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Abstract 
The industrial route for producing ammonia is via the Haber-Bosch Process and requires 

high temperatures and pressures. When considered in its entirety, including the production 

of the necessary feedstreams, the process is stated to account for 2% of the world’s energy 

demand and 1.6% of global anthropogenic CO2 emissions. If a more active ammonia 

synthesis catalyst was developed, it may prove possible to operate under more moderate 

conditions, facilitating localised and sustainable production. One potential approach to the 

development of catalysts with enhanced activity by-passing the limiting scaling 

relationship invoked for metal catalysts is ammonia production via the Mars-van Krevelen 

mechanism, as possibly exhibited by some metal nitrides, such as Co3Mo3N. 

The role composition and crystal structure type have on the ammonia synthesis activity of 

mixed metal nitrides, carbonitrides and carbides was investigated within this thesis. 

Fe3Mo3C, Ni6Mo6C, Ni3Mo3C and Ni2Mo3CxNy have been tested for their ammonia 

synthesis capabilities, to discover if the presence of lattice nitrogen was required. Fe3Mo3C 

was found to be inactive for ammonia synthesis at 400oC. However, when the temperature 

was increased to 500oC, the material became active, which may be related to the 

substitution of lattice carbon with nitrogen. Ni6Mo6C and Ni3Mo3C were inactive for 

ammonia synthesis at 400oC and 500oC, respectively. When Ni6Mo6C and Ni3Mo3C were 

investigated at 700oC, an induction period occurred before the two materials developed 

activity for ammonia synthesis; during this period, nitridation of the lattice occurred 

eventually leading to the formation of Ni2Mo3N. Ni2Mo3C could not be synthesised via a 

topotactic route from Ni2Mo3N and the carbonitride phase which was formed was active 

for ammonia synthesis at 400oC. 

The lattice nitrogen in the filled b-Mn structured Ni2Mo3N and h-carbide structured 

Ni2GaMo3N was observed to exhibit different behaviour to that in the filled b-Mn 

structured Co2Mo3N and h-carbide structured Co3Mo3N and Fe3Mo3N. For Ni2Mo3N and 

Ni2GaMo3N, the bulk lattice nitrogen appeared to be relatively unreactive at 900oC, 

whereas Co2Mo3N, Co3Mo3N and Fe3Mo3N decomposed under these conditions. This 

suggests that both composition and crystal structure type may have an impact on the lattice 

nitrogen reactivity. 

The potential structure sensitivity of osmium for ammonia synthesis was examined and it 

was found that the metal was more active when it was more highly dispersed. Supported 

mixed metal carbonyl clusters were also tested and were observed to have different 

activities to the supported monometallic equivalents. 
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1. Introduction 
1.1 Fixation of N2 in Nature 
Nitrogen is essential to sustain the life of animals and plants. Many biomolecules, 

including nucleotides and amino acids, contain nitrogen and are necessary for producing 

the proteins in muscle and the skin [1]. Nitrogen is widely available, with almost 80% 

being present in air [1]. However, due to the strong nitrogen triple bond making N2 

relatively inert, plants and many life forms cannot uptake nitrogen in this form. Instead, 

plants obtain nitrogen when N2 is converted into ammonia or nitrate [2]. In nature, nitrogen 

fixation can occur by two methods. The first is the transformation of N2, oxygen and water 

to nitrate by lightening [3]. The second is by the enzyme, nitrogenase, found in a small 

number of prokaryotes [2]. Nitrogenase forms ammonia at ambient temperature and 

pressure according to the following equation: 

N2 + 8e- + 8H+ + 16 ATP ® 2NH3 + H2 + 16 ADP + 16Pi 

Equation 1: Formation of ammonia by nitrogenase [2] 

Nitrogenase contains two main proteins, the iron protein and the molybdenum-iron protein 

[2] [4]. There also exist nitrogenases with vanadium or iron in place of molybdenum [5]. 

The structure of the Mo containing nitrogenase is presented in Figure 1. Three clusters 

exist within this structure, the F, P and M clusters. The F cluster consists of the iron protein 

and is responsible for hydrolysis of adenosine triphosphate (ATP) to adenosine 

diphosphate (ADP) [4]. The electrons formed by this process are transferred to the FeMo 

cofactor (M cluster) through the P cluster [2]. The M cluster is the active site for binding of 

the nitrogen and reduces H+ and N2 to H2 and NH3 [2]. 

It was originally thought that the M cluster contained an interstitial nitrogen atom that 

could be exchanged during dinitrogen reduction [6]. However, later studies revealed that 

the atom was not exchangeable [7] and was instead carbon [2] [8]. The active site for this 

process is Fe7MoS9C [2]. It has been proposed that the formation of ammonia by 

nitrogenase occurs through an associative mechanism in which protonation of N2 occurs 

prior to its dissociation [2] [9]. Through nitrogenase catalysed nitrogen fixation, 110 Tg of 

nitrogen is fixed per year on land and 140 Tg of nitrogen per year in the ocean [10]. 

However, not enough nitrogen is fixed by the enzyme to sustain the current human 

population. The biological process contributes 50% of the fixed nitrogen required for 

current agricultural production [2] [10]. When nitrogen levels are low in the soil, plant 

growth becomes limited and food production is low. This problem can be solved by adding 
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fixed nitrogen to the soil in the form of fertiliser. Therefore, it was necessary that an 

industrial process was developed to produce the synthetic fertiliser and support the 

growing population. 

 
Figure 1: Structure of Mo nitrogenase. [2] 

1.2 Industrial Processes for Producing Ammonia 

1.2.1 Haber-Bosch Process 

The development of the Haber-Bosch Process was one of the most important achievements 

of the twentieth century. It allowed the production of ammonia from the direct 

combination of nitrogen with hydrogen. This reaction is possible by the use of an iron 

catalyst doubly promoted with Al2O3 and K2O. The reaction takes place at a moderate 

temperature of between 400-500oC and high pressures of approximately 200 atmospheres 

[11] [12]. The reaction is as follows: 

N2 + 3H2 ↔ 2NH3 (ΔH0 = -92 kJ/mol) 

Equation 2: Reaction of nitrogen and hydrogen to produce ammonia 

As the reaction is exothermic and equilibrium limited, thermodynamically it is favoured at 

low reaction temperatures. However, higher temperatures are used industrially to achieve 

satisfactory reaction kinetics. As suggested in a patent by Haber and Rossignol, the 
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ammonia in the gas leaving the reactor is removed by cooling it to a liquid state [13]. The 

unreacted nitrogen and hydrogen are then recycled to increase the percentage conversion to 

ammonia from 15% to an overall conversion of 97% on subsequent passes [14]. 

Mittasch and co-workers studied a wide range of metals for the process, including iron, 

molybdenum, osmium, uranium and nickel [15]. Iron metal was found to initially have a 

good activity for ammonia synthesis but was observed to deactivate quickly [16]. 

Therefore, iron was originally removed from contention as the catalyst for the process. 

However, Mittasch discovered that mixing the iron oxide (Fe3O4) precursor with metal 

oxides, such as Al2O3 and K2O enhanced the activity and stability of the resultant iron 

based catalyst [16]. The alumina acts as a structural promoter and prevents the sintering of 

a-iron, which is formed after reduction of the iron oxide [17]. Potassium increases the 

activity of the catalyst by donating electron charge to the iron, resulting in a weakening of 

the N2 bond upon adsorption [18]. The reduced iron catalyst has a network of pores with 

diameters of 25 – 50 nm [19]. 

The process facilitated the formation of ammonia on an industrial scale. Ammonia has 

many uses but the most significant, is as a synthetic fertiliser and ammonia is also gaining 

interest as a potential fuel. The fertiliser formed from ammonia is necessary for sustaining 

crops and for providing food for a large fraction of the world’s population. Almost 130 

million tonnes of ammonia was produced in the year 1999 [20], with more than 80% of 

this being converted to fertilizers. However, there are some disadvantages to this process. 

The production of ammonia from the Haber-Bosch Process requires 1 – 2% of the world’s 

manmade energy demand when the process is considered in its entirety including feed gas 

generation [11] [21]. Furthermore, the hydrogen feedstream obtained from natural gas, 

results in 2.2 tonnes of CO2 being generated per tonne of ammonia being produced [22]. 

When coal is used as the source of hydrogen, 16.7 tonnes of CO2 per tonne of ammonia is 

formed [22]. This results in ammonia production accounting for 1.6% of global manmade 

CO2 emissions [21]. 

If a more active catalyst than the one used in the Haber-Bosch Process was developed, it 

may prove possible to operate under more moderate conditions, facilitating localised and 

sustainable production where the H2 feedstream is derived from renewable hydrogen 

generated via electrolysis from electricity sources derived from wind, solar or tidal power. 

The reduction in temperature would allow the possible increase in percentage per-pass 

yield due to more favourable equilibrium conditions. This would require the discovery of a 
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new catalyst. However, it is important to consider that iron, as is currently used on the 

large scale, is inexpensive and abundant, although it is highly susceptible to poisoning. 

Any new catalyst must be highly active and, ideally, be less susceptible to poisoning. 

1.2.2 Kellogg Advanced Ammonia Process (KAAP) 

One alternative process that has been developed is the Kellogg Advanced Ammonia 

Process, which uses a promoted ruthenium on graphite catalyst [23]. The catalyst is stated 

to be 10 – 20 times more active than the iron-based one used in the Haber-Bosch Process. 

This high activity of the ruthenium catalyst has been explained in relation to its nitrogen 

binding energy [24]. Ruthenium was shown to have close to optimal adsorption energy for 

nitrogen chemisorption, resulting in high ammonia turnover frequencies. 

Aika and Ozaki focused on studying ruthenium based catalysts for ammonia synthesis [25] 

[26] [27]. They showed that promoting the ruthenium with both Cs+ and Ba2+ resulted in a 

highly active catalyst [28]. It is proposed that the promoters transfer charge to the 

ruthenium, acting similarly to the potassium component in the Haber Bosch catalyst in 

enhancing N2 activation. The choice of support was also shown to affect the rate, with 

carbon and alumina supported ruthenium having the highest activity [27]. The authors 

suggested that the support acts as a medium for the electron transfer. Due to the interest 

generated by Aika and Ozaki in ruthenium catalysts, BP developed a doubly promoted 

ruthenium catalyst supported on methanation resistant high surface area graphitised carbon 

(Ru/Cs/Ba/HSAG) for ammonia synthesis [29]. 

The Ru/Cs/Ba/HSAG catalyst contains an 8 wt.% loading of ruthenium and high loadings 

of the two promoters [29]. The HSAG is formed by a three stage heat treatment up to 

approximately 2000oC. The resultant material has a mesoporous structure that stabilises the 

ruthenium particles and is resistant to methanation at high pressures of hydrogen [29].  

As the Ru/Cs/Ba/HSAG catalyst is more active than the Haber Bosch catalyst, the KAAP 

can be operated at lower pressures, which results in a lower operational cost [30]. The 

process can also retain a high activity at lower temperatures and higher ammonia 

concentrations than the Haber Bosch Process. The catalyst can operate with a range of 

hydrogen to nitrogen feedstream ratios. The Haber-Bosch Process operates with 3:1 H2/N2, 

whereas for the ruthenium based catalyst, the optimum ratio is lower than stoichiometric 

[30]. This is due to ruthenium being strongly inhibited by hydrogen and thus, the catalyst 

has a higher activity when higher nitrogen pressures are used [31]. The first KAAP plant 

was in operation by 1992 as part of the Ocelet project [29] and by 2004, there were 7 
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plants in operation [32]. However, there is further interest in producing a highly active 

catalyst operative under even less severe conditions which are more applicable to localised 

sustainable ammonia synthesis. 

1.3 Metal Nitrides 
Another alternative being considered is the use of binary and ternary nitrides as catalysts 

for ammonia synthesis. Mittasch discovered that molybdenum nitride and uranium nitride 

were particularly active for ammonia synthesis [15] [16]. Uranium nitride was one of the 

early contenders for the Haber Bosch Process before the iron catalyst was discovered [33]. 

The uranium could be promoted with certain metals to provide an ammonia yield of 

between 1% and 2.5% at 550oC and 100 atmospheres pressure [15]. However, the uranium 

catalyst was expensive and, therefore, it was necessary to find an alternative that was as 

effective and more commercially acceptable [15]. 

During the search for a catalyst for the Haber Bosch Process, Mittasch observed that 

molybdenum formed a nitride under the ammonia synthesis conditions [15] [16]. The 

molybdenum had an advantage over pure iron as it was less easily poisoned. Mittasch also 

stated that molybdenum was the most efficient of the easily obtainable materials [15]. As 

the molybdenum was transformed into the nitride, the activity increased and therefore, it 

was proposed that the nitride was the active form of the catalyst [16]. Molybdenum nitride 

was observed to have an ammonia synthesis yield of 1.5% at 550oC and 100 atmospheres 

pressure [15]. The activity of the material could be increased by combining molybdenum 

with cobalt, nickel or iron and promoting molybdenum with alkali metals. However, 

oxides of the alkali metals were observed to have a negative impact. The promoted 

molybdenum material had an ammonia yield of up to 4% at 550oC and 100 atmospheres 

pressure [15].  

Kojima and Aika also studied molybdenum nitride (g-Mo2N) for ammonia synthesis and 

obtained a rate of 48 µmol h-1 g-1 at 400oC and atmospheric pressure [34]. Generally, 

ternary molybdenum nitrides, such as Co3Mo3N, Ni2Mo3N and Fe3Mo3N, are reported to 

be more active [35] [36]. This supports the observations made by Mittasch that alloying the 

molybdenum with one of these metals increases the activity. It has been shown that the 

Co3Mo3N has high activity for ammonia synthesis and even exceeds the activity of the iron 

based industrial catalyst, particularly when doped with Cs+ [37]. 

Materials that have recently been developed which show promise with respect to the 

commercially applied promoted iron and ruthenium based systems are CoRe4 and Cs+ on 
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Co3Mo3N. CoRe4 has an extremely high activity of 943 ± 44 µmol h-1 g-1 at 400oC and 

ambient pressure [38]. However, the high cost of rhenium is a disadvantage to using this 

material. A disadvantage to the Cs+ on Co3Mo3N is that phase instability can occur [39]. 

Therefore, any material that is prepared has to be highly active, stable and reasonably cost 

effective, as well as being suitable for application under transient operation and in addition 

less harsh reaction conditions than the Haber Bosch Process. 

1.4 Sustainability for Ammonia Synthesis 
Finding ways to produce ammonia in a sustainable way has grown in importance over the 

years [11] [22] [40]. One possible solution is to use renewable sources, such as solar, tidal 

or wind energy, instead of fossil fuels to form the H2 feedstream via electrolysis of water. 

Localised production, where the fertiliser is formed near the crop growing fields where it 

would be applied, would also be desirable. However, for this to occur, a more active 

catalyst would need to be developed, in order that more moderate conditions suitable for 

ammonia production on a farm could be utilised. 

One proposed method related to catalysis is chemical looping [40] [41]. This process 

requires multiple steps in order to produce ammonia via the intermediacy of a metal nitride 

as seen in Figure 2. Either H2O or H2 can be used in the looping process. For the H2O 

cyclic looping, the first reaction step involves oxidising a metal nitride with water to form 

ammonia and a metal oxide. Then, the metal oxide is reacted with a reducing agent, such 

as carbon, and then N2 to generate the recycled metal nitride [41] [42]. In order to remove 

the oxygen from the metal oxide to produce the metal nitride, energy has to be supplied. 

This energy could be supplied from solar power using parabolic mirror devices to attain 

the high temperatures necessary to make this process sustainable. Another advantage of 

this process is that it can be applied at ambient pressure [40]. However, the need for 

reducing agents containing carbon and the formation of carbon monoxide are drawbacks to 

this process. The regeneration of the metal nitride from the metal oxide can occur by 

thermal treatment but requires high temperatures (above 1200oC) [41] [43]. 

 
Figure 2: Chemical looping processes to produce ammonia 

One potential cycle for this process involves AlN/Al2O3, where AlN is produced from 

Al2O3 by carbothermal reduction under N2 and is subsequently, hydrolysed to form 



 33 

ammonia and Al2O3 [44]. The procedure was performed at ambient pressure and the 

energy required for the reduction step was provided by thermal radiation [45]. Michalsky 

and Pfromm studied a range of metals for this process and observed that Mg3N2 had a rate 

of 1.1 ± 0.2 x 10-3 molNH3 molmetal-1 s-1 at 500oC, with 69.9 mol. % of lattice nitrogen 

converted to ammonia [12]. However, Mg3N2 generates a large amount of heat during the 

hydrolysis stage. The authors suggested that Mo2N was a more suitable material. 

Manganese nitrides have also shown promise for this process [42] [43]. 

For the hydrogen-based cyclic looping to produce ammonia, the first stage is the same as 

the H2O cyclic looping, where a metal is nitrided with N2 to form a metal nitride. However, 

H2 is used to reduce the metal nitride to form ammonia and the starting metal [41]. The use 

of a carbothermal reduction agent would therefore, not be required. The hydrogen applied 

in this process could be generated from, for example, solar powered electrolysis of water. 

Michalsky et al examined a range of binary nitrides for this process [46]. The ammonia 

production rates for Sr3N2 and Ca3N2 under H2 at 1 atmosphere and 550oC were stated to 

be 2.1 ± 0.2 and 1.3 ± 0.4 µmol NH3 (mol metal x s)-1, respectively. The nitrides were 

observed to transform into SrH2 and Ca2NH. The authors concluded that the insertion of 

hydrogen increased the formation of ammonia from the lattice nitrogen [46]. Other studies 

have shown that manganese based materials are active for this process, with Li-Mn-N 

having a high activity at 400oC under 1:3 N2/H2 [47]. 

However, the materials produced so far are somewhat unstable and have unsatisfactory 

reactivities. Finding a material for this sustainable process is of importance and is the next 

challenge for the ammonia synthesis process. 

As the aim is to reduce the pressure and temperature that the ammonia synthesis process 

occurs, this would make the materials more environmentally friendly than those currently 

used in industry. 

1.5 Aims 
The influence of composition and structure type on the ammonia synthesis activity of 

ternary and quaternary molybdenum materials and Group 8 metals will be investigated 

within this thesis. Nitrides (Ni2Mo3N, Ni2GaMo3N, Co2Mo3N and Fe3Mo3N) with different 

metal compositions and either a η-carbide structure or a filled β-manganese structure will 

be tested for ammonia synthesis activity and lattice nitrogen reactivity. This will be 

performed in order to study the effect metal composition and crystal structure type may 

have on the activity. The performance of ternary carbides (Ni6Mo6C, Ni3Mo3C and 
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Fe3Mo3C) and a carbonitride (Ni2Mo3CxNy) will also be examined and compared with their 

corresponding nitrides, in order to gain an insight into the effect the interstitial 

carbon/nitrogen may have on the activity. In Chapter 6, the possible structure sensitivity of 

osmium for ammonia synthesis will be investigated and compared with the other Group 8 

metals and possible structure-activity relationships will be explored. Supported mixed 

metal clusters will also be prepared and tested for ammonia synthesis activity, in order to 

try and optimise the activity of the Group 8 cluster materials. 
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2. Experimental  
2.1 Materials Preparation 

2.1.1 Preparation of Ni2Mo3CxNy 

Nickel molybdenum oxide precursor (Ni2Mo3Ox) was prepared as described elsewhere by 

Bion et al. [36], who applied a modified form of the Pechini method. The necessary 

amounts of ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O, Fluka Analytical, 

puriss. p.a., ACS reagent, ≥ 99.0%), nickel nitrate hexahydrate (Ni(NO3)2·6H2O, Janssen 

Chimica) and citric acid monohydrate (C6H8O7.H2O, Sigma Aldrich, ACS reagent, ≥ 

99.0%), were dissolved in a 10% aqueous solution of nitric acid. The mixture was stirred at 

room temperature, until a clear solution was obtained. Then, the solvent was evaporated 

off at 70 °C, until a green coloured gel had formed. The gel was calcined in air at 500oC 

(60oC/min) for 2 hours to form the oxide. 

Nickel molybdenum nitride (Ni2Mo3N) was prepared by nitridation of the oxide precursor 

by using a 3:1 ratio of 60 mL/min H2/N2 gas mixture (BOC, H2 99.998%, N2 99.995%) at 

700oC for three hours. A ramp rate of 10oC/min was used to reach 700oC. The material was 

then cooled after the three hours under H2/N2. 

The carburised material (Ni2Mo3CxNy) was prepared by carburisation of Ni2Mo3N with a 

20% CH4/H2 gas mixture (BOC, 99.98%) at a flow rate of 12 mL/min. The ramp rate used 

was 6oC/min until the reactor had reached 350oC and was then changed to 1oC/min up to 

560oC. The reactor was kept at 560oC for 2 hours and then the sample was cooled down at 

a ramp rate of 10oC/min under CH4/H2. 

2.1.2 Preparation of Ni6Mo6C 

Nickel molybdenum oxide precursor (Ni3Mo3Ox) was prepared by using a similar method 

to the one described in section 2.1.1. Stoichiometric amounts of nickel nitrate hexahydrate 

(Ni(NO3)2·6H2O, Janssen Chimica) and ammonium molybdate tetrahydrate 

((NH4)6Mo7O24·4H2O, Fluka Analytical, puriss. pa., ACS reagent, ≥99.0%) were dissolved 

in 200mL of 10% nitric acid. Then, 26.547g of citric acid monohydrate (C6H8O7.H2O, 

Sigma Aldrich, ACS reagent, ≥ 99.0%) was added to the mixture and this was stirred until 

the solution was clear. The mixture was heated at 70oC, until a gel had formed. The gel 

was then dried in an oven for 12 hours at 120oC. The material was not calcined. 

Nickel molybdenum carbide (Ni6Mo6C) was prepared by reducing the uncalcined oxide 

precursor under a 3:1 ratio of H2/Ar gas mixture (BOC, 99.98%) at a flow rate of 
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60 mL/min. The citric acid was used as the source of carbon. The material was reduced at 

either 700oC or 750oC for 6 hours. The ramp rate used was 10oC/min until the reactor had 

reached 350oC and then it was changed to 5oC/min until the required temperature was 

attained. The sample was cooled down under H2/Ar to room temperature. 

2.1.3 Preparation of Ni3Mo3C 

Two methods were used in attempting to prepare nickel molybdenum carbide (Ni3Mo3C): 

1) The first method used a similar process as described by Regmi and Leonard [48]. 

Uncalcined oxide precursor (Ni3Mo3Ox) and excess activated charcoal (0.0156g, 

British Drug Houses Ltd., powder, washed with acid) were ground together for 20 

minutes using a pestle and mortar to obtain a homogeneous mixture. Subsequently, 

the material was prepared under a 60 mL/min flow rate of Ar gas (BOC, 99.998%) 

at 1000oC. The ramp rate used for heating was 1oC/min. Once the furnace reached 

1000oC, the furnace was cooled down to room temperature under Ar. 

2) The second method prepared the material by using the carburisation reactor 

described in section 2.1.11. Ni6Mo6C was carburised in 20% CH4/H2 (BOC, 

99.98%) at a flow rate of 12 mL/min. The material was loaded into a quartz reactor 

tube and placed into the microreactor. The material was heated to either 560oC or 

800oC at a ramp rate of 50oC/min. After 5 hours at the required temperature, the 

sample was cooled down to room temperature under 20% CH4/H2. 

2.1.4 Preparation of Ni2GaMo3N 

Nickel gallium molybdenum oxide precursor (Ni2GaMo3Ox) was prepared using a 

modified Pechini method as described in section 2.1.1. Stoichiometric amounts of nickel 

nitrate hexahydrate (Ni(NO3)2·6H2O, Janssen Chimica), gallium (III) nitrate hydrate 

(Ga(NO3)3.xH2O, Sigma Aldrich, 99.9% metals basis) and ammonium molybdate 

tetrahydrate ((NH4)6Mo7O24·4H2O, Fluka Analytical, puriss. pa., ACS reagent, ≥99.0%) 

were dissolved in 100mL of 10% nitric acid. Then, 13.226g of citric acid monohydrate 

(C6H8O7.H2O, Sigma Aldrich, ACS reagent, ≥ 99.0%) was added to the mixture and this 

was stirred until the solution was clear. Following this, the mixture was evaporated off at 

70 °C, until a gel had formed. The gel was dried in an oven overnight at 150oC and then, 

was calcined in air at either 500oC, 600oC or 650oC (60oC/min) for 2 hours to form the 

oxide. 
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Nickel gallium molybdenum nitride (Ni2GaMo3N) was prepared using the ammonolysis 

reactor (as described in section 2.1.9). Ni2GaMo3Ox was nitrided with 95 mL/min of NH3 

(BOC, 99.98 %) at 785oC for 5 hours. The temperature was increased from room 

temperature to 357oC at a ramp rate of 5.6oC/min, then, to 447oC at a ramp rate of 

0.2oC/min. Finally, the ramp rate was increased at 2.1oC/min until the final temperature 

had been reached. After 5 hours at 785oC, the material was cooled down to room 

temperature under 95 mL/min of NH3. The reactor was then flushed with nitrogen for 30 

minutes to remove any residual NH3. Subsequently, the material was passivated for 1 hour 

by using a mixture of 25 mL/min 2% O2/Ar diluted with nitrogen. 

2.1.5 Preparation of Fe3Mo3C 

Iron molybdenum oxide (FeMoO4) was prepared by following the procedure outlined by 

Bem et al. [49]. A green 0.25 M aqueous solution of 37.1 mL of iron (II) chloride 

tetrahydrate (FeCl2.4H2O, Sigma Aldrich, ReagentPlus, 98%) was added dropwise to a 

0.66 M aqueous solution of 14 mL of sodium molybdate dihydrate (Na2MoO4.2H2O, 

Hopkin and Williams, Analar, 99.0 - 102.0%). FeCl2.4H2O was weighed out in a glovebox. 

A solid formed immediately when the solutions were mixed together. Once all the aqueous 

solution of iron (II) chloride tetrahydrate was added, the mixture was left to stir for 1 hour. 

A brown precipitate was acquired after vacuum filtration and this was washed twice with 

distilled water and once with ethanol. The solid was dried overnight in an oven at 150oC. 

Then, it was calcined under 60 mL/min of nitrogen at 500oC (10oC/min) for 6 hours. The 

solid was cooled down to room temperature under nitrogen. 

Iron molybdenum nitride (Fe3Mo3N) was formed by ammonolysis of approximately 0.6 g 

of FeMoO4 with 95 mL/min of NH3 (BOC, 99.98 %) at 785oC for 5 hours. The 

ammonolysis reactor was used as described in section 2.1.9. The temperature was 

increased from room temperature to 357oC at a ramp rate of 5.6oC/min. Then, to 447oC at a 

ramp rate of 0.2oC/min and finally, the ramp rate was increased at 2.1oC/min until the final 

temperature had been reached. After 5 hours at 785oC, the material was cooled down under 

95 mL/min of NH3. At room temperature, the reactor was flushed with nitrogen for 30 

minutes to remove any NH3. Then, the material was passivated for 1 hour by using a 

mixture of 25 mL/min 2% O2/Ar diluted with nitrogen. 

Iron molybdenum carbide (Fe3Mo3C) was prepared from Fe3Mo3N, which was carburised 

by using a 12 mL/min flow of 20% CH4/H2 gas mixture (BOC, 99.98%) at 560oC for 2 

hours. The ramp rate used was 6oC/min until the reactor had reached 350oC and was then 
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changed to 1oC/min up to the final temperature. After 2 hours, the sample was cooled 

down to room temperature at a ramp rate of 10oC/min under CH4/H2. 

2.1.6 Preparation of Co2Mo3N 

Cobalt molybdenum oxide was synthesised by using three different methods: 

1) The first method used a modified form of the Pechini method as described by Bion 

et al. [36]. To give a 2:3 ratio of Co:Mo, the necessary amounts of cobalt (II) nitrate 

hexahydrate (Co(NO3)2·6H2O, Alfa Aesar, ACS, 98.0 – 102.0%, crystalline) and 

ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O, Fluka Analytical, puriss. 

p.a., ACS reagent, ≥ 99.0%) were dissolved in a 10% aqueous solution of nitric 

acid. Then, citric acid monohydrate (C6H8O7.H2O, Sigma Aldrich, ACS reagent, ≥ 

99.0%) was added. The mixture was stirred at room temperature, until a clear 

solution was obtained. Then, the mixture was treated at 70°C, until a red coloured 

gel had formed. The gel was dried in an oven overnight at 120oC. Subsequently, the 

gel was calcined in air at 500oC (60oC/min) for 2 hours to form the oxide. 

2) 2.22 g of ammonium molybdate tetrahydrate (NH4)6Mo7O24.4H2O, Fluka 

Analytical, puriss. p.a., ACS reagent, ≥ 99.0%) and 3.64 g of cobalt (II) nitrate 

hexahydrate (Co(NO3)2·6H2O, Alfa Aesar, ACS, 98.0 – 102.0%, crystalline) were 

dissolved separately in 100 mL of deionised water. The solution containing cobalt 

was added dropwise to the solution of molybdenum under stirring. Then, the 

solution was heated to 85oC and left at this temperature until approximately 75 mL 

of solution remained. A purple precipitate was obtained after vacuum filtration and 

this was washed twice with deionised water and once with ethanol. The solid was 

dried overnight in an oven at 150oC and was then calcined in air at 500oC 

(10oC/min) for 3 hours. 

3) A similar method was used as outlined by Hunter et al. [50]. 4.00 g of ammonium 

molybdate tetrahydrate (NH4)6Mo7O24.4H2O, Fluka Analytical, puriss. p.a., ACS 

reagent, ≥ 99.0%) and 4.40 g of cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O, 

Alfa Aesar, ACS, 98.0 – 102.0%, crystalline) were dissolved in 200 mL of 

deionized water. The solution was then heated to 85oC and left at this temperature 

until approximately 75 mL of deionised water remained. The resulting purple 

precipitate of CoMoO4·nH2O was vacuum filtered and then, washed twice with 

deionised water and once with ethanol. The sample was dried overnight in an oven 

at 150oC. The material was not calcined. 
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Cobalt molybdenum nitride (Co2Mo3N) was prepared by nitridation of the oxide precursor 

by using a 3:1 ratio of 60 mL/min H2/N2 gas mixture (BOC, H2 99.998%, N2 99.995%). 

The material was prepared at different temperatures of either 600oC, 650oC or 700oC for 

one, two or three hours. A ramp rate of 10oC/min was used to reach the required 

temperature. The material was then cooled after the reaction time under H2/N2. 

2.1.7 Preparation of Osmium 

The osmium metal sample was purchased from Acros Organics (99.9%, trace metal basis) 

and was used as provided. 

2.1.8 Preparation of Supported Metal Carbonyl Compounds 

2.1.8.1 Preparation of 5% Os3(CO)12 on Support  

Triosmium dodecacarbonyl (Os3(CO)12, Sigma Aldrich, 98%) was supported onto silica 

(Silica-amorphous, precipitated, Sigma Aldrich) or alumina (γ-alumina, Condea chemie, 

alumina extrudates) by the method outlined by Collier et al. [51]. The support was 

impregnated with a solution of Os3(CO)12 in dichloromethane (DCM, VRW chemicals, 

≥99%, stab. with 0.2% ethanol). The volume of dichloromethane required was determined 

by point of wetness for each support. The material was then dried at 40oC to remove the 

dichloromethane to produce a yellow powder of supported Os3(CO)12. The material was 

prepared to target a percentage loading of 5% by weight of osmium. The silica was either 

used as supplied (the hydroxylated support) or was dried at 500oC (10oC/min) for 16 hours 

under a 60 mL/min flow of nitrogen prior to being impregnated (the dehydroxylated 

support). 

2.1.8.2 Preparation of 5% Os3(CO)12 on Silica in Inert Conditions 

Triosmium dodecacarbonyl (Os3(CO)12, Sigma Aldrich, 98%) and silica (Silica-

amorphous, precipitated, Sigma Aldrich) were weighed out in a nitrogen filled glove box. 

These were then placed in a sealed Schlenk flask and connected to a Schlenk line. Dry 

dichloromethane was added to the Schlenk line and was added dropwise, by a syringe, to 

the silica support and Os3(CO)12. The material was prepared under nitrogen. The volume of 

dry dichloromethane needed was determined from the point of wetness for silica. A 

vacuum was applied to the material to evaporate off any excess dry DCM. The material 

was prepared to give a percentage loading of 5% by weight of osmium. 

2.1.8.3 Preparation of 5% Os3(CO)12 on Silica and 1% KOH 

5% Os3(CO)12/silica was prepared as described in section 2.1.8.1. Potassium hydroxide 

(KOH, Sigma Aldrich, puriss. p.a., Reag. Ph. Eur., ≥ 85%, pellets) was added to the 5% 
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Os3(CO)12/silica by wetness impregnation. A solution of KOH in deionised water was 

added to give a 1% loading of potassium. The material was dried at 100oC for 3 hours.  

2.1.8.4 Preparation of 1% Fe3(CO)12 on Support 

Triiron dodecacarbonyl (Fe3(CO)12, Alfa Aesar, 96% (dry wt.), stab. with 5-10% 

methanol) supported on either silica (Silica-amorphous, precipitated, Sigma Aldrich) or 

alumina (γ-alumina, Condea chemie, alumina extrudates) was prepared by the method 

described by Collier et al. [44]. A solution of Fe3(CO)12 in dichloromethane was 

impregnated onto the support. The amount of dichloromethane required to fill the pore 

volume of the support was determined from the point of wetness. After impregnation, the 

material was dried at 40oC to remove the dichloromethane. The material was prepared to 

give a percentage loading of 1% by weight of iron. 

2.1.8.5 Preparation of 1% Fe2(CO)9 on Alumina 

Diiron nonacarbonyl (Fe2(CO)9, Sigma Aldrich, 98%) was supported on alumina (γ-

alumina, Condea chemie, alumina extrudates) to give a percentage loading of 1% by 

weight of iron. A solution of Fe2(CO)9 in dichloromethane was impregnated onto the 

support. The amount of dichloromethane needed was decided from the point of wetness for 

the support. Weighing of the Fe2(CO)9 was performed in a glove box due to the material 

being air sensitive. 

2.1.8.6 Preparation of 2% Ru3(CO)12 on Support 

Triruthenium dodecacarbonyl (Ru3(CO)12, Sigma Aldrich, 99%) was supported on silica 

(Silica-amorphous, precipitated, Sigma Aldrich) or alumina (γ-alumina, Condea chemie, 

alumina extrudates). The support was impregnated with a solution of Ru3(CO)12 in 

dichloromethane. The material was then dried at 40oC to remove the dichloromethane to 

produce a powder of supported Ru3(CO)12. The material was prepared to give a percentage 

loading of 2% by weight of ruthenium. 

2.1.8.7 Preparation of 5% Ru on Alumina and 1% KOH 

The 5% Ru/Al2O3 was a commercial material purchased from Sigma Aldrich (powder, 

reduced, dry) and was used as provided. Potassium hydroxide (KOH, Sigma Aldrich, 

puriss. p.a., Reag. Ph. Eur., ≥ 85%, pellets) was added by wetness impregnation. The 

material was treated with a solution of KOH in deionised water to produce a loading of 1% 

by weight of potassium. Then, the material was dried overnight at 110oC in an oven. 
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2.1.8.8 Preparation of 5% Os3(CO)12 and 2% Ru3(CO)12 on Silica 

The formation of a supported bimetallic cluster was attempted by using an approach 

suggested by Kulkarni and Gates [52]. First, triosmium dodecacarbonyl (Os3(CO)12, Sigma 

Aldrich, 98%) was supported onto silica (Silica-amorphous, precipitated, Sigma Aldrich) 

as described in section 2.1.8.1. The resulting material was a yellow powder. Then, 

triruthenium dodecacarbonyl (Ru3(CO)12, Sigma Aldrich, 99%) was supported on the silica 

as detailed in section 2.1.8.6. The material was prepared to target a percentage loading of 

5% by weight of osmium and 2% by weight of ruthenium. The material produced was an 

orange powder of Os3(CO)12 and Ru3(CO)12 on silica. 

2.1.8.9 Preparation of 5% Os3(CO)12 and 1% Fe3(CO)12 on Silica 

Initially, triosmium dodecacarbonyl (Os3(CO)12, Sigma Aldrich, 98%) was supported onto 

silica (Silica-amorphous, precipitated, Sigma Aldrich) as outlined in section 2.1.8.1. Then, 

triiron dodecacarbonyl (Fe3(CO)12, Alfa Aesar, 96% (dry wt.), stab. with 5-10% methanol) 

was supported onto the material as described in section 2.1.8.4. The material was prepared 

to target a percentage loading of 5% by weight of osmium and 1% by weight of iron. The 

material produced was a green powder of Os3(CO)12 and Fe3(CO)12 on silica. 

2.1.8.10 Preparation of 2% Ru3(CO)12 and 1% Fe3(CO)12 on Silica 

The first step involved supporting triruthenium dodecacarbonyl (Ru3(CO)12, Sigma 

Aldrich, 99%) onto silica, following the method described in section 2.1.8.6. Then, triiron 

dodecacarbonyl (Fe3(CO)12, Alfa Aesar, 96% (dry wt.), stab. with 5-10% methanol) was 

supported onto the material as explained in section 2.1.8.4. The material was prepared to 

target a percentage loading of 2% by weight of ruthenium and 1% by weight of iron. The 

resulting material was a green powder of Ru3(CO)12 and Fe3(CO)12 on silica. 

2.1.9 Ammonolysis Reactor 

The sample oxide was placed in a quartz reactor tube (10.5 mm internal diameter), which 

had a quartz sintered disk fitted halfway along the tube. A small amount of quartz wool 

was placed on top of the sample. The reactor tube was placed vertically inside the 

Carbolite furnace, which was set to go through various heating programmes by using a 

temperature controller. Ammonia (NH3, BOC, grade N3.8) was introduced into the reactor 

through ¼ inch stainless steel tubing (Swagelok). A Brooks 5850 TR mass flow controller 

regulated the flow rate of ammonia. The vented gas was passed through an empty conical 

flask, to act as a dead volume, and then, a dilute sulfuric acid solution to neutralise any 

unreacted ammonia. After the reaction, the reactor was cooled down to room temperature 

and then was flushed with nitrogen for 30 minutes to remove any residual NH3. Resultant 
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nitrides were passivated at room temperature by using a gas mixture containing 2% O2/Ar 

diluted with N2. Figure 3 shows the experimental set up used for nitriding materials by 

ammonolysis. 

 
Figure 3: Rector Set Up for Ammonolysis 

2.1.10 Reactor for Nitridation with N2/H2 

A schematic of the microreactor system applied for nitridation with the N2/H2 reaction gas 

mixture is displayed in Figure 4. The sample oxide was loaded into a quartz reactor tube (8 

mm internal diameter) and was packed at each end with quartz wool. This was then 

positioned in the centre of the Carbolite furnace, which was used to control the 

temperature. A Brooks 5850 TR MFC controlled the flow rate of 3:1 H2/N2 and the gas 

was flowed through ¼ inch stainless steel tubing. The resulting nitride was cooled to room 

temperature under the flowing gas mixture. 
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Figure 4: Reactor Set Up for Nitridation by N2/H2 

2.1.11 Carburisation and Reduction Reactor 

The apparatus set up for the carburisation and reduction processes is shown in Figure 5. 

The sample was loaded into a quartz reactor tube (8 mm internal diameter) and was packed 

between quartz wool plugs. The reactor tube was placed in the Carbolite furnace, which 

was used to control the temperature. Brooks 5850 TR MFCs controlled the flow rates for 

both the 3:1 H2/Ar (BOC, 99.98 %) and 20% CH4/H2 (BOC, 99.98 %) gas mixtures when 

applied. The gases were flowed through ¼ inch stainless steel tubing. The resulting 

material was cooled to room temperature under the flowing gas mixture. 

 
Figure 5: Reactor Set Up for Carburisation or Reduction 
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2.2 Materials Testing 

2.2.1 Reactor for Ammonia Synthesis 

The success of a material at producing ammonia was measured by the change in 

conductivity of a sulfuric acid solution (200 mL, 0.00108 mol/L) over time. The exit gas 

from the reactor was passed through the sulfuric acid solution and the conductivity 

decrease was measured. This decrease in conductivity corresponds to the formation of 

ammonium ions upon reaction of the ammonia with protons. The experimental method 

applied was related to the one developed by McKay [53]. A schematic of the ammonia 

synthesis reactor is displayed in Figure 6. The material was located in a quartz reactor tube 

(8 mm internal diameter) and was held in place between quartz wool plugs. This was then 

positioned in the centre of the Carbolite furnace, which was used to control the 

temperature. Reactions were performed at atmospheric pressure under either a 3:1 ratio of 

H2/N2 (BOC, H2 99.998%, N2 99.995%) or a 3:1 ratio of H2/Ar (BOC, 99.98 %) with a gas 

flow rate of 60 mL/min. Flow rates were controlled by Brooks 5850 TR MFCs and the 

gases were flowed through ¼ inch stainless steel tubing. The conductivity was measured 

using a HACH HQ14d portable conductivity meter. The calibration value used to calculate 

ammonia synthesis rates is provided in Appendix I. 

2.2.2 Experimental Method 

Some of the samples were pre-treated before the reaction. Pre-treatment of these materials 

was performed at 700oC (except when specified otherwise) for two hours with either 1:3 

N2/H2 or 1:3 Ar/H2 gas mixtures. The flow rate of each gas applied was 60 mL/min. A 

ramp rate of 10oC/min was used to heat the furnace to the required temperature. After the 

two hours, the reactor was then cooled down to 400oC or 500oC and the ammonia synthesis 

reaction was started. All the ammonia synthesis reactions were performed at atmospheric 

pressure. The exit gas was passed through the sulfuric acid solution and the conductivity 

values were recorded periodically, every five minutes. 
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Figure 6: Reactor Set Up for Ammonia Synthesis Testing 

2.3 Material Characterisation 

2.3.1 Powder X-ray Diffraction (PXRD) 

XRD patterns were obtained for the materials pre- and post-reaction by using a 

PANalytical X-Pert Pro Diffractometer (40kV, 40mA) with a monochromatised CuK alpha 

radiation source (1.5418 Ǻ). A scanning range of 5-85o 2θ with a total scan time of 51 

minutes and a step size of 0.0167o was used. Identification of phases was performed by 

comparing the patterns with JCPDS database files. 

2.3.2 CHN Analysis  

Carbon, hydrogen and nitrogen (CHN) analysis for pre- and post-reaction samples was 

very kindly performed by Mr Gangi Reddy Ubbara at the University of Glasgow. 

Elemental analysis was performed by combustion by using a CE-440 elemental analyzer 

made by Exeter Analytical, Inc. 

2.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

Spectroscopy (EDX) 

A Philips XL30E-Scanning electron microscope fitted with a tungsten filament and 

secondary electron detector was used to take SEM images. A beam of 20 kV and a spot 

size setting of 5 was applied. The spot size is an instrumental size and relates to the 

diameter of the beam on the sample. The microscope was also used to obtain Energy-

Dispersive X-ray spectroscopy (EDX), which is applied to give the composition of the 

materials. EDX was measured by Oxford Instruments AZtec Software with X-act 10 mm2 

SDD detector. 
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The samples were placed onto carbon tabs and covered with a film of gold/palladium to 

reduce electron charging. This was done with a Polarn SC7640 Auto high-resolution 

sputter coater. 

2.3.4 Raman Spectroscopy  

The Raman spectra of the pre- and post-reaction samples were collected by using a Horiba 

Jobin Yvon LabRAM High Resolution spectrometer. A Ventus 532 nm green laser at 100 

mW was used as the excitation source. The samples were focused by using a 50x objective 

lens. The laser was focused for 10 seconds, with a repetition of 3 and a grating of 600 cm-1. 

The spectral region measured was from 50 - 3000 cm-1. The Raman spectra were collected 

at room temperature on a glass slide. 

2.3.5 Thermogravimetric Analysis with Mass Spectrometry (TGA-MS) 

A TA Instruments SDT Q600 coupled to an ESS evolution mass spectrometer was used to 

perform thermogravimetric analyses on the materials. Mass spectrometry was performed in 

multiple ion detection mode (MID mode). The sample was heated from room temperature 

to 1000oC at a ramp rate of 10oC/min under a gas flow comprising either 3:1 H2/Ar or 5% 

H2/N2. TGA-MS was very kindly performed by Mr Andrew Monaghan at the University of 

Glasgow. 

2.3.6 Temperature Programmed Oxidation (TPO) 

Thermogravimetric analysis of the uncalcined and calcined nickel gallium molybdenum 

oxide was performed on a TA Instruments TGA Q500. The samples were heated from 

room temperature to 900oC at a ramp rate of 10oC/min under 90 mL/min of air. TPO was 

very kindly performed by Mr Andrew Monaghan at the University of Glasgow. 

2.3.7 Infrared Measurement 

Infrared spectroscopy was performed on the materials derived from organometallic 

clusters. Infrared analysis for the samples was performed with a 10 mm KBr cell inserted 

into a Shimadzu IR Affinity-1S instrument. A background was taken before each sample 

and was subtracted to give the IR spectra for the corresponding metal carbonyl complex. 

The spectra were collected in the carbonyl region of 1500 – 2800 cm-1, the resolution was 

4 cm-1 and the number of scans undertaken was 50. 

2.3.8 BET Surface Area 

Surface areas of the pre- and post-reaction materials were measured from a Quadrasorb 

evo Gas Sorption Surface Area and Pore Size Analyzer manufactured by Quantachrome. 
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Before each measurement, approximately 0.1 g of sample was degassed overnight under 

vacuum at 110oC with a Flovac degasser. The programme used to analyse the data was 

Quadrawin software. 

2.3.9 Time of Flight Secondary Ion Mass Spectroscopy (ToF SIMS) 

A ToF-SIMS ION-TOF was used to characterise iron molybdenum and nickel 

molybdenum carbides and carbonitrides. The equipment has a bismuth ion gun and a time 

of flight mass analyser. Secondary ion mass spectra and depth profiles were recorded using 

Bi3+ as primary ions. The bismuth pulse duration was 1 ns with an AC current. For depth 

profiling, Cs was used for sputtering in the negative mode. The sputtering area was 300 µm 

x 300 µm and the area of analysis was 100 µm x 100 µm. The sputter current was 42.79 nA 

and the Cs primary ion beam energy was 0.5 keV. The analysis was performed at the Unite 

de Catalyse et Chimie du Solide (UCCS) in Lille with the very kind help of M. Nicolas 

Nuns. The placement of the samples in the sample holder is shown in Figure 7 and images 

of the ToF-SIMS V ION-TON instrument are provided in Figure 8. 

 
Figure 7: Images showing the samples placed in the sample holder, a) nickel 

molybdenum samples and b) iron molybdenum samples. 
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Figure 8: Images showing the ToF-SIMS V ION-TOF instrument, a) the overall ToF-SIMS 

V ION-TOF instrument, b) chamber where the samples are located during measurements 

and c) arm used to place the samples in the chamber. 

 
 
 
 
 
 
 
 
 
 
 
 



 49 

3. Nickel Molybdenum Materials 
3.1 Introduction 
Nickel molybdenum nitride is a known ammonia synthesis material with relatively high 

activity of 395 ± 6 µmol h-1 g-1 at 400oC and atmospheric pressure [36] [39]. Co3Mo3N has 

been shown to have the highest activity of the nitrides at atmospheric pressure, with a rate 

of 652 µmol h-1 g-1 at 400oC [39] and 489 ± 17 µmol h-1 g-1 at 500oC [54]. The ternary 

nitrides tend to have higher rates than the binary nitrides as seen for γ-Mo2N having a rate 

of 195 ± 7 µmol h-1 g-1 at 500oC [55]. 

Molybdenum carbide promoted with nickel has also been investigated as a catalyst for the 

hydrodesulfurization of dibenzothiophene (DBT) [56]. It was reported that Ni-Mo2C had 

96.25% conversion, with this being 1.57 times higher than for unpromoted Mo2C. Ni-

Mo2C could be carburised at 50oC lower than Mo2C and, therefore, had a higher BET 

surface area.  

Ni3Mo3C has been examined for use as an anode electrocatalyst for high performance 

microbial fuel cells and was found to be 19% more active than Mo2C and 62% as active as 

a Pt anode [57]. Ni3Mo3C and Ni6Mo6C mixed with Ketjen carbon were also found to have 

a good activity for anodic hydrogen oxidation, with the Ni6Mo6C containing catalyst 

having 15% of the activity of Pt catalyst and the Ni3Mo3C containing catalyst having a 

current density of 21 mA/cm2 at 0.6 V [58]. These results suggest the potential of nickel 

molybdenum materials for electrochemistry.  

