2.3.3 Low risk primary prostate cancer tissue microarray 

We established a collaboration with Professor David Berman (Department of 

Pathology, Queen's University, Kingston, Ontario, Canada) and obtained a 

primary PCa TMA consisting of low risk tumours at the time of diagnosis. This 

included tissue cores from the index tumour lesion, surrounding PIN and benign 

tissue from RP specimens. Tissue cores of 0.6 µm were distributed in nine 

blocks. Three µm serial histologic sections were cut and sent to us alongside 

anonymised patient clinical information. Only the annotated index tumour cores 

were included in my analysis.  

2.3.4 Benign prostatic hyperplasia tissue microarray 

Transurethral resection of the prostate (TURP) specimens from 390 men with no 

evidence of prostate cancer were used to construct a benign prostatic 

hyperplasia (BPH) TMA previously by Dr Joanne Edwards (146). Three 0.6 µm 

cores were obtained from every patient and they were distributed in three 

slides. Already cut sections were available in our lab, with no clinical 

information attached to these patients.  

2.4 Chromogenic immunohistochemistry 

Chromogenic immunohistochemistry was performed manually after 1-2 hours 

oven incubation at 60oC the day before. Following antigen retrieval buffer and 

antibody concentration optimisation, the list of the primary antibodies used is 

presented in Table 4. These were incubated with appropriate secondary 

antibodies (EnVision System HRP labelled Polymer anti rabbit #K4003 or anti-

mouse #K4001) and the staining was visualised using 3,3′-Diaminobenzidine (DAB) 

Quanto (TA-125-QHDX).  
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Antibody Antigen 
retrieval 

Dilution 
(v/v) 

Catalogue 
number 

Manufacturer 

Anti-CD68 Citrate 1:400 76437 Cell Signalling 

Anti-CD163 Citrate 1:50 93498 Cell Signalling 

Anti-CD20 EDTA 1:400 60271-1 Proteintech 

Anti-CD8 EDTA 1:200 70306 Cell Signalling 

Anti-CD4 EDTA 1:100 ab133616 Abcam 

Anti-FoxP3 Citrate 1:100 98377 Cell Signalling 

Anti-PD-1 Citrate 1:200 86163 Cell Signalling 

Anti-AE1/3 (PanCK) EDTA 1:1 GA053 Dako 

Anti-ERG (EPR3864) EDTA 1:50 Ab92513 Abcam 

Anti-PTEN (138G6) Citrate 1:100 9559 Cell Signalling 

Anti-Ki67 (MIB1) EDTA 1:100 M7240 Dako 

Anti- Collagen I EDTA 1:100 ab138492 Abcam 

Anti- Collagen III Citrate 1:50 ab7778 Abcam 

Anti- Fibronectin 1 Citrate 1:100 ab2413 Abcam 

Anti- FAPa EDTA 1:200 ab207178 Abcam 

Anti-B7-H3 Citrate 1:100 14058 Cell Signalling 

Table 4 Antibodies used for chromogenic immunohistochemistry 
 

2.4.1 Chromogenic immunohistochemistry protocol 

Step 1 – Deparaffinisation and rehydration: Slides were incubated in the 

following order: Xylene three times for 10 min, 100% Ethanol two times for 10 

min, 95% Ethanol two times for 10 min, dH20 two times for 5 min. 

Step 2 - Antigen retrieval: Either 10 mM sodium citrate buffer (pH 6.0) or 1 mM 

EDTA buffer (pH 8.0) were made fresh on the day and pre-heated for 10 min in 

the microwave. Slides were added in the buffer in a pressure cooker for 3 min 

under pressure. The slides were then left to cool down at room temperature for 

30 min, followed by three 5 min washes in dH20.  

Step 3- Quenching of endogenous peroxidases: Slides were incubated with 

freshly made 3% H2O2 for 10 min. They were then washed in dH20 three times for 

5 min and in TBTS for 5 min. 

Step 4 - Blocking of non-specific binding: Tissue containing areas were circled 

with a hydrophobic barrier PAP pen (R37622, Invitrogen) and incubated in 5% 

goat serum for 1 hour in a humid chamber. 

Step 5 - Primary antibody incubation: The primary antibody was diluted in 5% 

goat serum in the appropriate concentration and left overnight at 4oC. This was 

followed by three 15 min washes in TBST the next day.  
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Step 6 - Secondary Antibody Incubation: Secondary anti-mouse or anti-rabbit 

antibody was added for an one hour incubation at room temperature, followed 

by three 15 min washes in TBST.  

Step 7 – Substrate visualisation: DAB chromogen was applied for 5 min according 

to manufacturer’s instructions.  

Step 8 – Counterstain and mounting: Slides were then washed in water, 

counterstained with haematoxylin and coverslipped using Dibutylphthalate 

Polystyrene Xylene (DPX) mountant (CellPath, UK). Stained slides were then 

scanned with Leica Aperio AT2 bright field microscope, x 20 magnification for 

digital image recording.  

2.4.2 Dual CD4-FoxP3 chromogenic immunohistochemistry 
protocol 

For selected validation experiments, histologic slides were manually stained for 

dual CD4-FoxP3 immunohistochemistry. The same steps as in section 2.4.1 were 

followed up to DAB substrate visualisation for FoxP3 (1/100 v/v) and slides were 

washed in dH2O for 1 min and TBST twice for 5 min. Horse serum (2.5%, v/v) was 

added for 1 hour and then slides were incubated with CD4 (1/100, v/v) for 1 

hour at room temperature. The slides were then washed in TBTS twice for 5 min 

and incubated with ImmPRESS-Alkaline phosphatase Polymer Anti-Rabbit IgG 

Reagent (MP-5401, 1:1) for 30 min. Slides were washed again in TBST twice for 5 

min and ImmPACT Vector Red Alkaline Phosphatase Substrate (SK-5105) was 

added according to manufacturer’s instructions for 15 min. For counterstaining, 

slides were manually washed in dH2O for 1 min, incubated in Mayer’s 

Haematoxylin for 2 min, washed in dH2O for 1min, incubated in Scotts Tap Water 

for 2 min and washed in in dH2O for 1 min. Lastly, sections were dried in the 

oven at 60oC for 30 min and mounted with EcoMount (M897L).  

2.4.3 HALO scoring 

Digital images were analysed using the HALO™ Image Analysis Platform (v2.1.1637.6) 

to objectively quantify the number of positively stained cells within an area. The 

software enables tissue classification (epithelium vs stroma vs background) based 

on the morphological characteristics and the quantification of positively stained 
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cells in each of the tissue compartments. The number of cells positive for each 

marker within a tissue compartment was then expressed as tissue cell density 

(cells/mm2).  

2.4.4 ERG, PTEN, Ki67 scoring 

ERG scoring was based on visual scoring systems validated in previous studies, 

using endothelial and immune cell staining as internal control (26-28). For each 

tumour core, only nuclear staining was assessed and defined as negative or 

positive when there was immunoreactivity in at least 30% of tumour tissue. It 

was given an intensity score of 0-4 but for the subsequent analysis any degree of 

intensity staining was considered positive as there has been previously verified 

that there is no significant difference between ERG intensity staining and ERG 

gene rearrangement detected by FISH (27). A patient’s tumour was defined as 

ERG positive if at least one core was defined as ERG positive and negative if all 

cores had no ERG staining.  

PTEN scoring was based on the intensity of cytoplasmic and nuclear staining 

described in previous studies (18, 28, 31) . In brief, if there was protein 

expression in >90% of malignant glands of a core that was considered PTEN 

intact. If the PTEN expression was absent in 100% of the glands that was 

regarded as homogeneous PTEN loss. If there was between 10% and 100% of PTEN 

immunoreactivity observed, the case was scored as having heterogeneous PTEN 

loss (focal loss). Benign prostate and stromal staining were used as internal 

positive controls and in their absence, the staining was considered ambiguous 

and the core was not given a PTEN score. Each patient was scored for the 

presence or absence of PTEN loss by summarising the scores of each individual 

TMA core. A patient’s tumour was designated as having intact PTEN if all cores 

showed intact PTEN expression and homogeneous loss of PTEN if all cores 

showed complete absence of PTEN expression. A tumour was defined as having 

heterogeneous PTEN loss if there was at least one core showing heterogeneous 

PTEN loss (intracore heterogeneity), or alternatively, if at least one core showed 

intact PTEN and another one showed heterogeneous and/or homogeneous PTEN 

loss (intercore heterogeneity). 
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Ki67 scoring was defined as low (≤10%), moderate (10-20%) and high (≥20%) 

according to the fraction of tumour cells showing nuclear immunoreactivity 

(147).  

2.4.5 Histoscoring 

Histoscore (H-score) was used to quantify B7-H3 expression on tumour cells. This 

is a well-established visual semi-quantitative assessment that uses intensity of 

staining (scored as: 0, no staining; 1, weak; 2, moderate; or 3, strong) multiplied 

by the percentage (%) of positive cells (148). The scoring range spans from 0 to 

300.  

2.5 In situ hybridisation for CXCL14 

In situ-hybridisation for the detection of CXCL14 mRNA (using probe 425298 from 

Advanced Cell Diagnostics) was performed by Mr Colin Nixon, the Beatson 

Histology Laboratory. RNAscope 2.5 LS (Brown) detection kit (Advanced Cell 

Diagnostics) was used on a Leica Bond Rx autostainer according to the 

manufacturer's instructions (146). Positive staining was measured by brown 

punctate dots present within the nucleus and/or cytoplasm. 

2.6 Second generation harmonic image acquisition and 
analysis for determination of collagen quantity and 
quality 

Five µm FFPE TMA sections from the discovery TMA were deparaffinised 

manually, imaged using Second generation harmonic (SGH) and analysed by Ewan 

McGhee as described  previously (149). In brief, collagen SGH images were 

collected using a LaVision Biotec Trimscope 1 system equipped with a Coherent 

Chameleon Ultra II femtosecond pulsed laser. A 500 x 500 x 30 μm z-stack was 

acquired at the centre of each TMA core and generated collagen stack images. 

Three slides from the discovery TMA were imaged.  

Image analysis was performed using Image J. The UMB GLCM plugin 

(http://arken.nmbu.no//~kkvaal/eamtexplorer/imagej_plugins.html) was used. 

This removed the background noise and selected only the collagen SHG signal. 

The output of the plugin for each image was saved as a text data file and then 
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the data files were processed using another ImageJ macro, generating outputs 

for both the mean and individual values for each image. These were then 

imported into GraphPad Prism for plotting.  

2.7 Multiplex immunofluorescence 

2.7.1 Optimisation steps for multiplex immunofluoresnce panel 
development 

My aim was to develop a panel of antibodies paired with fluorophores in order to 

detect different immune cell populations on the same tissue slide. Initially, 

several optimisation steps for the multiplex immunofluoresnce (mIF) panel 

development were performed manually in our facility. Sections from tonsil 

blocks were cut at 3 µm thickness and used for optimisation because of its 

immune cell abundance and well characterised immune cell spatial distribution. 

Antibodies were tested for each marker using chromogenic IHC in order to 

validate their sensitivity and specificity and also to determine their optimal 

concentration (Table 4). The antibodies were tested in different dilutions using 

the concentration for IHC recommended by the company as a reference and 

trialling concentrations above and below that. A negative control was used for 

each antibody and DAB chromogen staining was assessed visually with a light 

microscope. Not all commercially available antibodies claiming to work in human 

FFPE tissue showed a strong and/or specific staining. Such examples were CD4 

(4SM95, 14-9766-82, Invitrogen), CD4 (CL03995, AMAb90754, sigma), CD68 

(ab125212), Pan-Keratin (4545, Cell signalling).  

For transition to immunofluorescence (IF) staining, some alterations were 

implemented to the chromogenic IHC protocol. There were changes in the 

reagents used, as primary antibodies were diluted in Signal stain antibody 

diluent (#8112) and Signal stain Boost IHC reagents (rabbit #8114, mouse #8125, 

Cell signalling) were used as secondary antibodies. After secondary antibody 

incubation, TSA conjugated fluorophores were added according to 

manufacturer’s instructions and visualised under the confocal microscope for 

singleplex immunofluorescence (sIF) staining. For multiple marker staining, a 

microwaving step was performed after the addition of fluorophores (for primary 

and secondary antibody removal) and tissue was subsequently stained with the 
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next primary antibody (Figure 2). Slides were mounted with ProLong® Gold 

Antifade Reagent (#9071, Cell Signalling) for sIF and ProLong® Gold Antifade 

Reagent with DAPI (#8961, Cell Signalling) for multiplex staining. 

 

 

Figure 2 Multiplex immunofluorescence staining workflow 
TSA: Tyramide signal amplification 

 

Prior to conducting a multiplex experiment, the antibody concentration for each 

primary antibody was determined in the singleplex setting. After tonsil and 

prostate cancer whole tissue sections were stained with each marker, the slides 

were imaged in Zeiss 880 Airyscan Confocal Microscope. The optimal 

concentration was determined based on the assessment of highest signal 
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intensity in combination signal to noise ratio (Figure 3A). ZEN.2 software was 

used for these calculations. Once the optimal dilution for each antibody in the 

singleplex setting was determined, different antibody-fluorophore pairs were 

tested and the optimal combination was determined as before (Figure 3B). The 

aim of this was to balance signal intensities, generally pairing low abundance 

targets with the brightest fluorophores. Lastly, multiple rounds of heating can 

compromise the antigen integrity. For this reason, the order in which the ab-

fluorophore pairs will be added requires optimising. Each tissue section was 

stained only once and subjected to microwave heating the same amount of times 

irrespective of the labelling order (Figure 3C).  

These data were used in a five marker multiplexing proof of principle 

experiment that confirmed the feasibility of this method (Figure 3D). The panel 

showed specific staining but there was fluorescence intensity variation between 

staining rounds and the tissue auto-fluorescence was pronounced in red blood 

cells, vessels, muscle and occasionally stromal areas. The manual staining of five 

antibodies was a five day protocol, susceptible to technical errors that were 

likely responsible for the batch variations. More importantly, there were 

limitations with image acquisition capabilities in our facility and I could not use 

confocal microscopes designed for high-resolution microscopy for whole slide 

imaging. 
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Figure 3 Manual multiplex immunofluorescence staining optimisation 
(A) Representative example for PD-1 antibody optimal titration (1:400). (B) Representative example 
for PD-1 antibody fluorophore pairing comparison (Cy5). (C) Representative example for PD-1 
antibody order optimisation. Positioning PD-1 in the second step was chosen. (A-C) Mean 
fluorescence intensity in blue bars and signal to noise ratio in red line. (D) Representative image of 
tonsil tissue stained manually with five antibodies using spectral unmixing with microscope airyscan 
zeiss 880. FoxP3 (1:200) paired with FITC in green, PD-1 (1:400) paired with Cy5 in cyan, CD68 
(1:5000) paired with AF555 in yellow, AE1/3 (1:1) paired with AF350 in magenta and DAPI (1:1) in 
blue.  

 
 

2.7.2 Automated multiplex immunofluorescence staining and 
image acquisition  

Due to the difficulties mentioned above, we developed a collaboration with Dr 

John Le Quesne (Department of Pathology, University of Leicester; now at 

University of Glasgow). Dr Le Quesne’s laboratory has already established 

protocols for simultaneous automated staining of multiple markers alongside the 

necessary imaging equipment (Vectra Polaris) and analysis software (InForm 

2.4.2). My data were shared with his team in order to assist in their panel 

optimisation, however some antibodies were incompatible with their automated 

staining and were substituted accordingly. Also, they used the PerkinElmer Opal 

kit (Perkin-Elmer, Waltham, MA), therefore my fluorophore combinations were 

translated into their system. A prostate cancer test TMA that was created for 



Chapter 2 52 
 
optimisation. This comprised of four 1 mm cores from four cases (16 cores in 

total) from old TURP blocks. The same optimisation steps were followed. All 

stainings were performed in Ventana Discovery Ultra.  

Two mIF were developed, presented in Table 5. In detail, Panel 1 comprised of  

CD68 (macrophage marker, 1:200, #76437, Cell signalling) with Opal 520 (1:200), 

AE1/AE3 (epithelial marker, 1:250, #NCL-L-AE1/AE3, Leica) with Opal 650 

(1:200), CD20 (B cell marker, 1:1,  #760-2531, Ventana) with Opal 690 (1:150), 

CD163 (macrophage marker, 1:200, #NCL-L-CD163, Leica) with Opal 570 (1:550), 

discovery QD DAPI (#760-4196, Ventana). Panel 2 consisted of AE1/AE3 (1:250, 

#NCL-L-AE1/AE3, Leica) with Opal 620 (1:100), FoxP3 ( regulatory T cell marker, 

1:20, #ab20034, abcam) with Opal 690 (1:200), PD-1 (immune checkpoint, 1:1, 

clone NAT 105, #760-4895 Ventana) with Opal 650 (1:200), CD4 (helper T 

marker, 1:1, clone SP35, #790-4423, Ventana) with Opal 570 (1:150), CD8 (1:100, 

clone C8/144B, #70306, Cell signalling) with Opal 520 (1:100) and discovery QD 

DAPI. Slides were mounted with Prolong TM Diamond Antifade Mountant 

(#P36979, Invitrogen).  
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CD4 CD4 helper T cells 

CD8 CD8 T cells 

PD-1 Immune checkpoint 

FoxP3 Regulatory T cells 

AE1/3 (PanCK) Tumour epithelium 

DAPI Nucleus 

Table 5 Multiplex immunofluorescence panels developed and used for staining 
PanCK= Pancytokeratin 

 

The stained slides were scanned with 3.0 Vectra microscope system 

(PerkinElmer, MA) in 10x magnification. A spectral library was generated using 

each fluorophore signal and an unstained section for auto-fluorescence. 

Fluorescence bleed-through between different fluorophores was addressed by 

spectral unmixing of the multiplex image data after image acquisition. This 
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spectral library was the cornerstone of our marker quantitation, as the 

fluorescence intensity of each target was extracted from the multispectral data 

based on their specific spectral properties. 

2.7.3 Multiplex immunofluorescence analysis 

The InForm 2.4.2. software package was used for our analysis because of its 

unique pattern recognition based image analysis. The spectral library created 

from singlex IF staining (including auto-fluorescence) was used in order to un-

mix the signal from each fluorophore in the multiplex image. By doing this, the 

fluorescent bleed-through was eliminated. The analysis comprised of three 

steps: tissue segmentation, cell segmentation and cell phenotyping (Figure 4). A 

selection of representative multispectral images was used for machine learning 

alongside a simulated ‘brightfield’ image that was produced from the software 

in order to facilitate tissue recognition with classic pathology views. This was an 

iterative process in which settings were refined with each round under my 

supervision until the output image met the desired criteria described in detail 

below. Only then were the settings saved within an algorithm which was used for 

automated batch analysis of the rest of the multispectral images.  
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Figure 4 Multiplex immunofluorescence analysis workflow 
(A) Representative multiplex immunofluorescence image, spectrally unmixed. (B) Tissue 
Segmentation with magenta as epithelium, blue as stroma and grey as background. (C) Cell 
segmentation, nuclei shown in green and cytoplasmic membranes in orange. (D) Cell phenotyping 
in which each cell is given a colour coded identity. All images are from the same core.  

 

Tissue segmentation was the first step which allowed for segmentation of the 

image in tissue compartments (epithelium vs stroma vs background) (Figure 4B). 

Thirteen representative multispectral images were used for training. Due to 

tissue heterogeneity, the accuracy of the segmentation was proportionate to the 

number of images used for training. However, the use of 14 images or more 

caused significant delays in each processing step and software crashes, therefore 

thirteen images were used as a compromise. PanCK staining was used as a 

‘mask’ for the epithelial compartment to facilitate tissue segmentation. 

Acceptable tissue segmentation was arbitrarily defined as 80% of the entire core 

image. The outcome of tissue segmentation (epithelium vs stroma vs 
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background) for each core image was assessed visually and cores that did not 

meet the criteria were excluded from the analysis.  

Cell segmentation was the second step which allowed for segmentation of the 

subcellular compartments (nucleus vs cytoplasm vs membrane), shown in Figure 

4C. Nuclear identification was reliably conducted using DAPI staining for nuclei. 

However, occasional nuclei closely situated (without any intervening cytoplasm) 

were recognised as one large nucleus. This was addressed by several iterative 

rounds of segmentation fine-tuning the ‘cell roundness’ and ‘distance to 

nucleus’ parameters. Acceptable cell segmentation was arbitrarily defined as 

90% of the entire core images with 10% poorly segmented area. It should be 

noted that more than 95% of cores had near perfect cell segmentation.  

Cell phenotyping was the third step in which each cell can be given a phenotype 

identity (Figure 4D). The software was trained manually to identify several 

immunophenotypes based on tissue architecture, cell morphology and 

fluorophore staining of the cell. For panel 1 (Figure 5A), the cell phenotyping 

was: M1-like macrophages (CD68+ CD163-), M2-like macrophages (CD68- CD163+ 

and CD68+ CD163+), B cells (CD20+), epithelial cells (AE1/AE3+) and other cells 

(negative for all markers). In panel 2 (Figure 5B) cells were defined as: CD4 

effector T cells (CD4+ FoxP3- PD-1-), CD4 regulatory T cells (CD4+ FoxP3+ PD-1-

), PD-1 expressing CD4 T cells (CD4+ FoxP3- PD-1 +), CD8 effector T cells (CD8+ 

FoxP3- PD-1+), CD8 regulatory T cells (CD8+ FoxP3+ PD-1-), PD-1 expressing CD8 

T cells (CD8+ FoxP3- PD1-), epithelial cells (AE1/AE3+) and other cells (negative 

for all markers). The ‘other cells’ comprised of fibroblasts, blood vessels, 

nerves, muscle etc. Acceptable cell phenotyping was arbitrarily defined as 90% 

of the entire core images with 10% poorly segmented area. All cores that did not 

meet this threshold were not included in the analysis. 

After training was complete, the analysis algorithm was run on all images and 

automated identification and counting of each cell phenotype in each tissue 

compartment was performed. This output was available for each core in an excel 

format. Any cores with tissue folding, more than 5% artefact staining (such as 

unspecific staining of prostate crystalloids) or less than 60% malignant 

epithelium were excluded from the analysis. 
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Figure 5 Multiplex immunofluorescence cell phenotyping 
Cell phenotyping for the macrophage and B cell panel (A) and T cell lymphocyte panel (B). 
Spectrally unmixed images (left) with corresponding colour coded cell phenotypes (right).  

 

2.8 Gene expression analysis of formalin fixed paraffin 
embedded tissue using HTG EdgeSeq Precision 
Immuno-Oncology Panel 

The HTG EdgeSeq Immuno-Oncology Assay (HTG Molecular Diagnostics, Inc., 

Tucson, AZ) was performed in order to compare mRNA expression levels of 

multiple immune markers on FFPE prostate tissue biopsies. Forty-eight 

diagnostic biopsy cores from patients within the discovery TMA cohort were 

selected for gene expression analysis, including 24 without LN metastasis and 24 

with LN metastasis respectively. This assay contained probes to measure the 

expression of 1,410 RNAs. Annotated H&E slides alongside an unstained 5 µm 

blank serial section were sent to HTG EdgeSeq Company (Tuscon, Arizona). The 

samples were processed at HTG Molecular Diagnostics, Inc. (HTG), Tuscon, 
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Arisona, USA. I performed the data analysis using the HTG reveal software. The 

processing steps that were undertaken are briefly described.  

2.8.1 Sample preparation 

The HTG EdgeSeq System chemistry workflow follows an automated procedure, 

thus avoiding common operating errors. The samples were randomly allocated on 

a 96-well plate and put on the HTG EdgeSeq processor. HTG EdgeSeq Lysis Buffer 

was added to lyse the sample making the RNA available. The lysed samples were 

transferred to another standard 96-well micro-titer plate. Then, functional DNA 

Nuclease Protection Probes (NPPs) were added in excess amounts and hybridised 

with target RNAs. S1 nuclease was subsequently added to digest excess non-

hybridised RNA and NPP probes. NNPs were flanked with universal wing 

sequences which hybridised to universal DNA wingmen, preventing S1 nuclease 

digestion. This produced a 1:1 ratio of NNP detection probes to RNA initially 

present in the sample. The processed samples were then transferred to a 96-well 

micro-titer plate with a v-bottom, the stop plate. The S1 digestion step was 

terminated by termination solution followed by heat denaturation which 

released the NPPs from the DNA-RNA duplexes. Each processed NNP from the 

stop plate was used as a template to set up a PCR reaction. 

2.8.2 Library preparation 

The library was prepared using HTG EdgeSeq PCR processing. Specifically 

designed primers (referred to as tags) complementary to the 5’- and 3’ end 

‘wing’ sequences of the NPPs were added, along with common adaptors for 

cluster generation on an illumine sequencing platform. Each tag contained a 

unique barcode used for sample identification and multiplexing. No Template 

Control reactions (H2O alone) were made for each master mix used during qPCR 

process as a test for no probe or qPCR reagent contamination. The library was 

subsequently prepared.  

2.8.3 Library quantification and Normalisation 

After the PCR amplification was finished, clean up was performed to remove 

unincorporated tags with HTG EdgeSeq AMPure cleanup of Illumina Sequencing 

Libraries. Following library preparation, all samples and controls were quantified 
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using HTG EdgeSeq KAPA Library Quantification for Illumina Sequencing in 

triplicate. The HTG EdgeSeq RUO library calculator was used for ensuring there 

was sufficient sample concentration for library pooling and determined the 

appropriate sample dilution for the library pool. All samples had sufficient levels 

of PCR product to be pooled for sequencing. It also determined the volume of 

denaturation reagents to be added to the library. In brief, 2M NaOH was added, 

samples were vortexed, spun down and incubated for 8’ at room temperature. 

Then, cold HT1 buffer was added, followed by 2M HCl and the sample was 

vortexed and spun down. The PhiX control adaptor-ligated library was spiked at 

a concentration of 12.5 pM to the pooled library. The concentration of the 

pooled library loaded on the NextSeq flow cell was 3 pM. The library was 

vortexed, spun down, denatured for 4 min at 98oC and immediately chilled on 

ice for 5 min. The denatured library was loaded into the well of NextSeq 

sequencing catridge.  

2.8.4 Sequencing 

The sequencing was performed on the Illumina NextSeq sequencer in accordance 

with HTG EdgeSeq Illumina NextSeq sequencing.  

2.8.5 Data analysis 

The sequencing data on mRNA expression of target genes were imported into 

HTG EdgeSeq parser software for alignment to previously defined target 

sequences. The HTG Reveal App (https://reveal.htgmolecular.com/) was used 

for quality check and data normalisation. Data from three samples that did not 

pass quality control (QC) metrics and were excluded from the analysis. 

2.9 In vitro experiments 

2.9.1 Cell Culture and Cell Storage 

Human prostate cancer cell lines were acquired from the American Type Culture 

Collection (ATCC) and they were routinely tested six monthly for mycoplasma 

using an in-house MycoAlert™ Mycoplasma Detection Kit (Lonza, Switzerland), 

according to the manufacturer’s instructions. All cell lines were grown in 

standard conditions containing 5% CO2 at 37°C in a tissue culture class I 
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incubator. PC3M, C4-2, LNCaP and DU145 cells were grown in RPMI-1640 

medium, 10% FBS and 1% L-Glutamine. All the reagents are listed in Table 2. 

Cells were passaged approximately every 3 to 4 days at 60-80% confluency 

depending on cell line growth rate. Medium was aspirated, cells were washed 

with PBS, and trypsin was added for 2-3 min incubation for cell detachment. 

Fresh medium was added to neutralise the trypsin and cells were counted using 

a CASY® counter (Innovatis) and seeded as required. Cell suspensions were 

transferred to new flasks/ plates. 

Cell lines were stored using cryo-freezing. Cells were trypsinised and 

resuspended in fresh media. They were subsequently centrifuged at 300 rpm and 

cell pellets were resuspended in 90% (v/v) FBS and 10% (v/v) dimethyl 

sulphoxide (DMSO). 1 ml aliquots were transferred to cryotubes (Nunc) on dry ice 

wrapped in cotton wool. They were frozen overnight at -80°C and placed in 

liquid nitrogen for permanent storage the next day. 

2.9.2 Protein extraction 

RIPA lysis buffer was used for protein extraction. RIPA lysis buffer was added 

according to plate volume and cell confluency, e.g. 100 µl in 80% confluency in a 

6 well plate. Cells were scraped off and placed on ice for 15 min. They were 

then centrifuged at 11,200 rpm for 15 min at 4°C. The supernatant was retained 

and samples were stored at -80°C.  

2.9.3 Western Blot  

Protein lysates were quantified by Bradford protein dye assay (protein assay dye 

reagent concentrate, Biorad) in a spectrophotometer. Western Blots were 

performed using 10 well pre-set gradient SDS-PAGE electrophoresis gels. Briefly, 

20 μg of cell lysate were re-suspended into 6.25 μl sample reducing agent buffer 

with 2.5 μl NuPAGE loading dye and dH20 (25 μl total volume). Samples were 

then loaded onto a 4-12% BIS-TRIS gel with MOPS running buffer and 

electrophoresed at 100 V for initially 15 min then increased to 130 V until the 

dye front reached the end of the gel. Proteins were then transferred to a PVDF 

membrane at 100 V for 1 hour in a transfer buffer of 10% methanol and 10% 10x 

blotting buffer in dH2O. Membranes were then blocked with 5% milk in TBST for 
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1 hour. They were then probed with anti-B7-H3 primary antibody (14058, Cell 

Signalling) at 1:1000 (v/v) dilution in 5% bovine serum albumin (BSA) in TBST 

with 0.1% sodium azide overnight. The next day the membranes were washed 

with TBST on a shaker 3 times for 15 min and then a secondary goat anti-rabbit 

IgG HRP-linked antibody (7074, Cell signalling) was added at 1:5000 (v/v) 

dilution in 5% milk in TBST. Membranes were incubated for an hour and then 

washed with TBST on a shaker 3 times for 15 min. ECL or ECL Plus were added to 

the membrane according to manufacturer’s instructions and chemiluminescence 

was imaged in Biorad ChemiDoc system. Anti-HSC 70 (sc-7298, Santa Cruz) was 

used as the loading control paired with secondary goat anti-mouse IgG HRP-

linked antibody (7076, Cell signalling). Image analysis was performed using 

ADOBE photoshop. 

