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Abstract 

This thesis aimed to address questions in two distinct areas of research in ageing 

and cognitive neuroscience. Firstly, given that the pre-stimulus state of cortical 

oscillations had been shown to predict behavioural and neural responses, we 

addressed the question of whether pre-stimulus oscillatory mechanisms change 

or remain consistent in the ageing brain. Secondly, previous research had shown 

that Audio-visual (AV) speech influences the amplitude and latency of evoked 

activity. Our research addressed the questions of whether/how AV enhancement 

and visual predictability of AV speech is represented in evoked activity in noisy 

listening conditions, and whether such Electroencephalographic (EEG) signatures 

remain stable with age. 

In Chapter 3 we investigated the consistency of how pre-stimulus activity 

influences auditory frequency discrimination performance in young and older 

participants. In both groups the power of pre-stimulus activity influenced the 

encoding of sensory evidence reflected by early evoked components, while the 

phase influenced choice formation in later-activated EEG components. 

Importantly, for the early EEG components we did not find evidence for a 

systematic difference in the time scales of the perceptually relevant pre-

stimulus activity. In the later-activated EEG component we found a trend for 

perceptually relevant rhythmic activity to arise from slower frequencies in the 

ageing brain. At the same time our data replicate previous findings of a 

significant age-related slowing of Auditory Evoked Potential (AEP) latency, 

modulations of AEP amplitudes, and a flattening of the spectral profile of EEG 

activity.  

In Chapter 4, we investigated the consistency of behaviour and evoked activity 

underlying AV speech integration in a speech-in-noise discrimination task in 

younger and older adults. Behaviourally, younger and older adults performed 

comparably. Performance was greater for Audio-visually informative (AVinf) 

speech compared to Auditory-only informative (AOinf) speech across groups and 

noise levels, and was poorer at low noise levels. AV enhancement was greater in 

high noise levels, across all participants, and older adults derived greater AV 

enhancement compared to younger adults (an effect that was consistent across 

noise levels). In terms of visual predictability, we found that word discrimination 
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performance was greater for target words with non-labial initial phonemes 

(assumed least visually predictive), compared to labial initial phonemes 

(assumed most visually predictive). Furthermore, we found that AV 

enhancement was greater for labial initial phonemes, compared to non-labial 

initial phonemes, and this was consistent across age groups.Neurally, we found 

that AV enhancement is represented by a centro-parietal P3-like activity in older 

adults and an N4-like fronto-central activity in younger adults, but found that 

this activity did not correlate with behavioural AV enhancement. Our results 

point to distinct patterns of late evoked activity underlying AV enhancement 

between younger and older adults, possibly representing distinct cognitive 

(memory) strategies in predicting upcoming target stimuli. At the same time our 

data replicate previous findings of a significant age-related slowing of AEP 

latency, modulations of AEP amplitudes, and a flattening of the spectral profile 

of EEG activity. 

In Chapter 5 we investigated the consistency of evoked activity underlying the 

visual predictability of AV speech. We found that visual predictability was 

reflected by late fronto-central negativity in older adults, but not in younger 

adults. However, we did not find evidence of an interaction between visual 

predictability and AV enhancement in terms of evoked activity, raising further 

questions about how visual predictability of speech is represented the brain’s 

electrophysiology. Our results point to distinct patterns of late evoked activity 

underlying visual predictability of visual speech, again possibly reflecting 

differential strategies in predictive coding. 

In summary, the results of this thesis demonstrate that pre-stimulus mechanisms 

in auditory pitch perception remain consistent in the younger and older adult 

brain, while spectral dynamics change with age. Our results also replicate 

previous work demonstrating age-related delays in peak latency, and changes in 

peak amplitude, of early auditory evoked activity. And lastly, we demonstrate 

that differences in the EEG signatures of AV enhancement between younger and 

older adults emerge in late evoked activity, and that visual predictability of 

speech is represented in late evoked activity only in older adults.  
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Chapter 1 Ageing and behaviour 

1.1 Contributions of the thesis 

As we get older, we find that our hearing abilities decline. It takes us longer to 

make decisions about the sounds we have heard, and we can find it difficult to 

keep track of conversations in noisy environments. We also find that sounds 

become, perceptually, much clearer when we have a visual cue accompanying 

the sound. However, the computational mechanisms underlying auditory and 

audio-visual (AV) perceptual processes, their neural correlates, and whether 

these processes and neural correlates change with age, are not yet fully 

understood.   

Of particular interest in the cognitive psychology and neuroimaging fields is, 

firstly, the state of the brain prior to stimulus presentation. One way of 

investigating such brain states is to look at rhythmic patterns of brain activity 

characterized by a specific time scale (so called cortical oscillatory activity). 

The pre-stimulus state of cortical oscillations can be predictive of behavioural 

and neural responses, however little research has addressed the way by which 

oscillations do this (e.g. by influencing bottom-up or top-down processing, or 

both). Additionally, it is unclear whether pre-stimulus oscillatory mechanisms 

change or remain consistent in the ageing brain. Secondly, neural 

representations of AV speech perception have received much attention, with 

particular focus on AV influences on specific components of evoked activity that 

systematically emerge at specific time points (in the literature known as N1, 

P2). Little is known about AV influences on evoked potentials in the AV 

processing of speech-in-noise, and again whether such electroencephalographic 

(EEG) signatures remain stable with age. Furthermore, few studies addressed the 

extent to which phonemic visual predictability of speech stimuli influences 

evoked potential dynamics.  

This thesis will expand on the areas of research described above. The main 

contributions of this work are: 

1. Demonstrating that pre-stimulus mechanisms in auditory pitch perception 

remain consistent in the younger and older adult brain 
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2. Demonstrating age-related delays in peak latency, and changes in peak 

amplitude, of early auditory evoked activity.  

3. Demonstrating that older adults have flatter pre-stimulus power spectra 

compared to younger adults.  

4. Demonstrating that differences in the EEG signatures of AV enhancement 

between younger and older adults emerge in late evoked activity. 

5. Demonstrating that visual predictability of speech is represented in late 

evoked activity only in older adults.  

1.2 Sensory acuity 

Age-related hearing loss (presbycusis) is considered a marker of healthy ageing, 

however the profile of the hearing loss in terms of onset, severity and 

progression can be highly variable (Gates & Mills, 2005) and subject to such 

factors as genetics (DeStefano et al., 2003; Gates et al., 1999), underlying 

pathological heterogeneity (Schuknecht & Gacek, 1993) and previous noise 

exposure (Gates et al., 2000). Presbycusis is characterised structurally as a 

natural degeneration of the stria vascularis within the cochlea (Schuknecht & 

Gacek, 1993), malfunction of the auditory nerve (Gates & Mills, 2005), and 

structural changes within the auditory cortex (Peelle et al., 2011), thus leading 

to reduced sensory acuity. 

Consequently, elderly adults often find particular listening situations 

increasingly difficult with advancing age. For example older adults are less 

sensitive to higher acoustic frequencies (Brant & Fozard, 1990; Gates & Mills, 

2005; F. Lee et al., 2005; Pedersen et al., 1989), and tend to have higher 

frequency difference limens (Clinard et al., 2010), compared to younger adults. 

Furthermore, older adults generally show poorer frequency discrimination 

performance (Clinard et al., 2010; He et al., 1998) and reduced frequency-

modulation detection (Grose & Mamo, 2012; He et al., 2007; Mahajan et al., 

2017; Paraouty et al., 2016; Wallaert et al., 2016; Whiteford & Oxenham, 2017). 

Listening to acoustic targets that are played rapidly (Schneider et al., 2005; 

Wingfield et al., 2006), or that have been degraded by noise or distracting 
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auditory streams (Pichora-Fuller & Souza, 2003; Wöstmann et al., 2015), also 

present themselves as particular challenges for older listeners.  

The visual system also undergoes age-related changes. As we get older, the 

prevalence of eye diseases such as macular degeneration, cataracts, and 

glaucoma increases with age (Owsley, 2011). Thus, age-related changes in low-

level visual functions, such as visual acuity (Gittings & Fozard, 1986) and 

contrast sensitivity (Owsley et al., 1983) could cause delays in processing speeds 

for visual information. However, there is evidence which suggests that low-level 

functions alone cannot account age-related differences in processing speed 

(Bieniek et al., 2013) or visual discrimination (Boutet et al., 2015). Within a 

multisensory context, declines in visual acuity can lead to poorer signal re-

weighting in response to changes in signal reliability (Garcia et al., 2017), wider 

(i.e. less accurate) temporal binding windows (Richards et al., 2017), and poorer 

AV speech perception (Narinesingh et al., 2014). 

In summary, both the peripheral auditory and visual systems are subject to 

changes with age. In this thesis we accept that some decline in hearing and 

visual abilities is to be expected, however we screen all participants (younger 

and older adults) for pathological changes (no more than mild loss) using 

objective and subjective measures where relevant. 

1.3 Cognitive abilities 

Beyond the sensory systems, healthy ageing typically results in changes within 

various aspects of cognition. Areas of cognition that are often the subject of 

investigation in the ageing literature are memory, processing speed, attention, 

and decision making. One particular issue that will be discussed within this 

research is whether the influence of age on cognition occurs within cognitive 

functions independently or interdependently. Another debate within the 

literature is the mechanism by which ageing influences cognition: can sensory 

and cognitive decline be attributed to a general ageing process, or does a 

decline in bottom-up processing drive the decline in top-down process, or vice 

versa? In this light, various models of age-related cognitive decline will be 

discussed.  
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1.3.1 Memory and processing speed 

Research has shown that, as we get older, it becomes more difficult to monitor 

and control information in working memory (Hasher & Zacks, 1988) due to age-

related reductions in storage capacity (Gilchrist et al., 2008; Naveh-Benjamin et 

al., 2007). There is also considerable evidence that long-term episodic memory 

declines with age (La Voie & Light, 1994; Prull et al., 2000; Spencer & Raz, 1995; 

Verhaeghen & Salthouse, 1997). Declines in episodic memory persist even in 

when task conditions are made more ecologically valid by replicating real-life 

environments (Kirasic et al., 1996; Molander & Bäckman, 1990), and have been 

demonstrated using both meaningless (e.g. pictures of novel objects; Schacter et 

al., 1992) and meaningful stimuli (e.g. information on medicine labels; Morrell 

et al., 1990). Semantic memory, on the other hand, is often found to be resilient 

to the effects of ageing (D. V. Howard et al., 1980; Nyberg et al., 1996); 

however, Bowles and Poon (1985) found age-related differences in semantic 

memory when task load was high. 

Another cognitive function that is subject to ageing is the speed in which sensory 

information is processed in the brain. In the ageing brain information processing 

becomes slower (Birren & Fisher, 1995; Salthouse, 1996), which can be observed 

as an increase in reaction times in tasks requiring rapid responses (Salthouse, 

2000a). Older adults typically take longer to perform simple cognitive and 

perceptual tasks (Salthouse & Ferrer-Caja, 2003; Verhaeghen & Salthouse, 1997), 

even when age-related differences in motor-dexterity are controlled for (Ebaid 

et al., 2017).  

One issue concerning the influence of age on cognition is that it is unclear 

whether the influence ageing has on cognitive processing speed is independent 

from its influence on memory functions (as well as other executive functions). In 

modelling the relationship(s) between age and cognition, considering such 

influences as independent have resulted in poorly fitting models (Salthouse, 

1998; Salthouse & Czaja, 2000). Furthermore, there is a body of evidence 

demonstrating that associations between age and memory (Salthouse et al., 

2004, 2008; Siedlecki et al., 2005), and age and executive functioning can be 
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explained by age-related differences in processing speed, among other factors 

(Salthouse, 2005; Salthouse et al., 2003; Salthouse & Davis, 2006; Salthouse & 

Meinz, 1995). Salthouse (1996) put forth a model suggesting that slower 

processing speeds influence other cognitive domains by way of two mechanisms: 

a time limited mechanism and a simultaneity mechanism. Firstly, by the time-

limited mechanism, slow actioning of cognitive processes results in less time 

available within which cognitive operations can be completed.  Secondly, by the 

simultaneity mechanism, information from earlier stages in the cognitive 

processing pipeline may not be available by the time later processes are 

complete, thus there is less information available for higher order processing.  

In this thesis, we control for the influence of pathological changes in working 

memory and declarative memory by screening our older adults using a battery of 

cognitive tests. We do not investigate behavioural reaction time in any of our 

experiments, however we do investigate changes in the timing of evoked 

responses in Chapter 3, Chapter 4,and Chapter 5. We also consider differential 

predictive coding strategies involving differential memory processes between 

younger and older adults in the processing of AV speech-in-noise stimuli in 

Chapter 4 

1.3.2 Auditory attention 

Older listeners also tend to find difficulty in controlling attention (H. Meister et 

al., 2013; Passow et al., 2014) and ignoring irrelevant stimulus information, such 

as noise or distractors  (Chao & Knight, 1997; Gazzaley et al., 2005; Tun et al., 

2002). Cocktail Party scenarios therefore pose a particular challenge to older 

adults (Pichora-Fuller et al., 2017) as reduced capabilities in selective attention 

(H. Meister et al., 2013; Passow et al., 2012, 2014; Zanto & Gazzaley, 2014) 

often results in less effective top-down filtering of irrelevant information from 

the acoustic signal (Chao & Knight, 1997; de Villers-Sidani et al., 2010; Gazzaley 

et al., 2005; Rossi-Katz & Arehart, 2009; Tun et al., 2002). Attentional filtering 

deficits can stem from a failure to encode certain features of the input auditory 

signal that would otherwise enhance target signal saliency (Shinn-Cunningham & 

Best, 2008).   
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In this thesis, as part of our cognitive screening, we control for pathological 

changes in attention span. While we do not experimentally manipulate 

attentional demand, each of our paradigms involve discriminating an acoustic 

target from a noisy acoustic background. In Chapter 3 we asked participants to 

discriminate changes in acoustic pitch while listening to a background cacophony 

of naturalistic noises (e.g. city sounds, animals, tools). In Chapter 4 and Chapter 

5, we asked participants to discriminate an auditory or AV target word from a 

background consisting of a multi-talker babble.    

1.3.3 Decision making 

According to Carstensen et al.'s (1999) Socioemotional Selectivity Theory (SST), 

the perception of available time can influence one’s decision making process. 

Older adults are more likely to engage in behaviours that result in positive 

emotional outcomes, and less so in behavioural that would result in negative 

emotional outcomes (positivity bias, Mather & Carstensen, 2005). Under SST and 

the positivity bias, it could be hypothesised that older adults are therefore less 

likely to make decisions in which there is a risk of a negative outcome (Mather, 

2006) . However, this hypothesis is complicated by evidence showing that people 

are generally more risk aversive when experiencing fear, and less risk aversive 

when  experiencing anger (Lerner et al., 2003; Lerner & Keltner, 2001).  

There is conflicting evidence of age-related differences in risk-taking behaviour 

and strategies. Recent research has shown evidence of a reduction in risk-taking 

tendencies of older adults on a range of decisions spanning ethical, financial, 

health, recreational, and social domains (Rolison et al., 2014). However, some 

studies have found that older and younger adults do not differ in risk-taking 

strategies, such as in the likelihood of selecting cards from a deck which yields 

high reward at a high risk in gambling tasks (MacPherson et al., 2002), or in 

changing behaviour as a function of risk by taking fewer cards as risk increases 

(Dror et al., 1998).  

In perceptual decision-making tasks, age-differences in decision strategy are 

much clearer (Dully et al., 2018). Older adults require more evidence than 

younger adults in order to reach a decision (i.e. increased decision boundaries) 

(McKoon & Ratcliff, 2012, 2013; Ratcliff et al., 2001, 2004, 2006a, 2006b, 2007, 
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2010, 2011; Ratcliff & McKoon, 2015; Spaniol et al., 2008; Starns & Ratcliff, 

2010; Thapar et al., 2003), and make smaller adjustments in re-evaluating 

decision boundaries compared to younger adults (Forstmann et al., 2011). While 

clear age-related differences are evident in terms of decision criteria, age-

related differences in the time required to gather adequate task-relevant 

sensory evidence (a parameter in decision-making models known as drift rate) 

seems to be task dependent (McGovern et al., 2017). While younger and older 

adults were comparable in drift rate on a signal detection task (Ratcliff et al., 

2001), younger adults had higher drift rates (faster evidence accumulation) on a 

letter discrimination task (Thapar et al., 2003), and lower (slower) drift rates on 

a motion discrimination task (Forstmann et al., 2011). 

In summary, there is evidence that younger and older adults differ in the 

decision-making strategies they use, both in perceptual tasks and in naturalistic 

settings. The experiments discussed in this thesis involve perceptual decision-

making tasks, however in Chapter 3 we explicitly investigate how pre-stimulus 

brain state influences behaviour along the sensory-decision cascade. 

1.3.4 Models of cognitive ageing 

Cognitive ageing has been explained under several theoretical standpoints. 

