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Abstract 

Since the discovery of mesenchymal stromal cells (MSCs) ability to repair 

craniofacial defects and immunomodulatory properties, they became focus of 

research due to their cellular therapeutic potential. The Advanced Therapeutics 

Department within the Scottish National Blood Transfusion Service (SNBTS) has 

developed standardised methodologies for the isolation of MSCs from pancreatic 

islets, visceral adipose tissue, liposuction aspirate, bone marrow and umbilical 

cord. However, studying and comparing their in vivo function and the 

immunomodulatory potential is essential prior to their use within a clinical 

setting. The immunomodulatory abilities of human MSCs have been studied using 

mouse models that lack a control for mismatched major histocompatibility 

complex molecule expression. For this reason, this study aimed to objectively 

compare the phenotype and potential immunomodulatory functions in vivo of 

murine MSCs isolated from the bone marrow (BM MSCs), islets of Langerhans (Is 

MSCs) and adipose tissue (Ad MSCs) in a stringent, standardised manner, without 

any species or gender mismatch that could lead to both cell-mediated and 

humoral immune responses.  

First, for use within a clinical settings MSCs need to be infused and home and 

engraft into the target tissue. However, most cells get entrapped in the lung and 

only a small percentage home and remain in the target tissue. Size could be 

essential to avoid lung entrapment and this study has described that murine BM 

MSCs are slightly smaller than Is and Ad MSCs, suggesting that they could be a 

better source of MSC if being delivered intravenously. Moreover, chemokine 

receptor expression targets immune cells into specific tissues. Comparison of 

chemokine receptor transcription showed that Ad MSCs have a greater 

transcription of CXCR4 combined with a very low transcription of other 

chemokine receptors, suggesting that they will more likely suffer from lung 

entrapment compared to BM and Is MSCs. BM MSCs have the highest transcription 

of CCR7 and CXCR6, and therefore, we hypothesise that BM MSCs will be more 

successful to reach lymphoid organs. Is MSCs have a greater potential to migrate 

towards the kidneys due to higher transcription of CCR1 and CXCR3. Ad MSCs, on 

the contrary, transcribed statistically significantly more CCR3 than Is and BM 
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MSCs and therefore, they have a greater potential to migrate towards the skin if 

they avoid entrapment within lungs.  

Under resting conditions, MSCs from the three tissue sources were able to 

secrete chemokines at similar levels; however, this secretion did not produce a 

recruitment of leukocytes above control levels. Inflammatory stimulation led to 

increased secretion of chemokines where Is MSCs secreted the highest levels of 

CCL2, CCL5, CXCL1 and CXCL10, while CXCL12 was secreted at higher levels by 

BM MSCs. CCL2, CCL5 and CXCL1 are strong chemoattractans, but despite the 

higher secretion by Is MSCs under inflammatory conditions, Ad MSCs were able to 

recruit significantly more leukocytes in vivo than BM and Is MSCs. More 

importantly, Ad MSCs were the only MSCs able to produce the recruitment of T 

cells. Recipient cytotoxic cells are considered detrimental in clinical settings, 

but they are essential to initiate MSC-mediated immunosuppression; thus, we 

could hypothesise that Ad MSCs have a greater immunosuppression potential 

than BM and Is MSCs.  

Chemokines not only have leukocyte recruitment properties, as examples, 

CXCL1, CXCL2 and CXCL12 have angiogenic properties while CXCL10 has 

angiostatic potential. Chemokines are not the only molecules secreted by MSCs 

with the potential to regulate angiogenesis. Ad MSCs secreted the most IL-6, 

which can promote VEGF secretion, but Is MSCs secreted the most VEGF under 

resting and stimulatory conditions, which combined with the increased secretion 

of CXCL1, CXCL2 and CXCL12, we hypothesise that Is MSCs could have greater re-

vascularisation potential. 

Altogether, this study highlights that MSCs from different sources differ in their 

ability to recruit and immunomodulate surrounding immune cells in vivo. These 

differences have the potential to influence their clinical performance. 
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1 Introduction 

This study arises from the lack of consensus in understanding the 

immunomodulatory roles of mesenchymal stromal cells (MSCs), which has 

contributed to the controversial results in the literature as a consequence of the 

different isolation, enrichment and culture protocols, as well as the intrinsic 

variability among MSCs derived from different donors and tissues. For this 

reason, the aim of this study was to isolate, study and compare through a 

stringent set of standardised techniques murine bone marrow (BM), islets of 

Langerhans (Is) and adipose tissue (Ad)-derived MSCs to better understand the 

role of MSCs in inflammation and to study the effect of tissue source of isolation 

in the orchestration of inflammation. Given the nature of this work, this 

introductory section will provide an extensive overview of the immune system 

and MSCs. Firstly, the cellular and molecular mechanisms involved in the 

response to an inflammatory agent will be detailed. Secondly, the chemokine 

family will be reviewed due to its role in the migration of immune cells under 

homeostatic and inflammatory conditions. Lastly, I include a broad review of 

MSCs discussing topics such as the impact of MSC tissue of origin in the 

phenotype and function, the role of these cells within the immune response and 

the clinical uses of MSCs.  

1.1 The immune system 

Inflammation can be defined as a localised protective response process after 

injury or destruction of tissues to eliminate the injurious agent. Inflammation is 

characterised by four classical signs described by Celsus: rubor (redness), calor 

(increased heat), tumour (swelling) and dolor (pain). However, in the nineteenth 

century Virchow added a fifth sign, functio laesa (loss of function) (Rather, 

1971).  

The inflammatory response is driven by the immune system, a complex network 

of cells and organs that protect the body by recognition and elimination of 

nonself components. It is extremely important for the immune system to achieve 

a good self-nonself discrimination to avoid an overactive and misguided immune 

response against components normally present in the body, as this would lead to 

chronic inflammation and autoimmune diseases. The immune system has two 
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major arms working together to protect the host, the innate and the adaptive 

immune responses.  

1.1.1 The innate immune response 

The innate immune response is not specific to particular pathogens or damage, 

but it is of extremely high relevance the first hours and days of exposure to a 

new pathogen. The first barriers to prevent infection are skin and other 

epithelial surfaces that act as physical barriers to microorganisms. The inner 

part of these epithelial surfaces is covered with a mucus layer that protects 

against chemicals, physical damages and infections (Nochi and Kiyono, 2006).  

Damage of these barriers gives microorganisms access to the body. 

Microorganisms have pathogen-associated molecular patterns (PAMPs), which 

must be rapidly recognised as nonself components by the immune system to 

neutralise the invading pathogen. PAMPs are of various types and they are 

usually molecules with essential functions for the pathogens and thus, molecules 

with low genetic variability. As an example, prokaryotic organisms use 

formylmethionine for mRNA translation initiation instead of the methionine 

residue used by eukaryotic organisms; this is easily recognised by the immune 

system. Moreover, microorganisms usually have outer surface molecules not 

present in humans that act as immunostimulants, such as lipopolysaccharide 

(LPS) on gram negative bacteria and lipoteichoic acids (LTA) on gram positive 

bacteria (Abraham and Medzhitov, 2011). Bacterial and viral genomes can also 

act as PAMPs due to the presence of CpG unmethylated dinucleotides flanked by 

two 5′ purine residues and two 3′ pyrimidines (Abraham and Medzhitov, 2011). In 

the case of viruses, viral DNA or RNA can also be recognised as PAMPs, leading to 

the activation of the immune response (Luecke and Paludan, 2016).  

To recognise PAMPs, cells of the immune system express pattern recognition 

receptors (PRRs). However, the immune system does not only produce a 

response to microbial pathogens, but also to haemorrhagic shock, tissue injury, 

cell necrosis and reperfusion injury (Raymond et al., 2017). In the presence of 

damage or stress, cells release damage-associated molecular patterns (DAMPs), 

which are also able to activate the immune response via PRR-mediated 

recognition (Gallucci and Matzinger, 2001). PRRs include: toll-like receptors 
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(TLRs); C-type lectin receptors (CLRs); nucleotide-binding oligomerization 

domain (Nod) like receptors (NLRs); retinoic-acid-inducible gene-I (RIG-I) like 

receptors (RLRs); and receptor for advanced glycation end products 

(RAGE)(Raymond et al., 2017).  

TLRs were the first PRRs to be discovered and are the most widely studied. 

There are 10 receptors in humans (TLR1-TLR10), and despite some overlapping 

ligands for the receptors, each TLR has specific molecular recognition patterns. 

TLRs recognise PAMPs both within and outwith the cell as TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLR10 are expressed on the cell membrane while TLR3, TLR7, 

TLR8 and TLR9 are expressed within intracellular vesicles of innate immune cells 

(Raymond et al., 2017). TLR1 recognises triacylated lipopeptides via 

dimerization with TLR2 (Takeuchi et al., 2002). TLR2 on its own is involved in 

gram positive bacteria recognition by interaction with peptidoglycans and LTA on 

their surface (Schwandner et al., 1999). Moreover TLR2, in combination with 

TLR6, is able to recognise diacylated bacterial lipoproteins (Takeuchi et al., 

2001). TLR3 recognises retroviruses by interaction with double stranded RNA 

(Termeer et al., 2002). TLR4 is involved in the recognition of LPS from gram 

negative bacteria (Termeer et al., 2002), structural proteins from viruses (Del 

Cornò et al., 2016), mannan (a cell wall polysaccharide) from fungi (Figueiredo 

et al., 2012), glycoinositolphospholipids from Trypanosoma (Dos-Santos et al., 

2016) and endogenous high mobility group box (HMGB) nuclear proteins from 

distressed cells (Yu et al., 2006). TLR5 is the cognate receptor for flagellin, an 

essential protein of the flagella of bacteria (Hayashi et al., 2001). TLR7 and 

TLR8 are both involved in the recognition of single stranded viral RNA (Heil et 

al., 2004). TLR9 is involved in the recognition of the CpG regions (Hemmi et al., 

2000). The function of TLR10 remains unknown but it has been associated with 

the B cell lineage as antibody mediated engagement of TLR10 on primary human 

B cells suppresses B cell proliferation, cytokine production, and signal 

transduction (Hess et al., 2017).  

CLRs are expressed on the surface of dendritic cells (DCs) and are able to 

recognise bacterial, fungal and viral PAMPs and DAMPs (Yamasaki et al., 2008). 

Intracellular PAMPs are mainly recognised due to NLRs, even if NLRs can also 

recognise DAMPs (Fritz et al., 2006). Interaction with NLRs leads to the 
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formation of inflammasomes, which activates caspase 1 and produces 

interleukin-1β (IL-1β), promoting and amplifying the immune response (Pétrilli 

et al., 2007). Moreover, NLRs are also able to produce pyroptosis, an 

inflammatory form of cell death, due to the activation of caspase 1 (Fitzgerald, 

2010). RLRs are the cognate receptors for RNA viruses (Loo et al., 2008) while 

RAGE acts as a receptor for the products of nonenzymatic glycation and 

oxidation of proteins/ lipids (AGEs) (Wautier et al., 2001), HMGB1 (Rouhiainen et 

al., 2004) and S100 proteins (Hofmann et al., 1999). 

1.1.1.1 Cells of the innate immune system 

Every single cellular component from the blood is derived from a common 

progenitor haematopoietic stem cell (HSC) in the bone marrow. These HSCs are 

multipotent as they can engender all types of blood cells (Orkin, 2000). 

Multipotent cells, such as stem cells, have the ability of both self-renew and 

differentiate; HSCs can differentiate into two lineages of lower potential, the 

common lymphoid progenitor (CLP) and the common myeloid progenitor (CMP). 

CLPs give rise to lymphocytes and natural killer (NK) cells, while CMPs 

differentiate into granulocyte/ monocyte precursors (GMPs) and megakaryocyte/ 

erythrocyte precursors (MEPs). GMP is the precursor of granulocytes, 

macrophages, mast cells and myeloid DCs, while MEPs differentiate into 

platelets and erythrocytes. Granulocytes can further differentiate into 

neutrophils, eosinophils, basophils and monocytes. Figure 1-1 provides an 

overview of this system.  

Cells of the immune system recognise pathogens or results of trauma, become 

activated and react against them. These cells are activated in a precisely 

regulated order, starting with tissue resident macrophages, mast cells, 

neutrophils, monocytes and recruited macrophages and later on, with cells of 

the adaptive immune system, T helper cells, cytotoxic T cells and B cells (Metz 

and Maurer, 2009). The activation of these cells leads to a fast recruitment of 

immune cells to sites of trauma due to the secretion of cytokines and 

chemokines. Further information about these molecules will be provided in 

Section 1.2.  
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Figure 1-1. Schematic representation of the immune cell development and differentiation 
processes.  
HSCs can differentiate into common myeloid progenitors (CMP) or common lymphoid progenitors 
(CLP). CMPs can then further differentiate into megakaryocyte/ erythrocyte precursors (MEP) or 
granulocyte/ monocyte precursor (GMP). MEPs can further differentiate into megakaryocytes and 
erythroblasts while GMPs can further differentiate into neutrophils, basophils, mast cells, 
eosinophils and monocytes. Monocytes can engender myeloid DCs and macrophages. CLPs can 
differentiate into natural killer (NK) cells, B cell progenitors and T cell progenitors. B cell progenitors 
can further differentiate into plasma and memory cells while T cell progenitor can give rise to T 
helper and T cytotoxic cells (Orkin, 2000). 

 

1.1.1.1.1 Mast cells 
 
Mast cells (MCs) are large, long-lived cells that are developed from CD34+ 

pluripotent progenitor cells in the bone marrow and circulate in blood and 

lymphatic vessels in an immature state. These cells migrate to connective 

tissues and perivascular sites, where they undergo maturation upon interaction 
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with stem cell factor (SCF) and IL-3 (Haig et al., 1994). Mature MCs are usually 

found in tissues interfacing external environments and near to blood vessels to 

behave as a first line defence. Morphologically, the main feature of these cells is 

the presence of cytoplasmic granules; MCs are not a homogenous population and 

their heterogeneity is based on their granule content.  

MCs can be activated via immunoglobulin (Ig) E-dependent (Rivera et al., 2008) 

and IgE-independent manners (Gilfillan and Rivera, 2009), leading to the 

secretion of their cytoplasmic granule contents. Allergens interact with high 

affinity IgE receptors on the surface of MCs, leading to the subsequent cross 

linking (Rivera et al., 2008). On the other hand, MCs contain other receptors on 

their surfaces able to recognise and become activated by cytokines, 

neurotransmitters and anaphylatoxins (Gilfillan and Rivera, 2009). Among the 

mediators secreted by MCs, histamine, serotonin and proteases are found at high 

concentrations. MCs also secrete newly synthesised mediators, such as tumour 

necrosis factor (TNF) (Olszewski et al., 2007), leukotrienes, prostaglandins and 

platelet-activating factors (Boyce, 2007). Moreover, MCs are also able to secrete 

cytokines and chemokines, transmit microRNAs and secrete exosomes (Skokos et 

al., 2003). Altogether, MCs are involved in the regulation of permeability, 

secretion, peristalsis, nociception, angiogenesis and innate and adaptive 

immunity (Lee and Lee, 2016). MCs deregulation is involved in allergic responses 

(Stelekati et al., 2007), multiple sclerosis (Krüger, 2001), bowel disease (Lee and 

Lee, 2016), arthritis (Nigrovic and Lee, 2005) and cancer (Ribatti, 2016). 

1.1.1.1.2 Neutrophils 
 
Neutrophils are short-lived phagocytes that account for 40-70% of white blood 

cells in mammals. Neutrophils have a multi-lobed nucleus, making their 

identification very easy by histological staining. Neutrophils are essential in 

innate immunity as they are the first leukocytes to be recruited to sites of 

trauma upon inflammation (Nourshargh and Alon, 2014); their role is so pivotal 

that individuals with congenital neutrophils deficiencies can die due to 

opportunistic infections (Keszei and Westerberg, 2014).  

The granulocyte-colony stimulating factor (G-CSF)/ IL-17 axis is involved in the 

homeostatic regulation of neutrophil production, mobilization and clearance, 
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which is modulated by the circadian rhythm, the presence of microbiota and 

lipid mediators (Tan and Weninger, 2017). Under the influence of signals such as 

CXCL8, CXCL2, or vascular endothelial growth factor (VEGF), neutrophils are 

recruited to tissues (Pignatti et al., 2005). However, to arrive at the specific 

tissue, circulating neutrophils must undergo a multi-step process known as the 

“leukocyte adhesion cascade”, where neutrophils need to extravasate the 

vascular endothelium and breach the basement membrane to arrive to the 

interstitial space. Once at the site of injury, neutrophils have several 

mechanisms to attack microorganisms. First, neutrophils are able to engulf 

microorganisms by a mechanism called phagocytosis leading to their degradation 

in lysosomes (Lee et al., 2003, Faurschou and Borregaard, 2003). Neutrophils 

secrete neutrophil extracellular DNA traps (NETs) that immobilise and target 

pathogens (Brinkmann et al., 2004). Lastly, neutrophils secrete cytokines and 

chemokines, and in this way, induce the recruitment of immune cells to amplify 

the inflammatory response.  

Neutrophils have also been described to be involved in angiogenesis (Aldabbous 

et al., 2016), inflammation resolution and wound healing (Hahn et al., 2016). In 

mice, CXCL2 attracts proinflammatory neutrophils, which express CD11b and GR-

1 and have a low expression of CXCR4, while proangiogenic neutrophils are 

recruited by VEGFa and secrete matrix metallopeptidase 9 (MMP9) 

(Christoffersson et al., 2012). In humans, neutrophils capable of suppressing T 

cells are CD16BRIGHT CD62LDIM (Pillay et al., 2012). Moreover, acute systemic 

inflammation lead to the discovery of two distinctive neutrophil populations with 

opposing roles, CD16DIM CD62LBRIGHT and CD16BRIGHT CD62LBRIGHT (Kamp et al., 

2012). These findings have made immunologists consider the existence of two 

different neutrophil populations that could be recruited independently of one 

another.  

Due to the inflammatory functions of neutrophils, over activation of neutrophils 

leads to extensive tissue damage in pathologies as chronic obstructive pulmonary 

disease (Hoenderdos and Condliffe, 2013), rheumatoid arthritis (Wright et al., 

2014) and cancer (Spicer et al., 2012) among others.  
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1.1.1.1.3 Monocytes 
 
Monocytes are circulating white blood cells that account for 2% and 8% of 

nucleated cells in the blood in mice and humans, respectively. Monocytes 

develop from the granulocyte/ macrophage progenitor in the bone marrow and 

circulate in blood; CCR2 is required for monocytes to leave the bone marrow and 

reach the bloodstream (Tsou et al., 2007). There are three main subsets of 

monocytes in humans, which are termed as classical, intermediate and non-

classical monocytes. CD14 is a marker of human monocytes and each group 

expresses it at different levels. Classical monocytes are CD14HIGH CD16-, have 

proinflammatory roles and give rise to inflammatory macrophages in tissues 

(Yona et al., 2013). Classical monocytes produce, and secrete, reactive oxygen 

species (ROS), TNF-α and IL-1β. Moreover, they express CCR2, which allows them 

to leave the bone marrow and mediate increased monocyte attraction during 

inflammation (Zawada et al., 2012). Early in development, classical monocytes 

can differentiate into intermediate monocytes, which can then differentiate into 

non-classical monocytes. The non-classical monocytes are CD14LOW CD16HIGH, 

have an anti-inflammatory role and give rise to profibrotic and anti-

inflammatory macrophages (Yona et al., 2013). The so called intermediate 

monocyte population is CD14HIGH CD16LOW and gives rise to monocyte derived DCs 

(Ziegler-Heitbrock et al., 2010). Non-classical monocytes express low levels of 

CCR2 but high levels of CX3CR1, which allows them to patrol vessels wall and 

invade by interaction with CX3CL1 (Yang et al., 2014).  

It is important to mention that there is a lack of homology between mice and 

humans regarding phenotypic markers in monocytes and monocyte-derived cells, 

which hindered the identification of homologous populations between species. 

Mice possess two subsets of monocytes according to their expression of Ly6C, 

CCR2 and CX3CR1. The use of transcriptomics, metabolomics, proteomics, and 

epigenomics has enabled the identification of homology between Ly6CHIGH 

CCR2HIGH CX3CR1LOW and CD14++ CD16- and between Ly6CLOW CCR2LOW CX3CR1HIGH 

and CD14+ CD16+ monocytes (Reynolds and Haniffa, 2015). The Ly6CLOW CCR2LOW 

CX3CR1HIGH, in mice, and CD14+ CD16+ monocytes, in human, have a patrolling 

role along the vascular endothelium where they are involved in tissue repair. On 

the other hand, Ly6CHIGH and CD14++ monocytes perform pro-inflammatory 

functions (Reynolds and Haniffa, 2015, Yang et al., 2014). These populations do 



  29 
 
not have a perfect overlap with the human monocyte subsets even if the roles of 

monocytes observed in the immune response look similar (60). 

1.1.1.1.4 Macrophages 
 
Macrophages are a subset of phagocytic cells involved in the engulfment and 

digestion of cellular debris, microorganisms, cancer cells and anything unhealthy 

for the host. Macrophages were thought to emerge only from circulating 

monocytes, which had been recruited to tissue. However, Schulz et al. showed 

that macrophages could emerge independently of HSCs as they found yolk sac-

derived precursors during embryonic development (Schulz et al., 2012). 

Moreover, some tissue macrophages solely emerge from embryonic precursors 

(Van Gassen et al., 2015). Macrophages can be found in every tissue of the body; 

however, their nomenclature is based upon their tissue of origin, as an example, 

osteoclasts in bone, Kupffer cells in the liver and microglia in the brain. Tissue 

of residency comes together with functional specialization e.g. bone resorption 

by osteoclasts, breakdown of red blood cells by Kupffer cells or neural network 

maintenance and development by microglia (Reynolds and Haniffa, 2015). As 

previously mentioned, there is a lack of homology between mice and humans 

regarding phenotypic markers in the mononuclear phagocyte system. Murine 

macrophages are characterised by the expression of CD11b, CD68, CSF1R and 

F4/80 (Wynn et al., 2013), phenotypic markers shared by human macrophages 

with the exception of F4/ 80, which is expressed on human eosinophils (Hamann 

et al., 2007). To my knowledge, few comparative analyses between murine and 

human macrophages have been performed and cross species comparisons in 

health and disease have not been rigorous. There are inter-species variations in 

response to inflammation between human and mouse in vitro derived 

macrophages; upon LPS-mediated stimulation murine macrophages upregulate 

iNOS while human macrophages induce the transcription of CCL20, CXCL13, IL-

7R, P2RX7 and STAT4 (Schroder et al., 2012). 

Macrophages are not only phagocytes, but also release effector molecules 

involved in the recruitment of other immune cells upon damage. Macrophages 

can recognise both DAMPs and PAMPs, which makes them one of the first lines of 

response to damage. According to their functional phenotype, macrophages can 

be subdivided into three populations: classically activated or proinflammatory 
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M1 macrophages, alternatively activated macrophages and regulatory or anti-

inflammatory macrophages. Alternatively activated macrophages and anti-

inflammatory macrophages are usually referred as M2 macrophages. M1 

macrophages are induced by interferon (IFN)-γ and are involved in T helper (Th) 

1-related immune responses, while anti-inflammatory macrophages are 

activated by TLR agonists and are involved in Th2-related immune responses. 

Alternatively induced macrophages are activated by IL-4, IL-10 and IL-13 and are 

involved in the resolution of inflammation and in development and tissue repair 

(Van Gassen et al., 2015). Due to the ability of macrophages to secrete both pro-

and anti-inflammatory molecules and attract other immune cells, they are 

involved in the development of cancer (Olefsky and Glass, 2010, Fuentes-

Duculan et al., 2010, De Palma and Lewis, 2011). Tumour cells secrete several 

chemoattractants, including CCL2, CCL3, CCL4, CCL5, CCL8 and VEGF, among 

others. The release of these chemoattractants leads to the migration of 

monocytes through the circulatory system towards the tumour, and once they 

leave the circulatory system to infiltrate the tissue, monocytes differentiate into 

macrophages. Pro-inflammatory macrophages can exert anti-tumour responses 

via the secretion of inflammatory cytokines like IFN-γ, IL-12 or TNF-α. However, 

secretion of cytokines and growth factors, including IL-4, macrophage colony-

stimulating factor and granulocyte-macrophage colony-stimulating factor by 

tumour cells promotes the differentiation of monocytes towards an anti-

inflammatory phenotype, where macrophages secrete TGF-β, IL-10, VEGF, IL-17 

and IL-23, dampening the anti-tumour response and promoting angiogenesis, 

tumour growth and metastasis (Noy and Pollard, 2014, Dandekar et al., 2011).   

1.1.1.1.5 DCs 
 
DCs are mononuclear professional phagocytes that emerge from haematopoietic 

bone marrow progenitor cells. However, unlike neutrophils, they do not fully 

digest the phagocytosed material, they process it into peptide fragments, and 

present self and nonself antigens to CD4+ and CD8+ T cells using Major 

Histocompatibility Complex (MHC) Class I and MHC Class II molecules 

respectively. In this way, DCs can activate the adaptive immune response; 

therefore, they connect the innate and adaptive immune responses (Steinman, 

2006).  
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DCs are found in an immature state circulating in the blood. These cells express 

low levels of MHC Class II molecules but do express pattern recognition receptors 

to recognise PAMPs and DAMPs and CD40L. Upon interaction with pathogens, 

PPRs stimulate DC maturation, and PPRs and CD40 signalling increase the 

expression of MHC Class II and co-stimulatory molecules CD80/ CD86 and CCR7 

expression (Caux et al., 1994, Sozzani et al., 1998). Matured DCs are then able 

to migrate through the blood stream to the spleen, or through the lymphatic 

vessels to the lymph nodes, were they interact with T cells in T zones. Upon 

interaction with T cells, DCs can induce the activation of both naïve and memory 

T cells or they can also induce T-cell tolerance, depending on the expression of 

co-stimulatory molecules on their surface (Heath and Carbone, 2001). 

1.1.1.1.6 Eosinophils 
 
Eosinophils are a subset of granulocytes that emerge from GMPs in the bone 

marrow and leave to the periphery, where they are found in several different 

tissues including the thymus, spleen, ovary, uterus, mammary glands and lower 

gastrointestinal tract. 

Eosinophils interact with PAMPs, DAMPs, cytokines and chemokines via the 

expression of their cognate receptors, which leads to their activation and 

recruitment to sites of inflammation (Kita, 2011). Once activated, eosinophils 

undergo non-cytotoxic degranulation to release chemical mediators. Human 

eosinophil granules contain major basic protein (MBP), MBP2, eosinophil cationic 

protein (ECP), eosinophil peroxidase (EPO), eosinophil derived neurotoxin (EDN), 

and β-glucuronidase, which are proinflammatory molecules (Kita, 2011). 

Moreover, eosinophils also secrete immunomodulatory enzymes (indoleamine 2, 

3 dioxygenase [IDO]), lipids (leukotriene and prostaglandin), cytokines (IL-2, IL-

4, IL-5, IL-10, IL-12, IL-13, IL-16 and IL-18) and chemokines (CCL3, CCL5 and 

CL11). The release of these mediators upregulates the vascular adhesion system 

as well as increases the vascular permeability, allowing the recruitment of 

immune cells. This mechanism is so powerful that it can be harmful for the host 

if not properly regulated; eosinophil mediated inflammation is associated with 

allergic inflammation. Eosinophils are most popularly known for their roles in 

allergic and parasitic infections but they also play roles in post-natal mammary 
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gland development (Gouon-Evans et al., 2000, Shi, 2004, Andersson et al., 2014, 

Tani et al., 2014).  

1.1.1.1.7 Basophils 
 
Basophils are large circulating white blood cells that account for less than 1% of 

circulating white blood cells. Basophils are developed from the granulocyte/ 

macrophage progenitors in the bone marrow and circulate in blood.  

Basophils contain histamine in their granules and express the high affinity IgE 

receptor FcεRIα. Basophils can be activated by several signals including 

cytokines, Igs, proteases and antigens; even if the most studied mechanism is 

the IgE mediated one (Siracusa et al., 2011). Upon stimulation, basophils secrete 

histamine, cytokines (IL-3, IL-4, IL-6, IL-9 and IL-13 among others) and 

chemokines (CCL3 and CCL5), promoting vascular permeability and increasing 

the recruitment of immune cells. Moreover, basophils are also able to act as 

antigen presenting cells for small molecules (haptens) (Otsuka et al., 2013).  

1.1.1.1.8 NK cells 
 
NK cells are lymphocytes that were originally thought to emerge from a common 

lymphoid progenitor in the bone marrow. Nowadays, it is known that NK cells 

can differentiate and mature not only in the bone marrow, but also in the 

thymus, lymph nodes, liver, spleen, tonsils, uterus and mucosa associated 

lymphoid tissue, where they then enter into the circulation (Cooper et al., 

2009). NK cells emerge from a lymphoid progenitor but they differ from T and B 

cells due to their inability to produce a somatic rearrangement of their surface 

Ig and the lack of T cell receptors.   

NK cells are an essential defence against virus and emerging tumours. NK cells 

are highly cytotoxic and can mediate their activity via tightly regulated 

mechanisms. NK cells express in their surface Killer-cell Ig-like receptors (KIRs), 

which are able to recognise MHC Class I molecules. This interaction avoids the 

activation of NK cells, promoting self-tolerance. A common survival mechanism 

shared between virally infected and tumour cells, is based on the 

downregulation of MHC Class I molecules to avoid the recognition of nonself-

antigens by the immune system. However, the absence of MHC Class I molecules 
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makes them a good target for NK cells; in the absence of MHC Class I, NK cells 

become activated and thus, cytotoxic (Raulet, 1992).  

Once activated, NK cells can be cytotoxic in several ways. First, NK cells induce 

apoptosis by secreting cytoplasmic granules with perforins and granzymes. 

Perforins promote the disruption of the membrane generating a pore by which 

granzymes are able to enter into the targeted cell promoting apoptosis (Warren 

and Smyth, 1999). NK cells take part in antibody-dependent cell-mediated 

cytotoxicity as they express on their surface FcϒRIII (CD16) receptors. Infected 

cells become opsonised with antibodies, which can be recognised by FcϒRIII 

receptors leading to NK cell activation and the subsequent release of granules 

(Smyth et al., 2002). Moreover, NK cells are able to induce caspase-dependent 

apoptosis in cells expressing death receptors as Fas/ CD95 (Caligiuri, 2008). NK 

cells can act quickly as they can become activated by cytokines (IL-2, IL-12, IL-

15, IL-18 and CCL5) and interferons, allowing them to contain viral infections 

while the adaptive immune system generates a more specific response (Smyth et 

al., 2002). 

1.1.1.2 Humoral immunity 

The immune response is not only orchestrated by cells, but also by 

macromolecules present in extracellular fluids such as complement proteins and 

secreted antibodies.  

The complement system is a complex network of proteins involved in the 

clearance of damaged cells and defence against invading microorganisms. These 

proteins are synthesised in the liver and secreted into the blood where they 

circulate in an inactive form. Activation of these molecules can take place via 

three biochemical pathways; the classical, the alternative and the lectin 

pathway (Figure 1-2).  

 



  34 
 

 

Figure 1-2. Schematic representation of the complement cascade.  
There are three pathways of complement activation: the classical pathway, which is activated by 
the binding of antibodies to the C1q component of the complement system; the lectin pathway, 
which is triggered by the interaction of microbial carbohydrates bound to surface molecules on 
bacteria with the C1q component of the complement system; and the alternative pathway, which is 
constitutively active.  

 

The classical pathway becomes activated via antigen-antibody immune 

complexes while the lectin pathway becoming activated by microbial 

carbohydrates bound to surface molecules on bacteria. The alternative pathway 
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does not need to become activated as it is constitutively active; however, the 

activation of the other pathways leads to the amplification of its activity (Reddy 

et al., 2017). Activation of these pathways produces the protease-mediated 

cleavage of C2 and C4 proteins leading to the formation of C3 convertase 

(C4bC2a). C3 convertase produces the cleavage of C3 to give rise to C3a, a 

potent anaphylatoxin, and C3b, which binds to the C3 convertase complex to 

generate C5 convertase. This converts C5 into C5a, another anaphylatoxin, and 

C5b, which makes a complex with C6, C7, C8 and C9 proteins. This complex, 

known as the membrane attack complex, promotes lysis of microbes. However, 

the complement pathway is not only involved in membrane attack, but also in 

phagocytosis and inflammation. C3b interacts with the surface of the pathogens 

promoting phagocytosis by opsonisation. The release of the anaphylatoxins leads 

to macrophage and neutrophil attraction and mast cell degranulation, 

generating an inflammatory environment. 

1.1.2 The adaptive immune response 

The innate immune system protects the host against pathogens, but it lacks 

immunological memory and what is more important, it is not antigen specific. 

The adaptive immune response is restricted to vertebrates and cartilaginous fish 

and it requires between 4-7 days before it begins while it also generates 

immunological memory towards specific antigens. 

The adaptive immune system relies on somatic hypermutation and V(D)J 

recombination, a site-specific recombination process in the Ig and T cell 

receptor (TCR) genes, to generate a huge variety of antigen receptors. The 

heavy chain of the Ig and the β chain of the TCR have a variable (V), a diversity 

(D) and a joining segment (J) as well as a constant domain (C); while the light 

chain of the Ig and the α chain of the TCR have the V and J segments as well as 

the constant domain. As examples, the locus for the β chain is formed by 42 

gene segments for the V region, 2 for D, 12 for J and 2 for C while the locus for 

the α chain includes 43 gene segments for the V region and 58 J segments 

(Turner et al., 2006). Each of the V, D, J and C segments are flanked by 

conserved recombination signal sequences. In the heavy chain of the Ig and the β 

chain of the TCR, V(D)J recombination initiates by the introduction of double 

stranded DNA breaks between one D and one J segment, followed by the 
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rearrangement of the D and J segments and the removal of the DNA between 

those two segments (Figure 1-3). The DJ recombination is followed by the 

introduction of double stranded DNA breaks in the V segments, leading to the 

VDJ rearrangement; this is the first step in the recombination of the light chain 

of the Ig and the α chain of the TCR. In this manner, the different combinations 

of the V, D and J segments by the different chains of the Ig and the TCR leads to 

the generation of thousands of different receptors from a single DNA molecule. 

These rearrangements produce an irreversible change in the DNA that is passed 

down to the progeny. Upon exposure to the proper antigen, clonal expansion of 

the specific antigen receptor-containing cells takes place. This mechanism 

generates immunological memory, promoting a more efficient clearance of the 

pathogen in subsequent encounters.  

 

Figure 1-3. Schematic representation of V(D)J recombination.  
V(D)J recombination initiates by the introduction of double stranded DNA breaks between one D 
and one J segment, followed by the rearrangement of the D and J segments and the removal of the 
DNA between those two segments. DJ recombination is followed by the introduction of double 
stranded DNA breaks around one V segment, leading to the VDJ rearrangement.  

 

1.1.2.1 T cells 

T cells are a type of white blood cell that emerge from the CLP in the bone 

marrow. They are known as T cells because they leave the bone marrow in order 

to reach the thymus, where they become mature. Immature T cells (thymocytes) 

undergo a selection where they become gradually reprogrammed into helper 

(CD4+), cytotoxic (CD8+) or regulatory T (Treg) cells.  

Within the thymic cortex, thymocytes lack the expression of both CD4 and CD8 

and they undergo TCR gene rearrangement. Upon the expression of the β chain 
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of TCR, immature T cells simultaneously express CD4 and CD8, becoming double 

positive cells, which is the largest population of cells within the thymus. At this 

stage of maturation, the double positive cells undergo a process of positive 

selection where they need to prove the functionality of their TCR by interacting 

with self-peptides presented by MHC molecules with intermediate affinity. 

Double positive cells unable to bind MHC Class I or MHC Class II molecules 

undergo apoptosis while the rest persist by survival signals. In this manner, 

positive selection enables the differentiation of double positive cells towards 

single positive cells; cells that recognise MHC Class I will differentiate towards 

CD4- CD8+ cells, while cells that interact with MHC Class II differentiate towards 

CD4+ CD8- cells. Single positive cells are now able to enter the medulla of the 

thymus where they undergo a negative selection. Immature T cells are exposed 

to the presence of self-antigens and those cells binding to MHC Class I or MHC 

Class II with high affinity are targeted for apoptosis to avoid the proliferation of 

autoreactive T cells. However, a small percentage will survive negative selection 

and differentiate towards regulatory T cells. Cells that do not have a high 

affinity towards self-peptides are now able to mature and become naïve T cells, 

leave the thymus and migrate towards secondary lymphoid organs, where they 

will be able to interact with their cognate antigen and differentiate into effector 

cells (Germain, 2002), (Caramalho et al., 2015).  

T helper cells (TH cells) are essential in the adaptive immune system as they 

regulate the antibody class switching in B cells, activation and growth of 

cytotoxic T cells, phagocytosis by macrophages and even suppression of the 

immune response. Naïve CD4+ cells become activated upon exposure to peptide 

antigens by MHC Class II molecules expressed on the surface of antigen 

presenting cells. Th cells can differentiate into different subsets, Th1, Th2, Th9, 

Th17, T follicular helper (Tfh) and inducible Treg, according to the signals they 

receive from the surrounding environment and the type of immune response that 

is required in each specific situation (Abbas et al., 1996). Cytotoxic T cells, also 

known as T killer cells, are involved in the destruction of cancer cells, virus 

infected cells and even in transplant rejection, as well as in maintenance of 

immune tolerance. Unlike their CD4+ counterparts, they recognise antigens 

presented by MHC Class I molecules, which leads to their activation and the 

subsequent release of perforins, granzymes and interferons, leading to the 
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target cell’s death (Andersen et al., 2006). Regulatory T cells, also known as 

suppressor T cells, are essential for self-immunological tolerance and 

autoimmune diseases prevention. Moreover, they have immunosuppressive roles 

as they downregulate T cell mediated immune responses as well as suppress 

autoreactive T cells (Vignali et al., 2008). Tregs express on their surface the CD4 

and CD25 biomarkers, are FOXP3+, and have been postulated to emerge from the 

same progenitor as naïve CD4+ T cells (Curiel, 2007).  

Upon activation of both CD4+ and CD8+ lymphocytes, clonal expansion takes 

place and a small proportion of cells will become life-long memory cells, in 

order to produce a fast response after subsequent infections (Farber et al., 

2014). 

1.1.2.2 B cells 

B cells are a type of white blood cell that emerge from the CLP in the bone 

marrow. B cells express B cell receptors (BCRs) on their surface, which have to 

undergo V(D)J recombination to enable the interaction with specific antigens 

(Brack et al., 1978). Each pre-B cell has the potential to express different BCR 

chains, however, each B cell can only express a single type of BCR, which is 

achieved by allelic exclusion, where the activation of one allele inhibits the 

activation of the rest. Developing B cells in the bone marrow undergo a selection 

process to ensure the capability of these BCRs to interact with antigens and at 

the same time, to avoid interaction with self-antigens (LeBien and Tedder, 

2008). After this selection, immature B cells leave the bone marrow and go to 

the spleen, where they differentiate into naïve B cells, that can be follicular 

(FO) or marginal zone (MZ) B cells according to the signals they receive.  

Naïve B cells are able to circulate in blood and lymph, as well as to go to 

secondary lymphoid organs such as the spleen, lymph nodes, tonsils and Peyer's 

patches. B cell activation begins when they interact with specific antigen 

presented by antigen presenting cells in the lymph nodes. Activated B cells are 

now able to migrate to the border between the T cell zone and the follicle 

within the lymph node to interact with the proper antigen-specific helper T cell 

(Okada et al., 2005). Upon interaction with the cognate T cell, clonal expansion 
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of the B cell takes place, giving rise to short-lived plasma cells, long-lived 

plasma cells or memory cells (Noelle and Snow, 1990).  

Plasma cells, also called effector cells, are antibody-secreting white blood cells. 

It is important to consider that there are five different types of antibodies (IgM, 

IgG, IgA, IgE and IgE), but each plasma cell produces only one type of antibody, 

as once differentiated, plasma cells are no longer able to switch antibody 

classes. The production of antibody secreting B cells is a two-step process. In the 

first step, immediate protection is provided by the activation of B cells by an 

antigen receptor-dependent signal, which promotes differentiation towards 

short-lived plasma cells that secrete antibodies. This is a fast response but the 

affinity towards the antigen is moderate. In the second step, activated B cells 

are able to re-enter the B cell follicle and proliferate to generate a germinal 

centre with the help of follicular helper T cells. Germinal centres promote 

proliferation and somatic hypermutation to generate high-affinity antigen 

receptors. Affinity maturation enables the proliferation of B cells with high 

affinity towards antigen receptors and in this way, those highly specific B cells 

exit the germinal centre and differentiate into memory B cells or long-lived 

plasma cells that secrete antibodies with the highest affinity for the antigen 

(Nutt et al., 2015). The secreted antibodies will be circulating in the 

bloodstream as well as permeating other fluids to find cognate foreign antigens 

and lead to the destruction of the pathogen producing them. Antibody-antigen 

binding can lead to neutralisation, complement activation or phagocytosis by 

immune cells expressing Fc receptors, which interact with the Fc region of 

antibodies.  

Memory B cells are dormant B cells that circulate through the blood to protect 

the host against subsequent infections. These cells have the same B cell 

receptor as the cells that were activated in the first infection and are 

programmed to rapidly differentiate into antibody secreting cells; for this 

reason, they promote a faster and stronger antibody response upon interaction 

with the antigen than that which gave rise to the activation of their parent B 

cell (Kurosaki et al., 2015). 
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1.2 Chemokines 

As already described, the immune system is a complex network of cells that 

need to orchestrate their interactions to generate a proper defence response. 

Upon injury, cells of the immune system are induced to move to sites of 

inflammation. Chemically induced cell movement can be classified in terms of 

direction of the movement. In the case of chemokinesis, the induced movement 

is random and undirected while in chemotaxis, a directed movement towards 

the chemical takes place. In order to communicate, the immune system uses 

chemokines, small heparin-binding proteins that induce chemotaxis of 

circulating immune cells (Charo and Ransohoff, 2006).  

The term chemokines derives from the combination of the words chemotactic 

and cytokines. Chemokines are a family of small (~8-14 KDa) homologous 

proteins involved in the regulation of cell migration under both inflammatory 

and physiological conditions that are highly conserved throughout vertebrate 

evolution (Zlotnik and Yoshie, 2000b). Since the identification of the first 

chemokines in the late 1980s, many chemokines have been identified due to the 

development of expressed sequence tag databases and bioinformatics, leading to 

a confusing nomenclature. For this reason, a standardised nomenclature was 

established based on the structure of the molecules (Zlotnik and Yoshie, 2000b). 

1.2.1 Structural classification 

Chemokines were classified taking into account their amino acid sequence, more 

specifically, the presence of a conserved tetra cysteine motif expressed at the 

amino terminus of the peptide, which is considered to be chemokines’ molecular 

signature (Baggiolini et al., 1997). The relative position of the N-terminal first 

two consensus cysteine residues provides the basis for the classification of 

chemokines (Rot and von Andrian, 2004) (Table 1-1). This motif is of high 

relevance as the cysteines included on it form two covalent disulphide bonds 

pairing the first with the third and the second with the fourth cysteines (Zlotnik 

and Yoshie, 2012); these bonds are important for achieving the tertiary structure 

of the protein and therefore, for forming the functional protein. 
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Table 1-1. Chemokines classification.  
Chemokine classification according to the relative position of the N-terminal first two consensus 
cysteine residues and the components of each subfamily. 

Chemokine subfamilies Cysteine residues configuration Components 

   CC CC C C CCL1-CCL28 

   CXC CXC C C CXCL1-CXCL17 

   XC XC 
 

C XCL1-XCL2 

   CX3C CXXXC C C CX3CL1 

 

 

Figure 1-4. Highly conserved molecular signature of the chemokine subfamilies. 
Chemokines are classified into 4 families according to the cysteine residues close to the amino 
terminus of the protein and the disulphide bonds originated due to these residues. XCL1 and XCL2 
have just one cysteine residue near the amino terminus that enables the generation of a disulphide 
bond (A), while CC chemokines have two consecutive cysteine residues in the amino terminal (B) 
and CXC chemokines have two cysteine residues separated by only one non-conserved amino 
acid residue “X” (C). Fraktalkine, the only known member of the CX3C chemokine family, has two 
cysteine residues separated by three non-conserved amino acid residues “X” (D). The presence of 
two cysteine residues in the amino terminal of the protein enables the generation of two disulphide 
bonds. CX3CL1 and CXCL16 contain a mucin-like domain linked to a hydrophobic, and therefore 
transmembrane, domain and an intracellular tail that makes them be expressed as cell surface 
bound chemokines. However, these chemokines can be found in soluble forms too. [Image 
modified from Panda et al. (Panda et al., 2016)]. 

 

1.2.1.1 CC chemokines 

CC chemokines, also known as the β chemokines, are the first and largest 

subfamily and are so named because the N-terminal first two consensus cysteine 

residues are adjacent to each other. There are currently 28 chemokines in this 
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family (CCL1-CCL28), which were numbered according to the order in which they 

were discovered. CC chemokines tend to attract mononuclear cells, such as 

monocytes, lymphocytes and some granulocytes to sites of inflammation (Alam 

et al., 1992a). Many of the genes for the CC chemokines are clustered on human 

chromosome 17 (Weber et al., 1996) or on murine chromosome 11 (Zlotnik et 

al., 2006).  

The best characterised CC chemokines are monocyte chemoattractant protein 1 

(MCP1) and macrophage inflammatory protein 1 α (MIP1α), called CCL2 and CCL3 

respectively according to the systemic nomenclature. CCL2 is the most potent 

histamine releasing factor for basophils, while CCL3 has modest histamine 

releasing activity (Alam et al., 1992b, Alam et al., 1992a). Both chemokines are 

potent agonists for monocytes (Wolpe and Cerami, 1989) and basophils (Alam et 

al., 1992a) during the acute immune response. CCL2 is a potent agonist for 

neutrophils (Wolpe and Cerami, 1989) and both CD4+ and CD8+ T cells (Taub et 

al., 1993). RANTES, currently known as CCL5, is chemotactic for monocytes 

(Alam et al., 1994), CD4+ T cells (Schall et al., 1990) and eosinophils (Kameyoshi 

et al., 1992). Some chemokines such as CCL2, CCL3 and CCL5 are produced by 

several cells in large amounts, while others are very specifically produced by 

particular tissues or cell types, such as CCL25, CCL27 and CCL28 which are 

respectively specific for thymus and intestine, skin keratinocytes and certain 

mucosal epithelial cells.  

1.2.1.2 CXC chemokines 

CXC chemokines, also known as the α chemokines, are the second major 

subfamily of chemokines and are so named because the N-terminal first two 

consensus cysteine residues are adjacent to each other with the addition of a 

single amino acid residue interposed between them. There are currently 

seventeen chemokines in this family (CXCL1-CXCL17). CXC chemokines can be 

further categorised into Glu-Leu-Arg (ELR)+ and ELR− CXC chemokines, according 

to the presence or absence of the motif ELR at the NH2 terminus. CXCL1, CXCL2, 

CXCL3, CXCL5, CXCL6, CXCL7 and CXCL8 belong to the ELR+ subfamily (Murphy et 

al., 2000). Many of the genes for the CXC chemokines are clustered on human 

chromosome 4 (Weber et al., 1996) or on murine chromosome 5 (Zlotnik et al., 

2006).  
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When trying to address the function of these chemokines, it was observed that 

some CXC chemokines, such as the platelet factor 4 (CXCL4), were inhibitors of 

angiogenesis (Maione et al., 1990) while others, such as interleukin-8 (IL-8 or 

CXCL8), have potent angiogenic properties (Koch et al., 1992). Even if these two 

chemokines have a significant homology, their roles are completely opposite. 

When comparing their sequences, the main difference was the presence of an N-

terminal tripeptide motif glutamate (E)-leucine (L)-arginine (R) called ELR motif 

nearby to the CXC motif. CXC chemokines with the ELR motif promote 

angiogenesis upon interaction with endothelial cells, and the addition of this 

motif to the N-terminal domain of CXCL4 resulted into a molecule with potent 

angiogenic properties (Hébert et al., 1991, Clark-Lewis et al., 1993). For this 

reason, CXC chemokines are functionally divided based on the presence of the 

ELR motif nearby to the CXC motif; ELR positive CXC chemokines promote 

angiogenesis (Strieter et al., 2005), cell proliferation (Mockenhaupt et al., 2003) 

and survival during development (Li et al., 2003), while ELR negative CXC 

chemokines tend are more angiostatic.  

CXCL8 is the archetype of the CXC chemokines and is the most potent attractor 

of neutrophils to sites of trauma in humans. Moreover, CXCL8 enhances cell 

survival and proliferation as well as angiogenesis. CXCL8 precursors are kept 

within endothelial cells in Weibel Palace bodies to be released after injury and 

recruit neutrophils to sites of acute inflammation. Due to the differences in 

pathogen driven evolutionary experiences between mouse and human, some 

inflammatory chemokines are not present in both species (Zlotnik and Yoshie, 

2000b). Mice lack CXCL8, but they have CXCL1 and CXCL2, both neutrophils 

chemoattractants (Hol et al., 2010). 

1.2.1.3 XC chemokines 

XC chemokines, also known as the γ chemokines, are so named because they 

lack one of the first two consensus cysteine residues in the N-terminal region 

and retain the fourth one. There are just two chemokines in this subfamily XCL1 

(lymphotactin α) and XCL2 (lymphotactin β). The gene that encodes 

lymphotactin maps to chromosome 1 (Kelner et al., 1994). 
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XCL1was first detected in activated CD8+ T cells from thymus and spleen and in 

activated CD4- CD8- TcRαβ+ thymocytes (Yoshida et al., 1995); therefore, it was 

associated with the Th1 response (Dorner et al., 2002). Dorner et al. found that 

lymphotactin has a relevant role in the development of efficient cytotoxic 

immunity in vivo (Dorner et al., 2009). 8 to 36 hours after antigen recognition by 

DCs, when T cell and DCs interact, CD8+ T cells secrete high amounts of XCL1, 

which increased the survival and differentiation of CD8+ T cells towards IFN-γ-

secreting effectors and leading to an increase of the pool of antigen-specific 

CD8+ T cells in vivo. However, XCL1 depletion avoids the development of 

cytotoxicity to antigens cross-presented by CD8+ DCs (Dorner et al., 2009). 

Moreover, XCL1 mediates the accumulation and the interaction with thymic DCs, 

which are key for the proper development of natural regulatory T cells (Lei et 

al., 2011). 

1.2.1.4 CX3C chemokines 

The last chemokine subfamily is a single entity, rather than a group, and the last 

one to be discovered (Bazan et al., 1997). CXXXCL1 or CX3CL1 chemokine, also 

known as fractalkine, is so named because the N-terminal first two consensus 

cysteine residues are adjacent to each other with the addition of three amino 

acid residues interposed between them. The gene encoding CX3CL1 maps to 

chromosome 16 (Bazan et al., 1997). 

Unlike the majority of the chemokines, CX3CL1 can be found in two forms, 

either as a ligand anchored to the membrane or as a soluble ligand (Bazan et al., 

1997). CXCL16 is the only other chemokine which seems to have a 

transmembrane conformation (Matloubian et al., 2000). Under normal 

conditions, CX3CL1 is synthesised as an intracellular precursor, which is 

transported to the membrane where it is anchored to the membrane by an 

extended mucin-like stalk (Garton et al., 2001). This cell-surface-bound 

conformation allows it to act as an adhesion molecule to cells with the cognate 

receptor; for example, it promotes strong adhesion of leukocytes on activated 

primary endothelial cells (Bazan et al., 1997). Once CX3CL1 is on the surface, 

the release of the extracellular domain takes place via metalloproteinase-

dependent cleavage. Tumour necrosis factor-α converting enzyme (TACE) is the 

protease involved in the generation of the soluble ligand (Garton et al., 2001). 
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The soluble CX3CL1 chemokine works as a T cell and monocyte chemoattractant 

(Bazan et al., 1997).  

1.2.2 Functional classification  

Chemokine nomenclature is based on their structural classification; however, 

they can also be sorted out into two functional categories. Chemokines can be 

homeostatic or proinflammatory depending on when they are expressed and 

their in vivo function. However, some chemokines are multifunctional and they 

can have a dual function; therefore, some inflammatory chemokines can have 

homeostatic roles under certain conditions while some homeostatic chemokines 

can be upregulated under certain injury conditions. 

1.2.2.1 Inflammatory chemokines 

Inflammatory chemokines were the first ones discovered as they are upregulated 

after tissue damage. In the early 1990s, activated cells of the immune system 

were studied, allowing the identification of many chemokines due to the 

abundance of their transcripts in these cells (Zlotnik and Yoshie, 2012). Those 

chemokines that are expressed by a variety of cells only after injury are 

classified as inflammatory.  

Inflammatory chemokines are essential as they become upregulated and induce 

the recruitment of leukocytes in the presence of infection, inflammation, tissue 

injury and tumours. Inflammatory chemokines can be expressed in any place in 

the body; as an example, all nucleated cells are able to express CCL2 to induce 

the attraction of cells to site of injury. These chemokines are said to be 

promiscuous and their receptors unfaithful, as a single ligand has broad receptor 

selectivity and a single receptor has a broad number of agonists (Bachelerie et 

al., 2014). Even if this mechanism seems to lack specificity (and makes this field 

a challenge to understand), it facilitates  the fast recruitment of effector cells 

into almost any tissue to restore the injury and protect the host.  

The most relevant inflammatory chemokines are clustered, in the case of CC 

chemokines, many are localised on chromosome 17 in humans and on 

chromosome 11 in mice, while many CXC chemokines are clustered on 

chromosome 4 in humans and on chromosome 5 in mice (Zlotnik et al., 2006). 
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The explanation for the existence of these clusters is based on gene duplication, 

which produces two copies of a gene that can evolve independently and develop 

specialised functions (Wagner, 2001, Zlotnik et al., 2006). For this reason, 

clustered genes share characteristics that do not apply to the non-cluster 

chemokines, such as promiscuous ligand-receptor relationships (Figure 1-5) and a 

poor correlation between species, as happens between human and mouse 

(Yoshie et al., 2001, Zlotnik et al., 2006, Hughes and Nibbs, 2018).  

1.2.2.2 Homeostatic chemokines 

Even if the first chemokines to be identified were the inflammatory ones, the 

high degree of conservation among chemokines and the development of 

expressed sequence tag databases and bioinformatics allowed the identification 

of new chemokines (Zlotnik and Yoshie, 2000b). Unlike inflammatory 

chemokines, the expression of homeostatic chemokines is constitutive and cell 

or tissue specific (Zlotnik and Yoshie, 2012). Moreover, they are involved in the 

recruitment of cells involved in adaptive immunity, such as lymphocytes or DCs. 

Homeostatic chemokines are involved in the organization of the immune system 

and regulate the movement of lymphocyte and DC subsets during normal 

processes of tissue maintenance or development (Zlotnik and Yoshie, 2000a). A 

good example is CXCL12, which is essential for the migration of HSCs in 

embryonic development and in lymphocytic circulation and immune surveillance 

in the postnatal life (Kabashima et al., 2007, Zlotnik and Yoshie, 2000a).  

In both human and mouse, homeostatic chemokines are encoded by non-

clustered genes; thus, the limited gene duplication makes these chemokines 

much less promiscuous than their counterparts (Figure 1-5). Actually, many of 

these chemokines have very restrictive ligand-receptor relationships (Zlotnik and 

Yoshie, 2000b).  
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Figure 1-5. Mammalian chemokine receptors and their known interactions with chemokines 
and other molecules. 
The above diagram shows the complexity of the relationship between chemokine receptors and 
chemokine ligands. Chemokine receptors interact with several different chemokines and at the 
same time, a chemokine molecule can interact with several receptors. Chemokines are arranged 
numerically in columns and a colour-code was used to represent whether they are in humans and 
mice, humans only, or mice only (see Key). Chemokine receptors are colour-coded and are linked 
to their known ligands (see Key). The colour of the linking key indicates the species in which the 
interaction has been demonstrated (see Key). Non-chemokine proteins, including drugs, known to 
interact with the chemokine receptors are also represented (see Key). Image from Hughes et al.  
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1.3 Chemokine receptors 

1.3.1 Structure 

Chemokine ligands must interact with chemokine receptors and 

glycosaminoglycans (GAGs) in order to induce cell migration. GAGs can be part 

of proteoglycans on cells or can be part of the extracellular matrix and they act 

by promoting chemokine immobilization to induce the migration of chemokine 

receptor expressing cells.  

Chemokine receptors are seven-transmembrane spanning proteins between 340 

and 370 amino acids long that constitute the largest division of the γ subfamily 

rhodopsin-like seven-transmembrane receptors (Griffith et al., 2014). Chemokine 

receptors can be classified into two groups: G protein-coupled chemokine 

receptors, also known as classical receptors, and atypical chemokine receptors, 

which lack the motif that enables coupling to G proteins. The chemokine 

receptor genes were also generated via gene duplication as a large cluster in 

human chromosome 3. However, as happens with chemokine ligands, chemokine 

receptors are well conserved among species; they have conserved structural, 

and therefore, functional, properties (Clark-Lewis et al., 1993, Clark-Lewis et 

al., 1995). One of the key motifs conserved among classic receptors is the 

DRYLAIV motif (D: Aspartate; R: Arginine; Y: Tyrosine; L: Leucine, A: Alanine; I: 

Isoleucine; V: Valine), also known as DRY motif. This motif is located on the 

second intracellular loop of the receptors and is essential for the G protein-

coupled intracellular response. The presence of this motif allows the production 

of a calcium flux following the chemokine ligand-chemokine receptor interaction 

(Graham et al., 2012).  

Chemokine receptors have the N-terminus on the extracellular side of the cell 

membrane, as this region is involved in ligand recognition and initial binding. 

The ligand binding process has been described as a two-step mechanism 

(Monteclaro and Charo, 1996, Pease et al., 1998). In the initial step, the N-

terminus of the chemokine receptor interacts with the chemokine core domain 

through a high-affinity bond producing the immobilization of the chemokine 

ligand. This arrest allows the formation of low-affinity interactions between the 

ligand and the receptor (Monteclaro and Charo, 1996, Pease et al., 1998). Once 
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the ligand has completely interacted with the receptor, the receptor becomes 

activated leading to down-stream signalling cascades. The chemokine receptor 

contains several serine and threonine residues that can be phosphorylated, 

providing additional regulatory mechanisms.  

The elucidation of the three-dimensional structures of the chemokine receptors 

allowed confirmation of the structural characteristics of these receptors and 

confirmed the ability of some receptors, such as CXCR4, to homodimerise (Wu et 

al., 2010). Different approaches has been used to solve the three-dimensional 

structures of these chemokines, including X-ray, crystallography for CXCR4 (Wu 

et al., 2010) and CCR5 (Tan et al., 2013) and nuclear magnetic resonance 

spectroscopy for CXCR1 (Park et al., 2012). The discovery of the three-

dimensional structure is of high relevance as it allows a better understanding of 

chemokine ligand-receptor interactions and therefore, it provides the first step 

for the rational design of antagonist for clinical use. 

1.3.2 CC chemokine receptors 

Classical chemokine receptors are divided into 4 subfamilies in relation to the 

subfamily of their major chemokine ligands (Zlotnik et al., 2006). CC chemokine 

receptors are the first family of chemokine receptors and they are involved in 

the interaction with CC chemokines. There are 10 chemokine receptors in this 

family (CCR1-CCR10). The first receptors to be identified were those involved in 

inflammatory responses. In fact, CCR1, CCR2, CCR3 and CCR5 are considered to 

be the classical inflammatory CC chemokine receptors.  

CCR2 has been identified on the surface of a subset of inflammatory cells, such 

as monocytes, activated memory T cells, B cells and basophils in humans. CCR2 

is essential for the recruitment of inflammatory monocytes into tissue. For 

example, CCR2 is crucial after acute myocardial infarction, as it supports 

monocyte recruitment that are able to differentiate into matrix 

metalloproteinases and TNF-α secreting macrophages that promote ventricular 

remodelling (Kaikita et al., 2004). However, it has been shown that CCR2 is not 

the only chemokine receptor involved in leukocyte recruitment into tissue, as 

CCR2 knockout mice were able to support effective macrophage infiltration via 

CCR1 and CCR5 (Dagkalis et al., 2009). This is an example of the redundancy 
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that takes place in organisms, and more specifically in this context, in the 

immune response (Rot and von Andrian, 2004). Redundancy is of high relevance 

as it ensures the efficiency of the most relevant functions; however, it also 

means that it is complex to target these receptors therapeutically as they create 

a complex network that is not fully understood.  

CCR5 is expressed on peripheral DCs, CD34+ haematopoietic progenitor cells and 

activated Th1 lymphocytes and is of high significance as it works as a major 

coreceptor for human immunodeficiency virus-1 (HIV-1) infection (Bleul et al., 

1997).  

CCR7 is an archetypic homeostatic receptor as it is involved in the cellular 

organisation of secondary lymphoid organs; CCR7 is crucial as it guides the 

patrolling immune cells into secondary lymphoid organs (Förster et al., 1999). 

The migration of lymphocytes is impaired in CCR7-deficient mice, leading to 

alterations in all secondary lymphoid organs. Moreover, the antibody response is 

delayed as activated DCs and T cells fail to exit from the peripheral tissue into 

the lymph nodes in CCR7 deficient mice. CCR7, as expected due to its 

homeostatic role, has a quite restrictive ligand-receptor relationships as it just 

has two ligands, CCL19 and CCL21 (Vander Lugt et al., 2013). 

1.3.3 CXC chemokine receptors 

CXC chemokine receptors are involved in the interaction with CXC chemokines. 

There are 8 chemokine receptors in this family (CXCR1-CXCR8) and most are 

found on neutrophils and lymphocytes. CXCR1-3 are inflammatory receptors 

while the rest are homeostatic. All ELR+ CXC chemokines interact with CXCR1 

and CXCR2, which are both involved in the migration of neutrophils during the 

inflammatory response (Ludwig et al., 1997). In addition, ELR+ CXC chemokines 

also promote angiogenesis (Strieter et al., 2005), cell proliferation (Mockenhaupt 

et al., 2003) and survival during development (Li et al., 2003). CXCR1 interacts 

with high affinity with CXCL8, which is released at high concentrations after 

trauma to stimulate cell migration and to enhance endothelial cell survival, 

proliferation, angiogenesis and the reconstruction of the matrix (Levashova et 

al., 2007, Li et al., 2003). Rodents lack an equivalent CXC chemokine ligand to 
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CXCL8; however, they have two homologous receptors, CXCR1 and CXCR2, able 

to coordinate cell migration during inflammation (Levashova et al., 2007). 

CXCR3 is mainly expressed on Th1 lymphocytes and some B cells and NK cells. 

This receptor is highly upregulated following cell activation and its ligands are 

CXCL9, CXCL10 and CXCL11. There are two isoforms of this receptor, CXCR3a 

and CXCR3b, which differ in their interaction partners, as CXCR3b can also 

interact with CXCL4 (Struyf et al., 2011). CXCR3 is involved in several 

inflammatory and autoimmune diseases such as insulitis and type 1 diabetes 

mellitus (Frigerio et al., 2002) and rheumatoid arthritis (Patel et al., 2001).  

CXCR4 is a very important homeostatic chemokine receptor expressed in both 

the immune and the central nervous system. Upon interaction with its cognate 

ligand CXCL12, CXCR4 induces the migration of resting leukocytes and 

haematopoietic progenitors. CXCL12 is important as the ligand-receptor 

interaction is responsible for the retention of HSCs in the bone marrow niche 

(Zou et al., 1998). It is such an important receptor that mice lacking this 

receptor die perinatally due to haematopoietic and cardiac defects. CXCR4 is 

upregulated during the implantation window, therefore, the prenatal death 

could also take place due to an inappropriate implantation (Dominguez et al., 

2003). Inhibition of CXCR4 using a small molecule inhibitor, AMD3100 

(plerixafor), induces the mobilisation of haematopoietic progenitors from the 

bone marrow into peripheral tissues (Liles et al., 2003). This discovery was a 

compelling advance in the stem cell transplantation field. CXCR4 is also relevant 

as it is a major coreceptor for HIV-1 (Feng et al., 1996, Donzella et al., 1998) 

and AMD3100 has been shown to block viral entry of HIV-1 into some host cells 

(Donzella et al., 1998).  

CXCR5, like CCR7, is involved in the organization of secondary lymphatic tissues. 

The only cognate ligand of CXCR5 is CXCL13, which is produced by DCs of B cell 

zones in the lymph nodes to induce the migration of B cells expressing CXCR5 (Yu 

et al., 2002). Moreover, T helper cells upregulate CXCR5 to migrate to B cell 

zones in the lymph nodes and in this way, contributes to the adaptive immune 

response. CXCR5 is of relevance in disease as it is specifically expressed in 

Burkitt’s lymphoma (Gunn et al., 1998). Moreover, CXCR5 upregulation has a 
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positive correlation with lymph node metastases in breast cancer patients as this 

axis regulates epithelial to mesenchymal transition (Biswas et al., 2014).  

CXCR6 has also been identified as an entry coreceptor for viral infection. In the 

case of HIV-1, it is a minor coreceptor as almost every strand of the virus infects 

cells using CXCR4 and/ or CCR5 (Liao et al., 1997). However, CXCR6 is important 

for simian immunodeficiency virus (SIV) as it acts as a major coreceptor for 

infection (Elliott et al., 2015).  

1.3.4 XC chemokine receptor 

XC chemokine receptor is involved in the interaction with XC chemokines; there 

is just one receptor in this subfamily (XCR1) and it is known as lymphotactin 

receptor (Zlotnik and Yoshie, 2000b). XCR1 is expressed by a subset of DCs 

having roles in antigen cross-presentation and immunity against viruses and 

cancer (Ohta et al., 2016). The XCR1-XCL1 axis is involved in the modulation of 

both the localization and function of T cells and DCs; thus, this axis is involved in 

several autoimmune diseases such as rheumatoid arthritis (Blaschke et al., 2003) 

or Crohn’s disease (Middel et al., 2001). Moreover, XCR1 is involved in the 

progression of several cancers as it is positively correlated with bone metastasis 

in non-small cell lung cancer (Wang et al., 2015); it promotes cell migration and 

proliferation in epithelial ovarian carcinoma (Kim et al., 2012); and it is 

expressed in diffuse large B cell lymphoma initially manifesting in the bone 

marrow (Yamashita et al., 2011).  

1.3.5 CX3C chemokine receptor 

The last family of chemokine receptors is also a single entity and is known as 

CX3CR1 or fractalkine receptor. Expression of this receptor has been found on T 

cells, NK cells and monocytes and microglial cells of the central nervous system. 

CX3CR1 plays a major role on the survival of monocytes (Landsman et al., 2009), 

while CX3CR1 signalling pathway modulates microglial activation and therefore, 

interactions with neurons and synapses (Paolicelli et al., 2014). In addition, 

CX3CR1 is relevant for macrophage mediated apoptotic cell engulfment as 

CX3CL1 is released from apoptotic lymphocytes (Truman et al., 2008).  



  53 
 

1.3.6 Chemokine receptor signalling 

It is important to remember that classic chemokine receptors are G protein-

coupled receptors; therefore, the binding of a chemokine ligand to its receptor 

leads to changes in the G proteins. Before ligand interaction, the receptor is 

bound to a heterotrimeric G protein complex, formed by α, β and γ subunits, 

which has associated a guanosine diphosphate (GDP) molecule to its α subunit, 

making the heterotrimeric G protein inactive. However, binding of an agonist to 

the receptor produces a conformational change in the receptor, which leads to 

the allosteric activation of the Gα subunit. The activated Gα subunit releases GDP 

and exchanges it for guanosine triphosphate (GTP), triggering the dissociation of 

the G protein from the receptor as well as from each other, yielding a Gα-GTP 

monomer and a Gβγ heterodimer, which are now free to interact and modulate 

other intracellular proteins. The receptor is now internalised and the cell is 

desensitised. 

As shown in Figure 1-6, ligand interaction can lead to a multitude of downstream 

pathways determined by the ligand, the receptor and the physiological context 

in which the binding takes place (Rot and von Andrian, 2004). There are multiple 

different G proteins and the binding of an agonist can lead to the activation of 

different G proteins depending on the capability to induce the stabilization of 

specific guanine-nucleotide exchange factors. 
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Figure 1-6. Schematic summary of chemokine-mediated G protein-coupled receptor 
signalling. 
Chemokine ligand interaction with its cognate receptor can lead to a multitude of downstream 
pathways determined by the ligand, the receptor and the physiological context in which the binding 
takes place. Before ligand interaction, the receptor is bound to a heterotrimeric G protein complex, 
formed by α, β and γ subunits, which has associated a guanosine diphosphate (GDP) molecule to 
its α subunit, making the heterotrimeric G protein inactive. However, binding of an agonist to the 
receptor produces a conformational change in the receptor, which leads to the allosteric activation 
of the Gα subunit. The activated Gα subunit releases GDP and exchanges it for guanosine 
triphosphate (GTP), triggering the dissociation of the G protein from the receptor as well as from 
each other, yielding a Gα-GTP monomer and a Gβγ heterodimer, which are now free to interact and 
modulate other intracellular proteins. The receptor is now internalised and desensitised. 

 

Several Gα proteins are able to regulate the calcium ion flux (Wu et al., 1993, 

Rollins et al., 1991). Gαs and Gαi both regulate adenylate cyclase, Gαs subunit 

induces its activity while Gαi acts as an inhibitor. Adenylate cyclase catalyses the 

conversion of adenosine triphosphate (ATP) to cyclic-adenosine monophosphate 

(cAMP). Cytosolic cAMP levels regulate the activity of ion channels, such as 

calcium, as well as serine/ threonine protein kinase A (PKA), which can also 

produce a calcium influx. Gαq/11 regulates phospholipase C-β (PLCβ), which 

produces inositol trisphosphate (IP3) and diglyceride (DAG) by catalysing the 

cleavage of the membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2). 

IP3 produces the release of calcium ions from the endoplasmic reticulum while 

DAG activates protein kinase C (PKC), leading to further downstream signalling.   
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Gα proteins are also responsible for cytoskeleton regulation (Gu et al., 2003). 

Gα12/13 allosterically activates three members of the cytosolic small GTPase Rho 

family (p115-RhoGEF, PDZ-RhoGEF, and LARG). Once it is activated Rho can 

activate Rac1, promoting lamellipodia formation at the leading edge of cells and 

its subsequent movement.  

Moreover, the Gβγ heterodimer by itself is able to modulate the activity of 

potassium and calcium channels, as well as adenylate cyclase and PI3K. In this 

manner, the mitogen-activated protein kinase pathway gets activated leading to 

cell polarisation and movement towards the highest concentration of 

chemokines (Patel et al., 2013).  

1.3.7 Atypical chemokine receptors (ACKRs) 

ACKRs, like the classical chemokine receptors, are seven-transmembrane 

spanning proteins; however, ACKRs have a missing or modified DRYLAIV motif in 

the second intracellular loop, which disables the coupling to G-proteins and 

therefore, the classical chemokine receptor mediated cell signalling (Ulvmar et 

al., 2011).  

There are currently five receptors in this family (ACKR1-ACKR5) which can 

interact with a wide range of chemokine ligands. These receptors were thought 

to be silent because they fail to induce cell migration; nevertheless, they are 

not, as upon interaction with ligands ACKRs are internalised. After 

internalisation, two outcomes can take place. On the one hand, ligands can be 

internalised and targeted for lysosomal degradation. On the other hand, 

internalisation can be followed by transcytosis, a process allowing the transport 

of chemokines across biological barriers in order to take them to less 

approachable microanatomical domains (Graham et al., 2012). The main goal of 

these receptors is to regulate chemokine availability within tissues. 

1.3.8 Chemokines and chemokine receptors in disease 

1.3.8.1 Inflammatory diseases 

As has already been discussed, it is essential for the immune system to achieve 

self-nonself discrimination to avoid the development of chronic inflammation 
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and autoimmune disease. Tissues of patients with inflammatory conditions show 

upregulated levels of specific chemokines and their receptors. In inflammatory 

rheumatic diseases, CXCL8 (Seitz et al., 1992) as well as XCL1 (Blaschke et al., 

2003) have been shown to be present in synovial fluid. Furthermore, CXCL8 is 

also upregulated in patients suffering active ulcerative colitis (Mahida et al., 

1992). Rheumatoid arthritis patients not only have increased XCL1 and CXCL8 

levels in synovial fluid, but also have CCL2, CCL3, CCL5 and CXCL12 levels 

increased in their joints, which leads to the recruitment of pro-inflammatory 

cells into synovial tissues (Shadidi et al., 2003). CCR5, CCR6, CCR7, CXCR3, 

CXCR4 and CXCR5 have also been found to be involved in B cell synovial cytokine 

production and activity (Nanki et al., 2009). Chemokines are also involved in 

psoriasis pathophysiology; CXCR3 has been found to induce lymphocyte 

recruitment to the skin leading to inflammation (Flier et al., 2001). 

1.3.8.2 Human Immunodeficiency Virus (HIV) 

The human immunodeficiency virus is a lentivirus discovered in 1983 that targets 

and destroys immune system cells of the host leading to the development of 

acquired immunodeficiency syndrome (AIDS) (Barré-Sinoussi et al., 1983). Due to 

the failure of the immune system, AIDS allows the appearance of life-

threatening opportunistic infections as well as cancer development. HIV has a 

huge propensity for genetic variation, mainly within the envelope gene, making 

it very difficult to develop a vaccine capable of targeting all the variants and 

therefore, preventing infection (Berkower et al., 1989). However, the virus 

cannot mutate at sites related with crucial functions.  

The entry of the virus into host cells takes place through glycoproteins in the 

envelope of the virus, more accurately, glycoprotein (gp) 120. CD4 gp is able to 

induce CD4+ T cell specific antigen responses after interaction with MHC Class II 

molecules; however, gp120 is also able to interact with CD4 leading to 

conformational changes in gp120 that promote the exposure of chemokine 

receptor binding regions on the surface of the virus (Silberman et al., 1991).  

Once the virus is showing the chemokine receptor binding regions, it needs to 

interact with the corresponding receptors, CCR5 and CXCR4, as they act as 

coreceptors promoting the entry of the virus into the host cells (Bleul et al., 



  57 
 
1997). In the initial stage of the infection, HIV uses CCR5 as a coreceptor to 

target monocytes, macrophages and CCR5+ Th1 cells. For this reason, it is known 

as M-tropic HIV at this stage. To infect lymphocytes, the virus uses CXCR4, which 

is known as the T-tropic or X4-tropic stage of the infection. At this stage, the 

immune system is already much weakened leading to AIDS.  

There have been several approaches to target CD4, CCR5 and CXCR4 to reduce 

the ability of HIV to target the immune system. Among these three coreceptors, 

CCR5 seems to be most relevant as individuals with a defective expression of 

CCR5 are resistant to infection with HIV-1 (Liu et al., 1996). Moreover, the usage 

of natural CCR5 ligands in vitro produces a decrease in the infection rate due to 

competition events between the virus and the natural ligands (Cocchi et al., 

1995). In addition, Clerici et al. showed that patients with increased CCL5 levels 

seem to be refractory to the progression of HIV infection to AIDS (Clerici et al., 

1996). According to studies done in 1996, approximately 1% of people of 

northern European descent have a non-functional CCR5 receptor activity and are 

known to have the CCR5Δ32 mutation. This mutation is characterised by the 

absence of 32 base pairs of the second extracellular loop impairing the receptor 

activity. CCR5Δ32 homozygous individuals are highly resistant to HIV-1 infection, 

while Δ32 heterozygotes can become infected but the progression of the disease 

is much slower, taking longer to develop AIDS (Huang et al., 1996).  

On the one hand, CCR5Δ32 is not only protective for HIV-1, but also for graft 

rejection (Fischereder et al., 2001) and inflammatory disorders such as asthma 

(Srivastava et al., 2003) and rheumatoid arthritis (Pokorny et al., 2005). On the 

other hand, CCR5Δ32 produces a more apparent disease in patients with 

pulmonary sarcoidosis and an increased requirement for corticosteroids (Petrek 

et al., 2000). Moreover, CCR5Δ32 mutation increases the risk of suffering a 

lethal encephalopathy after infection with West Nile virus (Glass et al., 2006).  

1.3.8.3 Cancer 

It is important to consider that even if cancer appears as a result of the 

accumulation of genetic and epigenetic changes (Joyce, 2005), those alterations 

are not enough to provide malignant properties to cancer cells (Sounni and Noel, 

2013). Tumours must develop essential properties to progress and develop; these 
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are induced by the tumour microenvironment. The tumour microenvironment 

provides the necessary signals that turn on transcription factors from 

development or embryology programs allowing the necessary mesenchymal 

phenotypes to invade distant tissues and establish a new environment (Sounni 

and Noel, 2013). 

Tumour cells work in close interaction with the extracellular matrix and with 

genetically stable cells that constitute the tumour microenvironment (Fang and 

Declerck, 2013). The tumour microenvironment describes the non-cancerous 

cells present in the tumour, which includes fibroblasts, myofibroblasts, 

neuroendocrine cells, adipose cells, immune and inflammatory cells and the 

blood and lymphatic vascular networks (Chen et al., 2015). The interactions 

between tumour cells and the tumour microenvironment have a deep influence 

on cancer development and progression and contributes to almost all of the 

hallmarks of cancer (Hanahan and Weinberg, 2011). The stromal cells that 

interact with the tumour are not only from neighbouring tissues, but also 

endothelial progenitor cells, myeloid and lymphoid inflammatory cells, and 

mesenchymal cells that have been recruited from the bone marrow (Fang and 

Declerck, 2013). Once these cells are within the tumour microenvironment, the 

signals originating from the tumour make them progressively switch from non-

malignant cells with a neutral or anti-tumorigenic role towards cancer-

associated fibroblasts (CAF), tumour-associated macrophages (TAM) or vascular 

and perivascular cells with a pro-tumorigenic role (Fang and Declerck, 2013) 

(Figure 1-7). Therefore, signals originating from the tumour cells induce the pro-

tumorigenic nature of the microenvironment, while the signals originated by 

these cells promote tumour development. 

Tumour formation and maintenance, as organs, requires the self-renewal of 

cancer cells. This self-renewal property is provided by cancer stem cells (CSCs) 

(Wang et al., 2013). CSCs can develop from the normal tissue stem cells due to 

oncogenic mutation or can be normal somatic cells that acquire oncogenic 

mutations that give them the ability to self-renew and differentiate into 

specialised, mature cell types (Adjei and Blanka, 2015). The tumour stroma also 

recruits MSCs from the circulation and nearby tissues by secreting CXCL12 and 

CCL2. Recruited MSCs secrete CCL5, which induces migration, invasion and 
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metastasis of cancer cells due to the malignant transformation of CAFs and TAMs 

(Karnoub et al., 2007). Thus, the tumour microenvironment allows the 

recruitment and activation of CSCs through chemokines and those CSCs secrete 

more chemokines that enhance the pro-tumorigenic role of the tumour 

microenvironment. Nevertheless, it has also been shown that MSCs are able to 

inhibit Akt protein kinase activity and downregulate B cell lymphoma 2 (Bcl2) in 

cancer, inducing apoptosis (Qiao et al., 2008).  

 

Figure 1-7. Schematic representation of the effect of cancer cells in tumour 
microenvironment.  
Secretion of cytokines and growth factors, including IL-4, macrophage colony-stimulating factor and 
granulocyte-macrophage colony-stimulating factor by tumour cells promotes the generation of a 
tumour promoting environment where fibroblasts and macrophages switch from being anti-
tumorigenic to have a pro-tumorigenic role. Cancer associated fibroblasts (CAFs) and tumour 
associated macrophages (TAMs) secrete pro-inflammatory molecules that recruit further TAMs as 
well as promoting angiogenesis, tumour growth and metastasis 
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CAFs secrete growth factors, transforming growth factor β, hepatocyte growth 

factor, insulin like growth factor 1/ 2, and chemokines (CCL2 mainly) that 

enhance angiogenesis and therefore, proliferation and invasion of cancer cells 

due to the activation or transformation of both the microenvironment and the 

cancer cells (Adjei and Blanka, 2015). Many tumours secrete monocyte 

chemoattractant proteins, such as CCL2, producing an increase of TAMs, which 

mediate immunoinhibitory effects and facilitate tumour metastasis by 

generating changes in the tumour microenvironment. In fact, the blockade of 

CCL2-CCR2 signalling by monoclonal antibodies, such as CNTO 888, has been 

shown to augment CD8+ T cell mediated responses and to inhibit metastatic 

seeding (Tsai et al., 2014).  

CXCL8 and CXCL1 are usually upregulated in the tumour microenvironment, 

leading to an aberrant recruitment of neutrophils and angiogenesis (Sparmann 

and Bar-Sagi, 2004).  

CCR7 and CXCR4 both have very important roles controlling the migration of 

immune cells to secondary lymphoid organs. CCR7 has been found to be 

upregulated in many cancers, including gallbladder cancer (Hong et al., 2016), 

non-small cell lung cancer (Sun et al., 2015) and oesophageal squamous cell 

carcinoma (Irino et al., 2014) among others, promoting metastasis. Moreover, 

CXCR4 and CCR7 enhance metastasis by inhibiting anoikis, a programmed cell 

death that takes place when anchorage-dependent cells detach from the 

extracellular matrix (Kochetkova et al., 2009). Lastly, signal transducers and 

activators of transcription (STATs), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NFκB) and hypoxia inducible factor 1α (HIF1α) are also 

involved in inflammation and are deregulated in many cancers. HIF1α produces 

an increase of CXCR4, promoting metastasis by both metastatic migration 

towards CXCL12 and inhibition of anoikis.  

1.3.8.4 Transplant rejection  

Organ transplantation is one of the greatest achievements in medicine as it is 

the unique life-saving strategy for patients with irreversible failure of a wide 

range of organs, such as kidney, heart, lung, pancreas and liver (Salvadori and 

Bertoni, 2014). However, the main problem of this strategy is that the long-term 
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outcome can be jeopardised due to tissue or organ rejection. To avoid rejection, 

patients are supplied with immunosuppressants; however, these drugs further 

aggravate their quality of life as they are prone to infections, neoplasms, 

nephrotoxicity and diabetogenicity (Crescioli, 2016). Due to the role of 

chemokines in inflammatory and immune responses, it was not a surprise to find 

that they had a major role in transplant rejection and that they were the 

molecules involved in alloreactive cell recruitment (Heidt et al., 2011).  

Chemokine ligands and their receptors are involved in transplant rejection due 

to their role driving and directing leukocyte migration, promoting an 

inflammatory environment surrounding the graft. Upon transplantation, 

inflammatory cytokines, such as IL-1, IFN-γ and TNF-α, are released at both local 

and systemic levels. This inflammatory environment promotes the release of 

pro-inflammatory chemokines, as CCL2, CXCL8, CXCL9, CXCL10 and CXCL11, by 

endothelial cells (Barker et al., 2014). The relevance of chemokines in graft 

rejection was shown when it was observed that neutralization of intra-graft 

CXCL10 allowed longer graft survival and therefore, a better outcome (Hancock 

et al., 2000).  

 

1.4 The stromal compartment 

The stromal compartment is the connective tissue of any organ and it includes a 

wide range of cells with a similar phenotype but different cellular functions. 

Among these cells, fibroblasts are the most common population, while 

mesenchymal stromal cells are present at a very low percentage. The stromal 

compartment is a major component of immune responses as it secretes a wide 

range of mediators to generate a pro-inflammatory or an anti-inflammatory 

environment according to the signals it receives.  

1.4.1 Mesenchymal Stromal Cells 

Mesenchymal stromal cells (MSCs) were first named in 1976 by Alexander 

Friedenstein as colony-forming unit fibroblasts (CFU-Fs). These cells were 

spindle shaped, clonogenic in monolayer cultures and could serve as feeders in 
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the bone marrow for haematopoietic stem cells (Friedenstein et al., 1976). The 

term mesenchymal stem cell was first used by Maureen Owen in 1985 because of 

their ability to self-renew and the potential to differentiate into discrete 

connective tissues cells. Although MSCs where first isolated from bone marrow, 

they can be isolated from a wide range of tissues around the body, including 

umbilical cord, cord blood, placenta, dental pulp, periodontal ligament, adipose 

tissue and from the islets within the pancreas (Lv et al., 2014).  

Due to different culture conditions and the intrinsic variability among MSCs 

derived from different donors and strains, there is controversy regarding MSCs 

properties in the literature. For this reason, the International Society of Cellular 

Therapy (ISCT) proposed to call these cells mesenchymal stromal cells (Horwitz 

et al., 2005) and specified the criteria that human cells had to reach in order to 

be defined as MSCs. These criteria are plastic-adherence when maintained in 

standard culture conditions and specific surface antigen expression along with 

the potential to differentiate into osteoblasts, adipocytes and chondroblasts. 

MSCs must express CD105, CD73 and CD90 and, as additional criteria, they must 

lack the expression of haematopoietic antigens such as CD45, CD34, CD14 or 

CD11b, CD79α or CD19 and MHC Class II (Dominici et al., 2006). MSCs express 

human leukocyte antigen (HLA)-DR isotype upon stimulation with IFN-γ; in this 

case, cells are still termed MSCs but they have to be qualified with adjectives 

such as activated, licensed or stimulated MSCs to explain that the cells are not 

in a baseline state. MSCs not only express these markers, but also variable levels 

of other markers as CD29, CD44, CD166, CD146 and CD271, which can allow the 

isolation of tissue specific MSCs. CD271, for example, allows the identification of 

bone marrow MSCs (BM MSCs) (Álvarez-Viejo et al., 2015).  

Ideally, these characteristics should allow the identification of MSCs; however, 

MSCs are similar to fibroblasts in that they have a similar morphology and are 

plastic-adherent (Haniffa et al., 2009). Moreover, human dermal fibroblasts have 

also been proven to have tripotency (Junker et al., 2010) and immunoregulatory 

functions similar to MSCs (Haniffa et al., 2007) and to express most MSC markers 

such as CD105, CD73 and CD90 (Schwab et al., 2008). Fibroblast contamination is 

a potential impediment for regenerative medicine due to their senescence and 

tumour transformation upon long-term expansion (Zhou et al., 2006); thus, 
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proper MSC isolation is essential. CD146 expression has been found to be weak 

for fibroblasts and high for MSCs (Lv et al., 2014) and CD166 was significantly 

higher in MSCs; therefore, these two markers could allow the discrimination 

between MSCs and fibroblasts. However, according to Halfon et al., markers 

discriminating MSCs from fibroblasts are downregulated in human MSCs of 

passage 6; murine MSCs are difficult to expand and therefore, are not well 

described (Halfon et al., 2011).  

1.4.2 Tissue of origin of MSCs impacts their phenotype and 
function 

MSCs can be isolated from a wide range of tissues around the body, including 

umbilical cord, cord blood, placenta, Wharton’s jelly, dental pulp, periodontal 

ligament, adipose tissue and from the islets within the pancreas (Lv et al., 

2014). BM MSCs are considered the gold standard and are the most used MSCs in 

the clinic; however, their isolation requires an invasive and painful procedure. 

As MSCs can be isolated from a large variety of tissues, alternative sources could 

be more suitable for clinical use. Adipose tissue, umbilical cord and islets are a 

potentially better source for MSC isolation as they are easily accessible and MSCs 

can be isolated in larger amounts; moreover, as these tissues are clinical waste 

there is no burden on the donor. As an example, adipose tissue yields a 500-fold 

higher frequency of colony forming units (CFU-F) than bone marrow and can be 

obtained very easily (Fraser et al., 2006); MSCs from the umbilical cord could 

also be a good choice as they are very abundant and they are ontogenically 

primitive (Choudhery et al., 2013).  

Comparison of MSCs from different sources have shown that they are all 

phenotypically similar as they all have the spindle-like morphology and similar 

surface expression levels of the markers stated by the ISCT. However, they differ 

in origin, proliferative rate, differentiation potential, immunomodulatory 

capacity and cytokine secretion profiles (Hass et al., 2011, Wu et al., 2018). 