The ammonia synthesis activity of ternary nitrides has tended to focus on Co3Mo3N, with 

Ni2Mo3N receiving less attention. This work focuses on the influence of phase composition 

and crystal structure on the ammonia synthesis activity. 

3.1.1 Synthesis of Nickel Molybdenum Nitride 

When trying to form the nickel molybdenum nitride (Ni2Mo3N) from its oxide (NiMoO4), 

issues arise due to the difference in metal ratios between the precursor and the nitride. This 

causes impurities to form along with the required product [59] [36]. The presence of nickel 

metal in this material results in a lower catalytic activity for ammonia synthesis. The 

Ni2Mo3N and Ni material has been incorrectly reported as the Ni3Mo3N phase in the 

literature in a number of instances [49] [60]. The presence of impurities caused by this 

difference in ratio suggests that a different method is essential in order to obtain a single 
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phase nitride. The Ni3Mo3N phase has not been synthesised to date and instead there is a 

preference for the formation of the β-manganese structured Ni2Mo3N.  

One way to overcome this problem of impure phase formation is to use freeze-dried 

polymetallic precursors [61]. Aqueous solutions containing the suitable metal salts were 

prepared so as to give the ratio of 2:3 for Ni:Mo. Heating the mixed oxide precursor with 

ammonia gas at 950oC resulted in single phase Ni2Mo3N. However, impurities were 

formed depending on the rate of the cooling process. The single phase nitride can also be 

prepared via a sol-gel precursor by using a modified Pechini method [36]. An oxide 

precursor with a 2/3 Ni/Mo ratio is formed and this yields the desired nitride when nitrided 

under a N2/3H2 mixture. The ammonia synthesis activity of this nitride prepared via the 

sol-gel route was compared to the one prepared from NiMoO4 precursor [36]. It was found 

that the activity was significantly enhanced when the modified Pechini method was used. 

Therefore, the preparation route has an important impact on the catalytic activity of the 

nitride. 

3.1.2 Synthesis of Nickel Molybdenum Carbides 

When the TPR method was used to prepare nickel molybdenum carbides with CH4/H2, 

some issues arose as reported in the literature. When trying to prepare the carbide from the 

oxide precursor, β-Mo2C and nickel metal are formed instead [62] [63]. Nagai et al. 

investigated the carburisation of nickel molybdenum oxides with different Ni:Mo ratios 

[62]. The Ni0.25Mo0.75 catalyst was carburised at 600oC and was shown to contain β-Mo2C 

and NiMoC3.6O1.4. This could be transformed to the Ni6Mo6C phase when heated to 900oC 

under helium. The Ni6Mo6C structure has been studied by Newsam et al [64], who 

prepared the material by carburising the precursor with CO/CO2 gas at 1000oC. It was 

observed that all the carbon atoms are located at the (0,0,0) sites in Ni6Mo6C, leaving the 

1/8 sites empty.  

A similar study by Hirose et al. focused on varying the carburisation temperature to 

prepare nickel molybdenum carbide from the oxide [65]. X-ray diffraction (XRD) data and 

temperature programmed carburisation (TPC) showed the transformation of the starting 

oxides as the carburisation temperature increased. MoO3 was transformed to MoO2 and 

NiMoO4 to NiMoOxCy, which was further converted to β-Mo2C and Ni metal. Therefore, 

reduction of Ni2+ to Ni results in the decomposition of the oxide. These results suggest that 

the Ni2Mo3C cannot be produced from the oxide precursor. 
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Puello-Polo and Brito have compared the carburisation of different starting precursors and 

their resulting products [66]. An activated carbon support was co-impregnated with 

ammonium heptamolybdate and a nickel salt. The XRD patterns showed that the 

carburisation of Ni-Mo sulfate precursor caused the formation of a Ni6Mo6C2 phase along 

with nickel metal. However, when the Ni-Mo nitrate precursor was used, β-Mo2C and 

nickel metal was produced, comparable to when the oxide precursor was used. Thus, 

different precursors may go through different intermediates and so can affect the final 

product that is formed. 

Instead of using an oxide precursor, Alconchel et al. looked at using Ni2Mo3N as the 

starting precursor in the carburisation process [67]. The idea was that the structure would 

remain unaltered and the nitrogen atoms would be exchanged for carbon in a topotactic 

manner. From this method, a new carbonitride was produced, Ni2Mo3CxNy, which had the 

filled β-Mn structure.  

Other sources of carbon have also been used to synthesise carbides. Smirnov et al. claim to 

have made Ni2Mo3C and Ni6Mo6C1.06 from a Pechini based method by using citric acid as 

a complexing agent and by adding ethylsilicate-32 [68]. They prepared NiyMoC-SiO2 

materials with different Ni to Mo ratios. Their XRD patterns show that a mixture of phases 

were formed with impurities of β-Mo2C and an alloy NixMo1-x. For all the prepared 

samples, XRD indicated that only a small amount of Ni2Mo3C was produced, with β-Mo2C 

being the majority phase for the Ni0.5MoC-SiO2 material. Zhao et al. have also prepared a 

mixed phase Ni6Mo6C by using citric acid and ethylene glycol as the sources of carbon 

[69]. These results suggest that this method is not ideal for producing a single phase nickel 

molybdenum carbide. 

Ni6Mo6C and Ni3Mo3C have been prepared by using decolourising carbon as the 

carburisation source [48]. The lower carbon content Ni6Mo6C was prepared at a lower 

temperature of 975oC and the Ni3Mo3C was formed at 1030oC. Therefore, the different 

phases can be formed depending on the carbothermic reduction temperature. The authors 

were able to show through XRD patterns that the transformation from Ni6Mo6C to 

Ni3Mo3C resulted in the material decomposing, before recombining to form the high 

carbon content phase. Therefore, this transition did not occur by the insertion of carbon 

into Ni6Mo6C.  
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3.1.3 Structures of Nickel Molybdenum Nitrides and Carbides 

Bimetallic nitrides and carbides often form crystal structures where the non-metal atom is 

located in the interstitial sites between the metal atoms. In face-centered cubic (fcc) and 

hexagonal closed packed (hcp) structures this position is often in the octahedral sites as 

these are the largest available interstitial sites. It has been stated that the crystal structure is 

determined by two important factors [70]. The first is Hägg’s rule, which states that if the 

number generated by dividing the atomic radii of the metal by the non-metal lies between 

0.41 and 0.59, then an interstitial compound will be formed [71]. The second factor relates 

to Engel-Brewer theory for metals and alloys, which connects the structure to the number 

of valence electrons in certain orbitals [72]. Thus, the number of valence electrons in 

carbon and nitrogen can affect the structure. For example, molybdenum carbide forms an 

hcp based structure whereas the nitride forms an fcc based structure. However, despite the 

explanations offered by these theories, it is still unclear why certain compositions are 

formed and not others. For example, Ni3Mo3C, Co3Mo3N and Fe3Mo3N are known phases 

whereas Ni3Mo3N has not been successfully synthesised to date. 

The two crystal structures of interest in this thesis are the η-carbide and filled β-manganese 

structures.  

3.1.4 Filled β-Manganese Structure 

The filled β-manganese structure has a cubic unit cell corresponding to the P4132 space 

group. Ni2Mo3N is one example of a nitride that has the filled β-Mn structure [59]. There 

are two types of metal atom sites in this structure, the Wyckoff 8c site and 12d site. For 

Ni2Mo3N, the nickel atoms occupy the 8c sites and are arranged in a (10,3)-a network. 

Molybdenum atoms occupy the 12d sites and form corner sharing Mo6 octahedra, with the 

non-metal atom occupying the interstitial site by binding to the six molybdenum atoms. 

Therefore, the filled β-manganese structure can be considered as two separate subunits. 

The Mo6N octahedra and the nickel framework in Ni2Mo3N are shown in Figure 9. 
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Figure 9: The crystal structure of Ni2Mo3N, showing the Mo6N octahedra and the Ni-Ni 

bonding framework. Data plotted from Ni2Mo3N structure reported by Prior and Battle [73]. 

Elements: Nickel (green), molybdenum (light blue) and nitrogen (dark blue). 

3.1.5 η-Carbide Structure 

The η-carbide structure has a primitive cubic unit cell corresponding to the space group 

Fd3m. A range of carbides and nitrides with the formula M3M’3X (M, M’ = metals and X 

= non-metal) are known to have this structure, including Co3Mo3C and Fe3Mo3N [64] [74]. 

The structure consists of a distorted face centred cubic (fcc) arrangement of the M metal 

atoms. As in the filled β-manganese structure, the non-metal atom is situated in the 

interstitial site and is surrounded by six M’ atoms to form an M’6X octahedron. These 

octahedra are corner sharing and have mainly ionic bonding. The M’ atoms are located on 

the 48f Wyckoff sites and the non-metals on the 16c Wyckoff sites. The M atoms occupy 

the 16d and 32e Wyckoff sites. The atoms on the 32e sites form a tetrahedron and are 

capped at each end by M on the 16d sites. Thus, forming pseudo-icosahedron, which share 

corners to produce a network of metal atoms [60]. These pseudo-icosahedra have metallic 

character. The Mo6N and nickel network in Ni3Mo3C is displayed in Figure 10. 
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Figure 10: The crystal structure of Ni3Mo3C, showing the Mo6N octahedra and the Ni-Ni 

bonding framework. Data plotted from Ni3Mo3C structure reported by Ettmayer and 

Suchentrunk [75]. Elements: Nickel (green), molybdenum (blue) and carbon (grey). 

The η-carbide structure also has a low non-metal content variant phase, with stoichiometry 

of M6M’6X and is denoted as η-12 structure. In this case, the non-metal is located in the 8a 

octahedral Wyckoff site and the rest of the structure remains the same. Examples of 

materials that adopt this structure are Co6Mo6C and Ni6Mo6C [64]. The crystal structure of 

Ni6Mo6C is presented in Figure 11. It has been observed that topotactic cycling can occur 

between the low and high nitrogen content cobalt molybdenum nitrides analogous phases 

[50].  

Contrasting with the η-carbide structure, the filled β-Mn structure does not possess a low 

non-metal content analogue with partly occupied interstitial sites. However, Ni2Mo3N can 

exchange some nitrogen under certain pre-treatment conditions [36]. The local nitrogen 

environment between the η-carbide and the filled β-Mn structured nitrides is very similar. 

This is of interest as Co3Mo3N possibly operates via a Mars-van Krevelen mechanism for 

ammonia synthesis [54], where lattice N mobility is important and therefore, other nitrides 

may also operate via this mechanism. 
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Figure 11: The crystal structure of Ni6Mo6C, showing the Mo6N octahedra and the Ni-Ni 

bonding framework. Data plotted from Ni6Mo6C structure reported by Newsam et al. [64]. 

Elements: Nickel (green), molybdenum (blue) and carbon (grey). 

Both the η-carbide and the filled β-Mn structures exhibit interesting behaviour, with 

influences from covalent, ionic and metallic bonding. They are known to have high 

hardness and incompressibility [76], suggesting that they are covalently bonded. However, 

they also have conductivities that are associated with metallic properties. This is due to the 

bond distances between the metals and metal and non-metal. The bonds for Mo-Ni are 

shown to have distances similar to covalent bonding, although they possess a degree of 

ionic character. The Ni-Ni bond distances are shorter and are more similar to metallic 

bonding [59].  

3.1.6 Co3Mo3C/Co3Mo3N System for Ammonia Synthesis 

Co3Mo3N has the comparatively high rate of 652 µmol h−1 g−1 for ammonia synthesis at 

400oC and ambient pressure. This is higher than the commercial Haber Bosch catalyst 

under the same conditions (330 µmol h−1 g−1) [39]. Through nitrogen isotopic exchange 

studies, it was seen that lattice N exchanged with 15N2, suggesting that the nitride may 

operate under a Mars-van Krevelen mechanism as stated earlier [77]. Furthermore, half of 

the lattice nitrogen can be removed from Co3Mo3N to form Co6Mo6N, the high and low N 

variants of the η-carbide structure, when reacted under 1:3 Ar/H2 [50], showing the high 

lattice nitrogen reactivity and mobility of this material. 

Supported Co-Mo nanoparticles reportedly have 20 times the ammonia synthesis activity 

of bulk Co3Mo3N [78]. The nanoparticles are observed to transform to Co3Mo3N during 

the reaction. The formation of nitrogen vacancies on the nanoparticles is easier compared 
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to the bulk material and this has been stated to indicate that the creation of these vacancy 

sites is important for nitrogen activation [79]. 

One possible explanation for the high activity of Co3Mo3N is advanced by Norskov’s 

volcano plot as shown in Figure 12. As can be seen, the combination of cobalt and 

molybdenum has almost optimal binding energy for nitrogen to give a high turnover 

frequency (TOF) for ammonia synthesis. Therefore, in relation to this explanation, it is 

proposed that CoMo is the active phase and the lattice nitrogen has no active role. Instead, 

the nitrogen is stated to be only required in order to give the correct structural ordering 

such that the (111) face comprising both Co and Mo is expressed. An alternative 

suggestion for the high activity of Co3Mo3N is that, as mentioned above, it operates via a 

Mars-van Krevelen mechanism and therefore, the lattice nitrogen is the active component. 

In this explanation, the lattice nitrogen is hydrogenated to yield ammonia, creating a 

transient lattice vacancy, which is then replenished by nitrogen from the reactant gas. 

 
Figure 12: Calculated turnover frequencies (TOF) for ammonia synthesis against the 

adsorption energy for nitrogen for different elements [24].  

In order to examine the effect of composition on activity, the corresponding carbide phase 

has been synthesised [54]. The carbide was prepared by carburisation of the Co3Mo3N with 

20% CH4/H2 at 700oC for 2 hours. The formation of Co3Mo3C from Co3Mo3N is stated to 

be topotactic and pseudomorphic [80] and therefore, any difference in activity between 

these materials would not be due to a difference in morphology. The ammonia synthesis 

activities of Co3Mo3N and Co3Mo3C are shown in Figure 13. A reaction temperature of 

500oC was required for activity to be exhibited by Co3Mo3C. However, the corresponding 
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nitride was active at 400oC. An induction period was required for the carbide at 500oC 

before it became active.  

 
Figure 13: Ammonia yield under 60 ml/min of H2/N2 at 500oC (▲) Co3Mo3N, (■) Co3Mo3C 

and (●) Co6Mo6C [54]. 

During this period, nitridation of the Co3Mo3C lattice occurred, which eventually lead to 

the formation of Co3Mo3N upon prolonged reaction time. This substitution of carbon with 

nitrogen, going through an intermediate carbonitride phase, is displayed in Figure 14. 

Through computational modelling studies, it has also been proposed that nitrogen 

vacancies in Co3Mo3N occur and that the vacancy concentrations are significant at the 

temperatures necessary for ammonia synthesis [81]. These results suggest that ammonia 

synthesis activity in the cobalt molybdenum systems could be associated with its lattice 

nitrogen via a Mars-van Krevelen mechanism. 
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Figure 14: Co3Mo3C composition against reaction time during ammonia synthesis reaction 

at 500oC (▲) fractional carbon content and (●) fractional nitrogen content [54]. 

In comparison, the production of ammonia from Ni2Mo3N under an Ar/H2 treatment is 

minimal, suggesting that bulk lattice nitrogen appears to be relatively unreactive. As both 

Ni2Mo3N and Co3Mo3N have different lattice nitrogen reactivities, it suggests that this is 

not a direct indicator of ammonia synthesis activity. It is interesting to note that the lattice 

nitrogen in these two nitrides have similar environments by being coordinated to six 

molybdenum species. However, nitrogen isotopic exchange studies of Ni2Mo3N indicate a 

degree of lattice nitrogen is exchangeable depending on the pre-treatment conditions [11] 

and the observation of lattice nitrogen exchange for Ni2Mo3N suggests the possibility of a 

surface limited Mars-van Krevelen mechanism for ammonia synthesis for this material. 

Thus, it would be of interest to prepare and test the activity of the corresponding carbide as 

has been performed for the cobalt molybdenum system. This would therefore give a 

greater understanding on the part the lattice nitrogen plays in the activity for this nitride. 

3.2 Results and Discussion 

Part I: Filled β-Mn Structured Materials 

3.2.1 Nickel Molybdenum Carbonitride (Ni2Mo3CxNy) 

3.2.1.1 Nickel Molybdenum Oxide (Ni2Mo3Ox) 

At atmospheric pressure, there are four phases of NiMoO4:  the low temperature α-phase 

(α-NiMoO4) [82], the α’-phase (a distorted form of the α-phase) [67], the high temperature 

β-phase (β-NiMoO4) [83] and the hydrate (NiMoO4·nH2O) [84]. The phase can be 

identified from the XRD pattern by matching the peak positions between 20–36° 2θ with 
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the corresponding JCPDS files. For the material prepared in this work, it appears that the α-

NiMoO4 phase had been formed as seen in Figure 15 (JCPDS file number 00-033-0948). Al 

Sobhi et al. [85], who used the same preparation method, also obtained the α-NiMoO4 

phase. However, the presence of the peak at 26.7o 2θ, which is characteristic for β-NiMoO4 

[86], suggests that the material was a mixture of α-NiMoO4 and β-NiMoO4. A previous study 

has shown that β-NiMoO4 can be synthesised at low temperature by using a sol-gel route [87]. 

Furthermore, there have been reports of mixed phase α, β-NiMoO4 in the literature [88] [86].   

From Figure 15, it can be seen that the oxide precursor also contained a MoO3 phase fraction. 

This observation is consistent with the previously published work that used the sol-gel method 

to prepare Ni2Mo3N [85] [36]. This mixture of oxides is preferential as the difference in metal 

ratios of the Ni and Mo between the NiMoO4 (1:1) and the nitride (2:3) can lead to impurities of 

nickel metal when the nitride is synthesised [36]. Therefore, this mixture of oxide phases was 

targeted to form stoichiometric Ni2Mo3N. 

 
Figure 15: XRD pattern of nickel molybdenum oxide (Ni2Mo3Ox). Reflections marked: ▼ 

NiMoO4 (JCPDS file number 00-033-0948) and X MoO3 (JCPDS file number 00-035-

0609). 

The elemental analysis shows that there were only trace amounts of carbon and nitrogen 

present in the material after calcination (C: 0.70 wt. %, H: 0.00 wt. % and N: 0.01 wt. %). 
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This suggests that the citric acid and any other nitrogen from the starting precursors had 

largely been removed from the oxide during calcination.  

Raman spectroscopy is a very good technique for characterising oxide materials and 

distinguishing between different oxide phases. The Raman spectrum of this material was 

analysed by comparing Figure 16 with the spectra of NiMoO4 published in the literature. 

The Raman bands at positions of approximately 961, 913 and 706 cm-1 were attributed to 

α-NiMoO4 [89]. These Raman shifts are in very good agreement with NiMoO4 spectra 

reported in the literature [67]. The bands at 961 and 913 cm-1 have been assigned in the 

literature as the symmetric and asymmetric stretching modes of the terminal Mo=O bond 

[90]. The band at 706 cm-1 was assigned to the Ni-O-Mo symmetric stretch [67] [89]. 

However, another report in the literature suggests that the band at 818 cm-1 is due to either 

the symmetric or asymmetric stretching mode of Mo-O and the band at 706 cm-1 is due to 

the asymmetric mode of Ni-O-Mo bonds [91]. The weak bands at approximately 420, 390, 

370 cm-1 are attributed to α-NiMoO4 in the literature [89] and have been assigned to the 

bending mode of Mo−O. The weak band at 265 cm-1 has also been assigned to α-NiMoO4 

and is associated with the deformation mode of Mo−O−Mo [89]. 

The bands at 995, 818 and 665 cm-1 are related to MoO3 [90] and are attributed to the 

Mo=O stretching mode, Mo-O-Mo asymmetric stretching mode and the Mo-O-Mo 

symmetric stretching mode respectively [67]. The Raman bands at 336 and 283 cm-1 have 

also been assigned to MoO3 and are most likely due to the Mo-O bending and Mo-O-Mo 

deformation mode [90].  

The presence of bands for both NiMoO4 and MoO3 agrees with the XRD results, which 

showed that both these oxides were present. Alconchel et al. [67] also observed the 

occurrence of bands for both these oxides in their starting precursor.  
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Figure 16: Raman spectrum of nickel molybdenum oxide (Ni2Mo3Ox) 

Representative SEM images for the oxide precursor are displayed in Figure 17. The 

material appears to be porous with pores ranging in diameter from approximately 1 – 10 

µm. The material had a surface area of 46 m2/g, a pore volume of 0.26 cc/g and an average 

pore radius of 26.44 Å. To the author’s knowledge, previous studies by groups that used 

the same sol-gel method, did not publish SEM images for the oxide and therefore, a 

comparison cannot be made [85] [36] [92]. Umapathy et al. published SEM images for 

NiMoO4, which was prepared by a sol-gel method that used ethyl cellulose [93]. Their 

images showed that the material contained agglomerated particle-like nanostructures.  

The elemental map in Figure 18 shows that the nickel, molybdenum and oxygen were 

evenly dispersed across the sample, as expected. The EDX analysis showed that nickel, 

molybdenum and oxygen were the only elements present in the sample. 
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Figure 17: SEM images of nickel molybdenum oxide (Ni2Mo3Ox). a) 1000x magnification, 

b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

 
Figure 18: Element Map for Ni2Mo3Ox. Elements: Ni (red), Mo (green) and O (blue). 

The EDX data in Table 1 details the weight percentages for each element. The 

stoichiometric percentage of nickel, molybdenum and oxygen in NiMoO4 is 26.85 wt. %, 

43.88 wt. % and 29.27 wt. % respectively. From the table, it can be seen that the oxygen 

weight percentage was higher than predicted and the nickel percentage was lower. From 

the XRD pattern, it was shown that the material consisted of both NiMoO4 and MoO3. 

Therefore, the stoichiometric percentage of nickel, molybdenum and oxygen in the 

theoretical NiMo2O7 (Ni2Mo3O11) would be 16.19% (20.20%), 52.92% (49.52%) and 

30.89% (30.28%) respectively. The theoretical composition NiMo2O7 assumes that there 
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was a 1:1 ratio of NiMoO4 and MoO3. Ni2Mo3O11 was stated as the product when the oxide 

is formed by the modified Pechini method [36]. 

Area Ni weight (%) Mo weight (%) O weight (%) 
1 16 44 40 
2 21 42 38 
3 22 42 36 
4 17 44 40 
5 21 40 40 
6 14 40 46 

Average 18 42 40 
Table 1: EDX values for nickel molybdenum oxide (Ni2Mo3Ox) 

3.2.1.2 Nickel Molybdenum Nitride (Ni2Mo3N) 

The filled β-Mn structured Ni2Mo3N is a known ammonia synthesis catalyst [39] [94]. 

Ni2Mo3N was prepared via temperature programmed nitridation of the bimetallic oxide, 

which was obtained via a sol-gel route. The preparation of this material was inspired by 

prior literature that reported the formation of Ni2Mo3N without nickel impurity [36]. An 

advantage of the Ni2Mo3N phase is that it can be prepared directly by nitridation of the 

oxide with N2/H2 at 700oC. Therefore, ammonolysis is not required in its preparation and 

this overcomes problems with using ammonia at a large scale [95]. 

As can be seen in Figure 19, the desired ternary nitride phase had been formed without any 

nickel impurities. However, a minor impurity phase of β-Mo2N can be observed at 37.6o 

2θ. The XRD pattern confirms that the material was free from reflections relating to 

molybdenum metal or any metal oxide phases. This result is consistent with previously 

published literature [36] [85].  

The elemental analysis shows that there was no carbon or hydrogen present in the material 

after nitridation with N2/H2 (C: 0.00 wt. %, H: 0.00 wt. % and N: 4.58 wt. %). The 

percentage of nitrogen present in the material was higher than the expected stoichiometric 

value of 3.34 wt. %. Any residual NHx species formed on the surface of the nitride would 

contribute towards this value. The β-Mo2N phase content which could contribute to excess 

N content looks to be minimal as inferred from the XRD pattern and therefore, the 

contribution from this phase would be small. Therefore, it is unclear where the extra 

nitrogen originated from. 
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Figure 19: XRD pattern of nickel molybdenum nitride (Ni2Mo3N). Reflections marked: ■ 

Ni2Mo3N (JCPDS file number 01-089-4564) and ● β-Mo2N (JCPDS file number 01-075-

1150). 

Raman spectroscopy is a valuable technique to characterise surface oxide species. These 

oxide species may affect the ammonia synthesis activity and therefore, it is important to 

observe if they are present on the surface of the material. The Raman spectra of Ni2Mo3N 

was taken at two different areas with 10% and 25% filters. The spectra are presented in 

Figure 20. The Raman spectra are very different between the two different areas. However, 

both show the formation of a surface oxide layer on the nitride, consisting of either α-

NiMoO4 or β-NiMoO4. The formation of an oxide surface layer was observed in previous 

work investigating cobalt molybdenum nitrides [55]. 

For the area taken with a 10% filter, the Raman bands at positions of approximately 962, 

914 and 709 cm-1 were attributed to α-NiMoO4. These Raman shifts are in very good 

agreement with α-NiMoO4 spectra reported in the literature [67] and match with the 

spectrum in Figure 16 for the oxide precursor. The weak bands at approximately 420, 390, 

370, and 265 cm-1 are also attributed to α-NiMoO4 in the literature [89]. The bands at 962 

and 914 cm-1 have been assigned in the literature as the symmetric and asymmetric 

stretching modes of the terminal Mo=O bond. The band at 709 cm-1 was assigned to the 

Ni-O-Mo symmetric stretch [67]. The weak bands at 420, 390, and 370 cm-1 have been 
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assigned to the bending mode of Mo−O. The other weak band at 265 cm-1 is associated 

with the deformation mode of Mo−O−Mo [89]. 

At the second area with a 25% filter, Raman bands were detected at 344, 370, 820, 894 and 

941 cm-1. These bands match well with the literature values for β-NiMoO4, which has 

bands at 370, 818, 890 and 936 cm-1 [96]. The bands at 894 and 941 cm-1 are due to the 

asymmetric and symmetric Mo-O vibration of Mo in a tetrahedral environment [96] [97]. 

The band at 820 cm-1 has been reported to be due to either the asymmetric stretching mode 

of the Ni-O-Mo bond [96] or the Mo-O vibration of Mo in tetrahedral coordination [97]. 

Furthermore, the band at 370 cm-1 has been assigned to the bending mode of Mo-O [96]. 

The presence of β-NiMoO4 in the Raman spectra of Ni2Mo3N has been reported previously 

in the literature [67]. 

 

 
Figure 20: Raman spectra of nickel molybdenum nitride (Ni2Mo3N). The two spectra were 

taken at different points of the material and either at 10% or 25% filter. 

It is important to investigate the morphology of a material as this can affect the ammonia 

synthesis activity. Figure 21 displays representative SEM images for Ni2Mo3N. The SEM 

images show a similar morphology to that of the oxide precursor. The sample consisted of 

rounded porous particles with an uneven surface. The nitride had a BET surface area of 5 

m2/g, a pore volume of 0.04 cc/g and an average pore radius of 15.92 Å. These values are 

lower than those for the oxide precursor. However, as observed from the Raman spectra 

for Ni2Mo3N, when the sample was in contact with air for a short time, a surface oxide 
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phase formed. Therefore, the BET surface area value for the nitride might not be a 

representative measurement in terms of the material under reaction conditions. 

To the author’s knowledge, only SEM images for Ni2Mo3N prepared by ammonolysis are 

published in the literature [85] [36] [59]. The morphology of the ammonolysis prepared 

samples are very different, comprising of well-formed rounded particles. 

 

Figure 21: SEM images of nickel molybdenum nitride (Ni2Mo3N). a) 1000x magnification, 

b) 2000x magnification, c) 6000x magnification and d) 6000x magnification. 

The element maps in Figure 22 show that there was an even distribution of nickel, 

molybdenum and nitrogen over the sample and that there was more molybdenum present 

than nickel. 
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Figure 22: Element Maps for Ni2Mo3N. Elements: Ni (red), Mo (green) and N (blue). 

The EDX analysis for the sample is shown in Table 2. The stoichiometric percentage of 

nickel, molybdenum and nitrogen for Ni2Mo3N is 28.00 wt. %, 68.66 wt. % and 3.34 wt. % 

respectively. The nitrogen weight percentage from EDX was greater than the 

stoichiometric nitrogen predicted for Ni2Mo3N. This could possibly be due to the 

limitations of EDX for light element analysis. The percentage of molybdenum and nickel 

was approximately as expected, suggesting that the weight ratio of Ni to Mo was close to 

that expected for Ni2Mo3N. 

Area Ni weight (%) Mo weight (%) N weight (%) 
1 34 62 4 
2 25 68 8 
3 29 64 7 
4 28 65 7 
5 27 65 7 

Average 28 65 7 
Table 2: EDX values for nickel molybdenum nitride (Ni2Mo3N) 

 
3.2.1.2.1 Lattice Nitrogen Reactivity of Ni2Mo3N 

Ni2Mo3N has been explored for its ammonia synthesis activity [36] [39] and lattice 

nitrogen reactivity [36] [92] [98]. Most of the ammonia synthesis reactions were performed 

at 400oC and atmospheric pressure. The highest ammonia synthesis rates for Ni2Mo3N 

reported under these conditions are 383 ± 22 µmol h-1 g-1 [36] and 275 µmol h-1 g-1 [39]. 

For the nitride prepared with N2/H2, the rate was stated to be 395 ± 6 µmol h-1 g-1 at 400oC 

[36] and 466 µmol h-1 g-1 at 500oC [85] when there was no nickel impurity. The presence 

of nickel metal in the material drastically reduces the ammonia synthesis rate [36] [98]. 

Therefore, it is of importance to form the pure phase bimetallic nitride. 

In order to determine the reactivity of lattice nitrogen in Ni2Mo3N, the material has been 

reacted under 1:3 Ar/H2 from 400oC to 700oC [98] and isotopic exchange studies with 15N2 

have been performed [36] [92]. If the lattice nitrogen was active for ammonia synthesis via 
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a Mars-van Krevelen mechanism, there would be a reduction in the nitrogen content of 

Ni2Mo3N when reduced under Ar/H2. Furthermore, there may be a transformation of the 

structure. The studies showed that the lattice N was only slightly reactive under Ar/H2 up 

to 700oC and that there was no phase transition for the nitride. However, it was seen 

through nitrogen isotopic exchange studies that some lattice nitrogen exchanges with 15N2 

depending on the pre-treatment conditions [36]. 

In order to understand the role of lattice nitrogen reactivity in Ni2Mo3N, the material was 

reduced at 900oC under 1:3 ratio of Ar/H2 at atmospheric pressure for 7 hours. The vent 

gas was passed through a dilute solution of H2SO4 and the conductivity was recorded over 

the reaction. A linear decrease in conductivity over time would represent a steady state 

reaction. As observed from the conductivity data in Figure 23, the rate was non-steady 

state. The R2 value of the straight-line fit was 0.9751 and the data deviates from this at the 

start and the end. The conductivity decreased by only 49 µS/cm over the 7 hours. This 

result suggests that the lattice nitrogen in Ni2Mo3N is fairly unreactive with respect to 

ammonia production even at elevated temperatures. It must be noted that ammonia 

formation at this temperature is greatly unfavoured [99] and that the lattice nitrogen may 

be lost as N2 instead, which would not result in a change in conductivity of the H2SO4 

solution through which the reactor effluent gas is flowed.  

 
Figure 23: Conductivity profile for Ni2Mo3CxNy reacted with 3:1 H2/Ar at 900oC for 7 hours. 
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The XRD pattern in Figure 24 shows that the filled β-Mn structure was maintained after 

the reaction. There does not appear to be any major change in phase compared to pre-

reaction suggesting that the material was not reduced under these conditions. The very 

minor Mo2N phase present in the material was reduced to Mo metal during the reaction as 

evidenced by the XRD pattern post-reaction. The XRD pattern confirms that the bulk 

lattice nitrogen in Ni2Mo3N was fairly unreactive under these conditions.  

 
Figure 24: Comparison of XRD patterns for Ni2Mo3N pre- and post-reaction with 3:1 H2/Ar 

at 900oC for 7 hours. Reflections marked:  Ni2Mo3N (JCPDS file number 01-089-4564) 
and  Mo (JCPDS file number 01-089-5023). 

Figure 25 illustrates that there was no lattice shift between the pre- and post-reaction 

samples. This is consistent with the results published in the literature for Ni2Mo3N tested 

under Ar/H2 up to 700oC [36] [92]. 

The elemental analysis shows that the percentage of nitrogen present in the material after 

reduction with 1:3 Ar/H2 had slightly decreased (C: 0.00 wt. %, H: 0.00 wt. % and N: 3.94 

wt. %) compared to pre-reaction (4.58 wt. %). The percentage of nitrogen present in the 

material was still higher than the expected stoichiometric value of 3.34 wt. %. The 

decrease in nitrogen could be due to the reduction of the β-Mo2N to molybdenum or the 

loss of some surface nitrogen from nickel molybdenum nitride. Assuming the loss of 

20 40 60 80

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

In
te

ns
ity

 (a
.u

.)

2q (o)

 Pre
 Post
 Ni2Mo3N
 Mo



 70 

nitrogen was solely due to the Ni2Mo3N, the percentage of lattice nitrogen lost that was 

converted to ammonia was 34.22%. 

Ni2Mo3N and Co3Mo3N display very different behaviour with respect to one another under 

Ar/H2 treatment. This may be explained by the difference in structure type or composition 

between these two nitrides and the origin of this difference will be explored further in this 

thesis.  

 
Figure 25: Comparison of XRD patterns between Ni2Mo3N pre- (black) and post-reaction 

(red) with 3:1 H2/Ar at 900oC for 7 hours. 

SEM analysis was conducted in order to investigate if there was any change in morphology 

of Ni2Mo3N during the reaction. Figure 26 displays characteristic SEM images at different 

magnifications of the post-reaction Ni2Mo3N. The sample consisted of porous particles 

with pores ranging in diameter from 0.5 µm to 10 µm. The crystallite shape and size had 

been retained compared to pre-reaction. However, there appeared to be smaller pores in the 

particles. 
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Figure 26: SEM images of nickel molybdenum nitride (Ni2Mo3N) post-reaction with 3:1 

H2/Ar at 900oC. a) 1000x magnification, b) 2000x magnification, c) 5000x magnification 

and d) 6000x magnification. 

The nickel, molybdenum and nitrogen appear to have been evenly distributed across the 

material as evidenced by the element maps in Figure 27. This confirms that there had been 

no phase separation under the reducing conditions. 

 

 
Figure 27: Element Maps for Ni2Mo3N post-reaction with 3:1 H2/Ar at 900oC. Elements: Ni 

(red), Mo (green) and N (blue). 

The EDX analysis for the post-reaction sample is presented in Table 3. The stoichiometric 

percentage of nickel, molybdenum and nitrogen for Ni2Mo3N is 28.00 wt. %, 68.66 wt. % 

and 3.34 wt. % respectively, as stated previously. The nitrogen weight percentage from 
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EDX was much lower than the predicted stoichiometric value and the result obtained from 

CHN analysis. However, there are limitations to EDX for measuring light elements. The 

percentage of nickel was higher than expected and therefore the mass ratio of Ni to Mo 

was higher than predicted for Ni2Mo3N. This is in contrast to the XRD pattern, which 

showed that the Ni2Mo3N phase had been retained post-reaction. 

Area Ni weight (%) Mo weight (%) N weight (%) O weight (%) 
1 33 58 9 0 
2 31 69 0 0 
3 31 69 0 0 
4 42 58 0 0 
5 36 64 0 0 
6 32 68 0 0 
7 63 37 0 0 
8 41 59 0 0 
9 30 70 0 0 

10 29 71 0 0 
11 25 70 5 0 
12 33 61 6 0 
13 36 64 0 0 
14 35 65 0 0 
15 38 62 0 0 
16 40 60 0 0 
17 30 70 0 0 
18 28 72 0 0 
19 30 70 0 0 

Average 35 64 1 0 
Table 3: EDX values for nickel molybdenum nitride (Ni2Mo3N) post-reaction with 3:1 H2/Ar 

at 900oC. 

3.2.1.3 Nickel Molybdenum Carbide (Ni2Mo3C) 

3.2.1.3.1 Preparation with 20% CH4/H2 

In order to have a greater understanding on the role lattice nitrogen plays in the ammonia 

synthesis activity of Ni2Mo3N, determination of the reactivity of the corresponding 

isostructural carbide would be of interest. From this it may prove possible to determine the 

influence phase composition has upon ammonia synthesis performance. Similar studies 

have been undertaken for the Co3Mo3N/Co3Mo3C system [54]. Although, the reactivity of 

lattice nitrogen in Ni2Mo3N has been shown to be very low, it has been observed and the 

topotactic replacement of the nitrogen with carbon to form a nickel molybdenum 

carbonitride has been reported in the literature [67].  

The activity of Ni2Mo3N could be explained by Norskov’s volcano plot [24], which states 

that the combination of Mo, which binds N2 strongly and Ni, which binds N2 weakly, 
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results in a suitable binding energy for N2 to give high ammonia synthesis activity. The 

lattice nitrogen is assumed to be non-reactive in this explanation and therefore, Ni2Mo3C 

would be expected to display similar performance to its nitride counterpart. 

Preparation of Ni2Mo3C was attempted initially via carburisation of Ni2Mo3N with 20% 

CH4/H2. The pure phase carbide was not produced under these conditions, with instead the 

material decomposing at high temperatures. The optimum preparation temperature was 

found to be 560 °C, which produced a carbonitride phase containing 1.42 wt. % carbon and 

1.93 wt. % nitrogen as shown in Table 4. When the temperature was increased above 

560oC, with the intention of substituting more of the lattice nitrogen with carbon, the 

material began to decompose. At temperatures above 600oC, the material fully 

decomposed to give mixed phases of Ni and α-Mo2C as demonstrated in Figure 28. The 

decomposition of the material observed agrees with what has been reported in the literature 

[62] [65]. The formation of a nickel molybdenum carbonitride phase has been reported by 

Alconchel et al. [67], who formed the phase by carburisation of Ni2Mo3N with CH4/H2/Ar 

gas mixture at 650oC. 

 
Figure 28: XRD patterns of nickel molybdenum materials prepared at different 

carburisation temperatures with 20% CH4/H2: (1) 560oC, (2) 600oC, (3) 650oC, (4) 700oC 

and (5) 725oC. Reflections marked:  α-Mo2C (JCPDS file number 00-035-0787) and  

Ni (JCPDS file number 00-001-1258). 
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Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

560oC 1.42 0.00 1.93 
600oC 1.98 0.00 1.00 
650oC 3.93 0.00 0.05 
700oC 11.80 0.01 0.00 
725oC 11.39 0.01 0.01 

Table 4: Elemental Analysis for the nickel molybdenum materials prepared at different 

carburisation temperatures with 20% CH4/H2. 

SEM was conducted to investigate the effect carburisation had on the morphology. The 

SEM results of the nickel molybdenum materials prepared at different carburisation 

temperatures are shown in Figure 29. As can be seen, the morphology of the materials was 

similar, even though the higher temperature materials decomposed. The BET surface area 

was observed to decrease as the carburisation temperature increased as shown in Table 5.  

Material Surface Area (m2/g) Pore Volume (cc/g) Average Pore Radius 
(Å) 

560oC 9 0.10 22.94 
650oC 7 0.05 15.90 
700oC 7 0.05 17.86 
725oC 5 0.08 20.20 

Table 5: BET surface area, pore volume and average pore radius for the nickel 

molybdenum materials prepared at different carburisation temperatures with 20% CH4/H2. 
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Figure 29: SEM images of nickel molybdenum materials prepared at different 

carburisation temperatures with 20% CH4/H2: a) 560oC, b) 600oC, c) 650oC, d) 700oC and 

e) 725oC. All of the images were taken at 4000x magnification. 

The element maps in Figure 30 show the phase separation as the carburisation temperature 

increases. In Figure 30 (a), the nickel and molybdenum appear to be fairly evenly 

distributed over the material. As the carburisation temperature was increased to 600oC, 

phase separation was apparent (Figure 30 (b)) with areas of molybdenum and nickel. This 

is the same at the higher carburisation temperatures. In Figure 30 (d), it can be seen that 

carbon is only located in areas where there was molybdenum present. This is consistent 

with the XRD patterns that show only the molybdenum has formed a carbide phase 

whereas Ni was present as Ni metal. 



 76 

 
Figure 30: Element Maps for nickel molybdenum materials prepared at different 

carburisation temperatures with 20% CH4/H2. Elements: Ni (green), Mo (red) and C (blue). 

a) 560oC, b) 600oC, c) 650oC, d) 700oC and e) 725oC. 

The EDX results show that the molybdenum weight percentage decreased as the carbon 

content increased as observed in Table 6. However, care needs to be taken as the samples 

were not homogeneous and EDX is semi-quantitative. The stoichiometric percentage of 

nickel, molybdenum and nitrogen for Ni + Mo2C (assuming a Ni:Mo ratio of 2:3) is 27.74 

wt. %, 68.01 wt. % and 4.26 wt. %, respectively. There is no nitrogen present in the 

material after carburisation temperature at 650oC, which agrees with the CHN analysis. 

Areas with more nickel content have a lower percentage of carbon (EDX tables provided 

in Appendix II). This is consistent with the XRD and element maps that show the nickel 

has not formed a carbide phase. The percentages of carbon were higher than expected and 

there did not appear to be any evidence for carbon in the XRD patterns. However, the EDX 

measurements are semi-quantitative and restrictive for light elements. 
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Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
560oC Average 24 54 17 5 
600oC Average 28 51 19 1 
650oC Average 24 54 22 0 
700oC Average 24 43 33 0 
725oC Average 19 43 38 0 

Table 6: EDX values for nickel molybdenum materials prepared at different carburisation 

temperatures with 20% CH4/H2 

 
3.2.1.3.2 Preparation with 30% CH4/H2 

In order to prepare a pure phase bimetallic carbide, the methane content of the gas feed 

was increased to 30% CH4/H2. From section 3.2.1.3.1, it can be seen that higher 

temperatures may be required in order to replace all of the lattice nitrogen of Ni2Mo3N 

with carbon. The reaction was carried out the same way as for the materials prepared with 

the 20% CH4/H2. The carbide was prepared by carburisation of the nitride in 30% CH4/H2 

at a flow rate of 12 mL/min. The material was heated to 350oC at a ramp rate of 6oC/min 

and then, the ramp rate was changed to 1oC/min to reach a final temperature of 650oC. The 

sample was kept at this temperature for two hours, then cooled down to room temperature 

under the CH4/H2. 

The elemental analysis shows that carbon and nitrogen were present in the material after 

carburisation (C: 3.50 wt. %, H: 0.00 wt. % and N: 0.32 wt. %). The XRD pattern for the 

material post-carburisation is provided in Figure 31. It can be seen that there are still peaks 

relating to a nickel molybdenum phase in this material, suggesting that the material has not 

completely decomposed under these conditions. When the nitride was carburised with 20% 

CH4/H2 at the same temperature, the material had completely decomposed as observed in 

its XRD pattern (Figure 28). Therefore, the material did not decompose as much when 

there was a higher methane percentage in the gas feed. However, the ternary carbide phase 

was not formed under 30% CH4/H2 and the material had started to decompose at 650oC 

carburisation temperature. The carburisation temperature could be lowered in order to try 

and form the carbide and prevent the observed decomposition. However, as nitrogen was 

still present in the material at 650oC, this would suggest that at lower carburisation 

temperature, the carbonitride would be formed. Thus, the pure carbide phase cannot be 

formed under 30% CH4/H2 in the procedure adopted. 
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Figure 31: XRD pattern of the nickel molybdenum material prepared at 650oC 

carburisation temperature with 30% CH4/H2. Reflections marked:  α-Mo2C (JCPDS file 

number 00-035-0787) and  Ni (JCPDS file number 00-001-1258). 

SEM images of the material post-carburisation are displayed in Figure 32. The morphology 

of the sample was similar to the morphology of the materials prepared under 20% CH4/H2 

(Figure 29).  

 
Figure 32: SEM images of nickel molybdenum material prepared at 650oC carburisation 

temperature with 30% CH4/H2. Both images were taken at 4000x magnification. 

The element map also shows the phase segregation between the nickel and molybdenum as 

displayed in Figure 33. The average EDX values for this material were 25 wt. %, 50 wt. % 

and 25 wt. % for nickel, molybdenum and carbon respectively. There was no nitrogen 
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detected in the areas that were examined. This is in disagreement with the CHN analysis, 

which showed that 0.32 wt. % of nitrogen was present. However, it needs to be borne in 

mind that detecting light elements by EDX can be problematic. 

 
Figure 33: Element Map for nickel molybdenum material prepared at 650oC carburisation 

temperature with 30% CH4/H2. Elements: Ni (red) and Mo (green). 

3.2.1.3.3 Preparation with Pure C2H6 

Methane was substituted with ethane to investigate the effect a more reactive source of 

carbon had on obtaining pure phase Ni2Mo3C from Ni2Mo3N. The material was prepared 

by carburisation of the nitride in C2H6 at 500oC, 550oC and 575oC. The XRD patterns for 

these materials are displayed in Figure 34. However, this proved unsuccessful with a 

carbonitride phase being formed instead as seen from the elemental analysis presented in 

Table 7. Only 30% of the lattice nitrogen was removed from the materials at all three 

temperatures tested and the stoichiometries of the carbonitrides formed are shown in Table 

8.  

Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

500oC 1.02 0.00 2.41 
550oC 1.17 0.00 2.33 
575oC 1.32 0.00 2.32 

Table 7: Elemental Analysis for the nickel molybdenum materials prepared at different 

carburisation temperatures with C2H6. 

Material Proposed Stoichiometry 
500oC Ni2Mo3C0.35N0.72 
550oC Ni2Mo3C0.41N0.70 
575oC Ni2Mo3C0.46N0.69 

Table 8: Stoichiometry proposed for the bulk sample for nickel molybdenum materials 

prepared at different carburisation temperatures with C2H6. 
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Figure 34: XRD patterns of nickel molybdenum materials prepared at different 

carburisation temperatures with C2H6: (1) 500oC, (2) 550oC and (3) 575oC. 

As can be seen in Figure 35, there was almost no shift in peak positions between the three 

samples. This suggests that lattice nitrogen was not being substituted by more carbon at the 

higher temperature. 
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Figure 35: Comparison of XRD patterns for nickel molybdenum materials prepared at 

different carburisation temperatures with C2H6: 500oC (black), 550oC (red) and 575oC 

(blue). 

3.2.1.3.4 Preparation with 10% C2H6/H2 

Due to the inability to form the nickel molybdenum carbide under pure ethane, hydrogen 

was added to the feed stream to assist with the carbide formation. The material was 

prepared by carburisation of Ni2Mo3N in 10% C2H6/H2 at a flow rate of 12 mL/min at 

520oC, 560oC and 610oC. From the XRD patterns in Figure 36, it can be seen that the 

resulting material at 560oC was similar to the material carburised under 20% CH4/H2 at the 

same temperature. However, at the carburisation temperature of 610oC, it can be seen that 

the material possessed a higher relative intensity of molybdenum carbide and nickel 

reflections compared to the material carburised at 600oC under 20% CH4/H2. This suggests 

that more of the material had decomposed under the ethane atmosphere. This is consistent 

with what would be expected. According to literature, ethane lowers the temperature at 

which the carbide is formed [100] [101] [102]. The formation of a pure phase Ni2Mo3C 

was unsuccessful when an ethane and hydrogen gas mixture was applied to the nitride. 

Instead, the nickel molybdenum carbonitride was formed as was the case when methane 

was used as the carbon source. 
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Figure 36: XRD patterns of nickel molybdenum materials prepared at different 

carburisation temperatures with 10% C2H6/H2: 520oC (black), 560oC (red) and 610oC 

(blue). Reflections marked:  α-Mo2C (JCPDS file number 00-035-0787) and  Ni 

(JCPDS file number 00-001-1258). 