Firstly, the common cause hypothesis argues that age-related changes in sensory 

and cognitive processes occur simultaneously and are attributable to wide-

spread changes in the ageing nervous system (Baltes & Lindenberger, 1997; 

Christensen et al., 2001; Lindenberger & Baltes, 1994). Evidence from this comes 

from Lindenberger and Baltes' (1994) study in which they found that auditory 

and visual acuity accounted for 93.1% of the age-related variance in cognitive 

function (measured by testing speed, memory, reasoning, knowledge and 

fluency). Furthermore, Christensen et al. (2001) used a multiple indicators, 

multiple causes model to investigate the nature of the common cause by 

modelling a common cause factor based on reaction time, visual acuity, grip 

strength, respiratory efficiency, blood pressure, cognitive function and a 

composite measure of memory and crystallized intelligence in a sample of older 

adults aged 77.4 to 98.7 years old. All indicators, with the exception of blood 

pressure, loaded significantly on the common cause factor. Age-related 

neurobiological changes are discussed in further depth in Chapter 2.  
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Secondly, there are models which argue that reduced quality and/or quantity of 

sensory input, through reduced sensory acuity, has a knock-on declining effect 

on cognition. The sensory deprivation hypothesis posits that sensory decline over 

a prolonged period of time results in the degradation of central neural 

functioning (Oster, 1976; Valentijn et al., 2005). Whereas, the information 

degradation hypothesis argues that degraded sensory input influences higher-

order cognitive processes (Schneider & Pichora-Fuller, 2000). Under this 

hypothesis, age-related reductions in sensory acuity leads to the accumulation of 

degraded sensory evidence, which in turn results in perceptual processing errors. 

Avoiding these errors imposes a higher cognitive load, thus increasing the need 

to recruit additional cognitive sources to attain more accurate behavioural 

performance. There is, therefore, a trade-off between cognitive performance 

and cognitive resources (Zekveld et al., 2011). The key difference between the 

Sensory Deprivation and Information Degradation hypotheses is the time over 

which declines in sensory acuity influence cognition. Under the sensory 

deprivation hypothesis, the impact of sensory decline is observed following a 

prolonged period of time, whereas in the impact within the information 

degradation model sensory decline is immediate.  

Lastly, it is possible that deterioration of cognitive abilities influences sensory 

processing via top-down control (cognitive load on perception hypothesis). For 

example, it is more difficult to discriminate auditory speech under high cognitive 

load conditions induced by divided attention tasks (Mattys et al., 2014; Mattys & 

Wiget, 2011). As discussed earlier, this effect is amplified given that older adults 

typically find attentional control more difficult (Pichora-Fuller et al., 2017).  

1.4 Multisensory integration 

1.4.1 Non-linear modelling of multisensory integration 

Successful multisensory integration relies on three principles. Firstly, 

multisensory integration is more likely to occur if sensory cues are spatially 

congruent. Bolognini et al. (2005) found that perceptual sensitivity in detecting 

a visual target at a specific location is enhanced when an auditory cue was 

presented at the same location. Furthermore, the McGurk effect shows that 

when participants are presented with conflicting auditory and visual phonemes 
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at the same location, they will often hear a third phoneme which is a fused 

percept of the input cues (McGurk & MacDonald, 1976). Thus, visual cues are 

more dominant during spatial ventriloquist tasks. Secondly, multisensory 

integration is more likely to occur when sensory cues are temporally congruent. 

For example, Bolognini et al. (2005) found that perceptual sensitivity in 

detecting a visual target is enhanced when an auditory cue is presented 

simultaneously, compared to when presented with a time lag between 100 and 

500ms. Additionally, Shams et al. (2002, 2000) presented participants with a 

sound-induced flash illusion paradigm, in which each trial comprised of a visual 

flash paired with one or two auditory beeps. When the visual flash was paired 

with two beeps, participants incorrectly reported also perceiving two visual 

flashes, thus providing evidence that auditory cues are weighted more. Thus, 

auditory cues are more dominant during temporal ventriloquist tasks. Lastly, the 

principle of inverse effectiveness states that multisensory integration is stronger 

when responsiveness to unisensory cues is weak. Behaviourally, Van de Rijt et al. 

(2019) tested participants’ recognition of sentences in noise in auditory only 

(AO), visual only (VO), and AV conditions, whilst varying the auditory SNR. Audio-

visual speech integration was determined by the difficulty in recognising 

unisensory stimuli, as there was greater AV enhancement at lower SNRs and in 

those with poorer lip-reading abilities. These principles of multisensory 

integration are also supported by electrophysiological evidence using single cell 

and EEG recordings, and will be discussed in Chapter 2; however, initial 

evidence stems from the observance of enhanced or depressed neuronal 

responses for multisensory stimuli compared to unisensory stimuli, or 

multisensory responses that were larger than the sum of individual unisensory 

responses (for review see Stein and Meredith, 1993). 

Much of the work investigating AV speech integration draws comparisons 

between the multisensory percept and the unisensory percepts. Capitalizing on 

the superadditivity of multisensory responses researchers often model AV speech 

integration as the difference between the multisensory response and the 

summation of the unisensory responses (i.e. AV = AV – [A + V], where AV, A and V 

represent the audio-visual, auditory and visual responses respectively). Many 

studies exploit this representation of multisensory response as a measure of the 
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benefit derived from AV stimuli in comparison to unisensory stimuli (e.g Besle et 

al., 2004; Stekelenburg & Vroomen, 2007). 

Older adults often find it difficult to listen to a speaker in a noisy environment 

(Babiloni et al., 2006; de Villers-Sidani et al., 2010; Pichora-Fuller et al., 2017; 

Sommers et al., 2005), however being able to see a speaker clearly can help the 

listener recognise what is being said faster and more easily (Bernstein et al., 

2004; Besle et al., 2004; Eskelund et al., 2011). The effect that visual speech 

has in enhancing comprehension is believed to be due to how predictive the 

visual cues provided by articulatory facial movements are of the acoustic 

content (Sumby & Pollack, 1954). These visual cues help to prime the listener, 

and thereby reduce the uncertainty about the acoustic signal (Peelle & 

Sommers, 2015; van Wassenhove et al., 2005). The perceptual and behavioural 

benefit (and their neural correlates) in discriminating acoustic stimuli afforded 

by the presence of visual cues is referred to as visual, or AV, enhancement. AV 

enhancement has been reported to be comparable between younger and older 

adults (Gordon & Allen, 2009; Maguinness et al., 2011; Sommers et al., 2005), 

suggesting that the extent of the benefit older adults derive from visual cues is 

similar to that of younger adults despite age-related changes in auditory 

processing. However, some studies suggest that older adults derive more 

benefit, and thus experience greater AV enhancement, than younger adults 

(Sekiyama et al., 2014; Sheldon et al., 2008). Furthermore, AV enhancement is 

strongest when the visual stimulus is reliable and becomes weaker when the 

visual stimulus becomes less reliable. AV enhancement varies as a function of 

hearing loss (Puschmann et al., 2019), and with signal-to-noise ratio (SNR; Ross 

et al., 2007), suggesting that visual cues benefit listening more when acoustic 

signals are degraded. However, it has been reported that this is only the case 

when visual cues are reliable; when visual cues are made unreliable through 

blurring (Gordon & Allen, 2009; Maguinness et al., 2011), or are used 

ineffectively used (Sommers et al., 2005), AV enhancement is reduced in older 

adults, but not in younger adults. 

In Chapter 4 we investigate age-differences in behavioural and evoked neural 

correlates of AV enhancement in a speech-in-noise paradigm by using a similar 

model of audio-visual integration as discussed in this section. In Chapter 5, using 
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a similar approach, we extend this work and examine age differences in the 

evoked neural correlates of phonemic visual predictability.  

1.4.2 Bayesian models of multisensory integration 

Bayesian probability models estimate the posterior probability distribution of an 

event, given prior information and new evidence. Bayesian probability models 

have been applied to multisensory integration as a method of estimating the 

combination of sensory cues in multisensory environments. The aim of these 

models is to estimate the posterior probability distribution of a multisensory 

event or response, given various input sensory cues which vary in reliability, and 

given prior knowledge, expectation and assumptions regarding the multisensory 

scenario. However, one issue that a Bayesian multisensory integration model 

must consider is whether the sensory cues are assumed to be generated by the 

same source, as in a linear cue combination model, or not, as in a causal 

inference model. 

1.4.2.1 Linear Cue Combination 

The linear cue combination model assumes that there is a single source which 

generates noisy sensory cues (e.g. visual and auditory information). For 

example, consider the scenario of conversing with a friend in a café and that you 

are paying close attention to what they are saying. A cue combination model of 

audio-visual speech perception assumes that the visual representation of the 

speaker, and the language being heard come from the same source. However, 

these cues become unreliable if, for example, there is a lot of background 

chatter, hence making the auditory cue noisy, or if the viewer does not see the 

speaker clearly because they have forgotten their spectacles, hence making the 

visual cue noisy. In addition, there may also be internal sources of noise, such as 

noise introduced by neuronal activity, muscle activity, or cardiovascular 

function. The aim of a Bayesian probability model in this case is to estimate an 

optimal linear combination of the two cues, by way of maximum likelihood 

estimation, in forming a fused percept, as a weighted average of the cues in 

terms of their precision. The model predicts that multisensory cues provide a 

more precise estimate than unisensory cues, and that the weighting given to a 

cue varies as a function of its reliability. Thus, in the café scenario, if the visual 
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and auditory cues of the speaker are equally reliable, audio-visual perception 

would be based on equal weighting of the visual and auditory cues. However, if 

there is a lot of background chatter making the auditory cue unreliable, audio-

visual perception would be based on unequal weighting of the sensory cues; 

specifically the visual cue would be weighted higher.   

Indeed, studies have shown that the brain integrates multisensory cues in a 

statistically optimal way. For example, Alais and Burr (2004) investigated cue 

combination in the ventriloquist illusion by asking participants to localise 

auditory clicks and visual gaussian ‘blobs’ presented unimodally and bimodally. 

They found that, in bimodal trials, when visual localisation was made difficult by 

increasing the amount of blur in the visual modality, visual localisation was 

driven by the auditory information (i.e. auditory information was weighted more 

than visual information); however, when viewing conditions were good, visual 

localisation was driven by the visual information (i.e. visual information was 

weighted more than auditory information). Additionally, they found that bimodal 

localisation performance was greater than unimodal localisation performance in 

either modality. In another study, Sheppard et al. (2013) investigated cue 

weighting in an audio-visual rate discrimination task. Human and rat subjects 

were tasked with judging which of two sequential streams, presented visually, 

aurally or audio-visually, had a higher flicker rate. Cue reliability was 

manipulated by adding noise, and in audio-visual trials the streams flickered at 

different rates. The authors found that performance was greater in the audio-

visual condition, compared to the unimodal conditions, in both humans and rats. 

Additionally, in the audio-visual condition, the modality that contained the least 

noise, and hence more reliable modality, was weighted more than the noisier, 

and hence less reliable, modality.   

In ageing studies, it has been found that younger and older adults weight cues 

similarly in audio-visual rate discrimination tasks, resulting in minor 

improvements in behavioural performance in younger adults (Brooks et al., 

2015). Furthermore, Braem et al. (2014) reported optimal cue weighting in both 

younger and older adults in a visuo-haptic vertical alignment task. However, 

there is evidence of age-related differences in reliability-based cue weighting. 

Bates and Wolbers (2014) found that when completing a homing task requiring 
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the integration of visual landmark and self-motion cues, older adults 

underweighted visual cues in comparison to what would have been optimal.  

Age-related differences in reliability-based cue-weighting could be attributed to 

sensory decline, as age related changes in visual and/or auditory sensitivity 

could introduce greater noise to the sensory cues. Controlling for perceptual 

threshold has shown comparable reliability cue weighting between younger and 

older adults (Brooks et al., 2015). Additionally, less-than-optimal cue weighting 

in older adults could be due to an age-related increase in sensitivity to 

irrelevant sensory cues, for example due to changes in sensory control 

(Hugenschmidt et al., 2009).  

1.4.2.2 Causal inference 

In contrast with the linear cue combination model, the causal inference model 

makes no assumption regarding a unitary source of the sensory cues. Instead the 

optimal estimate of multisensory integration is the nonlinear weighted average 

of an estimate assuming that sensory cues are generated by the same source and 

an estimate assuming that sensory cues are generated by independent sources 

(Körding et al., 2007). In essence, this model aims to establish the probability 

distribution of the multisensory event given that, in the noisy café example, the 

speech being attended to either comes from the friend who is speaking, or from 

someone at a nearby table. This model therefore considers the case of sensory 

cues being fused but can also consider partial fusion and segregation of sensory 

inputs. 

Age-related differences in causal inference are well-reported in the literature. 

Older adults tend to have wider multisensory temporal binding windows 

compared to younger adults (Bedard & Barnett-Cowan, 2016; Stevenson et al., 

2018), thus making them more susceptible to multisensory illusions such as the 

ventriloquist illusion (De Boer-Schellekens & Vroomen, 2014) and stream-bounce 

effects (Bedard & Barnett-Cowan, 2016), and poorer at judgments of temporal 

order when stimuli is presented in quick succession (Bedard & Barnett-Cowan, 

2016). Park et al. (2020) suggest that age-related changes in temporal binding is 

a result of sensory decline. In their study, participants were tasked with 

localising an auditory stimulus during AV and AO trials, or a visual stimulus 
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during VO trials. Bayesian modelling revealed that the ventriloquism bias, the 

influence the visual information had in biasing perception away from the true 

sound location, was more linear in older adults than in younger adults in AV 

trials. Coupled with the fact that older adults performed more poorly in a spatial 

hearing test, compared to younger adults, the authors attribute their findings to 

an age-related loss in spatial hearing. Additionally, a recent study found no age-

related differences in ventriloquism biases when younger and older adults had 

comparable spatial hearing abilities (Jones et al., 2019). However, age-related 

changes in causal inference have also been attributed to changes in cognitive 

function. Causal inference has been attributed to activity in parieto-frontal 

brain regions and has been modelled using Bayesian models of causal inference 

(Cao et al., 2019; Körding et al., 2007; Rohe & Noppeney, 2015; Wozny & Shams, 

2011). Frontal regions are particularly vulnerable to age-related structural and 

functional changes, with particular impact on cognitive function (for review, see 

Chapter 2). Furthermore, the influence prior sensory information has on 

subsequent sensory events can be influenced by age-related changes in working 

memory (Allred et al., 2016; Dobreva et al., 2012), which might be integral to 

multisensory recalibration (Hame Park & Kayser, 2019). Thus, age-related 

changes in causal inference may be a result of low-level changes in peripheral 

hearing abilities, higher-level changes in cognitive function, or both.  

In Chapter 4 and Chapter 5, we are interested in studying the benefit of visual 

information when auditory information is made unreliable in an audio-visual 

speech-discrimination-in-noise paradigm. Though we do not consider Bayesian 

models in our analyses in these chapters, or investigate multisensory binding 

itself, studies which have used Bayesian approaches in modelling multisensory 

integration may shed some insight on our results (see Chapter 6).  
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Chapter 2 Ageing and the brain 

2.1 Neurobiological Changes 

Post-mortem studies of the brain have documented a number of age-related 

changes in brain structure. For example, ageing is associated with widespread 

structural changes in both white and grey matter in the brain (Raz & Rodrigue, 

2006). The prefrontal cortex (PFC) is one of the most susceptible brain 

structures to the effects of ageing. This has been explained by a retrogenesis, or 

a “last in first out” (Bender et al., 2016; Brickman et al., 2012), hypothesis 

wherein brain structures that mature earlier in development (e.g. primary 

sensory cortices) are more robust to the effects of ageing compared to 

structures that mature later (e.g. frontal cortex). Grey matter volume in the 

PFC is estimated to decline at a rate of around 5% per decade from the age of 20 

years onwards (Raz et al., 2004), however how reductions in PFC grey matter 

volume relate to cognitive decline is less clear (Kaup et al., 2011). There is 

evidence of negative relationships between PFC grey matter volume and 

cognitive function in ageing (Raz et al., 1998; Salat, 2002; Van Petten, 2004), 

however the nature of such relationships have been reported inconsistently in 

the literature on memory, learning, and attention (Kaup et al., 2011). In healthy 

ageing, there is a decline of around 20 to 30% in white matter volume across the 

lifespan (Marner et al., 2003). Age-related decline of white matter integrity has 

been associated with changes in cognitive processing speed (Charlton et al., 

2006; Penke et al., 2010) and working memory (Charlton et al., 2006, 2008, 

2010). 

Age-related decreases in hippocampal volume are associated with decline in 

multiple areas of cognition including working memory, episodic memory, 

processing speed, and executive function (O’Shea et al., 2016). However, the 

link between hippocampal volume and memory deficits may not be as strong as 

previously though, given that further evidence has shown that smaller 

hippocampal volume is associated with better memory performance in younger 

adults, and a weak positive relationship between hippocampal volume and 

memory performance in older adults (Van Petten, 2004).  
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White matter plays a key role in nerve conduction, ensuring that the speed and 

efficiency of neural signals are maintained (Nave, 2010; Salzer & Zalc, 2016), 

thus a loss of white matter are likely to contribute to age-related delays in 

neural processing speed. Indeed, there is evidence that, in the visual domain, 

age-related delays in evoked activity are mediated by white matter structure in 

the optic radiation connecting the lateral geniculate nucleus with the primary 

visual cortex (V1; Price et al., 2017). In auditory perception, age related hearing 

loss is associated with myelin degeneration in the cochlea in both animals (G. M. 

