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Abstract 

Despite ample clinical evidence that prognosis of patients with advanced ovarian 

cancer is critically dependent on the anti-tumour immune response, cancer 

immunotherapy treatments have failed to achieve a meaningful survival benefit 

for many patients. A need to potentiate the host’s immune response against 

ovarian cancer cells is therefore imperative. Ovarian cancer cells manage to 

evade immune responses by altering the epigenome in a way that it can 

modulate all steps of the immune cycle. This includes antigen presentation, 

lymphocyte priming, activation and trafficking, as well as cytotoxic lymphocyte 

effector functions. DNA methylation and histone deacetylation were the two 

mechanisms initially identified to play a crucial role in immune evasion, with 

histone methylation being an important emerging pathway too. 

In this PhD project, I initially sought to discover novel epigenetic mechanisms 

involved in the immune process in a Trp53-/- murine model of ovarian cancer by 

undertaking a medium-throughput screening with a library of novel epigenetic 

probes. G9a and EZH2 histone lysine methyltransferases emerged as mechanisms 

implicated in the release of lymphocyte chemotactic chemokines, such as 

CXCL9, CXCL10 and CXCL11. By using a novel dual inhibitor and with a 

combination of cellular, transcriptional and chromatin accessibility assays, I 

observed that simultaneous inhibition of G9a and EZH2 modulated the tumour 

immune microenvironment. I observed a transcriptional upregulation of immune 

pathways, coupled with cellular changes that represented a favourable immune 

profile intratumorally. The cellular changes included modulation of CD8+ 

lymphocyte phenotype, an increase in the presence of Natural Killer cells and an 

increase in expression of CXCR3, the receptor for CXCL9-11 chemokines. 

Moreover, these alterations in the immune microenvironment were accompanied 

by a modest therapeutic effect. 

The results of this thesis highlight the importance of inhibiting G9a/EZH2 in 

Trp53-/- ovarian cancer. 



 

 4 

Contents 

Abstract …………………………………………………………………………………….………………………….3 

Contents…………………………………………………………………………………………………………………4 

List of figures………………………………………………………………………………………………………..8 

List of tables………………………………………………………………………………………………………..12 

List of appendices……………………………………………………………………………………………….13 

Acknowledgement……………………………………………………………………………………………….15 

Author's declaration……………………………………………………………………………………………17 

Abbreviations………………………………………………………………………………………………………18 

Chapter 1.Introduction………………………………………………………………………………………23 

1.1 Epithelial ovarian cancer……………………………………………………………………………24 

1.1.1 General…………………………………………………………………………………………………24 

1.1.2 Risk factors………………………………………………………………………………………….26 

1.1.3 Pathophysiology and molecular alterations……………………………………….31 

1.1.4 Management of ovarian cancer………………………………………………………….34 

1.1.5 Immune microenvironment in ovarian cancer…………………………………….39 

1.2 Epigenetics………………………………………………………………………………………………….46 

1.2.2 Biology and background……………………………………………………………………….46 

1.3 Epigenetics and immune response………………………………………………………………50 

1.3.1 Background……………………………………………………………………………………………50 

1.3.2 Epigenetic regulation of immunity - cell types……………………………………50 

1.4 Aims…………………………………………………………………………………………………………….57 

Chapter 2.Materials & Methods………………………………………………………………………….58 

2.1 Cell culture………………………………………………………………………………………………….59 



 

 5 

2.1.1 Immortalised human and murine cell lines………………………………………… 59 

2.1.2 Primary human samples……………………………………………………………………….61 

2.2 Survival and cell cycle assays…………………………………………………………………….62 

2.2.1 MTT cell viability assay………………………………………………………………………..62 

2.2.2 Cell cycle assay - bromodeoxyuridine (BrdU) assay…………………………….63 

2.3 Protein assays……………………………………………………………………………………………..64 

2.3.1 Enzyme-linked immunosorbent assay (ELISA)………………………………………64 

2.3.2 Protein/histone extraction from cultured cells………………………………….65 

2.3.3 Protein quantification by Bradford assay…………………………………………….67 

2.3.4 Protein sample preparation………………………………………………………………….69 

2.3.5 Preparation of polyacrylamide gels…………………………………………………….69 

2.3.6 Western blot running and transfer……………………………………………………….70 

2.3.7 Antibody staining………………………………………………………………………………….71 

2.3.8 Liquid chromatography - mass spectrometry………………………………………72 

2.3.9 Immunohistochemistry…………………………………………………………………………74 

2.4 Gene expression analysis…………………………………………………………………………….78 

2.4.1 RNA extraction from cell lines and murine tumours……………………………78 

2.4.2 Complementary DNA (cDNA) synthesis for reverse transcription 
quantitative polymerase chain reaction (RT-qPCR)……………………………79 

2.4.3 Reverse transcription quantitative PCR (RT-qPCR)…………………………….80 

2.4.4 Chemokine/cytokine gene expression array……………………………………….81 

2.4.5 Library preparation for Next Generation Sequencing (NGS) of RNA……83 

2.5 Chromatin Accessibility Profiling - Assay for Transposase        

      Accessible Chromatin using Sequencing (ATACseq)……………………………………87 

2.6 In vivo experiments…………………………………………………………………………………….92 



 

 6 

2.6.1 Animal husbandry…………………………………………………………………………………92 

2.6.2 Tumour inoculation and endpoint……………………………………………………….93 

2.6.3 Murine blood sampling…………………………………………………………………………92 

2.6.4 Harvesting of tumour samples…………………………………………………………….94 

2.7 Flow cytometry following in vivo work………………………………………………………96 

2.7.1 Tumour digestion………………………………………………………………………………….96 

2.7.2 Antibody staining………………………………………………………………………………….96 

2.7.3 Intra-tumoural T cell stimulation and staining for flow cytometry…….98 

2.7.4 Compensation……………………………………………………………………………………….99 

2.7.5 Flow cytometry analysis……………………………………………………………………100  

2.8 Drug screening……………………………………………………………………………………………100 

2.9 Statistical analysis…………………………………………………………………………………….102 

Chapter 3.Screening novel epigenetic compounds……………………………………….103 

3.1 Introduction and aims……………………………………………………………………………….104 

3.2 SGC library screening optimisation………………………………………………………….107 

3.2.1 Decitabine as a positive control…………………………………………………………107 

3.2.2 Optimisation of SGC library drugs doses……………………………………………112 

3.3 SGC library screening…………………………………………………………………………………124 

3.4 Screening validation and combination treatment with G9a/EZH2 inhibition    
…………………………………………………………………………………………………………………………126 

3.5 Validation on human samples and established human cell lines…………….132 

3.6 Discussion………………………………………………………………………………………………….134 

Chapter 4.Combined G9a/EZH2 inhibition versus G9a inhibition alone;  

therapeutic role and its effect on the immune microenvironment…………….137 

4.1 Introduction and aims………………………………………………………………………………138 



 

 7 

4.2 Combined G9a/EZH2 inhibition confers better survival when compared to 
G9a inhibition alone…………………………………………………………………………………………140 

4.3 G9a inhibition does not alter the immune microenvironment…………………144 

4.4 Combined G9a/EZH2 inhibition modulated the tumour immune 
microenvironment……………………………………………………………………………………………149 

4.4.1 Flow cytometry - porta hepatis tumour deposit……………………………….149 

4.4.2 Flow cytometry - porta hepatis and omental tumour deposits…………159 

4.4.3 Flow cytometry - spleen and peritoneal wash……………………………………168 

4.4.4 Chemokine production in vivo……………………………………………………………174 

4.5 Dual G9a/EZH2 inhibition combined with either PD-1 blockade or cisplatin 
treatment in vivo………………………………………………………………………………………….176 

4.5.1 HKMTI-1-005 upregulates PD-L1 expression on tumour cells in vitro; it 
reduces tumour burden but does not confer survival advantage when 
combined with PD-1 blockade in vivo…………………………………………………………176 

4.5.2 Adding HKMTI-1-005 to cisplatin treatment does not result in 
additional tumour regression……………………………………………………………………….180 

4.6 NK cell depletion in vivo……………………………………………………………………………182 

4.7 Discussion………………………………………………………………………………………………….187 

Chapter 5.Dissecting the mechanism of G9a/EZH2 inhibition………………………194 

5.1 Introduction and aims……………………………………………………………………………….195 

5.2 RNA sequencing…………………………………………………………………………………………198 

5.2.1 Transcriptome analysis………………………………………………………………………198 

5.2.2 Endogenous Retroviruses (ERVs) analysis…………………………………………210 

5.3 ATAC sequencing……………………………………………………………………………………….212 

5.4 Discussion………………………………………………………………………………………………….220 

Chapter 6.Concluding remarks…………………………………………………………………………223 

Appendix……………………………………………………………………………………………………………231 

Bibliography……………………………………………………………………………………………………….265 



 

 8 

List of figures 

Figure 1.1: Histological subtypes of epithelial ovarian cancer………………………27 

Figure 1.2: Molecular aberrations of epithelial OC, classified by histological 

type. ........................................................................................ 32 

Figure 1.3: Steps of anti-cancer immunity cycle…………………………………………….40 

Figure 1.4: Cells and chemokines orchestrating the tumour immune 
microenvironment………………………………………………………………………………………………43 

Figure 1.5: The epigenome landscape………………………………………………………………48 

Figure 1.6: Immunomodulatory effects of epigenetic target inhibition……….53 

Figure 2.1: Chromatogram peaks for unmodified and methylated cytosine…73 

Figure 2.2: IHC showing manual exclusion of non-malignant tissue………………77 

Figure 2.3: Example of staining algorithm using CytoNuclear v1.6……………….77 

Figure 2.4: Plot depicting way to estimate the ideal number of extra PCR 
cycles needed for four ATAC sequencing libraries……………………………………….…92 

Figure 2.5: Peritoneal cavity of a wild-type C57BL/6 mouse bearing ID8 
Trp53-/- tumours; omental and peritoneal deposits.………………………………......95 

Figure 2.6: Peritoneal cavity of a wild-type C57BL/6 mouse bearing ID8 
Trp53-/- tumours; porta hepatis deposit……………………………………….…………………95 

Figure 3.1: Cxcl10 transcript and protein levels following decitabine 
treatment…………………………………………………………………………………………………………………….108     

Figure 3.2: Cell cycle BrdU assay…………………………………………………………………….109 

Figure 3.3: Cell cycle analysis following decitabine treatment……………………110 

Figure 3.4: Western-Blot for DNMTI1 protein following decitabine 
treatment………………………………………………………………………………………………………….110 

Figure 3.5: Liquid chromatography-mass spectrometry following decitabine 
treatment………………………………………………………………………………………………………….111 

Figure 3.6: CXCL10 ELISA following decitabine treatment…………………………..112 

Figure 3.7: SGC drug library screening layout……………………………………………….114 



 

 9 

Figure 3.8: SGC drug library concentrations gradient layout……………………….115 

Figure 3.9: Drug-response curves, drugs 1-12……………………………………………….116 

Figure 3.10: Drug response curves, drugs 13-24……………………………………………117 

Figure 3.11: Drug response curves, drugs 25-36……………………………………………118 

Figure 3.12: Drug response curves, drugs 37-43…………………………………………..119 

Figure 3.13: Imaging of plate (a) from figure 3.7 using the high-content 
imaging system, Operetta…………………………………………………………………………………120 

Figure 3.14: Imaging of plate (b) from figure 3.7 using the high-content 
imaging system, Operetta…………………………………………………………………………………120 

Figure 3.15: CXCL10 ELISA drug library screening…………………………………………122 

Figure 3.16: Optimisation of CXCL10 ELISA following IFNγ stimulation………123 

Figure 3.17: CXCL10 ELISA drug library screening with IFNγ stimulation….125 

Figure 3.18: Cxcl10 RT-qPCR and ELISA…………………………………………………………128 

Figure 3.19: Western blot analysis following inhibition of G9a, EZH2 and 
combination G9a/EZH2 treatment……………………………………………………………………129 

Figure 3.20: Chemokine/cytokine array following G9a or G9a/EZH2 
inhibition……………………………………………………………………………………………………………131 

Figure 3.21: Chemokine gene expression on human samples………………………133 

Figure 4.1: Schematic of survival experiment with either vehicle, UNC0642 
or HKMTI-1-005…………………………………………………………………………………………………141 

Figure 4.2: Results of survival experiment with either vehicle, UNC0642 or 
HKMTI-1-005………………………………………………………………………………………………………143 

Figure 4.3: Schematic of exploratory experiment with UNC0642 and ascites 
results………………………………………………………………………………………………………………..144 

Figure 4.4: Gating strategy for flow-assisted sorting of immune cells from 
murine deposits – lymphoid population………………………………………………………….145 

Figure 4.5: Gating strategy for flow-assisted sorting of immune cells from 
murine deposits – myeloid population…………………………………………………………….146 

Figure 4.6: Immune cell population frequency following G9a inhibition……147 



 

 10 

Figure 4.7: Geometric mean fluoresence (MFI) of markers on macrophage and 
dendritic cells, following G9a inhibition…………………………………………………………148 

Figure 4.8: Exploratory experiment following treatment with G9a/EZH2 
inhibitor HKMTI-1-005………………………………………………………………………………………150 

Figure 4.9: Flow cytometry results following HKMTI-1-005 treatment……….151 

Figure 4.10: Flow cytometry plots and CXCR3 expression on NK cells 
following HKMTI-1-005 treatment ………………………………………………………………….153 

Figure 4.11: Results of intracellular chemokine content and myeloid cell 
gating strategy following HKMTI-1-005 treatment…………………………………………155 

Figure 4.12: Flow cytometry results following HKMTI-1-005 treatment – 
myeloid populations and receptor expression……………………………………………….157 

Figure 4.13: Immunohistochemistry following HKMTI-1-005 treatment…….158 

Figure 4.14: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 - lymphoid populations…………..……………160 

Figure 4.15: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – lymphoid subpopulations………………….162 

Figure 4.16: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – Tregs and CXCR3 expression on lymphoid 
populations………………………………………………………………………………………….…………….163 

Figure 4.17: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – intracellular chemokine content……….164 

Figure 4.18: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – myeloid populations……………………………165 

Figure 4.19: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – cell membrane markers on myeloid 
populations – macrophages …………………………………………………………………………….166 

Figure 4.20: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005 – cell membrane markers on myeloid 
populations – dendritic cells …………………………………………………………………………..167 

Figure 4.21: Flow cytometry results in peritoneal wash after treatment with 
HKMTI-1-005  – cell populations, CXCR3 expression and lymphoid 
subpopulations………………………………………………………………………………………………….169 

Figure 4.22: Flow cytometry results in peritoneal wash after treatment with 
HKMTI-1-005 – intracellular chemokines,Ly6C and MHCII on macrophages..171 



 

 11 

Figure 4.23: Flow cytometry results in the spleen after treatment with 
HKMTI-1-005  – cell populations, lymphoid subpopulations and intracellular 
chemokines………………………………………………………………………………………………..…….173 

Figure 4.24: Intratumoral chemokine expression after treatment with HKMTI-
1-005 ……………………………………………………………………………………………………..…………175 

Figure 4.25: PD-L1 on tumour cells in vitro and schematic of in vivo 
experiment with anti-PD1 antibody……………………………………………………………….177 

Figure 4.26: Results of in vivo survival experiment with anti-PD1 plus HKMTI-
1-005………………………………………………………………………………………………………………….179 

Figure 4.27: Survival experiment with cisplatin plus HKMTI-1-005…………….181 

Figure 4.28: NK cell depletion in vivo experiment ………………………………………183 

Figure 4.29: Validation of NK cell depletion by flow cytometry – blood and 
spleen…………………………………………………………………………………………………………………185 

Figure 4.30: Validation of NK cell depletion by flow cytometry - tumour and 
ascites…………………………………………………………………………………………………………………186 

Figure 5.1: RNA sequencing quality control……………………………………………………197 

Figure 5.2: RNA sequencing quality control and library composition………….199 

Figure 5.3: RNA sequencing – differentialy expressed genes……………………….201 

Figure 5.4: RNA sequencing hierarchical clustering and functional annotation 
analysis………………………………………………………………………………………………………………203 

Figure 5.5: RNA sequencing – functional annotation analysis continued…….205 

Figure 5.6: RNA sequencing- ImmuCC tool…………………………………………………….206 

Figure 5.7: RNA sequencing – single sample GSEA analysis………………………….208 

Figure 5.8: RNA sequencing; endogenous retroviruses analysis………………….211 

Figure 5.9: ATAC sequencing quality control…………………………………………………213 

Figure 5.10: ATAC sequencing quality control and library composition…….214 

Figure 5.11: ATAC sequencing quality control continued…………………………….215 

Figure 5.12: ATAC sequencing peak results……………………………………………………217 



 

 12 

Figure 5.13: ATAC sequencing results; peak distribution and overlap between 
present peaks and DEGs by RNA sequencing………………………………………………….218 

Figure 6.1: Immune related changes observed in vivo in Trp53-/- ID8 tumours 
following treatment with the dual G9a/EZH2 inhibitor HKMTI-1-005………….225  

 

List of tables 

Table 1.1: Common germline gene mutations associated with hereditary 
ovarian cancer…………………………………………………………………………………………………….28 

Table 2.1: Immortalised human cell lines used throughout the thesis………….60 

Table 2.2: Antibodies and recombinant proteins for ELISA……………………………68 

Table 2.3: Recipes for acrylamide gels…………………………………………………………….70 

Table 2.4: Antibodies for Western Blot…………………………………………………………….72 

Table 2.5: Antibodies used for immunohistochemistry staining…………….……..76 

Table 2.6: Primers pairs used for single-gene RT-qPCR………………………………….81 

Table 2.7: Omni-ATAC protocol buffers……………………………………………………………88 

Table 2.8: Solutions for Iodixanol gradient………………………………………………………89 

Table 2.9: Transposase (Tn5) reaction solution………………………………………………90 

Table 2.10: Antibody-fluorochrome flow cytometry panel for BD FORTESSA 
cytometer…………………………………………………………………………………………………………….99 

Table 2.11: Antibody-fluorochrome flow cytometry panel for Cytek Aurora 
cytometer………………………………………………………………………………………………………….101 

Table 3.1: SGC library probes list……………………………………………………………………106 

Table 6.1: On-going early phase trials with EZH2 inhibition…………………………228 
 
Table 6.2: EZH2 overexpression and gain-of-function mutations in cancers 
and affected targets………………………………………………………………………………………….229 

 

  



 

 13 

 List of Appendices 

Appendix 1 – RT2 Profiler PCR array Mouse Chemokines and Cytokines; quality 
control and normalisation results……………………………………………………………….232-235 

Appendix 2 – List of primers used for NGS RNAseq…………………………………………..236 

Appendix 3 – List of Sigma-Aldrich customised primers used for ATAC-seq…...237 

Appendix 4 – Qiagen 84-chemokine/cytokine array results……………………...238-240 

Appendix 5 – In vivo study conducted by CrownBio to define the best tolerated 
dose of HKMTI-1-005………………………………………………………………………………………….241 

Appendix 6 – Pharmacokinetic studies performed by Institute of Cancer Research 
(ICR)…………………………………………………………………………………………………………………..242 

Appendix 7 - Pharmacokinetic studies performed by Institute of Cancer Research 
(ICR)………………………………………………………………………………………………………………...243 

Appendix 8 – Gating strategy for CD44 and CD62L staining………………………….…244 

Appendix 9 – Gating strategy for intracellular chemokine staining………………..245 

Appendix 10 – Tumour associated macrophage gating strategy according to the 
literature…………………………………………………………………………………………………………….246  

Appendix 11 – Murine blood test results at humane endpoint………………………….247 

Appendix 12 – Mice weight and tumour weight with 2-week treatment of HKMTI-
1-005; four replicate experiments merged………………………………………………………248 

Appendix 13– RNA electropherograms by Agilent 2200 TapeStation for RIN 
estimation…………………………………………………………………………………………………….249-250 

Appendix 14 – DNA electropherograms by Agilent 2200 TapeStation for samples 
analysed with downstream RNAseq…………………………………………………………….251-252 

Appendix 15 – ssGSEA results for immune pathway signatures………………….253-259 

Appendix 16 – ERV analysis with annotation of the exact genomic loci…...260-261 

Appendix 17 – DNA electropherograms by Agilent 2200 TapeStation for samples 
analysed with downstream ATACseq………………………………………………………………….262 

Appendix 18 – Functional annotation of DEGs with present peaks on ATACseq by 
GO ontology and KEGG pathways…………………………………………………………………..….263 



 

 14 

Appendix 19 – Basic clinical characteristics of patients’ samples treated with 
HKMTI-1-005…………………………………………………………………………………………………………264 

 

  



 

 15 

Acknowledgement 

I had the luck (and challenge) to carry out my PhD in two different laboratories, 

at the Wolfson Wohl Cancer Research Centre in the University of Glasgow (UoG) 

and at the Institute of Reproductive and Developmental Biology, at Imperial 

College in London. There is, therefore, a long list of people whose help I owe to 

acknowledge here. 

First and foremost, I would like to wholeheartedly thank my primary supervisor, 

Iain, for being a great supervisor and mentor throughout an adventurous PhD. 

Iain was pivotal in my decision to pursue a lab-based PhD in the first place, by 

being the most inspirational example of a clinician scientist. Iain has the great 

quality to encourage people to strive for improvement, in the most supporting 

and nurturing way. I will always be grateful to him for the opportunity to 

experience - what now seems - a short journey in cancer science. 

I am also extremely thankful to Tricia Roxburgh for participating in my 

supervision at the crucial last few months of my PhD and allowing some of my 

experiments to take place in her lab in Glasgow. Seth Coffelt provided his 

expertise in immunology, as well as crucial mentorship when I needed it the 

most, and Bob Brown provided his expertise in epigenetics and a warm welcome 

at Imperial. A big thank you to Peter Adams who instilled the first ideas about 

epigenetics and immune response in cancer, to Matt Fuchter for allowing me to 

work with the HKMTI-1-005 compound and Anthony Chalmers for reviewing my 

progress. 

From my time in the “Glasgow lab”, I owe a massive thank you to: Josephine for 

generating the cell lines that I have worked with throughout my project; 

Suzanne for teaching me basic lab techniques when I could not tell the 

difference between a pipette and a stripette (as well as endless conversations 

on music, politics and the intersection of both); Alex for sharing a desk, a mini-

pharmacy and his crucial lab recipes with me; Malcolm and Elaine for the 

clinician-in-the-lab camaraderie; Darren for always giving me sensible life-



 

 16 

advice; Aula for her inspirational life stories and of course the numerous lab 

allies, Eirini Lampraki, Lynn McGarry, Susan Mason, Karen Blyth and Colin Dixon.  

From the “London lab”, I will be eternally grateful to Sarah Spear for helping me 

settle in a new lab, for teaching me flow cytometry (or at least trying her very 

hardest to teach me) and infecting me with some of her endless passion for 

cancer immunology. I am also thankful to her for some quite enjoyable 

bouldering sessions. Many thanks to Sophie for the slightly morbid lunch 

discussions that nobody else enjoyed apart from us; to Jaya for the philosophical 

evening discussions that nobody else heard apart from us; Ian G for showing me 

a glimpse of hands-on epigenetics; Hasan for his expertise in bioinformatics and 

Marina Natoli for helping me with “ERV-ology”. I am also grateful to Paula and 

Natasha for being my 4th floor buddies and also, Zhao, Carmen and Keira for all 

their help.  

From the “real life lab”, I should thank my family and my close friends for 

supporting me in so many different ways through the years and particularly my 

sisters, Alexandra and Anna, who were always available to lend an ear and 

graciously pretend they sympathised with my sense of disappointment following 

failed experiments. And last, but certainly not least, a warm thank you to my 

partner, Victoria, for all the obvious reasons; these are perhaps too many for an 

80,000-word limited thesis to encompass. 

 

 

 

 

  



 

 17 

Author’s declaration 

The work presented in this thesis was performed entirely by the author, except 

as acknowledged at the Wolfson Wohl Cancer Research Centre, Institute of 

Cancer Sciences, University of Glasgow and at the Institute of Reproductive and 

Developmental Biology, Imperial College in London. This thesis has not been 

previously submitted for a degree or diploma at this or any other institution. 

 

                                                                                        Pavlina Spiliopoulou 

                                                                                          November 2020 

                                                                                           

 

 

 

 

 

 

 

 

 

  



 

 18 

Abbreviations 

AF     autologous fluid  

ANOVA    analysis of variance 

APS     ammonium persulphate  

ATAC     assay for Transposase-Accessible chromatin  

ATACseq    ATAC sequencing 

BD     twice daily 

BSA     bovine serum albumin  

BRCA1     breast cancer 1 susceptibility protein 

BRCA2     breast cancer 2 susceptibility protein 

CA125     cancer antigen 125 

CCL5     C-C motif chemokine ligand 5 

CCL20     C-C motif chemokine ligand 20 

CD     cluster of differentiation 

cDNA     complementary deoxyribonucleic acid  

CT     cycle threshold 

CTLA4     Cytotoxic T-lymphocyte-associated protein 4 

CXCL9     C-X-C motif chemokine ligand 9 

CXCL10    C-X-C motif chemokine ligand 10 

CXCL11    C-X-C motif chemokine ligand 11 

CXCR3     C-X-C motif chemokine receptor 3 

DAMPs     danger-associated molecular patterns 

DAPI     4′,6-diamidino-2-phenylindole  

 



 

 19 

DAVID Database for Annotation, Visualization and  

                                                  Integrated Discovery 

DEG                                            differentially expressed gene 

dH2O     distilled H2O 

DMEM     Dulbecco's Modified Eagle Medium  

DMSO     dimethyl sulfoxide  

DNMT     DNA methyltransferase 

DNA     deoxyribonucleic acid  

dNTPs     deoxynucleoside triphosphate 

DPBS     Dulbecco’s phosphate-buffered saline 

DTT     dithiothreitol  

ELISA     enzyme-linked immunosorbent assay 

ERV     endogenous retrovirus 

FACS     fluorescence-activated cell sorting 

FBS     foetal bovine serum  

FFPE      formalin-fixed paraffin-embedded 

FSC-A     forward scatter area 

FSC-H     forward scatter height  

GZMB     granzyme B 

GSEA                                          gene set enrichment analysis 

H3K9me1/2/3 Mono-, di-, trimethylation of lysine 9 on    
histone 3 

H3K27me3    trimethylation of lysine 27 on histone 3 

HDAC     histone deacetylase 

HGSC     high grade serous carcinoma  



 

 20 

HCC     hepatocellular carcinoma 

HIER     heat-induced epitope retrieval  

H-score    histoscore 

IFNγ     Interferon gamma 

IHC     immunohistochemistry  

IP     intraperitoneal 

IV     intravenous 

LCMS     liquid chromatography–mass spectrometry 

mAb     monoclonal antibody 

MDSC     myeloid-derived suppressor cell 

MEK     Mitogen-activated protein kinase kinase 

MICA     MHC class I polypeptide-related sequence A 

MICB     MHC class I polypeptide-related sequence B 

mg     milligram 

ml     millilitre 

mM     millimolar 

MW     molecular weight 

NACT     neo-adjuvant chemotherapy 

NBF     neutral buffered formalin  

NF-H2O    nuclease-free H2O  

ng     nanogram 

NK1.1 (or KLRB1 or CD161)  killer cell lectin-like receptor subfamily B, 
 member 1 

nM     nanomolar 

nm     nanometre 



 

 21 

NK cells    natural killer cells 

NGS     next-generation sequencing 

OD     optical density 

OD     once daily 

PARP     poly (ADP-ribose) polymerase 

PBMC      peripheral blood mononuclear cell 

PBS     phosphate buffered saline  

PD1 (or CD279)   programmed cell death protein 1 

PD-L1 (or CD274)   programmed cell death-ligand 1 

PMA     phorbol 12-myristate 13-acetate 

PRC2     Polycomb Repressive Complex 2  

Repbase    Database of repetitive DNA elements 

RIN     RNA Integrity number 

RNA     ribonucleic acid  

RNAseq    RNA sequencing 

Rpm     rotations per minute 

rRNA     ribosomal RNA 

RPMI     Roswell Park Memorial Institute medium 

RT-qPCR quantitative reverse-transcription polymerase                         
chain reaction 

SAM     S-adenosyl methionine  

SD     standard deviation of the mean 

SDS     sodium dodecyl sulphate  

SGC     Structural Genomics Consortium 

SSC-A     side scatter area 
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SSC-W     side scatter width 

STR     short-tandem repeat  

TAM     tumour-associated macrophage 

TAm-seq    tagged-amplicon sequencing  

TEMED     tetramethylethylenediamine  

TGF-β1    transforming growth factor-β1 

TNFα     tumour-necrosis factor alpha 

VEGF-A    vascular endothelial growth factor-A 

mg     milligram 

ml     millilitre 

µM     micromolar 

µm     micrometer 
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1.1.  Epithelial ovarian cancer  

 General 

Globally, 295,500 new cases of ovarian cancer (OC) were diagnosed in 2018 with 

almost 185,000 deaths recorded in the same year (1). Even though OC is not 

among the most common cancers worldwide, it is the second most deadly 

gynaecological malignancy after cervical cancer, and, without an established 

screening strategy as yet, the death rate will certainly remain high (1-3).  

 

Thought to be a single entity until recently, epithelial OC is now subdivided into 

different histological subtypes that have individual molecular characteristics, risk 

factors and different response to treatments. Epithelial OC accounts for ~90% of 

OCs and includes high-grade and low grade serous, high-grade and low-grade 

endometrioid, clear-cell, ovarian carcinosarcoma and mucinous carcinomas. Of 

these types, high-grade serous carcinoma (HGSC) is the most commonly diagnosed. 

Low-grade endometrioid and low-grade serous carcinoma (LGSC) are different to 

their high-grade counterparts from a clinical and histopathological point of view, 

whereas high-grade endometrioid carcinoma behaves similarly to HGSC (4, 5). The 

sub-characterisation of epithelial OC has been a step of paramount significance 

for OC research as we can now design clinical trials specifically for each sub-type, 

with an aim to answer questions more precisely (figure 1.1). Small-cell ovarian 

carcinoma is an extremely rare and separate histology that affects young women, 

has a particularly poor prognosis and is associated with SMARCA4 mutations (6, 7). 

Non-epithelial ovarian cancers include tumours arising from ovarian germ-cells 

and the sex cord stroma and account for the remaining 10% of OC. They affect 

patients of a younger age than epithelial OC and the oncological management is 

totally different (8).  

 

The site of OC origin has also been a topic of on-going research and speculation. 

Tumours that have until now been described clinically and histopathologically as 

HGSC probably originate in the fallopian tube (9) and although the term ovarian 

cancer is still widely used, it is acceptable within the scientific and clinical 

community that only a subset of them actually originate from the ovarian 



Chapter 1 Introduction 

 25 

epithelium. Endometrioid and clear-cell carcinomas can originate from 

endometrial tissue migrating outside the uterine endometrium, through the 

process of endometriosis; still, uncertainty still exists over the exact cell of origin.  

 

Effective screening strategies for the early detection of ovarian cancer are not 

established yet. Screening modalities such as the use of CA125 biomarker and 

transvaginal ultrasonography may have utility in detecting early-stage cancer (10). 

In UKCTOCS study, 202,638 women were allocated to either annual multimodal 

screening (MMS), annual transvaginal ultrasound (USS) or no screening at all. In 

the MMS group, serum CA125 concentration was used, with its trend over time 

interpreted with an algorithm of OC risk calculation, which identifies significant 

rises in CA125 concentration above baseline. Following this, women with 

suspicious rises in CA125 would undergo transvaginal USS. In the USS group, 

primary test was annual transvaginal USS.  Within a year of screening, overall 

sensitivity for detection of OC was 84% (95% CI 79–88) in the MMS group and 73% 

(66–79) in the USS group (3). Mature results from large screening trials on the 

overall mortality benefit of these modalities are still awaited (3). Nevertheless, 

individuals at high risk of developing ovarian cancer, such as those with germline 

mutations in BRCA1, BRCA2 or other high-risk genes, can access risk-reducing 

surgery, such as bilateral salpingo-oophorectomy.  

First-line management of newly diagnosed OC includes a combination of surgery 

and cytotoxic treatment. This is either primary surgical cytoreduction followed 

by combination platinum-based chemotherapy or neoadjuvant chemotherapy 

(NACT), followed by interval surgical cytoreduction and further additional 

chemotherapy after surgery. The platinum analogues cisplatin and carboplatin 

are the most active therapeutic agents against newly diagnosed OC and are 

usually administered with the addition of a taxane (11-16). Recurrence of cancer 

and platinum treatment resistance are very common and still pose a great 

challenge as therapeutic options at this point are limited (17). New therapeutic 

advances for recurrent OC include angiogenesis inhibitors and poly (ADP-ribose) 

polymerase (PARP) inhibitors (18-21) whilst immunotherapy agents are still 

under testing for a definitive benefit in prolonging patient survival (22, 23). OC 
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biology and clinical management are exciting and ever-evolving fields; in this 

introduction, I will summarise the main molecular and immunological 

characteristics of OC and how these intersect with recent discoveries in the field 

of cancer epigenetics. 

 

 Risk factors 

Genetics 

Genetic predisposition -with or without known family history of breast and/or 

ovarian cancer- is the most important OC risk factor. Germline BRCA1 or BRCA2 

(gBRCA1/gBRCA2) mutations account for approximately 15% of cases (24-26) and 

although they are mainly associated with high-grade serous subtype of OC (26), 

they are occasionally observed in other types too (27, 28). Women with OC 

carrying germline mutations in BRCA1 or BRCA2 have better overall survival 

compared to women with wild-type genes (29) and BRCA2 mutations confer a 

survival advantage compared to BRCA1 mutations, possibly secondary to 

enhanced platinum response (29, 30). In patients with germline BRCA1 or BRCA2 

mutations, the risk of developing OC and average age of peak risk can be 

affected, amongst other reasons, by the location of the mutation within the 

genes and the functional deficit of the protein products (31). Other genes that 

are critical in increasing the risk of developing ovarian cancer are PALB2, 

RAD51C, RAD51D, BRIP1 and BARD1, some of which belong to the Fanconi 

anaemia–BRCA pathway (32). Inherited mutations in genes such as CHEK2, 

MRE11A, RAD50, ATM and of course TP53, might also increase the risk of 

developing OC.(28, 33-35). Lynch syndrome is a well-recognised familial 

syndrome associated with endometrial, colorectal and ovarian cancers and is 

characterized by germline mutations resulting in deficient mismatch repair 

system. It most frequently results in mal-functioning MLH1, PMS2, MSH2 or MSH6 

proteins (36-38). 
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Patients with Lynch syndrome-associated ovarian cancer present with a higher 

prevalence of endometrioid and clear-cell carcinomas, than would be predicted 

for sporadic OC (37) (table 1.1). 

 

Reproductive system 

 
In addition to genetic factors, the risk of ovarian cancer can be affected by 

reproductive system factors such as salpingectomy and unilateral/bilateral 

oophorectomy, tubal ligation and parity (39, 40). 

Figure 1.1:  Histological subtypes of epithelial ovarian cancer 
(a) Borderline tumour: serous epithelium with progressive branching architectural 
complexity. Some epithelial cells have detached (b) High-grade serous 
tumour: serous epithelium with increased architectural complexity. Glands are 
elongated with narrow cleft-like spaces showing foci of necrosis and exfoliation. (c) 
High-grade endometrioid carcinoma: foci of squamous metaplasia, not seen in (pure) 
variants of other ovarian carcinomas, are evident. The glands are crowded and fused 
the epithelium is generally non-exfoliative. (d) Clear cell carcinoma: uniform high-
grade nuclear features with clear cytoplasm; solid and papillary areas are visible with 
some hob nailing and tufting. The carcinoma is invasive. (E) Mucinous carcinoma 
(haematoxylin and eosin) showing progressive architectural complexity and nuclear 
atypia. The epithelium towards the benign end of the spectrum shows tall columnar 
cells with basal nuclei. (F) Mucinous carcinoma: cytokeratin 7 (CK7)—diffuse staining 
of tumour cells. CK7 staining in conjunction with patchy CK20 and CDX-2 (CK20 and 
CDX-2 not shown) are consistent with a primary tumour of ovarian origin. (Adapted 
from Jayson et al, Lancet 2014, with permission from Elsevier, under license number 
4947611089815). 
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Gene  Protein  Protein function 
BRCA1  Breast cancer type 1 

susceptibility protein  
Repair of double-strand breaks by homologous 
recombination 

BRCA2  Breast cancer type 2 
susceptibility protein  

Serves as a scaffold for other proteins involved 
in double-strand DNA repair, mostly through 
defective homologous recombination 
Stabilizes RAD51–ssDNA complexes 

BARD1  BRCA1-associated RING 
domain protein 1  

Forms a heterodimer with BRCA1 - essential for 
mutual stability  

BRIP1  BRCA1-interacting protein 
1 (also known as Fanconi 
anaemia group J protein)  

The BRCA1–BRIP1 complex is required for S 
phase checkpoint activation  

PALB2  Partner and localizer of 
BRCA2  

A bridging protein that connects BRCA1 and 
BRCA2 at sites of DNA damage 
Helps load RAD51 onto ssDNA  

RAD51C  DNA repair protein RAD51 
homologue 3  

Strand exchange proteins that bind to ssDNA 
breaks to form nucleoprotein filaments and 
initiate DNA repair  RAD51D  DNA repair protein RAD51 

homologue 4  
MSH2 MutS protein homologue 2 Mismatch repair proteins that recognize and 

repair base-pairing errors occurring during DNA 
replication 
Mutations in mismatch repair genes are 
associated with Lynch syndrome 

MLH1  MutL protein homologue 1  
MSH6  MutS protein homologue 6  
PMS2  Mismatch repair 

endonuclease PMS2  

Table 1.1: Common germline gene mutations associated with hereditary ovarian 
cancer. (Adapted from Matulonis et al, Nat Rev 2016, with permission from Springer 
Nature, under license number 4947611489069). 

 
 
Parity has a reduced risk of all subtypes of OC compared to nulliparity, with the 

strongest risk reduction noted for clear-cell carcinomas. Irrespective of 

histological subtype, unilateral oophorectomy is associated with a 30% reduction 

in the risk of OC. Bilateral oophorectomy also reduces the risk of OC in women 

with a genetic predisposition (41, 42). 

Only 1.1% of women with gBRCA1 mutation and no women with gBRCA2 mutations 

developed a tubo-ovarian carcinoma following bilateral salpingo-oophorectomy. 

This rate is even lower, i.e. 0% for both genotypes, when surgery takes place at 

the younger age of 35 years. In addition to oophorectomy, tubal ligation and 

breastfeeding have similarly been associated with a decreased risk of OC in women 

with gBRCA mutations (39). Hysterectomy is linked to the reduction in the risk of 

clear-cell carcinoma, whereas tubal ligation is associated with reduction in the 



Chapter 1 Introduction 

 29 

risk of both clear-cell and endometrioid carcinomas (39-41, 43). Lastly, 

endometriosis has been associated with endometrioid and clear-cell ovarian 

cancer, as well as low-grade cancers (43). 

 

 

Sex hormones 

Both in individuals with a gBRCA1 mutation as well as in those without a genetic 

predisposition, the oral contraceptive pill reduces the risk of OC (44, 45). It has 

been shown that the use of oral contraceptives for an average of 5 years leads to 

a lifetime reduction of 0.54% for OC (45, 46). Interestingly, an analysis from the 

Ovarian Cancer Cohort Consortium (including data on 1.3 million women and 

5,584 ovarian cancers) showed that oral contraceptive use was associated with 

reduction in serous, endometrioid and clear-cell carcinomas, but not mucinous 

carcinomas (43). The risk reduction of OC incidence is associated with the 

duration of oral contraceptive use but not the relative oestrogen and progestin 

doses contained in the oral contraceptives (46). Nevertheless, this reduction risk 

needs to be weighed against potential harmful effects of the oral contraceptive 

pill, such as minimal increase of breast cancer risk and adverse vascular events. 

More evidence will be required in order for the contraceptive pill to be 

recommended as a safe prevention strategy against OC (46).  

On the contrary, hormone replacement therapy has been shown to increase the 

risk of developing OC in post-menopausal women. Some studies showed that 

combined oestrogen/progesterone therapy and oestrogen-only therapy increase 

the risk by 10% and 22%, respectively (47-49). Nonetheless, a meta-analysis 

showed that hormone replacement therapy has a similar increase in the risk of OC 

development in post-menopausal women, regardless of the hormonal content of 

the therapy; this risk was specifically associated with the development of serous 

and endometrioid carcinomas (50). This finding has been confirmed by others but 

in addition, a reduced risk of clear-cell cancer in women using hormone 

replacement therapy has been observed (43). Intriguingly, the use of hormone 

replacement therapy seems to be safe and to have no adverse effect on overall 

survival of women already diagnosed with OC, suffering from menopausal 
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symptoms. A study showed that women who took hormone replacement therapy 

after diagnosis of stage I-IV OC had better survival than the ones who did not; 

however, it is not clear if oestrogen-receptor positive low-grade serous cancer 

patients were included in this analysis (51).  

 

Other factors 

Both weight and height have been linked to the risk of developing OC. A meta-

analysis showed an ~13% increase in the risk of OC in post-menopausal women 

for every 5kg gain in weight (52). This risk is more tightly related to mucinous 

and endometrioid carcinomas, but not HGSC (53). Meta-analyses have also 

suggested that regular physical activity has a beneficial effect on the risk of OC, 

with a 30–60% reduction in the most active women (54). After the diagnosis of 

OC, overweight women with either LGSC, HGSC or endometrioid carcinoma have 

worse outcomes than non-overweight women (55). In addition to weight, a 

recent study in almost 16,400 patients and 23,000 matched controls showed that 

taller height is linked to higher risk of OC too (56).  

Dietary factors and the risk of developing OC has also been studied. The intake 

of vitamin A, C or E and folate or the intake of a specific diet (as defined by the 

study’s diet scores) during adulthood, does not alter the risk of OC (57, 58). 

Interestingly, the consumption of flavonoids and black tea show a trend to 

decrease the risk of OC, but results need to be validated further (59). An inverse 

association between the intake of skimmed milk and lactose and the risk of 

developing OC was observed in one study (60).  

Daily, low-dose aspirin use by women of all ages was associated with reduced 

risk of endometrioid and mucinous carcinomas and a significant reduction in the 

risk of serous carcinomas; however, the same associations were not drawn for 

paracetamol (61). Nonetheless, these are results from retrospective studies and 

prospective trials testing aspirin for OC risk reduction would need to be 

conducted. NSAID use only showed a trend towards a lower risk of OC, 

specifically, of serous carcinomas (61).  
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Lastly, the use of talc powder in the genital area had triggered a lot of 

discussion and media attention in the past, with variable study results being 

clearly as possible that talc use is not associated with increased risk (62) 

reported (63-65).  However, a recent study on 252,745 women demonstrated as 

 

 

 Pathophysiology and molecular alterations  

Figure 1.1 shows the major histological sub-classifications of epithelial ovarian 

cancer with their associated molecular perturbations depicted in figure 1.2.  

 

High-grade serous and endometrioid ovarian cancers  

 

Most patients with epithelial OC present with high grade serous carcinoma and 

associated TP53 abnormalities, which are also seen in endometrioid and other 

high-grade undifferentiated histologies. Ovarian HGSC was found to harbour 

TP53 mutations in 97% of cases, as described by Ahmed et al (66) and confirmed  

by others subsequently (67). Approximately 20% of these tumours also carry a 

BRCA1/2 mutation due to either germline or somatic mutations (68).  

In recent years, accumulating evidence has shown that the majority of high-

grade serous OC (and what was previously described as peritoneal tumours), 

originate in the fimbria of the fallopian tube from the precursor, serous tubal 

intraepithelial carcinoma (69, 70). 

Prophylactic salpingo-oophorectomies for familial risk showed a high prevalence 

of tubal carcinoma or serous tubal intraepithelial carcinoma in resected tissue, 

supporting the hypothesis that HGSC starts in the tubal fimbriae (9, 71). HGSC is 

characterised by extreme genomic instability, DNA copy number abnormalities 

(72), and only few distinct and recurrent mutations (68). Further subdivision of 

high-grade tumours into four subgroups termed proliferative, immunologic, 

mesenchymal, and differentiated (68, 73) based upon gene expression analyses 

has been suggested; 
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However, this classification has not yet been applied to clinical care. High-grade 

cancers are initially sensitive to platinum-based chemotherapy; however 

eventually, resistance emerges. 

 

Low-grade serous and endometrioid ovarian cancer 

 

Low-grade serous ovarian cancer (LGSC) shows an indolent behaviour and 

response rates to cytotoxic or hormonal agents are low (4). Mutations in PI3KCA, 

BRAF, and KRAS are frequent and, although MEK inhibitors can result in a 15% 

response rate and improved progression-free survival compared to standard-of-

care chemotherapy and hormone therapy, these mutations are often not 

associated with increased response rates (74, 75). More research is required in 

LGSC, in order to identify novel treatments and discover predictive biomarkers 

for these patients who do respond to MEK inhibition. 
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Figure 1.2: Molecular aberrations of epithelial OC, classified by histological type. 
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Clear-cell ovarian cancer 

Clear cell carcinomas of the ovary are rare tumours and are associated with 

endometriosis. They respond poorly to conventional platinum-based 

chemotherapy and have an invariably poor prognosis when diagnosed in an 

advanced stage (76, 77). Molecular biology is distinct from that of HGSC with 

clear cell carcinomas exhibiting chromosomal stability and being typically TP53 

wild type. Recently, a high frequency of mutations of the chromatin remodeller 

ARID1A (46 %) (78, 79) was found, as well as mutations in PIK3CA gene (33 %) 

(80). Their co-dependency in promoting tumorigenesis in this OC subtype was 

highlighted by Chandler et al (81). In a preclinical study, it was observed that 

EZH2 inhibition causes tumour regression in ARID1A mutated tumours(82). 

