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Abstract 

Feline chronic gingivostomatitis (FCGS) is a severe inflammatory disease of the 

oral cavity that causes extreme pain and distress in affected cats.  Treatment 

options for FCGS are limited, and often unsatisfactory, and there is a poor 

understanding regarding its aetiology.  Recent literature indicates that several 

putative bacterial pathogens, including T. forsythia and P. circumdentaria, could 

be involved in the development and progression of disease by stimulating an 

excessive host immune response.  Understanding how the host responds to 

bacteria associated with FCGS is of importance to help identify novel targets for 

therapeutic strategies which are highly sought after.  The aim of this study was to 

investigate the impact of putative pathogenic bacteria on the host inflammatory 

response and test the anti-microbial potential of several compounds on an FCGS-

associated multispecies biofilm.   
 

A panel of bacteria found to be prevalent in FCGS were selected as a basis for in 

vitro research into the immune response from host cells following exposure to 

these bacteria.  The QUANTI-BlueTM assay was used to measure toll-like receptor 

(TLR) activation in human THP1-XBlueTM pro-monocytes.  IL-8 gene expression and 

protein release was measured from both human and feline cell lines by qPCR and 

ELISA, respectively.  Moreover, the antimicrobial potential of novel agents 

including carbohydrate-derived fulvic acid (CHD-FA), xylitol, berberine, and 

ubiquinol were assessed against a multi-species biofilm consisting of bacteria 

prevalent in FCGS.  The effect of these compounds on biofilm cell viability was 

determined using alamarBlue® and the impact on biofilm biomass was measured 

using the crystal violet assay. 

 

The results from this study have generally shown that putative pathogens such as 

T. forsythia, P. multocida subsp. multocida, and P. multocida subsp. septica at a 

multiplicity of infection (MOI) of 200 produced the greatest increase in secreted 

embryonic alkaline phosphatase (SEAP) expression/TLR activation (p<0.001) in 

human cells and significant IL-8 release in human and feline cells.  Commensal B. 

zoohelcum displayed an unexpected increase in IL-8 gene expression (p<0.01) and 

protein release (p<0.001) at an MOI of 200 in the squamous carcinoma cell feline 

cell line (SCCF1).  Furthermore, the novel agent CHD-FA showed to significantly 

decrease biofilm cell viability (p<0.01) and biomass (p<0.05) at 0.8% compared to 
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the untreated control, while berberine disrupted only biofilm biomass at 100 

µg/mL (p<0.05). Xylitol and ubiquinol had no significant impact on biofilm 

metabolic activity or biomass. 

 

To conclude, this research has highlighted the inflammatory potential of bacteria 

associated to FCGS and how this may reflect the chronic inflammation presented 

by the host during disease.  The development of a multi-species biofilm provided 

a platform to test novel compounds, highlighting its potential to be used as a tool 

in discovering appropriate therapeutic targets for FCGS and other biofilm 

infections. Such findings are valuable to enhance our understanding of the 

complex aetiology of FCGS and may help identify novel treatment interventions.  
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1.1 General introduction 
 

Feline chronic gingivostomatitis (FCGS) is a feline oral disease which is 

characterised by severe, widespread inflammation within the oral cavity.  Cats 

affected with FCGS are often severely compromised, with inflammation typically 

lasting months to years, and may lead to the euthanisation of diseased cats in 

refractory cases.  Various bacterial species involved in human periodontal disease 

have been associated with FCGS and it has been implicated that viruses may play 

an important role in disease pathogenesis (Lobprise and Dodd, 2018).  However, 

the exact aetiology of FCGS remains elusive and the cause of chronic inflammation 

is considered to be multi-factorial involving interactions between oral bacteria, 

oral viruses, and the local immune system (Lyon, 2005; Lommer, 2013).  Due to 

the complex aetiology of FCGS, there are currently no satisfactory treatment 

options available that show consistent positive outcomes. The idiopathic nature 

of FCGS contributes to the complexity of the disease and makes the 

aetiopathogenesis an important area of research to progress in the development 

of preventative measures and novel effective methods of treatment. 

 

1.2 Feline Chronic Gingivostomatitis  
 

1.2.1 Nomenclature 

 

While feline chronic gingivostomatitis is the name commonly referred to in recent 

literature due to frequent occurrence in feline patients, various names have been 

used previously to refer to FCGS.  These include lymphocytic plasmacytic gingivitis 

stomatitis, chronic ulcerative paradental stomatitis, and chronic mucositis (Baird, 

2005; Lyon, 2005; Gengler, 2013).  In these cases, the syndrome was named based 

either on the location of lesions within the oral cavity or on the inflammatory 

infiltrates present during disease (Diehl and Rosychuk, 1993; Healey et al., 2007).  
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1.2.2 Clinical presentation 

 

FCGS is marked by chronic, ulcerative inflammation within the oral cavity of cats.  

Unlike gingivitis, which does not extend beyond the mucogingival junction, 

stomatitis is a unique syndrome that can cause proliferative and ulcerative 

inflammation of the whole oral cavity (White et al., 1992).  It can affect all oral 

and pharyngeal soft tissues including the gingiva as well as the oral and pharyngeal 

mucosa.  The inflammation is typically confined to specific tissues and locations 

within the mouth, and the disease name is often defined by the distribution of 

inflammation apparent during disease, as shown in Figure 1.1.  In the most severe 

cases of FCGS, two main sites in the oral cavity are most commonly affected by 

painful ulcerous lesions.  These include tissue lateral to the palatoglossal folds 

known as the fauces (caudal mucositis), and mucosa overlying the 

premolar/molars extending to the buccal mucosa (alveolar mucositis). In some 

cases, swelling of the lips and loss of papillae on the tongue is also apparent 

(Southerden, 2010; Hennet et al., 2011). The salient clinical signs of 

gingivostomatitis include extreme oral pain and discomfort in affected animals.  

Other common clinical symptoms include halitosis, ptyalism (excessive salivation) 

and dysphagia often followed by weight loss due to difficulty eating (Bellei et al., 

2008).  Some cats may also display a decrease in grooming behaviour. The high 

severity of symptoms associated with FCGS can additionally lead to changes in 

affected cats’ demeanour including an increase in aggressiveness when handled 

as well as withdrawn behaviour (Lommer, 2013).  
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Figure 1.1: Terminology and localisation of inflammation in FCGS (Perry & 
Tutt, 2015). 
 

1.2.3 Prevalence 

 

Oral disease in cats is very common, with periodontal disease (affecting around 

85% of cats) and feline tooth resorption lesions (affecting 25-75% of cats) seen 

most frequently in practice (Bonello, 2007).  However, there is limited research 

investigating the prevalence of FCGS and so the commonness of the condition is 

uncertain.  In one study investigating a total of 753 cats, 12% of cats were found 

to be affected with FCGS (Verhaert and Van Wetter, 2004).  However, another 

larger study from the north-west of England showed an FCGS prevalence of 0.7% 

in a population of 4858 cats visiting veterinary practices (Healey et al., 2007).  

With approximately 10 million cats owned as pets in the United Kingdom (Murray 

et al., 2009), the estimated disease burden of FCGS translates to at least 70,000 

cases (0.7%) and upwards of 1 million cases (12%) in the UK alone.   

 

There are three distinct periods in a cat’s life when significant oral inflammation 

and stomatitis may be present.  The first is at 3-6 weeks during the time of kitten 

vaccinations.  At this period, inflammation may be elicited in response to vaccinal 

elements or due to increased dental plaque that coincides with deciduous tooth 

eruption.  The second period is marked by the eruption of permanent teeth at 4-
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6 months old, where more severe oral inflammation can be present and enhanced 

oral hygiene may be required as a method of control.  The largest group of cats 

found to be most commonly affected with oral inflammation and FCGS is at a mean 

age of seven years.  Adult cases of FCGS present clinical signs of inflammation 

with varying severity and location, with some cats believed to be more susceptible 

to the aetiological stimuli (Johnston, 2012).  The disease is seen in all breeds of 

domestic cats, however it has been suggested that pure-bred cats, including Maine 

Coon, are predisposed to the juvenile form of FCGS and can develop more severe 

lesions during disease (Wexler-Mitchell, 2018). 

 
1.3 Aetiopathogenesis 
 

The aetiopathogenesis of FCGS is not well understood, but it is believed that the 

chronic inflammation that is characteristic of FCGS is a result of an excessive 

immune response to oral antigenic stimulation.  The disease is thought to be 

multifactorial, with various possible causes (Lyon, 2005).  Oral antigens that are 

considered to be key factors in prompting the atypical immune response in FCGS 

include dental plaque accumulation, oral bacteria, and viral infections.  It is also 

believed that the chronic nature of the syndrome could be partially due to an 

underlying immune abnormality of the host (Southerden, 2010).  The 

multifactorial nature of FCGS is briefly summarised in Figure 1.2. 
 

1.3.1 Periodontal disease and tooth resorption  

 

Periodontal disease is often identified in cats with FCGS, due to inflammation 

spreading to the underlying bone and causing destruction of structures supporting 

the teeth (Hennet, 1997).  As gingivitis increases in severity, the gingival tissue 

shows a loss of integrity and ulceration of the gingival sulcus occurs, which allows 

bacteria and their by-products to migrate to deeper gingival structures and this 

can have an exacerbating effect on FCGS.  Moreover, type one tooth resorption, 

characterised by a normal periodontal ligament space and radiodensity of root 

structure, is also commonly present in cats with FCGS and is found in areas where 

periodontal inflammation is severe (Lobprise and Dodd, 2018).  Tooth resorption 

poses a significant complication in many FCGS cases, increasing the difficulty of 

tooth extraction due to ankylosis and/or weakening of roots.  A study investigating 
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101 cats with FCGS found that all cats with FCGS had periodontitis and 49% of 

FCGS cases displayed external inflammatory tooth resorption (Farcas et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Algorithm of FCGS aetiology  

FCV: Feline calicivirus, FIV: Feline immunodeficiency virus, FeLV: Feline leukaemia 

virus, FCGS: Feline chronic gingivostomatitis. Adapted from (Bonello, 2007). 

 

 

1.3.2 Bacteriology 

 

1.3.2.1 Dental plaque  

 

Although research has indicated that FCGS is multifactorial in nature, it is 

generally accepted that plaque bacteria are a key contributing factor to the 

development of FCGS, with oral tissues overreacting to the presence of dental 

plaque.  Bacteria are ubiquitous in the feline oral cavity, with a vast number of 

Composition of saliva 

Impaired mucosal defence 

Altered epithelial integrity 
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Bacteria 
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bacterial species present in both healthy and diseased states in the form of a 

complex protective plaque biofilm (Perry and Tutt, 2015; Harris et al., 2015).  

Biofilms provide advantages to bacteria over planktonic states, including 

protection from environmental stresses by the production of an extracellular 

polymer matrix and increased resistance to antimicrobials (Sedlacek and Walker, 

2007).  The biofilm adheres to the tooth surface and accumulates readily in all 

species.  It is rich in bacterial species, both commensal and pathogenic, as well 

as various glycoproteins and polysaccharides (Marsh & Bradshaw, 1995).  In the 

feline oral cavity, initial plaque development occurs within hours of the eruption 

of teeth or following cleaning.  An exposed tooth surface is covered by a layer of 

glycoprotein salivary pellicles, which act as a prime adhesive for bacteria as they 

provide a rich nutrient source (Zambori et al., 2012).  The first bacteria (early 

colonisers) to attach are mostly Gram-positive aerobic organisms that possess 

adhesion structures such as fimbriae which allow them to colonise and grow on 

the surface of the tooth.  Following growth of early colonisers, microcolonies 

begin to form which attracts more bacteria and triggers the development of the 

extracellular protein matrix (EPS).  The EPS acts as a protective barrier against 

antimicrobial agents and environmental stresses.  As dental plaque matures, the 

oxygen tension reduces and thus, the biofilm becomes more compliant to 

increased numbers of Gram-negative anaerobic species including bacilli and 

spirochaetes (Cate, 2006).  

 

Plaque bacteria can reside harmlessly within the oral cavity if plaque is 

consistently removed through an upkeep of oral hygiene, however, failure to 

remove plaque allows for the accumulation of a thick layer of microbes and a 

subsequent enrichment of inflammatory by-products associated with active 

gingival inflammation.  Consequently, plaque accumulation can lead to a variety 

of dental diseases in the host.  Within feline hosts, where daily brushing is not a 

common practice, a build-up of plaque will proceed to calcify to form the brown 

malodorous material known as dental calculus.  A positive correlation between 

feline age and calculus formation has been observed, as well as an increased 

frequency of calculus shown in cats fed wet, rather than dry, food (Gawor et al., 

2006).  Calculus has a rough surface and can promote further colonisation of 

bacteria (Perry and Tutt, 2015).  Without intervention, plaque and calculus build-

up can lead to the development of periodontal disease, which can progress from 
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gingivitis to irreversible periodontitis (Wolf and Hassell, 2006).  While cats 

affected by FCGS will often have very little calculus in the early stages of disease, 

by the time of clinical presentation, cats are also often suffering from significant 

periodontal disease (Hennet, 1997).  In cats with FCGS, plaque is considered as a 

major stimulant for the excessive oral inflammation, which is more severe than 

the typical progression of periodontal disease.  Understanding the involvement of 

plaque deposition in FCGS is of importance for the clinical management of this 

disease. 

 

1.3.2.2 The diseased feline oral microbiota  

 

Extensive research on the bacteria of the human oral cavity has revealed that it 

harbours a widely diverse bacterial community which grow within complex 

biofilms.  In human periodontal disease, as biofilms progress from supragingival to 

subgingival sites, there is a shift in the oral microbial community from 

predominantly commensal aerobes such as Actinomyces and Streptococcus species 

towards anaerobic, potentially pathogenic bacteria including Porphyromonas 

gingivalis and Tannerella species (Bascones and Figuero, 2005).  This follows the 

ecological plaque hypothesis, by which the subgingival environment selects the 

oral bacterial composition, with a shift to pathogenic bacteria driving the 

transformation from health to disease (Bartold and Van Dyke, 2013).  While the 

feline oral microbiome is less well studied, a shift in oral bacterial populations 

during the progression of periodontal disease has been implicated.  Early research 

found black-pigmented Bacteroides and Peptostreptococcus anaerobius to be of 

higher prevalence in cats with increasingly severe periodontal disease (Mallonee 

et al., 1988).  It has also been shown, through the use of next-generation 

sequencing, that there is a change in the proportion of phyla in feline subgingival 

plaque dependent on health state.  Cats with periodontal disease were found to 

have double the number of Firmicutes than healthy cats, while Bacteroidetes and 

Proteobacteria decreased in comparison (Harris et al., 2015).          

 

There is strong evidence that bacterial composition may also influence the 

development of FCGS in felines, with specific species of bacteria shown to be 

more prevalent in diseased states, as is often seen in periodontal disease. One 

study suggested that cats affected with FCGS have a reduced diversity of oral 
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bacteria in comparison to healthy cats (Dolieslager et al., 2011).    Early research 

indicated that FCGS could be caused by, or associated with, Bartonella henselae.  

It was discovered that cats co-infected with feline immunodeficiency virus (FIV) 

and B. henselae showed a higher prevalence of gingivitis, suggesting a possible 

connection in cats with clinical oral disease (Ueno et., al 1996).  However, there 

has since been no credible link found between Bartonella and FCGS.  It has since 

been discovered that felines with FCGS have an increased prevalence of 

Pasteurella multocida sub-species compared to healthy cats (Dolieslager et al., 

2011).  FCGS samples with a large overgrowth of P. multocida subsp. multocida 

have displayed a concurrent reduction of some bacteria found in high levels in 

healthy cats, such as C. canimorsus, possibly due to increased competition for 

nutrients.  Furthermore, bacteria such as Pseudomonas species, Tannerella 

forsythia and Porphyromonas circumdentaria have been commonly detected in 

cats with FCGS, and may be significant periodontopathogens (Dolieslager et al., 

2011).  Diseased felines that harbour T. forsythia are thought to present FCGS 

with the highest clinical disease severity.  Moreover, cats suffering from FCGS 

have shown to have statistically significantly increased levels of serum antibodies 

towards certain Gram-negative anaerobes such as Bacteriodes species (Sims et al., 

1990).  The increased prevalence of specific bacteria in FCGS cases suggests that 

they may be of aetiological significance in the development of disease. 