Cohen et al., 1990; Hoeffding & Feldman, 1988) and humans (Xing et al., 2012). 

However, slowing of auditory processing has been associated with degeneration 

of grey matter in auditory cortex (A1), rather than white matter (Price et al., 

2017). Furthermore, Peelle et al. (2011) found that age-related hearing loss was 

associated with reduced grey matter volume in A1. 

There is evidence that age-related decline in auditory processing may not be 

solely due to changes in neuroanatomical or neuro-molecular structure, but that 

age-related differences in functioning at the neuronal level may have some 

influence. It has been reported that healthy ageing results in poorer A1 

frequency tuning (Caspary et al., 2008; de Villers-Sidani et al., 2010; Kamal et 

al., 2013; J. G. Turner, 2005) and desynchronized spiking (de Villers-Sidani et 

al., 2010; Kamal et al., 2013). This can be explained by age-related molecular 

changes within A1, such as a reduction in Gamma-Aminobutyric Acid (GABA; 

Burianova et al., 2009; Gao et al., 2015; Ling et al., 2005). However, it is also 

reported that neuronal activity becomes downregulated with exposure to 

degraded acoustic input, as is the case in age-related hearing loss (Kamal et al., 

2013; Peelle et al., 2011; Peelle & Wingfield, 2016), and can be reversed, to 

some degree, by reducing the degradation (Kamal et al., 2013) or with training 

(de Villers-Sidani et al., 2010).  

In summary, there are widespread neuroanatomical changes in the ageing brain. 

Changes in PFC grey matter volume is linked with age-related declines in 

cognition and cognitive processing speed. The neural processing of visual 

information slows due to degradation of white matter microstructure in the 

early visual pathway (before V1), while the neural processing of auditory 

information slows due to degradation of grey matter in A1. In Chapter 3, Chapter 
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4, and Chapter 5 we investigate differences in the timing of evoked potentials 

between younger and older adults. Therefore, any such differences observed 

may be attributed to changes in neuroanatomical structure.   

2.2 Models of compensatory brain activity 

Given that changes in sensory acuity, cognition, brain structure, and neuronal 

function have been observed in the ageing brain, one question that arises is how 

are these reflected in scalp-level neural activity? As discussed in Chapter 1, a 

general decline in behavioural and cognitive processing speed is typical in health 

ageing. Similarly, a steady decline in neural processing speed has been observed. 

In the visual domain, Rousselet et al. (2010) have shown that neural processing 

in a visual face discrimination task slowed at a rate of approximately 1 ms per 

year from age 20 years onwards. Furthermore, there is evidence that the peak 

amplitude of event related potentials (ERPs) become delayed in ageing (this will 

be discussed in more detail in relation to specific ERP components relevant to 

this thesis in sections 2.5 and 2.6).  

Another question that arises is how does the ageing brain compensate for these 

changes in an attempt to ensure normal functioning? It may be that the slowing 

of neural processing speed, just discussed, may be a neural correlate of 

cognitive slowing, or it may be as a result of compensatory mechanisms that 

activate in an attempt to maintain good task performance in light of sensory, 

cognitive and/or neural decline. Models of compensatory mechanisms in the 

ageing brain have reported topographical shifts in brain activity in the 

recruitment of additional brain areas. One such model is the Hemispheric 

Reduction in Older Adults model (Cabeza, 2002). The HAROLD model suggests 

that an increase in bilateral recruitment of pre-frontal brain regions acts as a 

compensatory mechanism in neurocognitive decline. Evidence supporting this 

model comes from studies observing bilateral activation in pre-frontal cortices in 

older adults  in working memory tasks (Reuter-Lorenz et al., 2000), and in 

perceptual tasks (Grady et al., 1994, 2000). However, the Compensation-related 

Utilization of Neural Circuitry Hypothesis (CRUNCH) suggests that compensatory 

activity is only useful when cognitive load is low; when cognitive load is high, 

compensatory recruitment of neural resources becomes less effective (Reuter-
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Lorenz & Cappell, 2008). Therefore, compensatory neural recruitment may not 

always result in enhanced performance on perceptual or cognitive tasks. 

Another model describing a shift in topographical shift in brain activity with 

ageing is the Posterior Anterior Shift in Ageing model (PASA; Davis et al., 2008). 

Whereas the HAROLD model described compensatory recruitment along the 

sagittal plane, the PASA model suggests a shift in neural recruitment along the 

coronal plane. Grady et al. (1994) observed an age-related recruitment of the 

pre-frontal cortex in response to reduced activity in the visual cortex due to the 

decline of sensory processing functions in the occipital and temporal cortices. 

However, these effects are not limited to basic perception and attentional 

function, but have also been observed in tasks involving working memory 

(Grossman et al., 2002; Rypma & D’Esposito, 2000) and episodic memory (N. D. 

Anderson et al., 2000; Cabeza et al., 1997, 2004; Daselaar et al., 2003; Dennis 

et al., 2007; Grady et al., 2002; Madden et al., 1999). It is important to note 

that PASA effects are not always observed in these domains (Grady et al., 1995; 

Iidaka et al., 2001; Milham et al., 2002; Stebbins et al., 2002), and in one case 

the reverse pattern of an anterior to posterior shift in activity has been observed 

(Nyberg et al., 2010).   

Together, both the HAROLD and PASA models describe the recruitment of 

additional brain areas in compensation for age-related decline, however, neither 

model addresses over-recruitment of particular brain areas or changes in the 

selectivity of brain areas with age. Dedifferentiation describes a reduction in 

neural selectivity, and thus over-recruitment, of brain areas to certain stimuli 

(Grady, 2008).  For example, an age-related reduction in specificity has been 

found in in the fusiform face area during face processing tasks (Burianová et al., 

2013; Zebrowitz et al., 2016). In auditory speech perception, older adults do not 

show the same hemispheric specificity typical in younger adults in the processing 

of slowing changing speech cues (Keller et al., 2019). 

Much of the work investigating these compensatory mechanisms in the ageing 

brain have used functional Magnetic Resonance Imaging (fMRI), which excels in 

locating the sources of changes of brain activity. In this thesis we use EEG to 

measure brain activity, which does not have good spatial resolution, however 

our focus is not on where in the brain changes in activity occur, but on when and 
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how these changes occur in terms of timing and magnitude. We do, however, 

investigate topographical differences in EEG projections in Chapter 3 (see 

section 3.3.4) and in evoked activity in Chapter 4 and Chapter 5, between 

younger and older adults. Changes in scalp topography with age are likely to be 

due to compensatory mechanisms (described above), due to changes in 

underlying neuroanatomical structure (discussed in section 2.1).   

2.3 Measuring brain function using EEG 

2.3.1 What is EEG? 

In this thesis we will use EEG to non-invasively record electrical signals from the 

brain. EEG allows us to record changes in electrical brain activity with 

millisecond precision. The signals recorded represent an a summation of 

dendritic postsynaptic potentials in populations of pyramidal neurons (M. X. 

Cohen, 2017; Lopes da Silva, 2013; Mitzdorf, 1985; P. L. Nunez & Srinivasan, 

2009). From the signal, we can extract information such as the amplitude, 

latency, and oscillatory frequency in an attempt to understand the behaviour 

and function of the underlying neuronal populations. However, direct mapping of 

EEG characteristics and neural (micro-) circuitry (the inverse problem) is made 

difficult due to the low spatial resolution of EEG recordings. EEG can only 

measure broad activity from neuronal populations that are parallel and that 

activate in synchrony. In addressing the inverse problem, source localisation 

techniques can estimate sources to centimetre accuracy (Cottereau et al., 2015; 

Cuffin et al., 2001; Fuchs et al., 2002; Stenroos & Hauk, 2013), however a given 

EEG topography could be generated by dipoles in varying locations, and the 

number of dipoles that can be reliably identified is dependent upon the number 

of scalp channels used in recording. The work in this thesis focused primarily on 

the timing, amplitude and/or oscillatory frequency of neural events reflecting 

auditory or audio-visual perception, rather than on the neuroanatomical sources 

involved in these perceptual processes. In doing this we quantify EEG activity 

using event-related potentials, time-frequency representations, and using linear 

discriminant analysis.  
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2.3.2 ERPs 

ERPs represents a positive or negative deflection in the voltage of EEG signals, 

relative to baseline, in response to an event or stimulus. Metrics quantifying the 

peak amplitude and latency of these deflections are used as indices of sensory 

encoding, as well as top-down computations such as attentional control, 

memory, and decision-making. While EEG provides an accurate measurement of 

peak amplitude and latency, the process of averaging over trials assumes that 

noise or other task-irrelevant signals are averaged out, leaving only the task-

relevant deflections of interest. The process of averaging removes variation in 

the signal, which can be informative. Other analysis methods preserve 

dimensionality in the EEG data, which can be exploited as further indices into 

sensory and cognitive processing.  

2.3.3 Time Frequency Representations (TFRs) 

Ongoing EEG signals fluctuate over time in rhythmic cycles (neural oscillations). 

Neural oscillatory activity represents fluctuations in the excitatory and inhibitory 

states of the underlying neuronal population, and correlate with behaviour 

relating to information processing (Fries et al., 2007; Rajkai et al., 2008; Sirota 

et al., 2008). Thus, neural oscillations can serve as indices to cognitive and 

perceptual processes (Fries et al., 2007; VanRullen et al., 2011). 

Neural oscillations can be quantified in several ways. Firstly, neuronal 

populations vary in the speed of their excitation-inhibition fluctuations, thus we 

can examine the speed (or frequency) of oscillations in the EEG signal. 

Oscillatory activity has been described in several frequency bands: delta (δ, 1 – 4 

Hz), theta (θ, 4 – 8 Hz), alpha (α, 8 – 12 Hz) beta (β, 13 – 30 Hz), and gamma (γ, 

> 30 Hz). Each frequency band has been implicated in various and differential 

sensory, cognitive, and pre-stimulus processes (Fries et al., 2007; Harmony, 

2013; Klimesch, 1999; Klimesch et al., 2007; Spitzer & Haegens, 2017). 

TFRs are representations of EEG data which carry information about time, space, 

frequency, power, and phase. Frequency, power and phase are dimensions of 

the EEG signal which are not afforded by ERP analyses. Oscillatory power is an 

estimate of the magnitude of excitatory post-synaptic potentials reaching a 
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given neuronal group at a given time point (Varela et al., 2001), and is 

associated with neuronal spiking in brain areas generating the potentials 

(Coenen, 1995; Schroeder et al., 1991; Whittingstall & Logothetis, 2009). 

Oscillatory phase, on the other hand, indexes the location within an oscillatory 

cycle, thereby indexing temporally precise excitatory or inhibitory windows in 

which information is encoded (Jensen & Lisman, 2000; O’Keefe & Recce, 1993).  

2.3.4 Linear Discriminant Analysis (LDA) 

Using ERP and TFR analyses can be computed across the whole scalp, and thus 

considering spatio-temporal profiles of event-related and ongoing electrical 

activity, or at single (or a group average of) channels. Both methods have their 

limitations: whole scalp analyses require multiple comparison correction which 

can result in the diluting of weaker effects, while single (or averaged) channel 

analyses require a priori assumptions about the channel(s) which best represent 

task-relevant activity.  

One approach which considers the whole scalp, but which eliminates the 

multiple comparison problem is to reduce the spatial dimension of the EEG data 

to a single dimension through a linear combination of EEG signals. By combining 

information across channels rather than across trials, we can derive a single trial 

representation of cognitive function, allowing us to model neural signals and 

behaviour on a single trial basis. Several studies have shown that information 

about sensory encoding and cognitive processing can be derived from such neural 

signals (Gherman & Philiastides, 2015; S. J. Kayser et al., 2016; McNair et al., 

2019; Philiastides et al., 2014; Philiastides & Sajda, 2006). 

LDA is not without its own limitations, however. Firstly, the method assumes 

that neural activity can be linearly modelled. There is evidence that linear 

models predict neural activity in monkeys in multisensory cue integration tasks 

(Fetsch et al., 2012), however there is also evidence showing that neural activity 

can be non-linear (Rombouts et al., 1995), particularly in the ageing brain 

(Babiloni et al., 2006; Zappasodi et al., 2015). Secondly, LDA assumes that the 

data is normally distributed, and that there is independence of feature (e.g. 

electrodes, time points), equality of covariances for each condition being 

classified. However, research has shown that despite these assumptions, LDA can 
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be robust to violations of the assumptions of equal covariances and normality, 

while using regularising the covariance matrices can account for unequal 

covariance (Blankertz et al., 2011; Philiastides et al., 2014).  

2.4 Cortical oscillatory activity 

Cortical oscillatory activity measured via EEG or magnetoencephalography (MEG) 

is known to reflect neuronal excitation and inhibition (Buzsáki & Draguhn, 2004; 

Fries et al., 2007; Sirota et al., 2008). Cellular level oscillations facilitate 

mechanisms underlying cortical processes, such as biasing neural and network 

input selectivity, plasticity, and neural assembly binding (Buzsáki & Draguhn, 

2004). Cortical oscillations can therefore be considered as indices into conscious 

cognitive computations, decision making processes and sensory representations 

in the brain (Donner & Siegel, 2011; VanRullen et al., 2011; Varela et al., 2001; 

Ward, 2003).  

2.4.1 Pre-stimulus oscillatory activity 

The pre-stimulus power of oscillatory activity has been consistently shown to 

predict conscious perception of psychophysical stimuli in a variety of detection 

tasks in multiple modalities, wherein increases in power often precede stimuli 

that have gone undetected (Babiloni et al., 2006; Ergenoglu et al., 2004; 

Hanslmayr et al., 2011; Linkenkaer-Hansen, 2004; Mathewson et al., 2009; 

Romei et al., 2008; van Dijk et al., 2008). Specifically, in the auditory domain, 

power dependency in the lower frequency bands is implicated in the detection 

of acoustic targets. In a paradigm where listeners detected clicks embedded in 

noise, theta (~2-6 Hz) power was greater for targets that were missed, than for 

detected targets (Ng et al., 2012). Thus, given the wealth of evidence 

demonstrating power dependencies of perception, pre-stimulus oscillatory power 

serves an inhibitory role in psychophysical perceptual processing. It is argued 

that this inhibitory mechanism is the result of a modulation of response gain 

(Chaumon & Busch, 2014).   

Ongoing oscillatory activity can also be characterized by metrics quantifying 

oscillatory phase. At the same frequency, variations in network state excitability 

occur on shorter temporal scales than variations in oscillatory power (Buzsáki & 



Chapter 2 37 
 
Draguhn, 2004; Klimesch et al., 2007; Lakatos et al., 2005; Montemurro et al., 

2008; Rajkai et al., 2008; Sirota et al., 2008). Therefore, oscillatory phase 

effects could be more informative as to the precise encoding of sensory 

information than power (C. Kayser et al., 2009).  

As shown with oscillatory power, pre-stimulus phase can predict several facets 

of neural processing  (VanRullen et al., 2011). This has been demonstrated in 

relation to the magnitude and latencies of ERPs (Brandt, 1997; Jansen & Brandt, 

1991; Kruglikov & Schiff, 2003), and reaction times (Callaway & Yeager, 1960; 

Dustman & Beck, 1965; Lakatos et al., 2008). Furthermore, there is evidence 

that conscious visual perception is gated by pre-stimulus alpha-band oscillatory 

activity (N. A. Busch et al., 2009; Mathewson et al., 2009), but only when the 

stimulus is attended to (versus unattended; Busch and VanRullen, 2010)). In the 

auditory domain, stimulus detection paradigms have shown that pre-stimulus 

phase of slower oscillations predicts the detection of low-level acoustic targets 

embedded within complex acoustic scenes in theta (Ng et al., 2012) and delta 

(Henry & Obleser, 2012) bands. Meanwhile, performance on discrimination tasks 

incorporating more complex (i.e. speech, laughter) stimuli is dependent on the 

phase of pre-stimulus alpha (Strauss et al., 2015) and beta (Pinheiro et al., 2017) 

band activity.  

Until recently, neuroimaging studies failed to establish the stability of oscillatory 

gating mechanisms across tasks in the same participants, as well as within which 

cortical processes the mechanisms are generated. In a recent study we collected 

EEG data in participants performing two auditory discrimination-in-noise tasks 

relying on distinct acoustic features. We delineated two mechanisms by which 

pre-stimulus activity influences perception across tasks: one in which power 

scales the quality of acoustic sensory representations in auditory networks, and 

one in which phase directly influences decision-making processes within later-

activated fronto-parietal networks (S. J. Kayser et al., 2016). In Chapter 3, we 

extend the findings of this body of literature by investigating the stability of 

these mechanisms with age.  
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2.4.2 Cortical oscillatory entrainment to speech  

Oscillatory phase can also reveal insights into the auditory system’s response to 

dynamic stimuli (Giraud & Poeppel, 2012b). Complex stimuli such as speech are 

rich in slow temporal features and modulations in amplitude and frequency 

(Chandrasekaran et al., 2010; Drullman et al., 1994a, 1994b), which elicit strong 

responses in the auditory cortex  (Ding & Simon, 2009; Henry et al., 2014). 

