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Abstract  

The response of zircon to prograde metamorphic reactions has been investigated 

in late Proterozoic metapelites from the Scottish Highlands. Samples from rocks 

undergoing greenschist and amphibolite facies metamorphism record changes in 

the zircon populations associated with specific stages in the reaction history. 

Appin Phyllites from Onich record changing zircon distribution and morphology 

across three distinct events, an early regional event is recorded in the matrix, a 

later contact event produces a population of zircon within biotite porphyroblasts, 

and finally partial retrogression of biotite produces chlorite. Leven Schists from 

Glen Roy record a progressive sequence of metamorphism from garnet zone to 

staurolite zone to sillimanite zone. Dissolution-reprecipitation occurs at each 

stage of the reaction history in the Leven Schists and produces modified garnet 

which can be recognised based on the resulting change to the texture and 

chemistry of product garnet. Within the Leven Schists, two distinct stages of 

modification can be recognised; the formation of cloudy garnet during staurolite 

growth and the formation of secondary clear garnet during sillimanite growth. 

During staurolite formation, dissolution-reprecipitation partially replaces garnet 

with large, irregular quartz inclusions and small <1 μm rounded fluid inclusions. 

Additionally, the original concentric growth zoning is modified producing localised 

low pyrope zones of cloudy garnet and releasing Ca into the rock. The products of 

dissolution-reprecipitation are more reactive than clear garnet owing to the high 

defect density within cloudy garnet. The release of Ca from dissolution-

reprecipitation also moves the sillimanite isograd to lower P-T space. As a result, 

the higher the proportion of cloudy garnet formed during staurolite formation, the 

more likely the rocks will react to form sillimanite. Sillimanite formation results 

in the formation of reequilibrated secondary clear garnet, where fluid inclusions 

are eradicated and a low Ca, high Mg product garnet forms. Garnet therefore 

records three identifiable stages in its temporal evolution; (1) clear, unmodified 

garnet, (2) cloudy garnet formed via dissolution-reprecipitation during staurolite 

formation, and (3) secondary clear garnet, reequilibrated during sillimanite 

formation. Analysis of zircon within the matrix and biotite porphyroblasts in the 

Appin Phyllites, and within garnet in the Leven Schists enable an understanding of 

how zircon populations change through metamorphism.  
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Within both the Appin Phyllites and Leven Schists zircon is present in two distinct 

populations; (a) inherited detrital zircon, and (b) authigenic microzircon. 

Microzircon are fine <1 μm2, euhedral zircon that display no internal structure or 

zonation. Microzircon appear to be reactive in the presence of fluids and thus have 

the ability to trace fluid-mediated metamorphic processes. By analysing zircon 

populations in garnet in the Leven Schists, the stages in temporal evolution of 

garnet can be utilised to understand temporal changes to the morphology and 

distribution of zircon. Within clear garnet, zircon are heterogeneously distributed, 

the primary influence on the abundance of zircon is the mineralogy of the matrix. 

Micaceous matrix, and the garnet that overgrows it, contains more microzircon 

than quartz-rich matrix. Following dissolution-reprecipitation, detrital zircon and 

particularly microzircon decrease in abundance. Additionally, microzircon become 

finer and are more frequently hosted within fluid and mineral inclusions, 

suggesting these populations formed during dissolution-reprecipitation. Within 

sillimanite-zone schists the secondary clear garnet contains the lowest number of 

microzircon. The Appin Phyllites record a much higher abundance of microzircon 

in later formed contact porphyroblast phases than within the earlier formed 

regional matrix. Both the Leven Schists and Appin Phyllites record an absence of 

microzircon within chlorite-retrogressed domains suggesting that effective 

microzircon dissolution occurs during chloritization but there is no new zircon 

crystallization.  

This is the first comprehensive study of prograde zircon evolution, recording 

consistent changes to the distribution and morphology of zircon from lower 

greenschist Appin Phyllites to mid-amphibolite facies Leven Schists. These 

changes present the opportunity to trace metamorphic processes in complex 

polymetamorphic rocks where dating presently proves near impossible.  

 
 
 
 
 
 

 
 



iii 
 

Table of contents  
 
 
Chapter 1: Zircon in Metamorphism           1-10 

 1.1 Introduction         1 

  1.1.1 Zircon uses        1 

 1.2 The reactivity of zircon       3 

  1.2.1 Behaviour during high grade metamorphism  4 

  1.2.2 Behaviour during low-med grade metamorphism  5 

 1.3 Factors influencing zircon reactivity     6 

  1.3.1 Temperature        6 

  1.3.2 Radiation damage      7 

`  1.3.3 Fluid composition and availability     8 

  1.3.4 Nucleation        9 

  1.3.5 Bulk rock composition      10 

  1.3.6 Conclusion        10 

  

Chapter 2: Zr-bearing phases             11-29 

 2.1 Zr repositories        11 

  2.1.1 Zr in accessory phases     12 

  2.1.2 Zr in major phases       13 

 2.2 Porphyroblasts as potential monitors of prograde changes   
       in the zircon population       16 

  2.2.1 Prograde garnet evolution     17 

   2.2.1.1 Garnet growth       18 

   2.2.1.2 Diffusion in garnet      20 

   2.2.1.3 Garnet modification    21 

 2.3 Disequilibrium in the Barrovian sequence     22 

 2.4 Aims of the study        24 

  2.4.1. Geological setting and sampling     25 

  2.4.2 Index mineral-forming reactions in the Leven Schists 26  

  2.4.3 Wider significance      29 

 

Chapter 3: Methodology             30-33 

 3.1 Sample preparation        30 

 3.2 Analysis          30 

  3.2.1 Transmitted light microscopy     30 



iv 
 
  3.2.2 Scanning electron microscopy     31 

   3.2.2.1 Garnet analysis      32 

   3.2.2.2 Zircon mapping      32  

 

Chapter 4: Petrology of the schists            34-45 

 4.1 Biotite zone         34 

 4.2 Staurolite zone         38 

 4.3 Sillimanite zone         42 

 

Chapter 5: Garnet characteristics           46-100 

5.1 Introduction          46 

 5.2 Staurolite-zone garnet        47 

  5.2.1 Previous work       47 

5.2.2 Clear garnet         47 

 5.2.2.1 Results: texture of clear garnet     48 

 5.2.2.2 Results: chemistry of clear garnet  52 

 5.2.2.3 Interpretation of clear garnet    54 

  5.2.3 Cloudy garnet       55 

   5.2.3.1 Results: texture of cloudy garnet    57 

   5.2.3.2 Results: chemistry of cloudy garnet   65 

   5.2.3.3 Interpretation of cloudy garnet     68 

  5.2.4 Ambiguous garnet       73 

   5.2.4.1 Results: texture of ambiguous garnet   74 

   5.2.4.2 Results: chemistry of ambiguous garnet  75 

   5.2.4.3 Interpretation of ambiguous garnet   75 

  5.2.5 Conclusion        77 

 5.3 Sillimanite-zone garnet       77 

  5.3.1 Previous work       77 

  5.3.2 Primary clear garnet       78 

   5.3.2.1 Results: texture of primary clear garnet  78 

   5.3.2.2 Results: chemistry of primary clear garnet  78 

   5.3.2.3 Interpretation of primary clear garnet   78 

  5.3.3 Cloudy garnet       80 

   5.3.3.1 Results: texture of cloudy garnet    80  

   5.3.3.2 Results: chemistry of cloudy garnet   83 

   5.3.3.3 Interpretation of cloudy garnet    83 

  5.3.4 Secondary clear garnet      84 



v 
 
   5.3.4.1 Results: texture of secondary clear garnet 85 

   5.3.4.2 Results: chemistry of secondary clear garnet  86 

   5.3.4.3 Interpretation of secondary clear garnet  89 

  5.3.5 Conclusion        91 

 5.4 Controls on cloudiness       92 

  5.4.1 Stress Field        92 

  5.4.2 Original sedimentary mineralogy and lithology    94 

  5.4.3 Inclusion banding within garnet      95 

  5.4.4 The propagation of dissolution-reprecipitation  in  

         garnet         97 

  

Chapter 6: Zircon populations              101-161 

6.1 Classification of zircon        101 

 6.1.1 Size constraints      102 

 6.1.2 Significance of microzircon      104 

6.2 Zircon abundance and morphology within garnet    106 

 6.2.1 Biotite-zone schists       107 

  6.2.1.1 Results: zircon morphology in biotite-zone  

            schists      108 

   6.2.1.2 Results: zircon distribution in biotite-zone  

  schists        110 

   6.2.1.3 Interpretation of zircon in biotite-zone schists 112 

   6.2.1.4 Conclusion       114 

 6.2.2 Staurolite-zone garnet      115 

  6.2.2.1 Results: zircon in clear garnet    115 

  6.2.2.2 Interpretation of zircon in clear garnet   122 

  6.2.2.3 Results: zircon in cloudy garnet    127 

  6.2.2.4 Interpretation of zircon in cloudy garnet   133 

  6.2.2.5 Results: zircon in the matrix    136 

  6.2.2.6 Interpretation of zircon in the matrix   137 

   6.2.2.7 Conclusion       138 

 6.2.3 Sillimanite-zone garnet      139 

  6.2.3.1 Results: zircon in primary clear garnet   139 

  6.2.3.2 Interpretation of zircon in primary clear garnet  143 

  6.2.3.3 Results: Zircon in cloudy garnet   144 

  6.2.3.4 Interpretation of zircon in cloudy garnet   145  

  6.2.3.5 Results: zircon in secondary clear garnet 146 



vi 
 

  6.2.3.6 Interpretation of zircon in secondary clear  

 garnet      147  

   6.2.3.7 Results: zircon in the matrix    148 

   6.2.3.8 Interpretation of zircon in the matrix   149 

  6.2.3.9 Conclusion       150  

6.3 Controls on Zircon dissolution and growth     150 

 6.3.1 Mineralogy of host rock      150 

 6.3.2 Host phase         151 

 6.3.3 Grade         155 

 6.3.4 Dissolution-reprecipitation      158 

 6.3.5 Conclusion       159 
        

 

Chapter 7: Conclusion                      162-166 

 7.1 A model for zircon evolution      162 

  7.1.1 Biotite-zone Appin Phyllites      162 

  7.1.2 Staurolite-zone Leven Schists     163 

  7.1.3 Sillimanite-zone Leven Schists     164 

7.2 Significance of the results       164 

7.3 Future work          165 

 

References               169-193 

 

Appendix 1                196-200 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 
 

List of figures 
 
Fig. 2.1: Reaction textures in sillimanite-zone garnet    28 

 

Fig 4.1: Biotite-zone schists matrix       35 

Fig. 4.2: Biotite porphyroblast morphology in Ball 28     36 

Fig. 4.3: Compositional layering in Ball 28     37 

Fig. 4.4: Accessory phases in Ball28 and 29      38 

Fig 4.5: Staurolite-one schists matrix       40 

Fig. 4.6: Biotite porphyroblast morphology in GR01    40 

Fig. 4.7: Staurolite morphology in GR01       41 

Fig. 4.8: Sillimanite-zone schists matrix      43 

Fig. 4.9: Staurolite morphology in UGR0      44 

Fig. 4.10: Sillimanite morphology        45 

Fig. 5.1: Clear garnet morphology       48 

Fig. 5.2: Fluid inclusion morphology in clear garnet     49 

Fig. 5.3: Mineral inclusion trails in clear garnet GR02    50 

Fig. 5.4: Ilmenite morphology in clear garnet      51 

Fig. 5.5: Allanite morphology in clear garnet      52 

Fig. 5.6: Concentric growth zoning in clear garnet     53 

Fig. 5.7: Morphology of cloudy garnet within staurolite-zone   56 

Fig. 5.8: Cloudy band alignment in GR01     57 

Fig. 5.9: Textural characteristics of cloudy garnet     58 

Fig. 5.10: Fluid inclusion alignment in cloudy garnet     59 

Fig. 5.11: Orientation of fluid inclusion alignment    60 

Fig. 5.12: Fluid inclusion alignment in GR01-9     61 

Fig. 5.13: Monazite morphology in cloudy garnet     62 

Fig. 5.14: REE profiles of allanite and monazite     62 

Fig. 5.15: Rutile morphology in garnet       63 

Fig. 5.16: Fracture morphology in cloudy garnet     64 

Fig. 5.17: Chemistry of cloudy-clear boundary      66 

Fig. 5.18: Chemistry of cloudy garnet       67 

Fig. 5.19: Garnet replacement during dissolution-reprecipitation  68 

Fig. 5.20: Extensional fractures within garnet      71 

Fig. 5.21: Geometry of ambiguous zones      74 

Fig. 5.22: Textural characteristics of ambiguous garnet    74 

Fig. 5.23: Fluid inclusion abundance in garnet      75 



viii 
 
Fig. 5.24: Size distribution of fluid inclusions within cloudy and  

       clear garnet         76 

Fig 5.25: Transect across high Ca unmodified garnet in UGR0-4   79 

Fig. 5.26: Secondary clear garnet morphology in UGR0   81 

Fig. 5.27: Quartz-rich bands in sillimanite-zone cloudy garnet   82 

Fig. 5.28: Geometry of cloudy garnet in sillimanite-zone schists  86 

Fig. 5.29: Transect of secondary clear porphyroblast rims   87 

Fig. 5.30: Chemistry of re-equilibrated secondary clear inclusion rims 88 

Fig. 5.31: Chemistry of secondary clear garnet      90 

Fig. 5.32: Model for the formation of cloudy garnet along tensile planes  93 

Fig. 5.33: Geometry of cloudy garnet in GR01-8    93 

Fig. 5.34: Geometry of cloudy garnet in GR01-4     95 

Fig. 5.35: Compositional inclusion banding in clear garnet    96 

Fig. 5.36: Contrasting inclusion abundance in clear and cloudy garnet  96 

Fig. 5.37: Model for the formation of cloudy garnet within staurolite-  

      and sillimanite-zone schists       98 

 

Fig. 6.1: BSE image of zircon morphologies      101 

Fig. 6.2: Size distribution of zircon in Appin Phyllite and Leven Schists  103 

Fig. 6.3: Zircon distribution within changing modal mineralogy   105 

Fig. 6.4: Formation of microzircon in garnet      106 

Fig. 6.5: Zircon distribution in biotite-zone pelites and semi-pelites   108 

Fig. 6.6: Detrital zircon morphology in Ball 2.8     109 

Fig. 6.7: Outgrowth morphology in the biotite-zone schists    109 

Fig. 6.8: Size distribution of zircon within biotite porphyroblasts and  

   the matrix in biotite-zone schists      110 

Fig. 6.9: Zircon distribution map of Ball 2.9     111 

Fig. 6.10: Zircon morphology in staurolite-zone garnet    116 

Fig. 6.11: Zircon per unit area in garnet and the matrix as a function  

      of original mineralogy        116 

Fig. 6.12: Size distribution of microzircon in matrix and garnet 

      within staurolite-zone schists       117 

Fig. 6.13: Concentric distribution of microzircon in garnet    118 

Fig. 6.14: Zircon abundance per mm2 in garnet that overgrew pelite  

      and quartzofeldspathic matrix       119 

Fig. 6.15: Spatial link between detrital zircon and microzircon   120 

Fig. 6.16: Spatial link between ilmenite and microzircon    121 



ix 
 
Fig. 6.17: Ilmenite and zircon abundance in clear garnet   122 

Fig. 6.18: Microcracks surrounding detrital zircon     125 

Fig. 6.19: The formation of disparate microzircon populations  

        between quartzofeldspathic and pelitic matrix layers   126  

Fig. 6.20: Chemistry and microzircon counts in GR01-6   129 

Fig. 6.21: Size distribution of zircon in clear and cloudy garnet  130 

Fig. 6.22: Spatial distribution of zircon within GR01-4     131 

Fig. 6.23: Proportion of inclusion-hosted microzircon in garnet   132 

Fig. 6.24: Microzircon morphology in cloudy garnet    133 

Fig. 6.25: Zircon within grains versus at grain boundaries in staurolite-  

      zone matrix         136 

Fig. 6.26: Zircon distribution in matrix phases in staurolite-zone schists  137 

Fig. 6.27: Zircon abundance in unmodified sillimanite garnet   140 

Fig. 6.28: Zircon abundance per mm2 in sillimanite and staurolite schists 141 

Fig. 6.29: Fracture and zircon abundance in UGR1-1     142 

Fig. 6.30: Microzircon distance from fractures in UGR1-1 versus  

      randomly distributed spatial points      142 

Fig. 6.31: Fracture morphology in the Leven Schists     143 

Fig. 6.32: Outgrowth morphology in sillimanite-zone garnet    144 

Fig. 6.33: Zircon surrounding quartz-rich bands in sillimanite schists  145 

Fig. 6.34: Zircon within grains versus at grain boundaries in sillimanite- 

      zone matrix         148 

Fig. 6.35: Zircon distribution in matrix phases in sillimanite schists   149 

Fig. 6.36: Zircon distribution map in GR02-5      152 

Fig. 6.37: Zircon abundance in the matrix vs clear garnet    153 

Fig. 6.38: Zircon abundance within porphyroblast phases in GR01  154 

Fig. 6.39: Outgrowth abundance and morphology with grade    156 

Fig. 6.40: Size distribution of microzircon within porphyroblast phases 

        with increasing grade        157 

Fig. 6.41: Abundance and size of zircon in clear and cloudy garnet   159 

Fig. 6.42: Influence of dissolution-reprecipitation on microzircon  160 

 

 

 

 

 

 



x 
 

List of tables 

 

Table 4.1: Modal abundance of biotite-zone schists    32 

Table 4.2: Modal abundance of staurolite-zone schists    39 

Table 4.3: Modal abundance of sillimanite-zone schists    43 

Table 5.1: Modal abundance of modified garnet and staurolite 

        within staurolite-zone schists       48 

Table 6.1: Zircon abundance within staurolite-zone garnet    128 

Table 6.2: Zircon abundance within sillimanite-zone garnet    141  

Table 6.3: Microzircon size across matrix and porphyroblasts   154 

Table 6.4: Changing abundance and size distribution of zircon  

         across biotite, staurolite and sillimanite-zone schists   157 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



xi 
 

Acknowledgements 

I received a great deal of support throughout the research and writing of this 

thesis. I’d first like to thank my supervisor, Dr Tim Dempster whose expertise was 

invaluable in formulating this research topic, and whose thoughtful discussions 

and feedback assisted in guiding me throughout this study.  

I would like to thank Peter Chung for his analytical expertise and Robert 

MacDonald for his help with sample preparation. I thank the whole Earth Science 

department for providing me with the skills and knowledge necessary to complete 

this research. Thanks to my colleagues within the office who provided motivation 

and support through the research and writing of this thesis.  

In addition, I would like to thank my parents who have guided me through the last 

year with support and encouragement. A final thank you to my friends, who were 

always available when I needed a distraction or sympathetic ear.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

Declaration 

I declare that the information presented in this thesis is the result of my own 

work, except where acknowledged to others, carried out at the School of 

Geographical and Earth Sciences, University of Glasgow. This research was 

supervised by Dr. Tim Dempster. Any published work by other authors has been 

given full acknowledgement in the text.  

Tara McElhinney 



xiii 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 
 

 

 

 

 

 



1 
 

Chapter 1 Zircon in metamorphism  

1.1 Introduction  

Zircon is a common accessory mineral present in a wide range of sedimentary, 

metamorphic and igneous rocks (Finch & Hanchar, 2003). It is an important 

detrital mineral, durable enough to withstand a number of physical and chemical 

processes including weathering, erosion and transport (Finch & Hanchar, 2003; 

Deer et al., 2013a). As such zircon grains are commonly composite, formed over 

a series of events which can be identified through zoning (Williams, 2001). Grains 

commonly consist of a detrital core, thought to be of magmatic origin, and relict 

magmatic or metamorphic zones (Rubatto, 2017). Zircon is a zirconium 

orthosilicate (ZrSiO4) with a tetragonal structure consisting of alternating edge-

sharing SiO4 tetrahedra and ZrO8 dodecahedra, chains of alternating polyhedra are 

joined laterally by the edge sharing dodecahedra (Nasdala et al., 2001; Botis et 

al., 2013; Deer et al., 2013a). Owing to its structure zircon has the ability to 

incorporate a wide range of trace elements such as U, Th, Hf and HREE (heavy 

rare earth elements) (Kohn & Kelly, 2018). Non-stochiometry in zircon can result 

from either the incorporation of impurities in interstitial sites, and/or the 

replacement of constituent components Zr or Si with alternative cations (Finch & 

Hanchar, 2003). The large radius of the crystallographic site of Zr4+ (0.84A) means 

trace elements readily substitute for Zr in the lattice, while Si4+ has a smaller ionic 

radius producing a smaller site (0.26A), less compatible for substitution (Finch & 

Hanchar, 2003; Kohn & Kelly, 2018). Substitutions can be homovalent or 

heterovalent, interstitial sites are invoked in the latter to accommodate 

impurities capable of balancing charges (Speer, 1982; Finch & Hanchar, 2003).  

1.1.1 Zircon uses  

Zircon is used in a wide range of geochemical investigations owing to its near 

ubiquity, affinity for trace elements and perceived durability in crustal conditions 

(Froude et al., 1967; Mojzsis et al., 2001; Wilde et al., 2001; Cawood et al., 2003; 

Utsomomya et al., 2004; Nemchin et al., 2006; Thomas, 2011). U/Th-Pb zircon 

geochronology is one of the most commonly used absolute dating tools due to the 

abundance of U/Th in zircon, the ease of measuring and interpreting 

concentrations of both parent and daughter isotopes within zoned grains, and the 
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near ideal behaviour of the system within zircon; with a high closure temperature 

and low diffusivity of parent and daughter isotopes (Fraser et al., 1997; Nasdala 

et al., 2001). Zircon excludes Pb2+ during crystallization so any Pb present is 

radiogenic removing an uncertainty surrounding the quantity of daughter material 

initially present (Nasdala et al., 2001). The development of ion microprobes 

enabled the dating of zircon over distances of just a few μm making the 

concentrically zoned grains an asset, with the ability to date multiple zircon-

forming events (Williams, 2001).  

Early Earth studies commonly involve zircon analysis on the grounds that it is the 

only readily identifiable mineral from the Hadean Earth (Trail et al., 2007; 

Harrison, 2009; Valley et al., 2015; Bindeman et al., 2018). Zircon can be used in 

sedimentary provenance studies (Košler, et al., 2002; Andersen, 2004; Thomas, 

2011), as well as investigations of the timing and duration of igneous events 

(Brown & fletcher, 1999; Kamo et al., 2003; Vӓisӓnen & Kirkland, 2008; Cramer et 

al., 2015; Bucholz et al., 2017; Siégel et al., 2018) and metamorphic events 

(Cawood et al., 1999; Santosh et al., 2007; Wang et al., 2007; Rojas-Agramonte 

et al., 2011; Cui et al., 2013). The main limitations to U/Th-Pb geochronology 

involve the interpretation of growth zoning and the limited understanding of 

zircon behaviour during metamorphism (Rubatto, 2002). The interpretation of 

isotopic ages requires the assumption of a closed system with no leaching of 

constituents, resulting in the alteration of Pb contents and the production of 

ambiguous ages (Davis et al., 1968). Zircon has a closure temperature >900oC for 

the U/Th-Pb system, only under extreme thermal conditions can the system be 

reset by diffusion (Lee et al., 1997). Contrary to this zircon shows evidence of 

reactivity across a range of metamorphic conditions (Nasdala et al., 2001; Kohn 

et al., 2015). Zircon has also been proposed as a host for the immobilization of 

radioactive nuclides from nuclear waste due to its perceived durability (Ewing & 

Lutze, 1997; Ewing, 1999; Volkkov, 1999; Trocellar & Delmas, 2001). The 

reactivity of zircon therefore has many implications for a wide variety of fields 

(Ellsworth et al., 1994) and thus understanding its behaviour is a priority.  
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1.2 The reactivity of zircon 

The traditional view of zircon as a physically and chemically unreactive mineral, 

highly resistant to metamorphism and erosion (Poldevaart, 1955; Gastil et al., 

1967), is quickly becoming antiquated as an increasing number of studies across a 

range of metamorphic conditions report evidence of zircon reacting through 

dissolution, recrystallization and crystallization from a fluid (Hoskin & Black, 2000; 

Rubatto et al., 2001; Williams, 2001; Dempster et al., 2004; Rasmussen, 2005; 

Rubatto & Hermann, 2007; Dempster et al., 2008a; Hay & Dempster, 2009a; 

Vonlanthen et al., 2012; Dempster & Chung, 2013; Wang et al., 2014). 

Temperature was originally viewed as a first order control over the reactivity of 

zircon with the assumption that it would only react at extreme conditions (Hoskin 

& Schaltegger, 2003).  The perceived immobility of high field strength elements 

(HFSE) during metamorphism perpetuated the idea of unreactive zircon but a 

growing body of work shows Zr can be effectively mobilised by hydrothermal fluids 

(Nasdala et al., 2001; Geisler et al., 2007; Zhao et al., 2016). Pioneering this work 

was the discovery of pore-filling authigenic titanite within sandstone with high Zr 

concentrations requiring the transportation of Zr under diagenetic conditions 

(Rubatto, 2002). There are four main processes that form zircon during 

metamorphism, (a) crystallization from a melt during high grade metamorphism 

(Schaltegger et al., 1999; Hermann & Rubatto, 2003; Whitehouse & Platt, 2003) 

(b) solid-state reactions (Fraser et al., 1997; Degeling et al., 2001), (c) coupled 

dissolution-reprecipitation (Schwartz et al., 2010; Peterman et al., 2016), and (d) 

precipitation from a Zr-saturated fluid (Fraser et al., 1997; Bingen et al., 2001; 

Möller et al., 2003). Dissolution produces textural evidence in the form of 

irregular, embayed margins on grains and more rarely internal alteration textures 

(Hay & Dempster, 2009a; Peterman et al., 2016). New crystallization of 

metamorphic zircon occurs predominantly as outgrowths around existing detrital 

grains and discrete microzircon (Dempster et al., 2004; Dempster et al., 2008a).  

Outgrowths of zircon were first discovered around detrital grains within 

sandstones (Bond, 1936; Smithson, 1937; Butterfield, 1948), although the source 

for the Zr and mechanism of formation remained unexplored until more recently 

(Sláma et al., 2007). Microzircon were first reported by Dempster et al (2004) 

within greenschist facies slate as a population of discrete, anhedral, very fine 

zircon crystals. It is well established that zircon containing no oscillatory zoning 
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is metamorphic (Möller et al., 2003) and microzircon have no apparent internal 

structure or zoning (Dempster et al., 2004). They have since been reported in a 

series of low-medium grade metasediments (Dempster et al., 2008a; Dempster et 

al., 2008b; Hay & Dempster, 2009a; Dempster & Chung, 2013; Wang et al., 2014) 

but the literature surrounding microzircon is limited. Microzircon demonstrate 

clear evidence of metamorphic formation, decreasing in both size and abundance 

throughout the reaction history, coupled with their absence in sedimentary rocks 

(Dempster et al., 2008a). The presence of the small zircon population within a 

range of silicates suggests their formation is not due to exsolution from a Zr-rich 

host (Dempster et al., 2008a).  

1.2.1 Zircon behaviour during high grade metamorphism  

The behaviour of zircon within high grade anatectic-subanatectic rocks is 

generally well studied (Hanchar & Miller, 1993; Fraser et al., 1997; Bingen et al., 

2001; Whitehouse & Platt, 2003; Thomaschek et al., 2003; Wan et al., 2011; 

Kröner et al., 2014). Outgrowths on detrital zircon typically increase in abundance 

and thickness with metamorphic grade (Rubatto, 2002), this more distinct 

morphological change may explain the prevalence of high-grade studies. 

Outgrowths measured at amphibolite facies are typically a few μm wide and occur 

on just ~10% of grains and within anaectic metapelites they are 10s μm wide on 

~80% grains (Rubatto, 2002). The increased amounts of zircon growth at higher 

temperature are attributed to the increased solubility of Zr in a melt phase, a 

facet of its incompatibility in most crystal structures (Nehring et al., 2010). The 

melt also provides a vehicle for Zr to be transported to a proximal site where 

conditions promote growth (Bea et al., 2006; Kelsey et al., 2008; Hallett & Spear, 

2015). In order for new metamorphic zircon to form, dissolution of existing 

populations must occur (Fraser et al., 1997). The increased dissolution produces 

complex internal structures and irregular margins (Bingen et al., 2001). Alongside 

dissolution, grains are also subject to mechanical disturbance, in high grade 

mylonitic rocks fracturing and size reduction of zircon results from strain (Wayne 

& Sinha, 1988). There has been one report of <1 μm crystals of zircon, 

morphologically similar to microzircon, forming within garnet in kyanite-zone 

restitic metapelites (Peterman et al., 2016). This is the only report of microzircon 

above medium grade. The lack of microzircon documented at higher grade could 
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potentially be based around; (a) impediment/retardation of microzircon growth, 

(b) preservational bias, or (c) analytical biases, where mineral separates are 

readily used in geochronological studies and would exclude microzircon 

populations (Dempster et al., 2008a; Hay & Dempster, 2009a). At extremely high 

pressures and temperatures zircon undergoes a transformation to reidite (Finch & 

Hanchar, 2003) increasing in density by ~11% (Akaogi et al., 2018). The conversion 

is rare occurring predominantly in impact craters under ultra-high pressure 

conditions equivalent to loading at depths of ~330 km (Akaogi et al., 2018).  

1.2.2 Zircon behaviour during low-medium grade metamorphism  

Analyses of zircon populations in low grade metamorphic rocks were initially 

limited to authigenic outgrowths predominantly in clastic sedimentary rocks 

(Bond, 1936; Butterfield, 1948; Saxena, 1966; Baruah et al., 1995). Only in the 

last few decades following the increased use of scanning electron microscopy and 

advancement in analytical techniques have finer metasedimentary populations 

been explored (Dempster et al., 2004; Rasmussen, 2005; Hay & Dempster, 2009a; 

Hay et al., 2010). There is evidence of significant zircon dissolution and growth at 

temperatures as low as ~250oC, within prehnite-pumpellyite facies metasediments 

(Rasmussen, 2005). During burial of sandstones heated to <100oC minor outgrowths 

form and local alteration of zircon occurs (Hay & Dempster, 2009b), illustrating 

that zircon is reactive at extremely low temperatures. The delicate nature of 

these low grade outgrowths means they are unlikely to survive sedimentary 

processes posing preservational bias problems (Hay & Dempster, 2009b). Detrital 

zircon margins are typically embayed and non-planar (Hay & Dempster, 2009a), 

these grains contain thin outgrowths (Rasmussen, 2005; Kohn & Kelly, 2018), and 

where present microzircon may dominate the zircon population at low grade 

(Dempster et al., 2004). All published studies of microzircon have been between 

upper greenschist to lower amphibolite facies regionally metamorphosed rocks 

leaving higher grade and contact metamorphosed rocks unexplored. Interbedded 

pelitic and psammitic schists, apparently similar to those within which microzircon 

are reported, yield no evidence of microzircon (Rasmussen, 2005; Hay et al., 2010) 

raising questions regarding the controls on its formation and/or biases in the 

observations. The main gap in understanding progressive zircon reactivity is within 

medium grade rocks with studies typically focussing on low and high grade 
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conditions. A study by Dempster et al (2008a) of lower amphibolite facies schists 

shows a large population of microzircon compared to similar upper greenschist 

samples (Dempster et al., 2004), despite this link amphibolite facies literature 

remains limited.  

Zircon reactivity over a wide range of conditions poses uncertainty regarding 

which stages in a metamorphic history promote dissolution and (re)crystallization. 

It’s believed certain P-T conditions are more conducive to the growth of zircon 

and others to dissolution (Kohn & Kelly, 2018). A range of studies show zircon 

formation during prograde metamorphism (Liati & Gebauer, 1999; Beckman & 

Möller, 2018), retrograde metamorphism (Fraser et al., 1997; Roberts & Finger, 

1997; Kohn et al., 2015) and at peak metamorphism (Liati & Gebauer, 1999; Hoskin 

& Black, 2000; Rubatto et al., 2001; Rubatto, 2002).  

1.3 Factors influencing zircon reactivity  

The ‘ideal’ zircon grain is stable under crustal and upper mantle conditions 

(Geisler et al., 2007), however grains with high defect densities or unusual 

chemical compositions are prone to dissolution (Kohn & Kelly, 2018), acting as a 

possible source of Zr for new zircon growth (Rubatto, 2002). The disparity between 

zircon reactivity in apparently similar rocks or between autonomous zircon within 

a single rock (Nasdala et al., 2001) raises questions about the controls over zircon 

reactivity at both the whole-rock and grain scale.  

1.3.1 Temperature  

Temperature was traditionally the primary factor considered to impact zircon 

reactivity, where only rarely at conditions below upper-amphibolite to granulite 

facies could dissolution and crystallization occur (Hoskin & Schaltegger, 2003). 