The stoichiometries proposed for the bulk samples prepared at 520oC and 560oC were 

Ni2Mo3C0.20N0.66 and Ni2Mo3C0.43N0.66 respectively, as predicated from the elemental 

analysis shown in Table 9. The sample carburised at 610oC contains Mo2C and therefore, 

this contributes to the carbon content and a stoichiometry relating to a ternary phase cannot 

be proposed. The material prepared at 560oC under 20% CH4/H2 had a stoichiometry of 

Ni2Mo3C0.49N0.58. The sample prepared with 10% C2H6/H2 would be expected to contain 

more carbon due to the ethane lowering the temperature for carburisation. From elemental 

analysis and the proposed stoichiometry, it is seen that this is not the case. However, when 

comparing the 600oC carburised materials it can be observed that more carbon is present 

for the material carburised with 10% C2H6/H2. 
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Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

520oC 0.59 0.07 2.19 
560oC 1.23 0.13 2.20 
610oC 2.26 0.05 0.92 

Table 9: Elemental Analysis for the nickel molybdenum materials prepared at different 

carburisation temperatures with 10% C2H6/H2. 

A comparison of the XRD patterns of the materials carburised at 560oC with 20% CH4/H2, 

pure C2H6 and 10% C2H6/H2 are presented in Figures 37 and 38. It must be noted that the 

nitride carburised with pure ethane was reacted at a lower temperature of 550oC. When 

comparing the shift in peak positions, it can be seen that the material carburised with 10% 

C2H6/H2 had the smallest shift to lower 2θ values. When consideration is given to the 

relative atomic radii of N and C with C being larger, this is in contrast with the elemental 

analysis that showed the material carburised with pure ethane had the lowest amount of 

carbon present and therefore, would be expected to have the smallest shift in peak 

positions. However, the carbon values from elemental analysis for the materials prepared 

under C2H6 and 10% C2H6/H2 are within experimental error, as observed in Table 10. This 

lower shift in peak position for the material carburised with 10% C2H6/H2 suggests that not 

all the carbon may be incorporated into the lattice. Instead, some of the carbon may be laid 

down on the surface of the material. Although, there is no peak associated with graphitic 

carbon in the XRD pattern for this material, the carbon may be in a different form or in 

trace amounts that the XRD can’t detect.  

Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

20% CH4/H2 1.42 0.00 1.93 
C2H6 1.17 0.00 2.33 

10% C2H6/H2 1.23 0.13 2.20 
Table 10: Elemental Analysis for the nickel molybdenum materials prepared with 20% 

CH4/H2, C2H6 and 10% C2H6/H2. 
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Figure 37: XRD patterns of nickel molybdenum materials prepared at 560oC with different 

carburisation sources: (1) 20% CH4/H2, (2) C2H6 (550oC) and (3) 10% C2H6/H2. 

 
Figure 38: Comparison of XRD patterns for nickel molybdenum materials prepared at 

560oC with different carburisation sources: 20% CH4/H2 (black), C2H6 (550oC, red) and 

10% C2H6/H2 (blue). 

3.2.1.4 Nickel Molybdenum Carbonitride (Ni2Mo3CxNy) 

As discussed in the introduction, the production of ammonia from Ni2Mo3N could be due 

to either a Mars van Krevelen mechanism, where lattice nitrogen is an active component, 

or the combination of nickel and molybdenum having a good binding energy for N2. 
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Therefore, it is of interest to examine the behaviour of the carbonitride for ammonia 

synthesis and relate it to its nitride counterpart.  

The carbonitride that was prepared with 20% CH4/H2 at 560oC was analysed further as it 

was the material that gave the highest apparent substitution of lattice nitrogen with carbon. 

It has been previously reported that the ratio of 20% CH4/H2 is the most efficient way of 

forming β-Mo2C from MoO3 [103]. From Figure 39, it can be seen that the material 

corresponds to the filled β-Mn structure. The identity of the impurity phase marked with a 

star in Figure 39 is currently unknown. Pattern matches with the JCPDS database were 

performed for β-Mo2N, Mo3N2, Mo5N6, α-Mo2C, β-Mo2C and β-Mo1.93C0.96. However, 

none of these materials aligned with the peak at 37o 2θ. One possible suggestion for this 

impurity is that it was a molybdenum carbonitride phase due to the shift of the peak to 

lower 2θ values by 0.6016o 2θ from the position for β-Mo2N. 

 
Figure 39: XRD pattern of nickel molybdenum carbonitride (Ni2Mo3CxNy). Reflections 

marked: ▲ Mo0.09Ni0.91 (JCPDS file number 01-071-9766), the peak marked with  is an 

unknown phase and the unmarked reflections are due to Ni2Mo3CxNy. 

The elemental analysis shows that carbon and nitrogen were present in the material after 

carburisation (C: 1.42 wt. %, H: 0.00 wt. % and N: 1.93 wt. %). The expected 

stoichiometric value for carbon in Ni2Mo3C is 2.88 wt. %. The carbon content of the 

material was approximately half of the calculated stoichiometric value. The shift in peak 
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position compared to the nitride (Figure 40) and elemental analysis suggests that a 

carbonitride phase may have been formed. The stoichiometry proposed for the bulk sample 

is Ni2Mo3C0.49N0.58. From the stoichiometry, it is observed that the nitrogen content was 

higher than expected. This could be due to the possible molybdenum nitride phase 

contributing to the nitrogen percentage. 

The absence of a peak at 25o 2θ suggests that the carbon was not present as graphitic 

carbon and had instead been incorporated into the bimetallic lattice. 

 
Figure 40: Comparison of XRD patterns for Ni2Mo3N and Ni2Mo3CxNy showing the shift in 

reflections. 

Raman spectroscopy was performed to investigate if there were any surface oxide species 

on the material. The Raman spectra were collected to 3000 cm-1 and there were no bands 

observed above 1000 cm-1. The absence of D and G bands suggests that the carbon present 

in the material was not due to carbon laydown on the nitride but that it was instead 

incorporated into the lattice, which, as mentioned above, is consistent with the XRD 

results. The spectra are presented in Figure 41. As seen with Ni2Mo3N, the Raman spectra 

were different between the two different areas measured. Both areas show either the 

presence of α-NiMoO4 or β-NiMoO4, which is consistent with the formation of a surface 

oxide layer on the carbonitride. The bands at 368, 815, 888 and 936 cm-1 match well with 

the literature values for β-NiMoO4 [96]. Raman bands at positions of approximately 953, 
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905 and 700 cm-1 were attributed to α’-NiMoO4 [104]. Alconchel et al. [67] did not detect 

any bands in the Raman spectrum for their nickel molybdenum carbonitride. However, this 

group used a lower laser power (80 mW) compared to this study and also they did not state 

the filter percentage they used for taking Raman spectra. 

 
Figure 41: Raman spectra of nickel molybdenum carbonitride (Ni2Mo3CxNy). The two 

spectra were taken at different points of the material and either at 25% or 50% filter. 

The ammonia synthesis activity of a material can be affected by its morphology and 

therefore, SEM analysis was performed for Ni2Mo3CxNy. Typical SEM images of 

Ni2Mo3CxNy at different magnifications are presented in Figure 42. It can be seen that the 

carbonitride consisted of a porous structure and that the morphology had been retained 

from the nitride precursor. It has been previously reported that the conversion of Ni2Mo3N 

to the carbonitride is topotactic and pseudomorphic [67]. The topotactic production of 

carbides from their corresponding nitride has been reported for Co3Mo3C [54] [105], 

Fe3Mo3C [105],  Mo2Ta2Cx, Mo3Nb2Cx and W9Nb8Cx [102]. Therefore, any difference in 

activity between Ni2Mo3N and the carbonitride is not due to a difference in morphology 

between the two materials.  

The nickel molybdenum carbonitride had a surface area of 9 m2/g, a pore volume of 0.10 

cc/g and an average pore radius of 22.94 Å. The BET surface area had increased compared 

to the nitride, which had a value of 5 m2/g. However, it must be noted that the measure of 
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very low surface areas using nitrogen as the adsorbate can give large inaccuracies. 

Therefore, it would be better to use krypton rather than nitrogen for BET surfaces areas 

that are small. Furthermore, as with the nitride, the formation of the oxide layer on the 

surface of the material may mean that the BET surface area value is inaccurate in the sense 

that it does not strictly conform to the material under operation.  

 
Figure 42: SEM images of nickel molybdenum carbonitride (Ni2Mo3CxNy). a) 1000x 

magnification, b) 2000x magnification, c) 6000x magnification and d) 6000x magnification. 

The element map in Figure 43 illustrates that there was an even distribution of nickel and 

molybdenum over the sample and that there was more molybdenum present.  

 
Figure 43: Element Map for Ni2Mo3CxNy. Elements: Ni (red) and Mo (green). 
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The weight percentages obtained from EDX for Ni2Mo3CxNy are provided in Table 11. 

From CHN analysis, the stoichiometry calculated for the bulk sample is Ni2Mo3C0.49N0.58. 

Therefore, the stoichiometric percentage of nickel, molybdenum, carbon and nitrogen in 

the sample is 28.00 wt. %, 68.66 wt. %, 1.40 wt. % and 1.94 wt. % respectively. The 

carbon and nitrogen weight percentages were greater than the stoichiometric values 

expected for Ni2Mo3C0.49N0.58. However, EDX can be problematic in analysing light 

elements and also carbon stubs are used to mount the samples. The molybdenum 

percentage was lower than the expected stoichiometric value. However, EDX is semi-

quantitative and therefore, these values may not be representative.   

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 25 50 23 2 
2 22 53 16 9 
3 25 57 15 3 
4 30 48 20 3 
5 22 40 34 4 
6 27 49 20 4 

Average 25 49 21 4 
Table 11: EDX values for nickel molybdenum carbonitride (Ni2Mo3CxNy) 

3.2.1.4.1 Ammonia Synthesis at 400oC for Ni2Mo3CxNy 

The Ni2Mo3CxNy was tested for ammonia synthesis activity at 400oC and atmospheric 

pressure under 3:1 H2/N2 atmosphere for 36 hours. This was performed to establish the 

influence the phase composition had upon ammonia synthesis activity. Performing the 

reaction at atmospheric pressure is not thermodynamically desirable. However, it is easier 

to follow the influence the transformation of phase has on the development of activity 

since it will be expected to occur on a longer timescale than when running under higher 

pressure, since compositional changes are expected to be more gradual. 

The activity of this carbonitride was very different compared to Co3Mo3C at 400oC [54]. 

The carbonitride material had steady state activity and there was no induction period, as 

shown in Figure 44. Therefore, the surface oxide layer did not impede the ammonia 

synthesis activity. Two different rates have been calculated and are shown in Table 12 as 

the system was accidentally interrupted during the reaction run. The Ni2Mo3N nitride 

material prepared by the modified Pechini method has been tested previously and gave an 

activity of 395 ± 6 µmol h-1 g-1 [36]. 

To determine the reproducibility of the Ni2Mo3CxNy activity for ammonia synthesis, the 

material was tested for a second time by reacting it with 3:1 H2/N2 at 400oC for ten hours. 

The rate exhibited by the material was 211 µmol h-1 g-1. The stoichiometry proposed for 
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this bulk sample is Ni2Mo3C0.50N0.49, meaning that the initial amount of carbon in each 

sample is comparable. However, there was approximately 16% more nitrogen present pre-

reaction in the sample that was tested for 36 hours. 

 
Figure 44: Conductivity profile for Ni2Mo3CxNy reacted with 3:1 H2/N2 at 400oC for 36 

hours. 

Catalyst Rate (µmol h-1 g-1) at 400oC 

Ni2Mo3CxNy Before MFC was switched 
off 

174 

Ni2Mo3CxNy After the MFC was switched 
back on 

206 

Table 12: Ammonia synthesis rates for Ni2Mo3CxNy at 400°C and reacted with 3:1 H2/N2 

for 36 hours. 

The XRD pattern of the material post-reaction is displayed in Figure 45. If the material 

underwent nitridation during the reaction as observed for Co3Mo3C [54], the XRD pattern 

would be expected to show a change in lattice parameter. As nitrogen is smaller than 

carbon, it would be expected that the unit cell would decrease in size and the XRD peaks 

would shift to larger angles with progressive incorporation of N. After reaction, as seen in 

Figure 46, the shifts in peak positions were not consistent with the expected change in 

lattice parameter due to replacement of carbon with nitrogen. This observation requires 

further investigation as the reason for it is currently unknown. If oxygen was incorporated 

into the lattice the peaks would be expected to shift to higher 2θ values. 
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Figure 45: Comparison of XRD patterns for Ni2Mo3CxNy pre and post reaction with 3:1 

H2/N2 at 400oC for 36 hours. Reflections marled: ▲ Mo0.09Ni0.91 (JCPDS file number 01-

071-9766) and the peak marked with  is an unknown phase. 

 
Figure 46: Comparison of XRD patterns for Ni2Mo3CxNy pre- (black) and post-reaction 

(red) with 3:1 H2/N2 at 400oC for 36 hours. 
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The elemental analysis for the post reaction material is provided in Table 13. Post-reaction, 

it is observed that the nitrogen content of the nickel molybdenum carbonitride had slightly 

increased and the carbon content of the material had decreased. The stoichiometry 

proposed for the bulk sample is now Ni2Mo3C0.43N0.61. However, this increase in nitrogen 

content has not resulted in a discernible shift of the peak positions in the XRD to higher 2θ 

values, possibly due to the increase being small. 

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
Ni2Mo3CxNy 
Pre-Reaction 

- 2.88 1.93 1.42 

Ni2Mo3CxNy 
Post-Reaction 

- 2.88 2.04 1.24 

Table 13: Elemental Analysis for Ni2Mo3CxNy comparing pre- and post-reaction with 3:1 

H2/N2 at 400oC for 36 hours. 

SEM analysis was performed in order to examine any changes in the morphology and 

structure of Ni2Mo3CxNy during the ammonia synthesis reaction. Representative SEM 

images of the post-reaction material are presented in Figure 47. The material had a porous 

structure and the morphology was similar to the pre-reaction material. Therefore, the lower 

ammonia synthesis activity of the carbonitride compared to the nitride was not due to a 

change in morphology upon carburisation.  
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Figure 47: SEM images of nickel molybdenum carbonitride (Ni2Mo3CxNy) post-reaction 

with 3:1 H2/N2 at 400oC for 36 hours. a) 1000x magnification, b) 2000x magnification, c) 

6000x magnification and d) 6000x magnification. 

The element map in Figure 48 shows that the even nickel and molybdenum distribution 

had been retained. 

 
Figure 48: Element Map for Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 400oC. Elements: 

Ni (red) and Mo (green). 

Table 14 gives the weight percentage for each element from the EDX for the post-reaction 

Ni2Mo3CxNy. The CHN analysis shows that the stoichiometry for the bulk sample post 36 

hour reaction at 400oC was Ni2Mo3C0.43N0.61. Thus, the stoichiometric content of nickel, 

molybdenum, carbon and nitrogen in the sample should be 28.02 wt. %, 68.71 wt. %, 1.23 

wt. % and 2.04 wt. % respectively. As with the pre-reaction sample, the carbon and 
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nitrogen percentages were higher than expected. However, the amount of carbon decreased 

by 5.59 wt. % and the weight percentage of nitrogen increased by 1.05 wt. % compared to 

pre-reaction. These values compare very well with the stoichiometric differences between 

the pre- (Ni2Mo3C0.49N0.58) and post-reaction sample. The molybdenum percentage 

increased by 5.10 wt. % compared to the pre-reaction Ni2Mo3CxNy. 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 27 55 15 4 
2 26 56 14 5 
3 24 48 23 6 
4 22 59 15 4 
5 23 55 13 8 
6 27 53 16 5 

Average 25 54 16 5 
Table 14: EDX values for nickel molybdenum carbonitride (Ni2Mo3CxNy) post reaction with 

3:1 H2/N2 at 400oC for 36 hours. 

The formation of the oxide layer on the surface of the carbonitride and its potential effect 

on the ammonia synthesis activity of the material where examined by ToF-SIMS. It is 

important to understand if the development of activity requires removal of the oxide layer 

and/or restructuring of the near surface region of the material. ToF-SIMS is a surface 

sensitive technique and therefore, can give information on the elements present at the 

surface of a material. This technique can also be used for depth profiling and in this work, 

could be used to determine the depth of the oxide surface layer.   

The ToF-SIMs instrument used a pulsed Cs+ ion beam to remove species from the top 

layer of the carbonitride surface. Bi3+ was used as the primary ion for depth profiling. The 

removed molecules from the surface are the secondary ions and their mass are determined 

by the time they take to reach the detector.  

The mass spectrum for molybdenum can be complex due to the element having seven 

naturally occurring isotopes of 92, 94, 95, 96, 97, 98 and 100. In Ni2Mo3CxNy, the nitrogen 

and carbon are bonded to six molybdenum species as explained in the introduction. 

Therefore, the mass fragments for this material would contain MoC and MoN. The mass 

spectrum of MoC, MoN and MoO fragments overlap. Therefore, there was no peak that 

was attributable solely to a MoN fragment. The peak at 106 m/z can result from both 
94MoC and 92MoN. In this study, to show the depth profiling of a MoN fragment, the 

contribution of 94MoC was subtracted from the total intensity for 106 m/z to give the 

intensity for 92MoN. The 94MoC contribution was calculated by comparing the expected 

ratio of the isotopes with 92MoC at 104 m/z (92Mo is 14.8% and 94Mo is 9.2%). 
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The pre- and post- 36 hour reaction materials were examined by ToF-SIMS and the data is 

provided in Appendix III. For both the pre- and post-reaction samples, nitrogen and carbon 

were present at a depth of 10 nm, suggesting that although there was an oxide layer, these 

elements were present near the surface. Oxygen was also present in the materials and the 

intensity appeared to decrease as the depth increased, which is consistent with this being a 

surface layer. From this analysis, it can be determined that although there was an oxygen 

passivation layer, due to the presence of nitrogen and carbon near the surface, this would 

not need to be removed significantly in order for the material to be active. 

As the pre- and post-reaction mass spectra appeared to be very similar, this suggests that 

the material has not undergone restructuring (i.e. segregation) during the reaction. 

However, the intensity of the 92MoN peak had increased post-reaction compared to pre-

reaction and the intensities of the 92MoC and MoO3- peaks had decreased. This suggests 

that more nitrogen was present near the surface of the material after the reaction, as 

expected.   

The mass peak due to oxygen (m/z = 16) was observed to reach saturation during the depth 

profiling of the material. It was suggested that the vacuum may have been insufficient to 

remove the oxygen from the chamber and therefore, there may have been a problem with 

the sample reabsorbing the oxygen. 

3.2.1.4.2 Ammonia Synthesis at 500oC for Ni2Mo3CxNy 

Ni2Mo3CxNy was tested for ammonia synthesis activity at 500oC and atmospheric pressure 

under 3:1 H2/N2 to investigate if the increase in temperature would have a more notable 

effect on the phase composition. At this temperature, there is an induction period of 

approximately 50 minutes before the material develops steady state ammonia synthesis 

activity, as seen in Figure 49. The steady state activity of the material after the induction 

period is shown in Figure 50. This is in contrast to the material tested at 400oC, which had 

no induction period and therefore, an instantaneous decrease in conductivity. The reason as 

to why this was observed was unclear. However, the induction period may be due to 

removal of an oxide surface layer and/or restructuring of the material. The ammonia 

synthesis rate of the material at 500oC was determined to be 619 ± 14 µmol h-1 g-1. In 

comparison, the rate at 400oC was calculated to be approximately 197 ± 23 µmol h-1 g-1. 

Hence, beyond the induction period, the material is much more active at the higher 

temperature as might be expected. Co3Mo3C was stated to have a rate of 461 ± 17 µmol h-1 

g-1 at 500oC under the same conditions [54], suggesting that Ni2Mo3CxNy is yet more 
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reactive, although the comparative surface areas of the materials would need to be 

considered in drawing further inferences. The cobalt molybdenum material also had an 

induction period that lasted for 40 minutes before it became active during which the 

material underwent nitridation to form a carbonitride. Co3Mo3CxNy was active for 

ammonia synthesis at 500oC and had similar activity to the corresponding nitride [54]. 

 

Figure 49: Conductivity profile for Ni2Mo3CxNy reacted with 3:1 H2/N2 at 500oC for 7.5 

hours. 

 
Figure 50: Conductivity profile for Ni2Mo3CxNy reacted with 3:1 H2/N2 at 500oC for 7.5 

hours, highlighting the linear part of the graph used for calculating the rate. 
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The XRD patterns in Figures 51 and 52 show a small shift in the position of the peaks to 

higher 2θ values between pre- and post-reaction. All the XRD reflections of Ni2Mo3CxNy 

are shifted to higher 2θ angles after the reaction. This implies that the lattice carbon is 

being replaced with nitrogen to give a material with a composition containing more 

nitrogen. The XRD patterns illustrate a more notable effect on the phase transformation at 

the higher reaction temperature. 

 
Figure 51: Comparison of XRD patterns for Ni2Mo3CxNy pre- and post-reaction with 3:1 

H2/N2 at 500oC for 7.5 hours. Reflections marked: ▲ Mo0.09Ni0.91 (JCPDS file number 01-

071-9766) and the peak marked with  is an unknown phase. 
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Figure 52: Comparison of XRD patterns for Ni2Mo3CxNy pre- (black) and post-reaction 

(red) with 3:1 H2/N2 at 500oC for 7.5 hours. 

From the elemental analysis, it appears that some of the carbon had been removed from the 

sample and had been replaced with nitrogen, as observed in Table 15. The stoichiometry 

proposed for the bulk sample is now Ni2Mo3C0.15N0.83. This is a significant change in 

composition compared to pre-reaction (Ni2Mo3C0.43N0.61). The post-reaction elemental 

analysis confirms that the carbon was not completely removed from the carbonitride to 

form the corresponding nitride. However, at 500oC reaction temperature, the replacement 

of lattice carbon with nitrogen is much more noticeable. A similar transformation was seen 

for Co3Mo3C, which formed Co3Mo3CxNy when reacted with 3:1 H2/N2 at 500oC [54].  

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
Ni2Mo3CxNy 
Pre-Reaction 

- 2.88 2.04 1.24 

Ni2Mo3CxNy 
Post 500oC 
Reaction 

- 2.88 2.78 0.42 

Table 15: Elemental Analysis for Ni2Mo3CxNy comparing pre- and post-reaction with 3:1 

H2/N2 at 500oC for 7.5 hours. 
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A representative Raman spectrum of the post 500oC reaction carbonitride is displayed in 

Figure 53. Alconchel et al. [67] observed no Raman bands for Ni2Mo3CxNy and they 

suggested that the carbonitride was less oxygen sensitive compared to the corresponding 

nitride. In the pre-reaction material, Raman bands were observed corresponding to a 

passivation layer (Figure 41). These bands were not observed in the Raman spectra post-

reaction. This would suggest that the induction phase observed for this material could be 

due to the removal of the oxide layer, although surface segregation effects also need to be 

considered. However, the induction phase could also be due to restructuring of the 

material. 

 
Figure 53: Raman spectrum of nickel molybdenum carbonitride (Ni2Mo3CxNy) post-

reaction with 3:1 H2/N2 at 500oC for 7.5 hours. 

ToF-SIMS was utilised to determine the reason for the induction period for Ni2Mo3CxNy 

before it obtained steady state activity. The mass spectrum for the post-reaction material is 

displayed in Appendix III. Oxygen was observed at the surface and therefore, the material 

had an oxide surface layer. This is in contrast to the Raman spectrum that showed no bands 

for an oxide. However, ToF-SIMS is a very sensitive technique with amounts in the 

ppm/ppb range being detected. Carbon and nitrogen were also detected at the surface of the 

material. This suggests that the removal of an oxide layer might not straightforwardly be 

the reason for the induction period. 
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Part II: η-Carbide Structured Materials 

3.2.2 Nickel Molybdenum Carbide (Ni6Mo6C) 

Although there have been reports of Ni3Mo3N formation in the literature, this phase is not 

currently established [60] [35]. Instead, nitridation of the NiMoO4 precursor results in a 

mixture of Ni and Ni2Mo3N. In contrast, the carbide, Ni3Mo3C, is an established phase and 

therefore, its preparation and possible topotactic nitridation during ammonia synthesis 

might be a route to preparing Ni3Mo3N. The nitridation of carbides and carbonitrides has 

been reported for Ni2Mo3CxNy in this thesis and for Co3Mo3C [54]. Comparison of the 

catalytic performance of Ni3Mo3C and Ni2Mo3C would also give information on the effect 

structure (η-carbide versus filled β-Mn) has on the ammonia synthesis activity.  

Attempts have been made to prepare nickel molybdenum carbide directly from the 

bimetallic oxide by using methane as the carburising source. However, this has proved to 

be difficult, with reports in the literature showing the formation of β-Mo₂C and Ni instead 

[62]. Therefore, in this work, a different approach was undertaken in order to prepare 

Ni3Mo3C. The citric acid used in the preparation of the oxide precursor via the modified 

Pechini method, was used as the carburising source. Other studies have shown that a 

precursor can be used as the carbon source to form carbides, for example 

hexamethylenetetramine (HMTA) [106] and glucose [107]. Ni6Mo6C has been previously 

synthesised by reduction of citric acid under Ar or H2 [69] [108] [68]. However, the 

materials were not pure phase, with impurities of β-Mo2C, a nickel molybdenum alloy and 

Ni3C being formed. A pure phase Ni6Mo6C had been formed by Newsam et al. [64] under 

CO/CO2 at 1000oC. 

3.2.2.1 Nickel Molybdenum Oxide (Ni3Mo3Ox) 

To prepare the nickel molybdenum carbide, first the oxide precursor was synthesised via 

the modified Pechini method. The oxide was not calcined in order for the citric acid to be 

used as the source of carbon. The XRD pattern of the material is shown in Figure 54 and a 

broad peak was observed at approximately 24o 2θ. This peak may be due to carbon or 

graphite, which shows a peak at 26o 2θ. The 2o 2θ difference in d-spacing may be due to 

the poorly defined nature of the peak due to the disordered nature of the material. 

Elemental analysis of the oxide material showed that there was a large percentage of 

carbon present (C: 23.31%, H: 2.95% and N: 1.32%). Nitrogen was also detected in this 

material and possibly originated from the Ni(NO3)2·6H2O and ((NH4)6Mo7O24·4H2O 

starting materials.  
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Figure 54: XRD pattern of uncalcined nickel molybdenum oxide (Ni3Mo3Ox). 
As the XRD pattern showed that the material was amorphous, Raman analysis was 

conducted for this material to examine the oxide species present. In addition, information 

on the type of carbon can be obtained from Raman analysis. The Raman spectrum of 

uncalcined Ni3Mo3Ox has a strong band at 943 cm-1 along with bands at 895, 822 and 376 

cm-1, as shown in Figure 55. These bands match well with those reported in the literature 

for β-NiMoO4 [109] [110]. The bands at 943, 895 and 822 cm-1 are attributed in the 

literature to symmetric and asymmetric stretching modes of the Mo-O bond [88] [91]. The 

band at 376 cm-1 has been assigned to the bending mode of Mo-O [96]. The weak band at 

290 cm-1 has been assigned to the deformation mode of Mo–O–Mo [91]. 

There are also two broad bands at 1368 and 1572 cm-1, which are associated with the D 

and G bands of graphitic carbon. Carbon is present in the material from the starting citric 

acid precursor and is used as the source of carbon when the material is reduced. The D 

band at 1368 cm-1 is attributed to defects characteristic of disorder in the graphite, whereas 

the G band is due to the vibration of sp2 bonded carbon atoms and relates to the E2g mode 

of graphite [111]. In the literature, heating from the laser has been shown to shift the 

position of the G band down as far as 1567 cm-1 [112]. For the spectrum taken with a 50% 

filter, the G band shifts down to 1572 cm-1, which suggests that laser-induced heating has 
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shifted this band. However, other research states that the shift in band position is due to the 

number of layers of graphene present [113] [114]. As the number of layers increases, the G 

band shifts to lower wavenumber. It has been suggested that this is due to a slight 

weakening of the bonds as each additional layer is added [114]. 

 

 
Figure 55: Raman spectrum of uncalcined nickel molybdenum oxide (Ni3Mo3Ox). 

3.2.2.2 Nickel Molybdenum Carbide (Ni6Mo6C) 

Nickel molybdenum carbide was prepared by reducing the uncalcined oxide precursor 

under a 3:1 ratio of H2/Ar gas mixture at 700oC. The XRD pattern in Figure 56 shows that 

the low carbon content Ni6Mo6C was formed. There were also impurities of Mo2C and 

Ni2Mo3N present in the material. Nitrogen was observed in the oxide precursor and 

possibly resulted from the Ni(NO3)2·6H2O and (NH4)6Mo7O24·4H2O used in the Pechini 

method. The Ni2Mo3N and Ni6Mo6C have many XRD reflections that overlap. However, 

unique reflections for Ni6Mo6C are observed at 35.9o, 50.2o and 60.7o 2θ and for Ni2Mo3N 

at 30.1o and 45.3o 2θ. This result demonstrates that the nickel molybdenum carbide can be 

prepared by using citric acid as the carbon source. Both Ni6Mo6C and Ni3Mo3C have a 

similar η-carbide structure. The material was also prepared at a temperature of 750oC. 

However, the intensity of the Ni2Mo3N peaks increased suggesting that the nitride 

formation is favoured at higher temperatures. It is currently unclear why this is the case. 
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The stoichiometric weight percentage of carbon expected in Ni6Mo6C is 1.28%. Elemental 

analysis of the ‘Ni6Mo6C’ material prepared at 700oC showed that the amount of carbon 

present was almost the same as the stoichiometric percentage (C: 1.18 wt. %, H: 0.15 wt. 

% and N: 0.65 wt. %). However, the Mo2C impurity will contribute towards this value. 

The nitrogen present is likely due to the apparent occurrence of the Ni2Mo3N phase. The 

material that was prepared at 750oC had a higher nitrogen percentage according to CHN 

analysis. 

The formation of Ni6Mo6C suggests that there may be a preference for the carbon to reside 

in the 8a Wyckoff site compared to the 16c site that would be required to form Ni3Mo3C. 

The 8a Wyckoff site is a more perfect octahedral site, which could explain this apparent 

preference. 

 
Figure 56: XRD pattern of nickel molybdenum carbide (Ni6Mo6C). Reflections marked:  

Ni6Mo6C (JCPDS file number 03-065-4436),  Ni2Mo3N (JCPDS file number 01-072-

6569) and ▲ Mo2C (JCPDS file number 00-001-1188). 

Raman analysis was performed to investigate if there was oxide species on the surface of 

the material. The Raman spectrum of ‘Ni6Mo6C’ has bands at 937, 885, 813 and 704 cm-1, 

as seen in Figure 57, that match well with those reported in the literature for β-NiMoO4 

[109] [110]. This result suggests that an oxide layer was present on the surface of the 

20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

In
te

ns
ity

 (a
.u

.)

2q (o)

 
 Ni6Mo6C
 Mo2C
 Ni2Mo3N



 104 

carbide. The bands at 937, 885 and 813 cm-1 are attributed in the literature to symmetric 

and asymmetric stretching modes of the Mo-O bond [88] [91]. The band at 704 cm-1 was 

assigned to the symmetric stretch of Ni–O–Mo [67]. The bands at 477 cm-1 and 126 cm-1 

could be due to α-MoO3 [115], which would result from the passivation layer on Mo2C. To 

the author’s knowledge, there are no Raman spectra for Ni6Mo6C reported in the literature. 

There were no bands associated with graphitic and other forms of extra-lattice carbon seen 

in the Raman spectrum, suggesting that the carbon is incorporated into the lattice of the 

carbide. 

 
Figure 57: Raman spectrum of nickel molybdenum carbide (Ni6Mo6C). 

SEM images of the mixed phase ‘Ni6Mo6C’ are presented in Figure 58 illustrate that the 

material was porous with pores ranging in diameter from approximately 1 – 10 µm. The 

EDX data in Table 16 gives the element weight percentages for ‘Ni6Mo6C’. The 

stoichiometric percentage of nickel, molybdenum and carbon in Ni6Mo6C is 37.47 wt. %, 

61.25 wt. % and 1.28 wt. %, respectively. From the table, it can be seen that the carbon 

weight percentage was much higher than predicted. Correspondingly, the nickel and 

molybdenum percentages were lower. This could suggest that there is a large amount of 

carbon laydown on the material. However, the Raman spectrum showed no evidence of 

carbon laydown and the XRD pattern did not contain any peaks associated with carbon. It 

must be noted that the samples are placed on carbon stubs for SEM and EDX analysis and 
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therefore, this may have contributed to the carbon percentage. From the XRD pattern, it 

was shown that the material consisted of Ni6Mo6C, Mo2C and Ni2Mo3N. However, 

nitrogen was not detected for the material by EDX suggesting that the amount was low. 

The EDX data appears to support the assignment of the composition as Ni6Mo6C. 

 
Figure 58: SEM images of nickel molybdenum carbide (Ni6Mo6C). a) 1000x magnification, 

b) 2000x magnification, c) 4000x magnification and d) 5000x magnification. 

Area Ni weight (%) Mo weight (%) C weight (%) 
1 15 13 72 
2 13 23 63 
3 18 6 76 
4 13 22 65 
5 11 23 66 
6 13 20 67 
7 14 16 69 
8 11 12 77 
9 14 19 67 

10 11 17 71 
11 13 16 71 

Average 13 17 69 
Table 16: EDX values for nickel molybdenum carbide (Ni6Mo6C) prepared under 3:1 H2/Ar 

at 700oC. 
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3.2.2.2.1 Ammonia Synthesis at 400oC for Ni6Mo6C 

‘Ni6Mo6C’ was tested for ammonia synthesis activity at 400oC and atmospheric pressure 

under 3:1 H2/N2 atmosphere for 8.5 hours. This was performed to establish the influence 

the phase composition had upon ammonia synthesis activity. The conductivity only 

decreased by a small amount over the time the material was tested as observed in Figure 

59. For the first 150 minutes, there is a small decrease in conductivity. However, after this 

time, the conductivity began to level off and therefore, ammonia was no longer being 

produced. Whilst there seems to be Ni2Mo3N contained within this material, which would 

be expected to be active, the XRD pattern suggests it to be at only a very low level.  

The behaviour of ‘Ni6Mo6C’ was similar to the performance of Co6Mo6C tested at 500oC 

for ammonia synthesis [54]. Co6Mo6C was found to be inactive at 500oC, even upon 

extended reaction times of 48 hours. It is interesting to note that Ni2Mo3N and 

Ni2Mo3CxNy are active for ammonia synthesis at 400oC, which implies that the relatively 

small phase fraction of Ni2Mo3N present in the current material does not significantly 

contribute activity under these conditions. This suggests that the carbide is relatively stable 

in comparison to the carbonitride and nitride. There may be a relationship between the 

ammonia synthesis activity and structure of these materials. Both Ni2Mo3N and 

Ni2Mo3CxNy have the filled β-Mn structure whereas Ni6Mo6C has the η-carbide structure, 

although the difference in interstitial element may also affect the ammonia synthesis 

activity.  

 
Figure 59: Conductivity profile for ‘Ni6Mo6C’ reacted with 3:1 H2/N2 at 400oC for 8.5 hours. 
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The XRD patterns presented in Figure 60 show that the η-carbide structure of Ni6Mo6C 

was maintained after the reaction. There does not appear to be any change in phase 

compared to pre-reaction suggesting that the material does not undergo nitridation during 

the reaction. 

 
Figure 60: Comparison of XRD patterns for ‘Ni6Mo6C’ pre- and post-reaction with 3:1 

H2/N2 at 400oC for 8.5 hours. Reflections marked:  Ni6Mo6C (JCPDS file number 03-065-

4436),  Ni2Mo3N (JCPDS file number 01-072-6569) and ▲ Mo2C (JCPDS file number 

00-001-1188). 

Figure 61 confirms that the peaks due to Ni6Mo6C do not shift in position compared to the 

pre-reaction material. These results may suggest that the inactivity of ‘Ni6Mo6C’ is due to 

the material not undergoing nitridation. It has been suggested that Co3Mo3C does not 

become active for ammonia synthesis until nitrogen is incorporated into the lattice [54]. It 

was observed that Co3Mo3C was inactive at 400oC and became active when the 

temperature was increased to 500oC. The higher reaction temperature may be required in 

order to incorporate nitrogen into the material.  

The elemental analysis demonstrates that the percentage of carbon present in the material 

post-reaction has slightly increased (C: 1.23 wt. %, H: 0.00 wt. % and N: 0.48 wt. %) 

compared to pre-reaction (1.18 wt. %). This increase may be due to the nitrogen 
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percentage slightly decreasing or the error within the CHN analysis, which is ± 5%. The 

expected stoichiometric percentage of carbon in Ni6Mo6C is 1.28 wt. % and therefore, the 

elemental analysis for carbon agrees very well with this value. However, the Mo2C 

impurity will contribute towards this value. 

 
Figure 61: Comparison of XRD patterns for ‘Ni6Mo6C’ pre- (black) and post-reaction (red) 

with 3:1 H2/N2 at 400oC for 8.5 hours, highlighting the 2θ values for peaks due only to 

Ni6Mo6C. 

For the post-reaction material, there was one very weak band at 2332 cm-1 relating to the 

2D band for carbon, as shown in Figure 62. The 2D band is the second order of the D band 

and involves a two phonon process [111]. The 2D band can be used to determine the 

graphene thickness from its intensity and shape. When successive layers of graphene are 

added, the 2D band separates into overlapping modes due to the decrease in symmetry. 

The unique shape differences of this band can give information on the number of layers of 

graphene. Therefore, the low intensity of this band suggests that there were few layers of 

carbon present in this material.  

There is also a broad band between 550 and 1050 cm-1 that could be assigned to NiMoO4. 

However, there were no well-defined peaks, which suggests that there was only a very 
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small passivation layer on the material post reaction. This result suggests that the oxide 

layer is removed during the reaction. 

 

 
Figure 62: Raman spectrum of ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 400oC for 8.5 

hours. 

SEM analysis was performed to see if there was any change in the morphology of the 

material during the ammonia synthesis reaction. Representative SEM images of post 400oC 

reaction ‘Ni6Mo6C’ are displayed in Figure 63. The material is porous and retains the 

morphology of the pre-reaction material. The stoichiometric percentage of nickel, 

molybdenum and carbon in Ni6Mo6C is 37.47 wt. %, 61.25 wt. % and 1.28 wt. %, 

respectively. The EDX data displayed in Table 17 shows that the carbon and nickel weight 

percentages were higher compared to pre-reaction and that the molybdenum percentage 

was lower. However, it must be noted that EDX is a semi-quantitative technique and 

therefore, care needs to be taken when considering statistical relevance etc. The Raman 

spectrum showed a small amount of carbon laydown. However, the amount of carbon 

detected by EDX was much greater and therefore, the carbon stub on which the material 

was placed must have contributed to this value. Nitrogen was not detected by EDX 

suggesting that the contribution of nitrogen from Ni2Mo3N must be small.  

500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180
In

te
ns

ity
 (a

.u
.)

Raman Shift (cm-1)

23
32



 110 

 

 
Figure 63: SEM images of ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 400oC for 8.5 hours. 

a) 2000x magnification and b) 5000x magnification. 

Area Ni weight (%) Mo weight (%) C weight (%) 
1 13 13 74 
2 14 12 74 
3 16 12 72 
4 16 5 80 

Average 15 10 75 
Table 17: EDX values for ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 400oC for 8.5 hours. 

3.2.2.2.2 Ammonia Synthesis at 700oC for Ni6Mo6C 

As the material was inactive for ammonia synthesis at 400oC, the temperature was 

increased to 700oC, despite ammonia synthesis being thermodynamically unfavourable at 

this temperature. The conductivity profile for the material at 700oC is provided in Figure 

64. 

The ammonia synthesis rate for the material at 700oC was calculated to be 152 ± 89 µmol 

h-1 g-1. For the first 20 minutes, there was a lag period before the material became active. 

The lag period could possibly be explained by the incorporation of nitrogen into the lattice 

and therefore, the transition of the material from the carbide to the nitride or due to surface 

segregation/restructuring. 
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Figure 64: Conductivity profile for ‘Ni6Mo6C’ reacted with 3:1 H2/N2 at 700oC for 8 hours. 

The XRD pattern of the material post 700oC reaction shows that Ni2Mo3N and Mo0.09Ni0.91 

are the only phases present, as observed in Figure 65. This suggests that Ni6Mo6C has 

undergone nitridation during the reaction and could explain the reason for the material 

becoming active. The formation of either nickel or a nickel molybdenum alloy, alongside 

Ni2Mo3N, have been reported in the literature [36] [98]. Rietveld refinement by Conway 

and Prior [60] confirms that the structure is Ni2Mo3N and not Ni3Mo3N. The nitride has 

previously been reported to be active for ammonia synthesis [39] [94] [36]. Therefore, it is 

of interest to know whether the material was active due to the incorporation of nitrogen 

into the lattice to form the nitride or if nitrogen was present because the carbide was active 

thereby producing NH3, which further nitrided the sample. 

Co6Mo6C has been shown to form Co3Mo3N when reacted under 3:1 H2/N2 at 600oC [55]. 

Co6Mo6N was not formed as an intermediate phase but instead only Co6Mo6Cx and 

Co3Mo3Nx phases were observed during the transformation. 

Almost all of the carbon had been removed from the material during the reaction as seen 

from the elemental analysis (C: 0.08 wt. %, H: 0.02 wt. % and N: 2.16 wt. %). The 

nitrogen content has also significantly increased. This further confirms that a nitride phase 

has been formed during the reaction. The expected stoichiometric percentage of nitrogen in 

Ni2Mo3N, taking into account the presence of additional nickel, is 2.93 wt. %. The 

obtained value of 2.16 wt. % for the material agrees quite well with this expected value. 
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This replacement of carbon with nitrogen contrasts with the observation for Co6Mo6C, 

which showed no incorporation of nitrogen [54]. However, the material was not tested at a 

temperature of 700oC and therefore, the higher temperature may be required for the 

replacement to occur in that case. 

 
Figure 65: XRD pattern of ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 700oC for 8 hours. 

Reflections marked:  Ni2Mo3N (JCPDS file number 01-072-6569) and  Mo0.09Ni0.91 

(JCPDS file number 01-071-9766). 

The Raman spectrum of the post-reaction material appears to be similar to the one for the 

pre-reaction sample, as shown in Figure 66. This suggests that there is a passivating oxide 

layer on the surface of the material. The Raman bands at 936, 887, 816 and 704 cm-1 can 

be attributed to β-NiMoO4. Bands due to α-MoO3 are also observed at 478 and 126 cm-1. 

Another area of the sample was examined and there appeared to be no well-defined bands 

as was seen for the sample post 400oC reaction. 
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Figure 66: Raman spectra of ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 700oC for 8 hours. 

The spectra were taken at two different areas with a 100% filter. 

As there was a change in phase, as evidenced by the XRD pattern, SEM analysis was 

performed on the material to see if there was also a change in the morphology. The SEM 

images of ‘Ni6Mo6C’ post 700oC reaction in Figure 67 show that the morphology has been 

retained compared to the pre-reaction material. This suggests that the nitridation process is 

pseudomorphic. The stoichiometric percentage of nickel, molybdenum and nitrogen in 

Ni2Mo3N is 28.00 wt. %, 68.66 wt. % and 3.34 wt. %, respectively. The EDX data 

presented in Table 18 shows that nitrogen was detected, which was not observed in the 

pre-reaction material. This further indicates that the carbide had transformed to Ni2Mo3N 

during the reaction. A large percentage of carbon was detected for this material but this 

may be due to the carbon stub the sample was placed on for EDX analysis. 
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Figure 67: SEM images of ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 700oC for 8 hours. a) 

1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x 

magnification. 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 31 50 13 6 
2 27 47 15 7 
3 28 48 17 7 
4 18 20 63 0 
5 24 15 61 0 
6 19 12 69 0 
7 16 23 61 0 
8 14 18 69 0 
9 18 23 60 0 
10 18 23 60 0 
11 14 7 79 0 
12 16 23 61 0 
13 25 48 19 8 
14 19 41 29 11 
15 34 48 15 4 

Average 21 30 46 3 
Table 18: EDX values for ‘Ni6Mo6C’ post-reaction with 3:1 H2/N2 at 700oC for 8 hours. 
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The formation of the nitride from Ni6Mo6C was investigated by thermogravimetric 

analysis of the pre-reaction material under 5% H2/N2. Mass spectrometry was employed to 

determine the product formed when Ni6Mo6C was nitrided to Ni2Mo3N and Mo0.09Ni0.91. 

The TGA curve and first derivative weight change of ‘Ni6Mo6C’ is presented in Figure 68. 

The material was heated from room temperature to 1000oC at a ramp rate of 10oC/min 

under 5% H2/N2. The first feature of the TGA curve is a weight loss of approximately 

0.4% at 358oC. Whilst methane may be the expected product, the mass spectral ion curves 

of 2 and 44 m/z show peaks at this temperature, as seen in Figure 69 and Figure 70, 

suggesting the loss of H2 and either CO2 or C3H8. The oxygen present in any CO2 produced 

could arise from the oxygen surface layer on the material and therefore, this weight loss 

would correspond to the removal of the passivation layer. The weight loss could also be 

due to the reaction of lattice carbon to form propane. The loss of carbon from Ni6Mo6C 

would result in a weight loss of 1.28%. However, only a weight loss of 0.4% was 

observed, suggesting that only a small amount of carbon was being removed from the 

material. Therefore, this needs to be investigated further.  

The second feature of the TGA curve is a weight gain of approximately 0.6% at 777oC. It 

is observed that after TGA, the final material has gained a small amount of weight. It is not 

certain what the weight gain is due to but the ion curve of H2 (m/z = 2) shows a peak at this 

temperature. The mass spectra of 14, 15, 16, 17, 18, 28, 30, 32 and 46 m/z were 

investigated but they did not show any features. Assuming the following equation to be 

true, the formation of Ni2Mo3N and Ni from Ni6Mo6C would result in a weight gain of 

1.70%. This does not take into account the presence of Ni2Mo3N and Mo2C in the starting 

material. The total weight gain at 906oC was observed to be only 0.1%.  

Ni6Mo6C + N2 → 2 Ni2Mo3N + 2 Ni + C 
Equation 3: Equation for the formation of Ni2Mo3N from Ni6Mo6C 
The mass began to decrease again after 906oC and resulted in a 0.2% weight loss. This 

reduction in mass could be due to the loss of nitrogen from the material and therefore, the 

reduction of the material to nickel and molybdenum metal. The total loss of nitrogen from 

the material would equate to a weight loss of 2.93%. This would suggest that only a small 

percentage of nitrogen had been removed from the material.   
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Figure 68: TGA and derivative weight profile of ‘Ni6Mo6C’ under 5%H2/N2 in the range 

from room temperature to 1000oC. 

 

 
Figure 69: The mass spectrum ion curve for 2 m/z and the derivative weight profile. 
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Figure 70: The mass spectrum ion curve for 44 m/z and the derivative weight profile. 

Attempting to prepare the Ni3Mo3C phase has proved to be difficult. The oxide is seen to 

decompose to Mo2C and nickel metal at temperatures above 600oC when carburised with 

20% CH4/H2 as seen in section 3.2.1.3. However, Ni6Mo6C has been easier to synthesise 

by using citric acid as the source of carbon. ‘Ni6Mo6C’ was active for ammonia synthesis 

at 700oC and was seen to undergo nitridation to form Ni2Mo3N and Mo0.09Ni0.91 during the 

reaction. It is therefore proposed that this transformation of the carbide is required for the 

material to be active. However, further work needs to be performed to understand if the 

carbide or the nitrided material is the active phase for the ammonia synthesis activity. 

Testing the Ni3Mo3C phase for ammonia synthesis may provide an explanation and also 

the preference of the carbide to form Ni2Mo3N instead of Ni3Mo3N when it is nitrided. 

3.2.3 Nickel Molybdenum Carbide (Ni3Mo3C) 

3.2.3.1 Preparation with Activated Charcoal 

Regmi and Leonard have prepared Ni3Mo3C by mixing nickel molybdenum oxide with 

decolourising carbon and reacting the material at high temperature [48]. Therefore, this 

method was replicated in order to form Ni3Mo3C. Part of the work outlined in this section 

was undertaken in collaboration with Shane Mckenna, who was a final year project student 

that helped with the preparation of the material. To try and reduce the amount of carbon 

lost as methane during the preparation, hydrogen was removed from the gas mixture. 