2.9.4 RNA extraction and cDNA preparation  

Total RNA was extracted from cell lines grown using the RNeasy mini kit (Qiagen) 

according to manufacturer instructions when cells reached approximately 60% 

confluency. The additional recommended step to remove genomic DNA using 

RNase-free DNase 1 (Qiagen) was included. RNA was eluted in 20 μl of nuclease 

free water. The quality and quantity of the purified RNA was assessed using 

Nanodrop 2000/200c (Thermo Scientific). 

cDNA was reverse transcribed using 2-4 μg of the extracted RNA using the High 

Capacity cDNA Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions. The final reaction volume was 20 μl, comprising of 

10 μl RNA, 2 μl 10x RT buffer, 0.8 μl 25 dNTP Mix, 2 μl 10x RT Random Primers, 1 

μl Multiscribe Reverse Transcriptase and 4.2 μl nuclease free water per reaction.  

This was placed in a thermocycler with the following successive thermal 

conditions: 25oC for 10 min, 37oC for 120 min, 85oC for 5 min, followed by 4oC 

until the samples were removed. Samples were subsequently stored at -80oC. 

2.9.5 Quantitative Polymerase chain reaction (qPCR)  

Roche universal probe library was used for all primer design (Table 6). qPCR was 

done using a 96 well plate with a 20 μl reaction volume per well comprising of 10 

μl 2x Taqman® universal PCR Master Mix (Applied Biosystems), 0.2 μl Universal 
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Library probe (Roche), 0.2 μl of forward and reverse primers respectively, 2 μl 

cDNA (routinely diluted 1/7) and 7.4 μl nuclease free H20.  Each sample was 

loaded in triplicate and the 96 well plate was sealed with microAmp optical 

adhesive film (Thermo Fisher Scientific) and spun prior to thermal cycling 

conditions to ensure the samples were at the bottom of the wells. The 

consecutive thermal cycling conditions were as follows: 50oC for 2 min, 95oC for 

10 min, 40 cycles of denaturation at 95oC for 15 min and 60oC for 1 min 

(ThermoFisher Scientific Quant studio 3 Real-Time PCR System). Casc3 was used 

as the housekeeping control for all genes examined.   

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) Probe 

CASC-3 accaccgcctcatctgtatc tgggcggggttatagtaggt 25 

B7-H3 tgcaaatggcacctacagc cctcagggacctggacct 18 

MMP2 ccccaaaacggacaaagag cttcagcacaaacaggttgc 43 

MMP3 gcagtttgctcagcctatcc tttctcctaacaaactgtttcacatc 58 

MMP9 gaaccaatctcaccgacagg gccacccgagtgtaaccata 6 

TIMP1 ctgttgttgctgtggctgat aacttggccctgatgacg 3 

TIMP2 gaagagcctgaaccacaggt cggggaggagatgtagcac 43 

TIMP3 cacccctcacctgtggaa tgacccaaaccagaaccaac 3 

CCL2 agtctctgccgcccttct gtgactggggcattgattg 40 

CCL26 ctgggtgcgaagctatgaat tcttgcctcttttggtagtgaa 32 

CLDN1   cctatgaccccagtcaatgc acagcaaagtagggcacctc 20 

CLDN7 cacctgctggctcacctc ccggcaagtcccaaagta 26 

CLDN11 cccggtgtggctaagtacag caacaagggcgcagagag 20 

CXCL1 cgaaaagatgctgaacagtga gcctctgcagctgtgtctc 35 

CXCL6 gtccttcgggctccttgt cagcacagcagagacaggac 68 

CXCL16 tgattgagtcttctttatggaaaca gaagccaggaatcacagtaagg 30 

CXCL8 agacagcagagcacacaagc Atggttccttccggtggt 72 

IL4R gtgctcattcatttaacagagctt actgaacaccccttgacagc 16 

IL11 ggacagggaagggttaaagg gctcagcacgaccaggac 37 

IL33 ccaccaaaaggccttcact aaggcaaagcactccacagt 27 

MMP1 gctaacctttgatgctataactacga tttgtgcgcatgtagaatctg 7 

MMP10 ctgacgttggtcacttcagc gcaaatctggtgtataattcacaatc 72 

Table 6 Primers and probe pairs used  

 

2.9.6 Transient silencing transfection using Lipofectamine 
RNAiMAX 

Cells were seeded the day before transfection in a 6 well plate, typically 

100,000 cells/well so that they were transfected at 60-80% the following day.  

On the day, Lipofectamine RNAiMAX was diluted in Opti-Mem medium (9 μl in 

150 μl) and siRNAs (Table 7) were also diluted in Optimem medium (9 μl in 150 

μl). The solutions were combined at a 1:1 ratio and left for 5 min at room 

temperature. 250 μl were added to each well and cells were incubated for 24-48 

hours.  
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siRNA name Cat Number Target sequence 

ON-TARGETplus Human 
CD276 SMART pool siRNA 
(pool siRNA) 

L-007813-01-0005 GAGUGAGACUUCAGACGUU 
GGUGGUGCUGGGUGCGAAU 
CUCCAAAGGAUGCGAUACA 
ACCAAAGACACGAUGCAUA 

ON-TARGETplus Human 
CD276 siRNA (S1 siRNA) 

J-007813-09-0005 GAGUGAGACUUCAGACGUU 
 

ON-TARGETplus Human 
CD276 siRNA (S2 siRNA) 

J-007813-10-0005 GGUGGUGCUGGGUGCGAAU 
 

ON-TARGETplus Human 
CD276 siRNA (S3 siRNA) 

J-007813-11-0005 CUCCAAAGGAUGCGAUACA 
 

ON-TARGETplus Human 
CD276 siRNA (S4 siRNA) 

J-007813-12-0005 ACCAAAGACACGAUGCAUA 

ON-TARGETplus Non-
targeting Control Pool  
(NT siRNA) 

D-001810-10 Not disclosed 

Table 7 List of siRNA sequences 

 

2.9.7 Generation of stable cell clones with reduced levels of B7-
H3 expression 

Stable knock out (KO) clones for B7-H3 were generated using CRISPR/Cas9 

plasmid specific to human B7-H3 sequence and homology directed repair (HDR) 

insertion plasmid (sc-402032) in PC3M and C4-2 cell lines. Amaxa Cell Line 

Nucleofector Kit V (VCA -1003, Lonza) was used for electroporating PC3M cells, 

and Amaxa Cell Line Nucleofector Kit R (VCA-1001, Lonza) was used for C4-2. 

Electroporation setting code T013 was used for PC3M cells and T009 for C4-2 

cells. Scrambled CRISPR plasmid and an in-house Infra-Red Fluorescent Protein 

plasmid with puromycin resistance was used as control. 10 cm plates were 

prepared with 4 ml full media.  Media was then changed every 5 days and 

puromycin was added to the media at 2 μg/mL for PC3M and 1.2 µg/ml for C4-2. 

After approximately 21 days for PC3M and 35 days for C4-2, clones were picked 

using selection disks soaked in trypsin. B7-H3 expression was checked with 

Western blotting and PCR. Four knock out (KO pool, KO4, KO10, KO13) B7-H3 

clones were picked for PC3M cells, and five knock out (KO pool, KO2, KO3, KO10, 

KO18) B7-H3 clones were picked for C4-2 cells. For both, one control pool was 

picked. For both cell lines, two KO clones and one control pool (referred to as 

PC3M cntr and C4-2 cntr) were used in subsequent experiments. 

2.9.8 In vitro Growth Assay  

LNCaP B7-H3 pool siRNA (si B7-H3) and NT siRNA (siNT) controls were seeded in 6 

well plates, 400,000 cells/well. PC3M si B7-H3 and si NT controls were seeded in 
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6 well plates, 200,000 cells/well. After 72 hours cells were counted in CASY® 

cell counter (Innovatis). All experiments were done in three biological and four 

technical replicates.  

2.9.9 In vitro apoptosis assay 

Cells were seeded in a 6 well plate and transfected with lipofectamine RNAiMAX 

as previously described. The plate was incubated for 72 hours at 37oC and 

stained with Annexin V and propidium iodide using the FITC Annexin V Apoptosis 

Detection Kit I (Cat: 556547, BD Biosciences) according to manufacturer’s 

instructions. In brief, floating (in the media) and attached (trypsinised) cells 

from each well were put in one eppendorf and were spun down at 1000 rpm for 

5 min. They were washed with cold PBS two times and spun down at 1000 rpm 

for 5 min.  The cell pellet was resuspended in 200 µl of 1x binding buffer and 

100 µl of the solution were transferred to a 5 ml FACS tube. 5 µl of Annexin V 

and 5 µl of propidium iodide were added and the solution was vortexed and 

incubated for 15 min in the dark at room temperature. An unstained sample was 

always used as a control. Another 300 µl of 1x binding buffer were added to each 

tube and proceeded to analysis by flow cytometry in the ATTUNE NxT flow 

cytometer (ThermoFisher Scientific). Three biological replicates with two 

technical replicates were used. 

In the flow cytometer, cells were firstly visualised in a data plot of SSC-A and 

FSC-A in order to exclude cell debris. Then, they were visualised in a FSC-H and 

FCS-A plot in order to exclude any duplicate cells. The unstained sample was 

used for setting up the negative gates. The data were saved in excel format and 

further analysis was performed in FlowJo 10.  

2.9.10 In vitro colony formation assay 

Cells were seeded in 6 well plates in low numbers so that they could form 

discernible separate colonies. 500 cells per well were seeded and 3 wells were 

seeded for each cell condition (PC3M cntr, KO pool, KO10). Cells were left to 

grow for 3 weeks (this time frame has previously been optimised in our lab). 

Afterwards, they were fixed in 100% methanol for 30 min at -20°C and stained 

with 0.25% crystal violet (V5265 Sigma) for 10’. Cells were then washed in dH20 
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until there was no more dye to come off and plate was left to dry overnight. The 

next day, the plate was imaged in LI-COR (LI-COR Biosciences) with 700 

wavelength, and Image Studio Lite Ver 5.2 was used for image analysis. 

2.9.11 In vitro transwell migration assay 

Cells were seeded in 6 well plates and when they reached 60%-80% confluency 

they were serum starved for 24 hours. Then cells were tryspinised and 

resuspended in full serum media to deactivate the trypsin. Cells were 

centrifuged at 1000 rpm for 5 min and re-suspended in serum free media. They 

were then counted using CASY® cell counter (Innovatis) and made up to a cell 

concentration of 1 x 105/ml of serum free medium (unless otherwise stated). 750 

μl of full serum media was added to the bottom of each well of a 24 well plate 

and a transwell Boydon Chamber was inserted into each well. 500 μl of the cell 

suspension was then added onto each chamber. This created a top to bottom 

cell migration flow resulting in migrating cells adhering to the lower surface of 

the boydon chamber membrane.  

Cells were routinely incubated at 37oC for 48 hours. First the medium was removed 

from the upper chamber and each chamber was fixed at -20oC in 100% methanol for 

30 min. Subsequently, methanol was removed and each chamber was placed in 

filtered haematoxylin for 30 min. Then, each chamber was washed in H2O scrubbing 

off the cells attached to the upper membrane. They were then placed inverted at 

room temperature to dry for 15-20 min.  Once dried, each membrane was detached 

using a scalpel and mounted onto a slide using DPX mountant. They were left to 

stabilise overnight and cells of each membrane were counted in a light microscope 

at x20 magnification.  

2.9.12 In vitro scratch wound healing assay  

Essen Bioscience 96 well ImageLock Microplates were seeded with 30,000 cells/ 

well and incubated for 24 hours in a culture incubator. Once the cells reached 

90-100% confluence, the WoundMakerTM was applied in order to create 

homogenous 700-800 µm wide scratch wounds. The cells were then washed with 

PBS to wash away any floaters and cell debris and then 100 μl of media was 

added. Cells were then placed in the IncuCyte within an incubator and two 
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hourly images were recorded for 72 hours. The output used for analysis was 

wound confluence/time, calculated using the IncuCyte software.  

2.9.13 In vitro invasion assay 

A Boydon Chamber was inserted into each well of a 24 well plate. 100 l of Matrigel 

was added in each chamber diluted 1:1 in ice cold PBS. The plate was incubated 

for 30 min at 37oC to allow matrigel to set. Suspensions of PC3M cells were 

prepared in RPMI supplemented with full serum at 5 x 105 cells/ml. Once the 

matrigel was set, the transwell chambers were inverted and 100 l of the cell 

suspension (5 x 104 cells) were placed onto the underside of the filter (which was 

now the uppermost). The inverted transwells were then covered carefully with 

the base of the 24 well plate such that the droplet of cell suspension was in 

contact with the base. The plate was incubated for 3 hours to allow cells to attach 

to the chamber. It was then turned again right-side-up and each transwell was 

washed in serum free RPMI three times and then left in it. On top of the matrigel, 

100 l full serum RPMI was added. The plate was incubated at 37oC for 4 days.   

Each transwell chamber was then placed in 1 ml of 1:1000 (v/v) Calcein AM in 

serum free RPMI in a 24 well plate. The plate was incubated for 1 hour at 37oC 

and imaged using an Olympus FV100 confocal microscope the same day. Stained 

cells were visualised using a 20x objective. Optical sections (Z-stack) were taken 

at 15 m intervals moving up from the underside of the filter into the matrigel, 

producing a series of images. To quantify these, Image J software was used. For 

analysis, only cells in the 15 m section or above were considered invasive and 

quantified according to their pixel intensity. The sum of these values was 

calculated and normalised to the value obtained from the corresponding 0 m 

section as a “loading” control. It is important that the same pixel threshold was 

used for all the samples each experiment. Three biological replicates with two 

technical replicates were used.  

 

2.9.14 RNA sequencing  

RNA sequencing (RNA-seq) with poly-A-tailed mRNA selection based RNA-seq 

library preparation was performed by our Molecular Technology Services.  RNA 

was extracted from PC3M cntr, KO pool and KO10 clone for B7-H3 using Qiagen 

kit as previously described, including the additional DNase step for genomic DNA. 
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For tapestation RNA quality control, 5 µl of 50 ng/µl per sample was required, 

and for library preparation 1 µg from each sample was used. Quality and 

quantity of the libraries were assessed on an Agilent 2100 Bioanalyser and Qubit 

(Thermo Fisher Scientific), respectively. The libraries were subsequently run on 

the Illumina Next Seq 500 using the High Output 75 cycles kit (2 × 36 cycles, 

paired-end reads, single index). Three biological replicates of each sample with 

three technical replicates were sequenced. Quality checks on the raw RNA-

Seq data files were conducted by Mr William Clark (Core Sequencing Services, 

Beatson Institute) using fastqc 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Analysis of the 

RNAseq data was carried out by Dr Ann Hedley (Informatician, Beatson Institute) 

using genes with an absolute fold change > 2 and an adjusted P value < 0.05 in 

Metacore.   

2.10 Statistical methods 

Statistical analyses were carried out with Graph Prism 8 and IBM SPSS statistics 

25. Comparisons between groups were conducted using Mann–Whitney U test 

(unpaired, nonparametric, two-tailed), t-test (unpaired, parametric, two-

tailed), ANOVA, Fisher’s and Chi-square test where appropriate. Spearman 

correlation and Cohen’s Kappa coefficient for agreement were preformed to 

examine correlations between numerical and categorical values respectively. 

Kaplan Meier curves were compared with log-rank test. Multivariate logistic 

regression models were used to identify novel predictive factors of lymph node 

metastasis. Covariates consisted of peak preoperative PSA value, stage, Gleason 

Score and percentage of positive biopsy cores (when available). Receiver 

operative curve (ROC) analysis was performed and area under the curve (AUC) 

was used to quantify the predictive accuracy. For the targeted gene expression 

panel, HTG reveal software was used for statistical analysis using the DESeq2 

test with an adjusted p value less than 0.05 and a log fold change value of 

greater than 1.5. 

  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-seq
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rna-seq
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Chapter 3 Immune profiling of prostate cancer 
tumour microenvironment in the context of 
lymph node metastasis 

Prostate cancer is known for its biological and clinical heterogeneity, with a 

large discrepancy observed between incidence and mortality rates (7). 

Identifying patients with a prostate tumour that grows slowly and does not 

metastasise is critical for patient treatment decision, including whether 

extended pelvic lymph node dissection is indicated at the time of radical 

surgery. During tumour progression, lymph nodes are often the first organs 

affected by metastases. The presence of lymph node metastasis increases the 

15-year prostate cancer specific mortality risk from 0.8-1.5% for organ confined 

disease to 22-30% (150). All cancer staging systems, including the TNM staging 

system for prostate cancer, assess the presence or absence of lymph node 

involvement for the evaluation of patient prognosis (151). Therefore, metastasis 

to the lymph nodes has a big impact on patient outcomes.  

Tumour immune evasion is one of the hallmarks of cancer and tumour infiltrating 

immune cells are decisive factors of cancer progression (33, 38). The immune 

landscape of prostate cancer has been surprising difficult to characterise with 

multiple conflicting results regarding clinical outcomes (67), likely due to study 

limitations as well as inherent tumour heterogeneity. It is therefore essential to 

comprehensively characterise the baseline immune status of well-defined 

patient cohorts in order to gain a better understanding of disease progression. I 

hypothesised that local immune cell infiltration shapes the local host anti-

tumour response and influences the spread to regional lymph nodes. My 

objective was to provide additional novel biomarkers that could improve the 

current predictive nomograms of lymph node invasion. 

I applied multiplex immunofluoresnce to characterise the tumour immune 

microenvironment at the tissue level using specimens obtained from radical 

prostatectomy (RP) and extended pelvic lymphadenectomy. The discovery cohort 

included patients with pathologically confirmed regional lymph node metastases 

(LN+) and patients free from regional lymph node metastases (LN-). The 

identified immune signature of LN+ disease was validated in a comparable 

independent patient cohort. I further investigated for potential correlation 
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between key reported genetic alterations in PCa, such as ERG translocation and 

loss of PTEN expression, and the tumoural immune cell composition. Finally, I 

explored the potential for translating this immune signature in the clinic and its 

significance in low-risk prostate cancer patients. 

3.1 Validation of multiplex immunofluorescence assay 

Using chromogenic IHC and singleplex IF staining, serial sections of FFPE human 

tonsil tissue were stained. Tonsil was chosen because of its well-characterised 

tissue architecture and immune cell spatial distribution. Both techniques 

resulted in similar patterns of staining, as shown in Figure 6A-B. CD20 (B cell 

lymphocytes), CD68 (Macrophages-M1 like), CD163 (Macrophages-M2 like), CD4 

(helper T cells), CD8 (cytotoxic T cells), FoxP3 (regulatory T cells), PD-1 

(immune checkpoint) and AE1/3 (pan cytokeratin) had specific staining without 

significant background staining.  

 

 

 

 

Figure 6 Photographs of representative examples of validation from IHC and H&E (bottom 
panels), uniplex and multiplex IF (top panels) in tonsil tissue 
(A) Macrophage and B cell panel: CD20 (B cell lymphocytes), CD68 (Macrophages-M1 like), 
CD163 (Macrophages-M2 like), AE1/3 (cytokeratin positive epithelium). 10x magnification.   
(B) T cell lymphocytic panel: CD4 (helper T cells), CD8 (cytotoxic T cell), FoxP3 (regulatory T 
cells), PD-1 (immune checkpoint and AE1/3 (cytokeratin positive epithelium). 10x magnification.   
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3.1.1 Correlation between mIF and DAB chromogenic IHC 

Serial sections from the discovery TMA were stained with the mIF panels and 

chromogenic DAB IHC for individual markers. Immune cell densities for each core 

were quantified using inForm and HALO automated scoring respectively. I 

compared mIF and individual IHC staining using Spearman r value for correlation. 

Overall, there was significant positive correlation between mIF and IHC 

stainings. CD68 (r=0.67, p<0.0001), CD163 (r=0.46, p<0.0001), CD20 (r=0.31, 

p=0.02), CD4 (r=0.68, p<0.0001), CD8 (r=0.752, p<0.0001), FoxP3 (r=0.3, 

p=0.003), PD-1 (r=0.23, p=0.05) showed significant positive correlations. PD-1 

had the weakest, but significant, positive correlation, which was unsurprising 

due to the scarcity of this marker.  

3.1.2 Co-localisation of markers 

One of the main advantages of using mIF was the co-localisation of markers 

within individual cells (Figure 7), thus defining their specific cell phenotypes. We 

were able to identify M2-like macrophages (CD68+ CD163+), CD8 regulatory T 

cells (CD8+ FoxP3+), PD-1 positive CD8 T cells (CD8+ PD-1+), CD4 regulatory T 

cells (CD4+ FoxP3), PD-1 positive CD4 T cells (CD4+ PD-1+). Unexpectedly, we 

observed cells with double staining for CD4 and CD8 which has been observed 

before (91). The proportion of cells with double staining was minimal and they 

were not quantified further.  
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Figure 7 Representative examples of co-localisation of the cell markers 
Representative image of M2-like macrophages (CD68+ CD163+) in (A), CD8 regulatory T cells 
(CD8+ FoxP3+) in (B), PD-1 positive CD8 T cells (CD8+ PD-1+) in (C), CD4 regulatory T cells 
(CD4+ FoxP3) in (D), PD-1 positive CD4 T cells (CD4+ PD-1+) in (E) and double CD4+ CD8+ cells 
in (F). White arrows indicate the co-localisation of markers.  
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3.2 Immune profiling of the discovery TMA cohort 

3.2.1 Clinical characteristics of lymph node discovery TMA 

Of the ninety-four patients that were identified, 50 had pathologically confirmed 

regional nodal metastasis (LN+) and 44 had no evidence of lymph node 

metastasis (LN-). Patient clinicopathological characteristics are presented in 

Table 1. All studied patients had newly diagnosed prostate cancer and had not 

received pre-operative chemotherapy or ADT. LN+ patients were younger than 

LN- patients (62 years vs 67 years, p=0.0001). The two groups were otherwise 

comparable in all clinicopathological parameters, including number of excised 

lymph nodes, pre-operative PSA levels, pT stage, Gleason score and presence of 

perineural invasion (PNI). There were 65 patients with Gleason score 7, 15 

patients with 3+4 and 50 patients with 4+3. Due the small number of patients 

with Gleason score 3+4 (11 in LN+ and 4 in LN- groups), all patients with a sum of 

Gleason score 7 were grouped together in order to perform meaningful 

statistical analysis.  Follow-up data were available for 91 patients, ranging from 

33 to 70 months (median 41 months). Fifteen patients had disease relapse after 

surgery and four patients died during follow-up, two of them due to prostate 

cancer. These limited numbers prohibited any meaningful conclusions for overall 

or cancer specific survival, and relapse-free survival was used as surrogate for 

these events. 

 Overall Lymph node metastasis 

N=94 LN-, n=44 LN+, n=50 p value 

Age at 
diagnosis, 
median (95% 
CI) 

65 (63-66) 67 (66 - 70) 62 (59-65) 0.0001 

Number of 
lymph nodes 
excised, 
median 
(95%CI) 

15 (13-17) 17 (14- 18) 13.5 (10-17) 0.0514 

Peak PSA, 
median 
(95%CI) 

14.8 
(12.3-
16.7) 

15.5 (11.5- 17.7) 14.2 (11-17) 0.831 

Stage, N (%)    0.089 

    pT2 34 (36.17) 20 (45.45) 14 (28)  

    pT3-T4 60 (63.83) 24 (54.55) 36 (72)  

Gleason 
Score, N (%) 

   0.109 

7 65 (69.15) 34 (77.27) 31 (62)  
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>7 (8-9) 29 (30.85) 10 (22.73) 19 (38)  

PNI, N (%)    0.156 

Negative 15 (15.96) 10 (22.73) 5 (10)  

Positive 79 (84.04) 34 (77.27) 45 (90)  

     

 

Table 8 Clinical and histopathological characteristics of discovery TMA of patients with 
(LN+) and without lymph node metastasis (LN-) 
CI= Confidence interval, PSA: Prostate specific antigen, PNI: Perineural invasion. Mann-Whitney 
and Fisher’s exact test used for statistical calculations. 
 
 
 

3.2.2 Immune profiling of intermediate and high risk prostate 
cancer patients 

Characterising the baseline immune status of intermediate and high-risk PCa is 

essential for understanding disease progression as well as planning targeted 

immunotherapies. I aimed to describe the frequencies as well as spatial 

localisation of macrophage and lymphocytic immune cell populations. The 

discovery TMA described previously was stained with mIF (1) Macrophage and B 

cell panel: CD68, CD163, CD20, PanCK and (2) T cell lymphocyte panel: CD4, 

CD8, FoxP3, PD-1, PanCK. The immune cell densities of different cell 

populations were quantified within the epithelial and stromal compartments 

separately using inForm 2.1 analysis software. The results are summarised in 

Table 9. Unsurprisingly, immune cell infiltration was more prominent within the 

stroma (232.9 cells/mm2) compared to epithelium (90.44 cells/mm2). 

Macrophages were the most prominent immune cell type irrespective of spatial 

compartment, 41.21 cells/mm2 within epithelium and 130.4 cells/mm2 within 

stroma. CD4 T cells were the second most frequent immune cell type within 

epithelium (35.42 cells/mm2) and within the stroma (90.29 cells/mm2). The most 

uncommon immune cell type overall were B cells. When encountered, they had 

formed tertiary germinal centres but that was present in very few cases (approx. 

10 out of 282 cores). 

Further characterisation of cellular subtypes showed that macrophages 

infiltrating the epithelium were polarised in M1 and M2 in comparable levels 

(19.02 cell/mm2 and 18.07 cells/mm2 respectively). Stromal macrophages had 

slightly more frequently M2-like phenotype (66.17 cells/mm2) compared to M1-

like (52.23 cells/mm2). CD4 effector T cells, CD4 regulatory T cells and PD-1 

positive T cells had median cell densities of 66.93 cells/mm2, 6.68 cells/mm2 
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and 6.48 cells/mm2 respectively within the stoma. Within the epithelium, CD4 T 

cell subtypes were present in lower densities, CD4 effector 21.6 cells/mm2, CD4 

regulatory 4.2 cells/mm2 and CD4 PD-1 positive cells 6.2 cells/mm2. Within the 

stroma, CD8 effector T cells had a median density of 29.85 cells/mm2, CD8 

regulatory T cells 0.51 cells/mm2 and CD8 PD-1 positive 5.64 cells/mm2. 

Intraepithelial cytotoxic CD8 T cells had a density of 6.33 cells/mm2, CD8 

regulatory T cells 2.85 cells/mm2 and CD8 PD-1 positive T cells 3.65 cells/mm2. 

It is noteworthy that CD8 regulatory cells were the scarcest immune subtype.  

 
N=94 total Immune cell densities  (cells/mm2) 

Epithelium 91 90.44 (82.84-113.8) 

Macrophages 83 41.21 (33.58-49.85) 

M1-like macrophages 83 19.02 (16-22.84) 

M2-like macrophages 83 18.07 (13.36-22.98) 

B cells 83 1.8 (1.41-3.66) 

CD4 T cells 66 35.42 (30.96-45.6) 

CD4 effector T cells 66 21.6 (15.5-23) 

CD4 regulatory T cells 66 4.2 (2.9-5.8) 

CD4 PD-1 positive T cells 57 6.2 (4.5-13.1) 

CD8 T cells 66 20.65 (14.6-24) 

CD8 effector T cells 66 10.33 (3.9-12.8) 

CD8 regulatory T cells 66 2.85 (1.3-4.1) 

CD8 PD-1 positive T cells 66 3.65 (0-6.9) 

Stroma 91 232.9 (202.9-269.8) 

Macrophages 83 130.4 (106.5-155.4) 

M1-like macrophages 83 52.23 (40.89-64.66) 

M2-like macrophages 83 66.17 (60.3-77.21) 

B cells 83 8.14 (5.46-12.3) 

CD4 T cells 66 90.29 (50.2-102.5) 

CD4 effector T cells 66 66.93 (34.31-82.77) 

CD4 regulatory T cells 66 6.68 (5.35-7.78) 

CD4 PD-1 positive T cells 66 6.48 (3.8-9.2) 

CD8 T cells 66 39.37 (32.16-52.7) 

CD8 effector T cells 66 29.85 (22.1-40.63) 

CD8 regulatory T cells 66 0.51 (0.32-1.5) 

CD8 PD-1 positive T cells 66 5.64 (3-8.55) 

Table 9 Immune cell densities of intermediate and high-risk patients included in the 
Discovery cohort 
Data are presented as median immune cell densities (cells/mm2) with 95% Confidence Intervals. 
N= number of cases with available data. 

 

An interesting observation was that stromal CD4 effector T cells were 

predominantly located at the tumour-stromal interface. This lead to a 
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collaboration with Dr Ian Powley (University of Leicester) who quantified the 

distance of CD4 effector T cells from epithelium using the phenoptr package in R 

software. Density plots were generated that showed the distance of CD4 effector 

T cells from the PanCK+ tumour cells (Figure 8). The median distance for all 

high-risk patients was 23.3 µm (20.6-27.3 95%CI), shown in Figure 8A. For LN+ 

and LN- patients the distance was similar, 25.85 µm (21.6-30 95%CI) and 20.65 

µm (18.8-26.2 95%CI, p=0.17) respectively (Figure 8B). 

 

Figure 8 Spatial distribution of CD4 effector T cells (CD4+ FoxP3- PD-1-) in  intermediate and 
high risk prostate cancer patients 
Density plot graphic representation of CD4 effector T cells (CD4+ FoxP3- PD-1-) according to their 
distance from the nearest PanCK+ cancer cells for all PCa patients (top) and in patients with (LN+) 
vs without (LN-) lymph node metastasis (bottom).  
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3.2.3 Immune cell densities and ratios in discovery cohort 
patients with vs without lymph node metastasis 

The discovery TMA was designed and constructed to detect differences 

pertaining to lymph node spread in prostate cancer patients. Comparisons of the 

epithelial and stromal compartment immune cell densities between patients 

with (LN+) and without (LN-) lymph node metastasis are presented in Table 10. 

Intraepithelial M1-like macrophages were decreased in patients with lymph node 

metastasis (16.2 cells/mm2 vs 18.46 cells/mm2, p=0.046) and intraepithelial CD8 

cytotoxic T cells were also significantly decreased in the same patients (1.8 

cells/mm2 vs 12.6 cells/mm2, p=0.001). Stromal M1-like macrophages were 

decreased in LN+ patients, 45.03 cells/mm2 vs 64.04 cell/mm2, p=0.047. Stromal 

CD4 effector T cells were also decreased in the same patients, 32.5 cells/mm2 vs 

91.35 cells/mm2, p=0.0003. Lastly, CD8 effector T cells were decreased in LN+ 

patients, 22.7 cells/mm2 vs 40.63 cells/mm2 in LN- patients, p=0.008. There 

were no significant differences in M2-like macrophages, B-cells, CD4 and CD8 

regulatory T cells, CD4 and CD8 PD-1 positive T cells between patient groups.  

Biologically relevant immune cell density ratios were also calculated. The 

stromal ratio of M1/M2 macrophages was significantly lower in LN+ patients 

(0.56, 0.5-0.8 95%CI) compared to LN- patients (0.89, 0.6-1.1 95%CI, p=0.03). 