Adipose tissue derived MSCs (Ad MSCs) have a greater ability to differentiate into 

adipocytes compared to BM MSCs and umbilical cord derived MSCs (UC MSCs), 

while UC MSCs differentiate much more easily in osteoblasts than Ad and BM 

MSCs (Han et al., 2017). Few studies compared the immunomodulatory potential 

of MSCs among tissues; even if they all used a mixed lymphocyte reaction assay 
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or T cell proliferation measurement assays upon CD3/ CD28 stimulation the 

results are contradictory. On the one hand, Puissant et al. did not find statistical 

differences between BM MSCs and Ad MSCs in the inhibition of T cell 

proliferation (Han et al., 2017, Puissant et al., 2005). On the other hand, Ribeiro 

et al. determined that Ad MSCs have a stronger effect on T cell activation 

compared to BM MSCs and UC MSCs (Ribeiro et al., 2013), while Xishan et al. 

showed that BM MSCs had the highest immunosuppressive effect (Xishan et al., 

2013). Little is known about the migratory abilities of MSCs according to their 

tissue of origin, which should be considered for clinical studies with these cells.  

It is also very important to consider the species variation in the MSCs biology. 

Immunosuppressive effects of MSC have been reported for both mice and humans 

but there are important differences regarding the genomic stability, the 

spontaneous expression of neural markers, self-renewal and differentiation 

capabilities, as well as the immunoregulatory capacities (Scuteri et al., 2014, 

Hass et al., 2011). Under the same culture conditions, cytokine-mediated 

inflammatory stimulation of human and murine BM MSCs led to differential 

increase of the expression levels of IDO and inducible nitric oxide synthase 

(iNOS); human BM MSCs expressed high levels of IDO and little iNOS, and mouse 

MSCs expressed very low levels of IDO and high levels of iNOS. The 

immunosuppressive mechanism of MSCs is poorly understood but IDO and iNOS, 

respectively in humans and mice, have been shown to be involved, at least in 

part, in the suppressive effect of MSCs on cytotoxic cell proliferation, and thus, 

immunomodulation (Ren et al., 2009). For these reasons, the transfer of results 

obtained from animal MSCs must be carefully interpreted. 

1.4.3 MSCs and the immune system 

In 1997 the ability of MSCs to repair a craniofacial defect (Kadiyala et al., 1997) 

was demonstrated, while in 1998 it was observed that MSCs grown and expanded 

ex vivo in culture were able to give rise to long-lasting connective tissue cells 

after injection into irradiated isogenic mice (Pereira et al., 1998). In 2005, MSCs 

were found to be weakly immunogenic due to their lack of HLA antigens and co-

stimulatory molecules as CD80 and CD86. This property, in combination with 

their ability to be immunosuppressive, immunomodulatory and regenerative in 

both human and animal models led to an increasing interest in the therapeutic 
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potential of MSCs (Keyser et al., 2007, Klyushnenkova et al., 2005). MSCs are 

found in perivascular locations in vivo, more precisely within epithelial niches 

close to the vessel walls, which enables blood vessel formation and the 

recruitment and interaction with immune cells (Liu et al., 2014). MSCs can 

interact with, and immunomodulate, not only the innate and the adaptive 

responses, but also the humoral immune system. Moreover, MSCs have been 

shown to recruit more leukocytes and to have stronger immunomodulatory and 

anti-inflammatory properties in the presence of inflammation; therefore, this is 

mimicked in vitro by stimulating MSCs with a cocktail of TNF-α, IFN-γ and/ or IL-

1β, also known as licensing of MSCs (Krampera et al., 2006, Krampera et al., 

2007, Di Nicola et al., 2002, Beyth et al., 2005).  

1.4.3.1 MSCs and the humoral immune system 

As previously mentioned in Section 1.1.1.2, the humoral immune system is 

composed of macromolecules present in extracellular fluids such as complement 

proteins and secreted antibodies.  

Interaction of MSCs with the complement system has been described, but it is 

not fully understood. Infusion of MSCs leads to complement activation after their 

contact with serum due to the expression of complement receptors C3aR and 

C5aR, allowing chemotaxis of MSCs towards the complement components C3 and 

C5 and leading to increased resistance to oxidative stress and prolonged survival 

by MSCs (Li and Lin, 2012, Schraufstatter et al., 2009). But at the same time, 

licensing of MSCs with TNF-α and IFN-γ leads to the secretion of complement 

factor H, which inhibits the formation of C5 and C3 convertases and the 

subsequent activation of the complement system and inflammation (Tu et al., 

2010b). Moreover, BM MSCs can secrete C3 protein, inhibiting the 

immunoglobulin production by B cells without affecting their activation status 

(Lee et al., 2014). Antibody secretion leads to the activation of the classical 

pathway of the complement system as well as to opsonization upon antibody 

binding to a target. Thus, by dampening Ab secretion, MSCs avoid the secretion 

of C3a and C5a anaphylatoxins that would lead to further activation of T cells 

and macrophages, mast cell degranulation and chemotaxis of immune cells that 

would lead to increased inflammation.  
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1.4.3.2 MSCs and the innate immune system 

As discussed in Section 1.1.1, the innate immune response is essential in the 

process of inflammation and is involved in transplant rejection and autoimmune 

diseases (Murphy et al., 2011, Prame Kumar et al., 2018). For this reason, it is 

essential to understand the interaction and the immunomodulatory and anti-

inflammatory effect of MSCs on the cells of the innate immune system to 

understand the role of MSCs within a clinical setting.  

1.4.3.2.1 MSCs and monocytes and macrophages 
 
Macrophages are phagocytic immune cells, the everyday essential in host 

defence and tissue homeostasis and, monocytes can differentiate into pro-

inflammatory or anti-inflammatory macrophages depending on 

microenvironmental signals. MSCs have been described to promote the 

differentiation of monocytes into M2 anti-inflammatory macrophages through a 

poorly understood mechanism involving the secretion of IDO, prostaglandin E2 

(PGE2) and tumour necrosis factor-inducible gene 6 (TSG-6) (Wise et al., 2014, 

Choi et al., 2011, Németh et al., 2009). Moreover, differentiation of monocytes 

into M2 prolongs MSC survival (Freytes et al., 2013). Contradictorily, in a murine 

model of GVHD, Galleu et al. described how MSCs must be targeted by cytotoxic 

T cells to undergo apoptosis, as engulfment by macrophages leads to the 

production and secretion of IDO by macrophages, which are capable of 

mediating immunosuppression (Galleu et al., 2017). 

1.4.3.2.2 MSCs and neutrophils 
 
Neutrophils are fast responders to inflammatory signals and can exert their 

inflammatory role in three different manners: phagocytosis, degranulation and 

the formation of NETs. MSCs have been described to increase the phagocytic 

potential of neutrophils and at the same time, to reduce the respiratory burst of 

neutrophils by suppressing the production of nitric oxide and hydrogen peroxide 

by active neutrophils, diminishing in this way their inflammatory potential and 

NET formation (Joel et al., 2019, Jiang et al., 2016). 
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1.4.3.2.3 MSCs and DCs 
 
MSCs are also able to supress the immune response by interfering with the 

maturation and activation process of DCs and the subsequent activation of T 

cells. MSCs secrete IL-6 and PGE2 suppressing the maturation of granulocyte 

macrophage colony stimulating factor (GMCSF) and IL-4 stimulated monocytes 

into DCs (Jiang et al., 2005, Spaggiari et al., 2009). Co-culture of MSCs and DCs 

promotes the secretion of the anti-inflammatory cytokine IL-10 by DCs while 

impairing their ability to endocytose, upregulate co-stimulatory molecules and 

secrete IL-12 and TNF-α (Aggarwal and Pittenger, 2005, Zhang et al., 2004). 

1.4.3.2.4 MSCs and NK cells 
 
As previously described in Section 1.1.1.1.8, NK cells recognise, and target, cells 

expressing low levels of MHC Class I, which makes MSCs a target for NK cells. 

However, co-culture of NK cells and MSCs under inflammatory conditions leads 

to the upregulation of MHC Class I in MSCs to avoid NK cell-mediated 

cytotoxicity, while downregulating the expression of NK cell activation receptors 

(Spaggiari et al., 2006, Poggi et al., 2005). Additionally, MSCs secrete TGF-β1 

and PGE2 which inhibits proliferation and IFN-γ production of IL-2 and IL-15 

activated NK cells (Sotiropoulou et al., 2006). These findings suggest that under 

resting conditions NK cells would be able to recognise and kill MSCs, while MSC 

licensing increases the immunoregulatory potential of MSCs and enables the 

regulation of the activation state of NK cells.  

1.4.3.3 MSCs and the adaptive immune system 

The innate immune system is a collection of non-specific mechanisms to protect 

the host against pathogens, while the adaptive immune response generates 

immunological memory towards specific antigens. The adaptive immune system 

can also generate self-reactive antibodies which can give rise to autoimmune 

diseases and it is also essential in developing immunotolerance. Thus, it is 

essential to understand the interaction, and the immunomodulatory and anti-

inflammatory effect of MSCs, on the adaptive immune system to understand the 

role of MSCs within a clinical setting. 
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1.4.3.3.1 MSCs and T cells 
 
T cells are key mediators in inflammation and MSCs have been shown to suppress 

T cell proliferation both directly and indirectly (Di Nicola et al., 2002). BM MSCs 

interact with T cells via the engagement of programmed cell death protein 1 

(PD1) in vitro, suppressing T cell proliferation (Augello et al., 2005). Engulfment 

of apoptotic MSCs by macrophages leads to IDO secretion, which has been 

described to promote T cell anergy, a tolerance mechanism in which the T cell 

remains alive but is inactivated following an antigen encounter (268). 

Furthermore, humans and murine MSCs secrete high levels of PGE2 in vitro, 

PGE2 inhibits TCR signalling, and inhibitors of PGE2 production decreased the 

immunosuppresive effect on T cells (Puccetti and Grohmann, 2007, Wiemer et 

al., 2011, Aggarwal and Pittenger, 2005). Another soluble factor that seems to 

be involved in the suppression of T cell proliferation is adenosine. Interaction 

between MSCs and T cells leads to increased production of adenosine by MSCs, 

which interacts with adenosine A2A receptor on the surface of T cells reducing 

their proliferation in both human and mice (Sattler et al., 2011, Haddad and 

Saldanha-Araujo, 2014). MSCs secrete hepatocyte growth factor (HGF) and IL-10, 

which in combination with IDO and PGE2 leads to T cell proliferation inhibition 

and differentiation into Tregs (Meisel et al., 2004). Moreover, secretion of IL-6, 

IL-10 and PGE2 by MSCs suppresses maturation and the antigen presentation 

potential of DCs, reducing CD4+ T cell proliferation in an indirect manner 

(Aggarwal and Pittenger, 2005). MSCs can reduce IFN-γ secretion by Th1 cells 

while promoting an increased secretion of IL-4 by Th2 cells and increase the 

number of Tregs (Aggarwal and Pittenger, 2005). Therefore, MSCs can modulate 

T cell responses by inhibiting antigen specific T cell responses and promoting the 

differentiation of CD4+ T cells into Tregs.  

1.4.3.3.2 MSCs and B cells 
 
MSCs inhibit B cell proliferation and activation in vitro, as well as differentiation 

via the programmed death 1 pathway (Augello et al., 2005). CCL2 and C3 

secretion by MSCs results in the inhibition of immunoglobulin synthesis and 

secretion (Feng et al., 2014, Lee et al., 2014). As previously explained, by 

dampening Ig secretion, MSCs avoid the secretion of C3a and C5a anaphylatoxins 

that would lead to further activation of T cells and macrophages, mast cell 

degranulation and chemotaxis of immune cells that would lead to increased 
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inflammation. However, MSCs can also support the proliferation and 

differentiation of antibody-releasing B cells and this is inflammatory signal 

dependent, more precisely, IFN-γ dependent. Licensing of MSCs with IFN-γ 

increases the immunoregulatory potential of MSCs and enables the 

immunoregulation of B cells (Krampera et al., 2006, Saparov et al., 2016).  

1.4.4 MSCs clinical use 

In 1997, MSCs were shown to repair a craniofacial defect (Kadiyala et al., 1997), 

leading to an increasing interest in the therapeutic potential of MSCs due to 

their tissue regenerative capacity, which could be highly beneficial within the 

clinic for tissue degrading diseases such as rheumatoid arthritis and multiple 

sclerosis (Kemp et al., 2010, Sakaguchi et al., 2005). Moreover, their 

immunosuppressive and immunomodulatory properties led to the idea of MSCs 

being used in the treatment of autoimmune disorders and to suppress graft 

rejection and graft versus host disease (GVHD) (Farini et al., 2014). More 

importantly, the low expression of HLA molecules results in MSCs having poor 

immunogenicity in vitro, in pre-clinical and in human studies, which enables the 

use of allogeneic donors (Klyushnenkova et al., 2005, Koc et al., 2002). On top of 

this, MSCs can be isolated from a variety of tissues and can be easily expanded 

for mass production of a good manufacturing practice (GMP)-grade cell product. 

As a result, MSCs have huge potential as cellular therapeutics within different 

diseases including GVHD and type 1 diabetes mellitus (T1DM) among others.  

1.4.4.1 MSCs migratory capacity 

For MSCs to be effective within a clinical setting, MSCs must migrate to sites of 

tissue injury. MSCs have been shown to migrate to sites of injury. As examples, 

after cerebral ischemia MSCs have been shown to migrate into sites of brain 

injury (Mahmood et al., 2003, Chen et al., 2001) and in a model of allograft 

rejection, MSCs were able to migrate into the infarcted myocardium (Barbash et 

al., 2003). However, an engraftment study using three different administration 

methods in cardiac disease proved that only 1 to 5% of delivered cells engraft 

within the target site regardless of the delivery route (Freyman et al., 2006). 

Intravenous (IV) infusion of MSCs leads to engraftment of MSCs mostly in the 

lungs, which is likely generated by the small capillary size, the large size of the 
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cells and their strong adhesive properties. However, MSCs can also be found in 

the spleen, liver, bone marrow, thymus, kidney and skin seconds or minutes 

after IV injection, but, it is still unknown if MSCs migrate specifically to these 

organs or they just get trapped (Devine et al., 2003, Fischer et al., 2009, 

Freyman et al., 2006, Schrepfer et al., 2007).  

The mechanisms used by MSCs to migrate from periphery into tissue injury 

remain unknown, but it is likely that they comprise a combination of adhesion 

molecules and chemokines and their receptors. To support this hypothesis, there 

is a large body of literature describing the constitutive expression of chemokine 

receptors on MSCs. CCR1, CCR7, CXCR2, CXCR6, CX3CR1 and, more importantly, 

CXCR4 are decisive receptors in the context of homing. However, the expression 

of these markers varies among reports in the literature due to tissue source of 

isolation, cell culture methods and passage number of the cells. CXCR4 has been 

described as a major player in directing MSC homing to sites of injury but some 

groups have described no expression of this receptor on MSCs (Von Luttichau et 

al., 2005), some have found a small expression (Wynn et al., 2004) whilst others 

have shown functional CXCR4 in MSCs (Kortesidis et al., 2005). Murine BM MSCs 

have been described to express CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, 

CCR9, CCR10, CXCR3, CXCR4 and CXCR7 and to have functional CCR3, CCR4, 

CCR5, CCR7, CCR10 and CXCR4 (Alexeev et al., 2013). Ad MSCs have higher 

CXCR4 expression and migration capacity than BM MSCs and more interestingly, 

the chemokine receptor profile is sensitive to time in culture (Heirani-Tabasi et 

al., 2017). In addition, expression of chemokine receptors and ligands can be 

upregulated by cytokine-mediated stimulation and hypoxia (Croitoru-Lamoury et 

al., 2007, Jin et al., 2018). All this together suggests that MSCs isolated from 

different sources exhibit differential chemokine receptor expression and 

therefore, differential homing potential to sites of inflammation, which could be 

of high relevance to enhance migration when using MSCs as cellular 

therapeutics.  

1.4.4.2 MSCs in Graft Versus Host Disease and Solid Organ Transplantation  

Some haematological malignancies and blood cells disorders, such as sickle-cell 

anaemia, can be treated with allogeneic haematopoietic stem cell transplant 

(HSCT). These allografts contain mature T cells that can target and eradicate 
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malignant cells in the recipient; however, these cells can also target the 

recipient as nonself leading to GVHD (Korngold and Sprent, 1978).  

To better understand GVHD, mouse models were created using radiation or 

chemotherapy to deplete haematopoietic cells and reconstituting the immune 

system with allogeneic bone marrow cells. Due to the immunomodulatory and 

anti-inflammatory properties of MSCs, it was hypothesised that MSCs could 

improve the engraftment of HSCs and increase the longevity of the graft by 

diminishing GVHD. Infusion of BM MSCs in an MHC mismatched mouse model of 

HSCT showed that BM MSCs decreased the severity of GVHD while promoting 

graft survival. These results were coupled with reduced infiltration of T cells and 

inhibition of the co-stimulatory molecules CD80 and CD86 on host DCs (Wen et 

al., 2015).  

In humans, GVHD is treated with high-dose corticosteroids but 40 to 60 % of 

patients develop steroid resistance, which has a very poor prognosis. For these 

patients, a promising alternative to immunosuppressants is MSC infusion. 

Between 2001 and 2007, 55 patients who had developed steroid resistance were 

infused with 1 to 5 doses of MSCs obtained from matched sibling donors, 

haploidentical donors and third-party HLA-mismatched donors. 70% of the 

patients showed clinical improvement and 54% of the patients had complete 

responses to the treatment regardless of donor major histocompatibility 

matching (Le Blanc et al., 2008). The first industry-sponsored phase III trial of 

MSCs for treatment of steroid-refractory GVHD was completed in 2009 and was 

deemed a failure as complete remission at day 28 after infusion of MSCs was not 

increased compared to placebo. This study included both children and adults 

with any grade of steroid-resistant GVHD. However, children were described to 

respond better to allogeneic MSC treatment and gut and liver GVHD were 

observed to be more responsive than skin GVHD. Taking this into account, a new 

study to treat paediatric GVHD was performed and in 2018 it was shown to be 

successful as MSC infusion significantly improved day 28 overall response in 

steroid-refractory GVHD paediatric subjects (Galipeau and Sensébé, 2018). For 

this reason, MSCs are being studied as a promising strategy to regulate anti-

donor immune responses in solid organ transplantation (SOT) to achieve long-

term stable graft function without the need for immunosuppression. Phase 1 
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clinical trials have been carried out in kidney, liver and lung transplantation 

infusing allogeneic BM MSCs or UC MSCs and in all the cases MSC-treated patients 

showed good graft function at one year (Soeder et al., 2015, Sun et al., 2018, 

Keller et al., 2018). More importantly, time of MSC infusion has been shown to 

be critical; MSC infusion prior to transplantation leads to migration of MSCs to 

lymphoid organs where they promote the expansion of Tregs. In contrast, MSC 

infusion after kidney transplantation resulted in premature graft dysfunction 

coupled with neutrophils and complement deposition (Casiraghi et al., 2012). 

This is likely explained by the lack of MSC licensing; infusion of MSCs post-

transplantation does not enable interaction of the MSCs with the inflammatory 

environment for long enough to exert their anti-inflammatory and 

immunomodulatory properties (Krampera, 2011). 

1.4.4.3 MSCs in Diabetes Type 1 

Type 1 Diabetes mellitus is a chronic autoimmune disorder resulting in the 

destruction of the insulin producing beta cells in the islets of Langerhans as a 

result of targeting islet cell autoantigens. Autoreactive T cells are considered 

the main effectors of beta cell destruction but macrophages, DCs and B cells are 

also involved (Yoon and Jun, 2005). The most comprehensive analysis to date 

concludes that there are 350,000 people in the UK living with T1DM, costing the 

NHS £1 billion per year (Stedman et al., 2020).  

Daily insulin injections with the aim of restoring blood glucose levels is the most 

common method of treatment for individuals with T1DM. T1DM can be fatal if 

untreated and in some cases the disease cannot be well controlled with insulin, 

leading to hypoglycaemic unawareness. For these patients, the Scottish National 

Blood Transfusion Service (SNBTS) offers an islet transplant service to re-

establish glycaemic awareness and have a better control of the disease. This 

procedure involves the isolation of islets of Langerhans from the pancreas of a 

donor to infuse them into the diabetic patient. The pancreas of diabetic patients 

is the site of autoimmune destruction and surgical intervention in this organ is 

highly complicated. Due to the high irrigation and the unique blood supply that 

promotes a tolerogenic state, the liver is the recipient of these cells. The 

success of the procedure avoids the patients having to use insulin. However, the 

success rate, defined as absence of insulin requirement 3 years after the 
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intervention, is just 44% due to long term deterioration and rejection (Bruni et 

al., 2014). For this reason, there is undergoing research on protecting the islets 

from recipient immune attack; current proposals include physically 

encapsulating the islets within a semi-permeable membrane consisting of 

polymer (Sakata et al., 2012) and MSCs co-transplantation to immunoregulate 

and dampen inflammation improving graft survival (Figliuzzi et al., 2014).  

Two main models have been used to study the effect of MSC administration in 

T1DM, the non-obese diabetic (NOD) mouse model and the administration of 

streptozotocin (STZ). NOD mice have a defective cytotoxic T lymphocyte-

associated protein 4 (CTLA4) gene, which is essential in the suppression of T 

cells. In this way, spontaneous autoimmune diseases are generated, including 

T1DM-like β cell destruction (Kikutani and Makino, 1992). The administration of 

STZ damages β cells resulting in the accumulation of immune cells and immune 

mediated destruction of β cells. Both of these models have shown that MSC 

administration can protect against T1DM when MSCs are administered before 

onset and that they can reverse the disease when MSCs are administered after 

onset as they can revert hyperglycaemic animals to normal blood glucose levels 

(Madec et al., 2009). Co-transplantation of insulin producing islets of Langerhans 

and MSCs has shown that MSCs can significantly delay graft rejection (Forbes et 

al., 2020), improve insulin secretion (Kerby et al., 2013) and delay allograft 

rejection (Ben Nasr et al., 2015). These observations have been paired with a 

decrease of CD4+ T cells, an increase of Th2 response mediated by a switch in 

cytokine secretion, an induction of T regulatory cells and an increase in 

vascularization (Madec et al., 2009, Forbes et al., 2020).  

 

1.5 Thesis aims 

This introduction has highlighted the anti-inflammatory and immunomodulatory 

potential of MSCs for use as cellular therapeutics in several diseases, including 

autoimmune diseases, cancer and transplantation. As SNBTS provides an islet 

transplant service, the particular interest of this thesis is focused on the co-

infusion of MSCs with islets of Langerhans to increase engraftment and survival 

of the islets. Nonetheless, our interest is not limited to this and the knowledge 
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generated in this thesis extends understanding of the immunomodulatory 

potential of MSCs within any clinical setting. It is important to bear in mind that 

most of the literature regarding phenotype, function and immunomodulatory 

properties is focused on human BM MSCs, while there is a lack of understanding 

of MSCs isolated from other tissues or other species. Murine MSCs have been 

described to be more difficult to expand in culture than human or rat MSCs, 

which results in a smaller body of literature on murine MSCs (Caroti et al., 

2017). However, mouse models are essential for performing mechanistic studies 

and preclinical testing of new therapeutics, which makes it essential to 

understand the phenotype, function and immunomodulatory properties of 

murine MSCs. 

A PhD study comparing human MSCs from tissues considered medical waste- 

islets and adipose tissue- to BM MSCs has already been performed (Thirlwell, 

2018), but this study could not take into account the xeno-challenge of using 

human MSC in the mouse models. Thus, the use of autologous murine MSCs to 

study and compare the immune reactivity and immunomodulatory potential of 

MSCs from different sources is essential. 

Chemokines are master regulators of immune cell trafficking under resting and 

inflammatory conditions; for this reason, this study set out to understand the 

chemokine receptor expression of murine MSC types. This would let us 

understand whether tissue of origin could affect the migration to specific target 

tissues if infused systemically. For local infusion, low expression of chemokine 

receptors could be preferred to avoid MSCs from migrating away from the graft 

site.  

Moreover, it was essential to understand how tissue of origin could influence the 

interaction of MSCs with their surrounding environment after infusion into a 

patient. Understanding the recruitment potential and the interaction between 

immune cells and MSCs isolated from different sources would provide insight of 

MSCs anti-inflammatory, immunomodulatory and pro-regenerative capacity in 

vivo. To study this, we analysed the chemokine and immunomodulatory protein 

secretion profiles of MSCs isolated from various sources and their interaction 

with immune cells in a mouse air pouch model. Altogether, the layout of this 

study and overall aims of each chapter are outlined below:  
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1. The aim of Chapter 3 was to fully phenotype BM, Is and Ad derived MSCs 

at rest and under inflammatory stimulation (MSC licensing).  

2. The aim of Chapter 4 was to assess and compare the mRNA expression of 

the most relevant chemokines and their receptors by MSCs at rest and 

under inflammatory stimulation. Moreover, we aimed to determine if the 

expression patterns of chemokines would persist at protein level at rest 

and under inflammatory stimulation.  

3. The aim of Chapter 5 was to determine the immune cell attraction profile 

of MSCs at rest and under inflammatory stimulation in vivo, assessing in 

this manner the functionality of the secreted chemokines.  

4. The aim of Chapter 6 was to assess and compare the mRNA expression of 

toll-like receptors, the complement system family and other 

immunoregulatory and anti-inflammatory molecules by MSCs at rest and 

under inflammatory stimulation. Moreover, we aimed to determine if the 

expression patterns would persist at protein level at rest and under 

inflammatory stimulation to better understand the immunomodulatory 

potential of MSCs isolated from different sources.  

In this manner, by looking at the chemokine and chemokine receptor expression, 

the immune cell attraction profile and the expression of immunoregulatory, anti-

inflammatory and angiogenic molecules by MSCs isolated from different sources 

we aimed to understand MSC properties and functions in vitro and in vivo. This 

knowledge would enable the prediction of roles for these cells and preferential 

MSC tissue of isolation to be administered as cellular therapeutics within specific 

clinical settings. 
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2 Materials and Methods 

2.1 Cell culture methods 

2.1.1 Growing and harvesting cells 

Manipulation of cells was done in all cases in a sterile environment using a 

laminar flow hood with HEPA filtration. Mesenchymal stromal cells were grown 

in Dulbecco's Modified Eagle Medium (DMEM) with high glucose and sodium 

pyruvate (Invitrogen) supplemented with 20% (v/v) heat-inactivated foetal calf 

serum (FCS) (Invitrogen) and 2 mM glutamine (Sigma), which is referred as 

complete medium. 3T3 Mouse Embryonic Fibroblasts (MEF) cell line (ATCC CRL-

2752) was grown in DMEM with high glucose and sodium pyruvate supplemented 

with 10% (v/v) FCS. Cells were maintained and grown in a humidified incubator 

at 37 ⁰C and 5% CO2. 

Cultures were examined daily for growth using a Zeiss optical microscope and 

when cultures achieved a cell density of greater than 80% confluence, cells were 

sub-cultured. Briefly, the medium was removed, and the cells were washed 

twice with Dulbecco's phosphate-buffered saline (DPBS) (Sigma). To detach the 

cells, cells were incubated with TrypLE™ Express Enzyme (Thermo). TrypLE was 

then inactivated in the flask with medium. Cells were then placed into a 15 ml 

falcon tube and spun down at 400 x g for 5 minutes, the supernatant was then 

removed, and cells were resuspended into an appropriate volume of culture 

medium (0.26 ml/ cm2). Cells were then distributed into new flasks at 3500 

cells/ cm2 for sub-culturing or samples were taken. A passage here describes 

detaching the cells from the flask and re-seeding them into a new one. 

2.1.1.1 Cell counting 

Cells were counted using a Neubauer Haemocytometer (Hawksley). Dead cells 

were excluded using Trypan blue (Sigma). Trypan blue was diluted 1:10 in 

phosphate-buffered saline (PBS). Cell were incubated for 5 minutes at room 

temperature with a 1:1 dilution of Trypan blue and loaded into the 

haemocytometer chamber. Live cells in the 4 large outer squares were counted, 

divided by 4 to obtain the average cell number, multiplied by 2 to account for 
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the trypan blue dilution and then by 104 to get the number of cells per 1 ml of 

the cell suspension.  

2.1.1.2 Freezing cells 

Cells were washed in PBS, detached with TrypLE as described above, spun down 

and resuspended at a density of approximately 1x106 cells/ mL in Cellbanker cell 

freezing media (Amsbio). 1 mL aliquots were transferred to 2 mL cryo-vial 

(Thermo-scientific) and stored in a freezing vessel (Nalgene, Hereford), 

containing isopropanol. This was then placed at -80 ⁰C (cooling 1 ⁰C per minute) 

and transferred to liquid nitrogen tanks within two days.  

2.1.1.3 Thawing cells 

Cells were recovered from liquid nitrogen and rapidly thawed in a 37 ⁰C water 

bath. The cells were then transferred from a cryo-vial to a 15 mL falcon tube. 

Warmed culture medium was slowly added drop by drop until cells were 

suspended in 7 mL of culture medium. The cells were then spun down at 300 x g 

for 5 minutes and supernatant was discarded. The remaining pellet was then 

resuspended in the appropriate amount of culture medium and transferred to 

tissue culture flask(s).  

2.1.2 MSCs isolation 

To isolate MSCs, female mice aged 7 to 8 weeks were used in all the cases. 

Details on how MSCs were isolated are described below. All tissues were 

processed within 30 minutes following animal death to ensure high cell viability.  

2.1.2.1 Isolation of Bone Marrow derived mesenchymal stromal cells (BM 
MSCs) 

Mice were killed with CO2 or cervical dislocation and the cadaver was laid with 

the abdominal side facing up, the limbs were stretched and fixed with pins and 

then the skin was sterilised using 70% ethanol. The skin from the hind limbs was 

removed by pulling toward the foot, which is cut at the anklebone. This 

eliminates further contact of the hind limb with the animal’s fur, which is a 

source of contaminating bacteria. Muscles, ligaments and tendons were 

dissociated from tibias and femurs using micro dissecting scissors and surgical 
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scalpel. Then, hind limbs were dissected from the trunk of the body by cutting 

along the spinal cord with care not to damage the femur. Hind limbs were stored 

on ice in Hanks' Balanced Salt Solution (HBSS) (Sigma) while awaiting further 

dissection or digestion. 

Further dissection of the hind limbs was performed under the hood. Muscle and 

connective tissue from both the tibia and the femur were further removed and 

each hind limb was dissected by cutting through the knee joint. The ends of the 

tibia and femur were cut just below the end of the marrow cavity. A 27 G needle 

attached to a 10 mL syringe with complete medium was inserted into the spongy 

bone, exposed by removal of the growth plate, and was used to flush the bone 

marrow out, which was collected in a 100 mm sterile Petri dishes (Fisher). 

Plates were incubated at 37 ⁰C with 5% CO2 in a humidified chamber leaving the 

solid mass in the medium, without disturbing them. On Day 5 cells were washed 

with DPBS twice and trypsinised for 2 minutes at 37 ⁰C, then the trypsin was 

neutralised using complete medium. The trypsinization lasted less than 2 

minutes as longer digestion is harmful for MSCs and could lift non MSCs from the 

dish. Cells were then placed into a 15 mL falcon tube and spun down at 400 x g 

for 5 minutes, the supernatant was then removed, and cells were resuspended in 

an appropriate volume of culture medium (0.26mL/cm2). Cells were then 

distributed into new flasks at 3500 cells/cm2. From then on, cells were checked 

daily for growth and medium was changed every 2-3 days to remove dead cells. 

When cells achieve a confluency of 80%, MSCs were passaged as described in 

Section 2.1.1.  

2.1.2.2 Isolation of Pancreatic Islet derived mesenchymal stromal cells (Is 
MSCs) 

To ensure the viability of the islets mice were killed by cervical dislocation and 

immediately laid with the abdominal side facing up. A midline incision was made 

around the abdomen and the skin was retracted using straight tweezers. The 

thoracic cavity was opened and heart and ribs were removed to provide a better 

access to the liver. The liver was then pushed up to the thoracic cavity and the 

intestines and stomach were pushed to the left. The rectum was cut and the 

intestines were taken out of the abdomen by pulling out from the rectum to 
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increase the visibility of the pancreas. The mesenteric fat attached to the 

intestines was removed to avoid confusion with the pancreas. Once the pancreas 

was visible, the spleen was identified and lifted to facilitate the access to the 

tail of the pancreas, which has been described to have a higher and more 

compact number of islets compared to the head of the pancreas (Elayat et al., 

1995). The pancreas was then micro-perfused with 4 mL of 0.6 mg/mL cold 

collagenase P in HBSS using a 30 G needle with a 5 mL syringe.  

Pancreas was then removed from the abdomen and put into 1 mL of 0.6 mg/mL 

collagenase P in HBSS on ice. Next, 10 mL of warm HBSS was added to the tissue 

and the collagenase was activated by placing the tissue at 37 ⁰C for 19 minutes. 

After digestion, collagenase was inactivated by adding 10 mL of cold HBSS. 

Tissues were then agitated twice per second for a minute. 40 mL of room 

temperature HBSS was then added to the tissue, which was followed by 

centrifugation at 1200 x g for 2 minutes. The supernatant was discarded and the 

pellet was resuspended in 10 mL of HBSS. The sample was then filtered through 

a 400 µm cell strainer. An extra 10 mL of HBSS was added to the tube containing 

the islets to ensure all the islets went through the filter. Samples were 

centrifuged at 1200 x g for another 2 minutes; the supernatant was discarded 

and the pellet was dried. The pellet was then resuspended into Histopaque 1077 

(Sigma) and HBSS was carefully added without resuspending it with the 

Histopaque 1077. Centrifugation of the sample at 1200 x g for 20 minutes with 

the brake off leads to the generation of a density gradient, also known as Ficoll 

gradient centrifugation, that allows the isolation of the islets from the remaining 

acinar tissue (Orloff et al., 1987). Islets were carefully removed with a Pasteur 

and where counted under the microscope.  

Islets were centrifuged and plated out on 100-mm sterile Petri dishes (Fisher) at 

a concentration of 10 islets/ cm2 and were cultured at 37 ⁰C in 5% CO2 in MSC 

culture medium. At day 7, MSC cells had already started the migration from the 

islets to the plate and therefore, media was carefully replaced and then changed 

every 3-4 days. Once the cells had reached 80% confluency the adherent MSCs 

were passaged as described in Section 2.1.1 with an exception; to remove islets 

and cell debris cells were passed through a 100 µM cell strainer. The cells were 

counted using a haemocytometer and classified as passage 2 (P2).  
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2.1.2.3 Isolation of Adipose Tissue derived mesenchymal stromal cells (Ad 

MSCs) 

Animals were sacrificed as above. A midline incision was made around the 

abdomen and the skin was retracted using straight tweezers. The muscular wall 

was then opened to expose the liver and intestines. Perigonadal adipose tissue 

was harvested. Adipose tissue was digested using 0.2mg/mL Collagenase P 

(Roche) and 0.1mg/mL DNAse (Roche) in HBSS for 40 minutes at 37 ⁰C. After 

incubation, collagenase was inactivated using medium and the soft tissues were 

plated into 100 mm sterile Petri dishes (Fisher).  

Plates were incubated at 37 ⁰C with 5% CO2 in a humidified chamber leaving the 

solid mass in the medium, without disturbing it. On Day 5 cells were washed 

with DPBS twice and trypsinised for 2 minutes at 37 ⁰C, then the trypsin was 

neutralised using complete medium. Cells were then placed into a 15 mL falcon 

tube and spun down at 400 x g for 5 minutes, the supernatant was then removed 

and cells were resuspended in an appropriate volume of culture medium 

(0.26mL/cm2). Cells were then distributed into new flasks at 3500 cells/cm2. 

From then on, cells were checked daily for growth and medium was changed 

every 2-3 days to remove dead cells. When cells achieve a confluency of 80%, 

MSCs were passaged as described in Section 2.1.1.  

2.1.3 MSC licensing with stimulatory molecules  

When cultures achieved a cell density >80% confluence, the medium was 

discarded and the cells were washed twice with DPBS. MSC culture medium was 

replaced with medium supplemented with stimulatory molecules as detailed in 

Table 2-1.   
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Table 2-1. List of inflammatory reagents used for MSC licensing. 

Name given 
in figures 

Reagent Company Final 
concentration 

Cyt Interferon-γ  Peprotech 40 ng/mL  

Tumour Necrosis Factor-α  Peprotech 40 ng/mL  

Interlukin-1β  Peprotech 40 ng/mL  

LPS Lipopolysaccharides from 
Escherichia coli O127:B8 

Sigma 
Aldrich 

100 ng/mL  

LTA Lipoteichoic acid from 
Staphylococcus aureus 

Sigma 
Aldrich 

100 ng/mL  

Poly I:C Polyinosinic–polycytidylic 
acid sodium salt  

Sigma 
Aldrich 

4 mg/mL 

 

Three different licensing conditions were tested.  

In the first one, cells were stimulated for 48 hours, after which they were 

washed twice with PBS and fresh culture medium was added; cells were 

harvested 24 hours later.  

In the second condition, cells were washed twice with PBS, the culture medium 

was replaced with fresh medium and the cells were left growing for 48 hours. 

Cells were then washed twice with PBS, the culture medium was replaced with 

supplemented medium and the cells were harvested 24 hours later. 

 In the last condition, cells were stimulated for 48 hours, after which cells were 

washed twice with PBS and were stimulated again for another 24 hours. Figure 

2-1 illustrates the time points at which supplemented medium was added. 

Culture medium, collected at the same time as the cells were harvested, was 

kept for experimental procedures.  
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Figure 2-1. Diagrammatic illustration of the time course of the MSC licensing. 

 

2.1.4 Differentiation assays 

MSCs were differentiated into adipocytes, chondrocytes and osteoclasts using 

the Mouse Mesenchymal Stem Cell Functional Identification Kit (R&D Systems) 

following the manufacturer’s instructions. All reagents and materials are listed 

in the manufacturer’s handbook.  

2.1.4.1 Adipogenesis and osteogenesis 

MSCs from different sources were plated at 2.1x104 (adipogenesis) or 4.2x103 

(osteogenesis) confluency in 4-well Nunc™ Lab-Tek™ Chamber Slides (Thermo 

Fisher Scientific). Cells were cultured in 0.5mL/well 90% α-MEM, 10% (v/v) FCS 

and 1% (v/v) 100X Penicillin-Streptomycin-Glutamine. For adipogenesis, when 

MSCs reached 100% confluency, culture medium was replaced by 0.5mL/well of 

adipogenic differentiation medium (10μl/mL of Adipogenic Supplement added to 

α-MEM culture medium). For osteogenic differentiation, once cells were 50-70% 

confluent, culture medium was replaced with 50 μl/mL of osteogenic 

supplement added to α-MEM culture medium. From then on, in both cases, 

freshly prepared supplemented culture medium was replaced every 3-4 days for 

14-21 days. Cells were then fixed and stained as stated in Section 2.3.2.1.  
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2.1.4.2 Chondrogenesis 

For the differentiation of MSCs into chondrocytes, 2.5x105 MSCs were transferred 

into a 15mL conical tube in chondrogenic culture medium (99% DMEM/ F12, 1% 

Insulin-Transferrin-Selenium supplement and 1% Penicillin-Streptomycin-

Glutamine) and spun down at 200 x g for 5 mins at room temperature. 

Supernatant was poured off and MSCs were resuspended in chondrogenic culture 

medium and spun again at 200 x g for 5 mins. MSCs were left in the chondrogenic 

culture medium as a pellet and placed into the incubator with the 15 mL conical 

tube lids slightly loosened for gas exchange. Chondrogenic culture medium was 

replaced every 2-3 days with caution so as not to disturb the pellet and cultured 

for 21 days. After 21 days, the spherical mass of cells was removed and prepared 

for cryosectioning and further staining as explained in Section 2.3.2.  

2.1.5 Depletion of CD45 positive population 

Flow cytometry-based analysis of Islet derived MSCs showed a CD45 positive 

population. To further examine this population, CD45 MicroBeads (Miltenyi 

Biotec) were used to isolate the CD45 positive cells. Cell separation buffer was 

prepared by diluting MACS BSA Stock Solution (Miltenyi Biotec) 1:20 in autoMACS 

Rinsing Solution (Miltenyi Biotec). 

Cells were harvested as explained in Section 2.1.1. Cells were then counted and 

centrifuged at 300 x g for 10 minutes and the supernatant was pipetted off. The 

cell pellet was then resuspended in 90 µL of degassed buffer per 107 cells. Next, 

10 µL of CD45 MicroBeads per 107 cells were added and the mix was incubated 

for 15 minutes on ice. Cells were then washed by adding 2 mL of buffer per 107 

cells and centrifuged at 300 x g for 10 minutes. The supernatant was removed 

and cells were resuspended in 500 µL of buffer. Cells were then ready for 

magnetic separation. The CD45 depletion was done using LS Columns (Miltenyi 

Biotec) and the MACS MultiStand (Miltenyi Biotec) separator. The LS columns 

were placed in the magnetic field of the separator and columns were prepared 

by rinsing with 3 mL of the buffer. The cell suspension was then applied onto the 

column and the unlabelled cells, which passed through the column, were 

collected. The column was washed three times with 3 mL of buffer. The total 

effluent was collected and labelled as CD45- cells. To harvest the magnetically 
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labelled cells, columns were removed from the separator and placed on a 

suitable collection tube. 5 mL of buffer was pipetted onto the column and the 

cells were flushed out by firmly applying the plunge supplied with the column. 

This fraction was labelled as CD45+ cells. Cells were then distributed into new 

flasks at 3500 cells/ square2 for sub-culturing or samples were taken. 

 

2.2 Molecular biology  

2.2.1 Ribonucleic acid (RNA) extraction from cells 

Pipettes, bench surfaces, tubes and labware were cleaned before use with 

RNase AWAY® and DNA AWAY™ Surface Decontaminants (Molecular BioProducts) 

to reduce the degradation of RNA from environmental RNases. A pellet of a 

maximum of 5 x 106 cells was disrupted and homogenised using the QIAshredder 

system (Qiagen) and total RNA was then extracted with the RNeasy Mini Kit 

(Qiagen) according to the manufacturer’s instructions, which included the 

optional DNase digestion step using the RNase Free DNase Set (Quiagen). RNA 

was eluted by the addition of 50 µL of RNase free water. The concentration and 

quality of the RNA samples was tested by ultraviolet absorption at 260/280 nm in 

a ThermoFisher Nanodrop 1000 spectrophotometer. The quality of the RNA was 

tested in a 1% agarose gel. RNA was immediately used or stored at -80 ⁰C in an 

eppendorf tube until needed; RNA was quantified after each defrost.  

2.2.2 RNA reverse transcription  

RNA was reverse-transcribed by QuantiTect Reverse Transcription Kit (Qiagen), 

which includes a genomic DNA elimination step. Genomic DNA elimination of 1µg 

of RNA was performed using the reaction mixture explained on Table 2-2 and 

incubating the mixture for 2 minutes at 42 ⁰C and then placing it immediately on 

ice. Reverse transcription was accomplished using the reaction mixture detailed 

in Table 2-3 and applying an initial step at 42 ⁰C for 15 minutes followed by a 

denaturation step at 95 ⁰C for 3 minutes. cDNA was stored at -20 ⁰C until it was 

required for gene expression studies. Reverse transcription controls were used to 

ensure the efficacy of this project; these controls were made by replacing the 

enzyme with RNase free water.  
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Table 2-2. Reaction mixture for genomic DNA elimination using the QuantiTect Reverse 
Transcription Kit (Qiagen).  

Reagent  Volume (µl) Final concentration 

gDNA Wipeout Buffer, 7x 2 1x 

Template RNA, 1 µg Variable 1x 

RNase free water  Up to 14 NA 

 

Table 2-3. Reaction mixture for RNA reverse transcription using the QuantiTect Reverse 
Transcription Kit (Qiagen). 

Reagent  Volume (µl) Final concentration 

Quantiscript Reverse Transcriptase 1 1x 

Quantiscipt RT Buffer, 5x 4 1x 

RT Primer Mix 1 1x 

Entire genomic DNA elimination 
reaction 

14 NA 

 

2.2.3 Primer design 

Pairs of primers were designed to relatively quantify the amount of specific 

cDNA in a sample by SYBR Green. The cDNA sequences used to design the 

primers were obtained from the NCBI Nucleotide database, which is available 

online at: https://www.ncbi.nlm.nih.gov/nucleotide/. Primers were designed 

using the Primer 3 Plus software, which is available online at: 

http://primer3plus.com/cgi-bin/dev/primer3plus.cgi. To ensure an accurate 

amplification and a high efficiency, primers were designed using strict criteria. 

Primers had to be between 18 and 24 base pairs (bp) in length, with 20 bp as the 

optimal length. The GC content had to be between 40% and 60%, with 50% the 

ideal percentage, avoiding stretches of more than 4 G or C bases and avoiding 

more than two G or C bases in the last 5 bases situated at the 3’ end of each 

primer. The melting temperature (Tm) should be as close to 60 ⁰C as possible and 

the amplicon size should be less than 150 bp. However, the most important was 

that the 3’ self-complementary should not be higher than 1 while the self-

complementary should not be higher than 2. In the cases in which all these 

criteria could not be matched, all the conditions but the 3’ self-complementary 

were relaxed.  

To ensure the specificity of the primers for the gene of interest the BLAST 

analysis online tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used. For 

SYBR Green assay custom made primers were obtained from Integrated DNA 

https://www.ncbi.nlm.nih.gov/nucleotide/
http://primer3plus.com/cgi-bin/dev/primer3plus.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Technologies (Table 2-5). To further confirm the specificity of the primers, the 

primers were first used to run a PCR reaction with any cDNA containing the gene 

of interest. The reaction mixture was set up as outlined in Table 2-4 and the 

cDNA was amplified as follows: an initial step at 98 ⁰C for 3 minutes, 35 cycles of 

denaturation at 98 ⁰C for 10 seconds, followed by the annealing at the Tm of 

each pair of primers for 30 seconds and elongation at 72 ⁰C for 20 seconds. The 

35 cycles were followed by a final elongation step at 72 ⁰C for 10 minutes. The 

PCR product was then run at 75 V in a 1% agarose gel and specificity was 

confirmed if a single amplification product with the expected molecular weight 

was observed.  

Table 2-4. Reaction set up for PCR indicating the reagents and their concentrations.  

Reagent  Volume (µl) Final concentration 

Phusion HF Buffer x5 5 1x 

dNTPs (10mM) 0.5 200 µM each dNTP 

Forward primer (10µM) 1.25 0.5 µM 

Reverse primer (10µM) 1.25 0.5 µM 

DMSO 0.75 3% 

Phusion DNA Polymerase 0.25 0.5 U 

cDNA (1:5)  1 NA 

ddH2O Up to 25 NA 

 

Table 2-5. List of forward and reverse primers used during this study.  

Gene Forward primer Reverse primer 

CD45 TGGTGTGCAGCTATGAGCAA GTCCATTCTGGGCGGGATAG 

CD45 GACAACCTTCGTGCCCAAAC TGACGAGTTTTACACCGCGA 

B2M GGTGACCCTGGTCTTTCTGG TGTTCGGCTTCCCATTCTCC 

CCL2 AGCCAACTCTCACTGAAGCC GCGTTAACTGCATCTGGCTG 

CCL3 CAGCCAGGTGTCATTTTCCT CAGGCATTCAGTTCCAGGTC 

CCL4 TGACCAAAAGAGGCAGACAGAT GCTGTGCCACATCTCTTGGT 

CCL5 CTGCTGCTTTGCCTACCTCT ACACACTTGGCGGTTCCTT 

CCL7 TGAAAACCCCAACTCCAAAG TTAGGCGTGACCATTTCACA 

CCL9 CTCACAACCACGGACCTACA CACTGGGGAAGACCAAAGAA 

CCL11 GCACCCTGAAAGCCATAGTCT TGGGGTCAGCACAGATCTCT 

CCL19 GTGCCTGCTGTTGTGTTCAC CAAGACACAGGGCTCCTTCTG 

CCL20 CGACTGTTGCCTCTCGTACA CTTCATCGGCCATCTGTCTT 

CXCL1 CCGAAGTCATAGCCACACTCA AGGTGCCATCAGAGCAGTCT 

CXCL2 CCTCAACGGAAGAACCAAAG AGGCACATCAGGTACGATCC 

CXCL5 GCCCTACGGTGGAAGTCATA GTGCATTCCGCTTAGCTTTC 

CXCL10 GCTCAAGTGGCTGGGATG GAGGACAAGGAGGGTGTGG 

CXCL12 CCTCAACCCACCATGCTCAT GAGACAGTCTTGCGGACACA 
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Gene Forward primer Reverse primer 

CXCL13 CATACCCAACCCACATCCTT GCCTGTTCTCAAATAGCCTTTC 

CXCL16 TGCTGACCCTTTGCCTCTAC GGCTGGCTTGGACTAAATAACA 

CCR1 GCCCTCATTTCCCCTACAA CGGCTTTGACCTTCTTCTCA 

CCR2 TGTGGGACAGAGGAAGTGG GGAGGCAGAAAATAGCAGCA 

CCR3 ACCTTCGGCTCTTTTTCCAC TGTTCTTTCCATTTTCTCACCA 

CCR4 GCACCAAGGAAGGTATCAAGG TGAACAGGACCAGAACCACA 

CCR5 GGATTTTCAAGGGTCAGTTCC GAAGACCATCATGTTACCCACA 

CCR6 TCTTCACCCCTTTGCTGTTT GCTCTGTGCCTCTTGGAGTT 

CCR7 ATTGCTGCTGAGGGAAGAG ACTTTTGGCTGTCGTTTTGG 

CCR8 CCCTTTGCCATCCTCCTGTT ATGGCTCTGGTCCTGTTGTG 

CCR9 GAGTCTTGCTCCCAATCCAC TAGGTTCCCACCATCCAAAC 

CCR10 CCTGCTCTGCTCCTACTGAGA CCTGGGATTGTTTCTTTAGCC 

CXCR1 TGTCCCTTCTGAGCTTGCTG CCAAGAAGGGCAGGGTCAAT 

CXCR2 TGTCTGCTCCCTTCCATCTT CCATTTCCTCTCCTCCACCT 

CXCR3 AGTGCTTGTCCTCCTTGTAGTTG GGTGTTGTCCTTGTTGCTGA 

CXCR4 CTACAGCAGCGTTCT CAT CCT CTTTTCAGCCAGCAGTTTCCT 

CXCR5 ACTGTGATCGCTCTG CAC AA GTGCAGGTGATGTGGATGGA 

CXCR6 GACTCTGGGGTTCTT CCT GC CAGCAGGAACACAGCCACTA 

CX3CL1 CAACTTCCGAGGCACAGGAT AGATGTCAGCCGCCTCAAAA 

ACKR1 CCCTATGCAACCTGGGCTAC TGGGGTTCAGGCAAGCATAG 

ACKR2 TTCTCCCACTGCTGCTTCAC TGCCATCTCAACATCACAGA 

ACKR3  TGTCCCTGCCTGATACCTACT GGACAGCAAAGCCCAAGATG 

ACKR4 CCGAGACCCAACCATCAACA TCCACACTTTGCCCACTTGT 

CX3CL1 CAACTTCCGAGGCACAGGAT AGATGTCAGCCGCCTCAAAA 

CX3CR1 ACCCCTTTATCTACGCCTTTG CTGTCCTGCCTGCTCCTCT 

XCR1 GGGATCAAGTTCCGCAGACA ATGTGCCCATCCTCTCCTCT 

IL1R1 CCGAACCGTGAACAACACAA TCAATCTCCAGCGACAGCAG 

IL1R2 GATGTCTGGGCATCTGCTTTC CCCTTGGAGCCCAATGCTAT 

TNFRSF1a GCTGTTGCCCCTGGTTATCT ATGGAGTAGACTTCGGGCCT 

TNFRSF1b CAGGACCCTTGGCGTTACAT TTGGCAAGGTGGTTGTCAGT 

IFNGR2 CCAGCAATGACCCAAGACCA TTCGGCTCCAGCAACCTATG 

IFNGR1 ACGGTGATCTGTGAAGAGCC TGCGTCTTTGTGTCGGAGTT 

TLR1 GGCACGTTAGCACTGAGACT GCTGACGGACACATCCAGAA 

TLR2 CGTTGTTCCCTGTGTTGCTG GGATAGGAGTTCGCAGGAGC 

TLR3 GAACAACGCCCAACTGAACC GAGAAAGTGCTCTCGCTGGT 

TLR4 GCATGGCTTACACCACCTCT TTTGTCTCCACAGCCACCAG 

TLR5 TCTCCAGACGCCTCATCTCA GTTCCAAGCGTAGGTGCTCT 

TLR6 ACGAAGCTGACTTTCCTGGG GTGAGCAACTGGGAGCAGAT 

TLR7 ACCCATACTTCTGGCAGTGC CCAAGGCATGTCCTAGGTGG 

TLR8 TGCACATTCCCTGGAGACAC AGAGGAAGCCAGAGGGTAGG 

TLR9 AATGGCTCTCAGTTCCTGCC CCTGCAACTGTGGTAGCTCA 
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Gene Forward primer Reverse primer 

TLR11 CCTTACCTTGACTGGCTGGG GCAAGATGCCAAAAGGTGCA 

TLR12 ATTCCAGGAGCTCCAGCAAC CTTACCCAGGTGAAGCAGGG 

TLR13 CAAGTGCCAGCTCTCCTTCA TGGCTCAGATCTAGGCTGGT 

C1QA AAGGGTCGCATTTACCAGGG GCCGAGGGGAAAATGAGGAA 

C1QB TCTTCCTGCCTCTAGGGACC CCTGCTGCTGTCCTCAGAAA 

C1QC CCAACAGCGTCTTCTCTGGT CAGGAACCAGGGTGGACTTC 

C1R AGCAGCAATGCAGTGGATCT TGGTGTAGTGCAGCTTCCAG 

C1Sa TAGAGCCGTCAGAGAGCTGT TTCCTCGATGCCTCCTGAGA 

C2 ATCACCTTTGCCTCTCAGCC TCCGTCACATCCTGGGATCT 

C3 TGCTGGCCTCTGGAGTAGAT AGGCAGTCTTCTTCGGTGTG 

C3AR1 CCCCAAGACATTGCCTCCAT GACTGTGTTCACGGTCGTCT 

C4 TCGCAGACATCACCCTCCTA GCCCGTCAGTCTCAAAGTGA 

C5 CCTGCTGAAGCCCAAGAGAA GCAGGGTGTTTTCAAGCAGG 

C5AR1 GCCTAGCTGCTCCTTTTCCA TCATGAGGATCCTGGGCTCA 

C6 AGGAGAGCCCAGAGGAGAAG GGCTCGACTGGTCTTGACAA 

C7 CGTGTGAGCAAGGAGTCCTT CAACCTCCATCAACCCCTCC 

C8A AACTGCCGGTGTCAGTGTAG CTGACCAGGAACTCCAGCAG 

C8B GGGGCATCTACGAGTACACG CTCCAGCACAGGCAGTAACA 

C8G ACCTACTGTCCGTAGCAGGT ATAGTGCTGATGGGGGAGGT 

CD46 GGAGCTCTTATCCCCATGCC GACTGAGTGTGGAAGGCACA 

CD59 TGGTAGCCCAGCACAATGAG TGTGAGGCTAACAGCTGTGG 

CFB GTCAGGCCCTGGAGTACCTA TCTTTTGGTCTCGGGTCTGC 

CFD CAATCTGCGCACGTACCATG CCACGTAACCACACCTTCGA 

CFH ACAACGGGTTTTCACCACCT GTGCAACGAAGGTAGTCCCA 

CFHR1 TGGTCACCAACTCCGAAGTG AGCCTTGATTGCAGACCACT 

CFI GCGGGGGTAGTGTGTTACAA TCGCTTTGGTCTCCACAGTC 

CFP GGCCCTGCTCAGTTACATGT AGCTGCCACTCAAGAGTTCC 

CR1L GGATTCCAGAAGGGGTTGGG TTCCAGCTGCCATCAGACTG 

CR2 GCCCCGATCCAGAAGTCAAA TGCCGTTCATGATGAAGCCT 

ITGAX CAAGATGCCACCAAGGTCCT CGAATGATGCTTGCAGCCTC 

ITGB2 GCAGAAGGACGGAAGGAACA CCAGATGACCAGGAGGAGGA 

CD142 TGCTTCTCGACCACAGACAC ATAGGCCCAGGTCACATCCT 

CD274 CAGCAACTTCAGGGGGAGAG CTGTGATCTGAAGGGCAGCA 

COX2  CATCCCCTTCCTGCGAAGTT GGCCCTGGTGTAGTAGGAGA 

GMCSF AGGCTAAGGTCCTGAGGAGG GGGCTTCTTTGATGGCCTCT 

HGF TGAGTTATGTGCTGGGGCTG CACATCCACGACCAGGAACA 

IDO 1 TGGTGGAAATCGCAGCTTCT TTGACGCTCTACTGCACTGG 

IDO 2 ACCTCCCTCGTCCCTTAGTC AGAGAGTAAGCAGGGGAGGG 

IFN CACAGCCCTCTCCATCAACT GCATCTTCTCCGTCATCTCC 

IL-10 CAGAGAAGCATGGCCCAGAA GCTCCACTGCCTTGCTCTTA 

IL-1B CGCTCAGGGTCACAAGAAAC GAGGCAAGGAGGAAAACACA 
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Gene Forward primer Reverse primer 

IL-6 TTCCATCCAGTTGCCTTCTT ATTTCCACGATTTCCCAGAG 

iNOS GAGCCACAGTCCTCTTTGCT CAACCTTGGTGTTGAAGG G 

MMP9 AAACCCTGTGTGTTCCCGTT CCTTTAGTGGTGCAGGCAGA 

TGF- 1 CTTTGTACAACAGCACCCGC CATAGATGGCGTTGTTGCGG 

TNF- CACCACCATCAAGGACTCAA GAGGCAACCTGACCACTCTC 

TSG-6 CGGATACCCCATTGTGAAAC TCCTTTGCATGTGGGTTGTA 

VEGF a AACGATGAAGCCCTGGAGTG GCTGGCTTTGGTGAGGTTTG 

VEGF b AGAGTGCTGTGAAGCCAGAC GATGATGTCAGCTGGGGAGG 

VEGF c AACCTCCATGTGTGTCCGTC TGCTGAGGTAACCTGTGCTG 

VEGF d TTCAGGAGCGAACATGGACC CCACAGCTTCCAGTCCTCAG 

 

2.2.3.1 Buffers and reagents for agarose gel electrophoresis 

Table 2-6. List of buffers and reagents for agarose gel electrophoresis and their 
composition  

Solution Composition Concentration 

10% TAE TRIS 
Glacial acetic acid  
EDTA 

0.4 M 
17.4 M  
0.5 M 

1% agarose gel Agarose 
SYBR Safe DNA gel stain  
TAE  

1% (w/v) 
7% (v/v) 
1x 

 

Length of DNA was assessed with the use of GeneRuler 1 kb DNA Ladder (Thermo 

Fisher Scientific) and GeneRuler 100 bp DNA Ladder (Thermo Fisher Scientific).  

2.2.4 Quantitative reverse transcription PCR (qRT-PCR) 

To quantitatively study gene expression a SYBR Green quantitative reverse 

transcription PCR assay was performed using the Applied Biosystems 7900HC Fast 

Real-Time PCR Systems detection system (Applied Biosystems).  

Reactions were set up in 96 well plates as outlined in Table 2-7 and cDNA was 

amplified as follows: denaturation and polymerase activation at 95 ⁰C for 3 

minutes, amplification during 40 cycles at 95 ⁰C for 3 s followed by 60 ⁰C for 30 

s. The direct detection of the PCR products was followed by the measurement of 

the fluorescence released from the SYBR Green I Dye when it binds to the 

double-stranded product after each cycle.  

https://www.thermofisher.com/us/en/home/about-us/product-stewardship/greener-alternatives.html
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Table 2-7. Reaction set up for real time quantitative PCR analysis indicating the reagents, 
and their concentrations. 

Reagent  Volume (µl) Final concentration 

PerfeCTa SYBR Green FastMix with 
ROX dye (VWR) x 2  

20 1x 

Forward primer (100 µM) 0.3 0.75 µM 

Reverse primer (100 µM) 0.3 0.75 µM 

cDNA (1:5)  4 NA 

ddH2O Up to 40 NA 

 

All samples were processed in triplicate. In all cases, samples were tested using 

the beta-2 microglobulin (B2M) gene as reference for data normalization. The 

difference between the Ct value and the housekeeping gene (ΔCt) was calculated 

for each point of the triplicated sample:  

∆𝐶𝑡 = 𝐶𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒) −  𝐶𝑡(𝐻𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔 𝑔𝑒𝑛𝑒) 
 

As this study did not have a reference sample, data were represented as 2(-ΔCT), 

which enables the visualization of expression levels of specific genes normalised 

to B2M for each sample. Due to the nature of normalisation, genes that 

generated a CT of 35 or above resulted in 2(-ΔCT) less than, or equivalent to, 

~0.0001. Genes with 2(-ΔCT) values similar to ~0.0001 are marked with a red box 

on the following graphs and are likely not transcribed at meaningful levels by 

MSCs. 

 

𝑮𝒆𝒏𝒆 𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 =  𝟐− ∆𝑪𝒕 
 

As triplicates had been done, the median of the RQ values of each sample was 

used for statistical analysis. All the experiments were done at least three times 

and the average and standard deviations were calculated. D’Agostino-Pearson 

omnibus normality test was used in order to determine if the values come from a 

Gaussian distribution. Due to the low sample size, data was considered to be 

non-parametric and differences between the samples were analysed using the 

appropriate statistical tests, which are indicated in the figure legends. 

Differences were considered to be statistically significant at p < 0.05. 
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2.3 Protein analysis 

2.3.1 Flow cytometry  

2.3.1.1 Flow cytometry staining 

When cultures achieved a cell density of greater than 80% confluence, the 

medium was removed and the cells were washed twice with DPBS. To detach the 

cells, cells were incubated with TrypLE™ Express Enzyme at 37 ⁰C for 10 minutes 

and the enzyme was inactivated with medium. Cells were then distributed for 

both sub-culturing and flow cytometry experiments. Cells were centrifuged at 

400 x g for 5 minutes following washing, detachment and enzyme inactivation.  

For fixable cell viability staining, after the detachment and centrifugation of 

cells the supernatant was discarded and cell pellets were resuspended in PBS 

and centrifuged again at 400 x g for 5 minutes. The supernatant was removed 

and cell pellets were resuspended in an appropriate volume of PBS buffer. The 

staining was done using the appropriate amount of the fixable viability dye 

eFluor506. Cells were then ready for cell surface staining.  

For cell surface immunofluorescence staining, cells were centrifuged and cell 

pellets were resuspended in fluorescence-activated cell sorting (FACS) buffer (2% 

FCS, 2 mM EDTA in DPBS) and were centrifuged again at 400 x g for 5 minutes. 

The supernatant was removed and cell pellets were resuspended in an 

appropriate volume of FACS buffer. Cells were distributed between FACS tubes 

with 1 million of cells per tube. The stains were carried out using the 

appropriate amount of each antibody followed by vortex and incubation at 4 ⁰C 

for 30 minutes in the dark. Upon incubation, cells were washed with FACS buffer 

and centrifuged at 400 x g for 5 minutes. The supernatant was discarded and cell 

pellets were resuspended in 300 µL FACS buffer and kept on ice until needed for 

flow cytometry.  

For nuclear protein staining, Fixation/ Permeabilization Solution Kit 

(BioSciences) was used. Following cell surface protein staining, cells were 

washed and thoroughly resuspended in 100 µL of BD Cytofix/ Cytoperm solution 

and incubated at 4 ⁰C for 20 minutes. Cells were then washed twice in 1x Perm/ 

Wash solution. Fixed and permeabilised cells were then resuspended in 50 µL of 
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Perm/ Wash solution containing antibody and were left incubating at 4 ⁰C for 30 

minutes in the dark. Upon incubation, cells were washed with FACS buffer and 

were resuspended in 300 µL FACS buffer and kept on ice until needed for flow 

cytometry. 

To calibrate the flow cytometer, single stains were done using UltraComp 

eBeads (Thermo); fluorescence minus one (FMO) controls were used to 

accurately gate positive staining due to the fluorescence spread of the lasers in 

the different channels. Data were acquired using the Fortessa (BD BioSciences) 

or the MACSQuant (Miltenyi Biotec) flow cytometers and analysed using the 

FlowJo version 10 software.  

2.3.1.2 Surface molecule phenotype of MSCs 

At P3, MSCs were left to grow until they were 80% confluent, detached from the 

flasks as described in Section 2.1.1 and prepared for flow cytometry as 

previously detailed in Section 2.3.1.1 using the “MSC phenotyping” panel of 

antibodies listed in Table 2-8 and run on Fortessa. Cells isolated from the islets 

required further characterisation using the “Islet characterisation” panel of 

antibodies listed in Table 2-8.   

2.3.1.3 Surface molecule phenotype of MScs in homeostatic vs inflammatory 
conditions 

At P3, MSCs were left to grow until they were 80% confluent, the medium was 

discarded and the cells were washed twice with DPBS. MSC culture medium was 

replaced with medium supplemented with stimulatory molecules as outlined in 

Section 2.1.3. After 72 hours of the first media change, cells were detached 

from the flasks as described in Section 2.1.1 and prepared for flow cytometry as 

previously detailed in Section 2.3.1.1 using the “MSC phenotyping in 

inflammation” panel of antibodies listed in Table 2-8 and run on the MACSQuant. 

2.3.1.4 Analysis of epithelial origin of Islet derived MSCs 

To analyse the cell types enclosed within the islets of Langerhans, islets were 

harvested as described in Section 2.1.2.2 and were purified by hand–picking the 

islets. Islets were then incubated with 2.5 mL of trypsin-

http://www.miltenyibiotec.com/en/products-and-services/macs-flow-cytometry/flow-cytometers/macsquant-analyzer-10/macsquant-analyzer-10.aspx
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ethylenediaminetetraacetic acid (EDTA) for 15 minutes at 37 ⁰C with shaking. 

Trypsin was inactivated with culture medium and cells were washed twice prior 

to staining the cells as stated in Section 2.3.1.1 using the “Islet 

characterisation” panel of antibodies listed in Table 2-8. Samples were run on 

the MACSQuant.  

2.3.1.5 Proliferation analysis 

To analyse the percentage of proliferative cells and its relationship with the 

CD45 status, cells were harvested as outlined in Section 2.1.1 and were stained 

as follows. First, the extracellular staining was performed as explained in 

Section 2.3.1.1 with the antibody panel listed in Table 2-8. To determine the 

percentage of proliferative cells, the nuclear protein Ki67 was used. Expression 

of Ki67 occurs during G1, S, G2, and M phase, while in G0 phase the Ki67 protein 

is not detectable. Intranuclear staining was done according to the 

manufacturer’s instructions. Shortly, after the extracellular staining, the cell 

pellet was loosened by vortexing. 3 mL of precooled 70% ethanol was added to 

the cell pellet while vortexing, followed by 30 seconds of extra vortexing and 

incubation at -20 ⁰C for 1 hour. After incubation, cells were washed with FACS 

buffer three times and resuspended in 100 µL. Ki67 antibody or the appropriate 

isotype was then added, and cells were left incubating at room temperature in 

the dark for 30 minutes. Cells were then washed twice with FACS buffer. All the 

antibodies used for proliferation analysis are listed in Table 2-8. 

2.3.1.6 Defining the immune cell attraction profile of MSCs in vivo 

The immune cell attraction profile of MSCs was tested in vivo by introducing 

MSCs into air pouch created in the dorsal skin of mice (described in Section 

2.4.2). Cell surface immunostaining was performed as detailed in Section 2.3.1.1 

using the “innate immune response” and “adaptive immune response” panel of 

antibodies listed in Table 2-8. 
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Table 2-8. List of antibodies use for flow cytometry during this study. 

 Antibody panel Antigen Fluorophore Clone Dilution  Supplier 

Phenotyping MSCs 

CD73 BV 421 TY/11.8 1:200 BioLegend 

CD19 BV 510 6D5  1:200 BioLegend 

CD11b BV 650 M1/70 1:200 BioLegend 

MHC Class II BV 785 M5/114.15.2 1:200 BioLegend 

CD90 FITC 30-H12  1:200 Miltenyi 

CD34 PE MEC14.7 1:200 BioLegend 

CD45 PE/Cy7 30-F11 1:200 BioLegend 

CD105 APC MJ7/18  1:200 BioLegend 

CD64 FITC X54-5/7.1 1:200 BioLegend 

Viability dye  Draq7   1:200 BioStatus 

MSC phenotyping in 
Inflammation 

CD73 BV 421 TY/11.8 1:200 BioLegend 

Fixable 
viability dye  

eFluor 506   1:1000 eBioscience 

CD166 FITC eBioALC48 1:200 eBioscience 

MHC Class I PE M1/42 1:200 BioLegend 

CD146 PE/Cy7 ME-9F1  1:200 BioLegend 

CD 271 APC REA648 1:200 Miltenyi 

MHC Class II APC/Cy7 M5/114.15.2 1:200 BioLegend 

Islet characterisation 

Fixable 
viability dye 

eFluor 506   1:1000 eBioscience 

Vimentin FITC RV202 1:200 Abcam 

CD45 PE/Cy7 K041ES 1:200 Biolegend 

CD45 PE/Cy7 I3/2.3 1:200 Biolegend 

CD326 
(EpCAM) 

APC G8.8 1:200 eBioscience 

Proliferation analysis 

Fixable 
viability dye 

eFluor 506   1:1000 eBioscience 

ki67 FITC 16A8 1:200 Biolegend 

IgG2a isotype 
control 

FITC RTK2758 1:200 Biolegend 

CD45  PE/Cy7 K041ES 1:200 Biolegend 

https://www.biolegend.com/en-us/search-results?Clone=TY/11.8
https://www.biolegend.com/en-us/search-results?Clone=6D5
https://www.biolegend.com/en-us/search-results?Clone=M1/70
https://www.biolegend.com/en-us/search-results?Clone=TY/11.8
https://www.biolegend.com/en-us/search-results?Clone=ME-9F1
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 Antibody panel Antigen Fluorophore Clone Dilution  Supplier 

Innate immune 
response 

CD45 BV421 30-F11  1:200 Biolegend 

Fixable 
Viability dye 

eFluor 506   1:1000 eBioscience 

Siglec F 
  
FITC 

S17007L 1:200 Biolegend 

F4/80  PE BM8  1:200 Biolegend 

CD11c  PerCP/Cy5.5 N418 1:200 Biolegend 

CD11b  PE/Cy7 M1/70  1:200 Biolegend 

Ly6g  APC 1A8  1:200 Biolegend 

Ly6c  APC/Cy7 HK1.4 1:200 Biolegend 

Adaptive immune 
response 

CD45 BV421 30-F11  1:200 Biolegend 

Fixable 
Viability dye 

eFluor 506   1:1000 eBioscience 

CD8 alpha  PE 53-6.7 1:200 Biolegend 

CD73  PerCP/Cy5.5 TY/11.8 1:200 Biolegend 

CD4  PE/Cy7 RM4-5  1:200 Biolegend 

NK1.1  APC PK136  1:200 Biolegend 

B220  APC/Cy7 RA3-6B2  1:200 Biolegend 

  

2.3.1.7 Flow cytometry analysis 

Prior to any analysis of flow cytometry experiments the following strategy was 

used to identify the live cells within the sample. As shown in Figure 2-2, this 

strategy started by gating the cells of interest using FSC and SSC. As the flow 

cytometer registers signals caused by debris and micro-particles present in the 

sample, a threshold of 50.000 was applied in the FSC, which allowed a better 

identification of the population. Doublets where excluded using SSC-H and SSC-A 

while live cells were gated based on exclusion of a live/dead cell marker. The 

exclusion of dead cells is essential as dead cells produce false positives as they 

have increased autofluorescence levels and higher non–specific binding of 

antibodies. Analysis of the data was performed using version 10 of the FlowJo 

software.  

https://www.biolegend.com/en-us/search-results?Clone=30-F11
https://www.biolegend.com/en-us/search-results?Clone=S17007L
https://www.biolegend.com/en-us/search-results?Clone=BM8
https://www.biolegend.com/en-us/search-results?Clone=N418
https://www.biolegend.com/en-us/search-results?Clone=M1/70
https://www.biolegend.com/en-us/search-results?Clone=1A8
https://www.biolegend.com/en-us/search-results?Clone=30-F11
https://www.biolegend.com/en-us/search-results?Clone=53-6.7
https://www.biolegend.com/en-us/search-results?Clone=TY/11.8
https://www.biolegend.com/en-us/search-results?Clone=RM4-5
https://www.biolegend.com/en-us/search-results?Clone=PK136
https://www.biolegend.com/en-us/search-results?Clone=RA3-6B2
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Figure 2-2. Flow cytometry basic cell gating strategy. 
All the flow cytometry experiments were analysed following this initial gating strategy to identify 
single live cells. A) The first step was focused on identifying cells with the appropriate size and 
granularity, B) followed by single cells gating to avoid clumps of cells. C) Due to the 
autofluorescence of death cells, a live dead marker was used to identify non-stained, and therefore, 
live cells. D) Cells were then gated for further analysis. In this specific example, life cells were 
classified into CD45 positive and negative.  

 

Multicolour flow cytometry panels can lead to fluorescence spread from the 

lasers into different channels. In order to identify a positive from a negative 

population we used a fluorescence minus one controls, which are samples that 

contain all the antibodies present in the panel minus one. For this reason, FMO 

controls were prepared for each fluorophore present in the panel. In this way, 

FMO controls behave as negative controls, letting the user know how the other 

fluorophores in the panel affect each channel, allowing a clear distinction 

between negative and positive staining as shown in Figure 2-3. 
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Figure 2-3. Use of Fluorescence Minus One (FMO) controls to accurately identify positive and 
negative populations.  
A) BV650-CD11b FMO contains all the fluorochromes in the panel but BV650, the one 
corresponding to CD11b, to allow the identification of the fluorescence spread from the different 
lasers into BV650 channel. B) PeCy7-CD45 FMO contains all the fluorochromes in the panel but 
PeCy7, the one corresponding to CD45, to allow the identification of the fluorescence spread from 
the different lasers into PeCy7 channel. C) Use of FMOs allowed the accurate identification of 
positive and negative populations in full stained samples.  

 

2.3.2 Immunocytochemistry 

2.3.2.1 Immunocytochemistry for adipocytes and osteocytes 

MSCs that had undergone adipogenic and osteogenic differentiation were grown 

and treated as described in Section 2.1.4.1. MSC differentiation medium was 

aspirated and cells were washed twice with 1 mL of PBS and then fixed with 0.5 

mL of 4% paraformaldehyde in PBS for 20 mins at RT. Cells were washed three 
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times with 0.5 mL of 1% bovine serum albumin (BSA) (Thermo Fisher Scientific) 

in PBS for roughly 5 mins each wash. The cells were permeabilised and blocked 

with 0.5 mL of 0.3% Triton X-100 (Thermo Fisher Scientific), 1% BSA and 10% 

normal donkey serum (Sigma) in PBS for 45 mins. After blocking, cells were 

incubated with 300 μL/ well of the appropriate primary antibody (Table 2-9). 

Cells were left at 4 ⁰C overnight. A negative control was run using PBS containing 

0.3% Triton X-100, 1% BSA, and 10% normal donkey serum with no primary 

antibody and another negative control was run using PBS containing 0.3% Triton 

X-100, 1% BSA, and 10% normal donkey serum with an isotype. After the 

incubation, cells were washed three times with 0.5 mL of 1% BSA in PBS for 5 

mins each wash. Cells were then incubated with a diluted appropriate secondary 

antibody (Table 2-9) for 60 mins, in the dark, at room temperature. Cells were 

washed three times with 0.5 mL of 1% BSA in PBS for 5 mins each wash.  

For nuclear visualization during fluorescent imaging PBS was removed, chambers 

were removed from the slide and one drop of ProLong Gold Antifade Mounting 

solution with DAPI (Thermo Fisher Scientific) was added to each well. Slides 

were sealed using DPX Mounting Media & Section Adhesive and slides were 

covered with 22 x 50 mm cover slips (Academy). All slides were imaged with a 

Zeiss epifluorescence microscope using the appropriate fluorescence channels 

and magnifications. Images were prepared using Zen software. 

2.3.2.2 Immunocytochemistry for chondrocytes 

The pellet of cells was washed twice with 1 mL of PBS, then fixed with 0.5 mL of 

Zinc formalin solution overnight at 4 ⁰C. The pellet was then washed twice with 

1 mL PBS for 5 mins. The pellet was carefully removed and placed into a 

cryomould. Cryosectioning was carried out as detailed in Section 2.3.2.2.1. Using 

a liquid barrier pen, a hydrophobic barrier was drawn around each section and 

cells were then blocked and permeabilised with 0.15 mL of 0.3% Triton X-100, 1% 

BSA, and 10% normal donkey serum in PBS at room temperature for 45 minutes. 

After blocking, sections were incubated with the appropriate primary antibody 

(Table 2-9) working solution overnight at 4 ⁰C. A negative control was run using 

PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum with no 

primary antibody and another negative control was run using PBS containing 0.3% 

Triton X-100, 1% BSA, and 10% normal donkey serum with an isotype control 
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antibody. Sections were washed three times with PBS containing 1% BSA for 5 

mins. Sections were then incubated in the dark for an hour with an appropriate 

secondary antibody (Table 2-9). Sections were washed three times with PBS 

containing 1% BSA for 5 mins. Sections were then washed once with distilled 

water and excess water was removed.  

For nuclear visualization during fluorescent imaging PBS was removed, chambers 

were removed from the slide and one drop of ProLong Gold Antifade Mounting 

solution with DAPI was added to each well. Slides were sealed using DPX 

Mounting Media & Section Adhesive and slides were covered with 22 x 50 mm 

cover slips. All slides were imaged with a Zeiss epifluorescence microscope using 

the appropriate fluorescence channels and magnifications. Images were 

prepared using Zen software. 

2.3.2.2.1 Cryosectioning  
 
Cells were placed in a small cryomould, OCT compound (Tissue-Tek) was gently 

poured on top, avoiding any air bubbles, samples were then snap frozen in liquid 

nitrogen and placed in the -80 ⁰C freezer until sectioning. Frozen moulds were 

placed into the cryostat (Bright Instruments) at -25 ⁰C and sectioned 8 μm thick 

onto superfrost glass slides.  

2.3.2.3 Immunocytochemistry for islets and islet derived MSCs 

10-20 islets per chamber or 3500 cells/cm2were seeded in a 4-well Nunc™ Lab-

Tek™ Chamber Slide™ (Thermo Fisher Scientific) and cells were allowed to grow 

for 7-10 days. Wells were then washed three times with 0.5 mL of room 

temperature PBS. 0.5 mL of 4% paraformaldehyde in PBS was added to each well 

and was left for incubation for 20 minutes at room temperature. 4% 

paraformaldehyde was then removed, and wells were washed three times with 

0.5 mL of PBS for 5 minutes with agitation. 0.5 mL of permeabilization and 

blocking buffer (1% BSA, 10% goat serum and 10% Triton x100 in DPBS) were 

added per well to block non-specific antibody binding and was incubated for 1 

hour at room temperature with shaking.  

Primary antibody was diluted into the permeabilization and blocking buffer 

according to the manufacturer’s instructions; 1:100 for EpCAM monoclonal 
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antibody and 1:200 for Vimentin monoclonal antibody. The blocking buffer was 

removed from the 24 well plate and 200 µL of the diluted antibodies were added 

into each well and left incubating at 4 ⁰C overnight or for 1 hour at room 

temperature. After the incubation, wells were washed three times with 0.5 mL 

of room temperature PBS for 5 minutes with shaking. Secondary antibody was 

diluted into the permeabilization and blocking buffer according to the 

manufacturer’s instructions (1:400). 200 µL of the diluted secondary antibodies 

were added into each well and was left incubating for 1 hour at room 

temperature protecting the plate from the light. After the incubation, wells 

were washed three times with 0.5 mL of room temperature PBS for 5 minutes 

with shaking while protecting the plate from the light. All the antibodies used 

for immunocytochemistry are listed in Table 2-9.  

For nuclear visualization during fluorescent imaging, PBS was removed, 

chambers were removed from the slide and one drop of ProLong Gold Antifade 

Mounting solution with DAPI was added to each well. Slides were sealed using 

DPX Mounting Media & Section Adhesive and slides were covered with 22 x 50 

mm cover slips. All slides were imaged with a Zeiss epifluorescence microscope 

using the appropriate fluorescence channels and magnifications. Images were 

prepared using Zen software. 

Table 2-9. List of antibodies used for immunocytochemistry in this study. 

Antigen Host/ Isotype Fluorophore Clone Supplier 

EpCAM Mouse/ IgG1 Unconjugated 323/A3 Invitrogen 

Vimentin Mouse/ IgM Unconjugated J144 Invitrogen 

Mouse IgG1 Mouse/ IgG1 Unconjugated P3.6.2.8.1 Invitrogen 

Mouse IgM Mouse/ IgM Unconjugated 11E10 Invitrogen 

Mouse IgG1 Goat / IgG AF 488 Polyclonal Invitrogen 

Mouse IgM Goat / IgG AF 568 Polyclonal Invitrogen 

FABP4 Goat/ IgG Unconjugated Polyclonal R&D Systems 

Collagen II Sheep/ IgG Unconjugated Polyclonal R&D Systems 

Osteopontin Goat/ IgG Unconjugated Polyclonal R&D Systems 

Goat IgG Goat/ IgG Unconjugated Polyclonal Invitrogen 

Sheep IgG Sheep/ IgG Unconjugated Polyclonal Invitrogen 

Goat IgG Donkey/ IgG NL557 Polyclonal R&D Systems 

Sheep IgG Donkey/ IgG NL558 Polyclonal R&D Systems 
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2.3.3 Western Blotting  

2.3.3.1 Buffers and reagents for Western Blotting 

Table 2-10. List of buffers and reagents for Western Blotting and their composition  

Solution Composition Concentration 

RIPA buffer Tris-HCl 1M pH 7.4 
NP-40  
Sodium deoxycholate 
SDS 
NaCl 
EDTA 
Sodium fluoride 

50 mM 
1% (v/v)  
0.5% (w/v) 
0.1% (v/v) 
150 mM 
2 mM 
50 mM 

10x SDS running buffer TRISBase 
Glycine 
SDS 

0.25 M 
2 M 
0.035 M 

Blocking solution  
 

Milk Powder 
Tween 20 
in PBS 

10% (w/v) 
0.1% (v/v) 

10x TG TRIS 
Glycine 

0.48 M 
0.39 M 

Transfer buffer 10x TG 
MeOH 
SDS 20% 

10% (v/v) 
20% (v/v) 
0.19% (v/v) 

 

Molecular weight of proteins was assessed with the use of PageRuler™ Prestained 

Protein Ladder, 10 to 180 kDa (Thermo Fisher Scientific). 

2.3.3.2 Sample preparation  

To isolate splenocytes, mice aged 10 weeks were killed with CO2 or cervical 

dislocation and the cadaver was laid with the abdominal side facing up, the 

limbs were stretched and fixed with pins and then the skin was sterilised using 

70% ethanol. A midline incision was made around the abdomen and the skin was 

retracted using straight tweezers. The muscular wall was then opened to expose 

the liver and intestines. The liver was then pushed up to the thoracic cavity and 

the intestines and stomach were pushed to the left, which enables access to the 

spleen. Spleen was then harvested and placed in 1% BSA RPMI 1640 medium 

(Thermo Fisher Scientific). To isolate splenocytes, the spleen was transferred 

into a 70 μm cell strainer and was mashed with the plunger from a 2 mL syringe. 

Grinding circular movements were used to homogenise the tissue. 20 mL of PBS 

were used to wash out the cells from within the strainer. The homogenised cell 
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suspension was then centrifuged at 300 x g for 10 minutes at room temperature 

and the supernatant was discarded. Cells were then resuspended into 10 mL PBS 

and passed through a 40 μm cell strainer and centrifuged at 300 x g for 10 

minutes at room temperature. 1mL per sample of ACK lysing buffer (Thermo 

Fisher Scientific) was used to remove the red blood cells from the spleen. 

Samples were incubated at room temperature for 1 minute and were then 

diluted in 20 mL of PBS followed by centrifugation at 300 x g for 10 minutes at 

room temperature. The supernatant was removed and discarded and the cell 

pellet was resuspended in 1 mL of PBS and the suspensions were transferred into 

microcentrifuge tubes and centrifuged for 2 minutes at 1000 rpm. The 

supernatant was removed and discarded.  

MSCs and 3T3 MEF cells were harvested as detailed in Section 2.1.1.  

2.3.3.3 Sample lysis  

Cells were lysed using radioimmunoprecipitation assay (RIPA) lysis buffer 

containing leupeptin (2 μg/mL), aprotinin (2 μg/mL), Na3VO4 (1mM) and pefabloc 

(0.5 mM) leaving them on ice for 30 minutes and centrifuged for 15 minutes at 

13,000 g at 4 ⁰C. The supernatant was then recovered and protein 

concentrations were determined using the Thermo Scientific Pierce ™ BCA 

Protein Assay Kit (Thermo Fisher Scientific). SDS to 1x was added and samples 

were boiled at 95 ⁰C for 5 minutes.  

2.3.3.4 Western Blot  

Samples were boiled in loading buffer and separated on a 10% SDS-PAGE at 80V 

until the samples were inside the gel and then the intensity was increased to 

120V till the blue front of the gel disappeared. 2.5 μL of protein ladder was 

loaded as a molecular weight reference. Proteins were transferred to a 

Polyvinylidene Difluoride (PVDF) membrane (Amersham Pharmacia Biotech) using 

a wet blotter at 25 V. Membranes were then blocked for 1 hour with blocking 

solution shaking at room temperature, followed by incubation on a rocking 

platform at 4 ⁰C with primary antibodies overnight. All the antibodies used in 

this study are listed in Table 2-11. After 3 washes with TBST 1x, membranes 

were incubated with horseradish peroxidase-conjugated secondary antibodies for 
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1 h. Antigen-antibody complexes were detected by using Clarity Western ECL 

Substrate solution (BioRad) and images acquired using darkroom development 

techniques for chemiluminescence.  

Table 2-11. List of antibodies used for Western Blot in this study. 

Antibody Host Dilution in 5% 
milk TBST 

Product reference 

Anti-CD45 Rat 1:1000 BioLegend (103101) 

Anti--actin Mouse 1:5000 Sigma Aldrich (SAB1305567) 

Anti-mouse Mouse 1:5000 Sigma Aldrich (GENXA931-1ML) 

Anti-rat Goat 1:5000 BioLegend (405405) 

 

2.3.4 Luminex 

Conditioned media from the samples used for transcript work were collected for 

Luminex analysis. The mouse personalised premixed magnetic multi-analyte kit 

was used in accordance with the manufacturer’s instructions (R&D systems). All 

reagents and standards were included in the kit and prepared as outlined in the 

guidelines. Briefly, samples were diluted 1:2 with calibrator diluent (75μl in 75 

μL). 10 μL of the pre-coated microparticle cocktail was added to each well of 

the 96 well microplates, followed by either 50 μL sample or 50 μL standard, 

sealed and placed on an orbital shaker (0.12 mm orbit at 800 ± 50 rpm) for 2 

hours at room temperature. The plates were washed twice with 100 μL/ well 

wash buffer and then incubated with 50 μL/ well anti-biotin detector antibody 

for 1 hour at RT on the shaker (0.12 mm orbit at 800 ± 50 rpm). The plates were 

washed as previously described and 50 μl/ well of streptavidin-phycoerythrin 

was added and incubated for 30 minutes at room temperature. Microparticles 

were resuspended in 100 μL/ well of wash buffer and immediately read on a Bio-

Rad analyser.  

2.3.4.1 Analysis of results 

The Luminex analysis was acquired on a Luminex 100 Bio-Rad instrument. Each 

microparticle bead region was designated as stated on the certificate of 

analysis. When beads are injected into the flow cell, a small number can 

aggregate and go through as doublets. To avoid this, the doublet discriminator 

channel measures the amount of light scatter from the particles that flow past 

the laser and specific gates were set between 8000 and 16,500 to ensure that 
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only beads of the correct size were measured. Mean Fluorescence intensity (MFI) 

was acquired. Total protein concentrations were determined using the Thermo 

Scientific Pierce ™ BCA Protein Assay Kit (Thermo Fisher Scientific) and were 

used for normalization of the data. Each bar represents an n of 3 and is plotted 

as mean ± SEM. Statistical tests included One Way ANOVA in conjunction with a 

Tukey’s compare all comparisons test when comparing across MSCs from 

different sources. Students T test was used when comparing stimulated vs 

unstimulated within one tissue source.  

 

2.4 In Vivo Procedures  

2.4.1 Animal Welfare 

All animals were housed within the Biological Central Research Facility. All 

experiments received ethical approval and were performed under the auspices 

of a UK Home Office License.  