Moreover, the IL-6/STAT and VEGF pathways show hyperactivation in clear cell 

carcinoma (83-85). Thus, the PI3K/AKT/mTOR, VEGF and IL-6/STAT3 pathways 

are promising therapeutic targets in ovarian clear cell cancer. 

 

Mucinous ovarian cancers 

Mucinous OC only occurs in 3% of women presenting with epithelial OC and 

shares many molecular characteristics with the mucinous cancers arising in the 

gastrointestinal tract (86, 87). In contrast to HGSC, mucinous OC typically 

demonstrates mutations of the KRAS oncogene. Recent genomic interrogation of 

134 mucinous OC human samples showed that the most frequent genetic event 

was copy number loss or mutation in CDKN2A (76% of cases). This was followed 

by mutations in KRAS and TP53 (both 64%) with amplification of ERBB2 (26% of 

cases) and mutations in BRAF, PIK3CA, RNF43 and ARID1A (8–12% of cases) being 

the next most frequent (88). ERBB2 overexpression has been observed by other 

studies in up to 35% of mucinous OC cases (89-93). The suggested stepwise 

model of tumorigenesis is therefore that benign mucinous tumours initiate with 

either a KRAS or CDKN2A aberration. Borderline mucinous tumours thereafter 

develop additional copy number alterations and true mucinous cancers are more 

likely to additionally have a TP53 mutation. Increasing grade and metastatic 
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potential depend on the frequency of copy number alterations which are 

potential prognostic markers (88). Despite our comprehensive knowledge of 

these genetic aberrations, targeted treatment has not showed promising results 

to date. Sadly, this disease is underrepresented in clinical trials and its rarity 

makes basic and clinical research quite challenging. For mucinous OC, platinum-

based chemotherapy remains the standard-of-care oncological treatment.  

 

 Management of ovarian cancer  

Newly diagnosed ovarian cancer  

Surgical cytoreduction is the primary aim for all patients with newly diagnosed 

OC. Surgery aims to achieve macroscopic disease clearance with hysterectomy, 

salpingo-oophorectomy and omentectomy, as well as intestinal resection, 

peritoneal stripping, diaphragmatic resection, removal of bulky para-aortic 

lymph nodes and splenectomy when necessary. The removal of bulky lymph 

nodes takes place routinely in order to achieve maximum cytoreduction, 

however, there is a lack of unifying guidelines on the appropriate approach to 

systemic lymphadenectomy. In a retrospective analysis of 1,900 patients with no 

gross residual disease, lymphadenectomy was associated with a prolonged 

survival in a patient population, the 25% of whom had histologically involved 

lymph nodes post-surgery (94); however, in a randomised study that was 

conducted recently, systemic pelvic and abdominal lymphadenectomy added no 

additional benefit in PFS and OS and it was, in fact, associated with more post-

operative complications. Given the strong association between optimal 

cytoreduction of macroscopic disease and prognosis, efforts should be focused 

on primary surgery (95, 96). This should be followed up by adjuvant 

chemotherapy. Patients with low-grade, stage 1 cancer are not treated with 

chemotherapy post-surgery, but those with higher stages and/or specific 

histologies (such as HGSC and clear-cell carcinoma) undergo adjuvant systemic 

platinum-based chemotherapy (97). In advanced stages, several adjuvant 

chemotherapy strategies have led to an improvement in overall survival for 
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patients with newly diagnosed, advanced-stage ovarian cancer. The addition of a 

taxane to platinum chemotherapy, as well as the substitution of cisplatin 

compound with the less toxic carboplatin, are some of the most pivotal recent 

changes in the systemic cytotoxic treatment prescribed in OC (14, 98, 99).  

Neo-adjuvant chemotherapy (NACT) consists of 3 cycles of 

carboplatin/paclitaxel, followed by interval surgical cytoreduction and further 

chemotherapy post-surgery for a total of six cycles of chemotherapy. NACT 

replaces upfront surgery for patients who are not fit for initial surgery or when 

uncertainty about achieving macroscopic complete resection exists. NACT 

followed by surgery and postoperative chemotherapy confers comparable PFS 

and overall survival to primary surgery followed by adjuvant chemotherapy (100, 

101). 

Maintenance therapy after completion of adjuvant systemic treatment aims to 

prolong progression free (and overall) survival whilst also preserving the quality 

of life of the patient. The use of maintenance bevacizumab, a monoclonal 

antibody against VEGF-A, for a maximum of 15 months, is now routinely 

considered for patients with high-risk disease (defined as those patients with 

stage III–IV) (102-104).  

In some centres, mainly in the US, intraperitoneal chemotherapy is a therapeutic 

option for patient who have optimal cytoreduction at surgery and for whom, 

bevacizumab treatment is not considered. Based on results from studies GOG 

172 and GOG 252, delivering the platinum compound intraperitoneally and the 

taxane compound both intravenously and interperitoneally, results in better PFS 

and OS; however, quality of life during or soon after the end of treatment seems 

to be adversely affected (105, 106).  

More recently, the SOLO1 trial showed that treatment with PARP inhibition 

(PARPi) after first-line chemotherapy in patients with BRCA mutations (germline 

but also somatic), without bevacizumab, confers a 70% risk reduction of disease 

progression or death (107). These patients had complete or partial response to 

first-line standard, platinum-based chemotherapy. This significant risk reduction 
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for patients with mutated BRCA genes has been confirmed in the VELIA study 

with the PARPi veliparib. In this study, PARPi reduced the risk of disease 

progression not only in patients with mutated BRCA genes but also in patients 

with wild-type BRCA genes, both those with some other form of homologous 

recombination deficiency (HRD), and those with no detectable HRD (108). This 

was further supported with an alternative PARPi, niraparib, in the PRIMA study 

(109). In this study, PARP inhibition doubled PFS for patients with HRD (21.9 

months vs. 10.4 months; hazard ratio for disease progression or death, 0.43; 95% 

confidence interval [CI], 0.31 to 0.59; P<0.001) but also improved PFS for the 

sub-group of patients with HR proficiency [8.1 months in the niraparib group and 

5.4 months in the placebo group (hazard ratio, 0.68; 95% CI, 0.49 to 0.94)].  

 

Given the benefit observed both with angiogenesis and PARP inhibition, 

respectively, the PAOLA study was designed and aim at examining whether the 

combination VEGF/PARP inhibition would benefit patients, after completion of 

adjuvant chemotherapy (110). In this study, women with who had experienced a 

response to platinum-based chemotherapy plus bevacizumab were randomly 

assigned to the PARPi, olaparib, and bevacizumab maintenance versus placebo 

and bevacizumab maintenance. The combined inhibition was associated with an 

improved median PFS (22.1 versus 16.6 months; HR 0.59, 95% CI 0.49-0.72). Even 

among patient with tumours lacking BRCA mutations, PFS was 18.9 months with 

olaparib versus 16 months with placebo (HR 0.71, 95% CI 0.58-0.88). The addition 

of olaparib to bevacizumab however did not add any PFS improvement for patients 

without (or unknown) HRD status (110). 

  

Recurrent disease  

Most patients with advanced-stage ovarian cancer will experience disease 

recurrence. Recurrent ovarian cancer is generally incurable, although in rare 

cases, patients with isolated or oligometastatic recurrent disease that can be 

fully resected can experience long survival. In a retrospective analysis, surgery 

at disease relapse was associated with longer survival when achieved complete 

resection, as opposed to resection with residual disease left behind [median 45.2 
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vs. 19.7 months; hazard ratio (HR) 3.71; 95% confidence interval (CI) 2.27–

6.05; P<0.0001] (111). On the grounds of this retrospective study, the 

prospective surgical study DESKTOP III was conducted. Interim results confirmed 

that combination surgery and chemotherapy at disease relapse, confers an OS 

advantage when compared to chemotherapy alone (53.7 vs. 46.2, HR 0.76, 95%CI 

0.59-0.97, p=0.03) (112).  

Relapse is almost always accompanied by symptoms, and an increase in cancer 

antigen 25 (CA125) serum levels. CA125 test has a sensitivity and specificity for 

recurrence detection ranging from ~60% to 94% and ~91% to 100%, respectively 

(113, 114). An increase in CA125, in the absence of clinical symptoms, is 

generally not an indication to initiate treatment, unless otherwise specified by a 

trial protocol (115). 

 

Treatment options  

Recurrent ovarian cancer is still classified as platinum-sensitive or platinum-

resistant based on the time since last platinum chemotherapy, despite the 

widespread notion that this stratification is arbitrary. It has been suggested that 

other key factors such as molecular aberrations, BRCA status, histology and 

immunological parameters are more accurate in defining this disease. However, 

platinum sensitivity is still the language used amongst oncologists (116).  

More recently, the treatment of recurrent OC has become more complex with 

the addition of tumour histology, underlying BRCA status and potential of 

secondary cytoreduction, being major factors in deciding the appropriate next 

step. Secondary surgical cytoreduction should be considered and discussed with 

patients who have a long progression free interval, especially if the site of 

recurrence is limited and isolated, as there is evidence of progression-free 

survival benefit in patients with no post-operative residual disease (111); that 

being said, concrete results on survival benefit are still missing (117, 118).  
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For patients with platinum-sensitive recurrent OC, the standard of care globally 

is re-challenging with a platinum-based regimen (119). In this setting, response 

rates can be approximately 50% and certainly the use of combination platinum 

regimens improves outcomes compared with the use of single-agent platinum 

(119-122). Nonetheless, the length of the progression free interval tends to 

decrease with every platinum use. Moreover, caution needs to be exercised with 

platinum re-challenging as the emergence of potentially life-threatening drug 

allergy can occur (123). 

Moreover, bevacizumab can be added to carboplatin/gemcitabine for the 

treatment of platinum-sensitive recurrent OC, in patients who have not received 

it before. The addition of bevacizumab to chemotherapy increases significantly 

PFS (HR 0.48, 95% CI 0.38–0.60) and improves response rate by 21% (ORR 78.5% 

versus 57.4%, P < 0.0001) (124). Trabectedin, a tetrahydro-isoquinoline alkaloid 

that binds to DNA in its minor groove and results in cycle arrest, is also active in 

combination with pegylated liposomal doxorubicin (PLD); although not widely 

licensed for use, it prolongs median survival by approximately 6 months, when 

compared to PLD alone (125-128).  

PARP inhibition has also been approved for recurrent platinum-sensitive OC, 

after response and completion of platinum-based chemotherapy in patients with 

germline BRCA mutations as it is associated with a PFS of 19.1 months [95% CI 

16.3–25.7]) compared with placebo [5·5 months (95% CI 5.2–5.8)] with a hazard 

ratio of 0.30 (95% CI 0.22–0.41, p<0.0001 (129). Similarly to the first line setting, 

maintenance treatment with PARP inhibition is not only effective in patients 

with confirmed deleterious germline or somatic BRCA mutations whose OC recurs 

after one (or more) platinum-based treatments [PFS of 16.6 months with the 

PARP inhibitor rucaparib versus 5.4 months with placebo (p<0.0001)] but also 

patients with deficient homologous recombination through BRCA loss of 

heterozygosity [PFS of 13.6 months versus 5.4 months (p<0.0001)] (130). More 

recently, PARPi was examined in combination with the programmed cell death 

ligand-1 (PD-L1), durvalumab, in the platinum-sensitive setting, specifically in 

patients with germline BRCA mutations (131). Olaparib administration started 4 

weeks before durvalumab and the response rate observed was as high as almost 
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72%. The combination treatment is currently being explored in an attempt to 

find novel treatment that will spare patients of repeated lines of chemotherapy. 

For patients with platinum-resistant OC, bevacizumab in combination with 

paclitaxel, topotecan or PLD can be used in the first platinum-resistant setting, 

following the results of the AURELIA trial (132, 133). Gemcitabine, etoposide, 

vinorelbine or cyclophosphamide are alternative single agents that could be 

offered but have response rates not higher than 10–15% (16, 134-136) and can 

sometimes be challenging to deliver to heavily pre-treated patients. Apart from 

bevacizumab, oral anti-angiogenic therapies that have been studied in recurrent 

OC include cabozantinib, nintedanib, sunitinib and cediranib (137, 138) with the 

latter showing activity in both platinum-resistant and platinum- sensitive 

recurrent OC (139).  

 

 Immune microenvironment in ovarian cancer 

Tumour microenvironment (TME) and more specifically the immune cell subsets 

within ovarian cancer deposits play a critical role in OC tumorigenesis and 

progression (140, 141). When OC cells spread within the peritoneal cavity, they 

most frequently infiltrate the omentum. Omentum is the adipose tissue 

occupying large part of the peritoneal cavity. It is also an area wherein a great 

deal of immune cells reside or migrate and therefore, a great deal of immune 

interactions take place in the omentum (142). The immune interaction has 

various steps (figure 1.3) that separately contribute to the efficacy of the 

immune response and subsequent tumour cell killing. Ample clinical evidence 

has repeatedly shown that the immune microenvironment composition is 

correlated strongly with OC prognosis. 

The presence of tumour-infiltrating T lymphocytes (TILs), such as CD3+, CD8+ and 

CD4+ have generally been associated with better prognosis (143-148). Notably, in 

a pivotal study, patients with pre-existing CD3+ TILs in their ovarian cancers had 

a complete response rate of 73.9% following surgical debulking and platinum-

based chemotherapy, whereas patients without TILs had an 11.9% complete  
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response rate. Moreover, the presence of CD3+ TILs was associated with a 55% 

five-year survival, versus 4.5% in patients without CD3+ TILs (149). A meta-

analysis of 1,815 patients showed that the subset of CD8+ TILs is, unsurprisingly, 

more significant than the overall CD3+ population (150). More specifically, CD8+ T 

cells expressing the αE integrin subunit CD103 can directly mediate anticancer 

immune killing (151-153). 

 

More recently, in a study of 5,500 women with OC, of whom 3,196 had HGSC 

histology, tumour infiltration by CD8+ cells were graded by IHC into negative, 

low, moderate and high levels. Median survival was 2.8 years for patients with 

no CD8+ TILs and 3.0 years, 3.8 years, and 5.1 years for patients with low, 

moderate, or high levels of CD8+ cells, respectively (p= 4.2 x 10-16) (154). This 

study underpins the critical role of CD8+ cytotoxic cells in OC prognosis and 

Figure 1.3: Steps of anti-cancer immunity cycle. APC: antigen-presenting cell, 
CTL: cytotoxic T lymphocyte. (Figure taken from Chen DS et al, Immunity 2013, 
with permission from Elsevier, under license number 4947620286912). 
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contains the largest patient dataset published to date in relation to CD8+ T cells 

in the OC TME and survival outcomes. 

HGSC TME can also contain FoxP3+ CD4+ T cells, otherwise known as T regulatory 

cells (Tregs). This population normally elicits potent immunosuppressive 

mechanisms in order to achieve immunosurveillance and control auto-immunity 

but it can also limit the potency of anti-tumour immune responses (155). Tregs 

employ protumour cytokines, such as IL-10 or TGF-β, to exert their 

immunosuppressive functions on effector or antigen-presenting cells and they 

can also directly kill effector T cells (156). In OC, migration of Tregs in the TME 

is primarily mediated by CCL22, which binds to the receptor CCR4 present on the 

Treg surface (157). Several reports associate Tregs cells with a poor outcome in 

OC (158, 159). And although a meta-analysis of 869 patients concluded that 

Tregs in OC tumours are not a significant prognostic indicator of survival, 

perhaps their role should be considered in conjunction with the other lymphoid 

sub-populations present in the TME (151, 160, 161).  

Natural killer (NK) cells are part of the innate immune system and have an 

integral role in the anti-tumour response. NK cells do not require HLA-mediated 

recognition of target cancer cells, but rather rely on activating and inhibitor 

receptors in order to execute their cytotoxicity. In OC, possible mechanisms of 

immune escape can result from defective NK cell function (aberrant 

ligand/receptor expression), lower NK cell frequency intra-tumorally or reduced 

NK cell ability to achieve their cytotoxicity (162). NK cells are able to recruit 

immature dendritic cells (iDCs) with the release of CCL3 and CCL4 and to 

encourage their maturation via CCR5 receptor, which in turn leads to 

upregulation of CCL5, CXCL10 and CXCL9 on the surface of DCs (163). Following 

this, DCs are able to attract and activate CD8+ T cells in the OC TME, where they 

can achieve immune clearance. Conversely, OC cells can transcriptionally 

downregulate the activating receptor NKG2D on the NK cell surface by releasing 

macrophage migration inhibitory factor (MIF); this subsequently leads to reduced 

NK cell cytotoxicity (164). OC cells also have the ability to adversely affect NK 

cell response to IL-2 in ascites and thereby, contribute to immune suppression 

(165). Interestingly, in preclinical models of renal cancer and melanoma, NK 
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cells exhibit a stronger migration potential towards CXCL10-transfected cancer 

cells and result in significant tumour regression and improved survival, via 

immune cell killing (166). This highlights their role in anti-tumour immune 

response and their dependency on CXCL10. 

In contrast to the lymphocyte populations, the role of myeloid lineage cells is 

less well defined and thought to be mainly pro-tumorigenic (167). Tumour-

associated macrophages are the most abundant myeloid subpopulation in the OC 

TME, and they are characterised by great plasticity. Various soluble ligands can 

alter the phenotype of TAMs, which are recruited either from circulating blood 

monocytes or arise from resident tissue macrophages (162, 168-170). In the TME, 

they can mediate angiogenesis via the release of growth factors. OC cells 

mediate the upregulation of mannose receptor (CD206) on the surface of TAMS. 

In turn, CD206 binds cellular mucins and this interaction promotes an immune-

suppressive phenotype, via the release of IL-10 and IL-12 (171). TAMS can 

orchestrate extracellular matrix remodelling in OC TME and promote metastasis, 

angiogenesis, and early relapse (172-174). In multiple tumour types, but also 

specifically in OC, prognosis of patients is worsened when their tumours are 

infiltrated by TAMs (175). 

Dendritic cells (DCs) capture, process and present antigenic peptides to other 

immune system cells. They present either endogenous or exogenous captured 

peptides to CD4+ and CD8+ T cells via MHC class II and class I, respectively. For 

the lymphocytes to be adequately activated by DCs, costimulatory molecules 

such as CD40, CD80 and CD86 are also essential on DCs (or other antigen-

presenting cells), as well as the abundance of immune-stimulatory chemokines 

(176-179). Any of these signals (figure 1.4) can be disrupted by cancer cells with 

strategies such as loss of tumour antigens and/or by the secretion of 

immunosuppressive factors in the TME that can result in DC dysfunction (180, 

181). Immature myeloid DCs reside in lymph nodes or other tissues in a relatively 

deactivated state with low levels of costimulatory molecules and low levels of 

cytokine release. The most abundant chemokine receptors on their surface are 

CXCR3, CXCR4, CCR1, 2, 5, and 6. Upon stimulation by antigen, immature DC  
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Figure 1.4: Cells and chemokines orchestrating the tumour immune   
microenvironment. (Figure taken from Fridman et al, Nat Rev Cancer 2012, with 
permission from Springer Nature, under license number 4947620520749). 

 

migrate to lymph nodes from tissues and begin the antigen presentation process 

in order to activate other immune cells (182, 183). The DCs that are found in 

tumours are low in number and they mostly exhibit features of immature DCs. In 

OC, the immunosuppressive environment created by cancer cells secreting TGF-

β, VEGF, IL-10 and the PD1/PD-L1 axis drives deactivation of DCs, followed by 

establishment of T cell anergy and immune tolerance (184, 185). In melanoma, 

DCs with high expression of CXCR3 and the transcription molecule Batf3 were 

essential to the recruitment of effector CD8+ cells in the TME (186, 187). DCs 

that stem from a Batf3-lineage correlate with the presence of CXCR3-binding 

chemokines CXCL9/CXCL10/CXCL11, which mediate effector T cell trafficking in 

cancers such as OC (188, 189). Maintaining mature DCs activation is therefore 

paramount in providing continuous T cell priming and consequently in generating 

a successful anti-tumour response (143, 190, 191). 
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There is ample evidence in the literature on the importance of immune cell 

composition of ovarian cancer TME. Delineating the molecular signatures that 

are associated with the presence of certain immune cellular phenotype is of 

paramount significance and to this end, mechanisms related to chemokine 

biology are unsurprisingly being investigated extensively (figure 1.4). 

Specifically, two chemokine pathways, the CXCR3/CXCL9-11 axis and the 

CCR5/CCL3 axis were found to be associated with an immune-reactive OC 

microenvironment and improved patient prognosis (149, 192, 193). Genomic 

analysis of 489 patient samples by the Cancer Genomic Atlas Research Network 

confirmed the presence of a defined subgroup of OC patients with an activated 

CXCR3/CXCL9-11 pathway (68). The primary role of the IFN-γ-inducible 

chemokines CXCL9-11 is trafficking of activated CD8+, CD4+ T cells and NK cells 

(194) and when these chemokines are present at high concentrations in tumours, 

patients with OC achieve longer disease-free interval and overall survival (148, 

195). 

Recently, Dangaj et al showed that a chemokine hierarchy determines the 

immune microenvironment of ovarian and other tumours, such as breast, kidney 

and lung cancer (196). Specifically, tumour derived CCL5 chemokine drives CD8+ 

T cell engraftment in the TME and this CCL5 expression can be epigenetically 

silenced in tumours by DNA methylation. When present intratumorally, TILs 

become activated by tumour cognate antigen and secrete IFNγ, which in turn 

activates TAMs and DCs to secrete CXCL9 chemokine. CCL5, antigen presence 

and CXCL9 are all essential in amplifying T cell recruitment through the positive 

feedback loop described above. Patients whose tumours have a CCL5hiCXCL9hi 

signature, exhibited strong T cell intratumoral infiltration and longer survival 

(196). 

Asides from their role in lymphocyte migration, CXCL9-11 can mediate tumour 

regression through their angiostatic effects (197). In the ID8 syngeneic 

preclinical ovarian cancer model, overexpression of CXCL10 reduced tumour 

burden and ascites accumulation in mice. This was accompanied by a decrease 

in IL-6 and VEGF levels and transcriptional upregulation of genes associated with 
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antigen presentation and T cell effector function (198). Unsurprisingly, 

strategies to induce expression of CXCL9-11 chemokines via activation of IFN-γ 

and IL-17 pathways have been designed; however, clinical results are not 

reported as yet (199-202).  
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1.2. Epigenetics  

1.2.1 Biology and background  

Our understanding of epigenetic regulation in both normal and cancer cells has 

rapidly increased over the last couple of decades. Improvements in genome-wide 

DNA sequencing and recently developed assays on DNA methylation and 

chromatin, coupled with advancements in bioinformatics, are providing a better 

insight in the epigenome biology and enable us to develop novel epigenetic 

therapies (203-205).  

DNA methylation and chromatin, the latter consisting of DNA plus interacting 

proteins, create the epigenetic landscape (206, 207). The nucleosome, a core of 

histone proteins around which approximately 146 base pairs of DNA are 

wrapped, is the main structure determining DNA conformation, which in turn is 

regulated by histone modification (figure 1.5a). When in a compacted 

nucleosome occupancy, gene expression is repressed, whereas when 

transcription start sites (TSS) are in a nucleosome-free state, gene transcription 

is facilitated (206). 

Epigenetic control by DNA methylation and histone modification is accomplished 

by the “four Rs” of epigenetics (Figure 1.5b): the writer, eraser, reader, and 

remodeller proteins. These function in a harmonious collaboration to achieve 

tight regulation of gene expression (204, 206, 208-210). Histones are subject to 

modification by multiple chemical groups, including acetyl, methyl, phosphoryl 

and ubiquityl groups. These alterations lead to opening or closing the chromatin 

structure and support or impede other proteins from binding to chromatin. The 

writers deposit histone modifications, which can subsequently be removed by 

erasers. Readers bind to chromatin through specific domains that read the 

histone modifications and can facilitate the function of nucleosome, histone or 

DNA-modifying enzymes. Lastly, the remodelers mobilise and exchange histones. 

In almost all tumour types a high frequency of mutations in the genes encoding 

proteins of the epigenome, has been observed (203, 209, 211-213). Mutations in 
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DNA (cytosine-5)-methyltransferase 3A (DNMT3A) for example is found in up to 

25% of patients with acute myeloid leukaemia (AML).  

In OC, aberrant DNA methylation is observed early in carcinogenesis and could 

be mechanistically involved in tumorigenesis. DNA methylation is the process by 

which methyl group is added to cytosine nucleotides in DNA, typically in the C5 

position (5mC) in the context of CpG islands. Normally, 60%-90% of all CpG loci 

are methylated in human DNA (214), and this widespread methylation plays an 

important role in maintaining stable tissue-specific gene expression, inactivation 

of one X-chromosome in women, transcriptional repression of repetitive 

elements in the genome, and allele-specific expression. In all OC sub-histologies, 

hypomethylation of repeat elements (such as LINE1 or Alu) is increased in 

tumours when compared to their non-neoplastic precursors (215-218). Moreover, 

increasing hypomethylation is associated with advanced grade, advanced stage 

and poor prognosis. DNA methylation in OC has also been investigated as a 

mechanism of acquired resistance to treatment. Methylation of MLH1 which is 

involved in the DNA mismatch repair (MMR) pathway has been associated with 

resistance to platinum-based chemotherapy in epithelial OC cell lines (219, 220). 

This was also observed in samples derived from patients who have had platinum-

based chemotherapy and when MLH1 methylation is detected in patients’ plasma 

at relapse, it is associated with poorer overall survival outcome (221, 222).  

 

In contrast, methylation of BRCA1 is documented in 9-20% of epithelial OCs and 

is associated with an improved response to treatment (223-227). Patients with 

hypermethylated BRCA1 may have an augmented response to DNA damaging 

chemotherapy (25, 228) and PARP inhibitors (229, 230).  
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Figure 1.5: The epigenome landscape. (a) Heterochromatin state supports 
transcriptional silencing of genes through DNA methylation (red lollipops). Open 
chromatin conformations (euchromatin) leave the transcription start site nucleosome 
(blue ovals) free. Modifications of nucleosome histone tails (purple lines extending from 
ovals) regulate the process, including lysine methylation (purple circle), serine 
phosphorylation (orange circle), lysine acetylation (black circle) and nucleosome 
remodeller complexes (green pentagon with yellow oval). Noncoding RNAs (yellow 
waves) can participate in these regulatory steps (b) Control of histone modifications and 
of DNA methylation by proteins: writers (DNMTs, HKMTs, HATs), readers, erasers (TETs 
for DNA methylation, HKDMs for lysine methylation, HDACs, phosphatases for removing 
phosphorylation) and nucleosome remodeller. DNMT, DNA methyltransferase; HAT, 
histone acetylases; HDAC, histone deacetylases; HKDM, histone lysine demethylase; 
HKMT, histone lysine methyltransferase; TET, ten-eleven translocation protein. (Figure 
taken from Ahuja et al, Annu Rev Med 2016, with permission from Annual Reviews, 
under the license number 1077379-1). 
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Mutations in chromatin remodelling proteins occur in a multitude of solid 

cancers including OC (79, 206, 231). Lysine residue acetylation and methylation 

are critical histone modifications that facilitate active versus repressed states of 

gene expression (206-208). Histone acetylases (HATs) are the writers of 

acetylation; whereas the removal of the acetyl group is catalysed by histone 

deacetylases (HDACs) (figure 1.5b). Usually, lysine acetylation at gene start sites 

is associated with gene transcription and deacetylation with gene repression 

(232). Lysine methylation is mediated by histone methyltransferases (HTMs) and 

removed by histone demethylases (HDMs) (233). Such modifications can induce 

either gene expression or repression. For example, methylation of lysine 4 on 

histone 3 (H3K4) marks gene activation (207). In contrast, methylation of lysine 

9 or lysine 27 (H3K9me3, H3K27me3) marks repressed gene promoters (233-236). 

This repressive mark is deposited by the Polycomb complex of proteins (PcG), 

which consists of Polycomb-repressive complexes, PRC1 and PRC2, and which are 

not only crucial for development but are also critical to carcinogenesis. The PcG 

enzyme Enhancer of Zeste homolog 2 (EZH2) is the main writer for the 

H3K27me3 mark and its levels are elevated in numerous cancers (236-239). EZH2 

is often over-expressed in epithelial OC cells and promotes cell proliferation, 

inhibits apoptosis and enhances angiogenesis in epithelial OC (240). 
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1.3 Epigenetics and immune response  

1.3.1 Background 

Immuno-oncology (IO), in the form of immune checkpoint inhibitors, has 

revolutionised anti-cancer treatment over the last decade by improving patient 

survival for various different tumour types. We have recently seen practice-

changing drug approvals in malignancies including melanoma, thoracic and 

urothelial cancers, Hodgkin lymphoma as well as mismatch repair deficient 

tumours of any origin (241-245). Despite the significant advances however, 

perhaps with the exception of melanoma, only a minority of patients respond to 

IO, highlighting the need for developing rational approaches to augment IO 

efficacy. The likelihood of response to IO can be influenced by factors including 

neoantigen load and mutational burden (246), quality and clonality of these 

neoantigens (247, 248), expression of antigen presenting molecules and immune 

checkpoints (249), responsiveness to interferon-gamma (IFNγ) (250), and of 

course, the immune cell composition of the tumour microenvironment (‘hot’ 

versus ‘cold’ tumours) (251-254). Combination treatment with different immune 

checkpoint inhibitors are certainly producing better efficacy, although this 

comes at the cost of a significant increase in severe immune-related toxicities 

(255). The potential of utilising non-immune therapies to augment the 

immunomodulatory effect of existing treatments appears therefore as an 

interesting alternative option to convert immune-resistant tumours to immune 

sensitive ones. 

 

1.3.2 Epigenetic regulation of immunity – cell types 

Tumour cells 

The ability to upregulate expression of immune signalling components in cancer 

cells via blocking DNA methylation and histone deacetylation is now well 

established (256-258). Drugs blocking these epigenetic mechanisms upregulate 

the expression of components of the antigen-presenting machinery (APM), 

tumour associated antigens (TAAs), co-stimulatory molecules, checkpoint 
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ligands, stress-induced ligands and death-inducing receptors on tumour cells. 

Cancer-testis antigens (CTAs) are expressed in embryonic and germ cells but 

silenced in mature somatic cells by DNA methylation (259); treatment with 

epigenetic drugs can increase their expression (260). DNMT inhibitors result in 

de-repression of CTAs in many different solid tumours (261-264). CTA induction 

is also observed with HDAC inhibitors, albeit at a lower level than DNMT 

inhibitors (265). In OC, treatment of cell lines and patients with the DNMT1 

inhibitor decitabine resulted in the increase of OC specific antigen NY-ESO-1 

which led to augmented T cell responses (266). Asides from NY-ESO-1, the gene 

promoter of the high molecular weight melanoma-associated antigen (HMW-

MAAs) was also found to undergo demethylation following treatment with 

decitabine in melanoma cells. This was associated with re-expression of HMW- 

MAA at both the mRNA and protein levels (267). APM components can be 

epigenetically deregulated in cancer cell. Both HDAC and DNMT inhibitors can 

induce or enhance the expression of parts of the APM pathway including MHC 

molecules, LMP2, LMP7, TAP-1 and TAP-2 in a wide range of cancers (268-270). 

Moreover, exposure to epigenetic inhibitors can also enhance expression of 

death receptors and stress-induced ligands as well as upregulate surface 

expression of several co-stimulatory molecules (e.g., CD40, CD80, CD86, and 

ICAM-1) on cancer cells. (270-274). 

 

Lymphocytes – innate and adaptive immunity 

Whilst effector CD8+ T cells are dependent on antigen presence, have a limited 

survival and become easily exhausted upon chronic antigen exposure, memory 

CD8+ cells can typically maintain long-term plasticity and survival. The 

generation and maintenance of memory CD8+ T cells is paramount in achieving 

long-lasting responses on immune therapy. Lineage differentiation and 

establishment of effector or memory T cell phenotype are tightly regulated by 

histone modifications and DNA methylation. EZH2 and Suv391 deposit H3K27me3 

or H3K9me3, respectively, in order to silence pro-memory genes (275-277). 
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Similarly, gene specific demethylation has been found to mediate T cell 

differentiation fate and engagement into a more long-lived memory cell 

phenotype in CD8+ cells derived from humans to (278). Moreover, DNA 

methylation programmes are also found to be activated in exhausted CD8+ cells 

following chronic antigen exposure. Gene specific methylation could be a 

mechanism of developing resistance to the re-invigoration that immune 

checkpoints inhibitors can achieve and in fact, treatment with DNA 

methyltransferase inhibitors can reverse immune checkpoint resistance (279, 

280). Robust evidence showing an association between chromatin accessibility 

around key immune related genes involved in JAK/STAT signalling, and the 

ageing process proves that the epigenome is regulating T cell responses very 

tightly (281). 

It has been shown that epigenetic modulators can also increase T cell infiltration 

into the TME and augment responses to immune checkpoint blockade via 

removal of the repressive histone or DNA marks that suppress chemokine 

expression in ovarian and lung cancer (282-284). Peng et al. showed that 

treatment of OC murine cells with decitabine upregulates tumour release of Th1 

chemokines CXCL9 and CXCL10. This results in increased tumour T cell 

infiltration and an improved response to PD-L1 checkpoint blockade. In a similar 

fashion, HDAC inhibitors transcriptionally activate T cell chemokine expression 

and enhance responses to PD-1 therapy in lung cancer (283) and DNA 

methyltransferase inhibitors enhance responses in an ovarian cancer model 

(284).  
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Epigenetic pathways can also modulate CD4+ T cell plasticity via specific PRC2-

regulated transcription factors. Methylation of H3K9 and acetylation of H3K9 can 

direct their phenotype to either Th1 CD4+ T cells that have antitumor properties, 

or Th2 CD4+ T cells that are thought to be pro-tumorigenic (285, 286). Once 

again, in the preclinical setting, deficiencies in EZH2 have been found to favour 

Th1 orientation (285).  

Regulatory CD4+ T cells (Treg) are characterized by the expression of the 

transcription factor FOXP3, which is critical in suppressing the perpetuation of 

immune response under normal conditions (287, 288). FOXP3 expression is 

subject to regulation by DNA methylation and EZH2-dependent chromatin 

Figure 1.6: Immunomodulatory effects of epigenetic target inhibition. TCR=T-cell 
receptor; DNMTi=DNA methyltransferase inhibitor; EZH2i=enhancer of zeste homolog 2 
inhibitor; HDACi=histone deacetylase inhibitor; BETi=bromodomain and extra-terminal 
inhibitor; LSD1i=lysine-specific demethylase 1 inhibitor. (Figure taken from Aspeslagh 
et al, Annals of Oncology 2018, with permission from Elsevier, under license number 
4951201076433). 
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modification and is pivotal in directing CD4+ cells towards an immunosuppressive 

phenotype (289, 290). Abrogation of histone deacetylation (HDAC6) in 

combination with inhibiting the BET family of bromodomain proteins (who are 

readers of acetylated lysine), decrease Treg mediated immune suppression in 

lung cancer (231). Moreover, in OC cell lines, BET inhibition with the compound 

JQ1 suppressed the expression of PD-L1 on tumour cells, DCs and macrophages 

and correlated with an increase in cytotoxic activity of effector cells (291) 

Natural killer cells have tumour cell-killing properties that are regulated by 

various stimulatory and inhibitory receptors such as NKG2D or KIR and NKG2A, 

respectively (292). Once again, EZH2 is crucial here. EZH2 depletion or 

pharmacological inhibition increases generation of IL-15 receptor (IL-15R) 

positive CD122+ NK precursors in both mouse and human hematopoietic 

progenitors. Upregulation of CD122 is associated with enhanced NK cell 

expansion and tumour cell immune killing and is accompanied with an increase 

of the stimulatory receptor NKG2D (293). This EZH2-dependent NKG2D activity 

has also been demonstrated in preclinical experiment in hepatocellular 

carcinoma (294). 

 

Macrophages and dendritic cells 

Tumour associated macrophages (TAMs) are a major component of the leucocyte 

composition of tumours and have previously been characterised as M1-like -

macrophages displaying anti-tumour properties- and M2-like, which are 

macrophages that are pro-tumorigenic (167, 169, 295). These roles have been 

defined as such in tumours (296, 297); however, there is still a lot to understand 

on macrophage plasticity and on how to better delineate these two roles. By 

depositing H3K27me marks, EZH2 has been found to control gene networks that 

drive monocyte-to-phagocyte differentiation and, moreover, to regulate 

macrophage activation (298-300). The intertumoral metabolic conditions, as well 

as the cytokine milieu present can both be influenced by the epigenetic status of 

TAM and this in turn affects activation status (301-303). The histone 
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demethylase Jumonji domain-containing protein 3 modulates glutamine 

metabolism pathways and thereby directs TAM polarisation towards a M2 

phenotype (304). Hypoxia is an element that favours M2 polarisation in TAMs; it 

was recently shown that inhibition of HDAC6 can mediate intratumoral 

vasculature normalization in a murine breast cancer model, with subsequent 

TAM infiltration and tumour regression (305).  

 

TAMs of patients with malignant melanoma overexpress the DNA methylcytosine 

dioxygenase TET2; when TET2 is depleted in melanoma mouse models, the 

transcriptional program of intratumoral myeloid cells changes to a less 

immunosuppressive one and this change abolished tumour growth (306).  

 

With regards to DC, Tesone et al showed that their maturation can be directed 

by chromatin regulators, such as the special AT-rich sequence-binding protein 1, 

SATB1, via regulation of MHC-II expression (307). DNA methylation, histone 

deacetylation and methylation, as well as the function of bromodomain proteins 

have all been found to be implicated in antigen presentation and consequently, 

in the activation of dendritic cells (231, 308). 

 

Viral mimicry 

Human endogenous retroviruses (ERVs) started integrating into the germ line 

million years ago and currently make up approximately 8.5% of our DNA (309). 

ERV silencing is essential to ensure their transcriptional quiescence, and cytosine 

methylation is the predominant mechanism for silencing expression of newly 

transposed ERVs, particularly within their long-terminal repeats (LTR) regions 

(310, 311). Nevertheless, some ERVs become activated during specific phases of 

development. Reactivation by DNMT inhibitors is rapid, effective and can 

generate an innate immune response akin to the one following infection by a 

retrovirus; this can lead to type I and type III interferon response (312, 313). 

Nonetheless, 5-methylcytosine has a propensity to deaminate to thymine and 

this can lead to gradual loss of CpG sites in ERVs (314). If LTRs are not amenable 

to effective silencing by DNA methylation, then histone modifications become 
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more important in their repression (315). In addition, a degree of cooperation 

between DNA methylation and histone marks exists, as evidenced by the 

observation that DNA methylation blockade works more effectively after 

histone-modifying genes have been knocked down (315).  

 

Ishak et al demonstrated that the RB tumour suppressor recruits EZH2 to ERV 

regions in order to silence their expression (316). Moreover, inhibition of the 

histone demethylase LSD1 augments anti-tumour immune responses and 

potentially increase sensitivity to immune checkpoints inhibitors, via induction 

of ERV-associated viral mimicry response (317). Lastly, combination of HDAC and 

DNA methylation inhibition mediates de novo transcription of TLR belonging to 

LTR12 family of ERVs (318). 

 

All the examples above highlight that cancer cells employ epigenetic 

mechanisms to achieve regulation of immune gene networks, in order to evade 

immune response. Discovering novel treatments to target epigenetic pathways 

could augment the immune responses engendered by the existing anti-cancer 

immunotherapies. 
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1.4 Aims 

Based on the existing evidence on how the epigenome regulates almost every 

step of the cancer-immunity cycle, I sought to discover novel epigenetic 

mechanisms that could potentially be involved in the anti-tumour immune 

response. My project aims were as follows: 

1.4.1 To perform a medium-scale drug screening of novel epigenetic compounds 

on a Trp53-/- murine ovarian cancer cell line that is representative of 

HGSC.  

• Use CXCL10 chemokine production by ELISA as the starting output of this 

screening. 

• Validate any potential hits that emerge from the screening above on 

ascites-derived human ovarian HGSC samples. 

1.4.2 Investigate the hit(s) in an in vivo setting using a syngeneic murine ovarian 

cancer model, focusing on potential changes of the immune cell 

composition in the TME, by flow cytometry. 

• Combine epigenetic target inhibition with standard therapies, such as 

chemotherapy and/or immunotherapy, that are also known to alter the 

immune TME. 

1.4.3 Confirm that treatment with the hit(s) results in transcriptional 

reprogramming that would support the potential changes seen in the 

immune cellular level. 
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2.1 Cell Culture  

2.1.1 Immortalised human and murine cell lines 

Human ovarian cancer cell lines (table 2.1) were cultured in T75 or T150 

Corning® flasks in RPMI 1640 medium with 25 mM HEPES (Roswell Park Memorial 

Institute medium, Sigma-Aldrich, R5886) at 95% humidity, 5% CO2 and 37°C. 

Medium was supplemented with 10% heat-inactivated foetal bovine serum (FBS) 

(Thermofisher, 16140071), 100 U/ml penicillin plus 100 µg/ml streptomycin 

(penicillin/streptomycin Thermofisher, 15140-122), and 2 mM L-glutamine 

(Thermofisher, 25030-081). The medium for the human cell line OVCAR-3 was 

also supplemented with 10 µg/ml bovine insulin (Sigma-Aldrich, I6634). All 

human cell lines were subjected to short-tandem repeat (STR) profiling 

validation by Eurofins Genomics cell line authentication service. 

The ID8 murine cell line (319) was cultured in T75 or T150 flasks in Dulbecco's 

Modified Eagle Medium (DMEM, Thermofisher, 21969035), supplemented with 4% 

FBS, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 µg/ml insulin- 5.5 µg/ml 

transferrin- 6.7 ng/ml sodium selenite (ITS-G, Thermofisher, 41400-045) and 2 

mM L-glutamine at the same incubating conditions as above. The ID8 cell line 

used for both in vitro and in vivo experiments had been previously genetically 

modified by Dr Josephine Walton (PhD student in the McNeish lab), using 

CRISPRR/Cas9 technique as described here (320). More specifically, the F3 

subclone used in my experiments contained bi-allelic deletions in Trp53 exon 5, 

which led to significant reduction in Trp53 transcription and absent production 

of p53 protein (320). 

Adherent cultured cells were passaged when they reached 80-90% confluency. 

Cells were washed once with phosphate buffered saline (PBS, one tablet of 0.01 

M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, 

pH 7.4, dissolved per 200 ml deionized water) and detached using 1.5-2.0 ml 2 x 

0.5% trypsin-EDTA (Thermofisher, 15400-054) in PBS, depending on the flask 

size. Cells were cryopreserved for long-term storage; cells were centrifuged at 

260 x g for 5 minutes and the cell pellet resuspended in freezing medium [FBS 
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containing 10% dimethyl sulfoxide (DMSO, Sigma, D2650)]. Cells were then stored 

overnight in a ThermofisherTM Mr FrostyTM box containing isopropanol at -80°C 

prior to transfer to liquid nitrogen after 24-48 hours.  

Non-adherent cells, such as murine splenocytes, were seeded at a density of 

8x105 cells per well, in Corning® 96-well Clear Round Bottom Polystyrene 

Microplates (Corning, 3788), in RPMI 1640 medium with 25 mM HEPES. Medium 

was also supplemented with 10% heat-inactivated FBS, 100 U/ml penicillin plus 

100 µg/ml streptomycin, 2 mM L-glutamine, 1x MEM non-essential amino acids 

solution (Gibco, 11140035), 1 mM sodium pyruvate (Gibco, 11360070) and 10 µM 

β-mercaptoethanol (Sigma-Aldrich, M6250). For the selective growth of T 

lymphocytes, recombinant mouse interleukin-2 (IL-2, Biolegend, 575402) was 

added to the medium with every medium change at a concentration of 30 U/ml. 

For the selective growth of natural killer cells, the concentration of IL-2 was 

increased to 1000 U/ml. 

Cell lines were routinely tested for mycoplasma at the Wolfson Wohl Cancer 

Research Centre (WWCRC), University of Glasgow and subsequently at the 

Institute of Reproductive and Developmental Biology (IRDB), Imperial College 

London, using MycoAlertTM, Mycoplasma Detection Kit (Lonza, LT01-318).  

 

Cell line Origin Morphology Background genetic 
events 

Citation 

Kuramochi Malignant 
ascites 

Epithelial TP53 and BRCA2 
mutation, MYC and 
KRAS amplification 

Kuramochi (RRID: 
CVCL_1345) 

OVCAR-3 Malignant 
ascites 

Epithelial TP53 mutation, 
C11orf30 and CCNE1 
amplification 

NIH: OVCAR-
3 [OVCAR3] (ATCC® HTB-
161™) 

OVCAR-4 Malignant 
ascites 

Epithelial TP53 mutation OVCAR-4 (RRID: 
CVCL_1627) 

Table 2.1: Immortalised human cell lines used throughout this thesis. 
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2.1.2 Primary human samples  

Primary human epithelial ovarian cancer cells from patients’ ascites were 

collected under the approval of Imperial College Healthcare NHS Trust Tissue 

Bank (ICHTB HTA license: 12275, project title: Analysis of ascites from women 

with ovarian cancer) with the help of Dr Darren Ennis (translational research 

scientist, McNeish lab). The protocol described below was developed and 

optimised by Dr Darren Ennis. 