More intriguingly, the ratio of CD4 effector T cells to CD4 regulatory T cells 

within the stroma was also lower in LN+ patients (7.59, 1.7-16.2 95%CI) 

compared to LN- patients (18.76, 12.7-47 95%CI, p=0.0006). Lastly, the 

epithelium to stroma ratio of CD8 effector T cells was used as a surrogate for the 

CD8 cell infiltration within the tumours and was lower in LN+ patients (0.19, 

0.04-0.2 95%CI) compared to LN- patients (0.29, 0.2-0.4 95%CI, p=0.01).  
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Immune cell 
densities  

All 
N=94 

Lymph node metastasis 

Epithelium Negative =44 Positive =50 p value 

M1-like macrophages 83 20.64 (17.07-27.45) 16.38 (11.01-21.15) 0.046 

M2-like macrophages 83 18.46 (11.49-24.9) 16.2 (11.98-31.94) 0.895 

B cells  83 2.807 (1.41-8.29) 1.7 (0.84-4.2) 0.205 

CD4 effector T cells 66 23 (13.3-32.9) 18 (11.8-22) 0.093 

CD4 regulatory T cells 66 3.250 (1-6.2) 1.5 (0-4.2) 0.159 

CD4 PD-1 positive T 
cells 

57 8.015 (0-18.7) 6.2 (5.87-12.7) 0.19 

CD8 effector T cells 66 12.6 (6.5-21) 1.8 (0.68-5.7) 0.001 

CD8 regulatory T cell 66 3.8 (0.41-5.69) 2.2 (0.5-4.8) 0.772 

CD8 PD-1 positive T 
cells 

66 5.3 (0-9.4) 0 (0-6.82) 0.277 

Stroma    

M1-like macrophages 83 64.04 (39.11-89.31) 45.03 (39.7-55.3) 0.047 

M2-like macrophages 83 65.32 (53.91-76.92) 73.83 (54.69-83.85) 0.7 

B cells 83 8.9 (5.27-23.53) 7.05 (4.27-11.51) 0.193 

CD4 effector T cells 66 91.35 (55.41-154.1) 32.5 (14.1-70.61) 0.0003 

CD4 regulatory T cells 66 4.65 (1.6-7.94) 4.71 (3.6-5.4) 0.971 

CD4 PD-1 positive T 
cells 

66 7.74 (0-16.2) 8.73 (1.8-13.3) 0.597 

CD8 effector T cells 66 40.63 (28.1-95.46) 22.7 (11.5-31.38) 0.008 

CD8 regulatory T cells 66 0.56 (0.29-1.9) 0.51 (0.31-1.7) 0.9 

CD8 PD-1 positive T 
cells 

66 8.1 (2.9-16.3) 4.66 (0.7-7.9) 0.06 

Table 10 Summary of discovery cohort immune cell densities stratified according to lymph 
node status 

Comparison of intraepithelial and stromal immune cell densities in patients with vs without lymph 
node metastasis. Data presented as median immune cell densities with 95% Confidence interval 
(CI). N= number of cases with available data. Mann-Whitney test used for all statistical 
calculations. 

 

 

3.2.4 Correlations between immune cell densities 

Further investigation of the relationships between different immune cells 

revealed a positive correlation between stromal CD4 effector cells and stromal 

CD8 effector cells (Spearman r= 0.648, p<0.0001), as well as intraepithelial CD8 

effector T cells (Spearman r= 0.256, p=0.003). Intraepithelial CD4 effector T 

cells positively correlated with intraepithelial CD8 effector T cells (Spearman r= 

0.4976, p<0.001) and M1-like macrophages (Spearman r= 0.373, p=0.004). 

Stromal CD4 effector cells also correlated with stromal M1-like macrophages 

(Spearman r= 0.346, p=0.008). Stromal CD8 effector T cells positively correlated 

with stromal M1-like (Spearman r= 0.4, p=0.001) and M2-like (Spearman r= 

0.278, p=0.003) macrophages. This was not surprising as there was a positive 

association between stromal M1-like and M2-like macrophages (Spearman r= 

0.413, p=0.0001).  
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The positive correlation between CD4 effector cells with CD8 effector cells and 

M1-like macrophages within the epithelium and stroma, in combination with the 

significantly increased immune cell density in the patients without lymph node 

metastasis suggest a possible interaction between those immune cell subtypes in 

order to orchestrate their anti-tumour response.  

3.2.5 Immune cell densities and clinicopathological 
characteristics      

The next step was to investigate the relationship between different immune cell 

densities and patients’ clinicopathological characteristics. Table 11-13 

summarise the associations of different immune cell populations within 

epithelium and stroma with patient clinical parameters. More intraepithelial M1-

like macrophages were associated with higher pT stage (14.45 vs 20.84, 

p=0.036), a finding somewhat counterintuitive (Table 11). Stromal CD4 effector 

T cells were increased in patients with lower pT stage (77.8 vs 36.46 cells/mm2, 

p=0.04) showing an association with early staged disease (Table 12). There were 

no statistically significant differences among immune cell counts with Gleason 

score and presence of perineural invasion.  
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 M1-like macrophages   M2-like macrophages  B cells 

Epithelium 

 N Median p 
value 

N Median p 
value 

N Median p 
value 

Stage   0.036   0.453   0.315 

   T2 28 14.45  28 19.6  28 2.9  

    T3-T4 55 20.84  55 16.36  55 1.7  

Gleason  
score 

  0.122   0.235   0.620 

=7 55 18.7  55 15.82  55 2.11  

>7(8-9) 28 20.17  28 24.59  28 1.75  

PNI    0.611   0.266   0.877 

Absent 11 17.82  11 28.66  11 2.9  

Present 72 19.13  72 17.21  72 1.75  

Stroma 

Stage   0.226   0.898   0.484 

    T2 28 44.3  28 65.28  28 8.81  

    T3-T4 55 55.3  55 69.2  55 7.94  

Gleason 
score 

  0.394   0.337   0.65 

=7 55 47.09  55 63.16  55 7.94  

>7(8-9) 28 59.99  28 77.62  28 8.977  

PNI    0.861   0.657   0.853 

Absent 11 52.15  11 94.86  11 4.92  

Present 72 52.3  72 65.87  72 8.35  

Table 11 Macrophage and B cell densities of discovery cohort stratified by 
clinicopathological parameters 
Data are presented as median immune cell densities (cells/mm2). N= number of cases with 
available data. Mann-Whitney test used for all statistical calculations. CI= Confidence interval, PNI= 
Perineural invasion 

 

 CD4 effector T cells CD4 regulatory T cells CD4 PD1+ T cells 

Epithelium 

 
N Median 

p 
value 

N Median 
p 

value 
N Median 

p 
value 

Stage   0.11   0.654   0.318 

    T2 22 30.1  21 2.6  20 8.01  

    T3-T4 44 18.9  44 2  37 12.3  

Gleason  score   0.97   0.446   0.406 

=7 46 20.6  45 2.2  40 12.35  

>7(8-9) 20 20.9  20 2.1  17 8.57  

PNI    0.742   0.787   0.12 

Absent 10 10.55  9 2.2  10 4.3  

Present 56 20.95  56 2.1  47 11.6  

Stroma 

Stage   0.045   0.328   0.665 

    T2 28 77.8  22 4.13  22 6.69  

    T3-T4 57 36.46  44 4.84  44 8.8  

Gleason  score   0.393   0.549   0.582 

=7 46 63.78  36 4.64  46 7.99  

>7(8-9) 20 73.69  20 4.68  20 8.79  

PNI    0.411   0.66   0.752 

Absent 10 78.61  10 2.94  10 10.17  

Present 56 63.78  56 4.68  56 8.48  

Table 12 CD4 T cell densities of discovery cohort stratified by clinicopathological 
parameters 
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Data are presented as median immune cell densities (cells/mm2). Mann-Whitney test used for all 
statistical calculations. N= number of cases with available data. CI= Confidence interval, PNI= 
Perineural invasion 

 

 CD8 effector T cells CD8 regulatory T ells CD8 PD1+ T cells 

Epithelium 

 N Median 
p 

value 
N Median 

p 
value 

N Median 
p 

value 

Stage   0.2   0.76   0.5 

    T2 22 10.6  22 3.2  22 1.9  

    T3-T4 44 5.29  44 2.7  44 3.8  

Gleason  score   0.09   0.92   0.24 

=7 46 7.57  46 2.45  46 2.7  

>7(8-9) 20 1.95  20 3.25  20 5.85  

PNI    0.713   0.358   0.324 

Absent 10 2.35  10 1.1  10 8.56  

Present 56 6.63  56 3.25  56 1.95  

Stroma 

Stage   0.641   0.997   0.541 

    T2 22 27.75  22 5.98  22 1.9  

    T3-T4 44 30.64  44 5.34  44 3.8  

Gleason  score   0.714   0.595   0.2 

=7 46 31.59  46 0.53  46 5.16  

>7(8-9) 20 27.7  20 0.48  20 8.89  

PNI    0.07   0.388   0.504 

Absent 10 44.99  10 0.37  10 9.6  

Present 56 28.18  56 0.59  56 5.16  

Table 13 CD8 T cell densities of discovery cohort stratified by clinicopathological 
parameters 
Data are presented as median immune cell densities (cells/mm2). N= number of cases with 
available data. Mann-Whitney test used for all statistical calculations. CI= Confidence interval, PNI= 
Perineural invasion 
 

 

In summary, comparison of different infiltrating immune cells with 

clinicopathological parameters revealed that tumours of higher pT stage (pT3-4) 

were associated with less stromal CD4 effector T cells and more intraepithelial 

M1-like macrophages.  

 

3.3 Immune profiling of Validation cohort 

3.3.1 Clinical characteristics of Validation cohort (Validation TMA) 

A validation TMA of intermediate and high-risk patients was used to test whether 

our results were maintained in a larger, independent patient cohort from 

another institution. The validation cohort included 285 patients with primary 

PCa who underwent RP and regional lymph node dissection. Two hundred and 
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fifty-one patients had one 0.6 µm core and 34 patients had two 0.6 µm cores 

from the index lesions. The median age at diagnosis was 64.05 years (63.27-

65.09 95% CI). The median follow-up time was 12.87 years (12.07-13.43 95%CI), 

during which 246 men developed biochemical recurrence, 145 men died (among 

whom, 70 men died from PCa). Table 14 presents the clinical characteristics of 

patients included in the validation cohort. A significant proportion of the cases 

were not informative due to complete lack of tissue samples, absence of cancer 

tissue and interpretable staining; however there was no significant difference 

between overall cohort and the informative cases. 

 All patients (285) Available for analysis 
(184) 

p value 

Age at diagnosis, 
median (95% CI) 

64.05 (63.27-65.09) 63.93 (63.06-65.32) 0.557 

Peak pre-op PSA, 
median (95% CI) 

13.55 (12-15.6) 12 (10.2-15.3) 0.883 

Gleason score, N (%)   0.98 

≤6 216 (76%) 138 (75%)  

7 22 (8%) 16 (9%) 

≥8 45 (16%) 29 (16%) 

missing 2 (0%) 1 (0%) 

pT stage, N ( %)   0.695 

2 150 (53%) 90 (49%)  

3 128 (45%) 90 (49%) 

4 7 (2%) 4 (2%) 

missing 0 (0%) 0 (0%) 

pN status, N (%)   0.677 

0 204 (72%) 128 (70%)  

1 81 (28%) 56 (30%) 

missing 0 (0%) 0 (0%) 

M status, N (%)   0.692 

0 282 (99%) 183 (100%)  

1 2 (1%) 1 (0%) 

missing 1 (0%) 0 (0%) 

Table 14 Clinicopathological characteristics of the validation cohort 
Of 285 patients with intermediate and high-risk disease, 184 were informative due to lack of 
interpretable tissue samples. Mann-Whitney and Chi-square test were used for statistical 
comparisons. CI= Confidence interval 

 

3.3.2 Immune profiling of validation cohort patients in the context 
of lymph node metastasis  

A summary of all the immune cell densities stratified by nodal status is 

presented in Table 15. Data from the T lymphocyte panel were available for 181 

patients, 59 with and 122 without lymph node metastasis. CD4 effector T cells 

were significantly decreased in patients with lymph node metastasis (51.8 

cells/mm2 vs 100.5 cells/mm2, p<0.0001), validating our previous observation. 
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There was no significant difference between the ratios of CD4 effector/ CD4 

regulatory T cells within the stroma (18.18 vs 12.66, p= 0.211), likely due to the 

lack of CD4 regulatory T cell immune cells.  There was a non-significant trend 

for increased intraepithelial CD8 effector T cells (28.7 cells/mm2 vs 19 

cells/mm2, p=0.063), but there was no different in the CD8 effector T cell 

density within the stoma which was previously observed.   Lastly, from 184 

informative cases (56 with and 128 without lymph node metastasis), there were 

no significant differences between the M1 macrophage densities within the 

epithelium or stroma, which does not replicate the earlier results from our 

discovery TMA.  It is noteworthy that no CD4 PD-1 positive T cells were 

detected, however this is a rather rare immune population and it is conceivable 

that due to under sampling there were not any cells present. In addition, CD8 

PD-1 positive T cells were detected therefore we are confident there were no 

technical problems with PD-1 staining.   

Immune cell densities 
(95% CI) 

N 
LN status 

Epithelium Negative =128 Positive = 56 p 

M1-like macrophages  184 48.75 (38.3-58) 61.15 (51.5-76.2) 0.06 

M2-like macrophages  184 28 (22.7-32.8) 26 (21.1-38.9) 0.607 

B cells  184 0 (0-0) 0 (0-5) 0.65 

CD4 effector T cell  181 22.2 (16-30.4) 25.25 (11-32) 0.966 

CD4 regulatory T cells 181 0 (0-0) 0 (0-2) 0.935 

CD4 PD-1 positive T cells 181 0 (0-0) 0 (0-0) >0.99 

CD8 effector T cells 181 28.7 (22.5-41.8) 19 (7.5-26.55) 0.063 

CD8 regulatory T cells 181 0 (0-0) 0 (0-1.2) 0.986 

CD8 PD-1 positive T cells 181 0 (0-0) 0 (0-0) 0.92 

Stroma    

M1-like macrophages  184 104 (89.2-135) 122.2 (84-145) 0.801 

M2-like macrophages  184 86.6 (75-106) 68(56.85-106) 0.293 

B cells  184 3.9 (0-7.2) 2.5 (0-9.7) 0.18 

CD4 effector T cells 181 100.5 (78.5-113) 51.8 (39.9-70.4) <0.001 

CD4 regulatory T cells 181 2.7 (1.8-4.1) 1.7 (0-3.1) 0.317 

CD4 PD-1 positive T cells 181 0 (0-0) 0 (0-0) >0.999 

CD8 cytotoxic T cells 181 23 (18.2-27.3) 28.2 (20.2-37) 0.32 

CD8 regulatory T cells 181 0 (0-1.05) 0 (0-1.4) 0.5 

CD8 PD-1 positive T cells 181 0 (0-0.1) 0 (0-0) 0.633 

Table 15 Summary of validation cohort immune cell densities stratified according to lymph 
node status 
Comparison of intraepithelial and stromal immune cell densities in patients with and without lymph 
node metastasis. Data are presented as median immune cell densities (cells/mm2) with 95% 
Confidence interval (CI). N= number of cases with available data. Mann- Whitney test used for 
statistical comparisons. 
 
 
 

Summarising, the key finding from mIF staining of the validation TMA was that 

stromal CD4 effector T cells were significantly reduced in the stroma of localised 
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prostate cancer tumours with regional lymph node metastasis. Furthermore, 

there was a trend for reduced CD8 effector T cells in the same patient group. 

3.4 Prognostic value of tumour stromal CD4 effector T 
cells for lymph node metastasis 

A crucial question was whether different immune cell infiltrates could be used 

as predictive biomarkers of lymph node invasion. Since stromal CD4 effector T 

cells were identified as the immune cell population reproducibly associated with 

the status of nodal involvement, I tested if high stromal CD4 effector T cell 

infiltrates could predict the presence of pelvic nodal disease. Firstly, univariate 

regression was performed in the discovery (OR=0.157, 0.05-0.49 95%CI, p=0.01) 

and validation cohort (OR=0.26, 0.13-0.51 95%CI, p<0.001). Then, multivariate 

regression analyses was performed on data from the discovery cohort, including 

standard of care clinicopathological factors (namely pT stage, Gleason score 

from RP, peak pre-operative PSA level and percentage of positive cores).  

Stromal CD4 effector T cell density remained an independent predictor of lymph 

node spread (OR=0.38, p=0.004; Table 16). Similarly, from the validation cohort, 

high stromal CD4 effector T cell density was confirmed to be a significant 

independent predictor of lymph node metastasis (OR=0.26, p<0.001; Table 16).  

Multivariate regression analysis 

Discovery cohort  
 

OR 95% CI p value 

pT stage  2.96 0.72-12.12 0.131 

Gleason score 1.05 0.24-4.57 0.944 

Peak pre-op PSA 0.99 0.94-1.03 0.719 

Percentage of positive cores 1.01 0.99-1.03 0.175 

High stromal CD4 effector T cells  0.15 0.04-0.53 0.004 

Validation cohort 
 

OR 95% CI p value 

pT stage  2.49 1.17-5.27 0.017 

Gleason score 3.74 1.48-9.44 0.005 

Peak pre-op PSA 1.04 1.02-1.05 0.0004 

High stromal CD4 effector T cells  0.26 0.12-0.54 0.0004 

Table 16 Multivariate regression analysis of stromal CD4 effector T cells with standard of 
care clinicopathological factors commonly used for the prediction of nodal metastasis 
In the discovery cohort high density of stromal CD4 effector T cells (upper tertile) was an 
independent predictor of lymph node metastasis. In the validation cohort high density of stromal 
CD4 effector T cells (upper two tertiles) was an independent predictor of lymph node metastasis. 
OR= odds  ratio, CI= confidence interval. 
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I then examined the receiver operator characteristic (ROC) curve in both patient 

cohorts to assess the benefit of adding stromal CD4 effector T cell density in a 

prediction model. In the discovery cohort (Figure 9A), the area under the curve 

(AUC) of a model with standard of care clinicopathological factors was 0.635 

(0.49-0.78 95%CI, p=0.07), which was improved significantly to 0.768 (0.65-0.89 

95%CI, p<0.0001) with the addition of stromal CD4 effector T cell density.  

Similarly, in the validation cohort (Figure 9B), the AUC increased from AUC=0.77 

(0.7-0.84 95%CI, p<0.0001) to AUC=0.804 (0.73-0.87 95%CI, p<0.0001) when 

stromal CD4 effector T cell density is incorporated into the model. Even though 

the improvement observed in the validation cohort is not as impressive, this 

represents a significant confirmation of an association between decreased 

stromal effector CD4 T cell infiltration and nodal invasion. 

 

Figure 9 Clinical impact of stromal CD4 effector T cells in lymph node metastasis 
Receiver Operator Curve (ROC) curves of the addition of stromal CD4 effector T cells to standard 
of care clinicopathological factors for predicting lymph node metastasis in the discovery (A) and 
validation (B) cohorts.  
 
 
 

 

3.5 Prognostic value of stromal CD4 effector T cells in 
survival 

During tumour progression, lymph node spread has a negative impact on patient 

survival (2, 150). Increased immune cell densities of stromal CD4 effector T cells 

(values were dichotomised into the upper tertile compared to the bottom two 

tertiles) were associated with improved relapse-free survival in the discovery 

cohort (log-rank test, p=0.029), as shown in Figure 10A . Increased stromal CD4 
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effector T cells (values were dichotomised into the upper two tertiles compared 

to bottom tertile) were also associated with improved relapse-free survival in 

the discovery cohort (log rank test, p=0.045), as shown in Figure 10B.  

 

 

Figure 10 Clinical impact of stromal CD4 effector T cells in survival 
Kaplan-Meier curves of prostate cancer patients in the discovery cohort (A) and validation cohort 
(B). Log rank test used for statistical comparison. 
 

 

Furthermore, this finding was in agreement with the negative impact that lymph 

node metastasis bears in patient survival (150, 151), which was confirmed in 

both discovery (log-rank, p=0.021) and validation cohorts (log-rank, p<0.001), 

presented in Appendix Figure 1.  

 
 

3.6 Prostate cancer common genetic alterations are not 
associated with immune cell infiltration 

The tumour immune microenvironment plays an important role in the 

pathogenesis and progression of tumours and may be associated with somatic 

genomic alterations (22, 25). From the immune profiling results, patients with 

lymph node metastasis had decreased infiltration of effector CD8 T cells that are 

known to contribute to local cancer confinement and reduction of cell 

proliferation (42). Also, the same patients reproducibly showed significantly 

decreased infiltration of CD4 effector T cells. I therefore investigated whether 

the observed differences in tumour immune landscape were associated with 

common prostate cancer molecular alterations. 
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Previous studies have shown that TMPRSS2/ETS fusion gene fusions may be 

caused, at least in part, by increased local inflammation and oxidative stress 

(24). In addition, the generation of fusion genes can result in the formation of 

new amino acid sequences, potentially generating fusion proteins that can 

function as neoantigens (152). Furthermore, PCa tumours with ERG 

overexpression have been reported to be significantly associated with increased 

lymphocytic infiltration (25, 66). Therefore, I hypothesised that patients with 

decreased CD8 and CD4 T cells infiltration and lymph node metastasis may be 

associated with ERG negative tumours. Also, PTEN inactivation can influence 

immune cell infiltration and immunosuppression (22) and has been largely 

associated with metastasis and poor clinical outcome (17, 28). Therefore, 

patients with PTEN loss may be more frequently associated with nodal 

metastasis and PTEN status could potentially improve the CD4 effector T cell 

predictive ability. Lastly, I hypothesised that high tumour cell proliferation, 

measured by Ki67 proliferation index, will be present in patients with lymph 

node metastasis that lack anti-tumour lymphocytes.  

ERG overexpression was used as a surrogate for TMPRSS2/ERG translocation (25, 

153). Only nuclear positivity was assessed and endothelial cells and/or 

lymphocytes were used as positive controls (Figure 11A). Lack of PTEN 

expression was used as a surrogate for PTEN loss (18, 31). Nuclear and 

cytoplasmic positivity were assessed (Figure 11B). Background benign glands, 

fibromuscular stroma and nerves were used as a positive control. Ki67 scoring 

was used as proliferation index based on nuclear immunoreactivity (Figure 11C). 

Thirty percent of the total cores were double scored by a specialist 

uropathologist (Dr Jonathan Salmond) for ERG, PTEN and Ki-67 staining, blinded 

to patient characteristics. There was almost perfect agreement in scoring for 

ERG (κ=0.89) and substantial agreement in scoring for PTEN (κ=0.74) and Ki67 

(κ=0.74).  
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Figure 11 Representative images of ERG, PTEN and Ki67 staining 
(A) Tissue cores with negative (left) and positive (right) ERG immunostaining. (B) Tissue cores with 
homogeneous PTEN loss (left), heterogeneous PTEN loss (middle) and intact PTEN (right). (C) 
Tissue cores with low (left), moderate (middle) and high (right) Ki67 nuclear immunoreactivity. 

(Scale bar = 100 m)   

 

3.6.1 Molecular characteristics in primary tumours of patients 
with vs without lymph node metastasis 

Out of 94 patients in our TMA, 92, 91 and 89 had at least two out of three 

evaluable cores for ERG, PTEN and Ki67 staining by IHC respectively (Table 17). 

Of the tumours with assessable staining, 43/92 (47%) had positive ERG 

immunostaining which is in keeping with the incidence of TMPRSS2/ERG 

translocation previously reported (154, 155). There was no difference in ERG 

status according to the presence of nodal metastasis (p= 0.836). PTEN staining 

was detected in 52/91 (57%) patients. PTEN loss was significantly associated with 

nodal metastasis (p=0.0001), as previously described in the literature (17, 18).  
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Lastly, there was no association between Ki67 proliferation and lymph node 

spread. 

  
Overall 
 N=94 

Lymph node metastasis 

Absent=44 Present=50 p value 

TMPRSS2/ERG fusion (ERG 
overexpression), N (%) 

92       

Positive 43 (47) 19 (21) 24 (26) 0.836  

Negative 49 (53) 23 (25) 26 (28)   

PTEN status, N (%) 91      0.0001 

Intact 52 (57) 33 (36) 19 (21)   

Loss 39 (43) 9 (10) 30 (33)   

Ki67 score, N (%)  89     0.573 

Low (≤ 10%) 43 (49) 19 (21) 24 (27)  

Moderate (>10%, ≤ 20%) 19 (21) 11 (12) 8 (9)   

High (>20%) 27 (30) 12 (14) 15 (17)  

Table 17 Molecular features of discovery cohort according to their lymph node status 
N= number of cases with available data. Fisher's exact test and Chi-square test used for statistical 
comparisons.  

 

 

3.6.2 ERG, PTEN and Ki67 are not associated with immune cell 
infiltration 

There were no significant differences stratifying immune cell infiltrates by ERG 

status (Table 18). Similar results were obtained when immune cell densities 

were stratified according to PTEN status (Table 19) and Ki67 scoring (Table 

20Table 18). Overall, these results support the notion that immune cell 

infiltration is not associated with the presence of ETS translocation, PTEN loss 

and differences in tumour cell proliferation. 
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 ERG status 

Epithelium  

Immune densities, 
median (95% CI) 

All  
N=92 

Positive = 43 Negative = 49 
p 
value 

M1-like macrophages 80 16.75 (11.01-22.89) 20.84 (14.45-25.67) 0.273 

M2-like  macrophages 81 14.66 (11.95-22.4) 19.85 (11.49-33.32) 0.437 

B cells 81 1.66 (0.9-3.45) 2.6 (1-7.92) 0.571 

CD4 effector T cells 66 21 (16-27.3) 16.2 (10.1-30.5) 0.572 

CD4 regulatory T cells 63 3.5 (1-6.2) 1.18 (0-3.2) 0.092 

CD4 PD-1 positive T cells 55 5.3 (8.16-16.4) 9.83 (1.3-16.9) 0.65 

CD8 cytotoxic T cells 64 8.8 (4.2-14.5) 4.2 (0.85-6.8) 0.094 

CD8 regulatory T cells 64 3.9 (1.3-5.6) 0.88 (0-3.2) 0.067 

CD8 PD-1 positive T cells 64 3.5 (0-9.48) 0 (0-8.7) 0.72 

Stroma    

M1 macrophages 80 48.85 (39.11-75.67) 52.15 (35.58-89.31) 0.954 

M2 macrophages 81 65.28 (53.55-79.07) 66.48 (53.9-81.99) 0.745 

B cells 81 8.49 (4.44-15.22) 6.74 (3.96-11.51) 0.491 

CD4 effector T cells 66 40.81 (28.3-82.77) 75.83 (27.47-91.35) 0.769 

CD4 regulatory T cells 63 4.71 (1.7-7.94) 4.58 (1.7-6.12) 0.603 

CD4 PD-1 positive T cells 55 8.73 (1.7-17.7) 7.33 (0.84-11.2) 0.365 

CD8 cytotoxic T cells 64 29.8 (21.7-50.6) 28.1 (14-39) 0.479 

CD8 regulatory T cells 64 0.66 (0.34-1.9) 0.4 (0.28-1) 0.319 

CD8 PD-1 positive T cells 64 4.66 (0.87-8.5) 6.23 (3-18.6) 0.182 

Table 18 Immune cell densities of discovery cohort stratified by ERG status 
Immune cell densities of prostate cancer patients presented as median with 95% CI. N= number of 
cases with available data. Mann Whitney test used for statistical comparisons. CI=confidence 
interval.  
 
 

 PTEN status 

Epithelium    

Immune densities, 
median (95% CI) 

All 
N=91 

Intact = 52 Lost = 39 
p 

value 

M1-like macrophages 80 19.74 (16.8-25.4) 17.63 (10.45-22.89) 0.152 

M2-like  macrophages 81 18.07 (11.95-24.9) 15.02 (11.4-27.35) 0.702 

B cells 81 2.11 (0.9-6.5) 1.7 (1-5) 0.703 

CD4 effector T cells 64 21.7 (14.7-30.5) 20 (10.9-27.3) 0.653 

CD4 regulatory T cells 64 1.5 (0.41-3.3) 3.65 (0.9-6.6) 0.208 

CD4 PD-1 positive T cells 55 10.4 (6.59-1.7) 13.15 (0.8-18.8) 0.667 

CD8 cytotoxic T cells 64 6.1 (4.2-12.6) 5.7 (0.68-13) 0.424 

CD8 regulatory T cells 64 3.8 (0.88-4.3) 1.9 (0-8.4) 0.668 

CD8 PD-1 positive T cells 64 5.3 (0-8.7) 1.9 (0-10.4) 0.555 

Stroma     

M1-like macrophages 80 54.62 (40.04-81.78) 48.73 (36.49-76.35) 0.522 

M2-like macrophages 81 66.17 (60.67-77.04) 62.97 (42.14-88.56) 0.704 

B cells 81 8.75 (3.9-14.22) 7.35 (4.44-13.07) 0.687 

CD4 effector T cells 64 64.72 (32.5-91.35) 47.92 (27.47-82.77) 0.756 

CD4 regulatory T cells 64 5.14 (3.35-7.47) 3.8 (1.6-6.85) 0.331 

CD4 PD-1 positive T cells 55 8.88 (1.3-16.3) 6.06 (0-12.6) 0.452 

CD8 cytotoxic T cells 64 24.94 (14-40.19) 29.9 (21.7-46.18) 0.829 

CD8 regulatory T cells 64 0.51 (0.32-1.5) 0.62 (0.26-1.8) 0.871 

CD8 PD-1 positive T cells 64 8.1 (3.01-16.3) 4.66 (0.87-7.9) 0.177 

 

Table 19 Immune cell densities of discovery cohort stratified by PTEN status 
Immune cell densities of prostate cancer patients presented as median with 95% CI. N= number of 
cases with available data. Mann Whitney test used for statistical comparisons. CI=confidence 
interval.  
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 Ki67 score 

Epithelium  

Immune densities, 
median (95% CI) 

All 
N=89 

Low=43 Moderate=19 High=27 
p 
value 

M1-like macrophages 
79 

19.3 (13.9-25.67) 
 

18.57 (10.65-26.1) 18.5 (13-22.89) 0.837 

M2-like macrophages 80 20.38 (15.4-28.6) 11.49 (9.68-40.2) 14.66 (10.95-31.94) 0.509 

B cells 80 2.8 (1.09-8.33) 1.8 (0.43-8.29) 1.45 (1-5) 0.568 

CD4 effector T cells 62 17.5 (9.5-32.9) 20 (8.26-32.4) 21.35 (13-31) 0.653 

CD4 regulatory T cells 61 1.8 (0-5.2) 3 (0-8.84) 3.4 (1-4.63) 0.875 

CD4 PD-1 positive T 
cells 

53 11.8 (0-18.7) 10.08 (0-19.7) 6.25 (0-13.6) 0.812 

CD8 cytotoxic T cells 62 3.9 (0-7.15) 8.8 (5.2-25.5) 10.5 (0.88-20.3) 0.557 

CD8 regulatory T cells 62 3.2 (0-9.36) 1.3 (0-4.1) 4 (1.9-7.6) 0.425 

CD8 PD-1 positive T 
cells 

62 0 (0-15.6) 5.5 (0-17.6) 1.95 (0-6.9) 0.817 

Stroma     

M1-like macrophages 79 48.85 (36.2-78.8) 81.78 (43.94-96.7) 48.42 (35.6-75.67) 0.586 

M2-like macrophages 80 62.21 (50-81.99) 65.28 (42.95-88.7) 72.87 (58.12-92.37) 0.708 

B cells 80 7.36 (4.7-13.07) 7.85 (2.67-19.85) 8.81 (3.64-23.53) 0.775 

CD4 effector T cells 62 75.83 (21-91.35) 79.77 (11.1-105) 54.4 (21.7-92.7) 0.741 

CD4 regulatory T cells 61 2.1 (1.1-7.55) 5.4 (3.6-13.5) 5.05 (3.8-8.09) 0.467 

CD4 PD-1 positive T 
cells 

53 8.25 (0.3-16.5) 9.65 (1.3-16.3) 5.52 (0-20.3) 0.86 

CD8 cytotoxic T cells 62 32.08 (21.1-
57.45) 

40.19 (22.1-51.6) 23.65 (8.86-62.13) 0.571 

CD8 regulatory T cells 62 0.34 (0.27-1.5) 0.82 (0.5-1.9) 1.6 (0.23-3.59) 0.27 

CD8 PD-1 positive T 
cells 

62 5.54 (2.8-14) 4.66 (0-20.8) 8.2 (1.4-11.8) 0.875 

Table 20 Immune cell densities of discovery cohort stratified by Ki67 score 
Immune cell densities of prostate cancer patients presented as median with 95% CI. N= number of 
cases with available data. Kruskal–Wallis test used for statistical comparisons. CI=confidence 
interval.  
 