Complications with understanding temperature arise from the nature, number and 

timing of thermal pulses, all of which will impact zircon reactivity (Williams, 

2001). A range of analyses carried out on low temperature ‘inert’ zircon deemed 

unreactive yield ambiguous results (Geisler et al., 2001; Degeling, 2002). Zircon 

shows relatively low thermal expansion with only slight lengthening of the ZrO8 

dodecahedra during heating meaning Zr release at higher temperatures is unlikely 

to be solely attributable to lattice relaxation (Finch & Hanchar 2003). At higher 
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temperatures, the increased kinetic energy of Zr allows its transportation more 

effectively (Weber et al., 1994; Nasdala et al., 2001). Additionally, where 

temperatures are higher, reactions are catalysed as diffusion rates increase and 

ionic mobility is enhanced promoting Zr transportation, in this sense temperature 

can assist in promoting thermodynamic equilibrium (Finch & Hanchar, 2003). 

There are many other factors, commonly overlooked, which require consideration 

alongside temperature. 

1.3.2 Radiation damage  

The durability of many accessory phases enriched in HFSE (high field strength 

elements) is compromised by alpha decay, as such amorphization can increase the 

reactivity of zircon by altering its physical and chemical properties (Holland & 

Gottfried, 1955; Nasdala et al., 2001; Balan et al., 2003; Anderson et al., 2008). The 

properties that make zircon useful for geochronometry have a detrimental impact on 

its durability (Hay et al., 2010). While alpha radiation and spontaneous fission are 

responsible for only minor damage, ballistic collisions resulting from the recoil of 

alpha daughter nuclei directly amorphizes micrometric sections of the lattice (Weber 

et al., 1994; Nasdala et al., 1996; Balan et al., 2003; Geisler et al., 2007). The decay 

produces amorphous areas where chemical transport is promoted relative to 

adjacent crystalline areas (Weber et al., 1994; Geisler et al., 2007). Zircon grains 

contain variable concentrations of radioactive parent elements influencing the 

likelihood of a grain to become metamict, zircon typically contains between 5-4000 

ppm U and 2-2000 ppm Th (Ellsworth et al., 1994). Zircon is chemically 

heterogeneous (Köppel & Grünenfelder, 1971; Nasdala et al., 1996), since radiation 

damage is a function of the U/Th concentration and time, the non-uniform 

distribution of U/Th produces a structurally variable grain (Chakoumakos et al., 

1987; Smith et al., 1991; Hay & Dempster, 2009a). The quasi-amorphous areas 

formed from ballistic collisions become metamict when overlap of the damaged 

lattice occurs eliminating islands of crystalline zircon (Balan et al., 2003). 

Consequently, zircon has two end members which behave antithetically during 

metamorphism; unreactive, crystalline zircon and its reactive, metamict counterpart 

(Nasdala et al., 2001).  

The enhanced reactivity of metamict grains is attributed to increased diffusion rates 

within the damaged lattice increasing its susceptibility to leaching and differential 
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recrystallization (Ewing et al., 1982; Ellsworth et al., 1994; Meldrum et al., 1998; 

Farnan et al., 2003; Hay & Dempster, 2009a). Dissolution is the response of a 

mineral to achieve a lower energy state, within metamict zircon the larger number 

of defects increases the interfacial energy and thus its susceptibility to dissolution 

(Ruiz-Agudo et al., 2014). As well as the direct weakening from metamictization, 

swelling of amorphous areas by up to 18% generates a series of radial fractures 

enabling fluid infiltration to the interior of detrital grains, and creating further potential 

reaction fronts (Balan et al., 2003; Hay & Dempster, 2009a). Metamict zircon are 

also more prone to contain a hydrous component in their structure, lowering the 

stability of grains further (Botis et al., 2013).   

Radiation damage is stored in zircon provided it is not annealed, annealing can 

occur simply through the reformation of disrupted bonds by reordering of 

neighbouring atoms or through the recrystallization of damaged areas (Weber et al., 

1994; Nasdala et al., 2001). Metamict zircon may begin to recover at protracted 

periods above 225-250oC in the presence of a fluid (Nasdala et al., 2001; Kohn & 

Kelly, 2018). For full structural recovery, annealing occurs in stages and requires 

temperatures in excess of 900-1000oC (Nasdala et al., 2004; Deer et al., 2013a; 

Rubatto, 2017). At high temperatures annealing is promoted producing a smaller 

population of reactive metamict grains while at lower temperature the proportion of 

metamict grains is larger promoting dissolution and yielding Zr, and thus more 

potential zircon (Dempster et al., 2008a).  

1.3.3 Fluid composition and availability  

The formation of microzircon and zircon outgrowths on non-metamict grains 

requires the transportation of Zr beyond the grain scale (Rasmussen, 2005). 

Dissolution-reprecipitation can proceed with minimal fluid and limited Zr 

solubility, however it is limited to within a single detrital grain (Rubatto, 2017). 

The transportation of Zr to a distal site requires a corrosive fluid (Rasmussen, 

2005). Halogens released during dehydration reactions allow the mobilisation and 

transportation of HFSE as F complexes (Rubin et al., 1993; Rasmussen, 2005). Zr 

solubility also increases with pressure as the alkalinity and Si-content of fluids 

rises (Ayers et al., 2012; Rubatto, 2017), it follows that the presence of a corrosive 

fluid is particularly important at lower grade.   
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Reaction rates are highly dependent on the presence of a hydrothermal fluid 

(Putnis & Austrheim, 2010). With a fluid present transport of elements can occur 

via advection and diffusion through an interconnected pathway and as such 

activation energies for a reaction in the presence of a fluid are typically 10 orders 

of magnitude lower than solid-state transformations (Putnis & Austrheim, 2010; 

Putnis, 2015). Solid state replacement processes also rely on the presence of 

defects, such as intrinsic vacancies within a crystal structure, which increase with 

increasing temperature (Putnis, 2002; Altree-Williams et al., 2015). At lower 

temperature vacancies are predominantly extrinsic meaning dissolution-

reprecipitation is promoted over kinetically difficult solid-state transformations 

(Altree-Williams, 2015). Dissolution-reprecipitation requires the dissolution of a 

mineral by an aqueous fluid producing an interfacial film at the reaction front 

which is supersaturated with respect to the product phase, resulting in subsequent 

reprecipitation (Ruiz-Agudo et al., 2014). The availability of fluids is locally 

controlled by the presence of pathways that enable infiltration, porosity can be 

intrinsic or deformation-induced (Putnis & Putnis, 2007; Putnis & Austrheim, 2010; 

Putnis, 2015). Deformation is arguably as important as the presence of a fluid in 

a rock with a low intrinsic porosity such as fine-grained pelitic metasediments 

(Dempster et al., 2008a; Rubatto, 2017).  

1.3.4 Nucleation  

While microzircon have been reported in a range of low grade metasedimentary 

rocks (Dempster et al., 2004; Dempster & Chung, 2013) they have not been 

reported in apparently similar studies where other evidence of zircon reactivity is 

preserved (Rasmussen, 2005; Hay et al., 2010). Consequently, an understanding 

of what promotes the formation of outgrowths in place of microzircon neoblasts is 

essential. Difficulty nucleating has been suggested as one possible explanation for 

the formation of microzircon (Dempster et al., 2008a). New zircon should 

preferentially grow on existing detrital grains (Kohn, 2016), where new atoms are 

added to vacant sites at the surface forming outgrowths (Higgins, 2006). Nucleation 

is promoted by higher temperatures and the presence of a structure, i.e. remnants 

of detrital grains, where one or both are unfavourable zircon may exist as a separate 

authigenic population (Dempster et al., 2008a).  
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1.3.5 Bulk rock composition  

The stability of zircon is also a function of the bulk-rock chemistry. Zircon within 

a Zr-poor rock will react at a lower temperature than its Zr-rich counterpart as 

the stability of zircon is a function of the bulk Zr content of a rock (Kelsey & 

Powell, 2011). The balance of Zr within a rock requires consideration, namely the 

Zr-bearing minerals that can be dissolved more efficiently than zircon as 

internally-sourced Zr can be garnered from other phases (Fraser et al., 1997). 

Metamorphic zircon formation tends to be more common in pelites, rather than 

mica-poor, clastic metasediments (Dempster et al., 2004; Rasmussen, 2005; 

Dempster et al., 2008a). Various explanations have been provided to explain the 

disparity e.g. the different bulk chemistry of the rocks (Rasmussen, 2005). Pelites 

typically contain F concentrations between 780-940ppm, producing potentially 

more corrosive fluids than psammite where F contents range from 180-449ppm 

(Koritnig, 1969; Gao et al., 1998; Rasmussen, 2005). While the differences in the 

structural state of zircon between the two rock types has been invoked elsewhere; 

the pelite, and the original mudstone, contains a larger proportion of smaller 

radiation-damaged detrital grains potentially yielding more available Zr 

(Dempster & Chung, 2013). 

1.3.6 Conclusion 

Recent literature has focussed on the impact of metamorphism on zircon as many 

now agree it is not the unreactive mineral it was once perceived to be (Nasdala 

et al., 2001; Dempster et al., 2004; Kelly & Harley, 2005). Microtextural analysis 

is applied to understand the change to zircon morphology during events and the 

application of this to geochronology as a new multistep approach to dating (Vavra 

et al., 1999; Rubatto, 2002; Breeding et al., 2004; Kelly & Harley, 2005). While 

the increased identification of zircon reactivity promotes a new narrative in which 

zircon is a dynamic phase, the role of a variety reactivity-promoting factors 

remains ambiguous.  Understanding zircon behaviour during metamorphism 

presents the possibility of utilising zircon as a tracer of metamorphic events as 

well as improving zircon geochronology.  
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Chapter 2 Zr-bearing phases 

2.1 Zr repositories  

Zr is a relatively abundant trace element within crustal rocks, with whole rock Zr 

abundance ranging from 100-500ppm, and more rarely up to 1000ppm in 

metapelitic rocks (Kelsey & Powell, 2011). Zr is inherited from sedimentary 

protoliths meaning the mass balance should remain consistent throughout the 

metamorphic history (Degeling et al., 2001; Kohn et al., 2015), except in an open 

system where hydrothermal fluids may act as an external source of Zr (Fraser et 

al., 1997). As the primary constituent of zircon, an awareness of whole-rock Zr 

contents and the minerals which incorporate a significant amount of Zr aids in 

understanding zircon formation through time (Degeling et al. 2001). Minerals 

containing >10 ppm Zr are potential parents to new metamorphic zircon (Degeling, 

2002; Bea et al., 2006). It was originally believed that Zr was only accommodated 

by zircon in most rocks (Watson & Harrison, 1983) but improved analytical 

techniques and the advent of mass spectrometry produce a clearer picture of Zr 

behaviour. There are in total 99 known primary Zr minerals but only 3 of these are 

widely abundant; baddeleyite which is most common in olivine-normative rocks, 

zircoclinonolite-zirkelite, typically restricted to nepheline-normative rocks and 

zircon (Bea et al., 2006). Zr in zircon has a theoretical stochiometric value of 

49.76% but due to a range of cation substitutions zircon will rarely, if ever, reach 

this value (Bea et al., 2006). For example, zircon always contains Hf up to ~1 wt% 

(Deer et al., 2013a). The substitution occurs as Hf4+ and Zr4+ are geochemically 

almost identical (Claiborne et al., 2006). Aside from these primary minerals Zr 

commonly occurs in minerals for which it is not an essential constituent (Hoskin & 

Schaltegger, 2003). 

Zircon equilibrium in metamorphic rocks is highly temperature dependant (Kohn 

& Kelly, 2018). Up to 99% of Zr is hosted in zircon at low grade (Kohn & Kelly, 

2018) however with increasing temperature additional mineral phases grow and 

incorporate Zr, as a result the mode of zircon must decrease (Degeling, 2002; Kohn 

et al., 2015). During prograde metamorphism zircon is dissolved (Fraser et al., 

1997; Bingen et al., 2001; Degeling et al, 2001; Degeling, 2003) and the evidence 

is preserved as dissolution/alteration textures in detrital grains. During 

exhumation and uplift, as the temperature drops mineral phases that were once 



12 
 
stable undergo resorption releasing Zr and promoting the precipitation of 

metamorphic zircon (Fraser et al., 1997; Bingen et al., 2001). The mass balancing 

of Zr for microzircon has never been attempted and similarly their growth has 

never been pinned to a specific point on the P-T path although textures indicate 

their growth during prograde metamorphism (Dempster et al., 2008a). 

2.1.1 Zr in accessory phases 

Accessory minerals by definition comprise <5% of the volume of a rock (Tropper, 

2014) however they may have a large influence on the mobility of trace elements 

such as Zr (Anderson et al., 2008). Accessory minerals, mainly zircon (ZrO2), rutile 

(TiO2) and ilmenite (FeTiO2), contain >80-90% of the whole-rock Zr budget (Green, 

1994; Bea & Montero, 1999; Kohn & Kelly, 2018). Zr can replace Ti easily as they 

have similar ionic radii and are homovalent, as such Zr is common in ilmenite and 

rutile (Pearce, 1990; Kelsey & Powell, 2011). Ilmenite is typically more common 

in metamorphic rocks (Kelsey & Powell, 2011) but rutile can incorporate larger 

amounts of Zr (Degeling, 2002). Two populations of ilmenite and rutile are 

common in metamorphic rocks, (a) authigenic aligned populations, and (b) detrital 

grains trapped as inclusions (Ague & Eckert, 2012). Bingen et al (2001) present 

textural evidence of ilmenite acting as a source of Zr for new zircon growth 

through coronas and growth structures. Ilmenite within high grade metabasic rocks 

have the highest reported concentration of Zr at 3850 ppm (Bingen et al., 2001) 

while lower abundances are reported in more felsic rocks and anorthosites <114 

ppm (Charlier et al., 2007). There is limited data available for Zr contents in 

metasedimentary ilmenite however the suggestion of decreasing Zr with 

decreasing silica content within igneous studies (Bea et al., 2006) may indicate 

low concentrations within authigenic ilmenite in pelites and psammites. While 

detrital ilmenite Zr contents are inherited, silica-rich fluids within metasediments 

may impact its stability. The most studied accessory phase is rutile due to the use 

of Zr-in-rutile geothermometry (Zack et al., 2004; Jiao et al., 2010; Meyer et al., 

2011; Kooijman et al., 2012). The modal abundance of rutile within metamorphic 

rocks is temperature-dependant, within pelites rutile concentrations increase 

from 30 ppm at 430oC up to 8400 ppm at 1100oC, containing 100s-1000s ppm Zr 

(Degeling, 2002; Zack et al., 2004; Kohn & Kelly, 2018). During cooling, 

baddeleyite exsolution can occur in rutile within metabasites, releasing ZrO2 into 

a less stable phase which can react with quartz to form zircon (quartz + 
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baddeleyite → zircon) (Zack et al., 2004; Beckman & Möller, 2018). A similar 

reaction can occur in ilmenite where baddeleyite exsolution produces zircon rims 

around detrital ilmenite grains (Bingen, et al., 2001; Morisset & Scoates, 2008). 

At greenschist facies rutile can react to form titanite, provided Ca is available 

(Cave et al., 2015). Rutile contains on average 1360 ppm Zr while titanite contains 

just 302 ppm Zr (Cave et al., 2015). The rutile to titanite transformation releases 

504 ppm Zr from rutile that is not incorporated into the product titanite (Cave et 

al., 2015). Any additional Zr released from rutile cannot be incorporated into 

titanite and so will be released liberating up to 63% of the Zr in rutile. Rutile and 

ilmenite therefore have the potential to act as a source and sink of Zr at different 

stages on the P-T path. This is similar to the behaviour of zircon and potentially 

many other Zr-bearing accessory minerals. 

Aside from Ti-bearing minerals, Zr can substitute into less compatible mineral 

lattices (Bea et al., 2006). The breakdown of these non-Ti-bearing minerals also 

increases the chance of zircon formation as the Zr is less likely to form another 

Ti-bearing phase (Degeling, 2002). Allanite often contains high Zr contents up to 

400 ppm (Bea et al., 2006) however, the contents are variable based on its ability 

to incorporate a wide range of divalent, trivalent and tetravalent major elements, 

trace elements and REE with a range of ionic radii (Gieré, 1986; Ercit, 2002). The 

formation of xenotime is commonly associated with the growth of zircon and the 

two often co-exist and exhibit isotypic behaviour, as such xenotime contains highly 

variable Zr contents up to ca. 20 wt% (Casillas et al., 1995; Bea & Montero, 2006). 

Accessory minerals such as monazite, apatite and other Fe oxides typically have 

extremely low Zr contents, having a negligible impact on the overall Zr budget 

(Kelsey & Powell, 2011). 

2.1.2 Zr in major mineral phases  

Zr behaviour in major minerals is less well constrained than within accessory 

phases (Kooijman et al., 2012). Several silicates and oxides have been found to 

contain small yet significant concentrations of Zr (Bea et al., 2006). An 

understanding of the Zr contents within these rock-forming minerals is vital, 

despite their lower Zr concentrations the high modal abundance of major phases 

mean they have the capacity to contain a larger proportion of the whole-rock Zr 

budget than accessory minerals (Villaseca et al., 2007). Garnet, amphibole and 
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pyroxene can represent significant repositories of Zr (Fraser et al., 1997; Kohn et 

al., 2015), Zr uptake by these phases should be much lower in pelites than 

metabasites which have larger proportions of these minerals (Kohn et al., 2015).  

Garnet is generally thought to contain <100 ppm Zr (Degeling, 2002; Kelsey & 

Powell, 2011) but has a Zr-rich end member kimzeyite (Ca3Zr2Al2SiO12) with 

reported Zr contents up to 29.9 wt% (Milton et al., 1961) and 18.4 wt% (Jamtveit 

et al., 1997). Kimzeyite is rare and garnet most commonly occurs as almandine 

where Zr substitutes in place of other cations in the lattice (Kelsey & Powell, 

2011). Substitution in almandine involves the replacement of Fe3+ or Al3+ with Zr4+ 

on the octahedral site and the coupled substitution of Si4+ with Al3+ on the 

tetrahedral site (Fraser et al., 1997; Degeling et al., 2001; Deer et al., 2013b). As 

temperatures increase the amount of Zr in garnet typically increases up to 150 

ppm in granulite facies rocks (Ague & Eckert, 2012). Garnet porphyroblasts in the 

Rogaland aureole contain just 1 ppm Zr at 700oC increasing to 139 ppm at 900oC 

(Degeling, 2002). The increase is attributed to thermal expansion of the lattice 

promoting the substitution of larger Zr (0.72 A) in place of Fe (0.65 A) (Degeling, 

2002).  Based on this mechanism of substitution, more Fe-rich garnets will be able 

to incorporate higher amounts of Zr (Degeling, 2002). Relatively high Zr 

concentrations have been reported within pyrope (Mason & Allen, 1973) as well as 

grossular (Westrenen et al., 2001). Zr values for spessartine in metamorphic rocks 

remain uninvestigated. However, owing to Mn having the smallest ionic radius 

spessartine would theoretically contain less Zr than almandine, pyrope and 

grossular where larger sites for substitution are available. Bea et al. (2006) note 

extremely low Zr concentrations within garnets in low grade pelites in comparison 

to those within meta-igneous rocks suggesting Zr contents are, at least in part, 

dependant on the whole-rock chemistry.  

Substitution of major element phases in staurolite is well explored with the 

replacement of tetravalent cations (Si4+) with trivalent cations (Al3+) or divalent 

cations (Mg2+, Fe2+) (Deer et al., 2013c). Trace element data is limited, however 

one study of staurolite within amphibolite facies pelites reports up to 193 ppm Zr, 

higher than the Zr contents of garnet in the same rock (Corrie & Kohn, 2008). 

Staurolite typically does not have a wide range of chemical compositions but the 

presence of trivalent and divalent Fe cations in the lattice (Hawthorne et al., 
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1993) means a substitution similar to that in garnet could be invoked. Amphibole, 

particularly hornblende, and pyroxene are both subject to contrasting reports on 

their Zr contents, HFSE abundances tend to be controlled by their major element 

composition (Marks et al., 2004). Both pyroxene and amphibole contain optimal 

sites around 0.70 A which could accommodate 0.72 A Zr (Marks et al., 2004). 

Clinopyroxene contains the highest concentrations of Zr in Mg-rich rocks, up to 

158 ppm (Bea et al., 2006). Orthopyroxene more rarely contains elevated Zr up to 

24 ppm in felsic granulites (Degeling, 2002; Bea et al., 2006). Amphibole can 

accommodate elevated Zr concentrations within alkaline and calc-alkaline igneous 

rocks (Marks et al., 2004). While within metabasites increasing Fe and Na have 

been linked to high Zr values in amphibole (Marks et al., 2004). Silicate melts are 

a potentially significant source and sink of Zr, with the ability to achieve contents 

in excess of 1000ppm (Kelsey & Powell, 2011). However, melts are unlikely to 

reach this concentration without zircon precipitation and typically become 

saturated at a few hundred ppm even at elevated temperatures (Watson & 

Harrison, 1983; Boehnke et al., 2013). 

Biotite contains among the lowest Zr contents of the silicates despite having a Ti-

rich high temperature end-member, phlogopite (Degeling, 2002). The anomalously 

low concentration in biotite is ascribed to its reduced stability at higher 

temperatures where thermal expansion is most effective (Degeling, 2002). 

However, based on the almost identical ionic radii of Zr and Ti (Kelsey & Powell, 

2011) theoretically the thermal expansion required to enable Zr replacement in 

phlogopite should be negligible. Muscovite consistently contains low Zr contents 

below detection (Bea et al., 2006; Kelsey & Powell, 2011). There is limited trace 

element data available for chlorite, none of which report Zr concentrations. 

Chlorite is a phyllosilicate, structurally similar to biotite and muscovite (Deer et 

al., 2009) which contain little to no Zr. On this basis and due to its simple 

chemistry, chlorite may not have the ability to accommodate significant quantities 

of Zr. Feldspar, both alkali and plagioclase, in igneous and metamorphic rocks 

contain Zr contents commonly below detection probably linked to their restricted 

chemical composition and thus the absence of adequate sites in the lattice for 

substitution (Bea et al., 2006; Kohn et al., 2015).  
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Releasing Zr from these sinks occurs through dissolution of the Zr-bearing phase 

(Fraser et al., 1997; Bingen et al., 2000; Whitehouse & Platt, 2003). Zircon will 

only form if the Zr released from the breakdown of the phases is not incorporated 

into the product, for example if garnet breakdown yields orthopyroxene the Zr 

may be accommodated in the latter preventing new zircon growth (Degeling et 

al., 2001). The impact that breakdown of an individual phase has on the zircon 

population depends on the abundance of Zr-bearing phases. If garnet contains a 

small amount of Zr, its breakdown would be unlikely to result in the growth of 

significant quantities of zircon. However, in the absence of a melt or Ti-oxides 

garnet may contain a large proportion of the effective Zr budget (Kelsey & Powell, 

2011). Therefore, an understanding of the impact a single mineral phase can have 

on the available Zr budget is dependant on the whole rock Zr budget (Kelsey & 

Powell, 2011).  

Zr values for all major silicate minerals, but especially garnet, should be viewed 

with caution, based on the presence of unrecognised zircon inclusions. Microzircon 

inclusions are particularly abundant within garnet, present in numbers up to 8x106 

within a 5 mm porphyroblast (Dempster et al., 2008). This would produce values 

up to 100 ppm higher for Zr within the garnet (Dempster et al., 2008a). Microzircon 

remain largely unrecognised, if the inclusions are not mapped prior to Laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or ion 

microprobe analyses, the method predominantly used in the studies listed, the 

probability of directly measuring one or more of these zircon is high given typical 

analytical volumes, producing anomalous Zr values.   

2.2 Porphyroblasts as potential monitors of prograde 
changes in the zircon population 

Zr is a potentially important trace element in garnet, in order to understand zircon 

dissolution and recrystallization the response of garnet to metamorphism is also 

important. Garnet is additionally important because it has the ability to record 

the prograde history of the rock and hence can be used to understand the prograde 

history of zircon. The following section will discuss the prograde evolution of 

garnet within Barrovian Schists in order to understand garnet as a canvas to 

interpret changes to zircon populations.  
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2.2.1 Prograde garnet evolution 

Garnet is a common mineral in metamorphic rocks and more rarely occurs in 

igneous and sedimentary rocks (Deer et al., 2013b). It is stable over a wide range 

of pressures, temperatures and bulk compositions (P-T-X) (Chakraborty & Ganguly, 

1991). The general composition of garnet is X3Y2(SiO4)3 where X represents a site 

for divalent cations (e.g. Mg2+, Fe2+, Mn2+) and Y for trivalent cations (e.g. Al3+, 

Fe3+) (Robinson et al., 1971; Deer et al., 2013b). Garnet consists of a series of 

end-member compositions (Grew et al., 2013), the four most common in 

metasediments are almandine Fe3Al2(SiO4)3, pyrope Mg3Al2(SiO4)s, spessartine 

Mn3Al2(SiO4)3, and grossular Ca3Al2(SiO4)3 (Deer et al., 2013b). The presence of a 

divalent, trivalent and tetravalent site in its lattice means garnet can 

accommodate a variety of cations with a range of different ionic radii and charges 

(Li et al., 2018). Structurally garnet has been compared to zircon (Robinson et al., 

1971; Finch & Hanchar, 2003), consisting of alternating ZO4 tetrahedra and YO6 

octahedra sharing corners to produce a 3d network within which X/divalent ions 

are surrounded by oxygen cubes (Deer et al., 2013b). Garnet is the most studied 

mineral in metamorphic petrology owing to a range of properties that make it a 

useful monitor of metamorphic processes (Degeling, 2001). Garnet is 

characterised by sluggish volume diffusion, even at sub-solidus temperatures it 

shows relatively low diffusivity of trace and major elements (Martin et al., 2011). 

Because of the slow diffusion of divalent cations garnet has the ability to preserve 

chemical zoning (Carson, 2006). Garnet zoning could be used as a 

geothermobarometer to track changes in P-T-X conditions during metamorphic 

events (Jiang & Lasaga, 1990; Spear et al., 1991; Raimondo et al., 2017). 

Additionally, it has a high resistivity to elastic deformation allowing its use as a 

geobarometer where pressure can be directly measured from the analysis of 

mineral inclusions (Baxter et al., 2017). The resistance ensures that during 

decompression the lattice doesn’t expand enabling the preservation of a 

significant proportion of the lithostatic pressure from formation (Baxter et al., 

2017). 

The Barrovian metamorphic sequence, first defined in the northeast of Scotland 

by Barrow (1983; 1912), records a systematic change in mineralogy through 

progressive regional metamorphism of clastic sediments based on the first 

appearance of index minerals (Ague, 1997). Barrow’s findings were subsequently 
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applied to a series of moderate pressure, high temperature orogenic settings 

which showed the same mineralogical patterns (Gangopadhyay & Sen, 1972; 

Raymond, 1995; Carosi et al., 1998; Will et al., 2004). The well-studied sequences 

provide a natural laboratory in which to assess the nature of mineralogy within 

convergent settings (Viete et al., 2011), with garnet especially well studied e.g. 

Atherton, 1968, Dempster, 1985, Viete et al., 2011.   

2.2.1.1  Garnet growth  

Garnet forms from the breakdown of chlorite in Barrovian sequences at upper 

greenschist facies (Harte & Hudson, 1979). Porphyroblast growth requires the 

dissolution of source minerals, transportation of the chemical constituents to a 

nucleation site and the rearrangement of these constituents to form the product 

garnet which is sufficiently sized to be thermodynamically stable (Lanari & Engi, 

2017). Once nucleation of proto-porphyroblast garnet occurs growth is centred 

around the existing grain over the formation of new nuclei, which requires more 

energy (Lanari & Engi, 2017). The rate limiting factors during garnet growth are 

commonly nucleation and intergranular diffusion (Carlson, 2011). As garnet grows 

it records changing equilibrium conditions producing concentric chemical zoning 

(Loomis, 1983). Chemical zoning is the result of differential availability and 

partitioning of elements between garnet and the matrix in response to changing 

P-T-X conditions (Atherton & Edmunds, 1966; Loomis, 1983; Martin et al., 2011). 

Concentric zoning of garnet was discovered in the advent of the electron 

microprobe in the 1950s-1960s (Ramberg, 1952; Kretz, 1959; Hollister, 1966; 

Atherton & Edmunds, 1966; Harte & Henley, 1966). Garnet typically exhibits 

zoning from core to rim (Harte & Henley, 1966; Atherton & Edmunds, 1966; 

Hollister, 1966; Atherton, 1968; Dempster, 1985; Chakraborty & Ganguly, 1991; 

Gatewood et al., 2015; Dempster et al., 2017a) as well as diffusive zoning around 

inclusions (Tracy, 1982; Hames & Menard, 1993), along fractures and cracks 

(Hames & Menard, 1993; Whitney, 1996), and in contact with the matrix (Tracy et 

al., 1976; Baxter et al., 2017; Dempster et al., 2017b). Concentric zoning of 

divalent major element cations (Ca2+, Mn2+, Mg2+ & Fe2+) in garnets is well studied 

and typically predictable, showing systematic changes to zoning profiles with 

metamorphic grade (Atherton, 1968; Yardley, 1977; Dempster, 1985; Chakraborty 

& Ganguly, 1991). Up to staurolite zone divalent cations show ‘normal zoning’, 

with a bell-shaped Mn profile decreasing from core to rim and complementary 
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bowl-shaped Fe & Mg profiles (Dempster, 1985; Chakraborty & Ganguly, 1991; 

Ikeda, 1993). High core Mn values are attributed to the early partitioning of Mn 

into garnet owing to Rayleigh fractionation depleting Mn from the matrix (De 

Béthune et al., 1975; Banno & Chii, 1978; Ganguly, 1991). Garnet traps the 

available Mn in its structure producing progressively lower concentrations in the 

later formed rims (Viete et al., 2011). As the Mn content decreases in garnet it is 

substituted by Fe and Mg producing diametric profiles (Chakraborty & Ganguly, 

1991).  

At the greenschist-upper greenschist facies transition, when garnet forms, the 

Ca2+ available is buffered by plagioclase (Franceschelli et al., 1982; Maruyama et 

al., 1982). With increasing metamorphic grade, the anorthite content of 

plagioclase increases until the peristerite solvus where oligoclase appears, co-

existing with albite initially but increasing in abundance at higher temperatures 

(Brown, 1962; Crawford, 1966). At the peristerite solvus the almandine isograd is 

crossed and garnet incorporates Ca which was originally solely accommodated by 

the anorthite component in plagioclase (Crawford, 1966). As oligoclase increases 

in abundance the amount of Ca incorporated into the garnet decreases producing 

a Ca-rich core and generally Ca-poor rims (Brown, 1962; Franceschelli et al., 

1982). Ca2+ zoning in garnet is much less predictable than the other major cations, 

ranging from unzoned to complex zoning within a single sample (Ganguly & 

Chakraborty, 1991). Unlike Mn, Ca is a constituent component in many other 

mineral phases, the appearance and disappearance of these Ca-bearing phases 

will alter the distribution coefficient of Ca in garnet resulting in an irregular 

profile (De Béthune et al., 1975). It’s also been suggested Ca equilibrium is 

achieved at a smaller scale than the other cations owing to its extremely low 

diffusion rate in garnet preserving irregularities in grossular profiles (Chernoff & 

Carlson, 1997). At slightly higher grade, within sillimanite zone rocks, garnet 

remains consistent in zoning with Fe and Mg increasing from core to rim and Mn & 

Ca generally decreasing.  Additionally, at sillimanite-zone a reverse zoned rim 

appears with flattening of the Mn profile and reversal of Fe profiles (Edmunds & 

Atherton, 1971; Yardley, 1977; De Béthune et al., 1975; Dempster, 1985; Ikeda, 

1993). The prevalence of reverse-zoned rims adjacent to biotite and eccentric 

nature of the zoning independent of the porphyroblast shape suggests it is not a 

growth feature (De Béthune et al, 1975; Dempster, 1985). Cation exchange with 
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matrix phases during retrogression poses one possible explanation, either between 

garnet and biotite (Dempster, 1985) or between garnet and chlorite (Banno & Chii, 

1978). Elsewhere high Mn rims are interpreted as a feature of garnet resorption 

(Grant & Wiblen, 1971; De Béthune et al., 1975; Banno & Chii, 1978) whereby 

garnet dissolution releases some Mn which is not compatible with any growing 

phases and so begins to diffuse back into the remaining garnet, inwards from the 

reaction front at the margin producing a gradual sloping profile (De Béthune et 

al., 1975).  

2.2.1.2 Diffusion in garnet  

Garnet is a refractory mineral (Hollister, 1966). The sluggish intergranular and 

intragranular diffusivity of ions within garnet preserves chemical zoning, impeding 

reequilibration (Baxter et al., 2017). As with most silicate minerals diffusion rates 

in garnet increase exponentially with temperature (Yardley, 1977) resulting in the 

modification of growth zoning by kinetic relaxation over time (Carlson, 2006; 

Caddick et al., 2010; Baxter et al., 2017). Multicomponent diffusion occurs within 

garnet where multiple major elements undergo diffusion concomitantly, when one 

divalent cation diffuses out of a domain it is replaced by another maintaining 

stochiometry (Ague & Carlson, 2013). Contradictory reports of the temperature at 

which garnet zoning relaxes have raised questions about what stage diffusion 

becomes effective enough to produce a chemically homogeneous grain (Jiang & 

Lasaga, 1990). It was previously believed that at upper sillimanite grade zoning 

would be eliminated from garnet cores leaving only a reverse-zoned rim 

(Dempster, 1985), but the discovery of intact-zoned garnets alongside those with 

flat compositional profiles proves the difficulty in predicting a specific point on 

the P-T path where chemical homogenisation occurs (Yardley, 1977; Dempster, 

1985; Florence & Spear, 1991; Calson & Schwarze, 2008; Caddick et al., 2010). 