Mice used during this study were C57BL/6, which have fully functional innate 

and adaptive compartments of the immune system. 6–week old mice were 

obtained from Charles River Europe and before any procedure was carried out, 

mice were given 7 days within the Biological Central Research Facility for 

adjustment and settling. After experimental procedures, mice were euthanised 

using a recognised Schedule 1 technique.  

2.4.2 Murine Air pouch Model  

2.4.2.1 Induction and maintenance of the air pouch model 

C57BL/6 female mice were put under general anaesthesia, inhaled isoflurane, 

before and during the procedure. To ensure that the air injected into the air 

pouch was sterile, the syringes were prepared in a sterile laminar flow hood. 

3mL of sterile air was injected subcutaneously into the intracapsular area of the 

mouse to create an air pouch. After 3 days, a top-up of 3 mL sterile air was 

injected into the air pouch. A third top up of 1 mL sterile air was injected 2 days 

later, followed by an injection of 1x106 resting or stimulated MSCs in 1 mL of 
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sterile PBS or sterile PBS alone (control animals) 24 hours later. Cells or PBS 

controls were left in the air pouch for 24 hours before mice were sacrificed. 

2.4.2.2 Fluorescent labelling of MSCs 

In vivo tracking studies require specialised probes that are nontoxic to living 

cells and do not alter the immune response if introduced into a host. Cell 

Tracker Green CMFDA (Invitrogen) was used to fluorescently label the cells. To 

stain the cells, culture media was removed and 5 μM warm Cell Tracker Working 

Solution was added and left incubating for 30 minutes at 37 ⁰C/ 5% CO2/ 95% 

humidity. Cell Tracker Working Solution was prepared according to the 

manufacturer’s instructions. Briefly, the lyophilised product was dissolved in 

DMSO to a final concentration of 10 mM, which was further diluted in serum free 

medium. After incubation with the Cell Tracker, the Cell Tracker Working 

Solution was removed, and cells were washed twice with PBS prior to injecting 

them into mice.  

2.4.2.3 Dissection and preparation of the air pouch samples  

Immediately after sacrifice, 3 mL of FACS buffer was injected into the air 

pouches of the mice and mice were gently shaken to allow the FACS buffer to 

mix throughout the air pouch to ensure an optimal retrieval of immune cells. 

The air pouch content was then drained and kept on ice until 

immunofluorescence staining was performed as outlined in Section 2.3.1.6. 

To separate the overlying soft tissues from the air pouch membrane, a small 

incision was made into the dorsal skin overlying the air pouch to reveal the 

membrane, which was separated from the overlying skin. The membrane was 

then placed into 1 mL of Hank’s balanced salt solution (Sigma) and kept on ice. 

To digest the membrane, 87.5 μg of liberase (Sigma) was added to each sample 

and was left incubating at 37 ⁰C for 1 hour on a thermo–shaker incubator at 900 

rpm. Once membranes were fully digested, cells were passed through a 70 μm 

sterile cell strainer (Corning) to remove any remaining debris and create a single 

cell suspension. Cells were then washed twice in PBS and immunofluorescence 

staining was performed as explained in Section 2.3.1.6. 
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3 Phenotyping MSCs  

3.1 Introduction and aims 

Stem cells are cells which can both self–renew and differentiate into different 

multiple lineages depending on the potency of the cell. Based on their origin and 

their differentiation potential, stem cells can be divided into different 

categories such as embryonic stem cells, induced pluripotent stem cells or 

mesenchymal stromal cells. Stability, safety and a highly accessible stem cell 

source are requirements for the use of stem cells as cellular therapeutics for 

future clinical applications. The crucial limitation of stem cell graft survival is 

recognition by the recipient of alloantigen. However, MSCs avoid allogenic 

rejection due to the low levels of MHC Class I expression and the lack of MHC 

Class II and co-stimulatory molecules expression such as CD80, CD40 and CD86. 

This characteristic, in addition to their ability to self–renew and differentiate, 

has risen the biological and clinical interest of MSCs (Horwitz et al., 2005).  

MSCs were first isolated from the bone marrow but they can be isolated from a 

wide range of tissues around the body including umbilical cord, cord blood, 

placenta, Wharton’s jelly, dental pulp, periodontal ligament, adipose tissue and 

pancreas among others (Lv et al., 2014). However, tissue source of origin directs 

phenotype and biological activity. For example, differences in the expression of 

surface markers CD49d, CD54, CD34 and CD106 have been identified between 

bone marrow derived MSCs (BM MSCs) and adipose tissue derived MSCs (Ad MSCs) 

(De Ugarte et al., 2003). Regarding their differentiation potential, BM MSCs have 

been described to possess stronger osteogenic and lower adipogenic 

differentiation potential compared to Ad MSCs (Xu et al., 2017), while the ability 

to trans-differentiate to neural precursors is higher in Ad MSCs compared to bone 

marrow, skin and umbilical cord derived MSCs (Urrutia et al., 2019). The in vitro 

expansion capacity of cells is important for cell therapy and tissue origin has 

been described to have an impact on this, as umbilical cord derived MSCs have a 

higher proliferation capacity than BM MSCs (Baksh et al., 2004). Discrepancies in 

findings between studies are not uncommon within the MSC literature. As an 

example, the immunosuppressive capacity was measured by their ability to 

inhibit the activation and proliferation of T cells in two different studies (Ribeiro 

et al., 2013, Xishan et al., 2013) and Ribeiro et al. stated that Ad MSCs have 
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greater immunosuppressive ability compared to BM MSCs while Xishan et al. 

stated the opposite.  

Due to different isolation/ enrichment protocols, culture conditions and the 

intrinsic variability among MSCs derived from different donors/ tissues the 

characteristics of MSCs differ, leading to controversial results through the 

literature. For this reason, with the aim of making studies easier to compare, 

the International Society for Cell Therapy (ISCT) proposed minimal criteria for 

defining human MSCs. These criteria include adherence to plastic under standard 

culture conditions; surface expression of the “stemness” markers CD105, CD73 

and CD90 with lack of expression of CD45, CD11b, CD34 and MHC Class II; and 

trilineage mesenchymal differentiation into adipocytes, chondrocytes and 

osteocytes (Dominici et al., 2006). Conversely, although adherence and 

trilineage differentiation are characteristics of murine MSCs, the surface marker 

phenotype is not so well characterised, and variations might apply. 

This chapter will focus on assessing the cells isolated from the bone marrow, 

islets of Langerhans and adipose tissue of mice to compare their phenotypes to 

ISCT criteria for human MSCs. Therefore, their morphology, surface molecule 

phenotype and differentiation potential were assessed in a standardised manner. 

The overall aim of this study was to determine the potential roles of MSCs within 

clinical settings, which are often inflammatory settings. For this reason, the 

morphology and surface molecule phenotype of MSCs from the three sources 

were assessed after 24 hours of inflammatory stimulation with a cocktail of 

inflammatory mediators containing a combination of IFN-γ, TNF-α and IL-1β, 

LPS, LTA or Poly I:C. Therefore, the aim of this chapter was to fully characterise 

cells isolated from the bone marrow, adipose tissue and islets of Langerhans for 

MSC criteria and to understand the effect of tissue origin and inflammation on 

their phenotype. For this results chapter, and the ones that follow, a colour 

code has been used for all data sets, which is outlined in Figure 3-1.  
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Figure 3-1. Schematic representation of the colour scheme used in all figures throughout 
this study. 
The above diagram illustrates the colour scheme throughout this thesis, linking a specific tissue 
source of MSCs to a particular colour. When data are graphed, BM MSCs will always be 
represented in yellow, Is MSCs in blue and Ad MSCs in red. Under resting conditions data will be 
graphed as bars without a filling pattern, while different filling patterns will be used if cells have 
been under inflammatory conditions. Cytokine-mediated stimulation of cells will be represented by 
a grey checks filling; while LPS-, LTA- and Poly I:C-mediated stimulation of cells will be 
represented by grey squares, grey bricks and grey dots respectively.  

 

Results 

 

3.2 Physical morphology of MSCs 

To assess the plastic adherence criteria established by the ISCT, after isolation 

of the cells from the bone marrow and adipose tissue, cells were seeded into 100 

mm sterile Petri dishes and 5 days later were transferred into culture flasks and 

left to grow. Islets of Langerhans were directly plated in culture flasks. In all 

cases, once cells were seeded into culture flasks it was considered passage 1 

(P1). Cells were grown up to passage 3 and their morphology was observed and 

monitored using a light-phase microscope. At P1, cells isolated from the bone 

marrow and adipose tissues showed a spindle-shaped morphology that was 

maintained through passage. However, cells grown from the islets of Langerhans 
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showed a cluster of small spherical cells where the islet was seeded, surrounded 

by spindle-shaped cells and transitioning cells in between these two populations 

with different morphologies. However, at passage 2 and 3 the only cells present 

in the flask showed a spindle–like morphology. It is unclear whether the small 

spherical cells were an epithelial population unable to proliferate or more likely, 

if an epithelial to mesenchymal transition was leading to the generation of MSCs. 

As shown in Figure 3-2, cells from all sources (excluding P1 in the cells isolated 

from the islets of Langerhans) were similar in size and shape. This satisfies the 

ISCT criteria of MSCs being plastic-adherent and spindle-shaped cells in standard 

culture conditions.   

 

Figure 3-2. MSCs isolated from all tissue sources exhibit an MSC spindle-like morphology. 
MSCs were isolated from mice and grown until P3. Their morphology was observed and monitored 
using a light-phase microscope. All MSCs were adherent to plastic and possessed the typical 
spindle-like morphology.  

 

3.3 Surface molecule phenotype of MSCs 

Flow cytometry was used to assess the surface phenotype of the cells isolated 

from the BM, Ad and Is at P3. The cocktail of antibodies used included the 

markers established by the ISCT to determine if cells are MSCs: CD90, CD105, 

CD73, MHC Class II, CD45, CD11b, CD19 and CD34. CD64 was used to further 

exclude monocytes/ macrophages, the most likely haematopoietic cell to be 
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found in an MSC culture. Due to the lack of standardised protocols to isolate 

murine MSCs from these tissues, successful isolation of the cells from the 

different sources was obtained at different stages of the project and therefore, 

were analysed when available. For this reason, different controls, voltage and 

compensation settings were used for the analysis of the cells isolated from each 

tissue, which explains the gating differences among tissues. However, in all the 

cases, fluorescence minus one (FMO) controls allowed the accurate 

identification of positive and negative populations in full stained samples.  

As shown in Figure 3-3 A and B, cells isolated from all three tissues are positive 

for the MSC markers CD90, CD105 and CD73. The percentage of live cells positive 

for each marker is graphed (Figure 3-3, F-N) to assess the effect on the tissue 

source on the surface phenotype of these cells. ~100% of the cells were positive 

for the MSC markers regardless of the tissue of origin. CD90, a 

glycophosphatidylinositol anchored conserved cell surface protein also known as 

Thy–1 cell surface antigen, was positively expressed by ~100% of the cells 

irrespectively of the tissue of origin (F). CD105, a type 1 membrane glycoprotein 

also known as endoglin, was also expressed by >98% of the cells with no 

significant differences in the percentage of positive cells when compared among 

tissue source (G). Similarly, CD73, an enzyme that converts adenosine 

monophosphate to adenosine, also known as ecto-5'-nucleotidase, was also very 

highly expressed (>98%) by cells from every tissue source (H).  

According to the ISCT, MSCs must not only express specific surface markers but 

have to lack the expression of others. All the cells were negative for the MHC 

Class II surface marker regardless of the tissue of origin (Figure 3-3, I). The 

percentage of live cells positive for the haematopoietic marker CD45 was <2% for 

cells isolated from the Ad, while it was ~30% for the cells isolated from the islets 

of Langerhans and ~85% for the cells isolated from the bone marrow (J). These 

numbers correlate quite nicely with the percentage of cells expressing the 

integrin CD11b as it was barely expressed by the cells isolated from the adipose 

tissue (<2%) while ~25% for the cells isolated from the islets of Langerhans and 

~85% for the cells isolated from the bone marrow expressed it (K). Regarding the 

expression of the B-lymphocyte antigen CD19, all the cells were negative (‹2%) 

for this marker regardless of the tissue of origin (L). Similarly, <2% of the cells 

https://en.wikipedia.org/wiki/Glycophosphatidylinositol
https://en.wikipedia.org/wiki/Protein
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from the three tissue sources stained positive for the primitive haematopoietic 

progenitor marker CD34 (M). Due to the positive staining for CD45 and CD11b 

surface markers, cells from the three tissues were further characterised for the 

expression of CD64, an integral membrane glycoprotein that is constitutively 

found on macrophages and monocytes, and it was observed that the expression 

of this marker was minimal in the cells isolated from the three sources (N), 

suggesting that the isolated cells were not of myeloid origin.  

 

https://en.wikipedia.org/wiki/Integral_membrane_protein
https://en.wikipedia.org/wiki/Glycoprotein
https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/3.%20Phenotyping%20MSCs/9B.png
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118 
 
Figure 3-3. Cells isolated from all tissues express MSC Markers. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. MSCs were then 
stained with a cocktail of antibodies to allow characterisation of MSCs by flow cytometry.  

As explained in Chapter 2, FSC and SSC were used to gate on cells of correct size and granularity, 
doublets were excluded, and live cells were selected in all samples before assessing surface 
phenotype (A-E). Use of FMOs allowed the accurate identification of positive and negative 
populations in full stained samples. The% of live MSCs which stained positive for each of the 
tested markers is graphed to compare expression between MSC tissue sources (F-N). Each bar 
represents an n of 3 independent experiments and is graphed as mean ± SEM. ONE WAY ANOVA 
with Tukey’s multiple comparison post-test analysis was used for statistical assessment of 
differences between MSC sources. p = 0.05 was considered the limit for statistical significance; * p 
< 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  

 

3.4 Differentiation potential of MSCs 

To determine the trilineage differentiation potential of the cells isolated from 

the BM, Is and Ad, cells were cultured with appropriate differentiation factors to 

guide them through a specific differentiation pathway.  

Cells isolated from the BM (Figure 3-4, A.i), Is (Figure 3-4, B.i) and Ad (Figure 

3-4, C.i) were able to differentiate into adipocytes as the majority of the cells 

stained positive for fatty acid binding protein 4 (FABP4). Undifferentiated 

control samples were stained with anti-FABP4 to ensure that cells were not 

expressing FABP4 prior to differentiation (A.iv, B.iv, C.iv). As a control for 

positive staining, isotype controls (A.ii, B.ii, C.ii) and no-primary antibody 

controls (A.iii, B.iii, C.iii) were used. The lack of fluorescence in the isotype and 

no-primary controls and in the undifferentiated cells suggests that positive 

staining was specific for differentiation induced FABP4 expression and that cells 

isolated from the BM, Is and Ad were fully capable of adipogenic differentiation.  

Cells isolated from the BM (Figure 3-5, A.i), Is (Figure 3-5, B.i) and Ad (Figure 

3-5, C.i) were able to differentiate into chondrocytes as most of the cells 

stained positive for collagen II. Undifferentiated control samples were stained 

with anti-collagen II antibody to ensure that cells were not expressing collagen II 

prior to differentiation (A.iv, B.iv, C.iv). As a control for positive staining, 

isotype controls (A.ii, B.ii, C.ii) and no-primary antibody controls (A.iii, B.iii, 

C.iii) were used. The lack of fluorescence in the isotype and no-primary controls 

and in the undifferentiated cells suggests that positive staining was specific for 
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differentiation-induced collagen II expression and that cells isolated from the 

BM, Is and Ad were fully capable of differentiating into chondrocytes.  

Similarly to adipogenic differentiation, cells isolated from the BM (Figure 3-6, 

A.i), Is (Figure 3-6, B.i) and Ad (Figure 3-6, C.i) were able to differentiate into 

osteocytes as the majority of the cells stained positive for osteopontin. 

Undifferentiated control samples were stained with anti–osteopontin antibody to 

ensure that cells were not expressing osteopontin prior to differentiation (A.iv, 

B.iv, C.iv). As a control for positive staining, isotype controls (A.ii, B.ii, C.ii) and 

no–primary antibody controls (A.iii, B.iii, C.iii) were used. The lack of 

fluorescence in the isotype and no–primary controls and in the undifferentiated 

cells suggests that positive staining was specific for differentiation induced 

osteopontin expression and that cells isolated from the BM, Is and Ad were fully 

capable of differentiating into adipocytes.  

Cells isolated from the BM, Is and Ad could differentiate into adipocytes, 

chondrocytes and osteocytes as confirmed by positive staining of specific tissue 

markers. This satisfies the trilineage differentiation potential established by the 

ISCT.  

 



120 
 

 

Figure 3-4. MSCs can successfully differentiate into adipocytes. 
For adipogenesis, BM (A.i), Is (B.i) and Ad (C.i) MSCs were seeded at 2.1x104 per cm2 and grown 
in 4-well Nunc™ Lab-Tek™ Chamber Slides. When MSCs reached 100% confluency, 
differentiation factors were added every 2-3 days for 14-21 days. Undifferentiated control samples 
(A.iv, B.iv, C.iv) were maintained in medium without differentiation factors. After 14-21 days of 
differentiation, cells were stained with anti-FABP4 (RED), except for isotype controls (A.ii, B.ii, C.ii) 
and no-primary controls (A.iii, B.iii, C.iii). All samples were stained with specific fluorescent 
secondary antibodies. DAPI (BLUE) marks the cell nuclei.  
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Figure 3-5. MSCs can successfully differentiate into chondrocytes. 
For chondrogenesis, BM (A.i), Is (B.i) and Ad (C.i) MSCs were seeded at 2.5x105 per cm2, spun 
down in a 15 mL falcon tube and left culturing in spherical balls within the falcon in differentiation 
medium. Differentiation medium was changed every 2-3 days. Undifferentiated control samples 
(A.iv, B.iv, C.iv) were maintained in medium without differentiation factors. After 14-21 days of 
differentiation, cells were stained with anti-Collagen II (RED), except for isotype controls (A.ii, B.ii, 
C.ii) and no-primary controls (A.iii, B.iii, C.iii). All samples were stained with specific fluorescent 
secondary antibodies. DAPI (BLUE) marks the cell nuclei. 
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Figure 3-6. MSCs can successfully differentiate into osteocytes. 
For osteogenesis, cells were seeded at 4.2x103 per cm2 and grown in 4-well Nunc™ Lab-Tek™ 
Chamber Slides. When MSCs reached 100% confluency, differentiation factors were added every 
2-3 days for 14-21 days. Undifferentiated control samples (A.iv, B.iv, C.iv) were maintained in 
medium without differentiation factors. After 14-21 days of differentiation, cells were stained with 
anti-osteopontin (RED), except for isotype controls (A.ii, B.ii, C.ii) and no-primary controls (A.iii, 
B.iii, C.iii). All samples were stained with specific fluorescent secondary antibodies. DAPI (BLUE) 
marks the cell nuclei. 

 

3.5 Validation of CD45 expression in Islet derived MSCs 

As observed in Figure 3-3, ~30% of the Is MSCs and ~85% of the BM MSCs are CD45 

positive. According to the ISCT, in order to consider a human cell population as 
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MSCs, cells must be CD45 negative; however, surface marker phenotype is not 

well characterised in the mouse. Induction of CD45 expression on murine BM 

MSCs has been described (Yeh et al., 2006); anyhow, this event has not been 

documented in Is MSCs. For this reason, further analysis of the CD45 positive and 

negative populations within the Is MSCs was required, as well as validation of the 

CD45 expression in case the positive staining was an artefact. 

To assess and compare the morphology, size and granularity of these two 

populations CD45 MACS MicroBeads were used. CD45 positive and negative cells 

were separated and distributed into new flasks at a 3500 cells/ cm2 

concentration and left growing. As a control, CD45 positive and negative cells 

were put back together in a 25:75 (1:3) proportion to assess the effect of the 

isolation on the cells. Cell morphology was observed and monitored using a light-

phase microscope and both populations possessed the typical spindle-like 

morphology (Figure 3-7). 

 

Figure 3-7. CD45 positive and negative Is MSCs exhibit MSC spindle-like morphology. 
MSCs were isolated from mice and grown until P2. CD45 microbeads were then used to isolate the 
CD45 positive cells. After isolation, CD45 positive and negative cells were distributed into new 
flasks at a 3500 cells/ cm2 concentration and left growing. As a control, CD45 positive and negative 
cells were put back together in a 25:75 proportion to assess the effect of the isolation on the cells. 
Cell morphology was observed and monitored using a light-phase microscope. Both populations 
were adherent to plastic and possessed the typical spindle-like morphology. 

 



124 
 
Using flow cytometry, the parameters forward scatter (FSC) and side scatter 

(SSC) were used to measure the size and granularity (respectively) of both 

populations. The size of a cell is measured by the amount of laser light that can 

pass around the cell, while granularity is measured by the amount of light that 

bounces off particles within the cell. This way, size and complexity of a cell are 

easily measured. CD45 negative cells had a larger FSC (Figure 3-8, A) and SSC 

(Figure 3-8, B) compared to the CD45 positive population. To assess the effect of 

CD45 depletion on size and granularity, isolated CD45 positive and negative 

populations were compared to un-depleted populations. These results suggest 

that there are two different populations with different size and granularity. In 

order to perform statistical analysis and clarify the plotted data in histograms, 

mean fluorescent intensities of FSC (Figure 3-8 C) and SSC (Figure 3-8 D) values 

were graphed.  

 

Figure 3-8. CD45 positive and negative Is MSCs differ in size and granularity.  
Following the experimental set up of Figure 3-18, flow cytometry was used to measure FSC and 
SSC to assess size (A and C) and granularity (B and D) of CD45 positive and negative Is MSCs. 
Each bar represents an n of 3 independent experiments and is graphed as mean ± SEM. ONE 
WAY ANOVA with Tukey’s multiple comparison post-test analysis was used for statistical 
assessment of differences between MSC sources. p = 0.05 was considered the limit for statistical 
significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  

 

Therefore, the next question to address was whether the CD45 positive cells 

were MSCs or a contaminating population able to express MSC markers. To 

address this, isolated CD45 positive and negative populations were differentiated 

in to all three lineages to assess their potential. As shown in Figure 3-9, both 
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islet-derived cell populations can successfully differentiate into adipocytes, 

chondrocytes and osteocytes, which suggests that both populations can be 

considered MSCs. 

 

Figure 3-9. Both Is derived MSC populations can successfully differentiate into adipocytes, 
chondrocytes and osteocytes.  
The experiment set up for adipogenesis is identical as the one in Figure 3-4, the experiment set up 
for chondrogenesis is explained in Figure 3-5 while the osteogenic differentiation is explained in 
Figure 3-6. All samples were stained with specific unlabelled primary antibodies and fluorescent 
secondary antibodies. DAPI (BLUE) marks the cell nuclei. 

 

Lastly, validation of CD45 positive staining was performed to ensure that the 

antibodies were truly interacting with CD45 and that the positive staining was 

not an artefact. CD45 RNA (Figure 3-10, A) and protein (Figure 3-10, B) levels 

were measured in CD45 negative and positive populations. As a negative control 

3T3 mouse embryo fibroblasts were used while splenocytes were considered as 

positive control for CD45 expression at both RNA and protein levels. These 

findings confirm that there is an islet derived MSC population that expresses 

CD45.  
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Figure 3-10. Validation of the expression of CD45 protein in Is MSCs.  
MSCs were isolated from mice and grown until P2. CD45 microbeads were then used to isolate the 
CD45 positive cells. After isolation, CD45 positive and negative cells were distributed into new 
flasks at a 3500 cells/ square2 concentration and left growing. Once 80% confluence was reached, 
cells were harvested and prepared for RNA (A) and protein analysis (B). As a negative control of 
CD45 expression 3T3 mouse embryo fibroblasts were used while splenocytes were used as 
positive control.  

 

3.6 Analysis of the epithelial origin of islet derived MSCs 

The origin of MSCs isolated from pancreatic exocrine tissue remains unclear and 

the epithelial to mesenchymal transition process is one of the possible 

mechanisms suggested to explain the origin of these cells. This process is based 

on the decrease in the expression of the adhesion molecules between epithelial 

cells, EpCAM among others, followed by an increase in the mesenchymal 

markers, such as vimentin. As observed in Figure 3-2, cells grown from the islets 

of Langerhans showed a cluster of small spherical cells where the islet was 

seeded surrounded by spindle–shaped cells, with transitioning cells in between 

these two populations with different morphologies. However, at later passages 

the only cells present in the flask showed a spindle–like morphology. For this 

reason, it was important to determine if the small spherical cells were an 

epithelial population unable to proliferate or more likely, if an epithelial to 

mesenchymal transition was leading to the generation of MSCs. 



127 
 

3.6.1 Co-expression of epithelial and mesenchymal markers 
through passage 

Islets of Langerhans were isolated and between 10 to 20 islets or the cells 

obtained by the disaggregation of 10 to 20 islets were seeded in 4–well Nunc™ 

Lab-Tek™ Chamber Slides and left growing for 10 days. Cells were then fixed, 

permeabilised and stained for epithelial (EpCAM) and mesenchymal (vimentin) 

specific markers (Figure 3-11). As a control for positive staining, isotype controls 

for both EpCAM and vimentin were used. All slides were imaged with a Zeiss 

epifluorescence microscope using the appropriate fluorescent channels and 

magnifications. The lack of fluorescence in the isotype controls suggests that 

positive staining was specific for EpCAM and vimentin expression and that cells 

isolated from the islets of Langerhans co-express epithelial and mesenchymal 

traits.  

 

Figure 3-11. Cells isolated from the islets of Langerhans co-express epithelial and 
mesenchymal markers. 
Between 10 and 20 islets or the cells obtained from the disaggregation of 10 to 20 islets were 
seeded in 4-well Nunc™ Lab-Tek™ Chamber Slides and left growing for 10 days. Cells were then 
stained with EpCAM (GREEN) and Vimentin (RED), except for isotype controls (Vimentin control 
and EpCAM control). All samples were stained with specific fluorescent secondary antibodies. 
DAPI (BLUE) marks the cell nuclei. All slides were imaged with a Zeiss epifluorescence 
microscope using the appropriate fluorescent channels and magnifications. Images were prepared 
using Zen software. 
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Co–expression of mesenchymal antigens by epithelial cells within the pancreas 

has been described as an artefact of cell culture (Seeberger et al., 2009), for 

this reason, islets of Langerhans were isolated, disaggregated and stained with a 

cocktail of antibodies to study their epithelial origin by flow cytometry. After 

viability exclusion, two populations of different size were observed. The smaller 

population was highly positive for EpCAM and negative for vimentin while the 

larger co-expressed both markers (Figure 3-12, A). ~80% of the cells were only 

expressing EpCAM while no cells were just vimentin positive (Figure 3-12, B). In 

addition, from the cells expressing EpCAM, ~20% of the cells were vimentin 

positive (Figure 3-12, C).  

 

Figure 3-12. Cells isolated from the islets of Langerhans co-express epithelial and 
mesenchymal markers. 
Islets of Langerhans were disaggregated and stained with a cocktail of antibodies to study their 
epithelial origin by flow cytometry. After viability exclusion, two populations were observed which 
were analysed for EpCAM and Vimentin expression (A). The% of live cells which stained positive 
for each of the tested markers is graphed (B) and represented as pie-charts (C).  

 

As observed in Section 3.2, epithelial like cells were only observed at P1. For 

that reason, we wanted to determine if cells would still be expressing EpCAM at 

passage 3. Is MSCs were grown in 4-well Nunc™ Lab-Tek™ Chamber Slides and left 

growing for 10 days. Cells were then fixed, permeabilised and stained for EpCAM 

and vimentin specific markers (Figure 3-13). As a control for positive staining, 

isotype controls for both EpCAM and vimentin were used. All slides were imaged 

with a Zeiss epifluorescence microscope using the appropriate fluorescence 
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channels and magnifications. The lack of fluorescence in the isotype controls 

suggests that positive staining was specific for EpCAM and vimentin expression 

and that passage 3 Is MSCs co–express epithelial and mesenchymal traits.  

 

Figure 3-13. Is MCS co-express epithelial and mesenchymal markers at P3. 
Is MSCs were grown in 4-well Nunc™ Lab-Tek™ Chamber Slides and left growing until 80% 
confluence was reached. Cells were then stained with EpCAM (GREEN) and Vimentin (RED), 
except for isotype controls (Vimentin control and EpCAM control). All samples were stained with 
specific fluorescent secondary antibodies. DAPI (BLUE) marks the cell nuclei. All slides were 
imaged with a Zeiss epifluorescence microscope using the appropriate fluorescent channels and 
magnifications. Images were prepared using Zen software. 

 

3.6.2 Co-expression of CD45 and epithelial markers 

As determined in Section 3.5, there is a CD45 positive population within the Is 

MSCs. For this reason, we wanted to determine if there was a correlation 

between the epithelial origin of these MSCs and the CD45 expression. Islet of 

Langerhans were disaggregated and stained with a cocktail of antibodies to 

study their EpCAM and CD45 status by flow cytometry. After viability exclusion, 

cells were gated according to their EpCAM and vimentin expression as before, 

and those populations were gated for CD45 expression (Figure 3-14, A). ~90% of 

the cells were expressing CD45 (Figure 3-14, B). In addition, CD45 was co-

expressed with both EpCAM and vimentin, with ~20% of the cells co-expressing 

EpCAM, vimentin and CD45 (Figure 3-14, C).  
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Figure 3-14. ~90% of the cells isolated from the islets of Langerhans are CD45 positive and 
co-express EpCAM.  
Islets of Langerhans were disaggregated and stained with a cocktail of antibodies to study their 
epithelial origin by flow cytometry. After viability exclusion, cells were assessed for CD45, EpCAM 
and Vimentin expression (A). The% of live cells which stained positive for each of the tested 
markers (B) and the co-expression of them (C) has been graphed.  

 

As stated in Section 3.3, ~30% of the cells were CD45 positive at passage 3. To 

correlate CD45 expression with EpCAM expression, P3 Is MSCs were stained with 

a cocktail of antibodies. ~99% of the cells were CD73 positive, even the ~20% 

that was still EpCAM positive. EpCAM positive and negative cells were gated and 

their CD45 expression was studied (Figure 3-15, A). ~95% of the EpCAM negative 

cells were CD45 negative while ~93% of the EpCAM positive cells were CD45 cells 

https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/3.%20Phenotyping%20MSCs/14%20B%20Islets%20P1%20express%20CD45.png
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(Figure 3-15, B), suggesting an unknown correlation between the epithelial to 

mesenchymal transition process and CD45 levels in the islets of Langerhans.  

 

Figure 3-15. CD45 positive Is MSC population expresses the epithelial marker EpCAM at P3. 
Is MSCs were grown in culture until P3. MSCs were then stained with a cocktail of antibodies, to 
allow characterisation of MSCs by flow cytometry (A). The% of live cells which stained positive for 
each of the tested markers has been represented as pie-charts (B). 

 

Disaggregation of the islets of Langerhans showed that ~95% of the cells within 

the islets were CD45 positive, while after culture of those cells, more precisely 

at P3, ~30% of the cells were CD45 positive. To explain this, Ki67 proliferation 

marker was studied. Ki67 is a nuclear protein that is involved in ribosomal RNA 

transcription and therefore, can be used as a proliferation marker. P3 Is MSCs 

were stained with a cocktail of antibodies, viable cells were gated and live cells 

were analysed for their CD45 and Ki67 levels (Figure 3-16, A). To appropriately 

gate the Ki67 negative cells an isotype control was used (Figure 3-16, B). As 

shown in Figure 3-16, CD45 positive cells are not proliferating in culture 

efficiently as their Ki67 levels are barely detectable (Figure 3-16, C). 
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Figure 3-16. CD45 positive population is replication-defective.  
Is MSCs were grown in culture until P3. MSCs were then stained with a cocktail of antibodies, to 
allow characterisation of MSCs by flow cytometry (A). Positive staining was measured using 
isotype controls and gates were drawn appropriately (B). Percentage of proliferative cells in each 
population was determined and graphed (C). Each bar represents an n of 3 independent 
experiments and is graphed as mean ± SEM. Mann-Whitney test analysis was used for statistical 
assessment. p = 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** 
p < 0.001; **** p < 0.0001.  

 

3.7 Phenotype of MSCs during Inflammation 

MSCs are able to modulate the activity of the host immune responses, which 

makes them a very promising cell therapy in the treatment of chronic 

inflammatory diseases. As MSCs are going to be infused into pre–existing 

inflammatory environments, it is extremely important to understand the effect 

of inflammation on the phenotype of MSCs. Different inflammatory agents elicit 

different patterns of responses in the cells of the immune system; therefore, 
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seems reasonable to suppose that different inflammatory agents could lead to 

differences in the morphology and surface molecule phenotype of licensed MSCs. 

Thus, MSCs were stimulated in four different ways; MSCs isolated from one 

mouse donor were grown until P2 and split into 5 flasks and allowed to grow 

until 80% confluence was reached. Cells were then stimulated with a cocktail of 

cytokines involved in systemic inflammation (40ng/ml of TNF-α, IL-1β and IFN-ϒ), 

100 ng/mL LPS, 100 ng/mL LTA or 4 µg/mL Poly I:C for 24 hours. Even if 

homeostasis is hard to mimic in vitro, as control one flask was maintained in MSC 

culture medium and this is referred as resting MSCs, while stimulated MSCs are 

considered licensed MSCs- this terminology will be used throughout.  

3.7.1 Size and granularity of MSCs in resting vs inflammatory 
conditions 

Using flow cytometry, forward scatter (FSC) and side scatter (SSC) parameters 

were used to measure the size and granularity (respectively) of BM, Is and Ad 

MSCs under resting and inflammatory conditions (Figure 3-17). When MSCs were 

under non-stimulatory conditions, BM MSCs were significantly smaller than Is and 

Ad MSCs (BM = 103.75 [±2.47], Is = 120.33 [±2.05], Ad = 114.00 [±3.26]) (Figure 

3-17, A). Inflammatory stimulation did not influence the size except in LTA-

mediated stimulation of Is MSCs, where the FSC decreased from 120.33 (±2.05) 

to 106.33 (±2.86). Tissue origin and inflammation both influenced MSC 

granularity as the differences in granularity were statistically significant among 

the three different tissue derived MSCs in resting conditions (BM = 231.00 

[±4.32], Is = 133.33 [±2.86], Ad = 121.00 [±2.94]) (Figure 3-17, B). Cytokine-

mediated stimulation produced a statistically significant decrease of granularity 

in Ad MSCs, from 121.00 (±2.94) to 100.66 (±2.49). LPS-mediated stimulation 

produced a decrease in granularity in both BM and Is MSCs as SSC values from 

231.00 (±4.32) to 214.00 (±4.54) and from 133.33 (±2.86) to 111.33 (±2.05), 

respectively. LTA and Poly I:C-mediated stimulation produced no significant 

changes in the granularity of the cells from any tissue (compared to the control). 
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Figure 3-17. Size and granularity of MSCs under inflammatory stimulation.  
Following the experimental set up of Figure 3-18, flow cytometry was used to measure FSC and 
SSC to assess size (A) and granularity (B) of MSCs during resting and inflammatory conditions. 
Each bar represents an n of 3 independent experiments and is graphed as mean ± SEM. ONE 
WAY ANOVA with Tukey’s multiple comparison post-test analysis was used for statistical 
assessment of differences between MSC sources and licensing agent. Significant differences are 
marked with the appropriate number of asterisks. p = 0.05 was considered the limit for statistical 
significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  

 

3.7.2 Surface molecule phenotype of MSCs in resting vs 
inflammatory conditions  

Representative dot plots illustrate the percentage of Is MSCs expressing the 

markers CD73, CD146, CD166, CD271 and MHC Class I and MHC Class II during 

resting and inflammatory conditions (Figure 3-18, A). Positive staining was 

determined by the use of fluorescent minus one controls. The percentage of live 

BM, Is and Ad MSCs expressing these markers under resting and licensed 

conditions are graphed in Figure 3-18, B-G. 

Tissue source and licensing did not affect the number of live cells expressing 

CD73 as >97% of live cells were CD73 positive irrespective of tissue source or 

licensing condition. Under resting conditions, 98.80% (± 0.70) of BM MSCs, 98.53% 

(± 0.57) of Is MSCs and 99.16% (± 0.33) of Ad MSCs stained positive for CD73 

(Figure 3-18, B). The percentage of CD73 positive MSCs increased in a non-

significant manner after cytokine-mediated licensing in the BM (98.80% [± 0.70] 

to 99.14% [± 0.22]), Is (98.53% [± 0.57] to 99.00% [± 0.41]) and Ad MSCs (99.16% 

[± 0.33] to 99.46% [± 0.47]). Licensing with LPS (BM = 98.47% [± 0.49], Is = 

98.61% [± 0.54], Ad = 98.83% [± 0.30]), LTA (BM = 98.38% [± 0.58], Is = 98.90% [± 
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0.49], Ad = 98.96% [± 0.20]), and Poly I:C (BM = 98.60% [± 0.32], Is = 98.9% [± 

0.35], Ad = 98.40% [± 0.24]), led to a non-significant decrease in the number of 

CD73 positive MSCs. Median fluorescence intensity (MFI) was used to describe the 

median intensity and level of anti-CD73 antibody binding (Figure 3-19, A). Tissue 

source of MSCs did not affect the level of CD73 expression as under resting 

conditions the MFIs were as following: BM MSCs = 43 (± 3.26); Is MSCs = 44.66 (± 

2.05) and Ad MSCs = 38.86 (± 2.21). No statistically significant differences in the 

expression levels of CD73 were observed comparing resting to licensed BM 

(Cytokines = 48 [± 1.20], LPS = 45.66 [± 4.98], LTA = 43 [± 4.54], Poly I:C = 40.33 

[± 3.29]), Is (Cytokines = 44.33 [± 3.39], LPS = 49.66 [± 5.24], LTA = 45 [± 2.94], 

Poly I:C = 47.66 [± 4.10]) or Ad MSCs (Cytokines = 38.86 [± 3.72], LPS = 34.35 [± 

2.21], LTA = 34.08 [± 2.58], Poly I:C = 34.12 [± 1.65]).  

The cell surface glycoprotein CD146 is another marker commonly used for MSC 

identification (Junker et al., 2010). Even if >92.6% of MSCs from the three 

sources were positive for CD146, tissue source had an effect on the number of 

live cells expressing CD146 as BM MSCs had significantly fewer cells expressing 

this marker compared to Is and Ad MSCs (BM = 92.64% [± 1.44], Is = 98.21% [± 

0.74], Ad = 94.73% [± 2.73]) (Figure 3-18, C). Licensing of BM MSCs led to an 

increase of the percentage of CD146 expressing cells (Cytokines = 93.06% [± 

1.20], LPS = 95.20% [± 1.02], LTA = 93.53% [± 0.96], Poly I:C = 93.13% [± 1.23]) 

while licensing of Ad MSCs led to a decrease of the percentage of CD146 

expressing cells (Cytokines = 81.16% [± 1.62], LPS = 91.63% [± 1.32], LTA = 

86.53% [± 0.38], Poly I:C = 86.70% [± 4.98]). In the case of Is MSCs, cytokine-

mediated stimulation led to an increase of the percentage of CD146 expressing 

cells (Is = 98.21% [± 0.74] to 98.40% [± 0.53]) while LPS (96.20% [± 0.82]), LTA 

(98.15% [± 0.26]) and Poly I:C (97.38% [± 0.89]) licensing led to a decrease. 

These differences in percentage of live cells expressing CD146 were further 

confirmed by MFI analysis (Figure 3-19, B) of CD146. Under resting conditions, 

differences in the expression levels of CD146 were significant among MSCs from 

the three tissues (BM = 21.33 [± 3.29], Is = 44 [± 3.74], Ad = 78.33 [± 2.05]). 

Licensing of BM MSCs led to an increase of the level of CD146 expression in all 

the cases but when licensed with the cytokine cocktail (Cytokines = 20.66 [± 

1.69], LPS = 27.33 [± 2.86], LTA = 22.33 [± 2.86], Poly I:C = 24.5 [± 2.27]). 

Licensing of Is (Cytokines = 34.66 [± 3.29], LPS = 35.33 [± 2.86], LTA = 38.66 [± 
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2.05], Poly I:C = 40.33 [± 2.49]) and Ad MSCs (Cytokines = 57 [± 2.16], LPS = 

69.66 [± 2.86], LTA = 64 [± 2.44], Poly I:C = 70.66 [± 2.86]) led to a decrease in 

the median fluorescence intensity of CD146. Licensing only produced significant 

differences in Ad MSCs at both percentage of live cells expressing CD146 and 

CD146 expression levels.  

The membrane glycoprotein ALCAM, also known as CD166, is also a marker of 

MSCs, however, its expression levels are significantly variable. The percentage of 

ALCAM positive MSCs in resting conditions showed high variations from source to 

source with Ad MSCs expressing the highest number of live positive cells (35.56% 

[± 1.90]), followed by BM MSCs (22.82% [± 0.72]) and a very low number of cells 

expressing this marker in Is MSCs (0.47% [± 0.07]) (Figure 3-18, D). Cytokine 

licensing led to a decrease in the percentage of CD166 expressing MSCs from the 

BM (20.55% [± 0.52]), Is (0.39% [± 0.14]) and Ad (27.9% [± 2.90]), as well as LPS 

(BM = 17.99% [± 0.87], Is = 0.36% [± 0.15], Ad = 26.43% [± 3.21]) and Poly I:C (BM 

= 21.34% [± 1.78], Is = 0.39% [± 0.10], Ad = 31.76% [± 2.82]) licensing. LTA 

licensing produced an increase in the percentage of BM MSCs expressing CD166 

(from 22.82% [± 0.72] to 25.15% [± 1.86]), while it produced a decrease in the 

percentage of Is (from 0.47% [± 0.07] to 0.39% [± 0.13]) and Ad (from 35.56% [± 

1.90] to 29.36% [± 3.44]) MSCs expressing this marker. These differences in 

percentage of live cells expressing CD166 among tissue of origin and 

inflammatory agent were further confirmed by MFI analysis of CD166 (Figure 

3-19, C). Under resting conditions, differences in the expression levels of CD146 

were statistically significant among MSCs from all three tissues (BM = 15.76 [± 

2.15], Is = 3.86 [± 0.99], Ad = 1.63 [± 0.34]). Cytokine and Poly I:C licensing led 

to a decrease in the expression levels of CD166 in MSCs from the BM (Cytokine = 

15.06 [± 2.34]; Poly I:C = 14.86 [± 1.48]), Is (Cytokine = 3.68 [± 0.91]; Poly I:C = 

3.46 [± 0.44]) and Ad (Cytokine = 1.50 [± 0.14]; Poly I:C = 1.2 [± 0.29]). LPS and 

LTA licensing led to an increase in the expression levels of CD166 in MSCs from 

the BM (LPS = 16.56 [± 2.47]; LTA = 17.36 [± 3.02]), Is (LPS = 4.13 [± 1.16]; LTA = 

3.46 [± 0.53]) and Ad (LPS = 4.09 [± 3.61]; LTA = 1.25 [± 0.27]). Licensing 

produced statistically no significant differences in MSCs from any tissue source 

at both percentage of life cells expressing CD166 and CD166 levels.  
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The low-affinity nerve growth factor receptor, also known as CD271, is a marker 

of bone marrow MSCs with enhanced differentiation capacity for bone repair; it 

is expressed at variable levels in MSCs from different sources (Kohli et al., 2019). 

The percentage of CD271 positive MSCs in resting conditions showed very high 

and statistically significant variations from source to source where BM MSCs had 

the highest number of positive cells (40.21% [± 2.79]), followed by Ad MSCs, 

which had a low number of cells expressing this marker (3.71% [± 0.67]) and a 

very low number of Is MSCs positive for the expression of CD271 (0.41% [± 0.02]) 

(Figure 3-18, E). MSC licensing produced no significant differences in the 

percentage of MSCs positive for this marker from any tissue source except for BM 

MSCs after 24 hours of cytokine cocktail, LPS or LTA licensing, but not Poly I:C 

licensing. Licensing of BM MSCs with cytokines (39.9% [± 1.95]), LPS (33.36% [± 

2.50]) and Poly I:C (38.73% [± 4.45]) produced a decrease of the percentage of 

positive cells expressing this marker, while LTA licensing produced an increase 

(from 40.21% [± 2.79] to 41.09% [± 2.57]). Licensing of the Is MSCs produced an 

increase of the CD271 positive cells percentage (Cytokines = 0.52% [± 0.05], LPS 

= 0.51% [± 0.01], LTA = 0.57% [± 0.02], Poly I:C = 0.55% [± 0.07]) while Ad MSCs 

licensing produced a decrease of CD271 positive cells percentage (Cytokines = 

3.01% [± 0.40], LPS = 1.71% [± 0.17], LTA = 1.33% [± 0.10], Poly I:C = 2.83% [± 

0.71]). These differences in percentage of live cells expressing CD271 among 

tissue of origin and inflammatory agent were further confirmed by MFI analysis 

(Figure 3-19, D) of CD271. Under resting conditions, BM MSCs had significantly 

higher expression levels of CD271 compared to Is and Ad MSCs (BM = 15.76 [± 

2.15], Is = 3.86 [± 0.99], Ad = 1.63 [± 0.34]). MSC licensing had no effect in the 

expression levels of CD271 in Is (Cytokines = 4.29 [± 1.18], LPS = 4.75 [± 1.19], 

LTA = 4.63 [± 1.06], Poly I:C = 4.4 [± 0.29]) and Ad MSCs (Cytokines = 1.1 [± 

0.24], LPS = 1.11 [± 0.13], LTA = 1.08 [± 0.19], Poly I:C = 1.55 [± 0.22]) and only 

had a significant effect in LPS-mediated licensing in BM MSCs (Cytokines = 42.66 

[± 2.49], LPS = 39.16 [± 1.43], LTA = 41.56 [± 4.37], Poly I:C = 42.33 [± 3.39]).  

Under resting conditions, <2% of the MSCs isolated from the three tissues were 

positive for MHC Class II. Despite the low number of cells expressing this marker, 

tissue source had an effect on the number of live cells expressing MHC Class II as 

Is MSCs (0.24% [± 0.07]) had significantly fewer positive cells for this marker 

compared to BM (1.64% [± 0.39]) and Ad MSCs (1.94% [± 0.38]) (Figure 3-18, F). 
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BM MSC licensing by cytokines, LTA and Poly I:C led to an increase of the 

percentage of cells expressing MHC Class II (from 1.64% [± 0.39] to 5.14% [± 

0.28], 2.02% [± 0.24] and 1.85% [± 0.18] respectively), while LPS licensing led to 

a decrease of the percentage of cells expressing MHC Class II, from 1.64% (± 

0.39) to 1.54% (± 0.28); only cytokine-mediated licensing produced a statistically 

significant change in the percentage of BM MSCs expressing this marker. 

Licensing of Is MSCs led to a statistically non-significant decrease of the 

percentage of cells expressing MHC Class II (Cytokines = 0.19% [± 0.06], LPS = 

0.12% [± 0.03], LTA = 0.16% [± 0.04], Poly I:C = 0.12% [± 0.02]). In the case of Ad 

MSCs, licensing of these cells led to a statistically non-significant decrease of the 

percentage of cells expressing MHC Class II when stimulated with cytokines (from 

1.94% [± 0.38] to 1.36% [±0.28]), while LPS, LTA and Poly I:C licensing led to a 

statistically non-significant increase of the percentage of cells expressing MHC 

Class II (LPS = 1.97% [± 0.30], LTA = 1.53% [± 0.33], Poly I:C = 1.76% [± 0.28]). 

These differences in percentage of live cells expressing MHC Class II among 

tissue of origin and inflammatory agent were further confirmed by MFI analysis 

(Figure 3-19, E). Under resting conditions, tissue source of origin had no 

significant effect on the expression levels of MHC Class II (BM = 2.63 [± 0.77], Is = 

2.4 [± 0.37], Ad = 1.15 [± 0.09]). Licensing of MSCs produced no significant 

alteration on the median fluorescence intensity of the MHC Class II antibody in 

MSCs isolated from the BM (Cytokines = 6.56 [± 0.56], LPS = 3.52 [± 0.69], LTA = 

3.17 [± 0.50], Poly I:C = 3.36 [± 0.60]), Is (Cytokines = 2.7 [± 3.38], LPS = 3.38 [± 

0.53], LTA = 2.72 [± 0.49], Poly I:C = 2.16 [± 0.24]) and Ad (Cytokines = 1.20 [± 

0.29], LPS = 1.33 [± 0.27], LTA = 1.56 [± 0.14], Poly I:C = 1.23 [± 0.21]) with the 

exception of cytokine-mediated licensing in BM MSCs (from 2.63 [± 0.77] to 6.56 

[± 0.56]).  

Under resting conditions, the percentage of MHC Class I positive MSCs showed 

high variations from source to source with BM MSCs expressing the highest 

number of live positive cells (25.21% [± 2.15]), followed by Is MSCs (10.01% [± 

1.14]) and almost an inexistent number of cells expressing this marker in Ad 

MSCs (0.68% [± 0.02]) (Figure 3-18, G). All the licensing agents were able to 

produce a statistically significant increase in the percentage of positive cells for 

MHC Class I in the BM MSCs; this increase was highest when cells were treated 

with LPS (Cytokines = 48.5% [± 1.96], LPS = 78.95% [± 2.43], LTA = 28.49% [± 
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1.34], Poly I:C = 30.73% [± 1.82]). Within the Is MSCs, all the stimulatory agents 

were able to produce a statistically significant increase in the percentage of 

cells expressing this marker (Cytokines = 80.34% [± 2.93], LPS = 24.073% [± 2.27], 

LTA = 11.376% [± 1.39], Poly I:C = 13.56% [± 2.07]. Very few cells within the Ad 

MSCs were positive for MHC Class I and only cytokine produced licensing 

increased this percentage in a statistically significant manner, from 0.68% 

(±0.02) to 23.9% (±3.52); LPS-mediated licensing led to a 0.76% [± 0.10] of the 

cells expressing the marker while LTA and Poly I:C produced a slight decrease of 

the percentage of cells expressing the marker (LTA = 0.66% [±0.11], Poly I:C = 

0.56% [±0.08]). These differences in percentage of live cells expressing MHC 

Class I among tissue of origin and inflammatory agent were further confirmed by 

MFI analysis (Figure 3-19, F). Despite the high variation in the percentage of 

MSCs positive for MHC Class I among tissue source, under resting conditions 

tissue source of origin had no significant effect on the expression levels of MHC 

Class I (BM = 24.93 [± 2.80], Is = 19.42 [± 2.99], Ad = 16 [± 0.81]). Cytokine and 

LPS-mediated licensing produced a statistically significant increase in the 

expression levels of MHC Class I in BM MSCs (Cytokines = 41.97 [± 4.52], LPS = 

71.27 [± 6.50], LTA = 33.27 [± 4.00], Poly I:C = 30.73 [± 1.82]). In the case of Is 

MSCs, only cytokine-mediated licensing produced a statistically significant 

increase in the expression levels of anti-MHC Class I (Cytokines = 46.03 [± 4.00], 

LPS = 22.68 [± 3.48], LTA = 18.54 [± 5.12], Poly I:C = 17.56 [± 4.44]). On the 

other hand, licensing of Ad MSCs produced no effect in the expression levels of 

MHC Class I (Cytokines = 21 [± 1.63], LPS = 16 [± 0.81], LTA = 14.33 [± 1.24], Poly 

I:C = 15 [± 2.44]).



 

 

 
 

Figure 3-18. Surface molecule phenotype of MSCs following inflammatory stimulation.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/mL of IFN-

ϒ, TNF-α and IL-1β), 100 ng/mL LPS, 100 ng/mL LTA or 4µg/mL Poly I:C. Unstimulated cells were 

left growing in MSC culture medium as a control. 24 hours after stimulation, MSCs were stained 
with a cocktail of antibodies, to allow characterisation of MSCs by flow cytometry (A). The% of live 
MSCs which stained positive for each of the tested markers is graphed to compare expression 
between MSC tissue sources (B-G). Each bar represents an n of 3 independent experiments and is 
graphed as mean ± SEM. ONE WAY ANOVA with Tukey’s multiple comparison post-test analysis 
was used for statistical assessment of differences between MSC sources and licensing agent. 
Significant differences are marked with the appropriate number of asterisks. p = 0.05 was 
considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  
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Figure 3-19. MFI of surface molecules expressed on MSCs following inflammatory 
stimulation. 
Data shown in Figure 3-18 has been represented as mean fluorescence intensity (A-F). Each bar 
represents an n of 3 independent experiments and is graphed as mean ± SEM. ONE WAY ANOVA 
with Tukey’s multiple comparison post-test analysis was used for statistical assessment of 
differences between MSC sources and licensing agent. Significant differences are marked with the 
appropriate number of asterisks. p = 0.05 was considered the limit for statistical significance; * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.  

 

In summary, CD73 surface marker staining detected the highest percentage of 

positive cells (> 97%) of all markers tested and there was no significant change in 

its expression after 24 hours of stimulation. CD146 staining detected a high 

percentage of positive cells (>92.6%) by MSCs from every tissue source, where Is 

MSCs had highest percentage of cells staining positive for this marker and Ad 

MSCs had the highest expression levels of CD146. 24 hours of stimulation did not 

produce any significant effect on the percentage of cells expressing CD146 in BM 

and Is MSCs but produced a decrease in the percentage of cells expressing this 

marker on Ad MSCs. CD166 and CD271 showed tissue specific expression levels, 

where BM MSCs had the highest percentage of positive cells and Ad MSCs the 
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lowest percentage of cells expressing these markers; inflammatory stimulation 

had little effect on these markers as it produced no change in the percentage of 

cells expressing this marker in Is MSCs and very subtle changes in BM and Ad 

MSCs after 24 hours cytokine- and LPS-mediated inflammation. Despite MHC 

Class II expression levels being very low in MSCs from every source, there were 

statistically significant differences in the percentage of positive cells among 

tissue sources. 24 hours of stimulation with the different licensing agents 

produced no statistically significant variations except for cytokine-mediated 

stimulation in BM MSCs. The percentage of positive cells for MHC Class I was 

affected by tissue source; however, this percentage increased in MSCs from the 

three tissues after cytokine stimulation and in BM and Is MSCs after LPS 

stimulation. LPS-mediated licensing produced the highest increase in the 

percentage of positive cells for MHC Class I in BM MSCs while Is MSCs responded 

better to cytokine-mediated stimulation.  

 

3.8 Discussion and conclusions 

During the past decades, MSCs have been extensively investigated both in basic 

and clinical research; however, there is a lot of inconsistency and controversy in 

this topic. Despite the efforts of the ISCT to establish minimum requirements for 

what constitutes a mesenchymal stromal cell in humans, there are still 

significant sources of variability during the manufacture of these cells, including 

isolation protocols, culture conditions and the intrinsic variability among source 

material. In order to reduce manipulation and contamination risk and to create a 

cellular product for clinical applications that could comply with Good 

Manufacturing Practice (GMP) standards, the aim of this thesis was to establish a 

standardised easily reproducible methodology for isolation and culture of murine 

MSCs that produced consistent results. A further aim of this chapter was to 

determine if the developed methodologies for murine MSC isolation and culture 

produced cells that satisfied the minimal criteria established by the ISCT to be 

considered MSCs. It is important to mention that ISCT criteria were established 

for the identification of human MSCs and although adherence and trilineage 

differentiation are characteristics of murine MSCs, the surface marker phenotype 



143 
 
of murine MSCs is not well characterised. In fact, induction of CD45 expression 

on murine BM MSCs has already been described (Yeh et al., 2006). 

Moreover, we aimed to determine if tissue of origin could influence the 

phenotype of mouse MSCs. Finally, as the ultimate aim is to use MSCs as cellular 

therapeutics where they would most likely be infused in inflammatory 

environments, and as pro-inflammatory stimulation leads to the production of 

immunomodulatory factors by MSCs, the phenotype of MSCs was also assessed 

under different inflammatory conditions (Krampera, 2011).  

Since their discovery in 1976, MSCs have been described as plastic adherent, 

spindle-shaped cells; therefore, the ISCT established this morphology as their 

first criteria for defining MSCs (Horwitz et al., 2005). BM and Ad MSCs satisfied 

this criterion from isolation to later passage (P3), while Is MSCs did not show this 

morphology until P2. Is MSCs were isolated from islets of Langerhans. Islets of 

Langerhans are clusters of 5 mixed populations of endocrine cells, more 

precisely, -cells, -cells, -cells, ε-cells and γ-cells, which produce glucagon, 

insulin, somatostatin, ghrelin and pancreatic polypeptide respectively. β-cells 

have been described to undergo an EMT process when expanded in monolayer 

culture, giving rise to MSCs (Moreno-Amador et al., 2018), which would explain 

the mixture of morphologically distinct populations observed at P1.  

ISCT states that these spindle–shaped cells must be able to differentiate into 

adipocytes, chondrocytes and osteocytes (Dominici et al., 2006), criterion that 

was fulfilled by cells isolated from all three tissues.  

Lastly, in order to qualify as MSCs, multipotent spindle–shaped cells must 

express an array of mesenchymal markers including CD90, CD105, CD73 and lack 

the B cell marker CD19, the primitive haematopoietic progenitor marker CD34, 

the pan–leukocyte marker CD45 and the monocyte/ macrophage marker CD11b. 

It is important to keep in mind that ISCT criteria were established for human 

MSCs; thus, variations might apply, and have been described, for murine MSCs. 

Sca-1 is the most recognised haematopoietic stem cell marker in mice but for 

consistency reasons with the ISCT criteria CD34 primitive haematopoietic 

progenitor marker was used for haematopoietic contamination exclusion. 

Ideally, these three criteria should be enough to identify MSCs; however, 
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fibroblasts are plastic adherent spindle-shaped cells that are positive for the 

expression of the surface markers CD73, CD90 and CD105 and that have proven 

tripotency (Haniffa et al., 2009). For this reason, other markers are often used 

to identify MSCs such as CD146, which has weak expression on fibroblasts and 

high for MSCs (Lv et al., 2014), CD166 and CD271. However, the expression of 

these markers is not consistent among tissue source and the percentage of 

positive cells expressing these surface markers fluctuate through passage (Kang 

et al., 2016, Maleki et al., 2014).  

CD90, also known as Thy-1, is a glycophosphatidylinositol-anchored protein that 

was first discovered in mouse T cells but is predominantly expressed on subsets 

of fibroblast, lymphocytes and stem cells (Sauzay et al., 2019). As a cell surface 

glycoprotein, its role is related to cell-cell and cell-matrix interactions within an 

inflammatory and wound healing context (Leyton and Hagood, 2014). MSCs 

isolated from the BM, Is and Ad expressed very high levels of CD90 with more 

than 98% of the cells being positive for this marker regardless of tissue source. 

CD105, also known as Endoglin, is a component of the TGF-β receptor complex 

expressed in endothelial cells, haematopoietic stem cells and MSCs, which is 

involved in blood vessel development, erythropoiesis and myelopoiesis (Cho et 

al., 2001) and neovascularisation (Fonsatti et al., 2003).  

Human MSCs have been stated to be CD105 positive, however, there are 

discrepancies regarding the CD105 phenotype in murine MSCs. Anderson et al. 

stated that CD105 is induced in a subpopulation of murine MSCs early upon in 

vitro culture giving rise to CD105+ and CD105- populations of MSCs that have 

almost identical surface marker phenotypes (CD29+CD44+Sca1+MHC Class I+ and 

CD45-CD11b-CD31-) but which vary in their differentiation and immunoregulatory 

properties (Anderson et al., 2013). In addition, culture medium influences 

expression levels of CD105; serum-supplemented media contains TGF-β, which 

induces CD105 expression leading to the downregulation of its surface expression 

(Mark et al., 2013). Despite MSCs having been described to have variable levels 

of CD105, tissue source of origin was not found to produce a change in the 

surface expression of CD105 as more than 98% of BM, Is and Ad MSCs stained 

positive for this marker.  
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Similarly, CD73 was also expressed by cells from every tissue source with more 

than 98% of the cells expressing this marker. CD73, an enzyme that converts 

adenosine monophosphate to adenosine, has been linked to the regulatory 

phenotypes of T and NK cells, as well as to MSCs. Extracellular ATP acts on many 

immune cells to promote inflammation while the ATP metabolite adenosine is 

mostly an anti-inflammatory molecule, which makes CD73 essential for the 

modulation of the immune response (Regateiro et al., 2013). In addition, CD73 is 

involved in tissue injury (Ryzhov et al., 2019), lymphocytes adhesion to the 

epithelium (Linden and Cekic, 2012) and is a key regulatory molecule for cancer 

cell proliferation, migration and invasion in vitro and tumour angiogenesis and 

immune escape in vivo (Chen et al., 2019). The high number of positive cells for 

CD90, CD105 and CD73 in MSCs from all three tissue sources suggests an 

immunomodulatory role within the context of inflammation.  

Even if the positive expression of these markers enables the characterisation of 

MSCs, the expression of these markers is not MSC exclusive, and it is essential to 

ensure that they lack other cell-type associated markers. As CD90, CD105 and 

CD73 are all present in haematopoietic stem cells, ensuring that MSCs lack the 

primitive haematopoietic progenitor marker CD34, a transmembrane 

phosphoglycoprotein expressed by haematopoietic stem cells, was essential. B 

cells might adhere to MSCs during isolation and remain viable in culture; 

therefore, B cell exclusion was done by CD19 B cell marker analysis. CD73 is 

expressed by T cells and macrophages and monocytes which are the cell types 

most likely to be found in MSC cultures. Thus, the pan-leukocyte marker CD45 

and the monocyte and macrophage marker CD11b are essential for exclusion of 

these cells.  

The percentage of live cells positive for CD45 was <2% for Ad MSCs, ~30% for Is 

MSCs and ~85% BM MSCs while the percentage of cells positive for CD11b was ‹2% 

for Ad MSCs, ~25% for Is MSCs and ~85% for BM MSCs. Although induction of CD45 

expression on murine BM MSCs had already been described (Yeh et al., 2006), 

cells in the current study were further characterised for expression of CD64, 

which is only expressed in macrophages and monocytes, and it was observed that 

the expression of this marker was minimal in the cells isolated from the three 

sources. Thus, it may be concluded that the isolated cells were not of myeloid 
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origin. In addition, macrophages and other leukocytes lack the trilineage 

potential, which further confirms that these cells were not from myeloid origin. 

MSCs are similar to fibroblasts as they have a similar morphology and are plastic 

adherent (Haniffa et al., 2009). Moreover, human dermal fibroblasts have also 

been shown to have tripotency (Junker et al., 2010) and immunoregulatory 

functions similar to MSCs (Haniffa et al., 2007) and to express most MSC markers 

such as CD105, CD73 and CD90 (Schwab et al., 2008). Fibroblast contamination is 

a potential impediment for regenerative medicine due to their senescence and 

transformation upon long-term expansion (Zhou et al., 2006); which makes 

proper MSC isolation essential. CD146 expression has found to be weak for 

fibroblasts and high for MSCs (Lv et al., 2014) and can therefore be used for 

discrimination between these two cell types. BM, Is and Ad MSCs all had a very 

high percentage of positive cells for CD146 (BM = 92.64% [±1.44], Is = 98.21% 

[±0.74], Ad = 94.73% [±2.73]), which definitely shows that the cells isolated from 

these tissue sources can be considered MSCs. 

Isolation of murine MSCs from exocrine pancreatic culture has been reported in 

the literature; however, to my knowledge, no studies have reported isolation of 

murine MSCs from adult islets of Langerhans. Human Is MSCs have previously 

been isolated and characterised but CD45 expression had not been characterised 

in Is MSCs before. Analysis of the CD45 positive cells isolated from the islets of 

Langerhans confirmed the presence of a CD45 positive population, which was 

smaller in size, and less complex in granularity, than the CD45 negative Is MSCs, 

and which had the potential to differentiate into adipocytes, chondrocytes and 

osteoblasts.  

There is controversy regarding the origin of Is MSCs. BM MSCs were suggested to 

migrate to the pancreas contributing to pancreatic regeneration and turnover 

(Song et al., 2013). However, after transplantation of green fluorescent protein 

(GFP) positive, sex-mismatched bone marrow into mice, no GFP positive β-cells 

were found, which challenged this hypothesis (Lechner et al., 2004). Epithelial 

to mesenchymal transition, a process in which epithelial cells change their 

phenotype to become mesenchymal cells, has been suggested as a mechanism 

leading to the generation of MSCs from cultured endocrine pancreas (Moreno-

Amador et al., 2018, Gershengorn et al., 2004). EMT would explain the different 
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morphologies observed when assessing the cell morphology of Is MSCs at P1. The 

small, polarised, epithelial cells start decreasing the expression of the adhesion 

molecules between epithelial cells, losing their apical-basal polarity and 

becoming spindle in shape while an increase in the mesenchymal markers takes 

place. During EMT, cells do not necessarily exist in “pure” epithelial or 

mesenchymal states; there are hybrid populations that share mixed features, 

which are termed as the intermediate cell states (ICSs). At P1, polarised and 

spindle shaped cells could be observed, while at later passages only the spindle 

shaped cells were present. Immunocytochemistry and flow cytometry analysis 

confirmed that soon after isolation these cells were positive for EpCAM and that 

only a small percentage, ~20% of the cells, were co-expressing vimentin, the 

mesenchymal marker. However, at P3, most of the cells had completed the EMT 

process with only ~20% of ICSs co-expressing EpCAM and vimentin, which 

confirms the hypothesis of pancreatic MSCs having an EMT origin. While the 

exact functions of ICSs are unclear, they have important roles in embryogenesis, 

tissue development, and pathological processes such as cancer metastasis. In 

addition, ICSs have been described to have greater potency/ stemness than 

“pure” mesenchymal cells, which makes them better for reprogramming (Sha et 

al., 2019).  

MSCs are being evaluated as cellular therapeutics for inflammatory conditions 

and diseases, for this reason, understanding their phenotype under these 

conditions is of significance importance as it could provide preferential tissue 

sources for MSC isolation for cell therapeutics (Galipeau, 2016).  

T cells are able to eliminate infected cells by closely interacting with other cells 

and discriminating the ones that have been affected by a pathogenic threat. 

Antigen presentation is crucial for discrimination and is carried by the major 

histocompatibility complex, which displays on the cell surface information about 

the different antigens that the cells are processing or have ingested. On the one 

hand, endogenous antigens, which can be self or foreign, are presented to 

cytotoxic T lymphocytes as peptides bound to MHC Class I molecules, which is 

expressed on all nucleated cells; while antigens engulfed into endocytic 

compartments are presented to helper T cells (CD4) as peptides bound to MHC 

Class II molecules, which are expressed in antigen presenting cells such as B 
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cells, monocytes, macrophages and dendritic cells and on epithelial cells 

following inflammatory signals. In this way, T cells can interact with these 

presented peptides to identify and eliminate cells expressing microbial genes, 

mutant sequences or foreign polymorphic genes from transplants. As nucleated 

cells, MSCs express MHC Class I molecules, however, they trigger a very weak 

cellular and humoral allogenic immune response due to their minimal expression 

of MHC Class II and the absence of co-stimulatory molecules CD40, CD40 ligand, 

CD80 and CD86 (Ryan et al., 2005). In line with the literature, BM, Is and Ad 

MSCs express MHC Class I under resting conditions which was upregulated after 

MSC licensing (Schu et al., 2012). In addition, the expression of MHC Class II on 

BM, Is and Ad MSCs was very low under resting conditions but as expected 

(Griffin et al., 2013), was slightly upregulated after MSC licensing. Nevertheless, 

MHC Class II levels were still low, which suggests an ability to escape 

alloreactive CD4+ T cells recognition. 

CD73 expression levels were not affected by licensing or tissue source and were 

very high. One study suggests that the role of CD73 in MSCs is related to 

attenuating CCR2+ macrophage infiltration and upregulating several anti-

inflammatory genes producing a pronounced anti-inflammatory activity (Tan et 

al., 2019).  

Regarding CD146, MCAM, is a commonly used MSC marker with reported variable 

expression depending on MSC tissue of origin (Kang et al., 2016). However, here 

we found little variation, as all MSC sources showed very high expression of 

CD146, Ad MSCs having the highest expression and BM MSCs the lowest. 

Considering the percentage of live cells expressing this marker, MSC licensing 

slightly increased CD146 expression in BM MSCs while the overall trend in Is and 

Ad MSCs was a decrease of expression of this marker after licensing. One study 

suggests that CD146 is involved in MSC trans-endothelial migration, therefore the 

lower the levels of CD146 the easier it could be for the cells to be retained 

within the inflammatory site and immunomodulate it (Ode et al., 2011).  

Like CD146, CD166 is a marker of MSCs described to have very variable levels 

among MSCs (Szepesi et al., 2016). In line with the literature, the percentage of 

MSCs positive for CD166 under resting conditions showed extensive variation 

from source to source with Ad MSCs expressing the highest levels among the 
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compared sources of MSCs. This large variation was exaggerated when MSCs were 

maintained under inflammatory conditions, however the overall trend of MSC 

CD166 expression was to downregulate when stimulated. CD166, also known as 

activated leukocyte cell adhesion molecule, is involved in cell adhesion and 

migration so as with CD146, its downregulation could be a mechanism used by 

MSCs to minimise their migration and be retained within the inflammatory site 

to fulfil their immunomodulatory role (Swart, 2002).  

CD271 is a universal marker for MSCs; however, its expression has been linked 

with a specific subpopulation of trabecular bone-associated MSCs (Attar et al., 

2013), which correlates with the fact of BM MSCs express significantly high levels 

of this marker and very low expression of CD271 by Ad and Is MSCs. BM and Ad 

MSCs downregulated CD271 expression after stimulatory licensing while Is MSCs 

slightly upregulated their almost inexistent CD271 levels. CD271 is a marker of 

interest as it is involved in cell growth and differentiation; CD271+ cells have 

increased multipotency therefore methodologies to induce its expression in 

MSCs, as MSC co-culture with endothelial cells, are being developed, 

(Bellagamba et al., 2018).  

One of the routes of delivery of MSCs into patients is intravenous infusion, but 

tracking of the cells shows that only a small percentage of the cells home and 

remain in the target tissue which could be due to MSC trapping in the lung after 

intravenous delivery (Fischer et al., 2009, Schrepfer et al., 2007). However, 

MSCs are able to exert their anti-inflammatory role without homing to target 

inflammatory sites in significant numbers and despite the fact that the cells 

disappear within short periods of time (Kurtz, 2008). The size of the cells could 

be an essential factor involved in the lung trapping, for this reason, the size of 

MSCs was compared among tissue sources and after licensing. BM MSCs are 

slightly smaller than Is and Ad MSCs, which suggests that they could be a better 

source of MSC for intravenous delivery. Inflammatory licensed MSCs have been 

described to exhibit an increased immunomodulation in inflammatory 

environments due to upregulation of anti-inflammatory molecule expression 

(Cassano et al., 2018). Some of these molecules are stored in granules, for this 

reason, we compared the granularity of MSCs from different tissues before and 

after stimulation. Under resting conditions, BM MSCs were the most granular 
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cells. Stimulation of MSCs produced little variation or decreased the granularity 

of MSCs from every tissue. 

3.8.1 Conclusions  

Altogether, the expression of the widely used MSC markers CD90, CD105 and 

CD73 remained constant among tissue source and inflammatory stimulus. Cells 

isolated from the bone marrow and islets of Langerhans were CD45+ CD11b+ and, 

for this reason, did not meet ISCT criteria. However, fibroblast and monocyte/ 

macrophage contamination were excluded from all the cultures. ISCT criteria 

were established for the identification of human MSCs and the surface marker 

phenotype of murine MSCs is not so well characterised. For this reason, based on 

plastic adherence, trilineage differentiation potential and CD90, CD105 and 

CD73 expression, we determined that cells isolated from the bone marrow, islets 

of Langerhans and adipose tissue were MSCs regardless of CD45 and CD11b 

expression. Moreover, specific criteria to enable the identification of murine 

MSCs should be established. CD146, CD166 and CD271 levels varied among tissue 

source, which suggests that MSC tissue of origin has an effect on migratory and 

differentiation potential. More importantly, MHC Class I and II molecules were 

upregulated under inflammatory licensing, with BM MSCs having the highest MHC 

Class II levels and Is MSCs having the highest MHC Class I levels after stimulation. 

Regarding the use of MSC as cellular therapeutics, these results might have 

implications in selection of tissue source of origin for treatment. In respect of 

size and granularity, BM MSCs are the smallest and most granular among the 

compared MSCs, which makes them, so far, the best candidates for cell therapy.
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4 Profiling of MSC chemokine and chemokine 
receptor expression at the transcript and protein 
level  

4.1 Introduction and aims 

In Chapter 3, thorough characterisation determined that cells isolated from 

adipose tissue satisfied the criteria of the ISCT and can therefore be considered 

MSCs. Cell isolated from the bone marrow and islets of Langerhans retain the 

haematopoietic markers CD45 and CD11b, and thus, do not meet ISCT criteria for 

human MSCs, but nonetheless, are MSCs. The overall aim of this thesis was to 

study the behaviour of BM, Is and Ad MSCs by studying their interaction with the 

immune system in order to better understand their regenerative and 

immunomodulatory potential to be used as cellular therapeutics. According to 

the United States National Library of Medicine, as of 26th of July of 2019, MSCs 

have received nine cell therapy approvals and one tissue engineering approval 

and 8133 studies are being carried out examining their efficacy in a variety of 

clinical applications such as bone, myocardium, kidney and liver repair and co–

transplantation with haematopoietic stem cells among others (Horwitz et al., 

1999, Baron et al., 2010, Mao et al., 2017, Ezquer et al., 2017, Saberi et al., 

2019).  

One critical aspect of MSC use as cellular therapeutics is related to the delivery 

method. The optimal method should provide the highest regenerative benefit 

with the lowest side effects. The most used routes of MSC administration, 

outside tissue–engineering-based methods, are direct injection into the tissue of 

interest and systemic infusion, both intravenously or intra–arterially. Systemic 

infusion is much less invasive than direct administration while direct injection 

should have the advantage of a much more precise localization of the cells. 

However, an engraftment study using three different administration methods in 

cardiac disease showed that only 1 to 5% of delivered cells engraft within the 

target site regardless of the delivery route (Freyman et al., 2006). In addition of 

being less invasive, systemic infusion enables easy access to oxygen and 

nutrients, which is why systemic infusion is often the preferred method for MSC 

delivery (Sarkar et al., 2011). Systemic infusion of MSCs leads to engraftment of 

MSCs mostly in the lungs, which is likely generated by the small capillary size, 
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the large size of the cells and their strong adhesion properties. However, MSCs 

can also be found in the spleen, liver, bone marrow, thymus, kidney and skin, 

seconds or minutes after IV injection, but, it is still unknown if MSCs migrate 

specifically to these organs or if they just get trapped (Devine et al., 2003, 

Fischer et al., 2009, Freyman et al., 2006, Schrepfer et al., 2007).  

MSC entrapment represents a major bottleneck to reach the full therapeutic 

potential of MSC-based therapies. In order to improve this situation, better 

understanding of in vivo migration to target tissues and cell persistence within 

them is essential. In the presence of inflammation, 1 to 5% of delivered cells are 

able to escape the lung entrapment and migrate and home within the target 

site, which suggests that chemotactic stimuli could be guiding infused MSCs to 

sites of inflammation (Rustad and Gurtner, 2012). Chemokines are master 

regulators in immune cell trafficking under resting and inflammatory conditions; 

for this reason, we hypothesised that chemokines and their receptors should be 

involved in the homing of these cells to, and persistence at, sites of 

inflammation. Human and murine MSCs have been described to constitutively 

express chemokines and their receptors. CCR1, CCR7, CXCR2, CXCR4, CXCR6 and 

CX3CR1 are all important in the context of homing but the expression of these 

markers varies among reports in the literature due to tissue source of the cells, 

cell culture methods and passage number of the cells. Murine BM MSCs have 

been described to express CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR9, 

CCR10, CXCR3, CXCR4 and CXCR7 and to have functional CCR3, CCR4, CCR5, 

CCR7, CCR10 and CXCR4 (Alexeev et al., 2013). Ad MSCs have higher CXCR4 

expression and migration capacity than BM MSCs and more interestingly, the 

chemokine receptor profile is sensitive to time in culture as the expression of 

chemokine receptors CCR1, CCR7, CXCR1, CXCR2, CXCR4 and CX3CR1 was 

decreased after passage (Heirani-Tabasi et al., 2017). In addition, expression of 

chemokine receptors and ligands can be upregulated by cytokine-mediated 

stimulation (Croitoru-Lamoury et al., 2007). All this together suggests that the 

tissue source of origin of the MSCs is associated with differential chemokine 

receptor expression and therefore, different homing potential to sites of 

inflammation, which could be of relevance when used as cellular therapeutics.  
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In a similar way, in vitro cultured MSCs have been proven to secrete a wide 

range of chemokines, such as CCL2, CCL3, CCL4, CCL5, CCL20, CXCL1, CXCL2, 

CXCL5, CXCL8, CXCL12 and CX3CL1, and to recruit cells from the immune 

system; for this reason, we consider that understanding MSC chemokine 

secretion will enable us to predict the interaction of these cells with the 

immune system and therefore, their immunomodulatory potential in an in vivo 

setting (Chen et al., 2008, Ren et al., 2008, Meirelles Lda et al., 2009). 

As chemokine receptors seem to be involved in MSC homing to sites of 

inflammation, and chemokine ligands attract leukocytes towards them, we 

hypothesised that chemokines could have an extremely important role in the 

immunomodulatory potential of MSCs as they have the potential to orchestrate 

the migration and positioning of immune cells within the tissues. Therefore, the 

aims of this chapter were to i) characterise chemokine and chemokine receptor 

transcript and protein levels in MSCs, ii) identify the effect of MSC tissue source 

of origin in the expression of these molecules and iii) study how MSC licensing 

alters MSC chemokine and chemokine receptor transcription and expression.  

 

Results 

Throughout this results section, the transcription and expression profile of 

chemokines and their receptors is described in detail in each section under 

resting and inflammatory conditions. Transcriptional profiling enabled the 

identification of the chemokines that had undergone the most significant 

variations at transcriptional level upon stimulation. The secretion profile of 

those chemokines by MSCs from the three sources was then analysed under 

resting and stimulatory conditions.  
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4.2 Analysis of the effect of a single inflammatory 
stimulus on the transcription of chemokines and 
chemokine receptors  

To understand the mechanisms involved in MSC migration and 

immunomodulation, it was important to understand their chemokine and 

chemokine receptor expression. To do this, the most relevant chemokines and 

their receptors in the MSCs context were selected based on previous work 

carried out by Dr Kayleigh Thirlwell on human MSCs (Thirlwell, 2018), and their 

transcription was assessed. BM, Is and Ad MSCs were transcriptionally assessed 

under resting and inflammatory (40 ng/ mL of TNF-α, IL-1β and IFN-ϒ) conditions 

to determine the effect of tissue source and/ or inflammatory conditions on the 

MSC chemokine and chemokine receptor transcriptional profile.  

Transcription data were normalised to the house keeping gene beta-2 

microglobulin (B2M) to consider variations in RNA quality and quantity. As this 

study did not have a reference sample, data are represented as 2(-ΔCT), which 

enables the visualization of expression levels of specific genes normalised to B2M 

for each sample. Due to the nature of normalisation, genes that generated a CT 

of 35 or above resulted in 2(-ΔCT) less than or equivalent to ~0.0001 and are 

marked with a red box on the following graphs and are likely not transcribed at 

meaningful levels by MSCs (Thirlwell, 2018).  

4.2.1 Transcription of CC chemokines under resting and 
inflammatory conditions 

Under resting conditions, BM, Is and Ad MSCs transcribed very few, if any, CC 

chemokines with the exception of CCL2, which was transcribed by all tissue 

source MSCs at similar levels (Figure 4-1, A), and CCL7, which was very highly 

expressed by BM MSCs (E). A pattern of transcriptional upregulation after 

stimulation was observed in CCL2 (A), CCL3 (B), CCL5 (D), CCL7 (E), CCL11 (G), 

CCL19 (H) and CCL20 (I). However, these chemokines were upregulated 

differentially in MSCs according to their tissue of origin. CCL9 (F) was the only 

chemokine that was downregulated after 24-hour cytokine-mediated 

stimulation. Fold changes of transcriptional regulation upon cytokine-mediated 

licensing of MSCs are specified in Table 4-1.  
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BM MSCs expressed the highest levels of CCL2 under resting and inflammatory 

conditions, while Is MSCs had the highest levels of CCL3 under resting and 

inflammatory conditions. Inflammatory stimulation resulted in a substantial and 

significant upregulation of both CCL2 and CCL3 transcripts in MSCs from all 

sources. MSCs from every source did not show any statistically significant 

variation in their CCL4 levels after stimulation; these levels were much more 

consistent (at a low level) in the BM MSCs (C). CCL5 transcript levels were very 

low under resting conditions but inflammatory stimulation led to a marked 

increase in expression levels in BM and Is MSCs. As previously mentioned, CCL7 

was expressed at very substantial levels under resting conditions in all MSCs; 

however, tissue of origin of MSCs had an effect in the transcript levels as BM 

MSCs expressed much higher levels than Is and Ad MSCs. Inflammatory 

stimulation led to a substantial and significant upregulation of CCL7 transcripts 

by BM, Is and Ad MSCs. CCL9 transcripts were the highest in BM MSCs and CCL9 

was the only chemokine in which transcript levels decreased after inflammatory 

stimulation. CCL11 and CCL19 had similar levels of transcription under resting 

conditions and inflammatory stimulation produced an upregulation of these 

chemokines in MSCs from all sources; however, stimulated BM MSCs had the 

highest transcript levels of CCL11, while CCL19 was expressed in higher amounts 

by licensed Is MSCs. CCL20 showed a similar pattern of transcriptional regulation 

to CCL5, with very low levels of transcript under resting conditions and 

substantial levels after stimulation. BM MSCs had the highest levels of CCL20 

transcription, closely followed by Ad MSCs, while Is MSCs had much lower levels.  

To sum up, MSCs from all sources expressed a variety of CCL chemokines, which 

could be involved in the recruitment of immune cells such as monocytes, 

macrophages, NK cells, eosinophils and B cells. Under resting conditions, MSCs 

transcribed very low levels of CCLs, except for CCL2 and CCL7; however, 

inflammatory stimulation resulted in a marked upregulation of CCL chemokine 

transcription by all tissue sources of MSCs except CCL9, which was 

downregulated. 
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Figure 4-1. Inflammation and MSC tissue origin impacts CC chemokine transcript levels in 
MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate CCL 
transcripts in BM, Is and Ad MSCs under resting and inflammatory conditions. Each bar represents 
an n of 3 independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
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Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 

 

Table 4-1. Fold change in CC chemokine transcript levels of cytokine-mediated licensed BM, 
Is and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-1, fold change in transcript levels of CC 
chemokine is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red.  

Gene BM MSCs Is MSCs Ad MSCs 

CCL2 10.30 ± 2.11 5.71 ± 0.97 10.32 ± 2.23 

CCL3 11.71 ± 12.16 5.44 ± 0.86 9.98 ± 12.59 

CCL4 0.65 ± 0.54 0.11 ± 0.09 13.47 ± 9.79 

CCL5 438.68 ± 60.22 33.15 ± 3.06 20.46 ± 5.93 

CCL7 2.20 ± 0.41 4.91 ± 1.13 5.69 ± 1.98 

CCL9 0.54 ± 0.10 0.59 ± 0.07 0.08 ± 0.05 

CCL11 5.91 ± 3.71 2.31 ± 0.25 10.04 ± 16.53 

CCL19 4.27 ± 2.11 9.89 ± 3.94 0.20 ± 0.14 

CCL20 631.34 ± 148.34 19.27 ± 2.37 1443.42 ± 1440.99 

 

4.2.2 Transcription of CXC chemokines under resting and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very few, if any, CXC 

chemokines with the exception of CXCL1, which was highly transcribed by BM 

MSCs (Figure 4-2, A). A pattern of transcriptional upregulation was observed in 

CXCL1 (A), CXCL2 (B), CXCL5 (C), CXCL10 (D) and CXCL16 (G). However, these 

chemokines were upregulated differentially in MSCs according to their tissue of 

origin. CXCL12 (E) and CXCL13 (F) were the only chemokines that were 

downregulated after 24-hour cytokine-mediated stimulation. Fold changes of 

transcript upon cytokine-mediated licensing of MSCs are shown in Table 4-2. BM 

MSCs expressed high levels of CXCL1 transcript under resting conditions while Is 

and Ad MSCs barely expressed any transcript; however, inflammatory stimulation 

of the cells produced a marked upregulation of CXCL1 in cells from all tissues, 

with BM MSCs expressing very high levels of CXCL1. Expression of CXCL2 was 

almost undetectable during resting conditions but inflammatory stimulation 

produced a significant upregulation in BM and Is MSCs; Ad MSCs upregulated their 

CXCL2 transcript levels even if it was in a statistically non-significant way. CXCL5 
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levels were almost undetectable under resting conditions in cells from all the 

tissue sources. Inflammatory stimulation produced 45 times higher levels of 

CXCL5 transcript levels, generating 5.91 times more expression of CXCL5 than 

the housekeeping gene B2M. CXCL10 levels were very low in MSCs from all the 

tissue sources under resting conditions, and inflammatory stimulation only 

produced an increase in the amount of transcript in Is and Ad MSCs; Is MSCs were 

able to generate the highest levels of CXCL10. Regarding CXCL12, during resting 

conditions, BM MSCs were able to produce significantly higher transcript levels 

than Is and Ad MSCs, which produced very little. After inflammatory stimulation, 

MSCs isolated from the three tissue sources produced lower levels of CXCL12 

transcript, where this downregulation was only significant in BM MSCs. CXCL13 

levels were very low under both resting and inflammatory conditions in BM, Is 

and MSCs and is likely not transcribed in MSCs. Lastly, CXCL16 transcripts were 

barely detectable in MSCs during resting conditions but inflammatory licensing 

led to a pattern of upregulation of this transcript, with Ad MSCs being the cells 

expressing the highest levels and the only MSCs in which upregulation was 

statistically significant. 



160 
 

 

Figure 4-2. Inflammation and MSC tissue origin impacts CXC chemokine transcript levels in 
MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate CXCL 
transcripts in BM, Is and Ad MSCs under resting and inflammatory conditions. Each bar represents 
an n of 3 independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 
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Table 4-2. Fold change in CXC chemokine transcript levels of cytokine-mediated licensed 
BM, Is and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-2, fold change in transcript levels of CXC 
chemokine is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

 

Gene BM MSCs Is MSCs Ad MSCs 

CXCL1 15.14 ± 7.11 27.31 ± 3.28 33.65 ± 12.33 

CXCL2 197.83 ± 66.14 89.07 ± 12.03 31.85 ± 12.57 

CXCL5 45.52 ± 8.46 28.30 ± 13.55 38.20 ± 16.28 

CXCL10 5.44 ± 5.06 25.92 ± 15.32 34.32 ± 15.31 

CXCL12 0.65 ± 0.10 0.15 ± 0.05 1.91 ± 1.21 

CXCL13 6.74 ± 9.51 0.09 ± 0.06 0.01 ± 0.01 

CXCL16 6.78 ± 1.15 3.80 ± 0.47 14.66 ± 6.23 

 

 

4.2.3 Transcription of CC chemokine receptor expression under 
resting and inflammatory conditions 

Under resting conditions, BM, Is and Ad MSCs do not appear to be transcribing CC 

chemokine receptors except for CCR1 (Figure 4-3, A) and CCR5 (Figure 4-3, E). 

CCR2 (B), CCR3 (C), CCR4 (D), CCR6 (F), CCR7 (G), CCR8 (H), CCR9 (I) and CCR10 

(J) generated a CT of 35 or above, resulting in 2(-ΔCT) less than or equivalent to 

~0.0001, which suggests that are likely not transcribed at meaningful levels by 

MSCs and are marked with a red box on the following graphs. Fold changes in 

transcript levels upon cytokine-mediated licensing of MSCs are specified in Table 

4-3. 

CCR1 expression was very low in BM and Ad MSCs during resting conditions and 

transcript levels did not increase after inflammatory stimulation (Figure 4-3, A). 