Excess activated charcoal was mixed with the oxide precursor (Ni3Mo3Ox) and then, this 

was heated to 1000oC under argon. Contrary to the literature, Ni3Mo3C has not formed 
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under these conditions in the present study as shown by the XRD pattern in Figure 71. The 

material has instead decomposed to Mo2C and Mo0.09Ni0.91, with small amounts of 

Ni6Mo6C present. Regmi and Leonard suggest that the Ni3Mo3C is formed at a temperature 

of 1030oC using this method [48]. From XRD patterns, the authors were able to show that 

Ni6Mo6C forms at a lower temperature of 975oC. During the transformation of the carbide 

from Ni6Mo6C to Ni3Mo3C, the material apparently decomposed into a mixture of MoNi4 

and a Mo-Ni phase with the W type structure at 990oC. The alloys then react with carbon 

to form Ni3Mo3C at 1030 °C. However, these phases are different to the ones reported here 

and therefore, it is concluded that this material has not followed this transformation 

pathway. 

 
Figure 71: XRD pattern of Ni3Mo3Ox + C post-preparation at 1000oC under argon. 

Reflections marked:  Ni6Mo6C (JCPDS file number 03-065-4436), ▲ Mo2C (JCPDS file 

number 00-001-1188) and  Mo0.09Ni0.91 (JCPDS file number 01-071-9766). 

The elemental analysis showed that the starting oxide precursor had 23.74 wt. % carbon in 

the material after activated carbon had been added (C: 23.74 wt. %, H: 3.06 wt. %, N: 5.11 

wt. %). A high percentage of nitrogen was also present, which could result from the 

starting nickel and molybdenum materials used in the Pechini method. The amount of 

carbon in the material was higher than the expected amount from using a stoichiometric 
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ratio of oxide precursor to carbon. However, this excess carbon can be accounted for, as it 

originates from the citric acid used in the preparation method. Both the carbon and 

nitrogen percentage decreased after treatment at 1000oC under Ar (C: 14.57 wt. %, H: 0.07 

wt. %, N: 1.71 wt. %). The carbon percentage was greater than the expected stoichiometric 

percentage for Mo2C (5.89 wt. %) and Ni6Mo6C (1.28 wt. %), which are phases present in 

the material according to the XRD pattern. Therefore, this suggests that there may be 

carbon laydown on the material. A peak is observed at approximately 26o 2θ, which is 

expected to relate to carbon and thus confirms the presence of deposited carbon. 

As the Ni3Mo3C phase was not formed by this method, even with a large percentage of 

carbon remaining after the preparation, it suggests that hydrogen was required in the gas 

feed to form the targeted phase.  

Raman analysis was conducted for this material to investigate if there was carbon laydown 

due to the activated carbon and if there was any surface oxide species. The Raman spectra 

taken at two different areas of the material exhibit different spectra, as observed in Figure 

72. In the first area, the Raman spectrum shows the presence of carbon with the D band at 

1338 cm-1, the G band at 1570 cm-1 and the 2D band observed at 2681 cm-1. There are also 

bands present at approximately 2450 cm-1 and 2950 cm-1 attributed to D+D’’ and D+G 

respectively [116]. The intensity of the G band is related to the number of layers of 

graphene present. As the number of layers of graphene increases, the intensity of the band 

increases, and therefore this can be used to determine the thickness of graphene. The 2D 

band can also be used to determine the graphene thickness from its intensity and shape. 

The unique shape differences of this band can give information on the number of layers of 

graphene. Furthermore, the intensity ratio of the 2D and G bands, I2D/IG, for graphene 

without defects is two. As the intensity of the 2D band in this sample is less than half of 

the G band this suggests that graphene is not present in the material and instead consists of 

graphite. Although, the symmetrical shape of the 2D band suggests that the material is 

composed of graphene, it must be noted that turbostratic graphite has a similar shaped band 

[117]. Turbostratic carbon has multiple graphene layers that are rotated and thus reduced 

orbital hybridisation. 

Additional Raman bands associated with an oxide phase were detected at 934 and 887 cm-1 

and could be due to NiMoO4. When the filter size was increased, the bands due to carbon 

significantly decreased and the bands due to the oxide became more prominent. This 

suggests that the laser had removed the graphite from the material. 
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In the second area examined, the bands due to carbon were not detected. Instead, bands 

due to β-NiMoO4 were observed at 940, 884, 811 cm-1. Bands due to α-MoO3 are also 

observed at 481, 287, 218, 192 and 148 cm-1 [118].  

The XRD pattern demonstrated that the material had decomposed to Mo2C and 

Mo0.09Ni0.91 and only a small intensity was observed for Ni6Mo6C. However, the Raman 

spectra showed that there were bands due to β-NiMoO4. These bands could be related to 

the nickel molybdenum alloy or the Ni6Mo6C phase. The large amount of carbon laydown 

observed from the Raman bands suggests that the carbon from the citric acid is relatively 

unreactive under the argon atmosphere. Therefore, hydrogen is required in the feed stream 

in order to carburise the material.  

 
Figure 72: Raman spectra of Mo2C + Mo0.09Ni0.91 prepared at 1000oC under Ar. The 

spectra were taken at two different areas with a 25% filter. 

The SEM images displayed in Figure 73 show that the morphology of this material is 

similar to the morphology observed for the Mo2C + Ni materials described in section 

3.2.1.3.1 (Figure 29). The EDX results in Table 19 show that there was a large percentage 

of carbon present in this material, which agrees with the carbon laydown observed in the 

Raman spectrum. The stoichiometric percentage of nickel, molybdenum and nitrogen for 

Ni + Mo2C (assuming a Ni:Mo ratio of 1:1) is 36.54 wt. %, 59.72 wt. % and 3.74 wt. %, 
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respectively. However, the stoichiometric ratio of Ni to Mo from the EDX analysis does 

not appear to be as expected. Instead, there appears to be more molybdenum present in the 

material.  

 

Figure 73: SEM images of Ni3Mo3Ox + C post-preparation at 1000oC under argon. a) 

1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 5000x 

magnification. 

 
Area Ni weight (%) Mo weight (%) C weight (%) 

1 8 11 81 
2 8 15 77 
3 8 14 78 
4 10 12 78 
5 3 21 76 
6 3 17 80 
7 9 15 76 
8 8 10 82 
9 8 14 78 

Average 7 14 78 
Table 19: EDX values for Ni3Mo3Ox + C post-preparation at 1000oC under argon. 
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3.2.3.1.1 Ammonia Synthesis at 700oC for Mo2C and Mo0.09Ni0.91 

The conductivity profile of the material at 700oC is presented in Figure 74. The ammonia 

synthesis rate for the material at 700oC was 252 µmol h-1 g-1. This value is very similar to 

Ni6Mo6C. There was a lag period of 10 minutes at the start before the material became 

active. This may be due to the transition of the material to form the nitride as was observed 

for Ni6Mo6C. The activity of this material can be explained by the XRD pattern and 

elemental analysis. 

 
Figure 74: Conductivity profile for Mo2C + Mo0.09Ni0.91 reacted with 3:1 H2/N2 at 700oC for 8 

hours. 

The XRD pattern of the material in Figure 75 shows that Ni2Mo3N had indeed been formed 

during the reaction. This suggests that the Mo2C and nickel phases combined at this 

temperature to form the nitride. Nickel metal and Mo2C were also still present in the 

sample, however, the intensity of the reflections associated with them had decreased 

compared to pre-reaction. 

A large percentage of the carbon has been removed from the material during the reaction 

as can be seen from the elemental analysis (C: 0.95 wt. %, H: 0.00 wt. %, N: 1.97 wt. %). 

This result confirms that the material underwent nitridation as observed by the XRD 

pattern. The remaining carbon was most likely due to the Mo2C phase present in the 

material. The nitrogen content had increased a small amount compared to pre-reaction 

(1.71 wt. %). The expected stoichiometric percentage of nitrogen in Ni2Mo3N, taking into 
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account the presence of Ni and Mo2C, is 2.05 wt. %. The obtained value of 1.97 wt. % for 

the material agrees quite well with this expected value. 

The conversion of the material to form the nitride may explain the similar activities of the 

Ni6Mo6C and the mixed Mo2C and Mo0.09Ni0.91. Therefore, the nitride may be responsible 

for the activity of these materials and not the carbide. As mentioned previously, the 

induction period may be due to the materials undergoing nitridation and once a sufficient 

amount of nitrogen is incorporated into the lattice, the material becomes active. 

 

 
Figure 75: XRD pattern of Mo2C + Mo0.09Ni0.91 post-reaction with 3:1 H2/N2 at 700oC for 8 

hours. Reflections marked:  Ni2Mo3N (JCPDS file number 01-072-6569),  Mo0.09Ni0.91 

(JCPDS file number 01-071-9766) and ▲ Mo2C (JCPDS file number 00-001-1188). 

The Raman spectrum is very similar to that for β-NiMoO4, as seen in Figure 76, which 

most likely relates to a passivation layer on the surface of the sample. The Raman bands at 

937, 888, 811, 345 and 284 cm-1 can be accredited to β-NiMoO4 [96] [97]. There were no 

bands observed for carbon in the areas that were investigated. This agrees with the 

elemental analysis that showed almost all the of the carbon had been removed from the 

material. 
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Figure 76: Raman spectrum of Mo2C + Mo0.09Ni0.91 post-reaction with 3:1 H2/N2 at 700oC 

for 8 hours. 

As the material changed phase during the reaction, SEM analysis was performed to see if 

this resulted in a change in the morphology. Representative SEM images for the material 

post-reaction are displayed in Figure 77. The morphology of this material was different to 

the Ni2Mo3N discussed in section 3.2.1.2 and the pre-reaction material. The material 

consists of fine needles and possesses porous surfaces. The difference in morphology from 

the pre-reaction material may be due to the formation of Ni2Mo3N. The stoichiometric 

percentage of nickel, molybdenum and nitrogen for Ni2Mo3N is 28.00 wt. %, 68.66 wt. % 

and 3.34 wt. % respectively. However, the EDX results in Table 20 show that the 

stoichiometric ratio of Ni to Mo from the EDX analysis is not the expected mass ratio as 

the amount of molybdenum is lower than expected. However, it must be noted that the 

EDX measurement is semi-quantitative and therefore, care must be taken when comparing 

results. Furthermore, a large percentage of carbon was detected in this material, which was 

difficult to determine due to the samples being placed on carbon stubs.  
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Figure 77: SEM images of Mo2C + Mo0.09Ni0.91 post-reaction with 3:1 H2/N2 at 700oC for 8 

hours. a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 

6000x magnification. 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 30 45 21 4 
2 36 50 9 4 
3 34 38 28 0 
4 22 32 46 0 
5 27 42 27 3 
6 28 46 23 3 
7 30 53 11 6 
8 22 35 43 0 
9 21 32 47 0 

10 29 53 13 5 
Average 28 42 27 3 

Table 20: EDX values for Mo2C + Mo0.09Ni0.91 post-reaction with 3:1 H2/N2 at 700oC for 8 

hours. 

3.2.3.2 Preparation of Ni6Mo6C by Carburisation  

The apparent difficulty in forming Ni3Mo3C is interesting considering the relative ease in 

forming Co3Mo3C. Co3Mo3C can be prepared from its nitride analogue at 700oC under 

20% CH4/H2 [54]. Interestingly, Co6Mo6C can be prepared via reduction of the Co3Mo3C 

under Ar/H2 at a higher temperature of 900oC for 5 hours. It has also proved possible to 

form Co3Mo3C from Co6Mo6C by reacting it with 75% CH4/N2 at 800oC for 8 hours [119]. 
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However, the material contained impurities of β-Mo2C and graphite. The authors noted 

that the carbon located in the 0 0 0 (8a) site moved to the 1/8 1/8 1/8 (16c) sites and thus 

formed the Co3Mo3C phase. It has also been shown that transitioning from low to high 

nitrogen content Co6Mo6N and Co3Mo3N was possible by using a N2/H2 gas mixture at 

400oC and N2 alone at 700oC [50] [120]. From this work, it appears that the Ni6Mo6C can 

be formed under Ar or Ar/H2. The material is more phase pure when prepared with Ar/H2, 

however, it must be noted that the temperature was lower under these conditions. The 

higher temperature of 1000oC used when applying Ar may have resulted in the 

decomposition of Ni6Mo6C to Mo2C and Mo0.09Ni0.91. However, from the characterisation 

results, it appears that the carbon was not incorporated into the lattice but instead resulted 

in carbon laydown. Following on from these reports in the literature, attempts were made 

to prepare Ni3Mo3C from Ni6Mo6C. The Ni6Mo6C prepared with Ar/H2 at 700oC was used 

as the precursor. ‘Ni6Mo6C’ was carburised in 20% CH4/H2 at 800oC for 6 hours to 

replicate the conditions used to form Co3Mo3C from Co6Mo6C. 

The XRD pattern in Figure 78 shows that the Ni6Mo6C decomposed to give a mixture of 

molybdenum carbides and nickel metal. There was also graphitic carbon present in the 

material. Therefore, it appears that the carburisation temperature needs to be lowered to 

form the Ni3Mo3C phase. Elemental analysis of the material post carburisation shows that 

there was a large percentage of carbon present, which was most likely due to the graphitic 

carbon (C: 23.90 wt. %, H: 0.00 wt. %, N: 0.15 wt. %). 
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Figure 78: XRD pattern of ‘Ni6Mo6C’ post-preparation at 800oC under 20% CH4/H2. 

Reflections marked: ▲ Mo2C (JCPDS file number 00-001-1188),  γ-MoC (JCPDS file 

number 03-065-6664),  Ni (JCPDS file number 01-089-7128) and  C (JCPDS file 

number 01-071-4630). 
As the material decomposed at the high temperature, the carburisation temperature was 

lowered to 560oC. ‘Ni6Mo6C’ was carburised in 20% CH4/H2 for 6 hours. The XRD 

pattern of the material shows that Ni3Mo3C has been formed at this temperature along with 

impurities of Mo2C and Ni2Mo3N. Ni2Mo3N was observed in the starting Ni6Mo6C 

precursor and the nitrogen most likely resulted from the Ni(NO3) 2·6H2O and 

(NH4)6Mo7O24·4H2O used to prepare the oxide. However, the peaks associated with 

Ni2Mo3N appear to have shifted to lower 2θ values as seen in Figure 79, which suggests 

that the nitride has undergone carburisation to form Ni2Mo3CxNy. 

The expected stoichiometric percentage of carbon in Ni3Mo3C is 2.52% and in Ni6Mo6C is 

1.28%. The elemental analysis of the material post carburisation was as follows, C: 1.84 

wt. %, H: 0.00 wt. % and N: 0.42 wt. %. The carbon percentage had increased compared to 

pre-reaction (1.18 wt. %). This could be due to both Ni6Mo6C undergoing carburisation to 

Ni3Mo3C and the nitride forming the carbonitride. The nitrogen percentage had decreased 

post-reaction, which suggests that some nitrogen had been lost in the formation of the 

carbonitride. 
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Figure 79: XRD pattern of ‘Ni3Mo3C’ prepared at 560oC under 20% CH4/H2. Reflections 

marked:  Ni3Mo3C (JCPDS file number 01-089-4883), ▲ Mo2C (JCPDS file number 00-

001-1188),  Mo0.09Ni0.91 (JCPDS file number 01-071-9766) and  Ni2Mo3N (JCPDS file 

number 01-072-6569). 

The Raman spectra were taken at two areas of the material and display different spectra, as 

observed in Figure 80. In the first area, the Raman spectrum shows the presence of carbon 

with weak bands at 1557 cm-1 and 2332 cm-1 corresponding to the G band and the 2D band, 

respectively. As the intensities of the G band and 2D band were low, this suggests that 

there was not much carbon laydown on this material.  

In the second area inspected, the bands due to carbon were more prominent with bands at 

1350, 1577 and 2332 cm-1 relating to the D band, G band and 2D band, respectively. Bands 

due to β-NiMoO4 were also observed at 941, 891, 820 cm-1. Bands due to α-MoO3 were 

also detected at 486, 291, 222, 197 and 143 cm-1 [118]. This result is consistent with the 

formation of a passivation layer on the material.  

The XRD pattern showed that the material consisted of Ni3Mo3C, Ni2Mo3N, Mo2C and 

Mo0.09Ni0.91. The Raman bands due to β-NiMoO4 might result from the passivation layer 

on the Ni3Mo3C and Ni2Mo3N and the bands due to α-MoO3 might result from the surface 

20 40 60 80
-200

0

200

400

600

800

1000

1200

1400

1600

1800

In
te

ns
ity

 (a
.u

.)

2q (o)

 
 Ni3Mo3C
 Mo2C
 Ni2Mo3N
 Mo0.09Ni0.91



 129 

oxygen layer on Mo2C. The carbon laydown observed from the Raman spectra contrasts 

somewhat with the elemental analysis that showed only 1.84 wt. % of carbon was present 

in the material. 

 

 
Figure 80: Raman spectra of ‘Ni3Mo3C’ prepared at 560oC with 20% CH4/H2. The spectra 

were taken at two areas with a 50% filter. 

SEM was used to investigate the effect the carburisation process had on the morphology of 

the material. Figure 81 exhibits representative SEM images for ‘Ni3Mo3C’. The material 

has a similar morphology to the ‘Ni6Mo6C’ precursor and suggests that the carburisation 

process was pseudomorphic. The sample was porous with pores ranging in diameter from 

approximately 1 – 10 µm.  

The EDX analysis in Table 21 gives the element weight percentages for ‘Ni3Mo3C’. The 

stoichiometric percentage of nickel, molybdenum and carbon in Ni3Mo3C is 37.00 wt. %, 

60.48 wt. % and 2.52 wt. %, respectively. From the table, it can be seen that the carbon 

weight percentage was higher than predicted and nitrogen was present in the material. 

Furthermore, the molybdenum percentage was lower. This result suggests that there was a 

large amount of carbon laydown on the material, although obtaining accurate carbon 

percentages was difficult due to the use of carbon stubs. In addition, EDX measurements 
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are limiting for light elements such as carbon and nitrogen. The Raman spectra showed 

only weak bands associated with carbon laydown. From the XRD pattern, it was shown 

that the material consisted of Ni2Mo3N and this therefore, accounts for the presence of 

nitrogen observed by EDX. The EDX data shows that the mass ratio of Ni to Mo was not 

as predicted as the percentage of molybdenum was lower than expected. However, some 

areas contained a lot less molybdenum than others as observed in Table 21.  

 
Figure 81: SEM images of ‘Ni3Mo3C’ prepared at 560oC with 20% CH4/H2. a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

The element map in Figure 82 shows that molybdenum was evenly distributed across the 

sample. However, there were areas that contained more nickel and carbon, suggesting that 

there was phase separation over the sample. 
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Figure 82: Element Map for ‘Ni3Mo3C’. Elements: Ni (red), Mo (green) and C (blue). 

 
Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 

1 49 27 24 0 
2 48 11 41 0 
3 72 23 5 0 
4 41 46 13 0 
5 33 43 24 0 
6 29 51 19 2 
7 28 49 23 0 
8 28 49 19 5 
9 45 3 52 0 

10 45 3 52 0 
11 28 49 20 3 
12 29 49 19 3 
13 27 50 19 4 

Average 39 35 25 1 
Table 21: EDX values for ‘Ni3Mo3C’ prepared at 560oC with 20% CH4/H2. 

3.2.3.2.1 Ammonia Synthesis at 500oC for Ni3Mo3C 

‘Ni3Mo3C’ was tested for ammonia synthesis at 500oC under a 3:1 H2/N2 atmosphere. The 

activity testing of ‘Ni3Mo3C’ may give an understanding on the role structure and 

composition play in ammonia synthesis activity. Furthermore, if Ni3Mo3C undergoes 

nitridation during the reaction, as observed in the case of Co3Mo3C, it might prove possible 

to form Ni3Mo3N. The steady state ammonia synthesis rate of ‘Ni3Mo3C’ at 500oC was 

calculated to be 41 µmol h-1 g-1. The ammonia synthesis rate of Ni2Mo3CxNy at 500oC was 

619 ± 14 µmol h-1 g-1 and for Co3Mo3C was 461 ± 17 µmolNH3 h-1 g-1 [54]. Therefore, 

‘Ni3Mo3C’ had a much lower activity. The conductivity of the sulfuric acid solution 

through which the reactor effluent was flowed appeared to decrease at a greater rate for the 

first 60 minutes before it reached steady state, as observed in Figure 83. This is the 

opposite of the behaviour observed for Ni2Mo3CxNy and Co3Mo3C, which initially had an 

induction period before the materials became active.  
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Figure 83: Conductivity profile for Ni3Mo3C + Ni2Mo3CxNy reacted with 3:1 H2/N2 at 500oC 

for 8 hours. 

The steady state activity of the material after the initial 60 minutes is shown in Figure 84. 

 
Figure 84: Conductivity profile for Ni3Mo3C + Ni2Mo3CxNy reacted with 3:1 H2/N2 at 500oC 

for 8 hours, highlighting the linear part of the graph used for calculating the rate. 
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The XRD pattern of the material post-reaction shows that the Ni3Mo3C phase had 

apparently been maintained during the reaction, as shown in Figure 85.  

 
Figure 85: XRD pattern of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 500oC for 

8 hours. Reflections marked:  Ni3Mo3C (JCPDS file number 01-089-4883), ▲ Mo2C 

(JCPDS file number 00-001-1188),  Ni6Mo6C (JCPDS file number 03-065-4436),  

Ni2Mo3N (JCPDS file number 01-072-6569) and  Mo0.09Ni0.91 (JCPDS file number 01-

071-9766). 

However, as can be seen in Figure 86, the positions of the peaks due to Ni2Mo3CxNy have 

shifted to higher 2θ values compared to pre-reaction and therefore, the material had 

undergone a degree of nitridation during the reaction. The peak positions for Ni3Mo3C 

have not shifted position suggesting that this phase had not been nitrided. However, peaks 

due to Ni6Mo6C are observed in the XRD pattern, which were not present in the pre-

reaction material. This suggests that Ni3Mo3C lost carbon to form the Ni6Mo6C phase. 

Co3Mo3C was shown to undergo nitridation during the ammonia synthesis reaction and the 

peak positions were shifted to higher 2θ values [54]. This suggests that Ni3Mo3C is more 

stable than the cobalt molybdenum material and is less susceptible to nitridation. As can be 

seen in Figure 86, the intensity of the peaks due to Ni2Mo3CxNy have increased compared 
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to pre-reaction. However, Ni6Mo6C has similar peak positions and therefore, this phase is 

contributing to the intensity.  

It is unclear whether Ni3Mo3C or the Ni2Mo3N impurity is the active component for 

ammonia synthesis. Therefore, it would be beneficial to produce a pure phase Ni3Mo3C 

and test this material. 

The elemental analysis of the material post-reaction at 500oC was C: 1.43 wt. %, H: 0.00 

wt. % and N: 0.50 wt. %. The pre-reaction material contained 1.84 wt. % carbon and 

therefore this suggests that some carbon had been lost during the reaction as would be 

expected for the transformation of Ni3Mo3C to Ni6Mo6C. The nitrogen percentage had 

increased slightly compared to pre-reaction (0.42 wt. %). These results could be due to 

Ni3Mo3C or the Ni2Mo3CxNy phase undergoing nitridation during the reaction.  

 
Figure 86: Comparison of XRD patterns for Ni3Mo3C + Ni2Mo3CxNy pre- (black) and post-

reaction (red) with 3:1 H2/N2 at 500oC for 8 hours, highlighting the peaks due to Ni3Mo3C, 

Ni6Mo6C or Ni2Mo3N. 

The Raman spectrum showed that there was carbon laydown on the material with bands 

for carbon observed at 1559 and 2332 cm-1, corresponding to the G band and the 2D band, 

respectively, as shown in Figure 87. The intensities of these bands were low and therefore, 
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there was not much carbon on the surface of the material. A wide band was observed 

between 500 – 1000 cm-1. 

 
Figure 87: Raman spectrum of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 

500oC for 8 hours. 

Typical SEM images of mixed phase ‘Ni3Mo3C’ post 500oC reaction are displayed in 

Figure 88. It can be seen that the material consists of a porous structure and that the 

morphology had been retained from the pre-reaction material. The weight percentages 

obtained from EDX for ‘Ni3Mo3C’ are provided in Table 22. The stoichiometric 

percentage of nickel, molybdenum and carbon for Ni3Mo3C is 37.00 wt. %, 60.48 wt. % 

and 2.52 wt. %, respectively. The carbon weight percentage was greater than the 

stoichiometric value expected but the measurement of light elements by EDX can be 

restrictive. The molybdenum and nickel percentages were lower than the expected 

stoichiometric values and from these values the mass ratio of nickel and molybdenum can 

be observed to not be as predicted. However, EDX is semi-quantitative and therefore, these 

values may not be representative.  The nickel and carbon percentages had decreased 

compared to the pre-reaction material and the molybdenum and nitrogen values had 

increased. This may suggest that the material was transforming from Ni3Mo3C to Ni2Mo3N 

and Ni. 
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Figure 88: SEM images of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 500oC 

for 8 hours. a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 

6000x magnification. 

The element maps in Figure 89 demonstrate that the nickel was more evenly distributed 

compared to the pre-reaction sample. 

 
Figure 89: Element Maps for Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 500oC 

for 8 hours. Elements: Ni (red) and Mo (green). 
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Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 44 41 15 0 
2 29 47 25 0 
3 33 51 13 3 
4 30 52 13 4 
5 36 40 24 0 
6 38 37 24 0 
7 28 53 16 4 
8 28 51 18 4 
9 36 52 10 2 

10 34 52 12 2 
11 33 53 12 2 

Average 33 48 17 2 
Table 22: EDX values for Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 500oC for 

8 hours. 

3.2.3.2.2 Ammonia Synthesis at 700oC for Ni3Mo3C 

As the Ni3Mo3C did not undergo nitridation to form a carbonitride phase at 500oC, the 

reaction temperature was increased to 700oC. The ammonia synthesis rate for the material 

at 700oC was calculated to be 80 µmol h-1 g-1 when at steady state. This is possibly lower 

than the rate obtained for Ni6Mo6C at 700oC (152 ± 89 µmol h-1 g-1). There is a small 

induction period of 10 minutes at the start of the reaction before the material became 

active. This may be due to the transformation of the material from the carbide to the nitride 

as observed for the Ni6Mo6C phase. The conductivity decreased at a faster rate for the first 

180 minutes before it became steady state, as observed in Figure 90. This behaviour was 

similar when the material was tested at 500oC. The steady state activity of the material 

after the initial 180 minutes is shown in Figure 91. 
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Figure 90: Conductivity profile for Ni3Mo3C + Ni2Mo3CxNy reacted with 3:1 H2/N2 at 700oC 

for 9 hours. 

 
Figure 91: Conductivity profile for Ni3Mo3C + Ni2Mo3CxNy reacted with 3:1 H2/N2 at 700oC 

for 9 hours. Highlighting the linear part of the graph used for calculating the rate. 

The XRD of the material post-reaction shows that Ni3Mo3C has undergone nitridation to 

form Ni2Mo3N and nickel metal, as shown in Figure 92. Ni6Mo6C was also present in the 

material, which suggests that Ni3Mo3C is reduced and loses carbon to form Ni6Mo6C. This 

suggests that the Ni3Mo3C does not form a carbonitride of composition Ni3Mo3CxNy and 
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therefore, Ni3Mo3N cannot be easily formed from the corresponding carbide. The XRD 

pattern appears to show that the Ni3Mo3C phase may first lose half of the lattice carbon to 

form Ni6Mo6C and then this is nitrided to form Ni2Mo3N. 

Elemental analysis shows that the sample had been nitrided during the reaction with a large 

percentage of the carbon having been removed (C: 0.28 wt. %, H: 0.03 wt. %, N: 2.00 wt. 

%). The percentage of nitrogen was lower than the expected stoichiometric value (3.34 wt. 

%). However, the contribution due to Ni6Mo6C must be taken into consideration.   

 
Figure 92: XRD pattern of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 700oC for 

9 hours. Reflections marked:  Ni6Mo6C (JCPDS file number 03-065-4436),  Ni2Mo3N 

(JCPDS file number 01-072-6569) and  Mo0.09Ni0.91 (JCPDS file number 01-071-9766). 

The Raman spectra in Figure 93 were taken from two areas of the material and show 

different spectral bands. Both areas show G and 2D bands relating to carbon suggesting 

that the material has carbon laydown even after reaction at 700oC. In one of the areas, 

bands due to an oxide surface layer were observed. The Raman bands at 944, 897 and 820 

cm-1 are due to β-NiMoO4 and are assigned to asymmetric and symmetric Mo-O vibration 

of Mo in a tetrahedral environment [96] [97] or for the band at 820 cm-1 to the asymmetric 

stretching mode of the Ni-O-Mo bond [96]. The band at 820 cm-1 is also observed in the 

Raman spectra for MoO3 [90]. A weak band due to α-MoO3 was also detected at 995 cm-1 
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[90] [118]. Bands due to α-MoO3 were observed in the pre-reaction material and were 

likely due to a surface oxide layer. The elemental analysis showed that only 0.28 wt. % of 

carbon was present in the material and therefore, this contrasts with the carbon laydown 

observed from the Raman bands.  

 

 
Figure 93: Raman spectra of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 700oC 

for 9 hours. The spectra were taken at two areas with a 50% filter. 

SEM analysis was performed in order to examine any changes in the morphology and 

structure of ‘Ni3Mo3C’ during the ammonia synthesis reaction. Representative SEM 

images of the post-reaction material are displayed in Figure 94. The material had a porous 

structure and the morphology was similar to the pre-reaction material. Therefore, although 

the sample underwent nitridation, the morphology did not change. The EDX analysis for 

the material post 700oC reaction is shown in Table 23. The stoichiometric percentage of 

nickel, molybdenum and nitrogen for Ni2Mo3N is 28.00 wt. %, 68.66 wt. % and 3.34 wt. % 

respectively. The EDX weight percentage for nitrogen was greater than the stoichiometric 

nitrogen predicted for Ni2Mo3N. The amount of nitrogen was higher than the pre-reaction 

material and was detected in every area inspected. This suggests that the material had 

transformed to the nitride. The percentage of molybdenum was higher compared to the 
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pre-reaction material and nickel value was lower suggesting that the material was 

transforming from Ni3Mo3C to Ni2Mo3N and nickel metal. 

 
Figure 94: SEM images of Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 700oC 

for 9 hours. a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 

6000x magnification. 

The nickel and molybdenum were evenly distributed across the sample as evidenced from 

the element maps in Figure 95. 

 
Figure 95: Element Maps for Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 700oC 

for 9 hours. Elements: Ni (red), Mo (green) and N (blue). 
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Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 28 51 14 7 
2 35 47 14 4 
3 37 50 10 4 
4 28 52 13 7 
5 32 50 12 6 

Average 32 50 12 6 
Table 23: EDX values for Ni3Mo3C + Ni2Mo3CxNy post-reaction with 3:1 H2/N2 at 700oC for 

9 hours. 

The formation of the nitride and reduction of the material to Ni6Mo6C was investigated by 

thermogravimetric analysis of ‘Ni3Mo3C’ under 5% H2/N2. The TGA curve and first 

derivative weight change of ‘Ni3Mo3C’ is provided in Figure 96. The material was heated 

from room temperature to 1000oC at a ramp rate of 10oC/min. The material only lost 

0.43% of its weight from room temperature to 600oC. This can possibly explain why 

Ni3Mo3C did not show nitridation when tested at 500oC, although the TGA procedure was 

not performed under the same ratio of N2:H2. 

A major weight loss is observed from 600oC and corresponds to a loss of 5.65%. There 

appears to be two weight losses from 600oC to 1000oC, a main peak at 860oC and a 

shoulder peak at 790oC. The formation of Ni6Mo6C from Ni3Mo3C would result in a 

weight loss of 1.26%. Therefore, this does not account for the 5.65% decrease observed. 

However, between 600oC and 700oC, there is a weight loss of 0.74%. From the XRD 

pattern of the material post 700oC reaction, it was observed that Ni3Mo3C had been 

reduced to Ni6Mo6C and Ni2Mo3N had been formed.  

3Ni3Mo3C + ½ N2 → Ni6Mo6C + Ni2Mo3N + Ni + 2C 
Equation 4: Equation for the formation of Ni6Mo6C and Ni2Mo3N from Ni3Mo3C 

The formation of Ni2Mo3N and Ni from Ni3Mo3C would result in a weight gain of 0.42%. 

Taking this into consideration, the transformation of Ni3Mo3C into Ni6Mo6C, Ni2Mo3N 

and Ni would result in a 0.84% total loss in mass. Ni2Mo3N was shown in section 3.2.1.2.1 

to maintain its structure when reduced with 25% Ar/H2 at 900oC. Therefore, this would 

suggest that the weight loss observed above 700oC is not due to Ni2Mo3N decomposing. If 

Ni2Mo3N decomposed to molybdenum and nickel metal, the weight loss for the material 

would be 3.34%. The mass spectrum for 28 m/z showed an increased ion current during 

this temperature range as seen in Figure 97. Therefore, this suggests that the material is 

losing nitrogen and may be decomposing. The mass spectra of 2, 15, 16, 17, 18, 30, 32, 44 

and 46 m/z were followed but they did not show any features. 
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Figure 96: TGA and derivative weight profile of ‘Ni3Mo3C’ under 5%H2/N2 in the range 

from room temperature to 1000oC. 

 
Figure 97: The mass spectrum ion curve for 28 m/z and the derivative weight profile. 

The results in this thesis suggest that there may be a possible limitation to the idea that 

combining metals based on their N2 binding energy will give a highly active ammonia 

synthesis catalyst. ‘Ni6Mo6C’ was not active at 400oC and ‘Ni3Mo3C’ was not active at 

500oC. The materials became active when the temperature was increased to 700oC and this 
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activity may be associated with the substitution of lattice carbon with nitrogen. This 

behaviour is similar to Co3Mo3C and suggests that lattice nitrogen is required for these 

materials to be active. Although, conversely, lattice nitrogen may be present in these 

materials as a direct result of them being active. It has proved difficult to form phase-pure 

Ni2Mo3C with a carbonitride phase being formed instead. Ni2Mo3CxNy was active at 400oC 

for ammonia synthesis and may suggest that lattice nitrogen is required for the materials to 

be active at lower temperatures. NiCoMo3N has been tested for ammonia synthesis activity 

and lattice nitrogen reactivity and was found to behave similar to Ni2Mo3N [92]. Cobalt 

was introduced into Ni2Mo3N to give it a closer electronic structure to Co3Mo3N and this 

result would therefore suggest that the structure may be more important than electronic 

considerations. 

3.2.4 Nickel Gallium Molybdenum Nitride (Ni2GaMo3N) 

A nickel and molybdenum containing nitride that has an η-carbide structure has been 

prepared to give a further understanding on the relationship between structure and 

ammonia synthesis activity. Prior and Battle [121] have previously published work on 

Ni2GaMo3N and have shown that the nickel and gallium are completely ordered with 

nickel residing in the 32e sites and gallium in the 16d sites. The authors suggest that this 

ordering may be due to the sizes of these metal atoms, electronic factors or a result that is 

outwith the first coordination shell as the mean bond lengths of the 32e and 16d sites were 

similar. Ordering of such mixed metal atoms in η-carbide structured compounds is 

uncommon, with one other example being Al2NiTi3N [122]. The structure of Ni2GaMo3N 

is presented in Figure 98. 

 
Figure 98: The crystal structure of Ni2GaMo3N, showing the Mo6N octahedra. Data plotted 

on VESTA from Ni2GaMo3N structure from Springer Materials [123]. 
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It is of interest that both η-carbide Ni2GaMo3N and Ni2GeMo3N [124] can be synthesised 

but Ni3Mo3N has proved much harder to form. As with Ni2GaMo3N, the nickel atoms in 

Ni2GeMo3N, reside in the 32e sites and the germanium or gallium atoms are located in the 

16d sites, suggesting that the nickel atoms, which are larger than gallium and germanium 

atoms, are not favoured in the smaller 16d sites. Therefore, it could be proposed that 

Ni3Mo3N cannot be synthesised, as the nickel atoms are too large to fit in these sites. The 

empirical atomic radii of nickel, gallium and germanium are 135 pm, 130 pm and 125 pm 

respectively [125]. However, there is a deviation from these values depending on the 

method used to measure the radius. The empirical method calculates the radii by assuming 

that the atomic distance of two atoms forming a bond in a crystal is the sum of their radii. 

It must be noted, however, that Co has been stated to have the same empirical atomic 

radius (135 pm) as nickel [125] and can form Co3Mo3N.  

3.2.4.1 Nickel Gallium Molybdenum Oxide (Ni2GaMo3Ox) 

Ni2GaMo3N was prepared by ammonolysis of a nickel gallium molybdenum oxide. The 

oxide was synthesised by using a similar modified Pechini method as was used to prepare 

Ni2Mo3N [36]. From TPO analysis of the uncalcined starting material, it was found that a 

higher calcination temperature was needed than for Ni2Mo3N. As can be seen from Figure 

99, carbon was removed from the material at 610oC, resulting in a weight loss of 10.40%. 

This value agrees with the 6 – 8% of carbon observed from the elemental analysis for the 

oxide that was calcined at 500oC. When the material was calcined at 500oC, there were two 

major weight losses at 560oC and 725oC as seen in Figure 100. The weight loss at 560oC 

was proposed to be due to carbon. All the carbon and water observed below 500oC had 

been removed from the calcined sample. The weight loss at 560oC was 5.96%, which 

corresponds to the expected percentage of carbon from elemental analysis. A weight loss 

of 17.88% was observed at 725oC. The results from the TPO suggest that the material 

should be calcined at a temperature of 650oC. 
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Figure 99: TGA curve and derivative weight profile for uncalcined Ni2GaMo3 under air in 

the range from room temperature to 900oC. 

 
Figure 100: TGA curve and derivative weight profile for Ni2GaMo3Ox calcined at 500oC 

under air in the range from room temperature to 900oC. 

From the XRD pattern of the oxide as seen in Figure 101, it can be observed that the material 

consists of α-NiMoO4 and MoO3. Gallium oxide phases are also observed in the XRD pattern. 

Other peaks are observed in the XRD pattern and may relate to a mixed metal gallium phase but 
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these could not be identified with any files on the database (marked as red peaks). The XRD 

pattern is similar to the pattern obtained for Ni2Mo3Ox that was prepared by the same sol-gel 

route. The mixture of oxides is desired due to the difference in the elemental ratios between the 

oxide and the nitride. 

The elemental analysis showed that there was a trace amount of carbon present in the 

material after calcination and no nitrogen (C: 0.10 wt. %, H: 0.00 wt. % and N: 0.00 wt. 

%), suggesting that the higher calcination temperature was mostly sufficient to remove the 

nitrates and citric acid from the material.  

 
Figure 101: XRD pattern of nickel gallium molybdenum oxide calcined at 650oC 

(Ni2GaMo3Ox). Reflections marked: ▼ NiMoO4 (JCPDS file number 00-033-0948), X 

MoO3 (JCPDS file number 00-035-0609), □ α-Ga2O3 (JCPDS file number 01-074-1610) 

and □ Ga2.667O4 (JCPDS file number 01-074-7709). 

The Raman spectrum of the oxide was analysed by comparing Figure 102 with the 

published spectra of NiMoO4 and MoO3. The Raman bands at positions of 960, 911 and 

700, 381, 366 and 265 cm-1 were attributed to α-NiMoO4 [89]. The bands at 960 and 911 

cm-1 have been assigned in the literature as the symmetric and asymmetric stretching 

modes of the terminal Mo=O bond [90] and the band at 700 cm-1 was assigned to the Ni-O-
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Mo symmetric stretch [67] [89]. The weak bands at 381 and 366 cm-1 are due to the 

bending mode of Mo−O [89] and the band at 265 cm-1 is attributed to the deformation 

mode of Mo−O−Mo [89]. Interestingly, there are no bands at approximately 994, 665 or 

338 cm-1 that would be associated with MoO3 [90]. Although, the band at 821 cm-1 could 

be attributed to the Mo-O-Mo asymmetric stretching mode of MoO3 [90]. The presence of 

bands associated with NiMoO4 agrees with the XRD result, which showed that the material 

contained this oxide.  

 

 
Figure 102: Raman spectrum of nickel gallium molybdenum oxide (Ni2GaMo3Ox). 

Figure 103 gives the representative SEM images for the oxide. The sample consisted of 

porous particles with an uneven surface and also thin small needles. The stoichiometric 

percentage of nickel, gallium, molybdenum and oxygen in the theoretical Ni2GaMo3O11 is 

18.03 wt. %, 10.71 wt. %, 44.22 wt. % and 27.04 wt. %, respectively. From the EDX 

analysis in Table 24, it can be seen that the oxygen weight percentage was higher than 

predicted and the molybdenum percentage was lower. Therefore, the ratio of nickel, 

gallium and molybdenum was not 2:1:3 as expected. However, the XRD pattern shows that 

the material consisted of a separate molybdenum oxide phase and from the EDX data it can 

be seen that some areas contained more molybdenum than others. 
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Figure 103: SEM images of nickel gallium molybdenum oxide (Ni2GaMo3Ox). a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

 
Area Ni weight (%) Ga weight (%) Mo weight (%) O weight (%) 

1 13 10 34 42 
2 2 2 59 37 
3 13 9 32 45 
4 20 16 33 32 
5 22 18 31 28 
6 18 14 30 37 
7 19 14 32 35 
8 16 12 29 43 
9 20 15 31 35 
10 19 15 29 37 
11 14 11 31 45 
12 11 9 34 46 
13 11 7 36 46 
14 13 11 32 44 
15 20 15 31 34 
16 21 15 30 34 

Average 16 12 33 39 
Table 24: EDX values for nickel gallium molybdenum oxide (Ni2GaMo3Ox). 

3.2.4.2 Nickel Gallium Molybdenum Nitride (Ni2GaMo3N) 

The η-carbide structured Ni2GaMo3N is a known phase that has previously been prepared 

by the reaction of MoO3, hydrated gallium nitrate and nickel oxide under 10% H2/N2 with 

a heating regime up to 975oC [121]. In order to prepare the nitride at a lower temperature, 
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in this work the oxide was treated with ammonia gas at 785oC via a temperature 

programmed regime. Pure phase η-carbide materials have previously been formed by the 

ammonolysis of their oxides [54] [35]. 

As can be seen in Figure 104, the desired quaternary nitride phase was formed. 

Ni2GaMo3N is not listed on the database; however, a CIF file from Springer materials 

[123] was plotted on VESTA to give the expected XRD reflections for the nitride. 

Impurities of GaNi and Mo3N2 were observed, suggesting that the material had not been 

completely nitrided. Prior and Battle observed a filled β-Mn structured impurity when they 

formed the nitride [121].  

The elemental analysis shows that there was trace amounts of carbon and no hydrogen 

present in the material after ammonolysis (C: 0.14%, H: 0.00% and N: 3.73%). The 

percentage of nitrogen present in the material was higher than the expected stoichiometric 

value of 2.86 wt. %. This may be due to NHx species on the surface of the nitride after 

ammonolysis, which is a common occurrence.  

 

Figure 104: XRD pattern of nickel gallium molybdenum nitride (Ni2GaMo3N). Reflections 

marked:  Ni2GaMo3N (CIF file from Springer Materials [123]),  GaNi (JCPDS file 

number 01-071-8617) and  Mo3N2 (JCPDS file number 03-065-4278). 
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Raman analysis was conducted for this material to investigate if there was any surface 

oxide species present. The Raman spectrum is presented in Figure 105 and shows that the 

material had formed a surface oxide layer. The positions of the Raman bands at 934, 886 

and 812 cm-1 are observed in β-NiMoO4 [96] [97] and CoMoO4 [126].. These Raman 

bands are assigned to the Mo-O stretching vibrations or for the band at 820 cm-1 the 

asymmetric stretching mode of the Ni-O-Mo bond. To the author’s knowledge, there is no 

published Raman spectrum of Ni2GaMo3N in the literature. 

 
Figure 105: Raman spectrum of nickel gallium molybdenum nitride (Ni2GaMo3N). 

As the morphology of a material can affect the ammonia synthesis activity, this was 

investigated by SEM analysis. The SEM images of the quaternary nitride are provided in 

Figure 106. The morphology of the material is similar to the pre-reaction material. 

However, there are more of the thin, small needles in the post-reaction material. The 

formation of needles has been observed for η-carbide structured Co3Mo3N that was 

prepared by ammonolysis [54]. The stoichiometric percentage of nickel, gallium, 

molybdenum and nitrogen in Ni2GaMo3N is 24.01 wt. %, 14.26 wt. %, 58.87 wt. % and 

2.86 wt. %, respectively. The EDX data in Table 25 shows that the molybdenum 

percentage was slightly lower than expected and therefore, the ratio of the metals was not 

2:1:3. Some areas contained more molybdenum and were observed as flat platelets as seen 

in Figure 106 (a) and may correspond to the Mo3N2 impurity. The nitrogen percentage was 
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higher than the expected stoichiometric amount and the 3.73 wt. % value obtained from 

CHN analysis. However, light elements are difficult to measure by EDX. 

 
Figure 106: SEM images of nickel gallium molybdenum nitride (Ni2GaMo3N). a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 
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Area Ni weight (%) Ga weight (%) Mo weight (%) N weight (%) 
1 26 20 50 4 
2 18 14 56 11 
3 18 14 59 9 
4 23 17 53 6 
5 34 28 37 0 
6 25 18 52 4 
7 29 21 44 6 
8 24 20 50 6 
9 21 17 57 6 
10 27 23 45 5 
11 27 21 44 8 
12 29 21 45 5 
13 22 16 55 8 
14 21 16 53 10 
15 22 15 57 6 
16 20 15 53 11 
17 22 18 50 10 
18 25 19 49 7 
19 23 17 52 8 
20 25 19 49 7 

Average 24 19 51 7 
Table 25: EDX values for nickel gallium molybdenum nitride (Ni2GaMo3N). 

3.2.4.2.1 Ammonia Synthesis for Ni2GaMo3N 

In order to establish the relationship between structure and ammonia synthesis activity for 

ternary nitrides, Ni2GaMo3N was tested for its activity. The material was first pre-treated at 

700oC for 2 hours under 3:1 H2/N2. Then, the material was tested under the same gas 

mixture at 400oC and 500oC. Figure 107 presents the plot of conductivity versus time for 

Ni2GaMo3N at the three temperatures tested. The rate of ammonia production at 700oC 

was 96 ± 12 µmol h-1 g-1 and at 500oC was 7 µmol h-1 g-1. At 400oC, the activity was not 

steady state and therefore, a rate could not be calculated. The value was comparable to the 

rate for ‘Ni3Mo3C’ at 700oC (80 µmol h-1 g-1) and lower than for ‘Ni6Mo6C’ (152 ± 89 

µmol h-1 g-1). However, the rate calculated for 500oC reaction temperature, was lower than 

for ‘Ni3Mo3C’ (41 µmol h-1 g-1) and Ni2Mo3CxNy (619 ± 14 µmol h-1 g-1). These 

differences in activity suggest that the composition and structure have an effect, although 

morphology and surface area can also affect the rate. Although, Ni3Mo3C and Ni2GaMo3N 

both have a η-carbide structure and have a similar rate at 700oC, the carbide transforms to 

the filled β-Mn structured Ni2Mo3N during the reaction. 
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Figure 107: Conductivity profile for Ni2GaMo3N reacted with 3:1 H2/N2 at 700oC for 2 

hours, 400oC for 3 hours and 500oC for 4 hours. 

The XRD pattern in Figure 108 shows that the Ni2GaMo3N η-carbide structure was 

maintained after the reaction. The impurities of GaNi and Mo3N2 were also present in the 

material post-reaction.  

The elemental analysis shows that the percentage of nitrogen present in the material after 

reaction with 3:1 H2/N2 had decreased (C: 0.12 wt. %, H: 0.00 wt. % and N: 2.77 wt. %) 

compared to pre-reaction (3.73 wt. %). The percentage of nitrogen present in the material 

agreed well with the expected stoichiometric value of 2.86 wt. % and may correspond to 

the loss of NHx species form the surface. The Mo3N2 impurity had shifted to higher 2θ 

values as seen for the peak at 37.37o 2θ and suggests that it is losing nitrogen as the lattice 

parameter is getting smaller. Therefore, the decrease in nitrogen may also be due to the 

reduction of the Mo3N2. 

 



 155 

 
Figure 108: XRD pattern of Ni2GaMo3N post-reaction with 3:1 H2/N2. Reflections marked: 

 Ni2GaMo3N (CIF file from Springer Materials [123]),  GaNi (JCPDS file number 01-

071-8617) and  Mo3N2 (JCPDS file number 03-065-4278). 