There appear to be many factors that influence the elimination of zoning, one 

being garnet grain size. In order to eliminate zoning the diffusion of all cations 

must be effective at the grain scale, so the larger the grain is the higher the 

temperature or longer the duration of diffusion required to remove zoning 

(Dempster, 1985). Elements each have different diffusion rates within garnet, Mn 

has been reported to achieve small-scale equilibrium at upper greenschist facies 

while Ca may require in excess of middle amphibolite facies conditions meaning 
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intergranular diffusion of Ca is slower (Carlson, 2002; Spear, 2014; Dempster 

2017b).  

Garnet is zoned in trace elements such as Cr, Y and Zr (Griffin et al., 1989; 

Hickmott & Shimizu, 1990; Degeling et al., 2001; Turkina & Sukhorukov, 2017). 

Zr4+ zoning in garnet is reported solely in the rim, increasing by more than a factor 

of 10 at the margins, while the interiors of grains are consistently low (Schwandt 

et al., 1996; Degeling, 2002; Koreshkova et al., 2017). The Zr-rich rims have been 

linked to changing Zr equilibrium during garnet growth (Schwandt et al., 1996) 

however they could be; (a) a facet of Zr diffusion back into garnet during partial 

resorption, similar to Mn (Degeling, 2002), (b) a measure of the preference of Zr 

for Fe-rich garnet concentrated at the rim, or (c) a measure of microzircon 

populations which could dominate marginal garnet. Zr zoning is most pronounced 

in garnet-zone porphyroblasts while at staurolite-zone the change at the rim is 

less pronounced and by sillimanite zone the Zr zoning is reportedly irregular 

(Schwandt et al., 1996). Aside from Zr-rich rims the distribution is reasonably 

uniform, not concentrated around fractures or inclusions (Degeling et al., 2001).  

Alteration of garnet zoning can occur by direct cation exchange and substitutions, 

larger scale intracrystalline diffusion (Caddick et al., 2010) and dissolution-

reprecipitation (Martin et al., 2011; Dempster et al., 2017a). Trace element 

zoning in garnet can be preserved to higher temperatures, commonly granulite 

facies, long after major element zoning has been erased (Hickmott et al., 1987; 

Baxter et al., 2017). However, there are concerns raised about which trace 

elements actually achieve rock-scale chemical equilibrium during growth, 

particularly Zr (Chernoff & Carlson, 1997; Chernoff & Carlson, 1999).  

2.2.1.3 Garnet modification 

Garnet commonly interacts with fluids and melts to form secondary phases e.g. 

the formation of chlorite during retrogression (Lanari & Engi, 2017). At high 

temperatures garnet becomes less stable and undergoes dissolution to form 

staurolite (Harte & Hudson, 1979; Dempster et al., 2017a) and sillimanite 

(Dempster et al., 2017a; Dempster et al., 2018) predominantly via dissolution-

reprecipitation (Dempster et al., 2017a). Dissolution-reprecipitation is the 

response of garnet to certain fluid-mediated metamorphic reactions (Martin et 
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al., 2011; Ruiz-Agudo et al., 2014; Ague & Axler, 2016; Konrad-Schmolke, 2018). 

It involves the simultaneous dissolution of a precursor crystal and subsequent 

reprecipitation of new material (Putnis, 2007). This will create a re-equilibrated 

composition resulting in the immobilization of some elements and the release of 

others (Martin et al., 2011; Ruiz-Agudo et al., 2014). The process may change the 

composition of garnet and partially replace it with quartz forming cloudy garnet 

(Martin et al. 2011; Dempster et al., 2017a). Cloudy garnet is recognisable based 

on the high abundance of quartz inclusions which are commonly irregularly 

shaped, as well as the presence of abundant microscopic fluid inclusions <5 μm 

which typically display crystallographic alignment (Martin et al., 2011; Dempster 

et al., 2017a). The altered garnet contains up to 28 vol.% inclusions while clear 

garnet contains just ~10 vol.% (Dempster et al., 2017a). Dissolution-

reprecipitation is increasingly invoked as the mechanism of re-equilibration of 

solids in the presence of a fluid (Putnis & Putnis, 2007; Ruiz-Agudo et al., 2014) 

and is especially important in garnet because it can be recognised texturally 

(Dempster et al., 2017a). During uplift and exhumation as temperature and 

pressure decreases garnet may become unstable and undergo resorption. This late 

dissolution releases trace and major elements that were once a part of the lattice 

to potentially form new minerals in equilibrium with the fluid (Fraser et al., 1997).  

2.3 Disequilibrium in the Barrovian sequence  

The progressive sequence of garnet previously discussed in 2.2 is consistent with 

chemical equilibrium, however assemblages often do not reflect equilibrium 

(Pattison & Spear, 2017). Equilibrium dictates that the composition of minerals 

crystallizing in metamorphic rocks is a function of the pressure, temperature and 

bulk composition of the rock and interstitial fluids at any one-time during 

formation (Wilbur & Ague, 2006). The concept of continuous equilibrium 

throughout a metamorphic event at the rock-scale is questionable (Pattison & 

Spear, 2017). Disequilibrium results in the preservation of the history of events, 

particularly within garnet. Much of the evidence of disequilibrium during growth 

is difficult to identify, explaining its novelty as a concept (Kelly et al., 2013). 

Disequilibrium in completed reactions produces chemically zoned grains, such as 

garnet (Wilbur & Ague, 2006; Pattison & Tinkham, 2009; Kelly et al., 2013) while 

disequilibrium during growth is primarily recognisable by the presence of one or 
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more reactants or reaction textures indicating a reaction did not go to completion 

(Carlson, 2002; Kelly et al., 2013).  

For a mineral-forming reaction to proceed, overstepping of a chemical or 

mechanical energy threshold must occur enabling nucleation (Gaidies et al., 2011; 

Spear et al., 2014; Lanari & Engi, 2017). While overstepping of the garnet isograd 

reaction is widely reported the amount of overstepping required to nucleate the 

phase is still uncertain (Spear et al., 2014; Wolfe & Spear, 2017). Nucleation is 

difficult to infer as any evidence is eliminated when a porphyroblast overgrows its 

primary nucleation site (Kelly et al., 2013). Zoned garnets are assumed to be in 

equilibrium with the whole-rock composition throughout their growth implying 

there is no negligible delay in reactions at the interface, and intergranular 

diffusion is sufficiently fast to distribute material homogeneously at the reaction 

front (Caddick et al., 2010). However, metamorphic crystallization likely requires 

some degree of transient nonequilibrium (Carlson, 2002; Ague & Carlson, 2013).  

The absence of a fluid phase is a common limiting factor in mid-crustal rocks 

producing a disequilibrium assemblage because of the kinetic impediment and 

missing reactant (Ferry & Dipple, 1992; Lasaga & Rye, 1993; Dempster et al., 

2017a). Fluid availability influences reaction rates, assisting in the dissolution and 

transport of material (Putnis, 2015). Intergranular diffusion rates of some 

elements may be quick enough to keep pace with growing garnet, those with 

slower diffusion rates create partial disequilibrium (Ague & Carlson, 2013). 

Equilibrium during crystallization is required to at least the hand specimen scale 

to allow the application of garnet zoning to geothermobarometry (Chernoff & 

Carlson, 1997; Caddick et al., 2010; Spear et al., 2014; Pattison & Spear, 2017).  

Disequilibrium may be a function of local variations in cloudy and clear garnet 

(Dempster et al., 2018). The presence of cloudy garnet increases reactivity and 

may trigger prograde reactions while clear domains remain metastable (Dempster 

et al., 2018). As grade increases equilibration becomes more effective producing 

a homogeneous garnet by removing the concentric zoning but also through 

eliminating inclusions associated with cloudiness (Dempster et al., 2017a). Garnet 

preserves porphyroblast textures which often allow the analysis of kinetic 

impediments to both crystallization and equilibration (Ague & Carlson, 2013). The 

preservation of these chemical relics is indicative that thermodynamic equilibrium 
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was not reached during the evolution of the rock (Lanari & Engi, 2017). The partial 

equilibration of garnet results in the preservation of a variety of textural and 

chemical states that can be linked to stages in its evolution. Garnet can therefore 

be used to put together a history of events in these schists and understand the 

response of zircon to different reactions.  

2.4 Aims of the study  

This study aims to track zircon growth and dissolution across changing P-T-X 

throughout greenschist to upper amphibolite facies Barrovian metamorphosed 

schists and produce the first record of zircon behaviour throughout progressive 

metamorphism. Porphyroblast phases will be used predominantly, biotite in the 

lower grade schists and garnet in the higher. Garnet is particularly useful, it is one 

of the most studied mineral in metamorphic petrology (Hollister, 1966; Yardley, 

1977; Dempster et al., 1985; Hames & Menard, 1993; Carlson, 2006; Baxter et al., 

2017; Dempster et al., 2017) producing a comprehensive record of garnet 

behaviour. As such garnet has an important link to the less understood zircon. 

Zircon remains enigmatic, it has the ability to (re)crystallize over a wide range of 

conditions (Rubatto, 2002) but much remains to be learned about the factors that 

promote or inhibit reactivity (Vorhies et al., 2013).  

Zircon population studies within similar Barrovian polymetamorphic rocks have 

been carried out, however the studies tend to be within mineral separates 

focussing on U/Th-Pb systematics (Vorhies et al., 2013). The use of mineral 

separates biases abundance studies of the zircon, delicate outgrowths and 

microzircon are removed in the separation process so only robust members of the 

original detrital population remain (Dempster et al., 2004; Hay & Dempster, 

2009a). This study makes use of polished sections to maintain petrographic 

context. Zircon growth and dissolution will be characterised through analysing 

microzircon populations, detrital populations, outgrowth abundance and 

morphology, and dissolution textures.  
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2.4.1 Geological setting and sampling  

This study analyses metasedimentary rocks from the Dalradian Supergroup, the 

Dalradian rocks are subdivided into the Appin Group, Argyll Group and Southern 

Highlands Group (Phillips & Key, 1992). The Appin Group rocks are sampled from 

Glen Roy (Grid Ref: NN 29861 85688), they are garnet-, staurolite-, and sillimanite-

zone Leven Schists. The schists contain alternating layers of fine-grained 

micaceous and quartzofeldspathic matrix with 1-4 mm garnet porphyroblasts 

(Dempster et al., 2017a). Lower grade biotite-zone Appin Phyllites from the Appin 

Group will also be analysed. They are sampled from Onich (Grid Ref: NN61330 

03200) and are composed of a similar alternating pelitic and quartz-rich matrix 

with 1-4 mm biotite porphyroblasts. 

The Dalradian sequence is primarily composed of Late Proterozoic-early 

Palaeozoic clastic metasedimentary rocks, with local carbonates and basic 

volcanics (Stephenson et al., 2013). The sedimentary rocks were metamorphosed 

during ocean closure in the Grampian Orogeny in the late Neoproterozoic and early 

Cambrian (Strachan et al., 2002; Rooney et al., 2011; Vorhies et al., 2013; 

Breeding et al., 2014). The Grampian Orogeny produced a terrane with 

metamorphic grade generally increasing progressively northward (Tanner et al., 

2013). The extent of early Precambrian metamorphism in the Dalradian block is 

unknown and remains controversial (Dempster et al., 2002; Hutton & Alsop, 2004; 

Dempster & Jess, 2015).  

Lambert et al (1982) produce dates specifically for the Leven Schists of 655 +/- 25 

ma using Rb-Sr isotopic studies however, what this age represents is uncertain as 

the rocks have been entirely recrystallized and the polymetamorphic nature of 

the terranes cast doubt on the ability of the Rb-Sr system to produce a robust age 

of sedimentation or metamorphism (Phillips & Key, 1992; Tanner & Bluck, 1999). 

The Appin Group has been dated at 656 +/- 9 ma using Re-Os geochronology 

(Rooney et al., 2011), producing much more robust sedimentation ages than Rb-

Sr. The date has been produced from Ballachulish slates directly overlying the 

Leven Schists, so they were likely deposited close to this time. Peak 

metamorphism at Glen Roy has been estimated between 500-600oC and 5-8 kbar 

(Richardson & Powell, 1976; Wells, 1979; Powell & Evans, 1983; Phillips & Key, 

1992). The prograde regional metamorphism accompanied deformation with the 
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thermal peak coinciding with the second stage of folding and creation of S2 fabrics 

(Phillips & Key, 1992).  

The Appin Group schists at Onich are also polymetamorphosed, first undergoing a 

regional event in the Grampian Orogeny, similarly to Glen Roy, before a second 

low grade contact event following the emplacement of the Ballachulish granite 

during the Caledonian Orogeny in the Devonian (Roberts & Treagus, 1977; Pattison 

& Harte, 2001). There is limited literature regarding the dates and peak 

metamorphic conditions of the Appin Phyllites, particularly at Onich. The 

Ballachulish Igneous Complex has been dated using U-Pb in zircon at 423 +/- 0.3 

ma (Fraser et al., 2004) indicating the most recent contact event occurred around 

this time.  

While the Appin Phyllite rocks record two key stage, the contact biotite 

metamorphic growth over early regionally metamorphosed biotite-zone schists, 

the Leven Schists record a more progressive sequence of prograde reactions 

involving transformations from garnet zone into staurolite-zone and finally into 

sillimanite-zone assemblages. The analysis of the matrix in the Appin Phyllites 

should enable an understanding of zircon behaviour during early low grade 

regional metamorphism, while biotite porphyroblasts should record changes to 

zircon morphology during biotite growth. The disequilibrium recorded in garnet 

within the Leven Schists will allow an understanding of how zircon changes in 

morphology and abundance through the garnet-staurolite-sillimanite 

transformations.  

2.4.2 Index mineral-forming reactions in the Leven Schists  

Index minerals can form as a result of several different reactions, primarily based 

on the different bulk chemistry and original mineralogy of a rock (Prakash et al., 

2018). Different reactions commonly occur at different P-T conditions e.g. kyanite 

forms at middle amphibolite facies due to staurolite breakdown (Lal & Singh, 

1978) and at lower greenschist facies due to pyrophyllite breakdown (Prakash et 

al., 2018). The recognition of a single isograd requires a precise understanding of 

the conditions surrounding mineral formation. Most minerals can form over a wide 

range of temperature and pressure depending on a number of other factors 

(Prakash et al., 2018). The Leven Schists were specifically chosen because they 



27 
 
have been extensively studied (Anderson, 1956; Haselock & Winchester, 1981; 

Lambert et al., 1982; Treagus et al., 2013), specifically at Glen Roy (Dempster et 

al., 2017a; Dempster et al., 2018) as such their metamorphic history has been 

well-constrained.  

The main mineral forming reactions have been explored in recent years with 

analysis of the petrographic and textural relationships to produce a thorough 

reaction history of the schists not solely based on the use of graphical techniques.  

Staurolite production in the Leven Schists was originally attributed to: 

Garnet + muscovite + chlorite → staurolite + biotite + quartz 

(Phillips & Key, 1992) 

 

based on the use of KFMASH system. Staurolite occurs in close proximity to garnet, 

typically within micaceous fabrics indicative of garnet and muscovite consumption 

during staurolite formation, additionally garnet with adjacent staurolite shows 

evidence of marginal dissolution (Phillips & Key, 1992).  However, there is a lack 

of evidence that primary chlorite existed in the schists producing uncertainty 

surrounding its role in staurolite production (Dempster et al., 2017a). Instead a 

chlorite-free alternative seems likely:  

Fe-rich garnet + muscovite + water → staurolite + biotite + quartz 

(Dempster et al., 2017a) 

 

In place of chlorite a small amount of water is invoked to balance the hydrous 

component of staurolite (Dempster et al., 2017a). The common absence of 

chlorite in a range of amphibolite facies biotite-garnet rocks suggests this reaction 

has the potential to be invoked regularly in Barrovian pelites to explain staurolite 

production (Dempster et al., 2017a). Reactions involved in sillimanite production 

typically involve the consumption of staurolite according to KFMASH: 

(a) Staurolite + muscovite + quartz → biotite + sillimanite + H2O  

(McLellan, 1985)  

(b) Staurolite + chlorite → sillimanite + biotite + H2O 

(Guidotti, 1974)  
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 (c) Staurolite + quartz → garnet + sillimanite + H2O  

(McLellan, 1985) 

 

Each reaction produces a different textural pattern between products, (a) forms 

sillimanite with intergrowths of biotite, (b) similar in texture to (a) but involves 

chlorite dissolution in place of muscovite, and (c) produces sillimanite within late 

garnet. Most rocks containing sillimanite show evidence of staurolite dissolution 

(Pattison & Spear, 2017) however, based on the absence of any textural evidence 

of significant staurolite consumption within the Glen Roy schists (Figure. 2.1a) a 

staurolite-free reaction is invoked: 

Garnet + muscovite → sillimanite + biotite + quartz 

(Dempster et al., 2018) 

 

Garnet shows evidence of more extensive dissolution (Figure. 2.1b) than its 

staurolite-zone counterpart and staurolite porphyroblasts show an affinity for 

micaceous matrix over adjacent quartzofeldspathic layers (Dempster et al., 2018). 

The reaction history of the Leven Schists enables a better understanding of the 

chronology of zircon growth based on the textural relationship with the host 

phase(s). The complication in defining index-mineral forming reactions within 

these rocks is likely to be a far-reaching issue in Barrovian metamorphosed rocks 

 

               

  
   

    
   

         

         

FIGURE 2.1: PPL image of reaction textures in sillimanite-zone Glen Roy schists, images 
taken from Dempster et al., 2019, (a) staurolite with planar margins preferentially growing in 
micaceous matrix, and (b) atoll garnet with adjacent sillimanite that has undergone extensive 
dissolution in the core   
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where understanding the conditions and reactions involved in the formation of 

index minerals may be complex.  

 

2.4.3 Wider significance  

As a useful mineral for geothermometry and geobarometry (Martin et al., 2011) 

the coexistence of garnet with zircon ultimately opens the possibility of linking 

U/Th-Pb zircon ages to metamorphic conditions, allowing the application of 

absolute ages to stages on the P-T-t path (Rubatto, 2002). Garnet records changing 

P-T-X conditions during growth (Whitney et al., 1996; Hallett & Spear, 2015) so 

the analysis of zircon populations within these well-constrained garnets can assist 

in furthering the understanding of zircon behaviour during metamorphism and 

enabling the production of more robust U-Th/Pb geochronology within zircon. The 

reactivity of zircon appears to be linked to fluid fluxes (Rasmussen, 2005), 

therefore zircon populations also present the possibility of being used as a tracer 

of fluid flow during metamorphism (Dempster & Chung, 2013) and potentially 

assisting in understanding dissolution-reprecipitation.  Zr diffusion within garnet 

has a much higher closure temperature than major elements, where divalent 

cation zoning is typically eliminated at upper amphibolite facies, Zr may persist 

to granulite facies. This makes Zr in garnet a potentially very useful geochemical 

tracer and thermometer up to high temperatures and pressures if Zr behaviour 

can be better understood.  

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 



30 
 

Chapter 3 Methodology 

This study analyses garnet-, staurolite-, and sillimanite-zone Leven Schists from 

Glen Roy and biotite-zone Appin Phyllites from Onich. The biotite-zone Appin 

Phyllites were originally analysed as part of my undergraduate research project 

for submission as part of my BSc. Most of the data for these schists was therefore 

collected prior to the start of this study and the collection of the Glen Roy data, 

however it was entirely reinterpreted in the context of this study. As a result, 

most of the analysis and data collection occurred in the same way, where 

collection or analysis of data was different it will be discussed below.  

3.1 Sample preparation 

Samples for this study were sliced and prepared as 0.5 μm thick polished sections. 

Mineral separate analyses are traditionally used in zircon studies (Froude et al., 

1983; Mojzsis et al., 2001; Cawood et al., 2003; Thomas, 2011). Polished sections 

were used in place of mineral separates to preserve petrographic context and 

prevent biasing of zircon populations based on size and stability (Hay & Dempster, 

2009). During zircon separation, information on host mineral and textural 

relationships that could link to the temporal change in zircon are removed. 

Additionally, microzircon and delicate detrital fringes may not survive the 

separation processes thus biasing the preserved zircon based on their size and 

durability.  

3.2 Analysis  

Analyses involved the use of transmitted light microscopy (TLM) and scanning 

electron microscopy (SEM).  The location of the analyses are listed throughout the 

results and discussion. They are identified by sample number followed by 

porphyroblast number e.g. garnet GR02-1 is in sample GR02 and is labelled 

porphyroblast 1.  

3.2.1 Transmitted light microscopy  

Initial petrographic analysis was carried out using TLM to infer textural 

relationships between porphyroblast and matrix phases. TLM was predominantly 
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used as a precursor to SEM analyses, highlighting areas of interest within garnet 

or the matrix as well as mineralogical and textural analyses quickly and easily.  

TLM was additionally useful in place of SEM for analyses which weren’t focussed 

on the surface of the section e.g. the analysis of fluid inclusions. Where TLM 

captures the full 0.5 μm section thickness the SEM only interacts with the surface 

layer, imaging only the upper surface. Petrographic microscopes have the 

potential to capture information on more planes than SEM within a polished 

section. Thus imaging alignment in multiple planes and enabling a better 

understanding of fluid inclusion abundance and alignment within a domain.  

3.2.2 Scanning electron microscopy  

The SEM uses focussed beams of electrons from an electron gun that interact with 

the surface of a polished section. The resulting release of secondary electrons (SE) 

from the sample allows mapping of the topography of a specimen, a closer surface 

will produce a more rapid return rate for SE than a lower relief area. Additionally, 

backscattered electrons (BSE) are produced when an electrons path is deviated by 

the force of the nuclei, instead of interacting they are scattered.  BSE images 

contain information on the chemistry of the specimen, with high mean atomic 

number minerals appearing bright and low mean atomic number features, dark. 

For example quartz will appear darker than biotite because quartz has a lower 

mean atomic number than biotite. For quantitative chemical data X-Ray detectors 

map the emissions from the specimen, with different elements producing different 

x-rays depending on the structure of an atom (Goldstein et al., 2017). The samples 

were coated in a thin carbon film ca. 15 nm thick for SEM analysis using a vacuum 

coater. This coating prevents charging improving the accuracy of elemental data 

and the quality of imaging. 

The SEM has the benefit of higher resolution imaging at a significantly higher 

magnification compared to TLM, the X-ray detector also allows composition to be 

inferred in detail. The SEM was used for (a) garnet analysis, and (b) mapping zircon 

populations.   
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3.2.2.1 Garnet analysis  

Garnet classification requires a two-step approach incorporating both chemical 

and textural analyses. Energy-dispersive x-ray (EDX) analysis was utilised in the 

Carl Zeiss Sigma SEM to analyse the chemistry of garnet grains, and in turn attempt 

to infer the history. Porphyroblasts were mapped as well as line scans using Oxford 

software in the aim of identifying changes in the major divalent cation chemistry 

of the garnet (Ca, Mg, Mn & Fe).  

Running averages were used to smooth curves for garnet chemical transects. The 

spot size of the beam is 2.5 μm so based on the spacing size of each transect the 

running average was conducted an appropriate number of times. E.g. for a 5 μm 

spaced transect running averages was carried out twice to eliminate noise as much 

as possible and produce a smooth profile. Where inclusions or infilled fractures 

were captured these were removed from the chemical transects to ensure the 

profiles were illustrating changes to garnet chemistry.  

Analyses were carried out using BSE imaging to capture the textural characteristics 

of garnet such as mineral inclusions, fluid inclusions and fractures. Fluid inclusion 

density was measured using BSE images on ImageJ software. The thresholds were 

set to measure the % abundance of the dark, and thus low mean atomic number, 

fluid inclusions. Using this method care must be taken to separate fluid inclusions 

from fractures and larger, more irregularly-shaped quartz inclusions, both are 

silicate- rich and appear within the same colour thresholds.  

3.2.2.2 Zircon mapping  

The FEI Quanta 200F environmental SEM was used in order to capture BSE images 

for mapping zircon populations in garnet porphyroblasts and transects in the 

matrix. Operated at 20 kV and moderate beam currents when zoomed to 1500x 

the resolution was sufficient to capture the finest microzircon 10s nm wide. 

Increasing contrast and decreasing brightness to enable the identification of high 

mean atomic number features, from here the spot ID feature was used to analyse 

zircon and differentiate from other bright, high mean atomic number features 

such as monazite. 
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BSE images were then captured as a series of frames at brightness and contrasts 

where high mean atomic number features were easily identifiable, e.g. where 

ilmenite appears slightly darker than zircon. Mapping of entire porphyroblasts or 

transects of the matrix were carried out in this way producing a series of images 

ca. 100 μm wide. The frames were then montaged using Inkscape, from here a 

map of the analysed area is produced which enables the interpretation of inclusion 

populations with the petrographic context of the textural characteristics of the 

surrounding garnet or composition of the surrounding matrix. Quantitative data 

can be extracted from these maps directly. Zircon sizes can be measured using 

the ruler tool in Inkscape allowing any changes to the size of micro- or detrital 

populations to be quantified.  

Automated EDX feature mapping could not be applied to most of the schists s the 

extremely small size of some of the zircon meant they weren’t captured. As a 

result, the mapping was biased against the smaller proportion of microzircon, 

typically those <0.2 μm2. Within the biotite-zone Onich schist EDX mapping was 

used on one of the samples as the microzircon within these lower grade schists 

are coarser than the higher grade Leven Schists.  

Where an average value is given, e.g. for average zircon size within a given 

domain, the standard deviation is to 1σ where n=-1. The values are accurate to 

the 68% confidence level.  
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TABLE 4.1: Modal abundance of constituent minerals in biotite-zone schists from Onich 
subdivided by the three main compositions; pelite (Ball 2.8), quartz-rich pelite (Ball 2.8 & 
Ball 2.9) and heavy mineral band (Ball 2.8) 

Chapter 4 Petrology of the schists 

4.1 Biotite-zone  

Biotite-Zone Appin phyllites were sampled from Onich, Scotland (NN61330 03200). 

The schists are polymetamorphosed, they first underwent a regional event during 

the Camrbian-Ordovician, forming an aligned schistose matrix, followed by a low-

grade contact event during the emplacement of the Ballachulish granite and 

associated diorites during the Caledonian Orogeny, forming biotite porphyroblasts 

(Roberts & Treagus, 1977; Buntebarth, 1991; Pattison & Harte, 2001). Sample Ball 

2.8 which is a quartz-rich pelite and Ball 2.9 which is comprised of quartz-rich 

pelite and pelite separated by a heavy mineral band (Table 4.1).  

 

 

 

 

The schists are layered, layers are generally > 10mm thick, except for the heavy 

mineral band which is ca. 1mm. Pelitic layers are dominated by fine-grained 

<0.125 mm muscovite (Table. 4.1) (Figure 4.1a). Quartz-rich pelite layers contain 

equal proportions of quartz and muscovite and are slightly coarser grained ca. 

0.25 mm (Figure. 4.1c). The heavy mineral band contains the lowest proportion 

of muscovite, comprised primarily of coarser quartz (0.5 mm) and abundant 

biotite porphyroblasts (Figure. 4.1b). the heavy mineral band separates quartz-

 PELITE QTZ-RICH 

PELITE 

HEAVY 

MINERAL BAND 

BIOTITE (PORPHYROBLASTS 3 10 24 

BIOTITE (MATRIX) 4 5 5 

CHLORITE (RETROGRADE) 14 11 17 

MUSCOVITE 73 31 22 

QUARTZ 6 34 32 

PLAGIOCLASE 8 16 13 

ALLANITE  2.6 2.1 0.8 
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rich and mica-rich layers likely representing original bedding. The matrix records 

a slaty S2 cleavage rthat dips slightly steeper than S1 undeformed bedding 

(Roberts & Treagus, 1977), followed by the formation of biotite porphyroblasts 

during the contact event (Pattison & Harte, 2001).  

Biotite exists as two distinct populations, ca. 0.25 mm matrix biotite, and 1-3 mm 

porphyroblasts. Biotite porphyroblasts show partial retrogression to chlorite 

forming bands (Figure. 4.2b-c) and much of the matrix biotite has been completely 

replaced by chlorite (Figure. 4.2d). Chloritization is most extensive in the heavy 

mineral band (Table. 4.1) where all biotite shows evidence of at least partial 

alteration. Matrix biotite is aligned to s3 and biotite porphyroblasts also show 

some evidence of alignment in the same orientation (Figure. 4.3). Biotite is 

occasionally linked to quartz-rich pressure shadows (Figure. 4.2a). The quartz is 

>0.5 mm and the shadows are best developed adjacent to larger biotite 

porphyroblasts. Smaller ca. 1 mm biotite porphyroblasts generally aren’t 

associated with these coarse quartz margins (Figure. 4.2c).  

 

 

 

FIGURE 4.1: XPL (cross-polarised) TLM images of the compositional classifications of the 
biotite-zone schists in Ball 2.9, (a) fine micaceous pelite (left) meeting the heavy mineral 
band (right), (b) quartz-rich, coarse heavy mineral band, and (c) interbedded pelite and 
quartz-rich pelite  
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Allanite is the main accessory phase, particularly abundant in pelitic layers. The 

<0.1-0.3 mm allanite is consistently rimmed by  >0.1 mm of epidote (Figure. 4.4a 

& c). Detrital ilmenite is also present, representing ca. 2% of the rocks (Figure. 

4.4b). It is spatially linked to biotite generally included within or at the margins 

of porphyroblasts (Figure. 4.4d). Apatite is present in small proportions (<0.1%), 

it is predominantly included within biotite and forms elongate prismatic grains 

<0.5 mm long.  

  

       

    

  

   

          

       

  

  

              

   

   

   

FIGURE 4.2: TLM images of biotite morphology in Ball 2.8, (a) XPL image of biotite 
porphyroblasts with coarse quartz pressure shadows, (b) PPL image of partially chlorite 
retrogressed biotite with irregular margins, biotite contains radiation haloes from allanite 
and zircon inclusions, (c) PPL image of predominantly unaltered biotite porphyroblast, and 
(d) PPL image of aligned matrix biotite entirely retrogressed to chlorite 
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The biotite schists contain vestiges from three metamorphic stages (Roberts & 

Treagus, 1977; Pattison and Harte, 2001). The aligned, fine-grained muscovite-

rich matrix formed during an early regional event, large biotite porphyroblasts 

formed during later contact metamorphism and finally chlorite from the 

retrogression of biotite following late fluid infiltration. The alignment of biotite 

porphyroblasts (Figure. 4.3) is indicative of some deformation during the contact 

event of potentially a later regional event that succeeded biotite growth.    

FIGURE 4.3: Scan of section 2-9 showing the distribution and alignment of biotite across the 
three main compositional bands  
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4.2 Staurolite-zone  

Staurolite-zone Leven schists were sampled from Glen Roy, Scotland (NN29861 

85688). The Leven Schists are polymetamorphosed, undergoing a complex 

tectono-thermal evolution during the Grampian Orogeny in the Late 

Neoproterozoic and Early Cambrian (Phillips & Key, 1992; Strachan et al., 2002; 

Vorhies et al., 2013). The extent of earlier Precambrian metamorphism is unknown 

(Dempster et al., 2002; Hutton & Alsop, 2004). Three polished sections were used 

based on their varying proportions of staurolite; GR01, GR02 and GR05. GR01 

contains 3.7% staurolite while GR02 and GR05 contain none. Similarly, they have 

varying proportions of modified cloudy garnet which has undergone dissolution-

FIGURE 4.4: Accessory phases in Ball 2.8 and 2.9; (a) XPL photomicrograph of allanite 
rimmed with epidote, (b) XPL image of a detrital ilmenite grain contained within a biotite 
and quartz rich pressure shadow (c) BSE (backscattered electron) image of allanite within 
epidote, and (d) BSE image of ilmenite grains illustrating the close spatial link between 
ilmenite and biotite  
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TABLE 4.2: Modal abundance of the main constituent minerals within staurolite-zone Leven 
schists GR01, GR02 and GR05. Values from this study were combined with Dempster et al., 
2017a and averaged 

reprecipitation. In GR01 the garnet is predominantly modified, GR05 contains a 

small amount of cloudy garnet and GR02 contains garnet that is entirely clear. The 

modal mineralogy of the schists is described in Table 4.2. There is little difference 

between the matrix of the samples while the proportion of porphyroblast phases 

and cloudy garnet varies.    

 

 

The matrix is composed of micaceous and quartzofeldspathic layers, the thickness 

of which varies from thin interbedded <0.2 mm layers (Figure. 4.5b) up to ca. 2.5-

3 mm thick (Figure. 4.5a). Micaceous layers display a strong S2 fabric cross-cut by 

open folds formed during a third deformational phase (Phillips et al., 1994; 

Dempster et al., 2017). S1 formed early in the metamorphic history during the 

development of muscovite + biotite + chlorite, while S2 formed following an 

increase in metamorphic grade during the 2nd stage of deformation accompanying 

the formation of biotite + muscovite + garnet +/- staurolite (Phillips & Key, 1992). 