 

1.3.2.3 Bacterial sialidases 

 

Sialidases are a group of enzymes involved in the cleavage of terminal sialic acids 

from complex carbohydrates found on glycoproteins or glycolipids (Juge et al., 

2016).  Previous research has shown that the sialidase enzymes of some pathogenic 

bacteria, including Vibrio cholerae and Streptococcus pneumoniae, contribute to 

bacterial virulence within the host (Corfield, 1992).  These enzymes are also 

thought to particularly increase the virulence of bacteria that are present on 

and/or invade mucosal surfaces, likely due to a greater abundance of sialic acid 

in these tissues.  Sialidases have shown to act in tissue destruction, modulation of 

host innate immunity, as well as promoting biofilm formation (Soong et al., 2006).  

Research has found that organisms which have shown to be prevalent in the oral 

cavity during FCGS, including P. multocida species and T. forsythia, display 

medium-high sialidase activity (Scharmann et al., 1970).  T. forsythia has also 
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been prevented from attaching to epithelial cells when its sialidase activity was 

inhibited (Honma et al., 2011).  Investigating the sialidase activity of bacteria 

associated with FCGS could be valuable when developing targeted inhibitors to 

reduce bacterial attachment and invasion during disease.   

 

1.3.3 Viral influence  

 

Several viral agents have been linked to the occurrence of oral inflammation and 

FCGS in cats, including feline calicivirus, feline leukaemia virus, and feline 

immunodeficiency virus.  This is primarily due to an increased prevalence of FCGS 

observed in cats with various viral diseases (Tenorio et al., 1991; Quimby et al., 

2008; Belgard et al., 2010).  However, the pathological significance of viruses in 

FCGS is unclear.  It is thought that some viruses may not be a direct causative 

agent of disease, but instead exacerbate the symptoms of FCGS.  One proposed 

mechanism of viral involvement in FCGS suggests that immune dysregulation 

associated with viral infection could lead to oral microbial dysbiosis and a 

subsequent increase in pathogen colonisation and infection (Taniwaki et al., 

2013). 

 

1.3.3.1 Feline calicivirus  

 

Feline calicivirus (FCV) is a highly contagious ribonucleic acid (RNA) virus that is a 

major cause of respiratory infection in cats.  Privately owned pet cats kept in 

small numbers generally have lower rates of infection (around 10%) by FCV, with 

a greater prevalence of up to 40% found in shelter cats or catteries (Radford et 

al., 2007). FCV replicates in the oral and respiratory tissues, and has been 

identified as a cause of ulceration in the oral cavity of infected cats.  Several 

studies investigating felines chronically affected by FCGS have reported above 70% 

of these patients to also test positively for FCV following oropharyngeal swabbing 

(Knowles et al., 1989; Thompson et al., 1984; Harbour et al., 1991).  In the study 

by Thompson et al. (1984), FCV was isolated from 80% of cats with FCGS, compared 

to 0% of the control group.  However, more recent immunohistochemistry and PCR 

analysis of 26 FCGS-affected feline samples showed no detection of FCV in 

diseased cats (Rolim et al., 2017).  Moreover, another study of specific pathogen-

free cats infected with FCV were found to have associated acute oral 
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inflammation, but no cases developed into FCGS over a 10-month period (Knowles 

et al., 1991). While several studies have demonstrated a higher prevalence of FCV 

in cats with FCGS, a direct causal relationship between FCV and FCGS has not been 

established.  Further research is required to determine the involvement of FCV in 

FCGS, as a possible cause or modifying agent in disease. 

 

1.3.3.2 Feline leukaemia virus  

 

Feline leukaemia virus (FeLV) is an RNA retrovirus that infects up to 3% of cats in 

the United States and up to 5% of healthy cats in European countries (Gleich et 

al., 2009).  Infection with  FeLV can have several outcomes including development 

into a persistent viraemia, development of an inactive latent form, or the immune 

system may eliminate the virus (Rezanka et al., 1992).  A possible relationship 

between FeLV and FCGS has been suggested, since around 15% of cats infected 

with FeLV will show clinical signs of oral inflammation (Levy, 2005).  Studies 

investigating a link between FeLV and FCGS have shown inconsistent results.  In 

one study, 16.6% out of 36 cats with stomatitis tested positive for FeLV (White 

et., al 1992).  However, a study of 23 cats with FCGS found that all cats were 

negative for FeLV (Hennet, 1997).  Similarly, a study by Quimby et al. (2008) 

concluded that FeLV was not present in any of the cats with FCGS that were 

assessed.  Therefore, the involvement of FeLV in FCGS is questionable. 

 

1.3.3.3 Feline immunodeficiency virus  

 

Feline immunodeficiency virus (FIV) is an RNA lentivirus that affects up to 4.4% of 

cats worldwide (Richards, 2005).  FIV has been identified in cats with chronic oral 

lesions.  The severity of oral lesions has also shown to increase in cats with co-

infections of FIV with other viruses such as FCV (Dawson et al., 1991).  Studies 

investigating the association of FIV and FCGS have found conflicting outcomes.  A 

study that observed cats in the UK affected with FCGS found that 75% of cats were 

also positive for FIV compared to only 16% of the control group (Knowles et al., 

1989). However, a more recent study was unable to identify a significant 

difference in antibodies for FIV in serum samples between cats with FCGS and 

healthy controls (Belgard et al., 2010).  Some single case reports have also shown 

that felines affected with FCGS tested negative for FIV (Baird, 2005; Southerden 
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and Gorrel, 2007).  It is possible that the presence of both FeLV and FIV in cats 

with FCGS is coincidental, as the prevalence of these viruses in affected cats has 

shown to not differ significantly from the general feline population (Dolieslager 

et al., 2011).  Further research is required to fully understand the viral role in 

FCGS aetiology.   

 

1.3.4 Immunology of FCGS  

 

1.3.4.1 Mucosal cells  

 

Various immune cells are present within the oral cavity including lymphocytes, 

dendritic cells, macrophages, and mast cells (Arzi et al., 2010).  Inflammatory cell 

infiltrates are usually abundant in FCGS, with research suggesting that oral lesions 

present in affected cats represent a complex and destructive inflammatory 

process that frequently extends from the epithelium to submucosal tissues (Harley 

et al., 2011).  While the inflammatory infiltrate present in the feline oral cavity 

during FCGS is not entirely understood, plasma cells and lymphocytes are believed 

to be predominant within FCGS oral lesions (Johnessee and Hurvitz, 1983).  

Histological imaging of moderate to severe FCGS has displayed an expansion of 

the mucosal lamina propria by sheets of mature plasma cells, including the 

presence of Mott cells (Murphy et al., 2019).  Mott cells are atypical plasma cells 

which contain immunoglobulins within their cytoplasm (Bain, 2009).  Moreover, 

increased numbers of CD3+ T lymphocytes, L1+ cells, and elevated levels of MHC 

class II expression have been associated with greater severity of inflammation in 

FCGS oral lesions (Harley et al., 2011).  Small increases in the proportion of mast 

cells, dendritic cells and macrophages have also been noted (Harley et al., 2003a; 

Vapniarsky et al., 2020).   There has also shown to be a shift in salivary 

immunoglobulins in cats with FCGS, from primarily IgA in healthy cats to primarily 

IgG and IgM in affected cats (Harley et al., 2003b).  A decrease in IgA levels in 

saliva can weaken the mucosal defence against pathogens and therefore could 

contribute to the development of FCGS.   

 

Furthermore, CD8+ T cells have been found in greater abundance than CD4+ T 

cells in mucosal samples of FCGS-affected cats (Harley et al., 2011).  In general, 

CD4+ T cells primarily act by regulating other immune cells through the release of 
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cytokines or by direct cell contact.  CD8+ T cells, however, are cytotoxic and 

typically kill target cells that have been virally infected or have undergone 

neoplastic transformation.  When CD8+ cells encounter the target antigen, they 

differentiate into an effector phenotype which is marked by increased levels of 

pro-inflammatory cytokines and killing of target cells.  Some of these cells also 

acquire a memory phenotype, which allows the cell to persist long-term in the 

absence of an antigen (Kalia and Sarkar, 2018).  Memory cells with “effector 

memory” can attach and reside in sites of inflammation, such as within the oral 

mucosa (Sallusto et al., 2004).  Elevated levels of CD8+ T cells in FCGS could 

therefore suggest an elicited cytotoxic cell-mediated immune response, 

supporting the possible involvement of viral agents in disease (Harley et al., 2011).  

In addition, one study has demonstrated that there is a notable increase in 

effector memory CD8+ lymphocytes and a corresponding decrease in central 

memory CD8+ lymphocytes in felines with FCGS in comparison to a healthy control 

group (Vapniarsky et al., 2020).  This suggests that the persistent inflammation in 

FCGS could be due to CD8+ cells remaining in an activated state.  The complex 

immune response found in FCGS most likely drives the chronic inflammation that 

presents during disease.  

 

1.3.4.2 Toll-like receptors  

 

Toll-like receptors (TLRs) are a class of proteins present on the surface of host 

leukocytes which can sense and respond to invading pathogens by initiating the 

production of cytokines and activating the innate and adaptive immune response 

(Janeway and Medzhitov, 2002). Signature molecules on the surface of 

microorganisms known as pathogen-associated molecular patterns (PAMPs) are 

recognised by the host with specific recognition receptors, including TLRs, which 

allows the host to determine the nature of a pathogen and induce an appropriate 

inflammatory response.  Notable changes in host TLR expression can give insight 

into the possible pathogens involved in the aetiopathogenesis of a disease (Akira 

and Takeda, 2004).  Using quantitative PCR, Dolieslager et al. (2013) 

demonstrated significantly elevated mRNA levels of TLR2 and TLR7 in mucosal 

tissue biopsies of cats affected with FCGS compared to a healthy control group.  

Additionally, increased levels of TLR mRNAs were displayed when putative 

pathogens T. forsythia (TLR2, TLR4, TLR7 and TLR9), P. circumdentaria (TLR2 and 
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TLR3) and FCV (TLR2) were present in affected cats.  TLR2 and TLR9 both 

recognise many bacterial, fungal and viral substances, and mRNA expression of 

TLR2 has shown to increase when it is activated (Weiss et al., 2004).  TLR4 

activation can occur after binding of several Gram-negative bacteria and envelope 

proteins of viruses, while TLR7 responds to single-stranded RNA and anti-viral 

compounds (Akira and Takeda, 2004).  The increased expression of these TLRs and 

heightened activity of the immune system is most likely the cause for the clinical 

manifestation of FCGS, possibly in response to the altered oral microbiota or viral 

presence that has been implicated in FCGS.  Further research is required to 

evaluate the influence of FCGS-associated putative pathogens individually, and in 

combination, on TLRs and the immune response. 

 

1.3.4.3 Cytokines and chemokines  

 

Following TLR activation, there is an increase in the transcription of many genes 

including those for cytokines, which act as signalling molecules to mediate and 

regulate the inflammatory response.  Studies have reported increased mRNA 

expression of a range of pro-inflammatory cytokines in felines with FCGS, 

including IL-2, IL-4, IL-6, IL-10, IL-12, IFN-γ, TNF-α and IL-1β (Harley et al., 1999; 

Dolieslager et al., 2013).  Pro-inflammatory cytokines are involved in both innate 

and adaptive pathways, promoting the progression of the inflammatory response 

which may explain the severe inflammation characteristic to FCGS.  Furthermore, 

there is a shift from predominantly T-helper lymphocyte type 1 (Th1) cells in 

healthy cats to a mixed environment of Th1 and Th2 cells in cats with FCGS (Harley 

et al., 1999).  Th1 cells produce cytokines such as IFN- γ and IL-2 and play a role 

in the activation of macrophages and delayed hypersensitivity responses.  Th2 

cells produce several cytokines including IL-4, IL-6, IL-9, IL-10 and IL-13, and are 

involved in the stimulation of B cells (Cruse and Lewis, 2010).  The chronic 

inflammation found in FCGS is likely a result of the amplified immune response in 

cats with FCGS. 

 

Interleukin-8 (IL-8) is a pro-inflammatory chemokine that is a major chemotactic 

factor in acute inflammation, involved in the recruitment of neutrophils to sites 

of inflammation and tissue infiltration (Haas et al., 2016).  IL-8 has been used in 

both in vitro and in vivo studies to measure inflammation in human periodontal 
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disease (Fukui et al., 2013; Dommisch et al., 2015).  In humans, an increase in 

levels of IL-8 has been shown in gingival tissues, correlating to the severity of 

periodontal disease (Noh et al., 2013).  While its specificity for oral disease in cats 

is not known, several studies have identified increased levels of IL-8 in other 

chronic felines inflammatory diseases (Habenicht et al., 2012; Gruen et al., 2017).  

Therefore, IL-8 may be useful as a marker in cats with an abnormal inflammatory 

response such as in FCGS. 

 

1.4 Diagnosis  
 

FCGS is a poorly defined condition where inflammation extends beyond the 

mucogingival line.  As FCGS is likely to have multifactorial aetiology, there is no 

definitive diagnostic test as underlying causes may differ between cases.  A 

veterinary surgeon will thoroughly examine a cat’s oral cavity under anaesthesia 

before reaching an accurate diagnosis.  This allows for other potential causes of 

inflammation in the mouth such as azotaemia, squamous cell carcinoma, and 

periodontal disease to be ruled out to avoid misdiagnosis.  Furthermore, a full 

dental radiograph is strongly recommended to evaluate root remnants, as most 

cats with FCGS will also suffer from a form of periodontitis which will require 

treatment (Farcas et al., 2014).  If there is still doubt over the diagnosis, biopsies 

should be taken which allows for the elimination of neoplasms (Milella, 2008).  

Biopsies can also be used to evaluate the symmetry of oral lesions which further 

helps to correctly diagnose the disease.  Inflammatory lesions in FCGS are usually 

bilaterally symmetrical (Niemiec, 2008). PCR technology can be used to identify 

carriage of oral viruses.  

 

1.5 Disease prevention 
 

Establishing preventative measures for FCGS has proven difficult due to the elusive 

aetiology of the disease.  However, a sensible method of maintaining the oral 

health of a cat as much as possible would be to upkeep good oral hygiene.  This 

would focus on the removal of dental plaque and disruption of bacterial biofilms 

in the mouths of affected cats and in turn, reduce the risk of periodontal disease 

that can often develop in cats with FCGS.  A variety of products are available to 

maintain dental hygiene in cats including toothpaste and mouthwash.  A reduction 
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in dental calculus has been shown in cats that have their teeth brushed once or 

twice weekly (Richardson, 1965).  A specific diet can also be implemented to 

improve dental care.  The diets often include large kibbles that are designed to 

clean the teeth during eating by mechanically reducing plaque build-up from the 

surface of teeth.  Dried food is generally believed to benefit oral health in 

comparison to moist food (Studer and Stapley, 1973).  One recent study found that 

the probability of cats developing poor oral health is lower when fed a dry diet 

(Mata, 2015).  It has also been suggested that the oral health of cats may improve 

when artificial ingredients are removed from food (Addie et al., 2003).   

 

1.6 Treatment options  
 

The treatment of FCGS is challenging as the response to treatment is 

unpredictable.  In general, the treatment of FCGS can be approached with surgical 

and/or medical intervention.  Improvement is often observed in around two-thirds 

of cases, while some cats will not recover (Jennings et al., 2015).  Many cats will 

continue to show persistent or relapsing lesions and will require chronic 

management of disease.  As the aetiology of FCGS is unknown, effective targeted 

treatment options remain limited.  Therefore, most current treatments aim to 

reduce inflammation as well as minimise pain and discomfort that accompanies 

FCGS.  