 
 
 

3.6.3 Combining PTEN and stromal CD4 effector T cells in 
predicting lymph node metastasis does not improve 
prognostic value 

PTEN status was the only molecular feature that was associated with and 

predictive of lymph node spread with univariate regression. Intact PTEN had a 

negative predictive value, with OR= 0.173 (0.07- 0.44 95% CI, p=0.0002) in the 

discovery cohort and OR=0.44 (0.23- 0.83 95%CI, p=0.01) in the validation 

cohort. PTEN status remained a significant prognostic factor in the multivariate 

setting, including all currently used parameters for predicting nodal metastasis, 

as shown in Table 21.  
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Multivariate regression analysis 

Discovery cohort  
OR 95% CI p value 

pT stage  1.61 0.52-4.97 0.406 

Gleason score 1.7 0.54-5.28 0.357 

Peak pre-op PSA 1.01 0.96-1.04 0.955 

Percentage of positive cores 1.01 0.99-1.02 0.415 

Intact PTEN  0.22 0.08-0.61 0.004 

Validation cohort 
 

OR 95% CI p value 

pT stage  2.6 1.23-5.49 0.012 

Gleason score 4.23 1.69-10.592 0.002 

Peak pre-op PSA 1.03 1.02-1.05 0.005 

Intact PTEN  0.45 0.21-0.93 0.032 

Table 21 Multivariate regression analysis of PTEN status with standard of care 
clinicopathological factors commonly used for the prediction of nodal metastasis 
In the discovery cohort (top) and the validation cohort (bottom) PTEN status was an independent 
predictor of lymph node metastasis. OR= odds ratio, CI=confidence interval. 
 
 
 

However, ROC curve analysis showed that the addition of PTEN status in the 

currently used parameters was inferior to the addition of stromal CD4 effector 

cells. In the discovery cohort addition of PTEN resulted in an AUC=0.67 (0.537-

0.813 95%CI, p=0.022) whereas CD4 stromal effector T cells had AUC=0.75 (0.62-

0.87 95%CI, p=0.001). In the validation cohort addition of PTEN resulted in 

AUC=0.76 (0.69-0.84 95%CI, p<0.0001) and CD4 stromal effector T cells had 

AUC=0.79 (0.71-0.86 95%CI, p<0.001). Combination of PTEN status with CD4 

effector immune cell density did not carry a significant benefit. In the discovery 

cohort it resulted in an AUC=0.77 (0.65-0.89 95%CI, p<0.001) and in the 

validation AUC=0.79 (0.71-0.87 95%CI, p<0.0001), as shown in Figure 12. 
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Figure 12 Clinical impact of PTEN and stromal CD4 effector T cells in lymph node 
metastasis 
Receiver Operator Curve (ROC) curves of the addition of stromal PTEN and CD4 effector T cells  
to standard of care clinicopathological factors for predicting lymph node metastasis in the discovery 
(A) and validation (B) cohorts.  

 

3.7 Optimisation of dual CD4-FoxP3 
Immunohistochemistry 

The data collected so far suggest an important role of stromal CD4 effector T 

cells (CD4+ FoxP3- PD-1-). A quantitative mIF platform was used for reasons 

described previously, however this methodology is not currently available at the 

clinical setting or every research laboratory. For this reason, I explored the 

potential of a method more easily implemented clinically, such as dual 

chromogenic IHC for CD4 and FoxP3. CD4 effector T cells were defined as 

CD4+FoxP3-PD1- with multiplex IF and the CD4+PD1+ cells were the least 

common within the stoma (0.07% in discovery and 0% in validation cohorts), so 

PD-1 staining was omitted.  

Dual CD4-FoxP3 chromogenic IHC was successfully optimised, with CD4 stained 

with alkaline red and FoxP3 with DAB brown (Figure 13A). The discovery TMA 

was stained and analysed with HALO using a tissue classifier (epithelium vs 

stroma) based on the morphological characteristics, and the percentage of 

positively stained cells within the each area (cells/mm2) was quantified. There 

was a positive correlation between CD4 effector T cells detected by mIF and IHC 

within the stroma (Spearman’s r=0.37, p=0.002), thus confirming the validity of 

the dual staining approach (Figure 9B). 
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Figure 13 Optimisation of dual CD4- FoxP3 immunohistochemistry 
(A) Representative image of dual CD4-FoxP3 staining. CD4 cells are shown in red (alkaline red) 
and FoxP3 in brown (DAB), scale bar 10µm. (B) Stromal CD4 effector T cells are presented as 
median immune cell densities (cells/mm2) derived from dual CD4-FoxP3 immunohistochemistry 
(IHC) staining and multiplex immunofluoresence (mIF) in the radical prostatectomy (RP) tissue 
(n=62). Spearman’s correlation was used for statistical comparison.  

 

3.8 Exploration of stromal CD4 effector T cells in low risk 
prostate cancer patients  

Another question was whether stromal CD4 effector T cells had an impact on 

clinical outcomes in low risk prostate cancer. To explore this, we established a 

collaboration with Professor David Berman’s lab in Queen's University in 

Kingston, Ontario, Canada. He provided a primary prostate cancer TMA of 

patients with low risk disease at diagnosis. I stained this TMA with dual CD4-

FoxP3 IHC in order to assess the relationship of CD4 effector T cell density with 

relapse free survival in this patient cohort. 

3.8.1 Low risk prostate cancer cohort 

The low-risk patient cohort included 272 patients with three to five cores per 

patient. The median age of diagnosis 61 years (60-62 95%CI). The median peak 

pre-operative PSA level was 5.8 ng/ml (4.4-7.8 95%CI). Two hundred fourteen 

patients (78.7%) had pT2 stage disease and 58 (21.3%) had pT3 stage tumours. 

One hundred and thirty two patients had Gleason score 6 (48.5%) and 7 (48.5%) 

and eight patients had Gleason score >7 (3%). The median follow up was 4.92 

years (4.7-5.1 95%CI) and 54 patients had biochemical relapse. Thirty-four 

patients were lost in follow-up. 
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3.8.2 Stromal CD4 effector T cells are not associated with survival 
in low risk prostate cancer patients 

The low-risk prostate cancer cohort TMA was stained with dual CD4-FoxP3 IHC 

and scored with HALO as previously described. The overall stromal immune cell 

density was compared to data from the discovery cohort of high-risk disease. 

Interestingly, PCa patients diagnosed with more advanced (higher risk) disease 

had significantly higher overall stromal CD4 effector T cell density of 92.08 

cells/mm2 (62.7-117.1 95%CI) compared to low risk tumours, 8.53 cells/mm2 

(6.96 - 10.88 95%CI, p<0.0001), shown in Figure 14A. Within the low-risk disease 

cohort, there was no significant difference in relapse-free survival in patients 

with high (above median) stromal CD4 effector T cell density (p=0.34), shown in 

Figure 14B. 

 

Figure 14 Stromal CD4 effector T cells in low risk prostate cancer 
(A) Stromal CD4 effector T cell density is presented as median cells/mm2 with 95% confidence 
interval in patients with low-risk (n=260) and high-risk (n=89) prostate cancer. (B) Kaplan-Meier 
curves of low-risk prostate cancer patients according to CD4 effector T cell infiltration. Log rank test 
used for statistical comparison. 

 
 

3.9 Translation of stromal CD4 effector T cells detection 
in the clinical setting 

3.9.1 Staining of prostate cancer diagnostic biopsies  

The data collected so far support the use of stromal CD4 effector T cells in 

intermediate and high-risk disease in order to improve the current algorithms of 

nodal spread prediction. This would be applicable at the diagnostic biopsy stage 
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in order to spare patients from the unnecessary side effects of lymph node 

dissection.  

For this reason, 31 diagnostic biopsies for the patients included in the discovery 

cohort were obtained from Glasgow Biorepository (16 LN+, 15 LN-). These were 

stained with dual CD4-FoxP3 IHC and analysed in HALO. Only tissue regions 

containing more than 70% cancer were analysed and CD4 effector (CD4+FoxP3-) 

T cells were quantified within stroma (Figure 15A-C). There was a positive 

correlation (r=0.51, p=0.02) between stromal CD4 effector T cells detected with 

IHC in diagnostic biopsies and detected with mIF in discovery TMA from index 

lesions from the same patient (Figure 15D). However, when the stromal CD4 

effector immune cells detected in diagnostic biopsies were stratified according 

to nodal spread there was no significant difference (Figure 15E).  

Apart from the small number of cases examined, which limits the conclusion that 

can be drawn, the nature of prostate biopsy tissue could explain this 

discrepancy. In biopsy material, the stromal CD4 effector T cells are in close 

proximity to cancerous prostate glands, as well as benign glands and PIN. The 

tumour stromal area examined is therefore more heterogeneous compared to 

the prostate cancer stroma derived from the index lesion that was used for the 

discovery TMA. This raises interesting questions regarding the scoring system 

that should be applied in biopsy tissue. For example, a more stringent threshold 

cut-off above 70%, e.g. 90%, would be more appropriate. Also, using MRI/US 

guidance for specific sampling of the index lesion and scoring only those cores 

could be another possible approach. 
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Figure 15 Staining of prostate cancer diagnostic biopsies with dual CD4-FoxP3 
immunohistochemistry 
Prostate cancer biopsy tissue stained with dual CD4-FoxP3 (A), classified in epithelium (magenta) 
and stroma (blue) (B), and scored using HALO (C), yellow indicating positively stained cells. (D) 
Stromal CD4 effector T cells are presented as median immune cell densities (cells/mm2) derived 
from dual CD4-FoxP3 staining of diagnostic biopsies and multiplex immunofluoresence (mIF) in the 
radical prostatectomy (RP) tissue, n=19. Spearman’s correlation was used for the immune 
infiltration in the same patient. (F) Stromal CD4 effector T cells are presented as median immune 
cell densities (cells/mm2) derived from dual CD4-FoxP3 staining on diagnostic biopsies from 
patients with (LN+, n=16) vs without (LN-, n=15) lymph node metastasis. Error bars indicate 95% 
confidence interval. Mann-Whitney test used for statistical comparison. 
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3.10 Concluding summary 

I aimed to dissect the clinical significance of the immune landscape in localised 

PCa patients. I explored the relationship of specific tumour infiltrating immune 

cells with malignant prostate epithelium to determine if this correlates with the 

ability of a tumour to metastasise to regional lymph nodes.  For this reason, we 

successfully developed and applied a novel mIF methodology combining up to six 

antibodies on a single slide (Figure 6-7). Low CD4 effector T cell (CD4+ FoxP3-

PD-1-) density was significantly associated patients with lymph node metastasis 

(Table 9). Using multivariate analysis, we established a predictive model based 

on stromal CD4 T cell expression for predicting nodal spread and validated the 

model in a larger independent cohort of patients (Table 16). I additionally 

correlated subsets of tumour infiltrating immune cells with commonly present 

molecular alterations and found no associations with ERG overexpression or 

PTEN deletion (Table 18-20). The detection of stromal CD4 effector T cells by 

mIF was comparable to a simpler and easily transferable to the clinic dual 

CD4/FoxP3 IHC assay (Figure 13). However, its implementation on prostate 

biopsies requires further investigation (Figure 15). Lastly, we measured CD4 

effector T cell (CD4+FoxP3-) density in a cohort of low risk prostate cancer 

patients and showed no impact on relapse-free survival (Figure 14).   

It is challenging to replicate the complexity of human immune system with in 

vitro or in vivo experiments. Therefore, we used patient derived tissue in order 

to comprehensively characterise the immune tumour microenvironment. The 

exploration of the in situ immune cell composition of baseline, treatment-naïve, 

higher risk PCa patient samples offers critical insights into the complex and 

heterogeneous immune landscape associated with the growth and progression of 

this tumour, such as the reproducibly higher presence of CD4 effector T cells in 

patients without nodal metastasis. I generated a discovery TMA (Table 8) in 

order to examine a large number of patients at the same time, however this 

always carries the disadvantage of under sampling heterogeneous tumour 

immune infiltrates. I mitigated this issue by using three large cores (1 mm) from 

each tumour. Other limitations of this cohort are its retrospective nature of and 

the lack of long-term patient follow-up.  
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Flow cytometry is the most commonly used method for investigating 

lymphocytes and cytokines in cancer but the requirement to examine cell 

suspensions, the spatial context and the respective biologic relationships are 

inevitably lost. With mIF, spatial relationships are preserved, enabling the 

assessment of infiltrating cells in the context of the adjacent tumour and 

differentiating between stromal and intratumoural localisation. We used a TSA 

automated staining platform combined with slide scanning, multispectral 

imaging and a pattern recognition–based image analysis is order to extract 

maximum proteomic and morphometric information from our FFPE tissue 

samples.  

Despite the overall validity of the data produced by mIF and multispectral 

imaging, some limitations should be mentioned. In terms of the immune cells 

subpopulations examined, CD68 is a recognised pan-macrophage marker, 

however low CD68 expression can be found on other monocytes, therefore our 

analysis likely contains a small proportion of non-macrophage cells. On the other 

hand, there is a risk that not all macrophages express CD68 or CD163 and we 

therefore might have missed small macrophage populations. It should also be 

noted that M1/M2-like is an oversimplified way of describing macrophage 

polarisation and I used those markers to describe macrophage phenotypic 

heterogeneity, not to define polarisation states. Lastly, due to limitations 

associated with the number of markers that can be used at the same time, we 

only investigated lymphocytic and macrophage populations. Using additional 

markers for T cell activation/exhaustion and other immune components, such as 

dendritic and natural killer cells will elucidate the PCa immune 

microenvironment further. 

In patients with intermediate and high-risk localised prostate cancer, 

macrophages were the most abundant infiltrating immune cells, followed by CD4 

T cells within stroma and epithelium (Table 9). CD4 regulatory T cells were 

proportionately distributed between stroma and epithelium, whereas CD8 T 

regulatory cells were scarce within epithelium. B cells were the least abundant 

immune cells. A previous study has shown that tertiary lymphoid follicles are 

commonly encountered in non-malignant areas surrounding the prostate cancer 

tissue (75). In my study I only looked into index lesions, therefore I cannot 



Chapter 3 98 
 
exclude the role of B cells outside of the cancer mass lesions via non-cell 

contact mechanisms.   

My initial hypothesis was that patients with lymph node metastasis would be 

associated with an immunosuppressive microenvironment, comprising M2-like 

macrophages (40), T regulatory cells (77), and PD-1 positive cells (78). Even 

though we cannot confidently exclude a non-cell contract effect of these cells 

(75), there were no differences in their abundance within index tumour lesions 

between LN+ and LN- patients (Table 10). Interestingly, there were significant 

differences between immune cell subtypes that are traditionally considered anti-

tumorigenic (38). M1-like macrophages, and CD8 effector T cells were decreased 

in stromal and epithelial areas of LN+ patients (Table 10). In addition, stromal 

CD4 effector T cells that were consistently located at the interface between 

epithelium and stroma (Figure 8) were decreased in LN+ patients. Furthermore, 

the ratios stromal CD4 effector/CD4 regulatory T cells and epithelial/stromal 

CD8 effector T cells were lower in LN+ positive patients. These immune cells 

positively correlated with each other, consistent with potential functional 

interactions to determine host-tumour response. More importantly, stromal CD4 

effector T cells, and to a lesser degree CD8 effector T cells, were reproducibly 

decreased in LN+ patients in an independent patient cohort (Table 10 and 15).  

It is currently unknown if the lower number of tumoural effector T lymphocytes 

in LN+ patients is a primary or a secondary event. Although we are unable to 

describe a cell specific mechanism to explain this observation, these data 

provide evidence for a potentially clinically relevant role of CD4 effector T cells. 

A recent study of a humanised prostate cancer animal model is in agreement 

with my findings (156). Mice with human peripheral blood lymphocytes and DCs 

were unable to control PC3M tumour growth upon CD4 T cell depletion, whereas 

CD8 T cell depletion had no effect (156). In another large gene expression study 

of different tumour types, elevated Th1 and TH17 CD4 helper T cell expression 

was associated with an anti-tumourigenic phenotype (157). It is possible that 

CD4 effector T cells have a key role in prostate cancer tumour progression.  

One possibility is that tumour in situ or regional nodal interactions between CD4 

and CD8 cytotoxic T and other immune cell subsets is essential for mediating 

anti-tumour response and preventing lymph node metastasis by CD8 mediated 
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tumour cell killing at the primary tumour site (42, 158). While CD8 T cells are 

the key effector population that mediate tumour cell killing, they can be 

affected by the tumour immune environment to develop into regulatory and/or 

exhausted T cells in the absence of CD4 effector T cell help (42, 159). There is 

also some evidence that CD4 T cells can play an active role in tumour defence by 

themselves (160, 161). Even though cytotoxic potential of CD4 T cells is still 

controversial and not studied in the tumour context, there are seminal studies 

that confirm the cytotoxic capabilities of these cells in humans with chronic 

infections (160) and advanced age (161).  

Better stratification of PCa patients is an urgent unmet need that would facilitate 

earlier intervention of aggressive, fast growing disease and avoidance of 

overtreatment for slow growing, latent disease. There has been significant 

progress in gene expression approaches to prostate cancer prognostication (162). 

However, there has been little advancement in protein-based approaches, even 

though dysregulated protein levels are more directly linked with a perturbed 

phenotype. My data suggest that the addition of stromal CD4 effector T cells 

immune cell density of intermediate and high-risk patients can improve the 

current algorithms of nodal spread prediction (Figure 9). Even though the 

quantitative mIF platform that we used is not currently used in the clinical setting, 

there was good concordance with dual FoxP3 and CD4 IHC (Figure 13). The main 

issue we discovered is interpreting this stromal immune signature on the prostate 

biopsy, due to close proximity between normal and malignant glands. This could 

potentially be addressed by radiology-guided sampling of the index lesion only. 

Prior to suggesting its use in the everyday clinical practice, external validation in 

larger prospective cohorts is necessary.  

Distinct genomic alterations can shape the PCa immune microenvironment (22, 

23). For example, immune cell composition of prostate cancer genetically 

engineered (GEMM) animal models  was driven by the loss of the tumour 

suppressive gene PTEN, alone or in combination with other immunosuppresses at 

least partly due to different chemokine secretion (22). Therefore, I examined 

the association of common PCa genetic alterations with infiltrating immune 

cells. I stained the discovery cohort with ERG and PTEN IHC as surrogates for 

TMPRSS2/ERG fusion and PTEN loss respectively (Figure 11), and reassuringly 
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found the incidence of those alterations in agreement with the literature, 

reinforcing the generalisability of this patient cohort (Table 17). My hypothesis 

was that primary prostate tumours with absence of ERG gene translocation, 

presence of PTEN inactivation and high Ki67 would be associated with nodal 

metastasis. However, contrary to previous studies (25, 66) there was no 

association between immune cell densities and those features (Table 18-20). It is 

noteworthy that these previous studies included mixed patient cohorts with 

varying treatments (25, 66). Our study included only high-risk European PCa 

patients with localised disease, which may inherently have a rather 

homogeneous genetic background. 

Prostate cancer is rather heterogeneous, comprising of a continuum of lower-

risk, higher-risk and mCRPC patients (7). Our data do not contain androgen 

deprived or metastatic samples and are thus not applicable to mCRPC prostate 

cancer, which may have a very different immune microenvironment. I aimed to 

explore the presence of stromal CD4 effector T cells (CD4+FoxP3-) in a lower risk 

PCa cohort in a pilot experiment. Interestingly, lower-risk patients has 

significantly less infiltration of CD4 effector T cells compared to the discovery 

higher risk cohort (Figure 14A). It is possible that higher risk patients may have 

baseline levels of increased inflammation, contributing to oxidative stress 

mediated tumourigenesis and accelerated progression (24). Furthermore, there 

was no association with relapse free survival (Figure 14B), contrary to our 

findings in higher risk patients (Figure 10). This suggests a potentially different 

role of CD4 effector T cells in different stages of PCa progression and further 

work is needed in order to gain a better understanding.  

The data collected so far do not address the function of infiltrating CD4 effector 

T cells or the impact they may have on the prostate tissue as this will require a 

more thorough phenotypic analysis of the lymphocytes. This could be ideally 

elucidated with single cell gene expression profiling of purified human 

infiltrating CD4 T cells that could reveal biologically relevant CD4 T cells 

subpopulations. While a basic understanding of the composition and phenotype 

of tumour immune microenvironment can only be derived from human tumours, 

there is a need to directly investigate mechanisms and interactions. For this, 

either humanised PCa or GEMM animal models could be used for studying the 
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impact of specific CD4 T cell subset (or other immune cells of the innate and 

adaptive immune system), to determine the contribution of such cells to PCa 

progression. Even though these studies were not feasible during the limited time 

of my PhD, they could be followed up in the future.  

Summarising, our data associate stromal CD4 effector T cell infiltration with 

lymph node metastasis in PCa for the first time. Their specific localisation at the 

peritumoural border suggests that CD4 effector T cells within the direct vicinity 

of cancer cells could perform important biological functions, either by 

facilitating anti-tumour function of other cytotoxic cells or by directly lysing 

tumour cells themselves. While this is a reasonable hypothesis based on 

correlative observations, insights that are more mechanistic are necessary. 

Previous studies have highlighted the importance of functional orientation of 

different CD4 T cell immune cell subsets, with Th1 orientated CD4 T effector T 

cells collaborating with CD8 cytotoxic T cells and resulting in a better patient 

prognosis in colorectal cancer (163). Furthermore, the expression of specific 

chemokines and adhesion molecules were found to be critical for high densities 

of oligoclonal CD8 T cell subsets in colorectal cancer (164) and melanoma (165). 

Based on our results and those previous studies we next performed a targeted 

gene expression assay of immuno-oncology markers in order to explain the 

differences observed in immune cell infiltration between LN+ and LN- PCa 

patients.  

  



Chapter 4 102 
 

Chapter 4 Phenotyping of prostate cancer using 
a targeted gene expression panel 

In Chapter 3 of this thesis, I presented evidence that, in intermediate to high-

risk PCa patients with regional lymph node metastasis, there was decreased 

infiltration of the tumour-stroma interface by CD4 effector T cells. 

Intraepithelial CD8 effector T cells were also decreased and there was positive 

correlation between CD4 effector, CD8 effector and M1-like macrophages within 

tumour epithelium and stroma. These findings suggested a possible interaction 

between tumour and those immune cell subtypes in LN- patients in order to 

orchestrate an anti-tumour response which was absent in LN+ patients. The 

development of an effective anti-tumour immune response depends on the 

coordinated interactions of immunocompetent cells (e.g. CD8 cytotoxic and Th1 

polarised CD4 helper T cells), whose spatial distributions are at least partly 

regulated by chemokines and adhesion molecules (38, 166).  

I hypothesised that LN+ patients would have decreased tumour and stromal 

secreted cytokines (CXCL9 and CXCL10) and adhesion molecules (ICAM, VCAM) 

which contribute to recruitment of effector T cells (39, 166). I also expected a 

decreased Th-1 polarisation of CD4 effector T cells resulting in decreased 

cytotoxicity (granzymes, perforin) and tumour cell killing (39, 157) in LN+ cases. 

In order to confirm this hypothesis and explain the differences in immune cell 

infiltration we performed a targeted gene expression profiling of the tumours 

with a panel of immuno-oncology markers comparing PCa patients with and 

without lymph node metastasis.   

Forty-eight diagnostic biopsy cores from patients within the discovery TMA 

cohort were selected for gene expression analysis, including 24 without LN 

metastasis and 24 with LN metastasis respectively. The patients had a median 

time interval of 113 days (81-151 range) between diagnosis and surgery. Each 

sample was macro-dissected to obtain tumour rich tissue with >70% tumour and 

<10% tumour necrosis. This methodology was selected because it was ideal for 

minimal tissue input (down to 6 mm2 area) which is crucial for limited PCa biopsy 

material, and has also been proven to reproducibly detect low expressing genes 

which is essential for the occasionally sparse immune cell infiltrates in PCa FFPE 

tissue (167, 168).  
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The targets of HTG Immuno-Oncology Panel are shown in Appendix Table 1 and 

include immune related genes as well as genes related to common cancer 

signalling pathways. These include genes involved in apoptosis, cell cycle and 

adhesion, DNA repair, immunosuppressive pathways as well as cytokines and 

cytokine receptors, immunophenotyping and MHC and associated receptors. One 

probe was designed for each gene. A total of 1,410 probes were used, including 

12 housekeeper control genes (DDX5, ATP5F1, EEF1G, NCL, OAZ1, PPIA, RPL38, 

RPL6, RPS7, SLC25A3, SOD1, YWHAZ), 4 positive process controls and 4 negative 

process controls. In addition, negative probes had sequences of non-human 

genes (Arabidopsis), while positive probes had sequences of targets that were 

mixed with all the probe mix (so these probes will hybridize with their targets 

during the hybridisation step).  

Forty-eight samples were sent for sequencing. One of them was omitted from 

the analysis due to tissue damage, leaving forty-seven samples processed and 

successfully sequenced according to company’s standards. 

4.1 Post-sequencing quality control 

Post-sequencing quality control metrics (QC0, QC1 and QC2) were performed 

using the HTG reveal software in order to detect three different sample failures 

(Figure 16). QC0 detected degraded RNA or poor quality RNA samples by 

assessing the percentage of overall reads being allocated to the positive process 

control for each sample; ≥ 40% was considered as a failure. QC1 detected 

samples with insufficient read depth; read depth ≤ 1.5 million / sample was 

considered a failure. QC2 detected samples with minimal expression variability, 

which was determined by the relative standard deviation (RSD) of reads 

allocated to each probe within a sample; RSD ≤ 0.1 was considered a failure. 

Five samples failed QC2 metric and were not included in further analysis. Failure 

of QC2 is commonly attributed to failure of the S1 digestion step of the sample 

processing according to the company’s protocols.  
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Figure 16 Post sequencing quality controls 
Forty-seven samples were processed and underwent post-sequencing quality control metrics 
(QC0, QC1 and QC2) using the HTG reveal software. (A) QC0 plot represented the RNA quality by 
assessing the percentage of overall reads being allocated to the positive control for each sample. 
(B) QC1 plot represented the read depth. (C) QC2 plot represented the expression variability of 
each sample, which was determined by the relative standard deviation (RSD) of reads allocated to 
each probe within a sample. Five samples highlighted in red failed QC2 metric and were not 
included in further analysis. 
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4.2 Extracellular matrix components genes are 
upregulated in prostate cancer patients with nodal 
metastasis  

We used the HTG EdgeSeq Immuno-Oncology panel to compare gene expression 

between primary prostate tumours from patients with and without pathologically 

confirmed pelvic lymph node metastasis (LN+ and LN- respectively). This was 

calculated using DESeq2 test with an adjusted p value less than 0.05 and a log 

fold change value of greater than 1.5. Nineteen genes were differentially 

expressed, 15 were upregulated and four were downregulated in LN+ cases, 

presented in Table 22. 

My initial hypothesis was that patients with lymph node metastasis will have 

reduced expression of chemotactic and adhesion factors, resulting in the 

decreased infiltration of CD4 effector T cells that was observed. However, even 

though an extensive list of adhesion molecules, cytokines and cytokine receptors 

was included in our panel, there were no differences between patient groups. 

An interesting finding though was that the highest upregulated genes in LN+ 

cases were extracellular matrix (ECM) core proteins, namely collagen type I and 

III and fibronectin 1 (FN1), as well as the cancer associated fibroblast (CAF) 

proteins, fibroblast activation protein alpha (FAPa) and Chemokine ligand 14 

(CXCL14) (Table 22).  