Micaceous domains are very fine-grained <0.1 mm2, they are dominated by 

muscovite with some biotite. Biotite shows retrogression to chlorite. There are 

two populations of biotite, 0.5 mm matrix phase and a population of 2-5 mm 

biotite porphyroblasts. The finer matrix population typically shows more extensive 

retrogression (Figure. 4.6a) while biotite porphyroblasts show <30% chloritization. 

 GR01 GR02 GR05 

GARNET (CLR) 3.9 8.5 6.8 

GARNET (CLDY) 5.4 0 0.2 

MUSCOVITE 33.7 23.5 38.1 

BIOTITE  10.3 18 14.7 

QUARTZ 27 30.1 28 

PLAGIOCLASE 10.9 10.80 9.6 

STAUROLITE 3.7 0 0 

RETORGRADE CHLORITE 2.9 0 0.5 

MONAZITE   0.7 0.3 0.3 

OPAQUES 0.8 1.7 0.5 

CLOUDY GARNET (%) 58.5 0 2.9 
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Bands of chlorite are typically planar and are parallel to biotite cleavage, which 

is perpendicular to the fabric in some of the larger biotite porphyroblasts (Figure. 

4.6b). Porphyroblasts comprise 72% of the biotite population and typically display 

irregular margins while finer biotite margins are more planar.   

FIGURE 4.5: XPL images of matrix composition and fabric in GR01, (a) thick 
quartzofeldspathic (right) and micaceous (left) layers, and (b) finely interbedded 
quartzofeldspathic and micaceous layering 

FIGURE 4.6: PPL image of biotite morphology within GR01, (a) completely chloritized matrix 
biotite and partially altered larger porphyroblasts (b) chloritization typically formed bands 
roughly perpendicular to matrix fabrics  
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Quartzofeldspathic layers are dominated by quartz ca. 70% and plagioclase ca. 

20%, grain size ca. 0.25 mm is slightly coarser than within adjacent micaceous 

layers. Quartz is especially coarse ca. >0.5 mm forming pressure shadows on 

biotite and garnet porphyroblasts. Plagioclase shows some limited sericitization 

(Dempster et al., 2018), evidence of alteration is rare and where present sericite 

occupies <3% of the grain.  

Garnet and staurolite also form porphyroblasts. Garnet is the most abundant phase 

comprising 47% of porphyroblasts, they are typically 2-4 mm and more rarely up 

to 6 mm. Garnet is euhedral-subhedral and displays one or more irregular margins 

with abundant quartz inclusions producing an embayed structure, particularly in 

FIGURE 4.7: PPL images of staurolite growth in GR01, (a) staurolite growth in biotite at the 
margins of garnet, (b) small staurolite form in biotite porphyroblasts away from garnet, (c) 
staurolite grows on planar, clear margin of garnet away from dissolution, and (d) small 
garnet porphyroblasts typically yield smaller staurolite grains  
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staurolite-bearing GR01. Garnet shows evidence of partial retrogression with 

chlorite focussed along marginal fractures. Staurolite is typically <2 mm and 

formed at the margins of biotite and/or garnet (Figure. 4.7). The size of the 

adjacent porphyroblast phases seems to influence the size of the staurolite 

formed. Where adjacent to large >3mm garnet porphyroblasts the staurolite is 

larger (Figure. 4.7a) than alongside a <2mm porphyroblast (Figure. 4.7d). Garnet 

porphyroblasts with adjacent staurolite generally contain larger proportions of 

cloudiness. Staurolite typically forms adjacent to unmodified margins of garnet 

that shows no evidence of dissolution (Figure. 4.7c). Staurolite occasionally forms 

in contact with garnet margins but more commonly within biotite at the rim 

(Figure. 4.7a & c). Across the samples as the proportion of staurolite increases, so 

too does the proportion of cloudy garnet and chlorite. Biotite adjacent to 

staurolite contains more extensive retrogression with chlorite forming bands 

parallel to the fabric (Figure. 4.7a). Staurolite predominantly occurs in mica-

dominated layers (Dempster et al., 2017). 

4.3  Sillimanite-zone  

Sillimanite-zone Leven Schists were sampled from the northern side of upper Glen 

Roy (NN2671 9239). The sillimanite-zone schists have shared a similar history to 

the staurolite-zone; likely undergoing Precambrian metamorphism followed by a 

complex tectonothermal history during the Grampian Orogeny (Phillips & Key, 

1992). One sillimanite-poor sample was analysed (UGR1) containing 0.1% 

sillimanite and one sillimanite-rich sample (UGR0) containing 1.6%. The modal 

mineralogy of the sillimanite-zone schists is described in Table 3. Aside from the 

proportion of index mineral phases and cloudy garnet there is little difference 

between the two samples. 

The matrix mineralogy of the Upper Glen Roy samples is similar to the lower grade 

staurolite-zone rocks, but the structure of the layers differs. The fabric is 

generally more strongly folded and the compositional layering less obvious (Figure 

4.8). The micaceous layers are typically <0.1 mm thick and the quartzofeldspathic 

layers slightly coarser than the staurolite-zone samples and reach up to 0.5 mm 

thick. The schistose matrix is dominated by micaceous layers with interbedded, 

thin 1-3 mm quartzofeldspathic layers. Biotite is present as a matrix <0.5 mm and 

a 1-3 mm porphyroblast phase. Retrogression is limited with most biotite  
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porphyroblasts containing no chlorite and no matrix chlorite. The most extensive 

retrogression occurs in biotite in the core of atoll garnet structures where the 

biotite is often <30% replaced by chlorite.  

 

 UGR0 UGR1 

GARNET (CLR) 1.4 1.8 

GARNET (CLDY)  7 3 

MUSCOVITE 37.9 39.1 

BIOTITE 11.49 13.79 

QUARTZ 22.2 27.2 

PLAGIOCLASE 11.6 11.9 

STAUROLITE 2.1 TRACE 

SILLIMANITE  1.6 0.1 

CHLORITE 0.5 0.5 

MONAZITE  1.2 0.9 

OPAQUES  0.7 0.7 

RUTILE  0.2 TRACE 

CLOUDY GARNET (%) 84 64 

FIGURE 4.8: XPL images of matrix composition and layering in UGR0 sillimanite schist, (a) 
interbedded quartzofeldspathic and micaceous bands with indistinct layering typical of the 
schists, and (b) mica-rich bands reveal a strongly folded fabric  
 

TABLE 4.3:  Modal abundance of the main constituent minerals in sillimanite-zone samples 
UGR0 and UGR1. Values from this study were combined with those of Dempster et al., 2018 
and averaged 
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Garnet porphyroblasts are subhedral to euhedral and typically 2-4 mm2. Garnet 

contains a higher proportion of cloudiness than within the staurolite-zone samples 

(Tables. 4.2). Despite the increased proportion of cloudiness within garnet most 

porphyroblasts still show at least one planar margin while the remaining are 

embayed and irregular. The abundance of sillimanite is proportional to the amount 

of staurolite and cloudy garnet. UGR1 is comprised of more intact, clear garnet 

and therefore less staurolite and sillimanite while UGR0 contains more cloudy 

garnet and as a result contains more staurolite and sillimanite. Staurolite typically 

occurs proximally to biotite and garnet porphyroblasts and is subhedral to 

anhedral and generally <3 mm (Figure. 4.9a) while smaller more euhedral ca. 1 

mm porphyroblasts occur in the matrix primarily within micaceous layers (Figure. 

4.9b). 

Sillimanite occurs at the margins of most garnet within both UGR0 and UGR1 

(Figure. 4.10a) however more rarely sillimanite forms mats within the matrix 

(Figure. 4.10f). Within UGR0 sillimanite tends to form fibrolite mats along 

embayments between 0.25-1.5 mm2 while in UGR1 single needles <0.1 mm2 are 

more common at garnet margins (Dempster et al., 2018) (Figure 4.10a-c). Marginal 

sillimanite illustrates an affinity for micaceous fabrics preferentially forming away 

from quartzofeldspathic layers and quartz-rich pressure shadows. Sillimanite is 

also commonly included in garnet as fibrolite mat inclusions 0.2-0.5 mm2 (Figure. 

4.10d-f), sillimanite inclusions are limited to cloudy domains and more common 

in UGR0 than UGR1. Sillimanite more rarely occurs as fracture fill within garnet 

margins that have undergone extensive dissolution (Figure. 4.10e).  

FIGURE 4.9: PPL images of the location of staurolite within sillimanite-zone schist UGR1 (a) 
subhedral staurolite associated with garnet and biotite porphyroblasts (b) equant staurolite 
within the micaceous matrix over 1MM from nearest porphyroblast phase 
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FIGURE 4.10: Photomicrograph images of sillimanite-rich UGR0, all images are in PPL 
except (f) which is XPL (a) extensive sillimanite algal mat surrounding garnet porphyroblast 
(b) sillimanite (Sill) mat in the matrix surrounding staurolite and biotite which shows partial 
retrogression to chlorite (c) sillimanite mat adjacent to biotite and extensively dissolved 
garnet (d) sillimanite inclusion in garnet with clear rim (e) atoll garnet with sillimanite 
inclusions and fracture fill at margins (f) sillimanite mat in the matrix forming distally from 
garnet  
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Garnet characteristics  

5.1 Introduction  

The petrology of the schists is described in chapter 4 while this chapter will focus 

on garnet in more detail due to its ability to record modification, and within it 

changes to zircon populations. Dissolution-reprecipitation occurs when a fluid 

comes into contact with a mineral with which it is undersaturated (Altree-Williams 

et al., 2015). It involves the dissolution of a less stable parent phase and the 

reprecipitation of a more stable solid daughter phase from the fluid (Putnis, 2002; 

Putnis, 2009; Ruiz-Agudo et al., 2014; Konrad-Schmolke et al., 2018). The 

processes may be spatially and temporally coupled, with both dissolution and 

reprecipitation occurring within an interfacial fluid film at the reaction interface 

(Martin et al., 2011; Ruiz-Agudo et al., 2014; Kondratiuk et al., 2015; Ague & 

Axler, 2016; Ruiz-Agudo et al., 2016). Within garnet, CDR (coupled dissolution-

reprecipitation) has the potential to be fingerprinted (Martin et al., 2011; 

Dempster et al., 2017; Dempster et al., 2019).  

The samples were previously collected, prepared and analysed as part of separate 

studies on dissolution-reprecipitation within garnet, both the staurolite-zone 

schists (Dempster et al., 2017) and sillimanite-zone schists (Dempster et al., 

2019). Within these studies cloudy garnet was characterised, and textural and 

chemical changes were linked to specific reactions during staurolite and 

sillimanite formation. This classification of the garnet is crucial in understanding 

the evolution of zircon populations, as garnet preserves vestiges of different 

stages of the metamorphic history. Primary analyses of the texture and chemistry 

of garnet in which zircon will be mapped are required in order to link zircon 

dissolution and growth to the evolution of the schists. These analyses utilise the 

work of Dempster et al. (2017; 2019) to classify garnet, using the mineral and fluid 

inclusion density and chemical changes associated with a series of fluid-mediated 

reactions. Many of the observations within Glen Roy garnets in the forthcoming 

chapter are in agreement with the work of Dempster et al (2017; 2019) and build 

on them with the aim to better understand dissolution-reprecipitation processes 

within garnet.  
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5.2 Staurolite-zone garnet 

5.2.1 Previous work  

Garnet within staurolite-bearing schists from Glen Roy  is texturally complex. One 

aspect of this complexity is post-growth modification in the presence of a fluid 

through dissolution-reprecipitation. Based on the degree of modification garnet 

can be subdivided into three domains; clear, cloudy and ambiguous (Dempster et 

al., 2017). Clear garnet represents the unmodified parent phase, cloudy garnet 

has undergone dissolution-reprecipitation and thus is representative of the 

reequilibrated product phase, and ambiguous garnet is a texturally intermediate 

state. Dempster et al (2017) constrained the textural characteristics of clear and 

cloudy garnet within the staurolite-zone schists at Glen Roy. Cloudy garnet was 

characterized primarily by the formation of small, aligned fluid-filled inclusions 

and an increase in mineral inclusion abundance following dissolution-

reprecipitation, particularly large, irregularly shaped quartz inclusions (Dempster 

et al., 2017). The small, low relief inclusions are treated as fluid inclusions, due 

to their small size there are no bubbles or fluid features, but the cavities resemble 

fluid inclusions in other garnet dissolution-reprecipitation studies (Martin et al., 

2011; Dempster et al., 2017; Dempster et al., 2019). While clear garnet appears 

light in colour when viewed in PPL (plain polarised light), this modified garnet 

appears dark due to the high density of inclusions. Additionally, disruption to 

concentric growth zoning in cloudy garnet was detailed within Mn, Mg and Fe 

(Dempster et al., 2017). Mg and Fe are consistently higher in cloudy garnet than 

adjacent clear, while modified Mn contents vary spatially within a single 

porphyroblast. Mn is lower compared to adjacent clear garnet in the core and vice 

versa in the rim (Dempster et al., 2017). Analyses of the staurolite schists in this 

study utilises the textural and chemical indicators defined above as a basis for 

classification, while attempting to quantify the changes to texture and chemistry 

in these rocks through the analysis of a larger sample size.  

5.2.2 Clear garnet  

Garnet within the Glen Roy schists can be defined as clear if it is not subject to 

coupled dissolution-reprecipitation (Dempster et al., 2017). As a result, clear 
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garnet has undergone limited post-growth modification and is representative of 

garnet morphology during growth within these schists. Clear garnet is most 

abundant within staurolite-absent/garnet-zone schists. As staurolite increases in 

abundance, the proportion of clear garnet decreases (Table. 5.1). The abundance 

of garnet appears to have no influence on the proportion of cloudiness. GR02 

contains the most garnet and is the only sample to display no cloudy garnet.  

 

5.2.2.1 Results: texture of clear garnet  

Garnet within GR02 typically displays planar margins (Figure. 5.1). The 

porphyroblasts have a few transgranular fractures (Figure. 5.1a) and very limited  

  Sample 

  
GR01 GR02 GR05 

Modal 

abundance  

Staurolite   4.1 0 0 

Garnet  8.8 8.9 7.5 

% garnet  

% Clear garnet  36 100 94 

% Cloudy garnet  59 0 5 

% Ambiguous garnet 5 0 1 

FIGURE 5.1: PPL images of clear garnet porphyroblast morphology within GR02, (a) euhedral 
garnet with a few transgranular fractures and limited evidence of dissolution, and (b) 
euhedral-subhedral garnet, irregular margins impinge on quartz-rich matrix  

              

         

           

         

        

TABLE 5.1: The modal abundance of staurolite and garnet and the proportion of clear, cloudy 
and ambiguous garnet within the staurolite-zone schists 
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smaller-scale fractures (<0.25 mm long), producing limited interconnectivity. 

Clear garnet contains few fluid inclusions, making up less than 0.5%. Some 

porphyroblasts contain fluid inclusions locally surrounding fractures and mineral 

inclusions (Figure. 5.2a-b) and at porphyroblast rims (Figure. 5.2c). These fluid 

inclusion-bearing porphyroblasts make up <5% of the garnet population and are all 

<1.5 mm. Garnet hosts a variety of mineral inclusions, predominantly quartz, 

ilmenite, zircon and allanite. Mineral inclusion abundances within garnet can vary 

from 6% to 27% within a single porphyroblast. The mineral inclusions form trails 

aligned to the fabric of the matrix which are commonly curved, particularly 

towards the rim (Figure. 5.3a). Inclusions are not homogeneously distributed 

FIGURE 5.2: BSE images of fluid inclusion morphology in clear garnet GR02-8, (a) fluid 
inclusions surrounding ilmenite and quartz inclusions and associated microcracks, (b) fluid 
inclusions surrounding fractures, and (c) fluid inclusions at garnet rim  
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within garnet. The inclusion trails are compositionally layered forming silicate-

dominated bands and metal oxide-dominated domains. Mineral inclusions within 

the garnet occasionally show lateral continuity with matrix fabrics (Figure. 5.3b). 

Quartzofeldspathic matrix bands can commonly be traced into quartz inclusion-

rich areas within garnet. However, they are more often subject to slight deflection 

(Figure. 5.3c) where the matrix appears to curve surrounding garnet changing the 

orientation of the fabric. The quartz inclusions are commonly coarser and more 

well-rounded than matrix quartz (Figure. 5.3a & 5.3d). Concentric changes to 

mineral inclusion morphology within garnet are variable, from core to rim 

FIGURE 5.3: Mineral inclusion trails within GR02, (a) XPL photomicrograph of garnet with 
curving inclusion trails and the surrounding matrix, and (b) schematic illustrating the location 
of quartz inclusion-rich layers in the garnet and adjacent matrix in red, the remaining garnet 
is inclusion-poor and dominated by ilmenite inclusions, (c) XPL image of garnet with less 
obvious compositional layering in adjacent matrix, inclusions show a steady increase in size 
from the core to the rim, (d) XPL image illustrating changes in quartz inclusion size, varying 
in layers, with inclusion trails of coarse quartz and adjacent trails of finer quartz 
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inclusions occasionally get larger, from ca. <0.1 mm in the core to ca. 0.15-0.3 

mm in marginal garnet (Figure. 5.4c). However, inclusions commonly also remain 

consistent in size within a garnet (Figure. 5.4a) or changes in size may be localised 

to specific layers of inclusion trails (Figure. 5.4d).  

Quartz is the most abundant inclusion type, comprising on average 6.8% of the 

volume of garnet within GR02. Quartz inclusions are typically <50 μm and more 

rarely reach up to 100 μm, most have a regular shape and are commonly elongate 

and aligned. Clear garnet within GR02 contains 1.7% ilmenite, 1.5% zircon and <1% 

allanite. Ilmenite occurs as two distinct morphologies; (a) large, irregularly-

shaped aligned grains up to 50 μm with evidence of internal alteration (Figure. 

5.4a-b), and (b) fine <3 μm euhedral grains (Figure. 5.4c-e). Detrital ilmenite has 

regular margins with the enclosing garnet, characteristic of recrystallization 

(Figure. 5.4b). Allanite, an epidote-group mineral with a wide range of 

compositions (Gieré & Sorensen, 2004), is irregularly shaped, most inclusions are 

>30 μm and display internal alteration textures (Figure. 5.5) producing a low REE 

FIGURE 5.4: BSE images of ilmenite within GR01-4, (a) aligned ilmenite inclusions, (b) ilmenite 
morphology, regular contact with garnet and internal alteration and replacement by quartz, (c-
d) metamorphic ilmenite (circled in red) typically occur proximally to detrital ilmenite, (e) 
authigenic fine-grained ilmenite adjacent to a quartz-filled fracture  
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allanite that appears darker (Figure 5.5). Zircon inclusion distribution and 

morphology will be discussed in detail in chapter 6.  

5.2.2.2 Results: chemistry of clear garnet 

Clear garnet shows concentric divalent cation zoning from core to rim (Figure. 

5.6). Mn produces a bell-shaped curve decreasing from 17 mol.% sps at the core 

to <1 mol.% sps at the margins. Fe and Mg display complimentary bowl-shaped 

profiles, Fe increases from 60 mol.% alm at the core to 80 mol.% alm at the rim, 

while Mg is lower but also increases from 9 mol.% in the core to <1 mol.% at the 

rim. Ca shows a less concentric profile with more small-scale fluctuations but 

generally mimics Mn, decreasing from 21 mol.% grs in the core to 13 mol.% grs at 

the rims.  

 

FIGURE 5.5: BSE images of allanite within clear garnet; (a) large allanite and quartz 
inclusion, (b) large allanite inclusion with surrounding microcracks in garnet, (c) allanite 
showing evidence of internal alteration producing a patchy BSE image with variability in the 
brightness 
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FIGURE 5.6: Zoning of major elements in clear garnet GR05-7, (a) BSE image of the 
porphyroblast showing the location of transect A-B, (b) pyrope profile with the molecular 
proportion of Mg across transect A-B (c) spessartine profile with the mol prop of Mn, (d) 
grossular profiles with the mol prop of Ca, and (e) almandine profile with the mol prop of Fe 
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5.2.2.3 Interpretation of clear garnet  

Clear garnet is chemically heterogeneous (Lanari & Engi, 2017). The chemistry of 

clear garnet is consistent with growth zoning (Figure. 5.6) (Atherton, 1968; 

Dempster, 1985; Chakraborty, 1991; Gatewood et al., 2015), indicative it has 

undergone limited modification following porphyroblast growth and thus volume 

diffusion within garnet remains negligible at staurolite grade (Woodsworth, 1977; 

Carlson, 2006; Caddick et al., 2010; Ague & Carlson, 2013). Because garnet has 

been subject to limited modification it can serve as an archive of changing P-T-X 

conditions during growth (Spear et al., 1984; Jiang & Lasaga, 1990; Spear et al., 

1991; Lanari & Engi, 2017; Raimondo et al., 2017) provided large-scale chemical 

equilibrium was achieved for the elements analysed (Chernoff & Carlson, 1997; 

Ague & Carlson, 2013; Spear et al., 2014) 

Inclusions within garnet form when dissolution and/or diffusion is not effective 

enough to allow the removal of minerals adjacent to the porphyroblasts growing 

face (Passchier & Trouw, 2005). Garnet therefore captures matrix phases, 

particularly those which are difficult to dissolve, as inclusions (Passchier & Trouw, 

2005; Baxter et al., 2017). Ilmenite within garnet displays evidence of internal 

alteration (Figure. 5.4b), typical of detrital grains. Allanite is likely sourced from 

the breakdown of detrital monazite early in the metamorphic history, likely at the 

breakdown of detrital monazite early in the metamorphic history, likely at 

conditions close to the chloritoid-biotite isograd (Overstreet, 1967; Williams, 

2001; Gregory et al., 2007). The irregular morphology of allanite and its 

coexistence with matrix quartz is further indication monazite breakdown occurred 

prior to garnet growth. Allanite displays evidence of internal modification, likely 

a feature of metamictization. Metamictization results in the release of REE (rare 

earth elements) from radiation damaged zones (Gregory et al., 2007; Gieré & 

Sorensen, 2004) forming a low REE allanite locally that appears darker in BSE 

imaging (Figure. 5.5). Inclusion trail banding captures sedimentary layering from 

the matrix phase that the garnet overgrew. Compositional layering in the matrix 

produces quartz inclusion-rich bands of garnet where porphyroblasts overgrow 

quartzofeldspathic layers, and ilmenite-rich bands consistent with micaceous 

domains in the matrix.  
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Inclusion trails have a curved morphology indicating garnet growth was 

syntectonic (Zwart, 1960; Bell & Johnson, 1989; Ashley et al., 2016) capturing an 

early stage of deformation in the the core of garnet and tracking progressive 

changes to the orientation of the fabric and/or garnet through the preserved 

inclusion trails (Passchier & Trouw, 2005). Inclusion banding can be traced into 

the adjacent matrix in some porphyroblasts however, in most recrystallization of 

the matrix and the deflection of fabrics caused by continuing deformation after 

garnet growth produces a less distinct pattern. Fluid inclusions form surrounding 

fractures and mineral inclusions suggesting they are representative of garnet 

growth in fluid-rich areas (Crawford & Hollister, 1986).   

Concentric changes to inclusion size within garnet may be a facet of; matrix grain 

size, changing garnet growth rates and changes to fluid composition, all of which 

can promote or inhibit dissolution and diffusion (Carlson, 1991; Carlson et al., 

1995; Daniel & Spear, 1998; Dempster et al., 2017). The concentric increase in 

mineral inclusion size present in some garnets is further indication garnet growth 

may be syntectonic. As temperatures increase the matrix becomes coarser and as 

a result the later formed rims contain coarser inclusions than the earlier formed 

core (Passchier & Trouw, 2005). Generally, quartz inclusions are larger and more 

rounded than matrix quartz. Alternatively, the matrix grain size can reduce 

through time mechanically (Vernon, 2018). Following the formation of garnet, 

deformation has the ability to decrease the matrix grain size producing a 

population of coarse inclusions within garnet and a finer matrix. Dissolution may 

influence inclusion morphology resulting in the preservation of a population of 

rounded inclusions, despite a more angular matrix (Passchier & Trouw, 2005).    

5.2.3 Cloudy garnet  

When clear garnet described in 5.2.2 undergoes coupled dissolution-

reprecipitation its texture and chemistry is modified producing cloudy garnet. 

While clear garnet captures P-T-X conditions during porphyroblast growth, this 

post-growth modification via coupled dissolution-reprecipitation results in partial 

resetting (Dempster et al., 2019).  Within GR01 porphyroblasts are typically 

comprised of both clear and cloudy garnet in varying proportions. Cloudy bands 

form irregular morphologies, typically surrounding the margins (Figure. 5.7) and 
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fractures (Figure. 5.7d), although occasionally cutting though grains in apparently 

random orientations (Figure. 5.7b) (Figure. 5.8). Where more than one band of 

cloudy garnet is present within a porphyroblast they tend to be parallel (Figure. 

5.7a-b).  

 

 

5.2.3.1 Results: texture of cloudy garnet  

Cloudy garnet is texturally distinct from clear garnet, containing a high 

concentration of 10s-100s μm quartz inclusions and a large population of rounded 

<3 μm fluid inclusions (Figure. 5.9). Fluid inclusions typically comprise 2-10 vol.% 

of garnet. Quartz inclusions are irregularly shaped and display no alignment 

(Figure. 5.9c) and typically have a thin, <10 µm fluid inclusion-poor rim 

surrounding them. Fluid inclusions are rounded to sub-rounded (Figure. 5.10d) and 

show evidence of alignment (Figure. 5.10a-b). However, not all fluid inclusions 

are aligned, some appear randomly distributed in BSE imaging (Figure. 5.9d).  

Figure 5.8: Alignment of cloudy bands in staurolite-zone schist GR01 across all 

partially cloudy garnet measure against matrix fabric alignment which is at 180o 
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FIGURE 5.9: Textural characteristics of cloudy garnet using transmitted light microscopy 
(TLM) and BSE imaging, (a) cloudy garnet (top half of porphyroblast) appears darker than 
clear garnet in PPL due to the abundance of fluid inclusions (b) PPL image of cloudy garnet 
illustrating irregular margins due to extensive dissolution, (c) irregular quartz inclusions in 
PPL, (d) BSE image of sub-rounded unaligned fluid inclusions within cloudy garnet, and (e) 
BSE image of cloudy garnet, large black inclusions are irregular quartz formed during 
dissolution-reprecipitation while <3μm inclusions may represent fluid inclusions 
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The extent of cloudiness of individual garnet porphyroblasts varies, some 

porphyroblasts are entirely clear while others are comprised of up to 75% cloudy 

garnet. Within predominantly clear porphyroblasts the fluid inclusions in the 

locally cloudy zones are typically unaligned (Figure. 5.10c).  Fluid inclusion 

alignment is visible using transmitted light microscopy (Figure. 5.10a-b) however, 

using backscattered electron (BSE) imaging at higher magnification allows the 

identification of individual fluid inclusions and planes of alignment (Figure. 10d). 

Fluid inclusion alignment is relatively consistent within a single porphyroblast 

(Figure. 5.11), with a dominant primary plane of alignment and a second less 

frequent alignment which is roughly perpendicular (Figure. 5.12). A large number 

of fluid inclusions pictured within cloudy garnet using BSE imaging show no 

evidence of alignment (Figure. 5.9d). 

FIGURE 5.10: Fluid inclusion alignment in cloudy garnet in GR01, (a-b) PPL images of 
alignment of fluid inclusions in GR01-4, (c) PPL image of garnet GR01-9 where cloudy garnet 
formation is focussed along fractures, this altered garnet shows limited evidence of 
alignment, and (d) fluid inclusion alignment as it appears in BSE imaging  
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Within cloudy garnet mineral inclusions are more abundant and display a wider 

range of compositions than within clear garnet, most notably quartz inclusions 

increase in abundance. Quartz inclusions form much larger (>200 μm), irregularly 

shaped morphologies (Figure. 5.9e) than within clear garnet. Rutile and xenotime 

are present alongside zircon and ilmenite in cloudy garnet. Within clear garnet, 

allanite is present (Figure. 5.5) but there is no monazite, while cloudy garnet 

contains monazite (Figure. 5.13) and no allanite. Monazite inclusions do occur 

occasionally within larger quartz inclusions in clear garnet however, this is rare.  

FIGURE 5.11: Fluid inclusion alignment in GR01, (a-b) BSE image of fluid inclusions within 
cloudy garnet with red arrows indicating alignment of inclusions in GR01-2, (c) rose diagram 
showing the orientation of the two planes of alignment in GR01-2, secondary alignment 
generally forms 70-90o from primary, (d) fluid inclusion alignment in GR01-9, (e) BSE image of 
fluid inclusion alignment illustrating the two ca. perpendicular planes 
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FIGURE 5.12: Alignment of fluid inclusions in GR01-9, (a) BSE image of garnet GR01-9 with 
cloudy domains highlighted in red, the remaining garnet is clear, (b) alignment of fluid inclusions 
within cloudy garnet, alignment occurs along one primary plane with minor alignment 
approximately perpendicular, (c) alignment of long axis of quartz inclusions within clear garnet, 
a facet of matrix fabric during garnet formation, and (d) the alignment of main fractures (>1 mm) 
in the porphyroblast, (e) cartoon illustrating matrix fabrics and the location of quartz pressure 
shadows surrounding GR01-9, and (f) stress field of garnet GR01-9  
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Monazite within cloudy garnet, particularly larger monazite, is commonly 

associated with infilled fractures (Figure. 5.13b) and quartz inclusions (Figure. 

5.11c). Some smaller monazite inclusions occur within fluid inclusions and 

occasionally encapsulated within garnet (Figure. 5.13d).  Clear garnet contains 

around 1.2 μm2 allanite per mm2 of garnet while cloudy garnet contains 0.11 μm2 

monazite per mm2. EDX analysis reveals monazite contains a higher proportion og 

LREE such as Ce and Nd while allanite contains more HREE, such as Gd (Figure. 

5.14). Rutile rarely appears as small needles, <5 μ  w        more commonly rutile 

forms irregular patches within large, detrital ilmenite inclusions (Figure. 5.15). 

FIGURE 5.13: BSE images of monazite within cloudy garnet; (a) monazite within a large, 
irregularly shaped quartz inclusion formed during coupled dissolution-reprecipitation, (b) 
monazite within quartz-filled fracture, and (c) small monazite includions hosted in small 
inclusion, likely a fluid inclusion, (left) and garnet (right) 

FIGURE 5.14: REE profiles of parent allanite, from clear garnet and product monazite, from 
cloudy garnet illustrating the proportion of REE across the phases. Values are averaged 
from 5 EDX (energy dispersive x-ray) spot analyses of each mineral phase   

         

         

                           
 

 

  

  

  

  

  



63 
 
Surrounding all mineral inclusions there is a thin rim of garnet that is typically 

fluid inclusion-free, typically <20 μ  w    (Figure. 5.9e). This rim appears to be 

present irrespective of the inclusion type but varies depending on the size of 

inclusions appearing thickest surrounding large inclusions or clusters of inclusions 

(Figure. 5.9e).  

 

FIGURE 5.15: BSE images of morphology of rutile needles in cloudy garnet (a-c) and clear 
garnet (d-e); (a-b) authigenic rutile needles, (c) patchy rutile replacement with only ilmenite 
rims remaining, (d-e) less extensive rutile replacement with exsolution lamellae focussed at 
the margins of detrital ilmenite in clear garnet   
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Cloudy garnet has a high fracture density. There are major fractures consistent 

with those in clear garnet however they show more evidence of branching within 

cloudy garnet. The branching fractures are consistently >45o and commonly 

perpendicular (Figure. 5.16). These major fractures can contain a silica-rich 

fracture fill in both clear and cloudy garnet. Additionally, radial fractures 

surrounding inclusions are present, they commonly have a curved morphology and 

are only rarely infilled (Figure. 5.16). They are typically <100 μm long, however 

they occasionally appear longer surrounding larger quartz inclusions, particularly 

where they connect adjacent inclusions. Both radial microcracks and major 

fractures are more abundant in cloudy garnet than clear garnet.  

 

 

FIGURE 5.16: BSE image of fracture density and morphology within cloudy garnet in GR01-4 
comprising radial microcracks surrounding quartz inclusions and infilled factures with 
branching, typically branches are 45-90o from the main fracture 
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5.2.3.2 Results: chemistry of cloudy garnet  

Cloudy garnet has an altered chemistry compared to clear garnet (Figure. 5.17). 

Within cloudy garnet almandine and pyrope are higher than adjacent clear, ca. 