SEM analysis was performed on the material to observe any possible changes in 

morphology or structure during the reaction. Representative SEM images are provided in 

Figure 109. The material appears to have retained the morphology of the pre-reaction 

material and consists of porous surfaces, platelets and small needles. The platelets range in 

size and can be as large as 40 µm x 60 µm as observed in Figure 109 (b). The EDX data 

showed that these platelets consisted of a large percentage of molybdenum as seen in Table 

26. The stoichiometric percentage of nickel, gallium, molybdenum and nitrogen in 

Ni2GaMo3N is 24.01 wt. %, 14.26 wt. %, 58.87 wt. % and 2.86 wt. %, respectively. As 

with the pre-reaction material, the molybdenum percentage was lower than expected and 

therefore, the ratio of metals was not as predicted. The EDX values of the pre- and post-

reaction material were very similar suggesting that the phase does not change during the 

reaction. 
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Figure 109: SEM images of Ni2GaMo3N post-reaction with 3:1 H2/N2. a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

Area Ni weight (%) Ga weight (%) Mo weight (%) N weight (%) 
1 25 17 54 4 
2 4 7 76 13 
3 22 17 53 8 
4 21 15 56 8 
5 10 11 72 8 
6 11 14 62 13 
7 26 19 49 6 
8 22 16 52 10 
9 38 28 34 0 
10 38 29 33 0 
11 51 38 11 0 
12 22 17 52 9 
13 27 24 44 5 
14 28 25 47 0 
15 24 17 53 6 
16 25 19 48 8 
17 28 25 41 6 
18 24 19 48 8 
19 23 16 54 8 

Average 25 20 49 6 
Table 26: EDX values for Ni2GaMo3N post-reaction with 3:1 H2/N2. 
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3.2.4.2.2 Lattice Nitrogen Reactivity of Ni2GaMo3N at 700oC 

In order to determine the reactivity of lattice nitrogen in Ni2GaMo3N, the material has been 

reacted under 3:1 H2/Ar at 700oC. If the lattice nitrogen is reactive and the material 

operates via a Mars-van Krevelen mechanism, there would most likely be a reduction in 

the nitrogen percentage and occupancy of Ni2GaMo3N under these conditions. Figure 110 

shows that the lattice nitrogen was only slightly reactive under Ar/H2 at 700oC with only a 

small amount of ammonia being produced. There was a decrease in conductivity of 34 

µS/cm over the 7 hours. This result is similar to Ni2Mo3N that has previously been tested 

under Ar/H2 at 700oC [98] and was found that the lattice nitrogen was fairly unreactive. 

Ni2Mo3N has the filled β-Mn structure, suggesting that structure does not play a role in 

lattice nitrogen reactivity. Instead it appears that composition is more important. This 

result suggests that Ni2GaMo3N may not operate via a Mars-van Krevelen mechanism and 

could explain its low ammonia synthesis activity. 

 

 
Figure 110: Conductivity profile for Ni2GaMo3N reacted with 3:1 H2/Ar at 700oC for 7 

hours. 

The XRD pattern presented in Figure 111 demonstrates that there was no phase transition 

for the nitride during the reaction. The Mo3N2 impurity was reduced to β-Mo2N during the 

reaction as evidenced from the XRD pattern. The XRD pattern confirms that the bulk 

lattice nitrogen in the material was unreactive as there was no shift of the XRD reflections 

to higher 2θ values as expected for a loss of nitrogen. Ni2Mo3N has also been shown to 

have no shift in the XRD reflections when tested under Ar/H2 at 700oC [36] [92], whereas 
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Co3Mo3N has been shown to lose half of its lattice nitrogen to form Co6Mo6N when 

reacted under these conditions. Both Co3Mo3N and Ni2GaMo3N have a η-carbide structure 

but show different behaviour when reduced under Ar/H2. This further suggests that the 

structure does not have an effect on the lattice nitrogen reactivity, but the composition may 

have a greater importance. However, in contrast to this inference, filled β-Mn structured 

NiCoMo3N has been previously prepared and tested for ammonia synthesis activity and 

lattice nitrogen reactivity and it was found to behave similar to Ni2Mo3N [92]. NiCoMo3N 

was prepared to explore the relationship between structure and lattice nitrogen activity and 

to move the electronic structure of Ni2Mo3N closer to Co3Mo3N. This could be used to 

probe how specific the material was to pure nickel. Therefore, as the quaternary nitride had 

a similar activity to Ni2Mo3N, it was proposed that electronic factors were not responsible 

for the material’s activity. 

 
Figure 111: XRD pattern of Ni2GaMo3N post-reaction with 3:1 H2/Ar at 700oC. Reflections 

marked:  Ni2GaMo3N (CIF file from Springer Materials [123]),  GaNi (JCPDS file 

number 01-071-8617) and ● β-Mo2N (JCPDS file number 01-075-1150). 

The elemental analysis shows that the percentage of nitrogen was similar after reduction 

with 3:1 H2/Ar (C: 0.50 wt. %, H: 0.00 wt. % and N: 2.41 wt. %) to pre-reaction (2.40 wt. 

%). The percentage of nitrogen present in the material was lower than the expected 

stoichiometric value of 2.86 wt. %. This result confirms that the bulk lattice nitrogen in the 

material was unreactive.  
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In order to see if there was any change in morphology during the reaction, SEM analysis 

was performed. The representative SEM images of the post-reaction material are displayed 

in Figure 112. The sample consisted of porous particles with pores ranging in diameter 

from 1 µm to 20 µm and thin needles. The morphology had been retained compared to the 

pre-reaction material. The nickel, gallium, molybdenum and nitrogen appear to be fairly 

evenly distributed across the material as seen in the element map in Figure 113. This 

confirms that there had been no phase segregation under the reducing conditions. 

The stoichiometric percentage of nickel, gallium, molybdenum and nitrogen for 

Ni2GaMo3N is 24.01 wt. %, 14.26 wt. %, 58.87 wt. % and 2.86 wt. %, respectively. The 

EDX analysis for the post-reaction sample is presented in Table 27 and shows that the 

nitrogen percentage had decreased compared to pre-reaction suggesting that some nitrogen 

may have been lost during the reaction. However, there are limitations to measuring light 

elements by EDX. The percentage of nickel and gallium had increased compared to pre-

reaction and the molybdenum had decreased. Therefore, the ratio of Ni to Ga to Mo was 

not 2:1:3. This is in contrast to the XRD pattern, which showed that the Ni2GaMo3N phase 

had been retained. 

 
Figure 112: SEM images of Ni2GaMo3N post-reaction with 3:1 H2/Ar at 700oC for 7 hours. 

a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x 

magnification. 
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Figure 113: Element map for Ni2GaMo3N post-reaction with 3:1 H2/Ar at 700oC for 7 

hours. Elements: Ni (red), gallium (green), molybdenum (blue) and nitrogen (black). 

 
Area Ni weight (%) Ga weight (%) Mo weight (%) N weight (%) 

1 25 19 53 3 
2 23 18 54 3 
3 28 22 46 4 
4 22 17 57 4 
5 19 15 61 6 
6 28 22 46 4 
7 23 18 54 6 
8 40 32 27 1 
9 39 33 26 2 
10 23 17 53 7 
11 35 27 37 1 

Average 28 22 47 4 
Table 27: EDX values for Ni2GaMo3N post-reaction with 3:1 H2/Ar at 700oC. 

3.2.4.2.3 Lattice Nitrogen Reactivity of Ni2GaMo3N at 900oC 

In order to investigate the possible reactivity of lattice nitrogen in Ni2GaMo3N, the 

material was reduced at a higher temperature. The material was tested at 900oC under 3:1 

H2/Ar for 7 hours. As observed from the conductivity data in Figure 114, the production of 

ammonia was minimal, with the conductivity decreasing by only 18 µS/cm over the 7 

hours. However, it must be noted that ammonia production is unfavourable at this 

temperature and will decompose [99] and, therefore, the lattice nitrogen may be lost as N2. 

No N2 analysis was undertaken. 
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Figure 114: Conductivity profile for Ni2GaMo3N reacted with 3:1 H2/Ar at 900oC for 7 

hours. 

The XRD pattern displayed in Figure 115 shows that the η-carbide structured Ni2GaMo3N 

was maintained after the reaction. There does not appear to have been any major change in 

phase compared to pre-reaction or shift in XRD reflections as seen in Figure 116. This 

suggests that the material is not reduced and does not loss a large percentage of nitrogen 

under these conditions. The Mo3N2 impurity was reduced during the reaction as seen from 

the XRD pattern. The XRD pattern confirms that the bulk lattice nitrogen in the material 

was unreactive. Ni2Mo3N also has no shift in its XRD reflections when tested under Ar/H2 

at 900oC as seen in section 3.2.1.2.1. 

The elemental analysis shows that the percentage of nitrogen had decreased after reduction 

with 3:1 H2/Ar at 900oC (C: 0.00 wt. %, H: 0.00 wt. % and N: 3.34 wt. %) compared to 

pre-reaction (4.17 wt. %). The reduction of the Mo3N2 phase or some loss of nitrogen from 

the quaternary nitride could account for the decrease in nitrogen. Assuming the loss of 

nitrogen was due only to the Ni2GaMo3N, the percentage of lattice nitrogen lost that was 

converted to ammonia was 14.62%. 

This result suggests that the structure does not influence the lattice nitrogen reactivity, as 

similar behaviour was observed between the filled β-Mn structured Ni2Mo3N and the η-

carbide structured Ni2GaMo3N. 
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Figure 115: XRD pattern of Ni2GaMo3N post-reaction with 3:1 H2/Ar at 900oC for 7 hours. 

Reflections marked:  Ni2GaMo3N (CIF file from Springer Materials [123]),  GaNi 

(JCPDS file number 01-071-8617) and  GaMo3 (JCPDS file number 03-065-3312). 

 
Figure 116: Comparison of XRD patterns between Ni2GaMo3N pre- (black) and post-

reaction (red) with 3:1 H2/Ar at 900oC for 7 hours. 
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SEM analysis was conducted to see if the reaction had an effect on the morphology of the 

material. Typical SEM images of Ni2GaMo3N post-reaction with 1:3 Ar/H2 at 900oC are 

shown in Figure 117. The material consisted of a porous structure, platelets and small 

needles and the morphology was retained from the pre-reaction material. The morphology 

was slightly different from the Ni2Mo3N that was tested under the same conditions (Figure 

26). The Ni2Mo3N did not contain platelets and there was not as many small needles. 

Therefore, the lattice nitrogen reactivity is not affected by the morphology of the material.  

 
Figure 117: SEM images of Ni2GaMo3N post-reaction with 3:1 H2/Ar at 900oC for 7 hours. 

a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x 

magnification. 

The element maps in Figure 118 illustrate that there was a fairly even distribution of 

nickel, gallium, molybdenum and nitrogen over the sample. Therefore, there had not been 

phase segregation during the reaction. 



 164 

 
Figure 118: Element map for Ni2GaMo3N post-reaction with 3:1 H2/Ar at 900oC for 7 

hours. Elements: Ni (red), gallium (green), molybdenum (blue) and nitrogen (black). 

The EDX data for the post-reaction sample is shown in Table 28. The stoichiometric 

percentage of nickel, gallium, molybdenum and nitrogen in Ni2GaMo3N is 24.01 wt. %, 

14.26 wt. %, 58.87 wt. % and 2.86 wt. %, respectively. The nitrogen percentage had 

decreased compared to pre-reaction suggesting that some nitrogen was lost during the 

reaction. This agrees with the CHN analysis that showed the nitrogen percentage had 

decreased post-reaction. The percentage of nickel had decreased compared to pre-reaction 

and the amount of molybdenum had increased. Therefore, the ratio of the metals was 

closer to 2:1:3 compared to pre-reaction. This confirms that the Ni2GaMo3N phase had 

been retained as seen in the XRD pattern. 

Area Ni weight (%) Ga weight (%) Mo weight (%) N weight (%) 
1 7 33 60 0 
2 27 20 53 0 
3 24 17 56 3 
4 21 15 57 6 
5 28 20 49 4 
6 24 18 53 5 
7 26 18 52 5 
8 24 18 52 6 
9 22 15 55 7 
10 24 17 54 5 
11 22 16 55 7 
12 30 22 46 3 
13 11 23 64 2 
14 25 18 51 6 

Average 22 19 54 4 
Table 28: EDX values for Ni2GaMo3N post-reaction with 3:1 H2/Ar at 900oC. 
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3.3 Conclusions 
The filled β-Mn structured Ni2Mo3N and Ni2Mo3CxNy and η-carbide structured Ni6Mo6C, 

Ni3Mo3C and Ni2GaMo3N were prepared and tested for ammonia synthesis activity and 

lattice nitrogen reactivity. Unfortunately, Ni2Mo3C could not be synthesised by topotactic 

routes from Ni2Mo3N even though different carburisation sources were used. These 

materials were prepared and tested to give information on the influence structure and 

composition has on ammonia synthesis activity. All of these phases have the interstitial 

element (nitrogen and/or carbon) coordinated to six molybdenum species. 

Ni2Mo3N and Ni2GaMo3N were reacted under 3:1 H2/Ar at 900oC to determine their lattice 

nitrogen reactivity. The materials were found to not be reduced under these conditions, 

suggesting that the bulk lattice nitrogen was unreactive. Therefore, it appears that structure 

does not have an effect on the activity but perhaps composition has a greater importance.   

Nickel molybdenum carbonitride (Ni2Mo3CxNy) was found to be active for ammonia 

synthesis at 400oC and was observed to undergo nitridation during the reaction as 

evidenced from elemental analysis. An induction period was observed for this material 

when it was tested at 500oC but was not observed when tested at 400oC. The effect of the 

passivation layer on the ammonia synthesis activity and its possible influence on the 

induction period was investigated by ToF-SIMS. It was seen that nitrogen and carbon were 

both present near the surface of the material at a depth of 10 nm. 

Both Ni6Mo6C and Ni3Mo3C have been prepared and tested for ammonia synthesis activity 

to help establish structure-activity and composition-activity relationships. Ni6Mo6C was 

synthesised by using citric acid to carburise nickel molybdate under Ar/H2 at 700oC. 

Ni6Mo6C phase was converted to Ni3Mo3C when reacted with 20% CH4/H2. The materials 

consisted of two main segregated phases, the carbide and Ni2Mo3N. ‘Ni6Mo6C’ and 

‘Ni3Mo3C’ were not active for ammonia synthesis when tested at 400oC or 500oC, 

respectively. However, they were both active at 700oC under 3:1 H2/N2 with ‘Ni6Mo6C’ 

having the higher activity. The two materials were shown to undergo nitridation during the 

reaction as confirmed by the XRD patterns and elemental analysis. The carbides formed 

Ni2Mo3N rather than carry out a topotactic exchange mechanism as reported for Co3Mo3C, 

suggesting that the Ni3Mo3N phase is less stable. Interestingly, Mo2C and Mo0.09Ni0.91 had 

good ammonia synthesis activity and also combined to form Ni2Mo3N during the reaction. 

It is not understood if the activity arises due to the nitridation of these materials and 
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therefore, the presence of lattice nitrogen is required or whether lattice nitrogen 

incorporates into these materials as they are active for ammonia synthesis. 

Ni2GaMo3N was shown to have a very low activity for ammonia synthesis when tested at 

400oC and 500oC and a rate of 96 ± 12 µmol h-1 g-1 at 700oC. This rate is lower than the 

reported rates for Ni2Mo3N in the literature (395 ± 6 µmol h-1 g-1 at 400oC [36]) and for 

Ni2Mo3CxNy in this work (197 ± 23 µmol h-1 g-1 at 400oC). Therefore, it could be suggested 

that there is a possible relationship between structure and ammonia synthesis activity for 

nickel containing nitrides. However, it has been shown that nickel impurities can lower the 

rate of Ni2Mo3N (< 15 µmol h-1 g-1 at 400oC [36]). Therefore, the presence of GaNi in 

Ni2GaMo3N may affect its rate and a definite conclusion cannot be drawn for the structure-

activity relationship.  

A summary of the major phase transformations of the nickel molybdenum materials 

investigated within this chapter is presented in Figure 119. 

 

 
Figure 119: Phase transformations of the nickel molybdenum materials. 
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4. Cobalt Molybdenum Materials 
4.1 Introduction 
In order to continue to investigate the relationships between structure-ammonia synthesis 

activity and composition-activity, the filled β-Mn structured Co2Mo3N has been prepared. 

A comparison of the activity and lattice nitrogen reactivity of this nitride with the filled β-

Mn structured Ni2Mo3N reported in Chapter 3 might give an insight into the role that metal 

composition has on the activity.  

The h-carbide structured Co3Mo3N is a well known ammonia synthesis catalyst [35] [39] 

[54]. Co3Mo3N has been shown to have a higher activity than the Haber Bosch catalyst at 

ambient pressure [127] and also at more realistic Haber Bosch conditions [94]. The activity 

of Co3Mo3N can be enhanced by the addition of Cs+ in low levels [128]. As this nitride has 

a high activity, most of the literature has focused upon it. Co3Mo3N has the h-6 carbide 

structure, which was explained in detail in Chapter 3 [59] [60]. 

In recent years, the filled b-Mn structured Co2Mo3N has been synthesised and investigated 

for its ammonia synthesis activity [129] [130]. In this structure, the Co atoms occupy the 

8c sites and the Mo species are positioned on the 12d sites [73]. The N species are bonded 

to six Mo species as in the h-6 carbide structure. When this nitride is prepared, a mixture 

of Co2Mo3N and Co3Mo3N is formed, with the ratio of the two nitrides depending on the 

synthesis conditions. The activity of this material can be improved by the addition of 

potassium or chromium [129] [130]. These promoters alter the ratio of the 

Co2Mo3N/Co3Mo3N and increase the surface area [129] [131]. When potassium is added, 

the formation of the Co2Mo3N phase is favoured and the activity of this material can be 

increased by 2.4 times [129]. The activity of this material is also enhanced when the nitride 

is co-promoted with potassium and 1 wt. % Cr [130]. Adamski et al. state that the higher 

percentage of Co2Mo3N leads to a higher ammonia synthesis activity [132]. Therefore, it 

would be of interest to investigate the reason for the difference in activity between the two 

ternary nitrides. The difference in structure between the two nitrides may influence the 

activity and thus, this should be examined. The lattice nitrogen reactivity is one method 

that can be used to measure the activity of the materials. 

The work in this chapter will aim to prepare the pure phase Co2Mo3N by using different 

preparation methods and different synthesis temperatures. The material was not doped in 

this chapter due to the complicating issues related to phase instability which are known to 
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occur for some related systems, such as Cs+ on Co3Mo3N [39]. Furthermore, the initial aim 

was to understand the pure phase behaviour. 

4.1.1 Lattice Nitrogen Reactivity 

As discussed in more detail in Chapter 3, previous work has shown the lattice nitrogen of 

Co3Mo3N to be highly reactive, reversibly forming the Co6Mo6N phase [35] [50] [120] 

[77]. These results suggest that Co3Mo3N may operate via a Mars-van Krevelen 

mechanism for ammonia synthesis. This observation was further supported by work 

performed with the analogous Co3Mo3C phase [54]. 

In order to investigate the role structure has on the lattice nitrogen reactivity, a comparison 

of the filled b-Mn structured Co2Mo3N phase and the h-carbide structured Co3Mo3N phase 

would be of interest. Both the filled β-Mn structured Ni2Mo3N and η-carbide structured 

Ni2GaMo3N were stable and had minimal lattice nitrogen reactivity even at elevated 

temperature as discussed in Chapter 3. The study of the cobalt molybdenum nitrides would 

make a good comparison in order to see if this relationship is the same across the nitrides 

and to gain further insight into the structure-activity relationship in view of their similarity 

in composition but difference in structure. A mixture containing both Co2Mo3N and 

Co3Mo3N phases has been reduced under pure hydrogen at 700oC [133]. It was shown that 

Co3Mo3N was reduced to Co6Mo6N, as would be expected. However, Co2Mo3N was not 

reduced under these conditions and in-situ powder XRD showed that this phase was stable. 

Therefore, the lattice nitrogen in Co2Mo3N would appear to be less reactive than in 

Co3Mo3N. The work in this chapter will be performed in order to verify this previous 

observation and also to expand on the temperature conditions investigated to see whether a 

phase transition analogous to that for Co3Mo3N occurs at a higher temperature than 700 °C 

for Co2Mo3N. The cobalt molybdenum nitrides will be reduced under 3:1 H2/Ar up to 

900oC so that a comparison can be made with the nickel molybdenum nitrides reported in 

Chapter 3. 

4.1.2 Synthesis of Co2Mo3N 

Co2Mo3N was first synthesised by Prior and Battle [73]. This material was prepared by 

mixing MoO3 and Co3O4 together and reacting under a flow of 10% H2/N2. A temperature 

programmed heating regime was used up to 1000oC and the material was ground together 

between each firing step. The XRD pattern of the resultant material showed that small 

amounts of molybdenum metal and Co3Mo3N were also present. The authors found that 

prolonged heating favoured the formation of Co3Mo3N and molybdenum metal. 



 169 

Adamski et al. additionally observed that Co2Mo3N transforms to Co3Mo3N upon 

prolonged exposure to ammonia at 700oC through combination with an excess cobalt metal 

component [132]. They prepared the mixed phase Co2Mo3N/Co3Mo3N by first heating the 

oxide precursor to 700oC under pure nitrogen and then switching to either pure NH3 [133] 

or 10% NH3/N2 [132]. This mixed phase Co2Mo3N/Co3Mo3N was also synthesised by 

heating the oxide under NH3 to 700oC [129] [130] [131]. It was proposed that the time at 

which ammonia is introduced affects the composition of the nitride [132]. Through in-situ 

XRD studies, Adamski et al. showed that Co3Mo3N was the final product of the 

ammonolysis of CoMoO4 precursor. The authors suggested the diffusion of Co atoms was 

the main factor in the final composition of the material and the restriction of this diffusion 

can be used to control the ratio of Co2Mo3N to Co3Mo3N. Moszynski et al. have observed 

that potassium encourages the formation of Co2Mo3N [129] and the addition of chromium 

prevents its development [131]. When potassium was added, the concentration of 

Co2Mo3N was observed to be 50 wt. %. 

From comparing the XRD patterns of the mixed phase Co2Mo3N prepared by either N2/H2 

or NH3, it appears that the preparation of the nitride by N2/H2 resulted in the highest 

proportion of Co2Mo3N. Therefore, for this reason, a 3:1 H2/N2 mixture was used within 

this work. 

4.2 Results and Discussion 

4.2.1 Cobalt Molybdenum Nitride (Co2Mo3N) 

4.2.1.1 Cobalt Molybdenum Oxide (Co2Mo3Ox) 

Three preparation methods were applied to synthesise the cobalt molybdenum oxide. The 

modified Pechini method was the first method attempted as it had been used to 

successfully prepare the filled β-Mn structured Ni2Mo3N. The second method was similar 

to the one used to prepare Co3Mo3N [55] [53] and was based upon stoichiometric amounts 

of (NH4)6Mo7O24.4H2O and Co(NO3)2·6H2O being added together in deionised water. The 

final method was similar to the second method but the material was not calcined prior to 

phase transformation. 

The XRD pattern of the material prepared by the modified Pechini method is displayed in 

Figure 120. It can be seen that the oxide precursor was a mixture of CoMoO4 and MoO3 

phases. This observation is consistent with the mixture of oxides that were synthesised when the 

sol-gel method was used to prepare Ni2Mo3N. Unique reflections of MoO3 can be observed 

at 12.76o, 25.68o, 27.31o, 35.47o and 49.25o 2q. This mixture of oxides was targeted as the 
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difference in metal ratios of the Co and Mo between the CoMoO4 (1:1) and the nitride (2:3) 

could lead to impurities of cobalt metal when the nitride is synthesised similar to the 

observation for Ni2Mo3N, where nickel metal impurities are formed [36]. The other two 

preparation methods also comprised a mixture of phases but the intensities of the MoO3 

reflections were lower. 

The elemental analysis showed that the material contained trace amounts of carbon and 

hydrogen when prepared by the modified Pechini method (C: 0.21 wt. %, H: 0.05 wt. %, 

N: 0.00 wt. %), which might be reflective of residues of the citric acid employed in the 

synthesis. However, for the method where the oxide was uncalcined, the material 

contained a larger percentage of nitrogen and hydrogen (C: 0.00 wt. %, H: 0.58 wt. %, N: 

1.30 wt. %). The nitrogen and hydrogen likely originate from the starting precursors used 

in the synthesis. 

 
Figure 120: XRD pattern of cobalt molybdenum oxide (Co2Mo3Ox). Reflections marked: ▲ 

CoMoO4 (JCPDS file number 00-021-0868) and X MoO3 (JCPDS file number 01-074-

7383). 

Raman spectroscopy was used to determine the different oxide phases present in the 

material and to confirm that the two phases were present. A representative Raman 

spectrum of the mixed phase oxide is provided in Figure 121. The Raman spectrum of this 
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material was analysed by comparing it with the spectra of CoMoO4 and MoO3 in the 

literature.  

 

Figure 121: Raman spectrum of cobalt molybdenum oxide (Co2Mo3Ox). 

The Raman bands at positions of 927, 868, 806 and 359 cm-1 were attributed to β-CoMoO4 

[126]. These Raman shifts are in very good agreement with CoMoO4 spectra reported in 

the literature [126]. The bands at 927, 868 and 359 cm-1 have been assigned in the 

literature as the Mo-O-Co stretching vibrations in cobalt molybdate [126], with the strong 

band at 927 cm-1 being due to the A1 mode of Mo=O in MoO4 [134]. The band at 806 cm-1 

has also been reported as a band that occurs in the Raman spectrum for MoO3 and is due to 

the Mo-O-Mo asymmetric stretching mode [67]. The Raman bands at 334 and 277 cm-1 

have also been assigned to MoO3 and are due to the Mo-O bending and Mo-O-Mo 

deformation mode [90]. However, the other expected bands for MoO3 at approximately 

995 and 665 cm-1 were not observed. This is unusual as the band at 995 cm-1 has a 

moderate intensity in the Raman spectrum for MoO3. However, this can be dependent upon 

the edge plane and therefore, may be reflective of morphology. The SEM images for the 

cobalt molybdenum oxide (Co2Mo3Ox) are provided in Appendix IV. Morphologies related 

to MoO3 cannot be identified and it is speculated that the MoO3 morphology would be very 

anisotropic. 
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The presence of bands for both CoMoO4 and MoO3 agrees with the XRD results, which 

showed that both these oxides were present in the material. Alshibane [55] observed 

similar bands for the CoMoO4 precursor.  

EDX analysis was performed in order to determine if the ratio of cobalt to molybdenum 

was as desired for the formation of the Co2Mo3N phase from the oxide. This analysis may 

indicate the method that was best for preparing the oxide with the required Co2Mo3Ox 

stoichiometry. 

The EDX data in Table 29 details the weight percentages for each element for the material 

prepared by the modified Pechini method. The XRD pattern showed that the material 

consisted of both CoMoO4 and MoO3. Therefore, the stoichiometric percentage of cobalt, 

molybdenum and oxygen expected for this mixture of phases would be 20.26 wt. % Co, 

49.48 wt. % Mo and 30.26 wt. % O, respectively. From the table, it can be seen that the 

values obtained from EDX agree quite well with the expected stoichiometric values. 

However, as stated before, the measure of low atomic number elements, such as oxygen, 

by EDX analysis is not reliable. This material had the correct ratio of cobalt to 

molybdenum to give the Co2Mo3Ox stoichiometry. 

 
Area Co weight (%) Mo weight (%) O weight (%) 

1 50 30 20 
2 25 48 28 
3 19 46 35 
4 17 43 40 
5 23 46 31 
6 17 45 38 
7 15 43 41 
8 16 42 42 
9 17 48 35 

10 17 46 37 
11 28 50 22 
12 21 48 32 

Average 22 44 33 
Table 29: EDX values for cobalt molybdenum oxide (Co2Mo3Ox) prepared by modified 

Pechini method. 

The EDX analysis in Table 30 provides the weight percentages for the material prepared 

by the second method. The stoichiometric percentage of cobalt, molybdenum and oxygen 

in the theoretical Co2Mo3O11 is 20.26 wt. %, 49.48 wt. % and 30.26 wt. %, respectively. 

From the table, it can be seen that the oxygen weight percentage was higher than predicted. 

However, the oxygen analysis is not reliable in EDX. The weight ratio of cobalt to 

molybdenum in this material was not as expected as there was a much lower cobalt weight 
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percentage. This is in contrast to the XRD pattern and Raman spectroscopic result for this 

material, which showed that CoMoO4 was the majority phase, which would suggest that 

the Co percentage would be higher. This result suggests that the modified Pechini method 

was superior at preparing the desired mixed phased oxide as the ratio of cobalt to 

molybdenum for that material was as required. This was also confirmed by the XRD 

pattern as the modified Pechini method had a better mixture of the CoMoO4 and MoO3 

phases. 

Area Co weight (%) Mo weight (%) O weight (%) 
1 5 41 54 
2 6 41 53 
3 6 42 52 
4 4 41 56 
5 8 42 50 
6 14 33 53 
7 7 47 47 
8 19 40 41 

Average 9 41 51 
Table 30: EDX values for cobalt molybdenum oxide (Co2Mo3Ox) prepared from method 2. 

4.2.1.2 Cobalt Molybdenum Nitride (Co2Mo3N) 

The filled β-Mn structured Co2Mo3N was prepared via temperature programmed 

nitridation of the mixed oxides. A 1:3 N2/H2 gas mixture was used and the synthesis was 

performed at different temperatures in order to try to prepare the pure-phase nitride. The 

preparation of this material followed the method used to prepare relatively phase pure 

Ni2Mo3N as shown in Chapter 3. The mixed phase Co2Mo3N has previously been prepared 

by the reaction of MoO3 and Co3O4 under 10% H2/N2 with a heating regime up to 1000oC 

[73]. As stated for Ni2Mo3N, an advantage of using N2/H2 gas mixture in the preparation is 

that it overcomes problems with using ammonia at a large scale [95]. 

Prior and Battle stated that prolonged heating favoured the formation of Co3Mo3N and 

molybdenum metal [73]. Therefore, it would be of interest to attempt to prepare the pure-

phase Co2Mo3N by using different synthesis conditions, such as varying the length of time 

of the nitridation process. 

Modified Pechini Method 

The XRD patterns of the nitrides that were prepared by the modified Pechini method at 

either 600oC or 700oC reaction temperature are shown in Figure 122. The formation of 

Co3Mo3N is favoured at higher reaction temperatures under H2/N2 atmosphere and hence, a 

lower temperature was applied in order to try to prepare Co2Mo3N. Prior and Battle 
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observed that Co3Mo3N formation was favoured at higher temperature [73]. Furthermore, 

at 800oC and 900oC under 3:1 H2/N2 Co3Mo3N is favoured (Lucy Costley-Wood, 2019, 

personal communication). However, from the XRD pattern of the material prepared at 

600oC, it can be seen that it contained a mixture of oxide phases and no evidence of any 

nitride phases and therefore, it appears that the reaction temperature was too low for the 

nitridation process to take place. Unique reflections for MoO2 can be observed at 26.08o, 

53.48o, 54.06o and 66.84o 2q, for CoO at 42.72o 2q and for CoMoO3 at 56.29o 2q. The 

elemental analysis in Table 31 shows that the material contained 1.37 wt. % of nitrogen. 

The expected percentage of nitrogen in Co2Mo3N based upon stoichiometry is 3.34 wt. % 

and for Co3Mo3N the stoichiometric amount of nitrogen is 2.93 wt. %. Therefore, it is 

suggested that a degree of nitridation of the material has occurred but the desired ternary 

phase was not synthesised at 600oC. 

 
Figure 122: XRD pattern of Co2Mo3N prepared at 600oC for 2 hours and 700oC for 2 hours 

under 3:1 H2/N2. Reflections marked:  MoO2 (JCPDS file number 01-076-1807),  CoO 

(JCPDS file number 01-070-2855),  CoMoO3 (JCPDS file number 00-021-0869),  

Co2Mo3N (JCPDS file number 01-072-6570), ● Co3Mo3N (JCPDS file number 01-089-

7953) and ● β-Mo2N0.76 (JCPDS file number 03-065-6236). 
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At 700oC, a mixture of the filled β-Mn structured Co2Mo3N and η-carbide structured 

Co3Mo3N were observed in the XRD pattern. However, the intensities of the Co2Mo3N 

reflections were greater than the Co3Mo3N reflections, suggesting that Co2Mo3N was the 

majority phase. A molybdenum nitride impurity was also observed in the XRD pattern. As 

both phases are prepared, an excess of molybdenum would be expected from the 

stoichiometry as a 2:3 ratio of Co to Mo was used to prepare the oxide. A unique reflection 

matching β-Mo2N0.76 can be seen at 37.68o 2q. The elemental analysis of this material 

revealed that it contained 3.71 wt. % of nitrogen. This value was slightly higher than the 

expected stoichiometric value for Co2Mo3N. However, NHx species formed on the surface 

of the material during the nitridation process may contribute to this value. 

These results indicate that the preparation temperature needs to be higher than 600oC in 

order to form the nitride and that a mixture of phases is formed from the oxide prepared by 

the modified Pechini method. 

Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

600oC 2 h 0.11 0.19 1.37 
700oC 2 h 0.14 0.09 3.71 

Table 31: Elemental Analysis for the cobalt molybdenum materials prepared at different 

temperatures with 3:1 H2/N2. 

 
Method where the Oxide was Uncalcined 

The XRD patterns of the nitrides that were prepared from the uncalcined oxide at either 

650oC or 700oC reaction temperatures are presented in Figure 123. As the nitridation 

process did not appear to occur at 600oC, as shown before, the lowest temperature 

employed was above 600oC. For the material prepared at 650oC, it can be seen from the 

XRD pattern that it contained a mixture of oxide phases, which were the same phases as 

the material prepared at 600oC. Therefore, it appears that the temperature needs to be at 

700oC in order for the nitridation process to take place. The elemental analysis shows that 

the material prepared at 650oC contained 2.01 wt. % nitrogen, suggesting that some 

nitridation resulting in XRD amorphous phases may possibly have occurred. Unique XRD 

reflections for MoO2 can be observed at 26.08o, 53.48o, 54.06o and 66.84o 2q, for CoO at 

42.72o 2q and for CoMoO3 at 35.74o 2q, which are indicative of reduction having 

commenced. 
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Figure 123: XRD pattern of Co2Mo3N prepared at 650oC for 3 hours, 700oC for 1 hour and 

700oC for 2 hours under 3:1 H2/N2. Reflections marked:  MoO2 (JCPDS file number 01-

076-1807),  CoO (JCPDS file number 01-070-2855),  CoMoO3 (JCPDS file number 

00-021-0869),  Co2Mo3N (JCPDS file number 01-072-6570), ● Co3Mo3N (JCPDS file 

number 01-089-7953),  Co3Mo (JCPDS file number 03-065-3519) and ◊ CoMoO4 

(JCPDS file number 00-021-0868). 

In an attempt to prepare the desired pure-phase nitride, nitridation at 700oC for either 1 

hour or 2 hours was undertaken. As stated previously, it has been suggested that prolonged 

heating favours the formation of Co3Mo3N. However, when the material was prepared for 

1 hour, it contained a mixture of oxides and Co3Mo as seen from the XRD pattern. Unique 

XRD reflections for Co3Mo can be observed at 46.41o 2q, for CoMoO4 at 26.51o 2q and for 

CoO at 36.77o 2q. Therefore, it appears that the nitride needs to be prepared at 700oC 

employing a longer time duration. The elemental analysis in Table 32, showed that, as 

expected from the XRD pattern, the percentage of nitrogen (2.30 wt. %) was lower than 

the expected stoichiometric value for Co2Mo3N. The XRD pattern of this material 

comprised a higher degree of amorphous component as evident from the intensity of its 

background. However, Co fluoresces when a Cu X-ray source is used, which results in 

adding to the background of the pattern. Therefore, the increased background may be due 

to increased Co fluorescence and not amorphous material. 

When the material was synthesised at 700oC for 2 hours, a mixture of the ternary nitride 

phases were observed in the XRD pattern. Co3Mo3N was the majority phase as the 
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intensity of the reflections were greater than those for Co2Mo3N. This is in contrast to the 

material that was prepared from the modified Pechini method and therefore, that method 

would appear to be better in terms of preparation of the desired Co2Mo3N target. The 

material contained 4.00 wt. % nitrogen, which is higher than the expected stoichiometric 

value for either Co2Mo3N or Co3Mo3N. However, possible NHx species on the surface of 

the material that result from the nitridation process would contribute to this percentage. 

Material Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen Content 
from Elemental 
Analysis (wt. %)  

Nitrogen Content 
from Elemental 
Analysis (wt. %) 

650oC 3 h 0.00 0.10 2.01 
700oC 1 h 0.00 0.00 2.30 
700oC 2 h 0.00 0.00 4.00 

Table 32: Elemental Analysis for the cobalt molybdenum materials prepared at different 

temperatures with 3:1 H2/N2. 

 
Second Method 

For the material prepared by the second method, where stoichiometric amounts of 

(NH4)6Mo7O24.4H2O and Co(NO3)2·6H2O were added together in deionised water, 

Co3Mo3N appeared to be the majority phase and the intensity of the Co2Mo3N reflections 

were very small (the XRD pattern for this method is not provided). 

Out of the three methods used, the oxide prepared by the modified Pechini route was the 

best method in order to prepare the desired Co2Mo3N phase in the highest ratio with 

respect to Co2Mo3N to Co3Mo3N. Therefore, the material that was synthesised by this 

route was investigated for its ammonia synthesis activity and lattice nitrogen reactivity. 

Optimal Conditions for Preparing the Best Ratio of Co2Mo3N from the Oxide Prepared by 

the Modified Pechini Method   

The filled β-Mn structured Co2Mo3N was prepared via temperature programmed 

nitridation of the mixed oxide at 700oC for three hours. These were found to be the optimal 

conditions to give the highest amount of Co2Mo3N. The XRD pattern of the material is 

displayed in Figure 124. The material also contained β-Mo2N0.76 and Co3Mo3N. The 

elemental analysis showed that the material contained 3.82 wt. % of nitrogen (C: 0.00 wt. 

%, H: 0.00 wt. %, N: 3.82 wt. %). This value agrees quite well with the expected 

stoichiometric amount of nitrogen for Co2Mo3N despite the fact that it comprises mixed 

phases.  
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Figure 124: XRD pattern of cobalt molybdenum nitride (Co2Mo3N). Reflections marked:  

Co2Mo3N (JCPDS file number 01-072-6570), ● Co3Mo3N (JCPDS file number 01-089-

7953) and ● β-Mo2N0.76 (JCPDS file number 03-065-6236). 

The Raman spectrum for the material is shown in Figure 125. The spectrum was similar to 

the one for the oxide, suggesting that the surface of the material possessed a passivation 

layer as expected based upon the air-sensitivity of nitrides. The Raman bands at 934, 877, 

814 and 362 cm-1 were assigned to β-CoMoO4 [126]. The bands at 934, 877 and 362 cm-1 

are stated to be due to the Mo-O-Co stretching vibrations in cobalt molybdate [126]. The 

bands at 806 and 341 cm-1 have also been reported as bands that occur in the Raman 

spectrum for MoO3 and are due to the Mo-O-Mo asymmetric stretching mode [67] and the 

Mo-O bending [90], respectively. The bands due to β-CoMoO4 could be due to the surface 

oxide layer on Co2Mo3N and Co3Mo3N and the bands relating to MoO3 could be due to a 

passivation layer on the molybdenum nitride impurity phase. Alshibane [55] and 

Alconchel et al. [105] observed similar bands for the Raman spectrum of Co3Mo3N. 
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Figure 125: Raman spectrum of cobalt molybdenum nitride (‘Co2Mo3N’). 

The representative SEM images of the material given in Figure 126 show that the 

morphology was retained with respect to the oxide precursor (SEM for oxide is provided in 

Appendix IV). The material had a porous and uneven surface, with the pores ranging in 

size from 1 to 10 µm.  

The EDX analysis in Table 33 gives the weight percentages for the material. The 

stoichiometric percentage of cobalt, molybdenum and nitrogen in Co2Mo3N is 28.08 wt. 

%, 68.58 wt. % and 3.34 wt. %, respectively. It can be seen that the values obtained from 

EDX agree well with the expected stoichiometric values, even though the XRD pattern 

showed that the material consisted of both Co3Mo3N and β-Mo2N0.76 impurities. Therefore, 

the material had the desired weight ratio for Co2Mo3N. The values of the cobalt and 

molybdenum had increased compared to the oxide precursor, which is to be expected when 

considering that oxygen has been replaced with nitrogen. The weight ratio of cobalt and 

molybdenum in the oxide and nitride were as would be expected for these materials. 
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Figure 126: SEM images of cobalt molybdenum nitride (‘Co2Mo3N’). a) 100x magnification, 

b) 500x magnification, c) 1000x magnification and d) 2000x magnification. 

The elemental maps in Figure 127 indicate that the cobalt, molybdenum and nitrogen were 

fairly evenly disbursed across the material as would be expected. 

 
Figure 127: Element Maps for ‘Co2Mo3N’. Elements: Co (red), Mo (green) and N (blue). 

The number of EDX measurements for the samples are different and therefore, the samples 

with fewer measurements may not be as accurate due to the smaller sample size. There is 

also a significant variation in the nitrogen percentage between the areas examined. It has to 

be borne in mind that, in addition to being semi-quantitative, EDX analysis is not reliable 

in relation to nitrogen analysis. 

 



 181 

 
Area Co weight (%) Mo weight (%) N weight (%) 

1 31 62 7 
2 34 66 0 
3 25 67 7 
4 28 65 6 
5 27 63 10 
6 37 63 0 
7 25 64 11 
8 24 63 13 
9 27 73 0 

10 27 66 7 
11 26 74 0 
12 24 66 10 
13 32 68 0 
14 23 65 13 
15 35 65 0 

Average 28 66 6 
Table 33: EDX values for cobalt molybdenum nitride (‘Co2Mo3N’). 

4.2.2 Ammonia Synthesis at 400oC for Co2Mo3N 

Mixed phase Co2Mo3N and Co3Mo3N has previously been tested for ammonia synthesis 

and was found to have a rate as reported by the authors as approximately 5.8 gNH3MPa0.5 

gcat-1 h-1 at 500oC and 10 MPa [130]. The quoted units for this rate are unusual and the 

origin is unclear from the reported literature. This rate was influenced by the addition of 

chromium and potassium, which altered the ratio of the ternary nitrides and the surface 

area [130] [131] [129]. 

The mixed phase Co2Mo3N prepared by the modified Pechini method in the current study 

was tested for ammonia synthesis at 400oC under 3:1 H2/N2 at atmospheric pressure for 8 

hours. The material was first pre-treated at 700oC for 2 hours under the same gas mixture. 

The conductivity profile of the material is presented in Figure 128. The ammonia synthesis 

rate of ‘Co2Mo3N’ at 400oC was 208 µmol h-1 g-1 and at 700oC was 159 ± 8 µmol h-1 g-1. 

The rate at 700oC was obtained during the pre-treatment, therefore, any phase changes 

during this period may consequently influence the rate. However, the rate was steady state 

during the pre-treatment. The lower rate of the material at 700oC may be expected as 

ammonia decomposes at this temperature. Co3Mo3N was previously reported to exhibit a 

rate of 166 ± 2 µmol h-1 g-1 under comparable reaction conditions at 400oC [35]. However, 

a direct comparison cannot be made as the relative surface areas between the materials is 

not known. An added consideration is that the materials have different morphologies. 

Unfortunately, there is not a surface area measurement value for the mixed phase nitride in 

this work as there were pro-longed technical issues with the equipment required to make 



 182 

this measurement. Moszynski et al. [129] have previously stated that there is a direct 

relationship between the Co2Mo3N content and the ammonia synthesis activity. However, 

surface area was also a factor in this reported relationship. 

 

Figure 128: Conductivity profile for ‘Co2Mo3N’ reacted with 3:1 H2/N2 at 700oC for 2 hours 

and 400oC for 8 hours. 

In the post-reaction XRD pattern (Figure 129) the ratio of Co2Mo3N to Co3Mo3N appeared 

to be the same as for the pre-reaction sample. This suggests that the material did not 

change phase during the reaction. The elemental analysis in Table 34 shows that the 

material had more nitrogen post-reaction and therefore, the pre-treatment may have further 

nitrided the material. The carbon present in the pre- and post-reaction material is most 

probably due to residues of citric acid used in the synthesis. 

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
‘Co2Mo3N’ 
Pre-reaction 

3.34 - 2.67 0.20 

‘Co2Mo3N’ 
Post-reaction 

3.34 - 3.25 0.18 

Table 34: Elemental Analysis for ‘Co2Mo3N’ comparing pre- and post-reaction with 3:1 

H2/N2 at 700oC for 2 hours and 400oC for 8 hours as shown in the reaction profile in Figure 

128. 
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Figure 129: XRD pattern for ‘Co2Mo3N’ post-reaction with 3:1 H2/N2 at 400oC for 8 hours. 

Reflections marked:  Co2Mo3N (JCPDS file number 01-072-6570), ● Co3Mo3N (JCPDS 

file number 01-089-7953) and ● β-Mo2N0.76 (JCPDS file number 03-065-6236). 

SEM analysis was conducted in order to investigate if there was any change in morphology 

and structure of ‘Co2Mo3N’ during the reaction. Figure 130 gives representative SEM 

images of the post-reaction material at different magnifications. The sample was porous 

and had an uneven surface. The pores ranged in diameter from approximately 1 µm to 10 

µm. From the SEM images, it appears that the morphology had been retained compared to 

pre-reaction.  

The cobalt, molybdenum and nitrogen were fairly evenly distributed across the material as 

evidenced by the element map in Figure 131. However, some areas appeared to have more 

cobalt, which suggests that there may have been some phase segregation of cobalt, 

although this was not evidenced in the XRD pattern. There did not appear to be any areas 

that had a larger percentage of cobalt in the EDX analysis (data not provided). 
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Figure 130: SEM images of ‘Co2Mo3N’ post reaction with 3:1 H2/N2 at 400oC for 8 hours. 

a) 1000x magnification, b) 1000x magnification, c) 2000x magnification and d) 4000x 

magnification. 

 
Figure 131: Element Map for ‘Co2Mo3N’ post-reaction with 3:1 H2/N2 at 400oC. Elements: 

Co (red), Mo (green) and N (blue). 

4.2.3 Lattice Nitrogen Reactivity of Co2Mo3N 

4.2.3.1 Lattice Nitrogen Reactivity of Co2Mo3N at 700oC 

In order to determine the lattice nitrogen reactivity in Co2Mo3N, the material was reduced 

at 700oC under a flow of 3:1 H2/Ar at ambient pressure for 7 hours. As observed from the 

conductivity profile data in Figure 132, for the first 60 minutes the conductivity decreased 

in a non-steady state manner. After the first 60 minutes, the rate became steady state with 
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ammonia production occurring at a rate of 13 µmol h-1 g-1 although at this temperature 

ammonia is thermodynamically unstable with respect to its decomposition. There was a 

total decrease in conductivity of 51 µS/cm over the 7 hours at 700oC. Co3Mo3N has been 

shown to have a linear decrease at 700oC when tested at this temperature for 1 hour [135]. 

However, the ammonia production rate was not reported. 

 

 
Figure 132: Conductivity profile for ‘Co2Mo3N’ reacted with 3:1 H2/Ar at 700oC for 7 hours. 

The XRD patterns of the pre- and post-reaction materials can be compared in Figure 133. 

The post-reaction XRD pattern shows a shift of the Co3Mo3N reflections to higher 2θ 

angles, which indicates that there was a decrease in the lattice nitrogen content of this 

phase as would be expected from its known phase transition to Co6Mo6N [55] [135] [35]. 

However, the analysis is complicated by the degree of overlap between reflections relating 

to the Co6Mo6N and Co2Mo3N phases. The reflections of Co2Mo3N did not appear to move 

to higher 2θ values post-reaction as clearly seen by the peak at approximately 45.08o 2θ. 

This suggests that this phase did not lose lattice nitrogen. This confirms the previous 

observations of Adamski et al. who have reported that the Co2Mo3N phase remains stable 

under pure hydrogen at 700oC [133], whereas Co3Mo3N does not. The molybdenum nitride 

impurity was reduced to molybdenum metal during the reaction, as would be expected on 

the basis of prior literature [135]. There are no unique reflections for molybdenum and 

hence, this phase cannot be completely established. However, the Raman spectrum for this 

material showed bands associated with MoO3, suggesting that molybdenum metal, which 

oxidised upon standing in ambient air, was present in this material (spectrum not shown). 
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Figure 133: Comparison of XRD patterns for ‘Co2Mo3N’ pre- and post-reaction with 3:1 

H2/Ar at 700oC for 7 hours. Reflections marked:  Co2Mo3N (JCPDS file number 01-072-

6570), ● Co3Mo3N (JCPDS file number 01-089-7953), ● β-Mo2N0.76 (JCPDS file number 

03-065-6236),  Mo (JCPDS file number 01-071-4645) and ● Co6Mo6N (data from [55]). 