Cortical oscillations have been shown to entrain to the temporal profile of 

dynamic acoustic input (Gross et al., 2013; M. F. Howard & Poeppel, 2010; Luo & 

Poeppel, 2007), resulting in increased neural gain (C. Kayser et al., 2015; 

Lakatos et al., 2008).There is evidence that the strength of entrainment 

increases with speech intelligibility (Ding & Simon, 2014; S. J. Kayser et al., 

2015; Hyojin Park et al., 2015) and attention (Ding & Simon, 2014; Mesgarani & 

Chang, 2012). Thus cortical entrainment serves as an oscillatory mechanism 

facilitating conscious perception by tracking stimulus temporal features. In the 

ageing brain cortical oscillatory entrainment to speech within delta band activity 

is weaker and is less flexible (Henry et al., 2017). 

In this thesis we do not examine cortical oscillatory entrainment itself, however 

this body of literature gives us important insights into the rhythmic properties of 

the brain, and into how the brain parses speech stimuli. In Chapter 3 we 

investigate how the rhythmic state of the brain prior to conscious perception 

influences perceptual decision making. In Chapter 4 and Chapter 5 we 

investigate the behaviour and neural gains of AV speech, and how this gain 

modulates with the visual predictability of speech.  

2.4.3 Age-related differences in oscillatory frequency 

A general age-related flattening of oscillatory power spectra has been reported, 

possibly as a result of greater neural noise and neuronal de-synchronization in 

the elderly brain, and is believed to be associated with cognitive decline (S. L. 

Hong & Rebec, 2012; Tran et al., 2016; Voytek et al., 2015). Additionally, peak 

alpha frequency shows age-associated slowing (Chiang et al., 2011; Hashemi et 

al., 2016; Hubbard et al., 1976; Oken & Kaye, 1992; Richard Clark et al., 2004; 

Woodruff & Kramer, 1979). Older adults’ alpha power is also more sensitive to 
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stimulus degradation (Wostmann et al., 2015) and attention (Henry et al., 2017) 

compared to younger adults.  

Ageing is associated with increased alpha power and decreased theta power at 

rest (Cummins & Finnigan, 2007; Hartikainen et al., 1992; Polich, 1997; Vlahou 

et al., 2014; Volf & Gluhih, 2011; Widagdo et al., 1998). In memory tasks, older 

adults show reduced theta power and poorer theta modulation than younger 

adults at both encoding and retrieval (Cummins & Finnigan, 2007; Kardos et al., 

2014; Karrasch et al., 2004; McEvoy et al., 2001; Tóth et al., 2014).  

In summary, as the brain ages both task-related and baseline theta and alpha 

frequency activity changes, such that alpha frequency is slower and there is a 

flatter overall power spectrum. In Chapter 3, we are interested in the frequency 

bands in which pre-stimulus oscillatory activity influences sensory encoding, 

decision making processes, and behavioural choice. It is likely that differences in 

the balance of theta and alpha activity will be observed.  

2.5 Early ERPs 

Early auditory evoked responses have been characterised by components at 

distinct timescales. Of note are positive and negative deflections occurring at 

around 100 ms (P1 and N1 respectively), and a positive deflection occurring at 

around 200 ms (P2). The auditory P1-N1-P2 complex is a pre-attentive auditory 

evoked potential (AEP), which is involved in inhibitory control in sensory gating 

(P1) and detecting acoustic change (N1; Pratt, 2012). However, the functional 

significance of the P2 deflection is relatively unclear, as the extent of the 

exogenous and endogenous properties of the P2 are debated (Crowley & Colrain, 

2004). As the brain ages cognitive and neural processes become slower (Bieniek 

et al., 2013; Price et al., 2017; Salthouse, 1996). Indeed, N1 and P2 responses of 

the P1-N1-P2 AEP are typically delayed (Anderer et al., 1996; Bertoli et al., 

2005; Harkrider et al., 2005; Harris et al., 2007; Henry et al., 2017; Pfefferbaum 

et al., 1980; B. Ross et al., 2007; Tremblay et al., 2002, 2003) and larger 

(Amenedo & Díaz, 1998, 1999; Anderer et al., 1996; Harkrider et al., 2005; 

Pfefferbaum et al., 1980; Tremblay et al., 2003) in the aged brain. However, 

age-related diminishing of P2 amplitude has also been reported (Czigler et al., 

1992; Henry et al., 2017; Rufener et al., 2014). Some studies report 
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amplification and delaying of P1 responses with age (Bertoli et al., 2005; B. Ross 

et al., 2007; Tremblay et al., 2002) while others found no such effects (Harris et 

al., 2008; Henry et al., 2017; Tremblay et al., 2003).  

Multisensory research has investigated how AV stimuli influences the dynamics of 

early evoked responses, in an attempt to understand the neural correlates of AV 

integration or enhancement. Successful AV integration is associated with an AEP 

with N1 and P2 peaks that occur earlier and/or have a larger amplitude 

compared to unisensory or mismatching AV conditions (Alsius et al., 2014; Baart, 

2016; Baart et al., 2014; Frtusova et al., 2013; Ganesh et al., 2014; Kaganovich 

& Schumaker, 2014; Klucharev et al., 2003; Stekelenburg & Vroomen, 2007; 

Treille et al., 2014; van Wassenhove et al., 2005). In the ageing brain, N1 peak 

amplitude is enhanced by AV stimuli (Frtusova et al., 2013; Winneke & Phillips, 

2011) and occurs earlier (Frtusova et al., 2013). It is unclear whether N2 peak 

enhancement in ageing is a result of compensatory mechanisms which are 

engaged to support sensory processing, or whether there is less effective use, or 

sensory processing of, additional visual information.  

In Chapter 3, Chapter 4, and Chapter 5 we investigated temporal and amplitude 

differences in the P1-N1–P2 component of auditory evoked activity between 

younger and older adults. In Chapter 3 and Chapter 4 we look at these ERPs in 

response to the onset of background noise. However, in Chapter 4 and Chapter 5 

we also investigate whether these components were sensitive to AV 

enhancement and phonemic visual predictability of word stimuli, and whether 

such effects interacted with age. 

2.6 Late ERPs 

The P3 component is a positive deflection occurring in evoked activity at around 

300ms, and has been used as a measure, firstly, of processes involved in 

mapping incoming sensory information onto internal representations in working 

memory (Polich, 2012), and secondly, has been suggested as a marker of 

decision-making (Dully et al., 2018). In AV paradigms, the P3 peak amplitude is 

suppressed in response to congruent AV stimuli  in comparison to incongruent AV 

stimuli (Andres et al., 2011; Stekelenburg et al., 2018), and in comparison to AO 

stimuli ( Hernández-Gutiérrez et al., 2018; Hessler et al., 2013; Irwin et al., 
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2018, 2017; Starke et al., 2017). The P3 amplitude is also sensitive to changes in 

memory load (Segalowitz et al., 2001), but its topography appears to be task-

dependent (Polich, 2012) in the younger adult brain. In older adults, the P3 peak 

has a more frontal topography and is delayed in comparison to younger adults 

(Fjell et al., 2005; Fjell & Walhovd, 2001, 2004). 

The N4 component is observed as a negative deflection between 250 and 550ms, 

and is believed to index the mapping of sensory input to contextual 

representations (for review see Duncan et al., 2009) in semantic processing. The 

N4 peak is sensitive to semantic congruence, which in AV paradigms is observed 

as peak amplitude enhancement when AV stimuli is incongruent in terms of 

phonetic (Lebib et al., 2004), lexical (Kaganovich et al., 2016), and semantic 

content (Van Petten et al., 1999). Thus, the N4 component is sensitive to 

semantic congruence, however there is also evidence that it is sensitive to 

semantic cloze probability (Kutas & Federmeier, 2011). In an ageing context, the 

N4 amplitude is typically later (Gunter et al., 1992, 1996) and supressed (Cameli 

& Phillips, 2000) in older adults, compared to younger adults. 

In Chapter 4 and Chapter 5 we investigated the temporal and amplitude 

differences in late evoked activity between younger and older adults. We were 

interested in whether these components were sensitive to AV enhancement and 

phonemic visual predictability of word stimuli, and whether such effects 

interacted with age. 

2.7 Treatment of age as a variable 

An important decision that must be made when designing ageing research is 

whether to treat age as a continuous or categorical variable, and whether to 

take to a cross-sectional or longitudinal approach. Studies which consider age as 

a continuous variable can easily model the changes in cognitive abilities and 

neural metrics as a function of age. For example, Rousselet et al. (2010) 

investigated age-related changes in noise sensitivity in facial stimuli across the 

visual processing time-course. The authors modelled the relationship between 

EEG amplitude and noise features (local and global coherence) at each time 

point and EEG channel. Assessing the fit of the models across time and across 

ages revealed a progressive age-related delay in noise sensitivity of around 1 ms 
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per year. This kind of design allows for the investigation of whether age-related 

changes are progressive or non-linear across the lifespan. However, a ‘middle-

aged’ sample, anecdotally, is more difficult to recruit.  

Cross sectional designs have the benefit of being able to observe and draw group 

comparisons using several different metrics relatively quickly. Assuming that 

homogenous, representative samples can be recruited, the results of cross-

sectional studies should, in theory, be consistent with the results of longitudinal 

studies. However, this is not always the case. Nyberg et al. (2010) conducted an 

fMRI study wherein participants aged between 49 and 79 years of age completed 

a semantic categorisation task. The task was completed twice, with an interval 

of 6 years between completions, and both cross-sectional and longitudinal 

analyses were conducted on the structure and functional neuroimaging data 

between time points. Cross-sectional analyses revealed an age-related over-

recruitment of frontal regions, whereas the longitudinal analyses revealed an 

age-related under-recruitment of frontal regions. In a behavioural study, 

Rönnlund et al. (2005) investigated the progression of episodic and semantic 

memory processes from age 35 to 80 years old, tested across an interval of 5 

years. Both types of memory showed similar age-related decline from age 60 

onwards, as observed in both cross-sectional and longitudinal analyses. 

Differential patterns of progression were found between cross-sectional and 

longitudinal analyses, however, at the younger end of the age-spectrum. Cross-

sectional analyses suggested that episodic memory declines gradually with age 

from 35 years onwards, whereas longitudinal analyses suggested that episodic 

memory remains stable until age 60. Furthermore, cross-sectional analyses 

suggested that semantic memory remains stable up to age 60, whereas 

longitudinal analyses suggested that semantic memory increases with age up to 

age 60. Lastly, Pfefferbaum and Sullivan (2015) studied age-related changes in 

hippocampal volume in a sample of adults aged 20 to 70 years old, scanned over 

a period of up to 8 years. A cross-sectional analysis approach revealed no linear 

relationship between age and hippocampal volume; instead, a quadratic 

(curvilinear) model appeared to be a better fit for the data. On the other hand, 

a longitudinal approach, taking into account the trajectory of hippocampal 

volume for each participant, revealed a linear decline in volume with age. 

Longitudinal research might offer more control over unobserved heterogeneity in 
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the recruited sample, which is important considering that a number of different 

demographic, lifestyle, genetic and environmental factors might influence 

cognitive ageing (Daffner, 2010). However, longitudinal studies have been 

criticised for lacking sufficient power in detecting age-related decline 

(Salthouse, 2000b).  

In this thesis we take a cross-sectional, group-comparison approach in studying 

age-related differences in oscillatory and evoked activity underlying auditory 

and audio-visual perceptual decision-making. This approach was taken primarily 

due to the time constraints imposed by the Ph.D. program. Across all three 

experimental chapters, we define our younger adults as those aged between 18 

and 30 years old, and we define older adults as those aged 60 years old and 

above. This is consistent with previous ageing studies investigating pre-stimulus 

cortical oscillations (Henry et al., 2017; Herrmann et al., 2016; Wostmann et al., 

2015), as in Chapter 3, and behavioural and neural correlates of audio-visual 

speech perception (Frtusova et al., 2013; Sekiyama et al., 2014; Winneke & 

Phillips, 2011), as in Chapter 4 and Chapter 5.  

2.8 Thesis rationale 

In young participants, the state of rhythmic brain activity prior to a stimulus has 

been shown to modulate the neural encoding and perceptual impact of this 

stimulus – yet it remains unclear whether, and if so, how, the perceptual 

relevance of pre-stimulus activity changes with age. In Chapter 3, using the 

auditory system as a model, we recorded EEG activity during a frequency 

discrimination task from younger and older human listeners. By combining 

single-trial EEG decoding with linear modelling we demonstrate consistent 

statistical relations between pre-stimulus power and the encoding of sensory 

evidence in short-latency EEG components, and more variable relations between 

pre-stimulus phase and subjects’ decisions in longer-latency components. At the 

same time, we observed a significant slowing of auditory evoked responses and a 

flattening of the overall EEG frequency spectrum in the older listeners. Our 

results point to mechanistically consistent relations between rhythmic brain 

activity and sensory encoding that emerge despite changes in neural response 

latencies and the relative amplitude of rhythmic brain activity with age. 
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As we age, listening to a speaker in noisy environments becomes increasingly 

difficult due to changes in sensory acuity and attentional control. Most listeners 

benefit from the presence of reliable visual cues in speech-in-noise scenarios, 

and many studies have investigated the neural signatures of behavioural AV 

enhancement. Yet, it remains unclear how age, acoustic reliability and the 

presence of visual information interact to shape behaviour. Chapter 4, to 

address this and the underlying physiological processes, we recorded EEG 

activity during an audio-visual speech-in-noise paradigm in younger and older 

listeners. Speech was presented in two audio-visual conditions (AV informative, 

AVinf; auditory-only informative, AOinf) and at two acoustic noise levels.  

Behaviourally, younger and older adults performed comparably. Performance 

was greater for AVinf speech compared to AOinf speech across groups and noise 

levels, and was poorer at low noise levels. AV enhancement was greater in high 

noise levels, across all participants, and older adults derived greater AV 

enhancement compared to younger adults (an effect that was consistent across 

noise levels). Neurally, we found that AV enhancement is represented by a 

centro-parietal P3-like activity in older adults and an N4-like fronto-central 

activity in younger adults, but found that this activity did not correlate with 

behavioural AV enhancement. Our results point to distinct patterns of late 

evoked activity underlying AV enhancement between younger and older adults, 

possibly representing distinct cognitive (memory) strategies in predicting 

upcoming target stimuli. 

Although it has been observed that visual speech enhances the perception of 

auditory speech, and that this has distinct influences on the amplitude and 

timing of evoked activity, little is known about how the predictability of visual 

speech about the upcoming auditory speech influences ERP dynamics. Studies 

have shown that evoked activity at multiple timescales is sensitive to different 

phonemic features of auditory speech, however it remains unclear whether and 

how behavioural AV enhancement might vary as a function of the visual 

predictability of speech targets, and how this is represented 

neurophysiologically. In Chapter 5, we address this by carrying out a secondary 

analysis of the data reported in Chapter 5. As well as considering behaviour and 

EEG data relating to age group, information condition, and noise, we also 

considered the articulation type (i.e. visual predictability; labial, non-labial). 
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Behaviourally, we found that word discrimination performance was greater for 

target words with non-labial initial phonemes, compared to labial initial 

phonemes. Furthermore, we found that AV enhancement was greater for labial 

initial phonemes, compared to non-labial initial phonemes, and this was 

consistent across age groups. Neurally, we found that visual predictability was 

reflected by late fronto-central negativity in older adults, but not in younger 

adults. However, we did not find evidence of an interaction between visual 

predictability and AV enhancement in terms of evoked activity, raising further 

questions about how visual predictability of speech is represented the brain’s 

electrophysiology. Our results point to distinct patterns of late evoked activity 

underlying visual predictability of visual speech, again possibly reflecting 

differential strategies in predictive coding. 
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Chapter 3 Consistent pre-stimulus influences on 
auditory perception in younger and older adults 

3.1 Introduction 

In everyday life our acoustic environments are often teeming with incoming 

information. Yet, the auditory brain manages to filter target information from 

noise seamlessly, at least in the young and healthy brain (Bregman, 1994).  With 

advancing age listening becomes more challenging, particularly in “cocktail 

party” scenarios (de Villers-Sidani et al., 2010; Pichora-Fuller et al., 2017; Rossi-

Katz & Arehart, 2009). This difficulty could arise from age-related changes in 

peripheral and central auditory processes (S. Anderson et al., 2013; Clinard et 

al., 2010; Clinard & Cotter, 2015; Harris & Dubno, 2017), such as the poorer 

encoding in early sensory regions (Grose & Mamo, 2012; He et al., 2007; Mahajan 

et al., 2017; Paraouty et al., 2016; Wallaert et al., 2016). Changes in higher 

cognitive processes may also influence older adults’ performance via top-down 

feedback (Henry et al., 2017), through reduced attentional flexibility (M. D. 