 

1.6.1 Dental extraction 

 
Surgical management of FCGS typically involves the extraction of all premolars 

and molars with the hypothesis that this can remove stagnant plaque bacteria and 

decrease clinical symptoms (Bellei et al., 2008). This is currently the 

recommended method of treatment for FCGS as it has shown to provide the best 

long-term outcome.  Studies have shown varying success rates of dental extraction 

in cats with FCGS, with 50-60% of cases requiring no further treatment, 20-40% of 

cases show signs of improvement and the remaining 10-20% of cases will not 

improve following the intervention (Hennet, 1997; Girard and Hennet, 2005; Bellei 

et al., 2008).  In particularly severe cases, if there is no positive response to 

partial-mouth extraction, cats may require a full dental extraction (including 

canines and incisors) as a second stage of treatment (Jennings et al., 2015). 
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Post-operative plaque control often involves the use of a topical chlorhexidine 

(CHX) treatment.  CHX paste or gel is believed to be one of the most important 

and effective treatment options available, both short- and long-term, to control 

FCGS and reduce the overall antigenic burden.  CHX is widely accepted as the 

‘gold standard’ in the management of human oral biofilm diseases, shown to have 

a broad-spectrum of activity against bacteria, fungi and viruses (Herrera, 2013; 

Lim and Kam, 2008).  One problem with this treatment is finding a suitable product 

for affected felines, as some gels have a bitter taste and may cause side effects 

in some animals (Lobprise and Dodd, 2018).  Identifying a potentially natural 

alternative compound that has the potency of CHX but with minimal adverse 

effects could be highly valuable in the search for therapeutic measures for FCGS. 

 

1.6.2 Antibiotic therapy  

 
Antibiotics are often advised as a first-line treatment in an attempt to alleviate 

excessive inflammation or allow oral tissue to heal following surgery.  The 

antibiotics prescribed should preferably target both aerobic and anaerobic 

pathogenic bacteria in the oral cavity. Recommended antibiotics include 

clindamycin, amoxicillin, metronidazole, and doxycycline (Frost and Williams, 

1986; Harvey, 1991; Lyon, 2005; Wiggs, 2007).  However, the use of antibiotics in 

FCGS is thought to worsen the long-term prognosis of some cases, as they may 

become ineffective and lead to super-infections (Bonello, 2007).  Moreover, 

Pasteurella multocida species, which have shown to be highly prevalent in cats 

with FCGS, appear to be clindamycin resistant and therefore this drug may not be 

effective in all cases (Dolieslager et al., 2011).  Antibiotic therapy is more 

favourable as a short-term intervention for FCGS to reduce oral discomfort. 

 

1.6.3 Anti-inflammatory and immunosuppressive drugs 

 

Corticosteroids are drugs that mimic the effects of hormones that are normally 

produced in the adrenal glands.  They have been used to treat FCGS due to having 

anti-inflammatory properties.  Prednisolone is a short-acting corticosteroid that 

is often used to control inflammation in FCGS.  In one study using several 

corticosteroids as a treatment method for FCGS, an improvement was observed in 
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up to 80% of cases (White et al., 1992).  However, while these drugs may improve 

clinical symptoms of disease, they can also lead to a more progressive form of 

FCGS that will not respond to treatment and therefore, they are often used only 

as a “rescue treatment”.  Additionally, the use of corticosteroids is generally 

contraindicated because of an associated increased risk of obesity and diabetes 

mellitus (Niemiec, 2008).  

 

Non-steroidal anti-inflammatory drugs (NSAIDs) are another type of anti-

inflammatory used to reduce the effect of the inflammatory response in FCGS.  

NSAIDs work by blocking the COX enzymes and reduce prostaglandins throughout 

the body.  The best option of NSAID for FCGS appears to be meloxicam, which 

would often be prescribed in combination with an antibiotic (Hennet et al., 2011).  

However, there is limited research reporting the efficacy of NSAIDs for FCGS.  

 

1.6.4 Interferon treatment 

 

Interferons (IFNs) are a group of proteins used in cell communication throughout 

the immune system that can interfere with viral replication (Hennet et al., 2011).  

Recombinant feline interferon omega (rFeIFN-ω) is an immunomodulatory drug 

which has been described as effective for the treatment of feline viruses including 

FCV and feline herpesvirus-1 (Truyen et al., 2002).  One study investigated the 

use of rFeIFN-ω compared to prednisolone in FCGS-affected cats that were 

refractory to extraction therapy.  There was found to be no statistically significant 

difference in clinical signs when using rFeIFN-ω compared to prednisolone, 

however the use of rFeIFN-ω did show to significantly reduce the pain, and 

increase the activity, of affected cats throughout the study (Hennet et al., 2011).  

Furthermore, Leal et al. (2013) conducted a case study with 2 cats and showed 

that treatment of oral lesions with rFeIFN-ω resulted in a significant decrease in 

inflammation.  Research suggests that long-term prognosis with the use rFeIFN-ω 

exceeds the potential of other methods of treatment for this condition (Hennet 

et al., 2011).   
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1.6.5 Mesenchymal stem cell therapy 

 

The efficacy of mesenchymal stem cells (MSCs) administered intravenously to cats 

with refractory FCGS has been reported with promising results.  MSCs are 

multipotent stem cells that can modulate innate and adaptive immunity through 

inhibition of T-cell proliferation, downregulation of MHC II, and inhibition of 

dendritic cell maturation (Clark et al., 2017; Quimby and Borjesson, 2018).  

Autologous MSCs have shown to be nonimmunogenic and safe in both humans and 

animals, with few reports of adverse reactions following long-term use (Quimby 

et al., 2013; Kol et al., 2015).  One study showed a positive response rate of over 

70% when cats with refractory FCGS were treated with autologous adipose-derived 

MSCs, with over 40% showing complete resolution of disease (Arzi et al., 2016).  

Further investigations to determine the potential of MSCs as a treatment option 

for FCGS are ongoing, including clinical trials to gain a greater understand of the 

mechanism of action of MSCs in disease (Quimby and Borjesson, 2018).    

 
 
1.7 In vitro biofilm models 
 

Many studies have highlighted the diverse nature of dental plaque biofilms and 

that biofilm composition may influence a healthy or disease state in both human 

and feline oral disease.  Various plaque biofilm models have been developed in 

the study of human oral diseases to investigate biofilm formation and 

antimicrobial susceptibility, and to further understand the impact of specific 

bacteria on disease (Periasamy and Kolenbrander, 2009; Park et al., 2014; 

Guggenheim et al., 2001).  Biofilm models of human supra- and sub- gingival 

plaque have previously been developed using defined bacterial species or from 

undefined plaque samples.  While using an undefined bacterial model more closely 

reflects the species diversity present in the oral cavity, defined biofilm models 

have shown to be favourable in the study of biofilms due to their reproducibility.  

It also allows the study of specific bacterial biofilms of interest, where exact 

mechanisms of biofilm formation and species-specific interactions can be 

identified.    

 

While plaque biofilm models are extensively used in the study of human 

periodontal disease, there is no evidence of the development of a feline oral 
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plaque biofilm.  A five species human caries biofilm model with S. oralis, S. mitis, 

A. naeslundii, S. downei and S. sanguinis was created to study the biofilm 

formation when treated with bovine milk osteopontin, with an overall reduction 

in the biofilm biomass shown (Schlafer et al., 2012).  Furthermore, a complex 

eleven species oral biofilm has been developed to assess the viability of individual 

species following treatment with oral cleansing regimes (Sherry et al., 2016).  The 

use of in vitro biofilm models could be beneficial in the study of feline oral 

disease.   

 

1.8 Summary 
 

FCGS is a poorly defined disease, marked by localised chronic inflammation of soft 

oral tissues including the gingiva and oral mucosa.  The aetiology is believed to be 

a manifestation of an overreactive immune response to antigenic stimulation, with 

bacteria and viruses believed to be important contributing factors to the 

development and progression of disease.  While there are a several treatments 

available for FCGS, no method of intervention is completely satisfactory to cure 

the disease in all cases.  Until the complex multifactorial nature of FCGS can be 

understood, it will remain difficult to find an appropriate method of intervention.  

This makes the aetiopathogenesis of FCGS an important area of research to 

ultimately allow for the development of effective preventative measures and 

novel methods of treatment to tackle this debilitating disease. 

 

1.9 Aims of study 
 

1.   To exploit multiple cell lines to investigate, in vitro, the initial innate 

immune responses (via cytokine release and mRNA expression) to putative 

pathogenic bacteria associated with FCGS.  The cell models include THP1-

XBlueTM human pro-monocytes and SCCF1 feline oral squamous carcinoma 

cells. 

2.   To develop a multi-species biofilm with FCGS putative pathogens and 

commensal microorganisms and test with biologically active agents. 
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2 Host cell inflammatory response following 
exposure to bacteria associated with FCGS 
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2.1 Introduction and Aims 
 
FCGS is a complex syndrome with a myriad of factors that may contribute to 

disease aetiology.  It is commonly believed that cats with FCGS suffer from an 

over-reactive immune response to low levels of oral antigens, including dental 

plaque.  Specific bacteria have been identified as highly prevalent in diseased cats 

showing abnormal levels of inflammation, with Tannerella species and 

Porphyromonas species implicated to be key pathogens involved in the progression 

of disease.  Moreover, Pasteurella multocida species have shown to be highly 

represented in FCGS, suggesting an association with disease pathogenesis 

(Dolieslager et al., 2013).   

 

The colonisation and accumulation of dental plaque bacteria in the feline oral 

cavity, like in periodontal disease, may stimulate a variety of host inflammatory 

responses.  Phagocytes are a first line of host defence and are involved in clearing 

pathogens by phagocytosis, degranulation, and through the recruitment of other 

immune cells to the site of infection (Paltrinieri, 2008).  Some phagocyte cells 

have toll-like receptors (TLRs) on their surface which allow for the initial 

detection of pathogens (Janeway and Medzhitov, 2002). TLRs activate 

downstream signalling pathways, such as the nuclear factor NF-κB pathway, that 

lead to the induction of innate immune responses by releasing pro-inflammatory 

chemokines and cytokines like interleukin-8 (IL-8) and tumour necrosis factor 

alpha (TNFα) (Kawasaki and Kawai, 2014).  The pro-inflammatory chemokine IL-8 

has been implicated in chronic inflammation (Harada et al., 1996).  These 

processes are not only involved in eliciting immediate host responses such as 

inflammation, but also orchestrate antigen-specific adaptive immune responses 

(Janeway and Medzhitov, 2002).   

 

The ability of the host to mount an appropriate inflammatory response is critical 

for maintaining oral health and host-microbial symbiosis.  Due to lack of oral 

hygiene in felines, plaque bacteria may accumulate at the gingival margin and 

lead to the over-reactive immune response and consequent chronic inflammation 

that is characteristic during FCGS.  Investigating the interactions between host 

cells and putative pathogens of FCGS is vital to provide a greater understanding 

of the abnormal inflammation observed in affected cats. 



 23 

The aim of this chapter is to investigate how FCGS-associated bacteria may 

modulate innate immune inflammatory responses at a gene and protein level, 

which may contribute to the chronic inflammation observed in FCGS.  
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2.2 Materials and Methods 
 

2.2.1 Bacterial culture and standardisation  

 

A selection of laboratory strains of commensal, known pathogenic and potentially 

pathogenic bacteria associated with FCGS were used in this study.  These included 

Pasteurella multocida subsp. multocida DSM 16031 and Pasteurella multocida 

subsp. septica DSM 23071 which were grown on Colombia blood agar (CBA) [Oxoid, 

Basingstoke, UK] supplemented with 5% sheep blood and maintained for 24 h at 

37°C in 5% CO2.  Bergeyella zoohelcum DSM 16783 was grown on CBA 

supplemented with 5% horse blood and maintained for 48 h at 37°C in 5% CO2.  

Porphyromonas circumdentaria DSM 103022 and Porphyromonas gingivalis ATCC 

33277 were maintained at 37°C on fastidious anaerobic agar (FAA) [Lab M, 

Lancashire, UK] supplemented with 5% horse blood under anaerobic conditions 

(85% N2, 10% CO2 and 5% H2 [Don Whitley Scientific Limited, Shipley, UK]) for 4 

days.  Tannerella forsythia ATCC 43037 was maintained at 37°C on FAA 

supplemented with 5% horse blood containing 10 µg/mL N-acetylmuramic acid 

(NAM) for 4 days under anaerobic conditions.  All isolates were stored in 

Microbank® vials [Pro-Lab Diagnostics, Wirral, UK] at -80°C until required. 

 

A loopful of each isolate was inoculated into 10 mL of the appropriate growth 

medium for bacterial quantification.  P. multocida sub-species and B. zoohelcum 

were propagated in 10 mL brain heart infusion broth (BHI) [Sigma-Aldrich, 

Gillingham, UK] for 24 h at 37°C in 5% CO2.  T. forsythia was grown in 10 mL BHI 

containing 5% fetal bovine serum (FBS) [Sigma-Aldrich] and 0.001% NAM for 4 days 

under anaerobic conditions.  P. circumdentaria and P. gingivalis were grown in 10 

mL Schaedler’s anaerobic broth [Oxoid] for approximately 4 days under anaerobic 

conditions.  Cultures were washed twice by centrifugation at 3000 rpm for 10 

minutes and re-suspended in 10 mL phosphatase buffer saline (PBS) [Sigma-

Aldrich].  All cultures were standardised to a final stock concentration of 1 x 109 

cells/mL in PBS by measuring the optical density at 550 nm.  The bacterial 

suspensions were subjected to heat at 55°C for 30 minutes to kill the bacteria and 

then stored at -20°C for further studies. 
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2.2.2 THP1-XBlueTM human cell culture 

THP-1 cells are a human pro-monocytic cell line, derived from the peripheral 

blood of an acute monocytic leukaemia patient (Tsuchiya et al., 1980). The THP1-

XBlueTM cell line [InvivoGen, UK] is a derivative of THP-1, specifically engineered 

to monitor the NF-κB signal transduction pathway.  THP1-XBlueTM cells feature an 

NF-κB and AP-1-inducible secreted embryonic alkaline phosphatase (SEAP) 

reporter gene.  SEAP is secreted by THP1-XBlueTM cells in response to TLR 

stimulation and can be measured using QUANTI-BlueTM, a SEAP detection reagent 

that turns purple/blue in the presence of SEAP.    

THP1-XBlueTM cells were cultured in RPMI (Roswell Park Memorial Institute)-1640 

medium supplemented with 2 mM L-glutamine, 25 mM HEPES, 10% (v/v) heat-

inactivated fetal bovine serum (FBS) [Sigma-Aldrich], 100 U/mL penicillin, 100 

µg/mL streptomycin, 100 µg/mL ZeocinTM and 100 µg/mL NormocinTM.  Cells were 

seeded at 7 x 105 cells/mL in a 75 cm2 flask [Corning Life Sciences, NY] and 

maintained at 37°C in 5% CO2.  Cells were allowed to reach approximately 80% 

confluency before passage.  To passage cells, cells were washed twice in PBS by 

centrifugation for 5 minutes at 1000 rpm and then re-suspended in 5 mL of RPMI-

1640 [Sigma-Aldrich].  The cells (10 µL) were stained with 0.4% trypan blue 

solution (10 µL) and live cells were counted on a haemocytometer under a light 

microscope.  Cells were re-seeded at 1 x 106 cells/flask in RMPI-1640.  THP1-

XBlueTM cells were used as a comparative human control in this study.     