After sterile collection from patients, ascites was poured into a 1000 ml sterile 

beaker, through an embroidery hoop covered with sterile gauze. This captured 

any large pieces of tissue that may have been collected in the sample, whereas 

it allows all cell types to pass freely through. The sterile gauze was removed 

from the embroidery wheel and replaced with autoclaved 40 µm membrane 

filter. Ascites was slowly poured through the 40 µm membrane into a separate 

1000 ml sterile beaker. During this step, malignant spheroids were captured on 

the membrane, whereas other non-epithelial cell types passed through. The 

membrane was then removed, inverted and placed over a sterile 10 cm petri-

dish and then washed with 25 ml sterile PBS twice.  The 50 ml PBS (containing 

spheroids) were then pipetted from the petri-dish into a 50 ml falcon tube and 

centrifuged at 260 x g for 5 mins. The ascitic fluid that went through the 40 µm 

membrane was centrifuged at 260 x g for 5 mins in a 50 ml falcon tube. The 

supernatant was henceforth named Autologous fluid (AF) and it was decanted 

into a new falcon tube. The AF could be stored for up to 4 weeks at 4oC or for 

long-term storage at -80oC.  

 

Following this, supernatant was aspirated from the falcon containing the 

spheroids, and the spheroids were resuspended in 5 ml autologous fluid (AF). 

The resuspended spheroids were placed into a T75 ultra-low attachment tissue 

culture flask (ULA, Corning 3814) in 20 ml advanced DMEM/F12 medium (Life 

Technologies, 12634010), supplemented with 10 mM HEPES, 1x N-2 supplement 

(ThermoFischer, 17502048), 1x serum-free B-27 supplement (ThermoFischer, 

17504044), L-glutamine and penicillin/streptomycin at the concentrations 

described in 2.1.1. Spheroids were allowed to grow in the above conditions for a 
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few days and provided they showed adequate growth, they were dissociated and 

treated as a monolayer with the indicated drug for the desired number of days. 

Before growing them as monolayer, spheroids were collected, centrifuged at 260 

x g for 5 mins and dissociated by adding 5 ml 1% Trypsin/EDTA. The single cell 

suspension was then transferred into conventional T75 flasks and cultured in the 

aforementioned medium, always supplemented with 20% AF. 

In work previously done in the McNeish lab (unpublished data by Dr Elaine Leung 

and Dr Darren Ennis), these spheroids were subjected to tagged-amplicon 

sequencing (TAm-seq), looking specifically into the coding regions of TP53 gene, 

using a method developed by Forshew et al (321). Results showed that cells 

derived from these organoids harbour TP53 mutations with a high mutant allele 

fraction (unpublished data). The aforementioned protocol of organoid extraction 

from human ascites, followed by TAm-seq for TP53 targeted sequencing has 

therefore become the method of validating HGSC cells from patients with 

histopathological diagnosis of ovarian HGSC, in the McNeish lab.  

 

2.2 Survival and cell cycle assays  

2.2.1 MTT cell viability assay 

MTT assay was performed on cells seeded at a density of 3x103 cells (for the ID8 

cell line) per well in 24-well Corning plates in 700 µl medium. This protocol had 

previously been optimised by the McNeish lab. Cells were treated with the 

indicated drug and for the desired duration (usually 48-72 hours). Thiazolyl blue 

tetrazolium bromide powder (Sigma Aldrich, M2128) was dissolved in PBS to a 5 

mg/ml concentration (MTT reagent). At the desired endpoint, medium was 

aspirated and replaced with 700 µl MTT reagent diluted 1 in 10 with culture 

medium. Cells were then incubated for 4 hours at 37°C. During this 4-hour 

period, viable cells with active metabolism are expected to convert MTT reagent 

into formazan crystals. Crystals were then dissolved in 500 µl DMSO. Plates were 

gently mixed for 5 minutes, then immediately transferred to an Infinite® 200 
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Tecan plate reader for analysis of absorbance (as a marker of cell viability) at 

560 nm wavelength. Neat DMSO absorbance was measured in DMSO-only 

dedicated wells and subtracted from all other detected absorbances.  

 

2.2.2 Cell cycle assay – bromodeoxyuridine (BrdU) assay 

In order to assess cell cycle phase in cultured cells, the BrdU flow cytometry 

assay was used (BD Pharmingen, 559619). This assay was optimised by me. Cells 

were cultured in 6-well Corning plates in 2 ml medium for the indicated time. At 

the desired endpoint, 10 µM of BrdU solution [BrdU 10 mg/ml stock diluted with 

appropriate volume of 1 x Dulbecco’s PBS (DPBS)] was added per well and plates 

were incubated for a further 30 minutes. Following incubation, cells were 

washed with PBS and trypsinised with 500 µl trypsin. Trypsin was de-activated 

with 1 ml medium, cells were transferred to 1.5 ml Eppendorf tubes and 

centrifuged at 200 x g. Supernatant was discarded and cell pellets were 

resuspended in 100 µl BD Cytofix/Cytoperm™ Fixation/Permeabilisation buffer, 

in which they were incubated for 15 minutes at 20o C. Cells were washed with 1 

ml 1 x BD Perm/Wash™ Buffer [(10 x stock diluted to 1 x with deionized H2O 

(dH2O)] and centrifuged at 200 x g for 5 minutes. All the following wash steps 

were performed with 1 ml 1 x BD Perm/Wash™ Buffer. Supernatant was 

discarded and cells were resuspended in 100 µl BD Cytoperm™ Plus	

Permeabilization Buffer for 10 minutes on ice in order to enhance staining and 

permeabilisation. Cells were further washed and re-fixed in 100 µl BD 

Cytofix/Cytoperm™ for 5 minutes. Following a further wash, cells were 

resuspended in 100 µl DNase 300 µg/ml and incubated at 37o C for 60 minutes. 

Cells were then washed and stained with 50 µl fluorescent anti-BrdU antibody 

(diluted 1 in 50 in 1 x BD Perm/Wash™ Buffer). After a 20-minute incubation at 

20o C, cells were washed and resuspended in 10 µl fluorescent 7-amino-

actinomycin D (7-AAD). Following staining with 7-AAD, cells were resuspended in 

500 µl staining buffer (1 x DPBS plus 3% heat-inactivated FBS plus 0.09% sodium 

azide) and samples were analysed on a BD Fortessa (BD Biosciences) flow 

cytometer.  
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2.3 Protein assays 

 

2.3.1 Enzyme-linked immunosorbent assay (ELISA) 

This ELISA assay was optimised by me. Mouse and human CXCL10 chemokines 

were detected in cell culture supernatant using the sandwich ELISA R&D Systems 

kits DY466 and DY266, respectively. Mouse CCL20 chemokine was detected using 

the sandwich ELISA R&D Systems kit DY760. Cells were seeded in 6-well plates 

and neat supernatant was harvested after indicated period of incubation with 

indicated treatment. The supernatant was aliquoted and stored at -80o C. 

96-well microplates (R&D, DY990) were coated with 100 µl coating antibodies 

(see table 2.1) diluted in coating buffer (PBS without carrier protein R&D part 

896036). They were sealed with plate sealers (R&D, DY992) and left to incubate 

overnight at 20o C. The following day, wells were aspirated and washed three 

times with 1 x Wash Buffer [0.05% Tween 20 (Sigma-Aldrich P9416) in PBS, pH 

7.2-7.4)]. Wells were then blocked with 300 µl 1 x Reagent Diluent [10% BSA in 

PBS (pH 7.2-7.4, 0.2 µm filtered, R&D DY995), diluted to 1 x with dH2O] for 90 

minutes at 20o C. Following blocking, wells were aspirated and washed with 1 x 

wash buffer as before.  

At this point, the samples for the standard curve were prepared, whilst the 

supernatant samples of interest were thawing on ice. Standard curve samples 

were prepared using 2 x dilutions of the respective recombinant chemokine 

protein into Reagent Diluent, to produce a concentration gradient between 0 

pg/ml - 4000 pg/ml. For the concentration of 0 pg/ml, neat Reagent Diluent was 

added into wells. Per well, 100 µl the standard curve samples were added in 

duplicate and 100 µl the supernatant samples of interest in triplicates. Plates 

were incubated at 20o C for 2 hours. Then, wells were aspirated and washed 

three times with Washing Buffer as per the washing step above. Per well, 100 µl 

detection antibodies (table 2.1) were added and wells were incubated for 2 

hours at 20o C. They were then aspirated and washed as before. Per well, 100 µl 
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streptavidin conjugated to horseradish-peroxidase (streptavidin-HRP) were 

added and allowed to incubate for 30 minutes. Streptavidin-HRP was diluted in 

Reagent Diluent with a dilution factor varying dependent on the chemokine of 

interest (table 2.2). After another washing step, 100 µl 1:1 mixture of Colour 

Reagent A (H2O2) and Colour Reagent B (tetramethylbenzidine, R&D DY999) was 

added and again allowed to incubate in the dark. After 30 minutes, 50 µl Stop 

solution 2 N H2SO4 (R&D DY994) were added to the wells and then the plate was 

transferred to an Infinite® 200 Tecan reader to analyse optical density (OD) at 

450 nm. OD at 570 nm was also read and subtracted from the 450 nm reading.  

 

 

2.3.2 Protein/histone extraction from cultured cells  

Protein extraction, quantification and Western Blot analysis was previously 

developed by the McNeish lab. The protocol was modified and optimised for 

histone extraction/analysis by me. Cells cultured in 6-well plates were treated 

with indicated treatment for the desired duration. At endpoint, plates were 

placed on ice, medium aspirated and cells were washed with ice-cold PBS twice. 

To extract the whole protein fraction at endpoint, cells were lysed with RIPA 

buffer (150 mM NaCl, 10 mM Tris - HCl pH 7.5, 1 mM EDTA, 1% Triton X-100 and 

0.1% SDS) containing 1x protease inhibitor (cOmplete™, EDTA-free protease 

inhibitor Cocktail tablets, Roche, 05056489001) and 1x phosphatase inhibitor 

(PhosSTOP, Phosphatase inhibitor cocktail tablets, EASYpack, Roche, 

04906837001). After washing the wells with PBS, 80 µl RIPA buffer were added 

per well and allowed to rest for 30 minutes on ice. Cell lysates were then 

scraped, transferred to chilled Eppendorf tubes and centrifuged at 14,000 x g in 

for 30 minutes at 4oC. The supernatant containing the protein fraction was then 

aspirated, aliquoted and stored at -20oC.To preserve and study histone post-

translational modifications, histones were extracted using acid precipitation 

with a histone extraction kit (Active Motif, 40028). Cells were cultured and 

treated in T75 flasks, in order to achieve higher histone concentrations required 
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for immuno-blotting analysis. At endpoint, cells were washed twice with PBS and 

lysed with 2 ml 2 x Trypsin-EDTA. Cells were transferred to 15 ml Falcon tubes 

and counted. Cells were pelleted by centrifugation at 200 x g for 5 minutes at 

4oC. After centrifugation, 250 µl ice-cold Complete Lysis Buffer AM8 (Active 

Motif, 40028) were added per cell pellet and allowed to incubate on ice for 30 

minutes. The lysis buffer was supplemented with 100 x deacetylase/phosphatase 

and protease inhibitors (all included in the Active Motif kit, 40028). The samples 

were then centrifuged at 2,600 x g for 2 minutes at 4oC to isolate the nuclei. 

After removing the supernatant, 100 µl extraction buffer were added per million 

cells on each nuclear pellet and the solution was mixed by pipetting up and 

down. Samples were incubated on an end-to-end rotator for 2 hours at 4o C and 

vortexed periodically. 

Following incubation, the tubes were centrifuged at 20,800 x g for 10 minutes at 

4oC to pellet the acid-insoluble material. The histone-containing supernatant 

was collected and aliquoted in pre-chilled tubes for storage at -20oC, whilst a 

small aliquot was used for immediate Bradford quantification. Prior to Bradford 

quantification or downstream Western blot analysis, the histones were 

neutralised with Complete Neutralisation Buffer (Active Motif, 40028) 

supplemented with 1.1 M dithiothreitol (DTT) and deacetylase/phosphatase and 

protease inhibitors. 
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2.3.3 Protein quantification by Bradford assay 

To quantify the whole protein fraction or the histone fraction extracted, the 

Bradford assay was used. A standard curve of known protein concentration was 

created with a concentration gradient of bovine serum albumin (BSA, Life 

Technologies, 10500064), ranging from 0-2.5 mg/ml by diluting BSA in PBS. Per 

well, 10 µl standards (in triplicates) and samples of unknown protein 

concentration were added in a 96-well Corning© plate. Following this, 200 µl 

Bradford Assay Reagent (diluted 1:5 in dH2O, Bio-Rad, 5000001) were added to 

the wells and left to rest for 5-10 minutes at 20o C. After this, the plate was 
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Description Working 

concentration 

Catalogue 

number 

Capture Antibody; rat anti-mouse 

CXCL10 

2 µg/ml 840734 

Detection Antibody: goat biotinylated 

anti-mouse CXCL10 

0.1 µg/ml 840735 

Recombinant mouse CXCL10 0-4000 pg/ml 840736 

Capture Antibody; mouse anti-human 

CXCL10  

2 µg/ml 840420 

Detection Antibody: goat biotinylated 

anti-human CXCL10 

12.5 ng/ml 840421 

Recombinant human CXCL10 31.2-2000 pg/ml 893975 

Anti-human/mouse CXCL10 Streptavidin-

HRP 

40-fold dilution 840422 

Capture Antibody; rat anti-mouse CCL20 2 µg/ml 841034 

Detection antibody: goat biotinylated 

anti-mouse CCL20 

0.02 µg/ml 841035 

Recombinant mouse CCL20 31.2-2000 pg/ml 841036 

Anti-mouse CCL20 Streptavidin-HRP 200-fold dilution 890803 

Table 2.2: Antibodies and recombinant proteins for ELISA 

 

transferred to a TECAN reader and OD of the wells was read at 595 nm. The 

protein concentration of samples of interest was then extrapolated from the 

standard curve and expressed as µg/µl.  
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2.3.4 Protein sample preparation  

Total protein or histone fraction samples were made up to a maximum of 20 

µl/sample using a 5 x Laemmli buffer (0.01% bromophenol blue, 2% SDS, 10% 

glycerol, 60 mM Tris-HCl pH 6.8 and 5% β-mercaptoethanol in dH2O) and dH2O on 

ice. Western blot lanes were loaded with equal amounts of protein (20-25 µg) for 

each experiment. The quantity varied between experiments, dependent on the 

protein concentrations achieved during extraction. 

Samples were then vortexed, centrifuged briefly at 4°C and denatured at 98°C 

for 10 minutes in a heat block. Samples were then loaded into polyacrylamide 

gels that were made prior to sample preparation as described in section 2.3.5 

below. 

 

2.3.5 Preparation of polyacrylamide gels. 

Polyacrylamide gels were prepared using the Bio-rad Mini-Protean Tetra 

Handcast System. Typically, 8% resolving gels were used for analysis of proteins 

of 50-200 kDa size, whereas 15% gels were used for smaller proteins between 

approximately 12-45 kDa size, including histones. Recipes for resolving and 

stacking gels are described in table 2.2. When making the gels, the crosslinking 

reagents ammonium persulphate (AMPS) and tetramethylethylenediamine 

(TEMED), were added last, before gentle mixing.  

Approximately 5 ml resolving gel mix was pipetted between the two glass plates 

of the Bio-rad Mini-Protean Tetra Handcast System and a layer of dH2O carefully 

pipetted on top. While waiting for it to set, the stacking gel was prepared as per 

table 2.3. Once set, the dH2O on the resolving gel was discarded and the 

crosslinking agents were added to the stacking gel. The stacking gel was then 

carefully added on top of the resolving gel, until overflowing to avoid bubbles, 

and a comb was immediately inserted into the stacking gel. Once set, gels were 

either used immediately or stored at 4°C in 1x running buffer (see 2.3.6) for 

short-term storage.  
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 8% Resolving gel 15% Resolving gel 

 Resolving 

gel 

Stacking 

gel 

Resolving 

gel 

Stacking 

gel 

dH2O 10.5 ml 3.7 ml 5.5 ml 3.3 ml 

30% Acrylamide 5.35 ml 0.85 ml 12 ml 0.92 ml 

2 M Tris-HCl pH 8.8 3.75 ml  6 ml  

1 M Tris-HCl pH 6.8  0.3125 ml  0.63 ml 

10% SDS 0.2 ml 0.05 ml 0.240 ml 0.1 ml 

10% AMPS 0.2 ml 0.05 ml 0.240 ml 0.050 ml 

TEMED 0.012 ml 0.005 ml 0.024 ml 0.010 ml 

Table 2.3: Recipes for acrylamide gels (volumes for 3 gels shown) 

 

2.3.6 Western blot running and transfer 

A 10 x Transfer Buffer stock was prepared in advance with 288 gr of glycine and 

60.6 g Tris base made up in 2 L of dH2O). Running the acrylamide gel and 

transfer onto a nitrocellulose membrane was performed using the Bio-rad Mini-

Protean Tetra Vertical Electrophoresis Cell. A 1 x running buffer [100 ml 10 x 

Transfer Buffer with 10 ml 10% sodium dodecyl sulphate (SDS), up to 1 L in dH2O] 

was made and poured between two gels in the tank and into the space either 

side of the gels and the tank. Samples were then added into the gel lanes and 

run at a maximum of 150V, until the bromophenol blue dye had visibly reached 

the bottom of the gel. Running was then terminated, and proteins were 

transferred onto a nitrocellulose membrane.  

A 1 x Transfer Buffer solution was made in advance (100 ml 10 x Transfer Buffer 

stock and 100 ml methanol, made up to 1 L in dH2O). Sponges, filter papers and 

nitrocellulose membranes were soaked in 1 x Transfer Buffer, before assembly of 

a sandwich, consisting of the acrylamide gel, the nitrocellulose membrane, two 

filter papers and two sponges on either side. The sandwich was fitted into the 

Bio-rad tank with an ice pack, and transfer of proteins from gel to membrane 



Chapter 2 Materials and Methods 

 71 

took place at 150 mA for 80 minutes. The transfer of protein was confirmed by 

immersing the membrane into Ponceau Red solution (Sigma-Aldrich, P7170) to 

observe lanes of transferred protein bands. After successful transfer, blocking 

and staining of the membrane followed. 

 

2.3.7 Antibody staining 

A 10 x TBS stock was made up in advance with 175 g NaCl and 48 g Tris base. 

From this stock, a 1x TBST solution was made using 100 ml 10x TBS and 1 ml 

Tween20 in 1 L dH2O. Ponceau Red staining was removed from the membrane 

with 3 washes in TBST (volume approximately enough to cover the membrane in 

a washing dish). Following this, membranes were blocked in 5% (w/v) BSA in 

TBST (blocking buffer) for 60 minutes at 20o C and incubated with primary 

antibodies (table 2.3) overnight at 4°C in blocking buffer. Membranes were then 

washed 3 times for 5 minutes in TBST before incubating with secondary antibody 

in blocking buffer for one hour at 20o C. Membranes were washed a further 3 

times for 5 minutes in TBST and developed using enhanced chemiluminescence 

(ECL, GE Healthcare, RPN2106) or ECL prime (GE Healthcare, RPN2232), if the 

signal was expected to be weak.  

Images were visualised using the ChemiDoc imaging system. Loading was 

assessed using antibodies against β-actin or histone H3. Antibody suppliers, 

catalogue numbers and dilutions are listed in table 2.4.  
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Antibody Supplier Cat number Dilution  

Primaries    

Anti-DNMT1 (rabbit) Abcam ab 188453 1:1000 

Anti-H3K27me3 (mouse) Abcam ab 6001 1:1000 

Anti-H3K9me (rabbit) Abcam ab 9045 1:1000 

Anti-H3K9me2 (mouse) Abcam ab 1220 1:1000 

Anti-H3K9me3 (rabbit) Abcam ab 176916 1:1000 

Anti-β-actin (mouse) Sigma-Aldrich A1978 1:5000 

Anti-H3 (mouse) Abcam ab 24834 1:2000 

Secondaries    

Anti-mouse DAKO P0448 1:5000 

Anti-rabbit DAKO P0447 1:2000 

Table 2.4: Antibodies for Western Blot 

 

2.3.8 Liquid chromatography-mass spectrometry 

This protocol was kindly shared by Dr Oliver Maddocks, who developed and 

optimised it. To quantify the ratio of methylcytosine:cytosine via liquid 

chromatography-mass spectrometry (LCMS), 1 µg of DNA was extracted and 

subjected to acid hydrolysis. At endpoint, cells were trypsinised and harvested 

as cell pellets. DNA was extracted from cell pellets using the Qiagen QIAamp 

DNA mini kit (Qiagen 51304). Cell pellets were resuspended in 200 µl PBS, and 10 

µl Proteinase K, 4 µl RNAse A and 200 µl buffer AL (Qiagen 51304) were added 

per pellet. RNAse A was added to make sure that only genomic DNA was 

isolated. Samples were pulse-vortexed for 15 seconds and then incubated at 

56oC for 10 minutes. After a brief spin, 200 µl 100% ethanol (Sigma-Aldrich, 

51976) were added to the samples and they were pulse-vortexed for 15 seconds. 

The mixture was then transferred to a QIAamp mini spin column and centrifuged 

at 6,000 x g for 1 minute. After discarding the flow-through, the spin column 

was centrifuged again in a clean 2 ml tube at 6,000 x g for 1 minute. Per tube, 

500 µl buffer AW1 were added and centrifugation was repeated as above. Flow-
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through was discarded, 500 µl AW2 were added onto the columns and they were 

centrifuged at full-speed for 1 minute. Columns were then placed in clean 1.5 

ml Eppendorf tubes, 200 µl of AE buffer (Qiagen 51304) were added and after a 

5-minute incubation at 20o C, the columns were centrifuged at 7,000 x g for 1 

minute. DNA was eluted in AE buffer for subsequent storage at -20o C. 

For the DNA acid hydrolysis step, the protocol was adapted from Kok et al (322). 

One µg of DNA was transferred to a 1.5 ml Eppendorf tube. Samples were moved 

into a hood with nitrogen blow-down dryer and exposed to nitrogen gas of 5 psi 

pressure at 50oC (lids open). After approximately 30 minutes or when all 

moisture was removed, the nitrogen prongs were removed and 100 µl formic 

acid (Sigma-Aldrich, F0507) were added to the dried pellets. Samples were then 

incubated for 3 hours at 130oC in a fume hood with the shield down. At this 

point, a lot of attention was paid to health and safety as heated formic acid is a 

potential risk. To avoid tube lids from opening during the high temperature 

phase, multiple spare heat blocks were placed on top of the tubes. After the 

incubation, tubes were allowed to completely cool down, before they were safe 

to be handled. Once cooled down, tubes were vortexed and spun down. They 

were then returned to the heater and dried again with nitrogen gas at 45oC, 

until all moisture was removed. Once dry, 25 µl dH2O were added to the pellets 

and the tubes were vortexed and spun down. After 15 minutes at 20o C, 100 µl 

ice-cold LCMS-grade methanol (62.5%)/acetonitrile (37.5%) solution were added. 

Samples were vortexed and spun at 4oC for 15 minutes. Supernatant was 

transferred to LCMS tubes. 

LCMS was performed by the Maddocks lab using a method published by Newman 

et al (323). Bases from hydrolysed DNA were analysed on a Dionex Ultimate 3000 

LC system coupled to a Q Exactive mass spectrometer (Thermo Scientific). 

Chromatographic separation was achieved using a Sequant ZIC-pHILIC column 

(2.13150 mm, 5 mm) (Merck) with elution buffers (A) and (B) consisting of 20 mM 

(NH4)2CO3, 0.1% NH4OH in H2O and acetonitrile, respectively. The LC system was 

programmed to maintain a flow rate of 200 ml/min with the starting condition 

at 80% (A), which linearly decreased to 20% (A) over 10 minutes, followed by 

washing and re-equilibration steps (20%–80% [A]) over 7 minutes. Ionization of 
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the analytes occurred in a heated electrospray ionization (HESI) probe fitted to 

the mass spectrometer that operated in negative ion mode over a mass range 

between 75 and 200 m/z at a resolution of 70,000. Thermo LCquan software was 

used to identify and analyse the nucleotides. For quantification of total DNA 

methylation, the peak area for methyl-cytosine m+0 was divided by peak area 

for cytosine. Examples of chromatogram peaks are shown in figure 2.1 below. 

 

Figure 2.1: Chromatogram peaks for unmodified and methylated cytosine. Adapted 
from Maddocks et al, 2016, Mol Cell. Shown here after permission granted by O. 
Maddocks. 

 

2.3.9 Immunohistochemistry  

All the immunohistochemistry procedures, after tumour retrieval and storing in 

formalin, were performed by the histology department at CRUK Beatson. 

Immunohistochemical (IHC) staining for CD3, CD8, NKp46, F4/80 and Foxp3 was 

performed on 4 µm formalin fixed paraffin embedded (FFPE) sections, which had 

previously been heated in the oven at 60Co for 2 hours. IHC staining for CD3, CD8 

and F4/80 was performed on a Leica Bond Rx Autostainer and staining for NKp46 

and Foxp3 was performed on an Agilent Autostainer Link48. 
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The appropriate FFPE sections were loaded on the Leica Bond Rx autostainer. 

The CD3 and CD8 sections underwent epitope retrieval using Leica ER2 (AR9640) 

retrieval buffer for 20 minutes at 95°C. The F4/80 sections underwent 

enzymatic digestion using Leica Enzyme 1 (AR9551) for 5 minutes at 37°C. The 

antibodies were used at previously optimised dilutions (table 2.5) using Vector’s 

Rat ImmPRESS (MP-7404) kit to bind to the antibody. Liquid DAB (Agilent, UK; 

K3468) was used to visualise the antibody-antigen complex. Sections were 

counterstained on board the autostainer, dehydrated in increasing 

concentrations of alcohol and then taken through 3 changes of xylene prior to 

sealing a glass coverslip using DPX mountant for microscopy.  

FFPE sections for NKp46 and Foxp3 investigation underwent manual dewaxing 

through xylene, graded alcohol and then washed in tap water before undergoing 

heat-induced epitope retrieval (HIER). For FoxP3, HIER was performed on an 

Agilent PT module where the sections were heated to 98°C for 25 minutes in PT 

module 1 buffer (Thermo, UK), whereas for NKp46, HIER was performed at 97°C 

for 20 minutes using Flex High pH retrieval buffer (Agilent, UK). After epitope 

retrieval, sections were rinsed in Tris Buffered saline with Tween (Tbt, Menarini, 

UK) prior to being loaded onto the autostainer. The sections then underwent 

peroxidase blocking (Agilent, UK), washed in Tbt before application of 

appropriate antibody at a previously optimised dilution for 40 minutes (table 

2.4). The sections were then washed in Tbt before application of rabbit EnVision 

(Agilent, UK; K4003) secondary antibody for FoxP3 and goat ImmPRESS antibody 

(Vector, UK; MP-7405) for NKp46, for 35 minutes. Sections were rinsed in Tbt 

before applying Liquid DAB (Agilent, UK) for 10 minutes. Haematoxylin Z 

(CellPath, UK) was used to counterstain the nuclei in Scott’s tap water 

substitute. The sections were then washed in water, dehydrated in increasing 

concentrations of alcohol and taken through 3 changes of xylene prior to sealing 

with a glass coverslip using DPX mountant for microscopy.  

The stained sections were then digitally captured on a Leica SCN400f slide 

scanner and image analysis was performed using HALO software (Indica Labs). 
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Mouse antigen Supplier Cat. No Dilution 

CD3 Abcam ab16669 1/100 

CD8 Thermo 14/9766 1/500 

NKp46 R & D systems af2225 1/200 

F480 Abcam ab6640 1/200 

FoxP3 Cell Signalling 12653 1/200 

Table 2.5: Antibodies used for immunohistochemistry staining. 

 

Using the HALO software, firstly, non-malignant areas of tissue were manually 

excluded (figure 2.2). Following exclusion of the benign tissue areas, the slides 

were digitally analysed for the protein of interest using the CytoNuclear analysis 

tool v1.6 (example in figure 2.3). The slides were then automatically scored 

using the histoscore method as described by Kirkegaard et al (324). This 

algorithm is embedded in HALO software and after grading the staining intensity 

as negative (0), weakly stained (1), moderately stained (2) and strongly stained 

(3), it uses the formula below to calculate a histoscore value ranging between 0 

and 300: 

sum of (1 x % cells stained 1) + (2 x % stained 2) + (3 x % stained 3)  
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Figure 2.2: IHC showing manual exclusion of non-malignant tissue  

 

Figure 2.3: Example of the staining algorithm using CytoNuclear v1.6. Protein 
of interest stained (red colour) only in the malignant tissue areas. Nuclei are 
stained as blue. 
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2.4 Gene expression analysis  

2.4.1 RNA extraction from cell lines and murine tumours  

For cultured cells, 6-well Corning plates were used for the desirable length of 

time. At endpoint, medium was aspirated and cells were washed with PBS twice. 

After PBS washing, 350 µl RLT lysis buffer (Qiagen, 79216) were added to the 

wells and mixed thoroughly. Plates were now either stored at -200C or the lysate 

was transferred into a new eppendorf for RNA extraction as per Qiagen RNAeasy 

Mini kit protocol described below.  

For RNA extraction from murine tumours, the weight of tumour was first 

determined. This was measured at the time of tumour harvesting. Tumours of 

less than 20 mg were immersed in 350 µl RLT with 143 mM of β-mercaptoethanol 

(Sigma Aldrich, M3148), in 2 ml screw cap tubes (Star Lab, E1420-2340). For 

tumours between 20-30 mgs, 600 µl the same solution were used; this protocol 

was optimised for tumours less than 30 mg so when tumours were bigger than 

this size, they were cut to an approximate size of < 30mg after being placed on 

a cold metal block surrounded by dry ice (to ensure that they will remain 

frozen). Either one 2.8 mm ceramic bead or two 1.4 mm ceramic beads 

(Precellys, CKmix) were added in the tubes per tumour and then tumours were 

homogenised in a Precellys homogeniser at 2,000 x g for 2 periods of 30 seconds. 

The lysate was then centrifuged for 3 minutes at 16,000 x g (in a small rotor) 

and the supernatant was transferred to a new Eppendorf tube. Following this, 

the RNAeasy mini kit protocol below was followed, as per cultured cells.  

One volume of 70% ethanol was added to the lysates, either from cultured cells 

or homogenised tumours, and pipetted gently up and down to mix. A maximum 

of 700 µl were transferred to an RNA binding column collection tube. The 

column was centrifuged for 30 seconds at 8,000 x g and then the flow-through 

discarded. Following this, 350 µl RW1 buffer were added to the column, the 

column was centrifuged for 30 seconds at the same speed and the flow-through 

again discarded. A master mix of DNase solution was made up (70 µl RDD buffer 

and 10 µl DNase stock) (RNase-free DNase set, Qiagen, 79254). 80µl mix were 
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pipetted directly onto the column and incubated for 15 minutes at 20°C. 

Following this, 350 µl buffer RW1 were added, centrifuged at 8,000 x g for 30 

seconds and the flow-through discarded. Two steps of adding 500 µl RPE buffer 

followed, after which the columns were centrifuged for 30 seconds at step one 

and for 2 minutes at step two, at 8,000 x g, and the flow-through was discarded. 

The column was then placed in a new 2 ml tube and centrifuged for 1 minute at 

16,000 x g (in a small rotor) to dry the membrane. Columns were then 

transferred to 1.5 ml RNase-free Eppendorf tubes. At that point, 40-50 µl RNase-

free dH2O were directly pipetted onto the column and RNA was eluted by 

centrifugation at 16,000 x g for 2 minutes. RNA was quantified using the 

NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA), 

aliquoted and stored at -80°C. 

 

2.4.2 Complementary DNA (cDNA) synthesis for reverse transcription 

quantitative polymerase chain reaction (RT-qPCR)  

Prior to cDNA synthesis, RNA concentration was determined by NanoDrop 

spectrophotometer, alongside with measuring absorbance at 260 nm and 280 

nm. Only samples with 260/280 ratios of approximately 2 were used for 

downstream cDNA synthesis. The High-capacity cDNA reverse transcription kit 

(ThermoFisher, 4368814) was used. The kit components and RNA samples were 

thawed on ice. A 2x reverse transcriptase (RT) master mix was prepared 

including 2 µl 10x RT buffer, 0.8 µl 25 x dNTP Mix (100 mM), 2 µl 10x RT Random 

Primers and 1 µl MultiScribeTM Reverse Transcriptase per sample (50 U/µL) to 

make a total of 5.8 µl. This was supplemented with 4.2 µl nuclease-free H2O 

(NF-H2O) to a total of 10 µl. A master mix was also prepared without reverse 

transcriptase for a non-reverse transcriptase control (NRT). Both mastermixes 

were vortexed and centrifuged. A volume of RNA corresponding to 100 ng – 1000 

ng (equal among samples but may vary across different experiments depending 

on the concentration of eluted RNA achieved) and NF-H2O to a total of 10 µl 

were prepared and pipetted into qPCR tubes. Then, 10 µl the mastermix above 

were added per RNA sample. For the no template control (NTC), nuclease-free 
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H2O was added instead of RNA. Samples were vortexed and centrifuged prior to 

loading onto the thermocycler (Applied Biosystems). The thermocycler was 

adjusted to the following settings:  

1. 25°C for 10 minutes  

2. 37°C for 120 minutes  

3. 85°C for 5 minutes  

4. 4°C (infinite hold)  

cDNA produced in the reaction above was stored at -20°C prior to RT-qPCR 

reaction. 

2.4.3 Reverse transcription quantitative PCR (RT-qPCR)  

The transcribed cDNA, primers and iTaqTM Universal probes supermix (BioRad, 

1725131) were thawed on ice. Hard-Shell 96-well PCR plates (Bio-Rad, HSP9631) 

were used. Into each well, 2 µl cDNA (amount varied between 10-100 ng 

between experiments but equal between samples) were mixed with 10 µl iTaqTM 

Universal probes supermix (containing dNTPs, iTaq DNA polymerase, MgCl2, 

enhancers, stabilizers, and ROX normalization dyes), 7 µl NF-H2O and 1 µl 

respective primer pair (table 2.6), to make a total of 20 µl. The PCR plate was 

sealed with adhesive Microseal B seal (BioRad MSB1001), centrifuged and loaded 

onto a CFX96 Real Time System (BioRad).  

The following settings were applied:  

1. 2 minutes 50°C 
2. 10 minutes 95°C 
3. 40 cycles of (15 seconds at 95°C and 1 minute at 60°C) 

Fold change of gene expression was calculated using the method published by 

Livak et al (325). Firstly, the CT value of the gene of interest was subtracted 

from the CT value of the housekeeping/reference gene (ΔCT). Following this, the 

ΔΔCT was calculated by subtracting the ΔCT of the gene of interest from the ΔCT 

of the reference gene. The foldchange value was then calculated by converting 

the ΔΔCT from a log2 scale to a linear scale using the following formula:  
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Fold change = 2(-ΔΔC
T
) 

2.4.4 Chemokine/cytokine gene expression array 

The RT2 ProfilerTM PCR array for mouse chemokines/cytokines (Qiagen PAMM-

150ZA, 330231) was used to examine changes in chemokine expression under 

different conditions. Plate format E384 was used; it consists of 4 replicates of a 

96-well plate layout and it was used for 4 different conditions in this case. 

 

Gene symbol Exon spanning 

region 

Cat No (all primers 

supplier by 

ThermoFisher) 

Actb (mouse) 2-3 Mm02619580_g1 

ACTB (human) 1-3 Hs01060665_g1 

Cxcl10 (mouse) 1-2 Mm00445235_m1 

CXCL10 (human) 1-2 Hs00171042_m1 

18S ribosomal RNS (Rn18s, 

mouse) 

- Mm03928990_g1 

GAPDH (human) 6-8 Hs02786624_g1 

RANTES (CCL5, human) 1-2 Hs00982282_m1 

Rantes (Ccl5, mouse) 1-2 Mm01302427_m1 

MIP3b (Ccl19, mouse) 1-2 Mm00839966_g1 

MCP-5 (Ccl12, mouse) 1-2 Mm01617100_m1 

Stat1 (mouse) 20-21, 23-24 Mm01257286_m1 

CXCL11 (human) 1-2 Hs00171138_m1 

MIP-3a (CCL20, human) 2-3 Hs00355476_m1 

Table 2.6: Primers pairs used for single-gene RT-qPCR 
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cDNA was synthesised using a different protocol than the one described above, 

to adhere with the instructions of the RT2 ProfilerTM PCR (Qiagen) protocol. 

Using the RT2 First Strand kit (Qiagen, 330401), 400 ng of RNA were transcribed 

into cDNA. Firstly, genomic DNA was eliminated by mixing 400 ng of RNA with 2 

µl Buffer GE and adding NF-H2O to a total of 10 µl. The DNA elimination mix was 

incubated for 5 minutes at 42oC and then immediately placed on ice. A reverse 

transcription mix was prepared by mixing 4 µl 5 x buffer BC3, 1 µl control P2, 2 

µl RE3 RT mix and 3 µl NF-H2O to a total of 10 µl for each sample. This was 

added to the 10 µl genomic elimination mix, mixed gently and spun down. The 

reverse transcription mix was then incubated at 42oC for 15 minutes and then 

immediately incubated at 95oC for 5 minutes. At the end of the reaction, 82 µl 

NF-H2O were added to the mix and the samples were either stored at -20oC or 

used for the downstream PCR, as below. 

For the RT-qPCR reaction, RT2 SYBR Green ROX mastermix was used (Qiagen, 

330520). For each sample, a PCR component mix was prepared (650 µl 2 x RT2 

SYBR Green plus 102 µl cDNA as transcribed above and 548 µl NF-H2O) and 

pipetted into a reservoir. With the use of a multi-channel pipette, 10 µl the PCR 

component mix were added to each well of the 96-well plate replicate of the 

384-well plate, with the use of different coloured 384EZLoad covers to aid 

pipetting. 

The plate was firmly sealed with Optical Adhesive film and centrifuged for 1 

minute at 260 x g. It was then loaded onto an AB7900 HT real time cycler and 

processed with the below settings:  

1. 10 minutes at 95°C  

2. 40 cycles of (15 seconds at 95°C and 1 minute at 60°C) 

Due to the complexity of data, the Qiagen online tool PCR Array data analysis 

Web portal was used for analysis of the results (326). The list of genes tested 

can be found in Appendix 1.0. The CT cut-off was set to 38 and the data were 

automatically normalised to the Bmp4 and Cntf gene expression by the software; 

the software automatically selects an optimal set of internal control genes 
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derived from the full array. These are identified as the ones with the most 

stable expression during the experiment. Their CT values are geometrically 

averaged and used for the ΔΔCT calculations (see Appendix 1.0 for more details). 

 

2.4.5 Library preparation for Next Generation sequencing (NGS) of RNA 

RNA from murine tumours was extracted as per 2.4.1. RNA integrity was 

calculated using automated electrophoresis in an Agilent 2200 TapeStation. An 

RNA ladder was prepared by mixing 5 µl RNA sample buffer (Agilent, 5067-5577) 

with 1 µl RNA ladder (Agilent, 5067-5578). Then, 1 µl the RNA samples was 

mixed with 5 µl RNA sample buffer and all samples were vortexed at 2,000 rpm 

for 1 minute. Samples were then heated at 72°C for 3 minutes and then placed 

on ice for 2 minutes. Samples were then spun down briefly and then inserted in 

an Agilent 2200 TapeStation and run on an RNA screen-tape (Agilent, 5067-

5576). The electropherograms and RIN values were reviewed and only samples 

with RIN values > 7 were chosen for downstream library preparation. 

Ribosomal RNA (rRNA) depletion 

Library preparation for total RNA sequencing was performed using the New 

England Biolabs protocol. Firstly, 250 ng of extracted RNA in 12 µl were used in 

the ribosomal RNA (rRNA) depletion step (NEBNext, E6350). A mix of 1 µl 

NEBNext rRNA depletion solution was mixed with 2 µl probe hybridization buffer 

and the total volume was added to the 12 µl each RNA sample. Samples were 

then placed in a thermocycler and a program was run as follows with the lid set 

to 105°C:  

1. 2 minutes at 95 °C  

2. 95°C to 22°C at a pace of 0.1°C per second 

3. 5 minutes at 22°C 

The samples were spun down and then moved forward to the RNA ribonuclease H 

digestion step to degrade the hybridised RNA-rRNA. A master mix of 2 µl 
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NEBNext RNase H, plus 2 µl RNase H reaction buffer and 1 µl NF-H2O was 

prepared in ice. This was then added to the 15 µl RNA sample from the previous 

step. The samples were mixed by pipetting 10 times, then spun down and placed 

in a thermocycler and incubated at 37oC for 30 minutes. After incubation, 

samples were immediately placed on ice.  

The next step was DNase digestion whereby DNA probes are degraded by DNase 

I. A mix of 5 µl DNase I reaction buffer, plus 2.5 µl RNase-free DNase I and 22.5 

µl NF-H2O was prepared and added to the 20 µl the RNA sample from the 

previous step. The total 50 µl sample was incubated at 37oC for 30 minutes and 

then immediately spun down and placed on ice.  

Following this, the RNA was purified with nucleic acid purification beads (Sera-

Mag Magnetic Carboxylate Modified Particles, GE 44152105050250). Beads were 

vortexed vigorously to resuspend and then 2.2 x (110 µl) volume was added to 

the sample from the DNase reaction step. Samples were mixed well by pipetting 

and incubated on ice for 15 minutes. They were then transferred to a magnetic 

stand and allowed to rest for 5 minutes or until the solution became clear. 

Supernatant was carefully removed while the samples were still on the magnet 

and then the beads were washed twice with 500 µl 70% ethanol, again without 

removing the tubes from the magnet. After the second wash, all liquid was 

removed carefully, making sure that there was no ethanol left behind. Lids were 

then left open to dry the beads for a few minutes, and then the tubes were 

removed from the magnet. Whilst beads were still looking dark and glossy, 10 µl 

NF-H2O were added and pipetted up and down. Tubes were allowed to rest for a 

few minutes before being returned to the magnet. Whilst tubes were still on the 

magnet, 8 µl RNA were eluted in NF-H2O from the supernatant and transferred to 

another tube, making sure that the beads were not disturbed. At this point, RNA 

was either stored at -80oC or the experiment continued to downstream library 

preparation. 
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Library construction 

Following rRNA depletion, the sequencing library was constructed using the 

NEBNext UltraTM II Directional Library prep kit for Illumina (E7760S). For the RNA 

fragmentation step, 5 µl rRNA-depleted RNA were mixed with 4 µl NEBNext First 

Strand synthesis reaction buffer and 1 µl random primers. The sample was mixed 

thoroughly and then placed in a thermocycler at 94oC for 20 minutes (incubation 

time optimised in advance). After incubation, samples were immediately placed 

on ice. 

The fragmented RNA was then subjected to First Strand cDNA synthesis. Whilst 

still on ice, 10 µl the fragmented and primed RNA were mixed with 8 µl NEBNext 

strand specificity reagent and 2 µl NEBNext First Strand synthesis Enzyme mix 

and mixed by pipetting. The sample was then incubated in a cycler with the 

following protocol: 

1. 10 minutes at 23oC 

2. 15 minutes at 42oC 

3. 15 minutes at 70oC 

4. Hold at 4oC 

The entire product of the first strand synthesis was then mixed with 8 µl 

NEBNext 2nd strand synthesis reaction buffer containing dUTP, 4 µl NEBNext 2nd 

strand synthesis enzyme mix and 48 µl NF-H2O. The samples were mixed 

thoroughly and were incubated for 1 hour at 16oC with the lid open.  

The second strand cDNA synthesis product was then purified using 1.8 x the 

sample volume of the magnetic beads (i.e. 144 µl). The DNA-bead mixes were 

allowed to incubate for 5 minutes at 20oC and then placed on a magnet. After 

the solution became clear, the same process of purification as earlier was 

followed. After the last ethanol step, 50 µl 0.1 x Tris-HCl/EDTA (TE) buffer were 

used to elute the DNA from the beads.  

To prepare an End Prep of cDNA library reaction mix, the 50 µl cDNA above were 

mixed with 7 µl NEBNext Ultra II End Prep reaction buffer and 3 µl NEBNext Ultra 
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II End Prep enzyme mix. The samples were then incubated in a thermal cycler as 

follows: 

1. 30 minutes at 20oC 

2. 30 minutes at 65oC 

3. Hold at 4oC  

To proceed to the Adaptor Ligation step, the NEBNext adaptor was diluted from 

5 x in Adaptor ligation buffer on ice and 2.5 µl the diluted adaptor were added 

to the End-Prepped DNA plus 1 µl NEBNext ligation Enhancer and 30 µl NEBNext 

Ultra II ligation mastermix. The sample was pipetted up and down to mix 

thoroughly and then incubated at 20oC for 15 minutes. After this, 3 µl the USER 

enzyme were added to make a total volume of 96.5 µl, mixed thoroughly and 

incubated for another 15 minutes at 37oC.  

The ligation reaction product was purified using magnetic beads one more time, 

with a volume of 87 µl beads (0.9 x of the sample). At the end of the 

purification, DNA was eluted in 15 µl 0.1 x TE buffer. 

For the final step of library construction, DNA was amplified by PCR enrichment. 