Nunez et al., 2015; Zanto & Gazzaley, 2014), or changes in decision criteria 

when reporting perceptual performance (Dully et al., 2018). 

As shown by recent work, perception depends not only on the qualities of the 

sensory signal but also on the state of the brain prior to stimulus occurrence 

(Henry et al., 2014, 2017; Henry & Obleser, 2012; S. J. Kayser et al., 2016; Ng et 

al., 2012; Pinheiro et al., 2017; Steinmetzger & Rosen, 2017). In many studies, 

the state (power or phase) of pre-stimulus rhythmic brain activity has been 

predictive of perceptual performance in a variety of tasks, in line with the view 

that perception in general is controlled by a cascade of rhythmic neural 

processes (Schroeder et al., 2010; VanRullen, 2016). Furthermore, changes in 

top-down influences by attentional and cognitive strategies are also reflected in 

rhythmic brain activity, especially in the alpha and beta bands (Henry et al., 

2017; Petersen et al., 2015; Strauss et al., 2015; Wöstmann et al., 2017). In this 

context of relating rhythmic brain activity to perception we recently described 

two putative mechanisms by which pre-stimulus activity shapes auditory 

perceptual decisions in younger adults (S. J. Kayser et al., 2016); in that study 

the power of low-frequency and beta activity affected the encoding of sensory 
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information in early auditory regions, while the phase of the alpha band 

influenced decision processes in high-level regions.  

This importance of rhythmic activity for perception raises the question as to 

whether the underlying mechanisms and relevant time scales are conserved 

across the age span. For example, it is known that cognitive and neural 

processes become slower with age (Bieniek et al., 2013; Price et al., 2017; 

Salthouse, 1996), which is reflected in changes in the amplitude and latency of 

auditory evoked responses (Harris et al., 2008; Henry et al., 2017; Tremblay et 

al., 2003), an increase in response stereotypy (Garrett et al., 2011, 2013; 

Herrmann et al., 2016), and changes in the slope of the overall frequency 

spectrum of brain activity (S. L. Hong & Rebec, 2012; Tran et al., 2016; Voytek 

et al., 2015).This makes it possible that the patterns of rhythmic brain activity 

that shape perception systematically change with age.  

We here capitalized on our previous study in a group of younger subjects to 

directly probe whether the mechanisms linking pre-stimulus brain activity, 

sensory encoding and decision-making are conserved with age. Specifically, we 

compared behavioural and EEG data from younger (<30 years) and older (>65 

years) listeners with no, or only mild hearing loss, obtained during an auditory 

frequency discrimination-in-noise task. For each group we linked pre-stimulus 

oscillatory activity to neural signatures of stimulus encoding and decision making 

using single trial modelling. We expected to observe the same patterns of 

statistical relations between neural activity, sensory encoding and behavioural 

responses in both groups (i.e. significant relations between the same variables), 

but with the possibility that the precise time scales (i.e. frequency bands of 

brain activity) differed. For comparison with previous studies, we also quantified 

age-related changes in the amplitude and timing of evoked responses and the 

spectral slope of the overall EEG signal. 

3.2 Materials and Methods 

3.2.1 Participants 

We collected data from 16 younger (6 male; mean ± SD age, 23.9 ± 1.1 years) 

and 17 older adults (8 male; mean ± SD age, 68.4 ± 3.6 years). We have reported 
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data from the younger group, with the exclusion of power spectral density (PSD) 

and AEP analyses, in our previous study (S. J. Kayser et al., 2016) (the frequency 

task there). For this reason, we had set the target sample size for the group of 

older subjects to match the size of the younger group. Younger participants had 

normal self-reported hearing, as measured by the Better Hearing Institute Quick 

Hearing Questionnaire (Kochkin & Bentler, 2010). Older participants had no more 

than mild hearing loss as measured by the Better Hearing Institute Quick Hearing 

Questionnaire, Tinnitus Handicap Inventory (THI where applicable ; McCombe et 

al., 2001) and pure-tone audiometric (PTA) procedures. The PTA procedure was 

presented via MATLAB (2015b; The MathWorks Inc., Natick, MA) and was 

designed in accordance with guidelines from the British Society of Audiology 

(BSA; British Society of Audiology, 2012)). We tested participants’ hearing 

thresholds at frequencies of 250Hz, 500Hz, 1000Hz, 2000Hz, 4000Hz and 8000Hz 

individually for each ear. Sound levels were calibrated using a Bruel&Kjaer 

sound-level meter. Older participants were also screened for cognitive 

impairment using the Montreal Cognitive Assessment (MoCA,Nasreddine et al., 

2005), D2 test of attention (Brickenkamp & Zillmer, 1998), and the digit span 

working memory test (M. Turner & Ridsdale, 2004). Due to possible variability in 

participants’ frequency discrimination abilities (Foxton et al., 2009; Liang et al., 

2016; Semal & Demany, 2006), frequency difference limens (see below) were 

tested both at screening and immediately prior to the main experiment for each 

group. Group-level auditory and cognitive test scores are shown in Table 1. Four 

older participants were excluded at screening based on pre-defined criteria: two 

participants had moderate to severe hearing loss, as indicated by PTA testing, 

and in two participants frequency difference limens could not be measured 

reliably. Participants indicated no history of mental/neuropsychological 

disorders, stroke, or brain or ear injuries. Participants gave written informed 

consent and received £6/hour payment plus travel expenses for participating. 

This study is in accordance with the Declaration of Helsinki and was approved by 

the local ethics committee (College of Science and Engineering, University of 

Glasgow). 
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 PTA 
(dB) 

BHI 
QHQ 

THI MoCA D2  DSpan 

CP TN-E 

O
ld

er
 28.96 

[18.93, 

39.72] 

7 [0, 33] 6 [2, 12] 

(n=3) 

29 [26, 

30] 

199 [163, 

251] 

121 

[113, 

130] 

105.5 

[79, 121] 
Yo

un
ge

r 

N/A 2.5 [0, 

11] 

N/A N/A N/A N/A N/A 

Table 1. Auditory and cognitive test scores. Screening scores for younger (where applicable) 
and older participants who passed screening. Hearing scores are derived from pure tone 
audiometry (PTA), Better Hearing Institute Quick Hearing Questionnaire (BHI QHQ), and Tinnitus 
Handicap Inventory (THI). PTA scores reported are measured in decibels (dB) and represent the 
average threshold across ears and frequencies. THI was administered only as applicable, thus n is 
reported. Cognitive test scores are derived from Montreal Cognitive Assessment (MoCA), D2 test 
of Attention (D2) and digit span (DSpan) tests. Scores correspond to median across all participants 
in each age group. Square brackets indicate minimum and maximum scores. N/A indicates where 
data was not available. 

3.2.2 Auditory stimuli 

Participants completed a 2-alternative forced-choice auditory frequency 

discrimination task, as described in Kayser et al. (2016). Participants were 

presented with two sequential target tones embedded within a noisy background 

and had to discriminate which tone was higher in frequency (see Figure 1A). 

Targets were pure-tones of 50ms duration (including a 5ms cosine on/off ramp) 

and spaced 50ms apart. The noise was 4s in duration and comprised a naturalistic 

cacophony of sounds, consisting of environmental (forest and city) sounds, animal 

sounds, and sounds originating from tools (also used in Kayser et al. (2016) and 

Ng et al. (2012). The same noise clip was used in each trial. Noise intensity level 

was calibrated using a Bruel&Kjaer (model 2250) sound-level meter to an average 

of 65 decibels (dB) root-mean-square (rms) level. Target tones were equated in 

intensity at a SNR of +2dB relative to background intensity, based on the rms 

level. The second tone was kept at a constant 1024Hz while the first varied 

pseudo-randomly over 7 (younger participants) or 5 (older participants) equally-

spaced (on an octave scale) levels of a frequency difference above or below the 

second (pseudorandomized and balanced across all trials), ranging from 0Hz 

difference to 2Δ in younger and 2.5ΔHz in older participants (where Δ is the 

participants’ own 70% correct frequency difference limen). The reason we reduced 

the number of stimulus levels for the older adults was to keep the experimental 

duration to a minimum to avoid fatigue.  
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3.2.3 Experimental procedure 

Auditory stimuli were controlled using MATLAB using the Psychophysics Toolbox 

Version 3 (Brainard, 1997) and presented using Sennheiser headphones. Prior to 

the main experiment, participants completed training trials to familiarize 

themselves with the task and their frequency difference (in noise) limens were 

obtained using three interleaved 2-down-1-up staircase procedures. In the actual 

experiment target tones were presented at one of six possible pseudorandom 

delays (2400 + n*33ms, where n = 0 … 5) relative to background onset. Trials 

were separated by an inter-trial period uniformly distributed between 1700 and 

2200ms. Participants were instructed to respond as accurately as possible, and 

the background noise terminated once the response was provided, or after 4 s. 

Trials were presented in a block design of 120 trials per block, with each 

participant completing 360 trials in total.  

3.2.4 EEG recording and pre-processing 

EEG signals were recorded in a dark and electrically-attenuated room using an 

active 64-channel BioSemi system (BioSemi B.V., Netherlands). Electrooculogram 

(EOG) was derived from four electrodes placed at the outer canthi and below each 

eye. Electrode offsets were kept below 25mV, and data were recorded at a 500Hz 

sampling rate using a 208Hz low-pass filter. 

Pre-processing and data cleaning were carried out as described previously in (S. 

J. Kayser et al., 2016). In brief, the data were filtered between 1-70Hz and 

Independent Components Analysis was used to identify eye movement and blink 

artefacts (Debener et al., 2010) and muscle artefacts (Beirne & Patuzzi, 1999; 

Hipp & Siegel, 2013). Trials were rejected if the peak signal on any electrode 

exceeded ± 100 µV. Further trials were rejected if participants responded faster 

than 400ms following the first target tone; to ensure that participants had allowed 

sufficient time for full attention to, and full availability of, sensory evidence. Based 

on these criteria we rejected an average of 5% of trials. EEG signals were re-

referenced to the common average for further analysis. 



Chapter 3 51 
 
3.2.5 Analysis methods 

3.2.5.1 Evoked responses 

We compute AEPs in response to the onset of the acoustic background based on 

trial-averaged data over a 3x3 grid of central channels (FC1, FCz, FC2, C1, Cz, 

C2, CP1, CPz, CP2). Individual participants’ P1, N1 and P2 component median 

peak latencies and amplitudes were taken at the maximum negative or positive 

deflection within component-specific time windows, and were then compared 

between groups. 

3.2.5.2 Pre-target power spectra 

Estimates of the frequency spectra of the ongoing EEG activity prior to the 

target stimuli were derived for each subject using Welch’s method, using a 

sliding Hanning windows of 120ms length, with 0% overlap, in a time window of -

0.6 s to 0 s relative to target onset. PSD estimates were initially calculated for 

each channel and subsequently averaged. PSD estimates were normalized by 

removing individual participants’ mean and PSD slopes were then fit in semi-log 

space using linear regression at frequencies between 1Hz and 25Hz whilst 

excluding alpha power between 7 and 14 Hz (Tran et al., 2016; Voytek et al., 

2015).  

3.2.5.3 Single trial decoding of EEG signals  

To link pre-stimulus activity with perception we used the same statistical 

modelling approach as in our previous study (S. J. Kayser et al., 2016). We 

computed pre-stimulus activity in task-relevant EEG components extracted using 

multivariate linear discriminant analysis (Boyle, 2018; S. J. Kayser et al., 2016; 

Parra et al., 2005; Philiastides & Sajda, 2006; Ratcliff et al., 2009). We searched 

for discriminant components within the EEG data that best discriminated 

between the frequency conditions (i.e. 1st or 2nd tone higher in frequency; see 

Kayser et al., 2016). Each projection Y(t), of the EEG data, x(t), is defined by 

spatial weights, w(t), and a constant, c, as follows: 

Y(t) = ∑i wixi(t) + c 
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with i summing across channels. Classification was based on regularized linear 

discriminant analysis (Philiastides et al., 2014), which was applied to the EEG 

data in 80ms sliding windows. We assessed classifier performance using the area 

under the receiver operator characteristic (ROC) curve (referred to herein as 

Az), based on 10-fold cross validation. The statistical significance of the 

performance was assessed by shuffling condition labels 1000 times, computing 

the group-average Az value for each randomization, and taking the maximal Az 

value along time to correct for multiple comparisons (Nichols & Holmes, 2003). 

We estimated the corresponding forward model for each component by 

computing the normalized correlation between the discriminating projection and 

the original EEG data (Parra et al., 2005). 

To select scalp projections that reflect EEG activity that was temporally 

consistent across subjects, we selected three systematically different 

components which corresponded to three continuous time windows using K-

means clustering based on component topographies (see Kayser et al.(2016) for 

details). For each participant, we then extracted the weight (w) from the time 

point associated with the maximal Az value within each component for further 

analysis, which allowed us to incorporate between-subject variability in response 

timing in the analysis. 

Since Y(t) is indicative of the extent of separability between frequency levels, 

we exploit this as a measure representing the amount of encoded sensory 

evidence about the task relevant tones (Grootswagers et al., 2017; Guggenmos 

et al., 2017). We computed each components’ time course by applying the 

respective weight to all trials and time points, resulting in a one-dimensional 

projection of single-trial task-related activity which we then analysed further. 

3.2.5.4 Pre-target time-frequency analysis 

Time-frequency representations (TFRs) of the rhythmic brain activity prior to 

target were calculated using Morlet wavelets in FieldTrip (Oostenveld et al., 

2011). Frequencies ranged from 2Hz to 40Hz in linear steps of 1Hz below 16Hz 

and 2Hz above. To achieve greater frequency smoothing at the higher 

frequencies the width of individual wavelets scaled with frequency (min = 4 

cycles, max = 9 cycles). TFRs were calculated between -0.6s and -0.1s relative 
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to target onset in 50ms bins. To avoid post-target contamination, we set the 

post-target period to zero for TFR analysis by applying a 40ms Hanning window 

to the last 40ms of the pre-stimulus period (Henry et al., 2014). For subsequent 

regression analyses, the power was z-scored within participants and frequency 

bands across time and trials (S. J. Kayser et al., 2016).  

3.2.5.5 Statistical analyses 

Group-level psychometric curves were computed for the percentage of correct 

responses as a function of stimulus level (averaging over temporal positions), 

and as a function of temporal position (averaging over frequency difference). 

The median performance, averaging across stimulus levels and temporal 

positions, between age groups was compared using a Wilcoxon rank sum test, 

with effect size (r) calculated by dividing the Z-value by the square root of N, 

where N represents the number of observations (Field, 2013). To test whether 

performance differed as a function of temporal position we used a non-

parametric, one-way repeated-measures analysis of variance by ranks (Friedman 

Test). 

AEP peak amplitudes/latencies and PSD slopes were compared between age 

groups using a non-parametric Wilcoxon rank-sum tests, with effect sizes (r) 

calculated following (Field, 2013). 

To investigate the relationship between single-trial pre-stimulus activity 

(power/phase in particular frequency bands and time bins), sensory evidence, 

Y(t), extracted from each component), and perceptual choice we used linear 

regression modelling (Figure 4). Model 1 tested whether pre-stimulus 

power/phase influences choice using regularized logistic regression. Model 2 

tested whether pre-stimulus power/phase influences sensory evidence Y(t) using 

linear regression. Model 3 tested for a direct influence of sensory evidence on 

choice. Finally, we tested for possible mediation effects, where pre-stimulus 

activity state influence choice through mediation of sensory evidence (i.e. an 

indirect influence of pre-stimulus state on choice; see Kayser et al., 2016) using 

an additional model: regression of choice on both Y and power/phase. Mediation 

effects were tested by comparing this with model 3. We calculated each model 

separately for power and phase, and for each pre-target time-frequency point. 
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For regressions involving sensory evidence, we coded Y(t) as an unsigned 

variable and Z-scored it within each stimulus level, to reflect the amount of 

evidence about the respective stimulus. For phase, both sine- and cosine-

transformed phase angles were submitted to the regression model. Mediation 

effects were defined by adjusting for dichotomous outcomes (MacKinnon et al., 

2007).  

Group-level statistical testing was performed using cluster-based permutation 

procedures (Maris & Oostenveld, 2007) and correcting for multiple comparisons 

across relevant dimensions, as described previously (S. J. Kayser et al., 2016). 

Specifically, we used 1000 randomization realizations, a 5th percentile cut-off to 

define significant clusters, defining clusters by at least four significant 

neighbours, and using the cluster mass index. A two-sided test at p < 0.05 was 

performed on the clustered data and we corrected for multiple comparisons 

across regression models and components using the false discovery rate (FDR) at 

p < 0.05. We report effect sizes for clustering statistics as the cluster mass 

across all bins within a cluster (Tsum).  