Frozen stocks of THP1-XBlueTM were prepared for long-term storage in liquid 

nitrogen.  Cell suspensions were standardised to 1 x 106 cells/mL in RPMI-1640 

supplemented with 20% fetal bovine serum (FBS).  Equal volumes of 20% dimethyl 

sulfoxide (DMSO) and THP1-XBlueTM cells were transferred to a cryovial to obtain 

a final volume of 1 mL.  The vials were stored overnight at -80°C to ensure the 

cells were cooled slowly before final storage in liquid nitrogen.  Cells were revived 

from frozen stocks by thawing at 37°C before transferring into a cell culture flask 

containing warm RPMI-1640.  For experiments, cells were seeded at 2 x 105 

cells/mL in RPMI-1640. 
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2.2.3 SCCF1 feline cell culture 

The squamous cell carcinoma feline (SCCF1) cell line was developed from a 

laryngeal squamous cell carcinoma of a cat (Tannehill-Gregg et al., 2001).  SCCF1 

cells were acquired from the original developers of the cell line at The Ohio State 

University (USA).  Briefly, SCCF1 cells were propagated in William’s E medium 

[Sigma-Aldrich] supplemented with 2 mM L-glutamine, 0.05 mg/mL gentamicin, 

10 ng/mL epidermal growth factor and 10% FBS.  Cells were maintained at 37°C 

in 5% CO2 until 90% confluence.  To passage cells, the medium was removed and 

cells were washed twice with Dulbecco’s phosphate-buffered saline 

[ThermoFisher, Epsom, Surrey, UK] followed by the addition of 3 mL of 0.25% 

trypsin-0.53 mM EDTA [ThermoFisher] to disaggregate the cells from the surface.  

Once detached, 10 mL of media was added to the cells to terminate trypsinisation.  

A cell count was performed by staining cells with 0.4% trypan blue and counting 

viable cells on a haemocytometer under a light microscope.  Cells were re-seeded 

at 1 x 106 cells/flask in supplemented William’s E medium. 

Frozen stocks of SCCF1 cells were prepared as described for THP1-XBlueTM 

previously (section 2.2.2). For experiments, SCCF1 cells were seeded at 2 x 105 

cells/mL in William’s E medium.    

2.2.4 Bacterial stimulation of cell lines 

Each cell line (THP1-XBlueTM and SCCF1) was stimulated with a panel of bacteria 

thought to be involved in the aetiology and chronic inflammatory response found 

in FCGS.  Cells were seeded in a 96-well plate at a concentration of 2 x 105 

cells/mL in RPMI-1640 and incubated overnight at 37°C in 5% CO2.  The bacterial 

stocks of 1 x 109 cells/mL were subject to a series of double serial dilutions using 

PBS to prepare a range of multiplicities of infection (MOI) of bacteria – 200, 100, 

50, 25 and 12.5 – with bacterial concentrations from 4 x 107 bacteria/mL (MOI 200) 

to 1.25 x 106 bacteria/mL (MOI 12.5).  Following incubation, 20 µL of each 

bacterial dilution was added to the cell suspension.  RPMI-1640 served as a 

negative control.  The plate was then incubated at 37°C in 5% CO2 for 24 h.  At 24 

h, the plate was centrifuged at 1000 rpm for 1 minute before extracting 100 µL of 

supernatant which was stored at -20°C.  The remaining cell/bacterial suspension 

was stored at -80°C.  Supernatants and cell lysates were retained to assess the 
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release of pro-inflammatory mediator and changes in mRNA expression following 

stimulation.  RNA was extracted as described in section 2.2.6 and ELISA techniques 

were performed as described in section 2.2.11.  

2.2.5 QUANTI-BlueTM assay 

 

Toll-like receptor (TLR) activation was measured using the THP1-XBlueTM cell line 

which produces SEAP in response to TLR activation, and induction of the NF-κB 

transcription factor.  To quantify the levels of SEAP from the exposed THP1-

XBlueTM cells, a QUANTI-BlueTM colorimetric enzyme assay [InvivoGen] was used to 

assess all supernatants harvested from the bacterial stimulation experiments.  

QUANTI-BlueTM turns purple/blue in the presence of SEAP.  Each sample was 

diluted 1:10 with warmed QUANTI-BlueTM and incubated at 37°C for 4 h.  Following 

the incubation period, the optical density (OD) was recorded at 630 nm using a 

plate reader.    

 

2.2.6 RNA extraction 

 
Following stimulation of cell lines with various FCGS-associated bacteria, cell 

supernatants were removed and RNA was extracted from host cells using the 

RNeasy Mini kit [Qiagen Ltd, Crawley, UK] in accordance with the manufacturer’s 

instructions.  Host cell samples were lysed with the addition of 350 µL buffer RLT.  

The resultant lysate was transferred to an RNase-free microfuge tube and mixed 

thoroughly with 350 µL of 70% ethanol.  Each 700 µL sample was then transferred 

to an RNeasy spin column placed within a 2 mL collection tube and centrifuged at 

13000 rpm for 15 seconds, with the flow-through discarded.  The RNA on the 

column membrane was washed with 350 µL of buffer RW1 by centrifugation at 

13000 rpm for 15 seconds and flow-through discarded.  A solution containing 10 

µL of DNase 1 stock solution and 70 µL of buffer RDD was added onto the RNeasy 

column membrane and incubated at room temperature for 15 minutes.  Next, 

buffer RW1 was again added to the column and centrifuged at 13000 rpm for 15 

seconds with flow-through discarded.  The RNA on the membrane was precipitated 

by the addition of 500 µL of buffer RPE and centrifugation at 13000 rpm for 15 

seconds, followed by an additional centrifugation at 13000 rpm for 1 minute to 

dry the membrane.  Finally, 30 µL of RNase-free water was added directly to the 

membrane before centrifugation at 13000 rpm for 1 minute to elute the RNA.  RNA 
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was collected and quantified using a spectrophotometer or stored at -80°C until 

required.   

 

2.2.7 RNA quantification 

 

The RNA extracted from host cells was quantified using the NanoDrop 1000 

spectrophotometer [Thermo Scientific, Wilmington, USA] to assess the quality and 

concentration of RNA obtained.  The NanoDrop pedestal was loaded with 1.5 µL 

of RNA from each sample.  To measure the purity of the RNA, the ratio of 

absorbance was measured at 260 and 280 nm, where RNA with a 260/280 ratio 

greater than 1.8 was deemed to be of high quality.  Samples were stored at -20°C 

until required for cDNA synthesis. 

 

2.2.8 cDNA synthesis 

 

Complementary DNA (cDNA) synthesis was achieved using the High-Capacity RNA-

to-cDNATM reverse transcription (RT) kit [Thermofisher].  Two hundred nanograms 

of RNA was added to 4 µL of RT master mix, with a final volume of 20 µL made up 

using RNase-free water.  Controls which did not contain the reverse transcriptase 

enzyme were also included.  Samples were centrifuged at 1000 rpm for 2 minutes 

to remove air bubbles.  Samples were then loaded on to the thermal cycler [Bio-

Rad, Watford, UK].  The cDNA was synthesised using the following thermal cycling 

conditions: 5 minutes at 25°C, 30 minutes at 42°C, 5 minutes at 85°C and a final 

hold stage at 4°C.  Samples were then stored at -20°C for use in PCR.     

 

2.2.9 Primer design 

 

Primers used for PCR were either found in previously published literature or 

designed based upon their sequence, which was obtained from the National Centre 

for Biotechnology Information (NCBI, Bethesda, USA).  To design primer sets in-

house, the web-based Primer-Blast software (NCBI) was used 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/).  Primers were designed to 

yield a PCR product size of 70-120 base pairs.  The National Institute of Health’s 

Basic Local Alignment Search Tool (NIH-BLAST) was used to check primer 

specificity (http://www.nlm.nih.gov/BLAST). Oligonucleotides matching the 
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resulting primer sequences were synthesised [Invitrogen, Paisley, UK] for the 

target genes of interest (Table 2.1). 

 

2.2.10 Real-time quantitative PCR  

 

Cytokine gene expression was analysed using SYBR® Green [Invitrogen, Paisley, 

UK] based real-time quantitative PCR (RT-qPCR), using glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as a housekeeping gene (Barber et al., 2005).  

The primers used are listed in Table 2.1.  Each well contained 12.5 µL of SYBR® 

green master mix [Invitrogen], 0.5 µL of forward and 0.5 µL of reverse primers, 2 

µL of cDNA and 9.5 µL RNase-free water [Qiagen, UK] to make a final volume of 

25 µL.  The thermal cycle was as follows: 2 minutes at 55°C, 10 minutes at 95°C 

followed by 40 cycles of 30 seconds at 95°C, and 60 seconds at 60°C.  Each 

parameter was analysed in duplicate on three independent occasions using the 

MxProP Quantitative PCR machine and MxProP 3000 software [Stratgene, 

Amsterdam, Netherlands].  The expression of genes of interest was normalised to 

the housekeeping gene GAPDH using the 2−ΔCt method, and then the relative 

expression of gene transcripts to the media control was quantified using the 2-ΔΔCt 

method (Livak and Schmittgen, 2001). 

 

Table 2.1: Primer sequences used in real-time quantitative PCR 
 

Target Primer sequence (5’-3’) Reference 

 Feline IL-8 F - TCCAAGCTGGTTGTTGCTCT 

R - TGCACTGGCATCGAAGTTCT 

In-house 

Human IL-8 F - CAGAGACAGCAGAGCACACAA 

R - TTAGCACTCCTTGGCAAAAC 

(Ramage et al., 2012) 

GAPDH F - GAGCTGAATGGGAAGCTCAC 

R - CGTATTTGGCAGCTTTCTCC 

(Dolieslager et al., 

2013) 

    F, forward; R, reverse. 

 

2.2.11 Enzyme-linked immunosorbent assay (ELISA) 

 

Supernatants from each cell line (THP1-XBlueTM and SCCF1) challenged with a 

panel of FCGS-associated bacteria for 24 h were retained to assess the release of 
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pro-inflammatory protein by ELISA.  ELISA kits for human [Peprotech, London, UK] 

and feline [R&D Systems, Abingdon, UK] interleukin-8 (IL-8) were used according 

to manufacturer’s instructions.  All incubations were carried out at room 

temperature.  A standard curve was constructed by plotting the mean absorbance 

for each standard against the IL-8 concentration and R-squared was calculated.  

Results were determined using a 4-parameter curve fit to determine the 

concentration of protein IL-8 released in samples tested.  All reactions were 

performed in duplicate on three separate occasions. 

 

2.2.11.1 Human IL-8 ELISA 

 

A human IL-8 ELISA kit was used to detect IL-8 release from human THP1-XBlueTM 

cells following bacterial stimulation.  Capture antibody (0.5 µg/mL) was prepared 

in PBS and 100 µL added to wells of Corning® 96-well high binding microplates 

[Sigma-Aldrich].  Plates were sealed and incubated overnight.  Contents were then 

discarded and plates washed with 300 µL of PBS containing 500 µL Tween20 

[Sigma-Aldrich] per litre.  Plates were blocked with 300 µL of block buffer 

containing 1% bovine serum albumin (BSA) in PBS for 1 h to block non-specific 

binding.  Plates were washed and 100 µL of each sample was loaded in triplicate.  

In addition, standards of known concentrations of IL-8 (15.6 to 1000 pg/mL) were 

included on each plate in duplicate and incubated for 2 h.  Contents were 

discarded and 100 µL of detection antibody (0.5 µg/mL) was added to each well 

containing sample or standard and incubated for a further 2 h.  Next, plates were 

washed and 100 µL of a 1:2000 dilution of avidin-HRP conjugate in assay diluent 

(0.05% Tween20, 0.1% BSA in PBS) was added to wells and incubated for 30 

minutes.  Finally, contents were discarded and 100 µL of 3,3’,5,5’-tetra-

methylbenzide (TMB) [Sigma-Aldrich] was added to each well and incubated in the 

dark for 20 minutes before the addition of 100 µL of 1 mM HCl to stop the reaction.  

The absorbance was read using the FLUOstar Omega plate reader (BMG Labtech, 

Ortenberg, Germany) at 405 nm with a 650 nm wavelength correction.    

 

2.2.11.2 Feline IL-8 ELISA 

 

A feline IL-8 ELISA kit was used to assess the release of IL-8 from feline SCCF1 cells 

following bacterial stimulation.  Briefly, 100 µL of capture antibody (4 µg/mL) 
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prepared in PBS was added to Corning® 96-well high binding microplates and 

incubated overnight.  Contents were discarded and plates washed with 400 µL of 

wash buffer (0.05% Tween20 in PBS).  Plates were then blocked with reagent 

diluent (1% BSA in PBS) for 1 h to prevent non-specific protein interactions.  Plates 

were washed and 100 µL of each sample was loaded in duplicate as well as 

standards of known concentrations of IL-8 ranging from 62.5 to 4000 pg/mL and 

incubated for 2 h.  Contents were again discarded and 100 µL of detection 

antibody (500 ng/mL) prepared in reagent diluent was added to wells with samples 

and standards and incubated for 2 h.  Plates were washed and 100 µL of 

streptavidin-HRP (diluted 1:200 with reagent diluent) was added to each well and 

incubated for 20 minutes.  Finally, plates were washed and 100 µL of substrate 

solution TMB was added to wells and incubated in the dark for 20 minutes, and 

then 50 µL of 1mM HCl was added to stop the reaction.  The absorbance was 

measured at 450 nm with a 570 nm wavelength correction.  

 

2.2.12 Statistical analysis 

 
Graph production and statistical analysis were performed using GraphPad Prism 

(version 5; La Jolla, USA).  Data which followed a normal distribution was analysed 

by using a one-way analysis of variance (ANOVA) to investigate significant 

differences between the mean of two or more independent groups.  A two-way 

ANOVA was used to compare the mean of two or more independent groups at 

multiple time points.  A Bonferroni correction (two-way ANOVA) was used to 

determine statistically significant differences between groups.  A Dunnett’s post-

test (one-way ANOVA) was used to measure significant differences between 

independent groups and the control group.  Statistical significance was achieved 

at p<0.05 for all analyses. 
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2.3 Results 
 
2.3.1 THP1-XBlueTM TLR activation is influenced by concentration-
dependent stimulation with FCGS putative pathogens 
 
An in vitro model system was developed involving the stimulation of cell lines with 

bacteria involved in FCGS to measure the ability of these bacteria to induce an 

inflammatory response within the host.  A human cell line containing an NF-κB-

inducible secreted embryonic alkaline phosphatase (SEAP) reporter construct was 

exposed to varying concentrations of T. forsythia and P. circumdentaria (believed 

to be key pathogens in FCGS), Pasteurella multocida species (putative pathogens 

in FCGS), B. zoohelcum (a representative feline commensal bacterium) and P. 

gingivalis (a major human periodontal pathogen).  This allowed for the ability of 

FCGS-associated bacteria to activate toll-like receptors (TLRs), and consequently 

promote host inflammation, to be assessed. THP1-XBlueTM cells incubated without 

bacteria were used as a cells only control (MOI of 0). 