Is MSCs, on average, showed higher CCR1 transcript levels during resting 

conditions but extensive variations were seen among the samples. However, 

after inflammatory stimulation, Is MSCs expressed higher transcript levels than 

MSCs isolated from other tissues. Similarly, CCR5 transcript levels were very low 

in BM and Ad MSCs under resting conditions while Is MSCs had higher levels but 

with a bigger deviation among samples. Inflammatory stimulation produced a 

small upregulation of CCR5 transcript levels in Is MSCs, but again, due to large 

variation this increase was not significant, and the expression levels were still 

quite low, which may not translate into any biological effect.  
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Figure 4-3. Inflammation and MSC tissue origin does not have a big impact on CC 
chemokine receptor transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate CCR 
transcripts in BM, Is and Ad MSCs under resting and inflammatory conditions. Each bar represents 
an n of 3 independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
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= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 

 

Table 4-3. Fold change in CC chemokine receptor transcript levels of cytokine-mediated 
licensed BM, Is and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-3, fold change in transcript levels of CC 
chemokine receptors is represented as mean of fold change ± standard deviation. Statistically 
significant differences are marked with a colour code, where p < 0.05 is represented by green, p < 
0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by 
red. 

Gene BM MSCs Is MSCs Ad MSCs 

CCR1 1.38 ± 0.35 3.12 ± 3.77 0.42 ± 0.56 

CCR2 0.58 ± 0.35 1.34 ± 1.05 0.34 ± 0.24 

CCR3 0.58 ± 0.26 5.25 ± 6.04 0.18 ± 0.22 

CCR4 0.37 ± 0.26 5.79 ± 5.67 0.14 ± 0.20 

CCR5 0.38 ± 0.11 5.84 ± 6.92 0.05 ± 0.05 

CCR6 0.19 ± 0.16 19.89 ± 19.64 0.09 ± 0.05 

CCR7 0.15 ± 0.03 0.39 ± 0.31 0.05 ± 0.05 

CCR8 0.15 ± 0.16 29.07 ± 26.60 47.15 ± 81.36 

CCR9 0.22 ± 0.11 0.88 ± 0.74 2.14 ± 1.24 

CCR10 1.17 ± 0.40 0.25 ± 0.15 0.22 ± 0.16 

 

4.2.4 Transcription of CXC chemokine receptors expression 
under resting and inflammatory conditions 

As described for CC chemokine receptors, BM, Is and Ad MSCs do not appear to 

be transcribing CXC chemokine receptors except for CXCR6 (Figure 4-4, F). 

CXCR1 (A), CXCR2 (B), CCR3 (C), CXCR4 (D) and CXCR5 (E) generated a CT of 35 

or above, resulting in 2(-ΔCT) less than or equivalent to ~0.0001, which suggests 

that are likely not transcribed at meaningful levels by MSCs and are marked with 

a red box on the following graphs. Fold changes of transcript levels upon 

cytokine-mediated licensing of MSCs are detailed in Table 4-4.  

Under resting conditions, BM MSCs have the highest transcript levels of CXCR6 

and Is MSCs the lowest (Figure 4-4, F). Inflammatory stimulation produced a 

downregulation of CXCR6 transcript in BM and Is MSCs, while Ad MSCs did not 

show a clear pattern due to the big variation among samples.  
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Figure 4-4. Inflammation and MSC tissue origin does not have a big impact on CXC 
chemokine receptor transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate CXCR 
transcripts in BM, Is and Ad MSCs under resting and inflammatory conditions. Each bar represents 
an n of 3 independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 

 

Table 4-4. Fold change in CXC chemokine receptor transcript levels of cytokine-mediated 
licensed BM, Is and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-4, fold change in transcript levels of CXC 
chemokine receptors is represented as mean of fold change ± standard deviation. Statistically 
significant differences are marked with a colour code, where p < 0.05 is represented by green, p < 
0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by 
red. 



165 
 

Gene BM MSCs Is MSCs Ad MSCs 

CXCR1 3.20 ± 3.07 0.79 ± 0.32 0.36 ± 0.34 

CXCR2 2.57 ± 1.88 13.00 ± 18.19 3.92 ± 3.63 

CXCR3 2.62 ± 3.47 0.12 ± 0.13 1.00 ± 0.00 

CXCR4 0.06 ± 0.01 6.44 ± 7.50 3.05 ± 3.65 

CXCR5 1.35 ± 1.92 2.42 ± 2.30 3.39 ± 4.35 

CXCR6 0.17 ± 0.04 0.61 ± 0.65 1.51 ± 1.33 

 

4.2.5 Transcription of atypical chemokine receptor expression 
under resting and inflammatory conditions 

BM, Is and Ad MSCs do not appear to be transcribing ACKR2 (Figure 4-5, B) and 

ACKR3 (Figure 4-5, C) as they generated a CT of 35 or above, resulting in 2(-ΔCT) 

less than or equivalent to ~0.0001, which suggests that are likely not transcribed 

at meaningful levels by MSCs and are marked with a red box on the following 

graphs. Fold changes of transcript levels upon cytokine-mediated licensing of 

MSCs are specified in Table 4-5. 

Under resting conditions, no significant differences were found in the transcript 

levels of ACKR1 among the MSCs isolated from the three different sources and 

inflammatory stimulation did not produce a clear pattern of down or 

upregulation, which is quite likely to be due to the large variation among 

samples (Figure 4-5, A). During resting conditions, ACKR4 transcript levels were 

significantly higher in the MSCs isolated from the BM compared to Is and Ad 

MSCs. Inflammatory stimulation produced a significant downregulation in BM 

MSCs and no effect in Is and Ad MSCs (D).  
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Figure 4-5. Inflammation and MSC tissue origin impacts ACKR4 transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate ACKR 
transcripts in BM, Is and Ad MSCs under restingand inflammatory conditions. Each bar represents 
an n of 3 independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 

 

Table 4-5. Fold change in ACKR transcript levels of cytokine-mediated licensed BM, Is and 
Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-5, fold change in transcript levels of 
ACKRs is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene BM MSCs Is MSCs Ad MSCs 

ACKR1 0.21 ± 0.08 21.39 ± 22.02 1.60 ± 1.66 

ACKR2 1.46 ± 2.39 9.87 ± 15.63 272.83 ± 278.35 

ACKR3 19.85 ± 31.88 19.31 ± 25.31 74.91 ± 108.19 

ACKR4 0.06 ± 0.01 0.97 ± 1.32 0.12 ± 0.04 

 

4.2.6 Transcription of XCL and CX3C chemokine expression, their 
receptors and the receptors for the stimulatory agents 
under resting and inflammatory conditions 

CX3CL1 transcript level variations were not detected in the MSCs isolated from 

the different sources under resting conditions; however, tissue of origin did 
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affect the transcript levels after inflammatory stimulation. BM MSC showed an 

upregulation of CX3CL1 even if it was not statistically significant, Is MSCs 

transcript levels showed no variation after stimulation and lastly, CX3CL1 

transcript levels were upregulated by Ad MSC in a statistically significant manner 

after inflammatory stimulation (Figure 4-6, A). The chemokine receptors CX3CR1 

(Figure 4-6, B) and XCR1 (Figure 4-6, C) generated a CT of 35 or above, resulting 

in 2(-ΔCT) less than or equivalent to ~0.0001, which suggests that they are likely 

not transcribed by MSCs at meaningful levels and are therefore marked with a 

red box on the following graphs. Fold changes of transcript levels upon cytokine-

mediated licensing of MSCs are specified in Table 4-6. 
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Figure 4-6. Inflammation and MSC tissue origin impacts CX3CL1 transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate transcripts in 
BM, Is and Ad MSCs under resting and inflammatory conditions. Each bar represents an n of 3 
independent experiments and is graphed as mean ± SEM. Data are normalised to the 
housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical analysis was performed 
and includes Students paired T test between one MSC tissue source (Resting vs Inflammatory 
Conditions) and One Way ANOVA with Tukey’s multiple comparisons post-test to compare all MSC 
sources. Statistically significant differences are marked with the appropriate number of asterisks. p 
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= 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001. 

 

Table 4-6. Fold change in XCL and CX3C chemokines, their receptors and the receptors of 
the stimulatory agents’ transcript levels of cytokine-mediated licensed BM, Is and Ad MSCs 
compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-6 fold change in transcript levels of XCL 
and CX3C, their receptors and the receptors of the stimulatory agents is represented as mean of 
fold change ± standard deviation. Statistically significant differences are marked with a colour code, 
where p < 0.05 is represented by green, p < 0.01 is represented by orange, p < 0.001 is 
represented by blue and p < 0.0001 is represented by red. 

 

Gene BM MSCs Is MSCs Ad MSCs 

CX3CL1 2.35 ± 0.43 1.60 ± 1.19 5.31 ± 3.21 

CX3CR1 0.12 ± 0.01 0.57 ± 0.68 0.41 ± 0.29 

XCR1 6.89 ± 6.33 74.70 ± 128.32 0.69 ± 0.91 

IL1R1 0.18 ± 0.11 0.04 ± 0.02 1.99 ± 1.00 

IL1R2 0.19 ± 0.17 0.10 ± 0.09 25.20 ± 38.61 

TNFR1a 0.74 ± 0.49 0.35 ± 0.13 0.89 ± 0.09 

TNFR1b 0.48 ± 0.15 0.24 ± 0.08 0.68 ± 0.09 

IFNGR1 0.12 ± 0.11 0.15 ± 0.06 0.52 ± 0.49 

IFNGR2 0.78 ± 0.56 0.88 ± 0.27 2.71 ± 0.81 

 

It was essential to ensure that MSCs from the three tissues were capable of 

responding to inflammatory stimuli, for this reason, transcript levels of the 

receptors for the stimulatory molecules, IL-1β, TNF-α and IFN-ϒ, were assessed. 

In response to increased activation by a ligand, a cell’s sensitivity to that 

specific ligand commonly transiently reduces by decreasing the expression of the 

specific receptor interacting with the ligand (Heldin et al., 2016). This is called 

negative feedback and was used to determine activation of MSCs after 

inflammatory stimulation.  

IL-1β is recognised by IL1R1 and IL1R2. Under resting conditions, Is MSCs 

expressed the highest levels of IL1R1 (Figure 4-6, D) and IL1R2 (Figure 4-6, E) 

followed by the BM MSCs and lastly by Ad MSCs. After inflammatory stimulation, 

MSCs isolated from the BM and Is had downregulated the transcript levels of both 

receptors; Ad MSCs were slightly higher but the standard deviation was much 

higher in these samples. TNF-α is recognised by TNFR1a and TNFR1b, and as 

observed in Figure 4-6, F and G, under resting conditions MSCs from all sources 

expressed similar levels of transcripts for these receptors. After 24 hours of 
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inflammatory stimulation TNFR1a and TNFR1b transcript levels were 

downregulated in MSCs from every tissue, where Is MSCs had the highest 

downregulation, followed by BM MSCs and lastly Ad MSCs. Lastly, IFN-ϒ is 

recognised by IFNGR1 and IFNGR2. Tissue of origin influenced the expression of 

these receptors as during resting conditions BM MSCs expressed significantly 

higher levels of IFNGR1 than Ad MSCs and Is MSCs showed higher transcript levels 

of IFNGR2 than Ad MSCs. After inflammatory stimulus, IFNGR1 transcript levels 

were downregulated in MSCs isolated from the three tissues while IFNGR2 was 

only downregulated in cells isolated from the BM and Is. Overall, Ad MSCs 

downregulated their receptors to a lesser extent than BM or Is MSCs after 

inflammatory stimulation.  

 

4.3 Analysis of the effect of a double inflammatory 
stimulus over time on the transcription of 
chemokines and chemokine receptors 

Several reports in the literature suggest that the immunomodulatory activities of 

MSCs are not spontaneous, that priming by inflammatory cytokines is essential 

for MSC–mediated immunosuppression, irrespective of the species of origin (Ren 

et al., 2009). Within a clinical setting, MSCs are usually infused within an 

inflammatory environment, which provides the required licensing for increasing 

the immunomodulatory properties of MSCs. When the anti–inflammatory 

properties of MSCs are studied in vitro, this licensing is mimicked in an in vitro 

culture with the addition of pro-inflammatory cytokines; in this specific case 

with 40 ng/ mL of IFN-ϒ, TNF-α and IL-1β.  

As previously discussed, pro-inflammatory cytokine-mediated MSC licensing 

produced a transcriptional upregulation of chemokines, which could explain why 

MSCs are more immunosuppressive upon activation. Within clinical settings, it 

has been reported that pre-treatment of MSCs with inflammatory cytokines prior 

to administration within animal models of inflammatory diseases boosts the 

therapeutic effect of MSCs (Duijvestein et al., 2011, Noronha et al., 2019). For 

this reason, we wondered if pre-licensing the MSCs prior to exposing them to an 

inflammatory environment would lead to even bigger changes in chemokine 
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transcriptional levels and therefore, in enhanced therapeutic potential. To study 

this, cells were pre-licensed for 48 hours, after which cells were washed twice 

with PBS and stimulated again for another 24 hours. The first stimulation primes 

the MSCs while the second stimulation would mimic the inflammatory 

environment MSCs would face when infused into a patient with an inflammatory 

disorder. Figure 4-7 illustrates the time points at which supplemented medium 

was added. Culture medium was removed at the time cells were harvested and 

was kept for analysis.  

Two different control conditions were used. In the first one, cells were 

stimulated for 48 hours, after which cells were washed twice with PBS and fresh 

culture medium was added; cells were harvested 24 hours later. In the second 

condition, cells were washed twice with PBS, the culture medium was replaced 

with fresh medium and the cells were left growing for 48 hours. Cells were then 

washed twice with PBS, the culture medium was replaced with supplemented 

medium and the cells were harvested 24 hours later. There is an extensive 

literature about how cytokine-mediated licensing enhances the potential 

therapeutic efficacy of MSCs; however, little is known about the role of TLR 

ligand-mediated activation on the secretion of chemotactic cytokines by MSCs. 

For this reason, 100 ng/ mL lipopolysaccharide (LPS), 100 ng/mL lipoteichoic 

acid (LTA) and 4 mg/ ml polyinosinic-polycytidylic acid (poly I:C), as well as the 

previously described cytokine cocktail, was used for MSC licensing.  

 

Figure 4-7. Diagrammatic illustration of the time course of the MSC licensing. 
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On the basis of the results described in Section 4.2, the genes that showed 

alterations in their transcript levels in a statistically significant manner upon 

stimulation were selected and their transcriptional levels were assessed after 

licensing with different inflammatory molecules and different inflammatory 

conditions.  

It is important to bear in mind that in the experiments in Section 4.3, the 

influence of four different inflammatory agents (cytokine cocktail with TNF-α, 

IL-1β and IFN-ϒ, LPS, LTA and Poly I:C) at three different time points (72 hours, 

24 hours and double stimulation) on 22 different genes was studied, and an 

untreated sample was used as control. This study was performed in MSCs 

isolated from three different sources (BM, Is and Ad MSCs), which gave a total of 

858 data points per experiment ([4 inflammatory agents × 3 time points + 1 

control] × 22 genes × 3 MSC sources).  

Among all the licensing molecules tested, the combination of 40 ng/ mL of TNF-

α, IL-1β and IFN-ϒ led to the biggest variations in chemokine receptor and ligand 

expression and among all the conditions tested, harvesting the cells 24 hours 

after the inflammatory stimulation led to the most significant results. These 

condition has already been discussed in Section 4.2, for this reason, due to the 

huge amount of data presented in this chapter, we decided to move the less 

relevant results to the Appendix. Thus, this results section will only display the 

fold changes of transcript levels upon licensing of MSCs in tables, while the 

explanatory text and figures will be displayed in Section 8.1.  

4.3.1 Transcription of CC chemokines under resting and 
inflammatory conditions 

As outlined in Section 4.2.1, under resting conditions, BM, Is and Ad MSCs 

transcribed very few, if any, CC chemokines with the exception of CCL2, which 

was transcribed by all tissue sources of MSCs at similar levels, and CCL7, which 

was very highly expressed by BM MSCs. A pattern of transcriptional upregulation 

was observed in CCL2, CCL3, CCL5, CCL7 and CCL20 genes after licensing in 

every condition; however, these chemokines were upregulated differentially in 

MSCs according to their tissue of origin and licensing agent (Section 8.1). CC 

chemokine transcript levels 24 hours after stimulation (Condition 2) increased in 
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MSCs from every tissue source; however, this upregulation was not sustained, as 

cells harvested 72 hours after licensing (Condition 1) showed a decrease in the 

transcript levels of CC chemokines. A second stimulation 48 hours after the first 

stimulation (Condition 3) was able to induce the transcription of CC chemokines 

in MSCs from the three sources; however, the second stimulation was not able to 

match the transcript levels of CC chemokines found in Condition 2 in MSCs from 

every source with the exception of Ad MSCs after cytokine-mediated stimulation, 

where these cells massively increased the transcript levels of CC chemokine 

ligands. Fold changes of transcriptional regulation upon licensing of MSCs are 

specified in Table 4-7.  

 

Table 4-7. Fold change in CC chemokine transcript levels of cytokine, LPS, LTA or Poly I:C-
mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate CCL transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Fold 
change in transcript levels of CC chemokines is represented as mean of fold change ± standard 
deviation. One Way ANOVA with Tukey’s multiple comparisons post-test was performed to 
compare all MSC sources and the different conditions. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

CCL2 

1 

Cyt 1.84 ± 1.43 8.07 ± 1.77 0.51 ± 0.11 

LPS 0.71 ± 0.56 4.58 ± 2.60 1.21 ± 1.04 

LTA 0.75 ± 0.15 2.67 ± 1.79 0.56 ± 0.06 

Poly I:C 0.89 ± 0.33 2.66 ± 0.62 0.41 ± 0.03 

2 

Cyt 4.24 ± 1.14 22.93 ± 5.23 6.77 ± 1.70 

LPS 0.98 ± 0.29 10.01 ± 3.32 6.71 ± 1.76 

LTA 1.32 ± 0.36 1.02 ± 0.15 3.21 ± 0.60 

Poly I:C 5.39 ± 1.85 10.97 ± 5.25 2.88 ± 0.56 

3 

Cyt 1.38 ± 0.77 5.02 ± 1.31 202.76 ± 51.81 

LPS 1.26 ± 0.51 3.19 ± 1.18 11.66 ± 2.49 

LTA 0.82 ± 0.53 0.80 ± 0.09 5.01 ± 1.65 

Poly I:C 2.28 ± 0.79 4.96 ± 1.86 4.47 ± 1.76 
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Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

CCL3 

1 

Cyt 0.27 ± 0.07 1.02 ± 0.24 1.26 ± 0.45 

LPS 0.50 ± 0.03 1.03 ± 0.75 0.76 ± 0.31 

LTA 0.89 ± 0.14 0.24 ± 0.04 0.73 ± 0.19 

Poly I:C 0.22 ± 0.03 0.27 ± 0.07 0.30 ± 0.10 

2 

Cyt 1.23 ± 0.50 3.57 ± 1.01 0.36 ± 0.06 

LPS 0.88 ± 0.16 3.06 ± 0.97 0.56 ± 0.16 

LTA 1.04 ± 0.27 0.45 ± 0.21 0.51 ± 0.08 

Poly I:C 0.61 ± 0.33 0.82 ± 0.25 0.32 ± 0.06 

3 

Cyt 0.64 ± 0.35 1.21 ± 0.30 2.88 ± 0.69 

LPS 1.14 ± 0.14 1.18 ± 0.43 0.57 ± 0.15 

LTA 1.16 ± 0.37 1.22 ± 1.37 0.70 ± 0.22 

Poly I:C 1.13 ± 0.13 0.52 ± 0.12 0.84 ± 0.52 

CCL5 

1 

Cyt 11.59 ± 10.85 7.35 ± 2.09 10.95 ± 3.50 

LPS 4.58 ± 4.07 96.57 ± 22.51 2.63 ± 0.41 

LTA 0.25 ± 0.20 0.70 ± 0.30 0.46 ± 0.20 

Poly I:C 107.27 ± 97.50 5.82 ± 1.15 7.86 ± 2.49 

2 

Cyt 48.22 ± 45.00 29.01 ± 11.82 9.58 ± 1.87 

LPS 70.79 ± 63.95 29.90 ± 10.46 16.00 ± 5.69 

LTA 1.61 ± 1.53 0.35 ± 0.07 104.45 ± 33.37 

Poly I:C 138.31 ± 134.11 177.83 ± 38.71 52.32 ± 16.60 

3 

Cyt 10.25 ± 8.63 5.92 ± 1.49 419.49 ± 93.64 

LPS 10.17 ± 9.13 13.12 ± 6.50 2.83 ± 1.06 

LTA 1.22 ± 1.18 0.64 ± 0.55 0.56 ± 0.26 

Poly I:C 208.49 ± 195.87 117.21 ± 39.74 23.07 ± 23.86 

CCL7 

1 

Cyt 0.39 ± 0.30 1.82 ± 2.02 1.62 ± 0.86 

LPS 0.23 ± 0.14 4.56 ± 5.13 0.90 ± 0.47 

LTA 0.22 ± 0.10 2.30 ± 2.68 0.95 ± 0.46 

Poly I:C 0.33 ± 0.22 0.73 ± 0.49 0.66 ± 0.32 

2 

Cyt 1.29 ± 0.70 5.27 ± 5.15 3.77 ± 2.14 

LPS 1.14 ± 0.20 7.54 ± 6.36 6.60 ± 2.51 

LTA 0.87 ± 0.08 1.85 ± 2.26 4.59 ± 2.26 

Poly I:C 0.88 ± 0.68 13.03 ± 17.73 3.38 ± 1.83 

3 

Cyt 0.55 ± 0.07 2.87 ± 3.03 30.78 ± 15.81 

LPS 1.72 ± 0.72 6.00 ± 7.25 2.53 ± 1.32 

LTA 0.86 ± 0.67 3.06 ± 3.48 0.92 ± 0.48 

Poly I:C 1.58 ± 0.91 5.10 ± 5.83 0.09 ± 0.04 

CCL20 

1 

Cyt 4.23 ± 0.74 8.74 ± 7.80 0.18 ± 0.14 

LPS 2.45 ± 1.14 28.10 ± 13.76 2.13 ± 1.91 

LTA 1.17 ± 0.63 0.35 ± 0.25 0.02 ± 0.01 

Poly I:C 2.19 ± 0.50 0.68 ± 0.47 0.59 ± 0.57 

2 

Cyt 631.34 ± 148.34 19.27 ± 2.37 470.60 ± 222.05 

LPS 42.76 ± 42.62 7.47 ± 2.27 14.68 ± 6.22 

LTA 64.25 ± 66.43 0.57 ± 0.25 13.20 ± 4.91 

Poly I:C 45.35 ± 26.57 8.32 ± 6.09 5.25 ± 2.10 

3 
Cyt 27.91 ± 26.21 5.21 ± 0.89 298.33 ± 107.66 

LPS 87.39 ± 80.84 4.40 ± 1.63 5.93 ± 2.20 
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Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

LTA 8.18 ± 7.03 0.12 ± 0.15 1.01 ± 0.35 

Poly I:C 36.44 ± 30.10 5.21 ± 2.65 0.00 ± 0.00 

 

4.3.2 Transcription of CXC chemokines under resting and 
inflammatory conditions 

As outlined in Section 4.2.2, under resting conditions, BM, Is and Ad MSCs 

transcribed very few, if any, CXC chemokines with the exception of CXCL1, 

which was transcribed by BM MSCs. A pattern of transcriptional upregulation was 

observed in CXCL1, CXCL2, CXCL5, CXCL10 and CXCL16 after licensing in every 

condition, while stimulation of MSCs led to the downregulation of CXCL12 

(Section 8.1). However, these chemokines were regulated differentially in MSCs 

according to their tissue of origin and licensing agent. CXCL1, CXCL5, CXCL10 

and CXCL16 chemokine transcript levels increased after 24 hours of stimulation 

(Condition 2) in MSCs from every tissue source; however, this upregulation was 

not sustained, as cells harvested 72 hours after licensing (Condition 1) showed a 

decrease in the transcript levels of CC chemokines. CXCL2 transcript levels 

increased after 24 hours stimulation (Condition 2) in MSCs from every tissue 

source; however, while this upregulation was promptly reversed in BM and Is 

MSCs, Ad MSCs expressed higher amounts of CXCL2 transcript levels 72 hours 

after licensing (Condition 1). A second stimulation, 48 hours after the first 

stimulation (Condition 3), was able to induce the transcription of CXCL1, CXCL2, 

CXCL5, CXCL10 and CXCL16 chemokines in MSCs from the three sources. 

However, the second stimulation was not able to match the transcript levels of 

CXC chemokines found in Condition 2 in MSCs from every source except for Ad 

MSCs after cytokine-mediated stimulation, where these cells massively increased 

the transcript levels of CXC chemokine ligands. CXCL12 transcript levels were 

very dependent on MSC source and licensing agent; cytokine-mediated licensing 

produced a downregulation of the transcript levels in every condition in BM and 

Is MSCs, while it produced an upregulation in Ad MSCs. LPS-mediated licensing 

produced a downregulation of CXCL12 levels in BM and Ad MSCs, while it was 

able to induce the transcription levels in Is MSCs after 72 hours stimulation 

(Condition 1). LTA licensing led to a trend of upregulation in BM MSCs while it 

produced no statistically significant effect on Is and Ad MSCs. Lastly, Poly I:C 

stimulation produced a downregulation in BM MSCs, no variation in Is MSCs and a 
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downregulation in Ad MSCs which was overcome after a double stimulation 

(Condition 3). Fold changes of transcript levels upon licensing of MSCs are 

specified in Table 4-8.  

Table 4-8. Fold change in CXC chemokine transcript levels of cytokine, LPS, LTA or Poly 
I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate CXCL transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Fold 
change in transcript levels of CXC chemokines is represented as mean of fold change ± standard 
deviation. One Way ANOVA with Tukey’s multiple comparisons post-test was performed to 
compare all MSC sources and the different conditions. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

CXCL1 

1 

Cyt 3.70 ± 3.41 3.04 ± 3.73 0.09 ± 0.06 

LPS 0.35 ± 0.25 0.78 ± 0.87 0.23 ± 0.06 

LTA 0.09 ± 0.07 1.94 ± 2.28 0.11 ± 0.04 

Poly I:C 0.06 ± 0.05 2.11 ± 2.17 0.13 ± 0.03 

2 

Cyt 13.66 ± 10.35 7.77 ± 7.58 2.56 ± 0.23 

LPS 1.78 ± 0.56 5.05 ± 5.82 1.96 ± 0.41 

LTA 0.62 ± 0.10 0.93 ± 0.64 0.95 ± 0.06 

Poly I:C 1.01 ± 0.77 1.21 ± 1.20 0.91 ± 0.12 

3 

Cyt 2.49 ± 0.30 3.19 ± 2.58 57.55 ± 4.31 

LPS 2.25 ± 1.25 1.20 ± 0.63 1.58 ± 0.09 

LTA 0.18 ± 0.11 2.41 ± 2.56 0.89 ± 0.19 

Poly I:C 0.16 ± 0.08 0.44 ± 0.29 1.45 ± 0.22 

CXCL2 

1 

Cyt 0.95 ± 0.20 0.70 ± 0.41 64.35 ± 10.64 

LPS 3.24 ± 0.66 13.12 ± 12.57 0.52 ± 0.17 

LTA 1.01 ± 0.13 0.61 ± 0.22 0.33 ± 0.21 

Poly I:C 0.69 ± 0.28 0.40 ± 0.15 0.19 ± 0.08 

2 

Cyt 7.14 ± 1.15 10.04 ± 3.51 3.18 ± 0.49 

LPS 15.99 ± 4.05 8.70 ± 2.38 3.63 ± 1.65 

LTA 3.03 ± 0.65 0.98 ± 0.71 2.70 ± 0.89 

Poly I:C 2.56 ± 1.19 2.91 ± 0.50 1.40 ± 0.46 

3 

Cyt 2.21 ± 0.95 5.49 ± 1.02 110.74 ± 34.09 

LPS 12.61 ± 2.99 1.95 ± 0.49 1.34 ± 0.53 

LTA 2.05 ± 1.16 0.52 ± 0.50 0.97 ± 0.42 

Poly I:C 1.20 ± 0.14 1.86 ± 0.44 3.12 ± 1.31 
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Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

CXCL5 

1 

Cyt 0.41 ± 0.15 27.08 ± 24.87 0.97 ± 0.50 

LPS 0.05 ± 0.01 5.60 ± 4.80 4.38 ± 0.98 

LTA 0.01 ± 0.00 0.40 ± 0.17 0.51 ± 0.09 

Poly I:C 0.01 ± 0.00 0.89 ± 0.62 0.51 ± 0.12 

2 

Cyt 6.86 ± 1.60 182.44 ± 101.70 26.79 ± 4.95 

LPS 2.27 ± 2.22 13.58 ± 4.69 28.05 ± 10.42 

LTA 1.09 ± 1.06 1.40 ± 1.15 2.96 ± 0.48 

Poly I:C 0.02 ± 0.00 1.46 ± 1.33 2.30 ± 0.46 

3 

Cyt 2.22 ± 1.94 108.75 ± 37.36 402.41 ± 86.69 

LPS 1.85 ± 1.62 14.43 ± 6.41 19.12 ± 4.38 

LTA 0.14 ± 0.13 0.10 ± 0.05 0.65 ± 0.20 

Poly I:C 0.13 ± 0.10 1.68 ± 1.53 26.34 ± 6.16 

CXCL10 

1 

Cyt 0.11 ± 0.06 0.19 ± 0.15 1.02 ± 0.63 

LPS 0.43 ± 0.31 11.88 ± 15.22 0.31 ± 0.08 

LTA 0.50 ± 0.21 1.42 ± 1.21 0.48 ± 0.18 

Poly I:C 0.69 ± 0.23 0.62 ± 0.50 0.91 ± 0.46 

2 

Cyt 10.16 ± 5.26 19.21 ± 10.64 45.62 ± 21.79 

LPS 1.64 ± 0.46 1.23 ± 1.06 3.65 ± 1.84 

LTA 0.99 ± 0.47 1.14 ± 0.63 12.40 ± 6.16 

Poly I:C 97.19 ± 36.00 3.61 ± 2.02 6.92 ± 2.85 

3 

Cyt 4.09 ± 2.34 6.51 ± 5.88 913.91 ± 470.61 

LPS 1.07 ± 0.69 1.21 ± 0.58 0.64 ± 0.25 

LTA 0.80 ± 0.38 2.73 ± 3.09 1.62 ± 1.12 

Poly I:C 30.72 ± 14.62 2.58 ± 1.92 0.15 ± 0.04 

CXCL12 

1 

Cyt 0.13 ± 0.09 0.87 ± 0.90 2.87 ± 1.41 

LPS 0.27 ± 0.11 5.88 ± 1.89 0.66 ± 0.23 

LTA 1.15 ± 0.92 5.47 ± 4.99 1.02 ± 0.46 

Poly I:C 0.17 ± 0.14 2.68 ± 1.59 0.41 ± 0.23 

2 

Cyt 0.16 ± 0.12 0.36 ± 0.30 2.09 ± 0.86 

LPS 0.39 ± 0.18 1.48 ± 1.62 1.54 ± 0.60 

LTA 1.98 ± 1.13 1.43 ± 0.75 1.14 ± 0.83 

Poly I:C 0.61 ± 0.39 2.69 ± 2.03 1.04 ± 0.57 

3 

Cyt 0.22 ± 0.19 0.81 ± 0.59 5.50 ± 2.08 

LPS 0.63 ± 0.38 1.70 ± 0.41 0.53 ± 0.27 

LTA 1.88 ± 1.43 0.44 ± 0.38 2.20 ± 1.04 

Poly I:C 0.32 ± 0.23 1.95 ± 1.89 3.01 ± 1.13 

CXCL16 

1 

Cyt 2.95 ± 0.24 0.35 ± 0.23 1.81 ± 0.92 

LPS 5.07 ± 2.20 1.15 ± 0.47 0.70 ± 0.31 

LTA 8.30 ± 2.33 0.52 ± 0.42 0.81 ± 0.50 

Poly I:C 1.20 ± 0.47 0.31 ± 0.12 0.46 ± 0.23 

2 

Cyt 7.59 ± 1.34 5.13 ± 2.00 43.11 ± 16.81 

LPS 4.20 ± 0.62 1.52 ± 0.90 4.96 ± 3.71 

LTA 10.53 ± 3.08 0.54 ± 0.31 1.89 ± 0.97 

Poly I:C 3.25 ± 2.57 1.87 ± 1.42 1.57 ± 0.75 

3 
Cyt 5.30 ± 1.62 5.01 ± 3.71 62.89 ± 24.29 

LPS 7.48 ± 2.10 0.74 ± 0.44 1.57 ± 0.61 
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Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

LTA 13.80 ± 1.23 2.68 ± 3.20 1.29 ± 0.66 

Poly I:C 2.26 ± 0.14 1.04 ± 0.59 2.33 ± 1.11 

 

4.3.3 Transcription of CX3CL1 chemokine and atypical chemokine 
receptor ACKR4 under resting and inflammatory conditions  

As outlined in Section 4.2.6, under resting conditions, BM, Is and Ad MSCs 

transcribed very little, if any, CX3CL1 while ACKR4 was transcribed at higher 

rates, but in both cases transcript level variations were not observed among the 

MSCs isolated from the different sources under resting conditions. However, in 

both cases tissue of origin and licensing agent did have an influence on the 

transcript levels after inflammatory stimulation (Section 8.1). CX3CL1 showed a 

pattern of transcriptional upregulation after licensing while ACKR4 showed a 

pattern of transcriptional downregulation. With a few exceptions, CX3CL1 

transcript levels increased after a 24 hours stimulation (Condition 2) in MSCs 

from every tissue source; however, this upregulation was not sustained, as cells 

harvested 72 hours after licensing (Condition 1) showed a decrease in the 

transcript levels of CX3CL1 compared to Condition 2. A second stimulation 48 

hours after the first stimulation (Condition 3) was able to induce transcription of 

CX3CL1 in MSCs from the three sources, however, the second stimulation was 

not able to match the transcript levels observed in Condition 2. Overall, ACKR4 

transcript levels decrease after a 24 hour stimulation (Condition 2) in MSCs from 

every tissue source; however, this downregulation was not sustained, as even if 

the downregulation was still notable, cells harvested 72 hours after licensing 

(Condition 1) showed higher transcript levels than the ones observed 24 hours 

after licensing. A second stimulation 48 hours after the first stimulation 

(Condition 3) was able to slow down the reversion of the downregulation in MSCs 

from the three sources as ACKR4 transcript levels were like the ones observed 24 

hours after licensing. Fold changes of transcriptional regulation upon licensing of 

MSCs are specified in Table 4-9. 
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Table 4-9. Fold change in CX3CL1 and ACKR4 transcript levels of cytokine, LPS, LTA or 
Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the 
same source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4µg/ mL Poly I:C. Unstimulated cells 
were left growing in MSC culture medium as a control. Three different licensing conditions were 
tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice with 
PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate CX3CL1 and ACKR4 transcripts in BM, Is and Ad MSCs under resting and 
inflammatory conditions. Data are normalised to the housekeeping gene B2M and expressed as 2(-

ΔCT). Fold change in transcript levels of CX3CL1 and ACKR4 is represented as mean of fold change 
± standard deviation. One Way ANOVA with Tukey’s multiple comparisons post-test was 
performed to compare all MSC sources and the different conditions. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing BM MSCs Is MSCs Ad MSCs 

CX3CL1 

1 

Cyt 2.39 ± 0.51 2.34 ± 2.02 2.19 ± 0.73 

LPS 1.40 ± 0.10 7.44 ± 3.38 0.29 ± 0.12 

LTA 5.13 ± 3.48 2.84 ± 1.46 1.09 ± 0.75 

Poly I:C 0.49 ± 0.32 5.71 ± 1.25 0.28 ± 0.14 

2 

Cyt 7.07 ± 3.78 4.82 ± 4.06 23.71 ± 5.55 

LPS 0.61 ± 0.16 1.01 ± 0.88 0.15 ± 0.04 

LTA 2.40 ± 0.65 2.38 ± 2.75 0.24 ± 0.05 

Poly I:C 1.74 ± 1.62 4.29 ± 3.14 0.30 ± 0.09 

3 

Cyt 1.24 ± 0.96 1.17 ± 0.80 12.29 ± 2.38 

LPS 0.73 ± 0.27 0.77 ± 0.75 0.42 ± 0.11 

LTA 1.20 ± 0.79 4.24 ± 2.95 5.63 ± 1.68 

Poly I:C 0.32 ± 0.20 1.92 ± 1.60 1.99 ± 0.43 

ACKR4 

1 

Cyt 0.02 ± 0.02 0.01 ± 0.00 1.66 ± 1.30 

LPS 0.07 ± 0.01 0.18 ± 0.09 0.85 ± 0.30 

LTA 0.16 ± 0.05 0.23 ± 0.04 0.80 ± 0.49 

Poly I:C 0.01 ± 0.00 0.82 ± 0.57 0.52 ± 0.16 

2 

Cyt 0.02 ± 0.01 0.01 ± 0.00 0.26 ± 0.14 

LPS 0.05 ± 0.02 0.08 ± 0.02 0.12 ± 0.09 

LTA 0.26 ± 0.11 0.47 ± 0.23 0.31 ± 0.18 

Poly I:C 0.03 ± 0.01 0.13 ± 0.03 0.19 ± 0.05 

3 

Cyt 0.01 ± 0.00 0.01 ± 0.00 0.29 ± 0.12 

LPS 0.18 ± 0.08 0.17 ± 0.18 0.18 ± 0.04 

LTA 0.11 ± 0.04 0.60 ± 0.11 3.15 ± 0.66 

Poly I:C 0.00 ± 0.00 0.13 ± 0.14 0.50 ± 0.16 
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4.3.4 Transcription of the receptors for the stimulatory agents 
under resting and inflammatory conditions 

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, 

IL1R1, IL1R2, IFNGR2, TLR2, TLR3 and TLR4, while TNFR1a, TNFR1b and IFNGR1 

were transcribed at higher rates (Section 8.1). In all the cases, transcript level 

variations were not observed among the MSCs isolated from the different sources 

under resting conditions. However, tissue of origin did influence the 

transcriptional regulation upon exposure to the different licensing agents and 

the different conditions. Fold changes of transcriptional regulation upon 

licensing of MSCs are summarised in Table 4-10. 

Briefly, cytokine-mediated stimulation led to the downregulation of the cytokine 

receptors (IL1R1, IL1R2, TNFR1a, TNFR1b, IFNGR1 and IFNGR2) in BM and Is MSCs 

under all conditions. Cytokine-mediated stimulation downregulated the cytokine 

receptors in Ad MSCs too; however, this downregulation was not sustained 72 

hours after stimulation and, in some cases, even led to the upregulation of the 

receptors. LPS and LTA were able to upregulate the cytokine receptor transcript 

levels in certain conditions in MSCs from the three sources. The effects of Poly 

I:C in the regulation of the cytokine receptor transcription levels was tissue 

specific; Poly I:C stimulation of BM MSCs led to the downregulation of all the 

cytokine receptors but IFNGR2 in all the conditions tested. Poly I:C was able to 

downregulate the transcription of all the cytokine receptors but IFNGR2 in Is 

MSCs; however, 24 hours after the stimulation the downregulation started 

getting reversed and the transcript levels started increasing. The effect of Poly 

I:C stimulation in Ad MSCs was gene dependent and the effect it produced in 

each of the genes at the established time points will be described later. LPS-

mediated stimulation downregulated its receptor, TLR4, after 24 hours licensing 

in BM MSCs; however, 24 hours after the stimulation the downregulation started 

to reverse, and the transcript levels started increasing. LPS produced no 

variation in TLR4 transcript levels after a single stimulation in Is MSCs; however, 

a second stimulation 48 hours after the first one downregulated the receptor 

transcript levels.  

Overall, LPS-mediated licensing produced no variation in TLR4 transcript levels 

in Ad MSCs under any condition. Cytokine and Poly I:C-mediated licensing were 



181 
 
associated with downregulation of the transcription of TLR4 in BM and Is MSCs; 

while cytokines upregulated its transcription in every condition and Poly I:C was 

able to upregulate the transcription of TLR4 after a double stimulation. LTA-

mediated stimulation produced an upregulation of TLR4 transcript levels in BM 

MSCs, a downregulation that was reversed after 72 hours in Is MSCs and was only 

able to upregulate the transcription after a double stimulation in Ad MSCs.  

LTA-mediated stimulation upregulated its receptor, TLR2, in BM MSCs under 

every condition, while it produced no variation in Is MSCs and a small 

downregulation in Ad MSCs after a single stimulation but no variation after a 

double stimulation. All the licensing agents were able to increase the transcript 

levels of TLR2 in BM MSCs. LPS and Poly I:C produced no variation on TLR2 

transcript levels in Is and Ad MSCs while cytokine-mediated licensing produced 

an upregulation in 24 hours in Is MSCs which was not sustained and Ad MSCs 

required a double stimulation to upregulate TLR2 transcript levels.  

Poly I:C-mediated stimulation downregulated its receptor, TLR3, in MSCs from 

the three sources under every condition tested. All the licensing agents were 

able to decrease the transcript levels of TLR3 in BM MSCs. Cytokine-mediated 

licensing downregulated TLR3 transcript levels in Is MSCs under every condition, 

while it produced an upregulation in Ad MSCs. LPS or LTA-mediated stimulation 

produced a decrease in the transcript levels 24 hours after the first or second 

stimulation, while they produced an upregulation 72 hours later in Is MSCs. In 

contrast, Ad MSCs responded to LPS or LTA licensing by downregulating TLR3, 

but this downregulation was brief as transcript level started increasing after 24 

hours.  

 

Table 4-10. Fold change in the receptors of the stimulatory agents’ transcript levels of 
cytokine, LPS, LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to 
unstimulated cells from the same source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
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supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate transcript levels of the receptors of the stimulatory agents in BM, Is and Ad 
MSCs under resting and inflammatory conditions. Data are normalised to the housekeeping gene 
B2M and expressed as 2(-ΔCT). Fold change in transcript levels of the receptors of the stimulatory 
agents is represented as mean of fold change ± standard deviation. One Way ANOVA with Tukey’s 
multiple comparisons post-test was performed to compare all MSC sources and the different 
conditions. Statistically significant differences are marked with a colour code, where p < 0.05 is 
represented by green, p < 0.01 is represented by orange, p < 0.001 is represented by blue and p < 
0.0001 is represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

IL1R1 

1 

Cyt 0.07 ± 0.04 0.22 ± 0.13 3.20 ± 2.13 

LPS 0.20 ± 0.07 3.47 ± 1.35 3.27 ± 2.77 

LTA 0.25 ± 0.06 3.62 ± 2.31 2.03 ± 1.11 

Poly I:C 0.05 ± 0.02 1.88 ± 1.82 1.04 ± 0.58 

2 

Cyt 0.18 ± 0.11 0.04 ± 0.02 1.99 ± 1.00 

LPS 0.48 ± 0.39 0.54 ± 0.25 0.73 ± 0.35 

LTA 1.61 ± 1.53 0.64 ± 0.29 0.73 ± 0.48 

Poly I:C 0.14 ± 0.09 0.56 ± 0.28 0.93 ± 0.39 

3 

Cyt 0.19 ± 0.14 0.03 ± 0.01 0.01 ± 0.01 

LPS 0.59 ± 0.41 0.53 ± 0.13 0.83 ± 0.61 

LTA 0.92 ± 1.01 1.38 ± 0.40 5.59 ± 3.74 

Poly I:C 0.05 ± 0.04 0.33 ± 0.26 0.00 ± 0.00 

IL1R2 

1 

Cyt 0.07 ± 0.07 0.86 ± 1.27 13476.79 ± 13682.54 

LPS 2.30 ± 1.21 8.66 ± 12.92 1.72 ± 1.91 

LTA 1.95 ± 1.48 4.04 ± 1.76 5.11 ± 4.66 

Poly I:C 0.52 ± 0.46 3.34 ± 3.13 4.72 ± 7.66 

2 

Cyt 0.19 ± 0.17 0.10 ± 0.09 25.20 ± 38.61 

LPS 0.99 ± 1.11 0.71 ± 0.48 1.79 ± 0.79 

LTA 2.88 ± 3.17 2.50 ± 2.97 1.39 ± 1.48 

Poly I:C 0.53 ± 0.28 0.86 ± 0.31 1.70 ± 2.57 

3 

Cyt 0.57 ± 0.64 0.47 ± 0.43 17.83 ± 18.07 

LPS 0.96 ± 0.31 0.77 ± 0.76 4.54 ± 6.34 

LTA 0.96 ± 0.46 5.51 ± 6.58 34.53 ± 53.66 

Poly I:C 0.17 ± 0.14 9.71 ± 14.87 2.13 ± 2.64 

TNFR1a 

1 

Cyt 0.69 ± 0.30 0.29 ± 0.18 0.80 ± 0.31 

LPS 0.76 ± 0.10 1.52 ± 0.60 0.47 ± 0.11 

LTA 2.65 ± 1.39 1.53 ± 1.58 0.78 ± 0.24 

Poly I:C 0.39 ± 0.20 0.95 ± 0.65 0.47 ± 0.06 

2 

Cyt 0.74 ± 0.49 0.44 ± 0.31 0.89 ± 0.09 

LPS 0.32 ± 0.07 0.84 ± 0.30 0.32 ± 0.06 

LTA 1.71 ± 0.81 0.54 ± 0.54 0.17 ± 0.03 

Poly I:C 0.48 ± 0.08 0.82 ± 0.78 0.32 ± 0.04 

3 

Cyt 0.36 ± 0.26 0.08 ± 0.05 5.92 ± 0.68 

LPS 0.62 ± 0.38 0.38 ± 0.14 2.95 ± 0.32 

LTA 1.64 ± 1.36 0.69 ± 0.89 7.05 ± 1.26 

Poly I:C 0.20 ± 0.15 0.17 ± 0.02 2.63 ± 0.50 

TNFR1b 1 

Cyt 0.32 ± 0.04 0.12 ± 0.08 0.65 ± 0.35 

LPS 0.53 ± 0.11 0.43 ± 0.05 0.45 ± 0.06 

LTA 1.13 ± 0.16 0.69 ± 0.25 0.88 ± 0.19 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

Poly I:C 0.19 ± 0.05 0.34 ± 0.21 0.44 ± 0.06 

2 

Cyt 0.47 ± 0.11 0.24 ± 0.08 0.68 ± 0.09 

LPS 0.71 ± 0.07 0.55 ± 0.04 0.63 ± 0.19 

LTA 1.06 ± 0.25 0.50 ± 0.19 0.28 ± 0.03 

Poly I:C 0.34 ± 0.03 0.30 ± 0.09 0.38 ± 0.09 

3 

Cyt 0.41 ± 0.06 0.19 ± 0.01 2.81 ± 0.17 

LPS 0.84 ± 0.16 0.55 ± 0.06 1.01 ± 0.03 

LTA 1.25 ± 0.18 0.67 ± 0.36 0.99 ± 0.19 

Poly I:C 0.20 ± 0.01 0.45 ± 0.04 4.07 ± 0.66 

IFNGR1 

1 

Cyt 0.10 ± 0.10 0.12 ± 0.07 1.18 ± 0.44 

LPS 0.23 ± 0.12 0.68 ± 0.14 0.32 ± 0.28 

LTA 1.01 ± 0.17 1.13 ± 0.12 0.63 ± 0.07 

Poly I:C 0.10 ± 0.01 0.37 ± 0.26 0.42 ± 0.24 

2 

Cyt 0.10 ± 0.09 0.15 ± 0.06 0.52 ± 0.49 

LPS 0.10 ± 0.07 0.60 ± 0.19 0.40 ± 0.38 

LTA 0.97 ± 0.22 0.72 ± 0.24 0.38 ± 0.03 

Poly I:C 0.16 ± 0.05 0.48 ± 0.27 0.57 ± 0.10 

3 

Cyt 0.06 ± 0.05 0.07 ± 0.03 1.18 ± 0.98 

LPS 0.16 ± 0.10 0.52 ± 0.11 1.04 ± 0.73 

LTA 0.95 ± 0.26 0.88 ± 0.40 2.25 ± 0.40 

Poly I:C 0.07 ± 0.02 0.26 ± 0.12 0.53 ± 0.13 

IFNGR2 

1 

Cyt 0.99 ± 0.27 0.69 ± 0.61 4.84 ± 1.61 

LPS 1.37 ± 0.19 5.73 ± 2.99 1.90 ± 0.70 

LTA 5.81 ± 3.38 6.09 ± 2.63 2.92 ± 0.88 

Poly I:C 0.93 ± 0.63 4.10 ± 2.21 0.85 ± 0.34 

2 

Cyt 0.68 ± 0.29 0.84 ± 0.11 2.71 ± 0.81 

LPS 0.59 ± 0.27 2.12 ± 0.90 1.73 ± 0.40 

LTA 2.43 ± 1.26 0.84 ± 0.11 1.11 ± 0.21 

Poly I:C 2.81 ± 1.70 2.38 ± 0.88 1.02 ± 0.21 

3 

Cyt 0.39 ± 0.28 0.26 ± 0.29 19.05 ± 5.19 

LPS 0.78 ± 0.22 0.58 ± 0.30 3.51 ± 1.54 

LTA 2.04 ± 1.50 2.08 ± 1.77 10.72 ± 2.57 

Poly I:C 0.28 ± 0.21 2.12 ± 0.90 9.77 ± 2.59 

TLR2 

1 

Cyt 1.44 ± 0.83 0.42 ± 0.19 0.97 ± 0.62 

LPS 4.34 ± 2.29 1.16 ± 0.44 0.41 ± 0.13 

LTA 5.60 ± 2.63 1.56 ± 1.05 0.79 ± 0.21 

Poly I:C 1.30 ± 0.83 0.79 ± 0.19 0.32 ± 0.09 

2 

Cyt 4.42 ± 0.83 2.68 ± 0.32 0.32 ± 0.28 

LPS 4.16 ± 2.60 1.41 ± 0.13 0.47 ± 0.10 

LTA 6.85 ± 1.86 1.71 ± 0.84 0.46 ± 0.11 

Poly I:C 5.60 ± 2.41 1.69 ± 0.26 0.20 ± 0.20 

3 

Cyt 3.63 ± 1.06 0.82 ± 0.22 22.83 ± 4.59 

LPS 10.22 ± 0.53 2.64 ± 1.42 0.97 ± 0.15 

LTA 8.72 ± 1.01 2.03 ± 0.89 1.13 ± 0.34 

Poly I:C 3.40 ± 0.98 3.07 ± 1.70 1.51 ± 0.14 

TLR3 1 Cyt 0.87 ± 0.74 0.45 ± 0.25 5.50 ± 5.82 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LPS 1.00 ± 0.38 3.16 ± 2.25 1.40 ± 1.06 

LTA 2.07 ± 0.92 3.61 ± 2.06 2.73 ± 1.04 

Poly I:C 1.14 ± 0.39 2.01 ± 2.33 0.37 ± 0.23 

2 

Cyt 2.23 ± 1.21 1.77 ± 0.67 1.01 ± 0.44 

LPS 0.92 ± 0.29 1.07 ± 0.45 0.49 ± 0.31 

LTA 2.09 ± 0.82 1.24 ± 0.47 0.83 ± 0.51 

Poly I:C 1.48 ± 0.95 3.16 ± 1.01 0.82 ± 0.62 

3 

Cyt 0.73 ± 0.40 0.41 ± 0.12 13.84 ± 9.93 

LPS 0.97 ± 0.45 0.40 ± 0.11 1.01 ± 0.72 

LTA 1.42 ± 0.62 1.22 ± 0.57 1.75 ± 0.93 

Poly I:C 1.70 ± 0.99 1.36 ± 1.44 2.19 ± 1.65 

TLR4 

1 

Cyt 0.53 ± 0.22 0.20 ± 0.16 2.31 ± 0.61 

LPS 0.73 ± 0.20 2.20 ± 0.77 1.19 ± 0.21 

LTA 2.01 ± 0.81 3.11 ± 1.21 1.27 ± 0.43 

Poly I:C 0.51 ± 0.22 0.98 ± 0.44 0.60 ± 0.12 

2 

Cyt 0.80 ± 0.43 0.52 ± 0.25 1.17 ± 0.26 

LPS 0.43 ± 0.14 0.82 ± 0.41 0.91 ± 0.38 

LTA 2.23 ± 1.29 0.52 ± 0.25 0.44 ± 0.08 

Poly I:C 0.49 ± 0.08 1.19 ± 0.30 0.60 ± 0.20 

3 

Cyt 0.60 ± 0.36 0.13 ± 0.06 5.64 ± 1.31 

LPS 0.76 ± 0.25 0.36 ± 0.15 1.12 ± 0.26 

LTA 1.86 ± 1.15 0.82 ± 0.26 3.54 ± 1.36 

Poly I:C 0.29 ± 0.18 0.37 ± 0.20 2.82 ± 1.17 

 

4.4 Analysis of the chemokine secretion profile by MSCs 
under resting and inflammatory conditions 

4.4.1 Analysis of CC chemokine secretion under resting and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs secreted less than 0.35 pg of CC 

chemokines per mg of total protein (Figure 4-8). A pattern of upregulation was 

observed in CCL2 (A), CCL5 (B) and CCL7 (C) upon licensing. However, these 

chemokines were upregulated differentially in MSCs according to their tissue of 

origin. Analysis of the CC chemokine protein levels 24 hours after stimulation 

(Condition 2) resulted in upregulated secretion in MSCs from every tissue source; 

however, this upregulation was not sustained as supernatant harvested 72 hours 

after licensing (Condition 1) showed a decrease in the secretion of CC 

chemokines. A second stimulation 48 hours after the first stimulation (Condition 

3) was able to induce the production of CC chemokines in MSCs from the three 
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sources; however, this second stimulation was not able to mimic the secretion 

level of CC chemokines found in Condition 2. Fold changes in CC chemokine 

secretion upon cytokine-mediated licensing of MSCs are shown in Table 4-11.  

MSCs isolated from the three tissues were producing CCL2 under resting 

conditions but Is MSCs secreted the highest levels of CCL2 (BM = 0.29 pg/ mg; Is 

= 0.32 pg/ mg; Ad = 0.16 pg/ mg) (Figure 4-8, A). Cytokine-mediated licensing 

produced an upregulation of the secretion in all the conditions tested in MSCs of 

the three tissue sources. After 72 hours of stimulation (Condition 1), CCL2 

secretion was upregulated in MSCs from the three tissues but was only 

statistically significant in Is MSCs. However, 24 hours of stimulation (Condition 2) 

produced a statistically significant upregulation of CCL2 secretion in BM, Is and 

Ad MSCs, where Is MSCs were secreting 13 pg of CCL2 per mg of total protein. A 

second cytokine-mediated stimulation 48 hours after the first one (Condition 3) 

led to a higher secretion of CCL2 compared to unstimulated MSCs or Condition 1 

in MSCs from every tissue source, suggesting that cells were responsive to the 

second stimulation. However, CCL2 levels were lower than 24 hours after a 

single stimulation. The lower limit of quantification for CCL2 in the Mouse 

Magnetic Luminex Assay was 210.58 pg/ mL and all the analysed samples were 

above this value.  

Secretion of CCL5 under resting conditions was low in every source of MSCs; 

however, BM MSCs secreted statistically significant higher amounts of CCL5 than 

Is and Ad MSCs (BM = 0.039 pg/ mg; Is = 0.010 pg/ mg; Ad = 0.013 pg/ mg) 

(Figure 4-8, B). Cytokine-mediated licensing produced an upregulation of the 

secretion of CCL5 in all the conditions tested in MSCs from the three tissue 

sources. After 72 hours of stimulation (Condition 1), CCL5 secretion was 

significantly upregulated in MSCs from the three tissues; however, despite the 

highest secretion under resting conditions, BM MSCs had secreted the least CCL5 

and Ad MSCs the most. 24 hours after stimulation (Condition 2) BM and Is MSCs 

had secreted statistically significantly higher amounts of CCL5 compared to 

control or Condition 2; however, these levels were much higher in Is MSCs as 

they had secreted 1.56 pg of CCL5 per mg of total protein. After 24 hours of 

licensing, Ad MSCs had significantly upregulated the secretion of CCL5 compared 

to unstimulated conditions but no variations were observed when compared with 
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Condition 1, suggesting that Ad MSC licensing had a more prolonged effect than 

the one generated on BM or Is MSCs. A second cytokine-mediated stimulation 48 

hours after the first one (Condition 3) led to a higher secretion of CCL2 

compared to unstimulated MSCs or Condition 1 in BM and Is MSCs, suggesting that 

cells were responsive to the second stimulation but not able to replicate the 

effect achieved after 24 hours of licensing; however, despite the upregulation in 

the production of CCL5 compared to the control, no variations were observed in 

the production of CCL5 by Ad MSCs compared to Condition 1 or 2. The lower 

limit of quantification for CCL5 in the Mouse Magnetic Luminex Assay was 73.42 

pg/ mL and all the analysed samples were above this value. 

MSCs isolated from the three tissues were producing CCL7 under resting 

conditions but Is MSCs secreted the highest levels of CCL7 (BM = 0.13 pg/ mg; Is 

= 0.14 pg/ mg; Ad = 0.08 pg/ mg) (Figure 4-8, C). Cytokine-mediated licensing 

produced an upregulation in the secretion in all the conditions tested in MSCs of 

the three tissue sources. After 72 hours of stimulation (Condition 1), CCL7 

secretion was upregulated in the MSCs from the three tissues but was only 

statistically significant in Is and Ad MSCs. 24 hours of stimulation (Condition 2) 

produced an upregulation of CCL7 secretion in BM, Is and Ad MSCs; however, this 

upregulation was only statistically significant in Is and Ad MSCs. A second 

cytokine-mediated stimulation 48 hours after the first one (Condition 3) led to a 

higher secretion of CCL2 compared to unstimulated MSCs or Condition 1 in Is and 

Ad MSCs from every tissue source, suggesting that cells were responsive to the 

second stimulation; however, CCL2 levels were lower than 24 hours after a 

single stimulation. BM MSCs had the highest CCL7 protein levels in Condition 3; 

however, the amount of protein secreted was not statistically significantly 

different to the levels of secreted protein in Conditions 1 or 2. The lower limit of 

quantification for CCL7 in the Mouse Magnetic Luminex Assay was 5.6 pg/mL and 

all the analysed samples were above this value. 
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Figure 4-8. Cytokine-mediated stimulation, repetitive stimulus and MSC tissue origin 
impacts CC chemokine secretion in MSCs.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 

reached 80% confluence, cells were stimulated with a cocktail of cytokines (40 ng/ mL of IFN-ϒ, 

TNF-α and IL-1β). Unstimulated cells were left growing in MSC culture medium as a control. Three 
different licensing conditions were tested. In the first one, cells were stimulated for 48 hours, after 
which cells were washed twice with PBS and fresh culture medium was added; cells were 
harvested 24 hours later. In the second condition, cells were washed twice with PBS, the culture 
medium was replaced with fresh one and the cells were left growing for 48 hours. Cells were then 
washed twice with PBS, the culture medium was replaced with supplemented one and the cells 
were harvested 24 hours later. In the last condition, cells were stimulated for 48 hours, after which 
cells were washed twice with PBS and were stimulated again for another 24 hours. Figure 4-7 
illustrates the time points at which supplemented medium was added. Luminex was performed to 
evaluate protein secretion in BM, Is and Ad MSCs under resting and inflammatory conditions. Each 
bar represents an n of 3 independent experiments and is graphed as mean ± SEM. Data are 
normalised to total amount of protein in medium and expressed as picograms of protein of interest 
per mg of total protein. Appropriate statistical analysis was performed and includes Students paired 
T test between one MSC tissue source (Resting vs Inflammatory Conditions) and One Way 
ANOVA with Tukey’s multiple comparisons post-test to compare all MSC sources. Statistically 
significant differences are marked with the appropriate number of asterisks. p = 0.05 was 
considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 4-11. Fold change in CC chemokine secretion of cytokine-mediated licensed BM, Is 
and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-8, fold change in CC chemokine protein 
levels is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 
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Protein Condition BM MSCs Is MSCs Ad MSCs 

CCL2 

1 3.00 ± 2.10 6.72 ± 0.79 22.91 ± 5.90 

2 18.38 ± 16.43 41.47 ± 4.27 44.54 ± 19.65 

3 15.84 ± 14.63 12.63 ± 1.52 24.39 ± 2.55 

CCL5 

1 3.20 ± 0.04 28.80 ± 11.61 73.27 ± 22.14 

2 14.69 ± 0.64 206.50 ± 86.46 65.53 ± 37.30 

3 7.19 ± 0.39 39.83 ± 19.56 59.72 ± 15.70 

CCL7 

1 1.84 ± 1.14 2.61 ± 0.12 4.56 ± 0.70 

2 3.60 ± 2.50 4.45 ± 0.48 5.57 ± 1.43 

3 3.99 ± 2.95 3.01 ± 0.23 4.52 ± 0.09 

 

4.4.2 Analysis of CXC chemokine secretion under resting and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs secreted less than 0.5 pg of CXC 

chemokines per mg of total protein (Figure 4-9). A pattern of upregulation was 

observed in CXCL1 (A), CXCL2 (B) and CXCL10 (C), while CXCL12 (D) presented a 

pattern of downregulation after licensing. However, these chemokines were 

regulated differentially in MSCs according to their tissue of origin. Analysis of the 

CXC chemokine protein levels 24 hours after stimulation (Condition 2) 

demonstrated a marked upregulation of the secretion of CXCL1, CXCL2 and 

CXCL10 in MSCs from every tissue source; however, this upregulation was not 

sustained as supernatant harvested 72 hours after licensing (Condition 1) showed 

a decrease in the secretion of CXC chemokines. A second stimulation 48 hours 

after the first stimulation (Condition 3) was able to induce the production of CXC 

chemokines in MSCs from the three sources, however, the second stimulation 

was not able to mimic the secretion level of CC chemokines found in Condition 

2. Regarding CXCL12, 24 hours of stimulation (Condition 2) produced no effect in 

BM and Ad MSCs while it produced a downregulation in Is MSCs. Condition 1 and 3 

produced a downregulation in the secretion of CXCL12 from MSCs of every 

source. Fold changes in CXC chemokine secretion upon cytokine-mediated 

licensing of MSCs are specified in Table 4-12.  

MSCs isolated from the three tissues were producing very little CXCL1 under 

resting conditions but BM MSCs secreted the highest levels of CXCL1 (BM = 0.07 

pg/ mg; Is = 0.02 pg/ mg; Ad = 0.01 pg/ mg) (Figure 4-9, A). Cytokine-mediated 

licensing produced an upregulation of the secretion in all the conditions tested 

in MSCs of the three tissue sources. After 72 hours of stimulation (Condition 1), 
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CXCL1 secretion was upregulated in MSCs from the three tissues but was only 

statistically significant in BM MSCs. However, 24 hours of stimulation (Condition 

2) produced a statistically significant upregulation of CXCL1 secretion in Is and 

Ad MSCs, where Is MSCs were secreting 8 pg of CXCL1 per mg of total protein. A 

second cytokine-mediated stimulation 48 hours after the first one (Condition 3) 

led to a statistically significant higher secretion of CXCL1 compared to 

unstimulated MSCs or Condition 1 in Is and Ad MSCs, suggesting that cells were 

responsive to the second stimulation; however, CXCL1 levels were lower than 24 

hours after a single stimulation. The lower limit of quantification for CXCL1 in 

the Mouse Magnetic Luminex Assay was 33.83 pg/ mL and all the analysed 

samples were above this value.  

MSCs isolated from the three tissues were producing very little CXCL2 under 

resting conditions but BM MSCs secreted the highest levels of CXCL2 (BM = 0.012 

pg/ mg; Is = 0.0007 pg/ mg; Ad = 0.0001 pg/ mg) (Figure 4-9, B). Cytokine-

mediated licensing produced an upregulation of the secretion in all the 

conditions tested in MSCs of the three tissue sources. After 72 hours of 

stimulation (Condition 1), CXCL2 secretion was upregulated in MSCs from the 

three tissues but was only statistically significant in Ad MSCs. However, 24 hours 

of stimulation (Condition 2) produced a statistically significant upregulation of 

CXCL2 secretion in MSCs from every source, with BM MSCs secreting 0.31 pg of 

CXCL2 per mg of total protein. A second cytokine-mediated stimulation 48 hours 

after the first one (Condition 3) led to a statistically significant higher secretion 

of CXCL2 compared to unstimulated MSCs or Condition 1 in MSCs from every 

source, suggesting that cells are responsive to the second stimulation; however, 

CXCL2 levels were lower than 24 hours after a single stimulation. The lower limit 

of quantification for CXCL2 in the Mouse Magnetic Luminex Assay was 5.14 pg/ 

mL and all the analysed samples were above this value.  

MSCs isolated from the three tissues were producing very little CXCL10 under 

resting conditions but BM MSCs secreted the highest levels of CXCL10 (BM = 0.011 

pg/ mg; Is = 0.010 pg/ mg; Ad = 0.009 pg/ mg) (Figure 4-9, C). Cytokine-

mediated licensing produced an upregulation of the secretion in all the 

conditions tested in MSCs of the three tissue sources. After 72 hours of 

stimulation (Condition 1), CXCL10 secretion was upregulated in a statistically 
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significant manner in MSCs from the three tissues. However, 24 hours of 

stimulation (Condition 2) produced an even greater upregulation of CXCL10 

secretion in MSCs from every source, with Is MSCs secreting 2.4 pg of CXCL10 per 

mg of total protein. A second cytokine-mediated stimulation 48 hours after the 

first one (Condition 3) led to a statistically significant higher secretion of CXCL10 

compared to unstimulated MSCs or Condition 1 in all sources of MSCs, suggesting 

that cells were responsive to the second stimulation; however, CXCL10 levels 

were lower than 24 hours after a single stimulation. The lower limit of 

quantification for CXCL10 in the Mouse Magnetic Luminex Assay was 59.51 pg/ 

mL and all the analysed samples were above this value. 

MSCs isolated from the three tissues were producing CXCL12 under resting 

conditions but BM MSCs secreted the highest levels of this CXC chemokine (BM = 

0.56 pg/ mg; Is = 0.25 pg/ mg; Ad = 0.16 pg/ mg) (Figure 4-9, D). Cytokine-

mediated licensing produced no statistically significant effect on the secretion 

of CXCL12 in any of the conditions tested in BM and Ad MSCs, while it produced a 

downregulation in the secretion of CXCL12 by Is MSCs. After 72 hours of 

stimulation (Condition 1), CXCL12 secretion was downregulated in MSCs from the 

three tissues, even if it was only statistically significant in Is MSCs. 24 hours of 

stimulation (Condition 2) produced a downregulation of the same level as 

Condition 1 in Is MSCs, while it produced no effect in BM and Ad MSCs. A second 

cytokine-mediated stimulation 48 hours after the first one (Condition 3) led to a 

greater downregulation in the secretion of CXCL12 by Is MSCs compared to 

unstimulated MSCs or Condition 1 and 2. Condition 3 led to a statistically non–

significant downregulation of CXCL12 secretion by BM and Ad MSCs. The lower 

limit of quantification for CXCL12 in the Mouse Magnetic Luminex Assay was 

319.88 pg/ mL and all the analysed samples were above this value. 
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Figure 4-9. Cytokine-mediated stimulation, repetitive stimulus and MSC tissue origin 
impacts CXC chemokine secretion in MSCs.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 

reached 80% confluence, cells were stimulated with a cocktail of cytokines (40 ng/ mL of IFN-ϒ, 

TNF-α and IL-1β). Unstimulated cells were left growing in MSC culture medium as a control. Three 
different licensing conditions were tested. In the first one, cells were stimulated for 48 hours, after 
which cells were washed twice with PBS and fresh culture medium was added; cells were 
harvested 24 hours later. In the second condition, cells were washed twice with PBS, the culture 
medium was replaced with fresh one and the cells were left growing for 48 hours. Cells were then 

https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/4.%20Profiling%20of%20MSC%20chemokine%20and%20chemokine%20receptor/12%20LUMINEX%20CXCL12.png
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washed twice with PBS, the culture medium was replaced with supplemented one and the cells 
were harvested 24 hours later. In the last condition, cells were stimulated for 48 hours, after which 
cells were washed twice with PBS and were stimulated again for another 24 hours. Figure 4-7 
illustrates the time points at which supplemented medium was added. Luminex was performed to 
evaluate protein secretion in BM, Is and Ad MSCs under resting and inflammatory conditions. Each 
bar represents an n of 3 independent experiments and is graphed as mean ± SEM. Data are 
normalised total amount of protein in medium and expressed as picograms of protein of interest per 
mg of total protein. Appropriate statistical analysis was performed and includes Students paired T 
test between one MSC tissue source (Resting vs Inflammatory Conditions) and One Way ANOVA 
with Tukey’s multiple comparisons post-test to compare all MSC sources. Statistically significant 
differences are marked with the appropriate number of asterisks. p = 0.05 was considered the limit 
for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 4-12. Fold change in CXC chemokine secretion of cytokine-mediated licensed BM, Is 
and Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 4-8, fold change in CXC chemokine protein 
levels is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Protein Condition BM MSCs Is MSCs Ad MSCs 

CXCL1 

1 17.30 ± 15.64 47.59 ± 8.98 178.92 ± 35.55 

2 112.58 ± 124.64 401.24 ± 151.04 451.60 ± 161.68 

3 0.31 ± 0.16 106.12 ± 22.97 194.01 ± 20.36 

CXCL2 

1 3.96 ± 1.38 67.94 ± 26.72 961.84 ± 195.65 

2 28.06 ± 11.58 384.46 ± 78.04 1792.17 ± 262.76 

3 0.31 ± 0.16 175.15 ± 74.87 1184.16 ± 222.43 

CXCL10 

1 15.24 ± 1.38 37.43 ± 4.38 52.76 ± 11.24 

2 69.18 ± 8.45 229.39 ± 26.36 111.16 ± 31.80 

3 44.58 ± 2.40 103.07 ± 17.41 92.26 ± 9.59 

CXCL12 

1 0.22 ± 0.14 0.57 ± 0.06 0.61 ± 0.03 

2 1.34 ± 0.91 0.68 ± 0.10 1.03 ± 0.35 

3 0.31 ± 0.16 0.37 ± 0.02 0.64 ± 0.02 

 
 

4.5 Discussion and conclusions  

The establishment of standardised MSC isolation and culture protocols described 

in Chapter 3 enabled an objective comparison of the transcriptional and protein 

profile of BM, Is and Ad MSCs. For this reason, the aim of this chapter was to 

study the transcriptional profile of chemokines and chemokines receptors by BM, 

Is and Ad MSCs under resting and inflammatory conditions, which is summarised 

in Figure 4-10. Moreover, careful analysis of the transcript data enabled the 

identification of genes of interest to be targeted for protein assays. The 

chemokine secretion of BM, Is and Ad MSCs under resting and inflammatory 

conditions is summarised in Figure 4-11.  
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The use of different inflammatory agents, as well as the different conditions in 

which MSCs were stimulated with the same inflammatory agent, did not show a 

clear trend of up or down regulation of genes that could suggest a better 

inflammatory agent for MSC licensing. For these reasons, instead of discussing 

the results per condition, we have decided to discuss the results by gene of 

interest, focusing on the results obtained harvesting the cells 24 hours after 

licensing with 40 ng/ml of TNF-α, IL-1β and IFN-ϒ (Condition 2). In this manner, 

it is possible to compare the expression of all the genes analysed in this study in 

Section 4.2, which is summarised in Figure 4-10. More importantly, careful 

analysis of the transcript data enabled the identification of genes of interest to 

be targeted for protein assays; the secretion of chemokines by BM, Is and Ad 

MSCs under resting and inflammatory conditions is summarised in Figure 4-11. 

Moreover, the role of the chemokines and their receptors will be discussed, and 

the clinical implications of the expression and regulation upon inflammatory 

stimulus of these molecules will be examined.  
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Figure 4-10. Heat map representing the transcriptional expression of CC and CXC 
chemokine ligands and receptors by MSCs from different sources under resting and 
inflammatory conditions.  
Data from Figure 4-1, Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6 are combined 
and presented as a heat map to illustrate the chemokine and chemokine receptor transcriptional 
profile of MSCs maintained under resting and inflammatory conditions. The heat map summarises 
each tissue source of MSC highest and lowest transcribed genes under resting conditions and 
inflammatory stimulation. Genes with low 2(-ΔCT) values are highlighted in blue, genes with 
intermediate 2(-ΔCT) values are highlighted in grey and genes with high 2(-ΔCT) values are highlighted 
in yellow. 

 

4.5.1 Chemokine receptor expression by MSCs 

As previously described, one of the most critical aspects of MSC use as cellular 

therapeutics is related to MSC homing and engraftment within the target tissue 

following their administration. MSC homing encompasses both non–systemic, 

where MSCs are transplanted locally at the target tissue and are then guided to 

the site of injury, and systemic homing, where MSCs are administered intra-

venously or intra-arterially and the cells must exit the circulation and migrate to 

the site of injury (Nitzsche et al., 2017). In both cases, chemokine receptors 

have been described to be relevant for this process, in combination with other 

molecules as selectins and integrins (Xiao Ling et al., 2016, Liu et al., 2018a). 

Under resting conditions, BM, Is and Ad MSCs were most likely not transcribing 

CC chemokine receptors, except for CCR1 (Figure 4-3, A) and CCR5 (Figure 4-3, 

E), CXC chemokine receptors, except for CXCR6 (Figure 4-4, F) and atypical 

chemokine receptors, except for ACKR1 (Figure 4-5, A) and ACKR4 (Figure 4-5, 

D). These results correlate with the literature as BM MSCs have been reported to 

have essentially undetectable chemokine receptor transcripts and low levels of 

these transcripts have been observed in Ad MSCs. However, mRNA levels do not 

always correlate with protein levels, and in this specific case, with surface 

chemokine receptor expression and functionality (Ahmadian Kia et al., 2011, 

Bidkhori et al., 2016). Under resting conditions, little variation was observed in 

the transcription of these receptors among MSC sources. BM MSCs transcribed 

significantly higher levels of CCR7, CXCR6 and ACKR4; Is MSCs transcribed 

significantly higher levels of CCR1, CCR10 and CXCR3, while Ad MSCs transcribed 

significantly higher levels of CCR3. Altogether, these findings suggest that 

chemokine receptor expression by MSCs depends on MSC tissue of origin. 

Chemokine receptors are G protein-coupled receptors and they all share a very 
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similar structure which makes it very difficult to generate specific antibodies 

towards them that do not generate high non–specific background. For this 

reason, due to the lack of specific mouse antibodies, analysis of protein 

expression of chemokine receptors could not be performed.  

Differential surface expression of chemokine receptors by MSCs could lead to 

MSCs migrating towards different organs. The expression of CCR1 in macrophages 

and neutrophils led to kidney infiltration in renal ischemia-reperfusion injury 

(Furuichi et al., 2008); CCR5 directs CD8+ T cells towards the brain (Martin-

Blondel et al., 2016); CCR7 programs naïve T cells and B cells to migrate to the 

spleen and lymph nodes (Bjorkdahl et al., 2003); CCR3, CCR4 and CCR10 are 

highly expressed by T cells in skin (Fujimoto et al., 2008, Ma et al., 2002); 

CXCR3 mediates T cell recruitment into the kidney (Panzer et al., 2007); CXCR4 

expression is increased on the surface of extravascular neutrophils in the lung 

and the bone marrow (30); CXCR6 is highly expressed by liver-infiltrating CD8+ T 

cells (Sato et al., 2005b). If specific chemokines can target immune cells into 

specific tissues, the expression of these chemokines should be able to target 

MSCs into those tissues. In fact, CCR7 targets MSCs to secondary lymphoid organs 

(Li et al., 2014, Ma et al., 2016), CXCR3-deficient MSCs fail to infiltrate into the 

nephritic kidney (Lee et al., 2018) and CXCR4 receptor overexpression in MSCs 

improves treatment of acute lung injury (Yang et al., 2015). Taking all this into 

account, we could hypothesise that CCR7 and CXCR6 expression would direct BM 

MSCs towards lymphoid organs as the spleen, the lymph nodes and the liver; Is 

MSCs would migrate towards the kidneys due to their CCR1 and CXCR3 

expression; and Ad MSCs could have the potential to migrate towards the skin 

and bone marrow.  

Unlike conventional chemokine receptors, ACKRs interact with chemokines 

without inducing cell migration but rather regulate chemokine gradients by 

interacting with chemokines from the environment. ACKR1 can interact, with 

high affinity, with both CC and CXC chemokines and it is not believed to have 

ligand-scavenging properties, just ligand presentation on the cell surface 

(Pruenster et al., 2009); ACKR2 binds, internalises and degrades CC chemokines 

(Fra et al., 2003); ACKR3 interacts and scavenges two chemokines, CXCL12, the 

ligand of CXCR4, and CXCL11, one of the ligands of CXCR3 (Burns et al., 2006); 
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and ACKR4 binds the homeostatic chemokines CCL19, CCL21, CCL25, and 

CXCL13. As ACKRs do not induce cell migration and there is little literature on 

MSCs and ACKRs, it is hard to determine the clinical relevance of the expression 

of these molecules by MSCs, however it suggests that ACKRs in MSCs would be 

involved in regulating the availability of chemokine ligands. MSCs from the three 

sources would have the potential to regulate CC and CXC chemokines due to 

their similar transcript levels of ACKR1; however, BM MSCs transcribed 

significantly higher ACKR4 transcript levels, suggesting a better regulation of the 

homeostatic chemokines CCL19, CCL21, CCL25 and CXCL13 (Hughes and Nibbs, 

2018). 

The degree of difficulty understanding the role of chemokine receptors in MSCs 

increases when we consider the effect of inflammatory stimulation, as it 

produced a downregulation of the transcription of the receptors which was 

tissue specific. Cytokine-mediated stimulation decreased the transcription of 

CCR7, CXCR6 and ACKR4 in BM MSCs, which would make the cells less prone to 

migrate towards lymphoid organs (Ma et al., 2016) and would reduce the 

scavenging potential for homeostatic chemokines, which could help to dampen 

inflammation in a more efficient manner. Cytokine-mediated licensing 

decreased CXCR3 transcript levels, making it more difficult for these cells to 

migrate towards the kidney, even if CCR1 expression was not altered. Lastly, 

cytokine-mediated stimulation decreased CCR3 transcript levels in Ad MSCs, 

which could stop the migration of MSCs towards the skin or epithelial tissues.  

Altogether, BM, Is and Ad MSCs expressed low levels of chemokine receptor 

transcripts and few significant differences between MSC populations were 

observed; CCR7, CXCR6 and ACKR4 were specific to BM MSCs; CCR1, CCR10 and 

CXCR3 were specific to Is MSCs; while CCR3 was specific to Ad MSCs, suggesting 

that the tissue of origin of MSCs influences the chemokine receptor expression 

and therefore, could affect their in vivo migratory capacity. Overall, Ad MSCs 

downregulated their receptors to a lesser extent than BM or Is MSCs after 

inflammatory stimulation, which is likely explained by the higher resistance of 

Ad MSCs to stress (El-Badawy et al., 2016). These standardised comparison of 

MSCs isolated from different sources provides evidence to support further 

investigation into the expression and function of chemokine receptors by MSCs 
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from different sources to analyse the impact tissue of origin has on the in vivo 

migratory capacity and therefore, on the clinical outcome.  

4.5.2 Chemokine secretion by MSCs 

As previously described, in vitro cultured MSCs have been shown to secrete a 

wide range of chemokines, including CCL2, CCL3, CCL4, CCL5, CCL7, CCL20, 

CXCL1, CXCL2, CXCL5, CXCL10, CXCL12 and CX3CL1 (Chen et al., 2008, Ren et 

al., 2008, Meirelles Lda et al., 2009). However, the lack of standardised isolation 

and culture methods has led to very few studies regarding the comparison of 

chemokines secreted by MSCs isolated from different tissues in human (Thirlwell, 

2018) and none for mouse MSCs. The aforementioned chemokines have the 

ability to recruit towards MSCs cells from the immune system including 

macrophages, neutrophils, monocytes, eosinophils, DCs, T Cells, B cells and NK 

cells (Deshmane et al., 2009, De Filippo et al., 2013, Dwinell et al., 2001). For 

this reason, we consider that understanding MSC chemokine secretion will 

enable prediction of the interaction of these cells with the immune system and 

therefore, their immunomodulatory potential in an in vivo setting (Chen et al., 

2008, Ren et al., 2008, Meirelles Lda et al., 2009). Therefore, standardised 

comparison of the chemokine secretion of MSCs isolated from different sources 

could lead to the identification of MSCs that could be more relevant in specific 

clinical settings. The chemokine secretion of BM, Is and Ad MSCs under resting 

and inflammatory conditions is summarised in Figure 4-11. 

In the current study, under resting conditions, BM, Is and Ad MSCs transcribed 

and secreted low levels of CC chemokines, with the exception of CCL2 and CCL7 

(Figure 4-8, A and C), which were both expressed at similar levels in MSCs from 

every source; and CXC chemokines, with the exception of CXCL1 and CXCL12, 

which were all secreted by all tissue source MSCs at similar levels (Figure 4-9, A 

and D). These chemokines are strong chemoattractants for monocytes (CCL2 and 

CCL7), neutrophils (CXCL1) and lymphocytes (CXCL12). Under inflammatory 

stimulation, BM, Is and Ad MSCs upregulated the transcription and secretion of 

the previously mentioned chemokines, whilst also inducing the transcription and 

secretion of CCL5, CXCL2 and CXCL10. Inflammatory stimulation produced no 

effect in the transcription and secretion of CXCL12. After inflammatory 

stimulation, Is MSCs were able to secrete the highest amounts of every 
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chemokine aforementioned. Even if the transcriptional level of many 

chemokines has been analysed under different conditions, this discussion section 

is going to focus on the chemokines that were secreted at high level under 

resting and inflammatory conditions (CCL2, CCL5, CCL7, CXCL1, CXCL2, CXCL10 

and CXCL12) and the specific immune cells that MSCs could attract due to the 

secretion of those chemokines. It is important to mention that the secretion of 

CCL2, CCL5, CCL7, CXCL1, CXCL10 and CXCL12 by MSCs has previously been 

reported (Kyurkchiev et al., 2014, Thirlwell, 2018, Lee et al., 2012, Kimura et 

al., 2014); but to my knowledge, differences in chemokine transcription, 

secretion and leukocyte recruitment by murine MSCs isolated from different 

tissue sources has not been documented. 

 

Figure 4-11. Heat map representing the secretion of CC and CXC chemokine ligands by 
MSCs from different sources under resting and inflammatory conditions.  
Data from Figure 4-8 and Figure 4-9 are combined and presented as a heat map to illustrate the 
chemokine secretion profile of MSCs maintained under resting and inflammatory conditions. The 
heat map summarises each tissue source of MSC highest and lowest secreted chemokines under 
resting conditions and inflammatory stimulation. Proteins with low secretion are highlighted in blue, 
proteins with intermediate secretion are highlighted in grey and proteins with high secretion are 
highlighted in yellow. 
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CCL2, also known as the monocyte chemoattractant protein 1 (MCP–1), is 

secreted by many cell types including endothelial cells, fibroblasts, epithelial 

cells and smooth muscle cells, but monocytes and macrophages have been 

identified as the major source of CCL2 (Deshmane et al., 2009, Yoshimura et al., 

1989). On the one hand, CCL2 is involved in the regulation of the migration and 

infiltration of monocytes, memory T cells and NK cells and is involved in the 

development of inflammatory disorders including rheumatoid arthritis 

(Hayashida et al., 2001), multiple sclerosis (Sørensen et al., 2004) and insulin-

resistant diabetes (Sartipy and Loskutoff, 2003). On the other hand, CCL2 is 

involved in angiogenesis and neovascularisation (Daly and Rollins, 2003, Rose et 

al., 2003). BM, Is and Ad MSCs transcribed (Figure 4-1, A) and secreted (Figure 

4-8, A) substantial levels of CCL2 under resting conditions. These transcriptional 

and protein levels were significantly upregulated after inflammatory stimulation 

by MSCs isolated from all tissue sources. BM MSCs had the highest CCL2 

expression levels while, at protein level, Is MSCs secreted the highest levels of 

CCL2 under cytokine-mediated inflammatory stimulation, suggesting the 

involvement of post-transcriptional mechanisms in the expression of CCL2. 

Moreover, Is MSCs could have the potential to attract more monocytes than BM 

and Ad MSCs. Secretion of CCL2 by human BM, Is and Ad MSCs has previously 

been reported (Thirlwell, 2018) but to my knowledge, differences in CCL2 

transcription, secretion and monocyte and T cell chemoattraction by mouse 

MSCs isolated from different tissue sources have not been documented.  

CCL5, also known as “regulated upon activation normal T cell expressed and 

secreted” (RANTES), is expressed by T lymphocytes, macrophages, platelets, 

synovial fibroblasts, tubular epithelium, and certain types of tumour cells and is 

involved in the recruitment of T cells, eosinophils and basophils predominantly 

but also NK cells, DCs and MCs (Marques et al., 2013). CCL5 is a key pro-

inflammatory chemokine involved in viral (Glass et al., 2003) and helminth 

(Souza et al., 2011) infections and enhancing inflammation in diseases such as 

asthma (Lukacs, 2001) or atherosclerosis; however, CCL5 is also involved in 

angiogenesis (Suffee et al., 2011). BM, Is and Ad MSCs transcribed (Figure 4-1, D) 

and secreted (Figure 4-8, B) little CCL5 under resting conditions. However, 

inflammatory stimulation significantly upregulated CCL5 transcript and protein 

levels in MSCs isolated from all tissue sources. At the transcriptional level, BM 
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MSC were expressing the highest CCL5 transcript levels, while at protein level, Is 

MSCs secreted the most CCL5 after cytokine-mediated inflammatory stimulation, 

suggesting the involvement of post-transcriptional mechanisms in the expression 

and secretion of CCL5. Moreover, under inflammatory conditions Is MSCs could 

have the potential to recruit the most leukocytes.  

 

CCL7, previously known as monocyte chemoattractant protein 3 (MCP3), is 

expressed in fibroblasts, epithelial cells, and endothelial cells and it specifically 

attracts monocytes, eosinophils, basophils, DCs, NK cells and activated T 

lymphocytes (Liu et al., 2018b). CCL7 is involved in antiviral, antibacterial and 

antifungal immunity due to the monocyte mobilization from the bone marrow 

towards sites of inflammation; moreover, CCL7 is the only member of the CC 

chemokine family that can induce the migration of neutrophils (Fioretti et al., 

1998). However, an excess of CCL7 is involved in several diseases including 

psoriasis (Brunner et al., 2015), acquired immunodeficiency syndrome (Atluri et 

al., 2016) and acute neutrophilic lung inflammation and pulmonary fibrosis 

(Mercer et al., 2014). BM, Is and Ad MSCs transcribed (Figure 4-1, E) and 

secreted (Figure 4-8, C) little CCL7 under resting conditions. However, 

inflammatory stimulation significantly upregulated CCL7 transcript and protein 

levels in MSCs isolated from all tissue sources. At transcriptional level, BM MSC 

were expressing the highest CCL7 transcript levels, while at protein level, Is 

MSCs secreted the most CCL7 after cytokine-mediated inflammatory stimulation, 

suggesting the involvement of post-transcriptional mechanisms in the expression 

and secretion of CCL7. Moreover, under inflammatory conditions Is MSCs could 

have the potential to recruit more monocytes than BM and Ad MSCs.  

CXCL1, also known as keratinocyte chemoattractant (KC), and CXCL2, also 

known as macrophage inflammatory protein 2 (MIP2), are the functional 

homologs of human CXCL8 (Hol et al., 2010). CXCL1 is expressed by 

keratinocytes, endothelial cells, monocytes and macrophages while CXCL2 is 

expressed by endothelial cells and megakaryocytes (Shea-Donohue et al., 2008). 

Despite CXCL1 and 2 not being the direct homologues of CXCL8, they both 

belong to the same major cluster of CXC chemokines and they are both involved 

in neutrophil recruitment via CXCR2 (Zlotnik and Yoshie, 2000b), which is why 

they are going to be discussed together. However, their role is not redundant; 
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CXCL1 is critical for luminal and subendothelial cell neutrophil crawling, while 

CXCL2 is involved in the correct breaching of endothelial junctions (Girbl et al., 

2018), but they are both involved in angiogenesis, tumorigenesis, wound healing 

and inflammation (Gillitzer and Goebeler, 2001, Kolaczkowska and Kubes, 2013, 

De Filippo et al., 2013). However, they are also involved in the development and 

maintenance of the inflammation in autoimmune diseases as rheumatoid 

arthritis (Udalova et al., 2016), multiple sclerosis (Grist et al., 2018) and 

psoriasis (Lowes et al., 2014) among others. BM, Is and Ad MSCs transcribed 

(Figure 4-2, A and B) and secreted (Figure 4-9, A and B) little CXCL1 and CXCL2 

under resting conditions. However, inflammatory stimulation significantly 

upregulated CXCL1 and CXCL2 transcriptional and protein levels in MSCs isolated 

from all tissue sources. At the transcript level, BM and Is MSCs expressed the 

highest CXCL1 and CXCL2 transcript levels respectively, while at the protein 

level, Is MSCs secreted the most CXCL1 and CXCL2 after cytokine-mediated 

inflammatory stimulation, suggesting the involvement of post-transcriptional 

mechanisms in the expression and secretion of CXCL1 and CXCL2. Moreover, 

under inflammatory conditions Is MSCs could have the potential to recruit more 

neutrophils than BM and Ad MSCs. 