The adaptor-ligated DNA was mixed with 25 µl NEBNext Ultra II Q5 mastermix, 5 

µl universal PCR primer (i5 primer) and 5 µl 10 µM index (barcoded) primer (i7 

primer, NEBNext multiplex oligos for Illumina index primers set 1 and set 2 

(E7335S and E7500S, see Appendix 2.0 for more details on primers). Different 

barcoded primers were used for different samples to allow for accurate 

identification during sequencing. Samples were placed in a thermocycler and the 

PCR reaction below was performed: 

1. 1 cycle of 30 seconds at 98oC  

2. 9 cycles of 10 seconds at 98oC and 75 seconds at 65oC  

3. 5 minutes at 65oC 

The cycle number for step 2 was determined based on the amount of input RNA 

and following optimisation done prior to processing the tumour samples of 

interest. 
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Lastly, DNA was purified one last time with 0.9x magnetic beads (45 µl) as 

described already. At the end of purification, DNA was eluted in 20 µl 0.1x TE 

buffer. All samples were then subjected to quality control using 1 µl DNA per 

sample on the Agilent D5000 Screen Tape System. DNA samples were mixed with 

10 µl D5000 sample buffer each (Agilent, 5067-5589). Similarly, 1 µl the DNA 

ladder was mixed with 10 µl D5000 sample buffer. The samples and the ladder 

were vortexed, spun down and then transferred to an Agilent 2200 TapeStation 

where they were subjected to automated electrophoresis using D5000 Screen 

Tapes (Agilent 5067-5588). DNA was quantified using the Qubit dsDNA high 

sensitivity assay kit (Thermofisher, Q32854). 

Samples with electropherograms showing a single DNA peak between 200-300 bp 

size were then subjected to next generation sequencing (NGS). All samples were 

pooled to an equal concentration of 10 nM in 150 µl before sequencing. 

The amplified library was sequenced on the Nova6000 SP flow cell (Illumina) 

with a paired-end sequencing strategy. Read length was 50 base pairs with an 

expected 50 million read pairs per sample. The precise methodology of RNAseq 

analysis will be described in more depth in Chapter 5. 

 

2.5 Chromatin Accessibility Profiling - Assay for Transposase 

Accessible Chromatin using Sequencing (ATAC-seq) 

To assess chromatin configuration in murine tumours, the Assay for Transposase-

Accessible chromatin sequencing (ATAC-seq) was performed using a protocol 

designed specifically for frozen tumours (Omni-ATAC protocol) (327). This 

protocol was optimised for frozen tumours derived by the ID8 cell line by me. A 

variety of buffers were prepared prior to the experiment (stable solutions) or 

fresh on the day of nuclei extraction (unstable solutions).  

Frozen tumours (20 mg – 30 mg) were placed in 1 ml ice-cold 1 x unstable 

homogenization buffer (HB, table 2.7) in a glass Dounce homogeniser (Sigma-

Aldrich, D8938). Tumours were allowed to thaw and sink to the bottom of the 
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dounce. Then, the tissue was dounced with pestle A with 10 strokes and pestle B 

with 20 strokes. Large chunks of tissue were “cleared” by centrifuging at 100 x g 

for 1 minute at 4oC and after centrifugation, 400 µl the lysate were mixed with 

400 µl the 50% iodixanol mix to give a final concentration of 25% iodixanol (table 

2.8). Following this, 600 µl 35% iodixanol mix were placed at the bottom of a 2 

ml safe-lock tube (VWR, 0030120094). Without mixing layers, 600 µl 29% 

iodixanol mix were placed on the top of the 30% mix and finally, 800 µl the 25% 

iodixanol also containing the tumour lysate were added on top. To maximise 

nuclei yield, one more aliquot of 400 µl the lysate was added to a second tube 

with an iodixanol gradient. The tubes were centrifuged in a swinging bucket 

centrifuge at 4,000 x g for 20 minutes and with the brake off.  

 

6 x Homogenisation Buffer Stable Master Mix 
Reagent Final 

Conc. 
Fold Dilution 
(x) 

Vol for 100 mL 

1 M CaCl2 30 mM  33.33 3 mL 
1 M Mg (Ac)2 18 mM 55.56 1.8 mL 
1 M Tris pH 7.8 60 mM 16.67 6 mL 
H2O     89.2 mL 
6 x Homogenisation Buffer – unstable solution 
      Volume per 

sample 
6 x Homogenization Buffer 
Stable 

6x 1 636.3 

100 mM PMSF 0.1 mM 1000 0.7 
14.3 M β-mercaptoethanol 1 mM 14300 0.05 
50x Roche protease inhibitor 1x 50 13 
        
1 x Homogenisation Buffer - unstable solution  
6 x Homogenization Buffer 
Ustable 

1x 6 166.7 

1 M Sucrose 320mM 3.13 319.5 
500 mM EDTA  0.1mM 5000 0.2 
10% Nonidet 0.10% 100 10 
H2O     503.6 

Table 2.7 Omni-ATAC protocol buffers (Nonidet was purchased from Roche, 
11332473001). 
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Following centrifugation, the top 1,100 µl the iodixanol gradient were aspirated, 

in order to reach within approximately 300 µl the nuclear band. After this, 400 

µl containing the nuclear band were transferred to a fresh tube. For 

quantification, 10 µl the nuclei band solution were mixed with 10 µl trypan blue 

stain 0.4% (ThermoFisher, 15250061) and 8 µl the mix were transferred onto a 

disposable counting slide (Immune Systems, BVS100). All nuclei stained with 

trypan blue were taken into account. At this point, 20,000 nuclei were 

transferred in 500 µl ATAC-RSB reagent (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 

mM MgCl2 and 0.1% (v/v) Igepal 630 in 100 ml H2O). 

 

Solutions for Iodixanol gradient 

50% Iodixanol Solution  

Reagent Final 

Conc 

Fold Dilution 

(x) 

Vol per 

sample (ul) 

6 x Homogenisation Buffer Unstable 1x 6 66.67 

60% Iodixanol 50% 1.2 333.33 

29% Iodixanol Solution  

6 x Homogenization Buffer Unstable 1x 6 100.00 

1 M Sucrose 160mM 6.25 96.00 

60% Iodixanol Solution 29% 2.07 289.86 

H2O     114.14 

35% Iodixanol Solution  

6 x Homogenization Buffer Unstable 1x 6 100.00 

1 M Sucrose 160mM 6.25 96.00 

60% Iodixanol Solution 35% 1.71 350.88 

H2O     53.12 

Table 2.8 Solutions for Iodixanol gradient. Conc=concentration 
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Igepal 630 is octylphenylpolyethylene glycol and was bought from Sigma (I8896). 

The mix of nuclei and ATAC-RSB was centrifuged at 600 x g for 10 minutes at 

4oC. The supernatant was aspirated carefully; reagents and transposase (Tn5) 

were added to the invisible nuclear pellet as per table 2.9. The mix was 

incubated for 30 minutes at 37oC at 400 rpm in an Eppendorf Thermomixer 

comfort incubator. The incubation time was determined after optimisation. 

Following incubation, samples were placed on ice and the MiniElute PCR 

purification kit (Qiagen, 28004) was used to clean up the DNA fragments.  

Five volumes of buffer PB were added to the transposase reaction product and 

placed in a MinElute column. The column was centrifuged for 1 minute at 17,900 

x g at 20oC. The flow-through was discarded and 750 µl buffer PE were added 

onto the column. The column was centrifuged again at the same conditions and 

the flow-through was discarded. One more centrifugation was performed with 

the column in a clean 2 ml tube to completely dry the membrane and then the 

column was placed in a clean 1.5 ml Eppendorf tube. To elute DNA, 10 µl buffer 

EB (Tris-HCl, pH 8.5) were added to the column and left to stand for 1 minute. 

DNA was eluted in 10 µl following one last centrifugation as above. DNA was 

stored at -20oC or used for down-stream library construction immediately. 

 

Omni-ATAC ATAC-seq 
reaction mix 

20 µl 
reaction 

Supplier Product code 

2 x TD buffer 10 Illumina Tagment 
DNA buffer 

15027866 

Transposase (100nM) 0.5 Nextera Tagment 
DNA enzyme I 

15027916 

PBS 6.6 
  

1% Digitonin 0.2 Promega  G9441 
10% Tween-20 0.2 

  

dH2O 2.5 
  

Table 2.9 Transposase (Tn5) reaction solution. 
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The purified, transposed DNA was transferred into 0.2 ml PCR tubes and mixed 

with 10 µl dH2O, 25 µl NEBNext High-Fidelity 2 x PCR mastermix (NEB, M0541S), 

2.5 µl Universal customed PCR primer 1 and 2.5 µl customised index (barcoded) 

PCR primer 2 (all customised  from Sigma, see Appendix 3.0). The customised 

primers were designed as described by Buenrostro et al (328).  

The mix was incubated in a thermocycler with the program (ATAC1) below: 

1. 1 cycle of 5 minutes at 72oC and 30 seconds at 98oC 

2. 5 cycles of 10 seconds at 98oC, 30 seconds at 63oC and 1 minute at 72oC 

For the quantification of how many extra PCR cycles are needed for further 

library amplification, a test RT-qPCR was performed. Five µl the already 

amplified DNA were mixed with 5 µl NF-H2O, 5 µl NEBNext High-Fidelity 2 x PCR 

mastermix, 5 µl 100x SYBR Green I (BioRad, 1708880) and 0.4 µl each primer 

(universal and barcoded as described above). The qPCR was run with the settings 

(ATAC2) below: 

1. 30 seconds at 98oC 

2. 20 cycles of 10 seconds at 98oC, 30 seconds at 63oC and 1 minute at 72oC 

When the test qPCR was complete, and in order to calculate the additional 

number of further cycles needed, the linear Relative Fluorescence Units (RFU) vs 

cycle was plotted and the cycle number that corresponds to one-third of the 

maximum fluorescent intensity was determined (n). This number (n) was the 

number of the additional cycles of PCR needed to minimally amplify the library 

and thereby reduce GC and size bias. An example of how this n number was 

determined is shown in figure 2.4. The remaining 45 µl the DNA product were 

again incubated using the ATAC1 protocol above, where the 5 cycles were 

substituted by n cycles.  
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Figure 2.4: Plot depicting way to estimate the ideal number of extra PCR cycles 
needed for four ATAC sequencing libraries. Adapted from Buenrostro et al (329). 

 

Following the final amplification, the DNA fragments underwent bead clean-up 

as described in section 2.4.5 with the Sera-Mag Speed Carboxyl beads. The beads 

were added at a ratio of 1.8x times the DNA sample volume (81 µl) and at the 

end of the clean-up, DNA was eluted in 20 µl dH2O.  Quality control was 

performed by assessing the electropherogram appearance on an Agilent 2200 

TapeStation as described in section 2.4.5 and quantification was done using 

Qubit dsDNA high sensitivity assay kit. The amplified library was sequenced on a 

Nova6000 S1 flow cell (Illumina) with a paired-end sequencing strategy. Read 

length was 50 base pairs. The precise methodology of ATACseq analysis will be 

described in more depth in Chapter 5. 

 

2.6 In vivo experiments  

2.6.1 Animal husbandry 

Animal experiments were carried out in accordance with the U.K. Home Office 

Animal (Scientific Procedures) Act 1986, under the project licence 70/0845 at 

CRUK Beatson, Glasgow and project licences 70/7997 and PA780D61A for 

experiments performed at Imperial College, London. All mice used in the 

experiments described in this thesis were 6-7 weeks old, wild-type C57BL/6 

females, purchased from Charles River. Animals were allowed to acclimatise for 
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at least 7 days before being handled or subjected to any experimental 

procedures. Signs that required termination by Schedule 1 included: weight loss 

of 20% or more, ascites equivalent to full term pregnancy, reduced/slow 

activity, pale feet and visible symptoms of distress such as hunching, 

piloerection, closed eyes and isolation from cage mates. Additional animal 

husbandry was provided by technical staff in the animal facilities of either CRUK 

Beatson, Glasgow or Imperial College, London.  

 

2.6.2 Tumour inoculation and endpoint 

ID8 cell line derivatives were washed, trypsinised, resuspended in complete 

medium and counted. Pellets were washed once in PBS and resuspended at 25 x 

106 cells/ml in 37°C PBS. Cells were then injected intraperitoneally (IP) in a 

volume of 200 µl (5x106 cells per mouse) as previously described (319). Specific 

drug treatments are described in the appropriate results chapters. During the 

initial 3-4 weeks, mice were weighed once a week. Approximately 5-6 weeks 

after inoculation of tumour cells, mice started developing abdominal swelling 

due to ascites and were subsequently weighed 2-3 times per week, or more 

frequently if there was welfare concern. In experiments that aimed to delineate 

survival, the endpoint was determined by the signs described in 2.6.1. All those 

making decisions about humane endpoints were blinded to the treatment 

groups.  

 

2.6.3 Murine blood sampling  

For in vivo experiments performed at the CRUK Beatson Institute, blood 

sampling was permitted via mouse cardiac puncture after performing Schedule 1 

termination. Full blood count analysis was obtained using a Procyte Dx® 

Haematology Analyzer (IDEZZ Laboratories).  
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2.6.4 Harvesting of tumour samples  

Tumour sample harvesting process was previously optimised by the McNeish lab. 

Following Schedule 1 termination, the abdominal skin was removed, and a small 

incision was made just below the xiphisternum. The mouse was then rapidly 

inverted on top of a 50 ml Falcon tube and any ascites was decanted. If no 

ascites was present during harvesting (the case in exploratory experiments), the 

peritoneal cavity was first washed with 5 ml chilled FACS buffer (0.5% FBS, 2 mM 

EDTA in PBS), the mouse was gently agitated and then inverted to decant any 

peritoneal fluid present through a small incision. Ascites was placed on ice until 

further processing. 

Upon dissecting the peritoneum, multiple sites of disease were observed as 

described in figures 2.5 and 2.6. Peritoneal deposits were too small to harvest 

but the omental and/or the porta hepatis tumours were placed in ice-cold PBS, 

snap-frozen in dry ice, or placed in 10% Neutral Buffered Formalin (NBF, Sigma-

Aldrich HT501128). If tumours were placed in formalin, formalin was replaced 

with 70% ethanol after 24 hours. When tumours were snap-frozen, they were 

stored at -80°C. 

All samples (ascites, tumours, spleens) were measured/weighed before stored or 

used in downstream experiments. Mouse ascites that was not analysed 

immediately, was centrifuged at 260 x g for 5 minutes and the supernatant was 

aspirated and stored at -80°C. The remaining cell pellet was treated with 5 ml 1 

x Red Blood Cell Lysis buffer (BioLegend, 420301, made 1x in dH2O) for 10 

minutes at 20°C. To neutralise, 5 ml PBS were added, and the tube centrifuged 

again at 260 x g. After the second centrifugation, supernatant was discarded, 

and the cell pellets were cryopreserved in freezing medium as described in 

section 2.1. 
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Figure 2.5: Peritoneal cavity of a wild-type C57BL/6 mouse bearing ID8 Trp53-/- 

tumours – omental and peritoneal deposits. Mouse is bearing an omental tumour (box) 
and peritoneal deposits on the visceral aspect of the peritoneum (arrows). 

 

 

Figure 2.6: Peritoneal cavity of a wild-type C57BL/6 mouse bearing ID8 Trp53-/- 

tumours; porta hepatis deposit. The deposit situated below the liver (circle) – stomach 
and mesentery have been removed. 
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2.7 Flow cytometry following in vivo work 

2.7.1 Tumour digestion  

Tumour digestion and downstream flow cytometry protocol was created and 

optimised by Dr Sarah Spear, McNeish lab. Aliquots of stock 100x collagenase 

(Sigma, C7657) and 100x dispase (Gibco, 17105041) were prepared prior to 

tumour harvesting. Tumours in ice-cold PBS were chopped into small pieces with 

a sterile scalpel before being transferred into 5 ml RPMI medium in a 50 ml 

falcon tube. Collagenase and dispase were added at 1 x and tumours were 

incubated on a shaker at 37oC. After 20 minutes, 50 µl 0.5 M EDTA were added 

to quench the enzymes. The tumour solution was then passed through a 70 µm 

sterile filter (Easystrainer, Greiner bio-one, 542 070). Tumour pieces were 

mashed with a 1 ml syringe plunger onto the filter and washed through with 

RPMI medium, creating a single cell suspension in the new falcon tube. The 

suspension was then centrifuged in a pre-chilled large rotor centrifuge at 260 x 

g, resuspended in 1 ml complete RPMI medium (section 2.1) and counted in an 

automated cell counter (Invitrogen, Countess II). 2 x 106 cells per sample were 

then plated in 100 µl volume, in clear V-bottom plate wells (Thermo 

Scientific,735-0184), for further antibody staining. If the cell count was 

insufficient, equal numbers of cells between samples were plated instead, 

depending on the lowest concentration of cells present in a tumour. A small 

aliquot from each sample was always preserved for staining control samples 

[unstained controls, cell viability controls and fluorescence-minus-one controls 

(FMO)]. When mouse ascites was also stained for flow cytometry, the above cell 

seeding conditions were used after performing red blood cell lysis, as described 

in section 2.6.4. 

 

2.7.2 Antibody staining  

After plating cells derived from tumour digestion in V-bottom plate wells, the 

plate was centrifuged at 260 x g for 5 minutes at 4oC (henceforth all 

centrifugation steps will be at these settings). Supernatant was decanted and 50 
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µl mouse FcR II/III block were added per well (BD Biosciences, 553142, diluted 

200x in FACS buffer) to block non-specific binding of immunoglobulin to Fc 

receptors. Cells were resuspended using a multichannel pipette and incubated at 

4oC for 15 minutes. After incubation with FcR block, 50 µl the antibody 

mastermix (table 2.10 and table 2.11) or FMO mix, diluted in FACS buffer, were 

added to respective wells and incubated at 4°C for 30 minutes. Each antibody 

concentration/dilution had already been optimised in the McNeish lab. Wells 

were then washed with 100 µl FACS buffer and the plate was centrifuged. 

Supernatant was decanted by gentle inversion and 50 µl Zombie Yellow fixable 

viability dye (diluted 1:200 PBS) were added per sample and the plate was 

incubated at 4oC for 20 minutes. Samples were then washed with 100 µl FACS 

buffer and centrifuged again before fixation with 100 µl 2% NBF diluted in FACS 

buffer. The samples were finally incubated in NBF at 4°C for 20 minutes and 

then washed with FACS buffer and centrifuged again before resuspension in 200 

µl FACS buffer and transfer to flow cytometry tubes. Samples were kept at 4°C 

for no longer than 1-2 days before analysis at the flow cytometer.  

For interrogation of intranuclear markers (such as FoxP3), after staining with 

extracellular markers, the True-Nuclear Transcription factor buffer (Biolegend 

424401) was used. A Fixation (Fix) buffer provided by the kit was used instead of 

formalin at the step described above. Cells were incubated with 100 µl Fix 

buffer at 20oC (1x made up by diluting the 4x concentrate with Fix Diluent) for 

20 minutes. Wells were then washed with 1x Permeabilisation buffer (made by 

diluting the 10x Perm buffer in PBS) and then resuspended in the intranuclear 

antibody/fluorochrome (diluted in 1x Perm) and incubated for 30 minutes at 

20oC. Wells were then washed with 1x Perm buffer and then washed again in 

FACS buffer at 20oC, before resuspending in 200 µl FACS buffer in flow cytometry 

tubes. 
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2.7.3 Intra-tumoural T cell stimulation and staining for flow cytometry 

When the intracellular abundance of chemokines was tested via flow cytometry, 

an aliquot of tumour-derived cells was plated in clear non-treated U-bottom 

plate (SLS,3879) after tumour digestion (as described in 2.7.1). After plating the 

cells, a cocktail of phorbol 12-myristate 13-acetate (PMA) and ionomycin 

(eBioscience, 00-4970) was used to stimulate the immune cell populations into 

secreting chemokines. The 500x stock was used at 2 µl/ml concentration in 

immune cell medium (medium recipe described in section 2.1). One hour after 

addition of the stimulation, a 500x protein transport inhibitor cocktail 

(eBioscience, 00-4980) was added at 1 x, to achieve intracellular retention of 

the secreted chemokines. After 4 hours of incubation with the inhibitor cocktail, 

the cells were transferred to a V-bottom plate and the staining protocol as 

described in 2.7.2 was followed. After the formalin fixation step, the plate was 

washed once in FACS buffer and once in permeabilisation buffer (10 x Perm 

buffer diluted to 1 x with dH2O, Biolegend, 421002). Both washes were 

performed at 20°C. Cells were then stained with intracellular antibodies diluted 

in perm buffer and incubated for 20 minutes at 20°C. The plate was washed with 

1 x perm buffer and then washed again in FACS buffer before resuspending in 

200 µl FACS buffer in flow cytometry tubes. The gating strategy for intracellular 

chemokines is demonstrated in Appendix 9.0. 
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Marker Fluorochrome Dilution  Clone Company  Code 
CD45 Pacific Orange 1 in 20 30-F11 Life 

Technologies 
MCD4530 

CD11b BUV 737 1 in 300 M1/70 BD 
Biosciences 

6245992 

Ly6G Brilliant Violet 
785 

1 in 50 1A8 Biolegend 127645 

Ly6C Alexa Fluor 
647 

1 in 
1500 

HK1.4 Biolegend 128010 

F4/80 PE 1 in 50 REA126 Miltenyi  130-102-
943 

MHC II FITC 1 in 50 M5/114.15.2 Miltenyi  130-102-
910 

CD86 PE/Cy7 1 in 20 GL-1 Biolegend 105014 
CD8a Brilliant Violet 

650 
1 in 80 53-6.7 Biolegend 100742 

PDL-1 
(CD274) 

Brilliant Violet 
421 

1 in 300 10F.9G2 Biolegend 124315 

CD3 PerCP-Cy5.5 1 in 150 17A2 Biolegend 100217 
CD19 APC/Fire 750 1 in 300 6D5 Biolegend 115557 
Fixable 
viability dye 

Similar to 
PE/Texas Red 

1 in 200   Biolegend 423110 

Table 2.10: Antibody-fluorochrome flow cytometry panel for BD FORTESSA 

cytometer 

 

2.7.4 Compensation  

UltraComp compensation beads (Life Technologies, 01-2222-42) were used prior 

to the experiments as single-color compensation control. One drop containing 

both a positive and a negative population was mixed with 1 µl each 

fluorochrome and incubated at 4oC for 15 minutes. After incubation, 1 ml FACS 

buffer was added and the tubes were centrifuged at 500 x g for 4 minutes. FACS 

buffer supernatant was removed and 200 µl fresh FACS buffer were added to 

each tube of beads. The bead samples were run (at least 5,000 events) prior to 

analysing the true samples in order to correct for emission spill over between 

flow cytometry channels.  
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2.7.5 Flow cytometry analysis  

Flow cytometry was performed on either a BD Fortessa (BD Biosciences, CRUK 

Beatson Institute) or on a Cytek Aurora cytometer (LMS/NIHR Imperial 

Biomedical Research Centre Flow Cytometry Facility). For each sample, a 

maximum of 500,000 events were captured and analysed with FlowJo software 

(LLC, 2006-2018). Immune cell populations were analysed either as an absolute 

number of cells per tumour weight (cell number per well and tumour weight 

were all recorded before antibody staining process) or as percentages of the 

wider cell population they belong to. This was further optimised by using 

counting beads during analysis at the flow cytometer (ThermoFischer, 

CountBright Absolute counting beads, C36950); the method used to quantify cell 

populations will be clearly stated in each experiment described, in the 

respective chapter. 

The identification of cell populations via flow cytometry was done with the 

following markers/stains: Zombie Red or Green fixable viability dye which 

penetrates dead cells and helps to exclude them, CD45 marker for all 

lymphocytes (330), CD11b for cells of myeloid lineage (331) and CD19 for B cells 

(332). CD3 marker was used to capture T lymphocytes (333) from the CD19 and 

CD11b double-negative pool. CD8+ cytotoxic and CD4+ helper T lymphocytes were 

selected with their respective markers from the CD3+ pool (334). From the 

CD11b+ pool of cells, the triple negative cells for markers Ly6G, Ly6C and SiglecF 

were captured as a population containing macrophages and dendritic cells. Of 

those, macrophages were selected as F4/80+ and MHCII-, whereas dendritic cells 

were further selected for being positive for MHCII+ and CD11c+ marker (335-337) 

and negative for F4/80. 

2.8 Drug Screening 

Methodology of medium-throughput screening of a panel of novel epigenetic 

probes, provided by the Structural Genomics Consortium, will be described in 

Chapter 3. 
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Marker Fluorochrome Dilution  Clone Company  Code 
                                               Myeloid pool 
CD45 Alexa Fluor 

532 
1 in 100 30-F11 ThermoFisher 58-

0451-82 
Ly6G Alexa Fluor 

700 
1 in 200 1A8 Biolegend 127622 

Ly6C Brilliant Violet 
605 

1 in 100 HK1.4 Biolegend 128036 

MHC II Brilliant Violet 
510 

1 in 200 M5/114.15.2 Biolegend 107636 

CD206 Brilliant Violet 
711 

1 in 100 C068C2 Biolegend 141727 

CD80 APC/Fire750 1 in 100 16-10A1 Biolegend 104740 
CD86 Brilliant Violet 

785 
1 in 100 GL-1 Biolegend 105043 

F4/80 PE 1 in 50 BM8 Biolegend 123110 
CD11b eFluor450 1 in 100 M1/70 ThermoFisher 48-

0112-82 
SiglecF FITC 1 in 50 REA798 Miltenyi 130-

112-178 
CD11c PerCP/Cy5.5 1 in 100 N418 Biolegend 117328 
PD-1 
(CD279) 

Brilliant Violet 
605 

1 in 100 29F.1A12 Biolegend 135220 

Cxcr3 PE/Dazzle 594 1 in 100 Cxcr3 - 173 Biolegend 126534 
                                              Lymphocyte pool 
CD8a Alexa Fluor 

700 
1 in 400 53-6.7 Biolegend 100730 

CD19 PerCP/Cy5.5 1 in 200 6D5 Biolegend 115534 
CD4 FITC 1 in 400 RM4-5 Biolegend 100510 
CD44 PE 1 in 200 IM7 Biolegend 103024 
CD62L Brilliant Violet 

785 
1 in 100 MEL-14 Biolegend 104440 

CD49b 
(DX5) 

PE/Cy7 1 in 100 DX5 Biolegend 108916 

NK1.1  APC 1 in 100 PK136 Biolegend 108710 
Cxcr3 Brilliant Violet 

510 
1 in 100 Cxcr3 - 173 Biolegend 126528 

PD-L1 
(CD274) 

Brilliant Violet 
421 

1 in 100 10F.9G2 Biolegend 124315 

FOXP3 Alexa Fluor 
647 

1 in 50 MF-14 Biolegend 126408 
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Marker Fluorochrome Dilution  Clone Company  Code 
                                     Lymphocyte stimulation pool 
Perforin PE 1 in 50 S16009A Biolegend 154306 
TNFa APC 1 in 50 MP6-XT22 Biolegend 506308 
IFNγ Brilliant Violet 

510 
1 in 50 XMG 1.2 Biolegend 505842 

Granzyme B PE/Cy7 1 in 50 QA16A02 Biolegend 372214 
Viability Dye 
Zombie 
yellow 

Similar to 
BV570 

1 in 300   Biolegend 423104 

Table 2.11: Antibody-fluorochrome flow cytometry panel for Cytek Aurora 
cytometer 

 

2.9 Statistical Analysis  

All statistical analysis was performed by me, unless otherwise stated in the text 

in chapter 5. All data are expressed as the mean, and error bars represent 

standard deviation of the mean (SD). Statistical tests were performed using 

Prism v7.0 (GraphPad, San Diego, CA).  

Data normality was tested with D’Agostino-Pearson, Shapiro-Wilk or Kolmogorov-

Smirnov tests. Differences between two group means were analysed using a 

Student’s t-test or Mann-Whitney test. Wilcoxon test was used for comparison 

between paired non-parametric data. For differences between more than two 

groups, one-way ANOVA was used with Dunnett’s test for multiple comparisons.  

Differences in median survival were calculated using log-rank (Mantel-Cox) test. 

A p value ≤0.05 (*) was considered significant. The level of statistical 

significance is indicated using asterisks (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001).  

Quantification of protein levels as measured with Western blot were analysed 

using the image analysis tool Image J (338). 
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3.1 Introduction and aims 

The intersection between epigenetics and immunity has been investigated for a 

long time, with the main focus being on the roles of DNA methylation and 

histone acetylation (257, 339). Modifiers targeting these mechanisms were the 

first epigenetic drugs to be developed and approved by the US Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA) for use in 

patients with cancer. DNA methyltransferase (DNMT) inhibitors, such as 

azacytidine and decitabine are cytidine analogues that, when given at low 

doses, are incorporated into DNA where they block the catalytic function of 

DNMTs (340, 341). This leads to the gradual degradation of DNMTs and 

eventually widespread DNA hypomethylation, which has been extensively studied 

in patients with haematological malignancies (342, 343). DNA hypomethylation 

also plays a role on immune pathways by de-repressing immune-stimulatory 

genes, such as tumour-associated antigens (264, 344-346), genes involved in the 

interferon pathway (312, 313, 347) and more specifically, chemokines (282, 

284).  On the other hand, inhibitors of histone deacetylation (HDACi) lead to the 

accumulation of hyperacetylated histones and therefore alter the chromatin 

state into a conformation that is more accessible to transcription (348-351). 

Targeting histone acetylation in cancer cells allows for the de-repression of 

genes involved in immune response with mechanisms that may be overlapping 

with DNMTs (352). Treatment with HDACs stimulates translation of antigens in 

melanoma (353), expression of MICA and MICB in hepatocellular carcinoma (354) 

and trigger chemokine production and immune-mediated tumour regression in 

several tumour models (283, 355).  

I hypothesized that other epigenetic modifications, aside from DNA methylation 

and histone acetylation, could be involved in regulation of immunity, either 

separately or in combination with each other, in ovarian cancer. I wished to 

examine if immunogenicity could be augmented via alternative epigenetic 

mechanisms in a murine ovarian cancer model that represents a disease, 

characteristically resistant to immunotherapy. To this end, I utilised a library of 

epigenetic probes designed and provided by the Structural Genomics Consortium 

(356) that consisted of probes against histone methyltransferases and 

demethylases, bromodomains, histone acetylases and deacetylases, oxoglutarate 

oxygenase, methyl-lysine binders and arginine deiminases (Table 3.1).  
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I chose levels of the chemokine CXCL10 as the read out following treatment of 

tumour cells with the SGC library, primarily because of the previously described 

associations between the intra-tumoural presence of CXCL10 and the 

development of an immunoreactive tumour microenvironment (68), and 

improved prognosis in patients with ovarian cancer (188). CXCL10, as part of the 

CXCL9/CXCL10/CXCL11 and CXCR3 axis, is involved in immune cell migration, 

differentiation and activation (357-359) and has been found to have anti-tumour 

effects both via immunostimulatory and angiostatic pathways (360). When 

CXCL10 was overexpressed in the syngeneic ovarian cancer ID8 model (Trp53 

proficient clones), tumour regression was observed with evidence of reduced 

tumour vasculature via IHC and a concomitant increase in the intra-tumoural 

expression of immunostimulatory genes (198). CXCR3 receptor presence has 

been found to be critical in the ability of cytotoxic lymphocytes to achieve 

tumour infiltration (361). Specifically human NK cells that are expanded ex vivo 

express higher levels of CXCR3 receptor and consequently demonstrate an 

enhanced ability to migrate towards CXCL10-producing melanoma tumours (166). 

Importantly, Chow et al showed that in melanoma models, the presence of 

CXCR3 system is imperative for tumour response to PD-1 blockade and without 

it, a functional CD8+ T cell response cannot be elicited (362). For all the above 

reasons, as well as the fact that CXCL10 emerged as a technically easy to detect 

marker in my assays, I decided to use it as the readout of my medium 

throughput drug screening. 
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Probe Name Family Target 
LAQ824 HDAC - class I, IIa, IIb HDAC 1/p21 promoter activation 
UNC0638 Methyltransferase G9a, GLP 
A-366 Methyltransferase G9a (EHMT2), GLP 
PFI-4 Bromodomains BRPF1B 
SGC0946 Methyltransferase DOTL-1 
UNC0642 Methyltransferase G9a, GLP 
GSK343 Methyltransferase EZH2 
GSK2801 Bromodomains BAZ2A/2B 
IOX2 Oxyglutarate oxygenase PHD2 
NI-57 Bromodomains BRPF1, BRPF2, BRPF3 
LLY507 Methyltransferase SMYD2 
GSK484 Arginine deiminase PAD-4 
PFI-3 Bromodomains SMARCA, PB1 
UNC1215 Methyl-lysine binder L3MBTL3 
I-CBP112 Bromodomains CREBBP, EP300 
BAZ2-ICR Bromodomains BAZ2A, BAZ2B 
SGC 707 Methyltransferase PRMT3 
MS049 Methyltransferase PRMT4,6 
NVS-1 Bromodomains CECR2 
KDOAM25 Demethylase KDM5 
GSK591 Methyltransferase PRMT5 
BAY-598 (S-4) Methyltransferase SMYD2 
OICR9429 Methyltransferase WDR5 
A196 Methyltransferase SUV420 H1/H2 
MS023 Methyltransferase Type I PRMTs 
IOX1 Oxyglutarate oxygenase pan-2-OG 
OF-1 Bromodomains BRPF1, BRPF2, BRPF3 
IBRD9 Bromodomains BRD9 
LP99 Bromodomains BRD9/BRD7 
SGC-CBP30 Bromodomains CREBBP, EP300 
PFI-2 Methyltransferase SETD7 
BI-9564 Bromodomains BRD9/BRD7 
GSK-LSD1 Demethylase LSD-1 
C646 HAT p300/CBP 
Bromosporine Bromodomains Pan-Bromodomain 
PFI-1 Bromodomains BRD2, BRD3, BRD4, BRDT (BET) 
(+) JQ1 Bromodomains BET (BRD2-4 and BRDT) 
GSK-J4 Histone Demethylase JMJD3/UTX 
CI-994 Histone deacetylase HDAC - class I 
UNC1999 Methyltransferase EZH2 

Table 3.1: SGC library probes list; as available in May 2017 

 

 



Chapter 3 Results 

 

 107 

3.2 SGC library screening optimisation  

3.2.1 Decitabine as a positive control 

Prior to carrying out the SGC library screening, I used decitabine to confirm that 

the upregulation of IFNγ-inducible chemokine CXCL10 observed by other 

researchers in other cell lines/systems (282, 284) can also be seen in our Trp53-/-

ID8 mouse line. If so, decitabine could be used as a positive control for the SGC 

library screening. 

Decitabine (5-Aza-2’-deoxycytidine, Sigma A3656) was stored in aliquots of 10 

mM in DMSO in -20oC to -80oC. Initial experiments focused on identifying the 

right dose and duration of treatment, in order to find the optimal conditions of 

confidently detecting CXCL10 protein. 

The optimal dose and duration of decitabine treatment was tested initially in a 

6-well plate setting (figure 3.1). Although there was a clear effect on also 

upregulating Cxcl9, one of the other chemokines acting on CXCR3 axis, its 

detection via ELISA  was not possible. Doses between 200 nM–500 nM for 72 hours 

were considered favourable, whereas higher doses were cytotoxic. In order to 

confirm that the increase of CXCL10 was a consequence of demethylation and 

not a stress response, I performed cell cycle analysis to confirm that cells were 

still undergoing division whilst being treated under these conditions with 

decitabine. Figure 3.2(a) shows the gating strategy on untreated cells after 72 

hours of cell culture.  
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Figure 3.1: Cxcl10 transcript and protein levels following decitabine treatment.    
ID8 Trp53-/- cells (105 cells/well) were seeded in 6 well plates and treated with 
variable doses of decitabine as depicted on the graphs and then Cxcl10 and Cxcl9 mRNA 
was measured using RT-qPCR. CXCL10 protein level was measured by ELISA in 3.1c. (For 
some points, the error bars are shorter than the height of the symbol. In these cases, 
Prism simply does not draw the error bars). 

 

BrdU, an analog of the DNA precursor thymidine, is incorporated into newly 

synthesised DNA and can be used to quantify cells in S phase. All concentrations 

of decitabine caused a significant reduction in S phase, with a concomitant 

increase in cells in G2/M phase (Figure 3.2 b). In addition, as seen in figure 3.3 

decitabine induced morphological change (cells have higher signal in both 

forward and side scatter). Nonetheless, I concluded that 200 nM decitabine 

allowed sufficient cell division to be used in subsequent experiments as positive 

control. 
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Figure 3.2: Cell cycle BrdU assay. (a) Gating strategy for cell cycle analysis of 
untreated ID8 Trp53-/- cells. 105 cells/well were in culture for 72 hours and then stained 
with 10 µM of BrdU and 10 µl of 7-AAD; (b) percentages of ID8 Trp53-/- cell populations 
in each cycle, after 72-hour treatment with variable doses of decitabine, as show on the 
graph. Cells were plated in technical replicates of four (n=4). One-way ANOVA with 
Kruskal-Wallis test and multiple comparisons for S phase was performed and shown 
here. Bars represent median and error bars represent standard deviation. 
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Figure 3.3: Cell cycle analysis following decitabine treatment. Representative plots 
of cell cycle analysis in cultured ID8 cells treated with decitabine for 72 hours at (a) 100 
nM (b) 200 nM and (c) 500 nM dose. The flow graphs shown here are the ones closest to 
the median percentage of each population; performed in replicates of three.  

 

Figure 3.4: Western blot for DNMT1 protein following decitabine. ID8 Trp53-/- cells 
were treated with variable doses of decitabine and protein was extracted after 72 
hours. DNMT1 protein was blotted and quantified by Image J software. Results of 1 
sample (n=1) shown here. 
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200 nM decitabine resulted in the passive degradation of DNMT-1 (figure 3.4) as 

well as whole-genome hypomethylation (figure 3.5) as confirmed by the 

reduction of methyl-cytosine/cytosine ratio, measured by LCMS. Although 

treatment with decitabine resulted in DNA hypomethylation earlier than 72 

hours, I concluded that 72h treatment duration would be an appropriate 

timepoint for the SGC library screening given the paucity of prior data on the 

SGC compounds. 

I then optimised cell density for conducting the SGC library screening in 384-well 

plates. Adequate detection of CXCL10 protein by ELISA was the aim of this 

optimisation. Cells were plated in 50 µl at densities 250 - 4,000 cells/well of a 

384-well black polypropylene (flat-bottom) plate on day -1. On day 0, decitabine 

was added at a concentration of 200 nM and supernatant was harvested on day 3 

for immediate analysis by ELISA. Results from this ELISA (figure 3.6) suggested 

that 2 x 103 cells/well was a suitable concentration for subsequent experiments. 

 

Figure 3.5: Liquid chromatography mass spectrometry following decitabine 
treatment. Methylcytosine/cytosine ratio after treatment with variable doses of 
decitabine for (a) 24 hours, (b) 48 hours and (c) 72 hours, as measured by LCMS. Each 
bar represents median of 5 biological replicates (n=5) and mean differences have been 
compared with one-way ANOVA and Dunnett’s multiple comparison test. Error bars 
represent standard deviation. 
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3.2.2 Optimisation of SGC library drugs doses  

Trp53-/- ID8 cells were seeded at a density of 2x103 cells per well in 384-well 

plates using an XRD-384 automated reagent dispenser (FluidX112 Ltd), at a 

volume of 47.5 µl per well, on day -1. The SGC library drugs were already 

aliquoted in barcoded master plates at 10 mM in DMSO (maintained and handled 

by the Screening Facility scientist, Lynn McGarry). 

 

 

Figure 3.6: CXCL10 ELISA following decitabine treatment. Optimisation of cell density 
for 384-well drug screening via CXCL10 detection. Variable cell densities were seeded 
on day 0 and treated with 200 υM of decitabine, or control, on day 1. ELISA was 
performed on cell supernatant on day 3. Bars represent triplicates; error bars represent 
standard errors; medians of control vs decitabine per condition were compared using 
Mann-Whitney test, assuming data is not normally distributed. 
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On day 0, the drugs were diluted 1:50 into ID8 medium (see 2.1.1) in 

intermediate plates, to a concentration of 200 µM, using the JANUS G3 MDT 

automated workstation (Perkin Elmer). They were then added at a 2.5 µl volume 

onto two 384-well plates containing the cells, as per the format on figure 3.7, 

again using the JANUS workstation. On figure 3.8, the exact concentration 

gradient of drug per well is depicted in a 96-well format. The outer wells were 

not used to avoid edge effects. 

After 72-hour incubation, plates were fixed and stained with 4′,6-diamidino-2-

phenylindole (DAPI, ThermoFisher D1306). Using the XRD-384 automated reagent 

dispenser and Matrix WellMate disposable tubing cartridges (ThermoFischer, 201-

3001), 50 µl 8% formaldehyde were added to the 50 µl medium per well. Plates 

were then incubated for 20 minutes at 20oC. Formaldehyde was then safely 

decanted, and the wells were washed with 100 µl PBS. 

After decanting the PBS, 80 µl DAPI/Tx-100 (DAPI 0.25 µg/ml and Tx-100 0.1%) 

were added per well and the plates were allowed to rest in the dark for 1 hour 

at 20oC. After incubation, plates were transferred and read at 10x magnification 

in an Operetta high-content imaging system (Perkin Elmer) where nuclei were 

counted. The results were expressed as percentage loss of viability, relative to 

the DMSO wells. They are represented in figures 3.9 – 3.12. Imaging of one of the 

replicates of the two 384-well plates is shown in figures 3.13 and 3.14. 

Given that my aim was to identify a non-cytotoxic dose that would induce an 

epigenetic effect on viable and actively dividing cells, I decided that 1 µM was 

an appropriate starting dose for CXCL10 screening, for most of the SGC probes. 

For GSK-J4 and LAQ-824 that were evidently more cytotoxic than the other 

probes, I chose 0.5 µM and 0.1 µM, respectively, and the dose for my positive 

control, decitabine, remained as 0.2 µM.  
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Figure 3.7: SGC drug library screening layout. Format of the 384-well plates 
containing cells treated with the SGC library at concentrations 20 nM - 10 µM, as per 
format in figure 3.8. 2x103 ID8 Trp53-/- cells were plated on day 0 and treated with the 
SGC library or decitabine on day 1 (Dac = decitabine). Each plate was tested in 
triplicate.  
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Figure 3.8: SGC drug library concentrations gradient layout. Format of the 384-well 
plates containing cells treated with the SGC library at concentrations 20 nM - 10 µM, as 
per layout in figure 3.7. 2x103 ID8 Trp53-/- cells were plated on day 0 and treated with 
the SGC library or decitabine on day 1 (Dac = decitabine). Each plate was tested in 
triplicate. Staurosporine was included in the library as a positive control for cell death. 
Note that Olaparib is not an epigenetic probe but it was also included in the SGC library 
and therefore tested. 
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Figure 3.9: Drug-response curves, drugs 1-12. 2x103 ID8 Trp53-/- cells were plated on 
day 0 and treated with the SGC library on day 1, at concentrations 20 nM - 10 µM. Loss 
of viability is shown here, as measured by DAPI stained nuclei in treated wells relative 
to DMSO controls (n=3). 
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Figure 3.10: Drug-response curves, drugs 13-24. 2x103 ID8 Trp53-/- cells were plated 
on day 0 and treated with the SGC library on day 1, at concentrations 20 nM - 10 µM. 
Loss of viability is shown here, as measured by DAPI stained nuclei in treated wells 
relative to DMSO controls (n=3). 
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Figure 3.11: Drug response curves 25-36. 2x103 ID8 Trp53-/- cells were plated on day 
0 and treated with the SGC library on day 1, at concentrations 20 nM - 10 µM. Loss of 
viability is shown here, as measured by DAPI stained nuclei in treated wells relative to 
DMSO controls (n=3). 
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Figure 3.12: Drug-response curves, drugs 36-43. 2x103 ID8 Trp53-/- cells were plated 
on day 0 and treated with the SGC library on day 1, at concentrations 20 nM - 10 µM. 
Loss of viability is show here, as measured by DAPI stained nuclei in treated wells 
relative to DMSO controls (n=3). 
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Figure 3.13: Imaging of plate (a) from figure 3.7 using the high-content imaging system, 
Operetta. 2x103 ID8 Trp53-/- cells were plated on day 0 and treated with the SGC library on 
day 1, at concentrations 20 nM - 10 µM. After 72 hours of treatment, nuclei were stained 
with DAPI (only one replicate shown here). Plates were then visualised in a high-
throughput microscope.  

Figure 3.14: Imaging of plate (b) from figure 3.7 using the high-content imaging 
system, Operetta. 2x103 ID8 Trp53-/- cells were plated on day 0 and treated with the SGC 
library on day 1, at concentrations 20 nM - 10 µM. After 72 hours of treatment, nuclei were 
stained with DAPI (only one replicate shown here). Plates were then visualised in a high-
throughput microscope.  
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CXCL10 ELISA screening was then performed. In the first screen, there was no 

positive signal for any of the probes other than HDAC inhibitor LAQ824 (figure 

3.15a and 3.15b). This was not surprising as the effect of histone deacetylation 

on immunostimulatory pathways has been extensively described by others (231, 

347, 363-365). Subsequently, I decided to screen the epigenetic probes in the 

presence of IFNγ as CXCL10 is an IFNγ target gene (366). I initially optimised 

IFNγ dose and schedule (figure 3.16). Pilot experiments indicated that CXCL10 

production was greater when 1000 pg/ml IFNγ was added at the same time as 

decitabine (figure 3.16b), rather than 24h earlier (figure 3.16a). Thus, in all 

subsequent experiments, IFNγ was added with the test drug.  
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Figure 3.15: CXCL10 ELISA drug library screening. SGC library screening for 
CXCL10 by ELISA, tested in triplicates. 2x103 ID8 Trp53-/- cells were plated on day 
0 and treated with the SGC library on day 1. All drugs were tested at dose 1 µM, 
apart from decitabine 0.2 µM, LAQ824 0.1 µM and GSK-J4 0.2 µM.  (a) daily drug-
containing medium change and (b) daily drug addition in pre-existing medium. 
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Figure 3.16: Optimisation of CXCL10 ELISA following IFNγ stimulation. (a) IFNγ on 
variable doses (as per graph) added the day before decitabine treatment (0.2 µM) or (b) 
the same day as decitabine. Experiment performed in 384-well setting. Every bar 
represents the median of triplicates and errors represent standard deviation; one-way 
ANOVA with Kruskal Wallis performed to compare conditions of interest in (b). 
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3.3 SGC library screening 

Upon repeating the drug screening with IFNγ stimulation, I observed that some 

probes potentially had a synergistic effect with IFNγ (figure 3.17a). Comparing 

mean CXCL10 following treatment with the SGC library probes to the mean of 

IFNγ stimulation alone by one-way ANOVA did not reveal a statistically 

significant increase in CXCL10. However, some probes appeared to produce a 

stronger effect when compared to IFNγ alone. As a next step, I retested ten 

probes at two concentrations (figure 3.17b and figure 3.17c).  