 

Following 4 hour stimulations, there were significant increases in the level of SEAP 

production in cells exposed to T. forsythia and P. gingivalis, with the cell only 

control (MOI of 0) absorbance of 0.04 and 0.05 increasing to 1.13 (p<0.001) and 

0.34 (p<0.001), respectively, at an MOI of 200 (Figure 2.1).  Following 24 hour 

stimulations, there were significant increases in the level of SEAP release in cells 

exposed to T. forsythia (MOI 0, 0.06; MOI 200, 2.06; p<0.001), P. multocida subsp. 

multocida (MOI 0, 0.25; MOI 200, 1.31; p<0.001), P. multocida subsp. septica (MOI 

0, 0.41; MOI 200, 1.29; p<0.001), and P. gingivalis (MOI 0, 0.06; MOI 200, 1.30; 

p<0.001) at an MOI of 200 compared to an MOI of 0.  There was also a notable 

increase in SEAP production in cells following exposure to an MOI of 200 for 24 

hours compared to 4 hours in T. forsythia (4 h, 1.13; 24 h, 2.06; p<0.001) , P. 

multocida subsp. multocida (4 h, 0.40; 24 h, 1.31; p<0.001), P. multocida subsp. 

septica (4 h, 0.40; 24 h, 1.29; p<0.001) and P. gingivalis (4 h, 0.34; 24 h, 1.30; 

p<0.001).  Although there appeared to be an increase in SEAP production in the 

24 h supernatant with P. circumdentaria, no significant differences in were shown 

in cells following exposure to P. circumdentaria or B. zoohelcum. 
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2.3.2 THP1-XBlueTM cell IL-8 mRNA expression is influenced by 
concentration-dependent stimulation with FCGS putative 
pathogens 
  
To further investigate the response of the THP1-XBlueTM cells to FCGS-associated 

bacteria, the impact of varying MOIs of bacteria of interest on the regulation of 

pro-inflammatory mediator IL-8 was assessed.  IL-8 is a key mediator of 

periodontal inflammation and so was an appropriate indicator for chronic 

inflammation in this study. First, THP1-XBlueTM cell IL-8 mRNA expression, 

normalised to the housekeeping gene GAPDH, was measured (Figure 2.2). 

Figure 2.1: SEAP expression of THP1-XBlueTM cells following exposure to 

bacterial panel of interest 

THP1-XBlueTM cells were seeded at the concentration of 2x105 cells/mL in a 96-well plate 

for SEAP studies.  Cells were exposed to heat-killed bacteria ([A] Tannerella forsythia [B] 

Pasteurella multocida subsp. multocida [C] Pasteurella multocida subsp. septica [D] 

Porphyromonas circumdentaria [E] Porphyromonas gingivalis [F] Bergeyella zoohelcum) 

at various multiplicities of infection (M.O.I) (0-200) for a period of 4 hours and 24 hours.  

QUANTI-BlueTM assay was then used to measure SEAP with colour development measured 

at an absorbance wavelength of 630 nm.  All groups were assayed in triplicate on three 

separate occasions.  Statistical analysis was performed using two-way ANOVA and 

Bonferroni post-hoc test to compare all groups. Data represents mean ± SD (Comparison 

to cells only (0) § p<0.05, §§ p<0.01, §§§ p<0.001) (4 hours vs. 24 hours **p<0.01, 

***p<0.001). 
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Following 24 h exposure, THP1-XBlueTM IL-8 expression was significantly up-

regulated in cells following exposure to T. forsythia (168.78-fold increase; 

p<0.001), P. circumdentaria (3.07-fold increase; p<0.05), and P. gingivalis 

(199.57-fold increase; p<0.001) at an MOI of 200 compared to the cell only control 

(MOI 0).  Cells also showed an increase in IL-8 mRNA expression when stimulated 

with T. forsythia at a lower MOI of 50 (56.88-fold increase; p<0.05) and 100 

(101.44-fold increase; p<0.01). No statistically significant differences were 

observed in gene expression following exposure to Pasteurella species and B. 

zoohelcum species at any MOI; however, there was a notable trend of a 

concentration-dependent increase in IL-8 expression from all bacteria at an MOI 

of 200 compared to 0.   

 

Figure 2.2: THP1-XBlueTM cell IL-8 mRNA expression following exposure to 

bacterial panel of interest 

THP1-XBlueTM cells were seeded at the concentration of 2x105 cells/mL in a 96-well plate.  

Cells were exposed to heat-killed bacteria ([A] Tannerella forsythia [B] Pasteurella 

multocida subsp. multocida [C] Pasteurella multocida subsp. septica [D] Porphyromonas 

circumdentaria [E] Porphyromonas gingivalis [F] Bergeyella zoohelcum) at various 

multiplicities of infection (0-200) for 24 h.  RT-qPCR was performed using SYBR® green to 

determine IL-8 relative expression, normalised to GAPDH. Samples were assayed in 

duplicate on three independent occasions. Statistical analysis was performed using one-

way ANOVA and Dunnett’s post-hoc test. Data represents mean ± SD (*p<0.05, **p<0.01, 

***p<0.001). 
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2.3.3 THP1-XBlueTM cell IL-8 protein release is influenced by 
concentration-dependent stimulation with FCGS putative 
pathogens 
 
Due to the previous data (section 2.3.2) showing an altered IL-8 mRNA expression 

in THP1-XBlueTM cells in response to FCGS-associated bacteria, protein release was 

then examined. Levels of IL-8 protein in cell culture supernatants following 24 h 

stimulation with the bacterial panel of interest were assessed (Figure 2.3).     

 

THP1-XBlueTM cells incubated without bacteria were used as a cells only control 

(MOI 0).  A significant increase in IL-8 protein release was shown in cells stimulated 

with T. forsythia at an MOI of 100 (835.99 pg/mL; p<0.01) and 200 (2542.61 

pg/mL; p<0.001) compared to the cells only control of 10.20 pg/mL.  There was 

also a significant increase in cell IL-8 following exposure to P. multocida subsp. 

multocida at 50 (262.49 pg/mL; p<0.01), 100 (1132.19 pg/mL; p<0.0001), and 200 

(3441.62 pg/mL; p<0.001) MOI compared to the control of 15.44 pg/mL.  Exposure 

to P. gingivalis showed a large significant increase in IL-8 release at all MOIs, with 

3652.62 pg/mL present at an MOI of 200 (p<0.001).  A significant increase in IL-8 

production was shown in cells following exposure to P. multocida subsp. septica 

(1421.41 pg/mL; p<0.01) and B. zoohelcum (104.64 pg/mL; p<0.001) at an MOI of 

200 only.  No significant increase in protein release was noted following exposure 

to P. circumdentaria. 
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Figure 2.3: THP1-XBlueTM cell IL-8 protein response to bacterial panel of 

interest 

THP1-XBlueTM cells were seeded at the concentration of 2x105 cells/mL in a 96-well plate.  

Cells were exposed to heat-killed bacteria ([A] Tannerella forsythia [B] Pasteurella 

multocida subsp. multocida [C] Pasteurella multocida subsp. septica [D] Porphyromonas 

circumdentaria [E] Porphyromonas gingivalis [F] Bergeyella zoohelcum) at various 

multiplicities of infection (0-200) for 24 h.  IL-8 protein release in culture supernatants 

was measured by ELISA. Samples were assayed in duplicate on three independent 

occasions.  Statistical analysis was performed using one-way ANOVA and Dunnett’s post-

hoc test. Data represents mean ± SD (**p<0.01, ***p<0.001). 

 
 
2.3.4 SCCF1 cell IL-8 mRNA expression is influenced by 
concentration-dependent stimulation with FCGS-associated 
bacteria 
 
Next, it was investigated whether the FCGS-associated bacteria evoked a similar 

biological response in a feline oral squamous cell carcinoma cell line, SCCF1, by 

measuring changes in pro-inflammatory mediator IL-8. 

 

The IL-8 gene expression from SCCF1 cells following exposure to the bacterial 

panel of interest was firstly measured, as shown in Figure 2.4.  All bacteria showed 

to significantly increase IL-8 expression in cells at an MOI of 200 compared to the 
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cell only control, with an 8.52-fold increase from T. forsythia (p<0.001); 13.53-

fold increase from P. multocida subsp. multocida (p<0.001); 4.81-fold increase 

from P. multocida subsp. septica (p<0.05); 38.89-fold increase from P. 

circumdentaria (p<0.001); 2.77-fold increase from P. gingivalis (p<0.001); and 

47.46-fold increase from B. zoohelcum (p<0.01).  IL-8 expression was significantly 

up-regulated following exposure to P. circumdentaria at the lowest MOI (25) of all 

the bacteria (p<0.01).  

 

 
 
Figure 2.4: SCCF1 cell IL-8 mRNA expression following exposure to bacterial 

panel of interest 

SCCF1 cells were seeded at the concentration of 2x105 cells/mL in a 96-well plate.  Cells 

were exposed to heat-killed bacteria ([A] Tannerella forsythia [B] Pasteurella multocida 

subsp. multocida [C] Pasteurella multocida subsp. septica [D] Porphyromonas 

circumdentaria [E] Porphyromonas gingivalis [F] Bergeyella zoohelcum) at various 

multiplicities of infection (0-200) for 24 h.  RT-qPCR was performed using SYBR® green to 

determine IL-8 relative expression, normalised to GAPDH. Samples were assayed in 

duplicate on three independent occasions. Statistical analysis was performed using one-

way ANOVA and Dunnett’s post-hoc test. Data represents mean ± SD (*p<0.05, **p<0.01, 

***p<0.001). 
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2.3.5 SCCF1 cell IL-8 protein release is influenced by 
concentration-dependent stimulation with FCGS-associated 
bacteria 
 

As IL-8 mRNA expression was shown to be generally up-regulated in SCCF1 cells 

following exposure to FCGS-associated bacteria (Figure 2.4), the production of 

this chemokine by host cells was further investigated by ELISA. 

 

IL-8 release from SCCF1 cells in response to bacterial stimulation was synonymous 

to IL-8 release from the human THP1-XBlueTM cell line, with an increasing IL-8 

concentration found in supernatants as MOI increased.  A significant increase in 

IL-8 protein was measured following stimulation with T. forsythia (4382.34 pg/mL; 

p<0.001), P. multocida subsp. multocida (3049.44 pg/mL; p<0.001), P. multocida 

subsp. septica (4888.57 pg/mL; p<0.001), P. circumdentaria (3988.95 pg/mL; 

p<0.05), P. gingivalis (6175.58 pg/mL; p<0.05), and B. zoohelcum (4855.11 

pg/mL; p<0.001) at an MOI of 200 compared to the cells only control (MOI 0) 

(Figure 2.5).  IL-8 protein release in cells was also increased after exposure with 

an MOI of 100 of T. forsythia (p<0.05), P. multocida species (p<0.05) and B. 

zoohelcum (p<0.001). 
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Figure 2.5:  SCCF1 cell IL-8 secretion following exposure to bacterial panel of 

interest 

SCCF1 cells were seeded at the concentration of 2x105 cells/mL in a 96-well plate and 

incubated at 37°C in 5% CO2 for 24 h.  Cells were exposed to heat-killed bacteria ([A] 

Tannerella forsythia [B] Pasteurella multocida subsp. multocida [C] Pasteurella 

multocida subsp. septica [D] Porphyromonas circumdentaria [E] Porphyromonas gingivalis 

[F] Bergeyella zoohelcum) at various multiplicities of infection (0-200) for 24 h.  IL-8 

protein release in culture supernatants was measured by ELISA.  Samples were assayed in 

duplicate on three separate occasions.  Statistical analysis was performed using one-way 

ANOVA and Dunnett’s post-hoc test. Data represents mean ± SD (*p<0.05, ***p<0.001). 
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2.4 Discussion 
 
While the aetiology of FCGS is believed to be multifactorial, it is thought that the 

dysbiosis of interactions between oral plaque bacteria and the host immune 

system is a key contributor to the chronic inflammation present during FCGS.  

Specific bacteria, as seen in periodontal disease, have been identified as more 

predominant within oral communities in diseased cats with abnormal levels of 

inflammation, including Pasteurella species (Dolieslager et al., 2011).  In this 

chapter, the interactions between FCGS-associated bacteria and host cells have 

been investigated in order to establish a greater understanding of the cell 

response to bacteria of interest, and how the presence of specific bacteria may 

modulate the immune response during disease.  

 
The key finding was that both human and feline host cell lines demonstrated a 

distinct IL-8 gene and protein response to varying concentrations of heat-killed 

FCGS-associated bacteria, particularly in response to bacteria thought to be 

putative pathogens in disease. This result showed the immune function 

consequences of feline bacterial species of differing pathogenicity and their 

potential to contribute to the chronic inflammation that is evident in FCGS. 

 

The data, firstly, showed the changes in TLR activation when THP1-XBlueTM cells 

were exposed to FCGS-associated bacteria.  THP1-XBlueTM cells could be used in 

this study as a comparative positive control as it is already known that P. gingivalis 

is a major periodontal pathogen in human oral disease (Hajishengallis et al., 

2012).  Pathogen-associated molecules are recognised by several sensors of the 

innate immunity, including TLRs (Akira and Takeda, 2004).  TLRs can mediate the 

inflammatory response when activated by specific pathogens.  Thus, various 

enzymatic bio-assays have been developed which co-express a TLR-inducible 

reporter gene encoding SEAP, which allows TLR stimulation to be conveniently 

monitored by using a phosphatase detection assay.  In this study, TLR activation, 

represented by levels of SEAP production, was significantly increased in cells 

exposed to feline putative pathogens T. forsythia and P. multocida species as well 

as human pathogen P. gingivalis.  A study by Dolieslager et al. (2013) found that 

cats harbouring T. forsythia had significant increases in TLR2, TLR4, TLR7 and 

TLR9 compared to cats in which this bacterial species was absent.  As T. forsythia 
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showed the greatest influence on TLR activation in this study, followed by P. 

multocida species which have shown to be highly prevalent during disease, this 

suggests that these bacteria may be of importance in stimulating a host immune 

response to FCGS.   

 

Moreover, THP1-XBlueTM cells showed significantly increased IL-8 gene expression 

in response to T. forsythia, P. circumdentaria and P. gingivalis and significantly 

increased levels of IL-8 protein were present in response to T. forsythia, P. 

multocida subsp. multocida, P. multocida subsp. septica, P. gingvalis and B. 

zoohelcum.  IL-8 acts by recruiting immune cells such as neutrophils and T 

lymphocytes to the site of infection and stimulates phagocytosis, and is therefore 

widely acknowledged as a causative agent of inflammation in both humans and 

felines (Shahzad et al., 2010; Alavi-Moghaddam et al., 2011).  As T. forsythia and 

P. gingivalis are known pathogens in human oral disease, the THP1-XBlueTM 

immune response observed was as expected in this study.  A previous study has 

shown T. forsythia contains a PrtH protein that is able to stimulate inflammation 

by inducing the production of IL-8 (Ksiazek et al., 2015).  The notable increase in 

TLR activation by T. forsythia and P. multocida species and concurrent increase 

in IL-8 protein release in this study suggests these bacteria may be key in eliciting 

an innate immune response during disease and could be significant in the 

aetiopathogenesis of FCGS. 

 

Furthermore, the inflammatory response to FCGS-associated bacteria was 

investigated in a feline squamous carcinoma cell line, SCCF1.  All bacteria tested 

(key pathogens, putative pathogens and commensal) elicited an increase in IL-8 

mRNA expression at an MOI of 200, as well as an increase in IL-8 protein expression 

which increased with an increasing concentration of bacteria applied.  Previous 

research has discovered that P. multocida species are highly prevalent in the 

feline oral cavity during FCGS, comprising 51.8% of the bacterial population and 

therefore considered significant in disease  (Dolieslager et al., 2011).  These 

results suggest that P. multocida species can stimulate pro-inflammatory IL-8 gene 

expression and protein production in a feline cell line and therefore may play a 

key role in stimulating the chronic inflammation found during disease.  Moreover, 

Dolieslager et al. (2011) found B. zoohelcum to be highly prevalent in the oral 

cavity of healthy cats compared to those with FCGS; however, the data in the 
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current study suggests that B. zoohelcum is capable of stimulating an 

inflammatory response during disease.   

 

While this model proved to demonstrate the initial innate cell responses to 

putative bacteria in this study, it is important to consider that heat-killed bacteria 

were used to stimulate cells due to the ability of many live bacteria to modulate 

pro-inflammatory cytokines and chemokines.  It has been shown that P. gingivalis 

can subvert the host proinflammatory response, through lysine gingipain, by direct 

degradation of chemokines such as IL-8 (Stathopoulou et al., 2009).  One study 

has also observed that differing levels of pro-inflammatory cytokines were induced 

in blood cultures by live Streptococcus suis compared to the heat-killed bacterium 

(Segura et al., 2006).  Therefore, the host response to heat-killed bacteria in this 

study may not reflect the inflammatory response induced by live bacteria. 