+7-10 mol.% in Fe and ca. +2-4 mol.% in Mg. While grossular and spessartine 

typically are typically lower in cloudy garnet, ca. -6-10 mol.% in Ca and ca. -5 

mol.% in Mn. Mn behaves less consistently than the other cations, occasionally at 

the rims of garnet there is a high spessartine content (Figure. 5.18c). The change 

in chemistry at the cloudy-clear margins is gradual and the distance over which 

the composition changes varies for each cation (Figure. 5.17). Mn2+ shows a 

gradual change over ca. 50 μm while Ca2+ shows the sharpest change, with 

chemistry adjusting over 15 μm (Figure 5.17c).  
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5.2.3.3 Interpretation of cloudy garnet  

Coupled dissolution-reprecipitation of garnet involves the breakdown of garnet in 

the presence of fluids resulting in the production of staurolite expressed through 

the reaction, garnet + muscovite + quartz → staurolite + biotite + H2O (Dempster 

et al., 2017). The volume loss of garnet associated with the formation of fluid and 

quartz inclusions enables the transportation of some material in the fluid phase 

(Ruiz-Agudo et al., 2014), e.g. Al is transported away from the porphyroblast to 

the site of staurolite formation. Garnet volume decreases by ca. 39% on average 

through the formation of fractures, mineral inclusions and fluid inclusions during 

dissolution-reprecipitation (Figure. 5.19). This volume deficit in cloudy garnet is 

the result of garnet consumption to form staurolite. The creation of 

interconnected porosity is critical for the propagation of coupled dissolution-

reprecipitation as it enables fluid infiltration to unmodified garnet at the reaction 

FIGURE 5.19: Altered BSE images of garnet replacement in cloudy garnet following 
dissolution reprecipitation, image produced in imagej using dark colour thresholds to 
highlight low mean atomic number features thus capturing fractures, quartz and fluid 
inclusions, highlighted in red 
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front (Putnis & Putnis, 2007; Putnis & Austrheim, 2010; Ruiz-Agudo et al., 2014; 

Luquot et al., 2015; Putnis, 2015). 

During experiments on pyroxene and amphibole, couple dissolution-

reprecipitation commonly involves the formation of a silica-rich amorphous phase 

(Keller et al., 2006; Bukovská et al., 2015; Konrad-Schmolke et al., 2018). This 

amorphous phase allows the direct repolymerization of product phase(s) from 

fluids, as well as promoting fluid flow through the creation of inclusion or grain 

boundaries (Konrad-Schmolke, et al., 2018). While quartz inclusions within cloudy 

garnet are crystalline rather than amorphous, this may be a feature of the longer 

timescales involved in natural samples versus the experimental amorphous 

studies. The inclusions may represent an intermediate phase during dissolution-

reprecipitation of garnet, or what is preserved following the repolymerisation of 

the ‘amorphous’ phase. The apparently random replacement of garnet by quartz 

during dissolution-reprecipitation may instead be controlled by crystal defects, 

along which the amorphous material may preferentially form (Konrad-Schmolke, 

2018). All reported amorphous phases are more chemically complex silicate 

minerals than quartz, however garnet has not been analysed in the  context of 

amorphous phases. Quartz is a product phase formed during both staurolite 

formation (garnet + muscovite + water → staurolite + biotite + quartz) and 

sillimanite formation (garnet + muscovite → sillimanite + biotite + quartz). During 

coupled dissolution-reprecipitation quartz may form following garnet dissolution 

and assist with the transport of alkalis (e.g. Al, Fe, Mg and Mn) between reactant 

and product phases (Konrad-Schmolke et al., 2018). 

Monazite is the second most abundant mineral inclusion by volume within cloudy 

garnet. Monazite may be detrital however it typically disappears early in the 

regional metamorphic history, well before mid-amphibolite facies (Overstreet, 

1967; Williams, 2001). The monazite within garnet is likely metamorphic forming 

at the expense of allanite at the garnet-staurolite isograd at ca. 500oC (Wing et 

al., 2003; Corrie & Kohn, 2008; Gregory et al., 2007; Spear, 2010). When garnet 

undergoes dissolution-reprecipitation, fluids may promote the allanite to 

monazite transformation. The result is clear garnet containing allanite and no 

monazite, and cloudy garnet contains monazite and no allanite. Clear garnet 

contains more allanite than cloudy garnet contains monazite. Clear garnet more 
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rarely contains fine monazite confined to quartz inclusions however these were 

likely captured from the matrix during garnet growth. Allanite generally contains 

less Ce per mol than monazite owing to its more variable composition (Ercit, 

2002), as a result the volume of monazite produced from allanite following 

coupled dissolution-reprecipitation decreases. Garnet is more compatible with 

heavy rare earth elements (HREE) (Rubatto, 2002; Sinh, V.B.T et al., 2019) so 

during the allanite to monazite transformation garnet may incorporate some of 

the HREE from allanite dissolution, accounting for the difference and producing 

monazite with a higher light rare earth element (LREE) profile (Figure 5.14). Rutile 

needles also form exclusively within cloudy garnet, indicative that they too form 

during dissolution-reprecipitation (Hwang et al., 2019).  

The increased abundance and variety of mineral inclusions in cloudy garnet is 

further evidence of the ability of fluids involved in coupled dissolution-

reprecipitation to transport high field strength elements (HFSE), such as Ce, P and 

Th for monazite, or potentially Zr for zircon. Mineral inclusions produce fluid 

pathways through the creation of (a) microcracks and fractures (Whitney et al., 

1996; Whitney et al., 2000), and (b) boundaries between the inclusion and host 

(Hames & Menard, 1993). These boundaries may enable the escape of fluids from 

host garnet immediately adjacent to inclusions producing fluid inclusion-free rims.  

Fluid inclusions within garnet are the result of rapid growth in a fluid-rich 

environment (Crawford & Hollister, 1986). Coupled dissolution-reprecipitation has 

the ability to produce fluid inclusions within the precipitating product phase 

(Martin et al., 2011; Ruiz-Agudo et al., 2014; Putnis, 2015; Dempster et al., 2017). 

Fluid inclusions are relics of porosity resulting from the partial healing of fluid 

pathways and channels that assisted in the transportation of fluid and material to 

and from the reaction interface during coupled dissolution-reprecipitation (Martin 

et al., 2011). Dissolution is assumed to be the most kinetically difficult process, 

and therefore the limiting factor, while precipitation is relatively fast (Ruiz-Agudo 

et al., 2014). Fluid inclusions can be primary, formed during growth, or secondary, 

formed after growth (Shepherd, 1990). The prevalence of fluid inclusions in cloudy 

garnet indicates that they also form during the coupled dissolution-reprecipitation 

process. Fluid inclusions may be aligned as a result of (a) active deformation 

(Hollister, 1986), (b) the crystallographic structure of garnet (Dempster et al., 
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2017), or (c) healing of microcracks and fractures (Shepherd, 1990). Active 

deformation would produce one consistent plane of alignment parallel to the main 

extensional stress, σ3, in continuity with the matrix fabric. The crystallographic 

structure of garnet is the crystal-preferred orientation of the lattice during growth 

or deformation (Powell, 1966; Kleinschodt & McGrew, 2000; Mainprice et al., 

2004).  

It is primarily a facet of (a) matrix fabric (Powell, 1966), (b) nucleation of multiple 

proto-porphyroblasts, and (c) epitaxy (Eitel, 1964; Powell, 1966). The large 

number of influencing factors means crystallographic orientation of garnet is 

variable, fluid inclusions produced in this way should form localised regions with 

different orientations. Fluid-filled fractures and microcracks have a high surface 

energy and as such heal rapidly in mid-crustal conditions resulting in a series of 

aligned fluid inclusions (Shepherd, 1990). Fractures within these garnets are 

predominantly extensional forming parallel to the dominant compressive stress, 

σ1 (Figure. 5.20). The orientation of microcracks is less predictable, forming 

radially surrounding inclusions, preferentially at corners (Whitney et al., 2000). 

Mineral inclusions in cloudy garnet are unaligned and irregularly shaped (Dempster 

et al., 2017) producing a wide array of potential fracture orientations. Alignment 

from the healing of the dominant extensional fractures would be parallel to σ1, 

but highly variable due to the potential influence of microcracks.  

FIGURE 5.20: extensional 
fractures in GR05-3, (a) PPL image 
of garnet GR05-3 with main 
fractures highlighted in white, (b) 
stress field based on matrix 
orientation, all major fractures 
open in the direction of the main 
extensional stress   
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Fluid inclusions in cloudy garnet typically display a dominant alignment with 

another less well-defined plane perpendicular to it (Figure. 5.12b), different areas 

within the garnet contain fluid inclusions aligned to these different orientations. 

The primary alignment matches the orientation of quartz inclusions within 

adjacent clear garnet (Figure. 5.12c), a facet of the matrix fabric which is aligned 

parallel to σ3. The second alignment, approximately perpendicular to primary, 

forms along the same plane as extensional fractures (Figure. 5.12d). Fluid 

inclusion alignment appears to be predominantly a facet of healing of extensional 

fractures within these schists. The secondary alignment of fluid inclusions is 

parallel to matrix foliation, displaying the same alignment as inclusions trapped 

within garnet during growth. Both planes of fluid inclusion alignment are therefore 

controlled primarily by deformation.  

Unaligned fluid inclusions may form asynchronously, either before or after the 

production of aligned inclusions during coupled dissolution-reprecipitation. 

However, if this were the case fluid inclusions are unlikely to be exclusively found 

in cloudy garnet. Sample preparation may remove evidence of fluid inclusion 

alignment, where the sample cut is >45o from the plane of alignment identification 

becomes difficult using scanning electron microscopy. This bias is unlikely to be 

the cause for all unaligned fluid inclusions as they comprise a majority of the 

population. There are likely three different populations of fluid inclusions within 

cloudy garnet; (a) primary inclusions formed during garnet growth, (b) those 

formed during coupled dissolution-reprecipitation, and (c) those formed later, 

associated with the eradication of transient porosity and fractures (Goldstein, 

2003).  

During coupled dissolution-reprecipitation, garnet chemistry is modified owing to 

partial re-equilibration with the fluid phase (Martin et al., 2011; Ague & Axler, 

2016; Dempster et al, 2017; Dempster et al., 2019). Dissolution-reprecipitation 

forms sharp boundaries (Putnis, 2009) as such the change in chemistry at the 

cloudy-clear boundary should be abrupt. However, this is not the case and the 

boundary produces a gradual change in chemistry, particularly the Mn profile 

(Figure. 5.17c). The distance over which the major element chemistry changes 

appears to be a facet of diffusion speeds of the divalent cations within garnet. 

Mn2+ has the most rapid diffusion in garnet producing a gradual change while Ca2+ 
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has the slowest diffusion (Carlson, 2006). This creates a sharper profile in Ca-

content at the cloudy-clear boundary. The link to diffusion rates is indicative that 

the boundaries between cloudy and clear garnet are subject to later diffusive 

modification producing a more gently sloping profile. Initially the chemical 

boundaries produced during dissolution-reprecipitation are likely abrupt (Altree-

Williams et al., 2015).  

Coupled dissolution-reprecipitation has the ability to produce cloudy garnet with 

a modified chemistry (Martin et al., 2011; Dempster et al., 2017; Dempster et al., 

2019). During dissolution-reprecipitation, reequilibration occurs with the fluid 

phase creating garnet with increased pyrope and almandine, and decreased 

grossular and spessartine than clear parent garnet.  

Garnet is a multicomponent mineral and during dissolution-reprecipitation the 

constituent elements dissolve non-stoichiometrically (Ruiz-Agudo et al., 2014). 

This differential dissolution, combined with the fact dissolution-reprecipitation is 

a disequilibrium process (Dempster et al., 2019), produces some variability in the 

chemistry of the product phase. The chemistry of the product is primarily 

dependant on the fluid composition and the parent phase composition. Cloudy 

garnet forms bands which often cut across compositional zones indicating 

dissolution-reprecipitation is independent of the original garnet composition 

(Dempster et al, 2017). Garnet changes composition from core to rim, e.g. at the 

core only trace amounts of Mn is present therefore the fluid can become saturated 

in Mn more easily precipitating a more Mn-rich product phase. The reverse applies 

to the Mn-rich rims where reequilibration involves the removal of Mn from garnet.  

5.2.4 Ambiguous garnet 

Ambiguous garnet commonly occurs between clear and cloudy garnet (Figure. 

5.21). The boundary between texturally modified garnet and clear garnet is 

transitional producing a partially altered intermediate zone ca. 100 μ  w     

termed ambiguous garnet.  
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5.2.4.1 Results: texture of ambiguous garnet  

Ambiguous garnet contains some fluid inclusions, similar to cloudy garnet however 

it contains significantly fewer quartz inclusions (Figure. 5.22). Fluid inclusions are 

less abundant in ambiguous garnet, generally <1%. To maintain consistency in the 

classification of textures garnet containing >1% fluid inclusions is cloudy, <1% is 

ambiguous, and <0.1% is clear (Figure 5.2).  

FIGURE 5.21: PPL image displaying the geometry of ambiguous zones occurring between 
clear and cloudy garnet in (a) GR01-9 and (b) GR01-5  

FIGURE 5.22: textural characteristics of ambiguous garnet (a) BSE image of GR01-2 showing 
the change in fluid inclusion abundance across clear, ambiguous and cloudy garnet, (b) PPL 
image of cloudy-clear margin within GR01-9, fluid inclusion-rich areas appear darker 



75 
 
There is no significant change to the size or morphology of fluid inclusions between 

cloudy and ambiguous garnet (Figure. 5.23). Ambiguous garnet contains few 

mineral inclusions, there are a few instances of monazite, quartz and ilmenite 

inclusions. Where quartz inclusions are present, they are small, aligned and 

regularly shaped, more consistent with the geometry of quartz within clear garnet 

than cloudy (Figure. 5.21-22). Fracturing within the transitional zones is also more 

similar to that in clear garnet than cloudy, with an absence of small-scale 

interconnected fractures.  

Results: chemistry of cloudy ambiguous garnet 

Within ambiguous zones the chemistry is consistent with cloudy garnet (Figure. 

5.17c). The boundary between ambiguous and clear garnet coincides with the 

beginning of a gradual change in chemistry, particularly a rise in Mn, producing a 

gently sloping profile into clear, unmodified garnet.   

5.2.4.3 Interpretation of ambiguous garnet  

The size distribution of fluid inclusions in ambiguous garnet is consistent with that 

in cloudy garnet (Figure. 5.24). Small fluid inclusions have a high surface energy 

and can be easily eradicated during textural reequilibration. If ambiguous zones 

FIGURE 5.23: fluid inclusion abundance in garnet GR01-2 subdivided by classifications 
clear, ambiguous and cloudy  
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were a feature of partial textural reequilibration following dissolution-

reprecipitation then a coarsening in the size of fluid inclusions would be expected 

in the transitional zones. It is likely that these zones are formed during coupled 

dissolution-reprecipitation as a gradual boundary between cloudy and clear 

garnet. This partial alteration of the texture in ambiguous zones, where the 

chemistry has been entirely altered is indicative that at staurolite grade textural 

modification is less effective than chemical modification within garnet.  

The abundance of fluid inclusions can vary as a function of; (a) fluid availability, 

(b) mineral precipitation rates, and (c) active deformation (which may either 

provide pathways for fluid escape or produce shear zones promoting the 

infiltration of fluid thus increasing the potential for fluid inclusion formation. Fluid 

access and availability are the most common limiting factors in dissolution-

reprecipitation (Putnis, 2009; Putnis & John, 2010; Ruiz-Agudo et al., 2014). As 

coupled dissolution-reprecipitation propagates into the garnet, fluid becomes less 

abundant due to the consumption of H2O in the staurolite-forming reaction, Fe-

rich garnet + muscovite + water → staurolite + biotite + quartz, and entrapment 

as inclusions. As a result, fewer inclusions are formed in cloudy garnet with 

increasing distance from the reaction interface. This continues until fluid 

availability falls below a threshold and coupled dissolution-reprecipitation 

eventually halts.  

FIGURE 5.24: plot of the size distribution of fluid inclusions within cloudy (yellow) and 
ambiguous (black) garnet   
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5.2.5 Conclusion   

The degree of cloudiness of a garnet is linked to the amount of staurolite 

produced, therefore coupled dissolution-reprecipitation assists in the formation 

of staurolite through garnet consumption. The process can be fingerprinted using 

cloudy garnet which contains a high density of fluid and quartz inclusions and 

shows an altered chemistry with generally lower Mn & Ca, and higher Mg & Fe than 

clear garnet, although variable depending on the location within the grain. 

Identifying coupled dissolution-reprecipitation of garnet is made complex through 

the production of ambiguous zones where chemical transects reflect complete 

resetting, but textural modification is limited. Based on the morphology of mineral 

and fluid inclusions these ambiguous zones are likely formed during the initial 

alteration and do not represent a separate stage of reequilibration following 

dissolution-reprecipitation. Within staurolite-bearing schists there are two 

distinct stages in the temporal evolution that can be identified, (1) clear garnet 

interpreted to form during garnet growth, and (2) cloudy garnet, formed by 

coupled dissolution-reprecipitation during staurolite growth.   

5.3 Sillimanite-zone garnet  

5.3.1 Previous work  

Garnet within sillimanite-bearing schists can be characterised based on textural 

and chemical characteristics as primary clear, cloudy and clear inclusion-free rims 

(Dempster et al., 2019). Typically garnet contains a combination of all three 

textures within a porphyroblast with generally sharp contacts and more rarely 

ambiguous zones (Dempster et al., 2019). The absence of ambiguous garnet may 

be attributable to the absence of primary clear garnet in the higher grade 

sillimanite schists, and thus the absence of cloudy-clear margins along which 

ambiguous garnet forms. Clear rims form at the edge of porphyroblasts and 

surrounding inclusions within garnet, they are particularly well developed 

adjacent to sillimanite and have a consistent composition indicating they are a 

feature of reequilibration during sillimanite formation (Dempster et al., 2019). 

The reequilibration occurs following dissolution-reprecipitation (Dempster et al., 

2019), as such clear rims are interpreted as representing an additional stage in 
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the temporal evolution of garnet. The reequilibrated clear rims will be referred 

to as secondary clear garnet henceforth, while unmodified garnet that has not 

undergone coupled dissolution-reprecipitation will be defined as primary clear 

garnet. 

5.3.2 Primary clear garnet  

The amount of clear unmodified garnet within the sillimanite-zone schists is very 

low. Within the sillimanite-rich schist UGR0 unmodified garnet represents on 

average just 14% of garnet while within the sillimanite-poor schist UGR1, this is 

slightly higher at 36%. It shares similar characteristics to the clear domains in the 

staurolite-zone samples. In addition to unmodified ‘primary’ clear garnet, 

texturally reequilibrated ‘secondary’ clear garnet will be discussed separately as 

it represent an additional stage in modification.  

5.3.2.1 Results: texture of primary clear garnet  

Primary clear garnet is texturally near identical to that described in the staurolite 

schists (see section 5.2.2.1), except it is present in significantly lower 

abundances.  

5.3.2.2 Chemistry   

Primary clear garnet can be distinguished from cloudy or secondary clear garnet 

based on its higher Ca contents (Dempster et al, 2019). Primary clear zones 

typically also display chemistry consistent with growth zoning, with decreasing 

grossular and spessartine towards the core and complimentary almandine and 

pyrope profiles (Figure. 5.25).  

5.3.2.3 Interpretation of clear garnet   

Primary clear garnet is consistent in morphology and chemistry to that within the 

staurolite-zone schists. The presence of growth zoning and absence of mineral and 

fluid inclusions consistent with dissolution-reprecipitation is indicative this garnet 

has undergone limited post-growth modification.  
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FIGURE 5.25: Transects across UGR0-4 illustrating the chemistry of high Ca, unaltered 
garnet, (a) X-ray map overlaying a BSE image of UGR0-4 showing the location of the 
transects, 3 transects were taken and the values combined in excel to produce one plot. 
High Ca areas of the garnet are highlighted in orange and the accompanying areas are 
highlighted red in the plots in b-e, (b) profile of the molecular proportion of grossular, (c) 
molecular proportion of pyrope, (d) molecular proportion of spessartine, (e) molecular 
proportion of almandine  
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5.3.3 Cloudy garnet  

Sillimanite-bearing schists contain a much larger proportion of cloudy garnet than 

staurolite-zone. Cloudy garnet typically represents a majority of porphyroblasts 

with no completely clear grains visible in either the sillimanite-rich or sillimanite-

poor samples. The geometry of cloudy zones is generally more regular (Figure. 

5.26) than at staurolite-grade (Figure. 5.7), forming preferentially in the core and 

occasionally developing into atoll garnet where the core is entirely replaced 

(Figure. 5.26a). 

5.3.3.1 Results: texture of cloudy garnet  

Within sillimanite-zone garnet, cloudy garnet is texturally less consistent than 

within staurolite-zone schists. The abundance of both fluid and quartz inclusions 

is highly variable, with the abundance of these features generally showing a 

negative correlation with one another. In quartz-rich areas of garnet the 

abundance of fluid inclusions is much lower, typically <2 vol.% compared to a more 

consistent value of ca. 4-10 vol.% in staurolite-zone cloudy garnet. Fracture 

abundance and morphology also varies as a function of mineral inclusion 

abundance and morphology. Where inclusion abundance is higher, fracture 

abundance is also higher. 

Within ca. 50% of garnet porphyroblasts there are quartz inclusion-rich areas 

within cloudy zones (Figure. 5.27). These contain up to 70% quartz, with only ca. 

30% of the host garnet. These domains typically contain no other mineral inclusion 

types with an absence of detrital zircon; ilmenite; monazite; and rutile, all of 

which are typically present in cloudy garnet. The quartz-rich bands are typically 

located marginally and are present in garnet that hasn’t developed atoll structures 

(Figure. 5.27a). They have a high fracture density, most are <200 μm long and 

terminate at adjacent quartz inclusions or fractures. The quartz inclusion-rich 

areas contain limited fluid inclusions owing to the abundance of secondary clear 

margins around quartz inclusions. Secondary clear rims surrounding inclusions and 

fractures are generally >100 μm and have a sharp contact with adjacent cloudy 

garnet. Only in rare pockets containing limited quartz and fracturing do fluid  
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inclusion abundances reach >1%, comparable to abundance within staurolite-zone 

samples (Figure. 5.27).  

Cloudy garnet contains fewer quartz inclusions than within cloudy garnet in the 

staurolite-zone schists, comprised of <20% quartz typically (Figure. 5.27a). The 

lower frequency of mineral inclusions results in large fluid inclusion-rich areas of 

garnet (Figure. 5.27c). The garnet is heavily fractured, most fractures are infilled 

with quartz and typically vary in length from 10s to 100s μm, terminating at the 

nearest adjacent quartz inclusion or fracture (Figure. 5.27c). Quartz inclusions 

are irregularly shaped but atypically small for those produced during dissolution-

reprecipitation, generally <100 μm (Figure. 5.27c). Larger quartz inclusions, up to 

500 μm, are rare and where present consistently host sillimanite. Alongside quartz 

inclusions are ilmenite, rutile, zircon and monazite. The proportions of most other 

inclusions are consistent with staurolite zone cloudy garnet except that of 

ilmenite and rutile. The modal abundance of rutile is higher at sillimanite-zone, 

ca. 1.2%, while the proportion of ilmenite is lower, ca. 1%, compared to 

staurolite=zone where ilmenite comprises ca. 1.5% of the rock and rutile contents 

are <0.5%.  

 5.3.3.2 Results: chemistry of cloudy garnet  

Cloudy garnet has low Ca chemistry (Figure. 5.25), similar to that at staurolite 

grade (Figure. 5.17). Chemical analyses of quartz-rich bands of garnet are 

complicated by the absence of fracture- and inclusion-free garnet, producing a lot 

of variability and noise in the profile not linked to garnet composition. However, 

spot analyses of garnet within these areas reveals an extremely low Ca, high Mg 

chemistry consistent with garnet that has undergone coupled dissolution-

reprecipitation.  

5.3.3.3 Interpretation of cloudy garnet  

The change in chemistry following dissolution-reprecipitation in sillimanite zone 

schists mimics the cloudy garnet in staurolite-zone schists suggesting all cloudy 

garnet formed synchronously during staurolite formation (Dempster et al., 2019). 

The products of fluid-mediated reactions tend to exhibit higher defect densities 

in their crystal lattice (Spruzeniece et al., 2017), as a result cloudy garnet is more 



84 
 
reactive than clear garnet (Dempster et al., 2019). The sillimanite-zone schists 

have undergone more dissolution-reprecipitation during staurolite formation 

producing more reactive, cloudy garnet and in turn potentially promoting the 

formation of sillimanite (Dempster et al., 2019).  

The quartz inclusion-rich areas (Figure. 27) may represent those formed from the 

initial propagation of fluids during coupled dissolution-reprecipitation at 

staurolite-grade. These quartz-rich areas are parallel to the extensional fracture 

network in the rock and so the morphology is likely linked to exploitation of 

fractures by fluids during staurolite formation. During the initial stages of coupled 

dissolution-reprecipitation, fluid availability is higher increasing the potential for 

quartz formation while as the process progresses fluid availability decreases, and 

the result is the formation of less mineral inclusion-rich cloudy garnet. The 

formation of vast large volumes of quartz as inclusions during dissolution-

reprecipitation is commonly reported (Martin et al., 2011; Steele-MacInnis et al., 

2012; Ruiz-Agudo et al., 2014; Putnis, 2015; Dempster et al., 2017) but remains 

enigmatic. Quartz may represent an ‘amorphous’ phase formed during dissolution-

reprecipitation (Konrad-Schmolke et al., 2018). These amorphous phases 

preferentially form surrounding defects (Konrad-Schmolke et al., 2018). Within 

these schists the highest defect densities are typically in originally quartz 

inclusion-rich bands, owing to the high fracture density due to the abundance of 

microcracks surrounding quartz inclusions (see section 5.2.2.3). This may 

encourage further growth of quartz and thus propagate dissolution-reprecipitation 

within these quartz-rich bands.  The eradication of most inclusion types in the 

quartz-rich cloudy bands indicates that dissolution is particularly effective in 

these domains. This dissolution results in the removal of chemically durable 

inclusions and the mobilisation and transportation of HFSE (high field strength 

elements).   

5.3.4 Secondary Clear garnet   

Secondary clear garnet appears to be exclusive to the sillimanite-zone schists. It 

shares similar characteristic to primary clear garnet but is found locally 

surrounding mineral inclusions and porphyroblast rims and has a low Ca content 

consistent with modification via dissolution-reprecipitation.  
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5.3.4.1 Results: texture of secondary clear garnet  

Secondary clear garnet is focussed around mineral inclusions and adjacent silicate 

infilled fracture networks (Figure. 5.28b), and at porphyroblast rims (Figure. 

5.28a). Secondary clear domains contain very few fluid inclusions (Figure. 5.28), 

(typically <0.1%) forming zones texturally identical to unaltered, clear garnet. The 

secondary clear mineral inclusions rims contain high fracture densities and 

additional irregularly shaped quartz inclusions (Figure. 2.28b) typical of cloudy 

garnet, while secondary clear porphyroblast margins are generally inclusion-free 

and contain limited fractures (Figure. 5.28d). Fluid inclusion-free rims are also 

present at staurolite grade surrounding mineral inclusions, but they are 10s μm 

wide compared to 100s μm within the sillimanite-bearing schists. Clear rims are 

widest adjacent to sillimanite inclusions reaching >500 μm wide in places (Figure. 

5.28d). Similarly, clear margins are widest proximal to mats of matrix sillimanite, 

clear margins are typically 100-200 μm wide reaching >1 mm adjacent to abundant 

sillimanite (Figure. 5.28c).  
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5.3.4.2 Results: chemistry of secondary clear garnet  

In contrast to the high Ca profiles typical of unaltered garnet, secondary clear 

rims have especially low grossular contents (Figure 5.29 & 5.30). Clear margins 

have low and constant Mn and Ca values (Figure. 5.29) while Fe and Mg transects 

are more variable (Figure. 5.29). Pyrope and almandine increase in the secondary 

clear rims compared to adjacent garnet, Mg increases from ca. 20 mol.% in cloudy 

garnet to 23 mol.% at the clear margins while Fe is just 71 mol.% in cloudy garnet 

increasing to 73-74 mol.% in secondary clear margins.  

FIGURE 5.28: Location and morphology of secondary clear garnet within sillimanite-zone garnet 
in UGR0 with red line denoting secondary clear-cloudy boundaries, (a) PPL image of UGR0-1 
with a clear outer margin and cloudy core that appears darker due to this high fluid inclusion 
abundance, (b) BSE image of clear inclusion rim in UGR0-4 surrounding biotite inclusion with 
<1% fluid inclusions, (c) well-developed clear rim adjacent to sillimanite at garnet margins in 
UGR0-6, (d) thick clear inclusion rims surrounding sillimanite inclusions within UGR0-4 
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FIGURE 5.29: Transect from clear rim C into cloudy garnet D within UGR0-4, (a) location of 
transect in PPL image (b) spessartine profile, (c) pyrope profile, (d) grossular profile, (e) 
almandine profile, (b-e) highlighted in green is the clear rim 
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5.3.4.3 Interpretation of secondary clear garnet  

Secondary clear garnet has a low Ca chemistry, suggesting it has been modified 

and thus represents an additional stage in garnet’s evolution which can be used 

to understand the temporal evolution of the rocks as a whole. Grossular contents 

in primary clear garnet are high at ca. 10 mol.% decreasing to just ca. 5 mol.% in 

cloudy garnet, while re-equilibrated secondary clear garnet is Ca-poor at 4 mol.%. 

As a result, Ca is a useful tool in deciphering the reaction history of a garnet where 

textural analyses may produce ambiguous results. Ca has the ability to monitor 

the history of garnet at higher grade where reequilibration occurs making textural 

classification more complex. Generally, the more stages of modification garnet 

undergoes, the lower the Ca content becomes in the schists.  

The appearance of secondary clear garnet margins in sillimanite-bearing samples, 

paired with the increased abundance of secondary clear fluid inclusion-free rims 

in sillimanite-rich UGR0 compared to sillimanite-poor UGR1 (Dempster et al., 

2019) suggests the textural reequilibration is associated with the sillimanite-

forming process. Wide, clear porphyroblast margins are exclusive to the 

sillimanite-zone schists. In the staurolite-zone schists these margins regions are 

often consistently cloudy, typically pivotal in allowing the infiltration of fluids and 

commencing coupled dissolution-reprecipitation. The decrease in Ca and increase 

in Mg in secondary clear rims surrounding mineral inclusions produces a 

composition consistent with the secondary clear reequilibrated garnet margins 

(Figure. 5.31). This indicates that both reequilibrated porphyroblast margins and 

inclusion rims form concomitantly producing low Ca, high Mg zones.  

Metamorphic rocks typically have low porosity, <1 vol.%, and permeability limiting 

diffusive behaviour between fluid inclusions and the host mineral, thus promoting 

preservation (Bakker, 2009). However, both recrystallization and grain boundary 

migration may result in complete annealing of grains and eradication of fluid 

inclusions (Bakker, 2017). Porphyroblast margins appear to have undergone 

complete recrystallization with the elimination of mineral inclusions and fractures 

alongside fluid inclusions, producing a relatively homogeneous garnet. 

Reequilibrated inclusion rims are less homogeneous, fluid inclusions are  
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eradicated while fractures and mineral inclusions are, at least partially, 

preserved.  Fluid availability appears to be the most important factor in the 

equilibration of fluid inclusions (Bodnar, 2003). Garnet porphyroblast margins and 

inclusion rims within garnet are likely fluid rich areas. Garnet margins are in 

contact with the matrix where porosity and permeability is high, while inclusions 

in cloudy garnet form interconnected pathways of fractures and microcracks 

enabling fluid access. During sillimanite formation, alongside extensive dissolution 

in the core of garnet, a dissolution-reprecipitation process may be occurring in 

fluid-rich areas; surrounding mineral inclusions and at porphyroblast rims. 

Where dissolution-reprecipitation is closely coupled the product phase may be a 

pseudomorph of the dissolved parent phase, preserving original features and 

morphology through epitaxial nucleation (Putnis & Putnis, 2007; Putnis & 

Austrheim, 2010; Ruiz-Agudo et al., 2014). Dissolution and precipitation may be 

more closely coupled surrounding mineral inclusions than at garnet margins, thus 

preserving fractures and smaller mineral inclusions of monazite or ilmenite in 

secondary clear inclusion rims. Due to increase fluid availability dissolution is 

more effective at porphyroblast margins potentially resulting in a temporal 

decoupling between dissolution and reprecipitation eradicating fractures and 

inclusions and precipitating a more homogeneous product.  

5.3.5 Conclusion  

The textural modification associated with coupled dissolution-reprecipitation, 

increased fluid and mineral inclusion and fracture density, begins to be eradicated 

at higher temperatures producing secondary clear, reequilibrated garnet. During 

sillimanite formation the textures that are produced from coupled dissolution-

reprecipitation during staurolite formation become replaced by a more 

homogeneous product phase in fluid-rich areas. Cloudy garnet is replaced by 

secondary clear garnet and the chemistry is altered effectively to produce a low 

Ca, high Mg product. This reequilibration produces another identifiable stage in 

garnet modification. While secondary clear garnet appears texturally similar to 

unmodified garnet, the low Ca chemistry combined with the specific locality 

(surrounding inclusions and at porphyroblast margins) of the secondary clear 

domains allow this stage to be fingerprinted.  
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5.4 Controls on cloudiness  

Despite regular patterns of coupled dissolution-reprecipitation reported 

elsewhere in garnet (Martin et al., 2011), the geometry of cloudy garnet within 

these schists is highly variable. Within staurolite-zone rocks cloudy garnet is 

focussed along the margins (Figure. 5.7c) and fractures (Figure. 5.7d) in grains, 

occasionally cross-cutting grains and forming altered bands (Figure. 5.7a-b). 