The greatest increase was observed with 10 µM of UNC0642, an inhibitor of G9a 

(EHMT2) and G9a-like protein (GLP, otherwise known as EHMT1) histone 

methyltransferases (367). G9a and GLP are SET-domain-containing proteins that 

form heteromeric complexes and mediate methylation of lysine 9 and lysine 27 

on histone 3 (H3K9/H3K27), and thereby regulate gene transcription (368-374). 

Methylation of H3K9 and H3K27 are thought to represent marks of repressed 

chromatin and gene silencing (372). G9a is enzymatically more stable in a 

G9a/GLP complex, when compared to being expressed alone, and G9a/GLP 

heterodimer (henceforth referred to as G9a) is vital for multiple cellular 

processes (370). BIX-01294 was the first described G9a methyltransferase 

inhibitor (375). Since then, several other G9a inhibitors have been described, 

including A-366, UNC0638 and UNC0642, all of which were included in the SGC 

library (376-378). UNC0638 has weak in vivo properties (367, 379) and A-366, 

although it resulted in a modest increase in CXCL10 in the initial screening, was 

not selected for the smaller 10-drug screening. However, at  
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Figure 3.17: CXCL10 ELISA drug library screening with IFNγ stimulation (a) Screening 
of 38 epigenetics drugs at a single dose of 1 µM (apart from decitabine 0.2 µM, LAQ824 
0.1 µM and GSK-J4 0.2 µM). (b) and (c) show repeat screening of 10 selected drugs at 
doses 1 µM and 10 µM, with decitabine (b) and LAQ824 (c) as positive controls, 
respectively. (b) and (c) represent separate experiments. One-way ANOVA with 
Dunnett’s multiple comparison test was used to compare all means to the mean of IFNγ 
stimulation alone; non-significant results by ANOVA are not shown. 
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the time when these experiments were conducted, UNC0642 was more widely 

described in the literature (380, 381) and I, therefore, decided to investigate 

G9a inhibition further with UNC0642. 

 

 

3.4 Screening validation and combination treatment with 

G9a/EZH2 inhibition 

To validate the screening findings and establish the UNC0642 dose in vitro, I 

measured Cxcl10 mRNA following UNC0642 treatment, which confirmed the 

transcriptional upregulation (figure 3.18a) alongside the protein increase seen 

during screening.  

G9a, as critical mediator of both H3K9 and H3K27 methylation (369, 374), also  

cooperates closely with Enhancer of zeste homolog 2 (EZH2) (382). EZH2 is a 

major catalytic component of the epigenetic machinery Polycomb Repressive 

Complex 2 (PRC2), and is vital in mediating methylation of H3K27 (383-385). 

H3K9 and H3K27 colocalise on the genome (386-389). In addition, Mozzetta et al 

showed that there is functional interdependence between the PRC2 machinery 

and H3K9 methyltransferases, with EZH2 recruitment and activity relying heavily 

on the presence of G9a. The exact mechanism of G9a – EZH2 interaction is still 

largely unknown, but interestingly, Coward et al have showed that in idiopathic 

pulmonary fibrosis, knocking down G9a significantly reduces EZH2 and its 

respective methylation mark on H3K27 on the CXCL10 promoter region, and 

conversely, knocking down EZH2 reduces G9a’s methylation mark on H3K9 on the 

CXCL10 promoter (390).  

The above observations led me to investigate the effect of combining G9a and 

EZH2 inhibition on our tumour model. To this end, I used the EZH2 inhibitor 

UNC1999 (provided to me by the Adams lab, Sigma-Aldrich, SML0778) alone and 
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in combination with UNC0642. In addition, I tested the novel dual G9a/EZH2 

inhibitor, HKMTI-1-005, which was designed and validated at Imperial College by 

the Fuchter lab (Department of Chemistry, Imperial College London) and a 

previous PhD student in the Robert Brown group, Dr Ian Green (391, 392). On the 

grounds that both enzymes contain a SET domain and that the histone binding 

pockets of histone methyltransferases are chemically very similar, the Fuchter 

lab created a compound library of BIX-01294 derivatives that was thereafter 

screened for simultaneous EZH2 target inhibition. Overall, HKMTI-1-005 was 

found to have the most favourable characteristics out of all hits and was 

selected as the hit compound. HKMTI-1-005 was kindly provided to me by the 

Fuchter lab for all the experiments described in this thesis. This compound is 

protected under the patent WO/2013/140148 (393). 

RT-qPCR and ELISAs confirmed that the combination of UNC0642 and UNC1999 

has an additive effect on both the Cxcl10 transcript and protein levels (figure 

3.18b and 3.18d) and that the dual inhibitor, HKMTI-1-005, follows the same 

pattern (figure 3.18c and 3.18e). Moreover, Western blot analysis showed that 

the inhibitors downregulated their primary targets, H3K9me2 for UNC0642, 

H3K27me3 for UNC1999 and both H3K9me2 and H3K27me3 for the dual inhibitor, 

HKMTI-1-005. These HKMTI-1-005 results are in keeping with previous results 

published by Curry et al (381). 
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Figure 3.18: Cxcl10 RT-qPCR and ELISA. (a) Cxcl10 mRNA with variable doses of 
UNC0642, (b) synergistic effect of combining UNC0642 (5 µM) with UNC1999 (2 µM) on 
Cxcl10 mRNA and (c) Cxcl10 mRNA following treatment with the dual G9a/EZH2 
inhibitor, HKMTI-1-005 (d) CXCL10 protein level following combination treatment with 
UNC0642 and UNC1999 and (e) CXCL10 protein level following treatment with the dual 
G9a/EZH2 inhibitor, HKMTI-1-005. Mean comparisons were performed using one-way 
ANOVA and Dunnett’s multiple comparisons test. UNC0642= G9a inhibitor, 
UNC1999=EZH2 inhibitor. 
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Figure 3.19: Western blot analysis following inhibition of G9a, EZH2 and 
combination G9a/EZH2. Western blot analysis for H3K9 methylation marks with 
UNC0642 (a) and HKMTI-1-005 (c) and H3K27me trimethylation for UNC1999 (b) and 
HKMTI-1-005 (d). Histone H3 was used as a loading control. Protein electrophoresis was 
performed for each methylation mark and its respective loading control on separate 
gels, given that both the size of H3 and the size of the methylated mark were both 
approximately 17kDa. 
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In order to elucidate the effect of G9a inhibition as well as the combined 

G9a/EZH2 inhibition on the overall chemokine gene expression, I also performed 

an 84-gene chemokine/cytokine RT-PCR array panel comparing IFNγ stimulated 

cells with cells that had additionally been treated with either UNC0642 or 

HKMTI-1-005 (figure 3.20). List of genes tested, as well as the quality control of 

this analysis, can be found in Appendix 1.0.  

The array results confirmed that dual G9a/EZH2 inhibition has a more potent 

effect on chemokine expression than G9a inhibition alone. Cxcl10, Cxcl9 and 

Ccl5 genes were statistically significantly upregulated amongst others (figure 

3.20c and Appendix 4.0). CCL5, previously known as RANTES, is involved in both 

innate and adaptive immunity and leucocyte trafficking, as well as positively 

regulating the interactions between T cells and dendritic cells (394-396). In 

cancer, CCL5 has been associated with favourable response to immunotherapy in 

melanoma (397, 398), longer survival in lung adenocarcinoma (399) and the 

presence of cytotoxic T lymphocytes in ovarian cancer (192). CXCL9 and CXCL10, 

as discussed before, have a well-described anti-tumour immunostimulatory role 

with CXCL9 having been associated with improved outcomes in ovarian cancer 

(68, 149, 188, 400) 

Neither treatment with G9a inhibitor nor HKMTI-1-005 upregulates Il-1 or Il-18, 

chemokine genes that have been extensively associated with cell death (401, 

402). HKMTI-1-005 results in a non-statistically significant log2fold change of -

1.2 for Il-1a and -0.7 for Il-1b, respectively; the log2fold change for Il-18 was -

5.6 (p<0.05). Similarly, UNC0642 led to the reduction of both Il-1a (log2fold 

change of -2.05) and Il-1b (log2fold change -0.7), although both of these were 

statistically non-significant. As with HKMTI-1-005, Il-18 transcription was 

downregulated (log2fold change -2.1, p<0.05) with UNC0642 treatment. Both 

these cytokines are instrumental in stimulating a potent immune response 

following sterile cell death with the production of pro-inflammatory chemokines 

that can recruit phagocytes (403, 404).  
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Figure 3.20: Chemokine/cytokine array following G9a or G9a/EZH2 inhibition. ID8 
Trp53-/- cells were treated for 48 hours with control or 1 ng/ml IFNγ, or 1 ng/ml IFNγ 
plus 5 µM UNC0642 or 1 ng/ml IFNγ plus 6 µM of HKMTI-1-005. The experiment was 
performed in triplicates and each replicate was tested on a different plate. Details on 
analysis in methods 2.4.4 and Appendix 1.0.  
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3.5 Validation on human samples and established human cell 

lines 

I sought to investigate if the effect of dual-blockade of G9a/EZH2 (with HKMTI-1-

005) on murine cells is also observed on human cells. I used epithelial cells 

derived from 5 patients with ovarian high-grade serous carcinomas as well as the 

3 established ovarian cancer cell lines, OVCAR3, OVCAR4 and Kuramochi.  

Patient samples were derived and processed as described in method 2.1.1. In 

work done previously in the McNeish lab, this methodology yields cells with 

mutant TP53 in almost 100% of the cases (6/7 patients previously tested had 

mutant TP53; sequencing was not possible in the negative patient due to 

insufficient DNA). The genomic characterisation of the current seven patients 

presented here is still on-going at the time of writing this thesis (sequencing 

data awaited). Basic clinical characteristics of the patients can be found in 

Appendix 19.0. 

In the primary patient samples, G9a/EZH2 inhibition overall augmented the 

transcription of Cxcl9 (p=0.01), Cxcl11 (p=0.01) and Ccl5 (p=0.03) with a lesser 

effect on Cxcl10 (p=0.15) and Ccl20 (p=0.10) (figures 3.21a/b/c/d/e). All 3 

established human cell lines showed a statistically significant increase in Cxcl10 

transcription with Kuramochi possibly being the most responsive (figure 3.21f). 
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Figure 3.21: Chemokine gene expression on human samples.                                  
(a) – (e) Chemokine gene expression on human ascites derived cultures. Each dot 
represents one patient, groups were compared using the Wilcoxon matched-pair test as 
data was paired and non-parametric. Graph (f) demonstrates Cxcl10 transcription 
changes in OVCAR3, OVCAR4 and Kuramochi human cell lines; comparisons were made 
using Mann-Whitney test. Each bar represents n=3 and error bars represent standard 
deviation.   
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3.6 Discussion 

The experiments described in this chapter show that inhibition of G9a, the 

histone methyltransferase that primarily mediates methylation of H3K9, induces 

the upregulation of CXCL10 in a Trp53-/- deficient ID8 cell line, at both mRNA 

and at protein level. This was discovered through screening a library of novel 

epigenetic probes, curated by the Structural Genomics Consortium (SGC) and it 

was a novel observation, in the context of cancer, at the time of writing this 

thesis. For this to be possible, the assay required lengthy optimisation; 

decitabine was used as a positive control, at a dose and duration that was 

thought to be only weakly cytotoxic. Cell number seeding was optimised for 

adequate CXCL10 detection and treatment dose was also titrated to avoid cell 

death. Finally, the dose and timing of IFNγ stimulation required optimisation. 

The result that G9a modifies Cxcl10 transcription adds to prior knowledge that 

chemokine regulation is under the epigenetic control of DNA methylation and 

histone deacetylation.  

The effect was observed using a dose of UNC0642 that was not cytotoxic (figure 

3.12), which would support the hypothesis that tumour cells are releasing 

CXCL10, not as a result of cell stress and death, but secondary to a direct or 

indirect drug effect on gene transcription.  

EZH2, the histone methyltransferase that orchestrates PRC2-mediated 

trimethylation of H3K27, is known to be involved in regulating gene expression 

of immune cells with critical effects on differentiation of T lymphocytes and 

Natural Killer (NK) cells (276, 285, 293, 405) as well as the activation of 

macrophages (298, 300). More recently, the co-dependence of EZH2 and G9a was 

delineated by Mozzetta et al (382) and this has led to efforts of discovering 

pharmacological inhibitors that target both enzymes simultaneously, with 

HKMTI-1-005 being the first one described (381). Following the SGC library 

screening, I used individual G9a or EZH2 inhibitors, as well as their combination 



Chapter 3 Results 

 

 135 

and observed an additive effect on CXCL10 upregulation, which was also 

confirmed with treatment with HKMTI-1-005.  

As previously mentioned, HKMTI-1-005 was developed at Imperial College 

London, following a BIX-01294 derivative library screening, by the Fuchter 

group. The library was initially tested via RT-qPCR, for the re-expression of 

genes known to be silenced in an EZH2-dependent manner, such as KRT17 and 

FBXO32 (406) and the hits HKMTI-1-005, HKTMI-1-011 and HKMTI-1-022 emerged. 

Following on from this, HKMTI-1-005 was found to inhibit the transfer of a 

tritium-labelled methyl group from S-adenosyl methionine (SAM) to a 

biotinylated H3 [1-25] peptide (normally mediated by G9a) at a much lower dose 

than the other hits (391). An enzymatic assay investigating the ability of HKMTI-

1-005 to inhibit EZH2 function by testing for the transfer of methyl group from 

SAM to biotinylated H3 [21-44] confirmed that HKMTI-1-005 abrogates EZH2 

activity too (392). 

To consolidate our knowledge on the effect of HKMTI-1-005 on chemokines, 

treatment of Trp53-/- deficient ID8 cells showed an additive effect on Cxcl10, 

Cxcl9 and Ccl5 transcripts, in an 84-chemokine array. These are known to be 

potent attractant of lymphocytes, NK cells and dendritic cells and to have been 

associated with anti-tumour immune response and favourable patient survival. 

Results from this array confirmed that treatment with either UNC0642 or HMKTI-

1-005 does not elicit the release of cell-death associated chemokines. Damaged 

cells release danger-associated molecular patterns (DAMPs) and these DAMPs in 

combination with caspase-1 and other proteins can form into multiprotein 

complexes that are referred to as inflammasomes. This, in turn, results in the 

activation of caspase-1 and subsequent cleavage of the prodrome forms of IL-1 

and IL-18 into their active forms (407). IL-1-dependent signalling triggers the up-

regulation of secondary inflammatory cytokines such as G-CSF, TNFα and IL-6 in 

order to facilitate the removal of damaged cells and perpetuate the 

inflammatory response (402-404, 407, 408). Therefore, the lack of Il-1 and Il-18 

increase would support that the upregulation of Ccl5, Cxcl9 and Cxcl10, is 
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unlikely to be a sequela of cell stress and death, but rather an effect on the 

production of specifically these, important for lymphocyte trafficking, 

chemokines.  

Moreover, treatment of human cell lines and human samples with the dual 

inhibitor revealed a similar trend. The immortalised cell lines were chosen after 

review and consideration of the literature on the molecular subclassification of 

epithelial ovarian cancer. Ovarian HGSC is characterised by gene copy number 

variations and almost universal TP53 mutations (66, 68, 72). Work on established 

human lines has showed that a great discordance exists between lines regularly 

used in literature as ovarian HGSC models and the molecular characteristics of 

the actual human disease, as defined in human tumour samples. Based on work 

from Beaufort et al and Domcke et al on collating morphological and genetic 

characteristics of widely used lines for in vitro work, I decided to test OVCAR3, 

Kuramochi and OVCAR4 cell lines. All these lines harbour TP53 mutations and 

moreover their copy number alterations profile correlates best with that of 

human tumours (409, 410). Additionally, the Kuramochi cell line has a BRCA2 

mutation and amplification of MYC and KRAS; whereas the OVCAR3 cell line has 

amplified CCNE1 and C11orf30 genes. 

All the above justified investigating the dual inhibitor in vivo, in order to 

elucidate if the upregulation of chemokines has the potential to stimulate an 

immune response in immunocompetent mice bearing ID8 tumours. 
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4.1 Introduction and aims 

 

Following the experiments described in chapter 3, I sought to investigate 

whether combined inhibition of G9a and EZH2 methyltransferases is a viable 

therapeutic target in an ovarian cancer model, compared to G9a inhibition 

alone. A further hypothesis was that G9a/EZH2 blockade could alter the tumour 

microenvironment and that could contribute to its anti-tumour effect. 

The role of G9a histone methyltransferase has been investigated in various 

cancer types and contexts. In ovarian cancer, G9a is highly expressed in 

metastatic lesions when compared to the primary tumour and patients’ 

prognosis is worse when their tumours overexpress G9a (411). In the same study, 

it was observed that G9a regulates genes related to the migrating potential of 

ovarian cancer cells and when G9a was depleted, cells were less able to resist 

anoikis or achieve anchorage-independent growth (411). Moreover, a global 

increase of H3K9me2 and G9a was observed in ovarian cancer patient-derived 

tumour cells and immortalised human lines that had developed resistance to 

treatment with PARP inhibitors; conversely, pharmacological or genetic 

disruption of G9a restored sensitivity to PARP inhibition via altering the way that 

G9a-mediated gene regulation aids cancer cells restore DNA damage (412). 

Furthermore, G9a has been implicated in promoting resistance to gemcitabine in 

the pancreatic cancer cell line PANC-1, as evidenced by reversal of resistance 

when G9a is inhibited and, as with ovarian cancer, G9a overexpression is 

associated with poorer outcomes for patients with pancreatic cancer (413). In 

hepatocellular carcinoma (HCC), G9a has been found to silence tumour-

suppressor genes such as RARES3 and therefore promote HCC development and 

metastasis (414). Another observation in HCC suggests that G9a is involved in 

epithelial-mesenchymal transition via mediating methylation of H3K9 at the 

promoter of E-cadherin (415). An association of G9a with tumorigenesis, tumour 

aggressiveness and poor patient survival have not only been observed in ovarian, 

pancreatic cancer and HCC (414-416), but also in colorectal cancer (417), gastric 

cancer (418), hepatobiliary tract cancers (419), bladder cancer (420) and breast 
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cancer (421, 422). G9a is thus involved in a variety of cellular processes (379). 

Based on my observation that pharmacological inhibition of G9a results in 

upregulation of a chemokine paramount to the immune response, I next wished 

to investigate G9a inhibition in vivo. 

The oncogenic role of EZH2 histone methyltransferase is more widely recognised  

than that of G9a methyltransferase, with a great amount of work focusing 

specifically on epithelial ovarian cancer (240). EZH2 and its partner SUZ12 are 

overexpressed in epithelial ovarian cancer when compared to healthy ovarian or 

fallopian tube epithelium and they promote tumour proliferation (423) This 

denotes an important role of the PRC2 complex in the development and 

maintenance of disease (240). Asides from the role in mediating chemokine 

expression and therefore regulating Th1 immunity against tumours in an ovarian 

cancer mouse model that I have already described (282), EZH2 directs 

expression of transforming growth factor-β1 ( TGF-β1) and E-cadherin, thereby 

controlling cancer cell migration and invasion (424). Moreover, Rizzo et al 

observed that EZH2 depletion with siRNA knockdown leads to loss of ovarian 

cancer stem cells and reduces anchorage-independent growth resulting in 

tumour regression (425). Asides from migration and phenotypic changes, EZH2 is 

implicated in ovarian cancer angiogenesis pathways; vascular-endothelial growth 

factor (VEGF) directly stimulates expression of EZH2, which in turns mediates 

gene silencing of the antiangiogenic factor vasohibin 1 (vash1). EZH2 silencing in 

ovarian cancer-associated endothelial cells reactivates vash1 and results in 

tumour regression (426).  

Increased levels of EZH2 that correlate with tumour progression and 

aggressiveness have also been observed in melanoma, breast, prostate and 

endometrial cancers (427-429). In BRCA1 related triple-negative breast cancers 

with either BRCA1 mutations, BRCA1 promoter methylation or BRCA1-like copy 

number profile, EZH2 is overexpressed and this increase correlates with 

sensitivity to chemotherapy, potentially identifying a therapeutic pathway that 

can be very pertinent to ovarian cancer too (430). In melanoma, targeting EZH2 

reactivated tumour suppressor genes with a direct effect on tumour growth 

(431) but perhaps even more interestingly, EZH2 was found to promote 
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inactivation of immunogenicity. EZH2 deficiency restores the immunogenicity of 

melanoma cells and synergises with immunotherapy in achieving significant 

tumour regression (432). 

At the time of writing this thesis, the inhibition of both enzymes had only been 

investigated in the context of tumour cell killing in breast cancer cell lines 

(381). On the basis of all the above evidence, I decided to investigate the effect 

of dual G9a/EZH2 blockade on the tumour immune microenvironment.  

 

 

4.2 Combined G9a/EZH2 inhibition confers better survival 

when compared to G9a inhibition alone 

I first sought to investigate whether UNC0642 (G9a inhibitor) or HKMTI-1-005 

(dual G9a/EZH2 inhibitor) had an effect on survival of C57BL/6 mice bearing 

Trp53-/- ID8 tumours.  

For UNC0642, there were only two publications reporting its use in vivo, at the 

dose of 5 mg/kg  (367, 380). At 5 mg/kg, G9a was sufficiently inhibited in adult 

mice and a preliminary test here in 3 mice confirmed that treatment with 

5mg/kg UNC0642 was well-tolerated.  

For HKMTI-1-005, previous in vivo work undertaken by Crown Bioscience UK Ltd 

on behalf of Imperial College (study director Simon Jiang, unpublished data; 

OVCAR3 ovarian cancer xenografts in SCID mice), indicated that 20 mg/kg was 

the best tolerated dose (relevant data in Appendix 5.0). The T max for 5 mg/kg 

HKMTI-1-005 in these studies highlighted the need for twice daily dosing and, 

although intravenous regimen achieved the best bioavailability, it was felt to be 

technically difficult and potentially harmful for the animals (Appendix 6.0). 

Therefore, the IP regimen of 20 mg/kg twice daily was taken forward. On 

pharmacokinetic simulation analysis, this dose achieved concentrations lower 

than the dose that caused 50% growth inhibition (GI50) in cell lines in vitro 
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(Appendix 7.0), but as already mentioned, doses higher than 20 mg/kg were not 

tolerated in vivo. Moreover, the focus was more on the immunostimulatory 

effect rather than its cytotoxic/cytostatic properties. To remove drug exposure 

bias, I treated mice for the same duration with each drug, i.e. 2 weeks of either 

5 mg/kg UNC0642 or 20 mg/kg HKMTI-1-005 (figure 4.1). 

 

 

Figure 4.1: Schematic of survival experiment with either vehicle, UNC0642 or 
HKMTI-1-005 (n=12 per cohort). Each drug (stored in DMSO) was reconstituted with 
vehicle (1% Tween in 0.9% NaCl) just before dosing. Dose was calculated based on the 
median weight of mice. In the control group treatment, the maximum equivalent of 
DMSO concentration found in the drug treatment was added, for consistency. OD: once 
daily, BD: twice daily. 
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Results from this initial survival experiment showed that HKMTI-1-005 

significantly prolongs mice survival compared both to vehicle (52 days vs 45 

days, p<0.0001) and UNC0642 (52 days vs 49, p=0.01), and at endpoint, mice 

bore less ascites than vehicle-treated animals (3.7 ml vs 5.6 ml, p=0.003, figure 

4.2c). Tumours weighed less in the HKMTI-1-005 treated group (157 mg vs 177.9 

mg, p=0.4) but this was not statistically significant (figure 4.2b). Mice treated 

with HKMTI-1-005 had higher haemoglobin than vehicle-treated (7.8 g/dL vs 4.3 

g/dL, p=0.003), but other haematological parameters were not statistically 

different, including the prognostic factor neutrophil/lymphocyte ratio (433) 

(figure 4.2d-4.2g). Treatment with UNC0642 led to a moderate but significant 

prolongation of survival (49 days vs 45 days, p=0.0009). Both ascites volume and 

tumour weight were decreased with treatment, but this decrease did not reach 

statistical significance (ascites 4.6 ml vs 5.6 ml, p=0.09 and tumour weight 160.5 

mg vs 177.9 mg, p=0.5). The haematological parameters of the mice treated 

with UNC0642 were no different to the vehicle group, at endpoint.  
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Figure 4.2: Results of survival experiment with treatment with either vehicle, 
UNC0642 or HKMTI-1-005 for 14 days. (a) Survival curves for mice treated with vehicle 
(n=12), 5 mg/kg UNC0642 (n=12) or 20 mg/kg HKMTI-1-005 (n=12) as per schedule on 
figure 4.1. Curves were compared using the Log-rank Mantel-Cox test. Tumour weights 
(b) and ascites volume (c) when mice reached humane endpoint; comparisons were 
made using one-way ANOVA and Dunnett’s multiple comparison test. Haematological 
parameters as measured at endpoint in (d), (e), (f) and (g). One-way ANOVA with 
Dunnett’s multiple comparison test used for comparison between groups. 
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4.3 G9a inhibition does not alter the immune 

microenvironment  

I sought to investigate if G9a inhibition, alone, had an impact on the 

composition of immune populations in Trp53-/- ID8 tumours. To this end, mice 

were treated with UNC0642 and their tumours harvested immediately and 72 

hours after last treatment (figure 4.3a). A striking initial observation was that 

the mice treated with UNC0642 had significantly less ascites than the untreated 

cohort (0.145 ml vs 0.430 ml, p=0.04, figure 4.3b). Tumour deposits harvested 

from porta hepatis, were subjected to digestion and flow cytometry, as 

described in methods section 2.7 and the results were analysed in a BD Fortessa 

flow cytometer (gating strategy figure 4.4 and figure 4.5).  

 

 

Figure 4.3: (a) Schematic of exploratory experiment with UNC0642 and ascites 
volume results after treatment. UNC0642 dose was 5 mg/kg (n=12 per cohort). 
Tumours were harvested straight after the last drug dose (n=6 control and n=6 
treatment) and 72 hours after last dose (n=6 control and n=6 treatment). OD: once 
daily. (b) Ascites volume (n=12 per cohort), bar in the vehicle group represents the 
median as data was non-parametric, Mann-Whitney test was used for comparison. 
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Figure 4.4: Gating strategy for flow-assisted sorting of immune cells from murine 
tumour deposits – lymphoid population. (a) gate on entire cell population, excluding cell 
debris; (b) and (c) gates on single cells, excluding dublets; (d) gate on Zombie Red negative 
cells to exclude dead cells (Zombie red positive cells); (e) gate on CD45 positive cells  that 
represent all immune cells. (f) gates on CD19+CD11b- cells to identify B cells, gate on CD11b+ 

cells to identify myeloid-derived cells and gate on CD19-CD11b- double negative cells, from 
which CD3+ are gated in (g) and CD8+ cells in (h). 
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Figure 4.5: Gating strategy for flow-assisted sorting of immune cells from murine 
tumour deposits – myeloid population. (a) Gate on CD11b+ CD19- myeloid-derived cells, 
further characterised with Ly6G and Ly6C antibody staining in (b); Ly6G+Ly6C+ cells 
define the myeloid-derived suppressor cells, whereas Ly6C+ Ly6G- cells define the 
population of monocytes. Ly6G-Ly6C- double negative cells from (b) were then 
characterised with F4/80 and MHCII antibody staining to identify the tumour-associated 
macrophages, as F4/80+MHCII+ and the dendritic cells as F4/80-MHCII+ in (c). For both 
macrophages and dendritic cells, the geometric mean of PD-L1 and CD86 cell markers 
was calculated to characterise their expression specifically on the cell surface of these 
sub-populations.  
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Figure 4.6: Immune cell population frequency following G9a inhibition treatment, as 
per schedule on graph 4.3. Immune cell population frequency expressed as 
percentages within the entire CD45+ cell population. Gates that contained <200 events 
were not included in the analysis. Lines represent the mean and each dot represents 
one mouse; mean comparisons were made using Student’s t-test. None of the results 
reached statistical significance. 
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Figure 4.7: Geometric mean fluorescence (MFI) of markers PD-L1 and CD86 on 
macrophages and dendritic cells, following G9a inhibition. Geometric mean 
fluorescence (MFI) of PD-L1 marker was measured on macrophages (a) and dendritic 
cells (c) and the MFI of CD86 on macrophages (b) and dendritic cells (d). MFI of the 
fluorescence-minus-one sample was subtracted from each sample. Gates that contained 
<200 events were not included in the analysis. Lines represent the mean and each dot 
represents one mouse; mean comparisons were made using Student’s t-test. 
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the whole unchanged with treatment. With regards to the expression of PD-L1 
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4.4 Combined G9a/EZH2 inhibition modulates the tumour 

immune microenvironment 

 

4.4.1 Flow cytometry - porta hepatis tumour deposit 

I then endeavoured to examine the tumour immune microenvironment after 

blocking both G9a and EZH2 with HKMTI-1-005. Mice were treated as per 

regimen in figure 4.8a. Once again, a complete inhibition of ascites development 

was observed in the treatment cohort (0% vs 44%, p<0.0001, figure 4.8b). The 

whole tumour burden was defined as the sum of omental and porta hepatis 

deposits weights (figure 4.8c/d/e). The results show inhibition of tumour growth 

in the treatment group as evident by the absence of ascites and the reduced 

tumour weight (whole tumour burden weight 104 mg vs 138 mg, p=0.02). 

The porta-hepatis tumours were subjected to flow cytometry, with additional 

surface markers (table 2.9) to allow for more accurate characterisation of the 

immune cell populations. With regards to the lymphoid populations, some 

interesting changes were observed. The number of CD3+ cells within the tumour 

was overall increased with HKMTI-1-005 (44.1 x106 cell/g vs 16.3 x106 cell/g, 

p=0.01) with an increase in both CD8+ (20.7 x106 cell/g vs 4.9 x106 cell/g, p=0.16) 

and CD4+ (23.5 x106 cell/g vs 3.8 x106 cell/g, p=0.001) subpopulations (figure 

4.9a). Similarly, B cells were increased with HKMTI-1-005 (37 x106 cell/g vs 6 

x106 cell/g, p=0.001). Natural killer (NK) cells and Natural Killer T lymphocytes 

(NKT) populations, defined as CD3-DX5+ and CD3+DX5+, were unchanged between 

treated and vehicle cohorts.  
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Figure 4.8: Exploratory experiment following treatment with the dual G9a/EZH2 
inhibitor, HKMTI-1-005. (a) Treatment schedule. Note that initial mice number was 
n=18, however, one mouse in the treatment group was eliminated due to injury on day 
of 1 of injections. (b) Ascites in vehicle vs treatment groups. Tumour weights expressed 
as whole tumour burden (c) and their break-down to omental tumour weight (d) and 
porta hepatis tumour weight (e). Means were compared with Student’s t-test, error bars 
represent standard deviation. 
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Figure 4.9: Flow cytometry results following 2 weeks of HKMTI-1-005 treatment. (a) 
Changes in CD3+, CD8+, CD4+, CD19+, CD3-DX5+ and CD3+DX5+ populations, normalised to 
tumour weight. (b) and (c) naïve/effector and memory subpopulations of CD4+ and CD8+ 
cells, expressed as percentages of their respective populations. (d) CXCR3 expression 
on CD4+ naïve, effector and memory cells. (e) CXCR3 expression on CD8+ naïve, effector 
and memory cells. Error bars represent standard deviation and comparisons were done 
using Student’s t-test. 



Chapter 4 Results 

 152 

When looking specifically into CD4+ and CD8+ cell populations with CD44 and 

CD62L markers for identification of naïve (CD44-CD62L+), effector (CD44+CD62L-), 

and memory (CD44+CD62L+) cells, I did not observe any significant differences in 

this experiment (figure 4.9b, figure 4.9c and appendix 8.0). Nevertheless, naïve 

CD4+ cells and naïve and effector CD8+ cells had increased expression of CXCR3, 

the receptor for CXCL10, after treatment with HKMTI-1-005 (figure 4.9d and 

figure 4.9e). Representative flow plots of a treated and an untreated mouse for 

CD4+, CD8+ and B cell populations are shown in figure 4.10a and 4.10b.  

The most noticeable and statistically significant increase in CXCR3 expression 

was observed on the NK cells (MFI 2011 ± 297 vs -344.5 ± 215, p<0.0001), as 

shown in figures 4.10c and 4.10d.  
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Figure 4.10: Flow cytometry plots and CXCR3 expression on NK cells following HKMTI-1-
005 treatment. Representative flow plots showing differences between a mouse receiving 
vehicle and a mouse receiving HKMTI-1-005 with respect to CD4+, CD8+ (a) and B cells (b). 
(c) representative histogram showing CXCR3 fluorescence on fluorescence-minus-one 
(FMO), vehicle and HKMTI-1-005 samples, on NK cells. (d) Mean CXCR3 fluorescence on NK 
cells. Note that gates with <200 events were excluded from the analysis, hence the sample 
discrepancy between vehicle and treated. Some fluorescence values for the vehicle group 
are negative as they were subtracted by the average (minus FMO) fluorescence; the minus-
FMO sample contains a mixture of all samples and therefore can have a higher value than 
some of the vehicle samples. 
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Analysis of the intracellular chemokine content of CD8+ cells by flow cytometry 

did not show any statistically significant differences between vehicle and HKMTI-

1-005 treated mice (figure 4.11a and gating in Appendix 9.0).  

To characterise the composition of myeloid populations, my planned gating 

strategy was different to that described in figure 4.5. Access to a Cytek Aurora 

flow cytometer allows the use of fluorochromes combinations that could not be 

simultaneously used with the BD FORTESSA, which allowed me to add new cell 

surface markers. Therefore, after identification of Ly6G-Ly6C- cells within the 

CD11b+ population, I used Siglec-F marker to exclude Siglec-F positive 

eosinophils. Then, within the Siglec-F negative population, I defined 

F4/80+MHCII+ cells as tumour-associated macrophages (TAMs) and the F4/80- 

MHCII+ population as dendritic cells, but only if the latter were also positive for 

CD11c marker (Appendix 10.0). Following this, I also quantified the MFI of CD80, 

CD86, CD206 and PD-L1 on TAMs and dendritic cells.  

However, in this experiment as well as subsequent ones, it became apparent 

that a significant number of the F4/80+MHCII+ cells, which are traditionally 

described as TAMs, retain a high expression of Ly6C in the HKMTI-1-005 treated 

cohort (figure 4.11b; right panel). This was not observed in the vehicle group 

(figure 4.11c; right panel). Thus, although the literature suggests that 

macrophages lose Ly6C expression as they differentiate from Ly6C+ monocytes to 

TAMs when entering the tumour microenvironment (170, 439, 440), it became 

apparent that excluding Ly6C+ cells as non-TAMs would lead to flawed results in 

my experiment. Therefore, when quantifying TAMs in my in vivo experiments 

with HKMTI-1-005 treatment, I did not gate out the Ly6C positive cells as per my 

initial gating methodology. Their precise phenotype therefore is CD11b+Ly6G-

SinglecF-F4/80+MHCII+ (figure 4.11b/c). 



Chapter 4 Results 

 155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Results of intracellular chemokine content and myeloid cell gating 
strategy following HKMTI-1-005 treatment. (a) Graph showing percentages of CD8+ cells 
positive for intracellular stain for granzyme-B, IFNγ, perforin and TNF-α chemokines. 
Means of treated and untreated cohorts were compared with Student’s t-test; results 
were statistically not significant. (b) Gating on Ly6G-SiglecF- double negative cells and 
Ly6C stain superimposed on F4/80+MHCII+ cells showing that this population is retaining 
Ly6C expression in the treated group, compared to untreated group (c). 
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There were no statistically significant differences in the number of TAMs and 

DCs within tumours in treated and untreated mice (figure 4.12a, 4.12c). 

However, Ly6C positive macrophages were significantly increased in the treated 

cohort (1.7 x106 cell/g vs 0.2 x106 cell/g, p=0.008; figure 4.12b) supporting the 

observation that macrophages retain Ly6C expression only in tumours treated 

with HKMTI-1005. Moreover, these TAMs had higher expression of CD86 (MFI 

14091 ± 385 vs 10864 ± 364, p=0.0004) and lower expression of CD206 (MFI 5377 

vs 6830, p=0.009), highlighting that treatment also has an effect on the 

activation status of macrophages (figure 4.12e). Similarly, dendritic cells had 

differential marker expression with treatment; CD80 expression was moderately 

decreased (MFI 4327 ± 70 vs 5250 ± 370, p=0.01) whereas CD86 was increased 

(MFI 13555 ± 405 vs 8838 ± 1484, p=0.006) (figure 4.12f).  

PD-L1 expression showed an increasing trend in both TAMs and DCs, although this 

did not reach statistical significance for either. There was a striking increase in 

PD-L1 expression on non-immune (CD45-) cells within tumour deposits with 

HKMtI-1-005 (MFI 507.9 ± 838.7 vs -3530 ± 291.6, p=0.0005; figure 4.12d). 

Although the tumour microenvironment contains a variety of CD45- cells, a large 

proportion are tumour cells, suggesting that HKMTI-1-005 treatment increases 

PD-L1 expression on malignant cells. 

Immunohistochemistry confirmed there were more CD3+ cells (H-score 20.4 vs 

14.8, p=0.09) in the HKMTI-1-005 treatment group, as seen in flow cytometry. 

Moreover, NK cells were increased (H-score 3.8 vs 2.8, p=0.08) in the treated 

tumours, whereas immunosuppressive FoxP3 cells (H-score 9.6 vs 13.1, p=0.36) 

were decreased. However, none of these results reached statistical significance 

(figure 4.13). 
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Figure 4.12: Flow cytometry results following HKMTI-1-005 treatment– myeloid 
populations and receptor expression. Flow cytometry analysis showing number of 
TAMs (a) and DCs (c) normalised to tumour weight; showing number of Ly6C+ TAMs in 
tumours (b); (d) PD-L1 MFI on CD45- cells as a proxy for tumour cells. MFI for 
markers CD80, CD86, PD-L1 and CD206 on TAMs (e) and DCs (f). For statistical 
comparisons: Student’s t-test used for PD-L1 MFI on CD45- cells, CD86 on TAMs, CD86 
and CD80 on DCs. Mann-Whitney test used for Ly6C+ TAMs and CD206 on TAMs. Each 
dot represents one mouse and differences between cohorts are due to the arbitrary 
cut-off of >200 events/gate in order to include mouse in the analysis. 
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Figure 4.13: Immunohistochemistry following HKMTI-1-005 treatment. 
Immunohistochemistry on omental tumours of vehicle vs HKMTI-1-005 treated mice 
for CD3+ (a), NKp46+ (b) and FoxP3+ (c) stains. Histoscore (H-score) calculated with 
HALO software. Statistical comparisons done with Student’s t-test for CD3+ and 
FoxP3+ stains and Mann-Whitney test for NKp46+ stain. 
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4.4.2 Flow cytometry - porta hepatis and omental tumour deposits  

In the subsequent experiment, I firstly wanted to confirm results of the previous 

experiment (4.2.1) and secondarily investigate potential differences between 

sites of disease, namely omental tumour and the porta hepatis deposits. The 

methodology was identical to the one described in figure 4.8a. Porta hepatis 

tumours are smaller than the omental tumours, which limited the amount of 

tumour material available for flow cytometry analysis.  

In this experiment, the overall CD3+ population did not change in either porta 

hepatis or omental deposits (figure 4.14a) and, in contrast to previous results, B 

cells (3.1 x106 cell/g vs 8.9 x106 cell/g, p=0.005) and CD4+ cells (3.2 x106 cell/g 

vs 5.3 x106 cell/g, p=0.04) decreased with treatment in both disease sites (figure 

4.14b, 4.14c). The decrease of CD4+ cells could at least partially be explained by 

a decrease in the CD4+FoxP3+ cells (0.9 x106 cell/g vs 2.2 x106 cell/g, p=0.02; 

figure 4.16a). 

CD8+ cells were significantly decreased in the porta hepatis (6.8 x106 cell/g vs 

28.6 x106 cell/g, p=0.02) but not in the omental deposits (2.3 x106 cell/g vs 2.2 

x106 cell/g, p=0.87; figure 4.14d). Nevertheless, the NK cells (CD3-DX5+) 

increased in both porta hepatis (10.4 x106 cell/g vs 4.2 x106 cell/g, p=0.01) and 

omental deposits (4.0 x106 cell/g vs 2.3 x106 cell/g, p=0.09; figure 4.14e), 

whereas the NKT cell population remained unchanged (figure 4.14f). 
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Figure 4.14: Flow cytometry results at porta hepatis and omental tumours after 
treatment with HKMTI-1-005 – lymphoid populations. Flow cytometry analysis 
showing CD3+ (a), CD19+ (b), CD4+ (c), CD8+ (d), NK (e) and NKT (f) cells in untreated 
vs treated mice, in porta hepatis, omental deposit and as a total in both disease 
sites. Mann-Whitney test was used for all comparisons apart from comparisons of 
omental CD4+ and porta hepatis CD19+, CD8+, CD4+, CD3+DX5+, CD3-DX5+, where 
Student’s t-test was used. Error bars represent standard deviation. 
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Within the CD4+ population, the percentages of naïve, effector and memory cells 

did not change significantly (figure 4.15a, 4.15c, 4.15e). However, in the porta 

hepatis deposit, I observed an increase in effector CD8+ cells (66.7% vs 37.1%, 

p=0.03; figure 4.15f) with a concomitant decrease of naïve CD8+ (3.2% vs 14.0%, 

p=0.03) and memory CD8+ cells (28.3% vs 42.9%, p=0.04) (figure 4.15b, figure 

4.15d). 

Interestingly, the CD3+ population in both anatomical sites had higher expression 

of CXCR3 in the HKMTI-1-005 treated tumours (MFI 2729 ± 394 vs 838 ± 265, 

p=0.0003), both CD4+ (MFI 2341 ± 173 vs 1099 ± 165, p<0.0001) and CD8+ (3959 ± 

239 vs 2097 ± 264, p<0.0001) populations (figure 4.16b-4.16d). An increase in 

CXCR3 expression was also observed in the NK cells (1507 ± 100 vs 440 ± 152, 

p<0.0001; figure 4.16e). 

HKMTI-1-005 treatment had no effect in the production of IFNγ and TNFα (figure 

4.17a and 4.17d) but a significant increase was observed in granzyme-b positive 

CD8+ cells in both the porta hepatis and the omental deposits (65.1% vs 27.2%, 

p<0.0001; figure 4.17b). Interestingly, although the perforin secreting CD8+ cells 

were increased with treatment in the porta hepatis, these were decreased in the 

omental deposit (figure 4.17c). 

I characterised the TAM population again using the gating approach as described 

on figure 4.11b. These were significantly more numerous with HKMTI-1-005 in 

the porta hepatis deposit (15.4 x106 cell/g vs 3.2 x106 cell/g, p=0.002) but not in 

the omental deposit (6.3 x106 cell/g vs 7.4 x106 cell/g, p=0.34) (figure 4.18a).  
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Figure 4.15: Flow cytometry results at porta hepatis and omental tumours after 
HKMTI-1-005 treatment – lymphoid subpopulations. Flow cytometry analysis of 
CD4+ naïve (a), memory (c) and effector (e) cells; flow cytometry analysis of CD8+ 
naïve (b), memory (d) and effector (f) cells. With regards to statistically significant 
results, Student’s t-test was used for porta hepatis naïve, memory and effector CD8+ 

cells, as well as total tumour effector CD8+ cells. Mann-Whitney test was used for 
the total tumour naïve CD8+ cells. Error bars represent standard deviation. 
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Figure 4.16: Flow cytometry results at porta hepatis and omental tumours after 
treatment with HKMTI-1-005 – T regs and CXCR3 expression on lymphoid 
populations. (a) flow cytometry analysis of intranuclear FoxP3 stain on CD4+ cells. Mann 
Whitney test was used for omental FoxP3+ and Student’s t-test for the total tumour 
FoxP3+. CXCR3 MFI quantification on CD3+ (b), CD4+ (c), CD8+ (d) and CD3-DX5+ (e) cells. 
Student’s t-test was used for all comparisons. Error bars represent standard deviation. 
Tregs= T regulatory cells. 



Chapter 4 Results 

 164 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, once again, the majority of TAMs in HKMTI-1-005 treated tumours 

retained their Ly6C expression (7.9 x106 cell/g vs 0.6 x106 cell/g, p<0.0001), 

confirming the previous observation (figure 4.18c). DCs were increased in the 

porta hepatis (7.8 x106 cell/g vs 0.8 x106 cell/g, p=0.01 and also showed a trend 

towards increase in the omental deposit (2.5 x106 cell/g vs 1.7 x106 cell/g, 

p=0.10) (figure 4.18b).  
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Figure 4.17: Flow cytometry results at porta hepatis and omental tumours after 
treatment with HKMTI-1-005; intracellular chemokine content. Percentages of 
CD8+ cells stained positive for IFNγ (a), granzyme B (b), perforin (c) and TNFα (d) in 
porta hepatis deposit, omental deposit and total tumour. Student’s t-test was used 
for all comparisons apart from the omental and total tumour TNFα+ CD8+ cells. Error 
bars represent standard deviation. 
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In TAMs, I observed an upregulation of CD86 in the porta hepatis (MFI 25783 ± 

1102 vs 19891 ± 1665, p=0.009) and a decrease in CD206 in the omental deposit 

(MFI 5220 ± 508 vs 7620 ±626, p=0.01), as seen before (figure 4.19b and 4.19c). 