ECM remodelling is one of the cancer hallmarks and abnormal, typically dense or 

fibrotic ECM affects cancer progression and metastasis, generating a tumour 

promoting tumour microenvironment (169-172). Tumour associated fibrosis is a 

well-established regulator of tumour progression but may also be a critical 

regulator of immune surveillance (173-176). Following on this growing body of 

evidence, I firstly aimed to address whether tumoural ECM components were 

increased at the protein level prostate cancer patients with nodal disease.  
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 Gene Full gene name Fold Change 

LN + vs LN - 
Adjusted 
p value 

Upregulated  

CXCL14 C-X-C Motif Chemokine Ligand 14 2.56 2.50E-05 

ISG15 Interferon-stimulated gene 15 2.14 4.20E-04 

IFI6 Interferon Alpha Inducible Protein 6  1.85 0.0251 

FAPa Fibroblast Activation Protein Alpha 1.83 2.50E-05 

LYZ Lysozyme 1.8 0.0156 

COL1A1 Collagen Type I Alpha 1 Chain 1.73 0.0156 

FCGR3A_3B Fc Fragment Of IgG Receptor IIIa 1.7 4.20E-04 

FN1 Fibronectin 1 1.68 0.0392 

OAS3 2'-5'-Oligoadenylate Synthetase 3 1.62 0.0029 

COL3A1 Collagen Type III Alpha 1 Chain 1.6 0.0251 

LAPTM5 Lysosomal Protein Transmembrane 5 1.58 0.0156 

HLA-DRA Major Histocompatibility Complex, Class II, DR 
Alpha 

1.54 0.0405 

FCGR2A_2C Fc Fragment Of IgG Receptor IIa 1.53 0.0023 

IGFBP3 Insulin growth factor binding pr 3 1.52 0.0425 

TYROBP TYRO Protein Tyrosine Kinase Binding Protein 1.51 0.0092 

Downregulated  

PAGE3 Prostate-Associated Gene 3 Protein -1.69 0.0452 

CD244 CD244 Molecule -1.68 0.0481 

RND2 Rho Family GTPase 2 -1.65 0.0251 

TCL1B Activation Induced Cytidine Deaminase -1.55 0.0478 

Table 22 Differentially expressed genes in patients with vs without lymph node metastasis 
(LN+ vs LN-).   
HTG RNA sequencing results showed 15 upregulated and 4 downregulated genes in patients with 
LN metastasis. Extracellular matrix genes (collagen type I & II and fibronectin 1) are highlighted in 
grey. DESeq2 test with fold change >1.5, adjusted p value < 0.05 used for statistical analysis 

 

 

4.3 Extracellular matrix components are increased and 
disorganised in prostate cancer patients with lymph 
node metastasis  

The gene expression analysis which showed increased ECM components was 

performed on the diagnostic biopsies of a fraction of patients (47 patients) 

included in the discovery TMA (94 patients). I then investigated the abundance 

of ECM components using the discovery TMA to study more cases with good tissue 

availability. More importantly, investigating the TMA cores would be more 

informative compared to diagnostic prostatic biopsy materials because needle 

biopsies tend to comprise of intermixed benign and malignant components in 

close proximity with associated stroma. Even though the presence of benign 
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glands can never be completely avoided, it was significantly reduced in the TMA 

due to sampling from the index lesion.  

I used IHC for the detection of ECM components identified in the gene expression 

assay, specifically collagen I (Figure 17A), collagen III (Figure 17D) and FN 1 

(Figure17E). Even though FN1 and collagen III are primarily ECM components, 

they were also expressed in the tumour as well as in stromal cells, 

morphologically compatible with fibroblasts. Collagen I was restricted to stroma 

and in order to avoid confounding from the relative epithelial/stromal ratio in 

each core I quantified the presence of collagen I within the stromal 

compartment only, shown in Figure 17A-C. HALO image analysis was used to set 

up a tissue classifier (epithelium vs stroma) based on the morphological 

characteristics and to quantify the percentage of positively stained cells within 

the each area. Lastly, the same TMA was also investigated using multiphoton 

imaging and second harmonic generation (SHG) (performed and analysed by 

Ewan McGhee, Beatson Institute).  
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Figure 17 Extracellular matrix components staining 
(A-C) Analysis for collagen I staining: (A) Representative image of collagen I staining. (B) Tissue 
classifier using HALO image analysis, epithelium annotated in magenta, stroma in blue. (C) 
Positive staining quantification shown in yellow, orange and red according to the staining intensity 
(low, medium and high respectively). All images are taken from the same core. (D) Representative 
images of collagen III and (E) fibronectin 1 staining. Scale bar=200µm. 
 

 
The collagen score analysis derived from the mean decay distance of the SHG 

signal showed that collagen I was significantly associated with the presence of 

lymph node spread, 17.72 (11.52-34 IQR) in LN+ vs 13.43 (9.14-21.46 IQR) in LN-, 

p=0.0003 (Figure 18A). The percentage of collagen I positive staining within the 

stroma did not show any statistically significant differences within the two 

groups, 32.92 (29.89-21.8 95%CI) in LN+ vs 29.87 (21.8-37.49 95%CI) in LN-, 
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p=0.189 (Figure 18B). Tumours often display a fibrotic stroma with increased 

collagen deposition and altered organisation, such as increased collagen density 

and collagen fibre elongation (172, 177). While SHG collagen I density score in 

LN+ patients increased, the overall collagen abundance did not differ, eluding to 

a stroma with increased cross-linking and elongated fibres. This is reinforced by 

the fact that both analyses were performed on the same slide. The percentage 

of collagen III positive staining within epithelial and stromal compartments was 

significantly increased in LN+ 22.28 (15.93-23.79 95%CI) vs 16.11 (12.65-17.37 

95%CI), p=0.0056 (Figure 18C). Lastly, the percentage of FN1 positive staining 

was significantly increased in LN+ patients, 26.36 (20.32-36.94 95%CI) vs 17.93 

(10.83-24.23 95%CI), p=0.0096 (Figure 18D). 

These results suggested that the generation of fibrillar collagen I, collagen III 

and FN1 are associated with PCa lymph node spread and as a direct 

consequence, disease progression. Our data revealed reduced migration of 

effector T cells to the tumour stromal compartment in LN+ patients. The 

relatively reduced infiltration by immune subpopulations in the progressing 

tumours can be mediated by lack of migratory cues, including chemokines and 

TCR stimulation (173). The gene expression analysis of primary PCa tumours 

investigated potential mediators for recruiting immune cells extensively but no 

difference was detected between LN+ and LN- patients. However, core ECM 

molecules were increased at both mRNA and protein levels in LN+ patients, thus 

supporting the importance of enhanced ECM deposition and remodelling in 

shaping the TME including immune infiltrates. The reduced immune cell 

infiltration of LN+ tumours is more likely associated with dense ECM, which can 

function as a physical barrier (175, 176, 178). 
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Figure 18 Enhanced collagen I, collagen III and fibronectin 1 in patients with lymph node 
metastasis 

(A) Mean decay distance (collagen score) of the second harmonic generation (SHG) signal emitted 
by fibrillar collagen I. Mean decay distance is represented by boxplots showing the second and 
third quartile of the data with the whiskers indicating the maximum and minimum data points for 
LN- (n=89) and LN+(n=113) cores. Outliers are shown by individual data points. (B) Percentage 
(%) of stroma positive for collagen I staining is presented as median with 95% CI in LN- (n=41) and 
LN+ (n=46) patients. (C) Percentage (%) of collagen III staining is presented as median with 95% 
CI in LN- (n=44) and LN+ (n=47) patients. (D) Percentage (%) of fibronectin1 staining is presented 
as median with 95% CI in LN- (n=34) and LN+ (n=45) patients. Two-tailed Mann-Whitney test was 
used for all statistical comparisons presented in this figure.   

 

 

4.4 Exploratory investigation of cancer associated 
fibroblast markers (CXCL14 and FAPa) in prostate 
cancer patients with nodal metastasis  

The targeted gene expression analysis identified two more upregulated genes in 

patients with lymph node metastasis that were of interest, namely Chemokine 

ligand 14 (CXCL14) and Fibroblast Activation Protein alpha (FAP). Cancer 

associated fibroblasts (CAFs) are the fibroblasts found in the stroma of human 
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cancers (169). CAFs are activated compared to their quiescent counterparts 

(SMA+, FAP+) and have significant heterogeneity in marker expression leading 

to different CAF phenotypes (169). They also differ from normal fibroblasts in 

their increased collagen and ECM protein production and secretion of cytokines 

(CXCL14) (169, 179-181). Depletion of FAP+ CAFs in a PDAC mouse model 

decreased tumour growth and fibrosis and increased T-effector cell infiltration 

in a CXCL12/CXCR4 dependent manner (182). CXCL14, a pleiotropic cytokine, is 

expressed by CAFs and promotes epithelial to mesenchymal transition (EMT) and 

metastasis (183). I therefore explored whether LN+ patients who had decreased 

effector T cell infiltration were associated with increased FAPa+ CAFs and 

CXCL14 expression.  

CXCL14 IHC had been previously attempted in our Histology laboratory but no 

CXCL14 antibody tested showed specific staining (personal communication with 

Mr Colin Nixon, Beatson Institute). Therefore, I assessed RNA expression of 

CXCL14 using in situ hybridisation (ISH) on the discovery TMA. FAP expression 

was assessed by IHC on another section from the discovery TMA. CXCL14 

expression was mainly localised in the stroma, from cells morphologically 

consistent with fibroblasts (Figure 19A, arrows). In addition, scattered cells 

morphologically consistent with benign basal epithelial cells were also positive 

(Figure 19B, arrows). CXLC14 expression was quantified using an ISH probe 

copies counting module in HALO image analysis. FAP expression was confined to 

stroma areas only (Figure 19C) and was quantified as percentage area positive 

within stroma using HALO image analysis as previously described.  

Despite an apparent trend for higher probe copies in node positive cases, the 

observed average CXCL14 probe copies (per μm²) were not significantly different 

between lymph node positive (61.33x105, 24.4x105-129x105 95%CI) and lymph 

node negative patients (34.75x105, 22.05 x105- 55.6 x105 95%CI, p=0.3853), 

Figure 19D. However, when the tumours were dichotomised into high and low 

expressers of CXCL14 (above 400 probe copies x 105/µm2), there were 11 high 

expressers, 1 LN- and 10 LN+ (p<0.0001, Fisher’s exact test). FAP expression 

was also not statistically different between lymph node positive (0.08, 0.04-0.12 

95%CI) and lymph node negative group (0.04, 0.02- 0.04 95%CI, p=0.06), 

presented in Figure 19E.  
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Figure 19 CXCL14 and FAPa expression in prostate cancer patients with nodal metastasis 

(A-B) Representative images of CXCL14 ISH (Scale bar = 100 m). (C) Representative image of 

FAPa staining (Scale bar = 100 m). (D) Average CXCL14 probe copies per µm2 presented as 
median with 95% CI in LN- (n=42) and LN+ (n=48) patients. (D) (E) Percentage (%) of stroma 
positive for FAPa staining is presented as median with 95% CI in LN- (n=44) and LN+ (n=50) 
patients. Two-tailed Mann-Whitney test was used for all statistical comparisons.  
 
 
 
 
 

4.5 Concluding summary 

Targeted transcriptomic analysis was performed to study potential genes that 

may mechanistically mediate the TME with the observation of reduced immune 

subpopulation infiltrates in patients with regional lymph node metastasis (LN+). 

Although this methodology carries obvious disadvantages, such as a limited 

probe panel and the use of a single probe per gene missing possible splice 

variants, the analysis was technically successful (Figure 16) and revealed ECM 
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changes (rather than chemokine or adhesion molecule imbalance) as important 

factors in developing nodal disease (Table 22). Increased ECM deposition and 

reorganisation was confirmed in LN+ patients using IHC and multi photon 

microscopy (Figure 18). I examined different tissue types (prostate biopsy cores 

and TMA from index lesion) with different methodologies (gene expression, IHC, 

SGH). Overall, my data point to a more disorganised and fibrotic stroma in LN+ 

patients. 

CAFs are increasingly recognised as a diverse population with variable marker 

expression, such as SMA and FAP (169). Our gene expression analysis showed 

upregulation of FAP gene in tumours associated with LN+ disease, which was 

however not confirmed at the protein level by IHC (Figure 19E). The 

inconsistency in these results could be attributed to the heterogeneity of CAF 

FAP expression in different tissue areas that are detected using different 

methodologies. It is therefore difficult to draw definite a conclusion from these 

data. CXCL14 was the highest upregulated gene in LN+ patients (Table 22), and 

LN + patients were the highest expressers of CXCL14 (p<0.0001, Fisher’s exact 

test). Interestingly, it was expressed by both stromal (Figure 19A) and 

morphologically benign epithelial cells (Figure 19B), highlighting the importance 

of spatial context and cellular origin in gene expression. I attempted scoring of 

CXCL14 expression in epithelial and stromal compartment separately but due to 

staining at the interface between epithelium and stroma (basal cells) 

quantification of CXCL14 in the appropriate tissue compartment was not 

satisfactory. Even though the tumours with highest expression of CXCL14 were 

LN+, it was impossible to be certain whether this was due to stromal or benign 

epithelial expression and was not investigated further. 

All epithelial tumours, including PCa, are a complex of malignant epithelial cells 

organised within a specialised microenvironment, referred to as tumour stroma 

or TME. TME includes CAFs, endothelial cells, immune cells and ECM (169). The 

ECM is an organised structure of extracellular proteins, such as collagens, 

glycoproteins (i.e. fibronectin 1) and proteoglycans (169, 177). The ECM serves 

as structural scaffold that provides tissue support but also provides 

biomechanical and biochemical signals that are major regulators of cell 

proliferation, survival, migration and invasion (172, 173). In the cancer context, 
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it is well established that tumour stroma becomes enriched with ECM proteins 

such as collagen type I and fibronectin (169, 171-173, 177). Besides these 

quantitative changes, qualitative modifications also take place, such as 

increased collagen cross-linking and orientation leading to ECM stiffening (170, 

172, 173, 177). These structural ECM alterations have direct impact on tumour 

cell function and progression.  

A plethora of studies demonstrate that deregulation of ECM is more than just a 

secondary outcome but instead plays a causative role in cancer pathogenesis and 

progression. Increased stromal collagen in mouse mammary tissue significantly 

increased tumour formation, invasiveness and metastasis (171). Furthermore, in 

a breast cancer mouse model, collagen crosslinking induction caused ECM 

stiffening, promoted focal adhesion kinases, enhanced PI3 kinase activity and 

promoted invasion (170). Collagen crosslinking is almost exclusively mediated by 

the lysyl oxydase (LOX) enzyme, which post-translationally modifies collagens 

and elastin in the ECM (149). Knockdown of LOX expression or suppression of its 

function by a blocking antibody reduced in vivo tumour invasion and metastasis 

of PDAC (149). However, it is noteworthy that abrogating stromal fibroblasts 

from PDAC tumours which reduced ECM stiffening actually promoted tumour 

progression (184). These data suggest that interaction between ECM and cancer 

cells is complex and biological outcome may be dependent on specific stromal 

cell components, different cancer type and heterogeneity of genetic 

background.  

Apart from the intrinsic tumour cell properties, one of the cancer hallmarks is 

avoidance of immune destruction (33) and ECM can modulate critical immune 

functions, such as immune cell exclusion from tumour cells (174-176). ECM 

density and orientation have previously been shown to dictate T cell migration in 

ex vivo human lung and ovarian cancer tissue, with poor T cell infiltration and 

contact with tumour cells in dense ECM areas (174, 176). Furthermore, high 

collagen density functioned as a physical barrier of T cell infiltration in PDAC 

and was able to completely abolish chemokine-guided movement (175). These 

studies suggest that when chemokine responsive migrating T cells come in 

contact with tumour ECM, the actual recruitment of the immune cells are 

influenced by the structural properties of local ECM.  
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Tumour destruction by the immune system is a key physiological mechanism that 

suppresses local tumour progression and prevents tumour spread. This relies on 

the ability of cytotoxic immune cells to encounter the malignant cells. For 

example, CD8 cytotoxic T cells need to recognise foreign antigens displayed on 

transformed cells and thereafter induce their destruction through T-cell-

mediated cell death (39, 42). Our data suggested that decreased immune cell 

infiltration of CD8 and CD4 effector T cells in particular could be associated with 

enhanced and abnormal ECM deposition in prostate cancer patients with lymph 

node metastasis, indicating that limiting T cell infiltration is a potential immune 

evasion mechanism. My current working model is that, in LN+ PCa patients, 

dense ECM prevents CD4 and CD8 T cells interacting with antigen presenting 

cells and tumour cells, contributing to the failure of an effective anti-tumour 

response. 

Altogether, my data propose that the PCa-associated ECM has an overall 

negative influence on resident T cells, limiting their migration within the 

stroma. However, additional work needs to be done in order to advance our 

understanding of the mechanistic aspect of this event. The first experimental 

steps would be staining the PCa discovery TMA with Picrosirius red (PSR) special 

stain and LOX IHC. The former can be analysed under orthogonal and polarising 

light (170) in order to strengthen the finding of increased ECM density in LN+ 

patients. The latter could indicate a potential mechanism for this event. 

Developing a mIF panel that incorporates CD4, CD8, collagen I, collagen III and 

fibronectin as key markers would also be valuable in dissecting the associations 

between those different TME components.  

My data showed that epithelial prostate cancer cells as well as stromal cells 

morphologically compatible with CAFs are expressing collagen III and FN 1. Both 

tumour cells and stromal cells have been shown to contribute to the tumour ECM 

production (185). The relative contribution to abnormal ECM development of 

epithelial and stromal cells needs to be determined. Furthermore, it is essential 

to decipher at which time points of tumourigenesis and progression that ECM 

stiffening occurs, whether at tumour initiation or later when disease 

disseminates. Analysis of ECM components in normal prostate and low-risk 

prostate cancer samples would help answer these questions.  
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Apart from the valuable information derived from human samples, further in 

vitro and in vivo work could advance our molecular understanding of ECM 

contribution in prostate cancer initiation and progression. Firstly, tumour 

derived or peripheral blood monocytes from PCa patients could be cultured in 

high and low density matrices in order to assess the effect on migration and 

proliferation of CD4 as well CD8 T cells according to different chemokine stimuli. 

Importantly, single cell transcriptomic analysis of those differently cultured T 

cells could elucidate the downstream transcriptional regulators of differing ECM 

stiffness. Finally, it is essential to determine whether dense ECM and decreased 

T cell infiltration is a correlative phenotype or a causative factor driving this 

event. To answer this, GEMM studies can be performed, crossing a mouse 

prostate cancer model with collagen I/III null mice in order to see the effect on 

immune cell infiltration and lymph node spread. Finally, this could be combined 

with specific immune cell depletion (such as CD4 or CD8 T cell depletion) in 

order to pin down the exact immune cell population driving this event.  

Lastly, our data are in agreement with the general characterisation of PCa as an 

‘immune cold’ tumour, but make an important further distinction of an immune-

exclusion phenotype (35). This carries important clinical implications as the 

efficacy of immunotherapies in PCa have so far been unsuccessful (186, 187), 

reinforcing the perception that PCa is a poorly immunogenic tumour. Careful 

selection of PCa patients for immunotherapy in combination with stroma-

modifying treatments targeting factors, such as LOX inhibitors (149), could 

potentially improve therapeutic outcomes.  ECM density could be one of the 

causes of resistance to immunotherapy for PCa patients and therefore warrants 

further investigation. 
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Chapter 5 B7-H3 and prostate cancer 

Despite significant advances in other cancer types, immunotherapy with immune 

checkpoint inhibitors against CTL4, PD-L1 and PD-1 have so far been 

disappointing in PCa (188). There is therefore an urgent need for discovery of 

novel immune checkpoints that may be at play in PCa. B7-H3 is a newly 

discovered member of the B7 family of checkpoint molecules, with aberrant 

expression observed in multiple solid malignancies, including prostate cancer 

(107, 142). Previous studies have shown that prostate cancer patients with high 

B7-H3 expression were more likely to have adverse pathologic features, such as 

extraprostatic extension and seminal vesicle invasion (107, 142). Furthermore, 

B7-H3 intensity was associated with cancer relapse after radical prostatectomy 

as well as poor survival outcomes (107, 142). I aimed to validate externally those 

results in the discovery high-risk cohort of prostate cancer patients, with a 

special focus on the association of B7-H3 with regional lymph node status that 

has not been thoroughly explored before.   

B7-H3 has also been shown to promote tumour invasion and metastatic spread in 

different tumours (130, 131), including a single study in prostate cancer, in 

which human PC3 prostate cancer cells were transiently silenced for B7-H3 

expression. PC3 cells with suppressed B7-H3 expression showed 50% reduction in 

migration (p<0.001) and invasion (p=0.0005) in vitro while cellular adhesion to 

fibronectin was impaired by 30% (p=0.003) (127). I built on these observations 

and investigated the impact of silencing B7-H3 expression in a panel of human 

prostate cancer cell lines (namely PC3M, LNCaP, C4-2, DU145). Cell growth, 

apoptosis, migration and invasion were analysed by cell counting, flow 

cytometry, scratch wound and transwell assays. B7-H3 silencing had no effect on 

cell growth and apoptosis but showed a significant decrease in migration and 

invasion. Following that, I also generated stable knock out clones of C4-2 and 

PC3M cells and successfully replicated data from transient silencing of B7-H3 

expression. Finally, I aimed to investigate the transcriptional changes following 

manipulation of B7-H3 expression in order to explore its potential downstream 

targets.   
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5.1 B7-H3 is overexpressed in prostate cancer and 
associated with worse clinicopathological features 

5.1.1 B7-H3 staining of human tissue 

B7-H3 staining was performed manually and histoscoring was applied according 

to previous studies (107). The intensity score given was absent [0] for no 

staining, weak [1] for cytoplasmic staining, moderate [2] for incomplete 

membranous and cytoplasmic staining and strong [3] for complete, intense 

membranous staining. Prostatic cancer glands had strong B7-H3 membranous 

staining (Figure 20A) whilst benign prostatic glands showed mostly weak to 

moderate cytoplasmic staining (Figure 20B). Occasional inflammatory cells were 

also positive, particularly in germinal centres of lymph node tissue (Figure 20C), 

morphologically compatible with lymphocytes and dendritic cells. In primary 

prostate tissue, no inflammatory or endothelial cell staining was observed. All 

cases were evaluated by myself (CN) without knowledge of patient information. 

In addition, more than 10% of the total B7-H3 cases were reviewed by a second 

urologic pathologist (Jonathan Salmond, NHS Greater Glasgow and Clyde), 

yielding high interobserver agreement (Figure 20D, r=0.85, p<0.001, Spearman’s 

correlation). Therefore, the B7-H3 expression histoscoring was considered 

reproducible and easy to implement. The Benign Prostatic Hyperplasia (BPH) 

TMA as well as the discovery TMA of intermediate and high-risk prostate cancer 

patients were stained manually for B7-H3 (Figure 20E). Prostate cancer had 

significantly increased B7-H3 immunoreactivity, Histoscore median value of 

183.3 (163.3-197.7 95%CI) compared to BPH with median Histoscore of 70 (63.33-

76.67 95%CI), p<0.0001. 
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Figure 20 B7-H3 staining of human prostatic tissue and pelvic lymph nodes 
(A) Representative image of strong B7-H3 staining in prostate cancer. Histoscore=300. (B) 
Representative image of weak B7-H3 staining in benign prostatic hyperplasia. Histoscore=100. (C) 
Representative image of strong B7-H3 staining observed in germinal centres of lymph node tissue. 
(D) B7-H3 Histoscore values (n=55) provided by two independent pathologists (Chara Ntala & 
Jonathan Salmond) compared by Spearman’s correlation. (E) B7-H3 Histoscore values presented 
as median with 95% CI in benign prostate hyperplasia (BPH, n=259) and prostate cancer patients 
(discovery cohort, n=94). Mann Whitney test used for statistical comparison. Scale bar=100 µm. 
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5.1.2 High B7-H3 expression is associated with worse 
clinicopathological features in intermediate and high risk 
prostate cancer patients 

Among the 94 patients within the discovery cohort, each case was represented 

by at least two tumour cores with informative B7-H3 staining. Tumours with high 

expression of B7-H3 were significantly more likely to have lymph node 

metastasis (p=0.0006, Figure 21A), however there was no difference between 

the number of involved lymph nodes (p>0.99, Figure 21B). Interestingly, B7-H3 

expression was collectively retained in the regional lymph node metastatic foci 

compared to the primary tumour (p=0.49, Figure 21C-D). There was a lot of 

variation between cases, with some patients having comparable levels, some 

reduced and others increased expression of B7-H3 in the metastatic deposit 

compared to primary cancer (Figure 21C). 

 

Figure 21 High B7-H3 expression is associated with lymph node metastasis 
(A) B7-H3 Histoscore presented as median with 95% CI in patients without (LN-, n=44) and with 
(LN+, n=50) lymph node metastasis. Mann Whitney test used for statistical comparison. (B) B7-H3 
Histoscore presented as median with 95% CI in LN- (n=44), patients with 2 or less positive nodes 
(n=36) and patients with more than 2 positive nodes (n=14). Kruskal-Wallis test used for statistical 
comparison. (C) B7-H3 Histoscore presented as median value in primary prostate cancer tissue 
and the metastatic deposit of the same patients (n=35). Wilcoxon matched-pairs signed rank test 
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used for statistical comparison. (D) Representative image of strong B7-H3 staining in metastatic 
deposit. H-score=280. Scale bar=100µm. 

 

Furthermore, tumours with increased B7-H3 score were significantly associated 

with high pT stage (p<0.0001, Figure 22A) and the presence of perineural 

invasion (p=0.044, Figure 22B), but not Gleason score (Figure 22C). Given the 

short duration of post-treatment follow up, it is not surprising that there was no 

association between B7-H3 expression and the development of biochemical 

recurrence (Figure 22D).  

 

Figure 22 High B7-H3 expression is associated with worse clinicopathological features 
(A) B7-H3 Histoscore presented as median with 95% CI in patients with pT2 (n=27) and pT3-4 
(n=59) stage. (B) B7-H3 Histoscore presented as median with 95% CI in PNI- (n=15) and PNI+ 
(n=76). (C) B7-H3 Histoscore presented as median with 95% CI in patients with Gleason score=7 
(n=65) and Gleason score=8-9 (n=27). (C) (A-C) Mann Whitney test used for statistical 
comparisons. (G) Kaplan Meier curves of PCa patients in the discovery cohort. High B7-H3 defined 

as ≥median. Log rank test used for statistical comparison. PNI: Perineural invasion.  
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5.1.3 B7-H3 expression inversely correlates with immune cell 
infiltration 

I further explored the correlation between B7-H3 staining and immune cell 

infiltration. B7-H3 expression had a weak inverse correlation with epithelial CD8 

effector T cells (Spearman’s r=-0.26, p=0.03). Additionally there was a similar 

trend for stromal CD4 effector T cells (Spearman’s r=-0.21, p=0.08) and stromal 

CD8 effector T cells (Spearman’s r=-0.22, p=0.06). It should be noted that the 

stainings were not conducted in serial sections; therefore, even weak 

correlations were considered a strong indicator of potential association between 

these markers.  

5.2 Transient silencing of B7-H3 expression in prostate 
cancer cell lines 

Transient silencing of B7-H3 expression was performed on LNCaP, C4-2, PC3M 

and DU145 human prostate cancer cells using a pooled siRNA targeting B7-H3 

(siB7-H3 pool). It was evident in all cell lines that mRNA (Figure 23A) expression 

of B7-H3 was markedly decreased 48 h after siRNA transfection compared to 

non-targeting control (siNT) based on quantitative polymerase chain reaction 

(qPCR). A similar decrease was found in protein expression 48 h after siB7-H3 

pool transfection based on western blotting (Figure 23B). It was interesting that 

the baseline expression levels of B7-H3 varied between different cell lines, with 

LNCaP and C4-2 showing higher protein expression than PC3M and DU145 (Figure 

23B). 

Furthermore, I tested the efficiency of the singleton siRNA sequences (S1-S4) 

against B7-H3 within the siRNA pool in LNCaP and PC3M cells in an attempt to 

address any potential off-target effects with the use of pooled siRNA. All 

singleton siRNAs successfully decreased mRNA (Figure 23C) as well as protein 

(Figure 23D) levels of B7-H3. I used siB7-H3 pool and occasionally siB7H3 S1 and 

siB7H3 S4 for subsequent assays as their presence resulted in the largest 

decrease in B7-H3 expression. 
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Figure 23 Transient silencing of B7-H3 in prostate cancer cell lines 
(A) Quantitative polymerase chain reaction (qPCR) of B7-H3 mRNA expression in non-targeting 
control (siNT) and B7-H3 pool siRNA (siB7-H3 pool) transfected LNCaP, C4-2, PC3M and DU145 
cells. Normalised to Casc 3 expression (house keeping gene). (B) Western blotting of whole cell 
lysates prepared from PC3M, LNCaP, C4-2 and DU145 human prostate cancer cell lines which 
had been transiently transfected with siNT or siB7-H3 pool using anti- B7-H3 antibody. HSC70 
served as a loading control. (C) qPCR of B7-H3 mRNA expression in siNT, siB7-H3 pool, siB7-H3 
S1 and siB7-H3 S4 (singleton siRNAs) transfected LNCaP and PC3M cells. (D) Western blotting of 
whole cell lysates prepared from LNCaP and PC3M cell lines which had been transiently 
transfected with siNT, siB7-H3 pool, siB7-H3 S1 and siB7-H3 S4 (singleton siRNAs) using anti- B7-
H3 antibody. HSC70 served as a loading control.  (A&C) Bars indicate mean values and error bars 
SD, n = 3 (technical replicates). (B&D) n=2 technical replicates. 
 
 

 

5.2.1 Transient loss of B7-H3 expression does not affect prostate 
cancer cell growth or apoptosis in vitro   

To investigate the role of B7-H3 in PCa cell growth, I measured cell proliferation 

by cell counting. There was no significant difference in cellular proliferation 

between control siNT and siB7-H3 pool in LNCaP (Figure 24A) and PC3M (Figure 
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24B) cells. Also, silencing of B7-H3 did not increase apoptosis in LNCaP (Figure 

24C) or PC3M cells (Figure 24D), as measured by annexin V staining. 

 

Figure 24 Transient loss of B7-H3 expression does not affect prostate cancer cell growth or 
apoptosis in vitro   
(A) LNCaP and (B) PC3M cells were treated with control non-targeting siRNA (siNT) or pool siRNA 
directed against B7-H3 (siB7-H3 pool). The presented graphs show changes in cell proliferation by 
cell counting. (C) LNCaP and (D) PC3M cells were treated with siNT or siB7-H3 pool and stained 
with annexin V and analysed by flow cytometry. The presented graphs show percentage of 
apoptotic cells stained with annexin V. (A-D) n=3 (biological replicates), data in bar charts indicate 
the mean ± SD. t-test (unpaired, 2 tailed) was used for statistical analysis.  
 

 

 

5.2.2 Transient loss of B7-H3 expression reduces prostate cancer 
cell migration in vitro 

I conducted transwell migration assays to determine whether B7-H3 affects cell 

migration. Transient siRNA mediated silencing of B7-H3 expression significantly 

impaired migration in LNCaP (Figure 25A-B), C4-2 (Figure 25C-D) and PC3M 

(Figure 25E-F) cells, particularly pronounced in LNCaP and C4-2 cells, with >50% 

decreased migration.  
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Figure 25 Transient loss of B7-H3 expression reduces prostate cancer cell migration in a 
transwell Boydon chamber assay 
LNCaP (A-B), C4-2 (C-D) and PC3M (E-F) cells were silenced with control NT siRNA (siNT), pool 
siRNA (siB7-H3 pool) and/or two singleton siRNAs (S1, S4) directed against B7-H3 then subjected 
to transwell migration assay after 48 h incubation (n = 2 biological replicates for PC3M singleton 
B7-H3 siRNA’s; n=3 for all other cell lines/conditions). A,C and D are representative images of 
migrated cells under light microscope (20x). In B,D,F graphs bar charts indicate the mean± SD. t-
test (unpaired, 2 tailed) and 2-way ANOVA were used for statistical analysis, * = p <0.05. 