The peak effect frequencies were compared across groups using a percentile 

bootstrap test (using 2000 samples). We randomly assigned participants to either 

group and compared the actual difference in group-level peak frequencies 

extracted from the respective statistical contrast for each regression factor to 

the distribution of differences in the randomized data. For this analysis effects 

were averaged over time for the duration of the respective clusters. Given that 

there were two significant clusters linking power to sensory evidence, we 

constrained the range of potential peak frequencies for each effect to distinct 

but overlapping ranges: for the alpha/beta cluster to 8-26Hz, and for the low-

frequency cluster to 2-13Hz. We note that the results did not depend on the 

precise values of the respective cut-off frequencies.  

To link changes in AEP amplitudes and latencies to the peak frequencies of pre-

stimulus effects we first computed leave-one-out estimates of the respective 

peak-frequencies of the pre-stimulus effects and of AEP amplitudes and 

latencies.  We relied on a leave-out-one (jacknife) approach as peak frequencies 

for pre-stimulus effects were more robust at the group-level than for individual 

subjects. We then used the six AEP characteristics (c.f. Figure 2) as predictors 
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for the peak frequency of the pre-stimulus effect across the full sample of 

younger and older participants in a linear regression model, for which we 

obtained the overall model performance and significance.  

3.3 Results 

3.3.1 Behavioural Performance  

As expected given the experimental design, the overall performance was 

comparable across group (averaged over stimulus level and temporal position 

younger median = 78.9% correct, older median = 74.4%, Z= 1.251, p = 0.211, r = 

0.25; Figure 1B). To avoid expectancy effects, target tone pairs were presented 

at six temporal positions relative to background onset. Friedman’s tests revealed 

no effect of target position on performance in either group (younger adults: 

χ2(5)=5.28, p = 0.382; older adults: χ2(5) = 8.3, p = 0.141; Figure 1C). This 

suggests that any influence of pre-target activity on performance would occur 

without explicit entrainment of auditory cortical activity to the acoustic noise in 

either group (Henry & Obleser, 2012; Ng et al., 2012). Furthermore, this also 

rules out the possibility that the duration of the background sound prior to the 

target acted as a priming signal, the duration of which could have influenced 

performance. 
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Figure 1.Auditory paradigm and task performance. (A) Auditory paradigm. Pure tone targets 
(50ms duration, spaced 50ms apart), were presented at one of six possible onsets against a 
continuous background noise cacophony. The second tone was kept at 1024Hz while the first 
varied over 7 (younger adults) or 5 (older adults) levels of frequency difference, titrated around 
participants’ own frequency difference limens, Δ. (B) Group level task performance as a function of 
stimulus level, averaged across target positions. Younger and older adults show comparable task 
performance. (C) Group level task performance as a function of target position, averaged across 
stimulus levels. There were no significant effects of target position on performance in either group 
and overall there was no significant difference between groups (across stimulus levels and target 
positions). Grey circles indicate individual subject data. 

3.3.2 Age-related changes in auditory evoked responses 

To confirm previous reports of an age-related slowing of sensory-evoked activity 

we compared the latency and amplitude of evoked components (P1, N1 and P2; 
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Figure 2A). Peak amplitudes were significantly stronger for P1 and N1 in the older 

group, while P2 amplitudes were reduced (P1: younger median = -0.077µV, older 

median = 0.517µV, Z =-3.291, p = 9.991x10-4, r = -0.658; N1: younger median = -

0.95µV, older median = -1.519µV, Z=2.094, p = 0.0362, r = 0.419; P2: younger 

median = 2.418µV, older median = 1.736µ, Z= 2.366, p = 0.018, r = 0.473; Figure 

2B).  The latencies of N1 and P2 in the older adults were significantly delayed (N1: 

younger median = 0.1s, older median = 0.115s, Z=-2.99, p = 0.003, r = -0.598; P2: 

younger median = 0.175s, older median = 0.22s, Z= -4.124, p = 3.721x10-5, r = -

0.825; Figure 2C). There was no significant difference in P1 latency (younger 

median = 0.07s, older median = 0.07s, Z = -1.013, p = 0.311, r = -0.203). 
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Figure 2. Auditory evoked responses to background onset and pre-stimulus power spectral 
density. (A) Grand-average AEPs with standard error (SEM) over central channels (FC1, FCz, 
FC2, C1, Cz, C2, CP1, CPz, CP2). Both younger and older subject display a clear P1-N1-P2 
potential. (B) A comparison of AEP peak amplitudes between groups revealed an age-related 
enhancement of P1 and N1 peaks, and a reduction in the P2 peak. (C) Component peaks were 
also compared in terms of latencies, revealing an age-related delay in N1 and P2 peaks. (D left 
panel) Group-averaged PSD estimates (smooth curves) and fitted regression slopes (dashed lines) 
for frequencies up to 25Hz, averaged over all channels. Slopes were computed whilst ignoring 
alpha power between 7-14Hz (indicated by shaded area). (D right panel) PSD slopes were flatter 
for the older adults. Grey circles indicate individual subject data. Yellow asterisks indicate 
significance as follows: * p<0.05, ** p<0.01, *** p<0.001. 

3.3.3 Pre-target PSD flattens with age 

Given previous reports of changes in the power spectra of ongoing brain activity 

with age (Klimesch, 1999; Tran et al., 2016; Voytek et al., 2015), we analysed 

the spectral slope of the EEG signal (Figure 2D). The PSD slopes of the older 
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group were significantly flatter than those of the younger participants (younger 

median = -0.478dB, older median -0.24dB, Z = -2.91, p = 0.005, r = -0.582).  

We also tested whether, across subjects, the observed changes in AEP latency 

and amplitude correlated with changes in spectral slope. Differences in PSD 

slope correlated significantly with differences in AEP latency for the P2 

component (spearman rank-correlation: r=0.42, p=0.033, reduced slope 

corresponding to longer latency) but not the other AEP components (N1: r = 

0.016, p = 0.93, P1: r = 0.165, p = 0.43).  Differences in PSD slope also 

correlated with the amplitudes of the P1 (r = 0.43, p = 0.03) and N1 (r = -0.45, p 

= 0.025) peaks, with a flatter PSD spectrum correlating with stronger evoked 

responses. There was no correlation with the P2 amplitude (r = -0.25, p = 0.22). 

3.3.4 Single trial decoding of EEG signals 

Using single-trial modelling we extracted EEG components that maximally 

differentiated between the stimulus conditions on which the participants task 

relied (1st or 2nd tone higher). For both groups, classification performance 

became significant around 0.2s following target onset (randomization test, p < 

0.01, corrected for multiple comparisons along time, Figure 3A). 
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Figure 3. Task-relevant EEG components. (A) A linear classifier based on EEG data in 80ms 
windows was used to discriminate between the two frequency conditions of interest. The smooth 
curve reflects group-averaged ROC values (Az) with SEM represented by shaded boundaries. 
Yellow asterisks highlight projections in which Az reached significance, and the dashed lines 
represents significance, based on randomisation tests (at p < 0.001). Coloured curve segments 
indicate the k-means clustering of scalp projections derived from the classifier topographies. 
Clustering revealed three distinct components, each systematically different temporally and 
topographically. The first cluster (black curve) spanned the epoch in which the stimulus was being 
presented; the second (purple) cluster comprises shorter-latency activity possibly originating from 
sensory-specific regions; and the third (orange) cluster reflects later-activated processes originating 
from fronto-parietal regions likely reflecting decision-making processes. (B) Topographies 
represent the group-averaged scalp projections of peak Az performance within each cluster. 

Using data-driven clustering based on individual subject’s component 

topographies we extracted three temporally and topographically distinct 

component-clusters for each group (S. J. Kayser et al., 2016). For each of these 

clusters we derived the respective group-level topographies and classifier 

performance (Figure 3B). Importantly, this analysis allowed us to incorporate 

inter-individual differences in the precise timing of relevant EEG activations, as 

within each of the three clusters, we selected for each subject the time point at 

which the respective discriminant component carried maximal information about 

the stimulus conditions.  

The first EEG component spanned a time window encapsulating the majority of 

the stimulus presentation period (0s to 0.15s) in both younger (0s to 0.12s) and 

older (0s to 0.16s) participants. Given the overlap with ongoing stimulation, this 

component was not considered further. The second component (hereinafter 

termed the “auditory component”) spanned an early epoch (0.13s to 0.28s in 

younger, and 0.17s to 0.31s in older adults) and had a central topography in both 
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groups. The third component (hereinafter termed the “decision-making 

component”) spanned a later epoch (0.28s to 0.5s in younger, and 0.32s to 0.5s 

in older adults). This late component likely reflects the transition between 

sensory encoding and perceptual decisions and was characterized by parieto-

frontal topographies (J. A. Diaz et al., 2017; Giani et al., 2015; Marti et al., 

2015). Both components significantly discriminated between frequency 

conditions in both age groups (ROC >0.5; randomization test, p<0.01). 

Noteworthy, while the overall topographic sequence of EEG components was the 

same across groups, the timing of each component was delayed by about 40ms in 

the older group, matching the latency shift observed in the AEP P2 component.  

3.3.5 Influence of pre-target activity within the auditory 
component 

Having derived projections of single-trial task-related activity within meaningful 

EEG components we computed pre-target oscillatory activity for each of these 

(Figure 4A). We then used statistical modelling to understand the tri-partite 

relation between pre-stimulus activity, the encoding of task-relevant 

information (as reflected by the EEG component) and behavioural choice (Figure 

4B). Specifically, we statistically tested the relations between power/phase 

(individually) and choice (model 1); power/phase and sensory evidence (model 

2); and sensory evidence and choice (model 3). 
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Figure 4. Linear modelling of pre-target activity on sensory evidence and choice within 
auditory and decision-making networks. (A upper panel) Single trial activity for one participant is 
shown. The red box highlights a classifier time window. (A lower panel) One-dimensional scalp 
projections carrying task relevant sensory evidence, Y(t) are derived from the single trial EEG data, 
X(t) and are defined by spatial weights, w(t), an a constant, c. (B) Models by which pre-stimulus 
activity could shape perceptual choice (c.f. Methods). (C) Group-level regression statistics for 
models 1 and 2, for both age groups and components. Significant time-frequency clusters are 
highlighted by black contours (at p<0.05; FDR corrected across models and comparisons). 

For the auditory EEG component, we found no significant relation between pre-

target power or phase on choice in either group (model 1; based on a 

significance level of p < 0.05, FDR corrected across models, Figure 4C). 

However, there were significant relations between pre-target power and sensory 

evidence (model 2): in the younger group at low frequencies (2-6Hz, -0.6s to -

0.1s; Tsum = 66, p = 0.001) and the beta band (16-36Hz, -0.3s to -0.1s, Tsum = 77, 

p = 0.002).  The same effects were observed in the older group, albeit at slightly 

different frequencies: low frequency (2-7Hz, -0.6s to -0.1s, Tsum = 128.6, p < 

0.001) and alpha/beta band (10-16Hz, -0.45s to -0.1s, Tsum = 9.6, p = 0.001). No 

relation between phase and sensory evidence was found in either group. The 

relation between sensory evidence and choice (model 3) was significant in the 
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younger group (t(12) =3.3, p = 0.006) and approached significance in older group 

(t(11) = 2.1, p = 0.054). 

These results could be seen to suggest that pre-stimulus influences emerge 

systematically at lower frequencies in the older group.  However, the existence 

of a significant cluster at a specific frequency does not demonstrate that this 

effect is significant only at that specific frequency. We hence used a bootstrap 

test to directly probe whether the group-level peak frequencies for each cluster 

differed significantly between groups. This was not the case for either cluster 

(low frequency cluster: difference in peaks = 0Hz, 95% bootstrap confidence 

interval (CI) [-9, +9] Hz, p = 0.199; alpha/beta cluster:  difference in peaks = 

7Hz, CI [-13, +13] Hz, p = 0.173). 

3.3.6 Influence of Pre-Target Activity within the decision-making 
component 

Repeating the same comparison for the late EEG component revealed a 

significant relation between pre-target phase and choice in the younger group 

around the alpha band (model 1; 7-14Hz, -0.4s to 0.1s, Tsum = 5, p = 0.003; 

Figure 4C) and at low-frequencies in the older group (1-5Hz, -0.4s to -0.1s, Tsum 

= 4.5, p = 0.003). Here we found some mild evidence that the respective peak 

frequencies may differ with age, as the difference was statistically significant 

(difference in peaks = 7Hz, CI [-8,+9] Hz, p = 0.049). 

Furthermore, there were no significant relations between power and choice in 

either group (model 1 for power) and there were no significant relations 

between power and sensory evidence (model 2). However, in the older group 

there was a significant relation between alpha phase and evidence (model 2; 8-

12Hz, -0.6s to -0.3s, Tsum = 3.1, p = 0.002), while no such effect was observed in 

the younger group. Additional mediation analysis revealed no significant 

mediation effects of phase on choice through evidence in either age group (at p 

< 0.05), and neither age group showed a significant relation between sensory 

evidence and choice (model 3; younger adults: t(12) = 1.1, p = 0.27; older 

adults: t(11) = 1.9, p = 0.0741), suggesting that the statistical relation between 

alpha phase and sensory evidence in the older group reflects a process not 

directly driving perceptual decisions.  
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Given that we found some evidence for pre-stimulus influences on choice to 

emerge at different frequencies in younger and older participants, we also asked 

whether this difference in peak frequency is related to the observed changes in 

amplitudes or latencies of the evoked potentials (c.f. Figure 2). Specifically, we 

obtained leave-one-out estimates of the group-level peak frequencies for the 

pre-stimulus effects and AEP amplitudes and latencies in response to background 

onset. We then used these six AEP characteristics as predictors for the pre-

stimulus peak frequencies across the sample of young and old participants. 

Together, the AEP characteristics provided significant predictive power (r2 = 

0.81, F = 16.8, p < 10-5), suggesting that changes in the timing and amplitude of 

evoked responses are indeed related to the observed changes in relevant pre-

stimulus frequencies.  

3.4 Discussion 

We investigated the consistency of how pre-stimulus activity influences auditory 

frequency discrimination performance in young and older participants. In both 

groups the power of pre-stimulus activity influenced the encoding of sensory 

evidence reflected by early evoked components, while the phase influenced 

choice formation in later-activated EEG components. Importantly, for the early 

EEG components we did not find evidence for a systematic difference in the 

time scales of the perceptually relevant pre-stimulus activity. In the later-

activated EEG component we found a trend for perceptually relevant rhythmic 

activity to arise from slower frequencies in the ageing brain. At the same time 

our data replicate previous findings of a significant age-related slowing of AEP 

latency, modulations of AEP amplitudes, and a flattening of the spectral profile 

of EEG activity.  

3.4.1 Pre-stimulus influences on perception  

In both groups we found that perceptual performance was influenced by 

rhythmic brain activity prior to the task-relevant stimulus. Our results hence 

confirm previous research showing that pre-stimulus brain activity influences 

perception in general (Florin et al., 2017; Henry et al., 2014; Henry & Obleser, 

2012; Iemi et al., 2017; S. J. Kayser et al., 2016; Ng et al., 2012; Pinheiro et al., 

2017; Samaha et al., 2017; Samaha & Postle, 2015; VanRullen, 2016). 
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In a previous study focusing on young subjects only we dissociated two 

mechanisms by which pre-stimulus activity influences auditory perception and 

mapped these onto distinct neural generators (S. J. Kayser et al., 2016). 

Specifically, we found that low frequency and alpha/beta power shaped the 

encoding of relevant sensory information in early-activated EEG components, 

which likely emerge from auditory cortical networks. In addition, the phase of 

alpha band activity emerging from later-activated fronto-parietal EEG 

components directly influenced the decision process. Here we replicated these 

results in a group of elderly participants characterized by no or mild hearing 

loss, in a paradigm where the overall task performance was equated between 

groups. Thereby the present data lend additional support to the hypothesis that 

multiple and distinct rhythmic processes control perceptual decisions and 

suggest that the relevant time scales of neural activity are largely conserved 

along the life span. Furthermore, they demonstrate that the relation of pre-

stimulus brain activity and perception is not mandatorily affected by a general 

increase in neural response latencies with age. 

3.4.2 Age-related changes in the timing of brain activity 

In our data we found systematic age-related differences in the P1-N1-P2 evoked 

components of auditory evoked responses. Older adults’ P1 and N1 component 

amplitudes were significantly larger compared to younger adults, yet their P2 

peaks were reduced. These findings are consistent with previous reports of age-

related changes in AEP amplitude (Anderer et al., 1996; Czigler et al., 1992; 

Harkrider et al., 2005; Henry et al., 2017; Rufener et al., 2014; Tremblay et al., 

2003), which may be attributed to age-related changes at the cellular level 

(Caspary et al., 2008; de Villers-Sidani et al., 2010; Hughes et al., 2010) or 

neuronal synchrony (S. Anderson et al., 2012; Harris & Dubno, 2017). 

Furthermore, we also found an age-related slowing of the N1 and P2 peak 

latencies, an effect consistently reported in ageing research (Henry et al., 2017; 

Tremblay et al., 2004).  