CXCL10, also known as interferon–γ-inducible protein 10 (IP-10), is produced by a 

wide range of cell types including monocytes, neutrophils, endothelial cells, 

keratinocytes, fibroblasts, MSCs, DCs, hepatocytes and astrocytes (Vazirinejad et 

al., 2014). The CXCL10/ CXCR3 axis is involved in the chemoattraction of 

macrophages, monocytes and activated T and NK cells (Crow et al., 2001). 

Moreover, CXCL10 is involved in the modulation of T cell development and 

function as well as being an inhibitor of neovascularization, even in a tumoral 

environment (Vazirinejad et al., 2014). Due to the pro-inflammatory role of 

CXCL10, this CXC chemokine is involved in several pathologies including multiple 

sclerosis, rheumatoid arthritis, systemic lupus erythematosus and idiopathic 

inflammatory myopathy among others (Lee et al., 2009). BM, Is and Ad MSCs 

transcribed (Figure 4-2, D) and secreted (Figure 4-9, C) little CXCL10 under 

resting conditions. However, inflammatory stimulation significantly upregulated 

CXCL10 transcript and protein levels in MSCs isolated from all tissue sources. 

Under cytokine-mediated inflammatory stimulation, Is MSCs transcribed and 

https://www.sciencedirect.com/topics/immunology-and-microbiology/lupus-erythematosus
https://www.sciencedirect.com/topics/medicine-and-dentistry/myositis
https://www.sciencedirect.com/topics/medicine-and-dentistry/myositis
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secreted the most CXCL10, suggesting that Is MSCs could attract more monocytes 

than BM and Ad MSCs.  

CXCL12, also known as stromal-derived factor 1α (SDF-1α), is constitutively 

secreted by stromal cells in the bone marrow, lymph nodes, liver and lungs 

(Ieranò et al., 2019). CXCL12 induces the migration of haematopoietic progenitor 

and stem cells as well as being a very strong chemoattractant for endothelial 

cells and several leukocytes including pre-B cells, T cells and monocytes (Askari 

et al., 2003, Janssens et al., 2018). CXCL12 interacts with its receptors CXCR4 

and ACKR3 to fulfil extremely important physiological processes, including 

embryogenesis, haematopoiesis, angiogenesis and inflammation (Janssens et al., 

2018). Despite its homeostatic functions, increased expression of CXCL12 is 

involved in cancer progression, inflammatory bowel disease, rheumatoid 

arthritis, asthma and amyotrophic lateral sclerosis among others (Mousavi, 

2020). BM, Is and Ad MSCs transcribed (Figure 4-2, E) and secreted (Figure 4-9, 

C) little CXCL12 under resting conditions. Opposite to the other mentioned 

chemokines, inflammatory stimulation did not lead to an upregulation of CXCL10 

transcript and protein levels in MSCs isolated from any of the tissue sources. 

Under homeostatic or cytokine-mediated inflammatory stimulation, BM MSCs 

transcribed and secreted the most CXCL12, suggesting that BM MSCs could 

attract more progenitor and stem cells than Is and Ad MSCs.  

Altogether, inflammatory stimulation led to the secretion of substantial levels of 

CCL2, CCL5, CCL7, CXCL1, CXCL2, CXCL10 and CXCL12, which could potentially 

induce the recruitment of all sorts of leukocytes but more predominantly, 

neutrophils, monocytes/ macrophages, NK cells and T cells (Deshmane et al., 

2009, De Filippo et al., 2013, Dwinell et al., 2001). The recruitment of these 

cells by these chemokines could be considered detrimental within a clinical 

setting due to their role in triggering alloimmunity and graft rejection by 

recognizing allogenic nonself antigens (Lakkis and Li, 2018, Oberbarnscheidt et 

al., 2014, Choi et al., 2007). However, it is essential to bear in mind that MSCs 

are well known for their immunomodulatory potential producing a switch from 

pro-inflammatory environments towards anti–inflammatory ones. 

The CCL2/ CCR2 axis promotes the differentiation of monocytes towards anti–

inflammatory phenotypes, which are involved in the regulation of the resolution 

https://www.sciencedirect.com/topics/immunology-and-microbiology/t-cells
https://www.sciencedirect.com/topics/immunology-and-microbiology/monocyte


206 
 
phase of inflammation and the repair of damaged tissues and would therefore 

promote graft survival (Sierra-Filardi et al., 2014). In addition, secreted CCL2 by 

MSCs is not only relevant for monocyte attraction, but for T cells too as the 

CCL2/ CCR2 axis is crucial for the suppression of autoreactive T cells by MSCs 

(Lee et al., 2017a). Autoreactive T cells are present in pancreatic islets of T1DM 

patients and are able to mediate cross-reactive alloreactivity in T1DM that 

receive pancreas transplant (Burrack et al., 2018).  

CCL5 expression has been proven to supress the anti–tumour immunity in triple 

negative breast cancer due to the chemoattraction of T cells, NK cells and 

macrophages (Araujo et al., 2018). The CCL5/ CCR1 and CXCL10/ CXCR3 axis 

have been described to modulate allogeneic T cell responses contributing to the 

development of GVHD following allogeneic stem cell transplantation (Choi et al., 

2007, Piper et al., 2007); however, GVHD can be treated by infusion of MSCs, 

which leads to long–term graft function (Le Blanc et al., 2008). Little is known 

about the role of CCL7 in transplantation as CCL7 can induce chemotaxis of both 

pro-inflammatory and anti–inflammatory macrophages (Xuan et al., 2015). 

Galleu et al. described the essential role of cytotoxic cells to initiate MSC–

mediated immunosuppression in a murine model of GvHD; MSCs need to be 

targeted by cytotoxic T cells to undergo apoptosis so they can then be engulfed 

by macrophages and produce indoleamine 2,3 dioxygenase (IDO) (Galleu et al., 

2017). In addition, impaired expression of CCL5 in Ad MSCs leads to delayed 

repair of the vasculature of ischemic regions (Kimura et al., 2014). Moreover, 

CCL5 mediated recruitment of NK cells could be essential for alloimmunity and 

tolerance as NK cells can produce IL–10 and other anti–inflammatory cytokines 

(Benichou et al., 2011).  

Regarding neutrophil recruitment, CXCL1 mediated neutrophil infiltration has 

been shown to be essential for the recruitment of allospecific CD4+ T cells into 

the graft and is therefore associated with low survival rates of the allografts 

(Amescua et al., 2008). CXCL1 and CXCL2 mediated neutrophil infiltrates are 

involved in the ischemia and reperfusion injury after transplantation that leads 

to the onset and persistence of acute rejection in cardiac allografts (Shimizu and 

Mitchell, 2008). However, neutrophils could also inhibit graft inflammation and 

its subsequent rejection by enhancing wound and tissue repair coupled with 
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neovascularization (Christoffersson et al., 2012). Moreover, apoptosis of 

neutrophils is anti–inflammatory and pro–resolution of the inflammation process 

itself as it reduces the secretion of pro–inflammatory molecules by phagocytic 

cells (Byrne and Reen, 2002).  

Lastly, the presence of CXCL12 within a graft leads to progenitor cell and stem 

cell recruitment, angiogenesis and tissue regeneration after lung transplantation 

(Gomperts et al., 2006). Moreover, the addition of CXCL12 has been shown to 

increase the long-term survival of microencapsulated auto-, allo- and xenogeneic 

islets in murine models of diabetes without systemic immune suppression 

(Sremac et al., 2019). For these reasons, the overexpression of CXCL12 in MSCs 

would be therapeutically beneficial within a clinical setting.  

 

4.5.3 Conclusions 

To summarise and conclude, this chapter aimed to determine if murine MSCs 

isolated from different tissues had a specific pattern of chemokine and 

chemokine receptor expression at transcript, and most importantly, protein 

level. BM, Is and Ad MSCs all had very low transcript levels of chemokine 

receptors under resting and stimulatory chemokines, which suggests that homing 

into specific tissues is unlikely but if transplanted locally at the target tissue, 

MSCs would be unlikely to migrate away from the graft site. Due to the lack of 

specific antibodies towards murine chemokine receptors, protein analysis could 

not be performed. For this reason, to understand the functionality of receptors 

expressed by MSC, migration assays towards chemokines would have to be 

performed. Moreover, this chapter aimed to assay chemokine secretion by BM, Is 

and Ad MSCs and to understand if tissue of origin of MSCs led to a differential 

chemokine secretion under resting and inflammatory conditions. MSCs were able 

to produce large quantities of CCL2, CCL5, CXCL1 and CXCL10 at differential 

levels depending on MSC source of origin under inflammatory conditions, with Is 

MSCs secreting the most, which could induce the migration of large amounts of 

monocytes/ macrophages and neutrophils and NK cells and T cells in a smaller 

amount. This chapter showed differential chemoattraction potential of MSCs 

depending on their tissue of origin and suggests that MSCs isolated from various 
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tissues would act differentially in vivo. For this reason, determining the immune 

cell attraction in vivo would be essential to have a better understanding of the 

potential behaviour of MSCs from different sources within a clinical setting. 
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5 Defining the immune cell recruitment profile of 
MSCs in vivo  

5.1 Introduction and aims 

In Chapter 4 we determined that MSCs isolated from the bone marrow, islets of 

Langerhans and adipose tissue expressed overall low levels of chemokine 

receptor transcripts and that tissue of origin determines a specific pattern of 

chemokine transcription. BM, Is and Ad MSCs secreted CCL2, CCL7, CXCL1 and 

CXCL12 under resting conditions at similar levels, suggesting that MSCs have the 

potential to attract monocytes, neutrophils and lymphocytes. In addition, 

inflammatory licensing led to a substantial upregulation in the secretion of the 

aforementioned chemokines, whilst also inducing the transcription and secretion 

of CCL5, CXCL2 and CXCL10 by MSCs from all sources. Therefore, we 

hypothesised that inflammatory stimulation would lead to an increased 

recruitment of leukocytes by MSCs, with a predominance of neutrophils and 

monocytes/ macrophages.  

MSCs have been described to have stronger immunomodulatory and anti-

inflammatory properties after licensing with TNF-α, IL-1β and IFN-γ (Krampera 

et al., 2006, Krampera et al., 2007, Di Nicola et al., 2002, Beyth et al., 2005); 

which may be at odds with an increased secretion of chemokines with the ability 

to recruit leukocytes. It is essential to determine the immune recruitment 

potential of MSCs and its outcome, as infusion of MSCs into a patient with an 

existing inflammatory condition could lead to the recruitment of leukocytes and 

exacerbate inflammation. Monocytes and neutrophils are essential cell 

populations in early stages of acute inflammation and may be regarded as 

monofunctional pro-inflammatory cells. However, there is a relatively new body 

of literature surrounding the existence of pro-inflammatory and anti-

inflammatory or pro-angiogenic subsets of monocytes/ macrophages and 

neutrophils. Neutrophils are a heterogenic population and distinct neutrophil 

subsets with different roles have been identified based on their cell surface 

receptor expression. As an example, CD11b+/ Gr-1+ neutrophils are recruited to 

grafts where they are involved in the re-vascularization of the transplanted 

tissue (Christoffersson et al., 2012). More importantly, this subset of neutrophils 
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is CXCR4 high and would therefore be able to respond to the CXCL12 secretion 

by MSCs.  

Macrophages can be categorised in two major subsets, pro-inflammatory 

macrophages also known as M1 macrophages, and anti-inflammatory 

macrophages, known as M2 macrophages. The interaction between apoptotic 

neutrophils and macrophages promotes type 2 macrophage polarization (Marwick 

et al., 2018), leading to an anti-inflammatory environment. In the same way, 

MSC infusions induce a switch from pro-inflammatory to anti-inflammatory 

macrophages, driving alleviation of myocardial injury and restoration of cardiac 

function (Jin et al., 2019). Moreover, CXCL12 production has been described to 

modulate the differentiation of monocytes towards a distinctive pro-angiogenic 

and immunosuppressive phenotype (Sánchez-Martín et al., 2011). Taking all this 

into account, increased secretion of chemokine ligands and the subsequent 

recruitment of immune cells by licensed MSCs could have the potential to 

exacerbate inflammation or, in contrast, promote an anti-inflammatory milieu 

after infusion into a patient. Thus, the phenotype of the recruited immune cells 

would determine if MSCs could be beneficial or detrimental to tissue 

regeneration in a clinical setting.  

Having have showed in the previous chapter differential chemoattraction 

potential of MSCs depending on their tissue of origin, determining the immune 

cell attraction in vivo was the next logical step in this study to allow a better 

understanding of the potential behaviour of MSCs from different sources within a 

clinical setting. To do this, the murine air pouch model was used, which is a 

well-established model to study immune infiltration into an artificially created 

air pouch on the back of mice (Dyer et al., 2019). This model has already been 

used to assess the immune cell infiltration in response to licensed human Is MSC 

infusion into the air pouch of mice (Thirlwell, 2018, Dyer et al., 2019). For this 

reason, the air pouch was used as an in vivo environment to study the immune 

cell infiltration in response to resting and licensed BM, Is and Ad MSCs. Licensing 

of MSCs was carried out with 40 ng/ ml of TNF-α, IL-1β and IFN-ϒ for 24 hours. 

MSCs were thoroughly washed prior to infusion into the air pouch to avoid non-

specific immune cell attraction by the inflammatory cytokines.  
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Therefore, this chapter aimed to assess; i) the in vivo immune cell attraction 

profile of resting and licensed mouse MSCs, ii) the phenotype of infiltrated 

immune cells and iii) the fate of MSCs after infusion.  

 

Results 

5.2 Flow cytometry gating strategies 

Subcutaneous injection of sterile air into the intracapsular area of the mouse 

creates a hollow pocket of air, where MSCs are infused, surrounded by a 

membrane. Flow cytometry was used to analyse the immune cell infiltration into 

the air pouch fluid and membrane of C57BL/6 female mice 24 hours after MSC 

infusion into the air pouch.  

An array of cell markers (CD45, CD11b, Ly6g, F480, Siglec F, Ly6c and CD11c) 

coupled with a specific gating strategy (Figure 5-1) was used to identify 

neutrophils (Figure 5-1, D.i), macrophages (Figure 5-1, E.i), eosinophils (Figure 

5-1, F.i), monocytes (Figure 5-1, G.i) and CD11b high CD11c+ myeloid cells 

(Figure 5-1, I). CD11b and CD11c are co-expressed in myeloid-lineage DCs, while 

they are absent in lymphoid-lineage plasmacytoid DCs (Musumeci et al., 2019, 

Donaghy et al., 2001). CD11b is expressed on a variety of leukocytes, while 

CD11c is usually expressed by DCs. However, the expression of these markers 

can be upregulated on activated cells irrespective of their naïve expression 

status, which makes it impossible to confirm that the CD11b high CD11c+ 

population are DCs without the addition of other DC markers such as CD24 or 

MHC Class II.  

An additional array of mouse cell markers was used to analyse the infiltration of 

NK cells (Figure 5-2, D.i), CD8+ (Figure 5-2, E.i) and CD4+ T cells (Figure 5-2, E.ii) 

and B cells (Figure 5-2, F.i) into the air pouch fluid and membrane (Figure 5-2). 

CD73 was used to enumerate infused MSCs. 
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Figure 5-1. Flow cytometry gating strategy to identify various mouse innate immune cells in 
the air pouch of C57BL/6 mice. 
Flow cytometry was used to assess and identify the immune cell infiltration into the air pouches of 
C57BL/6 mice. Black arrows highlight the gating pathway and red arrows highlight gated cell 
populations. Cells were selected based on forward versus side scatter (A) and viable cells were 
selected (B). CD45+ cells were selected (C) and CD11b+, Ly6g+ cells were considered neutrophils 
after doublet exclusion (D.i). Remaining cells were assessed for their expression of F480. F480+, 
CD11b+ cells were considered macrophages after doublet exclusion (E.i). The remaining 
population of cells were assessed for Siglec F expression. Siglec F+ cells were considered 
eosinophils after doublet exclusion (F.i). CD11b+ Ly6c+ cells were considered monocytes after 
doublet exclusion (G.i). The remaining cells were assessed for the expression of CD11c. CD11b 



214 
 
high CD11c+ were classified as CD11b+ CD11c+ myeloid cells after doublets exclusion and 
ensuring they were a single population (I).  

 

 

Figure 5-2. Flow cytometry gating strategy to identify various mouse adaptive immune cells 
in the air pouch of C57BL/6 mice. 
Flow cytometry was used to assess and identify the immune cell infiltration into the air pouches of 
C57BL/6 mice. Black arrows highlight the gating pathway. Red arrows highlight the gated cell 
population. Cells were selected based on forward versus side scatter (A) and viable cells were 
selected (B). CD45+ cells were selected (C) and assessed for their expression of NK1.1, CD8, CD4 
and B220. NK1.1 positive cells were considered NK cells after doublet exclusion (D.i) and the 
remaining cells were assessed for the expression of CD8 and CD4 (E) and considered CD8+ T 
cells (E.i) or CD4+ T cells (E.ii), respectively after doublet exclusion. Cells negative for CD4 and 
CD8 were assessed for their expression of B220 and positive cells were considered B cells (F.i).  
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5.3 Analysis of the cellular infiltration into the air 
pouches 

Using flow cytometry, the total number of CD45 positive cells that had 

infiltrated into the air pouches was assessed. All the data are expressed as 

number of cells per mL of fluid extracted from the air pouch.  

5.3.1 PBS only Controls  

First, the immune cell infiltration produced by the generation of the air pouch 

itself and injection of PBS was assessed (Figure 5-3). Minimal migration of CD45+ 

cells into control air pouches was observed, which showed that the creation of 

the air pouch, or PBS injection, did not lead to the generation of an 

inflammatory site with subsequent immune cell infiltration. Macrophages and NK 

cells were the predominant immune cells present in the air pouches of control 

mice, followed by smaller numbers of neutrophils, monocytes and eosinophils.  

 

Figure 5-3. Generation of the air pouch on C57BL/6 mice and injection of PBS into the air 
pouch led to minimal migration of CD45+ cells.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received a sterile PBS injection and mice were sacrificed, and tissues 
were harvested 24 hours later. Flow cytometry was used to assess the immune cell infiltration into 
the air pouches of mice, and it is expressed as number of cells per mL of fluid extracted from the 
air pouch. The total number of CD45+, F480+ macrophages, Ly6g+ neutrophils, CD11b+ CD11c+ 
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myeloid cells, Ly6c+ monocytes and Siglec F+ eosinophils that had infiltrated into the air pouches of 
mice was determined and graphed, as well as the total number of NK1.1+ NK cells, CD8+ T cells, 
CD4+ T cells and B220+ B cells that had infiltrated into the air pouches of mice. Each bar group 
represents 5 mice ± SEM.  

 

Next, immune cell infiltration needed to be tested after the infusion of MSCs 

from three different sources, BM, Is and Ad MSCs, in two different conditions, 

resting and after licensing, which meant a large number of mice to work with. 

For this reason, this experiment was performed for MSCs from each tissue 

independently. Data were therefore normalised to the PBS control infiltrates in 

each individual set of experiments in order to be able to compare the data from 

different experiments and replicates.  

5.3.2 Administration of BM, Is and Ad MSCs  

As shown in Figure 5-4 and Figure 5-5, migration of innate or adaptive immune 

cells towards resting BM (A and B), Is (C and D) and Ad MSCs (E and F) was 

observed and there was no statistically significant variation in the number of 

CD45+ cells, F4/80+ macrophages, Ly6g+ neutrophils, CD11b+ CD11c+ myeloid 

cells, Ly6c+ monocytes, SiglecF+ eosinophils, NK1.1+ NK cells, CD4+ T cells, CD8+ 

T cells and B220+ B cells recruited per mL of fluid extracted when compared to 

the control PBS mice.  

Conversely, infusion of licensed MSCs into the air pouch of mice resulted in an at 

least 2-fold increase in infiltrating CD45+ cells compared to PBS control mice 

regardless of the MSCs tissue of origin. However, the immune cells recruited and 

the numbers of these cells within the air pouch was MSC source of origin 

dependent. Stimulated MSCs from every source were able to produce a 

statistically significant increased recruitment of F4/80+ macrophages compared 

to resting MSCs, with Ad MSCs recruiting the most. Regarding Ly6g+ neutrophils, 

stimulation of MSCs led to a statistically significant increase in the recruitment 

of these cells; however, BM MSCs did not recruit as many Ly6g+ neutrophils as Is 

and Ad MSCs. The recruitment of CD11b+ CD11c+ myeloid cells was statistically 

significantly higher in stimulated MSCs from every source compared to resting 

MSCs, and all the licensed MSCs recruited CD11b+ CD11c+ myeloid cells at similar 

levels. Stimulated MSCs from every source were able to produce a statistically 
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significant increased recruitment of Ly6c+ monocytes compared to resting MSCs, 

with Ad MSCs recruiting the most. The recruitment of SiglecF+ eosinophils was 

statistically significantly higher in stimulated MSCs from every source compared 

to resting MSCs, and all the licensed MSCs recruited SiglecF+ eosinophils at 

similar levels. Stimulated Ad were the only MSCs able to produce a statistically 

significant increase in the recruitment of NK1.1+ NK cells and CD4+ T cells 

compared to resting MSCs. Stimulated Is and Ad MSCs were both able to produce 

a statistically significant increase in the recruitment of CD8+ T cells compared to 

resting conditions, while the number of CD8+ T cells recruited from stimulated 

BM MSCs did not differ with respect to the number of CD8+ T cells recruited by 

unstimulated BM MSCs; stimulated Ad MSCs were able to recruit significantly 

more CD8+ T cells than stimulated Is MSCs. Regarding B220+ B cells, no 

statistically significant differences in the number of recruited B220+ B cells were 

found between stimulated MSCs and resting MSCs regardless of the tissue of 

origin.  

  



218 
 

 

 



219 
 

 

 



220 
 

 

Figure 5-4. Immune infiltration into the air pouch of C57BL/6 female mice.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of either 1x106 resting or stimulated MSCs in 1 mL 
of sterile PBS or sterile PBS alone after which mice were sacrificed, and tissues were harvested 24 
hours later. Flow cytometry was used to assess the immune cell infiltration into the air pouches of 
mice, and it is expressed as number of cells per mL of fluid extracted from the air pouch. Data was 
then normalised to the PBS control. The total number of CD45+, F480+ macrophages, Ly6g+ 
neutrophils, CD11b+ CD11c+ myeloid cells, Ly6c+ monocytes and Siglec F+ eosinophils that had 
infiltrated into air pouches of mice was determined and are graphed in A, C and E. The total 
number of NK1.1+ NK cells, CD8+ T cells, CD4+ T cells and B220+ B cells that had infiltrated into 
the air pouches of mice are graphed in B, D and F. To assess if MSC tissue of origin influenced the 
immune cell infiltrate, BM (A and B), Is (C and D) and Ad MSCs (E and F) were injected into the air 
pouches of mice. One Way ANOVA with Tukey’s multiple comparisons was used to compare the 
immune cell infiltration among PBS control, resting and stimulated MSCs. Statistically significant 
differences are marked with the appropriate number of asterisks in Table 5-1.  
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Table 5-1. Statistical analysis of the immune infiltration produced by PBS, resting and 
licensed MSCs into the air pouch of C57BL/6 female mice. 
Following the experimental set up explained in Figure 5-4, One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate among PBS control, resting and 
stimulated MSCs. Significant differences are marked with the appropriate number of asterisks. p = 
0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p 
< 0.0001. 

 

Immune cell 
PBS Control vs  
Resting MSCs 

PBS Control vs 
Stimulated MSCs 

Resting MSCs vs 
Stimulated MSCs 

B
M

 M
SC

s 

CD45+ ns ** *** 

F4/80+ Macrophages ns ns * 

Ly6g+ Neutrophils ns ** *** 

CD11c+ Myeloid cells ns * ** 

Ly6c+ Monocytes ns ns * 

SiglecF+ Eosinophils ns ** ** 

NK1.1+ NK cells ns ns ns 

CD4+ T cells ns ns ns 

CD8+ T cells ns ns ns 

B220+ B cells ns ns ns 

Is
 M

SC
s 

CD45+ ns **** **** 

F4/80+ Macrophages ns ** ** 

Ly6g+ Neutrophils ns **** **** 

CD11c+ Myeloid cells ns ** * 

Ly6c+ Monocytes ns *** ** 

SiglecF+ Eosinophils ns **** *** 

NK1.1+ NK cells ns * ns 

CD4+ T cells ns *** ns 

CD8+ T cells ns * * 

B220+ B cells ns ns ns 

A
d

 M
SC

s 

CD45+ ns ** *** 

F4/80+ Macrophages ns ns * 

Ly6g+ Neutrophils ns ** *** 

CD11c+ Myeloid cells ns ** * 

Ly6c+ Monocytes ns ns * 

SiglecF+ Eosinophils ns ** ** 

NK1.1+ NK cells ns **** **** 

CD4+ T cells ns **** **** 

CD8+ T cells ns **** **** 

B220+ B cells ns ns ns 

 

It is important to examine if MSCs from different sources not only recruited 

different types of immune cells, but also recruited them in statistically 

significant different amounts. For this reason, for an easier comparison of the 

immune cell recruitment produced by each source of MSCs, fold changes in the 

recruitment of immune cells by resting and stimulated BM, Is and Ad MSCs is 
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represented in Figure 5-5 and the significant differences in the recruitment by 

these cells is detailed in Table 5-2. 

 

 

Figure 5-5. Comparison of the immune attraction profile among MSCs from different 
sources under resting and stimulated conditions in the air pouch.  
Following the experimental set up explained in Figure 5-4, PBS control mice were used as a control 
to normalise all the data and the infiltration of immune cells in the air pouches (A and B) was 
compared among MSCs from different sources. One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate originated by resting and stimulated 
MSCs from the different sources. Statistically significant differences are marked with the 
appropriate number of asterisks in Table 5-2. 

 



223 
 
Table 5-2. Statistical analysis of the immunoreactivity of resting and stimulated BM, Is and 
Ad MSCs into the air pouches and air pouch membranes of C57BL/6 female mice. 
Following the experimental set up explained in Figure 5-5, One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate among resting and stimulated BM, Is 
and Ad MSCs. Statistically significant differences are marked with the appropriate number of 
asterisks. p = 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p 
< 0.001; **** p < 0.0001. 

Tissue Immune cell 
Stim. BM MSCs 
vs Stim. Is MSCs 

Stim. BM MSCs 
vs Stim. Ad 

MSCs 

Stim. Is MSCs vs 
Stim. Ad MSCs 

AIR POUCH 

CD45+ ns ** ** 

F4/80+ Macrophages ns ** ** 

Ly6g+ Neutrophils ns *** ns 

CD11c+ Myeloid cells ns ns ns 

Ly6c+ Monocytes ns * * 

SiglecF+ Eosinophils ns ns ns 

NK1.1+ NK cells ns ** ** 

CD4+ T cells ns *** * 

CD8+ T cells ns ** ** 

B220+ B cells ns ns ns 

+++ No statistically significant differences were found among BM, Is and Ad resting MSCs. 

 

5.4 Analysis of the cellular infiltration into the air pouch 
membrane 

Using flow cytometry, the total numbers of CD45 positive cells that had 

infiltrated into the membrane of the air pouches was assessed. All the data are 

expressed as number of cells per mg of membrane.  

5.4.1 PBS only Controls  

First, the immune cell infiltration produced by the generation of the air pouch 

itself and introduction of PBS was assessed (Figure 5-6). Minimal migration of 

CD45+ cells into control air pouch membranes was observed, which proved that 

the creation of the air pouch or PBS injection itself, did not lead to the 

generation of an inflammatory site with subsequent immune cell infiltration. 

Macrophages and NK cells were the predominant immune cell present in the 

membranes of air pouches of control mice, followed by smaller numbers of 

neutrophils, monocytes and eosinophils. 
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Figure 5-6. Generation of the air pouch on C57BL/6 mice and injection of PBS into the air 
pouch led to minimal migration of CD45+ cells towards the air pouch membrane.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received a sterile PBS injection and mice were sacrificed, and tissues 
were harvested 24 hours later. Flow cytometry was used to assess the immune cell infiltration into 
the membrane of the air pouches of mice and it is expressed as number of cells per mg of 
membrane. The total number of CD45+, F480+ macrophages, Ly6g+ neutrophils, CD11b+ CD11c+ 
myeloid cells, Ly6c+ monocytes and Siglec F+ eosinophils that had infiltrated into the membrane of 
the air pouches of mice was determined and graphed, as well as the total number of NK1.1+ NK 
cells, CD8+ T cells, CD4+ T cells and B220+ B cells that had infiltrated into the membrane of the air 
pouches of mice. Each bar group represents 5 mice ± SEM.  

 

Next, immune cell infiltration needed to be tested after the infusion of MSCs 

from the three different sources, BM, Is and Ad MSCs, in two different 

conditions, resting and after licensing, which meant a large number of mice to 

work with. For this reason, this experiment was performed for MSCs from each 

tissue independently. Data were therefore normalised to the PBS control 

infiltrates in each individual set of experiments in order to be able to compare 

the data from the different experiments and replicates.  

5.4.2 Administration of BM, Is and Ad MSCs  

As shown in Figure 5-7, under resting conditions, minimal infiltration of innate or 

adaptive immune cells was observed in the air pouch membranes of the mice 
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infused with BM (A and B), Is (C and D) and Ad MSCs (E and F) and no statistically 

significant variation was seen in the number of CD45+ cells, F4/80+ macrophages, 

Ly6g+ neutrophils, CD11b+ CD11c+ myeloid cells, Ly6c+ monocytes, SiglecF+ 

eosinophils, NK1.1+ NK cells, CD4+ T cells, CD8+ T cells and B220+ B cells 

recruited per mg of membrane harvested when compared to the control PBS 

mice was observed.  

Infusion of licensed MSCs into the air pouch resulted in a small increase in the 

number of CD45+ cells infiltrates compared to PBS control mice; however, this 

increase in the number of CD45+ cells was only statistically significant in BM 

MSCs. Despite the small variation in the overall number of CD45+ cells, the 

infusion of stimulated MSCs from each source led to some statistically significant 

variations in the population analysed using flow cytometry. Infusion of 

stimulated MSCs from any source produced no effect on the number of 

infiltrated F4/80+ macrophages, SiglecF+ eosinophils and CD4+ T cells in the 

membrane of the air pouch. The number of Ly6g+ neutrophils was increased in a 

statistically significant manner after the infusion of stimulated Is MSCs, while 

stimulated BM and Ad MSCs did not produce an infiltration of these cells in the 

membrane of the air pouch compared to the infusion of unstimulated MSCs or 

the PBS control mice. Resting BM MSCs were the only MSCs able to trigger the 

infiltration of CD11b+ CD11c+ myeloid cells in the membrane of the air pouch 

after infusion and this recruitment by BM MSCs was maintained after stimulation 

of the cells prior to infusion into the air pouch. This increased recruitment of 

CD11b+ CD11c+ myeloid cells was not statistically significant when compared to 

the PBS control mice; however, stimulated BM MSCs recruited statistically 

significantly more CD11b+ CD11c+ myeloid cells into the membrane of the air 

pouch than stimulated Is and Ad MSCs. Stimulated BM MSCs were the only MSCs 

able to trigger the infiltration of Ly6c+ monocytes into the membrane of the air 

pouch after infusion. The infiltration of NK1.1+ NK cells was statistically 

significantly higher in stimulated BM and Is MSCs compared to resting MSCs or 

PBS control mice, while licensing of Ad MSCs produced no change in the number 

of NK1.1+ NK cells recruited. Stimulated Is MSCs were the only MSCs able to 

produce a statistically significant increase in the infiltration of CD8+ T cells and 

B220+ B cells in the membrane of the air pouch.  
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Figure 5-7. Immune infiltration into the air pouch membrane of C57BL/6 female mice.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of either 1x106 resting or stimulated MSCs in 1 mL 
of sterile PBS or sterile PBS alone and mice were sacrificed, and tissues were harvested 24 hours 
later. Flow cytometry was used to assess the immune cell infiltration into the membrane of the air 
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pouches of mice and it is expressed as number of cells per mg of membrane. Data was then 
normalised to the PBS control. The total number of CD45+, F480+ macrophages, Ly6g+ neutrophils, 
CD11b+ CD11c+ myeloid cells, Ly6c+ monocytes and Siglec F+ eosinophils that had infiltrated into 
the membrane of air pouches of mice was determined and are graphed in A, C and E. The total 
number of NK1.1+ NK cells, CD8+ T cells, CD4+ T cells and B220+ B cells that had infiltrated into 
the membrane of the air pouches of mice are graphed in B, D and F. To assess if MSC tissue of 
origin influenced the immune cell infiltrate, BM (A and B), Is (C and D) and Ad MSCs (E and F) 
were injected into the air pouches of mice. One Way ANOVA with Tukey’s multiple comparisons 
was used to compare the immune cell infiltrate among PBS control, resting and stimulated MSCs. 
Statistically significant differences are marked with the appropriate number of asterisks in Table 
5-3.  

 

Table 5-3. Statistical analysis of the immune infiltration produced by PBS, resting and 
licensed MSCs into the membrane of the air pouch of C57BL/6 female mice. 
Following the experimental set up explained in Figure 5-7, One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate among PBS control, resting and 
stimulated MSCs. Statistically significant differences are marked with the appropriate number of 
asterisks. p = 0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p 
< 0.001; **** p < 0.0001. 

  

Immune cell 
PBS Control vs  
Resting MSCs 

PBS Control vs 
Stimulated MSCs 

Resting MSCs vs 
Stimulated MSCs 

B
M

 M
S

C
s

 

CD45+ ns * * 

F4/80+ Macrophages ns ns ns 

Ly6g+ Neutrophils ns ns ns 

CD11c+ Myeloid cells ns ns ns 

Ly6c+ Monocytes ns *** ns 

SiglecF+ Eosinophils ns ns ns 

NK1.1+ NK cells ns *** ** 

CD4+ T cells ns ns ns 

CD8+ T cells ns ns ns 

B220+ B cells ns * ns 

Is
 M

S
C

s
 

CD45+ ns ns ns 

F4/80+ Macrophages ns ns ns 

Ly6g+ Neutrophils ns *** *** 

CD11c+ Myeloid cells ns ns ns 

Ly6c+ Monocytes ns ns * 

SiglecF+ Eosinophils ns ns ns 

NK1.1+ NK cells ns **** ** 

CD4+ T cells ns * ns 

CD8+ T cells ns **** * 

B220+ B cells ns **** ** 

A
d

 M
S

C
s

 

CD45+ ns ns ns 

F4/80+ Macrophages ns ns ns 

Ly6g+ Neutrophils ns ns ns 

CD11c+ Myeloid cells ns ns ns 

Ly6c+ Monocytes ns ns * 

SiglecF+ Eosinophils ns ns ns 

NK1.1+ NK cells ns ns * 

CD4+ T cells ns ns ns 

CD8+ T cells ns ns ns 

B220+ B cells ns ns ns 
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It is important to examine if MSCs from different sources not only recruited 

different types of immune cells, but also recruited them in statistically 

significant different amounts. For this reason, for an easier comparison of the 

immune cell recruitment produced by each source of MSCs, fold changes in the 

recruitment of immune cells by resting and stimulated BM, Is and Ad MSCs is 

represented in Figure 5-8 and the significant differences in the recruitment by 

these cells is detailed in Table 5-4. 

 

 

Figure 5-8. Comparison of the immune attraction profile among MSCs from different 
sources under resting and stimulated conditions in the air pouch membrane.  
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Following the experimental set up explained in Figure 5-7, PBS control mice were used as a control 
to normalise all the data and the infiltration of immune cells in the air pouches (A and B) was 
compared among MSCs from different sources. One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate originated by resting and stimulated 
MSCs from the different sources. Statistically significant differences are marked with the 
appropriate number of asterisks in Table 5-4. 

 

Table 5-4. Statistical analysis of the immunoreactivity of resting and stimulated BM, Is and 
Ad MSCs into the air pouches and air pouch membranes of C57BL/6 female mice. 
Following the experimental set up explained in Figure 5-8, One Way ANOVA with Tukey’s multiple 
comparisons was used to compare the immune cell infiltrate among resting and stimulated BM, Is 
and Ad MSCs. Significant differences are marked with the appropriate number of asterisks. p = 
0.05 was considered the limit for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p 
< 0.0001. 

Tissue Immune cell 
Stim. BM MSCs 
vs Stim. Is MSCs 

Stim. BM MSCs 
vs Stim. Ad 

MSCs 

Stim. Is MSCs vs 
Stim. Ad MSCs 

MEMBRANE 

CD45+ ns ns ns 

F4/80+ Macrophages ns ns ns 

Ly6g+ Neutrophils ns ns ns 

CD11c+ Myeloid cells * * ns 

Ly6c+ Monocytes *** ** ns 

SiglecF+ Eosinophils ns ns ns 

NK1.1+ NK cells * * **** 

CD4+ T cells ns ns ns 

CD8+ T cells *** ns **** 

B220+ B cells ns ns *** 

+++ No statistically significant differences were found among BM, Is and Ad resting MSCs. 

 

5.5 Distribution of MSCs within the air pouch 

To determine the fate of the MSCs injected into the air pouch, an MSC marker 

was included into the antibody cocktail for easy and quantifiable detection of 

MSCs. As shown in Chapter 3, BM, Is and Ad MSCs all express very high levels of 

CD73, therefore, an anti-CD73 antibody was included into the flow cytometry 

panel, which in combination with the CD45- expression of MSCs provided an easy 

strategy to identify MSCs (Figure 5-9).  

Firstly, the CD45 negative population was gated in both the air pouches (Figure 

5-9, A) and membranes of mice (B). CD45 negative cells were then assessed for 

their CD73 expression in both the air pouch (D) and the membrane (F). CD73 

FMOs were used for the identification of CD73 positive expression (C and E). 

MSCs were not found in the air pouches or membranes of the mice. To rule out 

the possibility of the cells being dead, the dead cell gate was removed and both 
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the air pouches (G) and the membranes (H) were assessed for the presence of 

CD73 positive cells. Live or dead CD73+ cells were not detected in the air 

pouches or membrane of mice. 
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Figure 5-9. Assessment of the CD45 negative infiltration into the air pouches and 
membranes of C57BL/6 female mice. 
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of either 1x106 resting or stimulated MSCs in 1 mL 
of sterile PBS or sterile PBS alone and mice were sacrificed, and tissues were harvested 24 hours 
later. Flow cytometry was used to assess de presence of CD73 positive cells. First, CD45 negative 
population was gated in the air pouches (A) and membranes (B) of mice. CD45 negative cells were 
then assessed for their CD73 expression in both the air pouch (D) and the membrane (F). CD73 
FMOs were used for the identification of CD73 positive expression (C and E). Dead cell gate was 
removed and both the air pouches (G) and the membranes (H) were assessed for the presence of 
CD73 positive cells.  

 

5.6 Assessment and validation of the immune-reactivity 
of the Cell-Tracker Green CMFDA 

Necrotic and apoptotic cell death involves the disruption of the plasma 

membrane, which could explain the lack of detection of the CD73 protein on the 

surface of cells. In addition, MSCs could have undergone an engulfment process 

by the recruited phagocytic cells and therefore the anti-CD73 would not be able 

to interact with the CD73 surface protein. For these reasons, due to the lack of 

detection of CD73 positive cells within the air pouches and membranes of 

C57BL/6 female mice, we decided to use a cell tracker to determine the fate of 

the injected MSCs.  

CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate) is a 

fluorescent dye that passes through the cell membrane, where it remains as cell 

membrane-impermeant reaction products. It is retained in living cells and it is 

transferred to daughter cells, but not to close cells in a population, which would 

therefore enable the detection of the cell tracker if the cell has divided or 

differentiated. Despite its low toxicity, it was essential to determine that the 

cell tracker would not affect the immune-reactivity of the MSCs stained with it 

(Figure 5-10). Staining of resting MSCs with the cell tracker lead to no variation 

in the immune cell attraction profile of MSCs as no statistically significant 

differences were found in the number of cells found in the air pouches (Figure 

5-10, A) and membranes (B) of mice injected with the Green CMFDA stained 

MSCs compared to the control unstained MSCs. Similarly, the staining of 

stimulated MSCs with the cell tracker produced no variation in the immune cell 

attraction profile of MSCs, proved by the lack of statistically significant 

differences between the number of cells found in the air pouches (C) and 
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membranes (D) of mice injected with the Green CMFDA stained stimulated MSCs 

compared to the control unstained stimulated MSCs.  
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Figure 5-10. Staining with the Cell-tracker Green CMFDA did not produce a variation on the 
immune attraction profile of MSCs injected into C57BL/6 female mice. 
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of either resting or stimulated MSCs in 1 mL of 
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sterile PBS or resting or stimulated MSCs pre-stained with the Cell-tracker Green CMFDA in 1 mL 
of sterile PBS. Mice were sacrificed and tissues were harvested 24 hours later. Flow cytometry was 
used to assess the immune cell infiltration into the air pouches of mice, and it is expressed as 
number of cells per mL of fluid extracted from the air pouch (A and B) or per mg of membrane (C 
and D). Each bar group represents 5 mice ± SEM. Students (unpaired) T test was used to assess 
statistical differences between mice injected with unstained and Green CMFDA-stained MSCs.  

 

Despite the previous lack of CD73 positive staining, we looked for the double 

staining of cell tracker and CD73. Once again, the CD45 negative population was 

gated out (Figure 5-11, A) and cells were gated for Green CMFDA and CD73. Cells 

from control mice injected with PBS were used as a negative control for CD73 

and Green CMFDA due to the lack of infused MSCs on those samples (B). As 

observed in Figure 5-11, C, there was a small detection of Green CMFDA stained 

cells but those cells lacked the CD73 positive staining observed in cultured MSCs 

stained with the Green CMFDA cell tracker (D).  

 

Figure 5-11. Lack of CD73 and cell tracker Green CMFDA double positive expression on the 
air pouches and membranes of the mice injected with Green CMFDA stained MSCs.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of either resting or stimulated MSCs in 1 mL of 
sterile PBS, resting or stimulated MSCs pre-stained with the Cell-tracker Green CMFDA in 1 mL of 
sterile PBS or sterile PBS alone. Mice were sacrificed, and tissues were harvested 24 hours later. 
Flow cytometry was used to assess de presence of CD73 and Green CMFDA positive cells. First, 
the CD45 negative population was gated in (A). CD45 negative cells were then assessed for their 
CD73 and Green CMFDA expression. Due to the lack of mouse MSCs on those samples, cells 
from control mice injected with PBS were used as a negative double stain for MSCs (B). Cells from 
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mice injected with Green CMFDA stained MSCs were analysed for their CD73 and Green CMFDA 
levels (C). Cultured MSCs stained with the cell tracker were used as a positive control of Green 
CMFDA and CD73 staining (D).  

 

As there was no positive signal for the MSC marker CD73, we then focused on 

searching Green CMFDA signal within the air pouch and membrane samples. 

When we removed the dead gate within the CD45 negative population we were 

able to detect Green CMFDA signal in both dead and live cells (Figure 5-12, A), 

however, as shown in Figure 5-11, these cells were not MSCs. Due to the 

presence of Green CMFDA signal within the death gate, we wanted to see if we 

could find Green CMFDA signal in immune cells, which would suggest an 

interaction between the membrane of MSCs and the immune cells. Green CMFDA 

positive signal was found in F4/80+ macrophages, NK1.1+ NK cells and CD8+ T 

cells (Figure 5-12, B).  
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Figure 5-12. Identification of Green CMFDA positive staining from the air pouches and 
membranes of mice injected with Green CMFDA stained MSCs.  
Air pouches were created on the dorsal of 8-week C57BL/6 female mice as explained in Section 
2.4.2.1. The sixth day mice received an injection of pre-stained MSCs with the Cell-tracker Green 
CMFDA in 1 mL of sterile PBS or 1 mL sterile PBS. Mice were sacrificed and tissues were 
harvested 24 hours later. Flow cytometry was used to assess the immune cell infiltration into the air 
pouches of mice. CD45 negative population was studied for its Green CMFDA levels and its 
distribution between live and dead cells was assessed (A). The expression of Green CMFDA was 
assessed in F480+ macrophages, NK1.1+ NK cells and CD8+ T cells (B). PBS injected mice were 
used as a negative control to determine the Green CMFDA positive staining.  
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5.7 Discussion and conclusions  

Using the air pouch model on C57BL/6 female mice, this chapter aimed to 

identify and examine the in vivo immune cell attraction profile of resting and 

pre-stimulated MSCs isolated from the bone marrow, Islets of Langerhans and 

adipose tissue via flow cytometry and to determine if tissue of origin influences 

the phenotype of the recruited cells.  

As previously mentioned, MSCs have been shown to recruit immune cells but the 

mechanism by which this takes place is still not understood. It is important to 

point out that there are few studies that examine the immunogenicity of MSCs in 

vivo and to my knowledge, none that compares the immune attraction profile of 

MSCs isolated from different sources in a standardised manner. In addition, many 

of those studies have been conducted with human MSCs (Thirlwell, 2018) which 

usually lack a control for mismatched major histocompatibility complex 

molecule expression. Moreover, studies that did have a control for MHC 

expression determined that infusion of MHC-mismatched MSCs into an 

inflammatory environment led to both cell-mediated and humoral immune 

responses (Eliopoulos et al., 2005, Joswig et al., 2017). All these reasons made it 

essential to use autologous MSCs to study and compare the immune reactivity of 

MSCs from different sources. Allogenic stem cell-transplant and transplantation 

itself are heavily influenced by the sex of the donor and the recipient as sex-

mismatched transplantation is linked to increased GVHD and even mortality 

(Nakasone et al., 2015, Kim et al., 2016). This is due to the mismatched minor 

histocompatibility antigens present on Y chromosome (H-Y) in males, increasing 

the rejection chances when the donor is male and the recipient is female, 

compared to female donor and male recipient (Kongtim et al., 2015). To avoid 

any kind of mismatch and study the immune attraction profile of MSCs in a highly 

controlled environment, MSCs were isolated from C57BL/6 female mice and 

infused into C57BL/6 female mice.  

The current study found that resting BM, Is and Ad MSCs produced no immune 

cell infiltration into the air pouch, as the small number of immune cells present 

on it were the result of the creation of the air pouch itself, as demonstrated by 

the sterile PBS control mice (Figure 5-4 and Figure 5-7). However, licensing of 

MSCs with 40 ng/ mL of IFN-γ, TNF-α and IL-β for 24 hours produced an 
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infiltration of CD45 positive cells, with a predominance for neutrophils, followed 

by macrophages and smaller numbers of eosinophils and monocytes regardless of 

the source of origin of the MSC. Moreover, on top of those immune cells, Is MSCs 

were also able to recruit CD8+ T cells, while Ad MSCs were able to recruit CD4+ 

and CD8+ T cells and NK cells. Due to the lack of immune infiltration after the 

infusion of the resting MSCs into the air pouch, we can say with confidence that 

immune infiltration takes place as a result of the licensing of the cells and that 

the differences in the recruitment of immune cells by the different MSCs can 

only be explained as being related to the tissue of origin of MSCs. It is important 

to point out that the air pouch model had already been used to study the 

immune attraction profile of human stimulated Is MSCs (Thirlwell, 2018, 

Thirlwell et al., 2020). These cells produced a large infiltration of CD45 positive 

cells that consisted mostly of neutrophils, followed by macrophages and smaller 

numbers of monocytes and eosinophils. The much larger infiltration towards 

human MSCs in terms of cell number is likely explained by the mismatched major 

histocompatibility complex molecule expression.  

It is important to mention that MSCs from different sources not only recruited 

different types of immune cells, but also recruited them in statistically 

significant different amounts. For this reason, the aim of this discussion will be 

focused on the mechanism by which the recruited cells could be detrimental or 

beneficial in a clinical setting and the relationship with the chemokine patterns 

described in Chapter 4. 

5.7.1 MSCs and their in vivo attraction of neutrophils  

Murine neutrophils express high levels of CXCR2 which is a receptor for several 

chemokines, mostly CXCL1 and CXCL2, but also CXCL3, CXCL5 and CXCL7, that 

lead to neutrophil recruitment and migration into target tissues (Futosi et al., 

2013, Girbl et al., 2018). BM, Is and Ad MSCs were tested for the transcription of 

CXCL1, CXCL2 and CXCL5 and CXCL1 and CXCL2 protein levels. CXCL1 and CXCL2 

were secreted at low levels under homeostatic conditions but their secretion 

was markedly upregulated upon MSC licensing in MSCs from every source, with Is 

MSCs secreting the most CXCL1 and Is and BM MSCs secreting the most CXCL2. As 

predicted by the increase of CXCL chemokine secretion, licensing of MSCs of 

every source led to a big neutrophil infiltration. Moreover, the role of human 
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CXCL8 (CXCL1 and CXCL2 in mouse) in neutrophil migration towards human MSCs 

has already been described; infusion of resting human Is MSCs produced a small 

neutrophil recruitment using the air pouch model, but this neutrophil 

recruitment was massively upregulated after stimulation of MSCs, which was 

correlated with increased secretion of CXCL8 (Joel et al., 2019, Thirlwell, 2018). 

However, despite the higher secretion of CXCL1 and CXCL2 by Is MSCs, no 

statistically significant differences were found when compared to the neutrophil 

recruitment by Is MSCs to BM and Ad MSCs (Figure 5-8 and Table 5-4). This 

finding suggests that even if CXCL1 and CXCL2 are strong neutrophil 

chemoattractants, there are other molecules involved in neutrophil migration or 

that only a low level of CXCL1 and CXCL2 is needed to induce neutrophil 

migration and once that is reached increased secretion will not further increase 

neutrophil recruitment.  

Traditionally, the recruitment of neutrophils towards MSCs within a clinical 

setting could be considered to be detrimental due to the association of 

neutrophils with inflammatory diseases such as atherosclerosis, 

glomerulonephritis or rheumatoid arthritis, as well as being a marker for acute 

injury and transplant rejection (Prame Kumar et al., 2018). Neutrophils are fast 

responders to inflammatory signals and can exert their inflammatory role in 

three different manners: phagocytosis, degranulation and the formation of 

neutrophil extracellular traps (NETs). Neutrophils not only modulate the innate 

response but also the adaptive immune response as they produce and secrete 

several inflammatory factors that enable the recruitment of alloreactive CD8+ T 

cells (Jones et al., 2010) and induce the expression of the pro-inflammatory 

cytokine IL-12 in DCs (Kreisel et al., 2011). However, in the last two decades the 

concept of neutrophil heterogeneity and plasticity has evolved, which suggests 

that once the neutrophils leave the bone marrow and infiltrate into 

inflammatory target sites, they can differentiate into discrete subsets with 

specific phenotypes and roles and can exert anti-inflammatory and pro-

angiogenic functions (Rosales, 2018).  

On the one hand, apoptosis of neutrophils is anti-inflammatory and pro-

resolution not only because it avoids the secretion of proteolytic and oxidative 

mediators, but also because of the response it produces in phagocytic cells. 
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Phagocytosis of apoptotic neutrophils reduces IL-23 production and secretion by 

macrophages, which leads to a reduction in granulopoiesis and disabling of 

neutrophil degranulation within tissues (Stark et al., 2005). Moreover, 

phagocytosis of apoptotic neutrophils also results in the production and 

secretion of the anti-inflammatory mediators prostaglandin E2, TGF-β, IL-10 and 

a novel class of lipid mediators called specialised pro-resolving mediators (Kasagi 

et al., 2014, Greenlee-Wacker, 2016, Serhan et al., 2015), which not only 

dampen the expression of inflammatory genes but also enforce tolerance 

through CD4+ T cells (Kasagi et al., 2014). Furthermore, apoptotic neutrophils do 

not need to be phagocytosed to exert their anti-inflammatory effects, contact 

with monocytes is enough to suppress the production and secretion of pro-

inflammatory cytokines and to increase the production of TGF-β and IL-10 (Byrne 

and Reen, 2002).  

Neutrophils could also inhibit graft inflammation and its subsequent rejection by 

enhancing wound and tissue repair coupled with neovascularization. Neutrophils 

generate barrier like dense clusters around necrotised tissues to prevent 

spreading and damaging of the healthy tissue surrounding it (Lammermann et 

al., 2013). Moreover, Pillay et al. described how the interaction between 

CD16bright CD62low neutrophil subset with T cells resulted in the suppression of 

proliferation (Pillay et al., 2012). In addition, Christoffersson et al. identified a 

CD11b+/ Gr-1+/ CXCR4high murine neutrophil subset that was recruited by VEGF-a 

into the site of islet engraftment that lead to the revascularization of 

transplanted islets (Christoffersson et al., 2012). As previously mentioned, this 

subset of neutrophils would be able to respond to the CXCL12 secretion by MSCs 

and they would be beneficial within a clinical setting. More importantly, this 

neutrophil subset produced matrix metallopeptidase 9 (MMP9) and the 

revascularization of transplanted islets was MMP9 dependent and CD11b+/ Gr-1+/ 

CXCR4high dependent, as MMP9 deficient mice were unable to revascularise the 

graft and the revascularization of the graft required the presence of neutrophils. 

MMP9 is most likely required for revascularization due to its role in increasing 

vascular density and blood flow (Christoffersson et al., 2010, Christoffersson et 

al., 2012).  
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Lastly, activated neutrophils are able to prevent T cell activation, and 

therefore, alloimmunity, by the release of the serine proteases cathepsin G and 

neutrophil elastase which cleave, and inactivate, the pro-inflammatory 

cytokines IL-2 and IL-6 (Bank et al., 1999).  

Taking all this into account, we can conclude that the outcome of neutrophil 

infiltration into a site of inflammation could most likely be environment 

dependent and determining if they would be beneficial or detrimental within a 

clinical setting is not possible without the appropriate disease model. However, 

it is important to consider that granulocytic myeloid derived suppressor cells 

(GMDSCs) are anti-inflammatory immune cells that share surface marker 

expression with neutrophils. In fact, there is an ongoing debate on whether they 

are a neutrophil subset or a completely distinct cell or even if all suppressive 

neutrophils subsets should be considered GMDSCs. GMDSCs are able to suppress 

effector T cell responses and their function needs to be tightly regulated as they 

can lead to the development of chronic infection and tumour progression (Zilio 

and Serafini, 2016). Therefore, GMDSCs would most likely be beneficial within a 

transplant setting.  

5.7.2 MSCs and their in vivo attraction of monocytes and 
macrophages 

Murine monocytes and macrophages express high levels of CCR2 which is the 

receptor for several chemokines including CCL2, CCL7, CCL8, CCL12 and CCL13, 

that lead to extravasation and transmigration of monocytes and migration into 

target tissues (Chu et al., 2014). BM, Is and Ad MSCs were tested for the 

transcriptional and protein levels of CCL2 and CCL7. CCL2 and CCL7 were 

secreted at low levels under homeostatic conditions but their secretion was 

markedly upregulated upon MSC licensing in MSCs from every source, with Is 

MSCs secreting the most CCL2 and CCL7. As predicted by CCL chemokine 

secretion, licensed MSCs of every source induced a monocyte and macrophage 

infiltration into the air pouches. However, despite the higher secretion of CCL2 

and CCL5 by Is MSCs, Ad MSCs produced a statistically significant higher 

monocyte and macrophage infiltration compared to BM and Is MSCs (Figure 5-8 

and Table 5-4). This finding suggests that even if CCL2 and CCL5 are strong 

monocyte and macrophage chemoattractants, there are other molecules 
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involved in monocyte and macrophage migration or that only a low level of CCL2 

and CCL5 is needed to induce monocyte and macrophage migration and once 

that amount is reached, an increased secretion will not produce an increment in 

monocyte and macrophage recruitment. 

Like neutrophils, the recruitment of monocytes and macrophages towards MSCs 

within a clinical setting could be considered as detrimental due to the well-

known association of monocytes and macrophages with inflammatory diseases 

such as systemic lupus erythematosus, systemic sclerosis and rheumatoid 

arthritis among others (Ma et al., 2019). However, within a transplant setting, 

the state of activation and macrophage phenotype may lead to a completely 

different outcome, from graft rejection due to tissue injury to tissue 

remodelling and anti-inflammatory effects. Macrophages are phagocytic immune 

cells essential in host defence and tissue homeostasis and like neutrophils, 

monocytes can differentiate into pro-inflammatory or anti-inflammatory 

macrophages depending on micro-environmental signals. Macrophages are 

classified as M1 and M2 macrophages. On the one hand, M1 macrophages are 

pro-inflammatory and are able to mediate transplant rejection by producing pro-

inflammatory cytokines, such as IL-1, IL-12, IL-18, IL-6, IL-23, TNF-α, and IFN-γ, 

reactive oxygen species and reactive nitrogen species, which all together lead to 

acute rejection (Li et al., 2019a). On the other hand, M2 macrophages, are anti-

inflammatory and are involved in tissue repair due to their roles in wound 

healing, angiogenesis, phagocytosis, fibrosis, and the resolution of inflammation 

(Li et al., 2019a). On top of this regulatory macrophages, a subset of 

macrophages that does not express most markers shared by M1 and M2 

macrophages, are able to suppress allogeneic T cells by an inducible nitric oxide 

synthase (iNOS) dependent mechanism while promoting the expansion of CD4+ 

Foxp3+ regulatory T cells, thereby enabling graft tolerance (Conde et al., 2015, 

Riquelme et al., 2013).  

However, it is important to mention that the infusion of bone marrow derived 

macrophages in a murine model of liver fibrosis led to the chemokine mediated 

recruitment of endogenous macrophages and neutrophils, which secreted MMP9 

and IL-10, leading to the apoptosis of scar producing myofibroblasts and 

therefore, to reduced fibrosis (Thomas et al., 2011). Moreover, infusion of in 
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vitro differentiated CD14+ monocytes isolated from cirrhotic patients into a 

murine liver fibrosis model led to the decrease of liver injury markers and to the 

increase of liver regeneration markers and, therefore, to reduced fibrosis (Moore 

et al., 2015).  

Macrophages seem to be essential for liver repair however, to determine the 

outcome of macrophage infiltration within a clinical setting further 

characterisation of the recruited macrophages would be essential. The 

phenotype of macrophages will most likely be environment-dependent and 

determining if they would be beneficial or detrimental within a clinical setting is 

not possible without the appropriate disease model. Thorough analysis of gene 

signatures and flow cytometry validation enable a distinction to be made 

between M1 and M2 macrophages based on CD38/ Egr2 expression. M1 

macrophages express CD38, Gpr18 and Fpr2 while Egr2 and c-Myc are exclusively 

expressed by M2 macrophages (Jablonski et al., 2015). DHRS9 has been 

established as human regulatory macrophage marker; however, DHRS9 is not 

upregulated in murine regulatory macrophages and therefore, can’t be used to 

exclude other monocyte–derived cells (Riquelme et al., 2017).  

5.7.3 MSCs and their in vivo attraction of eosinophils 

Murine eosinophils express high levels of CCR3, which is the receptor for CCL2, 

CCL3, CCL4, CCL5, CCL11, CCL13, CCL14 and CCL16, that leads to migration into 

target tissues and degranulation (Chu et al., 2014, Nagase et al., 2001). BM, Is 

and Ad MSCs were tested for their transcription of CCL3, CCL4, CCL5 and CCL11 

and protein levels of CCL2, CCL5 and CCL7. CCL2, CCL5 and CCL7 were secreted 

at low levels under homeostatic conditions. MSC licensing increased the 

production and secretion of the three CCLs but produced the largest 

upregulation in CCL2 in MSCs from the three sources. As predicted by the 

increase of CCL chemokine secretion, licensing of MSCs of every source led to a 

small upregulation of eosinophil infiltration. However, despite the higher 

secretion of CCL2, CCL5 and CCL7 by Is MSCs, Ad MSCs produced a statistically 

significant increased eosinophil infiltration compared to BM and Is MSCs (Figure 

5-8 and Table 5-4), suggesting that even if CCL2, CCL5 and CCL7 are eosinophil 

chemoattractants, there are other factors involved in their migration.  
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The recruitment of eosinophils towards MSCs within a clinical setting could be 

considered as potentially detrimental due to their roles in allergic reactions. 

Eosinophils are involved in the secretion of pro-inflammatory molecules such as 

major basic protein (MBP), MBP2, eosinophil cationic protein (ECP), eosinophil 

peroxidase (EPO), and β-glucuronidase. Moreover, they are also able to secrete 

cytokines (IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-16 and IL-18) and chemokines 

(CCL3, CCL5 and CL11), leading to the upregulation of the vascular adhesion 

system as well as to the increase of vascular permeability, enabling the 

recruitment of immune cells (Kita, 2011).  

Eosinophilic infiltrates are a specific marker of rejection in liver allografts after 

discovering that successful treatment of acute rejection was correlated with a 

decrease on the number of infiltrated eosinophils (Nagral et al., 1998). In renal 

allografts eosinophilia is also a marker of graft damage and poor graft prognosis 

(Vanikar et al., 2017). However, Goldman et al. showed that the disappearance 

of the eosinophilic infiltrate did not stop the rejection of pig pancreatic islets in 

mice, suggesting that eosinophils could be bystanders in transplant rejection 

(Goldman et al., 2001). Although eosinophils can be found in the blood of 

patients transplanted with haematopoietic stem cells (Cromvik et al., 2014), 

eosinophilia after stem cell transplantation has been suggested to be a marker 

for a favourable outcome as the survival rate of patients with haematological 

disorders treated with stem cell transplantation was higher in those with 

eosinophilia compared to those without it (88.7 vs 43.0%) (Sato et al., 2005a). 

For these reasons, we hypothesised that eosinophilic infiltration produced by 

MSCs could be beneficial in a clinical setting, but an appropriate transplant 

model would be required to confirm this.  

5.7.4 MSCs and their in vivo attraction of DCs  

As previously described, CD11b and CD11c are co-expressed in myeloid-lineage 

DCs but these markers can be upregulated on activated cells irrespective of their 

naïve expression status. For this reason, despite the identification of a CD11b 

high CD11c+ population the subset was not identified as DCs due to the lack of 

CD24 or other DC markers in the panel that would enable the exclusion of 

activated cells. However, we know that the CD11b high CD11c+ myeloid contains, 
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among others, DCs and for this reason the role of DCs within a clinical setting is 

included in this discussion.  

Immature murine DCs express high levels of CCR1, CCR2, CCR5, and CCR6, as 

well as CXCR3 and CXCR4; however, upon inflammatory stimulation they 

downregulate these receptors except for CXCR4 and CCR7, which are 

upregulated. CXCR4 interacts with CXCL12, while CCR7 interacts with CCL19 and 

CCL21 (Ricart et al., 2011). BM, Is and Ad MSCs were tested for transcription of 

CCL19 and CXCL12 and CXCL12 protein levels. CXCL12 was secreted at medium 

levels in BM and Is MSCs and at low levels in Ad MSCs under homeostatic 

conditions but its secretion was downregulated upon MSC licensing in MSCs from 

every source, with BM MSCs secreting the most CXCL12. Despite the decrease of 

CXCL12 secretion, licensing of MSCs from every source led to an increase in 

CD11b high CD11c+ myeloid cells infiltration. However, despite the higher 

secretion of CXCL12 by BM MSCs, Ad MSCs recruited more CD11b high CD11c+ 

myeloid cells upon stimulation (Figure 5-8 and Table 5-4); suggesting that even if 

CXCL12 is a strong CD11b high CD11c+ myeloid cell chemoattractant, there are 

other molecules involved in their migration.  

The recruitment of DCs towards MSCs in a clinical setting could be considered 

detrimental due to their role linking the innate and adaptive immune responses. 

Dendritic cells are mononuclear professional phagocytes that, unlike neutrophils 

and macrophages, do not digest the phagocytosed material but process it into 

peptide fragments and present self and nonself antigens to CD4+ and CD8+ T cells 

using MHC Class I and MHC Class II molecules respectively. In this way, DCs can 

activate the adaptive immune response; therefore, they connect the innate and 

the adaptive immune responses (Steinman, 2006). However, different DC subsets 

enable the balance between tolerance in the steady state and the induction of 

innate and adaptive immunity. DCs can initiate GVHD by activation of recipient T 

cells, for this reason removal of recipients DCs reduces the presence of effector 

T cells in the graft; thus, subsequently reducing rejection in solid organ 

transplantation (Zhuang et al., 2016). However, DCs are radioresistant, 

therefore they survive to the irradiation that precedes stem cell transplantation 

and can initiate GVHD by activation of recipient T cells (Duffner et al., 2004).  
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The absence of functional DCs lead to survival of iPSCs transplanted under the 

kidney capsule in a syngeneic C57BL/6 mouse stem cell transplantation model, 

whilst when iPSCs were co-transplanted with mature DCs immune rejection took 

place (Todorova et al., 2016). Moreover, prevention of DC migration towards the 

lymph nodes, inhibition of the maturation of DCs and downregulation of co-

stimulatory molecules required for T cell activation, has been shown to alleviate 

GVHD. However, semi-mature DCs are able to decrease the CD4+ T cell 

infiltration, prolonging survival of transplanted cells; and tolerogenic DCs induce 

regulatory T cells, promoting immune tolerance (Zhang et al., 2017). Taking all 

this into account, we cannot conclude that DC migration towards MSCs would be 

beneficial or detrimental within a clinical setting.  

5.7.5 MSCs and their in vivo attraction of T cells 

T cells express most of the CC and CXC chemokine receptors at different levels 

according to their state of differentiation, as an example, T cells can express 

high levels of CCR4, CCR5, CCR7, CCR9 and CCR10, as well as CXCR3 and CXCR4 

and respond to CCL5, CCL17, CCL19, CCL21, CCL25, CCL27, CCL28 and CXCL9, 

CXCL10 and CXCL12, which shows the complex regulation of T cell migration 

(Nolz et al., 2011). BM, Is and Ad MSCs were tested for transcription of CCL5, 

CCL19, CXCL10 and CXCL12 and CCL5, CXCL10 and CXCL12 protein levels. CCL5 

and CXCL12 were secreted at medium levels under homeostatic conditions, while 

CXCL10 was secreted at lower levels. However, their secretion was upregulated 

upon MSC licensing in MSCs from every source, with BM MSCs secreting the most 

CCL5 and CXCL12 and Is MSCs secreting the most CXCL10. This increase in the 

secretion of CCL5, CXCL10 and CXCL12 was associated with increased T cell 

migration towards MSCs from all sources. However, despite the higher secretion 

of CCL5 and CXCL12 by BM MSCs and CXCL10 by Is MSCs, Ad MSCs recruited the 

most CD8+ and CD4+ T cells upon stimulation, followed by Is MSCs, while BM MSCs 

did not produce a CD8+ and CD4+ T cell infiltration (Figure 5-8 and Table 5-4).  

The recruitment of CD4+ and CD8+ T cells towards MSCs within a clinical setting 

could be considered detrimental due to the role of CD4+ T cells in activation and 

proliferation of CD8+ T cells, which have cytotoxic and inflammatory functions.  
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As previously mentioned, T cell mediated graft rejection starts with the 

recognition and presentation of antigens by DCs, leading to the stimulation of T 

cells and to the subsequent secretion of cytotoxic molecules, such as perforin 

and granzyme-B by CD8+ T cells, as well as pro-inflammatory cytokines, such as 

IFN-γ and IL–2 by CD4+ and CD8+ T cells to induce an increased immune response. 

Th1 cells produce IL-2, promoting the proliferation of cytotoxic CD8+ T cells and 

CD8+ T cells secrete IFN-γ, acting as positive feedback as it promotes Th1 

responses. Bishop et al. found high number of CD8+ T cells within the rejected 

grafts in a murine cardiac allograft model. However, depletion of CD8+ T cells 

did not resolve rejection as it led to Th1 and Th2 mediated rejection, proving 

that both CD4+ and CD8+ T cells are involved in graft rejection (Chan et al., 

1995). In addition, memory CD8+ T cells need to be depleted to be able to 

induce tolerance towards the graft. On the contrary, CD8+ regulatory T cell 

populations are able to suppress the function of effector CD8+ T cells promoting 

tolerance and avoiding graft rejection in a rat liver transplantation model (Liu et 

al., 2007). CD4+ regulatory T cells secrete IL-9, which recruits mast cells 

mediating immune tolerance in a skin graft model (Lu et al., 2006). Moreover, 

the presence of CD8+ T cells in a BM graft promoted engraftment of the 

haematopoietic and progenitor cells via a poorly understood mechanism, as CD8+ 

T cells also increased the risk for acute and chronic GVHD (Martin et al., 1999). 

Anyhow, recipient cytotoxic cells are essential to initiate MSC-mediated 

immunosuppression in a murine model of GVHD as MSCs need to be targeted by 

cytotoxic T cells to undergo apoptosis to be engulfed by macrophages and 

produce indoleamine 2,3-dioxygenase (IDO) (Galleu et al., 2017). For this 

reason, we conclude that T cell migration towards MSCs may be beneficial within 

a clinical setting. 

5.7.6 MSCs and their in vivo attraction of NK cells  

NK cells express CXCR1, CXCR3, CXCR4 and different NK cell subsets also express 

CCR1, CCR4, CCR5, CCR6, CCR9, CXCR5 and CXCR6; for this reason NK cells are 

able to interact with a wide range of chemokines including CCL2, CCL5, CCL7, 

CCL19, CCL21 and CXCL10, CXCL11 and CXCL12 among others (Berahovich et al., 

2006). BM, Is and Ad MSCs were tested for transcription of CCL5, CCL19, CXCL10 

and CXCL12 and CCL5, CXCL10 and CXCL12 protein levels. CCL5 and CXCL12 were 

secreted at medium levels under homeostatic conditions, while CXCL10 was 
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secreted at lower levels. However, their secretion was upregulated upon MSC 

licensing in MSCs from every source, with BM MSCs secreting the most CCL5 and 

CXCL12 and Is MSCs secreting the most CXCL10. This increase in the secretion of 

CCL5, CXCL10 and CXCL12 led to an increase of NK cell infiltration by MSCs from 

all sources. However, despite the higher secretion of CCL5 and CXCL12 by BM 

MSCs and CXCL10 by Is MSCs, Ad MSCs recruited the most NK cells upon 

stimulation, followed by Is MSCs, while BM MSCs did not produce a NK cell 

infiltration (Figure 5-8 and Table 5-4).  

NK cells interact with MHC Class I molecules and promote self-tolerance when a 

self-antigen is recognised; however, recognition of nonself-antigen leads to 

activation of NK cells and subsequent cytotoxicity due to the secretion of 

cytoplasmic granules containing perforins and granzymes (Warren and Smyth, 

1999). For this reason, the recruitment of NK cells towards MSCs within a clinical 

setting could be considered detrimental. NK cell infiltration is considered 

detrimental in kidney and lung transplants due to the production of granzyme A 

and B along with IFN-γ, leading to cytotoxic T cell recruitment and GVHD 

(Tötterman et al., 1989). However, not only the NK cells from the recipient 

itself can lead to graft rejection, but also the NK cells within the graft as they 

could recognise the recipient as nonself, leading to graft rejection. To support 

this, Espinoza et al. showed that NK cell response was ameliorated in recipients 

in which the graft was HLA matching (Peraldi et al., 2015). On the other side, NK 

cells are associated with better prognosis in patients with haematological 

malignancies that have received stem cell transplantation as they promote graft 

versus leukaemia instead of GVHD (Cooley et al., 2018).  

Despite its cytotoxic effector functions, NK cells are also able to secrete 

cytokines that can modulate the immune response. As an example, a subset of 

IL-10 secreting NK cells has been described to suppress T cell proliferation and 

secretion of IFN-γ and other pro-inflammatory cytokines in vitro (Deniz et al., 

2008). Moreover, there is growing evidence suggesting that NK cells can interact 

with myeloid cells and lymphocytes supressing alloimmunity and promoting 

tolerance. NK cells can interact and promote perforin mediated death of donor 

allogeneic DCs in the lymph nodes; therefore, avoiding the activation of T cells 

and promoting skin graft survival (Laffont et al., 2008). In addition, Beilke et al. 
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showed that perforins secreted by NK cells are essential for islet allograft 

tolerance as perforin competent NK cells were able to restore graft tolerance in 

perforin-recipient recipients (Beilke et al., 2005). Taking all this into account, 

we cannot conclude whether NK cell migration towards MSCs would be beneficial 

or detrimental within a clinical setting. 

5.7.7 Conclusions 

To summarise and conclude, this chapter aimed to determine the in vivo 

immune cell attraction profile of resting and licensed BM, Is and Ad MSCs to 

determine the effect of the differential chemokine secretion on the 

immunoreactivity of MSCs. Under resting conditions MSCs did not produce many 

chemokines which predicted, if any, a small infiltrate of leukocytes, while MSC 

licensing led to the production of large quantities of CCL2, CCL5, CXCL1 and 

CXCL10, which predicted the migration of large amounts of monocytes/ 

macrophages and neutrophils. Despite Is MSCs secreting the most chemokines, 

Ad MSCs produced the biggest infiltrate, suggesting that there are more 

elements involved in the immune attraction profile of MSCs. As an example, 

MSCs could induce a secondary response in the surrounding tissues resulting in 

chemokine production. MSCs were not only able to recruit large numbers of 

neutrophils and macrophages, but also eosinophils, monocytes and DCs and in 

some cases, CD4+ and CD8+ T cells and NK cells. These cells have been shown to 

have a dual role promoting inflammation but also graft tolerance, which makes 

difficult to determine whether immune cell migration towards MSCs would be 

detrimental or beneficial in a clinical setting.  

It is important to bear in mind that MSCs are well known for their 

immunomodulatory properties, which suggests that MSCs could recruit these 

leukocytes and use their immunomodulatory properties to exert an anti-

inflammatory phenotype. Secretion of IDO, iNOS in mouse, PGE2 and tumour 

necrosis factor-inducible gene 6 (TSG-6), by IFN-γ mediated licensed MSCs, 

promoted the switch of monocytes and macrophages towards an anti-

inflammatory phenotype (Choi et al., 2011, Chiossone et al., 2016, Németh et 

al., 2009) and IDO has also been shown to restrain the proliferation, IFN-γ 

secretion and cytotoxic activity of NK cells (Spaggiari et al., 2008). Licensing of 

MSCs with TNF-α has been described to induce cyclooxygenase 2 (COX2), which is 
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essential for the synthesis of PGE2 and promotes M2 macrophage polarization as 

COX2 inhibition promotes the M1 phenotype (Francois et al., 2012). MSCs are 

also able to supress the immune response by regulating DCs. Co-culture of MSCs 

and DCs promotes the secretion of the anti-inflammatory cytokine IL-10 by DCs 

while decreasing the production of TNF-α by these cells (Aggarwal and Pittenger, 

2005). Moreover, MSCs suppress maturation and the antigen presentation 

potential of DCs, reducing CD4+ T cell proliferation (Aggarwal and Pittenger, 

2005). Regarding their role in neutrophils, MSCs enhance their migration and 

phagocytosis potential while suppressing the production of nitric oxide and 

hydrogen peroxide by active neutrophils, thereby diminishing their inflammatory 

potential and neutrophil extracellular trap formation (Joel et al., 2019, Jiang et 

al., 2016). 

Another important aspect relates to the absence of detection of MSCs after 

administration into the air pouch. Inability to detect MSCs after administration 

has already been described and understanding the fate of these cells is essential 

to assess their immunoregulatory potential (Thirlwell, 2018, Galleu et al., 2017). 

Uptake of the Green CMFDA cell-tracker by macrophages, NK cells and CD8+ T 

cells suggests an uptake of MSCs. MSCs have been described to not only alter the 

activation of immune cells via active mechanisms such as the secretion of 

molecules, but also by passive mechanisms. A murine model of GVHD 

demonstrated that recipient’s cytotoxic cells must target MSCs promoting their 

perforin-dependent apoptosis in order to initiate immunosuppression. This 

hypothesis was confirmed when it was shown that after MSC infusion, only 

patients that had high toxicity responded to the treatment (Galleu et al., 2017). 

Phagocytosis of MSCs by macrophages increases the production of IL-10 and IDO 

while decreasing the production of IL-6 (Braza et al., 2016). Phinney et al. also 

showed that MSCs undergo mitophagy, which is the degradation of mitochondria 

by autophagy, enabling the macrophages to engulf the mitochondria and the 

secretion of exosomes containing miRNA that activate NF-κB signalling pathway 

increasing the production of IL-1β, PGE2, TNF-α and IL-10 by macrophages 

(Phinney et al., 2015).  

 

Taking all this into account, we have shown the ability of licensed MSCs to 

induce leukocyte migration and we have observed interactions between MSCs, 
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cytotoxic cells and macrophages, which may explain the rapid clearance of 

infused MSCs within the air pouch. However, we have not been able to explain 

the mechanism by which the MSCs could benefit from the leukocyte recruitment. 

For this reason, determining the secretion of immunomodulatory mediators 

potentially involved in this process by MSCs would provide a better 

understanding of their role in a clinical setting. 
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6 Profiling of MSC toll-like receptors, complement 
system and other immunoregulatory and anti-
inflammatory molecules expression at transcript 
and protein level 

6.1 Introduction and aims 

In Chapter 5, we demonstrated that licensing of BM, Is and Ad MSC with 40 ng/ 

mL of TNF-α, IL-1β and IFN-ϒ lead to the recruitment of not only neutrophils and 

macrophages, but also eosinophils, monocytes and DCs and in some cases CD4+ 

and CD8+ T cells and NK cells in vivo. These immune cells have been shown to 

have a dual role promoting inflammation but also graft tolerance, which makes 

it difficult to determine whether MSC-mediated immune cell infiltration would 

be detrimental or beneficial in a clinical setting. But MSCs are well described for 

their tissue repairing and immunomodulatory properties. As an example, in the 

presence of IFN-γ and inflammatory cytokines such as TNF-α, IL-1α or IL-1β, 

MSCs have been shown to increase the expression of adhesion molecules and the 

secretion of chemokines and nitric oxide (NO), producing an immune cell 

infiltrate and enhancing their immunosuppressive activity (Ren et al., 2010, Ren 

et al., 2008). However, low NO production by MSCs leads to enhanced immune 

responses by the recruited immune cells promoting inflammation. For this 

reason, it has been proposed that the immunomodulatory properties of MSCs 

might depend on the level of inflammation surrounding them as well as their 

tissue of origin (Li et al., 2012).  

Toll-like receptors (TLRs) are essential in the regulation of the cross talk 

between the innate and adaptive immune response; TLRs can recognise damage-

associated molecular pattern molecules (DAMPs) leading to the expression of 

pro-inflammatory genes involved in the innate immune response and at the same 

time, TLRs promote the secretion of cytokines involved in the recruitment and 

maturation of the adaptive immune response. TLRs are expressed on progenitor 

cells and they have been described to be involved in proliferation, 

differentiation, self-renewal and immunomodulation (Sallustio et al., 2019). TLR 

signalling by MSCs has been described to promote the production of both pro- 

and anti-inflammatory cytokines by MSCs and TLR expression and the subsequent 

immune response appear to have a strong association with tissue of origin of the 
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MSCs. The expression of TLR3 and TLR4 has been associated with the 

immunosuppressive properties of human BM MSCs by suppressing T cell 

proliferation (Opitz et al., 2009), while other studies show that expression of 

these TLRs decrease the ability to suppress T cell proliferation (Liotta et al., 

2008). TLR4 expression has been linked with the secretion of the pro-

inflammatory mediators IL-6 and CXCL8, while TLR3 expression has been 

associated with the secretion of the anti-inflammatory molecules IL-4, IDO and 

PGE2 by human MSCs (Shirjang et al., 2017).  

The complement system is a component of the innate immune system and it is 

involved in the amplification of the immune system through synergy in 

collaboration with TLRs. Interaction of MSCs with the complement system has 

been described but it is not fully understood. Infusion of MSCs leads to 

complement activation after their contact with serum (Li and Lin, 2012), but at 

the same time, licensing of MSCs with TNF-α and IFN–γ leads to the secretion of 

complement factor H, which inhibits the activation of the complement system 

and its subsequent inflammation (Tu et al., 2010a). Moreover, BM MSCs can 

secrete C3 protein, inhibiting immunoglobulin production by B cells (Lee et al., 

2014).  

The overall aim of this thesis was to gain understanding of the in vivo behaviour 

of MSCs by studying which immune cells MSCs attract and to gain understanding 

of the anti-inflammatory and immunomodulatory effects of MSCs on recruited 

immune cells. Thus, the expression of TLRs, the complement system and several 

immunomodulatory and anti-inflammatory genes were assessed at a 

transcriptional level, including IL-6, IL-10, TSG-6, iNOS, COX2, hepatocyte 

growth factor (HGF), MMP9 and granulocyte-macrophage colony-stimulating 

factor (GMCSF) among others. All in all, the aims of this chapter were to i) 

characterise the transcriptional levels of TLRs, complement system and other 

relevant immunomodulatory molecules in murine MSCs, ii) identify the effect of 

MSC tissue source of origin on the expression of these molecules and iii) study 

how MSC licensing alters the expression of these molecules.  

 

https://en.wikipedia.org/wiki/Hepatocyte_growth_factor
https://en.wikipedia.org/wiki/Hepatocyte_growth_factor
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Results 

Throughout this results section, the transcription and expression profile of toll-

like receptors, complement system and other immunoregulatory and anti-

inflammatory molecules are described in detail in each section under resting and 

inflammatory conditions. Transcriptional profiling enabled the identification of 

the molecules that had undergone the most significant variations at 

transcriptional level upon stimulation. The secretion profile of those molecules 

by MSCs from the three sources was then analysed under resting and stimulatory 

conditions. 

6.2 Analysis of the effect of a single inflammatory 
stimulus on the transcription of toll-like receptors, 
complement system and other immunoregulatory and 
anti-inflammatory molecules  

To understand the mechanisms involved in MSC-mediated immunomodulation 

and tissue repair, it was important to study the expression of the TLRs, the 

complement system and other immunomodulatory genes by MSCs. To do this, 

TLRs, the complement system and a selection of the most studied 

immunomodulatory molecules were chosen, and their transcript analysis was 

carried out. BM, Is and Ad MSCs were transcriptionally assessed under resting and 

inflammatory conditions (40 ng/mL of TNF-α, IL-1β and IFN-ϒ), to determine the 

effect of tissue source and/or inflammatory conditions in the transcriptional 

profile of these molecules my MSCs.  

As explained in Chapter 4, transcriptional data were normalised to the house 

keeping gene beta-2 microglobulin (B2M) to control for variations in RNA quality 

and quantity. As this study did not have a reference sample, data were 

represented as 2(-ΔCT), which enables the visualization of expression levels of 

specific genes normalised to B2M for each sample. Due to the nature of 

normalisation, genes that generated a CT of 35 or above resulted in 2(-ΔCT) less 

than, or equivalent to ~0.0001. Genes with 2(-ΔCT) values similar to ~0.0001 are 

marked with a red box on the following graphs and are likely not transcribed at 

meaningful levels by MSCs (Thirlwell, 2018).  
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6.2.1 Transcription of toll-like receptors under homeostatic and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very few, if any, TLRs 

(Figure 6-1). No clear pattern of transcriptional regulation was observed upon 

MSC licensing and the outcome of licensing was not affected by tissue of origin 

of MSCs. The expression of TLR1 (A), TLR4 (D), TLR6 (F) and TRL7 (G) was 

downregulated after 24-hour cytokine-mediated stimulation in MSCs isolated 

from all sources, TLR2 (B) expression was upregulated in BM, Is and Ad MSCs 

after 24–hour cytokine-mediated stimulation, while cytokine-mediated 

stimulation produced no effect on the expression of TLR3 (C), TLR5 (E), TLR8 

(H), TLR9 (I), TLR11 (J), TLR12 (K) and TLR13. Fold transcript changes upon 

cytokine-mediated licensing of MSCs are detailed in Table 6-1.  

BM MSCs expressed the highest levels of TLR1 (A) under resting conditions and 

inflammatory stimulation resulted in TLR1 downregulation in MSCs from every 

source, with BM and Ad MSCs showing the biggest fold change. BM MSCs 

expressed the highest levels of TLR2 (B) under resting and stimulatory 

conditions; TLR2 was the only TLR that was downregulated after cytokine-

mediated licensing in MSCs from the three sources. BM MSCs expressed the 

highest levels of TLR3 (C), TLR5 (E) and TLR12 (K) under resting conditions and 

inflammatory stimulation did not significantly alter the expression of these 

receptors. BM MSCs expressed the highest levels of TLR4 (D) and TLR6 (F) under 

resting conditions and inflammatory stimulation resulted in reduction of these 

transcript levels in MSCs from every source, with BM MSCs showing the biggest 

fold change. Is MSCs expressed the highest levels of TLR7 (G) under resting 

conditions and inflammatory stimulation resulted in downregulation in MSCs 

from every source, but this downregulation was statistically significant only in Is 

MSCs. TLR8 (H), TLR9 (I), TLR11 (J) and TLR13 (L) were expressed at very low 

levels by MSCs from all sources and 24-hour cytokine-mediated stimulation 

produced no alteration in the expression of these TLRs.  
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Figure 6-1. Inflammation and MSC tissue origin impacts TLR transcript levels in MSCs. 
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MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate TLR 
transcripts in BM, Is and Ad MSCs under homeostatic and inflammatory conditions. Each bar 
represents an n of 3 independent experiments and is graphed as mean ± SEM. Data are 
normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical 
analysis was performed and includes Students paired T test between one MSC tissue source 
(Resting vs Inflammatory Conditions) and One Way ANOVA with Tukey’s multiple comparisons 
post-test to compare all MSC sources. Statistically significant differences are marked with the 
appropriate number of asterisks. p = 0.05 was considered the limit for statistical significance; * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 6-1. Fold change in TLR transcript levels of cytokine-mediated licensed BM, Is and Ad 
MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 6-1, fold change in transcript levels of TLR is 
represented as mean of fold change ± standard deviation. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene BM MSCs Is MSCs Ad MSCs 

TLR1 0.09 ± 0.02 0.44 ± 0.16 0.01 ± 0.00 

TLR2 4.10 ± 0.66 3.28 ± 0.44 1.14 ± 0.27 

TLR3 0.43 ± 0.10 1.28 ± 0.34 2.18 ± 0.81 

TLR4 0.25 ± 0.06 0.53 ± 0.18 0.58 ± 0.16 

TLR5 0.21 ± 0.06 0.62 ± 0.38 3.20 ± 4.10 

TLR6 0.12 ± 0.03 0.35 ± 0.06 0.99 ± 0.44 

TLR7 0.21 ± 0.04 0.57 ± 0.17 0.52 ± 0.27 

TLR8 0.21 ± 0.06 0.37 ± 0.04 0.37 ± 0.50 

TLR9 0.23 ± 0.08 0.49 ± 0.36 1.04 ± 1.11 

TLR11 0.22 ± 0.08 0.44 ± 0.28 1443.42 ± 1440.99 

TLR12 0.21 ± 0.05 2.20 ± 1.39 0.23 ± 0.11 

TLR13 0.51 ± 0.55 0.22 ± 0.00 0.78 ± 0.27 

 

6.2.2 Transcription of the complement system under homeostatic 
and inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very few, if any, 

elements of the complement system with the exception of CFH (Figure 6-2, E), 

which was transcribed at higher levels by BM MSCs, and C1Qc, which was 

expressed at higher levels by Is MSCs (Figure 6-2, M). A pattern of transcriptional 

downregulation was observed in CFD (D), CFH (E), CFI (G), CR1 (J), C5 (T) and 

C5AR1 (U) after 24-hour cytokine-mediated stimulation while cytokine-mediated 

stimulation did not produce a statistically significant effect in the expression of 

CD46 (A), CD59 (B), CFB (C), CFHR1 (F), CFP (H), CR1L (I), C1Qa (K), C1Qb (L), 

C1Qc (M), C1R (N), C1Sa (O), C2 (P), C3 (Q), C3AR1 (R), C4 (S), C6 (V), C7 (W), 
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C8a (X), C8b (Y) and C8g (Z). Fold transcript upon cytokine-mediated licensing of 

MSCs are detailed in Table 6-2.  