Within sillimanite-zone garnet, cloudy zones are larger (Figure. 5.26) forming atoll 

(Figure. 5.26a) or proto-atoll structures (Figure. 5.26b-d). Fluid pathways for 

dissolution-reprecipitation cannot be traced in cloudy garnet due to the transient 

nature of porosity (Putnis, 2009). The high interfacial energy associated with the 

formation of porosity promotes pore coarsening and hinders the preservation of 

small fracture networks (Ruiz-Agudo et al., 2014). These preservational problems 

combined with the heterogeneous nature of garnet makes understanding reaction 

front propagation complex. In porphyroblasts where cloudy garnet is less 

developed, i.e. in staurolite-bearing schists, the morphology of the inclusion-rich 

zones can assist in understanding how coupled dissolution-reprecipitation 

propagates within garnet. 

5.4.1 Stress field  

The patchy and irregular replacement of a parent phase during fluid-mediated 

alteration has previously been attributed to fracturing (Jamtveit et al., 2009). 

Active deformation produces tensile fractures parallel to the main compressive 

stress and perpendicular to the orientation of tensile stress (Figure. 5.32). Where 

garnet forms cloudy bands they appear to be influenced by active deformation, 

most bands form along these tensile planes (Figure. 5.33).  

Fractures enable fluid access to new reactive parent surfaces within garnet 

(Jamtveit & Austrheim, 2010; Dempster et al., 2017). From these planes the 

reaction front can then propagate parallel to the fracture into unaltered garnet 

producing thick bands of cloudy garnet surrounding major fractures. While this 

model fits a majority cloudy garnet within staurolite-zone schists there must be 

additional controlling factors with the ability to form a variety of cloudy 

geometries.  
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FIGURE 5.33: Geometry of cloudy garnet in staurolite-zone GR01-8, (a) cartoon of the 
location of main stress fields with the cloudy band forming along extensional fractures,  (b) 
PPL image of garnet illustrating matrix fabrics and the location of cloudiness 

FIGURE 5.32:  Model for the propagation of dissolution-reprecipitation and the formation of 
cloudy garnet along tensile fractures parallel to the main compressive stress 
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5.4.2 Original sedimentary mineralogy and lithology  

During regional metamorphism large fluid fluxes control reaction progress, due to 

heterogeneous permeability within mid-crustal rocks these fluids are commonly 

channelized (Ague, 2011). Channelization may be controlled by a number of 

features in metasedimentary rocks such as layering, fractures and folds (Ferry & 

Gerdes, 1998). Lithostatic layering is of significant importance, estimates of fluid 

fluxes across layers are an order of magnitude slower than flow parallel to layering 

(Ferry & Gerdes, 1998). The conduits can transport large volumes of fluid and 

heat, promoting reactivity in layered rocks (Ferry, 1992; Ferry & Gerdes, 1998; 

Ague, 2011). Within sillimanite-zone schists the original sediments are more finely 

interbedded (refer to petrology in chapter 4), this produces more permeable 

domains between mica-rich and quartz-rich layers which can act as conduits. 

Staurolite zone schists contain thicker layers generally (refer to petrology in 

chapter 4). The less layered staurolite-zone sediments may not have the ability to 

transport as much fluid as the sillimanite-zone schists due to the lower potential 

for lithological channel structures and thus decreased fluid availability. As a 

result, fluid availability may be lower in the staurolite-zone schists inhibiting 

garnet dissolution and the resulting sillimanite formation (garnet + muscovite → 

sillimanite + biotite + quartz).   

During amphibolite facies metamorphism, Al ions have low mobility (Carmichael, 

1969). As a result, Al-silicates, such as staurolite, preferentially form in Al-rich 

zones (Passchier & Trouw, 2005). Therefore, within these schists staurolite and 

sillimanite preferentially form in pelitic layers. Staurolite appears skeletal where 

it impinges into quartz-rich fabrics as growth is limited to grain boundaries where 

Al is more available (Passchier & Trouw, 2005). As a result, garnet contained 

within a more quartz-rich matrix has less potential for Al silicate index mineral 

growth, and thus less potential coupled dissolution-reprecipitation.  
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5.4.3 Inclusion banding within garnet 

Grain boundaries play an important role in enabling fluid access to reaction fronts 

during dissolution-reprecipitation. The boundaries promote fluid transport one 

order of magnitude higher than transient porosity formed during dissolution-

reprecipitation (Jonas et al., 2014). On a smaller scale, inclusion boundaries 

within a single porphyroblast may behave the same way, enabling fluid infiltration 

and promoting reactivity. In fact, the fluid flux that can be accommodated by 

grain boundaries in the average pelite is several orders of magnitude lower than 

that produced through devolitization therefore intragranular transport must also 

be invoked to accommodate fluids (Walther & Wood, 1986).  

Where cloudy bands form that don’t fit the model based on the exploitation of 

tensile fractures (as in Figure. 5.33), they instead form parallel to the matrix 

fabric (Figure. 5.34). Coupled dissolution-reprecipitation is focussed in garnet 

adjacent to quartzofeldspathic matrix layers, thus garnet that contains a high 

proportion of original quartz inclusions (Figure. 5.33). Quartz has a low bulk 

modulus of 36GPa (Wang et al., 2015) compared to garnet which ranges from 168-

176GPa depending on its composition (Leitner et al., 1980; Yagi et al., 1987; 

O’Neill et al., 1991). During decompression the difference between the inclusion 

and confining pressure reaches a critical value resulting in fracturing as quartz 

inclusions change volume more rapidly than the surrounding garnet (Whitney et 

al., 2000). The result is a series of radial cracks <100 – 1000s µm long surrounding 

FIGURE 5.34: Geometry of cloudy garnet in staurolite-zone GR01-4, (a) PPL image of garnet 
illustrating matrix fabrics and the location of cloudiness, (b) cartoon of the location of main 
stress fields with the cloudy band forming parallel to matrix fabrics   
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and intersecting quartz inclusions (Figure. 5.35) (Gillet et al., 1984; Engleder, 

1987; Whitney et al., 2000; Whitney et al., 2008). Ilmenite has a higher bulk 

modulus of 176GPa (Wilson et al., 2005; Cunha et al., 2019), similar to that of 

garnet meaning the difference in confining pressure is not great enough to produce 

fractures surrounding ilmenite inclusions. Ilmenite-rich layers of garnet remain 

structurally intact during pressure changes (Figure. 5.36b) producing fewer 

   

   

   

   

   

   

   

   

   

      

   

   

   

   

   

FIGURE 5.36: BSE images of the textural contrasts between clear and cloudy garnet in 
GR01-4, (a) heavily fractured, quartz inclusion-rich cloudy garnet showing high 
interconnectivity (b) quartz inclusion-poor clear garnet with limiting fracturing 

FIGURE 5.35: BSE image illustrating textural differences between compositional bands in 
clear, staurolite-absent schist GR02-5, (a) quartz inclusion-rich layer of garnet with multiple 
microcracks connecting inclusions, (b) quartz-poor garnet with few microcracks instead 
dominated by large fractures 
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potential pathways and inhibiting dissolution-reprecipitation. Microcracks are 

often interconnected (Figure. 5.36a), and as such can be exploited by fluids. 

Garnet that overgrows quartzofeldspathic matrix layers is thus more prone to 

dissolution-reprecipitation owing to the abundance of quartz inclusions and the 

increased potential for fracturing.  

5.4.4 The propagation of dissolution-reprecipitation in garnet 

Channelized flow can explain an outcrop-scale contrast in fluid 

infiltration in apparently similar rocks (Ague, 2011).  Given the 

importance of fluids in coupled dissolution-reprecipitation, it is 

impossible to say whether the staurolite-bearing and sillimanite-bearing 

schists have experienced different P-T-t conditions purely from the 

index mineralogy (Dempster et al., 2019). Sillimanite schists contain 

more of the reactive altered garnet and higher Ca promoting sillimanite 

formation (Dempster et al., 2019). Contrastingly, the staurolite-bearing 

samples contain a much lower proportion of cloudy garnet creating a 

less reactive rock and inhibiting sillimanite formation in the reaction 

history (Figure. 5.37). There is likely a structural and/or mineralogical 

difference between the lower and upper Glen Roy samples which in turn 

affects fluid availability promoting infiltration in the sillimanite-bearing 

schists and promoting coupled dissolution-reprecipitation. The result is 

outcrops that appear to be different grade based on their index 

mineralogy, but textural and chemical analyses reveal this mineralogical 

contrast could just reflect disparate fluid histories.  
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FIGURE 5.37: Model for the progression of the sillimanite and staurolite schists with 
increasing grade and the potential controls on the degree and morphology of dissolution-
reprecipitation  
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A model for the progressive sequence of dissolution-reprecipitation 

within these rocks is detailed below. 

(1) Coupled dissolution-reprecipitation begins at staurolite grade, 

typically at the margins of garnet porphyroblasts, when a fluid 

comes into contact with the garnet (Altree-Williams et al., 2015). 

(2) Modification of garnet chemistry associated with coupled 

dissolution-reprecipitation during staurolite formation releases Ca; 

garnet + muscovite + water → staurolite + biotite + quartz 

(Dempster et al., 2019). Modification of texture produces quartz 

and fluid inclusion-rich garnet with abundant fractures (Dempster 

et al., 2017).  

(3) The degree of spatial coupling at the reaction interface between 

dissolution and reprecipitation influences the preservation of 

original garnet morphology and nanoscale features (Putnis & 

Putnis, 2007; Lanari & Engi, 2017). 

(4) The reaction front propagates away from the margins into 

unmodified garnet, initially exploiting areas of high permeability 

(Ferry & Gerdes, 1998). 

(5) Fluid then utilises planes of weakness produced by (a) active 

deformation, and/or (b) channelized fluid flow (Ague, 2011). The 

structurally controlled dissolution-reprecipitation produces 

irregular cloudy morphologies (Figure. 7). 

(6) Once cloudiness reaches a threshold and fluid access to the 

spessartine-rich core is secured, the control on cloudiness switches 

from fracture-controlled to chemistry-controlled. Spessartine-rich 

cloudy zones of the core are more reactive and preferentially 

undergo dissolution-reprecipitation producing atoll garnets 

(Figure. 26). This is a feature solely present in the sillimanite-zone 

schists owing to increased fluid pathway creation and availability 

within the originally finely interbedded sediments, promoting 
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dissolution-reprecipitation in these schists over the originally more 

thickly bedded staurolite-zone schists.  

(7) Coupled dissolution-reprecipitation continues until fluid pathways 

are sealed. At the margins between cloudy and clear garnet 

ambiguous garnet forms which potentially represents partial 

textural modification owing to decreased fluid availability as 

dissolution-reprecipitation dissipates. The more interconnected 

pathways and initial permeability present, the more potential 

staurolite formation,  

(8) Sillimanite formation occurs, garnet + muscovite → sillimanite + 

biotite + quartz, promoted within staurolite-rich rocks which have 

undergone more modification due to; (a) the release of Ca during 

coupled dissolution-reprecipitation moving the sillimanite isograd 

to lower P-T space (Dempster et al., 2019), (b) the high quartz 

inclusion abundance, and thus microcrack abundance, in cloudy 

garnet promoting fluid infiltration (Whitney et al., 2000), and/or 

(c) the increased reactivity of cloudy garnet due to the increased 

density of lattice defects in the product phase (Spruzeniece et al., 

2017; Dempster et al., 2019). 

(9) Sillimanite formation results in the textural and chemical 

reequilibration of cloudy garnet forming secondary clear garnet. 

The process occurs preferentially in fluid-rich areas surrounding 

inclusions and at garnet porphyroblast margins. 
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Chapter 6 Zircon populations  

6.1 Classification of zircon  

Within the Leven and Appin schists two distinct populations of zircon exist; 

microzircon and detrital zircon (Figure. 6.1). Microzircon are metamorphic in 

origin while detrital zircon are inherited during sedimentation, evidenced by 

internal zoning and modification within detrital grains (Figure. 6.1d-e). Dissolution 

of detrital zircon produces altered grains with irregular margins (Rubatto, 2002) 

while dissolution of microzircon involves the elimination of the entire grain due 

to its small size (Hay & Dempster, 2009). Detrital zircon may provide a host for 

FIGURE 6.1: backscattered electron (BSE) images of zircon within garnet GR01-9 (a) 
location of microzircon (yellow arrows) and detrital zircon (red circles) within garnet (b) 
typical detrital zircon morphology, irregular dissolved margins and evidence if internal 
alteration and zoning (c) high contrast image of microzircon, planar margins with no 
internal structure (d) Detrital zircon typically show microcracks, especially around larger 
grains, (e) <1 μm2  microzircon on inclusion boundary between garnet and quartz, (f) fine 
detrital zircon with evidence of internal homogeneity  
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the nucleation of new metamorphic zircon as outgrowths (Dempster et al., 2008; 

Kirkland et al., 2018) while microzircon form new distinct crystals (Dempster et 

al., 2004; Peterman et al., 2016). Owing to their different origins and 

metamorphic responses the populations must be distinguished.  

6.1.1 Size constraints  

Microzircon and detrital zircon can be separated based on their internal structure 

and size (Figure. 6.1). if zircon displays internal structure in BSE (backscattered 

electron) imaging this is indicative of a major change in composition within the 

grain. Zircon is unlikely to develop such large changes within a prograde 

metamorphic event, and if it did then the internal changes would be consistent 

across the entire population. Microzircon are finer and display no structure 

(Figure. 6.1b-c), while detrital zircon are coarse and display growth zoning 

(Figure. 6.1d-f). High resolution imaging using an SEM (scanning electron 

microscope) can distinguish internal structure in zircon larger than ca. 2μm2. It 

follows that zircon below this threshold could be detrital or microzircon as the 

internal structure is too fine to discern, therefore size constraints are required to 

characterise the zircon. In order to accurately set size limits, all the size data 

collected from the staurolite- and sillimanite- zone schists was plotted producing 

a trimodal size distribution chart (Figure. 6.2). Biotite-zone schists were plotted 

separately as the detrital origins of the phyllite schists are likely disparate from 

the Leven Schists, paired with the contrast in microzircon size distribution across 

grade between the Leven Schists and the Appin Phyllites.  

Within the Leven Schists, microzircon produce a distinct peak easily distinguished 

at 0.8 μm2 (Figure. 6.2a). As such, the upper size threshold for microzircon was 

placed at 1 μm2, therefore any zircon <1 μm2 can be classified as metamorphic 

microzircon. Detrital zircon do not product one distinct peak; the dataset is 

limited, and detrital grains have a wide size distribution resulting in ambiguity 

surrounding the lower size constraint. Inclusions >3 μm2 all show evidence of 

internal structures or zonation (Figure. 6.1f) and can therefore be classified as 

detrital zircon.  Zircon between 1-3 μm2 cannot be easily classified. This uncertain 

zircon was removed from the interpretation to avoid ambiguity. However, 

attention was paid to the proportion of uncertain zircon to ensure no substantial 

changes in the ambiguous population size, indicative of a change in the size 
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distribution of detrital or microzircon. The biotite-zone Appin Phyllites also 

produce a trimodal distribution chart however microzircon are slightly coarser 

within these schists instead peaking at ca. 2 μm2 with most microzircon between 

1-2 μm2 (Figure. 6.2b). The cut off for microzircon within biotite-zone schists are 

therefore higher, zircon <3 μm2 are classified as microzircon and those >5 μm2 are 

detrital zircon producing a small area of uncertainty between 3-5 μm2.   

FIGURE 6.2: trimodal size distribution charts for zircon size data showing the location of 
zircon size thresholds collected from (a) staurolite- and sillimanite-zone Leven Schists, and 
(b) biotite-zone Appin Phyllites 
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6.1.2 Significance of microzircon  

The difference in size is the most obvious morphological change between micro 

and detrital zircon. Sample preparation as polished sections could produce 

different cuts of detrital zircon some of which appear morphologically similar to 

microzircon and are <1 μm2, falling within the size threshold. However, the 

abundance of microzircon makes it unlikely that this is the case for a significant 

number of grains. A model was produced to determine the size distribution of 150 

parallel cuts through the smallest detrital grain (3 μm). Of the 150 cuts only 8 

would produce zircon small enough to fit within the microzircon size margins (<1 

μm), i.e. only 5%. Microzircon comprise 82% of the zircon populations analysed 

while detrital zircon make up just 18%, therefore this sampling bias would only 

account for a small proportion of the analysed microzircon.  

There is a contrast in the proportion of minerals that host microzircon and detrital 

zircon suggesting they are not just a small population of detrital grains (Figure. 

6.3). The proportion of microzircon is not proportional to the modal mineralogy 

of the rock instead showing a preference for one or more phases which varies 

depending on grade and mineralogy. The distribution of microzircon is not random 

within the schists suggesting there is a mineralogical control on their growth and 

that they are metamorphic, a separate population from inherited detrital zircon. 

Within the biotite-zone pelitic schists biotite hosts 30% of the microzircon despite 

comprising just 6% of the rock, similarly within quartz-rich layers the biotite 

represents just 8% of the rock but contains 65% of microzircon (Figure. 6.3). 

Garnet contains a large proportion of microzircon despite representing a small 

proportion of the budget within the staurolite-zone schists and particularly within 

the sillimanite-zone (Figure. 6.3).  
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6.2 Zircon abundance and morphology within garnet  

Porphyroblast phases capture details about the metamorphic history not preserved 

in matrix phases. Garnet is particularly useful in the context of understanding 

zircon behaviour due to its ability to record changing P-T-X conditions during 

growth and post-growth modification, such as coupled dissolution-reprecipitation 

(Jiang & Lasaga, 1990; Chakraborty & Ganguly, 1991; Spear et al., 1991; Raimondo 

et al., 2017; Dempster et al., 2017). Analysis of zircon distribution and morphology 

within garnet should assist in understanding the factors that promote or inhibit 

zircon growth and dissolution. As garnet grows matrix minerals adjacent to the 

growing face are either dissolved or incorporated as inclusions (Passchier & Trouw, 

2005). Detrital zircon is typically encapsulated by growing garnet as it is not a 

reactant in garnet formation and is difficult to eradicate during low-medium grade 

metamorphism owing to its supposed high chemical durability. Microzircon can be 

passive inclusions, those captured during growth, or growth inclusions which form 

at the growing edge of garnet due to the presence of Zr-rich fluids (Figure. 6.4).  

FIGURE 6.4: 2 populations of microzircon are preserved in garnet (a) coarser microzircon 
originally formed in the matrix and preserved in garnet within inclusions – predominantly 
quartz, and (b) a finer population of newly formed microzircon nucleating at the garnets 
growing edge following the dissolution of matrix microzircon  
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Distinguishing between the passive microzircon inclusions and growth inclusions is 

difficult. Aside from the change in size, the morphology is likely to be similar, 

microzircon are consistently euhedral with regular margins and display no 

evidence of dissolution.  

This study analysed in total 3434 zircon. Within the Glen Roy staurolite- and 

sillimanite-zone schists, 2206 zircon were identified phases; 1556 microzircon, 365 

detrital zircon and 285 unclassified ambiguous zircon. The remaining 1228 zircon 

are sampled from biotite-zone Appin Phyllites. The Appin Phyllite data was solely 

collected by me as part of an undergraduate BSc research project, on 

understanding zircon dissolution and growth, and is unpublished. The report 

produced at the end of this project is attached in Appendix 1. The Appin Phyllites 

do not contain garnet, however they assist in further understanding controls on 

zircon dissolution and growth across grade and so the results will be presented in 

this chapter. Zircon populations were mapped in both the matrix and 

porphyroblast phases, biotite within the Appin Phyllites, and garnet and staurolite 

within the Leven Schists. Mapping zircon populations assists in understanding the 

distribution, abundance and morphology of zircon across grade, as well as the 

influence coupled dissolution-reprecipitation has on zircon preservation and/or 

growth within garnet.  

6.2.1 Biotite-zone schists  

Biotite-zone schists are comprised of interbedded pelites and quartz-rich pelites 

with large biotite porphyroblasts, up to 4 mm, which show partial retrogression to 

chlorite. The Appin Phyllites at Onich have undergone at least three events 

(Roberts & Treagus, 1977; Pattison & Harte, 2001); an early regional event, a 

contact event and finally a period of retrogression. The schists contain vestiges 

from all three stages, an early formed aligned matrix, large contact biotite 

porphyroblasts, and finally retrograde chlorite. Analyses of zircon within each of 

these phases can assist in understanding how zircon populations change 

temporally.  
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6.2.1.1  Results: zircon morphology in biotite-zone schists 

The quartz-rich pelite contains a population of larger detrital zircon while the 

pelite contains a population of smaller detrital grains (Figure. 6.5). the coarsest 

detrital zircon are located within heavy mineral bands and they are slightly aligned 

in this layer. Microzircon is also more abundant in the pelite matrix than the 

quartz-rich pelite matrix.  

 

 

Large detrital zircon are typically more euhedral with smaller, subhedral grains 

more commonly possessing irregular, embayed margins and evidence of internal 

dissolution (Figure. 6.6). 

 

 

 

 

FIGURE 6.5: zircon size distribution within pelite and quartz-rich pelite   
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68% of detrital grains imaged within these schists contain outgrowths. Outgrowths 

vary in thickness from >1 μm to >10 μm thick in places. They typically have an 

irregular morphology, exploiting grain boundaries (Figure 6.7a & c) and more 

rarely entirely encase detrital grains (Figure 6.7b). Detrital grains occur 

predominantly within the matrix.  

FIGURE 6.6: BSE image of detrital zircon morphology in Ball 2.8 (a-b) small, irregularly-
shaped detrital zircon with evidence of marginal dissolution, (c-d) larger euhedral-
subhedral detrital zircon with planar margins and limited internal alteration  

FIGURE 6.7: BSE image of outgrowth morphology on detrital zircon in Ball 2.8, (a) 
outgrowth focussed along one margin of detrital zircon, (b) thin, fringe of outgrowth 
surrounding large detrital grains, and (c) outgrowth morphology along grain margins   
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Biotite porphyroblasts contain a larger proportion of coarser microzircon than the 

matrix (Figure. 6.8). Most microzircon in the matrix and within biotite 

porphyroblasts are <1 μm2, a majority of <1 μm2 microzircon are found in the 

matrix, while 2-3 μm2 are predominantly located in biotite porphyroblasts (Figure 

6.8). The pelite is dominated by microzircon with a much lower proportion of 

detrital zircon while the quartz-rich pelite contains predominantly detrital zircon 

and much fewer microzircon (Figure. 6.9).  

6.2.1.2  Results: zircon distribution in biotite-zone schists 

Within the quartz-rich pelite, biotite porphyroblasts host just 24% of the detrital 

zircon with the remaining 76% in the matrix. Similarly, in the pelite biotite 

porphyroblasts contain only 26% of the detrital zircon and the remaining 74% are 

hosted within the matrix. The heavy mineral band contains a much larger 

proportion of porphyroblast-hosted detrital zircon with biotite porphyroblasts 

containing 41% of detrital zircon, and the remaining 59% in matrix phases. 

FIGURE 6.8: size distribution of zircon within the matrix and biotite porphyroblast phase  
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Within both the pelite and quartz-rich pelite, detrital zircon are predominantly 

hosted within muscovite (Figure. 6.3). Despite a low modal abundance of 6-8% 

biotite in both the pelite and quartz-rich pelite, biotite grains contain a large 

proportion of zircon, particularly microzircon (Figure. 6.3). 65% of the microzircon 

in the quartz-rich pelite are within biotite however it only comprises 8% of the 

modal mineralogy. Microzircon are most abundant in muscovite in the pelite, 

containing 44% of the population, however it also represents a large volume of the 

rock at 76%. Biotite contains 30% of the microzircon and comprises just 6% of the 

pelite (Figure. 6.3).  

FIGURE 6.9: zircon distribution across the pelite, quartz (qtz)-rich pelite and heavy mineral 
band in sample Ball 2.9, (a) PPL image of analysed area illustrating compositional banding, 
(b) detrital zircon (black) and microzircon (red) in the mapped area, produced using EDX 
mapping 
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Within the matrix, 81% of detrital zircon are located on grain boundaries and only 

19% occur as inclusions within a single host grain. While 82% of microzircon in the 

matrix are located within a single host and just 18% of microzircon impinge on 

grain boundaries.  

The pelite contains 32 microzircon per mm2 while the quartz-rich pelite contain 

11 microzircon per mm2. The pelite contains 6 microzircon per mm2 while the 

quartz-rich pelite contains 4 microzircon per mm2. The large grain size of the 

detrital zircon in the quartz-rich pelite means despite containing less detrital 

zircon it has a larger volume of detrital zircon than the adjacent pelite that 

contains finer detrital zircon.  

In the quartz-rich pelite 65% of the microzircon population are within biotite 

porphyroblasts while within the pelite just 30% of microzircon are within 

porphyroblasts and the remaining 70% are within the matrix. Across both 

compositions the matrix microzircon populations are predominantly hosted within 

muscovite; in quartz-rich pelite 56% of microzircon are within muscovite, followed 

by plagioclase which contains 34% of microzircon and finally quartz which contains 

just 10% of microzircon. Similarly in the pelite, muscovite contains 67%, 22% are 

within plagioclase and finally quartz contains the least microzircon at 11%.  

Chlorite retrogression in biotite porphyroblasts from 2-16%, chlorite contains no 

microzircon (Figure. 6.3). A 2% altered biotite grain contains 85% microzircon and 

15% detrital zircon, while a more retrogressed grain, ca. 16% chlorite, contains a 

larger proportion of detrital zircon, 62%, and a smaller proportion of microzircon, 

just 38%.  

6.2.1.3  Interpretation of biotite-zone schists  

Zircon abundance varies between the pelite and quartz-rich pelite (Figure. 6.9). 

Microzircon growth appears to be focussed in the pelite which contains abundant 

microzircon, the quartz-rich pelite contains much less microzircon. The pelite 

contains more, finer detrital zircon while the quartz-rich pelite contains fewer 

coarse detrital zircon. The smaller population of detrital zircon in the pelite may 

be a population of more metamict, broken detrital grains (Dempster & Chung, 

2013). Radiation damage increases the reactivity of zircon by promoting leaching 
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and dissolution, thus potentially yielding larger volumes of Zr4+ in the fluid and 

increasing the potential for new zircon formation (Hay & Dempster, 2009a). 

Alternatively, the quartz-rich pelite contains a population of coarser, more 

structurally intact, less metamict zircon while are potentially less reactive to 

hydrothermal fluids. As a result, the available Zr4+ produce through detrital zircon 

dissolution in the quartz-rich pelite is potentially lower, accounting for the 

production of less metamorphic zircon as microzircon.  

Outgrowths form around most grains and display morphological evidence of growth 

in situ, they are typically extremely delicate and unlikely to survive transportation 

(Rasmussen, 2005), and occasionally form along grain boundaries. The larger 

abundance of detrital zircon within the quartz-rich pelite may promote zircon 

crystallization primarily as outgrowths, limiting the amount of microzircon 

formed. Alternatively, microzircon growth is promote in the pelite where there is 

an absence of detrital zircon, and thus a structure for outgrowths to nucleate on.  

At high temperature zircon dissolution is more effective owing to the higher 

kinetic energy of the cations, where temperatures are lower, as within these 

rocks, a more corrosive fluid is required to mobilise Zr4+ (Weber et al., 1994; 

Nasdala et al., 2001). The formation of microzircon and outgrowths on non-

metamict grains required the transportation of Zr4+ beyond the grain scale. Fluid 

composition is therefore an essential component to allow the mobilization and 

transportation of Zr4+ for new zircon growth. The dehydration reactions involved 

in the formation of mica at each stage of the metamorphic history would produce 

reactive halogen-rich fluids capable of transporting Zr4+.  

The schists show a temporal change in zircon distribution and morphology through 

the three identified stages in the evolution of the Appin Phyllites (Roberts & 

Treagus, 1977; Pattison & Harte, 2001). The early regional event formed the 

aligned muscovite-rich matrix and within it a population of large microzircon. The 

contact event formed biotite porphyroblasts and a population of finer microzircon 

within it, and potentially some microzircon growth in the matrix. The retrograde 

event sees unique, during this period of low temperature alteration chlorite is 

formed containing no microzircon. During the chlorite-biotite reaction 

microzircon is formed within the product biotite, however during the biotite-

chlorite transformation microzircon is dissolved and no new zircon crystallization 
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occurs in the product chlorite. Microzircon are most abundant within biotite in the 

schists indicating that the most growth occurs during this stage. Additionally, 

there is an indication that there is a metamorphic control on zircon formation 

based on the increase in the size of microzircon throughout the reaction history 

(Dempster et al., 2008).  

The absence of microzircon in chlorite may be a facet of lower fluid availability 

during retrograde reactions. During peak metamorphism fluid is more readily 

available and while the presence of a fluid is essential for chloritization to occur, 

fluid availability is commonly the limiting factor during retrograde reactions 

(Barker, 1998). The absence of abundant fluids may explain the lack of new 

microzircon growth within chlorite during retrogression. The preservation 

potential of microzircon requires consideration, their nanocrystalline structure 

means they can be fully dissolved by hydrothermal fluids (Dempster et al., 2008; 

Hay & Dempster, 2009a). Retrogression creates corrosive fluids capable of 

stripping out microzircon. As a result, layers with large proportions of biotite have 

greater dissolution potential, particularly the heavy mineral band which contains 

<30% biotite. The absence of microzircon within the more biotite-rich heavy 

mineral band and quartz-rich pelite may be in part a facet of preservation 

following chloritization.  

6.2.1.4  Conclusion 

There appears to be a strong lithological control on the distribution and 

morphology of zircon. The quartz-rich pelite contains fewer microzircon and few, 

coarse detrital zircon while the micaceous pelite contains more microzircon and 

abundant, fine detrital zircon. Microzircon are more abundant and slightly larger 

in biotite porphyroblasts than adjacent matrix phases, indicating there is also a 

temporal change in zircon dissolution and crystallization. Most notably, the 

absence of microzircon within chlorite is indicative that retrograde reactions are 

unique, resulting in zircon dissolution and no new crystallization. 
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6.2.2 Staurolite-zone garnet  

Staurolite-zone garnet can be subdivided into unmodified clear garnet and garnet 

that has undergone coupled dissolution-reprecipitation producing ambiguous 

and/or cloudy garnet with a modified texture and chemistry (Dempster et al., 

2017). Clear garnet contains zircon populations formed during and prior to garnet 

growth while ambiguous and cloudy garnet assist in understanding the influence 

of coupled dissolution-reprecipitation on the preservation and growth of zircon. 

The abundance and morphology of zircon will be analysed across these 

classifications to understand how the well constrained temporal evolution of Glen 

Roy garnet influences zircon populations.  

6.2.2.1  Results: zircon in clear garnet  

Staurolite-zone garnet contains microzircon and detrital zircon which display a 

variety of textures (Figure. 6.10). Clear garnet has undergone no chemical or 

textural modification following growth. Most of the zircon trapped within this 

garnet formed during garnet growth. Some zircon may be a vestige of earlier 

formed matrix populations. Instead of being dissolved and reprecipitated during 

garnet growth, these microzircon were sheltered by their host mineral which was 

encapsulated as an inclusion within garnet during growth instead of being 

dissolved (Figure. 6.4).  

Clear garnet contains mineral inclusions which typically vary in abundance and 

composition relative to the composition of the matrix layer the garnet overgrew 

(Passchier & Trouw, 2005). Micaceous layers of the matrix produce garnet with 

abundant ilmenite inclusions and limited quartz inclusions, while growth over 

quartzofeldspathic matrix produces more inclusion-rich garnet, generally 

dominated by quartz. The composition of the matrix influences the abundance 

and distribution of zircon (Figure. 6.11) (Dempster et al., 2004; Rasmussen, 2005; 

Dempster et al., 2008). Quartzofeldspathic matrix layers contain less microzircon 

and fewer, large detrital zircon while micaceous matrix layers generally have 

significantly more microzircon, and a large population of finer detrital zircon 

(Figure. 6.5). microzircon within the garnet that overgrows pelitic matrix is on 

average 0.39 +/- 0.23 μm2, while within garnet that overgrew quartzofeldspathic 

matrix the average for microzircon is 0.38 +/- 0.23 μm2.  
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FIGURE 6.11: Detrital and microzircon abundances within GR05-7 and adjacent matrix as 
a function of original compositional layering of quartzofeldspathic (QF) and micaceous 
pelite (PLT) sediments 

FIGURE 6.10: BSE images of zircon morphology in clear garnet in staurolite-zone schists, 
(a) heavily altered detrital zircon, (b) large structurally intact detrital zircon, (c) smaller 
detrital zircon, (d) uncertain zircon ca. 2 μm and two <1 μm microzircon  
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The matrix contains fewer microzircon than garnet porphyroblasts. The matrix in 

GR02 contains on average 35 microzircon per mm2 while garnet GR02-5 contains 

72 microzircon per mm2. Detrital zircon behaves antithetically, the matrix 

contains 25 detrital zircon per mm2 and garnet contains just 8 detrital zircon per 

mm2. The contrast between the microzircon-poor quartzofeldspathic matrix and 

microzircon-rich pelitic matrix is exaggerated when garnet overgrows such 

lithological bands. In the matrix there is ca. 15-20% less microzircon in quartz-rich 

layers and adjacent mica-rich while within garnet this difference is >50%. In GR02-

1 there is 74% more microzircon within garnet that overgrew micaceous matrix 

than adjacent garnet that overgrew quartzofeldspathic matrix. The matrix in the 

same sample contains just 14% more microzircon within micaceous matrix than 

adjacent quartz-rich layers. Microzircon within garnet are on average slightly finer 

than microzircon within the matrix (Figure. 6.12).  