 

 

Next, I sought to validate the observed effects of B7-H3 mediated  cell migration 

using an additional in vitro methodology, namely a scratch wound healing assay. 

LNCaP and C4-2 wells could not be used in this assay due to their cell to cell 

adhesiveness that prevented the generation of a clean scratch wound and 
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resulted in detachment from the plastic in irregular shapes. Besides PC3M cells, 

DU145 cells were found to be suitable. B7-H3 silencing reduced PC3M (Figure 

26A-B) and DU145 (Figure 26C-D) cell wound healing capacity, measured by 

Incucyte analysis. The maximum difference between siB7-H3 treated and control 

siNT was 12.47% (± 2.36 SD p<0.0001) at 39 hours for PC3M and 13% (± 1.47 SD, 

p<0.0001) at 40 hours for DU145 cells. These data combined with the previous 

data from transwell experiments suggested that B7-H3 could play an important 

role in cell migration.  

 

Figure 26 Transient loss of B7-H3 expression reduces prostate cancer cell migration shown 
by  scratch wound assay 
PC3M (A-B) and DU145 (C-D) cells were silenced with control NT siRNA (siNT) or pool siRNA 
directed against B7-H3 then subjected to scratch-wound assay using incucyte (n = 3 biological 
replicates). A and C are representative images taken by incucyte, migrating cells are shown as 
orange mask and scratch wound is shown as yellow mask. In B and D individual data indicate 
mean± SD wound confluence, 2-way ANOVA was used for statistical analysis. 
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5.2.3 Transient loss of B7-H3 expression reduces PC3M cell 
invasion in vitro 

In order to assess the potential influence of B7-H3 on prostate cancer cell 

invasion, I conducted inverted transwell invasion assays. PC3M cells were used as 

suitable human prostate cancer cells capable of invading matrigel in an in vitro 

assay. Silencing of B7-H3 led to decreased invasion of PC3M cells compared to 

control (Figure 27). This was more pronounced using S4 singleton siRNA (21% 

reduction, p=0.01).  

 
 

 

Figure 27 Transient loss of B7-H3 expression reduces PC3M prostate cancer cell invasion 
shown by inverted transwell Boydon chamber assay 
PC3M cells were silenced with control NT siRNA or pool siRNA and/or two singleton siRNAs (S1, 
S4) directed against B7-H3 then subjected to transwell invasion assay (n = 3 biological replicates). 
Graphs bar charts indicate the mean± SD. 2-way ANOVA was used for statistical analysis. 

 
 
 
 
In summary, in vitro assays with transient B7-H3 silencing showed no effect in 

prostate cancer cell lines proliferation and apoptosis, but a decrease in cell 

migration and invasion. Cell proliferation can be a confounding factor of migration 

assays, therefore I was confident that it had not contributed to the changes in 

migration observed.   
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5.3 Generation of stable knock out (KO) B7-H3 clones of 
PC3M and C4-2 cell lines 

To validate the in vitro phenotype observed following transient silencing of B7-

H3 expression, I generated stable knock out (KO) clones from PC3M and C4-2 

parental prostate cancer cells. PC3M cells represent poorly differentiated 

prostate adenocarcinoma cells generated from a bone metastases from a patient 

with prostate cancer. C4-2 cells are derived from subcutaneous xenograft of 

LNCaP cells (isolated from a patient with lymph node metastasis) and are more 

aggressive and metastatic than LNCaP cells. These two human prostate cancer 

cell lines were selected due to their inherent capacity to migrate/invade as well 

as their potential for use in in vivo studies in the future.  

B7-H3 was stably knocked out (KO) in PC3M cells using CRISPR Cas9 gene editing, 

generating four stable KO cell lines, namely, KO clone 10 (KO10), KO clone 4 

(KO4) and KO clone 13 (KO13) and KO pool of different clones. As shown by 

Western blot, KO clones expressed very low levels of B7-H3 compared to 

parental and control transfection cells (Figure 28A). PC3M KO pool and KO10 

clones were used in subsequent experiments. B7-H3 mRNA expression was also 

tested by qPCR in PC3M KO pool and KO10, confirming a significant reduction 

(Figure 28B).  

Similarly, B7-H3 was stably knocked out (KO) in C4-2 cells, generating five stable 

KO cell lines, namely KO pool, KO clone 2 (KO2), KO clone 3 (KO3), KO clone 4 

(KO4), KO clone 10 (KO10) and KO clone 18 (KO18) (Figure 28C). Transfection 

control, KO pool and KO2 were selected for subsequent experiments. B7-H3 

mRNA expression was also tested by qPCR and confirmed a significant decrease 

(Figure 28D).  
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Figure 28 Generation of stable B7-H3 knock out (KO) clones of PC3M and C4-2 cells 
(A) Western blotting of whole cell lysates prepared from PC3M prostate cancer cells which had 
been stably B7-H3 knocked out (KO pool, KO10, KO4) using CRISPR/Cas9. A control pool was 
used as control (PC3M control). HSC70 served as a loading control. (B) qPCR of B7-H3 mRNA 
expression in stable KO clones of PC3M compared to parental and control PC3M. Normalised to 
Casc 3 expression (house keeping gene). (C) Western blotting of whole cell lysates prepared from 
C4-2 prostate cancer cell lines which had been stably B7-H3 knocked out (KO pool, KO2, KO3, 
KO4, KO10, KO18) using CRISPR/Cas9.  A control pool was used as control (C4-2 control). 
HSC70 served as a loading control. (D) qPCR of B7-H3 mRNA expression in stable KO clones of 
C4-2 cells compared to parental and control C4-2. Normalised to Casc 3 expression (house 
keeping gene). (B&D) Bars indicate mean values and error bars SD, n = 3 (technical replicates). 
 
 
 
 
 

5.4 Stable knock out (KO) of B7-H3 does not affect 
survival and proliferation of PC3M cells 

I applied the colony formation assay to investigate differences in survival and 

proliferation in stable B7-H3 KO clones derived from human prostate cancer 

cells. This assay required very sparse seeding and C4-2 cells were unable to grow 
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in such low concentrations. The number of colonies developed from PC3M 

control cells was comparable to that of its KO pool and KO 10 derivatives (Figure 

29). This suggests that suppressed B7-H3 expression did not alter the 

proliferation and survival of PC3M cells in vitro. 

 

Figure 29 Stable knock out (KO) of B7-H3 does not affect survival and proliferation of PC3M 
cells 
(A) Representative images of PC3M control (top), PC3M KO pool (bottom left) and PC3M KO10 
(bottom right) stained with crystal violet and imaged in LI-COR with 700 wavelength. (B) Graph 
indicates colony numbers of each groups as mean± SD. 2-way ANOVA was used for statistical 
analysis (n=3 biological replicates).  Au=arbitrary units, ns=not significant. 
 
 
 
 
 

5.5 Stable knock out (KO) of B7-H3 reduces prostate 
cancer cell migration and invasion in vitro 

To investigate whether B7-H3 affects prostate cancer cell migration, I performed 

transwell migration and scratch wound healing assay with the stable KO clones 

for B7-H3 expression. Both PC3M (Figure 30A) and C4-2 (Figure 30B) KO clones 

have significantly reduced migration (up to 50%). PC3M KO clones also showed 

significant decrease in wound healing capacity (Figure 30C). The maximum 

difference between KO pool and control was 16.2% (± 3.86 SD, p<0.0001) and 

34.91% (± 3.37 SD, p<0.0001) for KO10 at 36 hours. In a transwell invasion assay, 

PC3M KO pool and KO 10 cell clones showed a significant decrease in invasive 

capacity when compared to the PC3M control cells (Figure 30D). These data 

reinforced the potential role of B7-H3 in regulating migration and invasion of 

prostate cancer cells.   
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Figure 30 Stable knock out (KO) of B7-H3 reduces prostate cancer cell migration and 
invasion in vitro 
(A) PC3M (control, KO pool and KO10 clones) and (B) C4-2 (control, KO pool and KO 2 clones) 
were subjected to transwell migration assay after 48 h incubation. Number of migrated cells are 
shown in A and B panels. (C) PC3M control, KO pool and KO 10 for B7-H3 were subjected to 
scratch-wound assay using incucyte. (D) PC3M control, KO pool and KO 10 for B7-H3 were 
subjected to transwell invasion assay. (A-D) Graph bar charts indicate the mean ± SD. 2-way 
ANOVA was used for statistical analysis, * = <0.05, ** = <0.01 (n = 3 biological replicates).  
 
 
 
 
 

5.6 RNA sequencing and metacore pathway analysis 
reveals extracellular space cytokines are decreased 
in B7-H3 deficiency 

Having established a decrease in migration and invasion associated with B7-H3 

knock out, we performed RNA sequencing comparing PC3M pool KO and KO 10 

with control PC3M cells (n=3 biological replicates) in order to gain a better 

understanding of the biological effect of B7-H3 loss. Principal component 
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analysis (PCA) showed good clustering between biological replicates and distance 

between PC3M control and KO clones (Figure 31A), confirming good 

reproducibility within each sample, and that loss of B7-H3 expression has an 

effect. KO pool and KO 10 did not cluster near each other, likely because KO10 is 

a single KO clone for B7-H3 whereas KO pool comprises of many different KO 

clones and has a larger heterogeneity. All genes that were differentially 

expressed in KO clones compared to control were defined to be significant if 

they have a fold change greater than 2 and an adjusted p value of <0.05. 

Analysis was performed by Dr Ann Hedley, Bioinformatician, Beatson Institute. 

368 genes were significantly changed in the same direction in both KO cells, 180 

upregulated and 188 downregulated (Figure 31B). All significantly downregulated 

genes were used in Metacore analysis in order to identify involved pathways. The 

ten top pathways are shown in Figure 31C and included cytokines and their 

receptors (CCL2, CXCL1, CXCL6, CXCL8, CXCL16, IL13RA2, IL11, IL33, IL4RA,), 

complement (C3, C3a, C3b, C3c, C3dg, iC3b) and ECM remodelling (MMP1, 

MMP10, Collagen III) genes. These cytokines and MMPs are secreted molecules 

known to be involved in chemotaxis and matrix remodelling respectively, and 

have been implicated in migration, invasion and metastasis of different tumour 

types.  
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Figure 31 Metacore pathway analysis  
(A) Principal component analysis (PCA) plot showing PC3M control (red), PC3M KO pool (green) 
and KO clone 10 (blue). (B) Venn diagram showing significantly changed genes in the same 
direction. Fold change >2, adj p value <0.05. (C) Top 10 significantly downregulated pathways in 
PC3M KO pool and KO10 compared to PC3M control using metacore pathway software analysis. 

 

 

5.6.1 Differentially expressed genes from RNA sequencing 
validate in PC3M cells 

The next step to confirm that the downregulated genes that were of most 

interest (i.e. cytokines and metalloproteinases) identified by the RNA 

sequencing could be validated with qPCR in PC3M cells (different biological 

replicates). CCL2, CXCL1, CXCL6, CXCL8, CXCL16, IL11, IL33, IL4R, MMP1 and 

MMP10 were significantly downregulated in PC3M KO pool and KO 10 for B7-H3 

compared to PC3M control (Figure 32A-J). Interestingly, CXCL8 is the only one 

that so far been implicated in the metastatic potential of B7-H3 in melanoma 

(130)  and pancreatic cancer (137).  
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Figure 32 Differentially expressed genes from RNA sequencing validate in PC3M cells 
(A-J) qPCR of mRNA expression of cytokine and metalloproteinase genes identified from RNA 
sequencing (performed in PC3M) in stable KO clones of PC3M compared to control PC3M. 
Normalised to Casc 3 expression (house keeping gene). Bars indicate mean values and error bars 
SD, n = 2 (biological replicates). 2-way ANOVA was used for statistical analysis, * = <0.05, ** = 
<0.01, *** = <0.001, **** = <0.0001.  
 
 
 
 

I next investigated whether any of the above target genes were also 

downregulated in C4-2 KO clones for B7-H3. However, none of these genes were 

significantly decreased in C4-2 B7-H3 KO clones when compared to C4-2 controls 

(Figure 33A-H). CXCL1, IL11 and IL4R genes were not expressed at all. 

Overall, the downregulated genes identified from RNA sequencing were robust 

for PC3M cells but do not show similar results in C4-2 cells, suggesting that there 

may be cell type differences in B7-H3 function. 
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Figure 33 Differentially expressed genes from RNA sequencing do not validate in C4-2 cells 
(A-J) qPCR of mRNA expression of cytokine and metalloproteinase genes identified from RNA 
sequencing (performed in PC3M) in stable KO clones of C4-2 compared to control C4-2. 
Normalised to Casc 3 expression (house keeping gene). Bars indicate mean values and error bars 
SD, n = 2 (biological replicates). 2-way ANOVA was used for statistical analysis, * = <0.05, ** = 
<0.01, *** = <0.001, **** = <0.0001, ns= not significant). 
 

 

5.7 Concluding summary 

In summary, data presented in this chapter are consistent with the notion that 

B7-H3 may be involved in prostate cancer progression including metastasis. 

Firstly, B7-H3 chromogenic staining and histo-scoring is easy to implement and a 

reproducible methodology for B7-H3 protein quantification in FFPE tissue (Figure 

20). A correlation between increased B7-H3 expression and poor prognosis has 

been previously established (107, 142), however a strong association with 

metastatic spread to the lymph nodes is shown for the first time in this thesis 

(Figure 21).  

Furthermore, there were significant in vitro phenotypic changes related to B7-

H3 loss across a panel of human prostate cancer cell lines (namely PC3M, C4-2, 
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LNCaP and DU145) (Figure 23, 28). Both transient and stable suppression of B7-

H3 expression resulted in impaired cellular migration and invasion in vitro, in 

the absence of changes in proliferation or apoptosis (Figure 24-27, 29-33). These 

results are in agreement with the existing studies on non-immunoregulatory role 

of B7-H3 (127, 130, 189) in different cancer types. Our data confidently show 

that B7-H3 contributes to an invasive phenotype of different human prostate cell 

lines and raises interesting questions regarding the biological mechanisms 

involved and potential of B7-H3 therapeutic targeting.  

We performed RNA sequencing on PC3M B7-H3 KO and control clones in order to 

elucidate its downstream pathways, particularly in the context of its effects on 

migration and invasion (Figure 31). The top downregulated pathways identified 

in Metacore involved extracellular space chemotactic cytokines (CCL2, CXCL1, 

CXCL6, CXCL16, IL11, IL33, IL4R) and their receptors as well as 

metalloproteinases (MMP1, MMP10). Each of these targets deserves further 

investigation in the future, with CCL2 being one of the most promising 

candidates. CCL2, a known direct transcriptional target of NF-kB, is a potent 

enhancer of PCa cell migration and acting at least in part, via activation of the 

PI3 kinase/AKT pathway (190-192). 

Due to the finite time that was left during my PhD I did not investigate the 

above genes further. However, future experiments would include confirming 

that changes in the expression of candidate cytokine at the protein level 

following manipulation of B7-H3 expression in PC3M cells, perhaps using a 

targeted cytokine assay or secretome analysis since the majority of the top 

downregulated targets are extracellular molecules. Following that, a 

recombinant antibody for CCL2 (or other cytokines of interest) could be studied 

in in vitro migration/invasion assays to test whether the phenotypic changes 

could be rescued in KO B7-H3 clones. Furthermore, the molecular cascade 

between B7-H3 loss and altered cytokine expression can be explored. For 

example, as NF-kB is a major regulator of cytokine transcription (193), it would 

be interesting to test if NF-kB function is suppressed in B7-H3 KO clones. 

Evaluation of the role of B7-H3 in prostate cancer metastasis will require the use 

of in vivo metastasis models, for instance orthotopic xenograft model to assay 

for nodal disease using PC3M and/or C4-2 KO cell clones.  
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Chapter 6 Discussion and future directions 

6.1 Identification and validation of novel TME signature 
to identify patients with nodal metastasis 

Driven by the clinical unmet need for better PCa patient stratification I 

investigated the tumour immune microenvironment of a well-characterised 

intermediate and high-risk PCa patient cohort in order to identify novel prognostic 

biomarkers for lymph node metastasis. We developed and applied mIF panels for 

T lymphocytes (CD4, CD8, FoxP3, PD-1), B lymphocytes (CD20) and macrophages 

(CD68, CD163) to comprehensively characterise infiltrating immune cell 

subpopulations with spatial context. The primary tumours in patients with lymph 

node metastasis were less infiltrated by anti-tumourigenic immune cells, namely 

effector CD4 (CD4+ FoxP3- PD-1-), effector CD8 (CD8+ FoxP3- PD-1-) and M1-like 

macrophages (CD68+ CD163-). Stromal CD4 effector T cell density was similarly 

lower in an independent patient cohort and could independently predict pelvic 

lymph node spread. Importantly, addition of CD4 T cell density to the currently 

used nomograms improved their accuracy, showing promise as a future prognostic 

biomarker.  

This highlighted the importance of spatial composition, as only the density of 

stromal CD4 effector T cells were reproducibly predictive of lymph node spread. 

In the literature, a distinction of immune cell density assessment between the 

central area of the tumour and the invasive margin has been used repeatedly for 

cancer prognosis (49, 52). Although conceptually this makes sense in cancers 

such as colon and breast, this is more difficult to implement in PCa due to the 

multifocality of the disease and confidently identifying the index lesions on 

diagnostic biopsies. I explored the possibility of translating CD4 effector stromal 

T cell density to the clinic using a simple co-staining protocol easily applied in 

the diagnostic biopsy setting. I stained a pilot cohort of diagnostic biopsies with 

dual CD4-FoxP3 and convincingly demonstrated technical feasibility. Given the 

small optimisation sample number, it was not surprising that I did not observe 

significant differences according to nodal status. This highlighted that further 

work is needed on how best to assess tumour infiltrating immune cells in biopsy 

tissue material in determining the appropriate cut-off criteria for scoring and 

the presence of index lesion with radiologic guidance.    
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A pending question was the biological underpinnings for the differences in 

immune cell infiltration between patients with and without nodal spread. Using 

a targeted gene expression analysis, we identified increased expression of ECM 

components in lymph node positive patients (collagen I, collagen III and 

fibronectin 1). Increased ECM abundance and perturbed organisation was 

identified in different tissues (TMA, diagnostic biopsies) using different 

methodologies (IHC, SGH), solidifying the presence of increased stromal fibrosis 

in lymph node positive patients. This finding suggested a fibrotic stroma could 

potentially function as a physical barrier and prevent anti-tumourigenic immune 

cell infiltration in these patients (immune exclusion).   

A secondary project during my studies was the role of B7-H3 immune checkpoint 

molecule in PCa. Examining human tissue samples, I showed an association of B7-

H3 expression and aggressive clinical features, including lymph node spread. In 

vitro experiments with acute and chronic loss of B7-H3 revealed an effect on 

migration and invasion without any changes in proliferation or apoptosis. RNA 

sequencing of B7-H3 KO clones revealed downregulation of known pro-migratory 

molecules, such as extracellular secreted cytokines and MMPs. 

The identification of prognostic markers of nodal metastasis will also facilitate 

development of radiation therapy in a precision medicine context. The decision 

to extend the radiation field to include the entire pelvis remains controversial and 

the practice ranges widely among oncologists. The incorporation of a prognostic 

signature as described here will support an evidence-based decision in the 

radiation field for treating patients with intermediate and high-risk prostate 

cancer. 

6.2 B7-H3 checkpoint molecule immune function insights 

The role of host immune system in cancer initiation and progression and how it 

can be exploited by immune therapies is currently a popular research topic (44).  

B7-H3 immune checkpoint molecule has a role in tumour progression that goes 

beyond its immune regulatory role (194), that was the focus of my experiments. 

However, some of my data provide useful insights into possible immune 

functions of B7-H3 in PCa. The primary tumour immune microenvironment is the 

location in which tumour cells interact with the host immune system for the first 
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time. Immune infiltrates with the TME may have pro-tumourigenic or anti-

tumorigenic effects depending on the immune cell compositions. The phenotype 

of tumour immune evasion may at least be partly mediated by chemokines from 

tumour and stromal cells, and interactions with their cognate chemokine 

receptors in regulating the migration of certain immune populations into the 

TME as part of the host immune response to the tumour (195). 

RNA sequencing identified cytokines and cytokine receptors as the highest 

downregulated genes in KO clones for B7-H3 compared to control. In specific, 

CCL2, CXCL1 and CXCL8 are of particular interest due to their known role in 

promoting migration of pro-tumorigenic immune cells into the TME (196-198). 

Firstly, TAMs as well as MDSCs can be recruited to the TME via the CCL2-CCR2 

axis to promote tumour metastasis (197). Similarly, CXCL1 tumour secretion 

results in increased infiltration of CXCR+ MDSCs and CXCL1 ablation can increase 

T cell infiltration and sensitivity to immunotherapy (198). CXCL8 expressed by 

tumour cells also regulates MDSCs and tumour associated neutrophil migration 

into the TME to promote tumour progression and metastasis (196). CXCL8 also 

targets endothelial cells and promotes angiogenesis (199). Therefore, these 

identified downstream potential targets of B7-H3 signalling may suggest an 

additional role in immune suppression via promoting pro-tumorigenic immune 

cell infiltration and require further investigation.  

6.3 Future directions in tumour immune profiling 

There is increasing need for comprehensive characterisation of the TME retaining 

spatial context as well as gaining information from minority immune cell 

populations that are lost with bulk sample analyses. This has led to the 

development of novel imaging technologies, such as mIF which was applied in 

this thesis. An alternative methodology is the use of quantum dot nanocrystals 

instead of fluorescent dyes for detection of the site of antibody-antigen binding. 

Quantum dots have some advantages over traditional fluorescent dyes, such as 

high stability and narrow fluorescence excitation and  emission spectra resulting 

in less bleed through and theoretically larger capability of multiplexing (200). 

However, they also carry inherent limitations, such as inability to use antibodies 

from the same species hugely complicating the protocol.  
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Another novel approach for tumour immune profiling which is constantly gaining 

popularity is tissue mass cytometry by time-of-flight (CyTOF). It combines 

traditional immunohistochemical methods of antigen-antibody binding with mass 

cytometry by measuring the abundance of metal isotopes with defined atomic 

mass tagged to antibodies (201). This approach can detect the metal-labelled 

antibodies in their exact tissue location using lasers or ion beams for subsequent 

mass spectrometry detection with one simultaneous antibody incubation and 

single step data acquisition and high-dimensional imaging (201, 202). Currently it 

has been validated to reliably image up to 32 markers on FFPE human tissue 

sections (201) and has the potential to increase to 100 due to the near zero 

crosstalk between metal labels. It can clearly provide much more information 

compared to every other method retaining spatial context. The main 

disadvantages lay in the limited number of antibodies currently suitable for this 

process, their relative instability which can cause alteration of the binding 

properties, the cumbersome analysis workflow, long processing times, 

specialised equipment and high cost of the mass spectrometer and destruction of 

the tissue after use. These limiting factors currently hinder this technology from 

widespread use but will likely be addressed in the near future.  

It should be mentioned that all of these methods conducted on TMAs or 

representative tissue sections, suffer a key potential drawback, which is the risk 

of under-sampling. They examine only a fraction of the tumour tissue, missing 

information on tumour heterogeneity and rare events that may be present. 

However, in studies aiming to discover prognostic or predictive biomarkers, like 

the research presented here, the advantages of using mIF methodology on TMAs 

far out ways the drawbacks. The key benefit was that the patient tissue material 

used remained relatively intact and available for further examination in the 

clinic. Secondary considerations were the speed of biomarker analysis and 

decrease of cost and technical variability, as dozens of tissue samples were 

examined simultaneously. I aimed to address under sampling by using three large 

tissue cores (1mm) from each patient (routinely used size is 0.6 µm), but I 

recognise under sampling constituted an inevitable drawback of this screening 

high-throuput study.  
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6.4 Concluding summary 

My PhD research thesis identified stromal CD4 effector T cell density as a 

promising prognostic biomarker for regional lymph node metastasis and 

highlighted the areas that necessitate future work before its adoption in the clinic 

(Chapter 3). It also showed increased stromal density as a key feature of lymph 

node positive PCa TME, presenting immune exclusion as a target for future studies 

(Chapter 4). Finally, it revealed the association of B7-H3 with nodal spread and 

aggressive clinicopathological features, as well as an in vitro pro-migratory and 

pro-invasive effect (Chapter 5).  
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Appendices 

 

Appendix Figure 1 Clinical impact of lymph node metastasis in survival 
Kaplan-Meier curves of prostate cancer patients in the discovery cohort (A) and validation cohort 

(B). Log rank test used for statistical comparison. 
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Gene Description 

A2M alpha-2-macroglobulin 

AADAT aminoadipate aminotransferase 

ABCB1 ATP binding cassette subfamily B member 1 

ABCB11 ATP binding cassette subfamily B member 11 

ABCC2 ATP binding cassette subfamily C member 2 

ABCC6 ATP binding cassette subfamily C member 6 

ABCF1 ATP binding cassette subfamily F member 1 

ABCG2 ATP binding cassette subfamily G member 2 (Junior blood group) 

ABHD1 abhydrolase domain containing 1 

ABL1 ABL proto-oncogene 1, non-receptor tyrosine kinase 

ABL2 ABL proto-oncogene 2, non-receptor tyrosine kinase 

ACKR3 atypical chemokine receptor 3 

ACP6 acid phosphatase 6, lysophosphatidic 

ACTG2 actin, gamma 2, smooth muscle, enteric 

ACTR3B ARP3 actin related protein 3 homolog B 

ADA adenosine deaminase 

ADAM17 ADAM metallopeptidase domain 17 

ADCY1 adenylate cyclase 1 

ADD2 adducin 2 

ADGRE5 adhesion G protein-coupled receptor E5 

ADORA2A adenosine A2a receptor 

ADORA2B adenosine A2b receptor 

ADRB2 adrenoceptor beta 2 

AGER advanced glycosylation end-product specific receptor 

AHR aryl hydrocarbon receptor 

AICDA activation induced cytidine deaminase 

AIF1 allograft inflammatory factor 1 

AKT1 AKT serine/threonine kinase 1 

AKT3 AKT serine/threonine kinase 3 

ALCAM activated leukocyte cell adhesion molecule 

ALOX15B arachidonate 15-lipoxygenase, type B 

ALOX5 arachidonate 5-lipoxygenase 

ANAPC1 anaphase promoting complex subunit 1 

ANKRD30A ankyrin repeat domain 30A 

ANLN Anillin, actin binding protein 

ANP32B acidic nuclear phosphoprotein 32 family member B 

ANPEP alanyl aminopeptidase, membrane 

ANXA1 annexin A1 

APAF1 apoptotic peptidase activating factor 1 

APC2 APC2, WNT signaling pathway regulator 

APOE apolipoprotein E 
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APP amyloid beta precursor protein 

ARG1 arginase 1 

ARG2 arginase 2 

ARHGAP11A Rho GTPase activating protein 11A 

ARHGAP11B Rho GTPase activating protein 11B 

ARHGDIB Rho GDP dissociation inhibitor beta 

ARHGEF26 Rho guanine nucleotide exchange factor 26 

ARMCX6 armadillo repeat containing, X-linked 6 

AS3MT arsenite methyltransferase 

ASCL1 achaete-scute family bHLH transcription factor 1 

ASF1A anti-silencing function 1A histone chaperone 

ASF1B ASF1 anti-silencing function 1 homolog B 

ASPM Asp (abnormal spindle) homolog, microcephaly associated 

ASRGL1 asparaginase like 1 

ATF1 activating transcription factor 1 

ATF2 activating transcription factor 2 

ATF3_activating activating transcription factor 3 (activating forms) 

ATF3_repressing activating transcription factor 3 (repressing forms) 

ATG12 autophagy related 12 

ATG16L1 autophagy related 16 like 1 

ATG5 autophagy related 5 

ATG7 autophagy related 7 

ATM ATM serine/threonine kinase 

ATOH1 atonal bHLH transcription factor 1 

ATP5F1 ATP synthase, H+ transporting, mitochondrial Fo complex subunit B1 

ATXN1 ataxin 1 

AUNIP aurora kinase A and ninein interacting protein 

AURKA Aurora kinase A 

AURKB Aurora kinase B 

AXIN1 axin 1 

AXIN2 axin 2 

AXL AXL receptor tyrosine kinase 

B3GAT1 beta-1,3-glucuronyltransferase 1 

BAGE B melanoma antigen 

BAGE_family B melanoma antigen (family probe) 

BAGE2_BAGE3 B melanoma antigen (members 2 and 3) 

BAGE4_BAGE5 B melanoma antigen (members 4 and 5) 

BATF basic leucine zipper ATF-like transcription factor 

BATF2 basic leucine zipper ATF-like transcription factor 2 

BAX BCL2 associated X, apoptosis regulator 

BCL10 B-cell CLL/lymphoma 10 

BCL2 BCL2, apoptosis regulator 

BCL2L1 BCL2 like 1 

BCL2L11 BCL2 like 11 

BCL6 B-cell CLL/lymphoma 6 

BEX1 brain expressed X-linked 1 

BEX2 brain expressed X-linked 2 
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BID BH3 interacting domain death agonist 

BIRC5 baculoviral IAP repeat containing 5 

BLK BLK proto-oncogene, Src family tyrosine kinase 

BLNK B-cell linker 

BMI1 BMI1 proto-oncogene, polycomb ring finger 

BMP6 bone morphogenetic protein 6 

BMP7 bone morphogenetic protein 7 

BNC1 basonuclin 1 

BORA bora, aurora kinase A activator 

BRCA1 BRCA1, DNA repair associated 

BRCA2 BRCA2, DNA repair associated 

BRIP1 BRCA1 interacting protein C-terminal helicase 1 

BRMS1L breast cancer metastasis-suppressor 1 like 

BST2 bone marrow stromal cell antigen 2 

BTK Bruton tyrosine kinase 

BTLA B and T lymphocyte associated 

BUB1 BUB1 mitotic checkpoint serine/threonine kinase 

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 

C11orf71 chromosome 11 open reading frame 71 

C17orf80 chromosome 17 open reading frame 80 

C19orf66 chromosome 19 open reading frame 66 

C1orf56 chromosome 1 open reading frame 56 

C1QA complement C1q A chain 

C1QB complement C1q B chain 

C20orf24 C20orf24 

C3 complement C3 

C3AR1 complement C3a receptor 1 

C4A_C4B complement C4A/C4B (Chido blood group) 