We also found that the spectral profile of ongoing EEG activity was significantly 

flatter in the older participants. This is in line with previous reports which 

propose a mediating role of spectral flattening in cognitive decline (Tran et al., 

2016; Voytek et al., 2015), possibly resulting from a decrease in neuronal 
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synchrony (Podvalny et al., 2015; Pozzorini et al., 2013; Voytek et al., 2015; 

Waschke et al., 2017), increases in spontaneous activity (S. L. Hong & Rebec, 

2012), or changes in the excitation inhibition balance (Caspary et al., 2008; 

Price et al., 2017). Our participants passed a cognitive screening assessing a 

wide variety of cognitive abilities (reasoning, attention, working memory, 

abstraction, orientation, language), suggesting that the observed changes in 

spectral slope in the present data do not reflect cognitive decline itself but 

either compensatory mechanisms or basic changes in cellular physiology.  

Previous EEG studies on stimulus-selective AEP components have suggested age-

specific changes in the behavioural relevance of short- and long-latency 

components (Snyder & Alain, 2005, 2007). For example, so called object-related 

negativity potentials (ORN’s) were found to consistently emerge at latencies of 

about 150 and 250ms post-stimulus in younger and older listeners, but were 

absent at yet longer latencies in the elderly. Furthermore, perceptual 

performance was best predicted by ORN’s at different latencies across age 

groups (Snyder & Alain, 2005, 2007). These findings are in contrast to the 

present study, where we consistently observed stimulus-selective discriminant 

components from short (around 150ms) to long (up to 500ms) latencies across 

age groups. This difference could result from methodological approaches: the 

previous studies used the same fixed EEG electrodes to compare ORN’s between 

groups, while we performed electrode-wide classification analysis, which allows 

for different electrode configurations to yield stimulus-selective EEG 

components for each time point and subject. Our results thereby suggest that 

stimulus-selective EEG activations emerge at multiple latencies in both younger 

and older listeners, but may differ between groups in their precise timing or 

topographies.   

3.4.3 Do pre-stimulus influences change with age? 

Our main focus was on whether pre-stimulus influences on perception are 

comparable between young and older participants. While the statistical clusters 

of significant effects seemed to shift towards lower frequencies in the older 

group, direct statistical tests did not provide clear evidence for a systematic 

shift of pre-stimulus effects towards lower frequencies in the elderly. In 

particular, within the early-activated (“auditory”) EEG component there was no 
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evidence for peak frequencies to differ between groups. Given a likely origin of 

this early EEG component in sensory-specific brain regions in the temporal lobe 

(S. J. Kayser et al., 2016), this suggests that the processes of early sensory 

encoding are conceptually conserved with age, despite a slowing of the 

respective evoked responses. Within the later-activated (“decision-making”) EEG 

component pre-stimulus effects on choice were more variable, and we observed 

a trend towards lower peak frequencies in the older group. This reduction in 

peak frequency was significantly related to changes in the amplitude and latency 

of evoked responses between groups. This later-activated EEG component likely 

captures high-level cognitive and decision making processes, as suggested by its 

longer latency relative to target onset and the fronto-parietal topography (S. J. 

Kayser et al., 2016). Our data hence suggest that pre-stimulus influences on 

auditory perception are largely conserved across the age span, but may become 

more variable with age for those processes reflecting higher-level cognitive 

processes (McGovern et al., 2017; Sander et al., 2012; Zanto & Gazzaley, 2014). 

This conclusion is also supported by our finding that there was an influence of 

alpha phase on sensory evidence in the late EEG component that was significant 

only in the older group. This phase-effect did not directly influence subjects’ 

choice, and hence did not bear direct influence on behaviour. However, the 

stronger relation between alpha phase and sensory encoding may suggest that in 

the elderly subjects the encoding of the task-relevant sounds in fronto-parietal 

regions was affected by a reduced attentional commitment (Henry et al., 2017; 

Strauss et al., 2015; Wöstmann et al., 2015, 2016). This reasoning is based on 

the notion that enhanced alpha power reflects reduced attention (Thut et al., 

2012; Wöstmann et al., 2016) and the stronger selection of sensory information 

by modulating the excitability of sensory cortices (Iemi et al., 2017; C. Kayser et 

al., 2015; Strauss et al., 2015). Increased alpha power is necessary to actually 

observe phase effects and hence the stronger phase-dependent gating of sound 

encoding in the elderly may reflect a reduced engagement of attention. In 

auditory perception, the enhancement of alpha activity is often inversely related 

to signal intelligibility and may reflect compensatory mechanisms during 

challenging listening conditions (Becker et al., 2013; Henry et al., 2017; 

McMahon et al., 2016; Obleser et al., 2012; Obleser & Weisz, 2012; Scharinger et 

al., 2014; Steinmetzger & Rosen, 2017; Wostmann et al., 2015). Hence, 
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differences in the relation of alpha activity and sensory encoding may reflect 

age-specific strategies of dealing with hearing in noise, and the underlying 

perceptual and cognitive strategies (McGovern et al., 2017). 

One possibility is that the sample size in the present study was not sufficient to 

reveal systematic shifts in the relevant frequencies, or that such effects are 

smaller than the frequency resolution employed here. On the other hand, it 

could also be that the mechanisms and time scales by which pre-stimulus 

activity shapes sensory encoding remain indeed the same, despite an overall 

change in the relative amplitude of different frequency bands (Babiloni et al., 

2006; Cummins & Finnigan, 2007; Rondina et al., 2016; Vlahou et al., 2014). 

Support for the latter conclusion comes from studies demonstrating a similar 

modulation of alpha band activity by acoustical structure and task demands in 

young and elderly participants (Erb & Obleser, 2013; Tune et al., 2018; 

Wostmann et al., 2015), and from a study demonstrating a similar modulation of 

behavioural performance by stimulus-entrained delta-band activity in young and 

older participants (Henry et al., 2017). Furthermore, while many studies confirm 

age-related changes in the power of individual frequency bands with age, it 

remains unclear whether the peak frequencies of well-known brain rhythms 

change with age (X. Hong et al., 2015; Klimesch, 1999; McEvoy et al., 2001; 

Vlahou et al., 2014). In those studies reporting differences the effects are often 

at the edge of significance (X. Hong et al., 2015; McEvoy et al., 2001) or absent 

(Vlahou et al., 2014). As a result, further studies are required to more finely 

dissociate the various neural generators of pre-stimulus influences on perception 

in general, and their potential age-related changes in particular. 

3.5 Conclusion 

The present data demonstrate conceptually similar influences of rhythmic pre-

stimulus activity on sensory encoding in young and older healthy listeners.  This 

consistency in pre-stimulus effects arises largely despite systematic changes in 

the overall spectral profile of EEG activity and a general slowing of auditory 

evoked responses in the older participants, raising questions as to how these two 

processes are biophysically related. At the same time, we observed a trend 

towards a distinct influence of the timing of alpha and delta/theta band activity 

in later-activated EEG components with age, which calls for a more systematic 



Chapter 3 69 
 
assessment of the relation between rhythmic brain activity, sensory encoding 

and cognitive strategies in ageing. 
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Chapter 4 Age-related differences in the 
neurophysiological correlates of audio-visual 
enhancement in speech-in-noise discrimination 

4.1 Introduction 

As we get older we tend to find listening to a speaker in noisy environments 

more challenging (Babiloni et al., 2006; de Villers-Sidani et al., 2010; Pichora-

Fuller et al., 2017; Sommers et al., 2005), due to age-related changes in 

bottom-up  (S. Anderson et al., 2013; Clinard et al., 2010; Clinard & Cotter, 

2015; Grose & Mamo, 2012; Harris & Dubno, 2017; He et al., 2007; Mahajan et 

al., 2017; Paraouty et al., 2016; Wallaert et al., 2016) and top-down processes 

(Dully et al., 2018; Henry et al., 2017; M. D. Nunez et al., 2015; Zanto & 

Gazzaley, 2014). In such scenarios the possibly unreliable auditory speech signal 

is enhanced by the presence of visual cues provided by articulatory facial 

movements (Sumby & Pollack, 1954). Articulatory movements are engaged 

approximately 100-300 ms prior to voice onset (Chandrasekaran et al., 2009; 

Schroeder et al., 2008). Therefore, it has been postulated that visual speech 

cues enhance comprehension by reducing the uncertainty of auditory speech 

through semantic and/or lexical priming (Peelle & Sommers, 2015; van 

Wassenhove et al., 2005). Despite generally poorer speech-in-noise recognition 

in older adults, the benefit that visual enhancement serves in facilitating their 

speech comprehension appears to be comparable to that of younger adults 

(Gordon & Allen, 2009; Maguinness et al., 2011; Sommers et al., 2005), if not 

greater (Sekiyama et al., 2014; Sheldon et al., 2008). Additionally, visual 

enhancement scales with degree of hearing loss (Puschmann et al., 2019) and 

with SNR  (Ross et al., 2007). However, it has been reported that this is only the 

case when visual cues are reliable; when visual cues are made unreliable through 

blurring (Gordon & Allen, 2009; Maguinness et al., 2011), or are used 

ineffectively (Sommers et al., 2005), visual enhancement is reduced in older 

adults in  particular. Older adults may therefore depend more on visual speech 

during challenging listening situations, possibly as a result of reduced sensory 

acuity in the auditory domain, or deficits in attentional control or attentional 

stimulus selection.  
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In searching for the neurophysiological signatures of AV speech integration, 

studies typically report that AV integration influences the amplitude and 

temporal profiles of AEPs namely the N1 – P2 complex. Successful AV integration 

typically results in suppressed and faster N1 and P2 peaks (Alsius et al., 2014; 

Baart, 2016; Baart et al., 2014; Frtusova et al., 2013; Ganesh et al., 2014; 

Kaganovich & Schumaker, 2014; Klucharev et al., 2003; Stekelenburg & 

Vroomen, 2007; Treille et al., 2014; van Wassenhove et al., 2005). In older 

adults, the N1 component in AV conditions is enhanced (Frtusova et al., 2013; 

Winneke & Phillips, 2011) and earlier (Frtusova et al., 2013) compared to 

younger adults. Stimuli used to reveal such effects usually involve McGurk-like 

stimuli involving phonemic utterances (for summary see Baart, 2016), although 

some studies have used complete words(Bhat et al., 2014; Frtusova et al., 2013; 

Shahin et al., 2012; Winneke & Phillips, 2011). However, studies often lack a 

range of target vocal stimuli in terms of the range of words used and/or the 

phonetic qualities (e.g. phoneme at voice onset) of the target speech stimuli, 

thus losing ecological validity. Many studies have also used acoustic masking 

signals such as multi-talker babble (Gordon & Allen, 2009; Sommers et al., 2005) 

and noise (Bernstein et al., 2004; Eskelund et al., 2011; Sekiyama et al., 2014) 

to enhance the multisensory benefit (Shahin et al., 2012; Winneke & Phillips, 

2011, 2009). However, it remains unclear how acoustic SNR and the 

informativeness of the visual content interact to shape the neural correlates of 

speech-in-noise enhancement, and how these change with age.   

Besides these neural correlates of audio-visual speech in early evoked responses, 

studies have also shown effects in later components reflecting higher order 

processes, such as attentional control, stimulus selection or the mapping of 

sensory information to internal representations. For example, the EEG P3 

component is affected by passive letter-sound integration (Andres et al., 2011; 

Stekelenburg et al., 2018) and is modulated by the presence of visual contextual 

information (Hernández-Gutiérrez et al., 2018; Hessler et al., 2013; Irwin et al., 

2017, 2018; Starke et al., 2017).  The P3 component is subject to age-related 

changes, such as a shift in the topography (Anderer et al., 1996; Friedman, 2012; 

Ortiz et al., 1990) and latency (Friedman, 2012; van Dinteren et al., 2014). 

Another component affected by the congruency of audio-visual speech is the 

N400 (Lebib et al., 2004) (Kaganovich et al., 2016)(Van Petten et al., 1999), 
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which may index the mapping of contextual representations (for review see 

Duncan et al., 2009). With progressing age the N4 amplitude is reduced and 

delayed (Gunter et al., 1992, 1996) (Cameli & Phillips, 2000). Similar as for the 

earlier evoked responses, the interaction of visual context, acoustic SNR and age 

remains unknown.  

In the current study, we investigated the neural correlates of AV speech 

perception in noisy listening conditions, in younger and older adults. 

Specifically, we compared behavioural and EEG data from younger (<30 years) 

and older (>65 years) listeners with no, or only mild hearing loss, obtained 

during an AV speech-in-noise paradigm. We tested for main effects and 

interactions between age group (younger, older), information condition (AVinf, 

AOinf), and noise level (low noise, high noise) in both the behavioural and EEG 

data. For comparison with previous studies, we also quantified age-related 

changes in the amplitude and timing of auditory evoked responses to background 

noise onset, and the spectral slope of the overall EEG signal. We employed a 

stimulus set consisting of 84 concrete and abstract monosyllabic nouns with 

varying voice onset times to overcome limitations of more artificial stimulus sets 

used in previous work.  

4.2 Materials and Methods 

4.2.1 Participants 

Data was collected from 20 younger (9 male; median age= 21.5, min = 18, max = 

28) and 18 older (4 male; median age = 68, min = 61, max = 79) adult 

participants. Younger and older sample sizes were chosen a priori to be in line 

with those used in previous, similar behavioural and EEG studies (e.g. 

Maguinness et al., 2011; Winneke and Phillips, 2011). Participants had no more 

than mild age-related hearing loss, as measured by the Better Hearing Institute 

Quick Hearing Questionnaire (Kochkin & Bentler, 2010), THI (where applicable; 

McCombe et al., 2001), and PTA procedures. The PTA procedure was presented 

via MATLAB (2015b; The MathWorks Inc., Natick, MA) and was designed in 

accordance with guidelines from the BSA  (British Society of Audiology, 2012). 

We tested participants’ hearing thresholds at frequencies of 250Hz, 500Hz, 

1000Hz, 2000Hz, 4000Hz and 8000Hz individually for each ear. Median hearing 
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thresholds were 11.3 dB and 19.5 dB for younger and older adults respectively, 

averaged across frequencies and ears. Sound levels were calibrated using a 

Bruel&Kjaer sound-level meter. Participants also had (near) normal or 

corrected-to-normal visual acuity, as measured using a Colenbrander mixed 

contrast card set (Colenbrander & Fletcher, 2005) at 63cm and 100cm viewing 

distances (approximate computer distance).  Older participants were 

additionally screened for cognitive impairment using the MoCA (Nasreddine et 

al., 2005), D2 test of attention (Brickenkamp & Zillmer, 1998), and the Dspan 

memory test (Dspan; Turner and Ridsdale, 2004).Scores reported for the D2 test 

of attention are the concentration performance (CP) score, and the total 

number of items processed minus the total number of errors (TN-E). Dspan 

scores are reported as the total number of items recalled forwards plus the total 

number of correct items recalled backwards. Younger adults were not subjected 

to these additional cognitive tests as they self-reported that they did not have 

any form of cognitive impairment, and we had no reason to believe any of the 

younger participants were experiencing early-onset age-related cognitive 

decline.  Group-level auditory, visual and cognitive test scores are shown in 

Table 2. Screening scores that were completed by both groups were tested for 

age-related differences using Mann-Whitney U tests, and were found to be 

significantly different (BHI QHQ, p = 0.001; PTA, VAS63HC, VAS63LC, VAS100HC, 

and VAS100LC, p < 0.001). Three subjects in total were excluded from further 

analysis: one younger participant had incomplete audiometric data, and one 

younger and one older adult did not complete the experimental task. Thus, data 

analysis was computed on data from 18 younger adults and 17 older adults. 

Participants indicated no history of mental/neuropsychological disorders, stroke, 

or trauma to the eyes, ears or brain. Participants gave written informed consent 

and received £6/hour payment plus travel expenses for participating. This study 

is in accordance with the Declaration of Helsinki and was approved by the local 

ethics committee (College of Science and Engineering, University of Glasgow). 
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Table 2. Auditory, vision and cognitive test scores. Screening scores for younger and older 
participants who passed screening. Hearing scores are derived from pure tone audiometry (PTA), 
Better Hearing Institute Quick Hearing Questionnaire (BHI QHQ), and Tinnitus Handicap Inventory 
(THI). THI was administered only as applicable, thus n is reported. Note that one elderly participant 
had a self-reported BHI QHQ score of 46.58 (indicating severe hearing loss); this participant was 
not excluded due to an acceptable PTA score. Visual acuity test scores VAS) are from 
Colenbrander mixed contrast tests. Cognitive test scores are derived from Montreal Cognitive 
Assessment (MoCA), D2 test of Attention (D2) and digit span (Dspan) tests. Dspan test scores are 
calculated as the total number of correct items recalled forwards plus the total number of items 
recalled backwards. D2 test scores reported are the concentration performance (CP) score, and 
the total number of correct items processed minus the total number of error (TN-E), and are 
reported as raw scores due to the absence of norm data for adults aged >60. Scores correspond to 
median across all participants in each age group. Square brackets indicate minimum and maximum 
scores. 