In addition, the elemental analysis showed that there was a loss of more than half the 

nitrogen content compared to pre-reaction as seen in Table 35. As the material contains 

Co6Mo6N, Co2Mo3N and Mo, the expected stoichiometric percentage of nitrogen in this 

material is 1.92 wt. %, assuming a 1:1:1 ratio. The experimental value was quite close to 

this expected value. The percentage of the overall nitrogen that was lost from the material 

that was converted to ammonia was ca. 25% (as determined from the change in 

conductivity of the H2SO4 solution through which the reactor effluent is passed) with the 

remainder of the nitrogen lost presumably being in the form of dinitrogen. 
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Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
‘Co2Mo3N’ 
Pre-reaction 

3.34 - 4.41 0.12 

‘Co2Mo3N’ 
Post-reaction 

3.34 - 2.07 0.22 

Table 35: Elemental Analysis for ‘Co2Mo3N’ comparing pre- and post-reaction with 3:1 

H2/Ar at 700oC for 7 hours. 

The stability of the filled β-Mn structured Co2Mo3N is similar to the observations for the 

filled β-Mn structured Ni2Mo3N and η-carbide structured Ni2GaMo3N tested under the 

same conditions. This suggests that the lattice nitrogen reactivity of the ternary nitrides is a 

complex relationship between the metal composition and structure. The two nickel 

containing nitrides are stable, even though they have different structures, suggesting that 

the metal composition is more important than structure. However, this is not the case with 

the cobalt containing nitrides, suggesting that the structure also affects the stability. The 

local nitrogen environment between the two structures is similar with nitrogen coordinated 

to six molybdenum species in each case. Therefore, the influence of the other metal 

component on the Mo6N species could possibly affect the lattice nitrogen reactivity. To the 

author’s knowledge, the bond distances in Co2Mo3N have not been reported in the 

literature and therefore, a comparison cannot be made with those for Co3Mo3N. In 

Co3Mo3N, the nitrogen relocates from the 16c site to the 8a site when the material 

transforms to Co6Mo6N. It could be suggested that for the filled β-Mn structure, nitrogen 

relocation within the crystallographic structure is less favourable and the Co2Mo3N phase 

is more stable. For the η-carbide structured Co3Mo3N, four Mo, six Co and two N species 

surround the molybdenum species, whereas in the filled β-Mn structure, the molybdenum 

species are bonded to six Co, six Mo and two N species [59]. Therefore, the Co atoms have 

a proportionately greater influence on the molybdenum species in the filled β-Mn structure 

and this in turn might affect the Mo-N interaction. This would suggest that the structure 

(i.e. η- carbide versus filled β-Mn) has some impact on the lattice nitrogen reactivity for 

materials of related composition (i.e. Co-Mo-N). The coordination diagrams of 

molybdenum in the η-carbide structured Co3Mo3N and the filled β-Mn structured 

Co2Mo3N are presented in Figure 134 and Figure 135, respectively. 
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Figure 134: Coordination of molybdenum species in the η-carbide structure: molybdenum 

(grey), cobalt (green) and nitrogen (blue). Adapted from [135]. 

 

Figure 135: Coordination of molybdenum species in the filled β-Mn structure: molybdenum 

(grey), cobalt (green) and nitrogen (blue). Adapted from [135]. 

The SEM images in Figure 136 show that the morphology was similar to the pre-reaction 

material. The particles had an irregular shape with a smooth surface and pores. The 

morphology of the post-reaction nitrides (Ni2Mo3N, Ni2GaMo3N and mixed phase 

‘Co2Mo3N’) tested under 3:1 H2/Ar within this research are different.  
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Figure 136: SEM images of ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar. a) 200x magnification, 

b) 1000x magnification, c) 2000x magnification and d) 2000x magnification. 

The element map in Figure 137 shows that there was a fairly even distribution of cobalt 

and molybdenum over the sample, although as with the post N2/H2 reaction sample, there 

were areas that contained less molybdenum. This suggests that there may have been phase 

segregation during the reaction. However, this was not evidenced in the EDX analysis 

(data not provided). 

 
Figure 137: Element Map for ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar at 700oC. Elements: 

Co (red), Mo (green) and N (blue). 
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4.2.3.2 Lattice Nitrogen Reactivity of Co2Mo3N at 800oC and 900oC 

The stability of Co2Mo3N and Co6Mo6N under reducing conditions and the possible lattice 

nitrogen reactivity of the material was investigated further by testing the material under 3:1 

H2/Ar at 800oC and 900oC. The material was tested at 900oC, in order to make a 

comparison with the other ternary nitrides examined elsewhere within this thesis. The 

conductivity data in Figure 138 for the 800oC reaction and in Figure 139 for the 900oC 

reaction show that the rate was non-steady state and the production of ammonia was 

minimal at both temperatures. There was a decrease in conductivity of 44 µS/cm at 800oC 

and of only 31 µS/cm at 900oC, over the 7 hours. This result is in accordance with the 

limited stability of ammonia under these conditions under which much of the lattice 

nitrogen would therefore be lost as N2. 

 
Figure 138: Conductivity profile for ‘Co2Mo3N’ reacted with 3:1 H2/Ar at 800oC for 7 hours. 
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Figure 139: Conductivity profile for ‘Co2Mo3N’ reacted with 3:1 H2/Ar at 900oC for 7 hours. 

4.2.3.2.1 XRD Pattern and Elemental Analysis of Co2Mo3N Post 800oC Reaction 

The pre- and post-reaction XRD patterns are provided in Figure 140. As was observed 

before, the Co3Mo3N phase shifted to higher 2θ values. This was most clearly seen when 

comparing the peak at approximately 35.46o 2θ, pre- and post-reaction. Moreover, the 

XRD reflections for Co6Mo6N appear to have shifted to even higher 2q values than 

expected, suggesting that this phase has lost even more nitrogen. The Co2Mo3N appears to 

remain stable at this temperature, with no shift in the peak positions observed for this 

phase. The peak for Co2Mo3N at approximately 45.08o 2θ does not change position 

compared to pre-reaction. This suggests that the lattice nitrogen in this phase was 

unreactive. As was seen at 700oC, the molybdenum nitride impurity was reduced to 

molybdenum metal during the reaction. However, as there are not unique reflections for 

Mo, this phase cannot be completely confirmed as is the case at 700oC. However, the 

reduction of molybdenum nitride to Mo has been reported to occur under 3:1 Ar/H2 at 

700oC [135] and therefore, would be assumed to occur in this case as well. 

The elemental analysis displayed in Table 36 shows that the nitrogen percentage decreased 

significantly compared to pre-reaction. If the material contained Co6Mo6N, Co2Mo3N and 

Mo, the expected stoichiometric percentage of nitrogen in this material is 1.92 wt. %, 

assuming a 1:1:1 ratio. The material had a lower percentage of nitrogen than this value, 

however, as the XRD pattern showed that the reflections of Co6Mo6N had shifted to higher 

2θ values, this lower value is to be expected. The XRD pattern showed that the reflections 
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of Co2Mo3N had not shifted positions and therefore, the lower nitrogen value is not due to 

a loss of some nitrogen from this phase. Therefore, the loss of nitrogen is expected to be 

only from the Co3Mo3N phase. The percentage of nitrogen that was lost from the material 

that was converted to ammonia was ca. 24%. This value was similar to the calculated 

amount for the material reacted at 700oC. However, NH3 becomes less stable as the 

temperature is increased. 

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
‘Co2Mo3N’ 
Pre-reaction 

3.34 - 2.67 0.20 

‘Co2Mo3N’ 
Post-reaction 

3.34 - 0.72 0.34 

Table 36: Elemental Analysis for ‘Co2Mo3N’ comparing pre- and post-reaction with 3:1 

H2/Ar at 800oC for 7 hours as shown in Figure 138. 

 
Figure 140: Comparison of XRD patterns for ‘Co2Mo3N’ pre- and post-reaction with 3:1 

H2/Ar at 800oC for 7 hours. Reflections marked:  Co2Mo3N (JCPDS file number 01-072-

6570), ● Co3Mo3N (JCPDS file number 01-089-7953), ● β-Mo2N0.76 (JCPDS file number 

03-065-6236),  Mo (JCPDS file number 01-071-4645) and ● Co6Mo6N (data from [55]). 
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4.2.3.2.2 XRD Pattern and Elemental Analysis of Co2Mo3N Post 900oC Reaction 

The XRD pattern in Figure 141 shows that there was a significant change in the post-

reaction material compared to pre-reaction. The material was observed to have completely 

decomposed to Co0.08Mo0.92, α-Co and either a cobalt nitride phase or a cobalt 

molybdenum alloy.  

It could be suggested that there was a lattice shift of Co2Mo3N to higher 2q values as 

evidenced by two reflections at 40.57o and 42.87o 2q pre-reaction and 40.65o and 43.52o 2q 

post-reaction. However, the other two expected reflections for Co0.08Mo0.92 are evident in 

the XRD pattern. In addition, the other reflections due to Co2Mo3N are not apparent in the 

XRD pattern. Therefore, it is proposed that the material had decomposed under these 

conditions.  

 

Figure 141: Comparison of XRD patterns for ‘Co2Mo3N’ pre- and post-reaction with 3:1 

H2/Ar at 900oC for 7 hours. Reflections marked:  Co2Mo3N (JCPDS file number 01-072-

6570), ● Co3Mo3N (JCPDS file number 01-089-7953), ● β-Mo2N0.76 (JCPDS file number 

03-065-6236),  Co0.08Mo0.92 (JCPDS file number 01-071-7326), ● α-Co (JCPDS file 

number 01-089-4307), ▲ Co2N (JCPDS file number 01-074-8393), + Co7Mo6 (JCPDS file 

number 00-029-0489). 
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This result suggests that the lattice nitrogen in the filled b-Mn structured Co2Mo3N was 

reactive at the elevated temperature and that the material was not as stable at 900oC 

compared to the filled b-Mn structured Ni2Mo3N and h-carbide structured Ni2GaMo3N. A 

possible explanation for this difference in stability and lattice nitrogen reactivity could be 

due to the bonding character of the M-Mo bond (M = Ni, Co) and its influence on the 

strength of the Mo-N interaction. The difference in electronegativity between Co (1.88) 

and Mo (2.16) is slightly greater than that for Ni (1.91) and therefore, the interaction is 

more ionic. The Mo-N bond distances in Co3Mo3N are calculated to be 2.113 Å [59] 

compared to 2.086 Å and 2.097 Å for Ni2Mo3N and Ni2GaMo3N, respectively [59] [121]. 

Unfortunately, the Mo-N distances in Co2Mo3N have not been reported in the literature to 

the writer’s knowledge. 

The elemental analysis shows that the amount of nitrogen had decreased significantly after 

reduction at 900oC as presented in Table 37 and as expected. The majority of the lattice 

nitrogen would have been lost as N2 as the conductivity did not decrease as would be 

expected for the decrease in nitrogen observed. The percentage of lattice nitrogen removed 

from the material that was converted to ammonia was ca. 13%. Carbon was not detected in 

this sample pre- and post-reaction, contrasting with the other reported samples. However, 

the weight percentage of carbon in the other samples was very low and therefore, was 

unlikely to have affected the reduction process. 

 
Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (%) 

Calculated 
Stoichiometric 

Carbon 
Content (%) 

Nitrogen 
Content from 

Elemental 
Analysis (%) 

Carbon 
Content from 

Elemental 
Analysis (%) 

‘Co2Mo3N’ 
Pre-reaction 

3.34 - 3.82 0.00 

‘Co2Mo3N’ 
Post-reaction 

3.34 - 0.48 0.00 

Table 37: Elemental Analysis for ‘Co2Mo3N’ comparing pre- and post-reaction with 3:1 

H2/Ar at 900oC for 7 hours. 

4.2.3.2.3 SEM Analysis of Co2Mo3N Post 800oC Reaction 

The SEM images of the post 800oC material are displayed in Figure 142. The morphology 

of this material resembled the one for the pre-reaction material and it consisted of a porous 

material with a rough surface. The pores ranged in size from 1 µm to 70 µm, which is 

larger than the pre-reaction material, although this observation is statistically limited in 

view of the comparatively small number of observations.  



 195 

 
Figure 142: SEM images of ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar at 800oC. a) 1000x 

magnification, b) 1000x magnification, c) 2000x magnification and d) 4000x magnification. 

The elemental map of the material illustrates that the cobalt and molybdenum were evenly 

distributed across the sample, as shown in Figure 143. In this sample, there was not an area 

with higher cobalt concentration as seen for the post 700oC material. This suggests that the 

material did not undergo segregation at this temperature. The reason for this difference is 

not clear. 

 
Figure 143: Element Map for ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar at 800oC. Elements: 

Co (red), Mo (green) and N (blue). 
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4.2.3.2.4 SEM Analysis of Co2Mo3N Post 900oC Reaction 

SEM analysis was conducted on this sample to investigate if the decomposition of the 

material had an effect on the morphology. Previous materials that have decomposed under 

3:1 H2/Ar have been shown to have a porous nature after reduction [136], which might 

prove useful in terms of other applications. Therefore, it would be of interest to examine 

the morphology post-reaction. The morphology of the material was similar to the pre-

reaction sample as observed from the SEM images displayed in Figure 144. The material 

contained pores and cracks that ranged in size from 1 µm to 100 µm, although as stated 

earlier, this observation is statistically limited. Therefore, although the material 

decomposed, there was not a large change in the morphology. However, the material did 

appear to be more porous post-reaction.  

 

Figure 144: SEM images of ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar at 900oC. a) 200x 

magnification, b) 500x magnification, c) 1000x magnification and d) 2000x magnification. 

The elemental maps in Figure 145 show that the cobalt and molybdenum were fairly 

evenly distributed across the sample, although, some areas of the elemental map did not 

show the presence of molybdenum. This somewhat agrees with the XRD pattern, as 

although the material had decomposed, cobalt molybdenum alloy phases had been formed 

and some segregation was observed. 
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Figure 145: Element Maps for ‘Co2Mo3N’ post-reaction with 3:1 H2/Ar at 900oC. Elements: 

Co (red), Mo (green) and N (blue). 

4.3 Conclusions 
In this chapter, the filled b-Mn structured Co2Mo3N and the h-carbide structured Co3Mo3N 

were examined for their ammonia synthesis activity and lattice nitrogen reactivity. This 

was performed in order to analyse the effect the metal composition and crystal structure 

had on the activity. A comparison could also be made with the filled b-Mn structured 

Ni2Mo3N and h-carbide structured Ni2GaMo3N discussed in Chapter 3. 

Pure phase Co2Mo3N could not be synthesised and instead the material was a mixture of 

the filled b-Mn structured Co2Mo3N and the h-carbide structured Co3Mo3N, which is 

consistent with previous literature reports. Three preparation methods were used to 

synthesise a cobalt molybdenum oxide precursor. This was performed in an attempt to 

prepare the single phase Co2Mo3N from the oxide. It was found that the modified Pechini 

method, that was used to prepare b-Mn structured Ni2Mo3N, was the best route to 

preparing the highest ratio of Co2Mo3N to Co3Mo3N as indicated by the relative intensities 

in the powder XRD patterns. The optimal nitridation conditions were observed to be at 

700oC for 3 hours. 

The mixed phase ‘Co2Mo3N’ was shown to be active for ammonia synthesis. It exhibited a 

comparatively high activity of 208 µmol h-1 g-1 at 400oC and 159 ± 8 µmol h-1 g-1 at 700oC. 

Pure phase Co3Mo3N has previously been reported to have a rate of 166 ± 2 µmol h-1 g-1 at 

400oC [35]. 

‘Co2Mo3N’ was reacted under 3:1 H2/Ar at different temperatures to establish the lattice 

nitrogen reactivity and stability of the material. Co2Mo3N was shown to retain its structure 

up to 800oC. Co3Mo3N lost the majority of the lattice nitrogen at 700oC and 800oC yielding 

Co6Mo6N as expected. Therefore, the bulk lattice nitrogen in this phase was more reactive 
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than in Co2Mo3N. However, when reacted at 900oC, the mixed-phase material decomposed 

to the metal constituent components and most of the lattice nitrogen was lost. Therefore, it 

can be concluded that the Co2Mo3N, Co6Mo6N and Co3Mo3N phases were not stable under 

these conditions. In Chapter 3, it was shown that the filled b-Mn structured Ni2Mo3N and 

the h-carbide structured Ni2GaMo3N were not reduced at this temperature. Consequently, 

these results suggest that the lattice nitrogen reactivity of these ternary nitrides is a 

complex relationship between the metal composition and structure type. 
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5. Iron Molybdenum Materials 
5.1 Introduction 
As the lattice nitrogen reactivity of h-carbide Co3Mo3N and Ni2GaMo3N has been shown 

to be different, it would be of interest to investigate the activity and lattice nitrogen 

reactivity of another h-carbide structured nitride. If a nitride with a different metal 

composition was studied, it may be possible to gain yet further insight into the metal 

composition-activity relationship. 

The h-carbide structured Fe3Mo3N is a known ammonia synthesis catalyst [35] [39] that 

has a lower activity than Co3Mo3N and therefore, has been less well studied [35] [135]. 

Fe3Mo3N is isostructural with Co3Mo3N as both have the h-6 carbide structure [59] [60]. 

The lattice nitrogen in Co3Mo3N has been shown to be highly reactive under Ar/H2 

atmosphere. Although Fe3Mo3N is isostructural with Co3Mo3N, the lattice nitrogen of this 

material has been revealed to be less reactive [35] [135]. Up to a temperature of 800oC, 

Fe3Mo3N has been observed to be stable under 3:1 H2/Ar and the loss of lattice nitrogen 

was minimal. Powder neutron diffraction data showed that the nitride did not lose bulk 

nitrogen [135] and therefore, under 3:1 H2/Ar, ammonia is not produced from the ternary 

nitride bulk lattice nitrogen. There is the possibility that the bulk nitrogen is not mobile 

within this system and that a surface Mars-van Krevelen type mechanism could still occur. 

In order to further investigate this possibility, h-carbide structured Fe3Mo3N and Fe3Mo3C 

have been synthesised and their comparative performance for ammonia synthesis is 

examined in this chapter. 

5.1.1 Ammonia Synthesis Activity of Co3Mo3C and Fe3Mo3C 

The replacement of lattice nitrogen with carbon is another method that can be used to 

investigate the activity of these materials. As stated in Chapter 3, there are two possible 

explanations for the high activity of Co3Mo3N. 

As mentioned in the introduction of Chapter 3, Co3Mo3C has been studied for ammonia 

synthesis activity in order to see if the lattice nitrogen is required in this material [54]. It 

was found that the activity of this material occurred at higher temperatures than for 

Co3Mo3N and was associated with the substitution of lattice carbon with nitrogen. 

As Fe3Mo3N was found to be less reducible than Co3Mo3N [35], it would be of interest to 

investigate the role the lattice nitrogen has in the iron molybdenum material. The synthesis 
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and testing of Fe3Mo3C would give an insight into the part the lattice nitrogen plays and 

comparisons could be made between Fe3Mo3C and Co3Mo3C. 

5.1.2 Synthesis of Fe3Mo3N 

One of the most widely applied ways of preparing Fe3Mo3N was devised by Bem et al. 

[49]. In this method, a 0.25 M aqueous solution of FeCl2 and a 0.55 M aqueous solution of 

Na2MoO4.2H2O were mixed together and the resulting product was FeMoO4. The nitride 

was then prepared by ammonolysis of the oxide precursor. Bem et al. also stated that the 

nitride can be formed by using a 5% H2/N2 nitridation mixture [49]. The XRD pattern of 

Fe3Mo3N revealed that the material was phase pure and therefore, this two-step method 

was shown to be successful. Other research that followed this method has also resulted in 

the formation of single phase Fe3Mo3N [135] [59] [74]. 

A modification of this method was investigated by McKay et al. [35], who used 

Fe(NO3)3.9H2O as the starting material. Unsurprisingly, the oxide precursor formed from 

this material was different from when FeCl2 was used. The XRD pattern showed that the 

Fe2(MoO4)3 phase was prepared instead of FeMoO4. After ammonolysis of the oxide 

precursor, the XRD pattern showed that the desired nitride was formed along with 

substantial amounts of g-Mo2N impurity [35] [137], which is a consequence of the 2/3 

Fe/Mo stoichiometric ratio in the precursor phase [135]. 

Another method of preparing Fe3Mo3N involves plasma nitridation of the oxide precursor 

with N2/H2 [74]. However, an FeMo alloy impurity was also formed alongside the desired 

ternary nitride. It was stated that the alloy was formed as the temperature was too high and 

hard to control due to thermal runaway. Fe3Mo3N has also been prepared by ball-milling of 

Mo2N with iron [138] and heating hydrolysed alkanolamine complexed precursors in 

ammonia at 950oC [139]. A one step synthesis of Fe3Mo3N has been proposed by heating 

Fe2O3, molybdenum and sodium azide in an autoclave at 750oC for 10 hours [140]. 

Fe3Mo3N was also synthesised by heating iron powder and molybdenum powder under 

10% H2/N2 at 975oC for 36 hours [60]. However, a small amount of molybdenum metal 

was observed in the XRD pattern when this method was used. 

5.1.3 Synthesis of Fe3Mo3C 

As with the formation of Ni2Mo3C, issues arose when the TPR method was used to 

synthesise Fe3Mo3C from the oxide precursor under CH4/H2 [141] [105]. Oyama et al. 

noted that the resulting product was a mixture of phases with the major phase having a 

hexagonal structure, which was not definitively identified [141]. Alconchel also observed a 
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mixture of phases, with the products being b-Mo2N and Mo12Fe22C10 [105]. Therefore, 

Alconchel et al. decided to prepare Fe3Mo3C by carburisation of Fe3Mo3N with CH4/H2 via 

topotactic lattice exchange of N by C [105]. The XRD pattern of this material showed that 

the single-phase ternary carbide was formed up to a temperature of 980 K. 

Other methods have been used in order to prepare Fe3Mo3C, for example the ball milling 

of Fe, Mo and carbon in vacuum for 194 hours [142]. However, iron metal was also 

formed alongside the ternary carbide. Tsuchida attempted to prepare single phase Fe3Mo3C 

by ball milling Fe, Mo and carbon for 30 minutes at 700oC to 900oC, after having ground 

the sample together for 3 hours [143]. The author stated that the preparation of the carbide 

depended on the homogeneity of the mixture. Nevertheless, a mixture of Fe3Mo3C and 

FeMoO3 was observed in the XRD pattern of the resultant material. 

Other sources of carbon have also been used to synthesise Fe3Mo3C. The single-phase 

carbide has been prepared using decolourising carbon at 950oC under argon gas [48]. 

Fe3Mo3C was also prepared by a sol-gel method using chitosan solution, FeCl2 and 

(NH4)2MoO4 to form FeMoO4, which was subsequently heat treated under Ar/H2 [144]. 

However, Mo2C was formed as an impurity when this method was used. 

5.2 Results and Discussion 

5.2.1 Iron Molybdenum Nitride (Fe3Mo3N) 

5.2.1.1 Iron Molybdenum Oxide (FeMoO4) 

The FeMoO4 precursor was targeted in order to synthesise pure phase Fe3Mo3N by the 

nitridation of the oxide with 3:1 H2/N2 mixture. The XRD pattern of the oxide precursor 

prepared in this work is displayed in Figure 146. It can be seen that the resultant material 

comprised a mixture of FeMoO4, Fe2(MoO4)3 and Fe2O3. Therefore, although iron (II) 

chloride tetrahydrate was used as a starting material, a mixture of phases comprising iron 

in different oxidation states (+2 and +3) was still observed. The elemental analysis showed 

that, as expected, the material did not contain any carbon, hydrogen or nitrogen. 
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Figure 146: XRD pattern of iron molybdenum oxide (FeMoO4). Reflections marked: ■ 

FeMoO4 (JCPDS file number 00-028-0488), + Fe2O3 (JCPDS file number 01-076-4579) 

and ○ Fe2(MoO4)3 (JCPDS file number 01-074-6404). 

The Raman spectrum for the iron molybdenum oxide is presented in Figure 147. The 

Raman bands at positions of approximately 342, 775, 808, 921 and 967 cm-1 were 

attributed to Fe2(MoO4)3. These Raman shifts are in very good agreement with Fe2(MoO4)3 

spectra reported in the literature [105] [145]. The band at 808 cm-1 is also observed in 

MoO3 as a strong band. The bands at 921 and 967 cm-1 are assigned to the symmetric 

stretching modes of MoO4 units, the bands at 775 and 808 cm-1 are the anti-symmetric 

stretching modes, the band at 342 cm-1 is assigned to a bending mode and the bands below 

280 cm-1 are due to lattice modes [146]. The strong bands at 967 and 775 cm-1 have been 

assigned in the literature as Mo in a tetrahedral coordination in Fe2(MoO4)3 [145]. It has 

also been suggested that the band at 808 cm-1 could be due to octahedrally coordinated Mo 

species, since MoO3, which has octahedral Mo coordination, has a band at a similar 

wavenumber [145]. The bands at 593 and 212 cm-1 are observed in the Raman spectrum for 

Fe2O3 and the bands at 921, 342 and 276 cm-1 are seen in the Raman spectrum of b-

FeMoO4 [147], which corresponds to the XRD assignment presented above. However, the 

other bands expected for FeMoO4 and Fe2O3 were not observed in the Raman spectrum in 

Figure 147. It is currently unclear why this is the case.  
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Figure 147: Raman spectrum of iron molybdenum oxide (FeMoO4). 

SEM analysis was performed in order to see if the different phases could be distinguished 

on the basis of, for example, differing morphology. The representative SEM images for the 

oxide precursor are shown in Figure 148. The material had an irregular morphology and 

appeared to consist of rounded particles. The material had a surface area of 1 m2/g, a pore 

volume of 0.02 cc/g and an average pore radius of 20.31 Å. To the author’s knowledge, 

other groups that used a similar preparation method did not publish SEM images of the 

iron molybdenum oxide [59] [148]. Fe2(MoO4)3, for example, has been shown to have 

different morphologies depending on the preparation method [149] [150]. The different 

oxides did not appear to have distinguishable morphologies. 
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Figure 148: SEM images of iron molybdenum oxide (FeMoO4). a) 1000x magnification, b) 

2000x magnification, c) 4000x magnification and d) 6000x magnification. 

The EDX weight percentages for each element in the oxide precursor are provided in Table 

38. For FeMoO4, the percentage of iron, molybdenum and oxygen in the sample should be 

25.88 wt. %, 44.46 wt. % and 29.66 wt. % respectively. However, the XRD pattern 

showed that the material was a mixture of phases containing Fe2(MoO4)3, FeMoO4 and 

Fe2O3. From the EDX analysis, the calculated stoichiometry of this material is Fe5Mo4O24. 

This suggests that the three oxides are present in equal proportions, although, the 

percentage of oxygen would be lower than the obtained value. Therefore, the three phases 

were present in the material, agreeing with the XRD pattern.  

Area Fe weight (%) Mo weight (%) O weight (%) 
1 29 34 36 
2 23 37 40 
3 28 39 33 
4 25 36 40 
5 29 35 36 

Average 27 36 37 
Table 38: EDX values for iron molybdenum oxide (FeMoO4). 
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5.2.1.2 Iron Molybdenum Nitride (Fe3Mo3N) 

Although the XRD pattern of the oxide precursor showed it contained a mixture of 

Fe2(MoO4)3, FeMoO4, and Fe2O3, reasonably phase-pure Fe3Mo3N was formed after 

ammonolysis. However, small traces of MoN impurity were apparent in the XRD pattern 

as shown in Figure 149. 

The elemental analysis showed that the material contained 4.27 wt. % nitrogen (C: 0.00 wt. 

%, H: 0.00 wt. %, N: 4.27 wt. %). The stoichiometric weight percentage of nitrogen in 

Fe3Mo3N is 2.98 wt. %. Therefore, the nitride contained a considerably higher percentage 

of nitrogen than the calculated stoichiometric content. However, the excess nitrogen will 

be due to the molybdenum nitride impurity and any NHx species on the surface of the 

material. From the XRD pattern, the MoN phase content appeared to be very low and 

therefore, the contribution from this phase would be small. Hence, the excess nitrogen is 

more likely due to the NHx species on the surface of the material.  

 

 
Figure 149: XRD pattern of iron molybdenum nitride (Fe3Mo3N). Reflections marked: ▼ 

Fe3Mo3N (JCPDS file number 00-048-1408) and  MoN (JCPDS file number 01-073-

9468). 

Raman spectroscopy was used to characterise possible surface oxide species on the nitride. 

The presence of an oxide surface layer may affect the ammonia synthesis activity and 
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therefore, it is important to observe if one occurs on the surface of the material. The 

Raman spectra of Fe3Mo3N is presented in Figure 150. The Raman bands at positions of 

967, 927, 806, 775 and 344 cm-1 were attributed to Fe2(MoO4)3 [145] [146]. These Raman 

bands match the spectrum observed for the oxide precursor in Figure 147. These bands 

have been assigned in the literature to the MoO4 vibrations [146]. However, it has been 

shown that FeMoO4 has a similar Raman spectrum when a high-power laser is used [151]. 

It has been suggested by Boucherit et al. that the Fe2+ oxidises to Fe3+ and possibly 

transforms to Fe2(MoO4)3. However, iron would need to be lost from the material in order 

for this process to occur. The presence of Fe2(MoO4)3 in the Raman spectrum of Fe3Mo3N 

has been reported previously in the literature [105]. It has been shown that Fe2(MoO4)3 and 

Fe2O3 are the products of the oxidation of the nitride [59]. 

The results from the Raman spectrum demonstrate that, as expected in view of the 

passivation treatment conducted prior to discharge from the ammonolysis reactor, there 

was a non-XRD apparent oxide layer covering the surface of the nitride. 

 
Figure 150: Raman spectrum of iron molybdenum nitride (Fe3Mo3N). 

In order to compare the activity of the nitride and carbide, the morphology of the two 

materials has to be similar to remove any concerns that effects arising from structure 

sensitivity might be incorrectly ascribed to composition. Therefore, SEM analysis of the 

nitride was performed in order for a comparison with the topotactically synthesised carbide 
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to be discussed later to be made. Figure 151 shows representative SEM images for 

Fe3Mo3N. The SEM images show a similar morphology to that of the oxide precursor. It 

can be seen that the morphology of the sample appeared to consist of rounded particles. 

The material had a surface area of 13 m2/g, a pore volume of 0.07 cc/g and an average pore 

radius of 30.78 Å. In the literature, the surface area of the nitride ranges from 4 to 18 m2/g 

[148] [94] [152] and therefore, this result is in agreement with the published work. Since 

the sample had an oxide surface layer, the BET surface area may not be representative of 

the area exhibited by the sample during testing.    

Previous studies by groups that used a similar preparation method had a different 

morphology. Their images showed smooth, rounded particles with an irregular 

morphology [59] [148] [137]. The η-carbide structured Co3Mo3N was shown to consist of 

needles when prepared by ammonolysis [54]. However, ammonolysis of an oxide 

precursor generally results in a pseudomorphic transformation. As there were three phases 

present in the oxide precursor, this transformation is complicated. However, there did not 

appear to be different morphologies in the oxide precursor.  

 
Figure 151: SEM images of iron molybdenum nitride (Fe3Mo3N). a) 1000x magnification, 

b) 2000x magnification, c) 6000x magnification and d) 6000x magnification. 

An iron only containing component was observed in the XRD pattern for the oxide 

precursor and a molybdenum nitride impurity was seen in the XRD pattern of the nitride. 

Therefore, an elemental map was performed for this material in order to see if there were 
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areas of phase separation. The elemental map in Figure 152 shows that the iron, 

molybdenum and nitrogen were evenly dispersed across the sample.  

 

 
Figure 152: Element Map for Fe3Mo3N. Elements: Fe (red), Mo (green) and N (blue). 

The EDX analysis for Fe3Mo3N is given in Table 39. The stoichiometric percentage of 

iron, molybdenum and nitrogen in the sample is 35.69 wt. %, 61.32 wt. % and 2.98 wt. %, 

respectively. The nitrogen weight percentage was greater than expected and was highly 

variable. However, the limitations of EDX for light element analysis should be taken into 

consideration. As with the oxide precursor, the percentage of molybdenum and iron were 

approximately the same as the expected stoichiometric values. 

 
Area Fe weight (%) Mo weight (%) N weight (%) 

1 38 51 11 
2 34 59 7 
3 35 56 7 
4 30 59 11 
5 33 56 12 
6 33 57 10 
7 32 59 9 
8 36 58 6 
9 31 57 12 

10 31 56 13 
11 32 59 9 
12 38 55 7 
13 44 56 0 
14 28 72 0 
15 33 67 0 
16 34 66 0 
17 37 55 8 
18 30 60 10 
19 31 59 10 
20 35 60 6 

Average 34 58 8 
Table 39: EDX values for iron molybdenum nitride (Fe3Mo3N). 
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5.2.1.3 Ammonia Synthesis at 400oC for Fe3Mo3N 

Fe3Mo3N has previously been examined for its ammonia synthesis activity [35] [39] [94] 

and lattice nitrogen reactivity [35]. The highest ammonia synthesis rates for Fe3Mo3N at 

400oC and ambient pressure which have been reported are 143 µmol h-1 g-1 [39] and 95 

µmol h-1 g-1 [35]. However, these materials contained impurities, including γ-Mo2N. The γ-

Mo2N phase is a known ammonia synthesis catalyst and therefore, it would be expected to 

contribute to the ammonia synthesis activity. The pure phase Fe3Mo3N has previously been 

reported to have a rate of 91 µmol h-1 g-1 at 400oC [135]. Therefore, it appears that the 

nitride has a similar activity to the material containing the impurity. 

Fe3Mo3N was tested at 400oC under 1:3 ratio N2/H2 at atmospheric pressure for 7.75 hours 

in order to confirm the activity of the material and to make a comparison with the related 

carbide (as presented later in the chapter). The material was first pre-treated at 700oC for 2 

hours under 1:3 ratio N2/H2 to remove the passivation layer, before the temperature was 

reduced to the reaction temperature. The conductivity profile of the material is shown in 

Figure 153.  The ammonia synthesis rate of Fe3Mo3N at 400oC was 74 ± 1 µmol h-1 g-1 and 

at 700oC was 137 ± 7 µmol h-1 g-1. This rate was lower than the ones reported previously 

and this may be due to the difference in morphology. 

  

 
Figure 153: Conductivity profile for Fe3Mo3N reacted with 3:1 H2/N2 at 700oC for 2 hours 

and 400oC for 7.75 hours. 
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The XRD pattern in Figure 154 shows that there did not appear to be any major change in 

the Fe3Mo3N phase upon reaction. However, the MoN impurity present in the material was 

reduced to Mo2N during the reaction. The elemental analysis in Table 40 shows that the 

percentage of nitrogen present in the material had decreased compared to pre-reaction. The 

percentage of nitrogen present in the material was comparable to the expected 

stoichiometric value of 2.98 wt. % for Fe3Mo3N. The decrease in nitrogen could be due to 

the reduction of the molybdenum nitride or the loss of some surface nitrogen from the 

ternary nitride. The total amount of N lost compared to the total amount of ammonia 

produced was ca. 55 %. Therefore, there is definitely a catalytic component to the results 

for Fe3Mo3N. 

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
Fe3Mo3N Post-

reaction 
2.98 - 2.86 0.00 

Table 40: Elemental Analysis for Fe3Mo3N post-reaction with 3:1 H2/N2 at 700oC for 2 

hours and 400oC for 7.75 hours. 

 
Figure 154: XRD pattern for Fe3Mo3N post-reaction with 3:1 H2/N2 at 400oC for 7.75 hours. 

Reflections marked: ▼ Fe3Mo3N (JCPDS file number 00-048-1408) and ♦ Mo2N (JCPDS 

file number 00-025-1368). 
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SEM analysis was performed in order to examine if any changes occurred to the 

morphology or structure of Fe3Mo3N during the ammonia synthesis reaction. The 

representative SEM images of the post-reaction material are displayed in Figure 155. The 

material had an irregular structure and the morphology was similar to the pre-reaction 

material. The element map in Figure 156 shows that the even iron and molybdenum 

distribution had been retained from the pre-reaction sample. 

 

 
Figure 155: SEM images of Fe3Mo3N post reaction with 3:1 H2/N2 at 400oC for 7.75 hours. 

a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x 

magnification. 

 
Figure 156: Element Map for Fe3Mo3N post-reaction with 3:1 H2/N2 at 400oC. Elements: 

Fe (red), Mo (green) and N (blue). 
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5.2.1.4 Ammonia Synthesis at 500oC for Fe3Mo3N 

Fe3Mo3N was tested for ammonia synthesis activity at 500oC and atmospheric pressure 

under 3:1 H2/N2 in order to compare the activity of the nitride with the ternary carbide (as 

presented later). As before, the material was pre-treated at 700oC for 2 hours under 1:3 

ratio N2/H2, before the temperature was reduced to 500oC. The reaction profile showed a 

linear decrease in conductivity over time and there was no induction period as seen in 

Figure 157. The ammonia synthesis rate of Fe3Mo3N was determined to be 403 µmol h-1 g-

1 at 500oC. The material had a rate of 74 ± 1 µmol h-1 g-1 at 400oC. Therefore, the material 

was much more active at the higher temperature as might be expected. In comparison, 

Co3Mo3N has a rate of 489 ± 17 µmol h-1 g-1 [54] at 500oC and ambient pressure. This 

suggests that these two nitrides have similar specific activities as they have similar surface 

areas (Co3Mo3N: 18 m2/g [55] and Fe3Mo3N: 13 m2/g). 

 
Figure 157: Conductivity profile for Fe3Mo3N reacted with 3:1 H2/N2 at 700oC for 2 hours 

and 500oC for 6 hours. 

The XRD pattern in Figure 158 illustrates that the Fe3Mo3N did not change phase. 

However, as with the post 400oC reaction material, the MoN impurity present in the pre-

reaction material was reduced during the reaction. The elemental analysis shows that there 

was a significant decrease in the percentage of nitrogen compared to the pre-reaction 

sample. This decrease in nitrogen could be due to the reduction of the molybdenum nitride 

or, more likely, the loss of NHx species from the surface of the material. The post-reaction 

material had a similar percentage of nitrogen (2.91 wt. %) to the expected stoichiometric 
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value of 2.98 wt. % for Fe3Mo3N. The total amount of N lost versus the total amount of 

NH3 produced was ca. 42 % and therefore, there was a catalytic component to the result. 

Additionally, the treatment stage at 700oC would be expected to lead to the loss of NHx 

surface groups to form N2. 

 

 
Figure 158: XRD pattern for Fe3Mo3N post-reaction with 3:1 H2/N2 at 500oC for 6 hours. 

Reflections marked: ▼ Fe3Mo3N (JCPDS file number 00-048-1408) and  Mo16N7 

(JCPDS file number 00-023-1256). 

The SEM images of the material post 500oC reaction are exhibited in Figure 159. The 

morphology of the material was similar to the pre-reaction material. The material consisted 

of rounded particles.  
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Figure 159: SEM images of Fe3Mo3N post reaction with 3:1 H2/N2 at 500oC. a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

The elemental map in Figure 160 shows that the iron and molybdenum were fairly evenly 

distributed across the sample. 

 
Figure 160: Element Map for Fe3Mo3N post-reaction with 3:1 H2/N2 at 500oC. Elements: 

Fe (red), Mo (green) and N (blue). 

5.2.1.5 Lattice Nitrogen Reactivity of Fe3Mo3N at 900oC 

In order to determine the reactivity of lattice nitrogen in Fe3Mo3N, the material has been 

reacted under 3:1 H2/Ar at 900oC. The material has previously been investigated from 

400oC to 800oC for its lattice nitrogen reactivity and it was found to be less reducible than 
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Co3Mo3N [35], even though they have the same structure. It was found that the 

molybdenum nitride component in the mixture of FeMo3N and γ-MoN decomposed to Mo 

metal whereas there was no shift in peak positions of the Fe3Mo3N in the resultant XRD 

pattern [135]. If the bulk lattice nitrogen was active for ammonia synthesis via a Mars-van 

Krevelen mechanism, it would be expected that a reduction in the bulk nitrogen content of 

Fe3Mo3N might occur when reduced under Ar/H2. 

Figure 161 shows that only a small amount of ammonia was produced and therefore, the 

lattice nitrogen was relatively unreactive in terms of ammonia production under Ar/H2 at 

900oC. There was a decrease in conductivity of 48 µS/cm over the 7 hours. However, as 

discussed in the previous chapter, ammonia synthesis is unfavourable at this temperature 

and ammonia will decompose [99] and, therefore, some lattice nitrogen may be lost as N2. 

 
Figure 161: Conductivity profile for Fe3Mo3N reacted with 3:1 H2/Ar at 900oC for 7 hours. 

The XRD pattern in Figure 162 shows that the material decomposed to Mo metal and α-Fe 

and that there was an iron nitride phase. Minuscule peaks due to Fe3Mo3N can also be 

observed at 42o and 72o 2θ. This suggests that the lattice nitrogen was mainly lost as 

dinitrogen and that this loss is associated with the phase decomposition. In a number of 

respects, the XRD pattern of this material is reminiscent of the one for Co2Mo3N/Co3Mo3N 

post 900oC reaction, which was presented in Figure 141 in the previous chapter. Both 

Fe3Mo3N and Co2Mo3N/Co3Mo3N were not as stable at 900oC as Ni2Mo3N and 

Ni2GaMo3N. As stated for ‘Co2Mo3N’, one possible reason for this difference in stability 
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could be due to the bonding character in the materials. It has been shown that the bonding 

between the M-Mo (M = Ni, Fe, Co) is covalent in character [59]. In the case of Fe3Mo3N, 

the difference in electronegativity between Fe (1.83 on the Pauling scale) and Mo (2.16 on 

the Pauling scale) is larger than that of Ni (1.91 on the Pauling scale). This suggests that 

the Fe-Mo bond is more ionic than the Ni-Mo bond in Ni2Mo3N. Furthermore, the Mo-N 

bond distances in Fe3Mo3N, Ni2Mo3N and Ni2GaMo3N were calculated to be 2.111 Å, 

2.086 Å and 2.097 Å, respectively [135] [59] [121]. Therefore, the difference in lattice 

nitrogen reactivity could be due to the secondary effect the iron, cobalt or nickel may have 

on the Mo-N sub-lattice. 

 
Figure 162: Comparison of XRD patterns for Fe3Mo3N pre- and post-reaction with 3:1 

H2/Ar at 900oC for 7 hours. Reflections marked: ▼ Fe3Mo3N (JCPDS file number 00-048-

1408), ● α-Fe (JCPDS file number 01-085-1410),  Mo (JCPDS file number 01-089-5023) 

and ▲ ε-Fe3N (JCPDS file number 01-073-2101). 

The elemental analysis shows that the percentage of nitrogen had significantly decreased 

after reduction with 3:1 H2/Ar at 900oC compared to pre-reaction as shown in Table 41 as 

would be expected for the decomposition of the material. The percentage of lattice 

nitrogen that was lost from Fe3Mo3N that was converted to ammonia was ca. 5.6%. 
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Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (%) 

Calculated 
Stoichiometric 

Carbon 
Content (%) 

Nitrogen 
Content from 

Elemental 
Analysis (%) 

Carbon 
Content from 

Elemental 
Analysis (%) 

Fe3Mo3N Post-
reaction 

2.98 - 0.49 0.00 

Table 41: Elemental Analysis for Fe3Mo3N post-reaction with 3:1 H2/Ar at 900oC for 7 

hours. 

The Raman spectrum of the post reduction material, displayed in Figure 163, appears to be 

somewhat different compared to the pre-reaction spectrum as would be expected due to the 

material decomposing. The bands at 816 and 273 cm-1 could be due to MoO3 [90]. This 

could result from a surface oxide layer on the molybdenum metal. The Raman bands at 

positions of 970, 924, 780 and 369 cm-1 could be attributed to Fe2(MoO4)3 [146]. Although 

the XRD pattern only showed trace amounts of Fe3Mo3N were present in the material.  

 
Figure 163: Raman spectrum of Fe3Mo3N post-reaction with 3:1 H2/Ar at 900oC. 

SEM analysis was conducted to see if the reduction of the material had an effect on the 

morphology. Typical SEM images of Fe3Mo3N post-reaction with 3:1 H2/Ar are presented 

in Figure 164. The morphology was retained from the pre-reaction material and consisted 

of an irregular morphology and rounded particles. The morphology of the Fe3Mo3N, 

‘Co2Mo3N’, Ni2Mo3N and Ni2GaMo3N post-reaction with 3:1 H2/Ar were different 
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between each other, suggesting that the lattice nitrogen reactivity was not affected by the 

morphology of the material.  

 
Figure 164: SEM images of Fe3Mo3N post-reaction with 3:1 H2/Ar at 900oC. a) 1000x 

magnification, b) 2000x magnification, c) 4000x magnification and d) 6000x magnification. 

The element maps in Figure 165 show that there was a fairly even distribution of nickel 

and molybdenum over the sample, even though the material decomposed. 

 
Figure 165: Element Maps for Fe3Mo3N post-reaction with 3:1 H2/Ar at 900oC. Elements: 

Fe (red), Mo (green) and N (blue). 

The EDX data for the post-reaction sample is provided in Table 42. Nitrogen was not 

detected in the areas measured by EDX. However, the elemental maps in Figure 165 

detected some nitrogen, suggesting that it was present in the material in small amounts. 
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This agrees with the CHN analysis that showed a small amount of nitrogen remained in the 

material post-reaction. The ratio of iron to molybdenum is approximately as would be 

expected for this material. 

 
Area Fe weight (%) Mo weight (%) N weight (%) 

1 41 59 0 
2 36 64 0 
3 36 64 0 
4 44 56 0 
5 39 61 0 
6 40 60 0 
7 36 64 0 
8 51 49 0 
9 38 62 0 

10 36 64 0 
11 39 61 0 

Average 40 60 0 
Table 42: EDX values for Fe3Mo3N post-reaction with 3:1 H2/Ar at 900oC. 

The decomposition of Fe3Mo3N was investigated by thermogravimetric analysis of the pre-

reaction material under 3:1 H2/Ar. The TGA curve and first derivative weight change of 

the material heated from room temperature to 1000oC at a ramp rate of 10oC/min under 3:1 

H2/Ar is provided in Figure 166. The first feature of the TGA curve is a weight loss of 

approximately 1.29 wt. % at 408oC and the second is a weight loss of 2.68 wt. % at 496oC. 

These could be due to the removal of the passivation layer or the loss of adsorbed water 

and needs to be investigated further. 

At 668oC, a small feature is observed and results from a weight loss of 0.96 wt. %. This 

could be due to the decomposition of the molybdenum nitride to Mo metal as it has been 

previously shown to be reduced at this temperature under 1:3 Ar/H2 [135]. The feature at 

816oC is due to a weight loss of 3.25 wt. % and could be due to the decomposition of the 

material. It has previously been shown by in-situ powder neutron diffraction that the 

Fe3Mo3N does not decompose at 800oC under 1:3 Ar/H2 and the nitrogen content remained 

unchanged [135]. Hence, the decomposition must occur between 800oC and 900oC. The 

expected weight loss due to the removal of nitrogen from the material and the 

decomposition of Fe3Mo3N to Fe and Mo metal is 2.98 wt. %. Therefore, this value agrees 

quite well with the weight loss of 3.25 wt. % that was observed.  

The final feature at 929oC results in a weight loss of 6.94 wt. % and could be due to 

removal of some Mo metal from the material as it is volatile at high temperatures. 

However, this would need to be investigated further. 
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Figure 166: TGA and derivative weight profile of Fe3Mo3N under 75% H2/Ar in the range 

from room temperature to 1000oC. 

5.2.2 Iron Molybdenum Carbide (Fe3Mo3C) 

Fe3Mo3C was prepared by carburisation of Fe3Mo3N with 20% CH4/H2 at 560oC. At this 

carburisation temperature, the η-carbide structure of the iron molybdenum material was 

maintained as seen in Figure 167.  
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Figure 167: XRD pattern of iron molybdenum carbide (Fe3Mo3C). Reflections marked: ▼ 

Fe3Mo3C (JCPDS file number 00-047-1191), ● α-Fe (JCPDS file number 01-089-7194) 

and  η-MoC (JCPDS file number 01-089-4305). 