C5 complement C5 

CA4 carbonic anhydrase 4 

CALML3 calmodulin like 3 

CAMP cathelicidin antimicrobial peptide 

CARD11 caspase recruitment domain family member 11 

CASP1 caspase 1 

CASP10 caspase 10 

CASP3 caspase 3 

CASP4 caspase 4 

CASP5 caspase 5 

CASP8 caspase 8 

CAV1 caveolin 1 

CBLB Cbl proto-oncogene B 

CCDC138 coiled-coil domain containing 138 

CCL1 C-C motif chemokine ligand 1 

CCL11 C-C motif chemokine ligand 11 

CCL13 C-C motif chemokine ligand 13 

CCL14 C-C motif chemokine ligand 14 

CCL15 C-C motif chemokine ligand 15 
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CCL16 C-C motif chemokine ligand 16 

CCL17 C-C motif chemokine ligand 17 

CCL18 C-C motif chemokine ligand 18 

CCL19 C-C motif chemokine ligand 19 

CCL2 C-C motif chemokine ligand 2 

CCL20 C-C motif chemokine ligand 20 

CCL21 C-C motif chemokine ligand 21 

CCL22 C-C motif chemokine ligand 22 

CCL23 C-C motif chemokine ligand 23 

CCL24 C-C motif chemokine ligand 24 

CCL25 C-C motif chemokine ligand 25 

CCL26 C-C motif chemokine ligand 26 

CCL27 C-C motif chemokine ligand 27 

CCL28 C-C motif chemokine ligand 28 

CCL3 C-C motif chemokine ligand 3 

CCL4 C-C motif chemokine ligand 4 

CCL5 C-C motif chemokine ligand 5 

CCL7 C-C motif chemokine ligand 7 

CCL8 C-C motif chemokine ligand 8 

CCNA2 Cyclin A2 

CCNB1 Cyclin B1 

CCNB2 cyclin B2 

CCND1 cyclin D1 

CCND3 cyclin D3 

CCNE1 Cyclin E1 

CCNE2 Cyclin E2 

CCNF Cyclin F 

CCR1 C-C motif chemokine receptor 1 

CCR10 C-C motif chemokine receptor 10 

CCR2 C-C motif chemokine receptor 2 

CCR3 C-C motif chemokine receptor 3 

CCR4 C-C motif chemokine receptor 4 

CCR5 C-C motif chemokine receptor 5 (gene/pseudogene) 

CCR6 C-C motif chemokine receptor 6 

CCR7 C-C motif chemokine receptor 7 

CCR8 C-C motif chemokine receptor 8 

CCR9 C-C motif chemokine receptor 9 

CCRL2 C-C motif chemokine receptor like 2 

CCT5 chaperonin containing TCP1 subunit 5 

CD14 CD14 molecule 

CD160 CD160 molecule 

CD163 CD163 molecule 

CD180 CD180 molecule 

CD19 CD19 molecule 

CD1A CD1a molecule 

CD1B CD1b molecule 

CD1C CD1c molecule 
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CD1D CD1d molecule 

CD1E CD1e molecule 

CD2 CD2 molecule 

CD200 CD200 molecule 

CD209 CD209 molecule 

CD22 CD22 molecule 

CD226 CD226 molecule 

CD24 CD24 molecule 

CD244 CD244 molecule 

CD247 CD247 molecule 

CD27 CD27 molecule 

CD274 CD274 molecule 

CD276 CD276 molecule 

CD28 CD28 molecule 

CD33 CD33 molecule 

CD34 CD34 molecule 

CD37 CD37 molecule 

CD38 CD38 molecule 

CD3D CD3d molecule 

CD3E CD3e molecule 

CD3G CD3g molecule 

CD4 CD4 molecule 

CD40 CD40 molecule 

CD40LG CD40 ligand 

CD44 CD44 molecule (Indian blood group) 

CD47 CD47 molecule 

CD48 CD48 molecule 

CD5 CD5 molecule 

CD52 CD52 molecule 

CD53 CD53 molecule 

CD55 CD55 molecule (Cromer blood group) 

CD58 CD58 molecule 

CD59 CD59 molecule (CD59 blood group) 

CD5L CD5 molecule like 

CD6 CD6 molecule 

CD63 CD63 molecule 

CD68 CD68 molecule 

CD69 CD69 molecule 

CD7 CD7 molecule 

CD70 CD70 molecule 

CD72 CD72 molecule 

CD74 CD74 molecule 

CD79A CD79a molecule 

CD79B CD79b molecule 

CD80 CD80 molecule 

CD83 CD83 molecule 

CD84 CD84 molecule 
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CD86 CD86 molecule 

CD8A CD8a molecule 

CD8B CD8b molecule 

CD96 CD96 molecule 

CD99 CD99 molecule (Xg blood group) 

CDC20 Cell division cycle 20 

CDC25A Cell division cycle 25A 

CDC25C cell division cycle 25C 

CDC45 Cell division cycle 45 

CDC6 Cell division cycle 6 

CDC7 cell division cycle 7 

CDCA2 Cell division cycle associated 2 

CDCA3 Cell division cycle associated 3 

CDCA5 Cell division cycle associated 5 

CDCA8 Cell division cycle associated 8 

CDH1 cadherin 1 

CDH15 cadherin 15 

CDH5 cadherin 5 

CDK1 cyclin dependent kinase 1 

CDK4 cyclin dependent kinase 4 

CDK6 cyclin dependent kinase 6 

CDKN1A cyclin dependent kinase inhibitor 1A 

CDKN1B cyclin dependent kinase inhibitor 1B 

CDKN2A cyclin dependent kinase inhibitor 2A 

CDKN3 cyclin dependent kinase inhibitor 3 

CDT1 Chromatin licensing and DNA replication factor 1 

CEACAM1 carcinoembryonic antigen related cell adhesion molecule 1 

CEACAM5 carcinoembryonic antigen related cell adhesion molecule 5 

CEACAM6 carcinoembryonic antigen related cell adhesion molecule 6 

CEACAM8 carcinoembryonic antigen related cell adhesion molecule 8 

CEBPB CCAAT/enhancer binding protein beta 

CENPA Centromere protein A 

CENPE Centromere protein E, 312kDa 

CENPF centromere protein F 

CENPH Centromere protein H 

CENPI Centromere protein I 

CENPL Centromere protein L 

CENPU centromere protein U 

CENPW Centromere protein W 

CEP250 centrosomal protein 250 

CEP55 Centrosomal protein 55kDa 

CES1 carboxylesterase 1 

CGREF1 cell growth regulator with EF-hand domain 1 

CHDH choline dehydrogenase 

CHGA chromogranin A 

CHIT1 chitinase 1 

CHMP4B charged multivesicular body protein 4B 
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CHRM2 cholinergic receptor muscarinic 2 

CHRM3 cholinergic receptor muscarinic 3 

CHST10 carbohydrate sulfotransferase 10 

CHUK conserved helix-loop-helix ubiquitous kinase 

CIITA class II major histocompatibility complex transactivator 

CIP2A cell proliferation regulating inhibitor of protein phosphatase 2A 

CKAP2 Cytoskeleton associated protein 2 

CKAP2L Cytoskeleton associated protein 2-like 

CKLF chemokine like factor 

CLCA2 chloride channel accessory 2 

CLDN3 claudin 3 

CLEC12A C-type lectin domain family 12 member A 

CLEC2B C-type lectin domain family 2 member B 

CLEC4A C-type lectin domain family 4 member A 

CLEC4C C-type lectin domain family 4 member C 

CLEC5A C-type lectin domain family 5 member A 

CLEC6A C-type lectin domain containing 6A 

CLEC7A C-type lectin domain containing 7A 

CLEC9A C-type lectin domain containing 9A 

CLSPN Claspin 

CMA1 chymase 1 

CMKLR1 chemerin chemokine-like receptor 1 

CNNM1 cyclin and CBS domain divalent metal cation transport mediator 1 

CNTLN centlein 

COCH cochlin 

COL1A1 collagen type I alpha 1 chain 

COL1A2 collagen type I alpha 2 chain 

COL3A1 collagen type III alpha 1 chain 

CORO1A coronin 1A 

CPA3 carboxypeptidase A3 

CPE carboxypeptidase E 

CR1 complement C3b/C4b receptor 1 (Knops blood group) 

CR2 complement C3d receptor 2 

CREB1 cAMP responsive element binding protein 1 

CREB5 cAMP responsive element binding protein 5 

CREBBP CREB binding protein 

CRISPLD1 cysteine rich secretory protein LCCL domain containing 1 

CRMP1 collapsin response mediator protein 1 

CRP C-reactive protein 

CRTAM cytotoxic and regulatory T-cell molecule 

CSF1 colony stimulating factor 1 

CSF1R colony stimulating factor 1 receptor 

CSF2 colony stimulating factor 2 

CSF2RA colony stimulating factor 2 receptor alpha subunit 

CSF2RB colony stimulating factor 2 receptor beta common subunit 

CSF3 colony stimulating factor 3 

CSF3R colony stimulating factor 3 receptor 
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CSK C-src tyrosine kinase 

CT45_family cancer testis antigen family 45 

CT47_family cancer testis antigen family 47 

CTAG1A_1B cancer/testis antigen 1A and 1B 

CTAG2 cancer/testis antigen 2 

CTBP1 C-terminal binding protein 1 

CTLA4 cytotoxic T-lymphocyte associated protein 4 

CTNNB1 catenin beta 1 

CTRC chymotrypsin C 

CTSG cathepsin G 

CTSH cathepsin H 

CTSL cathepsin L 

CTSS cathepsin S 

CX3CL1 C-X3-C motif chemokine ligand 1 

CX3CR1 C-X3-C motif chemokine receptor 1 

CXCL1 C-X-C motif chemokine ligand 1 

CXCL10 C-X-C motif chemokine ligand 10 

CXCL11 C-X-C motif chemokine ligand 11 

CXCL12 C-X-C motif chemokine ligand 12 

CXCL13 C-X-C motif chemokine ligand 13 

CXCL14 C-X-C motif chemokine ligand 14 

CXCL16 C-X-C motif chemokine ligand 16 

CXCL2 C-X-C motif chemokine ligand 2 

CXCL3 C-X-C motif chemokine ligand 3 

CXCL5 C-X-C motif chemokine ligand 5 

CXCL6 C-X-C motif chemokine ligand 6 

CXCL8 C-X-C motif chemokine ligand 8 

CXCL9 C-X-C motif chemokine ligand 9 

CXCR1 C-X-C motif chemokine receptor 1 

CXCR2 C-X-C motif chemokine receptor 2 

CXCR3 C-X-C motif chemokine receptor 3 

CXCR4 C-X-C motif chemokine receptor 4 

CXCR5 C-X-C motif chemokine receptor 5 

CXCR6 C-X-C motif chemokine receptor 6 

CYBB cytochrome b-245 beta chain 

CYLD CYLD lysine 63 deubiquitinase 

CYP27A1 cytochrome P450 family 27 subfamily A member 1 

DAPK2 death associated protein kinase 2 

DAPL1 death associated protein like 1 

DBF4 DBF4 homolog (S. cerevisiae) 

DCLRE1A DNA cross-link repair 1A 

DCN decorin 

DDIAS DNA damage induced apoptosis suppressor 

DDX5 DEAD-box helicase 5 

DDX58 DExD/H-box helicase 58 

DEFB1 defensin beta 1 

DEPDC1 DEP domain containing 1 
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DGAT2 diacylglycerol O-acyltransferase 2 

DGKA diacylglycerol kinase alpha 

DHX40 DEAH-box helicase 40 

DIAPH3 Diaphanous homolog 3 (Drosophila) 

DLAT dihydrolipoamide S-acetyltransferase 

DLD dihydrolipoamide dehydrogenase 

DLGAP5 Discs, large (Drosophila) homolog-associated protein 5 

DLX6 distal-less homeobox 6 

DMBT1 deleted in malignant brain tumors 1 

DNAH14 dynein axonemal heavy chain 14 

DNMT1 DNA methyltransferase 1 

DOCK9 dedicator of cytokinesis 9 

DONSON Downstream neighbor of SON 

DPP4 dipeptidyl peptidase 4 

DPYSL4 dihydropyrimidinase like 4 

DSC3 desmocollin 3 

DSE dermatan sulfate epimerase 

DSG3 desmoglein 3 

DST dystonin 

DTL Denticleless E3 ubiquitin protein ligase homolog (Drosophila) 

DUSP4 dual specificity phosphatase 4 

DUSP6 dual specificity phosphatase 6 

E2F2 E2F transcription factor 2 

E2F7 E2F transcription factor 7 

EBF4 early B-cell factor 4 

EBI3 Epstein-Barr virus induced 3 

ECT2 Epithelial cell transforming sequence 2 oncogene 

EEF1G eukaryotic translation elongation factor 1 gamma 

EEF2 eukaryotic translation elongation factor 2 

EFNA4 ephrin A4 

EFNB3 ephrin B3 

EGFR epidermal growth factor receptor 

EGR1 early growth response 1 

EGR2 early growth response 2 

EGR3 early growth response 3 

EHD2 EH domain containing 2 

EIF2A eukaryotic translation initiation factor 2A 

EIF2AK2 eukaryotic translation initiation factor 2 alpha kinase 2 

ELK1 ETS transcription factor 

ELL3 Elongation factor RNA polymerase II-like 3 

EME1 Essential meiotic endonuclease 1 homolog 1 (S. pombe) 

EMP1 epithelial membrane protein 1 

EMX2 empty spiracles homeobox 2 

ENG endoglin 

ENO1 enolase 1 

ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 

EOMES eomesodermin 
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EP300 E1A binding protein p300 

EPCAM epithelial cell adhesion molecule 

EPHX3 epoxide hydrolase 3 

EPSTI1 epithelial stromal interaction 1 

ERBB2 erb-b2 receptor tyrosine kinase 2 

ERBB3 erb-b2 receptor tyrosine kinase 3 

ERCC6L 
Excision repair cross-complementing rodent repair deficiency, 
complementation group 6-like 

ESCO2 Establishment of cohesion 1 homolog 2 (S. cerevisiae) 

ESPL1 extra spindle pole bodies like 1, separase 

ESYT2 extended synaptotagmin 2 

ETS1 ETS proto-oncogene 1, transcription factor 

ETS2 ETS proto-oncogene 2, transcription factor 

ETV1 ETS variant 1 

ETV4 ETS variant 4 

EWSR1 EWS RNA binding protein 1 

EXO1 Exonuclease 1 

EYS eyes shut homolog (Drosophila) 

EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit 

F13A1 coagulation factor XIII A chain 

F2RL1 F2R like trypsin receptor 1 

FABP4 fatty acid binding protein 4 

FADD Fas associated via death domain 

FAM111B Family with sequence similarity 111, member B 

FAM122B family with sequence similarity 122B 

FAM161A family with sequence similarity 161 member A 

FAM222A family with sequence similarity 222 member A 

FAM69B family with sequence similarity 69 member B 

FAM72_family family with sequence similarity 72 (family probe) 

FAM83B family with sequence similarity 83 member B 

FANCA Fanconi anemia, complementation group A 

FANCD2 Fanconi anemia, complementation group D2 

FANCI Fanconi anemia, complementation group I 

FAP fibroblast activation protein alpha 

FAS Fas cell surface death receptor 

FASLG Fas ligand 

FBLN1 fibulin 1 

FCAR Fc fragment of IgA receptor 

FCER1G Fc fragment of IgE receptor Ig 

FCER2 Fc fragment of IgE receptor II 

FCGR1A_FCGR1
B Fc fragment of IgG receptor Ia and 1b 

FCGR2A_2C Fc fragment of IgG receptor IIa and IIc 

FCGR2B Fc fragment of IgG receptor IIb 

FCGR3A_3B Fc fragment of IgG receptor IIIa and IIIb 

FCMR Fc fragment of IgM receptor 

FCRL2 Fc receptor like 2 

FCRLA Fc receptor like A 
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FEN1 Flap structure-specific endonuclease 1 

FEZ1 fasciculation and elongation protein zeta 1 

FGD6 FYVE, RhoGEF and PH domain containing 6 

FGFR3 fibroblast growth factor receptor 3 

FICD FIC domain containing 

FLI1 Fli-1 proto-oncogene, ETS transcription factor 

FLT1 fms related tyrosine kinase 1 

FLT3 fms related tyrosine kinase 3 

FLT3LG fms related tyrosine kinase 3 ligand 

FLVCR1 feline leukemia virus subgroup C cellular receptor 1 

FMO5 flavin containing monooxygenase 5 

FN1 fibronectin 1 

FOLH1 folate hydrolase 1 

FOS Fos proto-oncogene, AP-1 transcription factor subunit 

FOXA1 forkhead box A1 

FOXG1 forkhead box G1 

FOXJ1 forkhead box J1 

FOXM1 forkhead box M1 

FOXO1 forkhead box O1 

FOXP1 forkhead box P1 

FOXP3 forkhead box P3 

FOXRED2 FAD dependent oxidoreductase domain containing 2 

FPR1 formyl peptide receptor 1 

FPR2 formyl peptide receptor 2 

FRYL FRY like transcription coactivator 

FUT4 fucosyltransferase 4 

FUT5 fucosyltransferase 5 

FXYD5 FXYD domain containing ion transport regulator 5 

FYB1 FYN binding protein 1 

FYN FYN proto-oncogene, Src family tyrosine kinase 

FZD3 frizzled class receptor 3 

G6PD glucose-6-phosphate dehydrogenase 

GABRA5 gamma-aminobutyric acid type A receptor alpha5 subunit 

GAD1 glutamate decarboxylase 1 

GADD45GIP1 GADD45G interacting protein 1 

GAGE_family G antigen (family probe) 

GATA2 GATA binding protein 2 

GATA3 GATA binding protein 3 

GBP1 guanylate binding protein 1 

GBP5 guanylate binding protein 5 

GCK_liver_T2 glucokinase (liver specific) 

GCK_Pan_T2 glucokinase (pancreas specific) 

GCK glucokinase (all isoforms) 

GDF15 growth differentiation factor 15 

GGT7 gamma-glutamyltransferase 7 

GINS4 GINS complex subunit 4 (Sld5 homolog) 

GLB1L2 galactosidase beta 1 like 2 
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GLIPR1 GLI pathogenesis related 1 

GNLY granulysin 

GPI glucose-6-phosphate isomerase 

GPR18 G protein-coupled receptor 18 

GPR19 G protein-coupled receptor 19 

GPRIN1 G protein regulated inducer of neurite outgrowth 1 

GRAP2 GRB2-related adaptor protein 2 

GSDME gasdermin E 

GTF3C1 general transcription factor IIIC subunit 1 

GTSE1 G-2 and S-phase expressed 1 

GUSB glucuronidase beta 

GZMA granzyme A 

GZMB granzyme B 

GZMH granzyme H 

GZMK granzyme K 

GZMM granzyme M 

H2AFZ H2A histone family member Z 

HASPIN histone H3 associated protein kinase 

HAVCR2 hepatitis A virus cellular receptor 2 

HCAR1 hydroxycarboxylic acid receptor 1 

HCAR2 hydroxycarboxylic acid receptor 2 

HDC histidine decarboxylase 

HELLS helicase, lymphoid specific 

HERC6 
HECT and RLD domain containing E3 ubiquitin protein ligase family 
member 6 

HES1 hes family bHLH transcription factor 1 

HES5 hes family bHLH transcription factor 5 

HEXIM2 hexamethylene bisacetamide inducible 2 

HEY1 hes related family bHLH transcription factor with YRPW motif 1 

HEY2 hes related family bHLH transcription factor with YRPW motif 2 

HEYL hes related family bHLH transcription factor with YRPW motif-like 

HGF hepatocyte growth factor 

HHLA2 HERV-H LTR-associating 2 

HIF1A hypoxia inducible factor 1 alpha subunit 

HIST1H2BH Histone cluster 1, H2bh 

HJURP Holliday junction recognition protein 

HK1 hexokinase 1 

HK2 hexokinase 2 

HLA-A major histocompatibility complex, class I, A 

HLA-B major histocompatibility complex, class I, B 

HLA-C major histocompatibility complex, class I, C 

HLA-DMA major histocompatibility complex, class II, DM alpha 

HLA-DMB major histocompatibility complex, class II, DM beta 

HLA-DOA major histocompatibility complex, class II, DO alpha 

HLA-DOB major histocompatibility complex, class II, DO beta 

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1 

HLA-DPB1 major histocompatibility complex, class II, DP beta 1 

HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 
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HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2 

HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 

HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 

HLA-DRA major histocompatibility complex, class II, DR alpha 

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 

HLA-E major histocompatibility complex, class I, E 

HLA-F major histocompatibility complex, class I, F 

HLA-G major histocompatibility complex, class I, G 

HLF HLF, PAR bZIP transcription factor 

HMBS hydroxymethylbilane synthase 

HMGB1 high mobility group box 1 

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 

HMMR Hyaluronan-mediated motility receptor 

HMOX1 heme oxygenase 1 

HMX2 H6 family homeobox 2 

HNF1A HNF1 homeobox A 

HNF1B HNF1 homeobox B 

HORMAD1 HORMA domain containing 1 

HORMAD2 HORMA domain containing 2 

HPDL 4-hydroxyphenylpyruvate dioxygenase like 

HPN hepsin 

HRAS HRas proto-oncogene, GTPase 

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1 

HSP90B1 heat shock protein 90 beta family member 1 

HSPA1A heat shock protein family A (Hsp70) member 1A 

IBSP integrin binding sialoprotein 

ICAM1 intercellular adhesion molecule 1 

ICAM2 intercellular adhesion molecule 2 

ICAM3 intercellular adhesion molecule 3 

ICAM4 intercellular adhesion molecule 4 (Landsteiner-Wiener blood group) 

ICOS inducible T-cell costimulator 

ICOSLG inducible T-cell costimulator ligand 

ID2 inhibitor of DNA binding 2 

ID3 inhibitor of DNA binding 3, HLH protein 

ID4 inhibitor of DNA binding 4, HLH protein 

IDH1 isocitrate dehydrogenase (NADP(+)) 1, cytosolic 

IDH2 isocitrate dehydrogenase (NADP(+)) 2, mitochondrial 

IDO1 indoleamine 2,3-dioxygenase 1 

IDO2 indoleamine 2,3-dioxygenase 2 

IFI16 interferon gamma inducible protein 16 

IFI27 interferon alpha inducible protein 27 

IFI35 interferon induced protein 35 

IFI44L interferon induced protein 44 like 

IFI6 interferon alpha inducible protein 6 

IFIH1 interferon induced with helicase C domain 1 

IFIT1 interferon induced protein with tetratricopeptide repeats 1 

IFIT2 interferon induced protein with tetratricopeptide repeats 2 
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IFIT3 interferon induced protein with tetratricopeptide repeats 3 

IFIT5 interferon induced protein with tetratricopeptide repeats 5 

IFITM1 interferon induced transmembrane protein 1 

IFITM2 interferon induced transmembrane protein 2 

IFITM3 interferon induced transmembrane protein 3 

IFNA_Family interferon alpha (family probe) 

IFNAR1 interferon alpha and beta receptor subunit 1 

IFNAR2 interferon alpha and beta receptor subunit 2 

IFNB1 interferon beta 1 

IFNG interferon gamma 

IFNGR1 interferon gamma receptor 1 

IFNL1 interferon lambda 1 

IFNL2 interferon lambda 2 

IFNL3 interferon lambda 3 

IFNL4 interferon lambda 4 (gene/pseudogene) 

IFNLR1 interferon lambda receptor 1 

IGF1R insulin like growth factor 1 receptor 

IGF2R insulin like growth factor 2 receptor 

IGFBP3 insulin like growth factor binding protein 3 

IGSF6 immunoglobulin superfamily member 6 

IHH indian hedgehog 

IKBKB inhibitor of nuclear factor kappa B kinase subunit beta 

IKBKG inhibitor of nuclear factor kappa B kinase subunit gamma 

IKZF1 IKAROS family zinc finger 1 

IKZF2 IKAROS family zinc finger 2 

IKZF3 IKAROS family zinc finger 3 

IKZF4 IKAROS family zinc finger 4 

IL10 interleukin 10 

IL10RA interleukin 10 receptor subunit alpha 

IL10RB interleukin 10 receptor subunit beta 

IL11 interleukin 11 

IL11RA interleukin 11 receptor subunit alpha 

IL12A interleukin 12A 

IL12B interleukin 12B 

IL12RB1 interleukin 12 receptor subunit beta 1 

IL12RB2 interleukin 12 receptor subunit beta 2 

IL13 interleukin 13 

IL13RA1 interleukin 13 receptor subunit alpha 1 

IL13RA2 interleukin 13 receptor subunit alpha 2 

IL15 interleukin 15 

IL15RA interleukin 15 receptor subunit alpha 

IL16 interleukin 16 

IL17A interleukin 17A 

IL17B interleukin 17B 

IL17C interleukin 17C 

IL17D interleukin 17D 

IL17F interleukin 17F 
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IL17RA interleukin 17 receptor A 

IL17RB interleukin 17 receptor B 

IL18 interleukin 18 

IL18BP interleukin 18 binding protein 

IL18R1 interleukin 18 receptor 1 

IL19 interleukin 19 

IL1A interleukin 1 alpha 

IL1B interleukin 1 beta 

IL1R1 interleukin 1 receptor type 1 

IL1R2 interleukin 1 receptor type 2 

IL1RAP interleukin 1 receptor accessory protein 

IL1RL1 interleukin 1 receptor like 1 

IL1RL2 interleukin 1 receptor like 2 

IL1RN interleukin 1 receptor antagonist 

IL2 interleukin 2 

IL20 interleukin 20 

IL20RA interleukin 20 receptor subunit alpha 

IL20RB interleukin 20 receptor subunit beta 

IL21 interleukin 21 

IL21R interleukin 21 receptor 

IL22 interleukin 22 

IL22RA1 interleukin 22 receptor subunit alpha 1 

IL22RA2 interleukin 22 receptor subunit alpha 2 

IL23A interleukin 23 subunit alpha 

IL23R interleukin 23 receptor 

IL24 interleukin 24 

IL25 interleukin 25 

IL26 interleukin 26 

IL27 interleukin 27 

IL2RA interleukin 2 receptor subunit alpha 

IL2RB interleukin 2 receptor subunit beta 

IL2RG interleukin 2 receptor subunit gamma 

IL3 interleukin 3 

IL31 interleukin 31 

IL32 interleukin 32 

IL33 interleukin 33 

IL34 interleukin 34 

IL3RA interleukin 3 receptor subunit alpha 

IL4 interleukin 4 

IL4R interleukin 4 receptor 

IL5 interleukin 5 

IL5RA interleukin 5 receptor subunit alpha 

IL6 interleukin 6 

IL6R interleukin 6 receptor 

IL6ST interleukin 6 signal transducer 

IL7 interleukin 7 

IL7R interleukin 7 receptor 
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IL9 interleukin 9 

IL9R interleukin 9 receptor 

IMPG2 interphotoreceptor matrix proteoglycan 2 

INSM1 INSM transcriptional repressor 1 

IQGAP3 IQ motif containing GTPase activating protein 3 

IRAK1 interleukin 1 receptor associated kinase 1 

IRAK2 interleukin 1 receptor associated kinase 2 

IRAK3 interleukin 1 receptor associated kinase 3 

IRAK4 interleukin 1 receptor associated kinase 4 

IRF1 interferon regulatory factor 1 

IRF2 interferon regulatory factor 2 

IRF3 interferon regulatory factor 3 

IRF4 interferon regulatory factor 4 

IRF5 interferon regulatory factor 5 

IRF7 interferon regulatory factor 7 

IRF8 interferon regulatory factor 8 

IRF9 interferon regulatory factor 9 

IRGM immunity related GTPase M 

IRS1 insulin receptor substrate 1 

ISG15 ISG15 ubiquitin-like modifier 

ISG20 interferon stimulated exonuclease gene 20 

ITGA1 integrin subunit alpha 1 

ITGA2 integrin subunit alpha 2 

ITGA3 integrin subunit alpha 3 

ITGA4 integrin subunit alpha 4 

ITGA5 integrin subunit alpha 5 

ITGA6 integrin subunit alpha 6 

ITGAE integrin subunit alpha E 

ITGAL integrin subunit alpha L 

ITGAM integrin subunit alpha M 

ITGAX integrin subunit alpha X 

ITGB1 integrin subunit beta 1 

ITGB2 integrin subunit beta 2 

ITGB3 integrin subunit beta 3 

ITGB4 integrin subunit beta 4 

ITGB7 integrin subunit beta 7 

ITK IL2 inducible T-cell kinase 

ITLN2 intelectin 2 

ITPKC inositol-trisphosphate 3-kinase C 

JAK1 Janus kinase 1 

JAK2 Janus kinase 2 

JAK3 Janus kinase 3 

JAKMIP3 Janus kinase and microtubule interacting protein 3 

JAML junction adhesion molecule like 

JCHAIN joining chain of multimeric IgA and IgM 

KCNA1 potassium voltage-gated channel subfamily A member 1 

KCNH2 potassium voltage-gated channel subfamily H member 2 
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KCNK5 potassium two pore domain channel subfamily K member 5 

KDM5B lysine demethylase 5B 

KDR kinase insert domain receptor 

KHDRBS2 KH RNA binding domain containing, signal transduction associated 2 

KHK Ketohexokinase (fructokinase) 

KIF14 Kinesin family member 14 

KIF15 Kinesin family member 15 

KIF18B Kinesin family member 18B 

KIF20A Kinesin family member 20A 

KIF23 Kinesin family member 23 

KIF2C Kinesin family member 2C 

KIF4A Kinesin family member 4A 

KIF5C kinesin family member 5C 

KIFC1 Kinesin family member C1 

KIR2DL1 
killer cell immunoglobulin like receptor, two Ig domains and long 
cytoplasmic tail 1 

KIR2DL1_2DL2 
killer cell immunoglobulin like receptor, two Ig domains and long 
cytoplasmic tail 1 and 2 

KIR2DL3 
killer cell immunoglobulin like receptor, two Ig domains and long 
cytoplasmic tail 3 

KIR2DL4 
killer cell immunoglobulin like receptor, two Ig domains and long 
cytoplasmic tail 4 

KIR2DL5A_5B 
killer cell immunoglobulin like receptor, two Ig domains and long 
cytoplasmic tail 5A and 5B 

KIR2DS2_2DS4 
killer cell immunoglobulin like receptor, two Ig domains and short 
cytoplasmic tail 2 and 4 

KIR2DS4 
killer cell immunoglobulin like receptor, two Ig domains and short 
cytoplasmic tail 4 

KIR2DSx 
killer cell immunoglobulin like receptor, two Ig domains and short 
cytoplasmic tail (all isoforms) 