 

In summary, focusing on how specific bacteria may differentially modulate the 

host immune response is crucial to understanding the abnormal inflammatory 

levels evident in FCGS.  It would be interesting to use this model further to test 

FCGS-associated bacteria in combination, or within a biofilm to measure the 

differences in immune response. 
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3 Development of an in vitro FCGS biofilm model for 
therapeutic testing 
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3.1 Introduction and Aims 
 
The human oral microbiome is known to play a significant role in human health 

and disease.  While the feline oral microbiome is less well studied, it is thought 

that over 400 bacterial species associated with the feline oral cavity contribute 

to feline oral health (Adler et al., 2016). 

 

Bacterial communities that reside in the oral cavity form complex biofilms 

(plaque) on teeth and soft gingival tissues (Zijnge et al., 2010).  Within the 

biofilm, bacteria are more resistant to antibiotics and antimicrobials, and are 

highly capable of evading host defences (Bjarnsholt, 2013).  As microbial 

communities can readily alter the local environment, biofilm composition can shift 

to an increasing proportion of disease-associated bacteria which ultimately leads 

to disease such as periodontitis (Berezow and Darveau, 2011).  It is thought this 

microbial dysbiosis may also occur in the feline oral cavity during the development 

of FCGS.  Due to the large diversity of bacteria found in dental plaque, studying 

the roles and impact of bacteria within oral biofilms has proved difficult.  

Therefore, a variety of in vitro biofilm models have previously been created to 

replicate a diseased microbial environment within the oral cavity, allowing the 

study of bacterial interactions within biofilms and the evaluation of orally relevant 

antimicrobial compounds. 

 

Due to the complex nature of FCGS, an adequate treatment is not yet available.  

A first-line treatment for all affected cats involves the improvement of basic oral 

hygiene in attempt to reduce the oral antigen burden as well as antibiotics in some 

cases to control excessive inflammation.  However, in almost all cases, first-line 

treatment is a short-term resolution, and diseased teeth will then be extracted to 

reduce the chronic inflammation.  Chlorhexidine (CHX) is also used as an effective 

post-op plaque control, however, reported prolonged use of CHX in studies of 

human oral disease has shown adverse reactions such as pain of the oral mucosa 

and anaphylaxis (Frank et al., 2001, Dyer et al., 2013).  Furthermore, CHX does 

not always prove to be entirely effective or suitable for all cats (Lobprise and 

Dodd, 2018).   

 

Discovering alternative compounds which have the same, or greater, antimicrobial 

potency of CHX but low toxicity is of importance in the search for appropriate 
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treatments to reduce the bacterial burden during FCGS.  Antimicrobials such as 

CHD-FA and xylitol have both previously shown to be an effective treatment option 

used on multi-species biofilms devised to mimic human oral disease (Badet et al., 

2008; Sherry et al., 2013).  Berberine, an isoquinoline alkaloid, has also shown to 

have anti-microbial properties on single-species biofilms of Pseudomonas and 

Staphylococcus species (Aswathanarayan and Vittal, 2018; Wang et al., 2009).  

These studies highlight the potential of these novel compounds to inhibit biofilm 

activity, and therefore testing these compounds on an FCGS biofilm was worth 

investigation in this study.  Moreover, ubiquinol is an active ingredient found in 

the anti-microbial and anti-inflammatory product, Oralmat®, so was of interest to 

discover the antimicrobial potential of this compound.   

 

Therefore, the aim of this study was to create an in vitro multi-species biofilms 

model to mimic disease-associated plaque, containing bacteria which are orally 

relevant to FCGS, which could be used to test the effect of various novel anti-

microbial compounds. 
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3.2 Materials and Methods 
 
3.2.1 Bacterial culture and standardisation 

 
A multispecies biofilm model consisting of 10 bacterial species associated with 

FCGS was developed for antimicrobial testing (Dolieslager et al., 2011).  P. 

multocida subsp. multocida, P. multocida subsp. septica, B. zoohelcum, P. 

circumdentaria and T. forsythia were cultured and standardised as previously 

described in 2.2.1.  Additionally, Streptococcus mitis NCTC 12261, Streptococcus 

intermedius ATCC 27335, and Streptococcus oralis ATCC 35037 were grown and 

maintained at 37°C on CBA in 5% CO2.  Actinomyces naeslundii DSMZ 17233 and 

Fusobacterium nucleatum DSMZ 10953 were cultured at 37°C on FAA under 

anaerobic conditions.       

 

S. mitis, S. intermedius, and S. oralis were propagated in 10 mL tryptic soy broth 

[Sigma-Aldrich].  A. naeslundii and F. nucleatum were grown in 10 mL of 

Schaedler’s anaerobic broth under anaerobic conditions.  Cultures were grown for 

24-48 h at 37°C as necessary and washed as previously described in 2.2.1.  All 

bacteria were then standardised and adjusted to a final working concentration of 

1 x 108 cells/mL for downstream biofilm development and sessile susceptibility 

testing.    

 

3.2.2 Biofilm growth medium 

 
All biofilm cultures were initially grown using artificial saliva (AS) as previously 

described (Pratten et al., 1998).  This was comprised of porcine stomach mucins 

(0.25% w/v) [Sigma-Aldrich], sodium chloride (0.35 w/v) [VWR, Leuven, Belgium] 

potassium chloride (0.02 w/v) [VWR], calcium chloride dihydrate (0.02 w/v) 

[VWR], yeast extract (0.2 w/v) [Formedium, Hunstanton, UK], lab lemco powder 

(0.1 w/v) [Oxoid] and proteose peptone (0.5 w/v) [Sigma-Aldrich] in ddH2O 

[Thermo Scientific]. Urea [Sigma-Aldrich] was diluted in ddH2O (40% w/v) and 

added to a final concentration of 0.05% (v/v) in AS. 

 

A second medium was also used to grow biofilms during this study.  This consisted 

of Todd Hewitt broth (THB) [Sigma-Aldrich] supplemented with 10 µg/mL hemin 

[Sigma-Aldrich] and 2 µg/mL menadione [Sigma-Aldrich].  To make a working 
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broth, the supplemented THB was added to an equal volume of RPMI-1640.  

Bacterial growth and biofilm formation were not affected when cultured in the 

THB: RPMI medium. 

 

3.2.3 Multi-species biofilm culture (10 species) 

 

An in vitro multi-species biofilm was developed to represent and recapitulate the 

diseased microbial environment present in the oral cavity during FCGS. The 10 

species model consisted of S. mitis, S. intermedius, S. oralis, B. zoohelcum, P. 

multocida subsp. multocida, P. multocida subsp. septica, A. naeslundii, F. 

nucleatum, T. forsythia and P. circumdentaria.  Biofilms were prepared in 24-well 

plates [Corning, NY, USA] containing ThermanoxTM coverslips (13 mm diameter) 

[Fisher Scientific, Loughborough, UK].  For the addition of each bacterial species 

to the biofilm, bacterial suspensions were standardized to 1 x 107 CFU/mL in 500 

µL of THB: RPMI medium.  Firstly, S. mitis, S. intermedius, and S. oralis were 

added together and incubated at 37°C in 5% CO2 for 24 hours.  Next, the 

supernatant was removed and B. zoohelcum, P. multocida subsp. multocida and 

P. multocida subsp. septica standardised in THB: RPMI were added to the biofilms 

and grown for 24 hours at 37°C in 5% CO2.  On the third day, the supernatant was 

again removed and A. naeslundii, F. nucleatum, T. forsythia and P. 

circumdentaria standardised in THB: RPMI were added before the biofilms were 

incubated anaerobically at 37°C for a further 4 days.  Each day, the supernatants 

were removed and fresh THB: RPMI added.  

 

Biofilms were either used for testing directly after culture, or the supernatant was 

removed and biofilms were washed with PBS before storage at -80°C until 

required.  Frozen biofilms were revived by the addition of 500 µL of THB: RPMI 

and incubation for 24 h in the anaerobic cabinet before experimental use. 

 

3.2.4 Investigating sialidase inhibitors as a novel treatment option  

 
3.2.4.1 Bacterial sialidase activity 

 

The sialidase activity of FCGS putative pathogens (P. multocida subsp. multocida, 

P. multocida subsp. septica, P. circumdentaria and T. forsythia) was determined.  
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Firstly, 1 mL of 1 x 106 CFU/mL of each bacterium was added to a 0.1 mM 4-

methylumbelli-feryl N-acetyl-α-D-neuraminic acid (MUNANA) sodium salt 

[Carbosynth Limited, Compton, UK] solution to create a reaction mix.  The 

samples were incubated for 24 h in aerobic (P. multocida species) or anaeorobic 

(P. circumdentaria and T. forsythia) conditions, with the transfer of 50 µl of each 

reaction mix to separate wells of a clear-bottomed black 96-well plate following 

incubation period.  The reaction was stopped by the addition of 75 µL of 100 mM 

sodium carbonate buffer [Sigma-Aldrich] to each well and then the fluorescence 

measured at 355 nm and 460 nm on a microplate reader.  

 

3.2.4.2 Bacterial sialidase inhibition 

 

Two potential sialidase inhibitors were investigated in this study: a novel plant 

alkaloid, berberine, which has previously shown to inhibit sialidase activity in 

various strains of influenza virus (Enkhtaivan et al., 2017), and sialic acid 

analogue, 2-deoxy-2,3-dehydro-N-acetyleneuraminic acid (DANA), which has 

shown to inhibit viral, bacterial and mammalian sialidases (Meindl and Tuppy, 

1969; Burmeister et al., 1993).  A 40 mM stock solution of inhibitor was serially 

diluted to 10 µm in PBS.  Each bacterial species was standardized to 1 x 106 

CFU/mL and 450 µL was added each to 50 µL of inhibitor and incubated for 1 h in 

appropriate conditions.  Following incubation, 225 µL of 0.1 mM MUNANA was 

added to create the reaction mix.  Samples were then incubated for up to 24 h, 

with transfer of sample to separate wells of a clear-bottomed black 96-well plate 

at time intervals of 0, 1, 2, 3, 4, 22 and 24 h during incubation.  The reactions 

were quenched at each time point by the addition of 75 µL of 100 mM sodium 

carbonate buffer, and fluorescence measured at 355 nm and 460 nm on a 

microplate reader. 

 

3.2.5 Antibacterial susceptibility testing of multi-species biofilm 

 
During this study, four active compounds were tested to determine the 

antibacterial potential on FCGS biofilm cells.  The compounds included xylitol 

[Sigma-Aldrich] which has shown to inhibit human oral multi-species biofilm 

growth (Badet et al., 2008); carbohydrate-derived fulvic acid (CHD-FA) [Fulhold 

Ltd, Cape Town, South Africa] which has shown to be effective against a multi-
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species periodontal biofilm (Sherry et al., 2013); berberine [Sigma-Aldrich] which 

is a potential sialidase inhibitor and has shown anti-microbial activity 

(Aswathanarayan and Vittal, 2018); and ubiquinol [Sigma-Aldrich] which is an 

active agent in the natural anti-inflammatory Oralmat® product.  Chlorhexidine 

(CHX) [Sigma-Aldrich] at 0.2% was also used as a positive control.  

 

For testing on multi-species biofilms, biofilms were grown as previously described 

in section 3.2.3.  Compounds were prepared at a range of concentrations for anti-

microbial testing, according to inhibitory concentrations found in literature.  

Xylitol was prepared at 0.25, 0.5, 1, and 5% (w/v).  CHD-FA was prepared at 0.25, 

0.5, and 0.8% (v/v).  Berberine and ubiquinol were prepared at 50, 100, and 200 

µg/mL.  Mature biofilms were treated for 5 minutes (CHD-FA, xylitol, ubiquinol) 

or 24 h (berberine) with each concentration of compound before the addition of 

neutralising buffer to stop the agents from acting on the biofilms for longer than 

desired.  Biofilms were then washed with PBS before further downstream testing 

to measure for disruption of biofilms.  The experiment was carried out in triplicate 

on three independent occasions. 

 

3.2.6 alamarBlue® cell viability assay 

 

The resazurin-based solution alamarBlue® [Invitrogen] was used to measure multi-

species biofilm cell viability following treatments with each compound.  Following 

treatment, multi-species biofilms were carefully washed with PBS before the 

addition of alamarBlue® (at a 1:10 dilution in THB: RPMI medium) to each well.  

The alamarblue® is a colorimetric assay whereby a colour change (blue to pink) 

occurs as a result of an oxidation/reduction reaction based upon cellular 

metabolic activity.   The alamarBlue® was incubated for 1-2 hours under anaerobic 

conditions.  Following incubation, the fluorescence was read at 544 nm with a 

reference wavelength at 590 nm.  The mean fluorescence of each treatment group 

was used to calculate the percentage of cell viability compared to the untreated 

control as follows: percentage of cell viability = (Atreatment – Ablank) / (Acontrol – Ablank) 

x 100% (where, A = fluorescence).  Biofilms were washed with PBS and left to dry 

on the bench overnight for crystal violet assay, as described in section 3.2.8. 
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3.2.7 Biofilm quantification: Miles and Misra 

 
Live bacterial cells in the treated multi-species biofilms were quantified using the 

Miles and Misra method (Miles et al., 1938).  Briefly, treated biofilms (not used in 

cell viability or biomass testing) were removed from ThermanoxTM coverslips in a 

sonic bath at 35 kHz for 10 minutes in 1 mL of PBS.  Each inoculum was then 

serially ten-fold diluted from neat supernatant to 10-8 in PBS.  For each dilution, 

10 µL was drop-plated in triplicate on both CBA and FAA plates, left to dry on the 

bench for 30 minutes, and then cultured in the appropriate conditions for 24 and 

48 h, respectively.  Following incubation, colonies were then counted at each 

dilution where the number of colonies ranged between 30 – 300 and the colony-

forming units (CFU) were calculated as follows: CFU = no. of colonies / volume 

plated (mL) x dilution factor.   

 

3.2.8 Biofilm biomass quantification by crystal violet assay 

 
To quantify biofilm biomass following antimicrobial treatment, crystal violet (CV) 

assays were performed.  Five hundred microlitres of 0.05% (w/v) CV solution was 

added to each biofilm and incubated for 20 minutes at room temperature, 

allowing uptake of the dye.  The CV solution was then discarded and biofilms were 

carefully washed with water to remove any excess dye.  Next, 500 µL of 100% 

ethanol was added to biofilms and mixed thoroughly to release the CV dye before 

transferring 75 µL from each well to a fresh 96-well flat-bottomed plate.  Biofilm 

biomass was then measured by reading absorbance at 570 nm in a microtitre plate 

reader.  A negative control, containing media only, was included to allow for blank 

correction of all absorbance values.    

 

3.2.9 Statistical analysis 

 
Graph production and statistical analysis was carried out using GraphPad Prism 

(version 5; La Jolla, USA). Independent sample data was analysed using a one-way 

ANOVA.  A Dunnett’s post-test and Bonferroni correction for multiple comparisons 

was applied to the data where appropriate.  A p value of less than 0.05 was 

considered significant.  
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3.3 Results 
 
3.3.1 FCGS putative pathogens display sialidase activity 

 
Since bacterial sialidases are believed to play a role during bacterial colonisation 

and pathogenesis of mammalian mucosal surfaces, it is possible that bacterial 

sialidases are used in the oral cavity to enhance biofilm formation and bacterial 

survival. If present, the bacterial enzyme sialidase cleaves MUNANA into N-

acetylneuraminic acid and 4-methylumbelliferone, which is a fluorescent 

molecule.  The sialidase activity of putative pathogens of FCGS was investigated 

based on the measurement of fluorescence (Figure 3.1). 