There appears to have been a shift in position of the peaks associated with the Fe3Mo3N to 

lower 2θ values as shown in Figures 168 and 169. This suggests that there was replacement 

of the lattice nitrogen with carbon and the formation of either Fe3Mo3C or a carbonitride 

phase. The atomic radii of carbon and nitrogen are 70 pm and 65 pm, respectively [125] 

and therefore, there is an increase in the unit cell size when carbon is incorporated. This 

carburisation process is topotactic and pseudomorphic in nature and therefore, the 

potentially complicating issue of changed morphology should not be a concern in this case. 

The MoN impurity had also undergone carburisation to form η-MoC. However, an iron 

phase was detected in the carburised material that was not present in the nitride sample. 

This suggests that there may have been a minor degree of phase instability, although the 

intensity of the reflections associated with the iron phase were very low. Reflections for 

Mo metal were not observed at 40.52o or 58.61o 2θ. 

The elemental analysis showed that carbon was present in the material after carburisation 

and there was no nitrogen detected (C: 3.48%, H: 0.00% and N: 0.00%). Therefore, this 

would suggest that the material had been converted to the carbide. The expected 

stoichiometric value for carbon in Fe3Mo3C is 2.57%. The carbon content of the material 
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was greater than the calculated stoichiometric ratio. This could be a concern if the carbon 

encapsulates the ternary phase covering active sites. 

 

 
Figure 168: Comparison of XRD patterns for Fe3Mo3N and Fe3Mo3C showing shift in 

peaks associated with Fe3Mo3N. 

 
Figure 169: Comparison of XRD patterns between Fe3Mo3N (black) and Fe3Mo3C (red). 
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Raman spectroscopy was undertaken to investigate the nature of the excess carbon which 

was generated from carburisation. Bands associated with graphitic like carbon, which 

would be expected to occur at approximately 1320 and 1575 cm-1 were not observed in the 

spectrum, as shown in Figure 170. The bands at 973, 778 and 350 cm-1 were observed in 

the nitride and are assigned to Fe2(MoO4)3 [146]. Therefore, an oxide layer was covering 

the surface of the carbide. Alconchel et al. did not detect any bands in the Raman spectrum 

of Fe3Mo3C [105]. However, these authors applied a lower laser power in their 

measurement. It has previously been shown that as the carbon content of a material 

increases, the fluorescence of the background increases [153]. Therefore, the fluorescence 

observed for this material may be due to the presence of carbon.  

 

 
Figure 170: Raman spectrum of iron molybdenum carbide (Fe3Mo3C). 

In order to compare the activity of the carbide with the nitride, it is important that the 

carburisation process was topotactic as reported. SEM images of the carbide have been 

taken in order to compare the morphology of the material with the nitride. Representative 

SEM images of Fe3Mo3C are displayed in Figure 171. These SEM images show the 

material had a very similar morphology to both the oxide precursor and the nitride as the 

material had an irregular morphology and contained rounded particles. The carburisation 

process is known to be topotactic and pseudomorphic for the iron molybdenum material 

[105]. It is important that the morphology of the nitride and carbide are the same, so that 

any differences in activity between the two materials cannot be related simply to a change 
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in morphology. There was no evidence that any additional structures, such as carbon 

nanotubes, had been formed, which is consistent with the Raman spectroscopic analysis 

presented above. 

 
Figure 171: SEM images of iron molybdenum carbide (Fe3Mo3C). a) 1000x magnification, 

b) 2000x magnification, c) 6000x magnification and d) 6000x magnification. 

The EDX analysis for Fe3Mo3C is provided in Table 43. The stoichiometric percentage of 

iron, molybdenum and carbon in the sample is 35.85 wt. %, 61.58 wt. % and 2.57 wt. %, 

respectively. The carbon weight percentage was greater than the expected stoichiometric 

percentage of carbon in Fe3Mo3C. However, EDX can be limited in analysing light 

elements and also it should be noted that in addition carbon stubs are used to mount the 

samples. Both the iron and molybdenum percentages were lower than the expected 

stoichiometric values due to the higher percentage of carbon. 

Area Fe weight (%) Mo weight (%) C weight (%) 
1 29 51 19 
2 27 54 18 
3 29 49 22 
4 28 50 22 
5 31 48 21 

Average 29 51 20 
Table 43: EDX values for iron molybdenum carbide (Fe3Mo3C). 
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5.2.2.1 Ammonia Synthesis for Fe3Mo3C 

Fe3Mo3C was tested for ammonia synthesis activity at 400oC and 500oC at atmospheric 

pressure under 3:1 H2/N2. This was performed to establish the influence the phase 

composition had upon ammonia synthesis activity. The material was not pre-treated before 

the reaction at 700oC as this would result in nitridation of the carbide and therefore, the 

activity would not be as a result of the carbide. Once the reaction had reached 400oC the 

conductivity values were recorded. The activity of the material at 400oC was very low and 

consequently, after 4 hours at 400oC, the temperature was increased to 500oC as shown in 

Figure 172. 

The η-carbide structured Fe3Mo3C was not active for ammonia synthesis at 400 °C, unlike 

its corresponding nitride. The material became active at 500 °C and exhibited a steady state 

rate of 373 ± 55 µmol h-1 g-1. There was an induction period of approximately 45 minutes 

before the material developed steady state ammonia synthesis activity when the reaction 

temperature was at 500oC. The Fe3Mo3N precursor was observed to have a rate of 403 

µmol h-1 g-1 at 500oC. Therefore, these two materials have similar activities at this 

temperature. This behaviour is comparable to that reported for the isostructural Co3Mo3C 

[54]. Co3Mo3C required a temperature of 500oC and it also had an induction period that 

lasted for 40 minutes before it became active [54]. It was observed to undergo nitridation 

to form a carbonitride phase during the reaction. The carbonitride phase had a similar 

activity to its nitride at 500oC reaction temperature, with a rate of 461 ± 17 µmol h-1 g-1 

[54]. 

The filled β-Mn structured Ni2Mo3CxNy showed very different behaviour at 400oC reaction 

temperature. However, it is difficult to make comparisons between Fe3Mo3C and 

Ni2Mo3CxNy as one of the materials contained lattice nitrogen prior to the determination of 

its activity for ammonia synthesis.  
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Figure 172: Conductivity profile for Fe3Mo3C reacted with 3:1 H2/N2 at 400oC for 4 hours 

and 500oC for 32 hours. 

The XRD pattern in Figure 173 shows that the η-carbide structure was retained after the 

reaction and that the reflections had shifted to higher 2θ values. This can be more clearly 

seen in Figure 174. This suggests that some of the lattice carbon was replaced with 

nitrogen during the reaction, as this corresponds to a reduction in lattice parameter since 

nitrogen has a smaller atomic radius than carbon as discussed previously. 
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Figure 173: Comparison of XRD patterns for Fe3Mo3C pre- and post-reaction with 3:1 

H2/N2 at 400oC for 4 hours and 500oC for 32 hours. Reflections marked: ▼ Fe3Mo3C 

(JCPDS file number 00-047-1191). 

 
Figure 174: Comparison of XRD patterns between Fe3Mo3C pre- (black) and post-reaction 

(red) with 3:1 H2/N2 at 400oC for 4 hours and 500oC for 32 hours. 
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The elemental analysis presented in Table 44 for the material run in Figure 172 shows that 

there was substitution of lattice carbon by nitrogen during the reaction and therefore, a 

carbonitride phase had been formed. The stoichiometry calculated for the bulk sample 

post-reaction was Fe3Mo3C0.41N0.65. Therefore, it could be suggested that the induction 

period was due to the material not containing lattice nitrogen and once the material had 

enough lattice nitrogen, it became active. However, it is not clear whether the material was 

active because there was lattice nitrogen present or if lattice nitrogen resulted from the 

material being active for ammonia synthesis. The removal of the passivation layer and 

surface segregation/restructuring are also possible reasons for the induction period, which 

need to be taken into consideration. 

 

Material 

 

Calculated 
Stoichiometric 

Nitrogen 
Content (wt. 

%) 

Calculated 
Stoichiometric 

Carbon 
Content (wt. 

%) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. 

%) 

Carbon 
Content from 

Elemental 
Analysis (wt. 

%) 
Fe3Mo3C Pre-

reaction 
- 2.57 0.00 3.48 

Fe3Mo3C Post-
reaction 

- 2.57 1.94 1.05 

Table 44: Elemental Analysis for Fe3Mo3C comparing pre- and post-reaction with 3:1 

H2/N2 at 400oC for 4 hours and 500oC for 32 hours. 

The representative SEM images of Fe3Mo3C post-reaction are given in Figure 175. The 

SEM images show a similar morphology to the oxide precursor, the nitride and the carbide 

pre-reaction. Therefore, the nitridation process did not result in a change in morphology. 

The material had a surface area of 3 m2/g post-reaction, a pore volume of 0.03 cc/g and an 

average pore radius of 1002 Å.  
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Figure 175: SEM images of Fe3Mo3C post-reaction with 3:1 H2/N2 at 400oC for 4 hours 

and 500oC for 32 hours. a) 1000x magnification, b) 2000x magnification, c) 4000x 

magnification and d) 6000x magnification. 

The iron, molybdenum, carbon and nitrogen were evenly distributed across the sample as 

seen in the element map in Figure 176. 

 
Figure 176: Element Maps for Fe3Mo3C post-reaction with 3:1 H2/N2 at 500oC. Elements: 

Fe (red), Mo (green), C (blue) and N (black). 

Table 45 displays the weight percentage for each element given by the EDX analysis. 

From CHN analysis, the stoichiometry calculated for the bulk sample post 36 hour reaction 

at 500oC is Fe3Mo3C0.41N0.65. The stoichiometric percentage of iron, molybdenum, carbon 

and nitrogen in the sample should be 35.69 wt. %, 61.32 wt. %, 1.05 wt. % and 1.94 wt. % 
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respectively. As with the pre-reaction sample, the carbon percentage was higher than 

expected and the molybdenum percentage was lower. Nitrogen was detected in the post-

reaction sample and this agrees with the elemental analysis that showed some lattice 

carbon had been replaced with nitrogen. 

Area Fe weight (%) Mo weight (%) C weight (%) N weight (%) 
1 30 53 12 4 
2 33 53 11 3 
3 31 49 20 0 
4 32 51 11 6 
5 34 55 8 3 
6 34 55 6 5 
7 35 54 7 4 

Average 33 53 11 4 
Table 45: EDX values for Fe3Mo3C post-reaction with 3:1 H2/N2 at 500oC. 

The extent to which development of activity required the removal of the surface oxide 

layer and/or restructuring of the near surface region was investigated by ToF-SIMS. 

Analysis was performed on the pre- and post- 32 hour reaction materials. The ToF-SIMS 

data is provided in Appendix V. In Fe3Mo3C, the carbon is bonded to six molybdenum 

species and therefore, the mass fragments for this material would contain MoC species. As 

discussed before, the depth profiling of 92MoC and 92MoN mass fragments was used to 

determine if carbon and nitrogen were present near the surface of this material. For the pre-

reaction carbide, nitrogen was detected, suggesting that the material may not have been 

completely carburised. However, the ToF-SIMS measurement has a sensitivity of the 

ppm/ppb range, which is far below that of the elemental analysis explaining the apparent 

discrepancy between the two techniques. Carbon was present in the material at a depth of 

10 nm in both the pre- and post-reaction materials, suggesting that although there was an 

oxide layer, carbon was present near the surface.  

For the post- 32 hour reaction material, the intensity of the 92MoN fragment was 

approximately twice that of the pre-reaction material, which suggests that there was more 

nitrogen present near the surface of the material post-reaction. Furthermore, the intensity 

of the 92MoC peak had decreased compared to pre-reaction. Although the intensities of the 

mass fragments were different compared to the pre-reaction material, there was no other 

change in the mass spectra, suggesting that the material had not undergone restructuring 

during the reaction. 
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As expected, oxygen was present in the pre- and post-reaction materials. The intensity of 

the oxygen mass fragments appeared to decrease as the depth increased, which is 

consistent with this being a surface oxide layer. 

From the ToF-SIMS analysis, it can be stated that although there was a passivation layer, 

carbon and nitrogen were detected close to the surface of the material. 

5.2.2.1.1 Ammonia Synthesis for Fe3Mo3C at 400oC 

To examine the difference in activity between Fe3Mo3C and Fe3Mo3N at 400oC, the 

carbide has been investigated further post 400oC reaction. From the XRD pattern presented 

in Figure 177, it can be seen that the reflections have remained in the same position 

between pre- and post-reaction. This suggests that the lattice carbon had not been replaced 

with nitrogen during the reaction, although this conflicts with post-reaction CHN analysis 

which does indicate the introduction of 0.63 wt. % N content after reaction. This origin of 

this apparent contradiction is not clear and requires further investigation. 

 
Figure 177: Comparison of XRD patterns for Fe3Mo3C pre- and post-reaction with 3:1 

H2/N2 at 400oC for 7.5 hours. Reflections marked: ▼ Fe3Mo3C (JCPDS file number 00-

047-1191). 

The reduction of the carbide was investigated by thermogravimetric analysis of the pre-

reaction material under 3:1 H2/Ar. The TGA of the reduction of the carbide was performed 
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in order to investigate the difference in activity of the nitride and carbide and the reduction 

of the passivated layer. The TGA curve and first derivative weight change of Fe3Mo3C 

heated from room temperature to 1000oC at a ramp rate of 10oC/min under 3:1 H2/Ar is 

displayed in Figure 178. Several weight loss steps are observed for Fe3Mo3C. The TGA 

curve appears to be similar to the TGA curve for Fe3Mo3N up to 750oC under the same 

conditions (Figure 166). 

The first feature of the TGA curve is a weight loss of 0.63 wt. % at approximately 100oC 

and this possibly relates to the loss of water from the material. The second is a weight loss 

of 1.16 wt. % at 275oC. The mass spectra ion curve of m/z 44 shows a peak at this 

temperature as seen in Figure 179, suggesting the loss of either CO2 or C3H8. The weight 

loss could be due to the reaction of lattice carbon to form propane or it could correspond to 

the removal of the passivation layer. The initial expectation would be that the removal of 

the passivation layer would generate water. However, the production of a mass spectral 

features with m/z 18 or 17 were not observed. CO2 or C3H8 have different fragmentation 

pathways. Unfortunately, m/z 29, that would be observed as a mass fragment of propane, 

was not followed. However, the other m/z signals that were followed did not show any 

features. Therefore, the unique fragmentation pathways for both species were not observed 

and the species associated with the weight loss feature cannot be determined with any 

degree of certainty. 

The third and fourth features of the TGA curve are weight losses of approximately 1.37 wt. 

% at 413oC and a weight loss of 1.99 wt. % at 493oC. These could be due to the reduction 

of an oxide surface layer producing water. M/z values of 2, 14, 15, 16, 17, 18, 28, 30, 32, 

44 and 46 m/z were scanned but they did not show any features at these temperatures. 

When the reaction is run at 400oC, these features may not be removed from the material 

and this could explain the inactivity of the material at this temperature. However, the ToF-

SIMS analysis for the pre-reaction material showed that carbon and nitrogen were 

observed near the surface of the material. Therefore, these features need to be investigated 

further.  

A feature is observed at 662oC, which corresponds to a weight loss of 1.37 wt. %. The 

TGA profile of Co3Mo3C under H2/Ar showed that the lattice carbon reacted to form 

methane resulting in a weight loss at 616oC [55]. Therefore, the weight loss at 662oC for 

Fe3Mo3C may be due to the loss of some lattice carbon from the ternary carbide. There was 

a mass feature for 44 m/z as shown in Figure 179 at a higher temperature at approximately 

730oC. 
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The final feature that is observed above 900oC results in a weight loss of 1.97 wt. %. It is 

not clear what the weight loss corresponds to, as mass spectra of 2, 14, 15, 16, 17, 18, 28, 

30, 32, 44 and 46 m/z did not show any features at this temperature. However, the weight 

loss above 900oC may be associated with decomposition of the material. 

 

 
Figure 178: TGA and derivative weight profile of Fe3Mo3C under 75% H2/Ar in the range 

from room temperature to 1000oC. 

 

 
Figure 179: The mass spectrum ion curve for 44 m/z and the derivative weight profile. 
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5.3 Conclusions 
In this chapter, the h-carbide structured Fe3Mo3N and Fe3Mo3C were examined for their 

ammonia synthesis activity. The lattice nitrogen reactivity of Fe3Mo3N was also 

investigated. The intention of this work was to gain a further insight into the effect the 

composition had on the activity. Although the bulk lattice nitrogen of Fe3Mo3N has 

previously been reported to be unreactive, the bulk mobility of the nitrogen may be limited 

and a Mars-van Krevelen type mechanism may still occur for the surface lattice nitrogen. 

Fe3Mo3N was active for ammonia synthesis at 400oC and 500oC under 3:1 H2/N2. The 

nitride had a rate of 74 ± 1 µmol h-1 g-1 at 400oC and 403 µmol h-1 g-1 at 500oC. To 

determine the lattice nitrogen reactivity and stability of Fe3Mo3N, the nitride was reacted 

under 3:1 H2/Ar at 900oC. The material decomposed and therefore, Fe3Mo3N was not 

stable under these conditions. In Chapter 4, the filled b-Mn structured Co2Mo3N and the h-

carbide structured Co3Mo3N were shown to have a similar instability at 900oC. 

The h-carbide structured Fe3Mo3C was also analysed for ammonia synthesis activity, to 

investigate the role the lattice nitrogen plays in Fe3Mo3N. The carbide was not active for 

ammonia synthesis at 400oC. A reaction temperature of 500oC was required and after an 

induction period, the material developed activity. The post-reaction XRD pattern and 

elemental analysis confirmed that the material underwent nitridation at 500oC and the 

material formed a carbonitride phase via a topotactic mechanism. These results were 

similar to those reported for the isostructural Co3Mo3N [55]. The difference in activity of 

Fe3Mo3N and Fe3Mo3C at 400oC suggests that the lattice nitrogen may be required in order 

for the material to be active. However, this needs to be investigated further as it is 

currently unknown whether the activity of Fe3Mo3C at 500oC occurs due to the nitridation 

of the carbide. There were a number of inconsistencies for the carbide tested at 400oC and 

therefore, this work should be repeated and this temperature would have to be investigated 

further. ToF-SIMS analysis was performed on the pre- and post-reaction Fe3Mo3C to 

investigate the effect the passivation layer had on the ammonia synthesis activity. Both 

carbon and nitrogen were detected in the near surface region of the material and therefore, 

it could be proposed that the passivation layer may have only a limited impact on the 

activity. 
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6. Osmium Based Compounds and Supported Mixed Metal 

Clusters 
6.1 Introduction 

6.1.1 Osmium 

Osmium was discovered in 1803 by Smithson Tennant, who noticed that when platinum 

was added to dilute aqua regia, some powder remained. By using different acid and alkali 

treatments, Tennant separated the powder into two new elements, which he named osmium 

and iridium [154]. Osmium is a silver blue metal that is a member of the platinum group. 

The platinum group metals consist of six transition metals, which have high melting points 

and are corrosion resistant [11]. Osmium is the densest element with a value of 22.587 ± 

0.009 g/cm3 as calculated from X-ray diffraction [155]. It has a hexagonal close packed 

structure. In powdered form, osmium can be oxidised at room temperature to give osmium 

tetroxide. Due to the toxicity of the tetroxide, alloys of osmium are more commonly used 

than the pure metal. The metal can be used in pen nibs and needles of gramophones and 

also has applications as a catalyst [156] [157]. 

Osmium is found mainly with the other platinum group metals in mineral deposits, for 

example osmiridium, which consists of an alloy with iridium [11]. Osmium is obtained 

mostly from nickel refining and copper ores. It is estimated that only 10% of osmium is 

recovered from copper ore [158]. 

6.1.2 Osmium for Ammonia Synthesis 

Osmium has had great historical interest as an ammonia synthesis catalyst, although there 

has been very little work in this area in recent years. In 1909, Haber discovered that 

osmium had a high activity towards ammonia synthesis with an 8% yield under reaction 

conditions of 175 atmospheres pressure and 600oC [159]. Further work carried out by 

Mittasch [15] found that promoting the osmium with alkali metal oxides increased the 

yield from 2% ammonia to 4% at 550°C and 100 atmospheres pressure. However, osmium 

was a rare resource with approximately only 100 kg of it available in the world at that time 

[160]. Therefore, it was vital to find another catalyst that was cheaper as well as having a 

high ammonia synthesis rate. This led to the development of the promoted Fe catalyst that 

is used today in essentially unchanged form in the Haber-Bosch Process.  

In 1982, Rambeau et al. [161] [162] reported their studies on the hydrogenation of nitrogen 

on an osmium powder at atmospheric pressure and over the temperature range 100 to 

500oC. They concluded that catalytic ammonia synthesis over osmium is limited by 
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adsorption of nitrogen and is inhibited by both hydrogen and ammonia. A decrease in the 

nitrogen pressure resulted in a decrease in the ammonia produced. The reaction order with 

respect to nitrogen was shown to be one. As hydrogen pressure decreased, both the 

ammonia pressure and inhibition due to ammonia, increased. A negative first order was 

observed for the hydrogen, which suggests hydrogen inhibition that is strong. As hydrogen 

inhibition affected the activity of osmium, Rambeau et al. proposed a cyclic operation for 

ammonia synthesis to overcome this problem [162]. Firstly, they saturated the surface of 

the osmium with pure nitrogen. Then, the adsorbed nitrogen was hydrogenated under pure 

hydrogen. By using this method, it was proposed that rates of industrial relevance could be 

achieved at atmospheric pressure. When 3:1 H2/N2 was used, a rate of approximately 0.5 x 

10-6 mole NH3/min was reported at 400oC and when the cyclic procedure was used the rate 

was approximately 0.9 x 10-4 mole NH3/min [162]. 

Ozaki et al. [163] investigated the ammonia synthesis activity of different transition metals 

including osmium. The catalyst was prepared by supporting osmium tetroxide on coconut 

carbon and promoting it with potassium. A stoichiometric ammonia synthesis reactant 

mixture and a pressure of 0.79 atmospheres were utilised. The rate of ammonia synthesis 

was determined over a temperature range of 100 – 400oC. Of the transition metals tested, 

both ruthenium and osmium ranked highest for their activity. At 253oC, osmium had a 

reported rate of approximately 4 mL STP NH3/hr and ruthenium had a rate of 

approximately 10 mL STP NH3/hr [163]. It is interesting to note that the materials were 

inactive in the absence of potassium promotion. It was concluded that this effect was due 

to the potassium transferring electron density to the transition metal causing the adsorbed 

nitrogen to be converted to an anionic intermediate. When potassium was replaced with 

sodium, the activity decreased, which was explained as resulting from sodium’s higher 

ionisation potential. 

A recent DFT study by Ishikawa et al. examined the catalytic performance of osmium for 

ammonia synthesis [164]. It was proposed that the most active sites are step sites with an 

increase in turnover frequency of 104 for these sites compared to the sites on the (0001) 

surface terrace plane. The maximum concentration of the active step sites was expected to 

occur at an osmium particle diameter of 3-4 nm. However, it was proposed that NH2 

species can block these active sites, which prevents N2 dissociation and results in a lower 

TOF (turnover frequency) than predicted. Ru has a similar value to Os for the activation 

barrier for N2 dissociation at the step sites. Conversely, Ru has a higher catalytic activity 

than Os due to it having a higher number of vacant sites [164]. 
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6.1.3 Comparison of Osmium with Iron and Ruthenium for Ammonia Synthesis 

Osmium is located in the same group as iron and ruthenium in the periodic table. These 

two elements are used as commercial ammonia synthesis catalysts and therefore, it would 

be of interest to compare the activity and behaviour of osmium with them. The activity of 

ruthenium has been found to be higher than iron and hence, with osmium below ruthenium 

in the group, it would be of interest to further compare these three elements. 

Ruthenium is considered to have the close to optimal binding energy for nitrogen [24], 

explaining the high activity of this metal. The metal is structure sensitive for ammonia 

synthesis, with B5 sites being the active site for the reaction [165]. B5 step sites are 

associated with three Ru atoms in one layer and two Ru atoms in the layer above, with 

some of the Ru having low-coordination, for example edge atoms. The B5 sites have a 

particle size dependence, where particles of 1.8–2.5 nm have the optimum number of B5 

sites [165]. Therefore, Ru is the most active when it is supported as shown by the KAAP 

Process using Ru based catalyst supported on carbon. The choice of support is known to 

play an important role in the number of B5 sites due to the support controlling the Ru 

morphology [165]. 

Ammonia synthesis on iron is also a structure sensitive reaction [166], with the Fe (111) 

plane having a much higher activity than the Fe (100) and the Fe (110) planes [167] [168] 

[169]. It was suggested that C7 sites were the most active in iron catalysts [169]. C7 sites 

consist of surface iron atoms with seven neighbours. Iron has been observed to have a 

higher activity when it is in bulk form [166]. Iron was shown to have a higher TOF when 

the iron particle size was large, showing a dependence on metal particle size. 

Since, as stated above, osmium is in the same group as iron and ruthenium, it would be of 

interest to examine the nature of any potential structure sensitivity for osmium, which to 

the author’s knowledge has not been investigated, to suggest potential strategies for further 

enhancing its catalytic performance. In order to undertake this, preliminary comparisons 

have been made between the performance of bulk metallic osmium and that for supported 

osmium prepared from a well-defined cluster compound precursor. 

6.1.4 Osmium Carbonyl Clusters 

Cotton first referred to a metal cluster as a material that contains metal-metal bonds [170]. 

A more specific definition is a collection of two or more metal atoms, which are bonded 

directly. Metal clusters are considered to be intermediate between mononuclear and 

polynuclear complexes. This means that they have similar properties to both; for example, 
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similar to mononuclear complexes, the clusters can be isolated and characterised by 

spectroscopy but they can also have delocalised metal to metal bonds. A common type of 

metal cluster is a metal carbonyl cluster. These are compounds that have two or more 

metals connected by metal bonds where the ligands are either entirely or predominately 

carbon monoxide. The nuclearity of the metal carbonyl clusters can vary greatly, with 

Os3(CO)12 being the compound of interest within this chapter. The structure of Os3(CO)12 

is presented in Figure 180. 

 

Figure 180: Structure of Os3(CO)12 at low temperature [171].  

During the 1970s and 80s, there was growing interest in the application of metal carbonyl 

clusters as catalysts [36]. Metal carbonyl clusters have been utilised as heterogeneous 

catalysts by being used as precursors which can be impregnated onto supports such as 

silica and alumina. This provides some advantages over conventional heterogeneous 

catalysts. For example, if the cluster is retained on the support, there is extra control over 

its composition and nuclearity, which can have an effect on its activity and selectivity. 

Another advantage supported carbonyl clusters may have over conventional catalysts, is 

that their activity may sometimes be retained after being exposed to air, as is seen for 

supported osmium and ruthenium carbonyl clusters in the reaction of ethane 

hydrogenolysis [172]. When osmium on silica is exposed to air, an induction stage of a 

number of minutes is required before activity is restored. There is no such induction stage 

necessary for the cluster materials. Although the oxygen dissociates on adsorption, a 

reason for the catalysts not being affected by exposure to air could be due to the adsorption 

of oxygen being weak such that it is still reversible at 152oC.  
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As they are small molecules, the catalytic behaviour of clusters can be seriously affected 

by how they interact with the support. This strong interaction between the cluster and the 

support is of great interest and has been studied for Os3(CO)12 and Os6(CO)18 on silica, 

alumina and titania [51]. Previously, the osmium cluster compounds were thought to be 

reduced to monometallic species during the preparation of the precursor onto the oxide 

support [173]. The interaction of the support with the cluster was believed to occur through 

the hydroxyl groups. However, if the support is severely dehydroxylated before the 

precursor is impregnated, it has been shown from IR and UV-visible spectroscopy, that 

clusters remain intact on the support [51]. 

Yunusov et al have studied some carbonyl clusters for their ammonia synthesis activities 

[174]. They prepared K2[Ru4(CO)13], K2[Fe2(CO)8] and K2[Os3(CO)11] on two different 

carbon supports. The first carbon support was a commercial SKT and the second was an 

active carbon called sibunit. Sibunit was prepared from carbon black and differs from the 

other carbon support as it has a mainly mesoporous structure [175]. In addition, it has a 

very low amount of impurities with a carbon content of 99.4 wt. % compared to the 85.9 

wt. % for SKT. The type of metal and carbon support had a great influence on the rate of 

ammonia produced. The ruthenium compound on sibunit was found to be the most active, 

with ammonia being produced from as low a temperature as 250oC. Next active was the 

osmium on sibunit and the iron on sibunit was discovered to have the lowest activity. 

K2[Ru4(CO)13] ], K2[Os3(CO)11] and K2[Fe2(CO)8] on sibunit had a reported ammonia 

synthesis rate of 14.9 mL NH3 h-1 g-1 cat., 11.3 mL NH3 h-1 g-1 cat. and 0.7 mL NH3 h-1 g-1 

cat., respectively at 400oC and atmospheric pressure [174]. When the SKT carbon was 

used, ammonia was only produced at 400oC and the catalyst deactivated with the activity 

rapidly decreasing within the first hour of testing.   

6.1.5 Mixed Metal Carbonyl Clusters 

A variety of mixed metal carbonyl clusters can be formed from the Group 8 elements. 

Generally, these materials are prepared as part of a mixture of products, which need to be 

separated by chromatography techniques [176] [177]. Therefore, the percentage yield of 

the desired product can vary from low to reasonable yields depending on the synthesis 

method used [178] [179]. In a typical synthesis, the monometallic metal carbonyls are 

dissolved in a solvent and left for a period of time. After this, column chromatography or 

thin layer chromatography are used to isolate the mixed metal carbonyl cluster. For 

example, Os2Ru(CO)12 and OsRu2(CO)12 can be synthesised from thermal decomposition 

of Ru3(CO)12 and Os3(CO)12 in xylene [180]. 
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The mixed metal carbonyl clusters are usually isostructural with one of the starting 

monometallic metal carbonyl precursors as observed by XRD and IR measurements [176] 

[178] [181]. For example, FeOs2(CO)12 has been suggested to be isostructural with 

Os3(CO)12, with one of the osmium being replaced with iron [176]. 

Kulkarni and Gates [52] have proposed that supported bimetallic clusters can be formed by 

heating metal carbonyls, resulting in decarbonylation and metal-metal bond formation. 

This was shown by supporting Os3(CO)12 and Ru3(CO)12 on MgO and heating the material 

under H2. Through IR and EXAFS spectroscopy, it was observed that Ru-Os bond 

formation occurred at 125oC after partial decarbonylation of the two precursors. This is a 

promising method for forming supported mixed metal carbonyl clusters and overcomes the 

issue of separating the desired product by chromatography.  

6.2 Results and Discussion 

6.2.1 Bulk Osmium Metal 

The XRD pattern in Figure 181 shows that only osmium metal was present, as expected. 

This demonstrates that the metal had not formed bulk osmium tetroxide while being in 

contact with air. However, a surface oxide layer may have formed, which would not be 

detectable by XRD analysis. 

 
Figure 181: XRD pattern of osmium metal. Reflections marked: • Os (JCPDS file number 

00-006-0662). 
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The BET surface area of the osmium was measured to be 2 m2/g. According to Pinto and 

Paniego [182], osmium tetroxide can be formed when osmium is in the presence of oxygen 

or air. When the sample is in contact with air for a short time, a monolayer of oxygen is 

adsorbed onto the surface. If this is the case, then the BET surface area value for the 

osmium powder might not be a truly representative measurement in relation to that 

exhibited under reaction conditions. 

The SEM images for osmium metal at different magnifications are presented in Figure 

182. The material had an irregular structure with an agglomeration of small rounded 

crystallites. Some areas had a smoother surface as can be seen in Figure 182 (b). Only 

osmium was detected by EDX analysis for this material and no other element was 

observed. 

 

 
Figure 182: SEM images of the bulk osmium sample. a) 2000x magnification, b) 4000x 

magnification and c) 4000x magnification. 

The bulk osmium sample was pre-treated with different gas mixtures to examine the 

potential inhibition of nitrogen and hydrogen on the surface. As stated in the introduction 

of this chapter, hydrogen was shown to inhibit the reaction and nitrogen coverage can also 

affect the rate [162]. These factors may therefore affect the ammonia synthesis rate of the 

osmium sample tested. 
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The metal was first pre-treated at 500oC for 2 hours with one of the following gas 

mixtures: 1:3 N2/H2, 1:3 Ar/H2 or pure N2. This pre-treatment temperature was employed 

to replicate the conditions used by Rambeau et al. [161] [162]. The temperature was then 

decreased to 400oC and the ammonia synthesis reaction was performed under 1:3 N2/H2. 

The ammonia production reaction profile for the osmium metal at 400oC after the three 

pre-treatments is presented in Figure 183. When 1:3 Ar/H2 and pure N2 were used as the 

pre-treatment gas, a lag period of approximately 20 minutes was observed before the 

material became active. However, when using a N2/H2 pre-treatment, this was not observed 

and the decrease in conductivity versus time resulted in a linear profile over the 12.5 hours 

of testing. Line flushing tests were undertaken to ensure that the lag period was not due to 

any experimental artefacts. For the 1:3 Ar/H2 and N2 pre-treated samples, beyond the 

induction period, the activity was observed to be steady state. 

One possible explanation is that N2, in the case of the N2 pre-treatment, and H2, in the case 

of the Ar/H2 pre-treatment, cover the surface of the osmium during the pre-treatment. 

Hydrogen has been shown to inhibit the ammonia synthesis reaction for osmium and 

therefore, the coverage could block the active sites. The coverage of nitrogen may also 

block the active sites and thus delay the start of the reaction. The hydrogen may also 

reduce the osmium to an active phase and hence, would be required in the pre-treatment 

step. It might also be the case that the surface facets to an active form in the presence of 

the reactant mixture under these reaction conditions. The origin of this lag period, to 

eliminate any other potential artefacts, should be investigated further.  

 
 



 243 

 
Figure 183: Conductivity profiles for osmium reacted with 3:1 H2/N2 at 400oC after different 

pre-treatments. Labels: 1:3 N2/H2 pre-treatment (blue), 1:3 Ar/H2 pre-treatment (orange) 

and N2 pre-treatment (grey). 

The steady state ammonia synthesis rates relating to the tests employing the bulk osmium 

sample at 400oC are displayed in Table 46. In comparison, the rate of osmium metal at 

500oC under 1:3 N2/H2 during the pre-treatment was 262 ± 21 µmol h-1 g-1. 

It can be seen that the pre-treatment gas possibly had a small effect on the ammonia 

synthesis activity of osmium. The metal had the highest activity at 400oC when the 1:3 

N2/H2 pre-treatment was used. However, the three values for the different pre-treatment 

samples are within experimental error. In comparison, the promoted iron Haber Bosch 

catalyst has been reported to exhibit a rate of 330 µmol h-1 g-1 under comparable conditions 

[127]. A previous study on the comparative ammonia synthesis activity of Os and Fe, 

suggested that the activity of osmium was 100 times lower than iron powder at 1 

atmosphere pressure and 400oC, when a stoichiometric ratio of N2:H2 was used [161]. The 

inhibition by hydrogen on osmium was proposed as the explanation for the lower activity 

compared to iron, which does not suffer from inhibition by hydrogen [161]. The rate of N2 

chemisorption on a bare osmium surface was reported to be 100 times higher than that for 

Fe and 100 times lower than that for Ru [161]. However, it is important to note that other 

studies show that osmium metal has a higher activity than iron [24] [15] [183]. 
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Pre-treatment 

 

NH3 Synthesis Rate (µmol h-1 g-1) 

1:3 N2/H2 79 ± 1 
1:3 Ar/H2 64 ± 16 

N2 69 ± 3 
Table 46: Ammonia synthesis rates of osmium under 3:1 H2/N2 at 400oC after different 

pre-treatments. 

The post-reaction XRD patterns for osmium that had undergone different pre-treatments 

are displayed in Figure 184. The XRD patterns were found to display only the pattern for 

osmium metal. CHN analyses undertaken for the pre-reaction and all the post-reaction 

samples did not evidence the formation of any bulk nitrogen or hydrogen content. 

 
Figure 184: XRD patterns of osmium metal post-reaction with different pre-treatments. 

Reflections marked: • Os (JCPDS file number 00-006-0662). 

Compared to pre-reaction, there did not appear to be a change in morphology of the 

osmium post-reaction for all three pre-treatments. Representative SEM images of osmium 

that had undergone the three pre-treatments are shown in Figure 185. The samples 

consisted of an irregular morphology, with small rounded crystallites. Therefore, the lag 

period did not appear to be due to a change in morphology between the pre-reaction and 

Ar/H2 and N2 pre-treated samples. Whilst the post-reaction material that was pre-treated 

with 3:1 H2/N2 had a surface area of 3 m2/g, the small difference with respect to the pre-

reaction material is not significant particularly in view of the uncertainties associated with 

the determination of such low BET surface areas. 
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Figure 185: SEM images of osmium post-reaction with 3:1 H2/N2 at 400oC after different 

pre-treatments. a and b) 1:3 N2/H2 pre-treatment, c and d) 1:3 Ar/H2 pre-treatment and e 

and f) N2 pre-treatment. 

Due to the possible inhibition of nitrogen and hydrogen on the surface of the osmium 

metal, a cyclic procedure was performed based upon the method reported by Rambeau et 

al. [162]. The osmium was first pre-treated at 500oC with 3:1 H2/N2 for 2 hours and then 

the temperature was decreased to 400oC. The line was switched to pure N2 only and the 

nitrogen was flowed over the sample for 5 minutes. The line was then switched to a flow 

of pure H2 and this was passed over the osmium for 5 minutes. This five minute cycling 

procedure was repeatedly performed for 1 h 30 min. After this, the cycling was switched to 

every two minutes for a further hour to explore the possible role of pulsing duration and 
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then to every eight minutes for another hour. Each time N2 gas was the first gas to flow in 

the cycling step. Finally, the temperature was increased to 500oC and the cyclic procedure 

was performed every five minutes for 1 h 30 min. 

The decrease in conductivity over time for the different stages outlined above is presented 

in Figure 186. 

 
Figure 186: Conductivity profile for osmium cyclic procedure with 3:1 H2/N2 pre-treatment 

at 500oC. 

The amount of ammonia produced in one hour for the different stages of the osmium cyclic 

procedure, detailed in Figure 186, is provided in Table 47. For the 5 min cycling at 400oC 

and 500oC, the values were calculated from when the conductivity had reached a steady 

decrease. When a continuous feed of 3:1 H2/N2 was used, the osmium that had been pre-

treated with 3:1 H2/N2 produced 34.6 µmoles of ammonia in one hour at 400oC. These 

results suggest that the cyclic procedure was having a negative impact on the amount of 

ammonia produced at both 400oC and 500oC compared to when a continuous feed was 

used. It appears that the 5 minute cycling stage was the most effective at producing 

ammonia of the three stages investigated.  
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Conditions 

 

Ammonia Produced in One 
Hour (µmoles) 

Number of Cycles of H2 
Treatment 

500oC 1:3 N2/H2 Pre-
Treatment 

108.0 - 

400oC: Every 5 min 10.8 6 
400oC: Every 2 min 5.8 15 
400oC: Every 8 min 4.3 4 
500oC: Every 5 min 11.5 6 

Table 47: Amount of ammonia produced in one hour for each stage of the osmium cyclic 

procedure. 

Rambeau et al. noted that at 400oC, the best conditions were when osmium was exposed to 

10 s of nitrogen and 5 s of hydrogen [162]. Therefore, this would suggest that the cycling 

time needed to be shorter. However, this was not possible in this experimental setup. On 

the other hand, however, Rambeau et al. achieved satisfactory rates when the material was 

exposed to 5 minutes of nitrogen and 1 minute of hydrogen [162]. It would therefore be 

expected that the osmium should have a steady state rate in this work at these longer 

cycling times.                                                                                                                                                                               

The ammonia synthesis rates of the osmium during the different cycling stages are 

provided in Table 48. During the pre-treatment stage at 500oC shown in Figure 186, 

beyond the lag period, the rate of ammonia production for the osmium was as expected 

according to the previous rate obtained. However, when the cycling procedure was 

performed at this temperature, the rate was significantly lower at 28 µmol h-1 g-1. This 

suggests that the cycling procedure was having a negative effect on the ammonia synthesis 

process for osmium. This was also observed at 400oC when a 2 minute cycling period was 

used, with the rate of 15 µmol h-1 g-1 being much lower than the rates reported in Table 46 

at the same temperature employing continuous feeding of reaction mixture. Therefore, 

these observations were not consistent with those reported by Rambeau et al. [162] who 

suggested that the rate could be increased by a factor of 5 at 400oC when the cyclic 

procedure was used. 

Conditions 

 

NH3 Synthesis Rate (µmol h-1 g-1) 

500oC 1:3 N2/H2 Pre-Treatment 261 
400oC: Every 2 min 15 
500oC: Every 5 min 28 

Table 48: Ammonia synthesis rates of osmium under different conditions. 
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The XRD pattern for the post-reaction osmium that underwent a cyclic procedure is shown 

in Figure 187. Only osmium metal was observed in the pattern, as expected on the basis of 

the observations reported previously. 

 
Figure 187: XRD patterns of osmium post cyclic procedure reaction. Reflections marked: • 

Os (JCPDS file number 00-006-0662). 

Representative SEM images for the osmium post cyclic procedure showed that the material 

had a similar morphology to the pre-reaction material. Therefore, the cyclic procedure did 

not affect the morphology of the osmium. 

6.2.2 Supported Osmium Compounds 

6.2.2.1 Os3(CO)12 on Silica 

To investigate potential structure sensitivity in the case of osmium catalysed ammonia 

synthesis, Os3(CO)12 was supported on amorphous silica. The material was prepared to 

give a 5 wt. % loading of osmium. In the literature, a 5 wt. % loading is used to prepare 

these materials and therefore, the same loading was used in this work. As the silica was not 

treated in order to remove hydroxyl groups, the silica support is referred to as 

hydroxylated. The XRD pattern of the 5% Os3(CO)12/silica hydroxylated is displayed in 

Figure 188. Reflections due to Os3(CO)12 can be observed in the pattern as well as a broad 

peak between 15-35o 2q that is due to amorphous silica. The crystalline reflections related 

to the Os3(CO)12 suggest that there was not monolayer dispersion initially. 
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The elemental analysis of the silica showed that there was trace amounts of carbon and 

significant amounts of hydrogen, as to be expected due to the hydroxyl groups on the 

surface (C: 0.04 wt. %, H: 0.87 wt. %, N: 0.00 wt. %). For the 5% Os3(CO)12/silica, the 

elemental analysis indicated that there was carbon and hydrogen present in the material (C: 

0.98 wt. %, H: 0.77 wt. %, N: 0.00 wt. %). As there was a 5 wt. % loading of osmium 

metal, the expected percentage of carbon in this supported material is 1.26 wt. %. 

Therefore, the percentage of carbon was lower than expected. 

 
Figure 188: XRD pattern of 5% Os3(CO)12/silica hydroxylated. Reflections marked:  

Os3(CO)12 (JCPDS file number 01-070-0415). 

FTIR spectroscopy was performed in the carbonyl region for the supported Os3(CO)12 
material. The FTIR spectrum is provided in Figure 189. For the 5% Os3(CO)12/silica, IR 

frequencies were noted at 2068 cm-1 (s), 2035 cm-1 (m), 2014 cm-1 (w) and 2000 cm-1 (w). 

From the literature, Os3(CO)12 stretching frequencies have been reported to occur at 2068 

cm-1 (s), 2035 cm-1 (s), 2014 cm-1 (m) and 2002 cm-1 (m) [181] [184]. Therefore, these 

results agree well with the literature values. 
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Figure 189: FTIR spectrum of 5% Os3(CO)12/silica hydroxylated. 

The silica supported Os3(CO)12 was investigated for ammonia synthesis activity at 400oC 

and 500oC, in order to compare the rate of the material with the osmium metal. The 

reaction profile for this material is displayed in Figure 190. The material was reduced for 2 

hours under N2/H2 at 500oC. This was performed in order to replicate the conditions used 

for the osmium metal. After 2 hours, the furnace was cooled to 400oC and kept at this 

temperature for 2 h 15 minutes. The temperature was then increased to 500oC, due to the 

low activity of the material at 400oC. The furnace was kept at 500oC for 4 hours. Finally, 

the furnace was cooled down again to 400oC and was kept at this temperature for 2 h and 

25 minutes. The temperature was decreased to 400oC for a second time in order to 

investigate if there had been a change in the material when it was run at 500oC for a longer 

time. When the 5% Os3(CO)12/silica hydroxylated was run at 500oC for 36 hours, there 

was no indication of the material deactivating as seen in Figure 191. 

The ammonia synthesis rate of the material at 400oC was 39 ± 6 µmol h-1 g-1. The rate was 

calculated for the catalyst weight and was not normalised to osmium content. In 

comparison, the rate of the N2/H2 pre-treated osmium metal at 400oC was 79 ± 1 µmol h-1 

g-1. Therefore, the osmium metal was more active than the supported material at the lower 

temperature. However, when the activity is normalised to the mass of osmium, the 

supported material is much more active (770 ± 114 µmol h-1 gOs-1). The 5% 
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Os3(CO)12/silica hydroxylated had a rate of 265 ± 48 µmol h-1 g-1 at 500oC. Comparing this 

with the ammonia synthesis rate of the osmium metal at 500oC (262 ± 21 µmol h-1 g-1), the 

rate was very similar, suggesting that osmium has the same activity whether in the bulk or 

supported form. However, a rate of 5306 ± 954 µmol h-1 gOs-1 is obtained for the supported 

material when the rate is normalised to metal content. Therefore, the Os content is more 

efficient in the supported material and is much more active per unit mass of osmium. This 

possibly suggests that osmium is structure sensitive for ammonia synthesis. Osmium 

appears to possess structure sensitivity more similar to ruthenium, with osmium being 

more active when it is more highly dispersed. 

 

 
Figure 190: Conductivity profile for 5% Os3(CO)12/silica hydroxylated reacted with 3:1 

H2/N2 at 400oC and 500oC. 
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Figure 191: Conductivity profile for 5% Os3(CO)12/silica hydroxylated reacted with 3:1 

H2/N2 at 500oC for 36 hours. 

It has previously been suggested that Os3(CO)12 decomposes through a hydride 

intermediate when under hydrogen and supported on carbon [185]. At 400oC, it was shown 

that the Os3(CO)12 had decomposed to give well dispersed Os on the carbon support. A 

similar hydride intermediate has also been proposed for Os3(CO)12 supported on 

hydroxylated silica and alumina [186]. The retention of the Os-Os nuclearity has been 

questioned when the supported osmium carbonyl cluster decomposes [186] [187]. 

However, Collier et al. have claimed that Os-Os bonding is retained on dehydroxylated 

silica and alumina [51]. They observed that above 250oC, there were no spectral features of 

Os3(CO)12, suggesting that the carbonyl had decomposed. 

The XRD pattern of the material post-reaction is displayed in Figure 192 and shows that, 

unlike the pre-reaction case, there were no reflections corresponding to Os3(CO)12. The 

broad peak between 15-35o 2q due to amorphous silica was observed. An amorphous peak 

between 40 – 45o 2q is observed that was not present in the pre-reaction material. This 

peak could be due to osmium as the metal has three high intensity reflections at this 

position. However, silica can also have similar features and therefore, some caution has to 

be taken. The XRD pattern indicates that Os3(CO)12 had decomposed during the reaction. 

 
The elemental analysis of the post-reaction material showed that the amount of carbon and 

hydrogen had significantly decreased compared to pre-reaction (C: 0.04 wt.%, H: 0.26 wt. 

%, N: 0.07 wt.%). The loss of carbon is to be expected, if the Os3(CO)12 had decomposed. 
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Figure 192: XRD patterns of 5% Os3(CO)12/silica hydroxylated: (a) pre-reaction and (b) 

post-reaction with 3:1 H2/N2. Reflections marked:  Os3(CO)12 (JCPDS file number 01-

070-0415). 