CD46 (Figure 6-2, A), CFB (C), CFHR1 (F), CFP (H), CR1 (J), C1Qa (K), C1Qb (L), 

C1R (N), C1Sa (O), C2 (P), C4 (S), C6 (V), C8a (X), C8b (Y) and C8g (Z) were 

expressed at very low levels by MSCs from all sources and 24-hour cytokine-

mediated stimulation produced no variation in the levels of these elements of 

the complement system. BM MSCs expressed the highest levels of CD59 (B) under 

resting and inflammatory conditions and inflammatory stimulation resulted in 

downregulation in MSCs from every source, with Is and Ad MSCs showing the 

biggest fold change. CFD and CFI were expressed at very low levels by MSCs from 

all sources but Ad MSCs expressed statistically significant higher levels of CFD (D) 

and CFI transcripts (G). BM MSCs expressed the highest levels of CFH (E) under 

resting and stimulatory conditions and inflammatory stimulation resulted in 

downregulation in MSCs from every source. BM MSCs expressed the highest levels 

of CR1L (I) under resting and inflammatory conditions and inflammatory 

stimulation resulted in downregulation in MSCs from every source. Is MSCs 

expressed the highest levels of C1Qc (M) and C5AR1 (U) under resting and 

inflammatory conditions and inflammatory stimulation resulted in 

downregulation of these transcript levels in MSCs from every source except Ad 

MSCs, where cytokine-mediated stimulation increased the expression of C1Qc. Is 

MSCs expressed the highest transcript levels of C3 (Q) under resting conditions 

but the effect of cytokine-mediated stimulation depended on the tissue of origin 

of MSCs; BM and Ad MSCs increased their C3 transcript levels after stimulation 

while Is MSCs decreased their transcript levels. Ad MSCs expressed the highest 

levels of C3AR1 (R) and C5 (T) under resting and inflammatory conditions and 

inflammatory stimulation resulted in downregulation in MSCs from every source. 

Under resting conditions C7 (W) was expressed at very low levels but BM MSCs 

expressed the highest levels; inflammatory stimulation led to a reduction of C7 

transcript levels in BM MSCs while producing an upregulation of transcript levels 

in Is and Ad MSCs.  
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Figure 6-2. Inflammation and MSC tissue origin impacts complement system molecules 
transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate complement 
system transcripts in BM, Is and Ad MSCs under homeostatic and inflammatory conditions. Each 
bar represents an n of 3 independent experiments and is graphed as mean ± SEM. Data are 
normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Appropriate statistical 
analysis was performed and includes Students paired T test between one MSC tissue source 
(Resting vs Inflammatory Conditions) and One Way ANOVA with Tukey’s multiple comparisons 
post-test to compare all MSC sources. Statistically significant differences are marked with the 
appropriate number of asterisks. p = 0.05 was considered the limit for statistical significance; * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 6-2. Fold change in the complement system molecules transcript levels of cytokine-
mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
Following the experimental set up explained in Figure 6-2, fold change in transcript levels of the 
complement system molecules is represented as mean of fold change ± standard deviation. 
Statistically significant differences are marked with a colour code, where p < 0.05 is represented by 
green, p < 0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is 
represented by red. 

Gene BM MSCs Is MSCs Ad MSCs 

CD46 0.24 ± 0.20 0.16 ± 0.07 0.82 ± 0.30 

CD59 0.13 ± 0.06 0.10 ± 0.02 0.07 ± 0.03 

CFB 2.62 ± 1.29 1.99 ± 0.66 1.31 ± 0.35 

CFD 0.05 ± 0.04 0.14 ± 0.04 0.00 ± 0.00 

CFH 0.27 ± 0.09 0.16 ± 0.01 0.14 ± 0.03 

CFHR1 0.46 ± 0.27 0.27 ± 0.21 10.31 ± 4.12 

CFI 0.30 ± 0.38 0.19 ± 0.12 0.04 ± 0.07 

CFP 0.13 ± 0.04 0.27 ± 0.07 0.00 ± 0.00 

CR1L 0.32 ± 0.15 0.14 ± 0.08 0.78 ± 0.17 

CR1 0.23 ± 0.15 0.21 ± 0.20 0.78 ± 0.92 

C1Qa 0.43 ± 0.07 0.23 ± 0.03 0.04 ± 0.02 

C1Qb 0.63 ± 0.43 0.17 ± 0.00 0.13 ± 0.13 

C1Qc 0.48 ± 0.17 0.25 ± 0.05 12.36 ± 10.94 

C1R 0.72 ± 0.34 0.70 ± 0.12 0.89 ± 0.14 

C1Sa 0.91 ± 0.44 1.33 ± 0.35 0.93 ± 0.20 

C2 0.33 ± 0.17 1.99 ± 0.60 0.46 ± 0.23 

C3 12.97 ± 5.57 0.62 ± 0.05 1.68 ± 0.38 

C3AR1 0.19 ± 0.07 0.18 ± 0.05 0.67 ± 0.20 
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Gene BM MSCs Is MSCs Ad MSCs 

C4 0.26 ± 0.14 0.70 ± 0.15 0.18 ± 0.28 

C5 0.36 ± 0.20 1.20 ± 1.92 0.15 ± 0.20 

C5AR1 0.80 ± 0.40 0.30 ± 0.04 0.17 ± 0.16 

C6 0.32 ± 0.25 0.89 ± 0.34 0.04 ± 0.05 

C7 0.26 ± 0.15 8.73 ± 10.12 6.81 ± 3.71 

C8a 0.24 ± 0.19 1.09 ± 0.00 0.08 ± 0.04 

C8b 0.93 ± 0.94 0.44 ± 0.69 9.68 ± 6.53 

C8g 0.16 ± 0.07 0.20 ± 0.07 0.01 ± 0.02 

 

 

6.2.3 Transcription of other immunoregulatory and anti-
inflammatory molecules under homeostatic and 
inflammatory conditions 

Under resting conditions BM, Is and Ad MSCs transcribed very little IL-1β (Figure 

6-3, A), TNF-α (B), IL-10 (D), IFN-β (E), IDO 1 (L), IDO 2, MMP9 (S), ITGAX (U) and 

ITGB2 (V) while TGF-β (G), COX2 (O), HGF (Q) and CD142 (R) were transcribed at 

high levels. The effect of inflammatory licensing was gene, and tissue of origin, 

dependent. Fold changes in transcript levels upon cytokine-mediated licensing of 

MSCs are detailed in Table 6-3.  

IFN-β (E), IDO 1 (L), IDO 2, CD274 (P), MMP9 (S) and ITGAX (U) were expressed at 

very low levels by MSCs from all sources and 24-hour cytokine-mediated 

stimulation produced no variation in the transcript levels of these genes. BM 

MSCs expressed the highest levels of IL-1β (A) under resting conditions and 

inflammatory stimulation led to increased levels of IL-1β transcription only in Is 

MSCs. TNF-α (B) was expressed at very low levels in MSCs from every source and 

24-hour cytokine-mediated stimulation led to no effect but Is MSCs had 

statistically significant higher transcript levels than BM and Ad MSCs. BM MSCs 

expressed the highest levels of IL-6 (C) under resting and stimulatory conditions 

and inflammatory stimulation led to an upregulation of IL-6 in MSCs from every 

source, especially in BM MSCs where it produced 21–times more IL-6 transcript. 

IL-10 (D) was expressed at very low levels by MSCs from all sources but Ad MSCs 

expression was higher in a statistically significant manner and cytokine-mediated 

stimulation led to a downregulation of IL-10 transcript levels in MSCs from all 

sources. BM MSCs expressed the highest levels of TSG-6 (F), VEGFb (I), VEGFd 

(K), HGF (Q) and CD142 (R) under resting and inflammatory conditions and 24-
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hour stimulatory licensing led to the downregulation of these transcripts in MSCs 

from all sources. Ad MSCs expressed the highest levels of VEGFc (J) under resting 

and inflammatory conditions and stimulatory licensing led to the downregulation 

of VEGFc in MSCs from all sources. BM MSCs expressed the highest levels of iNOS 

(N) under resting conditions; stimulatory licensing led to no effect in BM MSCs 

while it produced a marked upregulation in Is and Ad MSCs, with Is MSCs 

expressing the highest transcript levels. Ad MSCs expressed the highest levels of 

COX2 (O) under resting and inflammatory conditions and stimulatory licensing 

led to no effect on COX2 transcript levels. Ad MSCs expressed the highest levels 

of GMCSF (T) under resting conditions; stimulatory licensing led to an 

upregulation of GMCSF transcript levels in MSCs from all sources, with Is MSCs 

showing the biggest fold change. Is MSCs expressed the highest levels of ITGB2 

(V) under resting and inflammatory conditions and stimulatory licensing led to no 

effect in BM MSCs while it produced a statistically significant downregulation in 

Is and Ad MSCs.  
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Figure 6-3. Inflammation and MSC tissue origin impacts immunomodulatory molecules 
transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines, 40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β, for 24 hours. Unstimulated cells were left growing in MSC culture medium as a 
control. Quantitative reverse transcription PCR (qRT-PCR) was performed to evaluate 
immunomodulatory molecule transcripts in BM, Is and Ad MSCs under homeostatic and 
inflammatory conditions. Each bar represents an n of 3 independent experiments and is graphed 
as mean ± SEM. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). 
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Appropriate statistical analysis was performed and includes Students paired T test between one 
MSC tissue source (Resting vs Inflammatory Conditions) and One Way ANOVA with Tukey’s 
multiple comparisons post-test to compare all MSC sources. Statistically significant differences are 
marked with the appropriate number of asterisks. p = 0.05 was considered the limit for statistical 
significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 6-3. Fold change in immunomodulatory molecules transcript levels of cytokine-
mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
Following the experimental set up explained in Figure 6-3, fold change in transcript levels of 
immunomodulatory molecules represented as mean of fold change ± standard deviation. 
Statistically significant differences are marked with a colour code, where p < 0.05 is represented by 
green, p < 0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is 
represented by red. 

Gene BM MSCs Is MSCs Ad MSCs 

IL-1β 1.09 ± 0.62 14.03 ± 3.49 0.95 ± 0.88 

TNF-α 2.79 ± 2.06 0.95 ± 0.11 0.42 ± 0.53 

IL-6 21.85 ± 4.62 3.56 ± 0.45 3.42 ± 1.25 

IL-10 0.27 ± 0.28 0.07 ± 0.07 0.02 ± 0.02 

IFN-β 2.73 ± 4.12 0.51 ± 0.28 0.45 ± 0.49 

TSG-6 0.17 ± 0.03 0.26 ± 0.15 0.11 ± 0.13 

TGF-β 1.66 ± 1.62 0.12 ± 0.14 65.03 ± 93.49 

VEGFa 0.53 ± 0.04 0.38 ± 0.04 0.96 ± 0.31 

VEGFb 0.17 ± 0.04 0.35 ± 0.06 0.24 ± 0.04 

VEGFc 0.27 ± 0.03 0.51 ± 0.14 0.60 ± 0.03 

VEGFd 0.10 ± 0.03 0.06 ± 0.02 0.12 ± 0.01 

IDO1 0.44 ± 0.28 1.49 ± 0.00 0.29 ± 0.20 

IDO2 0.40 ± 0.21 0.52 ± 0.28 2.97 ± 2.02 

iNOS 174.63 ± 159.27 727.41 ± 163.85 4528.28 ± 6706.77 

COX2 1.92 ± 0.53 0.76 ± 0.10 1.22 ± 0.36 

CD274 0.55 ± 0.42 6.08 ± 5.42 1.65 ± 0.64 

HGF 0.33 ± 0.06 0.70 ± 0.22 0.21 ± 0.09 

CD142 0.12 ± 0.03 0.16 ± 0.03 0.77 ± 0.10 

MMP9 21.85 ± 23.09 3.21 ± 2.39 1.73 ± 1.94 

GMCSF 16.71 ± 8.28 71.23 ± 63.81 3.98 ± 2.62 

ITGAX 0.33 ± 0.24 1.23 ± 0.68 0.09 ± 0.04 

ITGB2 1.06 ± 0.95 0.62 ± 0.04 0.04 ± 0.04 

 

6.3 Analysis of the effect of a double inflammatory 
stimulus over time on the transcription of the 
complement system and other immunoregulatory and 
anti-inflammatory molecules   

Several reports in the literature indicate that the immunomodulatory activities 

of MSCs are not spontaneous, that priming by inflammatory cytokines is essential 



270 
 
for MSC-mediated immunosuppression, irrespective of the species of origin (Ren 

et al., 2009). Within a clinical setting, MSCs are usually infused within an 

inflammatory environment, which provides the required licensing for increasing 

the immunomodulatory properties of MSCs. When the anti-inflammatory 

properties of MSCs are studied in vitro, this licensing is mimicked in an in vitro 

culture with the addition of proinflammatory cytokines; in this specific case with 

40 ng/ mL of IFN-ϒ, TNF-α and IL-1β.  

As described in the previous section, pro-inflammatory cytokine-mediated MSC 

licensing produced a transcriptional regulation of genes involved in the 

regulation of the immune response and immunomodulatory mediators, which 

could explain why MSCs are more immunosuppressive upon activation. Within 

clinical settings, it has been reported that pre-treatment of MSCs with 

inflammatory cytokines prior to administration within animal models of 

inflammatory diseases boosts the therapeutic effect of MSCs (Duijvestein et al., 

2011, Noronha et al., 2019). For this reason, we wondered if pre-licensing the 

MSCs prior to exposing them to an inflammatory environment in vitro would lead 

to even bigger variations in chemokine transcript levels and therefore, in 

enhanced therapeutic potential. Following the experimental set up explained in 

Chapter 4, cells were pre-licensed for 48 hours, after which cells were washed 

twice with PBS and stimulated again for another 24 hours. The first stimulation 

primes the MSCs while the second stimulation would mimic the inflammatory 

environment MSCs would face when infused into a patient with an inflammatory 

disorder. Figure 6-4 illustrates the time points at which supplemented medium 

was added. Culture medium was removed at the time cells were harvested and 

was kept for experimental procedures.  
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Figure 6-4. Diagrammatic illustration of the time course of the MSC licensing. 

 

Two different control conditions were used. In the first one, cells were 

stimulated for 48 hours, after which cells were washed twice with PBS and fresh 

culture medium was added; cells were harvested 24 hours later. In the second 

condition, cells were washed twice with PBS, the culture medium was replaced 

with fresh medium and the cells were left to grow for 48 hours. Cells were then 

washed twice with PBS, the culture medium was replaced with supplemented 

medium and the cells were harvested 24 hours later. There is extensive 

literature about how cytokine-mediated licensing enhances the potential 

therapeutic efficacy of MSCs however, little is known about the role of TLR 

ligand-mediated activation on the secretion of chemotactic cytokines by MSCs. 

For this reason, 100 ng/mL lipopolysaccharide (LPS), 100 ng/mL lipoteichoic acid 

(LTA) and 4 mg/ ml polyinosinic-polycytidylic acid (poly I:C), as well as the 

previously described cytokine cocktail, was used for MSC licensing.  

According to the results described in Section 6.2, the genes that regulated their 

transcript levels in a statistically significant manner upon stimulation were 

selected and their transcriptional levels were assessed after licensing with 

different inflammatory molecules and different inflammatory conditions.  

It is important to bear in mind that in this section, the influence of four 

different inflammatory agents (cytokine cocktail with TNF-α, IL-1β and IFN-ϒ, 

LPS, LTA and Poly I:C) at four different time points (control, 72 hours, 24 hours 

and double stimulation) in 14 different genes was studied. This study was 
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performed in MSCs isolated from three different sources (BM, Is and Ad MSCs), 

which gave us a total of 546 data points per experiment ([4 inflammatory agents 

× 3 time points + 1 control] × 14 genes × 3 MSC sources). 

Among all the licensing molecules tested, the combination of 40 ng/ mL of TNF-

α, IL-1β and IFN-ϒ led to the biggest change in immunomodulatory mediators and 

among all the conditions tested, harvesting the cells 24 hours after the 

inflammatory stimulation led to the most significant results. These conditions 

have already been discussed in Section 6.2, for this reason, due to the large 

amount of data presented in this chapter, we decided to move the less relevant 

results to the Appendix. Thus, this result section will only display the fold 

transcript changes upon licensing of MSCs in tables, while the explanatory text 

and figures are displayed in Section 8.2.  

6.3.1 Transcription of the complement system under homeostatic 
and inflammatory conditions  

As outlined in Section 6.2.2, under resting conditions, BM, Is and Ad MSCs 

transcribed very little, if any, of the elements of the complement system and 

only the transcription of CFH, C1Qc and C5AR1 were affected by MSC licensing in 

a statistically significant manner (Section 8.2). A pattern of transcriptional 

upregulation was observed in CFH, C1Qc and C5AR1 after cytokine, LPS and Poly 

I:C-mediated licensing while LTA licensing led to a pattern of transcriptional 

upregulation; however, these genes were upregulated differentially in MSCs 

according to their tissue of origin. Fold changes of transcriptional regulation 

upon licensing of MSCs are detailed in Table 6-4.  

Table 6-4. Fold change in complement system molecules transcript levels of cytokine, LPS, 
LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells 
from the same source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 6-4 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate complement system molecules transcripts in BM, Is and Ad MSCs under 
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resting and inflammatory conditions. Data are normalised to the housekeeping gene B2M and 
expressed as 2(-ΔCT). Fold change in transcript levels is represented as mean of fold change ± 
standard deviation. One Way ANOVA with Tukey’s multiple comparisons post-test was performed 
to compare all MSC sources and the different conditions. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CFH 

1 

Cyt 0.21 ± 0.07 0.10 ± 0.12 0.69 ± 0.50 

LPS 0.37 ± 0.10 0.32 ± 0.26 0.30 ± 0.04 

LTA 3.40 ± 2.12 46.04 ± 25.45 0.72 ± 0.24 

Poly I:C 0.03 ± 0.01 0.24 ± 0.23 0.46 ± 0.10 

2 

Cyt 0.38 ± 0.26 0.03 ± 0.00 0.24 ± 0.04 

LPS 0.22 ± 0.07 0.15 ± 0.11 0.17 ± 0.12 

LTA 0.91 ± 0.34 15.74 ± 7.32 0.18 ± 0.06 

Poly I:C 0.09 ± 0.01 0.08 ± 0.04 0.19 ± 0.03 

3 

Cyt 0.26 ± 0.17 0.03 ± 0.02 0.27 ± 0.07 

LPS 0.63 ± 0.37 0.20 ± 0.14 0.43 ± 0.09 

LTA 1.26 ± 0.71 149.39 ± 91.04 1.24 ± 0.35 

Poly I:C 0.03 ± 0.02 0.28 ± 0.24 0.64 ± 0.13 

C1Qc 

1 

Cyt 0.59 ± 0.25 0.15 ± 0.07 0.94 ± 0.23 

LPS 0.92 ± 0.42 0.12 ± 0.07 0.47 ± 0.05 

LTA 2.19 ± 0.86 0.50 ± 0.18 0.63 ± 0.10 

Poly I:C 0.22 ± 0.08 0.21 ± 0.18 0.35 ± 0.05 

2 

Cyt 0.52 ± 0.19 0.04 ± 0.02 0.18 ± 0.03 

LPS 0.32 ± 0.04 0.08 ± 0.05 0.27 ± 0.07 

LTA 2.04 ± 1.26 0.40 ± 0.17 0.25 ± 0.05 

Poly I:C 0.40 ± 0.17 0.08 ± 0.03 0.14 ± 0.04 

3 

Cyt 0.52 ± 0.26 0.13 ± 0.05 1.04 ± 0.18 

LPS 0.67 ± 0.33 0.21 ± 0.13 0.14 ± 0.02 

LTA 1.59 ± 0.51 2.52 ± 0.75 0.36 ± 0.08 

Poly I:C 0.39 ± 0.35 0.52 ± 0.65 0.07 ± 0.01 

C5AR1 

1 

Cyt 1.59 ± 0.26 0.09 ± 0.06 1.06 ± 0.44 

LPS 3.14 ± 0.44 0.24 ± 0.09 0.74 ± 0.14 

LTA 6.45 ± 0.57 0.40 ± 0.10 0.88 ± 0.16 

Poly I:C 0.89 ± 0.07 0.22 ± 0.12 0.46 ± 0.13 

2 

Cyt 2.71 ± 0.51 0.06 ± 0.03 0.81 ± 0.13 

LPS 2.49 ± 0.92 0.22 ± 0.04 0.48 ± 0.06 

LTA 8.17 ± 0.42 0.41 ± 0.06 0.25 ± 0.07 

Poly I:C 1.72 ± 0.70 0.13 ± 0.07 0.34 ± 0.09 

3 

Cyt 1.63 ± 0.12 0.08 ± 0.03 0.01 ± 0.01 

LPS 2.87 ± 0.24 0.40 ± 0.17 1.00 ± 0.11 

LTA 8.49 ± 1.17 1.52 ± 0.82 1.44 ± 0.38 

Poly I:C 0.61 ± 0.02 0.22 ± 0.19 0.29 ± 0.08 
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6.3.2 Transcription of other immunoregulatory and anti-
inflammatory molecules under homeostatic and 
inflammatory conditions  

As previously mentioned, under resting conditions BM, Is and Ad MSCs 

transcribed very little, if any, of the immunoregulatory and anti-inflammatory 

genes analysed in Section 6.2.3 with the exception of IL-6, VEGFa, VEGFd and 

CD142 (Section 8.2). The effect of inflammatory licensing in these genes was 

tissue of origin and stimulatory agent dependent and fold changes of 

transcriptional regulation upon licensing of MSCs are detailed in Table 6-5. 

Table 6-5. Fold change in immunomodulatory molecules transcript levels of cytokine, LPS, 
LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells 
from the same source.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 6-4 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate immunomodulatory molecule transcripts in BM, Is and Ad MSCs under 
resting and inflammatory conditions. Data are normalised to the housekeeping gene B2M and 
expressed as 2(-ΔCT). Fold change in transcript levels is represented as mean of fold change ± 
standard deviation. One Way ANOVA with Tukey’s multiple comparisons post-test was performed 
to compare all MSC sources and the different conditions. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

IL-6 

1 

Cyt 1.15 ± 0.90 1.56 ± 0.97 0.11 ± 0.05 

LPS 0.26 ± 0.22 2.35 ± 1.05 0.42 ± 0.06 

LTA 0.17 ± 0.12 1.24 ± 0.62 0.22 ± 0.02 

Poly I:C 0.15 ± 0.11 1.92 ± 1.31 0.23 ± 0.03 

2 

Cyt 53.97 ± 44.65 8.04 ± 4.83 0.65 ± 0.06 

LPS 2.02 ± 0.64 3.09 ± 1.63 0.89 ± 0.29 

LTA 0.49 ± 0.06 1.38 ± 0.51 1.07 ± 0.13 

Poly I:C 0.78 ± 0.72 1.46 ± 0.36 0.66 ± 0.11 

3 

Cyt 76.21 ± 61.41 3.41 ± 1.35 10.74 ± 1.08 

LPS 1.72 ± 0.72 2.26 ± 1.29 0.51 ± 0.02 

LTA 0.30 ± 0.20 0.88 ± 0.21 0.70 ± 0.18 

Poly I:C 0.86 ± 0.43 1.04 ± 0.79 0.80 ± 0.13 

TSG-6 1 

Cyt 0.08 ± 0.03 0.74 ± 0.14 3.98 ± 2.09 

LPS 0.13 ± 0.01 2.86 ± 0.90 0.66 ± 0.21 

LTA 0.17 ± 0.02 2.24 ± 0.34 0.54 ± 0.18 

Poly I:C 0.07 ± 0.03 1.53 ± 0.40 0.42 ± 0.21 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

2 

Cyt 0.06 ± 0.03 0.62 ± 0.17 0.51 ± 0.28 

LPS 0.23 ± 0.09 2.34 ± 1.30 0.56 ± 0.17 

LTA 0.76 ± 0.36 1.40 ± 0.39 0.31 ± 0.30 

Poly I:C 0.07 ± 0.03 1.09 ± 0.25 0.37 ± 0.21 

3 

Cyt 0.13 ± 0.09 0.29 ± 0.19 1.12 ± 0.40 

LPS 0.66 ± 0.35 1.44 ± 0.36 0.51 ± 0.20 

LTA 0.54 ± 0.31 4.18 ± 1.52 1.06 ± 0.53 

Poly I:C 0.08 ± 0.05 0.82 ± 0.58 1.27 ± 0.66 

VEGFa 

1 

Cyt 0.40 ± 0.05 0.22 ± 0.10 2.43 ± 0.51 

LPS 0.54 ± 0.17 0.93 ± 0.19 0.63 ± 0.06 

LTA 1.04 ± 0.14 1.77 ± 0.57 1.16 ± 0.10 

Poly I:C 0.24 ± 0.04 0.46 ± 0.14 0.47 ± 0.05 

2 

Cyt 0.76 ± 0.12 0.37 ± 0.27 1.04 ± 0.17 

LPS 0.65 ± 0.19 0.68 ± 0.05 1.01 ± 0.35 

LTA 1.07 ± 0.26 1.14 ± 0.29 0.67 ± 0.05 

Poly I:C 0.41 ± 0.29 1.02 ± 0.31 0.46 ± 0.07 

3 

Cyt 0.49 ± 0.04 0.38 ± 0.13 3.17 ± 0.47 

LPS 0.98 ± 0.07 0.73 ± 0.17 0.80 ± 0.08 

LTA 0.92 ± 0.21 1.25 ± 0.17 1.10 ± 0.26 

Poly I:C 0.37 ± 0.02 0.83 ± 0.08 1.19 ± 0.29 

VEGFb 

1 

Cyt 0.35 ± 0.10 0.16 ± 0.06 0.61 ± 0.14 

LPS 3.30 ± 4.00 0.69 ± 0.17 0.34 ± 0.13 

LTA 2.10 ± 0.97 0.71 ± 0.22 0.48 ± 0.18 

Poly I:C 0.19 ± 0.10 0.36 ± 0.21 0.35 ± 0.04 

2 

Cyt 0.25 ± 0.11 0.21 ± 0.13 0.66 ± 0.19 

LPS 0.21 ± 0.07 0.38 ± 0.03 0.38 ± 0.11 

LTA 1.21 ± 0.66 0.82 ± 0.07 0.27 ± 0.04 

Poly I:C 0.14 ± 0.04 0.31 ± 0.29 0.34 ± 0.07 

3 

Cyt 0.19 ± 0.11 0.09 ± 0.02 4.45 ± 0.52 

LPS 0.71 ± 0.31 0.30 ± 0.12 0.75 ± 0.11 

LTA 1.45 ± 0.76 0.94 ± 0.34 1.10 ± 0.27 

Poly I:C 0.11 ± 0.06 0.28 ± 0.07 0.60 ± 0.10 

VEGFc 

1 

Cyt 0.27 ± 0.15 1.00 ± 0.28 0.29 ± 0.18 

LPS 0.56 ± 0.23 3.07 ± 0.34 0.67 ± 0.13 

LTA 0.67 ± 0.17 2.50 ± 1.14 0.56 ± 0.13 

Poly I:C 0.22 ± 0.06 1.83 ± 0.68 0.47 ± 0.10 

2 

Cyt 0.45 ± 0.05 0.96 ± 0.36 1.12 ± 0.07 

LPS 0.63 ± 0.08 1.05 ± 0.26 0.86 ± 0.31 

LTA 0.62 ± 0.22 1.64 ± 0.92 0.38 ± 0.12 

Poly I:C 0.53 ± 0.28 1.60 ± 0.71 0.54 ± 0.11 

3 

Cyt 0.20 ± 0.08 0.61 ± 0.21 7.80 ± 1.71 

LPS 0.74 ± 0.46 1.09 ± 0.51 1.05 ± 0.28 

LTA 0.65 ± 0.25 0.91 ± 0.39 1.14 ± 0.36 

Poly I:C 0.38 ± 0.10 0.65 ± 0.19 1.14 ± 0.23 

VEGFd 1 
Cyt 0.15 ± 0.04 0.05 ± 0.03 1.44 ± 0.35 

LPS 0.27 ± 0.03 0.25 ± 0.10 1.10 ± 0.41 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LTA 0.37 ± 0.07 0.42 ± 0.07 1.30 ± 0.13 

Poly I:C 0.10 ± 0.03 0.11 ± 0.10 0.66 ± 0.11 

2 

Cyt 0.16 ± 0.07 0.01 ± 0.00 0.29 ± 0.07 

LPS 0.54 ± 0.10 0.09 ± 0.03 0.20 ± 0.07 

LTA 1.15 ± 0.37 0.30 ± 0.07 0.31 ± 0.08 

Poly I:C 0.12 ± 0.03 0.13 ± 0.02 0.40 ± 0.07 

3 

Cyt 0.15 ± 0.08 0.00 ± 0.00 0.23 ± 0.03 

LPS 0.61 ± 0.08 0.16 ± 0.11 0.38 ± 0.05 

LTA 0.72 ± 0.19 0.46 ± 0.08 2.06 ± 0.41 

Poly I:C 0.10 ± 0.04 0.09 ± 0.02 0.41 ± 0.08 

iNOS 

1 

Cyt 18.43 ± 14.56 4.52 ± 3.84 4.06 ± 3.80 

LPS 5.04 ± 7.56 0.54 ± 0.40 1.99 ± 1.86 

LTA 0.09 ± 0.09 0.23 ± 0.24 1.01 ± 0.93 

Poly I:C 0.57 ± 0.40 0.16 ± 0.15 1.88 ± 1.73 

2 

Cyt 191.3 ± 171.7 170.15 ± 178.95 49.31 ± 47.41 

LPS 2.25 ± 1.86 0.20 ± 0.21 271.90 ± 239.85 

LTA 0.25 ± 0.22 0.25 ± 0.04 1.04 ± 1.13 

Poly I:C 135.1 ± 222.2 0.14 ± 0.05 22.15 ± 31.04 

3 

Cyt 77.75 ± 55.07 83.97 ± 86.59 40476 ± 37122 

LPS 4.61 ± 3.70 1.99 ± 1.83 32.53 ± 51.05 

LTA 0.22 ± 0.09 45.06 ± 53.10 28.72 ± 37.91 

Poly I:C 4.38 ± 3.46 0.15 ± 0.16 147.15 ± 153.43 

COX2 

1 

Cyt 0.85 ± 0.16 5.46 ± 1.93 2.45 ± 0.86 

LPS 1.00 ± 0.46 29.93 ± 4.88 0.46 ± 0.05 

LTA 1.39 ± 0.19 11.11 ± 7.88 0.69 ± 0.17 

Poly I:C 0.50 ± 0.07 5.41 ± 1.65 0.37 ± 0.05 

2 

Cyt 1.65 ± 0.67 5.16 ± 1.41 3.34 ± 0.19 

LPS 1.48 ± 0.67 3.96 ± 2.32 1.52 ± 0.53 

LTA 1.19 ± 0.59 6.46 ± 0.44 0.79 ± 0.06 

Poly I:C 1.31 ± 0.47 6.15 ± 4.01 0.75 ± 0.08 

3 

Cyt 0.93 ± 0.09 8.71 ± 3.77 23.83 ± 2.96 

LPS 1.57 ± 0.59 7.92 ± 5.36 1.52 ± 0.15 

LTA 0.97 ± 0.35 6.73 ± 2.58 0.89 ± 0.54 

Poly I:C 0.57 ± 0.06 4.33 ± 1.81 1.88 ± 0.27 

HGF 

1 

Cyt 0.09 ± 0.01 0.17 ± 0.06 2.48 ± 0.99 

LPS 0.17 ± 0.05 0.87 ± 0.36 1.13 ± 0.25 

LTA 0.37 ± 0.07 1.40 ± 1.24 1.68 ± 0.56 

Poly I:C 0.04 ± 0.01 1.75 ± 0.53 0.87 ± 0.19 

2 

Cyt 0.32 ± 0.24 0.48 ± 0.28 0.67 ± 0.16 

LPS 0.39 ± 0.28 1.68 ± 1.01 1.27 ± 0.74 

LTA 1.06 ± 0.69 5.03 ± 0.70 0.61 ± 0.11 

Poly I:C 0.11 ± 0.05 0.43 ± 0.08 0.33 ± 0.08 

3 

Cyt 0.22 ± 0.13 1.24 ± 1.02 2.20 ± 0.38 

LPS 0.74 ± 0.56 1.01 ± 0.63 0.52 ± 0.10 

LTA 0.97 ± 0.45 2.12 ± 0.69 0.65 ± 0.24 

Poly I:C 0.12 ± 0.07 0.35 ± 0.22 0.53 ± 0.14 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CD142 

1 

Cyt 0.32 ± 0.03 0.11 ± 0.00 0.93 ± 0.11 

LPS 0.74 ± 0.12 0.47 ± 0.14 0.42 ± 0.05 

LTA 0.70 ± 0.12 0.79 ± 0.32 0.55 ± 0.06 

Poly I:C 0.27 ± 0.06 0.40 ± 0.18 0.35 ± 0.03 

2 

Cyt 0.45 ± 0.26 0.18 ± 0.11 0.53 ± 0.06 

LPS 0.59 ± 0.17 0.90 ± 0.37 0.39 ± 0.14 

LTA 1.19 ± 0.25 0.78 ± 0.27 0.42 ± 0.04 

Poly I:C 0.32 ± 0.05 0.18 ± 0.07 0.49 ± 0.08 

3 

Cyt 0.33 ± 0.20 0.13 ± 0.06 1.48 ± 0.15 

LPS 0.79 ± 0.21 0.27 ± 0.03 0.50 ± 0.06 

LTA 0.83 ± 0.25 0.37 ± 0.11 1.44 ± 0.40 

Poly I:C 0.55 ± 0.37 0.53 ± 0.36 0.87 ± 0.13 

GMCSF 

1 

Cyt 1.56 ± 1.30 6.07 ± 8.72 14.53 ± 12.02 

LPS 0.66 ± 0.30 13.17 ± 22.47 1.65 ± 1.05 

LTA 14.41 ± 24.03 10.08 ± 9.00 2.62 ± 1.26 

Poly I:C 145.6 ± 250.5 7.51 ± 11.31 1.07 ± 0.86 

2 

Cyt 8.85 ± 8.64 2.75 ± 2.17 1.22 ± 0.60 

LPS 0.74 ± 0.40 1.59 ± 1.77 1.98 ± 2.17 

LTA 1.31 ± 0.84 10.35 ± 16.41 1.31 ± 1.05 

Poly I:C 0.87 ± 0.75 0.78 ± 0.27 0.55 ± 0.28 

3 

Cyt 1.26 ± 0.95 8.57 ± 13.07 365.9 ± 300.6 

LPS 1.25 ± 0.67 1.59 ± 1.99 1.53 ± 1.14 

LTA 0.72 ± 0.40 8.85 ± 11.71 2.35 ± 1.37 

Poly I:C 0.74 ± 0.40 3.32 ± 5.56 4.37 ± 3.01 

 

6.4 Analysis of the immunoregulatory and anti-
inflammatory molecules secretion profile by MSCs 
under homeostatic and inflammatory conditions 

Under resting conditions, BM, Is and Ad MSCs secreted less than 0.6 pg of IL-6 

and less than 0.2 pg of VEGF per mg of total protein (Figure 6-5). A pattern of 

upregulation was observed in IL-6 (A) under every condition in MSCs from the 

three sources after cytokine-mediated licensing, while the effect mediated by 

cytokine licensing on VEGF (B) depends on condition and tissue of origin. Fold 

changes of IL-6 and VEGF secretion upon cytokine-mediated licensing of MSCs 

are specified in Table 6-6.  

MSCs isolated from the three tissues produced very little IL-6 under resting 

conditions but Ad MSCs secreted the highest levels of IL-6 (BM = 0.09 pg/ mg; Is = 

0.23 pg/ mg; Ad = 0.60 pg/ mg). Cytokine-mediated licensing produced an 
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upregulation of the secretion in all the conditions tested in MSCs of the three 

tissue sources. After 72 hours of stimulation (Condition 1), IL-6 secretion was 

upregulated in MSCs from the three tissues but was only statistically significant 

in Is and Ad MSCs. However, 24 hours of stimulation (Condition 2) produced a 

statistically significant upregulation of IL-6 secretion in MSCs from the three 

sources, with the three sources secreting close to 2 pg of IL-6 per mg of total 

protein. A second cytokine-mediated stimulation 48 hours after the first one 

(Condition 3) led to the same level of secretion of IL-6 as Condition 1 in MSCs 

from the three sources. The lower limit of quantification for IL-6 in the Mouse 

Magnetic Luminex Assay was 29.55 pg/mL and all the analysed samples were 

above this value.  

MSCs isolated from the three tissues produced very little VEGF under resting 

conditions but Ad MSCs secreted the highest levels of VEGF (BM = 0.07 pg/ mg; Is 

= 0.19 pg/ mg; Ad = 0.11 pg/ mg). 72 hours of stimulation with the cytokine 

cocktail (Condition 1) led to no effect in VEGF secretion by MSCs from the three 

sources. However, 24 hours of stimulation (Condition 2) produced a statistically 

non-significant upregulation of VEGF secretion by BM MSCs and no effect in Is 

and Ad MSCs. A second cytokine-mediated stimulation 48 hours after the first 

one (Condition 3) led to a statistically non-significant upregulation of VEGF 

secretion by BM MSCs, to a statistically significant downregulation in Is MSCs and 

to no effect in the secretion of VEGF by Ad MSCs. The lower limit of 

quantification for VEGF in the Mouse Magnetic Luminex Assay was 4.2 pg/mL and 

all the analysed samples were above this value. 
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Figure 6-5. Cytokine-mediated stimulation, repetitive stimulus and MSC tissue origin 
impacts IL-6 and VEGF secretion in MSCs.  
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 

reached 80% confluence, cells were stimulated with a cocktail of cytokines (40 ng/ mL of IFN-ϒ, 

TNF-α and IL-1β). Unstimulated cells were left growing in MSC culture medium as a control. Three 
different licensing conditions were tested. In the first one, cells were stimulated for 48 hours, after 
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which cells were washed twice with PBS and fresh culture medium was added; cells were 
harvested 24 hours later. In the second condition, cells were washed twice with PBS, the culture 
medium was replaced with fresh one and the cells were left growing for 48 hours. Cells were then 
washed twice with PBS, the culture medium was replaced with supplemented one and the cells 
were harvested 24 hours later. In the last condition, cells were stimulated for 48 hours, after which 
cells were washed twice with PBS and were stimulated again for another 24 hours. Figure 6-4 
illustrates the time points at which supplemented medium was added. Luminex was performed to 
evaluate protein secretion in BM, Is and Ad MSCs under homeostatic and inflammatory conditions. 
Each bar represents an n of 3 independent experiments and is graphed as mean ± SEM. Data are 
normalised total amount of protein in medium and expressed as picograms of protein of interest per 
mg of total protein. Appropriate statistical analysis was performed and includes Students paired T 
test between one MSC tissue source (Resting vs Inflammatory Conditions) and One Way ANOVA 
with Tukey’s multiple comparisons post-test to compare all MSC sources. Statistically significant 
differences are marked with the appropriate number of asterisks. p = 0.05 was considered the limit 
for statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

Table 6-6. Fold change in IL-6 and VEGF secretion of cytokine-mediated licensed BM, Is and 
Ad MSCs compared to unstimulated cells from the same source.  
Following the experimental set up explained in Figure 6-5, fold change in IL-6 and VEGF protein 
levels is represented as mean of fold change ± standard deviation. Statistically significant 
differences are marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is 
represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Protein Condition  BM MSCs Is MSCs Ad MSCs 

IL-6 

1 15.35 ± 15.43 9.04 ± 0.77 2.93 ± 0.68 

2 54.67 ± 57.57 8.59 ± 0.26 2.99 ± 0.49 

3 51.14 ± 55.55 8.54 ± 1.18 2.91 ± 0.25 

VEGF 

1 1.00 ± 0.15 0.65 ± 0.06 1.33 ± 0.28 

2 1.90 ± 0.60 1.12 ± 0.07 1.20 ± 0.35 

3 0.31 ± 0.16 0.77 ± 0.08 1.28 ± 0.04 

 

 
 

6.5 Discussion and conclusions  

It is largely assumed that MSCs elicit their immunomodulatory effects via the 

inhibition of lymphocyte activation and proliferation and the secretion of pro-

inflammatory cytokines, while at the same time, promoting a regulatory 

phenotype. Several molecules, including IL-6, IL-10, TGF-β, TSG-6, iNOS, COX2, 

HGF, MMP9 and GMCSF have been described to be important for their efficacy in 

the clinic but there is controversy in the literature and the immunomodulatory 

mechanism of MSCs remains unknown. For this reason, the aim of this chapter 

was to gain an understanding of the anti-inflammatory and immunomodulatory 

mechanisms of MSCs by studying the expression of TLRs, the complement system 

and several genes described in the literature to have essential roles. Transcript 

levels 24 hours after cytokine–mediated stimulation are summarised in Figure 

6-6.  



281 
 

 



282 
 
Figure 6-6. Heat map representing the transcriptional expression of TLRs, the complement 
system and several immunomodulatory and anti-inflammatory genes by MSCs from 
different sources under resting and inflammatory conditions.  
Data from Figure 6-1, Figure 6-2 and Figure 6-3 are combined and presented as a heat map to 
illustrate the transcriptional profile of TLRs, the complement system and several 
immunomodulatory and anti-inflammatory genes by MSCs maintained under resting and 
inflammatory conditions. The heat map summarises each tissue source of MSC highest and lowest 
transcribed genes under resting conditions and inflammatory stimulation. Genes with low 2(-ΔCT) 
values are highlighted in blue, genes with intermediate 2(-ΔCT) values are highlighted in grey and 
genes with high 2(-ΔCT) values are highlighted in yellow. 

 

Priming by inflammatory cytokines has been described to be essential for MSC-

mediated immunosuppression (Ren et al., 2009), but to my knowledge, there are 

no studies comparing different inflammatory agents and their potential to 

increase the clinical efficacy of MSCs. The establishment of standardised MSC 

isolation and culture protocols (Chapter 3) enables an objective comparison of 

the transcriptional and protein profile of BM, Is and Ad MSCs. For this reason, in 

this study we decided to examine the potential of different immunostimulants, 

cytokines and TLR 2, TLR3 and TLR4 agonists, to prime MSCs and increase their 

immunomodulatory functions. However, the use of these inflammatory agents, 

as well as the different conditions in which MSCs were stimulated with the same 

inflammatory agent, did not show any trend of up or down regulation of genes 

that could suggest a better inflammatory agent for MSC licensing. For these 

reasons, instead of discussing the results per condition, we have decided to 

discuss the results by gene of interest, focusing on the results obtained 

harvesting the cells 24 hours after licensing with 40 ng/ml of TNF-α, IL-1β and 

IFN-ϒ (Condition 2). In this manner, it is possible to compare the expression of 

all the genes analysed in this study in Section 6.2, which is summarised in Figure 

6-6. More importantly, careful analysis of the transcript data enabled the 

identification of genes of interest to be targeted for protein assays; the 

secretion of IL-6 and VEGF by BM, Is and Ad MSCs under resting and inflammatory 

conditions is summarised in Figure 6-7. 
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Figure 6-7. Heat map representing the secretion of IL-6 and VEGF by MSCs from different 
sources under homeostatic and inflammatory conditions.  

Data from Figure 6-5 are combined and presented as a heat map to illustrate the IL-6 and VEGF 
secretion profile of MSCs maintained under homeostatic and inflammatory conditions. The heat 
maps summarise each tissue source of MSC highest and lowest transcribed genes under 
homeostatic conditions and inflammatory stimulation. Proteins with low secretion are highlighted in 
blue, proteins with intermediate secretion are highlighted in grey and proteins with high secretion 
are highlighted in yellow. 

 

After analysis and comparison of the transcript and protein data described in this 

thesis with other studies in the literature, this discussion will focus on 5 genes, 

IL-6, IL-10, TGF-β, VEGF, and iNOS, and the clinical implications of the 

expression and regulation upon inflammatory stimulus of these molecules will be 

examined.  

Interleukin 6 (IL-6) is a cytokine with pleiotropic effects on inflammation and 

immune response as well as regenerative processes and haematopoiesis. 

Different names, including B-cell stimulatory factor 2 and hepatocyte-

stimulating factor, were provided to this soluble factor based on all these 

distinct biological roles and it was not until the molecular cloning of these 

molecules that it was determined they were all the same and subsequently 

renamed IL-6 (Kishimoto, 1989, Tanaka et al., 2014). IL-6 is secreted after 

inflammation by most nucleated cells, including monocytes and macrophages, 

endothelial cells, T cells, B cells, granulocytes and osteoclasts among others and 

is involved in host defence through induction of acute phase responses, 
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haematopoiesis and immune reactions (Tanaka et al., 2014). IL-6 exerts its 

functions by targeting hepatocytes, leukocytes, T cells, B cells and 

haematopoietic cells (Akdis et al., 2011). Circulating IL-6 levels are upregulated 

in several chronic inflammatory disorders including rheumatoid arthritis, 

psoriasis, systemic lupus erythematosus and Crohn's disease (Gabay, 2006). BM, 

Is and Ad MSCs transcribed (Figure 6-3, C) and secreted (Figure 6-5, A) moderate 

levels of IL-6 under resting conditions. These transcript and protein levels were 

significantly upregulated after inflammatory stimulation by MSCs isolated from 

all tissue sources. BM MSCs secreted the most IL-6 after cytokine-mediated 

inflammatory stimulation. Secretion of IL-6 by human BM and Ad MSCs has 

previously been reported (Ivanova-Todorova et al., 2012, Mi and Gong, 2017), 

but to my knowledge differences in IL-6 transcription and secretion by mouse 

BM, Is and Ad MSCs has not been documented.  

It is difficult to determine whether the secretion of IL-6 by MSCs would be 

beneficial or detrimental in a clinical environment. IL-6 promotes the 

differentiation of monocytes into macrophages instead of DCs by inducing the 

expression of colony stimulating factor receptors (Chomarat et al., 2000) and at 

the same time, IL-6 modulates the DCs towards an immunosuppressive 

phenotype (Pasare and Medzhitov, 2003). IL-6 upregulates the secretion of CCL2, 

CCL4, CCL5, CCL11, CCL17 promoting the recruitment of monocytes, 

macrophages, CD4+ T cells, CD8+ T cells, NK cells and DCs, while downregulating 

the secretion of CXCL1 and CXCL8, thereby supressing neutrophil infiltration 

(McLoughlin et al., 2004, Akdis et al., 2011). IL-6 promotes anti-inflammatory 

Th2 cell differentiation (Diehl et al., 2002) and increases IL-27 secretion by 

monocytes and macrophages promoting the maturation of regulatory T cells 

(Pyle et al., 2017).  

However, IL-6 has also been described to inhibit TGF-β-induced Treg 

differentiation and to promote the differentiation of the pro-inflammatory Th17 

cells from naïve T cells, disrupting immunological tolerance and leading to 

autoimmune and chronic inflammatory diseases (Bettelli et al., 2006, Tanaka et 

al., 2014). IL-6 promotes the differentiation of CD8+ T cells into cytotoxic T cells 

(Okada et al., 1988) and induces the differentiation of activated B cells into 

antibody producing plasma cells (Okada et al., 1988, Kishimoto, 1989).  
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Within a transplant setting, IL-6 has been shown to mediate allograft rejection 

as blockage of the IL-6 axis prolonged graft survival in a mouse model of cardiac 

allograft rejection (Zhao et al., 2012). Despite its inflammatory effects, IL-6 is 

required for MSC proliferation and ‘stemness’ maintenance as it suppresses 

differentiation of MSCs, which results in loss of immune privilege and rejection 

(Pricola et al., 2009, Li et al., 2013). More importantly, IL-6 also induces the 

secretion of VEGF, enhancing angiogenesis, which is essential for the repair and 

regenerative processes required for effective engraftment after transplantation 

(Mathe et al., 2006). Taking all this into account, IL-6 secretion by MSCs would 

most likely be beneficial within a clinical setting and as BM MSCs secreted the 

most IL-6 under inflammatory conditions, BM MSCs could be a better choice than 

Is and Ad MSC to be used as cellular therapeutics.  

Interleukin 10 (IL-10), also known as cytokine synthesis inhibitory factor, is an 

anti-inflammatory cytokine involved in Th1 cell, NK cell and macrophage 

inhibition to avoid tissue damage after acute inflammation. IL-10 was first 

described to be produced by Th2 cells, but it is also secreted by macrophages, 

DCs, B cells and subsets of regulatory T cells (Li et al., 1999, Kamanaka et al., 

2006, Fiorentino et al., 1989). IL-10 inhibits the expression of MHC Class II and 

co-stimulatory molecules as well as secretion of pro-inflammatory cytokines and 

chemokines by macrophages and in this manner, it supresses T cells and NK cells 

(Couper et al., 2008). Due to its roles in resolving inflammation, IL-10 can also 

ameliorate autoimmune pathologies and its expression has been found altered in 

several autoimmune diseases including systemic lupus erythematosus and 

rheumatoid arthritis, where high levels of IL-10 correlate with low disease 

activity (Moore et al., 2001). BM, Is and Ad MSCs transcribed (Figure 6-3, D) very 

low levels of IL-10 under resting conditions and cytokine-mediated stimulation 

downregulated IL-10 transcript levels in MSCs isolated from all tissue sources. Ad 

MSCs transcribed the most IL-10 under resting and inflammatory conditions.  

Secretion of IL-10 by murine MSCs has already been described and it attenuated 

acute liver failure in a D–galactosamine–mediated acute liver failure mouse 

model. However, IL-10 secretion levels by MSCs need to be very high as infusion 

of MSCs alone into mouse and rat models of inflammatory rheumatoid arthritis 

produced no effect, while injection of IL-10 transduced MSCs significantly 
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decreased the severity of arthritis in a mouse model of antigen-induced arthritis 

(Hughes et al., 2014, Peruzzaro et al., 2019). IL-10 secretion may be highly 

beneficial in any clinical setting to dampen inflammation; thus, we could 

hypothesise that Ad MSCs could have an increased therapeutic potential 

compared to BM and Is MSCs. However, due to the very low transcript levels, IL-

10 secretion should be study as the increased transcript levels by Ad MSCs may 

not be biologically significant.  

The TGF-β family of growth factors is involved in development and homeostasis 

by tightly regulating cell proliferation, differentiation and apoptosis in most cell 

types including fibroblasts, immune cells and haematopoietic cells (Kubiczkova 

et al., 2012). The most relevant effect of TGF-β on target cells is based on its 

ability to suppress the expression and function of c-myc and cyclin-dependent 

kinases to suppress proliferation. For this reason, the TGF-β pathway, and 

sensitivity to this family of growth factors, is altered in a number of diseases 

including solid and haematopoietic tumours and psoriasis. Under these 

conditions, TGF-β switches from promoting an anti-proliferative response to 

induce proliferation, promoting tumour growth and keratinocyte 

hyperproliferation in psoriasis, thus, increasing the severity of the disease (Han 

et al., 2010, Kubiczkova et al., 2012).  

BM and Ad MSCs transcribed (Figure 6-3, G) high levels of TGF-β, while Is MSCs 

transcribed low levels of TGF-β under resting conditions. Cytokine-mediated 

stimulation upregulated TGF-β transcript levels in BM and Ad MSCs, while it led 

to a downregulation in Is MSCs. BM MSCs transcribed the highest TGF-β transcript 

levels under resting conditions, however, cytokine-mediated stimulation resulted 

in Ad MSCs transcribing the highest levels of TGF-β. Human MSCs isolated from 

the bone marrow, adipose tissue, Wharton’s jelly and placenta have already 

been described to produce and secrete TGF-β (Ryan et al., 2007, Carrillo-Galvez 

et al., 2015, Tomic et al., 2011, Zhou et al., 2011, Heo et al., 2016).  

TGF-β treatment of MSCs has been widely described to alter their in vitro and in 

vivo behaviour (Ghosh et al., 2017); however, TGF-β secreted by MSCs also plays 

an important role in the context of tissue regeneration and modulation of the 

immune responses. TGF-β is well known to inhibit T cell responses and its 

secretion by MSCs has been demonstrated to be partially involved in MSC-
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mediated T cell inhibition in vitro (Nasef et al., 2007, Gao et al., 2016). 

Moreover, MSC-secreted TGF-β induces the proliferation of regulatory T cells as 

TGF-β deficient MSCs could not generate regulatory T cells in vitro (Wang et al., 

2017). MSC-derived TGF-β promotes Th2 phenotypes while inhibiting Th17 

responses in vitro (Kong et al., 2009). To further confirm this role, infusion of 

engineered TGF-β overexpressing BM MSCs increased Th2 response in a model of 

type 1 diabetes, which resulted in increased therapeutic potential compared to 

control BM MSCs (Daneshmandi et al., 2017).  

MSC-derived TGF-β not only modulates T cells, but also macrophages as it 

promotes anti-inflammatory phenotypes. As an example, Song et al. 

demonstrated that infusion of MSCs into an experimental asthma model 

alleviated the symptoms by promoting the polarization of M2 macrophages in the 

lungs and it was TGF-β-mediated, as inhibition of TGF-β signalling abolished the 

therapeutic effect of infused MSCs (Song et al., 2015). Altogether, TGF-β 

secretion would be highly beneficial in any clinical setting to dampen 

inflammation; thus, according to the increased transcript levels by Ad MScs 

under inflammatory conditions we could again hypothesise that Ad MSCs could 

have an increased therapeutic potential compared to BM and Is MSCs. However, 

protein secretion would have to be assessed to further confirm this hypothesis.  

Vascular endothelial growth factor (VEGF), also known as vascular permeability 

factor (VPF), is secreted by most cell types including macrophages, platelets and 

keratinocytes, but usually not by endothelial cells themselves (Maharaj and 

D'Amore, 2007). VEGF was originally described to promote endothelial cell 

permeability, proliferation and angiogenesis however, its roles are not only 

associated with the vascular system but also with the formation of bone (Gerber 

et al., 1999), haematopoiesis (Ferrara et al., 1996), wound healing (Chintalgattu 

et al., 2003) and development (Reichardt and Tomaselli, 1991). However, 

upregulation of VEGF is also involved in the development of inflammatory 

diseases as rheumatoid arthritis (Lee et al., 2001), psoriasis (Detmar et al., 

1994), atherosclerosis (Zhao and Zhang, 2018) and cancer (Carmeliet, 2005).  

BM, Is and Ad MSCs transcribed high levels of VEGFa (Figure 6-3, H) and VEGFd 

(K) while they had low VEGFb (I) and VEGFc (J) transcript levels under resting 

conditions. MSCs from the three sources were secreting close to 0.1 pg of VEGF 
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per mg of total protein (Figure 6-5, B) and despite the downregulation of VEGF 

transcript levels after stimulatory licensing, 24 hour cytokine licensing led to the 

upregulation of VEGF secretion by MSCs from all sources. Is MSCs secreted the 

most VEGF under resting and stimulatory conditions. Secretion of VEGF by 

murine BM and human BM and Ad MSCs has previously been reported (Ge et al., 

2018, Lu et al., 2018, Kagiwada et al., 2008), but to my knowledge differences 

in VEGF transcription and secretion by murine BM, Is and Ad MSCs has not been 

documented.  

Secretion of VEGF by MSCs is most likely beneficial within a clinical setting due 

to its role in angiogenesis. VEGF is a key mediator of angiogenesis in cancer 

enabling development and growth of the tumour; for this reason, anti-VEGF is 

used to reduce the production of tumour vasculature and reduce the growth and 

progression potential. However, this leads to hypertension, proteinuria, 

impaired wound healing, haemorrhage and thrombosis, endocrine dysfunction 

and cardiac impairment, which shows how essential VEGF is for maintaining 

homeostasis (Kamba and McDonald, 2007).  

Liver transplantation is commonly followed by hepatic ischemia/ reperfusion 

injury, which is treated with endothelial precursor cell transplantation. 

Administration of exogenous VEGF prior to endothelial precursor cell 

transplantation significantly reduced liver transaminase levels, hepatocellular 

injury levels and hepatic apoptosis levels significantly decreasing hepatic 

ischemia/ reperfusion injury and increasing graft survival (Cao et al., 2017).  

Transfection of VEGF gene into bone MSCs led to a better therapeutic outcome 

on endometrial regeneration and endometrial receptivity compared to MSC-only 

controls in a thin endometrium rat model (Jing et al., 2018). Moreover, 

transplantation of VEGF-overexpressing BM MSCs promoted the 

neovascularization and decreased senile plaques in hippocampal specific layers 

in a murine model of Alzheimer’s disease (Garcia et al., 2014). VEGF has been 

described to promote the therapeutic efficacy of MSC derived extracellular 

vesicles against neonatal hyperoxic lung injury (Ahn et al., 2018). VEGF secreted 

by MSCs has been described to improve myocardial survival and to improve the 

engraftment of infused MSCs within infarcted hearts (Tang et al., 2011); 

moreover, VEGF is also involved in decreasing cardiac apoptosis in a rat model of 
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myocardial infarction (Song et al., 2017). For these reasons, we consider that 

expression of VEGF by MSCs could be therapeutically beneficial within a clinical 

setting and as Is MSCs secreted the most VEGF, infusion of MSCs isolated from 

the islets could have a better clinical outcome in transplantation than infusion of 

BM and Ad MSCs.  

iNOS is an inducible nitric oxide synthase expressed by macrophages, T cells and 

DCs that upon inflammatory activation produces large quantities of nitric oxide, 

an important pro-inflammatory cytotoxic agent involved in immunity. However, 

iNOS is also involved in the regulation of differentiation and function of immune 

cells and therefore, iNOS has an important immunomodulatory role. iNOS inhibits 

the production of IL-12 in DCs and macrophages and in this manner, it inhibits 

differentiation towards Th1 phenotype (Xiong et al., 2004). Moreover, iNOS 

expression by T cells also inhibits Th17 differentiation and pro-inflammatory 

phenotypes in macrophages and DCs as iNOS knock out mice exhibit increased 

Th17 subsets and pro-inflammatory macrophages and DCs (Xue et al., 2018). Due 

to its immunomodulatory role, iNOS has been described to be deregulated in 

several disease models including hepatocellular carcinoma and Parkinson’s 

disease (Calvisi et al., 2008, Koppula et al., 2012).  

BM, Is and Ad MSCs transcribed (Figure 6-3, N) low levels of iNOS under resting 

conditions and cytokine-mediated stimulation upregulated iNOS transcript levels 

in MSCs isolated from all tissue sources. Under resting conditions, BM MSCs 

transcribed higher iNOS transcript levels than Is and Ad MSCs, while Is MSCs 

transcribed the highest iNOS transcript levels after cytokine-mediated 

stimulation.  

MSC-mediated iNOS expression and secretion could be beneficial within a clinical 

setting due to its role suppressing allogeneic effector T cells as well as 

promoting the expansion of CD4+ Foxp3+ regulatory T cells (Conde et al., 2015, 

Riquelme et al., 2013). In fact, in a model of systemic sclerosis induced by 

hypochlorite in mice, MSCs isolated from iNOS knocked out mice were unable to 

exert the anti-fibrotic properties exerted by WT MSCs, and thus, did not promote 

a reduction of skin thickness and collagen deposition as compared to MSCs 

isolated from WT mice (Maria et al., 2018). Furthermore, MSCs isolated from 

iNOS KO mice were unable to suppress T cell proliferation in vitro and their co-
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administration with ovalbumin in ovalbumin-immunised mice enhanced the 

immune response compared to WT MSCs (Ren et al., 2008). It is important to 

bear in mind that there are more mechanisms involved in MSC-mediated 

immunosuppression as blocking of IDO, the human equivalent to iNOS in mouse, 

was only able to partially inhibit the immunosuppressive functions of amnion 

MSCs (Meesuk et al., 2016). However, expression of iNOS could be highly 

beneficial within a clinical setting. Is MSCs transcribed the highest levels of iNOS 

transcript levels under inflammatory conditions, however, iNOS secretion and its 

T cell proliferation potential would have to be assessed to allow us to conclude 

that Is MSCs could be a better source for MSC isolation to use as cellular 

immunomodulatory therapeutics.  

To summarise and conclude, this chapter aimed to determine if murine MSCs 

isolated from different tissues had a specific pattern of TLRs, complement 

system and other immunoregulatory molecule expression at a transcriptional, 

and most importantly, protein level.  

BM, Is and Ad MSCs all had very low transcript levels of TLRs under resting and 

stimulatory conditions, which suggests that they are not key regulators of MSC 

function. Regarding the complement system, these molecules were transcribed 

at low levels and no differences where observed except for CFH, C1Qc and 

C5AR1. BM MSCs expressed the highest CFH transcript levels while C1Qc and 

C5AR1 transcript levels were higher in Is MSCs under resting conditions. 24-hour 

cytokine-mediated licensing led to the downregulation of these transcripts in 

MSCs from every source.  

Among the immunomodulatory molecules studied, only IL-6 and VEGF were 

transcribed at high levels and were affected by MSC licensing. Under resting 

conditions Ad MSCs secreted the most IL-6 but 24-hour cytokine-mediated 

licensing led to high levels of IL-6 secretion by BM, Is and Ad MSCs. Under resting 

conditions Is MSCs secreted the most VEGF but 24-hour cytokine-mediated 

licensing led to a higher secretion by Is MSCs. This chapter showed differential 

immunoregulatory and angiogenic potential of MSCs depending on their tissue 

origin and suggests that MSCs isolated from various tissues may act differently in 

vivo. For this reason, to have a better understanding of the behaviour of MSCs 

from different sources in vivo, co-transplantation of MSCs to evaluate the fate of 
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the graft would be essential. Moreover, knocking out IL-6 and VEGF would help 

to understand the role of these molecules in a clinical setting. 
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7 General Discussion  

7.1 Introduction 

MSCs have the ability to self-renew and differentiate, have low levels of MHC 

Class I expression and lack the expression of MHC Class II and co-stimulatory 

molecules, which has raised the biologic and clinic interest in MSCs. BM MSCs 

were the first MSCs to be isolated and are therefore the most researched and 

clinically used source of MSCs. However, their isolation involves an invasive and 

painful procedure. As MSCs can be isolated from a large variety of tissues, 

alternative sources which are more easily accessible could be more suitable for 

clinical use. Adipose tissue, umbilical cord and islets of Langerhans are easily 

accessible, they are clinical waste so there is no burden on the donor and MSCs 

have an increased frequency in these sources. As an example, adipose tissue 

yields a 500-fold higher frequency of colony forming units (CFU-F) than bone 

marrow and can be obtained easily (Fraser et al., 2006); MSCs from the umbilical 

cord could also be a good choice as they are very abundant and they are 

ontogenically primitive (Choudhery et al., 2013). Different isolation, enrichment 

and culture protocols, as well as the intrinsic variability among MSCs derived 

from different donors/ tissues has led to contradictory results in the literature 

regarding their immunomodulatory and regenerative potential. In addition, MSCs 

are often infused within an inflammatory environment, which makes it essential 

to study their properties both under resting and inflammatory conditions. As a 

result of inflammatory stimulation, MSCs increase MHC Class I and MHC Class II 

expression, leading to both cell-mediated and humoral immune responses when 

human MSCs are infused in murine models, which confounds interpretation of 

results (Eliopoulos et al., 2005, Joswig et al., 2017, Thirlwell, 2018).  

Thus, considering the limitations of studies carried out with human MSCs, the 

aim of this study was to isolate, study and compare, through a stringent set of 

standardised techniques, the potential in vivo function of murine BM, Is and Ad 

MSCs under resting and inflammatory conditions. This would provide insight into 

the role of tissue source in the therapeutic potential of MSCs and would 

potentially allow the identification of a preferred tissue source for MSC isolation 

for use within the clinic, with a particular focus on the co-transplantation of 

MSCs with islets of Langerhans to treat individuals with type 1 diabetes mellitus 
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(T1DM), which is a major area of study in the SNBTS group. To address this, four 

key questions were considered: 

o Are cells isolated from murine bone marrow, islets of Langerhans 

and adipose tissue true MSCs? Do they have the same phenotype? 

o What is the migratory potential of murine MSCs when infused into a 

mouse? Does the tissue origin of MSCs impact this?  

o Are MSCs able to recruit immune cells? Does MSC microenvironment 

(stimulation) impact the recruitment capability of MSCs? Does 

tissue source of origin affect MSCs recruitment potential? 

o How do MSCs interact and immunomodulate surrounding tissues? 

Does MSC microenvironment (stimulation) and tissue origin 

influence their behaviour? 

Chapter 3 of this thesis focused on question number one and studied whether 

cells isolated from the bone marrow, islets of Langerhans and adipose tissue 

satisfied the minimum criteria outlined by the International Society of Cellular 

Therapy (ISCT) for human MSCs (Dominici et al., 2006). Although adherence and 

trilineage differentiation are characteristics of murine MSCs, the surface marker 

phenotype is not so well characterised, and variations might apply. The ability to 

adhere to plastic and the phenotypic properties of these cells was assessed 

throughout passage. As required by the ISCT, the surface molecule expression, 

size and granularity of the cells was studied under resting and stimulatory 

conditions. Moreover, trilineage differentiation potential into adipocytes, 

chondrocytes and osteocytes was assessed in cells isolated from the three 

tissues.  

Chapter 4 addressed question number two. Transcript levels of chemokine 

receptors expressed by MSCs were assessed under resting and inflammatory 

conditions to understand if MSCs possessed migratory capacity and if MSC tissue 

origin could affect their migratory potential. 
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Chapters 4 and 5 addressed question number three. An extensive assessment of 

the chemokine ligands expressed by MSCs at a transcript level under resting and 

inflammatory conditions highlighted genes of interest to be assessed at a protein 

level (Chapter 4). Chemokine secretion by MSCs was examined to predict the 

leukocyte recruitment potential of MSCs under resting and inflammatory 

conditions. After showing that MSCs transcribed and secreted a distinct set of 

chemokines under homeostatic and inflammatory conditions, chemokine function 

was studied in vivo (Chapter 5) by assessing the immune cell attraction profile of 

MSCs. 

Chapter 6 answered question number four. An extensive assessment of toll like 

receptors, complement system and anti-inflammatory and immunomodulatory 

genes expressed by MSCs at transcript level, under resting and inflammatory 

conditions, highlighted genes of interest to be assessed at the protein level. This 

knowledge provided a better understanding into how MSCs might interact with 

and immunomodulate the immune cells they recruit. The following section will 

discuss these findings and their relevance within specific areas of clinical 

relevance. 

 

7.2 The tissue origin of MSCs could impact their 
performance within the clinic  

Cells isolated from bone marrow, islets of Langerhans and adipose tissue were 

plastic adherent, expressed high levels of the widely used CD90, CD105 and CD73 

MSC markers and had trilineage differentiation potential. In contrast to human 

MSCs, cells isolated from the bone marrow and islets of Langerhans were CD45+ 

CD11b+ and, for this reason, did not meet ISCT criteria.  ISCT criteria were 

established for the identification of human MSCs and although adherence and 

trilineage differentiation potential are characteristics of murine MSCs, the 

surface marker phenotype of murine MSCs is not so well characterised. In fact, 

induction of CD45 expression on murine BM MSCs has already been described 

(Yeh et al., 2006). The lack of CD64 expression rules out a myeloid origin of 

these cells, while CD146 positive expression enables to discriminate MSCs from 

fibroblasts. Under resting conditions, MSCs from the three tissues were 
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expressing very low levels of MHC Class I and II molecules, which is essential to 

avoid recognition by the recipient’s immune system and subsequent rejection. 

Inflammatory conditions upregulated the expression of MHC Class I, which avoids 

recognition and cytotoxic activity by NK cells. Thus, based on plastic adherence, 

trilineage differentiation potential and CD90, CD105 and CD73 expression, we 

determined that cells isolated from the bone marrow, islets of Langerhans and 

adipose tissue were MSCs regardless of CD45 and CD11b expression. Moreover, 

specific criteria to enable the identification of murine MSCs should be 

established. 

MSCs are often infused within an inflammatory environment and their clinical 

performance is often monitored by the resolution of symptoms, or in the case of 

transplantation, the promotion of graft survival (Ankrum et al., 2014, English 

and Wood, 2013). The efficacy of MSCs within the clinic depends on several 

factors including the ability of MSCs to migrate into target tissues and the 

potential of MSCs to interact and immunomodulate the surrounding tissues and 

immune cells (Kean et al., 2013). One of the most critical aspects of MSC use as 

cellular therapeutics is related to MSC homing and engraftment within the target 

tissue following their administration. MSCs can be infused systemically, where 

MSCs are administered intra-venously or intra-arterially and the cells must exit 

the circulation and migrate to the site of injury, or can be administered locally 

at the target tissue and are then guided to the site of injury (Nitzsche et al., 

2017). After systemic administration, the majority of the cells are found in the 

lungs and only a small percentage of the cells home to, and remain in, the 

target tissue.  

The size of the cells could be an essential factor involved in lung trapping. For 

this reason, the size of MSCs was compared among tissue sources (Figure 3-17). 

Murine BM MSCs are smaller than Is and Ad MSCs, which suggests that they could 

be a better source of MSC if being delivered intravenously as their smaller size 

may prevent lung entrapment. However, in humans, size of MSCs does not vary 

significantly between tissue sources and thus, it is not valid interpretation for 

human therapy (Thirlwell, 2018). MSCs are well described for their anti-

inflammatory and immunomodulatory properties. Many of these molecules are 

stored in granules; BM MSC are more granular than Is and Ad MSCs, suggesting 
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more extensive storage of clinically beneficial molecules (Figure 3-17). These 

data correlate with human MSCs, as BM MSCs have previously been described to 

be more granular than Is and Ad MSCs under both resting and inflammatory 

conditions (Thirlwell, 2018).  

Specific chemokines have been shown to target immune cells to specific tissues. 

For example, CCR7 targets MSCs to secondary lymphoid organs (Li et al., 2014, 

Ma et al., 2016), CXCR3-deficient MSCs fail to infiltrate into the nephritic kidney 

(Lee et al., 2018) and CXCR4 receptor overexpression in MSCs improves 

treatment of acute lung injury (Yang et al., 2015). Moreover, the expression of 

CCR1 in macrophages and neutrophils leads to kidney infiltration in renal 

ischemia-reperfusion injury (Furuichi et al., 2008); CCR5 directs CD8+ T cells 

towards the brain (Martin-Blondel et al., 2016); CCR3, CCR4 and CCR10 are 

highly expressed by T cells in skin (Fujimoto et al., 2008, Ma et al., 2002); 

CXCR3 mediates T cell recruitment into the kidney (Panzer et al., 2007); and 

CXCR6 is highly expressed by liver-infiltrating CD8+ T cells (Sato et al., 2005b). 

Therefore, we hypothesise that the expression of these chemokines could 

potentially target MSCs into those tissues. BM MSCs transcribed significantly 

higher levels of CCR7, CXCR6 and ACKR4; Is MSCs transcribed significantly higher 

levels of CCR1, CCR10 and CXCR3, while Ad MSCs transcribed significantly higher 

levels of CCR3 (Figure 4-10). Therefore, we hypothesise that CCR7 and CXCR6 

expression would direct BM MSCs towards lymphoid organs such as the spleen, 

the lymph nodes and the liver and thus, BM MSCs would be ideal candidates for 

dampening inflammation in the liver after transplantation. Is MSCs have an 

enhanced potential to migrate towards the kidneys due to their CCR1 and CXCR3 

expression; thus, islets of Langerhans would be the best tissue source for MSC 

isolation when used as cell therapeutics to dampen inflammation within the 

kidneys. Lastly, Ad MSCs transcribed statistically significantly more CCR3 than Is 

and BM MSCs and therefore, they have a greater potential to migrate to the skin 

and to be more beneficial dampening and regulating excessive inflammation in 

psoriasis and other skin conditions. In contrast, due to the increased 

transcription of CXCR4 by Ad MSCs, if infused systemically Ad MSCs are more 

likely to remain in the lungs or to migrate towards the bone marrow. However, 

Ad MSCs transcribed the lowest levels of chemokines receptors apart from 

CXCR4, which suggests that if infused at the target tissue they are more likely to 
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remain in place. These hypotheses have been formulated from transcript 

analysis data in murine MSCs. Thus, experiments on chemokine receptor 

expression and functionality and a critical comparison with the expression of 

chemokine receptors on human MSCs would be essential to translate these 

results into human therapy. Based on chemokine receptor expression at 

transcript level, the tissue of choice to isolate MSCs to enhance migration and 

retention towards specific anatomical location is represented in Figure 7-1. 

 

Figure 7-1. Overview of chemokine receptor expression by MSCs at transcript level under 
resting and inflammatory conditions. 
Chemokine receptor expression by BM, Is and Ad MSCs were compared to each other in resting 
and inflammatory conditions to understand which tissue source of MSC expressed the highest 
levels of chemokine receptors. Colour coding highlights tissue sources that transcribed receptors at 
the highest (yellow), medium (grey) and lowest (blue) levels. BM MSCs transcribed the highest 
levels of CCR7 and CXCR6, suggesting that bone marrow might be the preferred tissue to isolate 
MSCs to enhance migration towards the lymph nodes. Conversely, Is MSCs transcribed the 
highest levels of CCR1, CXCR3 and CCR5, suggesting that islets of Langerhans might be the 
desired source of MSCs to promote trafficking towards the kidneys and brain, respectively. Ad 
MSCs, on the contrary, transcribed the highest levels of CCR3 and CXCR4, suggesting that 
adipose tissue could be the preferred tissue for MSC isolation to enhance migration towards the 
skin and the lungs and BM, respectively. Transcriptional expression does not always correlate to 
protein expression and therefore, a rigorous testing of receptors at protein level is required. 
Transcript data shown here is summarised from Chapter 4, Figure 4-3 and Figure 4-4.  
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Through the assessment of chemokine ligand expression at transcript and protein 

level this study highlighted that MSCs isolated from different tissue sources were 

able to secrete pro-inflammatory, angiogenic and angiostatic chemokines that 

have the potential to recruit and interact with the surrounding cells. Under 

resting conditions, all MSCs regardless of tissue source of origin had a similar 

chemokine secretion profile, where CCL2 was the top chemokine secreted by all 

MSC populations (Figure 4-11). Furthermore, CCL2 is also the top chemokine 

secreted by human MSCs regardless of the tissue of origin, under resting 

conditions (Thirlwell, 2018). Despite the low secretion of chemokines, infusion 

of MSCs from the three sources into the air pouch did not lead to a recruitment 

of leukocytes above control levels (Figure 5-5).  

Inflammatory stimulation of MSCs led to the upregulation of transcription and 

secretion of chemokines in MSCs from the three sources (Figure 4-11). CCL2, 

CCL5, CXCL1 and CXCL10 were the most upregulated chemokines and secretion 

levels depended on tissue source of origin. Inflammatory stimulation with a 

cytokine cocktail also resulted in increased secretion of CCL2, CXCL1 and CXCL8, 

the equivalent of CXCL1 in mice, by human BM, Is and Ad MSCs (Thirlwell, 2018). 

Is MSCs secreted the highest levels of the chemokines studied except for CXCL12, 

which was secreted at higher levels by BM MSCs. CCL2, CCL5 and CXCL1 are 

strong chemoattractants, however, despite higher secretion by Is MSCs under 

inflammatory conditions, Ad MSCs were able to recruit significantly more 

leukocytes into the air pouches of mice than BM and Is MSCs. An overview of the 

chemokines that MSCs expressed at protein level and the subsequent in vivo 

immune cell recruitment by MSCs under resting and inflammatory conditions is 

provided in Figure 7-2. More importantly, Ad MSCs were the only MSCs able to 

support the recruitment of small numbers of T cells. Recipient cytotoxic cells 

are essential to initiate MSC-mediated immunosuppression in a murine model of 

GVHD as MSCs need to be targeted by cytotoxic T cells to undergo apoptosis, be 

engulfed by macrophages and produce IDO (Galleu et al., 2017). As Ad MSCs are 

the only MSCs able to support the recruitment of T cells we could hypothesise 

that they have a greater immunosuppressive potential than BM and Is MSCs 

(Figure 5-5).  
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Figure 7-2. Summary of the CC and CXC chemokines MSCs transcribed, secreted and the 
subsequent immune cell attraction under homeostatic and inflammatory conditions.  
Colour coding highlights tissue sources that secreted chemokines at the highest (yellow), medium 
(grey) and lowest (blue) levels. The immune cells that each chemokine could potentially attract are  
highlighted by colour coded lines that match specific immune cells. The same colour coding system 
was implemented (blue-grey-yellow) based on the number of immune cells MSCs attracted in vivo 
under resting and stimulatory conditions.  

 

Chemokines do not only have the potential to recruit leukocytes but also have 

angiogenic and angiostatic roles. CXCL1, CXCL2 and CXCL12 have angiogenic 

properties, while CXCL10 has angiostatic potential. Is MSCs have the highest 

secretion of these four chemokines and it is therefore difficult to predict the 

overall effect of the secretion of the four chemokines altogether. On the one 

hand, Is MSCs have the potential to promote angiogenesis the most, while they 

have the potential to inhibit it the most compared to BM and Ad MSCs. High 

secretion of angiogenic chemokines would be of importance in transplantation to 

promote graft re-vascularization. However, if MSCs were infused within a tumour 

environment, high secretion of angiogenic chemokines would be detrimental, 

while the secretion of CXCL10 would be beneficial to suppress tumour growth.  

Chemokines are not the only molecules secreted by MSCs with the potential to 

regulate angiogenesis. VEGF, hepatocyte growth factor (HGF) and matrix 

metalloproteinases (MMP) are well-known pro-angiogenic mediators involved in 

revascularisation (Cheng et al., 2007, Golocheikine et al., 2010, Olsson et al., 

2006). Moreover, IL-6 can increase VEGF expression and can therefore, promote 
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angiogenesis (Huang et al., 2004). In Chapter 6, the transcription of IL-6, VEGF, 

HGF and MMP9 (Figure 6-3), as well as the secretion of IL-6 and VEGF (Figure 

6-7) were studied.  

IL-6 transcription levels were similar in MSCs from the three sources under 

resting conditions; inflammatory conditions upregulated the transcription in 

MSCs from every source but BM MSCs upregulated IL-6 transcription the most. 

Despite similar levels of transcription under resting conditions, Ad MSCs secreted 

the most IL-6, while inflammatory stimulation led to similar levels of secretion 

by MSCs from the three sources. Therefore, MSCs from the three sources have 

the same potential for VEGF production and secretion.  

VEGFa, VEGFb, VEGFc and VEGFd were downregulated after inflammatory 

stimulation in MSCs from the three sources. Ad MSCs transcribed the most VEGFa 

and VEGFc, while BM MSCs had the highest transcript levels of VEGFb and VEGFd. 

However, transcript levels do not correlate with protein level in this case, as Is 

MSCs secreted the most VEGF under resting and stimulatory conditions and 24-

hour cytokine-mediated stimulation increased the secretion of VEGF in MSCs 

from the three sources. The increased secretion of VEGF suggests that Is MSCs 

would be the preferential tissue source of MSC to promote angiogenesis.  

Under resting conditions, BM MSCs transcribed the highest levels of HGF and the 

transcript levels decreased after inflammatory stimulation in the three sources 

of MSCs. MMP9 was transcribed at similar levels by MSCs from the three sources 

and inflammatory stimulation did not influence its transcription. Due to the 

increased secretion of CXCL1, CXCL2 and CXCL12 as well as VEGF, we 

hypothesise that Is MSCs could have greater re-vascularisation potential.  

More importantly, MSCs not only regulate angiogenesis but also immunomodulate 

their surroundings by inhibition of effector T cell proliferation as well as 

promoting a regulatory phenotype of leukocytes via the secretion of anti-

inflammatory and immunomodulatory molecules, including IL-10, TSG-6, TGF-β, 

IDO and CD274 (Choi et al., 2008, Li et al., 2019b, Niu et al., 2017, Davies et al., 

2017, Chinnadurai et al., 2018). IL-10, and TSG-6 secretion not only suppresses  T 

cell proliferation, but also secretion of IFN-γ and other pro-inflammatory 

cytokines (Deniz et al., 2008, Choi et al., 2008, Li et al., 2019b, Chinnadurai et 
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al., 2018). Moreover, MSCs secrete TGF-β, which upon interaction with 

glycoprotein A repetitions predominant (GARP) in regulatory T cells, activates 

Tregs, which is indispensable for effector T cells suppression (Niu et al., 2017). 

Similarly, iNOS, the murine equivalent of IDO is able to suppress allogeneic T 

cells as well as to promote the expansion of CD4+ Foxp3+ regulatory T cells, 

enabling in this way graft tolerance (Conde et al., 2015, Riquelme et al., 2013). 

CD274, also known as programmed death 1 ligand, is an important regulator of T 

cell activation and in addition to MSC-surface expression, MSCs are also able to 

secrete it to mediate immunosuppression in a contact-independent manner 

(Davies et al., 2017).  

In Chapter 6, the transcription of IL-10, TSG-6, TGF-β, iNOS and CD274 was 

assessed. IL-10, TSG-6 and TGF-β transcript levels were downregulated after 

inflammatory stimulation, while iNOS and CD274 transcript levels were 

upregulated. BM MSCs transcribed the most TSG-6, Is MSCs transcribed the most 

iNOS and Ad MSCs transcribed the most IL-10, TGF-β and CD274 (Figure 6-3). 

Among all these molecules, iNOS was transcribed at the highest levels and IDO is 

at least in part, involved in the suppressive effect of MSCs on cytotoxic cell 

proliferation, and thus, immunomodulation. For this reason, Is MSCs could have 

an increased immunosuppressive potential compared to BM and Ad MSCs.  

Complement factor H is a complement regulatory protein that regulates 

complement mediated cell destruction by disrupting C3b and suppressing, in this 

way, the formation of C3 convertases. MSCs have been shown to secrete CFH 

under resting conditions and this secretion has been documented to increase 

under inflammatory conditions, where human BM MSCs were secreting 

significantly higher amounts of CFH than Is and Ad MSCs (Thirlwell, 2018). In this 

study, we showed that BM MSCs transcribed statistically significantly more CFH 

than Is and Ad MSCs under resting and stimulatory conditions; however, 

inflammatory stimulation resulted in the downregulation of CFH transcript levels 

in MSCs from every source (Figure 6-2). Despite RNA levels not always correlating 

with protein levels, if we assume that transcription levels of CFH are 

proportionately maintained at the protein level, BM MSCs would be secreting the 

most CFH. Therefore, we could hypothesise that BM MSCs would have better 

therapeutic potential than Is and Ad MSCs due to their increased potential to 
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suppress complement system activation. A summary of the expression at 

transcript and protein level of angiogenic, angiostatic and anti-inflammatory 

molecules by BM, Is and Ad MSCs under resting and inflammatory conditions is 

provided in Figure 7-3.  

 

Figure 7-3. Summary of the angiogenic, angiostatic and anti-inflammatory molecules 
transcribed and secreted by MSCs under resting and inflammatory conditions.  
Colour coding highlights tissue sources that transcribed (left hand side) and secreted (right hand 
side) angiogenic, angiostatic and anti-inflammatory molecules at the highest (yellow), medium 
(grey) and lowest (blue) levels. 

 

To summarise, the answers to the questions outlined in the introduction of this 

chapter: 

1) Are cells isolated from murine bone marrow, islets of Langerhans and 

adipose tissue MSCs? Do they have the same phenotype? Cells isolated from 

the three sources are spindle-shaped plastic-adherent cells with trilineage 

potential. However, tissue origin affects size and granularity as well as CD45 

and CD11b expression. ISCT criteria were established for the identification of 

human MSCs and the surface marker phenotype of murine MSCs is not so well 

characterised. For this reason, based on plastic adherence, trilineage 
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differentiation potential and CD90, CD105 and CD73 expression, we 

determined that cells isolated from the bone marrow, islets of Langerhans 

and adipose tissue were MSCs and that specific criteria to enable the 

identification of murine MSCs should be established. More importantly, unlike 

BM and Ad MSCs, cells isolated from the islets of Langerhans undergo an 

epithelial to mesenchymal transition to give rise to MSCs and we hypothesise 

that these cells lose the CD45 and CD11b positive expression as a result of 

this transition.  

2) What is the migratory potential of murine MSCs when infused into a 

mouse? Does the tissue origin of MSCs impact this? MSCs from the three 

sources transcribed very low levels of chemokine receptors. However, based 

on these transcripts MSCs could migrate to the lymph nodes, kidneys, brain, 

skin and lungs. More importantly, the source of MSC isolation affects the 

transcription levels of chemokine receptors suggesting that particular tissue 

sources might increase the potential to get entrapped in the lungs or to 

migrate towards specific anatomical sites. 

3) Are MSCs able to recruit immune cells? Does MSC microenvironment 

(stimulation) impact the recruitment capability of MSCs? Does tissue 

source of origin affect MSCs recruitment potential? Under resting 

conditions, all MSCs, regardless of tissue source of origin, had a similar 

chemokine secretion profile, where CCL2 was the top chemokine secreted by 

all MSC populations. CCL2 has the potential to recruit monocytes and 

macrophages with high affinity however, CCL2 secretion did not support 

leukocyte recruitment above background levels in vivo. Inflammatory 

stimulation of MSCs resulted in upregulated secretion of neutrophil and 

monocyte/ macrophage chemoattractants, which was mirrored by the 

recruitment of these cells towards MSCs from the three sources. However, 

the tissue of origin dictated the chemokine secretion levels and more 

importantly, secretion levels did not correlate with recruitment levels in 

vivo, suggesting that more factors are involved in leukocyte recruitment.  

4) How do MSCs interact and immunomodulate surrounding tissues? Does MSC 

microenvironment (stimulation) and tissue origin influence their 

behaviour? Under resting conditions, MSCs from the three sources 
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transcribed and secreted angiogenic and immunomodulatory mediators. 

However, transcription and expression levels were tissue source of origin 

dependent. Moreover, inflammatory stimulation influenced each gene and 

protein in a different manner and no trends were observed. These findings 

show the complexity of this field and suggest that MSCs isolated from specific 

tissue sources might possess greater immunomodulatory capacity on the 

immune cells they attract as well as on the tissue resident cells.  

 

Altogether, this thesis has shown that BM, Is and Ad MSCs had differential 

transcription levels of chemokine receptors that could influence their migratory 

potential, as well as differential chemokine, anti-inflammatory and angiogenic 

molecule secretion profiles. Thus, the data presented in this thesis suggest that 

MSCs isolated from specific tissues might be more beneficial than other tissue 

sources of MSCs in distinct clinical settings. For the purpose of this discussion, I 

will focus on three clinical settings, transplantation and the autoimmune 

diseases psoriasis and arthritis, and I will discuss the potential benefits of MSCs 

as a cellular therapy in these settings and whether tissue source of origin could 

influence outcome.  

7.2.1 The optimal tissue for MSC isolation to co-transplant with 
islets of Langerhans 

As T1DM results from the destruction of insulin-producing cells within the islets 

of Langerhans in the pancreas, pancreas solid organ transplantation (SOT) seems 

like a reasonable approach. However, it involves major surgery that carries 

considerable risk of complications, including organ rejection, and is therefore 

only performed with simultaneous kidney transplantation in diabetic patients in 

end-stage kidney disease who would already be administered immunosuppressive 

drugs due to the kidney graft (Chiang et al., 2014). Thus, islet transplantation is 

an attractive alternative to SOT because the transplantation of a smaller tissue 

mass makes it minimally invasive and reduces the need for immunosuppression 

after transplantation (Figliuzzi et al., 2014). The success of islet transplantation 

expressed as insulin independence 5 years after transplantation is 25% to 50% in 

international cohort studies (Barton et al., 2012, Bellin et al., 2012). Graft 
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rejection and failure of islets re-vascularisation are the causes of the low 

success rate (Ritz-Laser et al., 2002, Blondet et al., 2007, Wood and Goto, 

2012). Both innate and adaptive immune responses are involved in graft 

rejection and involve multiple processes including activation of complement 

system, antibody mediated rejection, alloantigen specific induction of T cell 

proliferation and the activation of T cell effector functions (Tjernberg et al., 

2008). The anti-inflammatory, immunomodulatory and pro-regenerative 

properties of MSCs make them a promising candidate for co-transplantation with 

islets of Langerhans to improve long-term islet transplant function by reducing 

graft rejection, whilst increasing survival. In fact, diabetic immunodeficient and 

immunocompetent mouse models support the success of this approach (Forbes et 

al., 2020).  