 

 

 

FIGURE 6.12: Size distribution plot for microzircon within all analysed staurolite-zone 
schists within the matrix (green) and within garnet (orange)  
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Microzircon and detrital zircon appear to show random patterns of distribution 

from core to rim in clear garnet (Figure. 6.13). While some porphyroblasts show a 

higher abundance of microzircon in the core, elsewhere a majority of microzircon 

are hosted closer to the rims. Frequently at the rim of porphyroblasts, within the 

outer 100-200 μm, the abundance of microzircon is lower than the adjacent 

margin (Figure. 6.13).  Microzircon additionally show no change in morphology 

from core to rim, maintaining a random size distribution and displaying no obvious 

change to the shape or structure of grains.  

The abundance of both microzircon and detrital zircon is variable between garnet 

porphyroblasts within a single polished section. Within GR02 porphyroblast 8 

contains 68 microzircon per mm2 while GR02-7 contains almost double, 103 

microzircon per mm2. Detrital zircon shows a similar trend with a lot of variability 

FIGURE 6.13: Microzircon distribution within transects of clear garnet in GR01-4 and 
GR05-7 from core to rim (a) location of transect on GR01-4 on BSE image, (b) location of 
transect GR05-7 on BSE image, (c) plots showing the % of the population hosted at 100μm 
intervals from the core  
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between porphyroblasts, many of which correlate to the increased or decreased 

microzircon abundances (Figure. 6.14).   

Microzircon show a spatial association with detrital zircon and ilmenite.  Ilmenite 

and detrital zircon are both most abundant within heavy mineral bands. Detrital 

zircon is the largest source of Zr in these schists and commonly shows evidence of 

dissolution (Figure.6.10a). Where detrital zircon is abundant in garnet, 

microzircon is more abundant (Figure. 6.14). Microzircon also display a spatial link 

to detrital zircon, typically occurring in clusters in close proximity to detrital 

grains (Figure. 6.15). Microzircon commonly appear clustered around and included 

within large detrital ilmenite inclusions (Figure. 6.16). Mica-rich layers of the 

matrix contain more ilmenite while quartz-rich layers contain less, consistent with 

garnet that has overgrown micaceous and quartzofeldspathic matrix. The lower 

abundance of ilmenite in originally quartzofeldspathic layers of garnet and higher 

abundance in originally pelitic layers is complimentary to the patterns of 

microzircon (Figure. 6.17). There is a lot of variability in the abundance of 

ilmenite locally within the schists, however micaceous layers have consistently 

higher ilmenite contents than the immediately adjacent quartzofeldspathic layer 

(Figure. 6.17). Mn concentrations within ilmenite in biotite-zone Ball 2.8 average 

1.24 +/- 0.7 wt.%, while following garnet growth in GR02 Mn contents are much 

lower, 0.07 +/- 0.19 wt%.   
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FIGURE 6.14: microzircon and detrital zircon abundance per mm2 across QF GNT – garnet 
that has overgrown quartzofeldspathic matrix – and PLT GNT – garnet that has overgrown 
pelitic matrix layers within 3 clear garnet porphyroblasts across GR02 and GR05 
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FIGURE 6.15: BSE images of detrital zircon (circled) with microzircon in close proximity 
(arrows) included within garnet GR02-5, (a) 2 detrital zircon and a microzircon within 
microzircon-poor originally quartzofeldspathic garnet, (b) detrital zircon with 4 nearby 
microzircon surrounding nearby fractures, and (c) cluster of detrital zircon and 
microzircon 
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FIGURE 6.16: BSE images of ilmenite (ilm) and microzircon (mz) inclusions within clear 
garnet, (a) ilmenite hosting 2 microzircon, (b) large detrital ilmenite hosting a detrital 
zircon (dz) with microzircon in close proximity, <100 μm away, (c) cluster of microzircon 
in detrital zircon-poor area with abundant ilmenite inclusions  
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6.2.2.2  Interpretation of zircon in clear garnet  

Examination of zircon distribution in clear garnet provides and understanding of 

any initial disparity in zircon populations formed during garnet growth, prior to 

any modification. Garnet has many characteristics which may influence zircon 

growth or preservation and produce a heterogeneous distribution of zircon 

inclusions within garnet, prior to coupled dissolution-reprecipitation.  

Garnet contains concentric growth zoning where Mg and Fe increase from core to 

rim and Ca and Mn display complimentary profiles, decreasing from core to rim 

(Atherton, 1968; Dempster, 1985; Chakraborty, 1991; Carlson, 2006; Gatewood et 

al., 2015). Microzircon do not display a consistent pattern from core to rim 

showing no preference for the divalent chemistry of garnet. If zircon preferentially 

formed in Mn-rich garnet, then grains would be clustered within the core of the 

concentrically zoned garnet. Microzircon distribution shows no correlation with 

garnet chemistry. There is also no change to the morphology of microzircon 

concentrically suggesting that microzircon form irrespective of the stage of 

porphyroblast growth. However, neither microzircon or detrital zircon are 

FIGURE 6.17: Ilmenite and microzircon distribution within originally quartzofeldspathic 
(QF) and pelitic bands of garnet in clear garnet GR05-7 and GR02-1  
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homogeneously distributed throughout clear garnet suggesting there are other 

factors within garnet or the matrix that promote or inhibit growth.  

The matrix mineralogy controls the amount of potential zircon growth by 

influencing the amount of Zr available. Quartzofeldspathic matrix layers contain 

fewer, coarse detrital zircon and few microzircon while the micaceous matrix 

contains more abundant, finer detrital zircon and significantly more microzircon. 

The higher microzircon abundances in pelitic metasediments have previously been 

attributed to high halogen contents producing corrosive fluids (Rasmussen, 2005) 

and the structural state of the zircon population, where pelite yields a larger 

population of fine, potentially radiation-damaged detrital grains (Dempster & 

Chung, 2013). Garnet that overgrows micaceous layers contains more microzircon 

than quartzofeldspathic layers, producing ilmenite inclusion-rich garnet with 

abundant microzircon and quartz inclusion-rich garnet with less microzircon. The 

larger population of fine, more potentially metamict detrital zircon (Hay & 

Dempster, 2009a) and the large microzircon population in micaceous layers work 

together to produce more potential zircon growth within these layers, and in the 

garnet that overgrows it, compared to garnet that overgrows quartzofeldspathic 

layers.   

Microzircon are finer in garnet than the matrix, paired with the increasing 

abundance this is indicative that a majority of microzircon are dissolved and 

recrystallized during garnet growth, not just captured from the matrix. Although, 

microzircon are predominantly included within matrix mineral phases, generally 

they have more opportunity to grow in the matrix compared to within 

porphyroblast phases. Microzircon nucleate at the growing edge of garnet and 

quickly become encapsulated resulting in the formation of fine microzircon within 

garnet. Most of the microzircon are inclusions within matrix phases meaning that 

matrix microzircon has not become coarser following garnet growth as the zircon 

were already encapsulated.  

The contrast between microzircon populations between quartzofeldspathic and 

pelitic layers is exaggerated within garnet. The abundance of microzircon within 

the quartzofeldspathic matrix is similar to that within adjacent quartz inclusion-

rich garnet, however microzircon increase in abundance in garnet that overgrew 

micaceous garnet compared to the adjacent micaceous matrix layers (Figure. 
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6.11). Within the mica-rich matrix either; (a) there is an additional Zr source that 

dissolves or recrystallizes as garnet grows increasing the potential for new zircon 

growth, (b) the mica-rich matrix may produce more fluid through devolatilization, 

or potentially more pathways within the more reactive layer, promoting the 

dissolution of zircon and enabling the transportation of Zr, and/or (c) the finer, 

more metamict detrital zircon population is more reactive and undergoes 

preferential dissolution during garnet growth thus promoting Zr release and 

microzircon growth.  

Detrital zircon is the primary repository of Zr within most rocks (Bea & Montero, 

1999; Degeling, 2002; Bea et al., 2006; Kohn & Kelly, 2018). As such, it is likely 

the source of much of the Zr for microzircon growth. Garnet contains more 

microzircon than the matrix, suggesting dissolution of detrital zircon must be 

ocurring. Detrital zircon has a higher bulk modulus and as such undergoes volume 

changes as a result of changing pressure more slowly than the surrounding garnet. 

The result is the formation of microcracks surrounding detrital zircon within the 

host garnet as it changes volume (Figure. 6.18) (Whitney et al., 1996; Whitney et 

al., 2000). These small-scale fractures often become interconnected and act as 

fluid pathways (Figure. 6.18b), promoting zircon dissolution and Zr transportation 

to a proximal site more favourable for microzircon nucleation and growth. 

Ilmenite contains Zr contents up to 1000s ppm (Bingen et al., 2001; Charlier et 

al., 2007; Bea et al., 2006) however, the Zr content of ilmenite in these schists 

are likely highly variable due to the inherited nature of the detrital grains. 

Ilmenite may either act as a source of Zr (Bingen et al., 2001; Bea et al., 2006; 

Morisset & Scoates, 2008) and/or structurally promotes the formation of new 

metamorphic zircon (Beckman & Möller, 2018). Microzircon form typically >20μm 

from ilmenite, if ilmenite were acting as a nucleation site and promoting zircon 

formation structurally microzircon would likely form in contact or within closer 

proximity to ilmenite. Ilmenite could act as a source for Zr however, ilmenite has 

been linked to the cores of garnet, recrystallizing at the almandine isograd and 

releasing Mn (Woodsworth, 1977; Jiang et al., 1996), and potentially Zr. Ilmenite 

reactivity is also influenced by Ca fluxes (Liou et al., 1998; Angiboust & Halov, 

2017). At the peristerite solvus, which coincides with the almandine isograd 

(Brown, 1962; Crawford, 1966), ilmenite may become unstable and recrystallize. 
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However, owing to the detrital nature of ilmenite, the Mn contents are inherited 

and thus variable. The contrasting Mn concentrations between the biotite-zone 

schists at Onich and the garnet-zone schists at Glen Roy may be a facet of the 

original sedimentology and not grade.  

Microzircon within ilmenite may form as a result of exsolution, in the presence of 

Si-rich fluids, a process reported to form zircon rims surrounding ilmenite 

inclusions within mafic plutonic rocks (Morisset & Scoates, 2008). Within the 

plutonic rocks, Zr diffuses to the margins as the rock cools slowly and reacts with 

silicates at the rim (Morisset & Scoates, 2008). However, in the absence of 

protracted periods at high temperature, Zr may react with Si-rich fluids that 

penetrate ilmenite and form zircon inclusions in the interior of grains. Ilmenite 

and detrital zircon are both more abundant in micaceous layers than adjacent 

quartzofeldspathic. The higher microzircon population within garnet that 

overgrows initially pelitic sediments is likely primarily a facet of increased input  

FIGURE 6.18: BSE images of microcrack networks surrounding microzircon in clear garnet 
GR05-7, (a) microcracks surrounding detrital zircon (b) microcracks from detrital zircon 
connect with infilled large fractures providing an interconnected pathway for fluids to 
surrounding ilmenite grains, (c) cracks penetrate surrounding detrital ilmenite grains 
enabling fluid access to interior  
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of Zr to the system through (a) the more reactive, metamict fine detrital zircon 

population, and (b) the abundant detrital ilmenite population (Figure. 6.19).  

The primary control on zircon distribution within garnet appears to be the 

abundance of Zr-bearing mineral inclusions, namely ilmenite and detrital zircon, 

which in turn is a feature of the original sedimentary lithology. Pelitic matrix 

layers contain a greater abundance of Zr sources, paired with the higher halogen 

content which promotes Zr transportation and the increased reactivity of the fine, 

metamict population of detrital zircon this encourages new zircon growth.  

6.2.2.3  Results: zircon in cloudy garnet  

When garnet undergoes coupled dissolution-reprecipitation, during staurolite 

formation, the result is a mineral and fluid inclusion-rich garnet with partial 

resetting of the chemistry, disrupting growth zoning (Dempster et al., 2017). 

Analysis of cloudy garnet enables an understanding of the influence dissolution-

reprecipitation has on the zircon populations previously defined in clear garnet 

(6.2.1.1).  

Cloudy garnet contains less microzircon than clear garnet (Figure. 6.20). On 

average cloudy garnet contains 53% less microzircon than clear garnet within the 

same porphyroblast (Table. 6.1). Ambiguous garnet, a textually intermediate 

state that displays the same modified chemistry as cloudy garnet, contains similar 

zircon abundances as cloudy domains (Table 6.1). Based on this similarity, 

ambiguous garnet will be paired with cloudy in this chapter as both have 

undergone the same modification. The contrast in microzircon abundance 

between cloudy and clear garnet is most obvious within GR01-9 (Table. 6.1). Clear 

garnet contains 94 microzircon per mm2 while in cloudy domains in the same 

garnet abundance is lower with just 30 microzircon per mm2. Microzircon 

represents 32 μm2 per mm2 of clear garnet while within cloudy microzircon 

comprises 8 μm2 per mm3.  
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  Total area 

analysed 

(mm2) 

Microzircon 

per mm2 

Detrital 

zircon per 

mm2 

Uncertain 

zircon per 

mm2 

 

GR01-2 

Clear 1.28 80 21 4 

Cloudy  1.21 19 10 13 

Ambiguous  0.16 22 4 7 

 

GR01-4 

Clear 1.53 106 17 9 

Cloudy 0.75 40 11 7 

Ambiguous  0.22 21 14 11 

 

GR01-9 

Clear  0.72 94 14 14 

Cloudy  0.97 30 5 6 

Ambiguous 0.11 17 3 3 

 

Average 

Clear  3.53 93 17 9 

Cloudy  2.93 30 9 9 

Ambiguous  0.49 20 7 7 

TABLE 6.1:  staurolite-zone garnet data across 3 mapped porphyroblasts in GR01 
illustrating changes to zircon population sizes between clear and cloudy garnet  
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 FIGURE 6.20: Transect A-B and accompanying BSE image illustrating the location of the 
chemical transect (white) and the imaged microzircon transect (blue) within garnet GR01-
6. Chemical transects plotted as a scatter are adapted from Dempster et al (2017) against 
a bar plot of microzircon abundance 
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Cloudy garnet contains a larger population of finer microzircon, <0.4 μm2 than 

clear garnet (Figure. 6.21a). Average size values between clear and cloudy garnet 

reveal the same pattern with microzircon finer on average in cloudy garnet, 

however the large errors on the values produce some overlap. Microzircon within 

clear garnet are on average 0.35 +/- 0.23 μm2 and within cloudy garnet 

microzircon average 0.28 +/- 0.17 μm2. Cloudy garnet contains a smaller 

population of finer detrital zircon (Figure. 6.21b). Detrital zircon and microzircon 

also display a close spatial link within cloudy garnet (Figure. 6.22), microzircon  

 

FIGURE 6.21: size distribution of microzircon (a) and detrital zircon (b) across cloudy and 
clear garnet within GR01  



131 
 

 

 

F
IG

U
R

E
 6

.2
2
: 

B
S

E
 m

a
p

s
 o

f 
G

R
0
1

-4
, 

p
in

k
 b

a
n

d
s
 r

e
p

re
s
e
n

t 
c
lo

u
d

y
 g

a
rn

e
t 

w
h

il
e
 r

e
m

a
in

in
g

 g
a
rn

e
t 

is
 c

le
a
r.

 M
a
p

s
 i

ll
u

s
tr

a
te

 t
h

e
 l

o
c
a
ti

o
n

 o
f 

(a
) 

d
e
tr

it
a
l 

z
ir

c
o

n
, 

a
n

d
 (

b
) 

m
ic

ro
z
ir

c
o

n
  

 



132 
 
typically occur <100 μm from the nearest detrital grain. Within GR01-4 over 76% 

of microzircon are within 100 μm of the nearest detrital grain and within GR01-2 

over 85% of microzircon occur <100 μm from detrital zircon. There is typically a 

microzircon-free rim >10 μm wide surrounding detrital zircon, only rarely 

containing any microzircon.  

Microzircon within cloudy garnet commonly occur within inclusions (Figure. 6.23). 

Microzircon may be hosted within garnet itself (Figure. 6.24a), within quartz 

inclusions (Figure. 6.24b), fluid inclusions (Figure. 6.24c-d), and more rarely 

within ilmenite (Figure. 6.16a). Within cloudy garnet 35% of microzircon are within 

inclusions, while <5% of microzircon are hosted within inclusions in clear garnet 

(Figure. 6.23). Most commonly microzircon are hosted within fluid inclusions in 

cloudy garnet (Figure. 6.45c-d), followed closely by quartz inclusions (Figure. 

6.24b).  
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FIGURE 6.23: the proportion of microzircon (MZ) hosted within garnet and inclusions (mineral 
or fluid) within clear and cloudy garnet within GR01-9   
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6.2.2.4  Interpretation of zircon in cloudy garnet  

Garnet decreases in volume by just ca. 15% due to replacement by quartz and 

fluid inclusions through coupled dissolution-reprecipitation. Microzircon are either 

initially low in the more reactive garnet or populations are partially removed 

during coupled dissolution-reprecipitation. One of the controls over cloudy garnet 

formation is the original composition of the matrix the garnet overgrew (see 

section 5.2.3.3). Dissolution-reprecipitation occurs preferentially in silicate 

inclusion-rich areas of garnet that overgrew quartzofeldspathic matrix layers. The 

abundance of quartz inclusions within originally quartzofeldspathic layers 

produces microcracks within the host garnet (Whitney et al., 2000). Microcracks 

FIGURE 6.24: microzircon hosts within cloudy garnet GR01-2, (a) microzircon directly 
encapsulated by garnet porphyroblast, (b) microzircon within large, irregularly shaped quartz 
inclusion, (c-d) microzircon within small, fluid inclusions  
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in turn result in more potential fluid availability for dissolution-reprecipitation. 

Within GR01-9 cloudy garnet contains >75% less microzircon than adjacent clear 

garnet, a much larger reduction in microzircon than between garnet that overgrew 

quartzofeldspathic matrix and garnet that overgrew pelitic matrix. Garnet that 

overgrew quartzofeldspathic matrix generally contains ca. 38% less microzircon 

than garnet that overgrew pelitic. Originally lithological layering may in part 

account for the lower volume of microzircon within cloudy garnet however it is 

not solely responsible indicative that coupled dissolution-reprecipitation has an 

impact on zircon populations.  

There is an increase in fine microzircon within cloudy garnet compared to clear 

garnet (Figure. 6.21). Therefore, following modification there is a change in the 

size distribution of microzircon, the size of the population decreases. Zircon size 

is influenced primarily by the duration of growth and availability of Zr. There is 

no initial disparity in microzircon size between garnet that overgrew 

quartzofeldspathic matrix versus garnet that overgrew pelitic matrix. The finer 

population of microzircon in cloudy garnet is therefore not a facet of original 

microzircon populations formed during and prior to garnet growth. If the 

microzircon populations within cloudy garnet were preserved populations formed 

prior to coupled dissolution-reprecipitation then they should be relatively uniform 

with the microzircon population in clear garnet. Alternatively, if the microzircon 

within cloudy garnet were preserved during coupled dissolution-reprecipitation 

then an increase in size would be typical. Finer microzircon have a larger surface 

energy and as such are preferentially dissolved during coupled dissolution-

reprecipitation leaving a population of larger microzircon in modified garnet. The 

change in size indicates that during coupled dissolution-reprecipitation a new 

population of finer microzircon form to the detriment of original coarser 

populations. Coupled dissolution-reprecipitation is interpreted to be a relatively 

fast process (Putnis & Putnis, 2007; Ruiz-Agudo et al., 2014). The reaction front 

propagates quickly potentially producing a population of fine microzircon which 

become encapsulated within the rapidly reprecipitating product phase. The larger 

size of detrital zircon within cloudy garnet (Figure. 6.21b) may be the result of 

preferential dissolution of finer, possibly metamict zircon (Hay & Dempster, 

2009a). Alternatively, the population of coarser detrital zircon may be preserved 

from garnet that overgrew quartzofeldspathic matrix, which is preferentially 
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exploited by fluids during coupled dissolution-reprecipitation and thus represents 

a majority of cloudy garnet.  

Microzircon hosted within inclusions are more abundant in cloudy garnet than 

clear (Figure. 6.23). A majority of these inclusion-hosted microzircon occur within 

fluid inclusions. Dissolution-reprecipitation is a volume reduction process (Putnis, 

2015), as a result the product phase is more porous, and this porosity is preserved 

as fluid inclusions. Fluid inclusions may either form surrounding microzircon or 

microzircon form within the inclusions. Fluid inclusions are typically absent 

surrounding inclusions in these schists, particularly in cloudy garnet (see section 

5.2.3.1). Microzircon may occasionally precipitate from fluids more slowly than 

the surrounding garnet resulting in the formation of a fluid film surrounding the 

authigenic zircon.  

Coupled dissolution-reprecipitation involves the partial replacement of garnet 

with large, irregularly shaped quartz inclusions and small rounded fluid inclusions 

(Martin et al., 2011; Dempster et al., 2017; Dempster et al., 2019). This reduction 

in volume doesn’t account for the significantly larger reduction in microzircon 

populations suggesting that dissolution-reprecipitation results in the removal of 

microzircon from modified domains. The remaining microzircon in cloudy garnet 

may be a preserved population from clear garnet or a newly formed population 

resulting from coupled dissolution-reprecipitation. The change in size distribution 

of microzircon paired with the increased proportion of microzircon within fluid 

and quartz inclusions in cloudy garnet is indicative that microzircon are forming 

during  coupled dissolution-reprecipitation. There is a disparity between the 

amount of microzircon removed and that formed, considerably more Zr is 

dissolved than is precipitated as new microzircon or outgrowths.   

There may also be an additional source of Zr following coupled dissolution-

reprecipitation. Within the matrix and cloudy garnet that has been subject to 

coupled dissolution-reprecipitation, monazite replaces allanite. Detrital monazite 

is rare, it can survive sedimentary processes but is extremely reactive at low 

metamorphic grades (Foster & Parrish, 2003) suggesting any monazite present is 

metamorphic. The monazite isograd is difficult to locate, likely forming between 

the garnet isograd (Harrison et al., 1995) and the staurolite isograd (Smith & 

Barreiro, 1990; Spear, 2010). Typically, within regionally metamorphosed pelitic 
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schists it appears closer to the staurolite isograd between 525-600oC (Corrie & 

Kohn, 2008; Janots et al., 2009; Spear, 2010). However, within garnet there are a 

number of heterogeneities that influence this temperature e.g. the Y 

concentration (Spear & Pyle, 2010) or the Ca concentration (Janots et al., 2007). 

Allanite has the ability to incorporate significant quantities of Zr (Bea et al., 2006) 

across a range of sites (Ercit, 2002) while monazite contains no Zr (Kelsey & 

Powell, 2011). During the allanite to monazite transformation during coupled 

dissolution-reprecipitation, Zr could be released from allanite thus increasing the 

disparity in the amount of Zr released and that incorporated into new zircon 

growth.  

6.2.2.5  Results: zircon in the matrix  

The pelite matrix contains on average 59 microzircon per mm2 while the 

quartzofeldspathic matrix contains 41 microzircon per mm2. 5.2 vol.% of the 

matrix is zircon within the staurolite-zone schists. Most microzircon occur within 

grains, while detrital zircon are predominantly located on grain boundaries 

(Figure. 6.25). Outgrowths are present on most detrital zircon grains but are very 

thin, typically <1 μm.  

 

FIGURE 6.25: abundance of microzircon (MZ) and detrital zircon (DZ) on grain boundaries or 
included within host phases within the matrix in GR01 per mm2c 
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Microzircon are most abundant within muscovite in the pelite matrix, hosting 

>50%, while quartz hosts >60% of microzircon in the quartzofeldspathic matrix 

(Figure. 6.26). Detrital zircon and microzircon are proportional within the 

quartzofeldspathic and pelitic matrix i.e. phases which host a large proportion of 

detrital zircon also host a lot of microzircon (Figure. 6.26). Chlorite is the 

exception, despite containing detrital zircon, typically more than plagioclase, it 

contains no microzircon (Figure. 6.26). there is no change in microzircon 

abundance in the matrix surrounding cloudy garnet.  

6.2.2.6  Interpretation of zircon in the matrix  

The absence of microzircon on grain boundaries is likely a facet of preservation. 

Grain boundaries act as fluid pathways during fluxes promoting dissolution of 

nanocrystalline microzircon, while populations within grains are sheltered from 

dissolution. The absence of thick outgrowths suggests that new zircon growth at 

this grade predominantly occurs as microzircon. This is likely owing to 

temperature, at higher temperatures, Zr transport is more efficient and therefore 

Zr can be transported longer distances to form outgrowths on non-metamict grains 

instead of nucleating into separate microzircon neoblasts.  

Microzircon and detrital zircon abundance within phases are generally 

proportional to the modal mineralogy. Within the pelite both microzircon and 

FIGURE 6.26: distribution of microzircon (MZ) and detrital zircon (DZ) across 
quartzofeldspathic (QF) and pelite (PLT) matrix phases within staurolite-zone schist GR02   
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detrital zircon are most abundant within mica, and within the quartzofeldspathic 

matrix, microzircon and detrital zircon are predominantly quartz-hosted (Figure. 

6.3). This is generally the case for most minerals except biotite porphyroblasts 

and chlorite. Similar to the biotite-zone schists (see section 6.2.1.2), chlorite 

contains no microzircon despite containing a large proportion of detrital zircon. 

This is further indication that during retrogression microzircon are dissolved and 

no new microzircon growth occurs.  

The staurolite-zone matrix contains more microzircon than the biotite-zone 

matrix. The Appin Phyllites and Leven Schists may have completely disparate 

origins, and both display complex tectonothermal histories which makes 

comparing the schists difficult. However, notably within both the Leven Schists 

and Appin Phyllites microzircon abundance is much higher in porphyroblast phases 

than adjacent matrix, the mineralogy of the matrix also has an influence on the 

potential metamorphic zircon growth. 

6.2.2.7  Conclusion  

Clear garnet has undergone limited post-growth modification. Zircon populations 

are representative of those formed prior to and during garnet growth. Garnet 

contains more microzircon than the matrix it overgrows and it is heterogeneously 

distributed. Zircon distribution seems to be primarily influenced by the original 

sedimentary lithology of the matrix, micaceous matrix produces garnet with 

abundant ilmenite and fine detrital zircon, both of which potentially act as a 

source of Zr for microzircon growth. The result is garnet that has overgrown pelitic 

metasediments with abundant microzircon, and garnet that has overgrown 

quartzofeldspathic matrix layers with up to 50% less microzircon. During staurolite 

formation, coupled dissolution-reprecipitation of garnet influences zircon 

populations, particularly microzircon. Detrital zircon appears lower in these bands 

but how much of this disparity is a facet of the original sedimentation and lithology 

is unclear. Microzircon are significantly lower in cloudy garnet than adjacent 

clear, up to 75%. Cloudy garnet also contains a larger population of fine 

microzircon which are occasionally contained in irregular quartz and fluid 

inclusions that form during coupled dissolution-reprecipitation – all indicative that 

the population at least partially forms during the modification process.  
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6.2.3 Sillimanite-zone garnet  

Sillimanite-zone schists display the same textural complexities present within the 

staurolite schists with cloudy modified garnet and clear unmodified garnet. 

Dissolution-reprecipitation is more extensive within the sillimanite-zone schists 

with just 14% of garnet unmodified. Sillimanite-zone garnet also includes a wider 

array of textures with the addition of secondary clear garnet. Secondary clear 

garnet is reequilibrated during sillimanite formation, eradicating fluid and mineral 

inclusions from cloudy domains and resetting the chemistry to produce a low Ca, 

high Mg product (Dempster et al., 2019). Secondary clear garnet preferentially 

forms surrounding mineral inclusions and at garnet margins where fluid availability 

is higher. The sillimanite-zone garnet can assist in understanding the impact of 

more extensive dissolution-reprecipitation and this additional stage of 

reequilibration on zircon populations.  

6.2.3.1 Results: zircon in clear garnet 

Clear, unmodified garnet within the sillimanite-zone schists is limited (See 

petrology in section 4.3). Within sillimanite-poor UGR1 there are some Ca-rich 

texturally clear domains interpreted as unmodified (Figure. 6.27). Sillimanite-

zone schists contain less obvious compositional banding in the matrix, composed 

of originally more finely interbedded sediments (See petrology in section 4.3). The 

quartzofeldspathic and pelite layering in the staurolite-zone schists produces 

obvious layering in inclusion trails within garnet. Within the sillimanite-zone 

schists the originally more finely interbedded layers produce a more homogeneous 

inclusion pattern, making any original matrix layering the garnet overgrew 

difficult to infer. Garnet UGR1-1 contains similar amounts of zircon per mm2 as 

quartzofeldspathic layers within staurolite-zone garnet (Table. 6.2) however less 

microzircon than the micaceous layers within the staurolite schists (Figure. 6.28). 

Micrzircon and detrital zircon show a spatial link to fractures in UGR1-1 with 

microzircon commonly occurring <10 μm from the nearest fracture (Figure. 6.29). 

microzircon rarely form within or in contact with fractures while detrital zircon  
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FIGURE 6.27: zircon within unmodified garnet UGR1-1 (a) combined BSE and X-ray map 
showing high Ca unmodified garnet in orange (from Dempster et al., 2017), (b) location of 
mpa within UGR1-1, (c) BSE map illustrating microzircon abundance, (d) BSE map of 
detrital zircon abundance   
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 Total area 

analysted 

(mm2) 

Microzircon 

per mm2 

Detrital zircon 

per mm2 

Unmodified, clear garnet 3.28 53 17 

Cloudy garnet  3.25 41 8 

Secondary clear inclusion rims  1.05 37 11 

Secondary clear garnet margins  0.51 2 12 

TABLE 6.2:  sillimanite-zone zircon abundance data averaged across 6 analysed garnet within 
each textural classification and thus at different stages of modification 
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FIGURE 6.28: microzircon (MZ) and detrital zircon (DZ) abundance per mm2 within clear, 
unmodified sillimanite-zone garnet (GNT) and clear, unmodified staurolite-zone garnet that 
overgrew quartzofeldspathic (QF) matrix and pelitic (PLT) matrix  
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are typically located within fractures. The distance from fractures were compared 

with randomly generated spatial points in order to quantify the pattern (see 

chapter 3 methods). The result is a significantly larger peak in the analysed 

microzircon <10 μm from fractures compared to the random values (Figure. 6.30) 

Transects across these fractures reveal high Ca chemistry consistent with clear, 

unmodified garnet. 

 

  

FIGURE 6.29: BSE map of UGR1-1 of the spatial relationship between interconnected 
fractures (white) and microzircon (pink)   

FIGURE 6.30: the distance of microzircon from fractures in UGR1-1 vs the distance from 
fractures of randomly generated spatial points    
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6.2.3.2 Interpretation of zircon in clear garnet  

Microzircon and detrital zircon show a close spatial link to fractures within UGR1-

1. The absence of low Ca, high Mg chemistry adjacent to fractures in UGR1-1 is 

indicative that there has been no modification adjacent to fractures. Microzircon 

therefore formed synchronously or prior to garnet growth. Rather than 

microzircon forming adjacent to fractures, fractures may form adjacent to 

microzircon. Microzircon may form proximally to detrital zircon, potentially 

metamict detrital grains act as a source of Zr for microzircon growth. The bulk 

modulus of detrital zircon varies from 223-250 GPa (Özkan & Jamieson, 1978; 

Hazen & finger, 1979; Marqués et al., 2006), significantly higher than garnet at 

ca. 170 GPa (Leitner et al., 1980). Garnet therefore decreases in volume more 

rapidly under increasing pressure than the included zircon, the result is fracturing 

around zircon as its volume decreases more slowly (Whitney et al., 1996; Whitney 

et al., 2000). The structural state of zircon will influence its ability to withstand 

pressure, more metamict zircon within garnet will reach the pressure threshold 

less readily, thus resulting in less microcracking. These fractures therefore likely 

form following microzircon growth within detrital and microzircon-rich domains.  

The association between microzircon and fractures may not be visible in 

staurolite-zone schists based on the lower fracture density (Figure. 6.31). The 

fractures within the sillimanite-zone schists are commonly parallel-sub-parallel 

FIGURE 6.31: BSE images of fracture abundance and morphology within the Leven schists, (a) 
staurolite-zone garnet GR01-4 has few parallel transgranular fractures, (b) sillimanite-zone 
garnet UGR0-4 has a higher fracture abundance, particularly parallel transgranular fractures     
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(Figure. 6.31) indicative they are a feature of deformation. The disparity in 

fracture patterns is likely attributable to subtleties in the deformational histories 

of the staurolite-zone and sillimanite-zone Leven Schists.  

6.2.3.3 Results: zircon in cloudy garnet  

Cloudy garnet has undergone coupled dissolution-reprecipitation during staurolite 

formation. Cloudy garnet in sillimanite-zone schists displays all the textural and 

chemical characteristics of cloudy garnet in the staurolite-zone schists (Dempster 

et al., 2019). Cloudy garnet is much more abundant at sillimanite-zone, 

comprising >70% of garnet. As a result, the morphology of cloudy zones within 

porphyroblasts varies slightly. Staurolite-zone cloudy garnet typically forms bands 

and is often confined to marginal regions and surrounding fractures (see section 

5.2.3.1, Figure. 5.7). Within the sillimanite-zone schists, cloudy garnet comprises 

a majority of porphyroblasts and commonly forms atoll structures where the core 

of the garnet is entirely replaced by inclusions (see section 5.3.3.1, Figure. 5.26). 