 

A reaction mix control was included containing no bacteria.  A significant 

difference in sialidase activity was observed after 24 h between the control, with 

a fluorescence of 2432, and each bacterial species: P. multocida subsp. septica 

(22-fold increase; p<0.001), P. mutocida supsp. multocida (26-fold increase; 

p<0.001), T. forsythia (25-fold increase; p<0.001), and P. circumdentaria (4-fold 

increase; p<0.001).  Hence, P. circumdentaria displayed the lowest sialidase 

activity. 
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Figure 3.1: Sialidase activity of FCGS putative pathogens 

Bacteria were standardized to 1 x 106 CFU/mL before incubation with MUNANA for 24 h.  

Following 24 h, each reaction was quenched using sodium carbonate buffer and sialidase 

activity was determined by measuring fluorescence at 355 nm and 460 nm.  A control 

containing no bacterial cells was included. Statistical analysis was performed using one-

way ANOVA and Dunnett’s post-hoc test to compare the means of each species to the 

control group mean. Data represents mean ± SD (***p<0.001) of three independent 

experiments each performed in triplicate. 

 

 
3.3.2 Berberine treatment inhibits FCGS putative pathogen 
sialidase activity 
 
As the previous data (section 3.3.1) demonstrated that the putative pathogens of 

FCGS displayed sialidase activity, all species were then used to investigate the 

efficacy of a potentially natural sialidase inhibitor, berberine (Figure 3.2).  

Bacteria were incubated over 24 h with inhibitor and fluorescence was measured 

at specific time intervals.  A bacteria only control was included (0 µM berberine). 

 

At 24 h, following treatment with 5 µM berberine, there was a significant 

difference in the fluorescence of T. forsythia (41% decrease; p<0.05) compared 

to the bacteria only control (0 µM) which contained no inhibitor.  No significant 
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differences were shown between P. multocida subsp. septica, P. multocida subsp. 

multocida, or P. circumdentaria following treatment of 5 µM berberine compared 

to the bacteria only control.  At 24 h, following treatment with 20 mM berberine, 

there was a significant difference in the fluorescence of P. multocida subsp. 

septica (89% decrease; p<0.001), P. multocida subsp. multocida (87% decrease; 

p<0.001), P. circumdentaria (79% decrease; p<0.001) and T. forsythia (71% 

decrease; p<0.001) compared to the bacteria only control (0 µM).  There was a 

notable concentration-dependent effect on the sialidase activity of all bacteria 

following treatment with berberine for 24 hours. 

 

 

Figure 3.2: Sialidase activity of putative pathogens in response to berberine 

Bacteria ([A] Pasteurella multocida subsp. septica [B] Pasteurella multocida subsp. 

multocida [C] Porphyromonas circumdentaria [D] Tannerella forsythia) were 

standardized to 1 x 106 CFU/mL before incubation with MUNANA and a range of 

concentrations of berberine for 24 h.  At time intervals of 0, 1, 2, 3, 4, 22 and 24 h, each 

reaction was quenched using sodium carbonate buffer and sialidase activity was 

determined by measuring fluorescence at 355/460 nm.  A negative control containing no 

bacterial cells was included.  Samples were assayed in triplicate on three separate 

occasions.  Statistical analysis was performed using a one-way ANOVA with Bonferroni’s 

post-test.  Data represents mean ± SD (*p<0.05). 
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3.3.3 DANA treatment inhibits FCGS putative pathogen sialidase 
activity 
 

Another known synthetic sialidase inhibitor, 2-deoxy-2,3-dehydro-N-

acetyleneuraminic acid (DANA), was investigated for its potential to inhibit the 

sialidase activity of putative pathogens in FCGS (Figure 3.3).  The bacteria were 

incubated with inhibitor over 24 h with fluorescence measured at set time 

intervals.  A bacteria only control, containing no inhibitor, was included (0 µM 

DANA). 

 

Following 24 h, there showed to be a statistically significant decrease in the 

fluorescence of T. forsythia compared to the bacteria only control (0 µM) after 

incubation with the lowest concentration of DANA used (5 µM) (51% decrease; 

p<0.01).  No significant differences in fluorescence were observed for the P. 

mutocida species or P. circumdentaria at 24 h incubation with 5 µM DANA.  At 24 

h, following treatment with berberine at a concentration of 20 mM, there was a 

significant decrease in the fluorescence of P. multocida subsp. septica (80% 

decrease; p<0.0001), P. multocida subsp. multocida (60% decrease; p<0.01), and 

T. forsythia (74% decrease; p<0.001) compared to the bacteria only control.  DANA 

showed to have no effect on the sialidase activity of P. circumdentaria, with no 

statistically significant differences in fluorescence displayed at any concentration.  

DANA generally showed to inhibit sialidase activity in a concentration-dependent 

manner.  
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Figure 3.3: Sialidase activity of putative pathogens in response to DANA 

Bacteria ([A] Pasteurella multocida subsp. septica [B] Pasteurella multocida subsp. 

multocida [C] Porphyromonas circumdentaria [D] Tannerella forsythia) were 

standardized to 1 x 106 CFU/mL before incubation with MUNANA and a range of 

concentrations of DANA for 24 h.  At time intervals of 0, 1, 2, 3, 4, 22 and 24 h, each 

reaction was quenched using sodium carbonate buffer and sialidase activity was 

determined by measuring fluorescence at 355/460 nm.  A negative control containing no 

bacterial cells was included.  Samples were assayed in triplicate on three separate 

occasions. Statistical analysis was performed using a one-way ANOVA with Bonferroni’s 

post-test.  Data represents mean ± SD (*p<0.05). 
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3.3.4 Berberine treatment affects biofilm biomass 

 
To measure the antimicrobial potential of the actives, multi-species biofilms were 

developed containing the FCGS bacteria which may reside in a diseased feline oral 

cavity and contribute to pathogenicity.  Biofilms were treated with berberine for 

24 h before cell viability was assessed using alamarBlue® metabolic dye.  Biofilm 

biomass following treatment was measured using crystal violet dye, and the 

number of viable cells were counted using the Miles and Misra method (Figure 

3.4).  

 

As berberine was previously found to inhibit sialidase activity in FCGS-associated 

bacteria, the effect of berberine on the FCGS multi-species biofilm was then 

investigated.  Untreated and positive (0.2% CHX) controls were included for 

comparison.  Cell viability was presented as a percentage of the untreated 

control.  The viability of biofilms treated with various concentrations of berberine 

was not comparable to the killing effect of CHX, and no significant differences 

were found between concentrations despite a notable decrease in viability in the 

biofilm treated with 200 µM compared to 50 µM.  The biofilm biomass of the 

untreated control was 1.83, which was significantly decreased by 50 µM and 100 

µM to 1.35 (p<0.05) and 1.40 (p<0.01), respectively.  No significant differences in 

the number of CFUs were found following treatment with berberine at each 

concentration, however, there was a notable decrease in the number of live 

aerobic and anaerobic cells in biofilms treated with 200 µM berberine compared 

to the untreated control. 
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Figure 3.4: Biofilm viability and biomass following berberine treatment 

Multi-species biofilms containing FCGS-associated bacteria were grown on ThermanoxTM 

coverslips and treated with 50, 100 and 200 µg/mL berberine for 24 hours.  Biofilms were 

also treated with 0.2% (v/v) CHX used as a positive control.  Metabolic activity was 

measured using alamarBlue® and data presented as a percentage of the untreated control 

[A].  Biofilms were retained following treatment and biofilm biomass determined by 

staining with 0.05% (w/v) crystal violet solution and quantified spectrophotometrically by 

reading at 570 nm [B].  Bacteria were sonicated in PBS for 10 min and viable bacteria 

enumerated using Miles and Misra plate counting method on CBA and FAA plates 

supplemented with 5% horse blood [C].  All samples were assayed in triplicate, on three 

separate occasions. Statistical analysis was performed using a one-way ANOVA with 

Bonferroni’s post-test.  Data represents mean ± SD (*p<0.05).  
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3.3.5 CHD-FA treatment affects biofilm viability and biomass 

 
Due to its effectiveness on previous multispecies biofilm models, the anti-

microbial activity of CHD-FA was measured by testing on FCGS multi-species 

biofilms as described previously (section 3.3.4).  Mature biofilms were treated for 

5 minutes with CHD-FA before the addition of a neutralising buffer to stop the 

reaction (Figure 3.5).   

 

Following a 5-minute treatment, CHD-FA at 0.8% was shown to significantly reduce 

cell viability to less than 5.94% of the untreated control, comparable to the CHX 

treatment which reduced cell viability to 2.96%.  Biofilms treated with a 

concentration of 0.8% CHD-FA also displayed significantly decreased cell viability 

compared to 0.5% and 0.25%, with observed viability of 40.82% and 73.64%, 

respectively.  Compared to the untreated control (1.00), biofilm biomass was also 

shown to significantly decrease to 0.66 (p<0.05) and 0.71 (p<0.05) following 

treatment with 0.8% and 0.5% CHD-FA, respectively.  Moreover, treatment of 

biofilms with CHD-FA showed a concentration-dependent decrease in the number 

of viable aerobic and anaerobic CFUs, however this was not deemed statistically 

significant compared to the untreated control. 
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Figure 3.5: Biofilm viability and biomass following CHD-FA treatment 

Multi-species biofilms containing FCGS-associated bacteria were grown on ThermanoxTM 

coverslips and treated with 0.25% (v/v), 0.5% (v/v) and 0.8% (v/v) CHD-FA for 5 min.  

Biofilms were also treated with 0.2% (v/v) CHX used as a positive control.  Metabolic 

activity was measured using alamarBlue® and data presented as a percentage of the 

untreated control [A].  Biofilms were retained following treatment and biofilm biomass 

determined by staining with 0.05% (w/v) crystal violet solution and quantified 

spectrophotometrically by reading at 570 nm [B].  Bacteria were sonicated in PBS for 10 

min and viable bacteria enumerated using Miles and Misra plate counting method on CBA 

and FAA plates supplemented with 5% horse blood [C].  All samples were assayed in 

triplicate, on three separate occasions.  Statistical analysis was performed using a one-

way ANOVA with Bonferroni’s post-test.  Data represents mean ± SD (*p<0.05, **p<0.001).  
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3.3.6 Xylitol treatment does not affect FCGS biofilm viability or 
biomass 
 
Furthermore, using the multi-species biofilm model, the activity of xylitol was 

investigated and biofilm viability, biomass and CFU counts were measured 

following a 5-minute treatment (Figure 3.6).   

 

No significant difference in biofilm cell viability was discovered between biofilms 

treated with xylitol at various concentrations (0.25-5%), with viability found to be 

over 90% of the untreated control at all concentrations tested.  Similarly, biofilm 

biomass did not significantly change following treatment with a range of xylitol 

concentrations compared to the untreated control.  The number of CFUs counted 

were shown to be decreased when plated on CBA compared to FAA, indicating that 

xylitol may have slightly higher toxicity to aerobic bacteria in the biofilm, however 

this was not statistically significant.  
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Figure 3.6: Biofilm viability and biomass following xylitol treatment 

Multi-species biofilms containing FCGS-associated bacteria were grown on ThermanoxTM 

coverslips and treated with 0.25% (w/v), 0.5% (w/v), 1% (w/v) and 5% (w/v) xylitol for 5 

min.  Biofilms were also treated with 0.2% (v/v) CHX used as a positive control.  Metabolic 

activity was measured using alamarBlue® and data presented as a percentage of the 

untreated control [A].  Biofilms were retained following treatment and biofilm biomass 

determined by staining with 0.05% (w/v) crystal violet solution and quantified 

spectrophotometrically by reading at 570 nm [B].  Bacteria were sonicated in PBS for 10 

min and viable bacteria enumerated using Miles and Misra plate counting method on CBA 

and FAA plates supplemented with 5% horse blood [C].  All samples were assayed in 

triplicate, on three separate occasions.  Statistical analysis was performed using a one-

way ANOVA with Bonferroni’s post-test. 
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3.3.7 Ubiquinol treatment does not affect FCGS biofilm viability or 
biomass 
 
The anti-microbial potential of ubiquinol, an active component of Oralmat® anti-

inflammatory remedy, was investigated on the FCGS multi-species biofilm (Figure 

3.7).  Following a 5-minute treatment with ubiquinol, biofilms showed no 

significant differences in cell viability or between various concentrations tested.  

There was also no significant difference in the level of biofilm biomass of biofilms 

treated at each concentration of ubiquinol compared to the untreated control.  

There was a notable decrease in the number of live aerobic cells within biofilms 

treated with 50 and 200 µg/mL of ubiquinol compared to the untreated control, 

however this decrease was not found to be significant.  
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Figure 3.7: Biofilm viability and biomass following ubiquinol treatment 

Multi-species biofilms containing FCGS-associated bacteria were grown on ThermanoxTM 

coverslips and treated with 50, 100 and 200 µg/mL ubiquinol for 5 min.  Biofilms were 

also treated with 0.2% (v/v) CHX used as a positive control.  Metabolic activity was 

measured using alamarBlue® and data presented as a percentage of the untreated control 

[A].  Biofilms were retained following treatment and biofilm biomass determined by 

staining with 0.05% (w/v) crystal violet solution and quantified spectrophotometrically by 

reading at 570 nm [B].  Bacteria were sonicated in PBS for 10 min and viable bacteria 

enumerated using Miles and Misra plate counting method on CBA and FAA plates 

supplemented with 5% horse blood [C].  All samples were assayed in triplicate, on three 

separate occasions.  Statistical analysis was performed using a one-way ANOVA with 

Bonferroni’s post-test.  
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3.4 Discussion 
 
Within the oral cavity, bacteria are known to reside within multi-species biofilms, 

where changes in the composition of biofilm bacterial communities may disrupt 

host-microbial symbiosis and lead to the association of specific biofilms with 

health or disease.  It is possible that cats affected with FCGS have an intolerance 

to even small quantities of bacterial plaque on the tooth or tissue surface, and 

while some cats respond well to improved oral hygiene alone, others will respond 

poorly to all treatments.  Extraction of teeth is the standard treatment option for 

FCGS, of which 87% of cats show signs of improvement while 13% do not respond 

and may be considered refractory cases (Hennet, 1997; Girard and Hennet, 2005).  

Many drug-therapies, including anti-inflammatories, have been advocated for 

FCGS with limited efficacy, highlighting the urgency for novel treatment options.  

Previous research into human oral disease has led to the development of several 

multi-species biofilm models such as for gingivitis and periodontitis, which has 

allowed the study of specific bacterial interactions which mimic a disease-

associated environment (Millhouse et al., 2014; Park et al., 2014). However, as 

feline oral disease is less-well studied, there is not currently a comparative model 

to study bacterial roles in feline oral disease.  In this chapter, a multi-species 

biofilm containing bacteria associated with disease during FCGS was developed to 

evaluate the ability of novel actives to disrupt biofilms. 

 

All bacterial species considered as putative pathogens of FCGS (P. multocida 

subsp. multocida, P. multocida subsp. septica, T. forsythia, and P. 

circumdentaria) (Dolieslager et al., 2011) were shown to display sialidase activity 

in this study.  This was consistent with previous studies which have shown P. 

multocida species to produce medium-strong sialidase activity, and shown T. 

forsythia to display sialidase activity allowing it to utilise sialoglycoproteins for 

biofilm growth (Müller and Mannheim, 1995; Roy et al., 2011).  P. circumdentaria 

has also shown to display levels of sialidase activity (Assis et al., 2013).  Moreover, 

previous studies have shown a novel plant-derived compound, berberine, to cause 

inhibitory effects on both viral and bacterial sialidases making this a compound of 

interest in this study (Wu et al., 2011; Kim et al., 2014).  When treated with 

berberine, sialidase activity of all bacteria was shown to significantly decrease 

when increasing concentrations of up to 20 mM were used, concurrent with 

previous research.  The compound DANA has previously shown to be an effective 
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viral sialidase inhibitor, with less research reporting its potential as a bacterial 

sialidase inhibitor.  In this study, an 80% decrease in the fluorescence of P. 

multocida subsp. septica was shown following treatment with DANA, as well as 

concentration-dependent reductions in fluorescence for P. multocida subsp. 

multocida and T. forsythia.  This suggests that DANA may be a suitable sialidase 

inhibitor for some FCGS-associated bacteria.   