Consistent with the prior experiment, PD-L1 expression was increased in both 

disease sites (MFI 23354 vs 11079, p<0.0001) (figure 4.19d).  

Figure 4.18: Flow cytometry results at porta hepatis and omental tumours 
after treatment with HKMTI-1-005; myeloid populations. Flow cytometry results 
for TAMs (a) and DCs (b) in porta hepatis deposit and omental deposit in untreated 
vs HKMTI-1-005 treated tumours. In (c), Ly6C+ TAMs are compared between 
untreated/treated; events from both sites of disease have been averaged due to 
low event rate. MFI of PD-L1 ligand on surface of CD45- cells is shown in (d); some 
MFI values are negative as they were subtracted by the average (minus FMO) 
fluorescence value, which could in some occasions have a higher value. Mann 
Whitney test was used for all comparisons apart from porta hepatis TAMs and PD-
L1 on CD45- cells and omental TAMs, DCs and PD-L1 on CD45- cells, where 
student’s t-test was used. Error bars represent standard deviation. 
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Figure 4.19: Flow cytometry results at porta hepatis and omental tumours after 
treatment with HKMTI-1-005; cell membrane markers on myeloid cells - 
macrophages.  Quantification of TAMs receptor expression for CD80 (a), CD96 (b), 
CD206 (c) and PD-L1 (d) between treated/untreated in porta hepatis and omental 
deposits. Student’s t-test was used for all comparisons apart from total tumour PD-L1 
and omental CD86 MFI, for which Mann-Whitney test was used instead. 

 

Unexpectedly, CD80 did not follow the upward trend of CD86 receptor; on the 

contrary, it was decreased in the omental deposit with treatment (MFI 9321 ± 

999 vs 15397 ± 636, p<0.0001) (figure 4.19a). 

In DCs, the changes seen reflected some of the changes seen in TAMs, with CD86 

expression being higher with treatment in the omental deposit (MFI 22251 ± 1140 

vs 15808 ± 647, p=0.0001) and CD206 showing a trend in being lower in both 

disease sites (MFI 4291 ± 284 vs 5192 ± 247, p=0.02) (figure 4.20b and 4.20c).  
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Figure 4.20: Flow cytometry at porta hepatis and omental tumours after 
treatment with HKMTI-1-005; cell membrane markers on myeloid cells – 
dendritic cells.  Quantification of DCs receptor expression for CD80 (a), CD96 (b), 
CD206 (c), PD-L1 (d) and CXCR3 (e) between treated/untreated in porta hepatis, 
omental deposits and in total. Student’s t-test was used for all mean comparisons 
apart from the comparison of CXCR3 for both sites, where Mann-Whitney test was 
used. 
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As seen in TAMs, CD80 expression decreased (MFI 7173 ± 444 vs 9341 ± 705, 

p=0.01; figure 4.20a) with treatment, whereas PD-L1 expression was significantly 

increased in all disease sites (MFI 15620 ± 542 vs 11141 ± 676, p<0.0001; figure 

4.20d). Interestingly, the expression of CXCR3 which showed an overall increase 

in the lymphoid population, was not increased in the surface of DCs (figure 

4.20e). PD-L1 expression in non-immune cells (CD45- cells was again significantly 

increased with treatment (MFI 3721 vs -1075, p<0.0001; figure 4.19d). 

 

4.4.3 Flow cytometry - spleen and peritoneal wash  

Given the significance of the peritoneal cavity in the dissemination of ovarian 

HGSC, I sought to investigate if HKMTI-1-005 treatment modulates the immune 

cellularity of the peritoneal fluid. Previous experiments showed that HKMTI-1-

005 results in complete inhibition of ascites development. Therefore, I 

characterised immune cells in the peritoneal cavity by performing a peritoneal 

lavage. Moreover, I investigated potential changes within the murine spleen, as 

an important secondary lymphoid organ where lymphocyte storage and priming 

occurs. Because of the changes that I had previously observed on NK cells, I 

characterised them more thoroughly and introduced NK1.1 cell surface marker 

during flow cytometry analysis. NK cells were defined as CD3-DX5+NK1.1+. 

The treatment regimen used in this experiment is described in figure 4.8a. At 

the end of treatment, the peritoneal wash and spleens were subjected to flow 

cytometry, whereas the omental tumours were used for next-generation 

sequencing (described in Chapter 5). 

Once again, CD3+, CD8+ and CD19+ populations were overall unchanged and the 

CD4+ population was decreased (0.01 x106 cell/g vs 0.02 x106 cell/g, p=0.01; 

figure 4.21a) in the treatment cohort. I observed that, as with tumour deposits, 

NK cells were increased with HKMTI-1-005 treatment (0.03 x106 cell/g vs 0.01 

x106 cell/g, p=0.006; figure 4.21a) and the immunosuppressive population of  
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Figure 4.21: Flow cytometry results in peritoneal wash after treatment with HKMTI-
1-005 – cell populations, CXCR3 expression and lymphoid subpopulations.  
Quantification of lymphocyte population (a) and FoxP3+CD4+ cells (b) in the peritoneal 
wash; means were compared with student’s t-test. (c) CXCR3 MFI on CD3+, CD4+, CD8+ 
and NK cells in the peritoneal wash; student’s t-test was used for all comparisons apart 
from NK cells, where Mann-Whitney test was used. (d) and (e) show the naïve, effector 
and memory sub-populations of CD4+ and CD8+ cells; Student’s t-test was used for all 
comparisons apart from naïve and effector peritoneal CD8+ cells. 
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FoxP3+CD4+ cells were decreased (7 x102 cell/g vs 25 x102 cell/g, p=0.01; figure 

4.21b).  

As previously observed, HKMTI-1-005 increased expression of CXCR3 receptor on 

CD3+ (MFI 6087 ± 453 vs 1653 ±231, p<0.0001), CD4+ (MFI 4738 ± 339 vs 1438 ± 

210, p<0.0001), CD8+ (6144 ± 459 vs 1746 ± 318, p<0.0001) and NK cells (MFI 5509 

vs 343, p=0.0003) (figure 4.21c). 

Overall, treatment did not have an effect on the naïve, effector or memory 

phenotype of CD8+ cells in the peritoneal cavity (figure 4.21e). CD4+ memory 

cells, however, were decreased with treatment (16.4% vs 35.2%, p<0.0001), with 

the rest of the sub-populations remaining widely unchanged (figure 4.21d). 

There was no increase in the intracellular content of IFNγ, granzyme B or 

perforin chemokines in cytotoxic CD8+ cells (figure 4.22a), however, the IFNγ-

containing NK cells were significantly more in the peritoneal cavity of treated 

mice (62.5% ± 3.9 vs 27.5% ± 7.2, p=0.001; figure 4.22b) compared to untreated. 

I observed a new population of MHCII medium TAMs that I had not observed in 

the tumour deposit flow analysis (figure 4.11b). Therefore, I analysed these two 

population separately as MHCII high and MHCII medium expression (MHCIIhigh and 

MHCIImed) and looked into whether they maintain the Ly6C marker. There was an 

increase in the number of MHCIImed macrophages with HKMTI-1-005 treatment 

(0.1 x106 cell/g ± 0.02 vs 0.01 x106 cell/g ± 0.001, p=0.0009; figure 4.22a), 

whereas the MHCIIhigh TAMs remained unchanged. Irrespective of the expression 

of MHCII marker, peritoneal macrophages, once again, remained highly positive 

for Ly6C, as seen in tumour deposits. (Ly6C+MHCIIhigh 0.07 x106 cell/g ± 0.013 vs 

0.01 x106 cell/g ± 0.002, p=0.001 and (Ly6C+MHCIImed 0.13 x106 cell/g vs 0.002 

x106 cell/g, p=0.0003) (figure 4.22d and 4.22f). 

In the spleen, the numbers of main lymphocyte populations were not altered 

with treatment (figure 4.23a). However, the naïve and effector CD4+ 

subpopulations increased significantly with HKMTI-1-005 treatment (naïve 12.8% 

± 1.7% vs 7.7% ± 0.3%, p=0.01; effector 21.6% ± 0.7% vs 18.2% ± 0.3%, p=0.002),  
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Figure 4.22: Flow cytometry results in peritoneal wash after treatment with 
HKMTI-1-005; intracellular chemokines, Ly6C and MHCII on macrophages.  
Quantification of the chemokine-containing CD8+ (a) and NK (b) cells in the 
peritoneal wash; Student’s t-test was used for all comparisons apart from granzyme-
B containing CD8+ cells, where Mann-Whitney test was used. (c), (d), (e) and (f) 
quantification of TAM sub-populations in the peritoneal wash; all comparisons were 
made by Student’s t-test, apart from (f) where Mann-Whitney test was used. 
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whereas memory CD4+ decreased (64.4% ± 1.7% vs 73.6% ± 0.6%, p=0.0005) 

(figure 4.23b). Moreover, the effector CD8+ population increased significantly 

with treatment (3.55% vs 2.46%, p=0.009; figure 4.23c). 

Overall, the CD8+ population found in the spleen had more cells containing IFNγ 

(22.1% vs 18.1%, p=0.01) and perforin (10.2% ± 0.9% vs 5.9% ± 0.8%, p=0.004), 

(figure 4.23d), and the NK cells contained more granzyme-B (58.4% ± 2.5% vs 

43.9% ± 3.9%, p=0.007; figure 4.23e). 
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Figure 4.23: Flow cytometry results in the spleen after treatment with HKMTI-1-
005; cell populations, lymphoid subpopulations and intracellular chemokines.  
Quantification of CD4+ (a) and CD8+ (b) naïve, effector and memory sub-populations 
in the spleen. All mean comparisons were done with Student’s t-test, apart from 
the effector CD8+ cells mean which were compared with the Man-Whitney test. 
Percentages of chemokine-containing CD8+ (c) and NK cells (d) in the spleen for 
IFNγ, granzyme-B and perforin; Student’s t-test was used for all mean comparisons. 
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4.4.4 Chemokine production in vivo 

I next investigated if the changes seen in chemokines in vitro with HKMTI-1-005 

treatment were also observed in vivo. I also wanted to see if the upregulation of 

CXCR3 by flow cytometry in vivo is accompanied with an increase in its ligands 

CXCL9 and CXCL10. RT-qPCR in omental tumours treated with HKMTI-1-005 

(described in figure 4.8a), showed an increase in Cxcl10 (fold change 2.9 ± 0.3 vs 

1.2 ± 0.2, p=0.0003). Additionally, I observed a significant increase in Ccl5 (fold 

change 3.4 vs 0.9, p=0.0019) and a trend for HKMTI-1-005 to increase Ccl12 (fold 

change 1.8 vs 0.9, p=0.11) and Ccl19 (fold change 1.6 ± 0.3 vs 1.2 ± 0.2, p=0.3), 

chemokines which were also significantly elevated in vitro (figure 4.24). 
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Figure 4.24: Intratumoral chemokine expression after treatment with 
HKMTI-1-005; RT-qPCR for Cxcl10 (a), Cxcl9 (b), Ccl5 (c), Ccl12 (d) and 
Ccl19 (e) genes in omental tumours of untreated and HKMTI-1-005-treated 
mice (n=11 per cohort). Each dot represents one mouse. Student’s t-test 
was used for comparing Cxcl10, Cxcl9 and Ccl19 chemokines. Mann-Whitney 
test was used for comparing Ccl5 and Ccl12 chemokines. 
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4.5 Dual G9a/EZH2 inhibition combined with either PD-1 blockade 

or cisplatin treatment in vivo  

 

4.5.1 HKMTI-1-005 upregulates PD-L1 expression on tumour cells in vitro; it 

reduces tumour burden but does not confer survival advantage when combined 

with PD-1 blockade in vivo 

In vitro, treatment with HKMTI-1-005 upregulated the expression of PD-L1 on 

IFNγ stimulated Trp53-/- ID8 cells, by flow cytometry (MFI 1946 vs 180, p<0.0001; 

figure 4.25a and 4.25b), confirming the results in the CD45- cell population of 

mouse tumour deposits in vivo (figure 4.12d and 4.18d). RT-qPCR confirmed that 

PD-L1 transcript is maximally upregulated in IFNγ stimulated Trp53-/- ID8 cells 

after 24 hours (fold change 54.2 ± 1.7 vs 21.3 ± 1.0, p<0.0001; figure 4.25c).  

On the basis that HKMTI-1-005 modulated the immune microenvironment in 

tumour deposits and it also upregulated PD-L1 expression in vitro, I next 

combined HKMTI-1-005 with PD-1 blockade, to examine the effect of the 

combination treatment on survival of mice bearing Trp53-/- ID8 tumours.  

The anti-PD1 antibody (clone RMPI-14, BioXcell, BE0146) was kindly provided by 

Dr Roxburgh’s lab. The treatment regimen involved starting HKMTI-1-005 one 

week before the anti-PD-1 antibody (figure 4.25d). Mice were then allowed to 

reach humane endpoint. In order to comply with the principles of 3Rs, I decided 

to not repeat treatment with HKMTI-1-005 alone in this experiment, given that 

this had been done before.  

Median survival did not differ between the three treatment cohorts (median 

survival 45 days for all groups, p=0.49; figure 4.26a). There was a trend for 

reduction of hazard ratio with the combination of anti-PD1 plus HKMTI-1-005 (HR 

0.71, 95% CI 0.19-2.5) but this was not statistically significant. Interestingly, 2 

mice in the combination cohort had prolonged survival, with one of them  
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Figure 4.25: PD-L1 on ID8 Trp53-/- cells in vitro and schematic of in vivo experiment 
with PD1 antibody plus HKMTI-1-005 treatment. (a) Representative histogram of PD-
L1 MFI (n=1) and (b) Quantification of PD-L1 MFI on Trp53-/- ID8 cells, (n=4), means 
compared with one-way ANOVA (c) RT-qPCR for PD-L1 on Trp53-/- ID8 cells at various 
timepoints, (n=3). Student’s t-test used for all comparisons apart from the 6-hour 
comparison between IFNγ and HKMTI-1-005/IFNγ, where Mann-Whitney test was used. 
Error bars reflect standard deviation. (d) Treatment regimen in survival experiment 
comparing vehicle to anti-PD1 mAb and the combination of anti-PD1 mAb plus HKMTI-1-
005. MFI: mean fluorescence intensity; mAb: monoclonal antibody. 
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surviving for 59 days and the other mouse surviving for 85 days (7 and 33 days 

after the end of anti-PD1 treatment, respectively). Both mice had developed 

tumour deposits when examined at endpoint.  

The volume of ascites did not differ significantly between cohort (figure 4.26b), 

but the total tumour weight for the combination group was significantly lower 

than the group receiving anti-PD1 antibody alone (175.6 mg vs 277.1mg, 

p=0.007; figure 4.26c) and also lower than the vehicle group (175.6mg vs 

256.2mg, p=0.04). This was due to a significant reduction in omental tumour 

weight in the combination group; in the porta hepatis, only a trend to reduction 

was observed (figure 4.26e and 4.26d). Blood results at endpoint did not show 

any significant differences between cohorts (Appendix 11.0).  
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Figure 4.26: Results of in vivo survival experiment with anti-PD1 plus HKMTI-1-005 
treatment (a) Survival curves of mice treated with vehicle or anti-PD1 Ab or anti-PD1 
Ab plus HKMTI-1-005 (n=8 per group). Median survival did not differ between groups, 
using the Log-rank test for comparison. (b) ascites volume and (c) total tumour weight 
at humane endpoint. Break-down of total tumour weight in porta hepatis (d) and 
omental deposit (e). All comparisons in (b), (c), (d) and (e) were made with ordinary 
one-way ANOVA and Tukey’s multiple comparison test. Each dot represents one mouse 
and error bars represent standard devation. Discrepancies between group numbers in 
ascites and tumour graphs are related to technical problems of harvesting 
tumour/ascites at endpoint. 
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4.5.2 Adding HKMTI-1-005 to cisplatin treatment does not result in additional 

tumour regression  

Thereafter, I examined the combination of HKMTI-1-005 with a platinum 

compound (cisplatin), which has been the standard of care in ovarian HGSC for 

decades. My hypothesis was that tumour cell death caused by cisplatin could 

release tumour-associated antigens, which in turn could increase antigenicity 

and enhance the immunostimulatory effect of HKMTI-1-005. Recently emerging 

data from patient samples show that neo-adjuvant chemotherapy with platinum 

induces Th1 immune responses and reduces Treg in ovarian tumours (441). Given 

that this animal experiment was conducted in a new animal unit and that I was 

using a new batch of the HKMTI-1-005 compound, I decided to include a new 

cohort of HKMTI-1-005 treated mice in order to re-evaluate the median survival 

(figure 4.27a).  

Surprisingly, in this experiment, HKMTI-1-005 did not confer a survival advantage 

and the mice treated with HKMTI-1-005 had a median survival of only 1.5 days 

longer than vehicle (51.5 days vs 50 days, p=0.42; figure 4.27b). Cisplatin 

extended median survival to 71 days which was significantly different than 

vehicle or HKMTI-1-005 and in keeping with the survival advantage seen before 

in this model (442). Adding HMTI-1-005 to cisplatin did not achieve a significant 

prolongation (72 days vs 71 days, p=0.01; figure 4.27b), in terms of median 

survival. However, it reduced the hazard ratio to 0.25 (95% CI 0.07-0.89, Mantel-

Haenszel test, p=0.01). This indicates that there is an effect on reducing the risk 

of death, when compared to cisplatin alone. Ascites was not statistically 

different between groups. Nevertheless, the combination of cisplatin with 

HKMTI-1-005 resulted in a significant reduction in total tumour weight, when 

compared to vehicle (45.5 mg vs 80.9 mg, p=0.01; figure 4.27d). Tumour weight 

in the combination treatment overall follows the same reducing trend in porta 

hepatis and omental deposit (figure 4.27e and figure 4.27f), however, rather 

disappointingly, this is not different than the tumour reduction achieved by 

cisplatin or HKMTI-1-005 monotherapy alone.  
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Figure 4.27: Survival experiment with cisplatin plus HKMTI-1-005 treatment. (a) 
Schematic of treatment regimen and experiment methodology, (n=10 mice per group), 
(b) Survival curves of mice treated with vehicle, HKMTI-1-005, cisplatin or cisplatin plus 
HKMTI-1-005; note that one event occuring as early as 31 days in the cisplatin group 
relates to one mouse which was culled due to toxicity (weight loss> 20% from baseline); 
this was not included in the survival analysis. Median survival was compared using the 
Log-rank test. (c) ascites volume and (d) total tumour weight at humane endpoint 
between the four groups. Break-down of total tumour weight in omental (e) and porta 
hepatis deposit (f). Comparisons in (c) and (d) were made using the Kruskal-Wallis test 
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Figure 4.27: Survival experiment with cisplatin plus HKMTI-1-005; continued. And 
Dunn’s multiple comparisons test, whereas in (e) and (f), using ordinary one-way ANOVA 
and Tukey’s multiple comparisons test. Differences that were statistically non-
significant are not annotated on this graph. Each dot represents one mouse; 
discrepancies between group numbers in ascites and tumour graphs are related to 
technical problems in harvesting tumour/ascites at endpoint. 

 

 

4.6 NK cell depletion in vivo 

Given that the changes seen in the NK cell population with HKMTI-1-005 

treatment were more consistent across experiments and sites (see figures 4.13b, 

4.14e, 4.21a, 4.22b and 4.23e), I next investigated the effect of NK cell 

depletion on the activity of HKMTI-1-005 in vivo. My hypothesis was that, if 

HKMTI-1-005 does indeed induce an immune-related anti-tumour effect via NK 

cell activation, then this would be obliterated when NK cells are depleted. 

To deplete murine NK cells in vivo, I used a monoclonal antibody (mAb) against 

NK1.1 (clone PK136, BioXcell, BE0036) and an IgG2a mAb as isotype control. In 

order to adhere to the 3Rs principles, the HKMTI-1-005 cohort is common 

between this experiment and the experiment with cisplatin treatment (section 

4.5.2).  

To determine whether NK depletion was achieved, flow cytometry was 

performed at three different timepoints: after the first 2 loading doses of anti-

NK1.1 mAb in murine blood and spleen (figure 4.29a/4.29b), at the trough 

timepoint of the weekly regimen in blood (i.e. one day before the regular anti-

NK1.1 mAb dose; figure 4.29c) and in the tumour/ascites at endpoint (figure 

4.30). Results confirmed that treatment with anti-NK1.1 mAb depleted NK cells 

in all samples, at all three timepoints. 

As depicted in figure 4.28b, there were no statistically significant differences 

between the median survival of the 4 groups (IgG2a median survival 52 days vs 

HKMTI-1-005 51.5 days vs anti-NK1.1 mAb 51 days vs HKMTI-1-005 plus anti-

NK1.1 mAb 55.5 days, p=0.92).  
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         Figure 4.28: NK cell depletion experiment in vivo: overleaf  
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Figure 4.28: NK cell depletion experiment in vivo (a) Schematic of treatment regimen 
and experiment methodology, (n=10 mice per group), treatment as per graph; note that 
1 mouse from each group of IgG2a and anti-NK1.1 mAb treatment were culled before 
starting HKMTI-1-005 treatment to perform flow cytometry on their spleens and confirm 
NK cell depletion; these mice were not included in the survival analysis (b) Survival 
curves of mice treated with IgG2a isotype control, HKMTI-1-005, anti-NK1.1 mAb or 
anti-NK1.1 mAb plus HKMTI-1-005; median survival was compared using the Log-rank 
test; none of the comparisons were statistically significant. (c) ascites volume and (d) 
total tumour weight at humane endpoint between the four groups. Break-down of total 
tumour weight in omental (e) and porta hepatis deposit (f). All comparisons in (c), (d), 
(e), (f) were made using ordinary one-way ANOVA and Tukey’s multiple comparisons 
test. Differences that were statistically non-significant are not annotated on this graph. 
Each dot represents one mouse; discrepancies between group numbers in ascites and 
tumour graphs are related to technical problems in harvesting tumour/ascites at 
endpoint. 

 

Similarly, there were no statistically significant differences in tumour burden, 

both in term of ascites volume and total tumour weight at humane endpoint. 

However, there was a clear trend for HKMTI-1-005 to inhibit tumour growth 

compared to treatment with either IgG2a, anti-NK1.1, or the combination of 

HKMTI-1-005 and anti-NK1.1 mAb (106.2mg vs 216.1mg, p=0.11; vs 191.1mg, 

p=0.29; vs 210.3mg, p=0.11). This could signify that NK cell depletion inhibits 

the HKMTI-1-005 mediated anti-tumour effect. However, these results are not 

statistically significant and furthermore, they are not supported by the survival 

results of this experiment.  
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Figure 4.29: Confirmation of NK cell depletion by flow cytometry – blood and 
spleen. Flow cytometry for NK cell population, defined as double positive for 
DX5+NK1.1+ (n=1) between treatment with IgG2a isotype control (left panel) and 
anti-NK1.1 mAb (right panel) in blood (a) and spleen (b) after the first 2 loading 
doses (day -5 and day -1 before HKMTI-1-005 treatment) of IgG2a or anti-NK1.1 
mAb. (c) NK cell population (n=1) between treatment with IgG2a and anti-NK1.1 
mAb in blood during the weekly IgG2a/anti-NK1.1 mAb regimen; sample taken 
24h before dosing. mAb=monoclonal antibody. 
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Figure 4.30: Confirmation of NK cell depletion by flow cytometry – tumour and 
ascites. Flow cytometry for NK cell population, defined as double positive for 
DX5+NK1.1+ (n=1) between treatment with IgG2a isotype control (left panel) and 
anti-NK1.1 mAb (right panel) in mouse tumour (a) and mouse ascites (b) at humane 
endpoint. (c) graphic representation of the average NK cell percentages, relative 
to the total CD45+ population. Error bars represent standard deviation. Note that 
there is no error bar for the IgG2a cohort as n=2. 
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4.7 Discussion 

After showing that G9a and EZH2 histone methyltransferases are involved in 

suppressing chemokine pathways in both murine and human ovarian cancer 

(chapter 3), I sought to investigate the effect of their inhibition on the tumour 

immune microenvironment and the survival of mice bearing Trp53-/- ID8 

tumours. Results confirm that dual inhibition of G9a and EZH2 result in a 

moderate, albeit statistically significant prolongation of survival (1 week), which 

is superior to the one achieved with G9a inhibition alone.  

Although G9a inhibition with UNC0642 resulted in a better survival compared to 

vehicle, flow cytometry analysis of intra-tumoral immune cell populations after 

a 5-day treatment did not show any meaningful differences or trends. This may  

be due to the different treatment durations between the flow cytometry 

exploratory experiment (5-day treatment) and the survival experiment (2-week 

treatment). 

At the time of conducting both these experiments, we knew that the dose of 

5mg/kg was sufficient to inhibit G9a in vivo (367, 380). However, the optimum 

treatment duration had not been defined. Nevertheless, I considered the 

prolongation of survival by 3 days not to be supportive of conducting further 

experiments with UNC0642, and for this reason, my focus was transferred to 

dual inhibition of G9a and EZH2 with HKMTI-1-005.  

Based on preliminary simulation PK studies with HKMTI-1-005, the dose used in 

all the in vivo work (20mg/kg) was not above the in vitro GI50 dose. This means 

that treatment would generate drug levels that are lower that a 

cytostatic/cytotoxic threshold. Despite this, HKMTI-1-005 had a favourable 

outcome on survival in vivo and this reinforces the hypothesis that HKMTI-1-005 

inhibits tumour growth via immune clearance, rather than direct tumour cell 

killing. 

The flow cytometry results, despite their variability, point towards changes that 

could mediate this immune clearance with HKMTI-1-005 treatment. I observed 



Chapter 4 Results 

 188 

an increase in cytotoxic chemokine producing NK cells across sites, an increase 

in effector CD8+ cells and DCs and a reduction in immunosuppressive Tregs. 

With treatment, CXCR3 was ubiquitously overexpressed in lymphocytes and CD86 

in myeloid cells. Overall, we see an immunostimulatory microenvironment 

described by immune priming, T cell activation/cytotoxicity and eventually 

tumour growth inhibition. 

With regards to the lymphocyte population, an increase in the total CD3+ 

population, including both CD8+ and CD4+ cells, was initially observed in the 

porta hepatis deposit of Trp53-/- ID8 tumours. However, when this was re-tested 

in both porta hepatis and omental deposits, it was not confirmed. Instead, an 

increase in the effector CD8+ subpopulation (with concomitant decrease in naïve 

CD8+ cells) was observed which was accompanied by an increase in granzyme B 

producing CD8+ cells. It is likely that the results of the initial experiment 

represent an earlier phase of the immune cycle when we observe increased 

overall numbers of CD4+ and CD8* populations without the phenotypic change to 

effector/memory subtype having happened yet, hence the absence of high 

chemokine content. On the contrary, results of later experiments represent a 

phase where, despite the unchanged numbers of CD8+ overall, an increase in the 

effector subpopulation is observed, with a higher content of intracellular 

chemokines and hence a higher cytotoxic potential. Interestingly, the CD4+ 

population overall showed a downward trend across later experiments, which 

could only partially be explained by a reduction in FoxP3+ population. 

Nevertheless, even a small reduction in the FoxP3+ fraction of CD4+ cells 

indicates that treatment with HKMTI-1-005 impedes immunosuppression in the 

tumour microenvironment.  

The lymphocyte population that perhaps followed a more consistent trend across 

sites (porta hepatis or omental deposits and peritoneal wash) was that of NK 

cells. I initially defined NK cells as CD3-DX5+ cells, however through the course 

of the experiments and with the ability to include additional flow cytometry 

markers, I later on defined them as CD3-DX5+NK1.1+. NK cells showed an increase 

in absolute number in porta hepatis deposit, omental deposit and peritoneal 
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wash. When examined for their chemokine content, the peritoneal NK cells 

contained more IFNγ and had a moderate increase in perforin content. In the 

spleen, their numbers were not altered, but they contained more granzyme-B 

and there was a trend for higher content of IFNγ and perforin too. The observed 

effects on the NK cell population would be in keeping with previous evidence 

that EZH2 is involved in NK cell lineage differentiation and that blocking EZH2 

enzymatic activity contributed to NK cell maturation and cytotoxicity (293). 

The expression of CXCR3 on the lymphoid population was undoubtedly increased 

with HKMTI-1-005, across sites of disease and sites of sampling. Enrichment of 

CXCR3 on lymphocyte surface happens as lymphocytes undergo a phenotypic 

switch from naïve to effector populations and it mediates their trafficking whilst 

maintaining lymphocyte activation (358, 435, 443-446). Notably, although CXCR3 

is also expressed by DCs (359, 447-449), treatment with HKMTI-1-005 led to an 

increase of CXCR3 only on the surface of lymphocyte surface. This coupled with 

the increase of the CXCR3 ligand, CXCL10, indicates that the CXCR3-CXCL10 axis 

is activated in the tumour microenvironment, as well as in the peritoneal fluid, 

following treatment with HKMTI-1-005. 

In addition to Cxcl10, there was a trend for increase in Ccl19 which is involved in 

lymphocyte chemotaxis (394, 450) and has been found to increase in response to 

adoptive cell therapy in mice bearing tumours in a melanoma model (451). 

Perhaps even more importantly, I observed a statistically significant increase of 

Ccl5 transcript which is a potent attractant of cytotoxic lymphocytes (394, 452), 

is linked directly to anti-tumour effects (453) and is associated with “immune 

hot” tumours with favourable outcomes (144, 450, 454-457). 

The changes in lymphocyte subpopulations in the spleen of mice treated with 

HKMTI-1-005 are interesting. The spleen, a secondary lymphoid organ, is 

frequently being used as a reflection of the immune microenvironment at the 

effector site (in this case the intraperitoneal deposits), although this role is yet 

undefined. Nevertheless, given the technical complexities of harvesting 

peripheral lymph nodes in mice, I decided to test the immune profile of spleens 

in order to see if it supplements the intra-tumoral findings. Once again, the 
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overall population numbers are in balance with or without treatment, but we 

observe a moderate increase in the effector CD8+ subpopulation and more IFNγ 

and perforin containing CD8+ cells overall; a finding also present in the tumour 

following HKMTI-1-005 treatment. Similarly, the NK cells have a higher content 

of chemokines, as seen in the peritoneal fluid. Interestingly, Sckisel et al 

recently showed that changes in the immune cell composition of murine spleens 

can accurately reflect the changes in peripheral sites and that following 

treatment with IL-2 in mice, spleen CD8+ lymphocytes undergo phenotypic 

changes as defined by CD44 and CD62L expression (458).  

With regard to the myeloid population, the more striking finding after treatment 

with HKMTI-1-005 was that the tumour-associated macrophage (TAM) population, 

classically described as CD11b+F4/80+MHCII+, retains the expression of Ly6C 

marker. TAMs are characterised by remarkable plasticity and consensus on their 

exact differentiation states is hard to find in the literature. However, it is 

widely recognised that TAMs derive from the large population of CCR2highLy6C+  

inflammatory monocytes which constantly contributes to the pool and that Ly6C 

expression gradually reduces as TAMs differentiate within the tumour (170, 439, 

440, 459). It is therefore conceivable that HKMTI-1-005 blocks this 

differentiation. Stromnes et al observed that Ly6Chigh TAMs are associated with 

an increase in the intra-tumoral infiltration by TCR-engineered T cells and their 

survival (460). We could hypothesise that retaining Ly6C expression is consistent 

with a tumour-suppressing phenotype and given that EZH2 and its enzymatic 

activity has been previously linked to the monocyte-to-macrophage 

differentiation (298), we can conclude that HKMTI-1-005 leads to a block on this 

switch from Ly6C+ to Ly6C- phenotype which could be favourable. This 

maintenance of Ly6C marker presence on TAMs was also observed in TAMs found 

in the peritoneal wash. Interestingly though, these TAMs seem to have a lower 

MHCII expression in the peritoneal fluid, something I did not observe in the intra-

tumoral cells. Movahedi et al have showed that TAMs with lower MHCII 

expression are more frequently found in hypoxic areas and they are associated 

with immunosuppressive/pro-tumour gene and protein profiles (440). This is 
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perhaps contradictory to the maintenance of a Ly6C positive phenotype, yet it is 

very interesting that this population is only present in the peritoneal fluid. 

Another observation that is consistent across experiments and disease sites, is 

the upregulation of CD86 marker on myeloid cells following treatment. CD86 is 

an activation marker and it was increased with HKMTI-1-005 on both DCs and 

TAMs. It is rather intriguing that its partner receptor, CD80, follows the opposite 

direction, however, these receptors can act independently and it is believed 

that CD86 induces a more robust interaction between DCs and T cells (438, 461). 

Interestingly, the trend for CD86 to be upregulated on dendritic cells was 

observed with UNC0642 single treatment too. 

However, in light of recently published evidence on the nature of DCs that are 

responsible for efficient anti-tumour responses, the relevance of reported 

results on DCs in this chapter, is not entirely clear. Results on the frequency and 

marker expression of DCs in this chapter was based on gating DCs (MHCII+CD11c+ 

cells) out of the pool of cells that were CD11b marker positive. Despite the 

recognised, long-standing uncertainty of DC lineage markers (462), there is now 

established evidence that conventional DCs are divided in further subtypes with 

distinct marker repertoire and function (337). The sub-type mostly associated 

with priming an antitumour cytotoxic T cell response notably expresses the 

CD103 marker in mouse and CD141 marker in human (463), and is CD11b marker 

negative. These CD103+ DCs are highly dependent on the transcription factor 

Batf3 (464) and are essential to the antigen presentation, T cell stimulation and 

trafficking in tumours (463, 465, 466). Therefore, the analysis described in this 

chapter perhaps describes changes in a subset of DCs, however this is not the 

subset of DCs that promotes anti-tumour immune priming and T cell activation. 

It would be extremely interesting to interrogate the flow cytometry results again 

by deriving the DC subset from the CD11b negative population, however this is 

beyond the scope of this thesis. 

Following the above findings, I wanted to investigate whether these immune-

related changes could, in combination with other treatments, improve the 

survival outcome of mice bearing Trp53-/- ID8 tumours. The hypothesis behind 
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combining HKMTI-1-005 with PD-1 inhibition was that we could simultaneously 

activate immune cell effector functions and hinder their exhaustion. Bearing in 

mind that inhibition of PD-1/PD-L1 axis has had modest outcomes in ovarian 

HGSC to date  (22, 23), I embarked on combining HKMTI-1-005 with an anti-PD-1 

antibody, with HKMTI-1-005 treatment starting one week earlier than the anti-

PD-1 treatment, to hopefully induce a priming effect, before targeting immune 

cell exhaustion. Perhaps unsurprisingly, the combination did not confer any 

benefit when compared to PD-1 blockade alone or indeed vehicle. Admittedly, 

due to the technical aspects of the experiment, the number of mice treated per 

cohort was relatively small and this could be a limitation for this experiment. 

Interestingly, tumour weight was significantly less with the combination 

treatment compared to anti-PD-1 alone and vehicle and two out of eight mice 

had prolonged survival. One could argue that this is consistent with what is 

observed with the use of immune checkpoint inhibitors in clinic; durable but 

infrequent responses.  

The outcome of combining HKMTI-1-005 with cisplatin was also not robustly 

positive. Rational behind this combination was that tumour cell killing with 

cisplatin would augment tumour antigenicity and that the addition of HKMTI-1-

005 would contribute to T and NK cell activation. In my experiment however, 

despite the statistically significant reduction in HR with combination treatment, 

the median survival prolongation was poor. Again, the technical aspects of the 

experiment might have contributed to this modest result (aggressive mouse 

model, lack of established treatment protocol due to HKMTI-1-005 novelty). 

Lastly, to test the hypothesis that HKMTI-1-005 treatment produces NK cell-

mediated tumour clearance, I examined NK cell depletion in vivo, in 

combination with HKMTI-1-005 treatment. The results here between tumour 

volume and mice survival were discordant. Adding NK cell depletion to HKMTI-1-

005 reverses the tumour regression seen with HKMTI-1-005 alone (result not 

statistically significant), however this was not reflected on the survival of mice.  

Overall, the results here describe that HKMTI-1-005 is a tolerable treatment that 

leads to a modest tumour regression (see merged data on mice weight, as a 
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marker to general well-being, and tumour volume from all experiments 

combined in Appendix 12.0). Treatment led to some notable changes in the 

immune composition of tumour deposits, peritoneal fluid and spleen. However, 

adding it to conventional treatments such as immune checkpoint blockade or 

cisplatin did not improve outcomes in the ID8 model. My next step was to better 

characterise treatment effect in vivo, in terms of changes in transcriptome and 

chromatin conformation. 

  



 

 

 

 

 

 

 

Chapter 5. Dissecting the pathways altered with 

combined G9a/EZH2 inhibition (RNAseq/ATACseq) 
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5.1 Introduction 

The results of Chapter 4 showed, by flow cytometry, that immune cell 

composition and their receptor expression in the tumour microenvironment 

changes with treatment with HKMTI-1-005. To support the hypothesis that 

HKMTI-1-005 mediates intra-tumoral immune cell activation, I sought to 

investigate gene transcription changes in the tumour and correlate these with 

the results of flow cytometry. Although transcriptional changes in cell lines and 

tumours with either EZH2 or G9a inhibitors or their individual combination with 

DNMT inhibitors have been described by others in the literature (282, 294, 467), 

the effect of the combined G9a/EZH2 inhibition on tumours had not been 

described at the time of writing this thesis. Moreover, observing transcriptional 

changes in tumours after HKMTI-1-005 treatment could also act as marker of 

successful drug penetration.  

By performing ATACseq on the same tumours, I aimed to gain an overall idea of 

structural chromatin changes with HKMTI-1-005 treatment. Correlation between 

chromatin conformation changes and gene transcription could give insight into 

the direct effect of HKMTI-1-005 on distinct cell populations within tumours.  

In addition, I investigated how G9a/EZH2 inhibition can alter expression of 

endogenous retroviral sequences (ERVs) in Trp53-/- ID8 tumours. ERVs are retro-

transposable elements that are “footprints” of ancient infections. They comprise 

approximately 8%-10% of the human and mouse genome and are usually 

transcriptionally silenced (468). ERV silencing is modulated by DNA (469-471) 

and/or histone methylation (472), which ensures that their chromatin is 

compacted; when expressed, these elements are able of eliciting a robust 

immune response (473). Recently, focus has been redirected to ERVs because of 

published evidence showing that their reactivation by DNA demethylation can 

trigger immune signalling via the intracellular dsRNA response pathways (312, 

313). As well as DNA methylation, histone acetylation and demethylation have 

been found to have a synergistic effect with DNA demethylation in enhancing re-

expression of these elements, and therefore promoting immune stimulation 

(347, 474). Mechanistically, Zeng et al reported that ERV RNA can induce 
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cytosolic pattern recognition receptors (PRRs) and thereby trigger an antiviral 

signalling cascade which, in turn, can elicit T-cell independent B cell activation 

(475). In clear cell renal carcinoma, ERVs were found to be more 

transcriptionally active in patients whose disease responded to immune 

checkpoint inhibitors and also to correlate positively with patient survival (476). 

Similarly, in melanoma, analysis of non-coding RNA on primary tumours and 

benign melanocytic lesions revealed that ERVs are significantly repressed in 

high-risk, poor prognosis tumours (477). Overall, ERVs are emerging as a 

potentially significant mediator of anti-tumour immunity by developing a state 

of viral mimicry. 

Using the regimen described in figure 4.8a, I treated mice with HKMTI-1-005 and 

harvested the omental deposits at the end of treatment. Half of the tumour was 

dedicated to RNA sequencing (RNAseq) and the other half for ATAC sequencing 

(ATACseq). The methodology of library preparation -total RNA library 

construction for RNAseq and Omni-ATAC protocol for ATACseq- are described in 

detail in Materials and Methods chapter. 
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Figure 5.1: RNA sequencing quality control (a) and (b) Phred score illustrated in two 
ways: score of ~ 35 signifies data with sequencing accuracy between 99.9%-99.99% (n=7 
per cohort). (c) Percentage of per base N-content showing N content of <1%. 
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(c)
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5.2 RNA sequencing  

5.2.1 Transcriptome analysis 

In order to develop a library that would include non-coding regions of the 

genome, I decided to proceed with a total RNA library construction with 

ribosomal RNA depletion, as described in section 2.4.5 (478). Only extracted RNA 

with RIN score >7 was used in the library construction (Appendix 13.0). After 

library construction, the quality of DNA library was tested in an Agilent 2200 

TapeStation and only samples with satisfactory, single DNA peak between 200-

300bp were subjected to downstream RNAseq (Appendix 14.0). The analysis 

described below was conducted in collaboration with our lab’s bioinformatician, 

Mr Hasan Mirza. 

After completion of sequencing, data (n=7 vehicle and n=7 HKMTI-1-005 samples) 

were checked for quality control (QC) as per the parameters of the FastQC 

program (479). Data were found to be satisfactory, as evident by the high Phred 

quality score (figure 5.1a and 5.1b) and minimal per-base-N-content (figure 

5.1c). The total library size for each sample is shown in figure 5.2a. There were 

no samples found with adapter contamination of more than 0.1%. Contamination 

with rRNA varied between 0.2%-16.2% (figure 5.2b); however rRNA reads were 

removed using the BBduk package (480). Following this, raw reads were aligned 

to mouse genome version GRCm38.p4 (mm10) using the STAR aligner with 

default parameters (figure 5.2c) (481). Raw counts were generated using the 

Rsubread package (482). We then checked for Differentially Expressed Genes 

(DEGs) using the DESeq package (483), which internally normalises the counts 

across samples using its median of ratios method (484).  

All analyses, statistical tests, and plots were generated in R version 3.3.3 unless 

specified otherwise. MultiQC was used to collate data across different programs 

(485). 
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Figure 5.2: RNA sequencing quality control and library composition (a) Number of reads 
for all samples (n=7 per cohort) (b) genomic composition of the library and (c) alignment 
results using the aligner STAR showing number of reads aligned to GRCm38.p4 (mm10) 
version of mouse genome per sample. 

 

(b)

(a)

(c)
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In total, 1,146 genes were found to be overexpressed in the treated samples 

using the filtration criteria of log-2-fold change of ³ 0 at FDR threshold of 5%. In 

contrast, 733 genes were downregulated with log-2-fold change of £ 0 at FDR 

threshold of 5% (figure 5.3a and 5.3b). Using Ward’s hierarchical clustering 

method, we observe that vehicle samples cluster separately from treatment 

samples and within each group, DEGs mostly follow similar trends (figure 5.4a). 

Following HKMTI-1-005 treatment, immunoglobulin kappa variable 2-109 was the 

gene showing the largest fold change (Log2FC 4.43, FDR= 0.006) and Gpnmb, 

which encodes the type I glycoprotein GPNMB and is known to be present in 

ovarian cancer recurrences (486), had the most statistically significant 

upregulation (Log2FC 4.39, FDR= 1.08e-116). Amongst those 1,146 upregulated 

DEGs were genes that had already been found to be overexpressed by single-

gene qPCR or by qPCR array, including Cxcl10 (Log2FC 1.69, FDR<0.001), Cxcl11 

(Log2FC 1.19, FDR<0.001) and Ccl5 (Log2FC 1.84, FDR= 8.33e-08). Importantly, a 

myriad of other immune-stimulatory genes was also upregulated, including GzmB 

(Log2FC 2.74, FDR=3.49e-09), Klrk1 (Log2FC 1.15, FDR=0.016), stat2 (Log2FC 

1.36, FDR= 1.61e-10) and Tlr9 (Log2FC 1.21, FDR=5.00e-05).  

Type I IFN system mediators were also increased, including Irf7 (Log2FC 2.28, 

FDR=1.26e-19), Irf9 (Log2FC 0.68, FDR=1.79e-05) and Irf5 (Log2FC 0.41, 

FDR=0.02) (487), as well as Type I IFN inducible genes including Oasl1 (Log2FC 

1.87, 3.61e-19), Oas2 (Log2FC 1.94, 5.79e-11) and Oas3 (Log2FC 2.22, 6.30e-11) 

which are involved in the antiviral defence gene network (488). 

In terms of DEGs with reduced expression after treatment, Olfr732 had the 

largest reduction (Log2FC -6.13, FDR=0.038), although its relation to cancer has 

not been described in the literature as yet. Interestingly, the most statistically 

significant reduction occurred in Marco (Log2FC -5.12, FDR=7.57e-24), which is a 

pattern-recognition receptor of the class A scavenger receptor family, expressed 

in TAMs. MARCO has been found to be overexpressed in the breast cancer 

microenvironment and to be associated with poor prognosis (489). Inhibiting 

MARCO reprograms macrophages to acquire an anti-tumour phenotype and to 

successfully obstruct tumour growth (490, 491). 
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Figure 5.3: RNA sequencing- differentially expressed genes (a) Volcano plot of all 
differentially expressed genes between mice treated with vehicle (n=7) and HKMTI-1-005 
(n=7), all FDR values included, and (b) same plot as (a) but only for genes with FDR < 
0.05, along with some key genes annotated. FDR= False Discovery Rate. 
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For functional annotation of DEGs, we used the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) online Functional Annotation Tool 

(492) with access to Gene Ontology (GO) (493, 494), REACTOME (495), and KEGG 

(496) databases. Gene ontology results for the Biological Processes (BP) sub-

ontology showed that the most significantly upregulated pathway in the HKMTI-

1-005-treated tumours was the immune pathway (GO:0002376, FE 6.9, 

FDR=7.43e-67), with more than 10% of the DEGs with HKMTI-1-005 treatment 

overlapping with the genes including in the pathway. Innate immune response 

(GO:0045087, FE 5.35, FDR=9.55e-41) and viral defence (GO:0051607, FE 7.36, 

FDR=3.12e-30) were also significantly upregulated (figure 5.4b). Compared to 

upregulated pathways, fewer pathways were downregulated as a response to 

treatment. Amongst those with FE of less than 0.5 were “positive regulation of 

glucose metabolic process” (GO:0010907, FE 0.07, FDR=0.00001), “positive 

regulation of lipid metabolic process” (GO:0045834, FE 0.06, FDR=3e-5) and 

“negative regulation of gluconeogenesis” (GO:0045721, FE 0.08, FDR=5e-5) 

(figure 5.4b). Analysis by KEGG database also revealed immune pathways being 

significantly changed with treatment, such as “antigen processing and 

presentation” (mmu04612, FE 5.4, FDR=1.11e-10), “natural killer cell mediated 

cytotoxicity” (mmu04650, FE 3.3, FDR=6e-5) and “cytokine-cytokine receptor 

interaction” (mmu04660, FE 2.6, FDR=2.51e-06) (figure 5.4c).  