The liver is the favoured islet transplantation site due to its high vascularization 

and the bolus of islets is typically infused into the hepatic portal vein. However, 

islet infusion through this vein can increase the blood pressure, activating the 

endothelium and promoting leukocyte recruitment into the liver leading to 

portal vein thrombosis (Kariya et al., 2016, Lalor et al., 2002). For this reason, 

alternative sources for islet transplantation, including the kidney capsule and 

the liver surface, are being investigated in mouse models (Fujita et al., 2018, 

Rajab et al., 2008). To date, the portal vein is the primary site for clinical islet 

transplantation, for this reason, minimising the size of the graft to avoid portal 

vein thrombosis is essential. Thus, it is important to consider the size of the co-

transplanted MSCs to minimise unwanted inflammation. In the current study, 

murine BM MSCs were smaller than Is and Ad MSCs (Figure 3–17) under resting 

and inflammatory conditions, which suggests that infusion of BM MSCs would 

minimise the development of portal vein thrombosis. However, as previously 

mentioned, in humans, size of MSCs does not vary significantly between tissue 

sources and thus, it is not valid interpretation for human therapy (Thirlwell, 

2018). CCR7 transcript levels were statistically significantly higher in BM MSCs 

compared to Is and Ad MSCs under resting and inflammatory conditions (Figure 4-

3). Moreover, CXCR6 transcription levels were higher in BM MSCs compared to Is 

and Ad MSCs under resting conditions, while no variation was observed under 

inflammatory conditions (Figure 4-4). CCR7 programs naïve T cells and B cells to 

migrate to the spleen and lymph nodes (Bjorkdahl et al., 2003), while CXCR6 has 
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been reported to be involved in immune cell trafficking and retention within the 

liver as it is highly expressed by liver-infiltrating CD8+ T cells (Sato et al., 

2005b). Moreover, human BM MSCs have also been shown to express higher levels 

of CXCR6 than human Is and Ad MSCs (Thirlwell, 2018). These observations 

suggest that BM MSCs could possess enhanced migratory and retention capacity 

within the liver and could therefore deliver greater therapeutic effects than Is 

and Ad MSCs when infused with the bolus of islets into the hepatic portal vein or 

on the surface of the liver. In contrast, Is MSCs express higher CXCR3 transcript 

levels than BM and Ad MSCs; thus, Is MSCs could have better clinical outcome if 

co-transplanted with the islets in the kidney capsule (Figure 4-4).  

Once MSCs and islets are infused into the liver, islets must engraft to restore 

glycaemic awareness and MSCs must therefore avoid the rejection of the 

allogeneic islets while promoting the re-vascularisation of the islets to promote 

long-term graft survival.  

When co-transplanted into a patient, any cell could have the potential to trigger 

allospecific T cells. However, MSCs do not express the key antigens involved in 

immediate rejection-ABO blood group antigens (Moll et al., 2014). This is an 

essential factor in humans but not in mice as the murine equivalent of the ABO 

group gene is a cis-AB gene that encodes a glycosyltransferase with both A and B 

transferase activity (Yamamoto et al., 2001). Moreover, mismatched MSCs should 

not promote alloreactivity as MSCs express very low levels of MHC Class I under 

resting conditions and only inflammatory stimulation can upregulate the 

expression of this key molecule involved in graft rejection (Machado et al., 

2013). This study has shown that BM, Is and Ad MSCs express very low levels of 

MHC Class II molecules and inflammatory stimulation only increases the 

expression of this marker in BM MSCs (Figure 3-18). BM MSCs expressed the 

highest levels of MHC Class I under resting conditions, Is MSCs expressed low 

levels, while Ad MSCs barely expressed this marker (Figure 3-18). Cytokine-

mediated inflammatory stimulation increased the expression of MHC Class I, with 

Is MSCs expressing the most. This study found that Ad MSCs expressed the least 

MHC Class I, suggesting that this source could be better for co-transplantation 

than BM or Is MSCs. However, MSCs lack the expression of co-stimulatory 

molecules and they are therefore unlikely to promote activation of T cells based 
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on mismatched MHC Class I expression. For these reasons, murine MSCs isolated 

from the bone marrow, islets of Langerhans and adipose tissue will not trigger 

allospecific T cells and their role will be focused on controlling the activation 

and proliferation of immune cells generated by the infusion of islets.  

After infusion of the islets into the hepatic portal vein the host’s immune system 

can trigger rejection by several mechanisms. Firstly, infusion of islets can induce 

the activation of complement, leading to the destruction of the graft (Tjernberg 

et al., 2008, Ricordi and Strom, 2004). CFH is a complement regulatory protein 

that regulates complement mediated cell destruction by disrupting C3b and 

avoiding, in this manner, the formation of C3 convertases. CFH deficiency has 

been associated with increased graft rejection and thus, CFH secretion by MSCs 

would be a beneficial mechanism for islet survival (Mella et al., 2014, Dragon-

Durey et al., 2010). Human MSCs have been reported to secrete CFH under 

resting conditions and this secretion has been shown to increase under 

inflammatory conditions, where human BM MSCs were secreting significantly 

higher amounts of CFH than Is and Ad MSCs (Thirlwell, 2018). In this study, we 

demonstrate that BM MSCs transcribed statistically significantly more CFH than Is 

and Ad MSCs under resting and stimulatory conditions; however, inflammatory 

stimulation resulted in the downregulation of CFH transcript levels in MSCs from 

every source (Figure 6-2). Despite RNA levels not always correlating with protein 

levels, if we assume that transcription levels of CFH are proportionately 

maintained at protein level, BM MSCs would be secreting the most CFH. 

Therefore, we could hypothesise that BM MSCs would have better therapeutic 

outcome than Is and Ad MSCs due to their increased potential to avoid 

complement system activation after islet transplantation.  

Secondly, infusion of islets can induce the activation of pre-existing autoimmune 

T cells within the host as well as the proliferation and activation of allogeneic T 

cells. Autoreactive CD4+ and CD8+ T cells have the potential to recognise 

identical antigens in the graft, while auto-antibodies against β-cell antigens can 

trigger an attack on the graft leading to early graft loss (Sutherland et al., 1984, 

Jaeger et al., 1997). MSCs have been widely reported to inhibit T cell 

proliferation as well as to promote a regulatory phenotype in leukocytes via the 

secretion of anti-inflammatory and immunomodulatory molecules, including IL-
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10, TSG-6, TGF-β, IDO and CD274 (Choi et al., 2008, Li et al., 2019b, Niu et al., 

2017, Davies et al., 2017, Chinnadurai et al., 2018). Among all these molecules, 

iNOS was transcribed at the highest levels and IDO is at least in part, involved in 

the suppressive effect of MSCs on cytotoxic cell proliferation, and thus, 

immunomodulation. For this reason, Is MSCs could have an increased 

immunosuppressive potential compared to BM and Ad MSCs, which would support 

graft tolerance (Figure 6-3). It is important to bear in mind that despite T cells 

triggering graft rejection, recipient cytotoxic cells are essential to initiate MSC-

mediated immunosuppression; MSCs need to be targeted by cytotoxic T cells to 

undergo apoptosis to be engulfed by macrophages and produce IDO (Galleu et 

al., 2017). 

In addition, to supress the host’s immune system to avoid rejection, MSCs must 

promote islet survival. Islets in the pancreas receive 0% to 15% of arterial blood, 

providing a very high amount of oxygen to satisfy the metabolic demands to 

fulfil the physiological activities of the islets. The process of islet isolation 

destroys the external vasculature and the partial oxygen in the liver is much 

lower than that in the pancreas; thus, revascularization of the islets is essential 

to avoid hypoxia and to ensure survival of the graft (Komatsu et al., 2018). 

Intrahepatic co-transplantation of autologous MSC and islets has been shown to 

improve islet engraftment after transplantation in a pilot study (Wang et al., 

2018). Among the three tissue sources, Is MSCs secreted the most VEGF under 

resting and stimulatory conditions and thus we hypothesise that Is MSCs would be 

the preferential tissue source of MSC to promote angiogenesis and islet re-

vascularisation. However, increased concentrations of VEGF do not correlate 

with increased re-vascularization of islets (Carlsson and Mattsson, 2002), which 

suggests the essential role of other angiogenic mediators like HGF and MMP9.  

BM MSCs transcribed the highest levels of HGF while MMP9 was transcribed at 

similar levels by MSCs from the three sources, suggesting that BM MSCs could 

have greater re-vascularisation potential, but HGF protein secretion by MSCs 

from the three sources should be studied. CXCL8 secretion by contaminating 

duct cells within the islets are currently under study to increase islet 

engraftment after transplantation (Movahedi et al., 2008). Moreover, co-

transplantation of islets and human MSCs into a diabetic mouse model has shown 
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that IL-6 and CXCL8 secretion by human MSCs enhances vascularization and 

basement membrane formation (Takahashi et al., 2018). IL-6 was secreted at 

similar levels by MSCs from the three sources while CXCL1 and CXCL2, the 

murine equivalents of CXCL8, were secreted at higher rates by Is MSCs, 

suggesting that Is MSCs could have a greater potential to promote re-

vascularization and to therefore, promote graft survival. This hypothesis is not in 

agreement with Citro et al., as they reported that inhibition of the receptors for 

CXCL1 and CXCL2 (CXCR1 and CXCR2) enhanced pancreatic islet survival after 

transplantation (Citro et al., 2012). CXCR1 and CXCR2 blockade would lead to 

decreased neutrophil recruitment towards the graft. Neutrophils are considered 

detrimental in transplantation due to their role promoting inflammation. 

However, as discussed in Chapter 5, Christoffersson et al. identified a CD11b+/ 

Gr-1+/ CXCR4high murine neutrophil subset that was recruited by VEGF-a into the 

site of islet engraftment that lead to the revascularization of transplanted islets 

(Christoffersson et al., 2012). More importantly, this neutrophil subset produced 

MMP9 and the revascularization of transplanted islets was MMP9 dependent and 

CD11b+/ Gr-1+/ CXCR4high dependent. In Chapter 5, neutrophils were the 

predominant CD45+ cell type recruited towards MSCs in vivo. Under resting 

conditions, MSCs from any source were unable to recruit neutrophils towards the 

air pouch. However, inflammatory stimulation of MSCs prior to infusion into the 

air pouch led to a statistically significant recruitment of neutrophils by MSCs 

from every source, where Ad MSCs were able to produce the highest recruitment 

of neutrophils. Therefore, I propose that MSCs could promote graft re-

vascularization not only by the well-described VEGF and HGF secretion but by 

the extensive secretion of pro-angiogenic cytokines (IL-6), matrix 

metallopeptidases (MMP9) and chemokines (CXCL1 and CXCL2) that recruit 

neutrophils. However, this hypothesis is based on an air pouch model instead of 

an islet transplant model. Moreover, the flow panel used for neutrophil 

identification did not include specific markers for neutrophil phenotyping.  

In conclusion, BM, Is and Ad MSCs express different levels of CXCR3 and CXCR6 

which could impact MSC migration and retention within the liver. The current 

study highlights that MSCs differentially transcribed immunoregulatory mediators 

like CFH, IL-10, TSG-6, TGF-β, iNOS and CD274, suggesting differential potential 

to suppress effector T cell activation and to induce proliferation and activation 
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of regulatory T cells. Moreover, MSCs isolated from all sources secreted 

substantial amounts of CXCL1, CXCL2, VEGF, and IL-6 which could have an 

impact on the re-vascularisation of the graft. These differences among MSC 

tissue source of isolation not only have an impact on islet transplantation but in 

any transplantation setting. Additionally, as discussed in Chapter 5, the tissue 

source of MSCs leads to differences in their immune cell attraction profile, which 

could be detrimental or beneficial in an islet transplant setting, depending on 

the phenotype of the immune cells attracted.  

7.2.2 The optimal tissue for MSC isolation for potential 
therapeutic use in psoriasis  

Psoriasis is a multifactorial inflammatory disease involving the skin, joints, or 

both. It is mediated by both the innate and adaptive immune systems and 

affects around 2% of people in the UK and worldwide. Psoriasis can be triggered 

by several factors including injury and trauma, infection and medications; 

imiquimod, a TLR7 agonist, induces skin inflammation like psoriasis and is 

therefore used in murine models. Histologically, psoriasis is characterised by: 

epidermal hyperplasia, leukocyte infiltrate, and increased dermal vascularity 

(Casciano et al., 2018). Little is known about the initiation of psoriasis but 

models suggest that injury to the skin leads to AMP LL37 production by 

keratinocytes, which upon interaction with DNA or RNA activates plasmacytoid 

dendritic cells (pDCs) and myeloid DCs, leading to the secretion of IFN-α and 

IFN-β and promoting T cell activation (Lowes et al., 2014). Supporting this model 

of psoriasis initiation, neutrophil extracellular traps (NETs) and extracellular 

DNA have been found in the epidermis under inflammatory conditions (Kumar 

and Sharma, 2010). DCs secrete TNF-α and IL-23 and present self-antigens on 

their surface, leading to the activation of autoreactive CD8+ T cells and the 

polarization of CD4+ T cells towards a Th17 phenotype in the dermis. Activated T 

cells migrate to the epidermis where they recognise self-antigens, leading to the 

secretion of cytokines, including IL-22, which promote epidermal 

hyperproliferation and activation of keratinocytes, leading to the secretion of 

more inflammatory molecules that promote progression of the disease (Zaba et 

al., 2009). Once in the epidermis, activated T cells can differentiate towards 

tissue-resident memory T cells (Trm), where Trm with a pathogenic IFN-γ-IL-17A 

cytokine profile have been described as potential drivers of disease memory in 
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resolved psoriatic lesions (Matos et al., 2017, Cheuk et al., 2014). Moreover, 

Bovenschen et al. described a dysfunction of regulatory T cells in psoriasis as 

they differentiate towards IL-17 expressing Tregs, promoting in this manner 

exacerbated chronic inflammation (Bovenschen et al., 2011).  

Unfortunately, there is no fully satisfactory therapy against psoriasis yet. There 

are multiple palliative treatment options and it often depends on patient 

preferences, as treatment satisfaction is very variable among patients. Primary 

care level is based on topical agents like corticosteroids, vitamin D3 analogues 

or the combination of both, which are well tolerated and effective with mild 

psoriasis. When psoriasis is wide-spread and topical agents are not enough, they 

are usually combined with systemic therapy, mainly phototherapy and 

methotrexate. Methotrexate is a well-known inhibitor of folate biosynthesis with 

a very good record of success in psoriasis. However, it is not always tolerated or 

suitable, as it is not compatible with pregnancy, and biologic therapy has 

emerged as a strong alternative (Kim et al., 2017). Biological therapy is based on 

the use of inhibitors that specifically target a biological mediator of a 

pathophysiological process, including anti-TNF-α agonists and anti-p40 agonists, 

where p40 is a subunit shared by both IL-12 and IL-23. The formation of 

antibodies against these inhibitors has been documented and affects their long-

term efficacy (Sivamani et al., 2010). As explained in the previous section, the 

potential of MSCs to immunomodulate and suppress effector T cell activities 

provides a rationale for the clinical use of MSCs in diseases in which T cell 

hyperactivation contributes to the onset of the disease. The use of stem cells for 

the treatment of psoriasis started gathering strong support when, in 2009, a 35-

year old man with psoriasis was diagnosed with diffuse large B-cell lymphoma. 

His treatment included autologous haematopoietic stem cell transplantation and 

unexpectedly, six months later, his psoriasis had significantly resolved, twelve 

months later his skin had become essentially normal and his condition remained 

normal for 5 years (Chen et al., 2016).  

A study conducted by Lee et al. showed that psoriasis-like skin inflammation 

generated by imiquimod or IL-23 was ameliorated after MSC infusion, which 

reduced the expression of the proinflammatory cytokines IL-6 and IL-17 as well 

as the expression of chemokines such as CCL17, CCL20, and CCL27 (Lee et al., 
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2017b). Chen et al. infused umbilical cord derived MSCs into a 26-year-old 

woman once a week for three weeks and another two MSC infusions three 

months later. As a result, the psoriasis had been in remission for four years in 

2016, when the study was published (Chen et al., 2016). Intravenous infusion of 

stromal vascular fraction, a mixture of Ad MSCs, progenitor cells and other cells 

obtained from fat, into psoriasis patient demonstrated a significant alleviation of 

the symptoms (Comella et al., 2018). MSC conditioned medium accelerates skin 

wound healing in vitro in fibroblast and keratinocyte scratch assays (Walter et 

al., 2010) and the results from the first clinical report on the use of MSC 

conditioned medium demonstrates that the secretion of immunomodulatory 

molecules, cytokines and growth factors by MSCs ameliorate the symptoms of 

psoriasis (Seetharaman et al., 2019).  

Psoriasis can appear anywhere in the skin as well as in the joints, for this reason 

local administration is not an option. When delivered by systemic infusion, only 

a small percentage of the cells home and remain in the target tissue due to MSC 

trapping in the lung (Fischer et al., 2009, Schrepfer et al., 2007). CCR3, CCR4 

and CCR10 are highly expressed by T cells in skin (Fujimoto et al., 2008, Ma et 

al., 2002) while CXCR4 expression is increased on the surface of extravascular 

neutrophils in the lung and the bone marrow (30). CCR3, CCR4 and CCR10 

transcript levels were very low in MSCs from every source but CCR3 transcript 

levels were statistically significantly higher in Ad MSCs compared to BM and Is 

MSCs (Figure 4-3), suggesting that Ad MSCs could have an increased potential to 

migrate towards the skin. In contrast, CXCR4 transcript levels were highest in Ad 

MSCs, which could favour lung entrapment. These observations, combined with 

the smaller size of BM MSCs, suggest that BM MSCs would have a better chance of 

avoiding lung entrapment and migrating towards target areas despite lower CCR3 

transcript levels.  

Once MSCs are infused into the psoriasis patient, MSCs must supress effector T 

cells and activate regulatory T cells to dampen and control excessive 

inflammation. The mechanisms by which MSCs could inhibit T cell proliferation 

as well as promote a regulatory phenotype of leukocytes via the secretion of 

anti-inflammatory and immunomodulatory molecules has already been described 

in the previous sections and Is MSCs have been suggested to have increased 
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immunosuppressive potential compared to BM and Ad MSCs and could therefore, 

be more effective in regulating excessive inflammation in the skin. However, it 

is important to mention that deficiency of IL-10 and TGF-β in serum and skin are 

important elements of psoriasis pathogenesis. MSCs have been reported to 

secrete IL-10 and TGF-β, promoting the generation of immunosuppressive Treg 

subsets both in vitro and in vivo (Sah et al., 2016). In this study, MSCs from the 

three sources transcribed very low levels of IL-10 (Figure 6-3). Under resting 

conditions, MSCs from the three sources expressed substantial TGF-β transcript 

levels; inflammatory stimulation upregulated TGF-β transcript level in BM and Ad 

MSCs and Ad MSCs reached very high levels of transcription (Figure 6-3). If 

protein levels correlate with transcription, we could suggest that infusion of Ad 

MSCs would be more beneficial than infusion of BM or Is MSCs for the treatment 

of psoriasis.  

IL-6 has been associated with the pathogenesis of psoriasis and increased levels 

of this cytokine in the skin and serum is a characteristic of this disease (Arican et 

al., 2005, Neuner et al., 1991). Moreover, IL-6 levels are positively correlated 

with clinical severity and effective treatment of psoriasis results in a reduction 

of IL-6 levels (Mizutani et al., 1997). BM MSCs expressed the highest transcript 

levels of IL-6 under resting and stimulatory conditions and inflammatory 

stimulation led to an upregulation of IL-6 in MSCs from every source, especially 

in BM MSCs. At the protein level, MSCs isolated from the three tissues produced 

very little IL-6 under resting conditions (Figure 6-3); however, inflammatory 

stimulation resulted in the upregulation of IL-6 to similar levels in MSCs from the 

three sources (Figure 6-7). IL-6 promotes anti-inflammatory Th2 cell 

differentiation (Diehl et al., 2002) and increases IL-27 secretion by monocytes 

and macrophages promoting the maturation of regulatory T cells (Pyle et al., 

2017). However, IL-6 has also been reported to inhibit TGF-β-induced Treg 

differentiation and to promote the differentiation of pro-inflammatory Th17 

cells from naïve T cells, disrupting the immunological tolerance and leading to 

autoimmune and chronic inflammatory diseases (Bettelli et al., 2006, Tanaka et 

al., 2014). Due to the dual roles of IL-6 it is difficult to rationalise the role of IL-

6 secretion by MSCs and its roles in psoriasis.  
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In conclusion, BM, Is and Ad MSCs have different sizes and express different 

levels of CCR3, CCR4, CCR10 and CXCR4 which could impact lung entrapment 

and MSC migration towards the skin. The current study highlights that MSCs 

differentially transcribed IL-10 and TGF-β, suggesting differential potential to 

counteract the deficiency of IL-10 and TGF-β in serum and skin in psoriasis.  

7.2.3 The optimal tissue for MSC isolation for potential 
therapeutic use in rheumatoid arthritis 

Rheumatoid arthritis (RA) is an autoimmune disease characterised by the 

production of auto-antibodies targeting the joints and producing pain, swelling 

and even changing the joint’s shape, which can cause bone and cartilage break 

down; it affects up to 1% of the worldwide population. Rheumatoid arthritis 

flares can be triggered by several factors including overextension related injury, 

trauma and infections. The pathophysiology of RA starts with synovitis, followed 

by subsequent cartilage destruction and bone erosion leading to loss of joint 

function (Milner and Day, 2003). The aetiology, timing and anatomic site of RA is 

currently unknown. It is well established that auto-antibodies like rheumatoid 

factor and antibodies to citrullinated peptides can be increased in the serum 

years prior to the onset of the first flare of joint inflammation (Demoruelle et 

al., 2014). In addition to auto-antibodies, biomarkers of systemic inflammation 

like cytokines, chemokines and C reactive protein can also be identified in the 

serum. Evaluation of the joints during this period of high auto-antibody levels 

and no joint symptoms shows no histologic or magnetic resonance imaging (MRI) 

evidence of RA (van de Sande et al., 2011), which suggests that RA related 

autoimmunity does not initiate in the joints. There are several findings which 

suggest that RA initiates in mucosal sites including oral, lungs and gut mucosal 

sites (Demoruelle et al., 2014). Necrosis results in the release of endogenous 

nuclear material, which can be recognised by TLRs leading to the generation of 

citrullinated endogenous proteins (Makrygiannakis et al., 2006). Moreover, 

recruitment of neutrophils to mucosal sites can produce tissue citrullination, 

generating, in this manner, antibodies to citrullinated peptides (Khandpur et al., 

2013). Furthermore, mucosal inflammation has been associated with an increase 

in rheumatoid factor (Elkayam et al., 2006). Three immunologic mechanisms to 

explain the transition of autoimmunity from the mucosal sites into articular sites 

have been considered. First, immune complex formation could lead to 
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transportation and deposition in the synovium; Zhao et al. described immune 

complexes containing citrullinated fibrinogen in plasma as well as in the joint 

tissue (Zhao et al., 2008). Second, a shared antigenic target between the 

mucosal sites and the joints; to support this, Ytterberg et al. described the 

presence of a citrullinated vimentin protein both in the lungs and joint tissues of 

patients suffering from RA (Ytterberg et al., 2015). Lastly, epitope spreading and 

subsequent migration of activated T cells; Huo et al. reported that antigen-

specific T cell responses can traffic to a different organ (Huo et al., 2012). 

Altogether, these three mechanisms would explain how auto-immunity could be 

generated in the mucosal sites and trigger symptoms in a completely different 

tissue.  

As with psoriasis, there is no fully satisfactory therapy against RA. There is a 

large variety of drugs to reduce the symptoms and the progression of the disease 

to avoid the loose of joint mobility due to bone and cartilage break down. For 

this purpose, all the treatments aim to dampen inflammation including disease-

modifying anti-rheumatic drugs like methotrexate and sulfasalazine and biologic 

response modifiers. Due to the anti-inflammatory, immunomodulatory and 

regenerative properties of MSCs, infusion of these cells could contribute to the 

repair of damaged cartilage as well as dampening the inflammation and 

avoiding, in this manner, further damage. In support of this hypothesis, 

allogeneic MSC infusion and transplantation of chondrocytes differentiated from 

allogeneic MSCs were able to suppress the responses of type-II collagen reactive 

T cells in vitro (Zheng et al., 2008). Furthermore, MSC infusion into collagen-

induced arthritis mouse models reduced the severity of RA symptoms. At 

present, there are several trials that include MSCs for the treatment of RA. So 

far, the systemic infusion of BM and umbilical cord derived MSCs in a RA group 

that did not respond to other treatments lead to the decrease of anti-cyclic 

citrullinated peptide antibodies and to amelioration of symptoms (Liang et al., 

2012).  

RA can appear in any joint of the body and, as previously described, it is 

reported to initiate in mucosal sites, thus, local administration of MSCs is not an 

alternative. As already mentioned, when delivered by intravenous infusion, only 

a small percentage of the cells home and remain in the target tissue due to MSC 



317 
 
trapping in the lung (Fischer et al., 2009, Schrepfer et al., 2007). However, in 

this particular clinical scenario, as autoimmunity towards joints is initiated in 

mucosal sites, lung entrapment could be an advantage instead of an 

unfavourable circumstance. On the one hand, Is and Ad MSCs are statistically 

significantly bigger in size than BM MSCs. On the other hand, CXCR4 transcript 

levels were highest in Ad MSCs and we could therefore hypothesise that Ad MSCs 

are more likely to remain in the lungs where they could dampen mucosal 

inflammation by regulating effector T cells and at the same time, promoting a 

regulatory phenotype. As explained in Section 7.2, MSCs inhibit T cell 

proliferation and promote a regulatory phenotype of leukocytes via the secretion 

of anti-inflammatory and immunomodulatory molecules. In this study Is MSCs 

transcribe higher levels of iNOS and for this reason it has been suggested that Is 

MSCs could have increased immunosuppressive potential compared to BM and Ad 

MSCs, which suggests that Is MSCs could be more effective in regulating 

excessive inflammation in the lungs. However, it is important to mention that 

TSG-6 and IL-10 have been reported to be essential for dampening the 

autoimmune response in RA and for this reason further discussion will follow.  

TSG-6 levels have been found to be increased in the synovial fluid, in the blood 

vessel walls of inflamed synovium and to a lesser extent in serum (Wisniewski et 

al., 1993, Bayliss et al., 2001). Its presence within these locations has been 

associated with the roles of TSG-6 in cell proliferation and extracellular matrix 

remodelling (Ye et al., 1997). The use of autoimmune polyarthritis inducible 

mouse models has enabled an investigation of the roles of systemic recombinant 

TSG-6 and of TSG-6 produced locally by T cells in the arthritic joints of 

transgenic mice. In this way, it has been shown that TSG-6 was a potent inhibitor 

of inflammation which protected cartilage and bone and thus, prevented joint 

destruction (Mindrescu et al., 2000, Mindrescu et al., 2002). Moreover, 

treatment of collagen-induced arthritis in mice with TSG-6 lead to a significant 

reduction of antibodies against type II collagen (Mindrescu et al., 2002). BM MSCs 

expressed higher levels of TSG-6 (Figure 6-3), under resting and inflammatory 

conditions, than Is and Ad MSCs, and 24-hour stimulatory licensing led to the 

downregulation of these transcripts in MSCs from all sources. If transcript and 

protein levels correlate, BM MSCs could have the potential to produce increased 
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inhibition of inflammation and in that way, promote a better clinical outcome in 

the context of RA.  

IL-10 has been found in RA synovial membrane biopsies and spontaneous 

production of IL-10 in cell suspension cultures of RA synovial membranes has 

been described. Moreover, neutralization of IL-10 led to an increase of TNF-α 

and IL-1β secretion in vitro, which are strongly implicated in the pathology of 

RA. More importantly, exogenous addition of IL-10 to these cultures led to a 

significant decrease of TNF-α and IL-1β secretion and therefore, IL-10 could be 

an effective RA treatment (Katsikis et al., 1994). Systemic infusion of IL-10 had a 

negligible effect in both mouse models and clinical trials (Whalen et al., 1999, 

van Roon et al., 2003). However, efficacy increased when IL-10 was delivered 

locally or tagged to an antibody fragment specific to damaged arthritic cartilage 

(Hughes et al., 2014). Infusion of MSCs alone into mouse and rat models of 

inflammatory RA produced no effect, while injection of IL-10 transduced MSCs 

significantly decreased the severity of arthritis whilst also decreasing anti-

collagen II antibodies and T cell proliferation (Hughes et al., 2014, Peruzzaro et 

al., 2019). These results show the therapeutic relevance of high doses of IL-10. 

Ad MSCs transcribed significantly higher levels of IL-10 compared to BM and Is 

MSCs and for this reason, Ad MSCs could be a better source of MSCs for an IL-10 

mediated RA therapy.  

In conclusion, BM, Is and Ad MSCs have different sizes and express different 

levels of CXCR4 which could impact retention within the lung. The current study 

highlights that MSCs differentially transcribed TSG-6 and IL-10, suggesting 

differential potential to immunoregulate the exacerbated immune response in 

RA. 

 

7.3 Overview  

It is widely reported that MSCs have the potential to switch pro-inflammatory 

environments into anti-inflammatory and pro-regenerative environments by 

immunomodulating surrounding immune cells; for this reason, MSCs are involved 

in an increasing number of clinical trials. As previously mentioned, BM MSCs are 
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considered the gold standard MSC as they were the first MSCs isolated and used 

within the clinic; however, their yield within the bone marrow is very low and 

isolation imposes a burden on the donor. For this reason, alternative sources 

with higher frequency of MSCs within the tissue and that are isolated in a less 

invasive and harmful manner are being investigated. The variability in tissue 

sources, donors, isolation and culture procedures as well as differences in 

passage number has led to controversial results through the literature making 

the comparison of MSCs isolated from different sources nearly impossible. It is 

important to point out that there are few studies that have examined the 

immunogenicity of MSCs in vivo and many of those studies have been conducted 

with human MSCs (Thirlwell, 2018) which usually lack a control for mismatched 

major histocompatibility complex molecule expression. Infusion of MHC-

mismatched MSCs into an inflammatory environment leads to both cell-mediated 

and humoral immune responses (Eliopoulos et al., 2005, Joswig et al., 2017). For 

these reasons, the standardised methodologies throughout this study allowed 

comparative study of the potential in vivo differences of MSCs isolated from the 

bone marrow, islets of Langerhans and adipose tissue. Through the assessment of 

chemokine receptors at transcript level this study highlighted that MSCs isolated 

from different tissue sources could have differential migration potential. This is 

critical when considering which tissue source of MSC to administer when MSCs 

are being infused systemically, where high specific chemokine receptor surface 

expression could enhance homing to target tissues. In contrast, when 

administered locally, low chemokine receptor surface expression would enhance 

retention within the tissue of infusion.  

Through the assessment of chemokine ligands at transcript and protein level, 

this study highlighted that MSCs isolated from different tissue sources could have 

differential interactions with their surrounding environment when infused into a 

patient. Under resting conditions, all MSCs regardless of tissue source of origin 

had a similar chemokine secretion profile, where CCL2 was the top chemokine 

secreted by all MSC populations. Despite CCL2 and other chemokine secretion at 

lower levels, infusion of resting BM, Is and Ad MSCs did not lead to leukocyte 

recruitment above background levels. Inflammatory stimulation of MSCs resulted 

in the upregulation of CC and CXC chemokine secretion with an emphasis on 

CCL2 and CXCL1 secretion. The secretion of these chemokines was followed by 
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chemoattraction of neutrophils and macrophages towards MSCs isolated from all 

tissue sources; however, the number of cells attracted towards MSCs was tissue 

of origin dependent, where Ad MSCs attracted statistically significantly more 

leukocytes. These observations have huge clinical implications due to the 

described role of inflammatory chemokine secretion and the subsequent 

monocyte, macrophage and neutrophil recruitment in pathogenesis in several 

clinical settings.  

Furthermore, the anti-inflammatory and immunomodulatory properties of MSCs 

have been studied by thorough analysis of the complement system, TLRs and 

multiple inflammatory and extra cellular matrix remodelling mediators. The 

transcription of these molecules was MSC source dependent and inflammatory-

dependent patterns were not observed. Variability in the transcription and 

secretion of anti-inflammatory and angiogenic factors demonstrates that tissue 

source of origin could have a major impact in MSC mediated immunomodulation 

within a clinical setting.  

To sum up, the stringent set of standardised methodologies established in this 

study to objectively compare the phenotype, migration, interaction with the 

environment and immunomodulation potential demonstrates the complexity of 

the MSC field and shows the need for further studies to fully understand the role 

of each of the assessed molecules in MSC in vivo behaviour.  

 

7.4 Hypothesis 

I therefore hypothesise that the source for MSC isolation would influence the 

clinical outcome of MSC infusion via the differential expression of chemokine 

receptors and the specific secretion of chemokine ligands and anti-inflammatory 

and immunomodulatory mediators. These differences lead to differential 

recruitment of immune cells by MSCs while also affecting their interactions with 

the recruited and tissue resident cells. Furthermore, I strongly believe that 

there are other undiscovered factors involved in the differential behaviour of 

MSCs isolated from different sources, which may have a critical impact on MSC 

clinical potential.  
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7.5 Conclusions 

This study provides a highly standardised methodology for murine bone marrow, 

islet of Langerhans and adipose MSC isolation, characterisation and comparison. 

The findings detailed in this thesis show the variability of MSC behaviour 

according to the source for MSC isolation and the surrounding environment, 

resting or inflammatory.  

Differences in the transcription and expression of chemokine receptors, 

chemokines and other angiogenic and immunoregulatory molecules suggest that 

their in vivo function within a clinical setting could potentially be different and 

this could have a major impact for the choice of MSC tissue of isolation.  

 

7.6 Future directions 

This study has generated novel data that will help to further understand the 

potential use of MSCs as cellular therapeutics. However, the experiments 

described have their own limitations and this project would benefit from further 

testing to gain a better understanding of the differences among MSCs isolated 

from different sources.  

To confidently compare MSCs migratory potential, experiments on chemokine 

receptor expression by MSCs must be performed. Moreover, expression and 

functionality do not always come together, and intracellular calcium flux assays 

should be performed to study if receptors are able to recognise, interact with 

and signal in the presence of ligand. Furthermore, in vitro MSC migration assays 

would test the migratory potential of MSCs. As an example, CCL19 or CCL21, the 

two well characterised CCR7 ligands, could be used to assess and compare MSC 

migratory capacity using a transwell system with increasing concentrations of 

these chemokines or via a CCR7 blocker. In this manner, we could confidentially 

conclude which tissue source of MSCs possessed greater migratory capacity 

towards specific tissues, in this case, towards the lymph nodes. To further 

confirm this hypothesis, in vivo trafficking and retention of MSCs should be 

studied via fluorescent labelling of MSC. To rule out nonspecific migration or to 
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identify the involvement of other receptors in migration, genetically modified 

MSCs with specific chemokine receptor knock out should be used as negative 

controls.  

As previously mentioned, chemokine secretion was not correlated with leukocyte 

recruitment in vivo. As an example, Is MSCs secreted the most CXCL1 and CXCL2 

but Ad MSCs recruited the most neutrophils. These findings suggest that even if 

CXCL1 and CXCL2 are strong neutrophil chemoattractants, there are other 

molecules involved in neutrophil migration or that only a small concentration of 

CXCL1 and CXCL2 is needed to induce neutrophil migration and once that is 

reached, increased secretion will not produce an increment in neutrophil 

recruitment. Therefore, MSCs could recruit leukocytes via alternative 

mechanisms. In the case of neutrophils, the VEGF-VEGFR or GMCSF-GMCSFR axis 

could be involved. Therefore, transwell analysis with the appropriate 

chemoattractants and the appropriate receptor blockers should be performed to 

gain insight in the mechanisms used by MSCs to migrate towards specific tissues.  

The in vivo air pouch model assessed the immune cell attraction profile of MSCs 

from the three sources. However, 24 hours might not have been enough time for 

the adaptive immune cells to migrate towards the air pouch. For this reason, a 

second time point at 72 hours would allow us to better study the infiltration of 

innate and adaptive immune cells mediated by the infusion of MSCs within the 

air pouch. Furthermore, despite the fluorescent labelling of the cells we could 

not find any MSC within the air pouch. MSCs could have migrated elsewhere and 

for this reason, fluorescent labelling could be used to try find them in blood, 

bone marrow or lymph nodes, among other tissues.  

Lastly, this study would benefit from the study and comparison of MSCs isolated 

from various tissues in different clinical models such as mouse islet 

transplantation, psoriasis and RA models. In this way, we could clarify if 

differences in transcription and expression of chemokines and their receptors, as 

well as other immunoregulatory molecules, could have, as hypothesised, an 

impact in different clinical settings.  
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8 Appendices 

8.1 Analysis of the effect of a double inflammatory 
stimulus over time on the transcription of 
chemokines and chemokine receptors  

As previously discussed, pro-inflammatory cytokine-mediated MSC licensing 

produced a transcriptional regulation of chemokines, which could explain why 

MSCs are described to be more immunosuppressive upon activation. Within 

clinical settings, it has been reported that pre-treatment of MSCs with 

inflammatory cytokines prior to administration within animal models of 

inflammatory diseases boosts the therapeutic effect of MSCs (Duijvestein et al., 

2011, Noronha et al., 2019). For this reason, we wondered if pre-licensing the 

MSCs prior to expose them to an inflammatory environment in vitro would lead 

to even bigger variations in chemokines transcriptional levels and therefore, in 

enhanced therapeutic potential. To study this, cells were pre-licensed for 48 

hours, after which cells were washed twice with PBS and stimulated again for 

another 24 hours. The first stimulation primes the MSCs while the second 

stimulation would mimic the inflammatory environment MSCs would face when 

infused into a patient with an inflammatory disorder. Figure 8-1 illustrates the 

time points at which supplemented medium was added. Culture medium was 

removed at the time cells were harvested and was kept for experimental 

procedures.  

Two different control conditions were used. In the first one, cells were 

stimulated for 48 hours, after which cells were washed twice with PBS and fresh 

culture medium was added; lastly, cells were harvested 24 hours later. In the 

second condition, cells were washed twice with PBS, the culture medium was 

replaced with fresh one and the cells were left growing for 48 hours. Cells were 

then washed twice with PBS, the culture medium was replaced with 

supplemented one and the cells were harvested 24 hours later. There is wide 

literature about how cytokine-mediated licensing enhances the potential 

therapeutic efficacy of MSCs however, little is known about the role of TLR 

ligands mediated activation on the secretion of chemotactic cytokines by MSCs. 

For this reason, 100 ng/ mL LPS, 100 ng/ mL LTA and 4 mg/ mL Poly I:C, as well 

as the previously described cytokine cocktail, was used for MSC licensing.  
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Figure 8-1. Diagrammatic illustration of the time course of the MSC licensing. 

 

According to the results described in Section 4.2, the genes that regulated their 

transcript levels in a statistically significant manner upon stimulation were 

selected and their transcriptional levels were assessed after licensing with 

different inflammatory molecules and different inflammatory conditions.  

8.1.1 Transcription of CC chemokines under resting and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, CC 

chemokines with the exception of CCL2, which was transcribed by all tissue 

sources of MSCs at similar levels (Figure 8-2, A), and CCL7, which was very highly 

expressed by BM MSCs (D).  

A pattern of transcriptional upregulation was observed in CCL2 (Figure 8-2, A), 

CCL3 (B), CCL5 (C), CCL7 (D) and CCL20 (E) genes after licensing in every 

condition; however, these chemokines were upregulated differentially in MSCs 

according to their tissue of origin and licensing agent. CC chemokine transcript 

levels 24 hours after stimulation increased (Condition 2) in MSCs from every 

tissue source; however, this upregulation was not sustained, as cells harvested 

72 hours after licensing (Condition 1) showed a decrease in the transcript levels 

of CC chemokines. A second stimulation 48 hours after the first stimulation 

(Condition 3) was able to induce the transcription of CC chemokines in MSCs 

from the three sources; however, the second stimulation was not able to match 
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the transcript levels of CC chemokines found in Condition 2 in MSCs from every 

source with the exception of Ad MSCs after cytokine-mediated stimulation, 

where these cells massively increased the transcript levels of CC chemokine 

ligands. Fold changes of transcriptional regulation upon licensing of MSCs are 

specified in Table 8-1.  

As previously described, BM MSCs had the highest CCL2 transcript levels under 

resting conditions (Figure 8-2, A). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to an increase of the transcript levels in BM and 

Is MSCs and to a decrease in Ad MSCs. 24 hours after stimulation with the 

cytokine cocktail (Condition 2), MSCs from the three tissues upregulated their 

CCL2 transcript levels. A second stimulation with the cytokine cocktail 48 hours 

after the first stimulation (Condition 3) was able to induce the production of 

CCL2 in MSCs from the three sources; however, the second stimulation was not 

able to match the transcript levels of CCL2 found in Condition 2 in BM and Is 

MSCs. Ad MSCs, at the contrary, produced 202 times more CCL2 after the second 

stimulation than Ad MSCs under resting conditions or 16 times more than in 

Condition 2. After 72 hours of stimulation (Condition 1), LPS-mediated licensing 

led to an increase of CCL2 transcript levels in Is and Ad MSCs and to a decrease 

in BM MSCs, while LTA and Poly I:C-mediated licensing only produced an 

upregulation of CCL2 in Is MSCs and a downregulation in BM and Ad MSCs. After 

24 hours of stimulation (Condition 2), LPS produced no variation in CCL2 

transcript levels in BM MSCs but produced an increase of transcript levels in Is 

and Ad MSCs; LTA had no effect on Is MSCs but led to an upregulation of the 

transcript levels in BM and Ad MSCs. Lastly, Poly I:C produced an upregulation of 

CCL2 transcript levels in MSCs from every source. Double stimulation (Condition 

3) with any of the licensing agents led to higher transcript levels of CCL2 than 

cells that had been harvested 72 hours after stimulation (Condition 1), but lower 

levels than those obtained by the cells harvested 24 hours after stimulation.  

BM MSCs had the highest CCL3 transcript levels under resting conditions (Figure 

8-2, B). After 72 hours of stimulation (Condition 1), cytokine-mediated licensing 

led to a decrease in the transcript levels of CCL3 in BM MSCs, produced no effect 

in Is MSCs and led to an increase in Ad MSCs; LPS licensing led to a decrease of 

the transcript levels in BM and Ad MSCs and produced no effect in Is MSCs and 



326 
 
LTA and Poly I:C licensing produced a decrease on CCL3 transcript levels in MSCs 

from the three sources. After 24 hours of stimulation (Condition 2), cytokine-

mediated licensing led to an increase of the transcript levels in BM and Is MSCs 

and led to a decrease in Ad MSCs; LPS licensing led to a decrease of the 

transcript levels in BM and Ad MSCs and produced an increase in Is MSCs; LTA 

licensing produced no effect in BM MSCs and led to a decrease of the transcript 

levels in Is and Ad MSCs; lastly, Poly I:C led to a decrease of CCL3 transcript 

levels in MSCs from every source. Double stimulation (Condition 3) with the 

cytokine cocktail led to a decrease of the transcript levels in BM MSCs, produced 

no effect in Is MSCs and led to an increase in Ad MSCs; LPS licensing led to a 

decrease of the transcript levels in Is MSCs and had no effect in BM and Is MSCs; 

LTA licensing led to a decrease in CCL3 transcript in MSCs from every source 

while Poly I:C had no effect in BM MSCs and produced a decrease in CCL3 

transcript levels in Is and Ad MSCs.  

CCL5 transcript levels were very low under resting conditions, where BM MSCs 

had the highest levels of transcript and Ad MSCs the lowest, but inflammatory 

stimulation led to substantial levels in MSCs from the three sources (Figure 8-2, 

C). Cytokine-mediated licensing produced an upregulation of CCL5 transcript 

levels in MSCs from every source under every condition. 72 hours after 

stimulation (Condition 1) MSCs from every tissue source had undergone at least a 

7.35 fold change in CCL5 transcript levels; 24 hours after stimulation (Condition 

2) MSCs from the three tissues had higher transcript levels than in Condition 1, 

reaching significant amounts in the case of BM and Is MSCs. Double stimulation 

(Condition 3) led to the upregulation of CCL5 transcript to levels that matched 

the ones achieved in Condition 1 in BM and Is MSCs; Ad MSCs, however, had 419 

times higher amounts of transcript compared to resting conditions. 72 hours of 

LPS licensing produced an upregulation of CCL5 transcript levels in BM and Is 

MSCs and barely produced any effect in Ad MSCs; LTA licensing had no effect in 

BM MSCs, led to a small downregulation in Is MSCs and produced a hundred times 

fold change in Ad MSCs. Poly I:C-mediated stimulation led to an upregulation of 

CCL5 transcript levels in MSCs from the three sources, where this upregulation 

was the highest in BM MSCs even if Is MSCs had a higher amount of CCL5 

transcripts. Double stimulation (Condition 3) with the cytokine cocktail led to an 

increase of the transcript levels in MSCs from the three sources, but Ad MSCs 
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produced significantly higher amounts of transcript than BM and Is MSCs. LPS-

mediated licensing led to an upregulation in MSCs from the three sources and 

this upregulation was higher than the one observed in Condition 1 and smaller 

than the one in Condition 2 for BM and Ad MSCs. Is MSCs produced the highest 

CCL5 transcript levels in Condition 1 after LPS licensing. LTA-mediated 

stimulation produced no effect in BM and Is MSCs after double stimulation and 

produced a small downregulation in Ad MSCs. Poly I:C, on the contrary, produced 

a ≥117-fold change in BM and Is MSCs and a smaller upregulation in Ad MSCs.  

As previously discussed, CCL7 was expressed at very substantial levels under 

resting conditions in all MSCs; however, tissue of origin of MSCs had an effect in 

the transcript levels as BM MSCs expressed much higher transcript levels than Is 

and Ad MSCs (Figure 8-2, D). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to a decrease of the transcript levels in BM 

MSCs, while it produced a small increase in Is and Ad MSCs. 24 hours after 

stimulation with the cytokine cocktail (Condition 2), MSCs from the three tissues 

upregulated their CCL7 transcript levels. A second stimulation with the cytokine 

cocktail 48 hours after the first stimulation (Condition 3) was able to induce the 

production of CCL7 in Is and Ad MSCs, however, the second stimulation was not 

able to match the transcript levels of CCL7 observed in Condition 2. BM MSCs, on 

the contrary, downregulated their CCL7 transcript levels after the double 

stimulation with the cytokine cocktail. After 72 hours of stimulation (Condition 

1), LPS and LTA-mediated licensing led to a decrease of CCL7 transcript levels in 

BM MSCs, led to an increase in Is MSCs and produce no effect in Ad MSCs. Poly 

I:C-mediated licensing produced a downregulation of CCL7 transcript levels in 

MSCs from every source after 72 hours of stimulation (Condition 1). After 24 

hours of stimulation (Condition 2), LPS produced no variation in CCL7 transcript 

levels in BM MSCs but produced an increase of transcript levels in Is and Ad MSCs; 

LTA led to a slight decrease in BM MSCs but led to an upregulation of the 

transcript levels of CCL7 in Is and Ad MSCs. Lastly, Poly I:C had no effect in BM 

MSCs but produced an upregulation of CCL7 transcript levels in Is and Ad MSCs. 

Double stimulation (Condition 3) with any of the licensing agents led to higher 

transcript levels of CCL7 in Is MSCs when compared to cells that had been 

harvested 72 hours after stimulation (Condition 1), but lower levels than those 

obtained by the cells harvested 24 hours after stimulation. Cytokine-mediated 
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double stimulation (Condition 3) led to a decrease of CCL7 transcript levels in 

BM MSCs, produced an upregulation in Is MSCs smaller than the one obtained in 

Condition 2 and produced 8 times more CCL7 transcript in Ad MSCs compared to 

Condition 2. LPS-mediated double stimulation led to an increase of CCL7 

transcript levels in MSCs from all sources, LTA-mediated double stimulation led 

to a decrease of CCL7 transcript levels in BM and Ad MSCs while it upregulated 

CCL7 transcript levels in Is MSCs. Lastly, Poly I:C-mediated double stimulation 

increased CCL7 transcript levels in BM and Is MSCs while it decreased CCL7 

transcript levels in Ad MSCs.  

CCL20 transcript levels were almost undetectable under resting conditions, with 

2(-ΔCT) ≤ 0.00059, but inflammatory stimulation led to substantial transcript 

expression levels in MSCs from the three sources (Figure 8-2, E). After 72 hours 

of stimulation (Condition 1), cytokine-mediated licensing led to an increase of 

CCL20 transcript levels in BM and Is MSCs while it produced a decrease in Ad 

MSCs. 24 hours after stimulation with the cytokine cocktail (Condition 2), MSCs 

from the three tissues massively upregulated their CCL20 transcript levels, with 

fold changes of up to 630 in BM MSCs. A second stimulation with the cytokine 

cocktail 48 hours after the first stimulation (Condition 3) was able to induce the 

transcription of CCL20 in MSCs from every source, however, the second 

stimulation was not able to match the transcript levels of CCL20 found in 

Condition 2 in BM and Is MSC, while Ad MSCs transcribed similar amounts to 

Condition 2. 72 hours LPS-mediated stimulation (Condition 1) led to the 

upregulation of the transcript levels in Is MSCs but had barely no effect in BM 

and Ad MSCs; however, 24 hours LPS-mediated stimulation (Condition 2) led to 

the upregulation of transcript levels in MSCs from the three sources. Once again, 

a second stimulation with LPS 48 hours after the first stimulation (Condition 3) 

was able to induce the production of CCL20 in MSCs from every source but the 

levels produced could not match the ones from Condition 2 except for BM MSCs. 

72 hours of LTA-mediated stimulation (Condition 1) led to no effect in BM MSCs 

and to a reduction of the transcript levels of CCL20 in Is and Ad MSCs. 24 hours 

stimulation (Condition 2), on the contrary, led to an upregulation of CCL20 

transcript in BM and Ad MSCs, while Is MSCs produced less transcript levels. 

Double stimulation of the cells (Condition3) with LTA produced a slight 

upregulation in BM MSCs, a downregulation in Is MSCs and led to no effect on the 
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transcript levels of CCL20 in Ad MSCs. 72 hours of Poly I:C-mediated stimulation 

led to a slight upregulation on BM MSCs while it had no significant effect on 

CCL20 transcript levels in Is and Ad MSCs. 24 hours stimulation (Condition 2) led 

to an upregulation in MSCs from every source while double stimulation with Poly 

I:C led to an upregulation in BM and Is MSCs that did not match the transcript 

levels produced by these cells after 24 hours of stimulation (Condition 2). Double 

stimulation with Poly I:C produced a downregulation of CCL20 transcript levels 

to almost undetectable amounts.  
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Figure 8-2. Inflammatory agent, repetitive stimulus and MSC tissue origin impacts CC 
chemokine transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
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IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate CCL transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Each bar represents an n of 4 independent experiments and is graphed as mean ± 
SEM. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Statistically 
significant differences are marked with a colour code in Table 4-7.  

 

Table 8-1. Fold change in CC chemokine transcript levels of cytokine, LPS, LTA or Poly I:C-
mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
Following the experimental set up explained in Figure 8-2, fold change in transcript levels of CC 
chemokines is represented as mean of fold change ± standard deviation. One Way ANOVA with 
Tukey’s multiple comparisons post-test was performed to compare all MSC sources and the 
different conditions. p = 0.05 was considered the limit for statistical significance. Statistically 
significant differences are marked with a colour code, where p < 0.05 is represented by green, p < 
0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by 
red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CCL2 

1 

Cyt 1.84 ± 1.43 8.07 ± 1.77 0.51 ± 0.11 

LPS 0.71 ± 0.56 4.58 ± 2.60 1.21 ± 1.04 

LTA 0.75 ± 0.15 2.67 ± 1.79 0.56 ± 0.06 

Poly I:C 0.89 ± 0.33 2.66 ± 0.62 0.41 ± 0.03 

2 

Cyt 4.24 ± 1.14 22.93 ± 5.23 6.77 ± 1.70 

LPS 0.98 ± 0.29 10.01 ± 3.32 6.71 ± 1.76 

LTA 1.32 ± 0.36 1.02 ± 0.15 3.21 ± 0.60 

Poly I:C 5.39 ± 1.85 10.97 ± 5.25 2.88 ± 0.56 

3 

Cyt 1.38 ± 0.77 5.02 ± 1.31 202.76 ± 51.81 

LPS 1.26 ± 0.51 3.19 ± 1.18 11.66 ± 2.49 

LTA 0.82 ± 0.53 0.80 ± 0.09 5.01 ± 1.65 

Poly I:C 2.28 ± 0.79 4.96 ± 1.86 4.47 ± 1.76 

CCL3 

1 

Cyt 0.27 ± 0.07 1.02 ± 0.24 1.26 ± 0.45 

LPS 0.50 ± 0.03 1.03 ± 0.75 0.76 ± 0.31 

LTA 0.89 ± 0.14 0.24 ± 0.04 0.73 ± 0.19 

Poly I:C 0.22 ± 0.03 0.27 ± 0.07 0.30 ± 0.10 

2 

Cyt 1.23 ± 0.50 3.57 ± 1.01 0.36 ± 0.06 

LPS 0.88 ± 0.16 3.06 ± 0.97 0.56 ± 0.16 

LTA 1.04 ± 0.27 0.45 ± 0.21 0.51 ± 0.08 

Poly I:C 0.61 ± 0.33 0.82 ± 0.25 0.32 ± 0.06 

3 

Cyt 0.64 ± 0.35 1.21 ± 0.30 2.88 ± 0.69 

LPS 1.14 ± 0.14 1.18 ± 0.43 0.57 ± 0.15 

LTA 1.16 ± 0.37 1.22 ± 1.37 0.70 ± 0.22 

Poly I:C 1.13 ± 0.13 0.52 ± 0.12 0.84 ± 0.52 

CCL5 1 Cyt 11.59 ± 10.85 7.35 ± 2.09 10.95 ± 3.50 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LPS 4.58 ± 4.07 96.57 ± 22.51 2.63 ± 0.41 

LTA 0.25 ± 0.20 0.70 ± 0.30 0.46 ± 0.20 

Poly I:C 107.27 ± 97.50 5.82 ± 1.15 7.86 ± 2.49 

2 

Cyt 48.22 ± 45.00 29.01 ± 11.82 9.58 ± 1.87 

LPS 70.79 ± 63.95 29.90 ± 10.46 16.00 ± 5.69 

LTA 1.61 ± 1.53 0.35 ± 0.07 104.45 ± 33.37 

Poly I:C 138.31 ± 134.11 177.83 ± 38.71 52.32 ± 16.60 

3 

Cyt 10.25 ± 8.63 5.92 ± 1.49 419.49 ± 93.64 

LPS 10.17 ± 9.13 13.12 ± 6.50 2.83 ± 1.06 

LTA 1.22 ± 1.18 0.64 ± 0.55 0.56 ± 0.26 

Poly I:C 208.49 ± 195.87 117.21 ± 39.74 23.07 ± 23.86 

CCL7 

1 

Cyt 0.39 ± 0.30 1.82 ± 2.02 1.62 ± 0.86 

LPS 0.23 ± 0.14 4.56 ± 5.13 0.90 ± 0.47 

LTA 0.22 ± 0.10 2.30 ± 2.68 0.95 ± 0.46 

Poly I:C 0.33 ± 0.22 0.73 ± 0.49 0.66 ± 0.32 

2 

Cyt 1.29 ± 0.70 5.27 ± 5.15 3.77 ± 2.14 

LPS 1.14 ± 0.20 7.54 ± 6.36 6.60 ± 2.51 

LTA 0.87 ± 0.08 1.85 ± 2.26 4.59 ± 2.26 

Poly I:C 0.88 ± 0.68 13.03 ± 17.73 3.38 ± 1.83 

3 

Cyt 0.55 ± 0.07 2.87 ± 3.03 30.78 ± 15.81 

LPS 1.72 ± 0.72 6.00 ± 7.25 2.53 ± 1.32 

LTA 0.86 ± 0.67 3.06 ± 3.48 0.92 ± 0.48 

Poly I:C 1.58 ± 0.91 5.10 ± 5.83 0.09 ± 0.04 

CCL20 

1 

Cyt 4.23 ± 0.74 8.74 ± 7.80 0.18 ± 0.14 

LPS 2.45 ± 1.14 28.10 ± 13.76 2.13 ± 1.91 

LTA 1.17 ± 0.63 0.35 ± 0.25 0.02 ± 0.01 

Poly I:C 2.19 ± 0.50 0.68 ± 0.47 0.59 ± 0.57 

2 

Cyt 631.34 ± 148.34 19.27 ± 2.37 470.60 ± 222.05 

LPS 42.76 ± 42.62 7.47 ± 2.27 14.68 ± 6.22 

LTA 64.25 ± 66.43 0.57 ± 0.25 13.20 ± 4.91 

Poly I:C 45.35 ± 26.57 8.32 ± 6.09 5.25 ± 2.10 

3 

Cyt 27.91 ± 26.21 5.21 ± 0.89 298.33 ± 107.66 

LPS 87.39 ± 80.84 4.40 ± 1.63 5.93 ± 2.20 

LTA 8.18 ± 7.03 0.12 ± 0.15 1.01 ± 0.35 

Poly I:C 36.44 ± 30.10 5.21 ± 2.65 0.00 ± 0.00 

 

8.1.2 Transcription of CXC chemokines under resting and 
inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, CXC 

chemokines with the exception of CXCL1, which was transcribed by BM MSCs 

(Figure 8-3). A pattern of transcriptional upregulation was observed in CXCL1 

(Figure 8-3, A), CXCL2 (B), CXCL5 (C), CXCL10 (D) and CXCL16 (F) after licensing 
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in every condition, while stimulation of MSCs led to the downregulation of 

CXCL12 (E). However, these chemokines were differentially regulated in MSCs 

according to their tissue of origin and licensing agent.  

CXCL1, CXCL5, CXCL10 and CXCL16 chemokine transcript levels increased 24 

hours after stimulation (Condition 2) in MSCs from every tissue source; however, 

this upregulation was not sustained, as cells harvested 72 hours after licensing 

(Condition 1) showed a decrease in CC chemokines transcript levels. CXCL2 

chemokine transcript levels increased after 24 hours stimulation (Condition 2) in 

MSCs from every tissue source. However, while this upregulation was not 

sustained in BM and Is MSCs, Ad MSCs expressed higher amounts of CXCL2 

transcript levels 72 hours after licensing (Condition 1). A second stimulation 48 

hours after the first stimulation (Condition 3) was able to induce the 

transcription of CXCL1, CXCL2, CXCL5, CXCL10 and CXCL16 chemokines in MSCs 

from the three sources, however, the second stimulation was not able to match 

the transcript levels of CXC chemokines found in Condition 2 in MSCs from every 

source with the exception of Ad MSCs after cytokine-mediated stimulation, 

where these cells massively increased the transcript levels of CXC chemokine 

ligands. CXCL12 transcriptional levels were very dependent on MSC source and 

licensing agent; cytokine-mediated licensing produced a downregulation of the 

transcriptional levels in every condition in BM and Is MSCs, while it produced an 

upregulation in Ad MSCs. LPS-mediated licensing produced a downregulation of 

CXCL12 levels in BM and Ad MSCs, while it was able to induce the transcription 

levels in Is MSCs after 72 hours stimulation (Condition 1). LTA licensing led to a 

trend of upregulation in BM MSCs while it produced no statistically significant 

effect on Is and Ad MSCs. Lastly, Poly I:C stimulation produced a downregulation 

in BM MSCs, no variation in Is MSCs and a downregulation in Ad MSCs which was 

overcome after a double stimulation (Condition 3). Fold changes of 

transcriptional regulation upon licensing of MSCs are specified in Table 8-2.  

As previously described, BM MSCs had the highest CXCL1 transcript levels under 

resting conditions (Figure 8-3, A). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to no variation in the transcript levels in BM 

MSCs, an increase in Is MSCs and to a decrease in Ad MSCs. 24 hours after 

stimulation with the cytokine cocktail (Condition 2), MSCs from the three tissues 
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upregulated their CXCL1 transcript levels, with Is MSCs expressing the highest 

levels. A second stimulation with the cytokine cocktail 48 hours after the first 

stimulation (Condition 3) was able to induce the production of CXCL1 in MSCs 

from the three sources; however, the second stimulation was not able to match 

the transcript levels of CXCL1 found in Condition 2 in BM and Is MSCs. Ad MSCs, 

at the contrary, produced 57 times more CXCL1 after the second stimulation 

than Ad MSCs under resting conditions or 11 times more than in Condition 2. 

After 72 hours of stimulation with LPS, LTA or Poly I: C (Condition 1), CXCL1 

levels were almost undetectable in BM and Ad MSCs, while no variation was 

observed in Is MSCs. 24 hours stimulation with LPS produced a statistically non-

significant upregulation in MSCs from every source while double stimulation 

(Condition 3) with LPS led to higher transcript levels of CXCL1 in BM and Ad MSCs 

compared to Condition 1, but lower levels than those obtained by the cells 

harvested 24 hours after stimulation. On the contrary, double stimulation of Ad 

MSCs with LPS (Condition 3) produced an increase of CXCL1 transcript levels.  

As previously described, BM MSCs had the highest CXCL2 transcript levels under 

resting conditions (Figure 8-3, B). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to no variation in the transcript levels of CXCL2 

in BM MSCs, a decrease in Is MSCs and to 64 times increase in Ad MSCs. On the 

contrary, 24 hours stimulation (Condition 2) led to a transcriptional upregulation 

in MSCs from every tissue source; however, the upregulation in Ad MSCs is 18 

times lower than in the previous condition. A second stimulation with the 

cytokine cocktail 48 hours after the first stimulation (Condition 3) was able to 

induce the production of CXCL2 in MSCs from every source, but the transcript 

levels produced did not match the ones from Condition 2 for BM and Is MScs, 

while for Ad MSCs the CXCL2 transcript levels were higher than in Conditions 1 

and 2. 24 hours of LPS licensing (Condition 1) led to the increase of CXCL2 levels 

in BM and Is MSCs, while it led to a decrease in Ad MSCs. Analysis of CXCL2 

transcript levels after 72 hours of LPS licensing showed a bigger upregulation in 

BM MSCs compared to the previous condition, while Is MSCs upregulated the 

transcription of CXCL2 but could not match the expression levels achieved in 

Condition 1; Ad MSCs upregulated their CXCL2 transcript levels but these were 

still very low. After 72 hours of stimulation (Condition 1), LTA-mediated 

licensing led to no variation in the transcript levels of CXCL2 in BM MSCs and to a 
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decrease in Is and Ad MSCs, while 24 hours of licensing led to upregulation in BM 

and Ad MSCs and to no variation in Is MSCs. A second stimulation with the 

cytokine cocktail 48 hours after the first stimulation (Condition 3) led to 

upregulation in BM MSCs, to downregulation in Is MSCs and to no variation in Ad 

MSCs. 72 hours of Poly I:C stimulation (Condition 1) led to a decrease of CXCL2 

transcript levels in MSCs from every source while 24 hours of licensing (Condition 

2) led to an increase of CXCL2 transcript levels in MSCs from every source. 

Double stimulation of MSCs (Condition 3) led to no variation in BM MSCs and to a 

statistically non-significant increase in Is and Ad MSCs.  

As previously described, CXCL5 expression levels were almost undetectable 

under resting conditions in Is and Ad MSCs, while BM MSCs had the highest CXCL5 

transcript levels (Figure 8-3, C). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to a decrease in BM MSCs, an increase in Is MSCs 

and no variation in Ad MSCs. 24 hours after stimulation with the cytokine 

cocktail (Condition 2), MSCs from the three tissues upregulated their CXCL5 

transcript levels, with BM MSCs expressing the highest levels. A second 

stimulation with the cytokine cocktail 48 hours after the first stimulation 

(Condition 3) was able to induce the production of CXCL5 in MSCs from the three 

sources; however, the second stimulation was not able to match the transcript 

levels of CXCL5 found in Condition 2 in BM and Is MSCs. Ad MSCs, at the contrary, 

produced 400 times more CXCL5 after the second stimulation than Ad MSCs 

under resting conditions or 27 times more than in Condition 2. After 72 hours of 

stimulation with LPS (Condition 1), CXCL5 levels were downregulated to almost 

undetectable levels in BM MSCs, while Is and Ad MSCs upregulated their levels 

even if they were still very low. 24 hours stimulation with LPS produced a 

statistically non-significant upregulation in BM and Is MSCs while Ad MSCs 

upregulated their CXCL5 transcript levels in a statistically significant manner. A 

second stimulation of MSCs 48 hours after the first one (Condition 3) with LPS led 

to higher transcript levels of CXCL5 in MSCs from every source compared to 

Condition 1, but lower levels than those obtained by the cells harvested 24 hours 

after stimulation. After 72 hours of stimulation with LTA (Condition 1), CXCL5 

levels were downregulated to almost undetectable levels in MSCs from every 

source, while 24 hours licensing with LTA produced no variation in BM MSCs but 

an upregulation of the transcript levels in Is and Ad MSCs. A second LTA 
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stimulation 48 hours after the first one led to a downregulation of CXCL5 

transcript levels in MSCs from every source. After 72 hours of stimulation with 

Poly I:C (Condition 1), CXCL5 levels were downregulated to almost undetectable 

levels in MSCs from every source, with BM MSCs showing the lowest levels of 

CXCL5 transcript. 24 hours licensing with Poly I:C (Condition 2) produced a 

similar downregulation as Condition 1 in BM MSCs, had no effect in Is MSCs but 

led to an upregulation of the transcript levels in Ad MSCs. A second Poly I:C 

stimulation 48 hours after the first one led to a downregulation of CXCL5 

transcript levels in BM MSCs while it produced an upregulation in Is and Ad MSCs 

bigger than the one in Condition 2.  

CXCL10 levels were very low in MSCs from all the tissue sources under resting 

conditions, with Is MSCs having the highest transcript levels (Figure 8-3, D). After 

72 hours of stimulation (Condition 1), cytokine-mediated licensing led to a 

decrease in the transcript levels in BM and Is MSCs, while it produced no 

variation in Ad MSCs. 24 hours after stimulation with the cytokine cocktail 

(Condition 2), MSCs from the three tissues upregulated their CXCL10 transcript 

levels, with Is MSCs expressing the highest levels. A second stimulation with the 

cytokine cocktail 48 hours after the first stimulation (Condition 3) was able to 

induce the production of CXCL10 in MSCs from the three sources, however, the 

second stimulation was not able to match the transcript levels of CXCL10 found 

in Condition 2 in BM and Is MSCs. Ad MSCs, at the contrary, produced 900 times 

more CXCL10 after the second stimulation than Ad MSCs under resting conditions 

or 18 times more than in Condition 2. After 72 hours of stimulation with LPS 

(Condition 1), CXCL10 levels were downregulated to almost undetectable levels 

in BM and Ad MSCs, while Is MSCs upregulated their levels even if they were still 

very low. 24 hours stimulation with LPS produced an upregulation in MSCs from 

the three sources. A second stimulation of MSCs 48 hours after the first one 

(Condition 3) with LPS led to no variation in CXCL10 transcript levels in BM and Is 

MSCs and to a small downregulation in Ad MSCs. After 72 hours of stimulation 

with LTA (Condition 1), CXCL10 levels were downregulated to almost 

undetectable levels in BM and Ad MSCs, while it produced no effect on Is MSCs. 

24 hours licensing (Condition 2) with LTA produced no variation in BM and Is 

MSCs but an upregulation of the transcript levels on Is MSCs. Double stimulation 

of MSCs (Condition 3) with LTA led to a downregulation in BM MSCs and to an 
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upregulation in Is and Ad MSCs. 72 hours of Poly I:C-mediated licensing 

(Condition 1) led to downregulation of CXCL10 transcript levels in MSCs from 

every source. After 24 hours of licensing, MSCs from every source upregulated 

their transcript levels but this upregulation was only significant in BM MSCs. A 

second stimulation of MSCs 48 hours after the first one (Condition 3) with Poly 

I:C was able to induce the production of CXCL10 in BM and Is MSCs; however, the 

double stimulation was not able to match the transcript levels of CXCL10 found 

in Condition 2. On the contrary, double stimulation of Ad MSCs with Poly I:C led 

to a downregulation of the transcript levels.  

As previously mentioned, during resting conditions BM MSCs were able to 

produce significantly higher transcript amounts of CXCL12 than Is and Ad MSCs, 

which produced very little (Figure 8-3, E). After 72 hours of stimulation 

(Condition 1), cytokine-mediated licensing led to a decrease of the transcript 

levels in BM and Is MSCs, while it produced an increase in Ad MSCs. 24 hours 

after stimulation with the cytokine cocktail (Condition 2), BM and Is MSCs had 

downregulated their transcript levels and this downregulation was more 

pronounced in Is MSCs compared to Condition 1. On the other hand, Ad MSCs 

upregulated their CXCL12 transcript levels after 24 hours licensing with the 

cytokine cocktail. A second stimulation with the cytokine cocktail 48 hours after 

the first stimulation (Condition 3) was able to increase the transcript levels 

obtained after a single stimulation; however, despite being higher than in 

Conditions 1 and 2, the transcript levels found in BM and Is MSCs were still lower 

than in resting cells. 24 hours stimulation with the cytokine cocktail led to 

doubling the transcript levels of Ad MSCs, while the double stimulation was able 

to increase five times the amount of CXCL12 transcript in Ad MSCs. After 72 

hours of stimulation with LPS (Condition 1), CXCL12 levels were downregulated 

in BM and Ad MSCs, while Is MSCs upregulated their levels; 24 hours stimulation 

produced a downregulation in BM MSCs and an upregulation in Is and Ad MSCs. A 

second stimulation of MSCs 48 hours after the first one (Condition 3) with LPS led 

to a downregulation of CXCL12 transcript levels in BM and Ad MSCs and to a 

small upregulation in Is MSCs. 72 hours of licensing with LTA (Condition 1) 

produced no effect on CXCL12 transcript levels in BM and Ad MSCs, while it 

produced an upregulation in Is MSCs. 24-hour licensing (Condition 2) with LTA 

produced a small upregulation in BM and Is MSCs and no variation in Ad MSCs, 
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while a second stimulation 48 hours after the first one (Condition 3) led to an 

upregulation in BM and Ad MSCs and to a downregulation in Is MSCs. 72 hours of 

Poly I:C-mediated licensing (Condition 1) led to downregulation of CXCL12 

transcript levels in BM and Ad MSCs while it led to an upregulation in Is MSCs. 24 

hours after Poly I:C licensing (Condition 2) CXCL12 transcript levels were 

downregulated in BM MSCs, but the transcript levels were not as low as the ones 

obtained on Condition 1; Is MSCs had upregulated their CXCL12 transcript levels 

to the same level as in Condition 1 and Ad MSCs showed no variation on their 

transcript levels. A second stimulation of MSCs 48 hours after the first one 

(Condition 3) with Poly I:C was able to induce the downregulation of CXCL12 

transcript level in BM MSCs, while it produced an upregulation of CXCL12 

transcript level in Is and Ad MSCs.  

Lastly, CXCL16 transcript was barely expressed by MSCs of every source during 

resting conditions (Figure 8-3, F). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing led to an increase of the transcript level in BM and 

Ad MSCs, while it produced a decrease in Is MSCs. 24 hours after stimulation with 

the cytokine cocktail (Condition 2), MSCs from every source had upregulated 

their CXCL16 transcript level, with Ad MSCs expressing the highest transcript 

levels. A second stimulation with the cytokine cocktail 48 hours after the first 

stimulation (Condition 3) was able to increase the transcript levels of CXCL16 in 

MSCs from the three sources; however, the second stimulation was not able to 

match the transcript levels of CXCL16 found in Condition 2 in BM and Is MSCs. Ad 

MSCs, on the contrary, were able to produce even higher CXCL16 transcript 

levels after a second stimulation with the cytokine cocktail. After 72 hours of 

stimulation with LPS (Condition 1), CXCL16 levels were upregulated in BM MSCs, 

no variation was observed in Is MSCs and CXCL16 transcript levels were 

downregulated in Ad MSCs. 24 hours licensing with LPS produced an upregulation 

in MSCs from every source while a second stimulation of MSCs 48 hours after the 

first one (Condition 3) with LPS led to an upregulation of CXCL16 transcript 

levels in BM and Ad MSCs and to a small downregulation in Is MSCs. 72 hours of 

LTA-mediated stimulation (Condition 1) produced an upregulation of CXCL16 

transcript levels in BM MSCs, while it produced a downregulation of the 

transcript levels in Ad and Is MSCs. 24 hours licensing (Condition 2) with LTA 

produced an upregulation in BM and Ad MSCs and a small downregulation in Is 
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MSCs. A second stimulation 48 hours after the first one (Condition 3) led to an 

upregulation of CXCL16 in MSCs from every source, but this upregulation was 

only significant in BM MSCs. 72 hours of Poly I:C-mediated licensing (Condition 1) 

led to no variation in BM MSCs while it led to a downregulation of CXCL16 

transcript levels in Is and Ad MSCs. 24 hours after Poly I:C licensing (Condition 2) 

CXCL16 transcript levels were upregulated in a statistically non-significant 

manner in MSCs from every source. A second stimulation of MSCs 48 hours after 

the first one (Condition 3) with Poly I:C was able to induce the upregulation of 

CXCL16 transcript levels in MSCs from every source in similar levels as the ones 

observed in Condition 2.  
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Figure 8-3. Inflammatory agent, repetitive stimulus and MSC tissue origin impacts CXCL 
chemokine transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with a cocktail of cytokines (40 ng/ mL of IFN-ϒ, 
TNF-α and IL-1β), or 100 ng/ mL LPS, or 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated cells 
were left growing in MSC culture medium as a control. Three different licensing conditions were 
tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice with 
PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate CXCL transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Each bar represents an n of 4 independent experiments and is graphed as mean ± 
SEM. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Statistically 
significant differences are marked with a colour code in Table 4-8.  
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Table 8-2. Fold change in CXC chemokine transcript levels of cytokine, LPS, LTA or Poly 
I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the same 
source.  
Following the experimental set up explained in Figure 8-3, fold change in transcript levels of CXC 
chemokines is represented as mean of fold change ± standard deviation. One Way ANOVA with 
Tukey’s multiple comparisons post-test was performed to compare all MSC sources and the 
different conditions. p = 0.05 was considered the limit for statistical significance. Statistically 
significant differences are marked with a colour code, where p < 0.05 is represented by green, p < 
0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is represented by 
red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CXCL1 

1 

Cyt 3.70 ± 3.41 3.04 ± 3.73 0.09 ± 0.06 

LPS 0.35 ± 0.25 0.78 ± 0.87 0.23 ± 0.06 

LTA 0.09 ± 0.07 1.94 ± 2.28 0.11 ± 0.04 

Poly I:C 0.06 ± 0.05 2.11 ± 2.17 0.13 ± 0.03 

2 

Cyt 13.66 ± 10.35 7.77 ± 7.58 2.56 ± 0.23 

LPS 1.78 ± 0.56 5.05 ± 5.82 1.96 ± 0.41 

LTA 0.62 ± 0.10 0.93 ± 0.64 0.95 ± 0.06 

Poly I:C 1.01 ± 0.77 1.21 ± 1.20 0.91 ± 0.12 

3 

Cyt 2.49 ± 0.30 3.19 ± 2.58 57.55 ± 4.31 

LPS 2.25 ± 1.25 1.20 ± 0.63 1.58 ± 0.09 

LTA 0.18 ± 0.11 2.41 ± 2.56 0.89 ± 0.19 

Poly I:C 0.16 ± 0.08 0.44 ± 0.29 1.45 ± 0.22 

CXCL2 

1 

Cyt 0.95 ± 0.20 0.70 ± 0.41 64.35 ± 10.64 

LPS 3.24 ± 0.66 13.12 ± 12.57 0.52 ± 0.17 

LTA 1.01 ± 0.13 0.61 ± 0.22 0.33 ± 0.21 

Poly I:C 0.69 ± 0.28 0.40 ± 0.15 0.19 ± 0.08 

2 

Cyt 7.14 ± 1.15 10.04 ± 3.51 3.18 ± 0.49 

LPS 15.99 ± 4.05 8.70 ± 2.38 3.63 ± 1.65 

LTA 3.03 ± 0.65 0.98 ± 0.71 2.70 ± 0.89 

Poly I:C 2.56 ± 1.19 2.91 ± 0.50 1.40 ± 0.46 

3 

Cyt 2.21 ± 0.95 5.49 ± 1.02 110.74 ± 34.09 

LPS 12.61 ± 2.99 1.95 ± 0.49 1.34 ± 0.53 

LTA 2.05 ± 1.16 0.52 ± 0.50 0.97 ± 0.42 

Poly I:C 1.20 ± 0.14 1.86 ± 0.44 3.12 ± 1.31 

CXCL5 

1 

Cyt 0.41 ± 0.15 27.08 ± 24.87 0.97 ± 0.50 

LPS 0.05 ± 0.01 5.60 ± 4.80 4.38 ± 0.98 

LTA 0.01 ± 0.00 0.40 ± 0.17 0.51 ± 0.09 

Poly I:C 0.01 ± 0.00 0.89 ± 0.62 0.51 ± 0.12 

2 

Cyt 6.86 ± 1.60 182.44 ± 101.70 26.79 ± 4.95 

LPS 2.27 ± 2.22 13.58 ± 4.69 28.05 ± 10.42 

LTA 1.09 ± 1.06 1.40 ± 1.15 2.96 ± 0.48 

Poly I:C 0.02 ± 0.00 1.46 ± 1.33 2.30 ± 0.46 

3 

Cyt 2.22 ± 1.94 108.75 ± 37.36 402.41 ± 86.69 

LPS 1.85 ± 1.62 14.43 ± 6.41 19.12 ± 4.38 

LTA 0.14 ± 0.13 0.10 ± 0.05 0.65 ± 0.20 

Poly I:C 0.13 ± 0.10 1.68 ± 1.53 26.34 ± 6.16 

CXCL10 1 
Cyt 0.11 ± 0.06 0.19 ± 0.15 1.02 ± 0.63 

LPS 0.43 ± 0.31 11.88 ± 15.22 0.31 ± 0.08 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LTA 0.50 ± 0.21 1.42 ± 1.21 0.48 ± 0.18 

Poly I:C 0.69 ± 0.23 0.62 ± 0.50 0.91 ± 0.46 

2 

Cyt 10.16 ± 5.26 19.21 ± 10.64 45.62 ± 21.79 

LPS 1.64 ± 0.46 1.23 ± 1.06 3.65 ± 1.84 

LTA 0.99 ± 0.47 1.14 ± 0.63 12.40 ± 6.16 

Poly I:C 97.19 ± 36.00 3.61 ± 2.02 6.92 ± 2.85 

3 

Cyt 4.09 ± 2.34 6.51 ± 5.88 913.91 ± 470.61 

LPS 1.07 ± 0.69 1.21 ± 0.58 0.64 ± 0.25 

LTA 0.80 ± 0.38 2.73 ± 3.09 1.62 ± 1.12 

Poly I:C 30.72 ± 14.62 2.58 ± 1.92 0.15 ± 0.04 

CXCL12 

1 

Cyt 0.13 ± 0.09 0.87 ± 0.90 2.87 ± 1.41 

LPS 0.27 ± 0.11 5.88 ± 1.89 0.66 ± 0.23 

LTA 1.15 ± 0.92 5.47 ± 4.99 1.02 ± 0.46 

Poly I:C 0.17 ± 0.14 2.68 ± 1.59 0.41 ± 0.23 

2 

Cyt 0.16 ± 0.12 0.36 ± 0.30 2.09 ± 0.86 

LPS 0.39 ± 0.18 1.48 ± 1.62 1.54 ± 0.60 

LTA 1.98 ± 1.13 1.43 ± 0.75 1.14 ± 0.83 

Poly I:C 0.61 ± 0.39 2.69 ± 2.03 1.04 ± 0.57 

3 

Cyt 0.22 ± 0.19 0.81 ± 0.59 5.50 ± 2.08 

LPS 0.63 ± 0.38 1.70 ± 0.41 0.53 ± 0.27 

LTA 1.88 ± 1.43 0.44 ± 0.38 2.20 ± 1.04 

Poly I:C 0.32 ± 0.23 1.95 ± 1.89 3.01 ± 1.13 

CXCL16 

1 

Cyt 2.95 ± 0.24 0.35 ± 0.23 1.81 ± 0.92 

LPS 5.07 ± 2.20 1.15 ± 0.47 0.70 ± 0.31 

LTA 8.30 ± 2.33 0.52 ± 0.42 0.81 ± 0.50 

Poly I:C 1.20 ± 0.47 0.31 ± 0.12 0.46 ± 0.23 

2 

Cyt 7.59 ± 1.34 5.13 ± 2.00 43.11 ± 16.81 

LPS 4.20 ± 0.62 1.52 ± 0.90 4.96 ± 3.71 

LTA 10.53 ± 3.08 0.54 ± 0.31 1.89 ± 0.97 

Poly I:C 3.25 ± 2.57 1.87 ± 1.42 1.57 ± 0.75 

3 

Cyt 5.30 ± 1.62 5.01 ± 3.71 62.89 ± 24.29 

LPS 7.48 ± 2.10 0.74 ± 0.44 1.57 ± 0.61 

LTA 13.80 ± 1.23 2.68 ± 3.20 1.29 ± 0.66 

Poly I:C 2.26 ± 0.14 1.04 ± 0.59 2.33 ± 1.11 

 

8.1.3 Transcription of CX3CL1 chemokine and atypical chemokine 
receptor ACKR4 under resting and inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, 

CX3CL1 (Figure 8-4, A), while ACKR4 (Figure 8-4, B) was transcribed at higher 

rates, but in both cases transcript level variations were not observed among the 

MSCs isolated from the different sources under resting conditions. However, in 

both cases tissue of origin and licensing agent did have an influence in the levels 
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of transcript levels after inflammatory stimulation. CX3CL1 showed a pattern of 

transcriptional upregulation after licensing while ACKR4 showed a pattern of 

transcriptional downregulation. With a few exceptions, CX3CL1 transcript levels 

increase after a 24 hours stimulation (Condition 2) in MSCs from every tissue 

source; however, this upregulation was not sustained, as cells harvested 72 

hours after licensing (Condition 1) showed a decrease in the transcript levels of 

CX3CL1 compared to Condition 2. A second stimulation 48 hours after the first 

stimulation (Condition 3) was able to induce the transcription of CX3CL1 in MSCs 

from the three sources; however, the second stimulation was not able to match 

the transcript levels observed in Condition 2. Overall, ACKR4 transcript levels 

decreased after a 24-hour stimulation (Condition 2) in MSCs from every tissue 

source; however, this downregulation was not sustained, as even if the 

downregulation was still notable, cells harvested 72 hours after licensing 

(Condition 1) showed higher transcript levels than the ones observed 24 hours 

after licensing. A second stimulation 48 hours after the first stimulation 

(Condition 3) was able to sustain the downregulation in MSCs from the three 

sources as ACKR4 transcript levels were like the ones observed 24 hours after 

licensing. Fold changes of transcriptional regulation upon licensing of MSCs are 

specified in Table 8-3. 

As previously mentioned, during resting conditions BM, Is and Ad MSCs 

transcribed very little CX3CL1 (Figure 8-4, A). After 72 hours of stimulation 

(Condition 1), cytokine-mediated licensing led to an increase in the transcript 

levels in MSCs from all sources, where Ad MSCs had the highest transcript levels. 

24 hours after stimulation with the cytokine cocktail (Condition 2), MSCs from 

the three sources had upregulated their transcript levels, but it was only 

statistically significant in BM and Ad MSCs. A second stimulation with the 

cytokine cocktail 48 hours after the first stimulation (Condition 3) was able to 

induce the transcription of CX3CL1 in MSCs from the three sources; however, the 

second stimulation was not able to match the transcript levels observed in 

Condition 2. 72 hours after LPS licensing BM and Is MSCs had upregulated their 

CX3CL1 transcript levels, while Ad MSCs had downregulated their transcript 

levels. 24 hours stimulation with LPS led to a downregulation in BM and Ad MSCs 

while it produced no variation in Is MSCs transcript levels; a second stimulation 

of MSCs 48 hours after the first one (Condition 3) with LPS led to a 
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downregulation of CX3CL1 transcript levels in MSCs from the three sources. 72 

hours of licensing with LTA (Condition 1) produced an upregulation of CX3CL1 

transcript levels in BM and Is MSCs, while it produced no effect in Ad MSCs. 24-

hour licensing (Condition 2) with LTA produced an upregulation of CX3CL1 

transcript levels in BM and Is MSCs; however, transcript levels were not as high 

as in Condition 1. 24 hours LTA licensing produced a downregulation in Ad MSCs. 

A second stimulation 48 hours after the first one (Condition 3) led to no variation 

in BM MSCs and to upregulation of CX3CL1 transcript levels in Is and Ad MSCs. 72 

hours of Poly I:C-mediated licensing (Condition 1) led to downregulation of 

CX3CL1 transcript levels in BM and Ad MSCs while it led to an upregulation in Is 

MSCs. 24 hours after Poly I:C licensing (Condition 2) CX3CL1 transcript levels 

were upregulated in BM and Is MSCs, while Ad MSCs had downregulated their 

CX3CL1 transcript levels. A second stimulation of MSCs 48 hours after the first 

one (Condition 3) with Poly I:C was able to induce the downregulation of CX3CL1 

transcript levels in BM MSCs, while it produced an upregulation of CX3CL1 

transcript levels in Is and Ad MSCs. 

As indicated previously, during resting conditions BM, Is and Ad MSCs transcribed 

very little ACKR4 (Figure 8-4, B). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing produced a downregulation in the transcript levels 

of BM and Is MSCs, while it produced a small upregulation in Ad MSCs. 24 hours 

after stimulation with the cytokine cocktail (Condition 2), MSCs from the three 

sources had downregulated their transcript levels. After the double stimulation 

with the cytokine cocktail (Condition 3), ACKR4 transcript levels remained 

downregulated at the same level as in Condition 2 in MSCs from the three 

sources. 72 hours after LPS licensing, BM and Is MSCs had downregulated their 

transcript levels, while Ad MSCs showed no variation in their ACKR4 transcript 

levels. 24 hours stimulation with LPS led to a downregulation in MSCs from the 

three sources, but this downregulation was only significant in BM and Is MSCs. 

After the double stimulation with LPS (Condition 3), ACKR4 transcript levels 

remained downregulated at the same level as in Condition 2 in MSCs from the 

three sources. 72 hours of licensing with LTA (Condition 1) produced a 

downregulation of ACKR4 transcript levels in BM and Is MSCs, while it produced 

no effect in Ad MSCs. 24 hours licensing (Condition 2) with LTA produced a 

downregulation in MSCs from the three sources, but this downregulation was 
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only significant in BM and Is MSCs. A second stimulation 48 hours after the first 

one (Condition 3) led to the downregulation of transcript levels in BM and Is 

MSCs, while Ad MSCs upregulated their ACKR4 transcript levels. 72 hours of Poly 

I:C-mediated licensing (Condition 1) led to a downregulation of ACKR4 transcript 

levels in MSCs from the three sources, while 24 hours after Poly I:C licensing 

(Condition 2) ACKR4 transcript levels were upregulated in MSCs from the three 

sources. Lastly, after the double stimulation with Poly I:C (Condition 3), ACKR4 

transcript levels remained downregulated at the same level as in Condition 2 in 

BM and Is MSCs, while they remained downregulated, but slightly higher, in Ad 

MSCs. 
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Figure 8-4. Inflammatory agent, repetitive stimulus and MSC tissue origin impacts CX3CL1 
and ACKR4 chemokine transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 

IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated cells 

were left growing in MSC culture medium as a control. Three different licensing conditions were 
tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice with 
PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Each bar represents an n of 4 independent experiments and is graphed as mean ± 
SEM. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Statistically 
significant differences are marked with a colour code in Table 4-9. 