 

A comparative assessment of anti-microbial compounds: berberine, CHD-FA, 

xylitol and ubiquinol against a 10-species biofilm containing FCGS-associated 

bacteria was performed.  Berberine was found to reduce the biomass of the 

biofilm in a concentration-dependent manner up to 200 µg/mL, correlating to a 

previous study which found berberine to have anti-biofilm potential against 

Pseudomonas and Salmonella species (Aswathanarayan and Vittal, 2018).  The 

reduction in biofilm biomass with berberine treatment may support its potential 

to inhibit bacterial sialidase activity, as shown in the current study.  Furthermore, 

one study by Sherry et al. (2013) observed a killing and disruptive effect of CHD-

FA on multi-species periodontal biofilms when treated with 0.5% (v/v) for 24 h.  

In this study, results corroborated with previous research, with the greatest 

reduction in biofilm cell viability shown when biofilms were treated with CHD-FA 

at 0.8% (v/v); an antimicrobial effect comparative to that caused by the positive 

CHX control.  Biofilm biomass was also decreased by CHD-FA in a concentration-

dependent manner.  Xylitol did not significantly affect cell viability or biomass 

when treated at each concentration.  A previous study has shown xylitol to inhibit 

the formation of an oral multi-species biofilm containing species such as 

Streptococcus and Porphyromonas (Badet et al., 2008).  However, the research by 

Badet et al. (2008) did not investigate the ability of xylitol to decrease the 

viability and biomass of a mature biofilm, as carried out in this study, which may 

explain the differences observed.  Similarly, treatment with ubiquinol did not 

cause any significant changes in the viability or biomass of the biofilm at any 

concentration.  Thus far, there is limited research on the effect of ubiquinol on 

bacterial biofilms in vitro, however an in vivo study by Sugawara (2011) found 

that patients with periodontal disease treated with ubiquinol for 2 months showed 

a significant reduction in bacterial plaque adhesion.  Biofilms treated with xylitol 

and ubiquinol, however, did show to have a notable increase in the recovery of 

anaerobic bacteria (FAA) compared to aerobic bacteria (CBA).  This may suggest 
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that aerobic bacteria were more susceptible to these treatments or may have 

been outcompeted by anaerobes for nutrients. Quantifying the changes in the 

proportion of each bacterial species within the biofilm following treatment would 

be highly advantageous with further use of this model to allow susceptible and 

resistant species to be identified.   

  

In summary, the FCGS multi-species model presented in this study has displayed 

ability to test anti-microbial compounds and, with further quantification, could 

be valuable in more widespread testing of potential active compounds. 
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4 General Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 68 

4.1 Introduction 
  
FCGS is a complex disease, with excessive oral inflammation believed to be driven 

by a multitude of interactions between various external stimuli and host immune 

cells in the oral cavity.  The series of observations herein addresses how the 

presence of specific bacteria within the oral cavity may influence the host 

response.  This was demonstrated by the use of an in vitro model system to 

measure host cell inflammatory changes upon challenge with bacteria associated 

with FCGS, and this system successfully displayed clear differences in the host 

response to each bacterial species.  Furthermore, a biofilm model that represents 

FCGS-associated plaque was developed to investigate novel treatment options for 

this.  This model system has demonstrated the efficacy of biologically active 

molecules on FCGS-associated biofilms, and the utility of this model could allow 

for future investigations on bacterial-host interactions including use in a co-

culture model with appropriate host cells. 

  

4.2 Conclusions and future work 
 
The major aims of this study were to investigate the inflammatory effects of 

bacteria associated with FCGS on host cells and examine the ability of novel 

compounds to disrupt FCGS-associated bacteria within a multi-species biofilm 

model.  Through the development of an in vitro assay, the TLR activation and pro-

inflammatory IL-8 gene and protein expression of host cells could be measured 

following exposure to varying multiplicities of infection of FCGS bacteria.  IL-8 

was appropriate in this study as it is used as a biomarker for inflammation in many 

clinical conditions (Shahzad et al., 2010).  With suspected pathogens of FCGS 

showing to elicit the activation of TLRs in this study, it was suggested that these 

bacteria are capable of triggering the metabolic pathologies of the immune 

response.  Furthermore, it was shown that human THP1-XBlueTM cells had the 

greatest increase in both IL-8 gene and protein expression when stimulated by T. 

forsythia and P. gingivalis at an MOI of 200, which could be expected as these 

bacteria are routinely identified in subgingival plaque in humans with chronic oral 

disease and contribute to disease pathogenesis (Socransky et al., 1998).  The 

release of IL-8 in cell culture supernatants further suggests that these bacteria 

may be involved in the initiation of the NF-κB pathway leading to a cascade of 
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chemokines and cytokines, and subsequent inflammation (Bennett et al., 2012).  

However, further research is required to prove whether the initiation of an IL-8 

response in cells is the direct result of TLR stimulation.  Using human cells 

provided an effective comparator to the feline SCCF1 cell line as bacterial 

involvement in human oral disease is more well understood.  SCCF1 cells were 

used in this study to make the results more relevant to FCGS.   

 

The feline SCCF1 cells showed a significantly increased IL-8 mRNA and protein 

expression following exposure to the bacteria suspected to be involved in FCGS 

(T. forsythia, P. circumdentaria and P. multocida species), which supports the 

idea that these bacteria have some involvement in the induction of a chronic 

inflammatory response during FCGS.  However, SCCF1 cells also presented a 

similar pattern of gene expression and protein release in the presence of B. 

zoohelcum.  As B. zoohelcum is regarded as a commensal organism in the feline 

oral cavity, an elevation of IL-8 levels was not expected and so the results using 

this cell line do not support B. zoohelcum as a commensal.  Previous research has 

also suggested that B. zoohelcum could cause harm to cats when it was isolated 

in pure culture from lung tissues of cats with respiratory disease, indicating at 

least partial involvement in disease (Decostere et al., 2002).  However, it must be 

considered that commensals work in unison with other species to form the healthy 

oral microbiota in vivo, and this behaviour may not be evident when studying this 

bacterium in isolation.  Therefore, B. zoohelcum may play a greater role in the 

progression of FCGS than initially expected but future work would be necessary to 

determine the inflammatory potential of B. zoohelcum and investigate its role in 

oral disease in the presence of FCGS recognised pathogens.  This in vitro assay 

could be used in further investigations to measure and compare the influence of 

specific FCGS-associated bacteria on other signature pro-inflammatory cytokines 

including tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) which 

have shown to have elevated mRNA expression in tissue biopsies of cats with FCGS 

compared to a healthy group (Dolieslager et al., 2013).  It would also be of interest 

to determine the impact on the host immune response if host cells were 

stimulated with these bacteria in combination, or within a biofilm.  Furthermore, 

additional experiments using the in vitro model system to look at innate immune 

responses from epithelial cells isolated from feline gingival tissue would be useful 
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to investigate the aetiology and pathogenesis of FCGS, as these cells would most 

closely model the response of host oral cells in vivo. 

 

Many treatments have been advocated for FCGS, with most aiming to reduce the 

abnormal inflammatory response affecting the oral cavity.  While the pathological 

mechanism of FCGS remains unclear, it is thought that increased plaque 

accumulation within the oral cavity may be a key predisposing factor of FCGS.  

Elective tooth extraction, which removes plaque retentive surfaces in the mouth, 

has become the accepted standard method of managing FCGS in cats and has 

proven efficacy with up to 80% of cats showing substantial or complete 

improvement (Hennet, 1997; Girard and Hennet, 2005).  Another recommended 

method of management for FCGS is to implement the improvement of feline oral 

hygiene throughout all stages of treatment.  This involves daily teeth brushing 

with the use of chlorhexidine toothpaste and oral rinses with the aim to reduce 

the level of plaque build-up and help minimise opportunistic infection of inflamed 

oral tissue.  However, the majority of cats will not fully respond to this cleaning 

or extraction alone and extended or continuous medical treatments are required 

(Jennings et al., 2015).  It is apparent that the elimination of bacterial plaques is 

of importance in the management of FCGS and investigating new treatment 

options to target these external stimuli could be vital to reduce refractory cases 

of FCGS.  

 

It has been proposed that sialidase inhibitors could be of pharmacological 

relevance in the treatment of FCGS. Previous studies have implied the importance 

of sialidase enzymes of some pathogenic bacteria for biofilm formation and 

colonisation of mucosal surfaces (Oggioni et al., 2006; Parker et al., 2009).  

Sialidases likely contribute to virulence through cleavage of sialic acids in mucosal 

tissues, which bacteria utilise to obtain food and energy during the formation of 

a dental biofilm.  Several pathogens have shown to use sialidases in virulence such 

as Streptococcus pneumoniae and T. forsythia (Corfield, 1992).  T. forsythia has 

previously shown to use the sialidase enzyme NanH in initial biofilm formation 

(Roy et al., 2011). The use of sialidase inhibitors for the treatment of FCGS has 

been suggested due to the ability of these inhibitors to target a common binding 

site (α-2,6-linked sialic acid) in putative pathogenic bacteria, which could prevent 

plaque biofilm formation and invasion of bacteria in disease.  In this study, it was 
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shown that all putative pathogens of FCGS (T. forsythia, P. circumdentaria, P. 

multocida supsp. multocida, and P. multocida subsp. septica) displayed a medium 

to high level of sialidase activity, suggesting that the sialidase enzyme could 

contribute to the virulence of these bacteria during disease.  Furthermore, with 

bacteria showing a 70-90% decrease in sialidase activity following berberine 

treatment and a 60-80% decrease in sialidase activity following DANA treatment, 

this work provided evidence that these compounds could be considered as 

alternative drug therapies for the reduction of dental plaque biofilms in FCGS.  It 

would be necessary to investigate the toxicity of the inhibitors at effective 

concentrations as well as consider associated costs. 

 

A variety of research has shown the development of modelled oral biofilms that 

recapitulate the microbial environment in oral disease in attempt to understand 

bacterial interactions during disease and allow development of new 

chemotherapeutic agents (Periasamy and Kolenbrander, 2009; Sherry et al., 

2016).  Given that most bacteria exist as multi-species consortia in the oral cavity, 

creating a multi-species model for testing is advantageous as it allows a controlled 

and reproducible environment with a more realistic measure of bacterial 

susceptibility in vivo than studies of an individual component species (Tan et al., 

2017).  Moreover, the importance of biofilm models for the study of antimicrobials 

has been highlighted when the minimum inhibitory concentration (MIC) of oral 

bacterial species such as F. nucleatum and P. gingivalis, following treatment with 

CHX, was found to be 10,000 times lower for planktonic cells than single species 

biofilms (Park et al., 2014).  In this study, a complex biofilm model comprising 

bacteria associated to a diseased microbial environment in the feline oral cavity 

during FCGS was created as a platform for testing the efficacy of novel 

compounds.   

 

The feline oral cavity has a diverse and unique microbiota, comprising over 400 

bacterial species (Adler et al., 2016).  A defined group of bacteria were chosen to 

use in the FCGS biofilm model with properties that increased the chances of a 

mature biofilm to successfully develop.  This included early colonisers 

(Streptococcus species) which initially attach to the tooth surface in early biofilm 

growth, and F. nucleatum which is a known bridging organism that other organisms 

will bind to promoting maturation of the dental plaque biofilm (Settem et al., 
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2012).  F. nucleatum has also shown to facilitate the survival of obligate anaerobes 

within a biofilm in aerated environments; a property that would be advantageous 

for this biofilm model due to the addition of strictly anaerobic FCGS-associated 

pathogens (T. forsythia and P. circumdentaria).  The bacteria were added in a 

sequential manner to ThermanoxTM coverslips in a biologically relevant media to 

allow the formation of the biofilm model to mimic plaque development in vivo.  

In this study, biological agents of interest were applied directly to the mature 

multi-species biofilm and the efficacy determined by measuring biofilm viability 

and biomass.   

 

Our group has previously shown a natural compound (CHD-FA) to be highly 

effective against a multi-species periodontal biofilm at a concentration of 0.5% 

(Sherry et al., 2013).  In this study, CHD-FA was the most effective compound 

tested against the FCGS multispecies biofilm, where 0.8% CHD-FA was able to 

disrupt cell viability to the same level as CHX, which is currently used as a 

treatment for FCGS.  CHD-FA could potentially be used as an alternative natural 

agent to CHX to eliminate plaque biofilms in FCGS as it has shown no sign of 

toxicity in rats and humans and has shown to have anti-inflammatory properties 

(Gandy et al., 2012; Gandy et al., 2011).  Furthermore, in this study, significant 

disruption of the multispecies biofilm biomass was observed when treated with 

0.5% CHD-FA which corroborates with research by Sherry et al. (2013).  That study 

found, through SEM imaging, disaggregation of bacterial biofilms following CHD-

FA treatment, indicating possible action against the bacterial cell membrane.  

Collectively, these properties make CHD-FA a desirable option for the 

development of a topical agent such as a toothpaste or mouthwash to control 

microbial dysbiosis in FCGS.  However, further studies to assess the effect of CHD-

FA on the host and determine its efficacy in vivo would be required. 

 

Previous work has found berberine, a naturally occurring chemical compound, to 

have anti-biofilm properties (Aswathanarayan and Vittal, 2018).  In this study, it 

was also shown that the biomass of the multispecies biofilm was significantly 

disrupted following treatment with berberine.  Compounds with the ability to 

disrupt biofilm structure are valuable in oral disease to increase the vulnerability 

of plaque bacteria to antimicrobial agents.  Berberine has been used as a 

therapeutic agent in clinical applications due to its inherent low cytotoxicity 
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(Chung et al., 1999). Although the mode of action of berberine is not fully 

understood, this investigation indicated the potential for berberine to block 

bacterial sialidase activity as a mechanism to disrupt bacterial attachment and 

biofilm formation.  Further investigations to understand the mode of action, and 

assessment of the cytotoxicity of berberine on feline host cell lines, would be of 

importance to evaluate the safety of this compound for clinical use.    

 

Despite previous work showing the five-carbon polyol, xylitol, to have anti-biofilm 

properties and reduce plaque accumulation, it had no significant effect on the 

multispecies biofilm at the concentrations tested in this study (Badet et al., 2008; 

Milgrom et al., 2012).  Moreover, treatment with ubiquinol did not have any effect 

on the biofilm viability or biomass.  It is possible that the mature multispecies 

biofilm was too robust for the concentrations of these compounds tested.  It could 

be of value to perform additional experiments to determine the MIC of these 

compounds on planktonic cells or single species biofilms of the bacteria of 

interest, which are more susceptible than the multi-species biofilm, to identify if 

these compounds have any antibacterial potential on FCGS-associated bacteria.  

It would also benefit to measure the effect of compounds on the biofilm at various 

timepoints, to determine if there is a time-dependent impact.  One limitation of 

this study was the inability to quantify the live/dead bacteria in the multispecies 

biofilm before and after treatment using molecular techniques due to time 

restrictions, which is of importance to provide a reproducible model.  With further 

work to validate this FCGS model, it could be used in future applications with local 

tissue and immune cells to study how biofilm composition modulates pro-

inflammatory cytokine and chemokine gene expression, as well as protein release.  

 

To conclude, the work in this thesis provides valuable information regarding the 

role of bacterial composition in the modulation of host-pathogen interactions and 

evaluated the antimicrobial activity of novel compounds for potential use in FCGS 

treatment. Together, these allow for a greater understanding of the 

aetiopathogenesis of FCGS and provide a basis for the development of alternative 

therapies to tackle this complex feline disease. 
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