Sillimanite-zone garnet contains local quartz inclusion-rich bands occasionally, 

these bands display a slightly different inclusion pattern than surrounding more 

quartz-poor modified garnet (see section 5.3.3.1, Figure. 5.27).  

Modified cloudy garnet contains less microzircon than clear garnet (Table. 6.2). 

Additionally, these microzircon are predominantly hosted within fluids inclusions. 

Within UGR0-4, 82% of the microzircon in cloudy garnet is located within fluid 

inclusions. Outgrowths are more common in sillimanite-zone schists than 

staurolite-zone schists Detrital zircon typically contain outgrowths <10 μm thick 

(Figure. 6.32). 

FIGURE 6.32: BSE images of outgrowth morphology in sillimanite-zone schists, (a) large detrital 
zircon with thick outgrowth, (b) detrital zircon with thinner outgrowth, and (c) more rarely detrital 
zircon appear to show no evidence of outgrowths in the sillimanite-zone schists   
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Quartz inclusion-rich bands within cloudy garnet contain the fewest microzircon, 

averaging 4 microzircon per mm2 and 2 detrital zircon per mm2. These bands 

additionally contain no monazite, ilmenite or additional inclusions, primarily 

containing large, irregularly shaped quartz inclusions that comprise >50% of the 

volume, with very limited zircon. In the quartz-poor cloudy garnet immediately 

surrounding quartz-rich bands microzircon is more abundant than cloudy garnet 

located further from quartz-rich bands (Figure. 6.33). There is texturally no 

difference between these proximal (<100 μm to quartz-rich bands) and distal 

(>100 μm to quartz-rich bands) cloudy domains (Figure. 6.33a). 

 

6.2.3.4 Interpretation of zircon in cloudy garnet  

Quartz inclusion-rich bands within sillimanite-zone garnet have undergone more 

extensive dissolution, and thus garnet replacement, during coupled dissolution-

reprecipitation. The higher microzircon abundance immediately surrounding these 

quartz-rich bands within adjacent quartz-poor cloudy garnet is indicative that 

FIGURE 6.33: (a-b) BSE image of qtz-rich bands in UGR0-4 and the location of proximal cloudy 
garnet (<100μm) containing abundant microzircon, and (c) plot of the abundance of zircon in 
proximal (<100μm) and distal (>100μm) areas from qtz-rich bands  
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some of the zircon dissolved from the quartz-rich band forms microzircon in the 

adjacent less modified garnet. Quartz inclusion-rich areas may represent areas of 

garnet that were initially exploited during staurolite growth. Quartz-rich bands 

tend to be parallel, similar to the morphology of cloudy bands in less modified 

porphyroblasts within the staurolite-zone schists (see section 5.2.3.1, Figure 5.7).  

The sillimanite-zone garnet has undergone more extensive modification where 

either coupled dissolution-reprecipitation was more rapid or lasted longer with 

sillimanite-zone schists than within the staurolite-zone schists. Microzircon are 

predominantly hosted within fluid inclusions, if coupled dissolution-

reprecipitation occurred more rapidly then microzircon may precipitate from fluid 

inclusions following entrapment in rapidly reprecipitated host garnet. 

Alternatively, if coupled dissolution-reprecipitation proceeded for a longer time 

then further dissolution by fluids reaching the reaction front may have hindered 

the preservation of microzircon, where those trapped within fluid or mineral 

inclusions were sheltered and thus predominantly preserved.  

6.2.3.5 Results: zircon in secondary clear garnet  

Secondary clear garnet has undergone an additional stage of modification during 

sillimanite growth (Dempster et al., 2019). This modification eradicates the cloudy 

texture associated with staurolite formation, removing mineral and fluid 

inclusions, and resets the chemistry to an equilibrated low Ca, high Mg 

composition (Dempster et al., 2019). Secondary clear garnet forms exclusively in 

fluid-rich areas surrounding mineral inclusions and at the rim of garnet 

porphyroblasts.  

Secondary clear garnet contains less microzircon than cloudy and unmodified clear 

garnet and cloudy garnet (Table. 6.2). Secondary clear garnet forms at 

porphyroblast margins and inclusion rims, secondary clear garnet at inclusion rims 

consistently contains more microzircon than secondary clear garnet at 

porphyroblast margins. Secondary clear porphyroblast margins are more texturally 

homogeneous, there are very limited fractures and mineral inclusions. Secondary 

clear garnet that forms rims surrounding mineral inclusions typically contains 

fractures and small mineral inclusions such as ilmenite and microzircon. The 

amount of microzircon within garnet porphyroblast margins is almost 95% lower 
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than at inclusion rims in the interior of porphyroblasts. Detrital zircon in secondary 

clear garnet is consistent in abundance with cloudy garnet, and only slightly lower 

than primary clear garnet (Figure. 6.2). The size of microzircon and detrital zircon 

is consistent with those in sillimanite-zone cloudy garnet.  

6.2.3.6 Interpretation of zircon in secondary clear garnet  

The additional stage of modification during sillimanite-zone formation produces 

secondary clear garnet with limited microzircon. During the re-equilibration that 

accompanies sillimanite formation microzircon dissolution is effective, 

particularly at porphyroblast margins. Cloudy garnet contains 10% more 

microzircon than secondary clear inclusion rims and over 95% more microzircon 

than within secondary clear garnet at porphyroblast margins. Grain boundaries are 

the primary fluid pathways in a rock, garnet margins are more proximal to 

boundaries promoting more extensive modification and perhaps more microzircon 

dissolution. While inclusion rims still undergo microzircon dissolution this is likely 

limited by the fluid availability owing to their location within the interior of 

porphyroblasts. While microzircon are readily removed from secondary clear 

domains, dissolution of detrital zircon appears ineffective with detrital zircon 

abundance consistent with cloudy garnet (Table. 6.2). The consistency in the size 

distribution of microzircon between sillimanite-zone cloudy garnet and secondary 

clear is perhaps indicative that no new microzircon are formed at this stage and 

instead dissolution dominates. Instead microzircon within the secondary clear 

domains are preserved populations from either; (a) growth of garnet, and/or (b) 

coupled dissolution-reprecipitation during staurolite growth.  

Secondary clear inclusion rims are primarily surrounding irregular quartz 

inclusions, typical of those that form as a result of coupled dissolution-

reprecipitation during staurolite formation. The products of dissolution-

reprecipitation are more reactive owing to higher defect densities within the 

mineral lattice (Dempster et al., 2017; Spruzeniece et al., 2017). Secondary clear 

garnet likely forms in cloudy domains owing to this increased reactivity.  
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6.2.3.7 Results: zircon in the matrix  

The sillimanite-zone matrix is comprised of interbedded micaceous pelites and 

quartzofeldspathic layers. The pelitic matrix contain on average 31 microzircon 

per mm2 and 5 detrital zircon per mm2. The quartzofeldspathic matrix contains 

less zircon, average 21 microzircon per mm2 and 4 detrital zircon per mm2. Zircon 

comprises <3 vol.% of the matrix within these schists. More than 98% of microzircon 

within the matrix of the sillimanite-zone schists are hosted within a single grain 

with <2% occurring on grain boundaries (Figure. 6.34). Similarly, detrital zircon 

are predominantly hosted within grains but a much larger proportion occur on 

grain boundaries (Figure. 6.34).  

Microzircon are predominantly hosted within quartz in the quartzofeldspathic 

matrix and muscovite in the mica=rich pelite (Figure. 6.35). Detrital zircon display 

the same pattern, most abundant in quartz in quartzofeldspathic matrix nd 

muscovite in the pelitic matrix (Figure. 6.35). Similar to the staurolite-zone 

schists, phases which host a large proportion of detrital zircon appear to host more 

microzircon within the sillimanite schists (Figure. 6.35). Chlorite again contains 

no microzircon however it is present in low modal abundances in the staurolite-

zone schists (Figure. 6.3).  

FIGURE 6.34: proportion of microzircon and detrital zircon hosted within grains and at grain 
boundaries within sillimanite-zone matrix UGR0-3 
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6.2.3.8 Interpretation of zircon in the matrix  

Microzircon are the least abundant in the matrix of sillimanite-zone schists 

compared to the lower grade samples analysed in this study. However, the 

sillimanite schists contain significantly more outgrowths surrounding detrital 

grains. Higher temperatures promote nucleation of zircon around existing detrital 

zircon as Zr can be transported longer distances to existing detrital grains and 

nucleate around those instead of forming separate microzircon.  

The decrease in microzircon and detrital zircon present on grain boundaries may 

be in part a facet of coarsening o the matrix with increasing grade but is likely 

also influenced by the increased dissolution of zircon at higher temperatures. 

Grain boundaries are fluid pathways and hydrothermal fluids produced during 

metamorphism are detrimental to zircon, particularly microzircon, populations. 

Those within grains are generally more sheltered from fluids during fluxes and less 

prone to dissolution. The mode of zircon appears to decrease in these schists when 

compared with staurolite-zone schists which are comprised of >5 vol.% zircon, 

decreasing to <3 vol.% zircon in sillimanite-zone schists. This is indicative the 

processes that are occurring in the porphyroblasts are likely also occurring in the 

FIGURE 6.35: distribution of microzircon (MZ) and detrital zircon (DZ) across 
quartzofeldspathic (QF) and pelitic (PLT) matrix phases within sillimanite-zone schist UGR0 
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matrix. Hydrothermal fluids eliminate grains preferentially from grain boundaries 

via dissolution however there is no evidence off reprecipitation of zircon in the 

matrix or porphyroblast phases.  

6.2.3.9 Conclusion   

Sillimanite-zone schists have undergone more extensive dissolution-

reprecipitation during staurolite formation and an additional partial 

reequilibration during sillimanite formation. Where the degree of modification 

increases within garnet, the abundance of microzircon decreases and more rarely 

detrital zircon populations also decrease. Where mineral inclusion abundance 

increases in the sillimanite-zone schists, the abundance of secondary clear garnet 

surrounding them increases, and thus the size of the microzircon population also 

decreases. The quartz inclusion-rich bands in garnet contain the lowest proportion 

of microzircon likely due to the presence of these reequilibrated, secondary clear 

rims.  

6.3 Controls on zircon dissolution and growth  

6.3.1 Mineralogy of host rock  

The Appin and Leven schists are both comprised of interbedded quartz-rich and 

mica-rich layers. Pelites contain more microzircon than adjacent 

quartzofeldspathic layers, a well-established pattern (Dempster et al., 2004; 

Rasmussen, 2005; Dempster et al., 2008). Similarly, detrital zircon vary in size and 

abundance depending on the matrix lithology. Pelites contain a large number of 

finer detrital zircon while quartzofeldspathic beds contain fewer, coarse detrital 

zircon (Figure. 6.14).  

Microzircon is absent in chlorite. During prograde metamorphism fluids are 

generated within the rocks while during retrograde metamorphism fluids enter the 

rock from an external source. During retrogression, fluids enter the rocks along 

conduits such as fractures. During prograde metamorphism these rocks retain fluid 

until the Zr is redistributed as microzircon and/or outgrowths, finally their tensile 

strength is exceeded and fluids escape, likely carrying little or no Zr. During 

retrogression, the fluids enter the rock, dissolve Zr and escape through the same 

conduits, carrying Zr before it can be reprecipitated as new zircon.  
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The importance of detrital zircon population size and distribution is evidenced 

through the analysis of garnet GR02-5. Within this garnet the compositional 

inclusion layering in garnet, i.e. the composition of the matrix the garnet 

overgrew, does not reflect the change in microzircon size and distribution. Quartz 

inclusion-rich garnet that overgrew originally quartzofeldspathic matrix typically 

contains fewer large detrital zircon and around 50% less microzircon than adjacent 

ilmenite-rich garnet that overgrew pelitic matrix layers. Originally 

quartzofeldspathic garnet in GR02-5 contains 71 microzircon per mm2, consistent 

with originally pelitic garnet that contains 72 microzircon per mm2 (Figure. 6.36). 

The anomalously high microzircon counts within the quartz-rich garnet can be 

attributed to a disproportionally large population of finer, potentially more 

reactive detrital zircon. Typically, detrital zircon are larger in quartz-rich bands 

105 +/- 66μm2 than adjacent ilmenite-rich bands 11 +/- 8μm2. The mean size of 

detrital zircon in the originally quartzofeldspathic garnet in GR02-5 is 16 +/- 19μm2 

compared with 13 +/- 13μm2 within the adjacent originally pelitic garnet in GR02-

5. Finer detrital zircon may represent fragments of metamict larger grains, making 

them more prone to dissolution as their lattice would be weakened (Ellsworth et 

al., 1994; Dempster & Chung, 2013). The finer detrital zircon population within 

the pelite matrix and thus the garnet the garnet that overgrows it in GR02-5 may 

increase the dissolution potential, thus releasing more Zr and enabling more zircon 

growth within these layers.  

6.3.2 Host phase  

Porphyroblast phases contain larger numbers of microzircon per mm2 than the 

matrix (Figure. 6.37). The disparity between the matrix and porphyroblast 

abundance may be, at least in part, a facet of preservation. Zircon in the matrix 

are more prone to dissolution as grain boundaries act as fluid pathways promoting 

dissolution. Evidenced by the absence of microzircon on grain boundaries within 

the staurolite-zone schists where 86% of microzircon in the matrix are located 

within grains and just 14% on grain boundaries (Figure. 6.25). Microzircon on grain  
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boundaries are also coarser than those within the matrix. This increase in the 

population size at grain boundaries is consistent with dissolution occurring and 

potentially eliminating finer grains with a higher surface energy preferentially.  

Porphyroblast phases are coarser and thus have a smaller surface area in contact 

with other phases sheltering microzircon from pervasive fluids enabling the 

survival of a larger number of the population. Microzircon in porphyroblasts are 

finer than within the matrix (Table. 6.3), visible within garnet and biotite across 

the Leven and Appin schists. The decrease in microzircon size in garnet 

porphyroblasts has been interpreted as a facet of the temporal change in zircon 

size throughout the reaction history (Dempster et al., 2008). However, 

microzircon show no change in their size distribution across a concentrically zoned 

garnet i.e. from core to rim. If zircon became finer throughout the reaction history 

then earlier formed garnet in the core should contain a population of coarser 

microzircon, gradually fining to the later-formed rims. The later formed 

microzircon in the matrix may instead have had more opportunity to grow 

producing a population of coarser grains. Int eh same way increased fluid 

availability can inhibit preservation, it can promote growth. In porphyroblasts 

microzircon become trapped quickly after growth (Figure. 6.4). Unless zircon is 

located at the grain boundary or adjacent to a fluid-bearing fracture there is no 

subsequent opportunity for growth.  
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FIGURE 6.37: plot of detrital zircon and microzircon abundances per mm2 in GR01 within the 
matrix vs within unmodified garnet   
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Even within porphyroblast phases there is some variation in the amount of zircon 

present with mineralogy. Garnet contains the most microzircon followed by 

staurolite and finally biotite (Figure. 6.38). The abundance of microzircon is likely 

linked to the stage of growth and durability of the host mineral. Garnet forms 

relatively early in the metamorphic history of the Leven schists, it is also difficult 

to recrystallize while staurolite forms much later. Similarly, biotite in the Appin 

  
Number of microzircon 

(n) 

Microzircon average size 

( μm2) 

Biotite-zone 
Matrix 525 1.12 +/- 0.3 

Biotite 63 0.85 +/- 0.32 

Staurolite-

zone  

Matrix  214 0.43 +/- 0.12 

Garnet 1142 0.38 +/- 0.11 

Staurolite  14 0.23 +/- 0.06 

FIGURE 6.38: change in microzircon and detrital zircon abundance within different 
porphyroblast phases, all measured within staurolite-zone schist GR01 

TABLE 6.3: Changing microzircon size between the matrix and the main porphyroblast phases 

across biotite-zone and staurolite-zone schists, errors are to σ  
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schists forms late in the metamorphic history and is significantly easier to 

recrystallize than garnet or staurolite, producing relatively few microzircon. 

Microzircon have been identified in all phases within the schists except sillimanite 

and chlorite. The absence of microzircon in sillimanite could be related to higher 

temperatures inhibiting zircon formation paired with the structure of fibrolite 

limiting the preservation potential. Microzircon is absent within chlorite across all 

grade, this is particularly obvious in biotite-zone schists where chlorite 

retrogression is more extensive. The biotite schists are comprised of ca. 14% 

chlorite, mostly hosted within biotite, while the staurolite-zone schists contain 

just ca. 1.2% chlorite and the sillimanite schists contain trace amounts <1%. The 

absence of microzircon within chlorite is indicative that during retrogression fluids 

have the ability to dissolve microzircon during the replacement process. Within 

biotite-zone schists chlorite contains 20% of the detrital zircon but no microzircon 

(Figure. 6.3). The formation of microcracks surrounding detrital zircon may enable 

fluid access and promote chloritization of host biotite, therefore initially the 

amount of detrital zircon hosted in biotite was likely higher but chloritization is 

focussed in these zones. Retrograde reactions may be less effective at forming 

zircon due to changes to Zr solubility in the fluid with decreasing temperature, or 

sluggish kinetics (Turner, 1968). Fluid availability is typically the limiting factor 

during retrogression while zircon recrystallization has been proven to be largely 

fluid driven (Smit et al., 2018), paired with the lower temperatures decreasing 

diffusion and thus transport rates (Putnis, 2009).  

6.3.3 Grade  

Temperature is typically ascribed as the primary control on outgrowth abundance 

(Rubatto, 2002), where increasing temperature increases the amount of 

metamorphic zircon growth as outgrowths. However, detrital zircon within the 

biotite-zone schists have extensive outgrowths while within the Leven Schists most 

detrital grains show no evidence of outgrowths (Figure. 6.39). With increasing 

grade, the amount of zircon formed as outgrowths appears to decrease. It is 

possible that pressure is an influencing factor, increasing pressure has been 

attributed to decreasing zircon outgrowth abundance (Kohn & Kelly, 2018). The 

biotite-zone rocks are polymetamorphosed undergoing a regional event and mosr 

recently being contact metamorphosed while the staurolite- and sillimanite-zone 

rocks have most recently undergone regional metamorphism. However, 
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outgrowths are reported in other regionally metamorphosed pelites (Rubatto et 

al., 2001; Rasmussen, 2005; Hay et al., 201; Chen et al., 2019), indicative that 

more subtle pressure changes may not have an impact on outgrowth abundance.  

Microzircon also decrease in size with increasing grade generally, at biotite-zone 

microzircon are predominantly 1-2 μm2 while within the higher grade Leven schists 

they are finer, averaging 0.41 μm2 within the staurolite-zone schists and 0.38 μm2 

within the sillimanite-zone (Table 6.4). There is overlap between the errors on 

the average size values and a much larger sample size would be required to reduce 

these however the size distribution reveals a similar pattern (Figure 6.40). There 

is little change between the size distribution of microzircon between the  

FIGURE 6.39: changing outgrowth morphology across the biotite- and staurolite-zone schists, 
(a-b) biotite-zone detrital zircon with extensive outgrowths (c) sillimanite-zone detrital zircon 
with no outgrowths, and (d) staurolite-zone detrital zircon within heavily fractured garnet with 
evidence of minor outgrowths 
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 Abundance per mm2 Average size (μm2) 

 MZ DZ MZ DZ 

Biotite-zone  13 7 1.05 +/- 0.63 54 +/- 123 

Staurolite-zone  124 22 0.4 +/-0.22 33 +/- 56 

Sillimanite-zone  49 16 0.39 +/- 0.2 27 +/- 21 

TABLE 6.4: changes to abundance and size distribution of microzircon (MZ) and detrital zircon 
(DZ) within porphyroblast phases with grade, within biotite-zone rocks the analysed 
porphyroblast phase was biotite and within staurolite and sillimanite-zone it was garnet  

FIGURE 6.40: size distribution of microzircon within porphyroblasts with increasing grade from 
biotite-zone to sillimanite-zone, where biotite-zone data was collected from biotite 
porphyroblasts and staurolite- and sillimanite-zone from garnet porphyroblasts  
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sillimanite- and staurolite-zone schists but the biotite-zone schists show a higher 

proportion of coarser microzircon (Figure. 6.40). The decrease in microzircon size 

with grade is unexpected, where temperature increases so too does 

intercrystalline transport (Putnis, 2009) resulting in an increase in the average 

grain size. Increased diffusion rates assist in the growth of many major phases, 

such as quartz, muscovite, plagioclase, etc. However, with accessory minerals 

such as zircon, the transport distance for materials between neighbouring grains 

is considerably larger. It is possible that the growth of major phases inhibits the 

growth of these accessory phases by removing grain boundaries that act as fluid 

pathways (Jones et al., 1972), therefore inhibiting the transport of Zr towards the 

surface of existing grains and instead resulting in the formation of smaller zircon. 

The degree of deformation also influences the amount of zircon growth and 

dissolution through reaction kinetics. Low strain areas of a rock are likely to be 

less affected by fluids (Beckman & Möller, 2018) thus inhibiting zircon dissolution 

and reprecipitation. 

6.3.4 Dissolution-reprecipitation 

Once garnet undergoes coupled dissolution-reprecipitation, the characteristics of 

the zircon population changes (Figure. 6.41). There is a reduction in the amount 

and size of microzircon and also a coarsening of the original detrital grains. 

Dissolution is more effective on finer grains as they have a higher surface energy 

and therefore are easier to equilibrate. As a result, microzircon and finer detrital 

zircon are preferentially removed during coupled dissolution-reprecipitation 

producing the contrast in the size distribution. In general, garnet reveals that 

increased modification of the host phase results in a decrease in the number of 

microzircon. Clear garnet contains the most microzircon, cloudy garnet contains 

fewer and the secondary clear garnet contains considerably less microzircon 

(Figure. 6.42).  
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6.3.5 Conclusion  

There are a number of factors that influence zircon populations but coupled 

dissolution-reprecipitation and fluid-mediated garnet modification appears to be 

the most detrimental to microzircon populations. The mode of zircon decreases 

within these schists following coupled dissolution-reprecipitation. Following 

dissolution-reprecipitation of garnet, mineral and fluid inclusion-rich cloudy 

garnet forms, within which both microzircon and detrital zircon are less abundant 

than unmodified garnet. Microzircon become smaller in modified garnet, while 

detrital zircon become coarser. Additional modification results in reequilibration 

of the inclusion-rich cloudy texture in garnet and eradicates more microzircon but 

has little effect on detrital zircon.  

Metamorphic zircon forms outgrowths on detrital grains and microzircon. The Zr 

removed during dissolution of zircon during dissolution-reprecipitation is higher 

than the amount of Zr that reforms as zircon following dissolution-reprecipitation, 

where does the Zr go? Zr may escape the garnet in fluids, however in the adjacent 

matrix there is no evidence of new zircon growth. Therefore, the Zr likely enters 

another phase. Within clear garnet, microzircon on average makes up 38μm2 per 

mm2 of garnet, whereas in cloudy garnet this decreases to 8μm2 per mm2 of  
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FIGURE 6.41:  abundance and size distribution of zircon populations within clear and cloudy 
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FIGURE 6.42:  The development of cloudy garnet through dissolution-reprecipitation and its 
influence on microzircon populations. As garnet is consumed to form staurolite the remaining 
modified cloudy garnet contains fewer microzircon. The more modified a domain is, the fewer 
microzircon are present  
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garnet. There is a 79% loss in the area of zircon following dissolution-

reprecipitation. Within the average 3mm2 garnet, alteration of a whole 

porphyroblast would result in the disappearance of 93.51μm2 of zircon. At higher 

temperatures, the trivalent iron site within garnet undergoes expansion which 

may promote the accommodation of larger Zr4+ ions (0.72 A) in the smaller Fe3+ 

site (0.65 A) (Degeling, 2002). If this zircon was to be incorporated into garnet it 

would represent 185 ppm Zr while within ilmenite it could replace Ti and would 

represent >1 wt%. This is a detectable quantity and analysis of the trace element 

chemistry of the major phases may reveal where the Zr is incorporated. There is 

a significant and consistent change in the microzircon and detrital zircon 

population size and morphology with increasing grade, and thus increasing degree 

of modification.  
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Chapter 7 Conclusion  

7.1 A model for the evolution of zircon  

7.1.1 Biotite-zone Appin Phyllites  

Detrital zircon are inherited populations and vary depending on the original 

sedimentary lithology of the host rock. The Appin Phyllites are interbedded pelites 

and quartz-rich pelites, the pelitic layers contain a larger population of fine 

detrital zircon while the quartz-rich pelite contains fewer large detrital zircon. 

The mode of detrital zircon decreases early in the metamorphic history and new 

metamorphic zircon forms as microzircon and outgrowths on detrital grains. There 

is more metamorphic zircon growth within the pelite than the quartz-rich pelite. 

This may be a facet of (a) the population of fine, and thus more potentially 

metamict, detrital zircon are more reactive than coarser detrital zircon in the 

quartz-rich pelite (Hay & Dempster, 2009a, or (b) the higher halogen contents of 

the pelite layer producing a potentially more corrosive fluid and enhancing 

dissolution (Rasmussen, 2005).  

The Appin Phyllites have been polymetamorphosed, recording an early regional 

event and a later contact event. During the initial regional event, coarser 

microzircon form within the aligned matrix while during the contact event, a 

population of finer microzircon are formed within the biotite porphyroblasts. 

Biotite porphyroblasts also contain a larger number of microzircon than the 

adjacent matrix. There may be a temporal change in the morphology of 

microzircon, where they decrease in size and increase in abundance through time 

(Dempster et al., 2008). While microzircon form during prograde metamorphism, 

retrogression appears to be unique with no new zircon growth occurring. Chlorite 

contains no microzircon despite containing a large proportion of detrital zircon. 

During chloritization microzircon are dissolved from the biotite but there is no 

evidence of new zircon crystallization occurs within the chlorite or adjacent 

minerals. Fluids may escape more rapidly during retrogression resulting in the 

removal of dissolved Zr before new metamorphic zircon forms.  
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7.1.2 Staurolite-zone Leven Schists 

The Leven Schists display the same original disparity in detrital and microzircon 

populations across the changing mineralogy, more microzircon growth occurs in 

pelitic layers of the matrix than quartzofeldspathic layers. New metamorphic 

zircon growth within the staurolite-zone schists occurs predominantly as 

microzircon with very limited outgrowth formation around existing detrital grains 

compared to the biotite-zone schists.  

The higher temperatures associated with the staurolite-zone schists enhance 

detrital zircon dissolution, yielding more Zr and resulting in the formation of more 

metamorphic zircon in the higher-grade rocks. Similar to the biotite-zone schists, 

the porphyroblast phase contains more microzircon than the matrix. Detrital 

ilmenite may act as an additional source of Zr within these schists, releasing Zr as 

it recrystallizes at the almandine isograd. The result is more microzircon growth 

within garnet where ilmenite has recrystallized. Microzircon in the garnet are 

finer, likely because they become encapsulated by the growing porphyroblast 

quickly with little subsequent opportunity for growth. In the less stable matrix 

microzircon may have more opportunity to grow thus forming coarser microzircon.  

Garnet undergoes coupled dissolution-reprecipitation when it meets a fluid with 

which it is not in equilibrium, the result is dissolution of the parent garnet and 

reprecipitation of a low Ca cloudy garnet. Cloudy garnet contains much less 

microzircon than adjacent clear. There is no change in zircon abundance between 

entirely clear garnet porphyroblasts and clear garnet within partially cloudy 

porphyroblasts, suggesting Zr does not form new microzircon elsewhere in the 

porphyroblast. There is therefore a decrease in the mode of zircon, zircon is likely 

accommodated within a mineral phase. At higher temperatures, thermal 

relaxation of the lattice off mineral occurs, this allows potentially larger ions to 

substitute in smaller sites in the lattice. This may be occurring in garnet, as 

temperatures increase and Zr dissolution occurs, Zr may be incorporated as a non-

essential constituent into the Fe site in the garnet lattice instead of reforming 

new zircon.  
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7.1.3 Sillimanite-zone Leven Schists  

The sillimanite-zone schists contain cloudy garnet, formed during staurolite 

formation as described in 7.1.2, and an additional stage of modification that 

occurs during sillimanite formation, forming secondary clear garnet. During 

sillimanite formation reequilibration occurs to produce a homogeneous product 

phase locally surrounding mineral inclusions at garnet porphyroblast margins.  

Sillimanite-zone schists contain the least microzircon and detrital zircon across 

the matrix and porphyroblast phases consistent with increased zircon dissolution 

and Zr transportation at higher temperatures. There is an increase in the 

formation of outgrowths in place of microzircon as the increased temperature 

enhances Zr transportation and nucleation surrounding detrital grains.  

The sillimanite-zone schists may not have experienced higher P-T conditions than 

the staurolite-zone. The sillimanite-bearing schists appear to be comprised of 

more finely interbedded metasediments than the staurolite-zone schists, an 

increase in bedding planes may result in increased fluid infiltration and thus fluid 

availability for sillimanite formation. In the staurolite-zone, sillimanite absent 

schists, the thicker bedding planes produces fewer conduits and thus lower 

potential permeability inhibiting sillimanite formation and thus producing schists 

which appear lower grade.  

 

As alteration increase, the amount of microzircon decreases. Dissolution becomes 

more effective at the higher temperatures associated with the sillimanite forming 

reaction and thus dissolution and reprecipitation are less closely coupled, 

producing homogeneous, inclusion-poor secondary clear garnet.  

 

7.2 Significance of the results  

Fluid-mediated dissolution-reprecipitation is the most common mineral reaction 

mechanism within the solid Earth (Konrad-Schmolke et al., 2018). Despite their 

importance, little is known about dissolution-reprecipitation processes. Zircon has 

the ability to trace fluid flow and associated metamorphic process, including 

dissolution-reprecipitation, through changes in the morphology and distribution of 

zircon populations.  
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U/Th-Pb dating in zircon is a widely utilised absolute dating tool, however, linking 

the ages produced to a stage in a complex tectonothermal history proves difficult. 

Within polymetamorphosed terranes the history of dissolution and crystallization 

of zircon is complex, as evidenced in this study. Zircon growth is seemingly not 

confined to individual stages in the P-T path and is heavily influenced by 

modification of the host phase, as in garnet, and the ability of other mineral 

phases to incorporate Zr. This is contrary to the simple model of zircon behaviour 

produced from thermodynamic modelling, where dissolution dominates during 

prograde metamorphism and zircon growth occurs during retrogression (Fraser et 

al., 1997; Kohn et al., 20115; Beckman & Möller, 2018). Zircon growth described 

in this study instead appears periodic while dissolution is likely more continuous, 

dependant primarily on the availability of fluids. 

7.3 Future work  

Further analysis should focus on understanding the timing of zircon growth by 

looking at the composition. The Th content of crystallising zircon has the ability 

to track changes to the bulk rock Th/U (Yakymchuk et al., 2018). Monazite and 

allanite are the dominant Th hosts within metamorphic rocks (Bea, 1996; Bea & 

Montero, 1999). Following the formation of monazite during coupled dissolution-

reprecipitation the bulk rock Th concentration would be lower producing lower 

Th/U in microzircon that forms following coupled dissolution-reprecipitation than 

original populations that formed during or prior to garnet growth. Th analysis of 

microzircon would therefore assist in understanding how much of the zircon 

population in modified garnet is preserved and how much forms as a result of 

coupled dissolution—reprecipitation.  

An understanding of how Zr is distributed in these rocks prior to and following 

coupled dissolution-reprecipitation which would have assisted in tracking where 

the Zr goes following dissolution-reprecipitation. Theoretically Zr can be traced 

using values from other studies which have closely analysed Zr within major and 

accessory mineral phases in metamorphic rocks (Fraser et al., 1997; Bingen et al., 

2001; Degeling et al., 2001; Degeling, 2003; Bea et al., 2006; Kelsey & Powell, 

2011; Kohn & Kelly, 2018). However, none of these studies recognise microzircon 

which have the ability to skew values significantly. Most Zr content studies utilise 

LA-ICP-MS or ion microprobes with spot sizes bigger than a microzircon. Studies 
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typically quote a high range of values produced for the Zr contents of host 

minerals, these values may be so varied owing to the accidental analysis of 

microzircon within the sample spots. A database of Zr concentrations within major 

and accessory phases in metamorphic rocks where microzircon have been mapped, 

and thus can be removed from results, is required to trace where Zr that isn’t 

incorporated into Zr goes.  

Errors produced on average sizes of zircon within different domains commonly 

overlap from this study based on the small sample size. Difficulty imaging and 

identifying microzircon due to their small size means that with the current imaging 

capabilities manual analysis is required. This is time consuming and subject to 

human error and/or bias. Automatic feature mapping techniques using EDX on the 

SEM tend to miss the finer populations of microzircon, even at high resolution. A 

much larger sample size is required to better quantify changes in microzircon 

abundance and morphology between different mineral phases and across different 

grades. There are also potentially smaller microzircon that cant be captured on 

the SEM using current imaging capabilities. These smaller zircon could potentially 

record even finer subtleties in the metamorphic history.  
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