According to the KEGG database, none of the downregulated pathways was 

found to be statistically significant. We also analysed the data using the GO sub-

ontologies “cellular content” (CC) and “molecular function” (MF). With regards 

to genes related to the cellular content (figure 5.5a), the family of lysosome 

genes was found to be significantly increased (GO:0005764; FE 4.69, FDR=8.1e-

26), an observation also made with the KEGG database (figure 5.4c). Networks 

related to immunity such as the MHC class I protein complex (GO:0042612; FE 

14.09, FDR=7.68e-08) and the phagocyte vesicle membrane (GO:0030670; FE 

8.15, FDR=1.12e-09) were highly expressed. 
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Figure 5.4: RNA sequencing hierarchical clustering and functional annotation analysis 
(a) Heatmap of DEGs with hierarchical clustering trees for tumours (columns) and DEGs 
(rows), comparing vehicle versus HKMTI-1-005 treated tumours. Red colour represents 
upregulation and blue colour downregulation (b) Functional annotation analysis for DEGs 
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Figure 5.4: RNA sequencing hierarchical clustering and functional annotation analysis, 
continued: results using the Gene Ontology Biological Processes database; (c) Functional 
annotation analysis results for DEGs using the KEGG database; DEGs= differentially 
expressed genes. Size of the dot represents the percentage of genes in our DEGs list that 
overlap with the individual pathway gene list, red colour = upregulated genes, green 
colour = downregulated genes, DEGs= differentially expressed genes. 

 

In our analysis of molecular function sub-ontology (figure 5.5b), I found that 

GTPase activity was strongly enhanced with treatment (GO:0003924; FE 3.56, 

FDR=6.26e-09). Moreover, cytokine activity (GO:0005125; FE 2.66, FDR=0.0002) 

and cytokine receptor activity (GO:0004896; FE 5.35, FDR=0.0004) were 

upregulated with treatment, as was tumour necrosis factors receptor binding 

(GO:0005164; FE 6.84, FDR=0.0001).  

I was also interested in correlating the sequencing results to relative immune 

cell composition. This correlation has recently become possible via the 

analytical tools such as CIBERSORT or EPIC (497, 498); however, these tools are 

designed for human, rather than murine, sequence data. We therefore decided 

to use the more recently developed ImmuCC tool (499) which utilises a 162-gene 

signature matrix to describe 10 immune cell populations. Based on ImmuCC tool, 

there were no significant differences in the immune cell distribution between 

HKMTI-1-005 treatment and vehicle groups (figure 5.6a and 5.6b).  
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Figure 5.5: RNA sequencing – functional annotation analysis continued. Functional 
annotation analysis of DEGs results using the Gene Ontology Cellular Content (a) and 
Molecular Function (b) databases; Size of the dot represents the percentage of genes in 
our DEGs list that overlap with the individual pathway gene list, red colour = upregulated 
genes, green colour = downregulated genes, DEGs= differentially expressed genes. 
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Figure 5.6: RNA sequencing- ImmuCC tool (a) Immune cell distribution in the vehicle 
(left panel) and treatment group (right panel) as per ImmuCC tool. (b) quantification of 
(a) as percentages. 
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Despite the ImmuCC tool results above, single sample Gene Set Enrichment 

Analysis (ssGSEA) showed a strong concordance between the RNAseq results and 

published immune-related gene signatures. ssGSEA is a variant of the original 

GSEA, tailored for individual samples where a separate enrichment score for a 

gene set is calculated for each sample (500-502). Normalised counts from DEGs 

from RNAseq were subjected to ssGSEA analysis using the online available R code 

(503). This ssGSEA enrichment score represents the degree to which the genes in 

a particular gene set are co-ordinately up- or down-regulated within a sample. 

For each gene set, these scores were normalised as z-scores to make them 

comparable across the samples. 

Overall, 235 immune-related signatures were significantly enriched in the 

HKMTI-1-005 treatment group compared to vehicle (FDR<0.04) (Appendix 15.0), 

confirming that HKMTI-1-005 certainly modulates intra-tumoural immune 

networks (504). I reviewed the literature describing the generation of all these 

235 signatures and specifically focused on the ones that could correspond to 

pathways resulting in the phenotypic changes seen with treatment, by flow 

cytometry. Some of them are presented in figure 5.7.  

Wherry et al described some of the gene networks involved in the differentiation 

of virus-specific CD8+ cells from effector to exhausted cells following chronic 

infection from lymphocytic choriomeningitis virus (505). In ssGSEA analysis, 

tumours treated with HKMTI-1-005 were enriched for genes that are associated 

with the maintenance of a CD8+ effector status (figure 5.7a).Tumours were also 

enriched for gene pathways that reflect a phenotypic change from naive to 

effector CD8+ cells (figure 5.7b) (505).  A similar trend for treated tumours being 

enriched of networks relating to the differentiation from naïve to memory CD8+ 

cells was also seen, using a different genomic profiling, produced by Sarkar et al 

(506) (figure 5.7e).  
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Figure 5.7: RNA sequencing; Single-sample GSEA analysis: overleaf. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
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Figure 5.7: RNA sequencing; Single-sample GSEA analysis (a) to (l) Box plots showing 
enrichment score of ssGSEA immune gene signatures (C7: immunological signatures). UP 
(up) or DN (down) at the end of box plot title refers to the direction relating to the first 
(left side) component of the title i.e. GSE9650 effector_vs_exhausted_CD8_tcell_up: in 
this gene signature, the gene set relating to effector CD8 cells has an upward trend. 
ssGSEA= single sample Gene Set Enrichment Analysis. 

 

I also observed that NK cell gene networks that are activated as a response to 

type I IFN during viral infection are abundant in tumours treated with HKMTI-1-

005, when compared to gene sets activated in CD8+CD11b+ dendritic cells (507) 

(figure 5.7c). This correlates with the increase in NK cells observed by flow 

cytometry, and partially by immunohistochemistry. Following microarray 

analysis of all haematopoietic cell lineages, purified from mature C57Bl/6 mouse 

bone marrow, Konuma et al categorised gene sets for individual immune cell 

types (508). The gene set associated with NK cells was increased in HKMTI-1-005-

treated tumours (figure 5.7d).  Based on an NK cell maturation signature 

discovered by Chiossone et al, the genomic profiling of NK cells in HKMTI-1-005 

treated tumours was reminiscent to that of cells that are in a process of 

maturing and gaining effector functions (509) (figure 5.7j).  

Induced T regulatory (FoxP3+) cells are thought to be responsible for peripheral 

immune tolerance, associated with tumour-promoting potential, and to be 

different than the rest of natural T regulatory cells, found mainly in the thymus 

(510). In the tumours treated with HKMTI-1-005, gene networks are enriched 

with natural T regulatory profiles as opposed to induced T regulatory profiles, 

which again would support flow cytometry results of Chapter 4 (figure 5.7h). A 

similar trend towards a reduction in pathways involved in the differentiation and 

maintenance of induced T regulatory cells was also seen using gene profiling 

data by Haribhai et al (figure 5.7k) (511). Based on two independently published 

gene signatures (512, 513), Th1 immune response networks were found 

enhanced in HKMTI-1-005 treated tumours compared to vehicle, supporting the 

hypothesis that HKMTI-1-005 indeed fosters a balance towards anti-tumour 

immune response rather than T cell anergy (figure 5.7i and 5.7l). 
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Lastly, with regards to myeloid cells, I observed that HKMTI-1-005 treated 

tumours express macrophages gene networks that are activated following 

stimulation of macrophages with bacterial lipopolysaccharide (514) (figure 5.7f) 

and also express signatures associated with activated and mature dendritic cells 

(515) (figure 5.7g). 

 

5.2.2 Endogenous Retroviruses (ERVs) analysis 

Recent evidence suggests that ERVs can potentiate anti-tumour immunity when 

they are transcriptionally active (312, 313, 476). In addition, RNAseq results 

demonstrated upregulation of the “defence response to virus” pathway with 

HKMTI-1-005. Therefore, I decided to conduct an ERV analysis with guidance Dr 

Marina Natoli (Imperial College). As described in 5.2.1, RNAseq QC was 

performed and raw reads were aligned to mouse genome version GRCm38.p4 

(mm10) using the STAR aligner with default parameters (481). A mm10 

annotation for mouse endogenous viral elements was obtained from the gEVE 

database (516, 517). Reads were assigned to mouse ERV features using 

featureCount from the Rsubread package (482) with the options for reads to be 

multimapping and “primary only”, which takes primary alignments only into 

account, a method adapted by Haase et al (518).  

To remove low-expressing ERVs, we applied a filtration threshold whereby an 

ERV needed a count of at least 10 in one or more samples (in either the vehicle 

or treatment group) in order to be included in our analysis. The total number of 

ERVs detected was 61,184 but only 2,781 and 2,465 passed the filtration 

threshold in the control and treatment groups respectively. 2,118 ERVs were 

common to both groups and they were subjected to differential expression 

analysis using the DESeq2 package (483). Interestingly, out of these 2,118 ERVs, 

51 were differentially expressed at the 5% FDR threshold with 39/51 showing a 

trend to be overexpressed (Log2FC ³ 0).  

The ERVB2 and IAP retrotransposon elements of the ERVK class were found to be 

the most highly transcribed in treated tumours. One of the IAP ERVK elements, 
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IAPEY3-int|LTR/ERVK, had a fold change of log2FC of 2.89 (FDR= 2.40e-22) and 

one of ERVB2 ERVK elements had a fold change of 2.67 (FDR=2.41e-23) (figure 

5.8c). On the other hand, almost all of the downregulated retrotransposon 

elements in HKMTI-1-005 treated tumours belonged to ERV1 class. The elements 

with the steepest reduction were MuRRS4-int|LTR/ERV1 (log2FC -1.92, 

FDR<0.001), and MURVY-int|LTR/ERV1 (log2FC -1.6, FDR<0.001) (figure 5.8c). 

The frequency of these elements in the differentially expressed list of sequences 

is also shown in tables in figure 5.8a and figure 5.8b. These elements represent 

identical sequences in different genomic loci (Appendix 16.0). 

 

 

Figure 5.8: RNA sequencing; endogenous Retroviruses analysis. Tables showing the 
frequency of ERVs found to be differentially expressed, categorised by class (a) and by 
family (b). (c) Volcano plot demonstrating DE ERVs with an FDR < 0.05. 
ERVs=endogenous retroviruses.   
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5.3 ATAC sequencing 

For ATACseq library construction, I followed the OmniATAC protocol by Corces et 

al (see section 2.5) (327). The electropherograms of samples used in 

downstream sequencing are shown in Appendix 17.0. ATACseq data (n=6 control 

and n=6 treatment samples) were checked for quality control (QC) using FastQC 

(1) program. The data were found to be of good sequencing quality based on the 

Phred scores and the per-base-N-content (figure 5.9). Adapter contamination 

was found at the 3’ ends and these were removed using Trimmomatic tool (519), 

(figure 5.10a and 5.10b). Reads were aligned against the GRCm38.p4 (mm10) 

mouse genome with the use of BWA-MEM method (520) and post-alignment 

quality metrics were accessed using the qualimap program (521). Picard tools 

were used to mark duplicate reads (522). A very high proportion of duplicate 

reads was found across samples (figure 5.10c), an effect commonly seen with 

ATACseq library construction (verbal communication by Dr Ian Garner). During 

construction of my DNA library, the low starting material which required PCR 

overamplification probably contributed to the presence of high number 

duplicate reads. Such duplicates were removed before proceeding with the 

downstream analyses. All bam files were sorted and indexed using the samtools 

(523). We decided to remove one treatment sample from the downstream 

analysis (PS04d) (figure 5.11a and 5.11b) as it yielded a very small number of 

sequencing reads compared to the remainder of the cohort. Thus, we were left 

with n = 6 controls, and n = 5 treatment samples. Mitochondrial reads 

represented 0.8%-4.3% of reads and they were therefore ignored (figure 5.11c). 

All analyses, statistical tests, and plots were generated in R version 3.3.3 unless 

specified otherwise. MultiQC was used to collate data across different programs 

(485). 
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Figure 5.9: ATAC sequencing quality control (a) and (b) Phred score illustrated in two 
ways: score of ~ 35 signifies data with sequencing accuracy between 99.9%-99.99% (n=7 
per cohort). (c) Percentage of per base N-content showing N content is essentially 0%. 

(a)

(b)

(c)
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Figure 5.10: ATAC sequencing quality control and library composition. The 
cumulative percentage count of the proportion of the library which has been 
contaminated by adapter before adapter removal (a) and after adapter removal (b), 
using the Trimmomatic tool (519).(c) Duplication rate after library alignment.  

(a)

(b)

(c)
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Figure 5.11: ATAC sequencing quality control – continued (a) Sequencing counts for 
the entire pool of samples; PS04d sample was removed from analysis, given the small 
number of reads yielded (b) Map of total number of reads, post-alignment, which shows 
two files (every sample was represented by t wo files) in the far left, having the lowest 
number of reads; this sample was removed from downstream analysis (c) percentages of 
mitochondrial reads across all samples.  
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The MACS2 tool was used to call peaks on all individual control and treatment 

samples (524). This generated narrow peak files for each sample (figure 5.12a). 

The average length of these peaks was <400 bp (figure 5.12b). In the absence of 

a matched background input for each sample, we devised again a filtration 

strategy whereby only those peaks that were present across all treatment 

samples (n = 5) - with any proportion of overlap among them - were considered 

to truly represent areas of open chromatin. 

After application of this filtration, 88,401 consistent peaks were called in all 

treatment samples. These peaks were also filtered for presence in the control 

samples with any proportion of overlap i.e. from one base to the full peak 

length. While doing so, we only considered those peaks that were present in at 

least 50% of the control samples i.e. 3/6 control samples. Following this process, 

there were 74,424 consensus control peaks that matched these criteria. All 

consensus treatment peaks i.e. 88,401 were tested for overlap with the 74,424 

consensus control peaks and any overlapping peaks were filtered out. 

Interestingly, approximately 71% of 88,401 had no overlap with control peaks 

i.e. 62,886 unique narrow peaks were found in the treatment samples that were 

not present in the control samples.  

The true 62,886 open chromatin regions consistent across all treatment samples 

were annotated for known genomic markers, regulatory regions, and open 

reading frames of all genes including the UTR regions at both ends. Most of the 

peaks were found to be scattered around the genome in the intergenic regions 

(60%) whereas about 35% of them were found within the gene bodies and UTR 

regions (figure 5.12c). With the use of BEDtool v.2.29.0 software (525) and 

annotation from the GRCm38.p4 (mm10) database, we found that these peaks 

(found within gene bodies) overlapped with 7,788 known mouse genes. The 

majority of these (88.2%) were found to be protein-coding genes (figure 5.13a). 

When these genes were matched with the RNAseq data, we found 552 that were 

common between the differentially RNAseq 5% FDR DEGs and the list of genes 

associated with peak changes on ATACseq analysis (figure 5.13b). 
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Figure 5.12: ATAC sequencing peak results. Number of ATACseq peaks per sample (a) 
and average length of peaks (b) found in vehicle and HKMTI-1-005 treated samples, 
before applying filtration criteria. (c) distribution of ATAC seq peaks across the genome 
in percentages. ATACseq= assay for transposase accessible chromatin using sequencing. 
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Figure 5.13: ATAC sequencing results; peak distribution and overlap between 
present peaks and DEGs by RNA sequencing: overleaf 
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Figure 5.13: ATAC sequencing results; peak distribution and overlap between 
present peaks and DEGs by RNA sequencing (a) Pie chart showing the distribution of 
gene types for the unique ATACseq peaks found, after applying filtration criteria. (b) 
Volcano plot showing fold change of the genes that were positive for presence of unique 
ATACseq peak, following HKMTI-1-005 treatment. (c) Volcano plot showing functional 
annotation by GO BP database of the DEGs that were positive for presence of unique 
ATACseq peak, following HKMTI-1-005 treatment. Size of the dot represents the 
percentage of genes in our DEGs list that overlap with the individual pathway gene list, 
red colour = upregulated genes, green colour = downregulated genes, rRNA= ribosomal 
RNA, IncRNA= long non-coding RNA, miRNA=microRNA, ATACseq= assay for transposase 
accessible chromatin using sequencing, DEGs=differentially expressed Genes, FE= fold 
enrichment, FDR=False Discovery Rate= p adjusted.  

 

We then used the DAVID online Functional Annotation Tool (492) to add 

functional annotation on these 552 DEGs using Gene Ontology (GO) (493, 494), 

REACTOME (495), and KEGG (496) databases. Based on the Biological Processes 

sub-ontology of GO, the upregulated genes with open chromatin overlapped 

significantly with genes belonging to “immune system process” signatures 

(FDR=9.19e-14) (figure 5.13c). Amongst other significant pathways were “innate 

immune response” (FDR= 4.57e-06), “cellular response to IFN-β” (FDR= 5.34e-07) 

and “defence response to virus” (FDR= 0.001). This signifies that at least some 

of the intra-tumoural changes in chromatin conformation occur in genomic areas 

that are transcriptionally active and strongly associated with pathways of the 

immune system. The analysis results by the other GO sub-ontologies and the 

KEGG pathway are shown in Appendix 18.0. 

The ERVs (n=51) that were found to be differentially expressed in treatment 

samples had no overlap with the ATACseq unique treatment peaks. 
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5.4 Discussion 

The results of this chapter describe intra-tumoral changes in transcriptome and 

chromatin conformation after treatment with HKMTI-1-005 in Trp53-/- ID8 

tumours. In terms of gene expression profiling, treated and vehicle samples 

separated apart very nicely, signifying a robust drug effect. 

Major mediators of immune response, including Cxcl10, Cxcl11, Ccl5, Stat2, 

GzmB, Tlr9 and Klrk1 (which encodes the NK cell receptor NKG2D), were 

transcriptionally upregulated with treatment. Gene ontology (GO) analysis 

showed that the most significantly upregulated biological pathways were 

immune process and, more specifically, innate immune response and response to 

virus. Different sub-ontologies of GO confirmed that immune-related networks 

were overexpressed in treated tumours. Single sample Gene Set Enrichment 

Analysis also highlighted that tumours were enriched for gene sets associated 

with effector CD8+ cells, memory CD8+ cells, mature NK cells as well as 

stimulated macrophages and dendritic cells. By contrast, transcription networks 

related to induced Tregs were not enriched. Overall, these RNAseq results mirror 

changes seen by flow cytometry-assisted characterisation of the intra-tumoral 

immune cell populations.  

By contrast, the ImmuCC tool results showed no significant changes between 

treatment and control samples. The ImmuCC tool was designed using public and 

experimental data and is currently the only tool available to help deconvolute 

immune cellular composition, based on gene expression profiling in murine 

systems. The design methodology of ImmuCC seems robust. However, it is not 

widely used yet by the scientific community and it has perhaps not been tested 

enough. Moreover, ImmuCC provides a crude cellular composition of the main 

cell types, without deciphering differentiation or activation state. Given that 

the flow cytometry results mainly support a change in differentiation (effector 

CD8+) or marker expression (Ly6C on macrophages), it is perhaps unsurprising 

that the transcriptome changes do not necessarily reflect a change in the 

absolute number of immune cell populations, as defined by ImmuCC. 
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The differences seen in ERV transcription with treatment are extremely 

interesting. Expression of endogenous retro-elements is subject to epigenetic 

silencing (526, 527) with different mechanisms safeguarding this silencing in 

different cell types and stages of development and differentiation (528-530). 

Interestingly, H3K9me3, one of HKMTI-1-005 targets, has been established as a 

repressive mark on ERVs in embryonic stem cells (472, 528). ERVs can activate B 

cells when they present as nucleic acids intracellularly (475, 531). Moreover, 

ERV viral protein products can also be presented to T and B cells as antigens and 

induce spontaneous immune responses (532, 533). In patients with breast 

cancer, melanoma and testicular cancer, ERVs such as ERVH, ERVE and ERVK, 

were found to be overexpressed compared to normal tissue (534-538). 

Interestingly, antibodies against human ERVK – the same ERV that was 

upregulated in my RNAseq results- were found in the peripheral blood of 

patients with breast cancer; PBMCs from the same patients could mount an 

effector response after co-culture with autologous DCs that were pulsed with 

ERVK RNA or protein (537). T cell reactivity against ERVs has also been observed 

in other human cancers (534-536, 539, 540), other than breast cancer, however, 

there is paucity of data on murine models in the literature. 

ERV analysis after HKMTI-1-005 treatment showed elements of ERVK being 

upregulated in different chromosomes or different locations of the same 

chromosome, whereas ERV1 retrotransposon was transcriptionally 

downregulated. Although the exact immunogenic effect of ERVK in mice has not 

yet been described, this increase in ERVs transcript, in conjunction with viral 

defence pathways being highly enriched in the treated tumours, indicates that 

de-repression of ERVs may be a mechanism of enhanced antigenicity following 

HKMTI-1-005 treatment.  

We also conducted ATACseq analysis on the same tumour that the RNAseq 

interrogation was performed. Unsurprisingly, given the drug’s mechanism of 

action, there were approximately 60,000 peaks of open chromatin region 

present in the treated tumours that were not present in the vehicle. It is worth 

noting that only narrow peaks were selected for the purposes of this analysis and 

in combination with our filtration criteria imposed on these narrow peaks, our 
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analysis would be described as fairly stringent. Nevertheless, out of 

approximately 7,800 genes found in areas of ATACseq peaks, 552 genes 

overlapped with DEGs found by RNAseq. Focusing on these, we once again 

discovered that these genes belong to immune response pathways, including 

innate and antiviral responses.  

Interestingly, 60% of these areas of open chromatin were located in intergenic 

regions, a finding that lends itself to future interrogation, hypothesizing that 

perhaps these regions are related to enhancers/repressors that regulate gene 

expression remotely. We did not detect any retroelements within these areas of 

open chromatin and this could be a result of our relatively stringent ATACseq 

filtration criteria. Certainly, given the evolving role of ERVs in inducing anti-

tumoral responses (312, 313, 347), it would be worthwhile re-interrogating the 

ATACseq results with perhaps more lenient filtration criteria and with a focus on 

intergenic regions. Overall, these findings confirm that HKMTI-1-005 treatment 

in vivo induces chromatin conformation changes that lead to transcriptional 

activation. This transcriptional activation mainly involved immune gene 

networks, and this would explain the changes in immune cellular composition 

seen in tumours by flow cytometry. One obvious question at this stage would be 

whether these chromatin and transcriptional changes actually occur in the 

tumour cells or represent immune cells in the tumour microenvironment and this 

question would require single-cell RNA and/or ATAC sequencing experiments to 

be answered. Irrespective of which cell population HKMTI-1-005 affects the most 

in vivo, the transcriptional changes seen, coupled with the functional changes 

observed by flow cytometry and the moderate therapeutic effect signifiy that an 

anti-tumour immune response takes place in the TME. Ovarian carcinoma 

prognosis is extremely depended on the hosts ability to mount an anti-tumour 

response (151, 154, 205, 541) and therefore, reinforcing local immune networks 

remains an important target. 
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Despite ample evidence that robust anti-tumour response is associated with 

improved patient survival, current immunotherapies have had disappointing 

results in OC, when compared to other tumour types such as melanoma, lung 

and renal cancers. Therefore, the need to discover ways to potentiate immune 

therapies for OC is critical. Recently, a lot of focus has been directed on 

discovering how cancer cells epigenetically alter the transcription of key 

immune genes, in order to achieve immune evasion. Epigenetic pathways, in 

contrast to many gene mutations, are “targetable” pharmacologically and 

therefore present actionable options for inhibition. 

I started this project taking an agnostic approach to discovering novel epigenetic 

targets that could influence the transcription of a chemokine that is pivotal to 

leukocyte migration and activation. Through a medium-throughput screening, 

G9a histone methyltransferase emerged as a hit. In the face of growing evidence 

that EZH2 methyltransferase regulates immune cell fate very tightly and that it 

also works in conjunction with G9a, I proceeded with investigating the inhibition 

of both targets, G9a and EZH2, simultaneously. Dual blockade of the two targets 

revealed an improved therapeutic outcome and a measurable effect on 

reprogramming the TME to a more favourable immune cell composition. This 

included the presence of cytotoxic lymphocytes with effector properties, an 

increased frequency of natural killer cells, coupled with a reduction in 

immunosuppressive CD4+ cells and changes in the expression of activating 

receptors on dendritic cells. These differences following treatment with dual 

G9a/EZH2 inhibition were observed at in vivo doses that were not above the GI50 

dose (as tested on MDA-MB-231 and A2780 cell lines in vitro). This would support 

that combined G9a/EZH2 inhibition at sub-GI50 doses elicits an 

immunostimulatory response through means other than just cell killing. 

Moreover, treatment with G9a/EZH2 inhibition induced transcriptional and 

chromatin accessibility effects that supported the changes seen in the immune 

cellular composition. 
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Figure 6.1: Immune related changes observed in vivo in Trp53-/- ID8 tumours, 
following treatment with the dual G9a/EZH2 inhibitor HKMTI-1-005. Reactivation of 
repressed endogenous retroviruses (ERVs) leads to the presence of double-stranded 
RNAs (dsRNAs) in the cytoplasm of cancer cells which in turn activates Type I IFN 
signalling pathways. Antigen presentation on tumour cells in increased via induction of 
MHC molecules expression. Tumour cells produce chemokines such as CCL5, CXCL9, 
CXCL10, CXCL11 which promote T cell homing and their activation to effector cells. 
Induction of CD86 receptor on DCs augments DC-T cell interaction and therefore T cell 
activation too. The reduction of MARCO receptor on macrophages has been associated 
with reprogramming to M1 phenotype (490, 491). The NK cell activating receptor NKG2D 
is increased following treatment, as well as the NK cell granzyme-B and perforin 
content. 
 

 

Figure 6.1 summarises the most important immune-related changes observed in 

vivo following treatment with the dual G9a/EZH2 inhibitor HKMTI-1-005, as 

shown by flow cytometry and RNA/ATAC sequencing. 

The results of the experiments described in Chapter 3 and Chapter 4 raise 

questions that are worthy of further exploration. Firstly, the therapeutic and 

immunomodulatory effects of HKMTI-1-005 need to be tested in other syngeneic 
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models of ovarian cancer to confirm that this effect is not specific to the ID8 

model. Recently, new syngeneic models that recapitulate the TME of ovarian 

cancer have been produced (542). Some of these models were generated on the 

background of fallopian tube secretory epithelium (543) and will therefore be 

more representative of the human disease. Given the novelty of HKMTI-1-005, 

testing the reproducibility of the existing results on other mouse models will add 

to our observations on the safety of this compound and will help us establish a 

definitive treatment protocol. 

Although the transcriptional results following HKMTI-1-005 treatment show 

concordance with the flow cytometry results, there is still uncertainty as to 

which cell type is the primary target of HMKTI-1-005. We know that HKMTI-1-005 

treatment upregulates the secretion of chemokines CXCL9, CXCL10 and CCL5 by 

tumour cells in vitro, and this could, of course, contribute to mounting an 

immune response in the TME. However, our transcriptional and chromatin 

accessibility results on murine tumours were based on whole-tumour sequencing 

and therefore, do not specify which exact cell type underwent these changes 

the most. Single-cell sequencing following treatment with HKMTI-1-005 would be 

the best way forward to delineate the mechanism via which the compound 

exerts its function in the TME. 

The contribution of ERV-K retroelements in the initiation of immune response 

following HKMTI-1-005 treatment should be further explored. ERV-K elements 

are overexpressed in ovarian tumours, when compared to normal ovaries which 

may of course not be the precursor tissue of origin in all cases. Furthermore, 

antibodies against ERV-K have been detected in the sera of OC patients in 

comparison to healthy controls (544). To further support the role of ERV-K in 

HKMTI-1-005-mediated immune stimulation, we could use ERV-K peptide to pulse 

autologous DCs and then perform DC-T cell co-culture to look for evidence of T 

cell stimulation, such as T cell proliferation, tumour cell killing and IFNγ 

release.  

The type 1 IFN pathway, which is responsible for building anti-viral responses 

(545), was upregulated following HKMTI-1-005 treatment in vivo. This could 
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further support that G9a/EZH2 inhibition activates ERV expression, which in turn 

stimulates Type 1 IFN networks and the subsequent immune TME changes 

observed at the cellular level. Testing HKMTI-1-005 treatment while blocking the 

type 1 IFN pathway could therefore help us confirm that this is the principal 

mechanism of action for this compound. The transcriptional factor interferon-

regulator factor 7 (IRF7), a critical step in type 1 IFN transcription, was found to 

be upregulated following HKMT-1-005 treatment in vivo. Crucially, IRF7 is 

principally phosphorylated by the TANK-binding kinase 1 (TBK1) (546). The 

McNeish lab has generated a Tbk1-/- ID8 subclone and an immediate future plan 

is to use HKMTI-1-005 treatment on mice harbouring Trp53-/- ID8 tumours versus 

Trp53-/- tbk1-/- ID8 tumours. If TBK1 deficiency reverses the immune changes 

seen in tbk1 wild-type tumours, then we can be confident that HKMTI-1-005 

mediates immune stimulation via the type 1 IFN pathway. 

Although the effect of dual G9a/EZH2 blockade on survival and immune 

stimulation in vivo is robustly superior to G9a inhibition alone, dual blockade has 

not been compared to EZH2 inhibition. Experiments whereby dual inhibition is 

compared head-to head to single EZH2 inhibition are therefore warranted. 

EZH2 is rapidly emerging as a therapeutic target in various cancers (427-429, 

547-549). In OC, EZH2 regulates pathways of epithelial-to-mesenchymal 

transition, invasion, immune response, as well as resistance to chemotherapy 

(282, 425, 550-552). Novel EZH2 inhibitors, such as tazemetostat, CPI-1205, 

SHR2554 and PF06821497, have already entered early phase clinical trials in 

solid tumours and lymphomas (table 6.1). Tazemetostat, was granted FDA 

approval in refractory/relapsed follicular lymphoma patients with EZH2 

mutations earlier this year and also showed promising results in solid tumours, 

like sarcoma (553). A phase 2 study on patients with relapsed/refractory 

lymphoma and either mutated or wild-type EZH2 showed exceptional objective 

responses [objective response rate 69% (95% CI 53–82%)] in the EZH2 mutated 

cohort and 35% (23–49%)] in the EZH2 wild-type cohort. Moreover, PFS in both 

patients with mutated EZH2 [13.8 months (95% CI 10.7–22.0)] and wild-type 

EZH2 [11.1 months (3.7–14.6)] was favourable (554).  
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Study title Disease/condition EZH2 inhibitor 
Study of Tazemetostat in participants 
with relapsed/refractory B-cell Non-
Hodgkin's Lymphoma with EZH2 gene 
mutation 

Relapsed or Refractory B-cell Non-
Hodgkin's Lymphoma Tazemetostat 

A phase II, multicenter study of 
the EZH2 Inhibitor Tazemetostat in 
adult subjects with INI1-Negative 
tumours or relapsed/refractory 
Synovial Sarcoma 

Malignant Rhabdoid tumours, 
Rhabdoid tumours of the kidney, 
Atypical Teratoid Rhabdoid tumours, 
Selected Tumours with Rhabdoid 
Features, Synovial Sarcoma INI1-
negative Tumours, Malignant 
Rhabdoid Tumour of Ovary, Renal 
Medullary Carcinoma, Epithelioid 
Sarcoma 

Tazemetostat 

Study of the EZH2 Inhibitor 
Tazemetostat in Malignant 
Mesothelioma 

Mesothelioma, BAP1 Loss of Function Tazemetostat 

A phase 1 study of the EZH2 Inhibitor 
Tazemetostat in paediatric subjects 
with relapsed/refractory INI1-Negative 
tumours or Synovial Sarcoma 

Rhabdoid Tumours, INI1-negative 
Tumours, Synovial Sarcoma, 
Malignant Rhabdoid Tumour of Ovary 

Tazemetostat 

Open-Label, multicenter, phase 1/2 
study of Tazemetostat as a single 
agent in subjects with advanced solid 
tumours or with B-cell Lymphomas and 
Tazemetostat in combination with 
prednisolone in subjects with DLBCL 

B-cell Lymphomas, Advanced Solid 
Tumours, Diffuse Large B-cell 
Lymphoma 

Tazemetostat 

A study evaluating CPI-1205 in patients 
with B-Cell Lymphomas B-Cell Lymphoma CPI-1205 

ProSTAR: a study evaluating CPI-1205 
in patients with metastatic castration 
resistant prostate cancer 

Metastatic Castration Resistant 
Prostate Cancer CPI-1205 

Phase Ⅰ/Ⅱ study of SHR2554 in 
combination with SHR1701 in patients 
with advanced solid tumours and B-cell 
Lymphomas 

Solid Tumour, Lymphoma SHR2554 plus 
SHR1701 

Testing the addition of the anti-cancer 
drug, tazemetostat, to the usual 
treatment (dabrafenib and trametinib) 
for metastatic melanoma that has 
progressed on the usual treatment 

Cutaneous Melanoma, Metastatic 
Malignant Neoplasm in the Central 
Nervous System 

Tazemetostat  

Safety and efficacy of MAK683 in adult 
patients with advanced malignancies Diffuse Large B-cell Lymphoma MAK683 (EED 

inhibitor) 

ORIOn-E: A Study Evaluating CPI-1205 
in Patients with Advanced Solid 
Tumours 

Advanced Solid Tumours CPI-1205 

Busulfan, Fludarabine, Donor Stem Cell 
Transplant, and Cyclophosphamide in 
treating patients with multiple 
myeloma or myelofibrosis 

EZH2 Gene Mutation, myeloma, 
myelofibrosis - 

A Phase 1 study of SHR2554 in 
subjects with relapsed or refractory 
mature lymphoid neoplasms 

Relapsed or Refractory Mature 
Lymphoid Neoplasms SHR2554 

PF-06821497 Treatment of 
Relapsed/Refractory SCLC, Castration 
Resistant Prostate Cancer, and 
Follicular Lymphoma 

Small Cell Lung Cancer, Follicular 
Lymphoma, Castration Resistant 
Prostate Cancer, Diffuse Large B-Cell 
Lymphoma 

PF-06821497 

tazemetostat expanded access 
program for adults with epithelioid 
sarcoma 

Epithelioid Sarcoma Tazemetostat 

Table 6.1: On-going early phase trials with EZH2 inhibition. 
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Cancer Types Associated genes References 
EZH2 overexpression   

Breast CK5, CK6, P-cadherin, CDKN1C, FOXC1, 
Wnt/β-catenin signaling, DNA repair 
(RAD51) 

(428, 429, 555-
559) 

Prostate DAB2IP, p16, CDK4, MSMB, E-cadherin, Ras 
(KRAS), NF-κB (NFKB1), TIMP2, TIMP3 

(428, 429, 560-
565)  

Endometrial p16, E-cadherin, SFRP1, DKK3, β-catenin (428, 566, 567) 
Melanoma CDKN1A, DCK, AMD1, WDR19 (236, 432, 557, 

568) 
Ovarian VASH1 (426) 
Glioblastoma BMPR1B (557, 569) 
Lung DKK1 (570) 
Natural killer/T-cell 
lymphoma 

Cyclin D1  (571) 

Hepatocellular Unknown (572) 
Bladder Unknown (557, 573, 574) 

EZH2 mutation (gain of function)   
Non-Hodgkin’s 
lymphoma or 
melanoma 

CDKN2A, CDKN1A, BLIMP1  (575-579) 

Table 6.2: EZH2 overexpression and gain-of-function mutations in cancers and 
affected targets 

 

Undoubtedly, the promising results observed in lymphoma will encourage further 

research in other tumour types, especially those with aberrant EZH2 (table 6.2).  

With regards to G9a histone methyltransferase, there is certainly preclinical 

evidence for its role in tumorigenicity in various cancer types (377, 420-422, 

580) and studies on human samples are gradually starting to emerge (411, 416-

418, 467). G9a inhibitors are currently being optimised but have not yet entered 

clinical development (376, 379).  

The prospect of inhibiting both methyltransferases with a dual inhibitor is 

therefore an exciting one, as we will be able to synergistically abrogate gene 

networks that promote tumorigenesis, either via blocking the conventional 

proliferative pathways, or via re-activation of immunostimulatory signals. Given 

the profound toxicity that is observed with the combination immunotherapies in 

clinical practice (581), an attempt to augment immune checkpoint inhibition 

with epigenetic modifiers (as opposed to additional checkpoint antibodies), may 

represent a safer approach going forward. The preclinical results presented in 
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this thesis are perhaps modest therapeutically but provide good evidence that 

dual inhibition of G9a/EZH2 induces favourable changes in the tumour immune 

microenvironment of ovarian cancer. In retrospect, and with the knowledge that 

achieving a therapeutic response with current immunotherapies in ovarian 

cancer is challenging, it is perhaps worthwhile investigating the role of 

G9a/EZH2 inhibition in other tumour types too. These could, for example, be 

either lymphoma, where EZH2 inhibition has already showed a proven 

therapeutic effect (554) or cutaneous melanoma, where pre-clinically, EZH2 has 

been found to control adaptive resistance to immunotherapy (432). 

Overall, the results of this thesis support that dual blockade of G9a/EZH2 

histone methyltransferases modulates anti-tumour response and warrants 

further investigation towards clinical development.  
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Appendix 1 – RT2 Profiler PCR Array Mouse Chemokines and 

Cytokines; quality control and normalisation results. 

Position RefSeq Number Symbol Description 
A01 NM_009605 Adipoq Adiponectin, C1Q and collagen domain 

containing 
A02 NM_007553 Bmp2 Bone morphogenetic protein 2 

A03 NM_007554 Bmp4 Bone morphogenetic protein 4 

A04 NM_007556 Bmp6 Bone morphogenetic protein 6 

A05 NM_007557 Bmp7 Bone morphogenetic protein 7 

A06 NM_011329 Ccl1 Chemokine (C-C motif) ligand 1 

A07 NM_011330 Ccl11 Chemokine (C-C motif) ligand 11 
A08 NM_011331 Ccl12 Chemokine (C-C motif) ligand 12 
A09 NM_011332 Ccl17 Chemokine (C-C motif) ligand 17 

A10 NM_011888 Ccl19 Chemokine (C-C motif) ligand 19 

A11 NM_011333 Ccl2 Chemokine (C-C motif) ligand 2 

A12 NM_016960 Ccl20 Chemokine (C-C motif) ligand 20 
B01 NM_009137 Ccl22 Chemokine (C-C motif) ligand 22 

B02 NM_019577 Ccl24 Chemokine (C-C motif) ligand 24 

B03 NM_011337 Ccl3 Chemokine (C-C motif) ligand 3 

B04 NM_013652 Ccl4 Chemokine (C-C motif) ligand 4 

B05 NM_013653 Ccl5 Chemokine (C-C motif) ligand 5 
B06 NM_013654 Ccl7 Chemokine (C-C motif) ligand 7 

B07 NM_011616 Cd40lg CD40 ligand 
B08 NM_011617 Cd70 CD70 antigen 

B09 NM_170786 Cntf Ciliary neurotrophic factor 

B10 NM_007778 Csf1 Colony stimulating factor 1 (macrophage) 

B11 NM_009969 Csf2 Colony stimulating factor 2 (granulocyte-
macrophage) 

B12 NM_009971 Csf3 Colony stimulating factor 3 (granulocyte) 

C01 NM_007795 Ctf1 Cardiotrophin 1 

C02 NM_009142 Cx3cl1 Chemokine (C-X3-C motif) ligand 1 

C03 NM_008176 Cxcl1 Chemokine (C-X-C motif) ligand 1 
C04 NM_021274 Cxcl10 Chemokine (C-X-C motif) ligand 10 

C05 NM_019494 Cxcl11 Chemokine (C-X-C motif) ligand 11 

C06 NM_021704 Cxcl12 Chemokine (C-X-C motif) ligand 12 

C07 NM_018866 Cxcl13 Chemokine (C-X-C motif) ligand 13 

C08 NM_023158 Cxcl16 Chemokine (C-X-C motif) ligand 16 

C09 NM_203320 Cxcl3 Chemokine (C-X-C motif) ligand 3 
C10 NM_009141 Cxcl5 Chemokine (C-X-C motif) ligand 5 
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Appendix 1 – RT2 ProfilerTM PCR Array Mouse Chemokines and 

Cytokines; quality control and normalisation results; continued. 

Position RefSeq Number Symbol Description 

C11 NM_008599 Cxcl9 Chemokine (C-X-C motif) ligand 9 

C12 NM_010177 Fasl Fas ligand (TNF superfamily, member 6) 

D01 NM_008155 Gpi1 Glucose phosphate isomerase 1 
D02 NM_010406 Hc Haemolytic complement 
D03 NM_010503 Ifna2 Interferon alpha 2 
D04 NM_008337 Ifng Interferon gamma 
D05 NM_010548 Il10 Interleukin 10 
D06 NM_008350 Il11 Interleukin 11 
D07 NM_008351 Il12a Interleukin 12A 
D08 NM_001303244 Il12b Interleukin 12b 

D09 NM_008355 Il13 Interleukin 13 

D10 NM_008357 Il15 Interleukin 15 

D11 NM_010551 Il16 Interleukin 16 
D12 NM_010552 Il17a Interleukin 17A 
E01 NM_145856 Il17f Interleukin 17F 
E02 NM_008360 Il18 Interleukin 18 
E03 NM_010554 Il1a Interleukin 1 alpha 
E04 NM_008361 Il1b Interleukin 1 beta 
E05 NM_031167 Il1rn Interleukin 1 receptor antagonist 
E06 NM_008366 Il2 Interleukin 2 
E07 NM_021782 Il21 Interleukin 21 
E08 NM_016971 Il22 Interleukin 22 
E09 NM_031252 Il23a Interleukin 23, alpha subunit p19 
E10 NM_053095 Il24 Interleukin 24 
E11 NM_145636 Il27 Interleukin 27 
E12 NM_010556 Il3 Interleukin 3 
F01 NM_021283 Il4 Interleukin 4 
F02 NM_010558 Il5 Interleukin 5 
F03 NM_001314054 Il6 Interleukin 6 
F04 NM_008371 Il7 Interleukin 7 
F05 NM_008373 Il9 Interleukin 9 
F06 NM_008501 Lif Leukemia inhibitory factor 
F07 NM_010735 Lta Lymphotoxin A 
F08 NM_008518 Ltb Lymphotoxin B 
F09 NM_010798 Mif Macrophage migration inhibitory factor 
F10 NM_010834 Mstn Myostatin 
F11 NM_013611 Nodal Nodal 
F12 NM_001013365 Osm Oncostatin M 
G01 NM_019932 Pf4 Platelet factor 4 
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Appendix 1 – RT2 ProfilerTM PCR Array Mouse Chemokines and 

Cytokines; quality control and normalisation results; continued. 

Position RefSeq Number Symbol Description 
G02 NM_023785 Ppbp Pro-platelet basic protein 
G03 NM_009263 Spp1 Secreted phosphoprotein 1 
G04 NM_009367 Tgfb2 Transforming growth factor, beta 2 
G05 NM_009379 Thpo Thrombopoietin 
G06 NM_013693 Tnf Tumour necrosis factor 
G07 NM_008764 Tnfrsf11b Tumour necrosis factor receptor 

superfamily, member 11b 
(osteoprotegerin) 

G08 NM_009425 Tnfsf10 Tumour necrosis factor (ligand) 
superfamily, member 10 

G09 NM_011613 Tnfsf11 Tumour necrosis factor (ligand) 
superfamily, member 11 

G10 NM_033622 Tnfsf13b Tumour necrosis factor (ligand) 
superfamily, member 13b 

G11 NM_009505 Vegfa Vascular endothelial growth factor A 
G12 NM_008510 Xcl1 Chemokine (C motif) ligand 1 
H01 NM_007393 Actb Actin, beta 
H02 NM_009735 B2m Beta-2 microglobulin 
H03 NM_008084 Gapdh Glyceraldehyde-3-phosphate 

dehydrogenase 
H04 NM_010368 Gusb Glucuronidase, beta 
H05 NM_008302 Hsp90ab1 Heat shock protein 90 alpha (cytosolic), 

class B member 1 
H06 SA_00106 MGDC Mouse Genomic DNA Contamination 
H07 SA_00104 RTC Reverse Transcription Control 
H08 SA_00104 RTC Reverse Transcription Control 
H09 SA_00104 RTC Reverse Transcription Control 
H10 SA_00103 PPC Positive PCR Control 
H11 SA_00103 PPC Positive PCR Control 
H12 SA_00103 PPC Positive PCR Control 

 

Data quality control (QC) 

Quality checks performed and results   

Test Performed Test Result 

1. PCR Array Reproducibility All Samples Passed 

2. RT Efficiency All Samples Passed 

3. Genomic DNA Contamination All Samples Passed 
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Appendix 1 – RT2 ProfilerTM PCR Array Mouse Chemokines and 

Cytokines; quality control and normalisation results; continued. 