 

Table 8-3. Fold change in CX3CL1 and ACKR4 transcript levels of cytokine, LPS, LTA or 
Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells from the 
same source.  
Following the experimental set up explained in Figure 8-4, fold change in transcript levels of 
CX3CL1 and ACKR4 is represented as mean of fold change ± standard deviation. One Way 
ANOVA with Tukey’s multiple comparisons post-test was performed to compare all MSC sources 
and the different conditions. p = 0.05 was considered the limit for statistical significance. 
Statistically significant differences are marked with a colour code, where p < 0.05 is represented by 
green, p < 0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is 
represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CX3CL1 

1 

Cyt 2.39 ± 0.51 2.34 ± 2.02 2.19 ± 0.73 

LPS 1.40 ± 0.10 7.44 ± 3.38 0.29 ± 0.12 

LTA 5.13 ± 3.48 2.84 ± 1.46 1.09 ± 0.75 

Poly I:C 0.49 ± 0.32 5.71 ± 1.25 0.28 ± 0.14 

2 

Cyt 7.07 ± 3.78 4.82 ± 4.06 23.71 ± 5.55 

LPS 0.61 ± 0.16 1.01 ± 0.88 0.15 ± 0.04 

LTA 2.40 ± 0.65 2.38 ± 2.75 0.24 ± 0.05 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

Poly I:C 1.74 ± 1.62 4.29 ± 3.14 0.30 ± 0.09 

3 

Cyt 1.24 ± 0.96 1.17 ± 0.80 12.29 ± 2.38 

LPS 0.73 ± 0.27 0.77 ± 0.75 0.42 ± 0.11 

LTA 1.20 ± 0.79 4.24 ± 2.95 5.63 ± 1.68 

Poly I:C 0.32 ± 0.20 1.92 ± 1.60 1.99 ± 0.43 

ACKR4 

1 

Cyt 0.02 ± 0.02 0.01 ± 0.00 1.66 ± 1.30 

LPS 0.07 ± 0.01 0.18 ± 0.09 0.85 ± 0.30 

LTA 0.16 ± 0.05 0.23 ± 0.04 0.80 ± 0.49 

Poly I:C 0.01 ± 0.00 0.82 ± 0.57 0.52 ± 0.16 

2 

Cyt 0.02 ± 0.01 0.01 ± 0.00 0.26 ± 0.14 

LPS 0.05 ± 0.02 0.08 ± 0.02 0.12 ± 0.09 

LTA 0.26 ± 0.11 0.47 ± 0.23 0.31 ± 0.18 

Poly I:C 0.03 ± 0.01 0.13 ± 0.03 0.19 ± 0.05 

3 

Cyt 0.01 ± 0.00 0.01 ± 0.00 0.29 ± 0.12 

LPS 0.18 ± 0.08 0.17 ± 0.18 0.18 ± 0.04 

LTA 0.11 ± 0.04 0.60 ± 0.11 3.15 ± 0.66 

Poly I:C 0.00 ± 0.00 0.13 ± 0.14 0.50 ± 0.16 

 

8.1.4 Transcription of the receptors of the stimulatory agents 
under resting and inflammatory conditions 

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, IL1R1 

(Figure 8-5, A), IL1R2 (B), IFNGR2 (F), TLR2 (G), TLR3 (H) and TLR4 (I), while 

TNFR1a (C), TNFR1b (D) and IFNGR1 (E) were transcribed at higher rates. In all 

the cases, transcript level variations were not observed among the MSCs isolated 

from the different sources under resting conditions. However, tissue of origin did 

influence the transcriptional regulation upon exposure to the different licensing 

agents and the different conditions. Fold changes of transcriptional regulation 

upon licensing of MSCs are summarised in Table 8-4. 

Briefly, cytokine-mediated stimulation led to the downregulation of the cytokine 

receptors (IL1R1 [Figure 8-5, A], IL1R2 [B], TNFR1a [C], TNFR1b [D], IFNGR1 [E] 

and IFNGR2 [F]) in BM and Is MSCs under all conditions. Cytokine-mediated 

stimulation downregulated the cytokine receptors in Ad MSCs too; however, this 

downregulation was not sustained 72 hours after stimulation and, in some cases, 

even led to the upregulation of the receptors. LPS and LTA were able to produce 

the upregulation of the cytokine receptors transcript levels in certain conditions 

in MSCs from the three sources. The effects of Poly I:C in the regulation of the 

cytokine receptors transcription levels was tissue specific; Poly I:C stimulation of 
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BM MSCs led to the downregulation of all the cytokine receptors but IFNGR2 in 

all the conditions tested. Poly I:C was able to downregulate the transcription of 

all the cytokine receptors but IFNGR2 in Is MSCs; however, 24 hours after the 

stimulation the downregulation was not sustained, and the transcript levels 

started increasing. The effect of Poly I:C stimulation in Ad MSCs was gene 

dependent and the effect it produced in each of the genes at the established 

time points will be described later in detail.  

LPS-mediated stimulation downregulated its receptor, TLR4, after 24 hours 

licensing in BM MSCs; however, 24 hours after the stimulation the 

downregulation was not sustained and the transcript levels started increasing 

(Figure 8-5, I). LPS produced no variation on TLR4 transcript levels after a single 

stimulation in Is MSCs; however, a second stimulation 48 hours after the first one 

downregulated the receptor transcript levels. Overall, LPS-mediated licensing 

produced no variation on TLR4 transcript levels in Ad MSCs under any condition. 

Cytokine and Poly I:C-mediated licensing were able to downregulate the 

transcription of TLR4 in BM and Is MSCs; while cytokines upregulated its 

transcription in every condition and Poly I:C was able to upregulate the 

transcription of TLR4 after a double stimulation. LTA-mediated stimulation 

produced an upregulation of TLR4 transcript levels in BM MSCs, a downregulation 

that was not sustained 72 hours after in Is MSCs and was only able to upregulate 

the transcription in Ad MSCs after a double stimulation.  

LTA-mediated stimulation upregulated its receptor, TLR2, in BM MSCs under 

every condition, while it produced no variation in Is MSCs and a small 

downregulation in Ad MSCs after a single stimulation but no variation after a 

double stimulation (Figure 8-5, G). All the licensing agents were able to increase 

the transcript levels of TLR2 in BM MSCs. LPS and Poly I:C produced no variation 

on TLR2 transcript levels in Is and Ad MSCs while cytokine-mediated licensing 

produced an upregulation after 24 hours in Is MSCs which was not sustained and 

Ad MSCs required a double stimulation to upregulate TLR2 transcript levels.  

Poly I:C-mediated stimulation downregulated its receptor, TLR3, in MSCs from 

the three sources under every condition tested. All the licensing agents were 

able to decrease the transcript levels of TLR3 in BM MSCs (Figure 8-5, H). 

Cytokine-mediated licensing downregulated TLR3 transcript levels in Is MSCs 
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under every condition while it produced an upregulation in Ad MSCs. LPS or LTA-

mediated stimulation produced a decrease on the transcript levels 24 hours after 

the first or second stimulation, while they produced an upregulation 72 hours 

later in Is MSCs. On the contrary, Ad MSCs responded to LPS or LTA licensing by 

downregulating their TLR3 receptor, but this downregulation was not sustained 

as transcription levels started increasing after 24 hours.  

As indicated previously, during resting conditions BM, Is and Ad MSCs transcribed 

very little IL1R1 and no variation in the transcript levels were observed among 

MSCs from different sources (Figure 8-5, A). After 72 hours of stimulation 

(Condition 1), cytokine-mediated licensing produced a downregulation in the 

transcript levels of BM and Is MSCs, while it produced a statistically significant 

upregulation in Ad MSCs. 24 hours after stimulation with the cytokine cocktail 

(Condition 2), BM and Is MSCs had downregulated their transcript levels, while 

Ad MSCs had upregulated their transcript levels in a smaller amount than in 

Condition 1. After the double stimulation with the cytokine cocktail (Condition 

3), IL1R1 transcript levels were downregulated in MSCs from the three sources. 

72 hours after LPS licensing, BM MSCs had downregulated their transcript levels, 

while Is and Ad MSCs had upregulated their IL1R1 transcript levels. 24-hour 

stimulation with LPS led to a downregulation of transcript levels in MSCs from 

the three sources. After the double stimulation with LPS (Condition 3) IL1R1 

transcript levels remained downregulated at the same level as in Condition 2 in 

MSCs from the three sources. 72 hours of licensing with LTA (Condition 1) 

produced a downregulation of IL1R1 transcript levels in BM MSCs, while it 

produced an upregulation in Is and Ad MSCs. 24 hours licensing (Condition 2) with 

LTA produced an upregulation in BM MSCs while it produced a downregulation in 

Is and Ad MSCs. A second stimulation 48 hours after the first one (Condition 3) 

produced no variation in BM MSCs and an upregulation in Is and Ad MSCs. 72 

hours of Poly I:C-mediated licensing (Condition 1) led to a downregulation of 

IL1R1 transcript levels in BM MSCs while it led to an upregulation in Is MSCs and 

to no variation in Ad MSCs. 24 hours after Poly I:C licensing (Condition 2) IL1R1 

transcript levels were downregulated in MSCs from the three sources. Lastly, 

after a double stimulation with Poly I:C (Condition 3), IL1R1 transcript levels 

were downregulated more than in Condition 2 in MSCs from the three sources.  
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During resting conditions BM, Is and Ad MSCs transcribed very little, if any, IL1R2 

and no variation in the transcript levels were observed among MSCs from 

different sources (Figure 8-5, B). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing produced a downregulation in the transcript levels 

of BM and Is MSCs, while it produced an upregulation in Ad MSCs. 24 hours after 

stimulation with the cytokine cocktail (Condition 2), BM and Is MSCs had 

downregulated their transcript levels, while Ad MSCs had upregulated their 

transcript levels. After a double stimulation with the cytokine cocktail 

(Condition 3), IL1R2 transcript levels were downregulated in BM and Is MSCs, 

while they were upregulated in Ad MSCs. 72 hours after LPS licensing, MScs from 

the three sources had upregulated their IL1R2 transcript. 24 hours stimulation 

with LPS led to no variation in BM MSCs, a small downregulation in Is MSCs and to 

an upregulation in Ad MSCs. After the double stimulation with LPS (Condition 3) 

IL1R2 transcript levels showed no change in BM MSCs, Is MSCs had downregulated 

their transcript levels while Ad MSCs had upregulated them. 72 hours of licensing 

with LTA (Condition 1) produced an upregulation of IL1R2 transcript levels in 

MSCs from the three sources. 24-hour licensing (Condition 2) with LTA produced 

an upregulation in MSCs from the three sources; in the case of BM MSCs, this 

upregulation was higher than in Condition 1, while it was smaller in Is and Ad 

MSCs. A second stimulation 48 hours after the first one (Condition 3) produced 

no variation in BM MSCs but it led to a significant upregulation in Is and Ad MSCs. 

72 hours of Poly I:C-mediated licensing (Condition 1) led to a downregulation of 

IL1R2 transcript levels in BM MSCs while it led to an upregulation in Is and Ad 

MSCs. 24 hours after Poly I:C licensing (Condition 2) IL1R2 transcript levels were 

downregulated in BM and Is MSCs and upregulated in Ad MSCs. After the double 

stimulation with Poly I:C (Condition 3), IL1R2 transcript levels were 

downregulated in BM MSCs and upregulated in Is and Ad MSCs.  

During resting conditions BM, Is and Ad MSCs transcribed substantial levels of 

TNFR1a and no variation in the transcript levels were observed among MSCs from 

different sources (Figure 8-5, C). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing produced a downregulation in the transcript levels 

of MSCs from the three sources. 24 hours after stimulation with the cytokine 

cocktail (Condition 2), MSCs from the three sources had downregulated their 

TNFR1a transcript levels in similar levels as in the previous condition. After the 
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double stimulation with the cytokine cocktail (Condition 3), TNFR1a transcript 

levels were downregulated in BM and Is MSCs, while they were upregulated in Ad 

MSCs. 72 hours after LPS licensing, BM and Ad MSCs downregulated their TNFR1a 

transcript levels while Is MSCs upregulated them. 24 hours stimulation with LPS 

led to a downregulation in MSCs from the three sources while a second 

stimulation 48 hours after the first one (Condition 3) led to a downregulation of 

TNFR1a transcript levels in BM and Is MSCs and to an upregulation in Ad MSCs. 72 

hours of LTA licensing (Condition 1) produced an upregulation of TNFR1a 

transcript levels in BM and Is MSCs, while it produced a downregulation in Ad 

MSCs. 24 hours licensing (Condition 2) with LTA produced a smaller upregulation 

in BM MSCs compared to Condition 1 and a downregulation in Is and Ad MSCs; this 

downregulation in Ad MSCs was bigger than in Condition 1. A second stimulation 

48 hours after the first one (Condition 3) produced an upregulation in BM MSCs 

and Ad MSCs, and a downregulation in Is MSCs. 72 hours of Poly I:C-mediated 

licensing (Condition 1) led to a downregulation of TNFR1a transcript levels in 

MSCs from the three sources, as well as after 24 hours stimulation (Condition 2). 

A second stimulation with Poly I:C 48 hours after the first one (Condition 3) led 

to a downregulation of TNFR1a transcript levels in BM and Is MSCs, where these 

downregulations were increased compared to previous conditions. On the 

contrary, a second stimulation with Poly I:C produced a significant upregulation 

of TNFR1a transcript levels in Ad MSCs.   

During resting conditions BM, Is and Ad MSCs transcribed TNFR1b at substantial 

levels and no variation in the transcript levels were observed among MSCs from 

different sources (Figure 8-5, D). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing produced a downregulation in the transcript levels 

of MSCs from the three sources. 24 hours after stimulation with the cytokine 

cocktail (Condition 2), MSCs from the three sources had downregulated their 

TNFR1b transcript levels in similar levels as in the previous condition. After the 

double stimulation with the cytokine cocktail (Condition 3), TNFR1b transcript 

levels were downregulated in BM and Is MSCs, while they were upregulated in Ad 

MSCs. 72 hours after LPS licensing, MSCs isolated from the three tissues had 

downregulated their TNFR1b transcript levels. 24 hours stimulation with LPS led 

to a smaller downregulation in MSCs from the three sources while a second 

stimulation 48 hours after the first one (Condition 3) led to no effect in BM and 
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Ad MSCs, while it led to a downregulation of TNFR1b transcript levels in Is MSCs. 

72 hours of LTA licensing (Condition 1) produced no variation in TNFR1b 

transcript levels in BM and Ad MSCs, while it produced a downregulation in Is 

MSCs. 24 hours licensing (Condition 2) with LTA produced no variation in BM MSCs 

and a downregulation in Is and Ad MSCs. A second stimulation 48 hours after the 

first one (Condition 3) produced an upregulation in BM MSCs, a downregulation in 

Is MSCs and no effect in Ad MSCs. 72 hours of Poly I:C-mediated licensing 

(Condition 1) led to a downregulation of TNFR1b transcript levels in MSCs from 

the three sources, as well as after 24 hours stimulation (Condition 2). A second 

stimulation with Poly I:C 48 hours after the first one (Condition 3) led to a 

downregulation of TNFR1a transcript levels in BM and Is MSCs, where the 

downregulation was increased compared to previous conditions in BM MSCs. On 

the contrary, a second stimulation with Poly I:C produced a significant 

upregulation of TNFR1b transcript levels in Ad MSCs.   

During resting conditions BM MSCs transcribed the highest IFNGR1 transcript 

levels but MSCs from the three sources transcribed IFNGR1 at substantial levels 

(Figure 8-5, E). After 72 hours of stimulation (Condition 1), cytokine-mediated 

licensing produced a downregulation in the transcript levels of BM and Is MSCs, 

while it produced no effect in Ad MSCs. 24 hours after stimulation with the 

cytokine cocktail (Condition 2) MSCs from the three sources had downregulated 

their IFNGR1 transcript levels and in the case of the BM and Is MSCs, this 

downregulation was in similar levels as in the previous condition. After the 

double stimulation with the cytokine cocktail (Condition 3), IFNGR1 transcript 

levels were downregulated in BM and Is MSCs, while there was no variation in Ad 

MSCs. 72 hours after LPS licensing, MSCs isolated from the three tissues had 

downregulated their IFNGR1 transcript levels. 24 hours stimulation with LPS led 

to downregulation in MSCs from the three sources while a second stimulation 48 

hours after the first one (Condition 3), led to a downregulation in BM and Is MSCs 

while it produced no effect in Ad MSCs. 72 hours of LTA licensing (Condition 1) 

produced no variation in the IFNGR1 transcript levels in BM and Is MSCs, while it 

produced a downregulation in Ad MSCs. 24 hours licensing (Condition 2) with LTA 

produced no variation in BM MSCs and a downregulation in Is and Ad MSCs. A 

second stimulation 48 hours after the first one (Condition 3) produced no 

variation in BM MSCs, a downregulation in Is MSCs and an upregulation in Ad 
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MSCs. 72 hours of Poly I:C-mediated licensing (Condition 1) led to a 

downregulation of IFNGR1 transcript levels in MSCs from the three sources, as 

well as after 24 hours stimulation (Condition 2). A second stimulation with Poly 

I:C 48 hours after the first one (Condition 3) led to a downregulation of IFNGR1 

transcript levels in MSCs from the three sources and the downregulation was 

bigger than in previous conditions.  

During resting conditions BM, Is and Ad MSCs transcribed very little IFNGR2 

transcript levels and no variation in the transcript levels were observed among 

MSCs from different sources (Figure 8-5, F). After 72 hours of stimulation 

(Condition 1), cytokine-mediated licensing produced no effect in BM MSCs, a 

downregulation in the transcript levels of Is MSCs and an upregulation in Ad 

MSCs. 24 hours after stimulation with the cytokine cocktail (Condition 2), BM and 

Is MSCs had downregulated their IFNGR2 transcript levels, while Ad MSCs had 

upregulated them. After the double stimulation with the cytokine cocktail 

(Condition 3), IFNGR2 transcript levels were downregulated in BM and Is MSCs, 

while they were upregulated in Ad MSCs. 72 hours after LPS licensing, MSCs 

isolated from the three tissues had upregulated their IFNGR2 transcript levels. 

24-hour stimulation with LPS led to a downregulation in BM MSCs and to an 

upregulation in Is and Ad MSCs. A second stimulation 48 hours after the first one 

(Condition 3) led to a downregulation in BM and Is MSCs while it produced an 

upregulation in Ad MSCs. 72 hours of LTA licensing (Condition 1) produced an 

upregulation of the IFNGR2 transcript levels in MSCs from the three sources. 24-

hour licensing (Condition 2) with LTA produced an upregulation of the transcript 

levels in BM MSCs, a downregulation in Is MSCs and no variation in Ad MSCs. A 

second stimulation 48 hours after the first one (Condition 3) produced an 

upregulation in MSCs isolated from the three sources. 72 hours of Poly I:C-

mediated licensing (Condition 1) led to no effect in BM MSCs, an upregulation in 

Is MSCs and to a downregulation of IFNGR2 transcript levels in Ad MSCs; while 24 

hours of Poly I:C licensing led to an upregulation of the transcript levels in BM 

and Is MSCs while it produced no variation in Ad MSCs. A second stimulation with 

Poly I:C 48 hours after the first one (Condition 3) led to a downregulation of 

IFNGR2 transcript levels in BM MSCs and an upregulation in Is and Ad MSCs.  
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During resting conditions BM, Is and Ad MSCs transcribed very little TLR2 

transcript levels and no variation in the transcript levels were observed among 

MSCs from different sources (Figure 8-5, G). After 72 hours of stimulation 

(Condition 1), cytokine-mediated licensing produced an upregulation in BM MSCs, 

a downregulation in Is MSCs and no effect in Ad MSCs. 24 hours after stimulation 

with the cytokine cocktail (Condition 2), BM and Is MSCs had upregulated their 

TLR2 transcript levels, while Ad MSCs had downregulated them. After the double 

stimulation with the cytokine cocktail (Condition 3), TLR2 transcript levels were 

upregulated in BM and Ad MSCs, while they were downregulated in Is MSCs. 72 

hours after LPS licensing, BM MSCs had upregulated their transcript levels, no 

variation was observed in Is MSCs and Ad MSCs had downregulated their TLR2 

transcript levels. 24 hours stimulation with LPS led to an upregulation in BM 

MSCs, to no variation in Is MSCs and to a downregulation in Ad MSCs. A second 

stimulation with LPS 48 hours after the first one (Condition 3) led to an 

upregulation of TLR2 transcript levels in MSCs isolated from the three sources. 

72 hours of LTA licensing (Condition 1) produced an upregulation of the TLR2 

transcript levels in BM and Is MSCs and a downregulation in Ad MSCs. 24-hour 

licensing (Condition 2) with LTA produced a bigger upregulation of the transcript 

levels in BM and Is MSCs and a bigger downregulation in Ad MSCs. A second 

stimulation 48 hours after the first one (Condition 3) produced an even bigger 

upregulation in BM and Is MSCs and no variation in Ad MSCs. 72 hours of Poly I:C-

mediated licensing (Condition 1) led to an upregulation in BM MSCs and a 

downregulation of TLR2 transcript levels in Is and Ad MSCs; while 24 hours of 

Poly I:C licensing led to an upregulation of the transcript levels in BM and Is MSCs 

while it produced a downregulation in Ad MSCs. A second stimulation with Poly 

I:C 48 hours after the first one (Condition 3) led to an upregulation of TLR2 

transcript levels in MSCs from the three sources.  

Under resting conditions BM, Is and Ad MSCs transcribed very little TLR3 

transcript levels and no variation in the transcript levels were observed among 

BM, Is and Ad MSCs (Figure 8-5, H). After 72 hours of stimulation (Condition 1), 

cytokine-mediated licensing produced a downregulation in BM and Is MSCs and an 

upregulation in Ad MSCs. 24 hours after stimulation with the cytokine cocktail 

(Condition 2), BM and Is MSCs had upregulated their TLR3 transcript levels, while 

Ad MSCs were not affected by the licensing. After the double stimulation with 
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the cytokine cocktail (Condition 3), TLR3 transcript levels were downregulated 

in BM and Is MSCs, while they were upregulated in Ad MSCs. 72 hours after LPS 

licensing, BM MSCs showed no variation in their transcript levels, while Is and Ad 

MSCs had upregulated their TLR2 transcript levels. 24-hour stimulation with LPS 

led to no variations in BM and Is MSCs, while it produced a downregulation in Ad 

MSCs. A second stimulation with LPS 48 hours after the first one (Condition 3) 

led to no variation of TLR2 transcript levels in BM and Ad MSCs while it produced 

a downregulation in Ad MSCs. 72 hours of LTA licensing (Condition 1) produced 

an upregulation of the TLR2 transcript levels in MSCs from the three tissues. 24 

hours licensing (Condition 2) with LTA produced an upregulation of the transcript 

levels in BM and Is MSCs and a downregulation in Ad MSCs. A second stimulation 

48 hours after the first one (Condition 3) produced an upregulation in MSCs from 

the three sources, but this upregulation of TLR3 transcript levels was smaller 

than the one observed 72 hours after a single stimulation. 72 hours of Poly I:C-

mediated licensing (Condition 1) led to an upregulation in BM and Is MSCs and a 

downregulation of TLR3 transcript levels in Ad MSCs. 24 hours licensing with Poly 

I:C led to a bigger upregulation of transcript levels in BM and Is MSCs than the 

one observed in the previous conditions, while the downregulation observed in 

Ad MSCs was smaller than the one in Condition 1. A second stimulation with Poly 

I:C 48 hours after the first one (Condition 3) led to an upregulation of TLR3 

transcript levels in MSCs from the three sources.  

During resting conditions BM, Is and Ad MSCs transcribed very little TLR4 and no 

variation in the transcript levels were observed among MSCs from different 

sources (Figure 8-5, I). After 72 hours of stimulation (Condition 1), cytokine-

mediated licensing produced a downregulation in BM and Is MSCs and an 

upregulation in Ad MSCs. 24 hours after stimulation with the cytokine cocktail 

(Condition 2), BM and Is MSCs had downregulated their TLR4 transcript levels in 

smaller amounts than in Condition 1, while Ad MSCs had upregulated their 

transcript levels in smaller amounts compared to Condition 1. After the double 

stimulation with the cytokine cocktail (Condition 3), TLR4 transcript levels were 

downregulated in BM and Is MSCs at the same level as Condition 1, while Ad MSCs 

had doubled their transcript levels compared to Condition 1. 72 hours after LPS 

licensing, BM MSCs had downregulated their transcript levels, Is MSCs showed no 

variation in their transcript levels and Ad MSCs had upregulated their TLR4 
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transcript levels. 24-hour stimulation with LPS led to a downregulation in MSCs 

from the three sources. A second stimulation with LPS 48 hours after the first 

one (Condition 3) led to a downregulation of TLR4 transcript levels in BM and Is 

MSCs while it produced no effect in Ad MSCs. 72 hours of LTA licensing 

(Condition 1) produced an upregulation of the TLR4 transcript levels in MSCs 

from the three tissues. 24-hour LTA licensing (Condition 2) produced an 

upregulation of the transcript levels in BM MSCs and a downregulation in Is and 

Ad MSCs. A second stimulation 48 hours after the first one (Condition 3) 

produced an upregulation in BM and Ad MSCs, while it produced a 

downregulation of TLR4 transcript levels in Is MSCs. 72 hours of Poly I:C-

mediated licensing (Condition 1) led to a downregulation of MSCs from the three 

sources. 24 hours licensing with Poly I:C led to a downregulation of TLR4 

transcript levels in BM and Ad MSCs, while it produced an upregulation in Is 

MSCs. A second stimulation with Poly I:C 48 hours after the first one (Condition 

3) led to a downregulation of TLR4 transcript levels in BM and Is MSCs, while it 

produced an upregulation in Ad MSCs.  
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Figure 8-5. Comparison of the transcriptional expression of the receptors of the stimulatory 
agents among MSC tissue source under resting and inflammatory conditions. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 

IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated cells 

were left growing in MSC culture medium as a control. Three different licensing conditions were 
tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice with 
PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 4-7 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate transcripts in BM, Is and Ad MSCs under resting and inflammatory 
conditions. Each bar represents an n of 4 independent experiments and is graphed as mean ± 
SEM. Data are normalised to the housekeeping gene B2M and expressed as 2(-ΔCT). Statistically 
significant differences are marked with a colour code in Table 4-10.  
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Table 8-4. Fold change in the receptors of the stimulatory agents’ transcript levels of 
cytokine, LPS, LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to 
unstimulated cells from the same source.  
Following the experimental set up explained in Figure 8-5, fold change in transcript levels of the 
receptors of the stimulatory agents is represented as mean of fold change ± standard deviation. 
One Way ANOVA with Tukey’s multiple comparisons post-test was performed to compare all MSC 
sources and the different conditions. p = 0.05 was considered the limit for statistical significance. 
Statistically significant differences are marked with a colour code, where p < 0.05 is represented by 
green, p < 0.01 is represented by orange, p < 0.001 is represented by blue and p < 0.0001 is 
represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

IL1R1 

1 

Cyt 0.07 ± 0.04 0.22 ± 0.13 3.20 ± 2.13 

LPS 0.20 ± 0.07 3.47 ± 1.35 3.27 ± 2.77 

LTA 0.25 ± 0.06 3.62 ± 2.31 2.03 ± 1.11 

Poly I:C 0.05 ± 0.02 1.88 ± 1.82 1.04 ± 0.58 

2 

Cyt 0.18 ± 0.11 0.04 ± 0.02 1.99 ± 1.00 

LPS 0.48 ± 0.39 0.54 ± 0.25 0.73 ± 0.35 

LTA 1.61 ± 1.53 0.64 ± 0.29 0.73 ± 0.48 

Poly I:C 0.14 ± 0.09 0.56 ± 0.28 0.93 ± 0.39 

3 

Cyt 0.19 ± 0.14 0.03 ± 0.01 0.01 ± 0.01 

LPS 0.59 ± 0.41 0.53 ± 0.13 0.83 ± 0.61 

LTA 0.92 ± 1.01 1.38 ± 0.40 5.59 ± 3.74 

Poly I:C 0.05 ± 0.04 0.33 ± 0.26 0.00 ± 0.00 

IL1R2 

1 

Cyt 0.07 ± 0.07 0.86 ± 1.27 13476.79 ± 13682.54 

LPS 2.30 ± 1.21 8.66 ± 12.92 1.72 ± 1.91 

LTA 1.95 ± 1.48 4.04 ± 1.76 5.11 ± 4.66 

Poly I:C 0.52 ± 0.46 3.34 ± 3.13 4.72 ± 7.66 

2 

Cyt 0.19 ± 0.17 0.10 ± 0.09 25.20 ± 38.61 

LPS 0.99 ± 1.11 0.71 ± 0.48 1.79 ± 0.79 

LTA 2.88 ± 3.17 2.50 ± 2.97 1.39 ± 1.48 

Poly I:C 0.53 ± 0.28 0.86 ± 0.31 1.70 ± 2.57 

3 

Cyt 0.57 ± 0.64 0.47 ± 0.43 17.83 ± 18.07 

LPS 0.96 ± 0.31 0.77 ± 0.76 4.54 ± 6.34 

LTA 0.96 ± 0.46 5.51 ± 6.58 34.53 ± 53.66 

Poly I:C 0.17 ± 0.14 9.71 ± 14.87 2.13 ± 2.64 

TNFR1a 

1 

Cyt 0.69 ± 0.30 0.29 ± 0.18 0.80 ± 0.31 

LPS 0.76 ± 0.10 1.52 ± 0.60 0.47 ± 0.11 

LTA 2.65 ± 1.39 1.53 ± 1.58 0.78 ± 0.24 

Poly I:C 0.39 ± 0.20 0.95 ± 0.65 0.47 ± 0.06 

2 

Cyt 0.74 ± 0.49 0.44 ± 0.31 0.89 ± 0.09 

LPS 0.32 ± 0.07 0.84 ± 0.30 0.32 ± 0.06 

LTA 1.71 ± 0.81 0.54 ± 0.54 0.17 ± 0.03 

Poly I:C 0.48 ± 0.08 0.82 ± 0.78 0.32 ± 0.04 

3 

Cyt 0.36 ± 0.26 0.08 ± 0.05 5.92 ± 0.68 

LPS 0.62 ± 0.38 0.38 ± 0.14 2.95 ± 0.32 

LTA 1.64 ± 1.36 0.69 ± 0.89 7.05 ± 1.26 

Poly I:C 0.20 ± 0.15 0.17 ± 0.02 2.63 ± 0.50 

TNFR1b 1 
Cyt 0.32 ± 0.04 0.12 ± 0.08 0.65 ± 0.35 

LPS 0.53 ± 0.11 0.43 ± 0.05 0.45 ± 0.06 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LTA 1.13 ± 0.16 0.69 ± 0.25 0.88 ± 0.19 

Poly I:C 0.19 ± 0.05 0.34 ± 0.21 0.44 ± 0.06 

2 

Cyt 0.47 ± 0.11 0.24 ± 0.08 0.68 ± 0.09 

LPS 0.71 ± 0.07 0.55 ± 0.04 0.63 ± 0.19 

LTA 1.06 ± 0.25 0.50 ± 0.19 0.28 ± 0.03 

Poly I:C 0.34 ± 0.03 0.30 ± 0.09 0.38 ± 0.09 

3 

Cyt 0.41 ± 0.06 0.19 ± 0.01 2.81 ± 0.17 

LPS 0.84 ± 0.16 0.55 ± 0.06 1.01 ± 0.03 

LTA 1.25 ± 0.18 0.67 ± 0.36 0.99 ± 0.19 

Poly I:C 0.20 ± 0.01 0.45 ± 0.04 4.07 ± 0.66 

IFNGR1 

1 

Cyt 0.10 ± 0.10 0.12 ± 0.07 1.18 ± 0.44 

LPS 0.23 ± 0.12 0.68 ± 0.14 0.32 ± 0.28 

LTA 1.01 ± 0.17 1.13 ± 0.12 0.63 ± 0.07 

Poly I:C 0.10 ± 0.01 0.37 ± 0.26 0.42 ± 0.24 

2 

Cyt 0.10 ± 0.09 0.15 ± 0.06 0.52 ± 0.49 

LPS 0.10 ± 0.07 0.60 ± 0.19 0.40 ± 0.38 

LTA 0.97 ± 0.22 0.72 ± 0.24 0.38 ± 0.03 

Poly I:C 0.16 ± 0.05 0.48 ± 0.27 0.57 ± 0.10 

3 

Cyt 0.06 ± 0.05 0.07 ± 0.03 1.18 ± 0.98 

LPS 0.16 ± 0.10 0.52 ± 0.11 1.04 ± 0.73 

LTA 0.95 ± 0.26 0.88 ± 0.40 2.25 ± 0.40 

Poly I:C 0.07 ± 0.02 0.26 ± 0.12 0.53 ± 0.13 

IFNGR2 

1 

Cyt 0.99 ± 0.27 0.69 ± 0.61 4.84 ± 1.61 

LPS 1.37 ± 0.19 5.73 ± 2.99 1.90 ± 0.70 

LTA 5.81 ± 3.38 6.09 ± 2.63 2.92 ± 0.88 

Poly I:C 0.93 ± 0.63 4.10 ± 2.21 0.85 ± 0.34 

2 

Cyt 0.68 ± 0.29 0.84 ± 0.11 2.71 ± 0.81 

LPS 0.59 ± 0.27 2.12 ± 0.90 1.73 ± 0.40 

LTA 2.43 ± 1.26 0.84 ± 0.11 1.11 ± 0.21 

Poly I:C 2.81 ± 1.70 2.38 ± 0.88 1.02 ± 0.21 

3 

Cyt 0.39 ± 0.28 0.26 ± 0.29 19.05 ± 5.19 

LPS 0.78 ± 0.22 0.58 ± 0.30 3.51 ± 1.54 

LTA 2.04 ± 1.50 2.08 ± 1.77 10.72 ± 2.57 

Poly I:C 0.28 ± 0.21 2.12 ± 0.90 9.77 ± 2.59 

TLR2 

1 

Cyt 1.44 ± 0.83 0.42 ± 0.19 0.97 ± 0.62 

LPS 4.34 ± 2.29 1.16 ± 0.44 0.41 ± 0.13 

LTA 5.60 ± 2.63 1.56 ± 1.05 0.79 ± 0.21 

Poly I:C 1.30 ± 0.83 0.79 ± 0.19 0.32 ± 0.09 

2 

Cyt 4.42 ± 0.83 2.68 ± 0.32 0.32 ± 0.28 

LPS 4.16 ± 2.60 1.41 ± 0.13 0.47 ± 0.10 

LTA 6.85 ± 1.86 1.71 ± 0.84 0.46 ± 0.11 

Poly I:C 5.60 ± 2.41 1.69 ± 0.26 0.20 ± 0.20 

3 

Cyt 3.63 ± 1.06 0.82 ± 0.22 22.83 ± 4.59 

LPS 10.22 ± 0.53 2.64 ± 1.42 0.97 ± 0.15 

LTA 8.72 ± 1.01 2.03 ± 0.89 1.13 ± 0.34 

Poly I:C 3.40 ± 0.98 3.07 ± 1.70 1.51 ± 0.14 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

TLR3 

1 

Cyt 0.87 ± 0.74 0.45 ± 0.25 5.50 ± 5.82 

LPS 1.00 ± 0.38 3.16 ± 2.25 1.40 ± 1.06 

LTA 2.07 ± 0.92 3.61 ± 2.06 2.73 ± 1.04 

Poly I:C 1.14 ± 0.39 2.01 ± 2.33 0.37 ± 0.23 

2 

Cyt 2.23 ± 1.21 1.77 ± 0.67 1.01 ± 0.44 

LPS 0.92 ± 0.29 1.07 ± 0.45 0.49 ± 0.31 

LTA 2.09 ± 0.82 1.24 ± 0.47 0.83 ± 0.51 

Poly I:C 1.48 ± 0.95 3.16 ± 1.01 0.82 ± 0.62 

3 

Cyt 0.73 ± 0.40 0.41 ± 0.12 13.84 ± 9.93 

LPS 0.97 ± 0.45 0.40 ± 0.11 1.01 ± 0.72 

LTA 1.42 ± 0.62 1.22 ± 0.57 1.75 ± 0.93 

Poly I:C 1.70 ± 0.99 1.36 ± 1.44 2.19 ± 1.65 

TLR4 

1 

Cyt 0.53 ± 0.22 0.20 ± 0.16 2.31 ± 0.61 

LPS 0.73 ± 0.20 2.20 ± 0.77 1.19 ± 0.21 

LTA 2.01 ± 0.81 3.11 ± 1.21 1.27 ± 0.43 

Poly I:C 0.51 ± 0.22 0.98 ± 0.44 0.60 ± 0.12 

2 

Cyt 0.80 ± 0.43 0.52 ± 0.25 1.17 ± 0.26 

LPS 0.43 ± 0.14 0.82 ± 0.41 0.91 ± 0.38 

LTA 2.23 ± 1.29 0.52 ± 0.25 0.44 ± 0.08 

Poly I:C 0.49 ± 0.08 1.19 ± 0.30 0.60 ± 0.20 

3 

Cyt 0.60 ± 0.36 0.13 ± 0.06 5.64 ± 1.31 

LPS 0.76 ± 0.25 0.36 ± 0.15 1.12 ± 0.26 

LTA 1.86 ± 1.15 0.82 ± 0.26 3.54 ± 1.36 

Poly I:C 0.29 ± 0.18 0.37 ± 0.20 2.82 ± 1.17 
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8.2 Analysis of the effect of a double inflammatory 
stimulus over time on the transcription of the 
complement system and other immunoregulatory and 
anti-inflammatory molecules   

As described in Chapter 6, pro-inflammatory cytokine-mediated MSC licensing 

produced a transcriptional regulation of genes involved in the regulation of the 

immune response and immunomodulatory mediators, which could explain why 

MSCs are more immunosuppressive upon activation. Within clinical settings, it 

has been reported that pre-treatment of MSCs with inflammatory cytokines prior 

to administration within animal models of inflammatory diseases boosts the 

therapeutic effect of MSCs (Duijvestein et al., 2011, Noronha et al., 2019). For 

this reason, we wondered if pre-licensing the MSCs prior to expose them to an 

inflammatory environment in vitro would lead to even bigger variations in 

chemokines transcriptional levels and therefore, in enhanced therapeutic 

potential. For this aim, cells were pre-licensed for 48 hours, after which cells 

were washed twice with PBS and stimulated again for another 24 hours. The first 

stimulation primes the MSCs, while the second stimulation would mimic the 

inflammatory environment MSCs would face when infused into a patient with an 

inflammatory disorder. Figure 8-6 illustrates the time points at which 

supplemented medium was added. Culture medium was removed at the time 

cells were harvested and was kept for experimental procedures.  

 

Figure 8-6. Diagrammatic illustration of the time course of the MSC licensing. 
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Two different control conditions were used. In the first one, cells were 

stimulated for 48 hours, after which, cells were washed twice with PBS and fresh 

culture medium was added; cells were harvested 24 hours later. In the second 

condition, cells were washed twice with PBS, the culture medium was replaced 

with fresh medium and cells were left growing for 48 hours. Cells were then 

washed twice with PBS, the culture medium was replaced with supplemented 

medium and the cells were harvested 24 hours later. There is wide literature 

about how cytokine-mediated licensing enhances the potential therapeutic 

efficacy of MSCs, however, little is known about the role of TLR ligands-

mediated activation on the secretion of chemotactic cytokines by MSCs. For this 

reason, 100 ng/ mL LPS, 100 ng/ mL LTA and 4 mg/ mL poly I:C, as well as the 

previously described cytokine cocktail, was used for MSC licensing.  

According to the results described in Section 6.2, the genes regulating their 

transcript levels in a statistically significant manner upon stimulation were 

selected and their transcriptional levels were assessed after licensing with 

different inflammatory molecules and different inflammatory conditions.  

8.2.1 Transcription of the complement system under homeostatic 
and inflammatory conditions  

Under resting conditions, BM, Is and Ad MSCs transcribed very little, if any, of 

the elements of the complement system and only the transcription of CFH 

(Figure 8-7, A), C1Qc (B) and C5AR1 (C) was affected by MSC licensing in a 

statistically significant manner. A pattern of transcriptional upregulation was 

observed in CFH (E), C1Qc (B) and C5AR1 (C) after cytokine, LPS and Poly I:C-

mediated licensing, while LTA licensing led to a pattern of transcriptional 

upregulation; however, these genes were upregulated differentially in MSCs 

according to their tissue of origin. Fold changes of transcriptional regulation 

upon licensing of MSCs are specified in Table 8-5.  

As previously described, CFH was expressed at very low levels by MSCs from all 

sources and Ad MSCs had the highest CFH transcript levels under resting 

conditions (Figure 8-7, A). 24 hours after stimulation with the cytokine cocktail 

(Condition 2), MSCs from the three tissues downregulated their CFH transcript 

levels and this downregulation increased after 72 hours of stimulation (Condition 
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1) in BM MSCs, while it was maintained in Is and Ad MSCs. A second stimulation 

with the cytokine cocktail 48 hours after the first stimulation (Condition 3) 

produced no variation compared to Condition 2 in MSCs from every source. 72 

hours after LPS-mediated stimulation (Condition 1) MSCs from every source had 

downregulated their CFH transcript levels and this downregulation was smaller 

after 24 hours of stimulation (Condition 2). Double stimulation of MSCs with LPS 

(Condition 3) led to an increase in the transcript levels compared to Condition 2 

in MSCs from every source. 72 hours LTA-mediated licensing led to an increase in 

CFH transcript levels in BM and Is MSCs while it produced no effect in Ad MSCs. 

24 hours LTA-mediated licensing led to no variation in BM MSCs, led to an 

upregulation smaller than the one achieved after 72 hours in Is MSCs and to a 

downregulation in Ad MSCs. A second stimulation 48 hours after the first 

stimulation (Condition 3) led to no variation in BM MSC and led to the biggest 

upregulation in Is and Ad MSCs compared to the previous conditions. 24-hour 

Poly I:C-mediated stimulation (Condition 2) led to the downregulation of CFH 

transcript levels in BM MSCs and this downregulation was increased 72 hours 

after stimulation (Condition 1) and a second stimulation (Condition 3). Poly I:C-

mediated stimulation led to a decrease in CFH transcript levels in Is and Ad MSCs 

under every condition however, this downregulation was bigger after 24 hours of 

stimulation (Condition 2) compared to 72 hours after stimulation (Condition 1) 

and a second stimulation (Condition 3).  

C1Qc was expressed at low levels by MSCs from the three sources but was 

expressed the highest by Is MSCs under resting conditions (Figure 8-7, B). 24-

hour cytokine and LPS-mediated stimulation (Condition 2) led to the decrease of 

C1Qc transcript levels in MSCs from all sources; 72 hours after stimulation 

(Condition 1) BM and Is MSCs had still downregulated C1Qc transcript levels but 

less than in Condition 2 and a second stimulation 48 hours after the first one 

(Condition 3) led to the same transcript levels as in Condition 1 in these cells. 

However, 72 hours after cytokine-mediated stimulation or after a double 

stimulation Ad MSCs had upregulated their C1Qc transcript levels while LPS-

mediated stimulation led to a smaller downregulation 72 hours after licensing 

and to an increased downregulation after a double licensing with LPS in Ad MSCs. 

LTA-mediated licensing produced an upregulation in BM MSCs in the three 

conditions. 24-hour LTA-mediated licensing (Condition 2) led to the 
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downregulation of C1Qc transcript levels in Is and Ad MSCs and this 

downregulation started to reverse 72 hours after stimulation (Condition 1). A 

second stimulation 48 hours after the first one (Condition 3), led to an 

upregulation of C1Qc transcript levels in Is MSCs while it produced a bigger 

downregulation than in Conditions 1 and 2 in Ad MSCs. Regarding Poly I:C-

mediated licensing, 24-hour stimulation (Condition 2) led to the downregulation 

of C1Qc transcript levels in MSCs from all sources, this downregulation started to 

reverse 72 hours after stimulation (Condition 1) in Is and Ad MSCs while it was 

bigger in BM MSCs. A second stimulation 48 hours after the first one (Condition 3) 

did not increase the downregulation in BM and Is MSCs but it did lead to an 

increased downregulation in Ad MSCs.  

C5AR1 was expressed at low levels by MSCs from the three sources but was 

expressed the highest by Is MSCs under resting conditions (Figure 8-7, C). 24-

hour cytokine-mediated licensing (Condition 2) led to an upregulation of C5AR1 

transcript levels in BM MSCs, a downregulation in Is MSCs and to no effect in Ad 

MSCs, these effects were slightly more pronounced 72 hours after the cytokine-

mediated stimulation (Condition 1) as the upregulation and downregulation in 

BM and Is MSCs respectively was increased in both MSCs while it produced no 

effect in Ad MSCs. A second stimulation 48 hours after the first one (Condition 3) 

did not make a difference in BM and Is MSCs when compared to Condition 1; 

however, it led to the downregulation of C5AR1 transcript levels in Ad MSCs. 24-

hour LPS-mediated licensing (Condition 2) led to the upregulation of C5AR1 

transcript levels in BM MSCs and to downregulation in Is and Ad MSCs; these 

effects were slightly more pronounced 72 hours after the cytokine-mediated 

stimulation (Condition 1) in BM MSCs, while Is and Ad MSCs had started to 

reverse the downregulation. A 24-hour stimulation 48 hours after the first one 

(Condition 3) led to the same levels of upregulation in BM MSCs, while it 

increased C5AR1 transcript levels in Is and Ad MSCs without reaching control 

unstimulated levels. 24-hour LTA-mediated licensing (Condition 2) led to the 

upregulation of C5AR1 transcript levels in BM MSCs and to downregulation in Is 

and Ad MSCs. This regulation started to reverse 48 hours later (Condition 1) in 

BM and Ad MSCs as the upregulation in BM MSCs and the downregulation of 

C5AR1 transcript levels in Ad MSCs was less pronounced; however, C5AR1 

transcript levels remained as downregulated as 48 hours before in Is MSCs. A 
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second stimulation 48 hours after the first one (Condition 3) led to the same 

levels of upregulation in BM MSCs, while it slightly increased C5AR1 transcript 

levels in Is and Ad MSCs compared to Conditions 1 and 2. Lastly, 24-hour Poly I:C-

mediated licensing (Condition 2) led to a small upregulation in BM MSCs while it 

led to the downregulation of C5AR1 transcript levels in Is and Ad MSCs. This 

transcriptional regulation was not sustained as 72 hours after a single stimulation 

(Condition 1) BM MSCs transcript levels had returned to the same level as the 

control ones and Is and Ad MSCs had a less pronounced downregulation of their 

C5AR1 transcript levels. A second stimulation 48 hours after the first one 

(Condition 3) led to the downregulation of C5AR1 transcript levels in MSCs from 

every source.  

 

 

https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/6.%20Profiling%20of%20MSC%20immunomodulatory%20genes/5A.png
https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/6.%20Profiling%20of%20MSC%20immunomodulatory%20genes/5B.png


369 
 

 

Figure 8-7. Inflammatory agent, repetitive stimulus and MSC tissue origin impacts 
complement system molecules transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which cells were washed twice 
with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the second 
condition, cells were washed twice with PBS, the culture medium was replaced with fresh one and 
the cells were left growing for 48 hours. Cells were then washed twice with PBS, the culture 
medium was replaced with supplemented one and the cells were harvested 24 hours later. In the 
last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 6-4 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate complement system molecules transcripts in BM, Is and Ad MSCs under 
resting and inflammatory conditions. Each bar represents an n of 4 independent experiments and is 
graphed as mean ± SEM. Data are normalised to the housekeeping gene B2M and expressed as 
2(-ΔCT). Statistically significant differences are marked with a colour code in Table 4-7. 

 

Table 8-5. Fold change in complement system molecules transcript levels of cytokine, LPS, 
LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells 
from the same source.  
Following the experimental set up explained in Figure 8-2, fold change in transcript levels is 
represented as mean of fold change ± standard deviation. One Way ANOVA with Tukey’s multiple 

https://gla-my.sharepoint.com/personal/n_cuesta-gomez_1_research_gla_ac_uk/Documents/PhD/Thesis/Chapters/6.%20Profiling%20of%20MSC%20immunomodulatory%20genes/5C.png
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comparisons post-test was performed to compare all MSC sources and the different conditions. p = 
0.05 was considered the limit for statistical significance. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

CFH 

1 

Cyt 0.21 ± 0.07 0.10 ± 0.12 0.69 ± 0.50 

LPS 0.37 ± 0.10 0.32 ± 0.26 0.30 ± 0.04 

LTA 3.40 ± 2.12 46.04 ± 25.45 0.72 ± 0.24 

Poly I:C 0.03 ± 0.01 0.24 ± 0.23 0.46 ± 0.10 

2 

Cyt 0.38 ± 0.26 0.03 ± 0.00 0.24 ± 0.04 

LPS 0.22 ± 0.07 0.15 ± 0.11 0.17 ± 0.12 

LTA 0.91 ± 0.34 15.74 ± 7.32 0.18 ± 0.06 

Poly I:C 0.09 ± 0.01 0.08 ± 0.04 0.19 ± 0.03 

3 

Cyt 0.26 ± 0.17 0.03 ± 0.02 0.27 ± 0.07 

LPS 0.63 ± 0.37 0.20 ± 0.14 0.43 ± 0.09 

LTA 1.26 ± 0.71 149.39 ± 91.04 1.24 ± 0.35 

Poly I:C 0.03 ± 0.02 0.28 ± 0.24 0.64 ± 0.13 

C1Qc 

1 

Cyt 0.59 ± 0.25 0.15 ± 0.07 0.94 ± 0.23 

LPS 0.92 ± 0.42 0.12 ± 0.07 0.47 ± 0.05 

LTA 2.19 ± 0.86 0.50 ± 0.18 0.63 ± 0.10 

Poly I:C 0.22 ± 0.08 0.21 ± 0.18 0.35 ± 0.05 

2 

Cyt 0.52 ± 0.19 0.04 ± 0.02 0.18 ± 0.03 

LPS 0.32 ± 0.04 0.08 ± 0.05 0.27 ± 0.07 

LTA 2.04 ± 1.26 0.40 ± 0.17 0.25 ± 0.05 

Poly I:C 0.40 ± 0.17 0.08 ± 0.03 0.14 ± 0.04 

3 

Cyt 0.52 ± 0.26 0.13 ± 0.05 1.04 ± 0.18 

LPS 0.67 ± 0.33 0.21 ± 0.13 0.14 ± 0.02 

LTA 1.59 ± 0.51 2.52 ± 0.75 0.36 ± 0.08 

Poly I:C 0.39 ± 0.35 0.52 ± 0.65 0.07 ± 0.01 

C5AR1 

1 

Cyt 1.59 ± 0.26 0.09 ± 0.06 1.06 ± 0.44 

LPS 3.14 ± 0.44 0.24 ± 0.09 0.74 ± 0.14 

LTA 6.45 ± 0.57 0.40 ± 0.10 0.88 ± 0.16 

Poly I:C 0.89 ± 0.07 0.22 ± 0.12 0.46 ± 0.13 

2 

Cyt 2.71 ± 0.51 0.06 ± 0.03 0.81 ± 0.13 

LPS 2.49 ± 0.92 0.22 ± 0.04 0.48 ± 0.06 

LTA 8.17 ± 0.42 0.41 ± 0.06 0.25 ± 0.07 

Poly I:C 1.72 ± 0.70 0.13 ± 0.07 0.34 ± 0.09 

3 

Cyt 1.63 ± 0.12 0.08 ± 0.03 0.01 ± 0.01 

LPS 2.87 ± 0.24 0.40 ± 0.17 1.00 ± 0.11 

LTA 8.49 ± 1.17 1.52 ± 0.82 1.44 ± 0.38 

Poly I:C 0.61 ± 0.02 0.22 ± 0.19 0.29 ± 0.08 
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8.2.2 Transcription of other immunoregulatory and anti-
inflammatory molecules under homeostatic and 
inflammatory conditions  

Under resting conditions BM, Is and Ad MSCs transcribed very little, if any, of the 

immunoregulatory and anti-inflammatory genes with the exception of IL-6 

(Figure 8-8, A), VEGFa (C), VEGFd (F) and CD142 (J). The effect of inflammatory 

licensing in these genes was tissue of origin and stimulatory agent dependent 

and fold changes of transcriptional regulation upon licensing of MSCs are 

specified in Table 8-6. 

IL-6 was expressed at substantial levels by MSCs from the three sources but was 

expressed the highest by Ad MSCs under resting conditions (Figure 8-8, A). 24-

hour cytokine-mediated stimulation (Condition 2) led to the upregulation of IL-6 

transcript levels in BM and Is MSCs, while it produced no effect in Ad MSCs. This 

upregulation was not sustained as 72 hours after stimulation (Condition 1) BM 

and Is MSCs had downregulated their IL-6 transcript levels to control levels while 

72 hours cytokine-mediated licensing produced the downregulation of IL-6 

transcript levels in Ad MSCs. A second stimulation 48 hours after the first one 

(Condition 3) led to the upregulation of IL-6 transcript levels in MSCs from all 

sources; an increased upregulation of IL-6 transcript levels in BM MSCs, a smaller 

upregulation in Is MSCs compared to Condition 2 and >50 times upregulation in 

Ad MSCs. 24-hour LPS-mediated licensing (Condition 2) led to an upregulation of 

IL-6 transcript levels in BM and Is MSCs, while it produced no effect in Ad MSCs. 

This upregulation was not sustained in BM MSCs as 72 hours after LPS licensing 

(Condition 1) BM MSCs had downregulated their IL-6 transcript levels compared 

to the control; the upregulation had started to reverse in Is MSCs but these cells 

were still transcribing higher levels of IL-6 than the unstimulated control cells 

and 72 hours licensing led to the downregulation of IL-6 transcript levels in Ad 

MSCs. LTA and Poly I:C-mediated 24-hour licensing (Condition 2) led to the 

downregulation of IL-6 transcript levels in BM MSCs. This downregulation was 

increased 72 hours after the licensing (Condition 1) and was maintained when 

the cells were stimulated 48 hours after the first stimulation with LTA or Poly I:C 

(Condition 3). LTA and Poly I:C licensing produced no effect in the transcription 

of IL-6 in Is MSCs under any of the conditions tested while LTA and Poly I:C-

mediated licensing produced a downregulation in IL-6 transcript levels 72 hours 
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after licensing (Condition 1) in Ad MSCs, but they made no effect in IL-6 

transcript levels 24 hours after a single stimulation (Condition 2) or after a 

double stimulation (Condition 3).  

As previously described, TSG-6 was expressed at very low levels by MSCs from all 

sources and BM MSCs had the highest TSG-6 transcript levels under resting 

conditions (Figure 8-8, B). 24-hour cytokine-mediated licensing (Condition 2) led 

to the downregulation of TSG-6 transcript levels in MSCs from the three sources; 

this downregulation was not sustained in MSCs from the three sources as 72 

hours after the stimulation (Condition 1) BM MSCs were transcribing slightly more 

TSG-6 than 48 hours before, Is MSCs were transcribing almost the same amount 

of TSG-6 as unstimulated cells and Ad MSCs had upregulated the transcription of 

TSG-6. A second stimulation 48 hours after the first one (Condition 3) maintained 

the downregulation in BM and Is MSCs while it produced no effect in Ad MSCs as 

these cells were generating the same TSG-6 levels as under resting conditions. 

24-hour LPS-mediated licensing (Condition 2) produced the downregulation of 

TSG-6 transcript levels in BM and Ad MSCs while it produced an upregulation in Is 

MSCs. This regulation was maintained as 72 hours after LPS licensing (Condition 

1) MSCs from the three sources were expressing similar levels of TSG-6 transcript 

levels as 48 hours before. A second stimulation 48 hours after the first one 

(Condition 3) increased TSG-6 transcript levels to almost the control levels in BM 

MSCs, decreased the upregulation to almost control levels in Is MSCs and 

maintained the downregulation obtained 24 and 72 hours after stimulation in Ad 

MSCs. 24-hour LTA-mediated licensing produced the downregulation of TSG-6 

transcript levels in BM and Ad MSCs while it produced a small increase in Is MSCs; 

these transcription levels were maintained 72 hours after stimulation (Condition 

1) in Is and Ad MSCs while the downregulation was bigger in BM MSCs. A second 

stimulation with LTA 48 hours after the first one (Condition 3) led to a small 

downregulation in BM and Ad MSCs compared to control and a bigger 

upregulation in Is MSCs. Poly I:C licensing of BM MSCs led to the downregulation 

of TSG-6 transcript levels under every condition tested, while it produced no 

effect in Is MSCs. 24 hours Poly I:C licensing (Condition 2) led to the 

downregulation of TSG-6 transcript levels in Ad MSCs; this downregulation was 

smaller 72 hours after stimulation (Condition 1). A second stimulation 48 hours 
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after the first one (Condition 3) led to no effect in Ad MSCs as these cells had 

the same transcript levels as control unstimulated Ad MSCs.  

VEGFa was expressed at substantial levels by MSCs from the three sources but 

was expressed the highest by Is MSCs under resting conditions (Figure 8-8, C). 

24-hour cytokine-mediated stimulation (Condition 2) led to the downregulation 

of VEGFa transcript levels in BM and Is MSCs, while it produced a small 

upregulation in Ad MSCs. This regulation was increased over time as 72 hours 

after stimulation (Condition 1) BM and Is MSCs had downregulated more their 

VEGFa transcript levels while 72 hours cytokine-mediated licensing produced a 

bigger upregulation of VEGFa transcript levels in Ad MSCs. A second stimulation 

48 hours after the first one (Condition 3) led to similar levels of downregulation 

of VEGFa transcript levels in BM and Is MSCs as after 24 hours of stimulation, 

while a second stimulation enhanced the upregulation in Ad MSCs. 24-hour LPS-

mediated stimulation (Condition 2) led to the downregulation of VEGFa 

transcript levels in BM and Is MSCs, while it produced no effect in Ad MSCs. 72 

hours after stimulation (Condition 1) BM and Is MSCs had started to reverse the 

downregulation while 72 hours LPS-mediated licensing produced a 

downregulation of VEGFa transcript levels in Ad MSCs. A second stimulation 48 

hours after the first one (Condition 3) led to a small downregulation of VEGFa 

transcript levels in Is and Ad MSCs, while a second LPS stimulation had no effect 

in BM MSCs. 72-hour LTA-mediated stimulation (Condition 1) led to no effect in 

MSCs from the three sources while 24-hour LTA-mediated stimulation (Condition 

2) led to a small upregulation of VEGFa transcript levels in MSCs from the three 

sources. A second stimulation 48 hours after the first one (Condition 3) led to a 

small downregulation of VEGFa transcript levels in BM and Ad MSCs while it 

produced a small upregulation in Is MSCs. 24-hour Poly I:C-mediated stimulation 

(Condition 2) led to the downregulation of VEGFa transcript levels in MSCs from 

the three sources and 72 hours Poly I:C-mediated licensing produced a bigger 

downregulation of VEGFa transcript levels in MSCs from the three sources. A 

second stimulation 48 hours after the first one (Condition 3) led to a 

downregulation of VEGFa transcript levels in BM MSCs of the same level as 24-

hour licensing while a second Poly I:C stimulation had no effect in Is and Ad 

MSCs. 
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VEGFb was expressed at very low levels by MSCs from all sources and Is MSCs had 

the highest VEGFb transcript levels under resting conditions (Figure 8-8, D). 24-

hour cytokine-mediated stimulation (Condition 2) led to the downregulation of 

VEGFb transcript levels in MSCs from the three sources and this downregulation 

was maintained 72 hours after the licensing (Condition 1) in MSCs from the three 

sources. A second stimulation 48 hours after the first one (Condition 3) produced 

the biggest downregulation of VEGFb transcript levels in BM and Is MSCs, while it 

produced an upregulation in Ad MSCs. 24-hour LPS and LTA-mediated stimulation 

(Condition 2) led to the downregulation of VEGFb transcript levels in MSCs from 

the three sources and this downregulation started to reverse 72 hours after the 

licensing (Condition 1) in MSCs from the three sources at different levels; BM 

MSCs had upregulated their VEGFb transcript levels while Is and Ad MSCs had not 

yet reached the control unstimulated VEGFb transcript levels. A second LPS 

stimulation 48 hours after the first one (Condition 3) led to the downregulation 

of VEGFb transcript levels in MSCs from the three sources, however this 

downregulation was not as strong as the one generated after 24-hour LPS 

stimulation. A second LTA stimulation 48 hours after the first one (Condition 3) 

led to no variation in VEGFb transcript levels compared to the control 

unstimulated MSCs in the three sources. 24-hour Poly I:C-mediated stimulation 

(Condition 2) led to the downregulation of VEGFb transcript levels in MSCs from 

the three sources and this downregulation was maintained 72 hours after 

licensing (Condition 1) in MSCs from the three sources. A second LPS stimulation 

48 hours after the first one (Condition 3) led to the downregulation of VEGFb 

transcript levels in MSCs from the three sources; however, this downregulation 

was not as strong as the one generated after 24-hour Poly I:C stimulation in Is 

and Ad MSCs.  

VEGFc was expressed at very low levels by MSCs from all sources and Is MSCs had 

the highest VEGFc transcript levels under resting conditions (Figure 8-8, E). 24-

hour cytokine-mediated stimulation (Condition 2) led to the downregulation of 

VEGFc transcript levels in BM MSCs, while it had no effect in Is and Ad MSCs; 

however, 72-hour cytokine-mediated stimulation (Condition 1) led to the 

downregulation of VEGFc transcript levels in MSCs from the three sources. A 

second stimulation 48 hours after the first one (Condition 3) produced a small 

downregulation of VEGFc transcript levels in BM and Is MSCs, while it produced 
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an upregulation in Ad MSCs. 24-hour LPS-mediated stimulation (Condition 2) led 

to the downregulation of VEGFc transcript levels in BM and Ad MSCs, while it had 

no effect in Is MSCs. 72 hours after LPS licensing (Condition 1) BM and Ad MSCs 

had still downregulated their VEGFc transcript levels, while 72 hours after the 

licensing Is MSCs had their VEGFc transcript levels upregulated. A second 

stimulation 48 hours after the first one (Condition 3) produced a small 

downregulation in BM and Ad MSCs, while it had no effect in Is MSCs. 24-hour 

LTA and Poly I:C-mediated stimulation (Condition 2) led to the downregulation 

of VEGFc transcript levels in BM and Ad MSCs, while it upregulated VEGFc 

transcript levels in Is MSCs. This downregulation was sustained in BM and Ad 

MSCs 72 hours after LTA and Poly I:C licensing (Condition 1), while Is MSCs 

slightly increased their VEGFc transcript levels 72 hours after licensing. A second 

stimulation 48 hours after the first one (Condition 3) led to the downregulation 

of VEGFc transcript levels in BM and Is MSCs, while it had no effect in Ad MSCs.  

As previously described, VEGFd was expressed at substantial levels by MSCs from 

the three sources but was expressed the highest by BM MSCs under resting 

conditions (Figure 8-8, F). 24-hour cytokine and LPS-mediated stimulation 

(Condition 2) led to the downregulation of VEGFd transcript levels in MSCs from 

the three sources; these downregulation was maintained 72 hours after licensing 

(Condition 1) in BM and Is MSCs, while Ad MSCs had already recovered from the 

licensing. A second stimulation 48 hours after the first one (Condition 3) led to 

the downregulation of VEGFd transcript levels in MSCs from the three sources, 

where MSCs from the three sources had similar VEGFd transcript levels as after a 

single 24-hour cytokine or LPS licensing. 24-hour LTA-mediated licensing led to a 

small non-significant upregulation of VEGFd transcript levels in BM MSCs, while it 

produced the downregulation of VEGFd transcript levels in Is and Ad MSCs. 72 

hours after licensing (Condition 1), BM MSCs had downregulated their VEGFd 

transcript levels, the downregulation in Is and Ad MSCs was not sustained and 

transcript levels had reached resting levels in Ad MSCs. A second stimulation 48 

hours after the first one (Condition 3) led to a small downregulation of VEGFd 

transcript levels in BM and Is MSCs, while it led to a small upregulation of VEGFd 

transcript levels in Ad MSCs. 24-hour Poly I:C-mediated stimulation (Condition 2) 

led to the downregulation of VEGFd transcript levels in MSCs from the three 

sources and this downregulation was maintained 72 hours after Poly I:C licensing 
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(Condition 1) in MSCs from the three sources. A second stimulation 48 hours 

after the first one (Condition 3) led to similar levels of downregulation of VEGFd 

transcript levels in MSCs of every source as after 24 hours of Poly I:C stimulation. 

iNOS was expressed at very low levels by MSCs from all sources and BM MSCs had 

the highest iNOS transcript levels under resting conditions (Figure 8-8, G). 24-

hour cytokine-mediated stimulation (Condition 2) led to the upregulation of iNOS 

transcript levels in MSCs from the three sources; however, this upregulation was 

not sustained as 72 hours after stimulation MSCs from the three sources were 

expressing similar iNOS transcript levels as control unstimulated MSCs. A second 

cytokine-mediated stimulation 48 hours after the first one (Condition 3) led to 

an upregulation of iNOS transcript levels in MSCs from the three sources; 

however, this upregulation did not match the one after 24-hour cytokine-

mediated licensing in BM and Is MSCs while it was bigger in Ad MSCs. LPS, LTA 

and Poly I:C-mediated licensing in every condition led to statistically non-

significant variations and to very little, if any, iNOS transcript levels.  

COX2 was expressed at low levels by MSCs from all sources and Ad MSCs had the 

highest COX2 transcript levels under resting conditions (Figure 8-8, H). 24-hour 

cytokine-mediated stimulation (Condition 2) led to the upregulation of COX2 

transcript levels in MSCs from the three sources; however, this upregulation 

started to reverse 48 hours later (Condition 1) in BM and Ad MSC as despite 

showing upregulated COX2 transcript levels, they were lower than 48 hours 

before. Is MSCs, on the contrary, were able to maintain the upregulation 72 

hours after the cytokine-mediated stimulation. A second stimulation 48 hours 

after the first one (Condition 3) increased the COX2 transcript levels in BM MSCs 

compared to 72 hours after stimulation, but did not match the transcript levels 

recorded 24 hours after stimulation; while a second cytokine-mediated 

stimulation increased COX2 transcript levels in Is and Ad MSCs. 24-hour LPS-

mediated stimulation (Condition 2) led to the upregulation of COX2 transcript 

levels in MSCs from the three sources and this upregulation was not sustained as 

72 hours after licensing BM MSCs had reached control transcript levels and Is and 

Ad MSCs were closer to control levels. A second stimulation 48 hours after the 

first one (Condition 3) increased the COX2 transcript levels in MSCs from every 

source but this upregulation could not match the COX2 transcript levels observed 
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after 24-hour LPS-mediated stimulation in BM and Ad MSCs. 24-hour LTA-

mediated stimulation (Condition 2) led to the upregulation of COX2 transcript 

levels in MSCs from the three sources and this upregulation was not sustained in 

MSCs from every tissue as MSCs had lower COX2 transcript levels than the control 

unstimulated MSCs. A second stimulation 48 hours after the first one (Condition 

3) led to the downregulation of COX2 transcript levels to similar levels as 

observed 72 hours after stimulation. 24-hour Poly I:C-mediated stimulation 

(Condition 2) led to the downregulation of COX2 transcript levels in BM MSCs, 

while it produced an upregulation in Is and Ad MSCs. 72 hours after Poly I:C-

mediated stimulation (Condition 1) MSCs from the three sources had 

downregulated their COX2 transcript levels. A second stimulation 48 hours after 

the first one (Condition 3) led to a smaller downregulation of COX2 transcript 

levels in BM MSCs, while it led to the upregulation of COX2 transcript levels in Is 

and Ad MSCs to higher levels than the ones observed in Condition 1 or 2.  

HGF was expressed at low levels by MSCs from all sources and Is MSCs had the 

highest HGF transcript levels under resting conditions (Figure 8-8, I). 24-hour 

cytokine-mediated stimulation (Condition 2) led to the downregulation of HGF 

transcript levels in MSCs from the three sources; this downregulation was more 

intense 48 hours later (Condition 1) in BM and Is MSC, while Ad MSCs had 

upregulated their HGF transcript levels compared to control unstimulated levels. 

A second stimulation 48 hours after the first one (Condition 3) maintained the 

downregulation in BM MSCs, it was not sustained in Is MSCs as transcript levels 

were getting back to control conditions and maintained the upregulation 

observed 72 hours after cytokine-mediated licensing in Ad MSCs. 24-hour LPS-

mediated stimulation (Condition 2) led to the downregulation of HGF transcript 

levels in BM MSCs and to a small non-significant upregulation in Is and Ad MSCs; 

however, 72 hours after LPS-mediated licensing BM and Is MSCs had 

downregulated their HGF transcript levels, while Ad MSCs was expressing the 

same level of HGF transcript levels as under control unstimulated conditions. A 

second stimulation 48 hours after the first one led to the downregulation of BM 

MSCs, to no effect in Is MSCs and to the upregulation of HGF transcript levels in 

Ad MSCS. 24-hour LTA-mediated stimulation (Condition 2) led to no effect in BM 

MSCs, to the upregulation of HGF transcript levels in Is MSCs and to a small non-

significant downregulation in Ad MSCs; however, 72 hours after LTA-mediated 
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licensing BM MSCs had downregulated their HGF transcript levels in a statistically 

significant manner, the upregulation in Is MSC was not sustained, while Ad MSCs 

had upregulated their HGF transcript levels. A second stimulation 48 hours after 

the first one led to control-like transcript levels in BM MSCs, to a small non-

significant upregulation in Is MSCs and to a small non-significant downregulation 

in Ad MSCs. 24-hour Poly I:C-mediated stimulation (Condition 2) led to the 

downregulation of HGF transcript levels in MSCs from the three sources; this 

downregulation was maintained in BM MSCs 72 hours after stimulation (Condition 

1), while Is and Ad MSCs reversed the downregulation. A second stimulation 48 

hours after the first one was able to mimic the HGF transcript levels observed 

after 24 hours of stimulation as it led to the downregulation of HGF transcript 

levels in MSCs from every source.  

CD142 was expressed at substantial levels by MSCs from the three sources but 

was expressed the highest by BM MSCs under resting conditions (Figure 8-8, J). 

24-hour cytokine-mediated stimulation (Condition 2) led to the downregulation 

of CD142 transcript levels in MSCs from the three sources and this 

downregulation was maintained 72 hours after stimulation (Condition 1) in BM 

and Is MSCs, while it was not sustained in Ad MSCs. A second stimulation 48 hours 

after the first one (Condition 3) led to similar levels of downregulation of CD142 

transcript levels in BM and Is MSCs as after 24 and 72 hours of stimulation, while 

a second stimulation led to the upregulation of CD142 transcript levels in Ad 

MSCs. 24-hour LPS-mediated stimulation (Condition 2) led to the downregulation 

of CD142 transcript levels in MSCs from the three sources and this 

downregulation was maintained 72 hours after stimulation (Condition 1) in MSCs 

from the three sources. A second stimulation 48 hours after the first one 

(Condition 3) was not able to mimic the downregulation achieved in Conditions 1 

and 2 but still led to the downregulation of CD142 transcript levels in MSCs from 

the three sources. 24-hour LTA-mediated stimulation (Condition 2) led to a small 

upregulation of CD142 transcript levels in BM MSCs and to a downregulation in Is 

and Ad MSCs; however, 72 hours after LTA licensing BM, Is and Ad MSCs had 

downregulated their CD142 transcript levels. A second stimulation 48 hours after 

the first one (Condition 3) led to small non-significant downregulation of CD142 

transcript levels in BM and Is MSCs, while it produced a small non-significant 

upregulation of CD142 transcript levels in Ad MSCs. 24-hour Poly I:C-mediated 
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stimulation (Condition 2) led to the downregulation of CD142 transcript levels in 

MSCs from the three sources and this downregulation was maintained 72 hours 

after stimulation (Condition 1) in MSCs from the three sources. A second 

stimulation 48 hours after the first one (Condition 3) was not able to mimic the 

downregulation achieved in Conditions 1 and 2 but still led to the 

downregulation of CD142 transcript levels in MSCs from the three sources. 

GMCSF was expressed at low levels by MSCs from all sources and Ad MSCs had 

the highest GMCSF transcript levels under resting conditions (Figure 8-8, K). 24-

hour cytokine-mediated stimulation (Condition 2) led to the upregulation of 

GMCSF transcript levels in MSCs from the three sources and this upregulation was 

maintained, at lower level, 72 hours after stimulation (Condition 1). A second 

stimulation 48 hours after the first one (Condition 3) led to the upregulation of 

GMCSF transcript levels but none of these upregulations was statistically 

significant due to the big variability between samples. 24-hour LPS-mediated 

stimulation (Condition 2) led to the downregulation of GMCSF transcript levels in 

BM MSCs while it upregulated GMCSF transcript levels in Is and Ad MSCs; this 

transcriptional regulation was maintained 72-hours after stimulation (Condition 

1). A second stimulation 48 hours after the first one (Condition 3) led to a 

statistically non-significant upregulation of GMCSF transcript levels in MSCs from 

the three sources. 24-hour LTA-mediated stimulation (Condition 2) led to the 

upregulation of GMCSF transcript levels in MSCs from the three sources; this 

transcriptional upregulation was increased 72-hours after stimulation (Condition 

1). A second stimulation 48 hours after the first one (Condition 3) led to the 

downregulation of GMCSF transcript levels in BM MSCs, while it led to the 

upregulation of GMCSF transcript levels in Is and Ad MSCs.  

24-hour Poly I:C-mediated stimulation (Condition 2) led to the downregulation of 

GMCSF transcript levels in MSCs from the three sources; however, 72 hours after 

stimulation with Poly I:C BM and Is MSCs had upregulated their transcript levels, 

while Ad MSCs had reach similar transcript levels as under control unstimulated 

conditions. A second stimulation 48 hours after the first one (Condition 3) led to 

the downregulation of GMCSF transcript levels in BM MSCs, while led to the 

upregulation of GMCSF transcript levels in Is and Ad MSCs. 
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Figure 8-8. Inflammatory agent, repetitive stimulus and MSC tissue origin impacts 
immunomodulatory molecules transcript levels in MSCs. 
MSCs isolated from BM, Is and Ad tissues were grown in culture until passage 3. Once MSCs had 
reached 80% confluence, cells were stimulated with either a cocktail of cytokines (40 ng/ mL of 
IFN-ϒ, TNF-α and IL-1β), 100 ng/ mL LPS, 100 ng/ mL LTA or 4 µg/ mL Poly I:C. Unstimulated 
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cells were left growing in MSC culture medium as a control. Three different licensing conditions 
were tested. In the first one, cells were stimulated for 48 hours, after which, cells were washed 
twice with PBS and fresh culture medium was added; cells were harvested 24 hours later. In the 
second condition, cells were washed twice with PBS, the culture medium was replaced with fresh 
one and the cells were left growing for 48 hours. Cells were then washed twice with PBS, the 
culture medium was replaced with supplemented one and cells were harvested 24 hours later. In 
the last condition, cells were stimulated for 48 hours, after which cells were washed twice with PBS 
and were stimulated again for another 24 hours. Figure 6-4 illustrates the time points at which 
supplemented medium was added. Quantitative reverse transcription PCR (qRT-PCR) was 
performed to evaluate immunomodulatory molecule transcripts in BM, Is and Ad MSCs under 
homeostatic and inflammatory conditions. Each bar represents an n of 4 independent experiments 
and is graphed as mean ± SEM. Data are normalised to the housekeeping gene B2M and 
expressed as 2(-ΔCT). Statistically significant differences are marked with a colour code in Table 6-5.  

 

Table 8-6. Fold change in immunomodulatory molecules transcript levels of cytokine, LPS, 
LTA or Poly I:C-mediated licensed BM, Is and Ad MSCs compared to unstimulated cells 
from the same source.  
Following the experimental set up explained in Figure 8-8, fold change in transcript levels is 
represented as mean of fold change ± standard deviation. One Way ANOVA with Tukey’s multiple 
comparisons post-test was performed to compare all MSC sources and the different conditions. p = 
0.05 was considered the limit for statistical significance. Statistically significant differences are 
marked with a colour code, where p < 0.05 is represented by green, p < 0.01 is represented by 
orange, p < 0.001 is represented by blue and p < 0.0001 is represented by red. 

 

Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

IL-6 

1 

Cyt 1.15 ± 0.90 1.56 ± 0.97 0.11 ± 0.05 

LPS 0.26 ± 0.22 2.35 ± 1.05 0.42 ± 0.06 

LTA 0.17 ± 0.12 1.24 ± 0.62 0.22 ± 0.02 

Poly I:C 0.15 ± 0.11 1.92 ± 1.31 0.23 ± 0.03 

2 

Cyt 53.97 ± 44.65 8.04 ± 4.83 0.65 ± 0.06 

LPS 2.02 ± 0.64 3.09 ± 1.63 0.89 ± 0.29 

LTA 0.49 ± 0.06 1.38 ± 0.51 1.07 ± 0.13 

Poly I:C 0.78 ± 0.72 1.46 ± 0.36 0.66 ± 0.11 

3 

Cyt 76.21 ± 61.41 3.41 ± 1.35 10.74 ± 1.08 

LPS 1.72 ± 0.72 2.26 ± 1.29 0.51 ± 0.02 

LTA 0.30 ± 0.20 0.88 ± 0.21 0.70 ± 0.18 

Poly I:C 0.86 ± 0.43 1.04 ± 0.79 0.80 ± 0.13 

TSG-6  

1 

Cyt 0.08 ± 0.03 0.74 ± 0.14 3.98 ± 2.09 

LPS 0.13 ± 0.01 2.86 ± 0.90 0.66 ± 0.21 

LTA 0.17 ± 0.02 2.24 ± 0.34 0.54 ± 0.18 

Poly I:C 0.07 ± 0.03 1.53 ± 0.40 0.42 ± 0.21 

2 

Cyt 0.06 ± 0.03 0.62 ± 0.17 0.51 ± 0.28 

LPS 0.23 ± 0.09 2.34 ± 1.30 0.56 ± 0.17 

LTA 0.76 ± 0.36 1.40 ± 0.39 0.31 ± 0.30 

Poly I:C 0.07 ± 0.03 1.09 ± 0.25 0.37 ± 0.21 

3 

Cyt 0.13 ± 0.09 0.29 ± 0.19 1.12 ± 0.40 

LPS 0.66 ± 0.35 1.44 ± 0.36 0.51 ± 0.20 

LTA 0.54 ± 0.31 4.18 ± 1.52 1.06 ± 0.53 

Poly I:C 0.08 ± 0.05 0.82 ± 0.58 1.27 ± 0.66 

VEGFa 1 

Cyt 0.40 ± 0.05 0.22 ± 0.10 2.43 ± 0.51 

LPS 0.54 ± 0.17 0.93 ± 0.19 0.63 ± 0.06 

LTA 1.04 ± 0.14 1.77 ± 0.57 1.16 ± 0.10 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

Poly I:C 0.24 ± 0.04 0.46 ± 0.14 0.47 ± 0.05 

2 

Cyt 0.76 ± 0.12 0.37 ± 0.27 1.04 ± 0.17 

LPS 0.65 ± 0.19 0.68 ± 0.05 1.01 ± 0.35 

LTA 1.07 ± 0.26 1.14 ± 0.29 0.67 ± 0.05 

Poly I:C 0.41 ± 0.29 1.02 ± 0.31 0.46 ± 0.07 

3 

Cyt 0.49 ± 0.04 0.38 ± 0.13 3.17 ± 0.47 

LPS 0.98 ± 0.07 0.73 ± 0.17 0.80 ± 0.08 

LTA 0.92 ± 0.21 1.25 ± 0.17 1.10 ± 0.26 

Poly I:C 0.37 ± 0.02 0.83 ± 0.08 1.19 ± 0.29 

VEGFb 

1 

Cyt 0.35 ± 0.10 0.16 ± 0.06 0.61 ± 0.14 

LPS 3.30 ± 4.00 0.69 ± 0.17 0.34 ± 0.13 

LTA 2.10 ± 0.97 0.71 ± 0.22 0.48 ± 0.18 

Poly I:C 0.19 ± 0.10 0.36 ± 0.21 0.35 ± 0.04 

2 

Cyt 0.25 ± 0.11 0.21 ± 0.13 0.66 ± 0.19 

LPS 0.21 ± 0.07 0.38 ± 0.03 0.38 ± 0.11 

LTA 1.21 ± 0.66 0.82 ± 0.07 0.27 ± 0.04 

Poly I:C 0.14 ± 0.04 0.31 ± 0.29 0.34 ± 0.07 

3 

Cyt 0.19 ± 0.11 0.09 ± 0.02 4.45 ± 0.52 

LPS 0.71 ± 0.31 0.30 ± 0.12 0.75 ± 0.11 

LTA 1.45 ± 0.76 0.94 ± 0.34 1.10 ± 0.27 

Poly I:C 0.11 ± 0.06 0.28 ± 0.07 0.60 ± 0.10 

VEGFc 

1 

Cyt 0.27 ± 0.15 1.00 ± 0.28 0.29 ± 0.18 

LPS 0.56 ± 0.23 3.07 ± 0.34 0.67 ± 0.13 

LTA 0.67 ± 0.17 2.50 ± 1.14 0.56 ± 0.13 

Poly I:C 0.22 ± 0.06 1.83 ± 0.68 0.47 ± 0.10 

2 

Cyt 0.45 ± 0.05 0.96 ± 0.36 1.12 ± 0.07 

LPS 0.63 ± 0.08 1.05 ± 0.26 0.86 ± 0.31 

LTA 0.62 ± 0.22 1.64 ± 0.92 0.38 ± 0.12 

Poly I:C 0.53 ± 0.28 1.60 ± 0.71 0.54 ± 0.11 

3 

Cyt 0.20 ± 0.08 0.61 ± 0.21 7.80 ± 1.71 

LPS 0.74 ± 0.46 1.09 ± 0.51 1.05 ± 0.28 

LTA 0.65 ± 0.25 0.91 ± 0.39 1.14 ± 0.36 

Poly I:C 0.38 ± 0.10 0.65 ± 0.19 1.14 ± 0.23 

VEGFd 

1 

Cyt 0.15 ± 0.04 0.05 ± 0.03 1.44 ± 0.35 

LPS 0.27 ± 0.03 0.25 ± 0.10 1.10 ± 0.41 

LTA 0.37 ± 0.07 0.42 ± 0.07 1.30 ± 0.13 

Poly I:C 0.10 ± 0.03 0.11 ± 0.10 0.66 ± 0.11 

2 

Cyt 0.16 ± 0.07 0.01 ± 0.00 0.29 ± 0.07 

LPS 0.54 ± 0.10 0.09 ± 0.03 0.20 ± 0.07 

LTA 1.15 ± 0.37 0.30 ± 0.07 0.31 ± 0.08 

Poly I:C 0.12 ± 0.03 0.13 ± 0.02 0.40 ± 0.07 

3 

Cyt 0.15 ± 0.08 0.00 ± 0.00 0.23 ± 0.03 

LPS 0.61 ± 0.08 0.16 ± 0.11 0.38 ± 0.05 

LTA 0.72 ± 0.19 0.46 ± 0.08 2.06 ± 0.41 

Poly I:C 0.10 ± 0.04 0.09 ± 0.02 0.41 ± 0.08 

iNOS 1 Cyt 18.43 ± 14.56 4.52 ± 3.84 4.06 ± 3.80 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

LPS 5.04 ± 7.56 0.54 ± 0.40 1.99 ± 1.86 

LTA 0.09 ± 0.09 0.23 ± 0.24 1.01 ± 0.93 

Poly I:C 0.57 ± 0.40 0.16 ± 0.15 1.88 ± 1.73 

2 

Cyt 191.3 ± 171.7 170.15 ± 178.95 49.31 ± 47.41 

LPS 2.25 ± 1.86 0.20 ± 0.21 271.90 ± 239.85 

LTA 0.25 ± 0.22 0.25 ± 0.04 1.04 ± 1.13 

Poly I:C 135.1 ± 222.2 0.14 ± 0.05 22.15 ± 31.04 

3 

Cyt 77.75 ± 55.07 83.97 ± 86.59 40476 ± 37122 

LPS 4.61 ± 3.70 1.99 ± 1.83 32.53 ± 51.05 

LTA 0.22 ± 0.09 45.06 ± 53.10 28.72 ± 37.91 

Poly I:C 4.38 ± 3.46 0.15 ± 0.16 147.15 ± 153.43 

COX2 

1 

Cyt 0.85 ± 0.16 5.46 ± 1.93 2.45 ± 0.86 

LPS 1.00 ± 0.46 29.93 ± 4.88 0.46 ± 0.05 

LTA 1.39 ± 0.19 11.11 ± 7.88 0.69 ± 0.17 

Poly I:C 0.50 ± 0.07 5.41 ± 1.65 0.37 ± 0.05 

2 

Cyt 1.65 ± 0.67 5.16 ± 1.41 3.34 ± 0.19 

LPS 1.48 ± 0.67 3.96 ± 2.32 1.52 ± 0.53 

LTA 1.19 ± 0.59 6.46 ± 0.44 0.79 ± 0.06 

Poly I:C 1.31 ± 0.47 6.15 ± 4.01 0.75 ± 0.08 

3 

Cyt 0.93 ± 0.09 8.71 ± 3.77 23.83 ± 2.96 

LPS 1.57 ± 0.59 7.92 ± 5.36 1.52 ± 0.15 

LTA 0.97 ± 0.35 6.73 ± 2.58 0.89 ± 0.54 

Poly I:C 0.57 ± 0.06 4.33 ± 1.81 1.88 ± 0.27 

HGF 

1 

Cyt 0.09 ± 0.01 0.17 ± 0.06 2.48 ± 0.99 

LPS 0.17 ± 0.05 0.87 ± 0.36 1.13 ± 0.25 

LTA 0.37 ± 0.07 1.40 ± 1.24 1.68 ± 0.56 

Poly I:C 0.04 ± 0.01 1.75 ± 0.53 0.87 ± 0.19 

2 

Cyt 0.32 ± 0.24 0.48 ± 0.28 0.67 ± 0.16 

LPS 0.39 ± 0.28 1.68 ± 1.01 1.27 ± 0.74 

LTA 1.06 ± 0.69 5.03 ± 0.70 0.61 ± 0.11 

Poly I:C 0.11 ± 0.05 0.43 ± 0.08 0.33 ± 0.08 

3 

Cyt 0.22 ± 0.13 1.24 ± 1.02 2.20 ± 0.38 

LPS 0.74 ± 0.56 1.01 ± 0.63 0.52 ± 0.10 

LTA 0.97 ± 0.45 2.12 ± 0.69 0.65 ± 0.24 

Poly I:C 0.12 ± 0.07 0.35 ± 0.22 0.53 ± 0.14 

CD142 

1 

Cyt 0.32 ± 0.03 0.11 ± 0.00 0.93 ± 0.11 

LPS 0.74 ± 0.12 0.47 ± 0.14 0.42 ± 0.05 

LTA 0.70 ± 0.12 0.79 ± 0.32 0.55 ± 0.06 

Poly I:C 0.27 ± 0.06 0.40 ± 0.18 0.35 ± 0.03 

2 

Cyt 0.45 ± 0.26 0.18 ± 0.11 0.53 ± 0.06 

LPS 0.59 ± 0.17 0.90 ± 0.37 0.39 ± 0.14 

LTA 1.19 ± 0.25 0.78 ± 0.27 0.42 ± 0.04 

Poly I:C 0.32 ± 0.05 0.18 ± 0.07 0.49 ± 0.08 

3 

Cyt 0.33 ± 0.20 0.13 ± 0.06 1.48 ± 0.15 

LPS 0.79 ± 0.21 0.27 ± 0.03 0.50 ± 0.06 

LTA 0.83 ± 0.25 0.37 ± 0.11 1.44 ± 0.40 
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Gene Condition Licensing  BM MSCs Is MSCs Ad MSCs 

Poly I:C 0.55 ± 0.37 0.53 ± 0.36 0.87 ± 0.13 

GMCSF 

1 

Cyt 1.56 ± 1.30 6.07 ± 8.72 14.53 ± 12.02 

LPS 0.66 ± 0.30 13.17 ± 22.47 1.65 ± 1.05 

LTA 14.41 ± 24.03 10.08 ± 9.00 2.62 ± 1.26 

Poly I:C 145.6 ± 250.5 7.51 ± 11.31 1.07 ± 0.86 

2 

Cyt 8.85 ± 8.64 2.75 ± 2.17 1.22 ± 0.60 

LPS 0.74 ± 0.40 1.59 ± 1.77 1.98 ± 2.17 

LTA 1.31 ± 0.84 10.35 ± 16.41 1.31 ± 1.05 

Poly I:C 0.87 ± 0.75 0.78 ± 0.27 0.55 ± 0.28 

3 

Cyt 1.26 ± 0.95 8.57 ± 13.07 365.9 ± 300.6 

LPS 1.25 ± 0.67 1.59 ± 1.99 1.53 ± 1.14 

LTA 0.72 ± 0.40 8.85 ± 11.71 2.35 ± 1.37 

Poly I:C 0.74 ± 0.40 3.32 ± 5.56 4.37 ± 3.01 
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