An FTIR spectrum was taken for the post-reaction material, in order to see the effect the 

reaction had on the Os3(CO)12 structure and it is displayed in Figure 193. After the 

reaction, frequencies were recorded at 2043 cm-1 (vw), 2018 cm-1 (vw) and 1992 cm-1 (vw) 

in the carbonyl region. These bands are different from the literature values and those of the 

pre-reaction material. However, the bands are very weak and may be due to background 

noise. The intensity of the bands decreased after the ammonia synthesis reaction, 

suggesting that the Os3(CO)12 had largely decomposed. Such decomposition has been 

recorded in previous literature [188] and agrees with the information obtained from the 

XRD pattern and elemental analysis. 
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Figure 193: FTIR spectrum of 5% Os3(CO)12/silica hydroxylated post-reaction with 3:1 

H2/N2 at 500oC for 36 hours. 

EDX analysis of the Os3(CO)12/silica showed that it consisted of 1.27 wt. % Os, 14.27 

wt.% C, 52.36 wt. % O and 32.09 wt. % Si. The post-reaction material consisted of 1.76 

wt. % Os, 14.33 wt.% C, 46.44 wt. % O and 37.47 wt. % Si. The pre-reaction osmium 

percentage was lower than the 5 wt. % of osmium used to prepare the material. However, 

the osmium was not uniformly dispersed across the surface, as the EDX data showed a 

variation in the areas examined. The osmium was more evenly dispersed in the post-

reaction material and the percentage had apparently increased compared to pre-reaction. 

However, as there was a variation in osmium content pre-reaction, this increase may be 

due to the higher dispersion. To calculate the coverage of the silica support with Os 

triangles, the bond lengths and angles of Os-Os in Os3(CO)12 [171] were used to calculate 

the cross-sectional area of the Os triangle. The cross-sectional area of the Os3 complex was 

calculated to be 3.594 x 10-20 m2 and the silica had a BET surface area of 427 m2/g. Then, 

assuming the Os3 structure lies flat on the silica support and that a monolayer was formed, 

the coverage of the silica support was calculated to be 0.44%.  
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To improve the activity of the silica supported Os3(CO)12, the material was modified in 

four different ways: 

(1) The first method was the preparation of 5% Os3(CO)12/silica hydroxylated under a 

nitrogen atmosphere. This was to confirm that the metal carbonyl was not air sensitive as 

stated in the introduction. The sample was transferred into the reactor under nitrogen 

atmosphere and therefore, did not come into contact with air before the reaction. 

(2) The second method resulted in the silica support being treated with nitrogen prior to 

being supported in order to remove surface hydroxyl groups. As Collier et al. suggested 

that there was retention of the cluster structure on dehydroxylated supports, a comparison 

of hydroxylated and dehydroxylated silica would be of interest.  

(3) In the third method, the metal loading of osmium on the hydroxylated silica was 

increased to 7 wt. %.  

(4) Finally, the 5% Os3(CO)12/silica hydroxylated was doped with 1% KOH as the 

ammonia synthesis activity of Ru/Al2O3 has been shown to increase when it is doped with 

alkali metals [26]. 

The ammonia synthesis activity of these materials at 400oC and 500oC are shown in Table 

49. The activity of the “standard” 5% Os3(CO)12/silica hydroxylated material has been 

provided as a comparison. Only the materials that had a steady state rate at 400oC are listed 

in Table 49. For the sample prepared under N2, there appeared to be minimal difference in 

activity compared to the 5% Os3(CO)12/silica hydroxylated material suggesting that the 

supported Os3(CO)12 material is not very air sensitive. 

When comparing the hydroxylated and dehydroxylated silica supports, the hydroxylated 

silica supported material was more active at 400°C, with 5% Os3(CO)12/dehydroxylated 

silica not exhibiting a steady state rate at this temperature. However, at 500oC, there 

appeared to be an enhancement of the rate on the dehydroxylated system. Therefore, it 

could be suggested that the hydroxyl groups on the silica have an effect on the rate. 

At 400oC, the 7% Os3(CO)12/silica hydroxylated had a lower activity than the 5% loaded 

material. When the catalyst weight was used to calculate the rate, the 7% loaded material 

was observed to be more active at 500oC. However, when the rate is normalised to the 

mass of osmium, the activity of the 5% Os3(CO)12/silica hydroxylated and 7% 

Os3(CO)12/silica hydroxylated were similar. If there was uniform dispersion of the 
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Os3(CO)12 on the silica surface, the rate should be 7/5 of the 5% Os3(CO)12/silica 

hydroxylated. Therefore, the rate is expected to be 7428 µmol h-1 gOs-1 for the 7 wt. % 

loading material. The osmium mass normalised rate was lower than this expected value. 

 
The Os supported material was not promoted by KOH at either 400oC or 500oC. At 400oC, 

the rate was non-steady state and at 500oC the rate was significantly reduced. These results 

suggest, surprisingly, that the KOH had a negative effect on the activity for this system. 

 
Material 

 

Temperature 
(oC) 

NH3 Synthesis 
Rate (µmol h-1 g-1) 

NH3 Synthesis Rate 
(µmol h-1 gOs-1) 

5% Os3(CO)12/silica 
hydroxylated 

400 39 ± 6 770 ± 114 

5% Os3(CO)12/silica 
hydroxylated 

500 265 ± 48 5306 ± 954 

5% Os3(CO)12/silica 
hydroxylated prepared 

under N2 (1) 

400  34 680 

5% Os3(CO)12/silica 
hydroxylated prepared 

under N2 (1) 

500 284 5676 

5% Os3(CO)12/silica 
dehydroxylated (2) 

500 355 ± 19 7096 ± 385 

7% Os3(CO)12/silica 
hydroxylated (3) 

400 22 313 

7% Os3(CO)12/silica 
hydroxylated (3) 

500 349 ± 9 4972 ± 126 

5% Os3(CO)12/silica 
hydroxylated + 1% 

KOH (4) 

500 174 ± 11 3470 ± 202 

Table 49: Ammonia synthesis rates of different Os3(CO)12/silica materials reacted with 3:1 

H2/N2. (1), (2), (3) and (4) refers to the four different modifications detailed above. 

6.2.2.1.1 5% Os3(CO)12/silica hydroxylated Prepared Under N2 

The XRD patterns of the material pre- and post-reaction are shown in Figure 194. The 

pattern was very similar to the material not prepared under nitrogen, with the reflections 

due to Os3(CO)12 not being present in the XRD pattern post-reaction. This indicates that 

Os3(CO)12 decomposed during the reaction. As before, the crystalline reflections of 

Os3(CO)12 suggests that there was not a monolayer dispersion. 
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Figure 194: XRD patterns of 5% Os3(CO)12/silica hydroxylated: (a) pre-reaction, (b) post-

reaction and (c) post-reaction prepared under N2. Reflections marked:  Os3(CO)12 

(JCPDS file number 01-070-0415). 

6.2.2.1.2 5% Os3(CO)12/silica dehydroxylated 

The XRD patterns of the dehydroxylated material pre- and post-reaction appear to be very 

similar to the XRD patterns for the hydroxylated material as observed in Figure 195. 

The silica post nitrogen treatment was shown to still contain some hydrogen (C: 0.03 wt. 

%, H: 0.20 wt. %, N: 0.00 wt. %). However, the amount was significantly lower than the 

sample that was not treated to remove hydroxyl groups, as would be expected. A degree of 

rehydroxylation may have occurred when the silica was in contact with air. The elemental 

analysis for the material pre- and post-reaction is provided in Table 50. The amount of 

carbon had significantly decreased post-reaction, which agrees with the XRD pattern that 

showed the Os3(CO)12 had decomposed. 
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Figure 195: XRD patterns of 5% Os3(CO)12/silica dehydroxylated: (a) pre-reaction, (b) 

post-reaction at 400oC and (c) post-reaction at 500oC. Reflections marked:  Os3(CO)12 

(JCPDS file number 01-070-0415). 

Material 

 

Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen 
Content from 

Elemental 
Analysis (wt. %) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. %) 

Pre-reaction 2.42 0.52 0.03 
Post-reaction 0.06 0.24 0.11 

Table 50: Elemental Analysis for pre- and post-reaction 5% Os3(CO)12/silica 

dehydroxylated. 

6.2.2.1.3 7% Os3(CO)12/silica hydroxylated 

The XRD patterns of the material pre- and post-reaction are displayed in Figure 196. The 

Os3(CO)12 is not observed in the post-reaction pattern and therefore, it appears to have 

decomposed during the reaction. The pre- and post-reaction XRD patterns are similar to 

those for the 5% loaded material. 

The elemental analysis of the 7% Os3(CO)12/silica hydroxylated is given in Table 51. For a 

7 wt. % loading of osmium metal, the expected percentage of carbon in the supported 

material would be 1.76 wt. %. The carbon percentage of the pre-reaction material agrees 

quite well with this expected value. As observed with the other materials, the carbon 

content decreased after the reaction and therefore, this confirms that the Os3(CO)12 

decomposed. 
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Figure 196: XRD patterns of 7% Os3(CO)12/silica hydroxylated: (a) pre-reaction and (b) 

post-reaction at 500oC. Reflections marked:  Os3(CO)12 (JCPDS file number 01-070-

0415). 

 
Material 

 

Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen 
Content from 

Elemental 
Analysis (wt. %) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. %) 

Pre-reaction 1.58 0.69 0.00 
Post-reaction 0.03 0.33 0.04 

Table 51: Elemental Analysis for pre- and post-reaction 7% Os3(CO)12/silica hydroxylated. 

6.2.2.1.4 5% Os3(CO)12/silica hydroxylated + 1% KOH 

The XRD patterns of the doped material were different to the undoped sample pre- and 

post-reaction as observed in Figure 197. For the pre-reaction sample, reflections due to 

Os3(CO)12 were not observed, with the only observed reflection being due to silica. In the 

post-reaction sample, the XRD pattern showed that osmium metal was present in the 

material. These differences in the XRD pattern of the doped material may provide an 

explanation for the lower activity compared to the undoped sample. The reflection widths 

of the osmium are large, suggesting that the osmium is highly dispersed consisting of small 

and/or disordered crystallites. As the osmium is more highly dispersed compared to the 

bulk osmium, this would suggest that there was a greater proportion of surface atoms. 
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Although Os3(CO)12 was not observed in the pre-reaction XRD pattern, the elemental 

analysis showed that there was carbon present in the material, suggesting that Os3(CO)12 

was present pre-reaction. The carbon percentage was lower than expected, suggesting that 

the Os3(CO)12 percentage was also lower. This may be another reason for the lower activity 

of this material. The elemental analysis for the material pre- and post-reaction is provided 

in Table 52. 

 
Figure 197: XRD patterns of 5% Os3(CO)12/silica hydroxylated + 1% KOH: (a) pre-reaction 

and (b) post-reaction at 500oC. Reflections marked: • Os (JCPDS file number 00-006-

0662). 

 
Material 

 

Carbon Content 
from Elemental 
Analysis (wt. %) 

Hydrogen 
Content from 

Elemental 
Analysis (wt. %) 

Nitrogen 
Content from 

Elemental 
Analysis (wt. %) 

Pre-reaction 0.75 0.78 0.01 
Post-reaction 0.04 0.32 0.00 

Table 52: Elemental Analysis for pre- and post-reaction 5% Os3(CO)12/silica hydroxylated 

+ 1% KOH. 

The elemental maps of osmium for the four samples is presented in Figure 198. The 

osmium appears to be evenly distributed across all four materials. 
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The EDX analysis of the four materials post-reaction is provided in Table 53. The osmium 

percentage for all four samples was higher than for the 5% Os3(CO)12/silica hydroxylated 

material discussed earlier, which contained 1.76 wt. % Os. There are a few interesting 

things to note. Firstly, although the doped material had a lower activity, this does not seem 

to be due to a lower percentage of osmium in the material. Next, as the 5% Os3(CO)12 on 

dehydroxylated silica apparently contained a higher percentage of osmium, this may 

explain the higher activity compared to the 5% Os3(CO)12/silica hydroxylated material. 

The osmium was not uniformly dispersed across the surface for all four samples, with 

variation in the osmium content observed in the EDX analysis. However, these results are 

statistically limited and this needs to be borne in mind. The lower loading may possibly 

suggest that the Os3(CO)12 was not completely loaded onto the support. However, as the 

Os was not evenly dispersed across the support, there were limitations to measuring the Os 

content by EDX analysis. Also, the monolayer coverage of Os3 on silica was calculated to 

be only 0.44%. 

 
Figure 198: Elemental maps of osmium for Os3(CO)12/silica post-reaction with 3:1 H2/N2. 

a) 5% Os3(CO)12/silica hydroxylated prepared under N2, b) 5% Os3(CO)12/silica 

dehydroxylated, c) 7% Os3(CO)12/silica hydroxylated and d) 5% Os3(CO)12/silica 

hydroxylated + 1% KOH. 
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Material Os weight (%) C weight (%) O weight (%) Si weight 
(%) 

5% 
Os3(CO)12/silica 
Hydroxylated 

prepared under 
N2. Average from 
4 measurements 

2 20 51 26 

5% 
Os3(CO)12/silica 
Dehydroxylated. 
Average from 10 
measurements 

4 22 31 43 

7% 
Os3(CO)12/silica 
Hydroxylated. 

Average from 15 
measurements 

3 23 34 40 

5% 
Os3(CO)12/silica 
Hydroxylated + 

1% KOH. 
Average from 11 
measurements 

4 18 31 47 

Table 53: EDX values for Os3(CO)12/silica post-reaction with 3:1 H2/N2. 

6.2.2.2 Os3(CO)12 on Gamma Alumina 

Os3(CO)12 was supported on γ-alumina in order to investigate the effect the support may 

have on the ammonia synthesis activity. Os3(CO)12 was prepared on gamma alumina to 

give a percentage loading of 5% by weight of osmium. The material was first pre-treated at 

500oC for 2 hours with N2/H2. Then, the temperature was decreased to 400oC. The 

temperature was subsequently changed as shown in Figure 199. 

The material yielded an ammonia synthesis rate of 191 ± 43 µmol h-1 g-1 at 500oC when 

calculated from the catalyst weight. The rate was 3825 ± 860 µmol h-1 gOs-1 when 

normalised to the mass of Os based on targeted loading. Although the material produced 

some ammonia at 400oC, it did not exhibit steady state activity. The performance of the 

material at 400oC did not change after being run at 500oC as can be seen in Figure 199. 

The material was run at 500oC for 36 hours as shown in Figure 200 and was found to 

exhibit a steady-state ammonia synthesis rate throughout the reaction, with no indication of 

deactivation. The Os3(CO)12 supported on silica possessed a higher ammonia synthesis rate 

than the gamma alumina equivalent. Although alumina is amphoteric [189] and therefore 
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the acidic sites of the support might retain some of the ammonia that is produced, this did 

not seem to be a significant issue. 

Aika et al. prepared 2% Ru3(CO)12/alumina and 5% Ru3(CO)12/alumina and obtained a rate 

of 62 µmol h-1 g-1 and 202 µmol h-1 g-1, respectively at 400oC and atmospheric pressure 

[25]. The mass was normalised to the total material weight. This suggests that the Ru metal 

is more active than the osmium at lower temperatures, even with a lower metal loading. 

This is to be expected as Ru has been shown to be more active than Os for ammonia 

synthesis [162] [163]. 

 
Figure 199: Conductivity profile for 5% Os3(CO)12/g-alumina reacted with 3:1 H2/N2 at 

400oC and 500oC. 
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Figure 200: Conductivity profile for 5% Os3(CO)12/g-alumina reacted with 3:1 H2/N2 at 

500oC for 36 hours. 

The FTIR spectrum of the 5% Os3(CO)12/γ-alumina pre-reaction is provided in Figure 201. 

An FTIR spectrum was taken of the post-reaction material in order to see the effect the 

reaction had on the Os3(CO)12 structure. For the pre-reaction 5% Os3(CO)12/γ-alumina, IR 

frequencies were recorded in the carbonyl region at 2068 cm-1 (m), 2033 cm-1 (w) 2014 

cm-1 (vw) and 2003 cm-1 (vw). These values are similar to those for the silica supported 

Os3(CO)12 and those reported in the literature [181] [184]. 
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Figure 201: FTIR spectrum of 5% Os3(CO)12/g-alumina. 

Os3(CO)12 and γ-alumina can be seen in the XRD pattern of the supported gamma alumina 

material pre-reaction as shown in Figure 202. However, there is no evidence of Os3(CO)12 

present in the material post-reaction, with reflections due to γ-alumina being the only 

peaks observed. Therefore, this suggests that Os3(CO)12 decomposed during the ammonia 

synthesis testing procedure. There does not appear to be a monolayer dispersion of 

Os3(CO)12 in the pre-reaction material as the reflections for Os3(CO)12 are crystalline. 
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Figure 202: XRD patterns of 5% Os3(CO)12/g-alumina: (a) pre-reaction and (b) post-

reaction with 3:1 H2/N2 at 500oC for 36 hours. Reflections marked:  Os3(CO)12 (JCPDS 

file number 01-070-0415) and   g-Al2O3 (JCPDS file number 00-001-1303). 

The FTIR spectrum of the post-reaction material is displayed in Figure 203. There were no 

distinct bands in the post-reaction spectrum. As before, this indicates that the Os3(CO)12 

has decomposed on the support. A similar observation has been previously reported by 

Knözinger and Zhao [190], who observed that Os3(CO)12 on alumina, experienced thermal 

degradation by loss of CO at temperatures as low as 200oC. The decomposition of the 

material agrees with the analysis from the XRD pattern. 
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Figure 203: FTIR spectrum of 5% Os3(CO)12/g-alumina post-reaction with 3:1 H2/N2 at 

500oC for 36 hours.  

The EDX analysis showed that the pre-reaction material consisted of 3.7 wt. % Os, 13 

wt.% C, 54 wt. % O and 29 wt. % Al. For the post-reaction material, the EDX analysis 

indicated that the sample consisted of 2.1 wt. % Os, 12 wt.% C, 53 wt. % O and 32 wt. % 

Al. The osmium percentage of 3.7 wt. % was slightly lower than the targeted 5% osmium. 

However, there did not appear to be uniform dispersion of osmium on the catalyst surface. 

The coverage of g-alumina with triangular Os complex was calculated to be 0.91% as the 

g-alumina had a BET surface area of 208 m2/g. 

6.2.3 Supported Mixed Metal, Iron and Ruthenium Compounds 

The other Group 8 metal carbonyls were investigated for ammonia synthesis activity, in 

order to make a comparison with the osmium compounds. The ammonia synthesis rates of 

the supported mixed metal, iron and ruthenium materials at 400oC and 500oC are presented 

in Table 54. Only those that had a steady state rate at these temperatures are provided. As 

can be observed, more materials were active at 500oC compared to 400oC. 
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Material 

 

Temperature 
(oC) 

NH3 Synthesis 
Rate (µmol h-1 g-1) 

NH3 Synthesis Rate 
(µmol h-1 gM-1) 

5% Ru/Al2O3 + 1% 
KOH 

400 461 ± 52 9207 ± 1038 

5% Ru/Al2O3 400 42 ± 1 846 ± 21 
2% Ru3(CO)12/g-

alumina 
400 41 ± 5 2043 ± 265 

2% Ru3(CO)12/silica 
hydroxylated 

400 33 ± 6 1614 ± 274 

1% Fe3(CO)12/g-alumina 400 18 ± 2 1802 ± 228 
5% Ru/Al2O3 + 1% 

KOH 
500 544 ± 49 10875 ± 969 

5% Ru/Al2O3 500 446 ± 63 8919 ± 1266 
5% Os3(CO)12 + 2% 

Ru3(CO)12/silica 
hydroxylated 

500 385 ± 34 5502 ± 491 

2% Ru3(CO)12/g-
alumina 

500 302 ± 19 15101 ± 934 

2% Ru3(CO)12/silica 
hydroxylated 

500 140 ± 51 6995 ± 2538 

5% Os3(CO)12 + 1% 
Fe3(CO)12/silica 

hydroxylated 

500 69 ± 1 1151 ± 14 

1% Fe3(CO)12/g-alumina 500 39 ± 10 3830 ± 944 
2% Ru3(CO)12 + 1% 

Fe3(CO)12/silica 
hydroxylated 

500 18 ± 3 587 ± 100 

1% Fe3(CO)12/silica 
hydroxylated 

500 4 ± 3 417 ± 317 

Table 54: Ammonia synthesis rates of different mixed metal, iron and ruthenium 

supported materials reacted with 3:1 H2/N2 at 400oC and 500oC. 

As supported Ru has previously been reported as having a high activity and is used in the 

KAAP process [29], Ru has been studied to give a reference. Commercial 

Ru/Al2O3 promoted with KOH gave the highest activity out of the materials studied at both 

400°C and 500oC. In the literature, Ru is reported to have high activity as it is proposed to 

exhibit close to optimum nitrogen binding energy for ammonia synthesis [24]. At 400oC, 

there is a clearly evident enhancement due to the doping with KOH. This is in agreement 

with the literature, which states that doping of ruthenium with alkali metals increases 

activity via electron donation [26]. The promotional effect of KOH is less evident at 

500oC, which could be due to loss of KOH at the elevated temperature. The choice of the 

support is also an important factor in enhancing the activity for Ru catalysts [191] [165]. It 

is suggested that the support controls the morphology of the Ru and therefore, the number 

of B5 sites. In this study, the alumina supported Ru catalysts were more active than the 
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silica supported Ru catalyst at both 400oC and 500oC. This is in contrast to the Os3(CO)12, 

which exhibited better activity when supported on silica. 

The supported iron based materials were shown to have the lowest activity of the samples 

investigated. As with the Ru based materials, the alumina supported Fe was more active at 

both 400oC and 500oC compared to when supported on silica. The higher activity of Os 

and Ru based materials compared to Fe is to be expected [24], although it must be noted 

that the loading of Fe was lower than for the other two metals. As stated in the 

introduction, iron has a higher activity when in the bulk form [192] [166] and therefore, the 

results of the supported Fe are as expected. 

6.2.3.1 Supported Mixed Metal Compounds 

Mixed metal supported materials were investigated in order to potentially optimise the 

ammonia synthesis activity and may provide the opportunity of tuning the activity of the 

dispersed clusters. The method performed by Kulkarni and Gates [52] was replicated in 

order to try and form supported mixed metal catalysts. As stated in the introduction, in this 

published work, mixed metal bonds were formed when the metal carbonyls underwent 

decarbonylation. Three mixed metal materials supported on hydroxylated silica have been 

prepared in this study: 5% Os3(CO)12 + 2% Ru3(CO)12, 5% Os3(CO)12 + 1% Fe3(CO)12 and 

2% Ru3(CO)12 + 1% Fe3(CO)12.  

None of the three materials were observed to exhibit a steady state ammonia synthesis rate 

at 400oC. As both 5% Os3(CO)12/silica hydroxylated and 2% Ru3(CO)12/silica 

hydroxylated were active at 400oC, it would possibly be expected that 5% Os3(CO)12 + 2% 

Ru3(CO)12/silica hydroxylated would also be active at this temperature. These results 

suggest that the metals were mixing due to the different effects on the rate. 

At 500oC, the 5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated had the highest activity 

of the three mixed metal materials examined. This is possibly to be expected as the Os and 

Ru based materials displayed the highest activity. The activity of the mixed metal based 

material was higher than for both the 5% Os3(CO)12/silica hydroxylated (265 ± 48 µmol h-1 

g-1) and 2% Ru3(CO)12/silica hydroxylated (140 ± 51 µmol h-1 g-1). The rate of the two 

separate monometallic materials added together is similar to the rate for the 5% Os3(CO)12 

+ 2% Ru3(CO)12/silica hydroxylated (385 ± 34 µmol h-1 g-1). Therefore, it is difficult at this 

stage to confirm whether the higher rate is due to the possible Os-Ru bond formation. 

However, when the rate is normalised to the targeted metal content, the rate for 5% 

Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated is lower than for 2% Ru3(CO)12/silica 
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hydroxylated and is similar to the rate for 5% Os3(CO)12/silica hydroxylated. This suggests 

that the rate is not as a result of adding the two metals together and could suggest the 

formation of Os-Ru bonds. 

Both the 5% Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated and 2% Ru3(CO)12 + 1% 

Fe3(CO)12/silica hydroxylated had lower activities than the monometallic Os based and Ru 

based silica supported materials at 500oC. This could possibly suggest that there was 

mixing of the metals, which had an adverse effect on the catalytic performance. Ru-Fe 

bimetallic catalyst has previously been reported to have a lower ammonia synthesis rate 

than Ru and Fe [193]. 

The XRD patterns of the mixed metal supported samples pre- and post-reaction are 

provided in Figures 204, 205 and 206. The crystalline reflections for Os3(CO)12, Ru3(CO)12 

and Fe3(CO)12 in the pre-reaction XRD patterns indicates that there was not a monolayer 

dispersion of the metal complexes. For all three samples, it can be observed that the 

reflections due to the starting metal carbonyls are not present in the post-reaction patterns. 

In the XRD post-reaction patterns of the 5% Os3(CO)12 + 2% Ru3(CO)12/silica 

hydroxylated and 5% Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated, the broad band 

between 40 – 45o 2q is observed. Furthermore, a reflection assigned to Ru metal can also 

be observed at 44o 2q in the XRD pattern for 5% Os3(CO)12 + 2% Ru3(CO)12/silica 

hydroxylated. Therefore, it is suggested that the metal carbonyls decomposed to their 

corresponding metal components. However, in the post-reaction XRD pattern of 2% 

Ru3(CO)12 + 1% Fe3(CO)12/silica hydroxylated, there were no reflections corresponding to 

Ru or Fe metal. This cannot be due to a lower metal loading, as Ru with the same loading 

was observed in the XRD pattern for 5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated. 

This may explain the reason for this material having the lowest activity of the three 

samples. 
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Figure 204: XRD patterns of 5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated pre- 

(black) and post-reaction (red) with 3:1 H2/N2. Reflections marked:  Os3(CO)12 (JCPDS 

file number 01-070-0415), • Ru3(CO)12 (JCPDS file number 01-070-0553) and  Ru 

(JCPDS file number 01-070-0274). 

 
Figure 205: XRD patterns of 5% Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated pre- 

(black) and post-reaction (red) with 3:1 H2/N2. Reflections marked:  Os3(CO)12 (JCPDS 

file number 01-070-0415) and • Fe3(CO)12 (JCPDS file number 01-082-2196). 
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Figure 206: XRD patterns of 2% Ru3(CO)12 + 1% Fe3(CO)12/silica hydroxylated pre- 

(black) and post-reaction (red) with 3:1 H2/N2. Reflections marked: • Ru3(CO)12 (JCPDS 

file number 01-070-0553) and • Fe3(CO)12 (JCPDS file number 01-082-2196). 

The FTIR spectra of the three supported mixed metal materials pre- and post-reaction are 

displayed in Figures 207, 208 and 209. For the 5% Os3(CO)12 + 2% Ru3(CO)12/silica 

hydroxylated pre-reaction spectrum, bands similar to those in the 5% Os3(CO)12/silica 

hydroxylated spectrum are observed. However, the IR bands for Ru3(CO)12 are at similar 

frequencies to those for Os3(CO)12 [184] [194]. Hence, overlapping of the bands due to 

Os3(CO)12 and Ru3(CO)12 may occur and will be difficult to distinguish. 

The FTIR spectrum of 5% Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated pre-reaction is 

similar to the spectrum for 5% Os3(CO)12/silica hydroxylated. However, an additional band 

at 2046 (w) is also observed, which has been reported in the literature as a band for 

Fe3(CO)12 [195]. The expected bridging bands for Fe3(CO)12 between 1800 – 1900 cm-1 

may be present in the spectrum in Figure 208. However, as there appears to be background 

noise in this region it was difficult to distinguish the bands. 

The bands in the pre-reaction FTIR spectrum for 2% Ru3(CO)12 + 1% Fe3(CO)12/silica 

hydroxylated were very weak and therefore, difficult to differentiate from the background 

noise. This could possibly suggest that the content of the two metal carbonyls was low in 

the material and thus, may explain the low activity of this material. 
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For all three samples, no clear bands were observed in the spectra post-reaction. This is to 

be expected as the metal carbonyls will have decomposed during the reaction. Therefore, 

the metal carbonyls underwent decarbonylation as observed by Kulkarni and Gates [52]. 

 
Figure 207: FTIR spectra of 5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated: a) pre-

reaction and b) post-reaction. 

 
Figure 208: FTIR spectra of 5% Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated: a) pre-

reaction and b) post-reaction. 
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Figure 209: FTIR spectra of 2% Ru3(CO)12 + 1% Fe3(CO)12/silica hydroxylated: a) pre-

reaction and b) post-reaction. 

The pre and post-reaction EDX analysis is given in Table 55. The osmium percentage for 

5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated was higher than for 5% Os3(CO)12 + 

1% Fe3(CO)12/silica hydroxylated, which may explain the higher activity of this material. 

The osmium, ruthenium and iron percentages were observed to be higher post-reaction. 

The metal percentages were more varied across the areas examined in the pre-reaction 

materials and hence, this may suggest that there was better dispersion of the metals after 

the reaction. 
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Material Os 
weight 

(%) 

Ru 
weight 

(%) 

Fe 
weight 

(%) 

C weight 
(%) 

O 
weight 

(%) 

Si weight 
(%) 

5% Os3(CO)12 + 
2% Ru3(CO)12 

/silica Pre-
reaction. 

Average from 6 
measurements. 

1.5 0.5 - 14 55 29 

5% Os3(CO)12 + 
2% Ru3(CO)12 

/silica Post-
reaction. 

Average from 19 
measurements. 

2.3 0.7 - 12 52 32 

5% Os3(CO)12 + 
1% Fe3(CO)12 

/silica Pre-
reaction. 

Average from 10 
measurements. 

0.4 - 0.5 8 59 33 

5% Os3(CO)12 + 
1% Fe3(CO)12 

/silica Post-
reaction. 

Average from 11 
measurements. 

1 - 0.6 11 52 35 

Table 55: EDX values for 5% Os3(CO)12 + 2% Ru3(CO)12/silica hydroxylated and 5% 

Os3(CO)12 + 1% Fe3(CO)12/silica hydroxylated pre- and post-reaction with 3:1 H2/N2. 

6.3 Conclusions 
In this chapter the activity of the bulk and supported osmium was compared. The osmium 

metal (262 ± 21 µmol h-1 g-1) was found to have a similar activity as the supported 

Os3(CO)12 on silica (265 ± 48 µmol h-1 g-1) at 500oC. However, when the rate is normalised 

to the metal content, the supported material is more efficient. Therefore, it appears that 

osmium was structure sensitive for ammonia synthesis. The area of the supported metal 

particles is not known and therefore, a conclusion based upon comparative turnover 

frequencies cannot be made. 

When osmium metal was pre-treated with H2/Ar or N2, a lag period was observed before 

the material became active. This was not the case when H2/N2 was used as the pre-

treatment mixture. The inhibition of hydrogen and nitrogen coverage of the surface may 

explain this lag period, as might surface restructuring under the reaction atmosphere. The 

osmium metal had steady state activity for all three pre-treatments after the lag periods. A 

cycling procedure was performed in order to try and overcome the possible inhibition of 
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hydrogen on the surface of the osmium. However, the cycling procedure resulted in the 

activity being reduced. Shorter cycling times appeared to be the most promising and 

therefore, this may be an avenue to be explored in future work.  

Os3(CO)12 was supported on both silica and γ-alumina to give a 5 wt. % loading of 

osmium. 5% Os3(CO)12/silica hydroxylated and 5% Os3(CO)12/γ-alumina were observed to 

be stable when tested for 36 hours. The material was found to have the highest activity 

when supported on silica. To optimise the activity of the Os3(CO)12/silica hydroxylated, 

the material was modified by four different methods. It was found that the material had the 

highest activity when the silica was dehydroxylated. Promoting the material with KOH 

was shown to have a negative effect on the activity. The metal carbonyl was observed to 

largely decompose as a consequence of the reaction procedure. Further studies need to be 

performed in order to confirm if the Os nuclearity was preserved upon decomposition. 

As the supported mixed metal materials had different activities compared to their 

monometallic equivalents, this may suggest that there was possible metal-metal bond 

formation between the different metals. However, this would need to be investigated 

further in order to gain an insight into the nature of the active phases. This study suggests 

that it may be possible to optimise these materials and this method may provide the 

opportunity of altering the activity of the metal particles. Furthermore, different sized 

metal carbonyl precursors could be used to control ensemble size. 

A summary of the performance of the supported materials investigated within this chapter 

is provided in Figures 210 and 211. 
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Figure 210: Ammonia synthesis activity of the supported materials reacted with 3:1 H2/N2 

at 400oC.  

 
Figure 211: Ammonia synthesis activity of the supported materials reacted with 3:1 H2/N2 

at 500oC. 
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7. Conclusions and Future Work 
7.1 Conclusions 
The main aim of this work was to investigate the role composition and structure type had 

on the ammonia synthesis activity of ternary and quaternary molybdenum containing 

materials and also the potential structure sensitivity of Group 8 metals. As a result, nitrides 

(Ni2Mo3N, Ni2GaMo3N, Co2Mo3N and Fe3Mo3N), a carbonitride (Ni2Mo3CxNy) and 

carbides (Ni6Mo6C, Ni3Mo3C and Fe3Mo3C) were synthesised that had different metal 

compositions and either a η-carbide structure or a filled β-manganese structure. 

Furthermore, the structure sensitivity of osmium was examined and compared with the 

other Group 8 metals. 

The synthesis of some of the pure phase nitrides and carbides proved to be challenging. In 

the case of Co2Mo3N, the Co3Mo3N phase was also present and therefore, the optimal 

conditions had to be identified to give the highest ratio of Co2Mo3N to Co3Mo3N. For 

some other phases, minor impurities of monometallic nitrides/carbides or metal phases 

were observed. Hence, the careful choice of the synthesis conditions was required, with 

precursors, temperature and synthesis atmosphere all having an effect on the resulting 

product. The four nitrides investigated in this work were active for ammonia synthesis, 

with ‘Co2Mo3N’ having the highest activity of 208 µmol h-1 g-1 at 400oC. 

The lattice nitrogen reactivity of the different nitrides was investigated up to 900oC, in 

order to examine the effect the crystal structure and metal composition had on the nitrogen 

mobility. The bulk lattice nitrogen in the filled β-manganese structured Ni2Mo3N and η-

carbide structured Ni2GaMo3N were observed to be unreactive. However, the filled β-

manganese structured Co2Mo3N and η-carbide structured Fe3Mo3N were shown to 

decompose when reacted under 3:1 H2/Ar at 900oC. As the two filled β-manganese 

structured nitrides and the two filled η-carbide structured nitrides were shown to have 

different reactivities from one another, this could possibly suggest that the metal 

composition has a greater effect on the reactivity than the structure type. However, since 

the filled β-manganese structured Co2Mo3N and the η-carbide structured Co3Mo3N were 

observed to have different reactivities under 3:1 H2/Ar up to 800oC, both structure and 

metal composition seem to play a role in the reactivity of the lattice nitrogen. 

The effect of the interstitial element composition on the ammonia synthesis activity of the 

nickel molybdenum and iron molybdenum materials was also investigated. Preparation of 

Ni2Mo3C by nitridation of Ni2Mo3N proved to be unsuccessful, with instead a carbonitride 
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phase being formed. Ni2Mo3CxNy was active for ammonia synthesis at 400oC and some 

replacement of lattice carbon was observed by elemental analysis. Ni6Mo6C, Ni3Mo3C and 

Fe3Mo3C were not active at this temperature. For Fe3Mo3C, unlike its corresponding 

nitride, a reaction temperature of 500oC was required before it developed activity. An 

induction period of 45 minutes was observed and through elemental analysis and analysis 

of the XRD patterns, it was discovered that substitution of some lattice carbon with 

nitrogen had taken place. This result may possibly suggest that the activity of Fe3Mo3N is 

due to the lattice nitrogen and therefore, the material may operate via a Mars-van Krevelen 

mechanism. The effect the passivation layer has on the reactivity of this system needs to be 

examined further but initial ToF-SIMS analysis suggests that this may have limited impact. 

Ni6Mo6C and Ni3Mo3C required a much higher reaction temperature of 700oC before they 

were active. A small induction period was observed for both materials before there was 

development of activity. The two carbides were shown to undergo nitridation during the 

reaction. However, unlike Fe3Mo3C, the nitridation process did not occur through a 

topotactic exchange mechanism, with both carbides instead forming Ni2Mo3N. This 

possibly suggests that the Ni3Mo3N phase is unstable which is consistent with failed 

attempts to prepare it to date. This nitridation did not occur at the lower reaction 

temperatures examined and therefore, this may be the reason for the inactivity of these 

materials at these temperatures. Hence, it is possible that lattice nitrogen is required in 

order for these materials to be active.  

The structure sensitivity of osmium was examined by comparing the ammonia synthesis 

activity of bulk osmium metal with triosmium dodecacarbonyl supported on silica and 

alumina. It was found that the bulk and supported osmium had similar activities at 500oC 

under 3:1 H2/N2. However, when the rate was normalised to take account of the differing 

mass of osmium present, the supported osmium materials were more active. This possibly 

suggests that the osmium is structure sensitive for ammonia synthesis, with the material 

being more active when the particle size is small. A comparison based upon turnover 

frequency is desirable. A cycling procedure was performed for osmium metal in order to 

try and improve ammonia production. Although production appeared to be reduced when 

this was implemented, shorter cycling times showed that there may be a benefit to this 

method. 

Initial attempts were also performed in order to synthesise supported mixed metal clusters. 

Two of the osmium, ruthenium and iron metal carbonyl clusters were supported on silica 

and through FTIR analysis and analysis of the XRD patterns it was observed that the 
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materials underwent decarbonylation when reacted under 3:1 H2/N2. More detailed 

analysis using other techniques would need to be performed in order to determine if 

heterometallic bonds had formed. However, as the supported mixed metal materials had 

different activities to the supported monometallic equivalents, this possibly suggests that 

there may have been heterometallic bond formation. Therefore, this may be an interesting 

avenue to explore further. 

7.2 Future Work 
The formation of the η-carbide structured Ni3Mo3N, which is unprecedented to date, would 

give an interesting comparison to the isostructural Fe3Mo3N and Co3Mo3N. This would 

allow a further insight into the composition-activity relationship for ammonia synthesis 

and lattice nitrogen reactivity, which might be useful to feed into computational modelling 

for example. Furthermore, the comparison in performance between Ni3Mo3N and 

Ni2Mo3N would provide information on the structure-activity relationship. The study of 

anti-perovskites comprising the same elements but in different spatial and stoichiometric 

relationships could also provide information on the effect structure type has on activity. 

The application of other complementary techniques such as X-ray photoelectron 

spectroscopy (XPS) and X-ray absorbance spectroscopy (XAS) could provide information 

on the effect structure and composition have on activity. XPS could also provide further 

information on the impact the passivation layer has on the activity of the carbides. XAS 

could be used to examine the possible heterometallic bond formation of the supported 

mixed metal clusters. This information could help towards the design of materials with 

high activity for ammonia synthesis. 
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Appendices 
Appendix I 
The following calculation was used to determine the ammonia synthesis rate for each 

reaction that had a steady state reaction profile. The change in conductivity of 200 mL of 

0.00108 mol/L sulfuric acid solution was used to measure the production of ammonia. 

The first stage was to calculate the number of moles of H2SO4 within the flask. 

Moles (H2SO4) = 0.00108 mol/L × 200 mL 

= 2.16 × 10-4 moles 

This value is then multiplied by 2 to account for the equivalent H+ in the ammonia needed 

to react with H2SO4.  

= 4.32 × 10-4 moles of ammonia required 

The mean conductivity change of the 0.00108 mol/L sulfuric acid solution for complete 

consumption by reaction with ammonia was observed to be 600 µS/cm. 

The number of moles of ammonia required is divided by the mean conductivity to give the 

number of moles of H2SO4 used. 

= 4.32 × 10-4 moles/600 = 7.20 × 10-7 mol/µScm-1 

The gradient of the conductivity vs. time graph is multiplied by 60, to convert the value 

from minutes to hours, and 7.20 × 10-7 mol/µScm-1 to give a value X. Then, this value is 

divided by the mass of the material to obtain the ammonia synthesis rate in units of µmol 

hr-1 g-1 catalyst. 
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Appendix II 

EDX Tables for Nickel Molybdenum Materials Prepared at Different 

Carburisation Temperatures with 20% CH4/H2 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 24 62 7 7 
2 25 60 9 6 
3 34 59 7 0 
4 25 56 11 8 
5 34 54 8 4 
6 25 62 8 5 
7 22 56 14 8 
8 26 63 9 2 
9 19 56 15 10 

10 25 59 10 6 
11 22 60 11 7 
12 26 57 13 5 
13 21 34 42 3 
14 34 58 8 0 
15 6 9 81 5 

Average 24 54 17 5 
Table 56: EDX values for nickel molybdenum material prepared at 560oC with 20% 

CH4/H2 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 49 40 10 2 
2 26 55 20 0 
3 19 54 24 2 
4 24 50 23 4 
5 27 55 13 5 
6 50 39 12 0 
7 39 42 16 2 
8 22 50 28 0 
9 30 53 15 2 

10 21 50 29 0 
11 27 57 15 0 
12 22 49 29 0 
13 24 55 21 0 
14 26 59 15 0 
15 21 62 17 0 

Average 28 51 19 1 
Table 57: EDX values for nickel molybdenum material prepared at 600oC with 20% 

CH4/H2 
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Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 20 44 36 0 
2 19 55 26 0 
3 17 49 34 0 
4 20 47 33 0 
5 20 48 32 0 
6 26 55 19 0 
7 23 57 20 0 
8 26 53 20 0 
9 24 55 22 0 

10 24 60 16 0 
11 20 60 20 0 
12 27 56 17 0 
13 29 59 12 0 
14 32 57 11 0 
15 22 52 26 0 
16 20 48 32 0 
17 27 55 18 0 
18 19 52 28 0 
19 35 57 8 0 
20 22 54 24 0 
21 19 53 28 0 
22 20 57 22 0 
23 25 52 23 0 
24 20 53 27 0 
25 35 52 13 0 
26 27 55 18 0 
27 23 57 20 0 

Average 24 54 22 0 
Table 58: EDX values for nickel molybdenum material prepared at 650oC with 20% 

CH4/H2 

Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 
1 29 44 28 0 
2 19 36 44 0 
3 32 41 27 0 
4 38 34 28 0 
5 31 50 19 0 
6 42 45 13 0 
7 18 42 39 0 
8 12 44 44 0 
9 13 45 42 0 

10 19 47 33 0 
11 15 41 44 0 
12 15 40 44 0 
13 19 44 37 0 
14 17 48 35 0 
15 42 41 18 0 

Average 24 43 33 0 
Table 59: EDX values for nickel molybdenum material prepared at 700oC with 20% 

CH4/H2 
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Area Ni weight (%) Mo weight (%) C weight (%) N weight (%) 

1 13 49 38 0 
2 48 34 19 0 
3 17 45 39 0 
4 15 40 45 0 
5 17 46 37 0 
6 18 44 39 0 
7 17 45 39 0 
8 15 48 37 0 
9 16 37 47 0 

10 14 43 43 0 
11 19 42 39 0 
12 13 46 41 0 
13 19 35 46 0 
14 20 30 50 0 
15 15 37 47 0 
16 21 42 37 0 
17 14 44 41 0 
18 25 47 29 0 
19 17 45 38 0 
20 20 47 33 0 
21 25 49 26 0 
22 19 43 38 0 

Average 19 43 38 0 
Table 60: EDX values for nickel molybdenum material prepared at 725oC with 20% 

CH4/H2 
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Appendix III 

ToF-SIMS Data for Ni2Mo3CxNy 
 

 
Figure 212: ToF-SIMS analysis from 100 – 120 m/z for Ni2Mo3CxNy 

 
Figure 213: Depth profile for 92MoN from Ni2Mo3CxNy 
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Figure 214: Depth profiles for MoO3- (red) and CN- (orange) from Ni2Mo3CxNy 

 
Figure 215: Depth profiles for NiMoO4

- (red), 92MoC- (green), 94MoC (purple), Mo2N (pink) 

and 92MoMoN (blue) from Ni2Mo3CxNy 
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ToF-SIMS Data for Ni2Mo3CxNy Post-Reaction with 3:1 H2/N2 at 400oC 

for 36 Hours 

 
Figure 216: ToF-SIMS analysis from 100 – 120 m/z for Ni2Mo3CxNy post reaction with 3:1 

H2/N2 at 400oC for 36 hours. 

 
Figure 217: Depth profile for 92MoN from Ni2Mo3CxNy post reaction with 3:1 H2/N2 at 400oC 

for 36 hours. 
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Figure 218: Depth profiles for MoO3- (red) and CN- (green) from Ni2Mo3CxNy post reaction 

with 3:1 H2/N2 at 400oC for 36 hours. 

 
Figure 219: Depth profiles for NiMoO4

- (red), 92MoC- (green), 94MoC (light blue), Mo2N 

(pink) and 94Mo96MoN (blue) from Ni2Mo3CxNy post reaction with 3:1 H2/N2 at 400oC for 36 

hours. 
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ToF-SIMS Data for Ni2Mo3CxNy Post-Reaction with 3:1 H2/N2 at 500oC 

for 7.5 Hours 

 
Figure 220: ToF-SIMS analysis from 100 – 120 m/z for Ni2Mo3CxNy post-reaction with 3:1 

H2/N2 at 500oC for 7.5 hours. Measurement was taken in static mode. 
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Appendix IV 

SEM Images for Cobalt Molybdenum Oxide Prepared by Modified 

Pechini Method 

 
Figure 221: SEM images of cobalt molybdenum oxide prepared by modified Pechini 

method (Co2Mo3Ox). a) 1000x magnification, b) 1000x magnification, c) 2000x 

magnification and d) 4000x magnification. 

 

Figure 222: Element Map for cobalt molybdenum oxide (Co2Mo3Ox) prepared by modified 

Pechini method. Elements: Co (red), Mo (green) and O (blue). 
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SEM Images for Cobalt Molybdenum Oxide Prepared from Mixing of 

(NH4)6Mo7O24.4H2O and Co(NO3)2·6H2O (Method 2) 

 
Figure 223: SEM images of cobalt molybdenum oxide (Co2Mo3Ox) prepared from method 

2. a) 1000x magnification, b) 2000x magnification, c) 4000x magnification and d) 4000x 

magnification. 
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Appendix V 

ToF-SIMS Data for Fe3Mo3C 

 
Figure 224: ToF-SIMS analysis from 100 – 120 m/z for Fe3Mo3C. 

 
Figure 225: Depth profile for 92MoN from Fe3Mo3C. 
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Figure 226: Depth profiles for MoO3- (red) and CN- (green) from Fe3Mo3C. 

 
Figure 227: Depth profiles for FeMoO4- (green), 92MoC- (grey), 94MoC (blue) and 92MoMoN 

(pink) from Fe3Mo3C. 
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ToF-SIMS Data for Fe3Mo3C Post-Reaction with 3:1 H2/N2 at 400oC for 4 

Hours and 500oC for 32 Hours 

 
Figure 228: ToF-SIMS analysis from 100 – 120 m/z for Fe3Mo3C post-reaction with 3:1 

H2/N2 at 400oC for 4 hours and 500oC for 32 hours. 

 
Figure 229: Depth profile for 92MoN from Fe3Mo3C post-reaction with 3:1 H2/N2 at 400oC 

for 4 hours and 500oC for 32 hours. 
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Figure 230: Depth profiles for MoO3- (red) and CN- (green) from Fe3Mo3C post-reaction 

with 3:1 H2/N2 at 400oC for 4 hours and 500oC for 32 hours. 

 
Figure 231: Depth profiles for FeMoO4- (green), 92MoC- (grey), 94MoC (blue), 92MoMoN 

(pink) and Mo2N (purple) from Fe3Mo3C post-reaction with 3:1 H2/N2 at 400oC for 4 hours 

and 500oC for 32 hours. 
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ToF-SIMS Data for Fe3Mo3C Post-Reaction with 3:1 H2/N2 at 500oC for 8 

Hours 

 
Figure 232: ToF-SIMS analysis from 100 – 120 m/z for Fe3Mo3C post-reaction with 3:1 

H2/N2 at 500oC for 8 hours. 

 
Figure 233: Depth profile for 92MoN from Fe3Mo3C post-reaction with 3:1 H2/N2 at 500oC 

for 8 hours. 
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Figure 234: Depth profiles for MoO3- (red) and CN- (green) from Fe3Mo3C post-reaction 

with 3:1 H2/N2 at 500oC for 8 hours. 

 
Figure 235: Depth profiles for FeMoO4- (green), 92MoC- (grey), 94MoC (dark blue) and 
92MoMoN (light blue) from Fe3Mo3C post-reaction with 3:1 H2/N2 at 500oC for 8 hours. 
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