Normalization analysis 
Automatic selection from full panel 
Groups Samples Bmp4 Cntf Geometric 

Mean 
Average Geometric 
Mean 

Control Group IFNg 21.191742 26.935425 23.89 24.05 

Control Group IFNg 21.209953 26.528824 23.72   

Control Group IFNg 21.926346 27.47536 24.54   

Group 2 UNC0642 21.601772 26.78769 24.06 24.09 

Group 2 UNC0642 21.47843 26.507425 23.86   
Group 2 UNC0642 21.993658 26.983818 24.36   

Group 3 HKMTI-1-005 21.146624 27.272264 24.01 23.87 
Group 3 HKMTI-1-005 20.72649 26.189022 23.30   

Group 3 HKMTI-1-005 21.67379 27.24161 24.30   
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Appendix 2 - List of primers used for NGS RNAseq 

Product Index Primer Sequence Expected 
Index 
Primer 
Sequence 
Read 

NEBNext Index 7 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTG 
GAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CAGATC 

NEBNext Index 12 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTG 
GAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CTTGTA 

NEBNext Index 13 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATTGTTGACTGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

AGTCAA 

NEBNext Index 14 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATACGGAACTGTGAC 
TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

AGTTCC 

NEBNext Index 15 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATTCTGACATGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ATGTCA 

NEBNext Index 16 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATGCGGACGGGTGAC 
TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CCGTCC 

NEBNext Index 18 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATGTGCGGACGTGAC 
TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTCCGC 

NEBNext Index 19 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATCGTTTCACGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTGAAA 

NEBNext Index 20 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATAAGGCCACGTGAC 
TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTGGCC 

NEBNext Index 21 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATTCCGAAACGTGAC 
TGGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GTTTCG 

NEBNext Index 22 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATTACGTACGGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

CGTACG 

NEBNext Index 23 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATATCCACTCGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

GAGTGG 

NEBNext Index 25 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATATATCAGTGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ACTGAT 

NEBNext Index 27 Primer 
for Illumina 

5´-CAAGCAGAAGACGGCATACGAGATAAAGGAATGTGACT 
GGAGTTCAGACGTGTGCTCTTCCGATC-s-T-3´ 

ATTCCT 

NEBNext Adaptor for 
Illumina 

5´-/5Phos/GAT CGG AAG AGC ACA CGT CTG AAC TCC 
AGT CUA CAC TCT TTC CCT ACA CGA CGC TCT TCC GAT 
C-s-T-3´ 

N/A 

NEBNext Universal PCR 
Primer for Illumina 

5´-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT 
TCC CTA CAC GAC GCT CTT CCG ATC-s-T-3´ 

N/A 
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Appendix 3 – List of Sigma-Aldrich customised primers used for 

ATACseq  

Ad1_universal 
primer 

AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAG
ATGTG 

Ad2.2_CGTACTAG CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCG
GAGATGT 

Ad2.3_AGGCAGAA CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCG
GAGATGT 

Ad2.4_TCCTGAGC CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCG
GAGATGT 

Ad2.5_GGACTCCT CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCG
GAGATGT 

Ad2.6_TAGGCATG CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCG
GAGATGT 

Ad2.7_CTCTCTAC CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCG
GAGATGT 

Ad2.8_CAGAGAGG CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCG
GAGATGT 

Ad2.9_GCTACGCT CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCG
GAGATGT 

Ad2.11_AAGAGGCA CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCG
GAGATGT 

Ad2.12_GTAGAGG
A 

CAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCG
GAGATGT 

Ad2.13_GTCGTGAT CAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCG
GAGATGT 

Ad2.14_ACCACTGT CAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCG
GAGATGT 
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Appendix 4 – Qiagen 84-chemokine/cytokine array results 

    UNC0642   HKMTI-1-005   
Position Gene 

Symbol 
Fold Change (comparing to IFNγ group) 

    Fold Change p-value Fold Change p-value 
B04 Ccl4 11.82 0.060873 17.37 0.128745 
C05 Cxcl11 11.56 0.253966 2.05 0.725345 
D08 Il12b 9.59 0.041091 0.75 0.973842 
D02 Hc 9.27 0.055592 2.36 0.339248 
F10 Mstn 8.39 0.374313 0.88 0.910363 
A10 Ccl19 5.09 0.170579 44 0.019007 
G02 Ppbp 4.51 0.357471 0.76 0.644625 
D05 Il10 3.93 0.147522 20.93 0.000607 
G08 Tnfsf10 3.43 0.234453 4.09 0.06 
A06 Ccl1 3.15 0.171359 4.87 0.121683 
B03 Ccl3 2.78 0.371635 4.58 0.246707 
F01 Il4 2.42 0.38943 1.52 0.478127 
A08 Ccl12 2.31 0.39564 47.81 0.0007 
F08 Ltb 2.29 0.998804 0.44 0.466683 
A04 Bmp6 2.18 0.08957 3.11 0.192012 
D04 Ifng 2.12 0.680755 0.46 0.450364 
G05 Thpo 1.95 0.064816 0.47 0.121168 
A12 Ccl20 1.83 0.077036 0.5 0.06474 
F02 Il5 1.76 0.124181 0.19 0.107899 
D07 Il12a 1.7 0.173529 0.18 0.031004 
B05 Ccl5 1.6 0.076661 14.45 0.000046 
G10 Tnfsf13b 1.59 0.469918 0.4 0.254942 
E01 Il17f 1.58 0.225755 3.48 0.005584 
H02 B2m 1.56 0.186165 1.6 0.175551 
C10 Cxcl5 1.52 0.662993 0.21 0.365159 
D10 Il15 1.47 0.060979 1.96 0.010728 
F11 Nodal 1.41 0.500656 0.61 0.30745 
H03 Gapdh 1.31 0.092891 1.82 0.012692 
B02 Ccl24 1.31 0.546409 0.61 0.30745 
E10 Il24 1.25 0.267759 58.81 0.32879 
E11 Il27 1.24 0.469555 2.78 0.869944 
D01 Gpi1 1.15 0.092445 1.24 0.026233 
B11 Csf2 1.13 0.531199 4.86 0.003689 
C08 Cxcl16 1.04 0.454877 1.23 0.201107 
E05 Il1rn 1.04 0.565877 1.13 0.093138 
D11 Il16 1.03 0.934816 0.63 0.356392 
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Appendix 4 – Qiagen 84-chemokine/cytokine array results 

    UNC0642   HKMTI-1-005   

Position Gene 
Symbol 

Fold Change (comparing to IFNγ group) 

    Fold Change p-value Fold Change p-value 
G09 Tnfsf11 1 0.79868 0.61 0.305122 
B01 Ccl22 0.98 0.882357 0.61 0.30745 
B06 Ccl7 0.97 0.762624 3.95 0.013952 
H05 Hsp90ab1 0.96 0.559203 0.89 0.16751 
C04 Cxcl10 0.95 0.698051 3.15 0.00114 
F09 Mif 0.89 0.609265 1.01 0.956383 
D12 Il17a 0.85 0.657807 0.61 0.30745 
E06 Il2 0.84 0.634834 0.61 0.30745 
C01 Ctf1 0.83 0.437999 0.52 0.092732 
A02 Bmp2 0.83 0.970775 0.27 0.287127 
C02 Cx3cl1 0.81 0.601326 0.66 0.329006 
A11 Ccl2 0.74 0.316856 1.13 0.811983 
H01 Actb 0.74 0.046139 0.81 0.170382 
B09 Cntf 0.71 0.224235 0.65 0.121259 
H04 Gusb 0.69 0.046298 0.48 0.009048 
B07 Cd40lg 0.67 0.369835 0.61 0.30745 
G07 Tnfrsf11b 0.67 0.367623 0.61 0.30745 
G03 Spp1 0.66 0.200017 1.02 0.987356 
G11 Vegfa 0.66 0.073896 0.82 0.308169 
F06 Lif 0.63 0.249797 2.06 0.12864 
C12 Fasl 0.62 0.68293 0.55 0.760665 
C11 Cxcl9 0.61 0.329345 22.02 0.000674 
E04 Il1b 0.61 0.329345 0.61 0.30745 
E12 Il3 0.61 0.329345 0.61 0.30745 
F12 Osm 0.61 0.329345 0.61 0.30745 
C03 Cxcl1 0.57 0.398408 0.03 0.181216 
G01 Pf4 0.55 0.96465 0.22 0.189743 
G06 Tnf 0.55 0.459996 0.19 0.372076 
F04 Il7 0.54 0.339832 1.15 0.749511 
A07 Ccl11 0.53 0.569551 0.92 0.958049 
A03 Bmp4 0.52 0.061966 0.74 0.19583 
A09 Ccl17 0.5 0.084307 0.11 0.014617 
C06 Cxcl12 0.49 0.002154 0.15 0.000275 
B10 Csf1 0.47 0.030057 0.13 0.002925 
D09 Il13 0.44 0.59873 0.18 0.348525 
E09 Il23a 0.43 0.166532 0.14 0.067 

 

  



Appendix 

 240 

Appendix 4 – Qiagen 84-chemokine/cytokine array results 

    UNC0642   HKMTI-1-005   

Position Gene 
Symbol 

Fold Change (comparing to IFNγ group) 

    Fold Change p-value Fold Change p-value 
F05 Il9 0.4 0.397561 1.44 0.986326 
B08 Cd70 0.37 0.031626 0.02 0.007674 
G04 Tgfb2 0.34 0.050918 0.13 0.02156 
E07 Il21 0.33 0.16531 0.33 0.161159 
D06 Il11 0.32 0.002715 0.93 0.448165 
D03 Ifna2 0.31 0.448486 0.61 0.426099 
B12 Csf3 0.27 0.118574 1.17 0.899362 
E08 Il22 0.26 0.369765 0.26 0.369176 
C07 Cxcl13 0.26 0.003597 0.02 0.001258 
E03 Il1a 0.24 0.487672 0.43 0.344642 
E02 Il18 0.22 0.002375 0.02 0.000833 
G12 Xcl1 0.14 0.28911 0.18 0.41522 
F03 Il6 0.11 0.159282 5.21 0.245897 
A01 Adipoq 0.1 0.184982 0.1 0.184629 
C09 Cxcl3 0.08 0.003854 0.05 0.002488 
F07 Lta 0.05 0.112964 2.02 0.725094 
A05 Bmp7 0.03 0.036997 0.06 0.047809 
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Appendix 5 – In vivo study conducted by CrownBio to define the 

best tolerated dose of HKMTI-1-005 (named SS-405 below).  
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Appendix 6 – Pharmacokinetic studies performed by Institute of 

Cancer Research (ICR) 

 

Dose 

(mg/Kg) 

Mo

use 

Rout

e 

HL_Lam

bda_z 

(hr) 

Tmax (hr) Cmax 

(nmol/L) 

AUCINF

_obs 

(hr*nm

ol/L) 

AUClast 

(hr*nmol/

L) 

Cl_obs 

(L/hr) 

Vz_obs 

(L) 

F 

(AUCinf

) 

F 

(AUClas

t) 

5 2 iv 7.47 0.083 36600 72087 65444 0.002 0.024 0.117 0.117 

5 3 iv 8.41 0.083 24300 62738 54583 0.003 0.034 

5 4 iv 7.90 0.083 29800 64440 57240 0.003 0.029 

5 6 po 6.86 4 621 7676 6949 0.003 0.026     

5 7 po 7.76 1 709 8047 7070 0.003 0.030 

5 8 po 7.72 4 552 7569 6646 0.003 0.029 

5 10 ip 7.77 0.5 5350 29405 25831 0.006 0.065 0.48 0.46 

5 11 ip 7.94 0.5 6400 31207 27096 0.006 0.064 

5 12 ip 9.22 0.5 6350 35470 29062 0.005 0.061 
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Appendix 7 – Pharmacokinetic studies performed by Institute of 

Cancer Research (ICR) 

 

 

MDA-MB-231 GI50: 10.4 uM
A2780 GI50: 7.4 uM

MDA-MB-231 GI50: 10.4 uM
A2780 GI50: 7.4 uM

HKMTI-1-005 40 mg/kg IP - simulation

HKMTI-1-005 20 mg/kg IP - simulation

  
   Mouse treatment at 5 mg/kg
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Appendix 8 – Gating strategy for CD44 and CD62L staining 
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Appendix 9 – Gating strategy for intracellular chemokine staining 
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Appendix 10 – Tumour-associated macrophage gating strategy 

according to the literature 
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Appendix 11 – Murine blood test results at humane endpoint  
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Appendix 12 – Mice weight and tumour weight with 2-week 

treatment of HKMTI-1-005; four replicate experiments merged 
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Appendix 13 – RNA electropherograms by Agilent 2200 

TapeStation for RIN estimation 
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Appendix 13 – RNA electropherograms by Agilent 2200 

TapeStation for RIN estimation; continued. 
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Appendix 14 – DNA electropherograms by Agilent 2200 

TapeStation for samples analysed with downstream RNAseq 
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Appendix 14 – DNA electropherograms by Agilent 2200 

TapeStation for samples analysed with downstream RNAseq; 

continued. 
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Appendix 15 – ssGSEA results for immune pathway signatures 

Name FDR 

GSE10239_NAIVE_VS_MEMORY_CD8_TCELL_DN 0.00472785 

GSE15767_MED_VS_SCS_MAC_LN_UP 0.00472785 

GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN2_THYMOCYTE_ADULT_UP 0.00472785 

GSE24142_ADULT_VS_FETAL_DN2_THYMOCYTE_UP 0.00472785 

GSE27786_LSK_VS_CD4_TCELL_DN 0.00472785 

GSE27786_LSK_VS_NKCELL_DN 0.00472785 

GSE27786_LSK_VS_MONO_MAC_DN 0.00472785 

GSE27786_LIN_NEG_VS_CD4_TCELL_DN 0.00472785 

GSE27786_LIN_NEG_VS_ERYTHROBLAST_UP 0.00472785 

GSE27786_LIN_NEG_VS_MONO_MAC_DN 0.00472785 

GSE27786_CD8_TCELL_VS_NKCELL_DN 0.00472785 

GSE27786_NKCELL_VS_MONO_MAC_UP 0.00472785 

GSE27786_NEUTROPHIL_VS_MONO_MAC_UP 0.00472785 

GSE339_CD4POS_VS_CD8POS_DC_UP 0.00472785 

GSE339_CD4POS_VS_CD4CD8DN_DC_UP 0.00472785 

GSE7852_LN_VS_THYMUS_TREG_UP 0.00472785 

GSE7852_THYMUS_VS_FAT_TCONV_DN 0.00472785 

GSE369_PRE_VS_POST_IL6_INJECTION_IFNG_WT_LIVER_UP 0.00472785 

GSE3039_ALPHABETA_CD8_TCELL_VS_B1_BCELL_DN 0.00472785 

GSE3039_CD4_TCELL_VS_B1_BCELL_DN 0.00472785 

GSE6259_CD4_TCELL_VS_CD8_TCELL_DN 0.00472785 

GSE6259_33D1_POS_DC_VS_CD4_TCELL_DN 0.00472785 

GSE6259_33D1_POS_DC_VS_CD8_TCELL_DN 0.00472785 

GSE6259_FLT3L_INDUCED_DEC205_POS_DC_VS_CD8_TCELL_DN 0.00472785 

GSE6259_DEC205_POS_DC_VS_BCELL_DN 0.00472785 

GSE7348_UNSTIM_VS_LPS_STIM_MACROPHAGE_DN 0.00472785 

GSE14415_ACT_TCONV_VS_ACT_NATURAL_TREG_DN 0.00472785 

GSE14415_INDUCED_TREG_VS_FAILED_INDUCED_TREG_DN 0.00472785 

GSE15330_HSC_VS_LYMPHOID_PRIMED_MULTIPOTENT_PROGENITOR_DN 0.00472785 

GSE15330_HSC_VS_LYMPHOID_PRIMED_MULTIPOTENT_PROGENITOR_UP 0.00472785 

GSE18281_SUBCAPSULAR_VS_CENTRAL_CORTICAL_REGION_OF_THYMUS_DN 0.00472785 

GSE18281_MEDULLARY_THYMOCYTE_VS_WHOLE_MEDULLA_THYMUS_DN 0.00472785 

GSE18281_CORTICAL_VS_MEDULLARY_THYMOCYTE_UP 0.00472785 

GSE21360_SECONDARY_VS_QUATERNARY_MEMORY_CD8_TCELL_UP 0.00472785 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE21360_PRIMARY_VS_QUATERNARY_MEMORY_CD8_TCELL_UP 0.00472785 

GSE21360_PRIMARY_VS_TERTIARY_MEMORY_CD8_TCELL_DN 0.00472785 

GSE22140_HEALTHY_VS_ARTHRITIC_GERMFREE_MOUSE_CD4_TCELL_DN 0.00472785 

GSE22140_HEALTHY_VS_ARTHRITIC_GERMFREE_MOUSE_CD4_TCELL_UP 0.00472785 

GSE22196_HEALTHY_VS_OBESE_MOUSE_SKIN_GAMMADELTA_TCELL_UP 0.00472785 

GSE19401_UNSTIM_VS_RETINOIC_ACID_AND_PAM2CSK4_STIM_FOLLICULAR_DC_DN 0.00472785 

GSE19401_UNSTIM_VS_RETINOIC_ACID_STIM_FOLLICULAR_DC_DN 0.00472785 

GSE22432_CONVENTIONAL_CDC_VS_PLASMACYTOID_PDC_DN 0.00472785 

GSE22432_MULTIPOTENT_PROGENITOR_VS_CDC_UP 0.00472785 

GSE22432_MULTIPOTENT_PROGENITOR_VS_PDC_UP 0.00472785 

GSE22432_MULTIPOTENT_VS_COMMON_DC_PROGENITOR_DN 0.00472785 

GSE24210_RESTING_TREG_VS_TCONV_UP 0.00472785 

GSE25677_MPL_VS_MPL_AND_R848_STIM_BCELL_DN 0.00472785 

GSE25677_R848_VS_MPL_AND_R848_STIM_BCELL_DN 0.00472785 

GSE32986_CURDLAN_LOWDOSE_VS_CURDLAN_HIGHDOSE_STIM_DC_UP 0.00472785 

GSE32986_CURDLAN_LOWDOSE_VS_CURDLAN_HIGHDOSE_STIM_DC_DN 0.00472785 

GSE32986_CURDLAN_HIGHDOSE_VS_GMCSF_AND_CURDLAN_HIGHDOSE_STIM_DC_UP 0.00472785 

GSE32986_UNSTIM_VS_GMCSF_STIM_DC_DN 0.00472785 

GSE35825_IFNA_VS_IFNG_STIM_MACROPHAGE_UP 0.00472785 

GSE36009_UNSTIM_VS_LPS_STIM_DC_UP 0.00472785 

GSE36891_UNSTIM_VS_POLYIC_TLR3_STIM_PERITONEAL_MACROPHAGE_DN 0.00472785 

GSE37605_C57BL6_VS_NOD_FOXP3_IRES_GFP_TREG_UP 0.00472785 

GSE37301_MULTIPOTENT_PROGENITOR_VS_COMMON_LYMPHOID_PROGENITOR_DN 0.00472785 

GSE37301_MULTIPOTENT_PROGENITOR_VS_GRAN_MONO_PROGENITOR_UP 0.00472785 

GSE37301_MULTIPOTENT_PROGENITOR_VS_GRAN_MONO_PROGENITOR_DN 0.00472785 

GSE37301_LYMPHOID_PRIMED_MPP_VS_COMMON_LYMPHOID_PROGENITOR_DN 0.00472785 

GSE37301_HEMATOPOIETIC_STEM_CELL_VS_CD4_TCELL_UP 0.00472785 

GSE37301_MULTIPOTENT_PROGENITOR_VS_COMMON_LYMPHOID_PROGENITOR_UP 0.00472785 

GSE37533_PPARG1_FOXP3_VS_FOXP3_TRANSDUCED_CD4_TCELL_DN 0.00472785 

GSE37533_PPARG2_FOXP3_VS_FOXP3_TRANSDUCED_CD4_TCELL_DN 0.00472785 

GSE36527_CD69_NEG_VS_POS_TREG_CD62L_LOS_KLRG1_NEG_UP 0.00472785 

GSE40274_SATB1_VS_FOXP3_AND_SATB1_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 0.00472785 

GSE40443_INDUCED_VS_TOTAL_TREG_DN 0.00472785 

GSE28737_FOLLICULAR_VS_MARGINAL_ZONE_BCELL_DN 0.00472785 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE28737_FOLLICULAR_VS_MARGINAL_ZONE_BCELL_BCL6_HET_UP 0.00472785 

GSE28737_FOLLICULAR_VS_MARGINAL_ZONE_BCELL_BCL6_HET_DN 0.00472785 

GSE28737_WT_VS_BCL6_HET_FOLLICULAR_BCELL_DN 0.00472785 

GSE42021_TREG_PLN_VS_TREG_PRECURSORS_THYMUS_DN 0.00472785 

GSE42021_TREG_VS_TCONV_PLN_UP 0.00472785 

GSE42021_TREG_PLN_VS_CD24INT_TREG_THYMUS_DN 0.00472785 

GSE42021_TREG_PLN_VS_CD24LO_TREG_THYMUS_DN 0.00472785 

GSE42021_CD24HI_VS_CD24INT_TREG_THYMUS_DN 0.00472785 

GSE42021_CD24HI_VS_CD24LOW_TREG_THYMUS_DN 0.00472785 

GSE42021_CD24INT_VS_CD24LOW_TREG_THYMUS_DN 0.00472785 

GSE42021_CD24HI_VS_CD24LOW_TCONV_THYMUS_DN 0.00472785 

GSE42021_CD24INT_VS_CD24LOW_TCONV_THYMUS_DN 0.00472785 

GSE42021_TCONV_PLN_VS_CD24HI_TCONV_THYMUS_UP 0.00472785 

GSE46242_TH1_VS_ANERGIC_TH1_CD4_TCELL_UP 0.00472785 

GSE13229_IMM_VS_INTMATURE_NKCELL_DN 0.00719854 

GSE27786_ERYTHROBLAST_VS_NEUTROPHIL_DN 0.00719854 

GSE7852_TREG_VS_TCONV_LN_DN 0.00719854 

GSE7852_LN_VS_THYMUS_TCONV_UP 0.00719854 

GSE3039_NKT_CELL_VS_ALPHAALPHA_CD8_TCELL_DN 0.00719854 

GSE6259_FLT3L_INDUCED_33D1_POS_DC_VS_CD4_TCELL_UP 0.00719854 

GSE6259_FLT3L_INDUCED_33D1_POS_DC_VS_CD8_TCELL_DN 0.00719854 

GSE6259_FLT3L_INDUCED_DEC205_POS_DC_VS_BCELL_UP 0.00719854 

GSE6674_UNSTIM_VS_PL2_3_STIM_BCELL_DN 0.00719854 

GSE5503_LIVER_DC_VS_PLN_DC_ACTIVATED_ALLOGENIC_TCELL_UP 0.00719854 

GSE14415_INDUCED_TREG_VS_TCONV_DN 0.00719854 

GSE14415_NATURAL_TREG_VS_TCONV_UP 0.00719854 

GSE16266_LPS_VS_HEATSHOCK_AND_LPS_STIM_MEF_DN 0.00719854 

GSE21360_PRIMARY_VS_QUATERNARY_MEMORY_CD8_TCELL_DN 0.00719854 

GSE19401_UNSTIM_VS_RETINOIC_ACID_AND_PAM2CSK4_STIM_FOLLICULAR_DC_UP 0.00719854 

GSE19401_PAM2CSK4_VS_RETINOIC_ACID_AND_PAM2CSK4_STIM_FOLLICULAR_DC_DN 0.00719854 

GSE25677_MPL_VS_MPL_AND_R848_STIM_BCELL_UP 0.00719854 

GSE25677_MPL_VS_R848_STIM_BCELL_UP 0.00719854 

GSE19512_NAUTRAL_VS_INDUCED_TREG_DN 0.00719854 

GSE29949_MICROGLIA_BRAIN_VS_MONOCYTE_BONE_MARROW_DN 0.00719854 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE32533_WT_VS_MIR17_OVEREXPRESS_ACT_CD4_TCELL_DN 0.00719854 

GSE27859_MACROPHAGE_VS_DC_UP 0.00719854 

GSE32986_GMCSF_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_UP 0.00719854 

GSE32986_UNSTIM_VS_CURDLAN_HIGHDOSE_STIM_DC_DN 0.00719854 

GSE32986_UNSTIM_VS_GMCSF_AND_CURDLAN_LOWDOSE_STIM_DC_DN 0.00719854 

GSE32986_CURDLAN_HIGHDOSE_VS_GMCSF_AND_CURDLAN_HIGHDOSE_STIM_DC_DN 0.00719854 

GSE37301_HEMATOPOIETIC_STEM_CELL_VS_MULTIPOTENT_PROGENITOR_DN 0.00719854 

GSE37301_MULTIPOTENT_PROGENITOR_VS_CD4_TCELL_UP 0.00719854 

GSE40274_LEF1_VS_FOXP3_AND_LEF1_TRANSDUCED_ACTIVATED_CD4_TCELL_DN 0.00719854 

GSE28737_WT_VS_BCL6_HET_MARGINAL_ZONE_BCELL_DN 0.00719854 

GSE42021_CD24HI_VS_CD24INT_TCONV_THYMUS_DN 0.00719854 

GSE45365_NK_CELL_VS_CD11B_DC_MCMV_INFECTION_DN 0.00719854 

GSE45365_NK_CELL_VS_BCELL_MCMV_INFECTION_DN 0.00719854 

GSE45365_HEALTHY_VS_MCMV_INFECTION_CD8A_DC_DN 0.00719854 

GSE45365_NK_CELL_VS_CD11B_DC_DN 0.00719854 

GSE10239_NAIVE_VS_KLRG1INT_EFF_CD8_TCELL_UP 0.01172441 

GSE14308_TH1_VS_NAIVE_CD4_TCELL_DN 0.01172441 

GSE14308_TH1_VS_INDUCED_TREG_UP 0.01172441 

GSE15324_NAIVE_VS_ACTIVATED_CD8_TCELL_UP 0.01172441 

GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN2_THYMOCYTE_FETAL_UP 0.01172441 

GSE339_CD8POS_VS_CD4CD8DN_DC_IN_CULTURE_DN 0.01172441 

GSE3039_NKT_CELL_VS_ALPHABETA_CD8_TCELL_DN 0.01172441 

GSE3039_ALPHAALPHA_VS_ALPHABETA_CD8_TCELL_DN 0.01172441 

GSE4535_BM_DERIVED_DC_VS_FOLLICULAR_DC_UP 0.01172441 

GSE6259_FLT3L_INDUCED_DEC205_POS_DC_VS_BCELL_DN 0.01172441 

GSE21360_SECONDARY_VS_QUATERNARY_MEMORY_CD8_TCELL_DN 0.01172441 

GSE21360_TERTIARY_VS_QUATERNARY_MEMORY_CD8_TCELL_UP 0.01172441 

GSE21360_TERTIARY_VS_QUATERNARY_MEMORY_CD8_TCELL_DN 0.01172441 

GSE22140_HEALTHY_VS_ARTHRITIC_MOUSE_CD4_TCELL_UP 0.01172441 

GSE19401_PAM2CSK4_VS_RETINOIC_ACID_STIM_FOLLICULAR_DC_DN 0.01172441 

GSE25677_MPL_VS_R848_STIM_BCELL_DN 0.01172441 

GSE22313_HEALTHY_VS_SLE_MOUSE_CD4_TCELL_DN 0.01172441 

GSE37605_C57BL6_VS_NOD_FOXP3_IRES_GFP_TCONV_DN 0.01172441 

GSE37533_PPARG1_FOXP3_VS_PPARG2_FOXP3_TRANSDUCED_CD4_TCELL_DN 0.01172441 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE40274_FOXP3_VS_FOXP3_AND_GATA1_TRANSDUCED_ACTIVATED_CD4_TCELL_DN 0.01172441 

GSE40225_WT_VS_RIP_B7X_DIABETIC_MOUSE_PANCREATIC_CD8_TCELL_UP 0.01172441 

GSE42021_TREG_PLN_VS_TREG_PRECURSORS_THYMUS_UP 0.01172441 

GSE45365_NK_CELL_VS_CD8_TCELL_MCMV_INFECTION_DN 0.01172441 

GSE45365_NK_CELL_VS_CD11B_DC_UP 0.01172441 

GSE14308_NAIVE_CD4_TCELL_VS_INDUCED_TREG_UP 0.01769731 

GSE20366_TREG_VS_NAIVE_CD4_TCELL_HOMEOSTATIC_CONVERSION_DN 0.01769731 

GSE27786_LIN_NEG_VS_CD8_TCELL_DN 0.01769731 

GSE27786_CD8_TCELL_VS_NKTCELL_DN 0.01769731 

GSE30962_PRIMARY_VS_SECONDARY_CHRONIC_LCMV_INF_CD8_TCELL_DN 0.01769731 

GSE7852_TREG_VS_TCONV_THYMUS_UP 0.01769731 

GSE9650_NAIVE_VS_EFF_CD8_TCELL_DN 0.01769731 

GSE9650_NAIVE_VS_EXHAUSTED_CD8_TCELL_DN 0.01769731 

GSE9650_EFFECTOR_VS_MEMORY_CD8_TCELL_UP 0.01769731 

GSE1112_HY_CD8AB_VS_HY_CD8AA_THYMOCYTE_RTOC_CULTURE_UP 0.01769731 

GSE3039_CD4_TCELL_VS_ALPHAALPHA_CD8_TCELL_DN 0.01769731 

GSE3039_CD4_TCELL_VS_ALPHABETA_CD8_TCELL_UP 0.01769731 

GSE6259_33D1_POS_DC_VS_BCELL_DN 0.01769731 

GSE8621_LPS_PRIMED_UNSTIM_VS_LPS_PRIMED_AND_LPS_STIM_MACROPHAGE_DN 0.01769731 

GSE5503_MLN_DC_VS_PLN_DC_ACTIVATED_ALLOGENIC_TCELL_DN 0.01769731 

GSE12003_4D_VS_8D_CULTURE_BM_PROGENITOR_UP 0.01769731 

GSE14699_DELETIONAL_TOLERANCE_VS_ACTIVATED_CD8_TCELL_UP 0.01769731 

GSE27859_CD11C_INT_F480_HI_MACROPHAGE_VS_CD11C_ING_F480_INT_DC_UP 0.01769731 

GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_DN 0.01769731 

GSE37301_MULTIPOTENT_PROGENITOR_VS_LYMPHOID_PRIMED_MPP_DN 0.01769731 

GSE37532_VISCERAL_ADIPOSE_TISSUE_VS_LN_DERIVED_TREG_CD4_TCELL_UP 0.01769731 

GSE40274_FOXP3_VS_FOXP3_AND_SATB1_TRANSDUCED_ACTIVATED_CD4_TCELL_DN 0.01769731 

GSE40274_HELIOS_VS_FOXP3_AND_HELIOS_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 0.01769731 

GSE40274_FOXP3_VS_FOXP3_AND_PBX1_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 0.01769731 

GSE42021_TCONV_PLN_VS_CD24LO_TCONV_THYMUS_DN 0.01769731 

GSE45365_NK_CELL_VS_CD8A_DC_UP 0.01769731 

GSE20366_TREG_VS_NAIVE_CD4_TCELL_DEC205_CONVERSION_UP 0.02598178 

GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_DN 0.02598178 

GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_ADULT_UP 0.02598178 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE27786_LIN_NEG_VS_CD4_TCELL_UP 0.02598178 

GSE32423_IL7_VS_IL4_MEMORY_CD8_TCELL_DN 0.02598178 

GSE7852_TREG_VS_TCONV_LN_UP 0.02598178 

GSE7852_TREG_VS_TCONV_FAT_DN 0.02598178 

GSE7852_LN_VS_FAT_TREG_DN 0.02598178 

GSE9650_NAIVE_VS_MEMORY_CD8_TCELL_UP 0.02598178 

GSE9650_EFFECTOR_VS_EXHAUSTED_CD8_TCELL_UP 0.02598178 

GSE2585_CTEC_VS_MTEC_THYMUS_UP 0.02598178 

GSE2585_CTEC_VS_THYMIC_MACROPHAGE_UP 0.02598178 

GSE3039_NKT_CELL_VS_B2_BCELL_DN 0.02598178 

GSE3039_CD4_TCELL_VS_B2_BCELL_UP 0.02598178 

GSE6259_FLT3L_INDUCED_DEC205_POS_DC_VS_CD4_TCELL_UP 0.02598178 

GSE15330_MEGAKARYOCYTE_ERYTHROID_VS_GRANULOCYTE_MONOCYTE_PROGENITOR_UP 0.02598178 

GSE15330_LYMPHOID_MULTIPOTENT_VS_PRO_BCELL_DN 0.02598178 

GSE16266_LPS_VS_HEATSHOCK_AND_LPS_STIM_MEF_UP 0.02598178 

GSE19401_UNSTIM_VS_PAM2CSK4_STIM_FOLLICULAR_DC_DN 0.02598178 

GSE24492_LYVE_NEG_VS_POS_MACROPHAGE_DN 0.02598178 

GSE23502_BM_VS_COLON_TUMOR_MYELOID_DERIVED_SUPPRESSOR_CELL_UP 0.02598178 

GSE23502_BM_VS_COLON_TUMOR_MYELOID_DERIVED_SUPPRESSOR_CELL_DN 0.02598178 

GSE24972_MARGINAL_ZONE_BCELL_VS_FOLLICULAR_BCELL_DN 0.02598178 

GSE28130_ACTIVATED_VS_INDUCEED_TREG_UP 0.02598178 

GSE27859_MACROPHAGE_VS_CD11C_INT_F480_HI_MACROPHAGE_UP 0.02598178 

GSE32986_UNSTIM_VS_CURDLAN_LOWDOSE_STIM_DC_UP 0.02598178 

GSE37605_NOD_VS_C57BL6_IRES_GFP_TREG_DN 0.02598178 

GSE37301_LYMPHOID_PRIMED_MPP_VS_COMMON_LYMPHOID_PROGENITOR_UP 0.02598178 

GSE37532_TREG_VS_TCONV_CD4_TCELL_FROM_LN_DN 0.02598178 

GSE40274_FOXP3_VS_FOXP3_AND_EOS_TRANSDUCED_ACTIVATED_CD4_TCELL_UP 0.02598178 

GSE40274_FOXP3_VS_FOXP3_AND_PBX1_TRANSDUCED_ACTIVATED_CD4_TCELL_DN 0.02598178 

GSE42021_CD24INT_VS_CD24LOW_TCONV_THYMUS_UP 0.02598178 

GSE42021_CD24HI_TREG_VS_CD24HI_TCONV_THYMUS_UP 0.02598178 

GSE14308_NAIVE_CD4_TCELL_VS_NATURAL_TREG_UP 0.0369762 

GSE24142_EARLY_THYMIC_PROGENITOR_VS_DN3_THYMOCYTE_FETAL_UP 0.0369762 

GSE27786_LSK_VS_NEUTROPHIL_DN 0.0369762 

GSE27786_LIN_NEG_VS_BCELL_DN 0.0369762 
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Appendix 15 – ssGSEA results for immune pathway signatures; 

continued. 

Name FDR 

GSE27786_LIN_NEG_VS_NKTCELL_DN 0.0369762 

GSE27786_NKCELL_VS_ERYTHROBLAST_DN 0.0369762 

GSE30962_ACUTE_VS_CHRONIC_LCMV_PRIMARY_INF_CD8_TCELL_UP 0.0369762 

GSE32423_IL7_VS_IL4_MEMORY_CD8_TCELL_UP 0.0369762 

GSE7852_TREG_VS_TCONV_DN 0.0369762 

GSE9650_NAIVE_VS_MEMORY_CD8_TCELL_DN 0.0369762 

GSE9650_EXHAUSTED_VS_MEMORY_CD8_TCELL_UP 0.0369762 

GSE2128_C57BL6_VS_NOD_THYMOCYTE_UP 0.0369762 

GSE2128_C57BL6_VS_NOD_THYMOCYTE_DN 0.0369762 

GSE2585_CTEC_VS_THYMIC_DC_DN 0.0369762 

GSE2585_CTEC_VS_MTEC_THYMUS_DN 0.0369762 

GSE2585_THYMIC_MACROPHAGE_VS_MTEC_DN 0.0369762 

GSE3039_CD4_TCELL_VS_ALPHAALPHA_CD8_TCELL_UP 0.0369762 

GSE6259_FLT3L_INDUCED_33D1_POS_DC_VS_BCELL_DN 0.0369762 

GSE6259_FLT3L_INDUCED_33D1_POS_DC_VS_CD4_TCELL_DN 0.0369762 

GSE6259_33D1_POS_DC_VS_CD4_TCELL_UP 0.0369762 

GSE6259_DEC205_POS_DC_VS_CD8_TCELL_UP 0.0369762 

GSE14415_INDUCED_VS_NATURAL_TREG_UP 0.0369762 

GSE15330_GRANULOCYTE_MONOCYTE_PROGENITOR_VS_PRO_BCELL_DN 0.0369762 

GSE18281_SUBCAPSULAR_VS_CENTRAL_CORTICAL_REGION_OF_THYMUS_UP 0.0369762 

GSE19401_UNSTIM_VS_RETINOIC_ACID_STIM_FOLLICULAR_DC_UP 0.0369762 

GSE22432_CDC_VS_COMMON_DC_PROGENITOR_UP 0.0369762 

GSE26343_UNSTIM_VS_LPS_STIM_MACROPHAGE_DN 0.0369762 

GSE37605_FOXP3_FUSION_GFP_VS_IRES_GFP_TREG_NOD_DN 0.0369762 

GSE37301_HEMATOPOIETIC_STEM_CELL_VS_MULTIPOTENT_PROGENITOR_UP 0.0369762 

GSE37301_CD4_TCELL_VS_GRANULOCYTE_MONOCYTE_PROGENITOR_DN 0.0369762 

GSE37301_PRO_BCELL_VS_CD4_TCELL_DN 0.0369762 

GSE37532_VISCERAL_ADIPOSE_TISSUE_VS_LN_DERIVED_TCONV_CD4_TCELL_UP 0.0369762 

GSE40274_FOXP3_VS_FOXP3_AND_XBP1_TRANSDUCED_ACTIVATED_CD4_TCELL_DN 0.0369762 

GSE38304_MYC_NEG_VS_POS_GC_BCELL_DN 0.0369762 

GSE45365_NK_CELL_VS_CD8_TCELL_UP 0.0369762 
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Appendix 16 – ERV analysis with annotation of the exact genomic 

loci 

Repbase ID log2FoldChange p_adjusted 

IAPEY3-int|LTR/ERVK Mmus38.chr1.173575790.173576965. 2.897758355 2.40E-22 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173571901.173572377. 2.67682232 2.41E-23 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173568891.173569334. 2.577157137 6.46E-21 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173571553.173571888. 2.378230738 1.66E-15 

IAPEY3-int|LTR/ERVK Mmus38.chr1.173574889.173575791. 2.346893129 1.10E-17 

IAPEY3-int|LTR/ERVK Mmus38.chr1.173578171.173579793. 2.286622161 1.07E-14 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173695398.173695781. 2.268340062 2.52E-08 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173570933.173571475. 2.1862969 1.01E-10 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173569295.173570173. 2.14685712 5.63E-12 

ERVB5_1-I_MM|LTR/ERVK Mmus38.chr11.83006979.83007707. 2.083804571 1.73E-12 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173567620.173568006. 1.972468567 2.04E-10 

ERVB2_1-I_MM|LTR/ERVK Mmus38.chr1.173581149.173581397. 1.944731564 5.70E-07 

ERVB5_1-I_MM|LTR/ERVK Mmus38.chr11.83008027.83008317. 1.690926113 2.04E-07 

MERVL-int|LTR/ERVL Mmus38.chr11.83071644.83073467. 1.672614253 3.48E-07 

L1_Mm|LINE/L1 Mmus38.chr7.104413779.104415041. 1.645621531 3.68E-07 

U6|snRNA L1_Mm|LINE/L1 
L1Md_T|LINE/L1 

Mmus38.chr7.104423365.104427138. 1.59027723 1.82E-05 

RodERV21-int|LTR/ERV1 Mmus38.chr12.99646125.99646460. 1.520709363 0.00208404 

ERVB5_1-I_MM|LTR/ERVK Mmus38.chr11.83006696.83007055. 1.481664912 1.02E-06 

MERV1_I-int|LTR/ERV1 
RLTR19-int|LTR/ERVK 

Mmus38.chr15.74935157.74935435. 1.449133283 8.64E-06 

MuRRS4-int|LTR/ERV1 Mmus38.chr10.51528513.51528782. 1.391471517 9.32E-05 

RLTR26_Mus|LTR/ERVK 
MERVK26-int|LTR/ERVK 

Mmus38.chr8.70621771.70622610. 1.381838476 0.0047053 

ETnERV2-int|LTR/ERVK Mmus38.chr19.11318063.11318407. 1.352626053 0.00063608 

IAPEz-int|LTR/ERVK Mmus38.chr7.104271650.104273401. 1.278399255 0.01079768 

ETnERV2-int|LTR/ERVK Mmus38.chr19.11318551.11318862. 1.17170315 0.00063608 

L1VL2|LINE/L1 Mmus38.chr7.104490208.104491557. 1.113617511 0.00208404 

L1Md_A|LINE/L1 Mmus38.chr8.94465654.94466394. 1.070366554 0.01674921 

IAPEY4_I-int|LTR/ERVK Mmus38.chr14.43927534.43928418. 1.055952123 0.04162095 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3338265.3338591. 0.975734553 0.00011855 

ETnERV-int|LTR/ERVK Mmus38.chr7.106585437.106586243. 0.935050849 0.02466717 
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Appendix 16 – ERV analysis with annotation of the exact genomic 

loci; continued. 

Repbase ID log2FoldChange p_adjusted 

MERVL_2A-int|LTR/ERVL Mmus38.chr1.171878140.171878919. 0.93068843 0.04162095 

RLTR13D5|LTR/ERVK 
ERVB2_1A-I_MM|LTR/ERVK 
ERVB4_1B-I_MM|LTR/ERVK 

Mmus38.chr18.60283519.60284016. 0.930444872 0.03003523 

L1Md_F2|LINE/L1 Mmus38.chr18.60305643.60305954. 0.884957566 0.0346917 

IAPEz-int|LTR/ERVK Mmus38.chr17.36010204.36012885. 0.881763905 0.00731087 

RLTR6-int|LTR/ERV1 Mmus38.chr15.74931985.74932389. 0.861133284 0.0009027 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3338919.3339254. 0.851834712 0.00174449 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3339424.3339960. 0.761019415 0.00349458 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3337831.3338334. 0.682834053 0.01277409 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3336678.3337793. 0.632540724 0.03695976 

IAPEY4_I-int|LTR/ERVK Mmus38.chr6.3336125.3336748. 0.620746325 0.02706939 

RLTR4_MM-int|LTR/ERV1 Mmus38.chr11.103086489.103089779. -0.829033672 0.03003523 

L1_Mus3|LINE/L1 Mmus38.chr8.73168347.73168919. -0.914377943 0.04162095 

MMERGLN-int|LTR/ERV1 Mmus38.chr17.36101653.36102543. -1.360865462 0.03952433 

MURVY-int|LTR/ERV1 Mmus38.chr2.27500428.27501366. -1.413627971 0.00839844 

MuRRS-int|LTR/ERV1 
(AGCGAC)n|Simple_repeat 

Mmus38.chr10.11477316.11477744. -1.434503224 0.04162095 

ETnERV3-int|LTR/ERVK Mmus38.chr19.8277321.8277896. -1.451917088 0.02209461 

MERVL-int|LTR/ERVL Mmus38.chr3.62357540.62361085. -1.472871305 0.00328097 

MURVY-int|LTR/ERV1 Mmus38.chr2.30233288.30233890. -1.480371806 0.01730637 

MuRRS4-int|LTR/ERV1 Mmus38.chr16.4825970.4826332. -1.532122922 0.00308297 

IAPEz-int|LTR/ERVK Mmus38.chr9.4494414.4497095. -1.592932253 0.01371757 

MURVY-int|LTR/ERV1 Mmus38.chr12.19713019.19715448. -1.658798046 0.00026832 

MuRRS4-int|LTR/ERV1 Mmus38.chr7.35565655.35566149. -1.920797378 0.0009027 
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Appendix 17 – DNA electropherograms by Agilent 2200 

TapeStation for samples analysed with downstream ATACseq 
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Appendix 18 – Functional annotation of DEGs with present peaks 

on ATACseq by GO ontology and KEGG pathways 
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Appendix 19 – Basic clinical characteristics of patients’ samples 

treated with HKMTI-1-005 

 

Randomisation 
No 

Histology Grade Stage BRCA1/2 Disease 
status 

ASC19-026 Serous High 3B No BRCA 
pathogenic 
mutations found 

Relapsed 
disease 

ASC19-029 Serous High 3C No BRCA 
pathogenic 
mutations found 

Primary 

ASC19-030 Serous High 3C No BRCA 
pathogenic 
mutations found 

Primary 

ASC19-032 Serous High 3C No BRCA 
pathogenic 
mutations found 

Primary 

ASC19-033 Serous High 4B n/a Primary 
ASC19-038 Endometroid 

or 
Serous 

High n/a No BRCA 
pathogenic 
mutations found 

Primary 

ASC19-040 Serous High 3C n/a Primary 
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