KIR3DL1 
killer cell immunoglobulin like receptor, three Ig domains and long 
cytoplasmic tail 1 

KIR3DL2 
killer cell immunoglobulin like receptor, three Ig domains and long 
cytoplasmic tail 2 

KIR3DL3 
killer cell immunoglobulin like receptor, three Ig domains and long 
cytoplasmic tail 3 

KIR3DS1 
killer cell immunoglobulin like receptor, three Ig domains and short 
cytoplasmic tail 1 

KIR-panL killer cell immunoglobulin like receptor, pan long forms 

KIR-panS killer cell immunoglobulin like receptor, pan short forms 

KIT KIT proto-oncogene receptor tyrosine kinase 

KLF2 Kruppel like factor 2 

KLHDC9 kelch domain containing 9 

KLRB1 killer cell lectin like receptor B1 

KLRD1 killer cell lectin like receptor D1 

KLRF1 killer cell lectin like receptor F1 

KLRG1 killer cell lectin like receptor G1 

KLRK1 killer cell lectin like receptor K1 

KNL1 kinetochore scaffold 1 

KPNA2 Karyopherin alpha 2 (RAG cohort 1, importin alpha 1) 

KREMEN1 kringle containing transmembrane protein 1 

KRT13 keratin 13 

KRT16 keratin 16 
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KRT17 keratin 17 

KRT18 keratin 18 

KRT19 keratin 19 

KRT34 Keratin 34 

KRT5 keratin 5 

KRT6A keratin 6A 

KRT7 keratin 7 

KRT8 keratin 8 

KRTCAP3 keratinocyte associated protein 3 

KSR2 Kinase suppressor of ras 2 

L1CAM L1 cell adhesion molecule 

LAG3 lymphocyte activating 3 

LAIR2 leukocyte associated immunoglobulin like receptor 2 

LAMC3 Laminin, gamma 3 

LAMP1 lysosomal associated membrane protein 1 

LAMP3 lysosomal associated membrane protein 3 

LAPTM5 lysosomal protein transmembrane 5 

LAT linker for activation of T cells 

LCK LCK proto-oncogene, Src family tyrosine kinase 

LCN2 lipocalin 2 

LCP1 lymphocyte cytosolic protein 1 

LEXM lymphocyte expansion molecule 

LGALS1 galectin 1 

LGALS3 galectin 3 

LGALS9 galectin 9 

LGSN lengsin, lens protein with glutamine synthetase domain 

LIF leukemia inhibitory factor 

LILRA4 leukocyte immunoglobulin like receptor A4 

LILRB1 leukocyte immunoglobulin like receptor B1 

LILRB2 leukocyte immunoglobulin like receptor B2 

LIMA1 LIM domain and actin binding 1 

LIPE lipase E, hormone sensitive type 

LMNA lamin A/C 

LMNB1 Lamin B1 

LOXL1 lysyl oxidase like 1 

LOXL2 lysyl oxidase like 2 

LRBA LPS responsive beige-like anchor protein 

LRG1 leucine rich alpha-2-glycoprotein 1 

LRP1 LDL receptor related protein 1 

LST1 leukocyte specific transcript 1 

LTA lymphotoxin alpha 

LTB lymphotoxin beta 

LTB4R leukotriene B4 receptor 

LTBP1 latent transforming growth factor beta binding protein 1 

LTBR lymphotoxin beta receptor 

LTK leukocyte receptor tyrosine kinase 

LY86 lymphocyte antigen 86 
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LY9 lymphocyte antigen 9 

LY96 lymphocyte antigen 96 

LYN LYN proto-oncogene, Src family tyrosine kinase 

LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 

LYZ lysozyme 

M6PR mannose-6-phosphate receptor, cation dependent 

MAB21L2 mab-21 like 2 

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 

MADCAM1 mucosal vascular addressin cell adhesion molecule 1 

MAF MAF bZIP transcription factor 

MAGEA1 MAGE family member A1 

MAGEA10 MAGE family member A10 

MAGEA12 MAGE family member A12 

MAGEA3_A6 MAGE family member A3/A6 

MAGEA4 MAGE family member A4 

MAGEB2 MAGE family member B2 

MAGEC1 MAGE family member C1 

MAGEC2 MAGE family member C2 

MAP2K1 mitogen-activated protein kinase kinase 1 

MAP2K2 mitogen-activated protein kinase kinase 2 

MAP2K4 mitogen-activated protein kinase kinase 4 

MAP2K6 Mitogen-activated protein kinase kinase 6 

MAP2K7 mitogen-activated protein kinase kinase 7 

MAP3K1 mitogen-activated protein kinase kinase kinase 1 

MAP3K5 mitogen-activated protein kinase kinase kinase 5 

MAP3K7 mitogen-activated protein kinase kinase kinase 7 

MAP4 Microtubule-associated protein 4 

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1 

MAPK1 mitogen-activated protein kinase 1 

MAPK11 mitogen-activated protein kinase 11 

MAPK14 mitogen-activated protein kinase 14 

MAPK3 mitogen-activated protein kinase 3 

MAPK8 mitogen-activated protein kinase 8 

MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 

MARCO macrophage receptor with collagenous structure 

MBL2 mannose binding lectin 2 

MCM10 Minichromosome maintenance complex component 10 

MCM2 minichromosome maintenance complex component 2 

MCM6 Minichromosome maintenance complex component 6 

MCM7 minichromosome maintenance complex component 7 

MECOM MDS1 and EVI1 complex locus 

MEF2C myocyte enhancer factor 2C 

MELK maternal embryonic leucine zipper kinase 

MERTK MER proto-oncogene, tyrosine kinase 

MGA MAX dimerization protein 

MICA MHC class I polypeptide-related sequence A 

MICB MHC class I polypeptide-related sequence B 
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MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

MKI67 marker of proliferation Ki-67 

MLANA melan-A 

MLF1 myeloid leukemia factor 1 

MME membrane metalloendopeptidase 

MMP11 matrix metallopeptidase 11 

MMP12 matrix metallopeptidase 12 

MMP2 matrix metallopeptidase 2 

MMP9 matrix metallopeptidase 9 

MND1 Meiotic nuclear divisions 1 homolog (S. cerevisiae) 

MNDA myeloid cell nuclear differentiation antigen 

MOB3A MOB kinase activator 3A 

MPO myeloperoxidase 

MPPED1 metallophosphoesterase domain containing 1 

MR1 major histocompatibility complex, class I-related 

MRAP2 melanocortin 2 receptor accessory protein 2 

MRC1 mannose receptor C-type 1 

MS4A1 membrane spanning 4-domains A1 

MS4A2 membrane spanning 4-domains A2 

MS4A4A membrane spanning 4-domains A4A 

MSH2 mutS homolog 2 

MSH3 mutS homolog 3 

MSH4 mutS homolog 4 

MSH5 mutS homolog 5 

MSH6 mutS homolog 6 

MSR1 macrophage scavenger receptor 1 

MST1R macrophage stimulating 1 receptor 

MT2A metallothionein 2A 

MTDH metadherin 

MTFR2 Mitochondrial fission regulator 2 

MTOR mechanistic target of rapamycin kinase 

MUC1 mucin 1, cell surface associated 

MX1 MX dynamin like GTPase 1 

MXD3 MAX dimerization protein 3 

MYBL2 V-myb myeloblastosis viral oncogene homolog (avian)-like 2 

MYC v-myc avian myelocytomatosis viral oncogene homolog 

MYD88 myeloid differentiation primary response 88 

MYH10 myosin heavy chain 10 

MYH11 myosin heavy chain 11 

MYH9 myosin heavy chain 9 

MYO1B Myosin IB 

MYO5C myosin VC 

MYOCD myocardin 

MYOF myoferlin 

NCAM1 neural cell adhesion molecule 1 

NCAPG Non-SMC condensin I complex, subunit G 

NCAPG2 Non-SMC condensin II complex, subunit G2 
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NCAPH Non-SMC condensin I complex, subunit H 

NCF1 neutrophil cytosolic factor 1 

NCK1 NCK adaptor protein 1 

NCL nucleolin 

NCR1 natural cytotoxicity triggering receptor 1 

NCR3 natural cytotoxicity triggering receptor 3 

NCR3LG1 natural killer cell cytotoxicity receptor 3 ligand 1 

NDC1 NDC1 transmembrane nucleoporin (also called TMEM48) 

NDC80 NDC80 kinetochore complex component 

NECTIN2 nectin cell adhesion molecule 2 

NEFL neurofilament light 

NEIL3 nei like DNA glycosylase 3 

NEK2 NIMA-related kinase 2 

NFATC1 nuclear factor of activated T-cells 1 

NFATC3 nuclear factor of activated T-cells 3 

NFATC4 nuclear factor of activated T cells 4 

NFKB1 nuclear factor kappa B subunit 1 

NFKB2 nuclear factor kappa B subunit 2 

NFKBIA NFKB inhibitor alpha 

NGFR nerve growth factor receptor 

NKG7 natural killer cell granule protein 7 

NKX2-1 NK2 homeobox 1 

NLRC5 NLR family CARD domain containing 5 

NLRP3 NLR family pyrin domain containing 3 

NMRAL1 NmrA like redox sensor 1 

NOD1 nucleotide binding oligomerization domain containing 1 

NOD2 nucleotide binding oligomerization domain containing 2 

NOS2 nitric oxide synthase 2 

NOS3 nitric oxide synthase 3 

NOTCH1 notch 1 

NOTCH3 notch 3 

NOX1 NADPH oxidase 1 

NPM1 nucleophosmin 1 

NPR3 natriuretic peptide receptor 3 

NRL neural retina leucine zipper 

NRP1 neuropilin 1 

NT5E 5'-nucleotidase ecto 

NTN3 netrin 3 

NTRK2 neurotrophic receptor tyrosine kinase 2 

NUDT1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 

NUF2 NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae) 

NUP107 nucleoporin 107 

NUSAP1 Nucleolar and spindle associated protein 1 

OAS1 2'-5'-oligoadenylate synthetase 1 

OAS2 2'-5'-oligoadenylate synthetase 2 

OAS3 2'-5'-oligoadenylate synthetase 3 

OAZ1 ornithine decarboxylase antizyme 1 
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OCLN occludin 

OIP5 Opa interacting protein 5 

OLR1 oxidized low density lipoprotein receptor 1 

OPTN Optineurin 

ORC1 Hs.17908 

ORC6 Origin recognition complex, subunit 6 

OSM oncostatin M 

PAGE1 PAGE family member 1 

PAGE2 PAGE family members 2 and 2B 

PAGE3 PAGE family member 3 

PAGE4 PAGE family member 4 

PAGE5 PAGE family member 5 

PATZ1 POZ (BTB) and AT hook containing zinc finger 1 

PAX5 paired box 5 

PBK PDZ binding kinase 

PBX1 PBX homeobox 1 

PCLAF PCNA clamp associated factor 

PCNA proliferating cell nuclear antigen 

PDCD1 programmed cell death 1 

PDCD1LG2 programmed cell death 1 ligand 2 

PDGFC platelet derived growth factor C 

PDGFRB platelet derived growth factor receptor beta 

PDHA1 pyruvate dehydrogenase E1 alpha 1 subunit 

PDHA2 pyruvate dehydrogenase E1 alpha 2 subunit 

PDHB pyruvate dehydrogenase E1 beta subunit 

PDHX pyruvate dehydrogenase complex component X 

PDK1 pyruvate dehydrogenase kinase 1 

PDK2 pyruvate dehydrogenase kinase 2 

PDK3 pyruvate dehydrogenase kinase 3 

PDK4 pyruvate dehydrogenase kinase 4 

PDLIM1 PDZ and LIM domain 1 

PDLIM3 PDZ and LIM domain 3 

PDP1 pyruvate dehyrogenase phosphatase catalytic subunit 1 

PECAM1 platelet and endothelial cell adhesion molecule 1 

PF4 platelet factor 4 

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 

PGF placental growth factor 

PHF10 PHD finger protein 10 

PIF1 PIF1 5'-to-3' DNA helicase homolog (S. cerevisiae) 

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 

PIK3CD phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta 

PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma 

PIMREG PICALM interacting mitotic regulator 

PKLR pyruvate kinase L/R 

PKM pyruvate kinase M1/2 

PKMYT1 Protein kinase, membrane associated tyrosine/threonine 1 
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PKP1 plakophilin 1 

PLA2G6 phospholipase A2 group VI 

PLA2G7 phospholipase A2 group VII 

PLAU plasminogen activator, urokinase 

PLAUR plasminogen activator, urokinase receptor 

PLEKHG4 pleckstrin homology and RhoGEF domain containing G4 

PLEKHG6 pleckstrin homology and RhoGEF domain containing G6 

PLK1 Polo-like kinase 1 

PLK4 Polo-like kinase 4 

PMCH pro-melanin concentrating hormone 

PMEL premelanosome protein 

PML Promyelocytic leukemia 

PNOC prepronociceptin 

POC1A POC1 centriolar protein homolog A (Chlamydomonas) 

PODXL2 podocalyxin like 2 

POLQ Polymerase (DNA directed), theta 

POLR2A RNA polymerase II subunit A 

POU2AF1 POU class 2 associating factor 1 

POU2F2 POU class 2 homeobox 2 

POU5F1 POU class 5 homeobox 1 and 1B 

PPARD peroxisome proliferator activated receptor delta 

PPARG peroxisome proliferator activated receptor gamma 

PPBP pro-platelet basic protein 

PPIA peptidylprolyl isomerase A 

PPM1E Protein phosphatase, Mg2+/Mn2+ dependent, 1E 

PRAME preferentially expressed antigen in melanoma 

PRC1 Protein regulator of cytokinesis 1 

PRDM1 PR/SET domain 1 

PRDM6 PR/SET domain 6 

PRF1 perforin 1 

PRG2 proteoglycan 2, pro eosinophil major basic protein 

PRKCD protein kinase C delta 

PRKCE protein kinase C epsilon 

PRR11 Proline rich 11 

PRR15L proline rich 15 like 

PSEN1 presenilin 1 

PSEN2 presenilin 2 

PSMB10 proteasome subunit beta 10 

PSMB5 proteasome subunit beta 5 

PSMB6 proteasome subunit beta 6 

PSMB7 proteasome subunit beta 7 

PSMB8 proteasome subunit beta 8 

PSMB9 proteasome subunit beta 9 

PSMD7 proteasome 26S subunit, non-ATPase 7 

PSRC1 Proline/serine-rich coiled-coil 1 

PTEN phosphatase and tensin homolog 

PTGDR2 prostaglandin D2 receptor 2 
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PTGER1 prostaglandin E receptor 1 

PTGER2 prostaglandin E receptor 2 

PTGER3 prostaglandin E receptor 3 

PTGER4 prostaglandin E receptor 4 

PTGS1 prostaglandin-endoperoxide synthase 1 

PTGS2 prostaglandin-endoperoxide synthase 2 

PTK7 protein tyrosine kinase 7 (inactive) 

PTPN11 protein tyrosine phosphatase, non-receptor type 11 

PTPN6 protein tyrosine phosphatase, non-receptor type 6 

PTPN7 protein tyrosine phosphatase, non-receptor type 7 

PTPRC protein tyrosine phosphatase, receptor type C 

PTPRCAP protein tyrosine phosphatase, receptor type C associated protein 

PVR poliovirus receptor 

PVT1 Pvt1 oncogene (non-protein coding) 

PXYLP1 2-phosphoxylose phosphatase 1 

PYCARD PYD and CARD domain containing 

PYCR1 pyrroline-5-carboxylate reductase 1 

PYGL glycogen phosphorylase L 

RAC1 Rac family small GTPase 1 

RACGAP1 Rac GTPase activating protein 1 

RAD51 RAD51 homolog (S. cerevisiae) 

RAD51AP1 RAD51 associated protein 1 

RAD54L RAD54-like (S. cerevisiae) 

RAG1 recombination activating 1 

RB1 RB transcriptional corepressor 1 

RBM24 RNA binding motif protein 24 

RBX1 ring-box 1 

RDM1 RAD52 motif 1 

REL REL proto-oncogene, NF-kB subunit 

RELA RELA proto-oncogene, NF-kB subunit 

RELB RELB proto-oncogene, NF-kB subunit 

REPS1 RALBP1 associated Eps domain containing 1 

REV3L REV3 like, DNA directed polymerase zeta catalytic subunit 

RFC4 replication factor C subunit 4 

RGS20 regulator of G protein signaling 20 

RHOG ras homolog family member G 

RIC8A Resistance to inhibitors of cholinesterase 8 homolog A (C. elegans) 

RIPK2 receptor interacting serine/threonine kinase 2 

RMI2 RMI2, RecQ mediated genome instability 2, homolog (S. cerevisiae) 

RNASEH2A ribonuclease H2 subunit A 

RND2 Rho family GTPase 2 

RNF149 ring finger protein 149 

RNF4 ring finger protein 4 

RNFT2 Ring finger protein, transmembrane 2 

ROR2 receptor tyrosine kinase like orphan receptor 2 

RORC RAR related orphan receptor C 

RPL38 ribosomal protein L38 
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RPL6 ribosomal protein L6 

RPS19 ribosomal protein S19 

RPS6 ribosomal protein S6 

RPS7 ribosomal protein S7 

RPSA ribosomal protein SA 

RRAD Ras related glycolysis inhibitor and calcium channel regulator 

RRAS2 Related RAS viral (r-ras) oncogene homolog 2 

RRM1 Ribonucleotide reductase M1 

RRM2 Ribonucleotide reductase M2 

RTN1 reticulon 1 

RUNX1 runt related transcription factor 1 

RUNX3 runt related transcription factor 3 

S100A12 S100 calcium binding protein A12 

S100A8 S100 calcium binding protein A8 

S100A9 S100 calcium binding protein A9 

S100B S100 calcium binding protein B 

SALL2 spalt like transcription factor 2 

SAMD12 sterile alpha motif domain containing 12 

SAMD9 sterile alpha motif domain containing 9 

SAMHD1 
SAM and HD domain containing deoxynucleoside triphosphate 
triphosphohydrolase 1 

SCAMP5 secretory carrier membrane protein 5 

SCG3 secretogranin III 

SDHA succinate dehydrogenase complex flavoprotein subunit A 

SELE selectin E 

SELL selectin L 

SELPLG selectin P ligand 

SEMA4D semaphorin 4D 

SERINC2 serine incorporator 2 

SERPINA1 serpin family A member 1 

SERPINB2 serpin family B member 2 

SERPINB5 serpin family B member 5 

SERPINB7 serpin family B member 7 

SERPINE1 serpin family E member 1 

SGO1 shugoshin 1 

SGO2 shugoshin 2 

SH2D1A SH2 domain containing 1A 

SH2D1B SH2 domain containing 1B 

SHCBP1 SHC SH2-domain binding protein 1 

SIGIRR single Ig and TIR domain containing 

SIGLEC5 sialic acid binding Ig like lectin 5 

SIT1 signaling threshold regulating transmembrane adaptor 1 

SKA1 Spindle and kinetochore associated complex subunit 1 

SKA3 Spindle and kinetochore associated complex subunit 3 

SKAP2 src kinase associated phosphoprotein 2 

SKP2 S-phase kinase-associated protein 2, E3 ubiquitin protein ligase 

SLAMF1 signaling lymphocytic activation molecule family member 1 

SLAMF6 SLAM family member 6 
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SLAMF7 SLAM family member 7 

SLAMF8 SLAM family member 8 

SLC11A1 solute carrier family 11 member 1 

SLC25A3 solute carrier family 25 member 3 

SLC25A5-AS1 SLC25A5 antisense RNA 1 

SLC27A2 solute carrier family 27 member 2 

SLC2A1 solute carrier family 2 member 1 

SLC31A2 solute carrier family 31 member 2 

SLC35B1 solute carrier family 35 member B1 

SLFN11 schlafen family member 11 

SMAD2 SMAD family member 2 

SMAD3 SMAD family member 3 

SMAD7 SMAD family member 7 

SMPD3 sphingomyelin phosphodiesterase 3 

SMPDL3B sphingomyelin phosphodiesterase acid like 3B 

SNAI1 snail family transcriptional repressor 1 

SNAI2 snail family transcriptional repressor 2 

SOCS1 suppressor of cytokine signaling 1 

SOCS3 suppressor of cytokine signaling 3 

SOCS5 suppressor of cytokine signaling 5 

SOD1 superoxide dismutase 1 

SOX2 SRY-box 2 

SOX9 SRY-box 9 

SP100 SP100 nuclear antigen 

SP110 SP110 nuclear body protein 

SPANXACD 
sperm protein associated with the nucleus, X-linked, family members A1, 
A2, C, and D 

SPANXB1 SPANX family member B1 

SPANXN1 SPANX family member N1 

SPANXN3 SPANX family member N3 

SPANXN4 SPANX family member N4 

SPANXN5 SPANX family member N5 

SPC24 SPC24, NDC80 kinetochore complex component, homolog (S. cerevisiae) 

SPC25 SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae) 

SPDL1 Spindle apparatus coiled-coil protein 1 

SPI1 Spi-1 proto-oncogene 

SPIB Spi-B transcription factor 

SPIN4 Spindlin family, member 4 

SPINK1 serine peptidase inhibitor, Kazal type 1 

SPINK5 serine peptidase inhibitor, Kazal type 5 

SPN sialophorin 

SPOP speckle type BTB/POZ protein 

SPP1 secreted phosphoprotein 1 

SPTLC3 serine palmitoyltransferase long chain base subunit 3 

SRGN serglycin 

SSX1 synovial sarcoma X (SSX) breakpoint protein 

SSX2 SSX family member 2 and 2B 

ST6GAL1 ST6 beta-galactoside alpha-2,6-sialyltransferase 1 
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STAT1 signal transducer and activator of transcription 1 

STAT2 signal transducer and activator of transcription 2 

STAT3 signal transducer and activator of transcription 3 

STAT4 signal transducer and activator of transcription 4 

STAT5A signal transducer and activator of transcription 5A 

STAT5B signal transducer and activator of transcription 5B 

STAT6 signal transducer and activator of transcription 6 

STIL SCL/TAL1 interrupting locus 

STK32A serine/threonine kinase 32A 

STOX2 storkhead box 2 

SUSD3 sushi domain containing 3 

SUZ12 SUZ12 polycomb repressive complex 2 subunit 

SV2A synaptic vesicle glycoprotein 2A 

SVIL supervillin 

SYCP1 synaptonemal complex protein 1 

SYK spleen associated tyrosine kinase 

SYT17 synaptotagmin 17 

SYT4 synaptotagmin 4 

TAB1 TGF-beta activated kinase 1 (MAP3K7) binding protein 1 

TACC3 Transforming, acidic coiled-coil containing protein 3 

TACSTD2 tumor associated calcium signal transducer 2 

TAGAP T-cell activation RhoGTPase activating protein 

TAGLN transgelin 

TAGLN3 transgelin 3 

TAL1 TAL bHLH transcription factor 1, erythroid differentiation factor 

TAP1 transporter 1, ATP binding cassette subfamily B member 

TAP2 transporter 2, ATP binding cassette subfamily B member 

TAPBP TAP binding protein 

TARP TCR gamma alternate reading frame protein 

TBK1 TANK binding kinase 1 

TBX21 T-box 21 

TCF12 transcription factor 12 

TCF19 Transcription factor 19 

TCF7 transcription factor 7 (T-cell specific, HMG-box) 

TCL1A T-cell leukemia/lymphoma 1A 

TCL1B T cell leukemia/lymphoma 1B 

TDO2 tryptophan 2,3-dioxygenase 

TEDC2 tubulin epsilon and delta complex 2 

TEK TEK receptor tyrosine kinase 

TESC tescalcin 

TEX14 testis expressed 14, intercellular bridge forming factor 

TFF1 trefoil factor 1 

TFRC transferrin receptor 

TGFB1 transforming growth factor beta 1 

TGFB2 transforming growth factor beta 2 

TGFBI transforming growth factor beta induced 

TGFBR1 transforming growth factor beta receptor 1 
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TGFBR2 transforming growth factor beta receptor 2 

TGIF2 TGFB induced factor homeobox 2 

THAP11 THAP domain containing 11 

THBD thrombomodulin 

THBS1 thrombospondin 1 

THY1 Thy-1 cell surface antigen 

TICAM1 toll like receptor adaptor molecule 1 

TICAM2 toll like receptor adaptor molecule 2 

TIGIT T-cell immunoreceptor with Ig and ITIM domains 

TIMP1 TIMP metallopeptidase inhibitor 1 

TIRAP TIR domain containing adaptor protein 

TK1 Thymidine kinase 1, soluble 

TLDC1 TBC/LysM-associated domain containing 1 

TLR1 toll like receptor 1 

TLR10 toll like receptor 10 

TLR2 toll like receptor 2 

TLR3 toll like receptor 3 

TLR4 toll like receptor 4 

TLR5 toll like receptor 5 

TLR6 toll like receptor 6 

TLR7 toll like receptor 7 

TLR8 toll like receptor 8 

TLR9 toll like receptor 9 

TMBIM1 transmembrane BAX inhibitor motif containing 1 

TMEM173 transmembrane protein 173 

TMEM246 transmembrane protein 246 

TMPO Thymopoietin 

TNF tumor necrosis factor 

TNFAIP3 TNF alpha induced protein 3 

TNFAIP8 TNF alpha induced protein 8 

TNFRSF10A TNF receptor superfamily member 10a 

TNFRSF10B TNF receptor superfamily member 10b 

TNFRSF10C TNF receptor superfamily member 10c 

TNFRSF10D TNF receptor superfamily member 10d 

TNFRSF11A TNF receptor superfamily member 11a 

TNFRSF11B TNF receptor superfamily member 11b 

TNFRSF12A TNF receptor superfamily member 12A 

TNFRSF13B TNF receptor superfamily member 13B 

TNFRSF13C TNF receptor superfamily member 13C 

TNFRSF14 TNF receptor superfamily member 14 

TNFRSF17 TNF receptor superfamily member 17 

TNFRSF18 TNF receptor superfamily member 18 

TNFRSF19 TNF receptor superfamily member 19 

TNFRSF1A TNF receptor superfamily member 1A 

TNFRSF1B TNF receptor superfamily member 1B 

TNFRSF21 TNF receptor superfamily member 21 

TNFRSF25 TNF receptor superfamily member 25 
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TNFRSF4 TNF receptor superfamily member 4 

TNFRSF8 TNF receptor superfamily member 8 

TNFRSF9 TNF receptor superfamily member 9 

TNFSF10 tumor necrosis factor superfamily member 10 

TNFSF11 TNF superfamily member 11 

TNFSF12 TNF superfamily member 12 

TNFSF13 TNF superfamily member 13 

TNFSF13B tumor necrosis factor superfamily member 13b 

TNFSF14 tumor necrosis factor superfamily member 14 

TNFSF15 TNF superfamily member 15 

TNFSF18 tumor necrosis factor superfamily member 18 

TNFSF4 tumor necrosis factor superfamily member 4 

TNFSF8 tumor necrosis factor superfamily member 8 

TNFSF9 TNF superfamily member 9 

TOLLIP toll interacting protein 

TOP2A DNA topoisomerase II alpha 

TP53 tumor protein p53 

TP63 tumor protein p63 

TPSAB1 tryptase alpha/beta 1 

TPX2 TPX2, microtubule nucleation factor 

TRABD2A TraB domain containing 2A 

TRAF2 TNF receptor associated factor 2 

TRAF3 TNF receptor associated factor 3 

TRAF6 TNF receptor associated factor 6 

TRAP1 TNF receptor associated protein 1 

TRAT1 T cell receptor associated transmembrane adaptor 1 

TREM1 triggering receptor expressed on myeloid cells 1 

TREM2 triggering receptor expressed on myeloid cells 2 

TRIM21 tripartite motif containing 21 

TRIM22 tripartite motif containing 22 

TRIM29 tripartite motif containing 29 

TRIM59 tripartite motif containing 59 

TRIP13 thyroid hormone receptor interactor 13 

TROAP trophinin associated protein 

TSG101 tumor susceptibility 101 

TTK TTK protein kinase 

TUBB tubulin beta class I 

TWIST1 twist family bHLH transcription factor 1 

TWIST2 twist family bHLH transcription factor 2 

TXLNA taxilin alpha 

TXNIP thioredoxin interacting protein 

TYK2 tyrosine kinase 2 

TYMS Thymidylate synthetase 

TYROBP TYRO protein tyrosine kinase binding protein 

UBA6 ubiquitin like modifier activating enzyme 6 

UBE2C Ubiquitin-conjugating enzyme E2C 

UBE2T ubiquitin conjugating enzyme E2 T 
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Appendix Table 1 Annotated Gene List of HTG EdgeSeq Precision Immuno-Oncology Panel   

UBE3A ubiquitin protein ligase E3A 

UHRF1 Ubiquitin-like with PHD and ring finger domains 1 

ULBP1 UL16 binding protein 1 

UNC5D unc-5 netrin receptor D 

UPK2 uroplakin 2 

UPK3A uroplakin 3A 

USP9Y ubiquitin specific peptidase 9, Y-linked 

VAV1 vav guanine nucleotide exchange factor 1 

VCAM1 vascular cell adhesion molecule 1 

VEGFA vascular endothelial growth factor A 

VEGFC vascular endothelial growth factor C 

VSIR chromosome 10 open reading frame 54 

VSNL1 visinin like 1 

VTCN1 V-set domain containing T-cell activation inhibitor 1 

VWDE von Willebrand factor D and EGF domains 

VWF von Willebrand factor 

WARS tryptophanyl-tRNA synthetase 

WASHC4 WASH complex subunit 4 

WDHD1 
multiple N-terminal WD40 domains and a C-terminal high mobility group 
(HMG) box 

WDR60 WD repeat domain 60 

WDR76 WD repeat domain 76 

WNK2 WNK lysine deficient protein kinase 2 

WNT5A Wnt family member 5A 

WNT7B Wnt family member 7B 

XAF1 XIAP associated factor 1 

XAGE1B_1E X antigen family member 1B and 1E 

XAGE2 X antigen family member 1A 

XAGE3 X antigen family member 3 

XAGE5 X antigen family member 5 

XCL1 X-C motif chemokine ligand 1 

XCL1_XCL2 X-C motif chemokine ligand 1 and 2 

XCR1 X-C motif chemokine receptor 1 

YWHAZ 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
protein zeta 

ZAP70 zeta chain of T cell receptor associated protein kinase 70 

ZBTB46 zinc finger and BTB domain containing 46 

ZEB1 zinc finger E-box binding homeobox 1 

ZIC5 Zic family member 5 

ZNF14 zinc finger protein 14 

ZNF205 zinc finger protein 205 

ZNF74 zinc finger protein 74 

ZWILCH Zwilch kinetochore protein 

ZYX Zyxin 
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