4.2.2 Audio-visual stimuli 

The stimulus material consisted of 84 target monosyllabic nouns, spoken by a 

trained, male, native British actor. Target words were chosen from the MRC 

Linguistics Database (Coltheart, 1981), had a mean length of 4 letters, and were 

rated high in familiarity (min = 492, max = 618 , mean = 562, s.d. = 30) and high 

(min = 600, max = 670, mean = 618, s.d. = 16) or low (min = 234, max = 400, 
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mean = 328, s.d. = 41) in concreteness (see Table 5). Each target word 

corresponded to one of seven onset phoneme types (approximant, affricate, 

fricative, vowel, rhotic, nasal, or plosive), with 12 target words in each 

category, and were articulated labially (n = 25) or non-labially (n = 59). Target 

words were embedded in acoustic noise simulating a ‘cocktail-party’ 

environment and consisted of a random sample from a one-minute-long multi-

talker babble sound clip. The babble clip was created by taking the inverse of 

the superposition of 11 individual, normalized clips of single-speaker speeches (5 

female, 6 male). The noise level for each participant was titrated around their 

70% correct threshold for auditory speech-perception-in-noise. We manipulated 

auditory intelligibility over two levels in the main experiment: low noise and 

high noise, wherein the average SNR ratio across subjects was approximately -

7.31 dB [younger = -7.6 dB, older = -7.18 dB ]  and -8.14 dB [younger = -8.43 dB , 

older = -8.01 dB ] for each noise level respectively. Acoustic target stimuli were 

accompanied by audio-visually informative (AVinf) and audio-only informative 

(AOinf) visual stimuli. During AVinf trials, the target acoustic stimuli were 

presented with congruent videos showing the actors enunciating the target 

word. In AOinf trials, the acoustic target stimuli were accompanied by a neutral 

video of the actor showing a neutral facial expression without any articulatory 

facial movements. Stimulus recording took place within a sound-attenuated 

recording booth. Videos were digitized using a Sony PMW-EX1 camcorder at a 

frame rate of 25 frames per second, at 1280 × 720 pixels. Videos were later 

resized to 784 x 610, spanning an onscreen size of 23 x 16.5 cm thus subtending 

15.41 x 11.09 degrees of visual angle, and at a viewing distance of 85cm. From 

the video recording, target words were digitized with 16-bit resolution at a 

sampling frequency of 48,000 Hz. 

4.2.3 Experimental procedure 

Following informed consent, participants completed 10 training trials before 

their hearing-in-noise thresholds were measured using three interleaved two-

down-one-up staircase procedures. The task in the staircase procedure was a 

two-alternative forced choice task based on single auditory target words 

embedded in noise. The target words used in the staircase procedure were 

acoustic versions of those presented in the main experiment. Noise level scaling 

varied based on participants’ performance until a reliable level was reached. 
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The experimental task a 4-alternative forced choice audio-visual speech-

perception-in-noise discrimination task. Participants were presented with single 

spoken target words embedded within a noisy background and had to 

discriminate which word they heard from a choice of four words (see Figure 5A). 

Each trial started with a fixation cross lasting between 300ms and 700ms. After 

fixation, stimulus onset consisted of the simultaneous presentation of the first 

auditory stimulus sample of the selected target word plus noise and the first 

frame of the selected visual stimulus (either the corresponding AVinf video or a 

pseudo-randomly selected AOinf neutral video). Each stimulus lasted, on average, 

2.676 s ± 0.222 s (min = 2.26 s, max = 3.26 s). Participants were then presented 

with four unique words, consisting of the target word plus three words chosen 

pseudo-randomly from the remaining non-stimulus words. Participants were 

prompted to select the word they perceived using the keys V, B, N ,and M on a 

standard computer keyboard, corresponding to the position of the words as they 

appeared on the computer screen. Trials were separated by an inter-trial period 

uniformly distributed between 1500-2000ms following participants’ response. 

Participants experienced all 84 words in each condition (AVinf and low noise, AVinf 

and high noise, AOinf and low noise, AOinf and high noise), which were presented 

across 3 blocks. Each block contained 112 trials and each participant completed 

336 trials in total. Trials were pseud-randomized across information and SNR 

conditions, and were subsequently divided into 3 blocks of 112 trials. The 

experiment was controlled using MATLAB (Mathworks) using the Psychophysics 

Toolbox Version 3 (Brainard, 1997). Acoustic stimuli were presented binaurally 

using Sennheiser HD 280 PRO headphones, while visual stimuli were presented on 

a 21-inch Hansol 2100A CRT monitor, at a refresh rate of 75 Hz. A chin rest was 

used to stabilize participants’ viewing distance.  
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Figure 5. Audio-visual paradigm and task performance. (A) Audio-visual paradigm. Following 
fixation, monosyllabic spoken nouns were presented within a continuous multi-talker babble 
background. On half of the trials, the visual stimuli enunciated the target word presented (i.e. was 
audio-visually informative; AVinf) and on the other half remained neutral but still dynamic (i.e. 
auditory informative only; AOinf). We varied the level of noise around participants’ own 70% correct 
thresholds for auditory speech-in-noise perception, such that the noise level was high on half of the 
trials, and low on the other half. (B) Group-level task performance as a function of age group, 
information condition, and noise level.  Performance across all trials was comparable between age 
groups. Performance as greater in AVinf conditions compared to AOinf, and was greater in low noise 
compared to high noise. (C) Group-level AV enhancement as a function of age group. Older adults 
showed significantly greater AV enhancement compared to younger adults. (D) Group-level Av 
enhancement as a function of age group. AV enhancement was greater in high noise conditions 
compared to low noise, and this effect was consistent between age groups. 
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4.2.4 EEG recording and pre-processing 

EEG signals were recorded using an active 64-channel BioSemi system (BioSemi 

B.V., Netherlands) with Ag-Agl electrodes mounted on an elastic cap and placed 

according to the 10/20 system. Signals reflecting ocular muscle activity were 

derived from four electrodes placed at the outer canthi and below each eye. 

Data were recorded at a sampling rate of 500Hz and low-pass filtered online up 

to 208Hz. Electrode offsets were kept below 25mV.  

Pre-processing was carried out offline in MATLAB using the FieldTrip toolbox 

(Oostenveld et al., 2011) and custom-built functions. Data were first band-pass 

filtered between 1-70Hz and subsequently resampled to 150Hz. We used 

Independent Components Analysis to remove ocular (Debener et al., 2010), and 

muscle artifacts (Beirne & Patuzzi, 1999; Hipp & Siegel, 2013). Horizontal, 

vertical and radial EOG signals were computed to detect further ocular artifacts, 

where trials were rejected if EOG signals exceeded 3 SDs above the mean high-

pass-filtered EOG (Keren et al., 2010). Based on these criteria, 3% of trials were 

rejected, on average. EEG signals were re-referenced to the common average 

for further analysis. 

4.2.5 Analysis and statistical methods 

4.2.5.1 Behavioural data  

Participants’ performance was computed as a percentage of correct responses. A 

four-factor mixed analysis of variance (ANOVA) was performed to compare the 

mean effects of age group (younger, older; between subjects), information 

condition (AVinf, AOinf; within subjects), articulation type (labial, non-labial; 

within subjects),  and noise conditions (low noise, high noise; within subjects) 

and their interactions on response accuracy. Effect size (r) is calculated as the 

square root of the F-statistic divided by F-statistic plus the residual degrees of 

freedom (Field, 2013). 

To assess the extent to which the informativity of the visual stimuli influenced 

performance, we computed a measure of AV enhancement. AV enhancement is 

typically calculated as the influence the visual modality has on performance (i.e. 

(AV -A)/(1-A), where A is performance in a unisensory auditory condition) or vice 



Chapter 4 79 
 
versa (i.e. (AV-V)/(1-V), where V is performance in unisensory visual condition). 

The trials in the current study were always multisensory trials, with 

informativity of the visual stimuli being manipulated, thus we quantified AV 

enhancement as the difference between AVinf and AOinf in line with approaches 

taken by Sekiyama et al. (2014) and Ross et al. (2007). AV enhancement was 

computed by age and by age and noise.   

To assess the potential relationship between behavioural AV enhancement and 

cognitive status in older adults, robust Spearman correlations (rs; Pernet et al., 

2013) were computed between AV enhancement and Dspan, CP score, and TN-E 

score. Bootstrapped 95% confidence intervals are reported.  

4.2.5.2 Pre-target evoked responses and power spectral density 

We computed AEPs in response to the onset of the noisy acoustic background 

based on trial-averaged data over a 3x3 grid of central channels (FC1, FCz, FC2, 

C1, Cz, C2, CP1, CPz, CP2). Individual participants’ P1, N1 and P2 component 

median peak latencies and amplitudes were then extracted by taking the median 

of participants’ max-/minimal amplitude and corresponding latency within pre-

defined, component-specific, time-windows (P1, 42 ms to 142 ms; N1, 122 ms to 

237 ms; P2, 162 ms to 302 ms). Peak AEP amplitudes and latencies were 

compared between age groups using a non-parametric Wilcoxon rank-sum tests, 

with effect sizes (r) calculated following (Field, 2013). 

We then computed PSD estimates using Welch’s method, averaged across all 

channels in a pre-target time window of -0.6s to 0s relative to target word 

onset. PSD estimates were normalized by removing individual participants’ mean 

PSD from their own spectra and were fit using a linear regression models to 

extract PSD slopes over frequencies between 1Hz and 25Hz whilst excluding 

alpha power between 7 and 14 Hz (Tran et al., 2016; Voytek et al., 2015). PSD 

slopes were compared between age groups using a non-parametric Wilcoxon 

rank-sum tests, with effect sizes (r) calculated following (Field, 2013). 

Furthermore we tested whether observed changes in ERP latency and amplitude 

were related to changes in PSD slope using robust Spearman rank correlations 

with bootstrapped 95% confidence intervals (rs; (Pernet et al., 2013).  
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4.2.5.3 Evoked activity to target word onset: testing differences in amplitude 

Our aim was to assess the stability of evoked activity signatures reflecting AV 

enhancement between younger and older adults. Therefore, we tested for main 

effects and interactions in a three-factor mixed design (information condition x 

noise level x age group) using spatio-temporal cluster-based permutation tests 

(S. J. Kayser et al., 2015; Maris & Oostenveld, 2007) across all channels and in a 

time window of -0.1s to 1s relative to target word onset. The procedure 

computed a two-tailed t-test for each channel and controlled for multiple 

comparisons. The cluster test statistic (Tsum) was computed by summing the t-

value of adjacent channels where p < 0.05 during clustering, with a required 

cluster size of at least 2 significant neighboring channels and based on 2000 

iterations. 

We tested the neurobehavioural correlation of AV enhancement by computing 

Spearman correlations with bootstrapped 95% confidence intervals (rs) between 

the noise-averaged behavioural AV enhancement and AV enhancement as 

reflected in the EEG signal for each age group. To represent neural AV 

enhancement we extracted the maximal amplitude within the significant spatio-

temporal clusters derived from the neural information condition x age group 

interaction, averaging over significant channels at the peak latency.  

4.2.5.4 Evoked activity to target word onset: testing differences in latency 

We tested for age-related differences in the latencies of differences in evoked 

activity reflecting AV enhancement using a bootstrapping procedure based on 

1000 iterations. On each iteration a random sample of subjects was taken from 

each age group (younger adults, n = 18; older adults, n=17). One-sided, paired t-

tests were computed at each EEG samples between -0.1 s and 1 s comparing 

AVinf versus AOinf time courses, averaged over channels in which a significant 

AVinf versus AOinf effect was observed in the respective age group during 

clustering. The earliest latency showing a significant AVinf versus AOinf difference 

was extracted, thus creating a distribution of 1000 ‘onset’ latencies for each age 

group. These distributions were compared using a two-sided independent 

samples t-test and a 95% confidence interval on the difference between the 

bootstrap younger and older latency distributions was calculated.  
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4.3  Results  

4.3.1  Behavioural performance  

Table 3 indicates percentage of correct responses as a function of age group, 

information condition, and noise level, as well as AV enhancement as a function 

of age, averaged over noise conditions, and as a function of age and noise 

condition. Behavioural performance as a function of information condition and 

noise level for younger and older adults are displayed in Figure 5B. Figure 5C 

shows AV enhancement for both age groups, while AV enhancement is shown as a 

function of age and noise condition in Figure 5D. 

 Younger  Older 

AVinf AOinf AV 

enhancement 

AVinf AOinf AV 

enhancement 

Noise-

averaged 

 86.7 

[6.4] 

64.9 

[8.8] 

21.8 [6.4]  90.2 

[4.5] 

60.9 

[11.9] 

29.2 [8.9] 

Low 

noise 

 88.5 

[6.2] 

68.4 

[8] 

20 [6.4]  90.4 

[6] 

64.8 

[12.8]  

25.6 [10] 

High 

noise 

 84.8 

[7.3] 

61.3 

[10.3] 

23.6 

[8.2] 

 89.9 

[4] 

57.1 

[12.5] 

32.8 [10.5] 

Table 3. Behavioural performance. Mean and standard deviation (in square brackets) response 
accuracy (%). AVinf and AOinf refer to audio-visual informative and auditory informative only 
information conditions. AV enhancement  was computed at the subject level and then averaged by 
age group; hence some rounding error exists. 

Table 4 indicates percentage of correct responses as a function of age, 

information condition, and articulation type. Also displayed is visual 

predictability as a function of age (averaged over noise conditions and 

information conditions), as a function of age and noise condition (averaged over 

information conditions), and as a function of age and information condition 

(averaged over noise condition). Behavioural performance is displayed in Figure 

6A for younger and older adults. Figure 6B shows AV enhancement by age and 
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articulation type, while visual predictability (labial – non-labial) is shown as a 

function of age and noise condition in Figure 6C.  
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 Younger  Older 

Labial Non-
labial 

Visual 
Predictability 

Labial Non-
labial 

Visual 
Predictability 

Across 
conditions 

 69.8 

[8.7] 

78.3 

[6.6] 

-8.5 

[3.9] 

 70.7 

[8.9] 

77.7 
[7.8] 

-7 

[0.049] 

AV  86.0 

[8.3] 

87 

[6.9] 

-1 

[7.9] 

 90.8 

[6.4] 

89.9 

[4.6] 

0.9 [5.6] 

AO  53.8 

[12.8] 

69.6 

[0.081] 

-15.8 [9.2]  50.1 

[13.5] 

65.5 

[11.8] 

-15.4 [6.3] 

Low Noise  72.3 

[10] 

81.2 

[5.5] 

-8.9 

[7] 

 72.8 

[9.4] 

75.7 

[9] 

-3.9 

[5.3] 

High 
Noise 

 67.4 

[9.2] 

75.4 

[8.2] 

-8 

[6.6] 

 68.5 

[10] 

75.7 

[7.4] 

-4.2 

[7.9] 

Table 4. Behavioural performance by articulation type.Mean and standard deviation (in square 
brackets) response accuracy (%). AVinf and AOinf refer to audio-visual informative and auditory 
informative only information conditions. Visual predictability was calculated as the difference 
between labial and non-labial performance and was computed at the subject level and then 
averaged by age group; hence some rounding error exists. 

Main effects and interactions of age group, information condition, articulation 

type, and noise conditions on response accuracy were tested by way of a four-

factor mixed ANOVA. No significant main effect of age group was observed (F(1, 

33) = 0.007, p = 0.933) indicating similar performance between younger and older 

adults across noise level, articulation type, and information conditions. A 

significant main effect of noise level was found F(1, 33) = 49.467, p < 0.001, r = 

0.774), wherein more accurate performance was observed for low noise 

compared to high noise. A significant main effect of information condition was 

observed (F(1, 33) = 381.025, p < 0.001, r = 0.959), wherein participants performed 

more accurately in the AVinf trials compared to AOinf trials. Lastly, a significant 

main effect of articulation type was found (F(1, 33) = 171.295, p < 0.001, r = 

0.916), wherein more accurate performance was observed generally for non-
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labial (i.e. least visually predictive) nouns compared to labial nouns. The 

information condition × noise level interaction was significant (F(1, 33) = 12.973, p 

= 0.001, r = 0.531), revealing a larger difference between AVinf and AOinf 

conditions (and thus larger AV enhancement) in high noise compared to low 

noise. A significant information condition x articulation type interaction was also 

observed (F(1, 33) = 32.752, p < 0.001, r = 0.706), suggesting that, behaviourally, 

there is larger AV enhancement for labial nouns compared to non-labial nouns. 

The age group x information condition interaction was significant (F(1,33) = 8.005, 

p = 0.008, r = 0.442), revealing a greater difference between AVinf and AOinf trials 

in older adults compared to younger adults.  

We found no significant interactions between age group × noise level (F(1, 33) = 

0.892, p = 0.352), or between age group × information condition × noise level 

(F(1, 33) = 0.049, p = 0.826). We also did not find significant interactions between 

articulation type x age group interaction (F(1, 33) = 0.013, p = 0.909), or age group 

x information condition x articulation type interaction (F(1, 33) = 0.003, p = 

0.959). We did not observe a significant noise level x articulation type 

interaction (F(1,33) = 0.009, p = 0.926), which suggests that behavioural 

enhancement due to the visual predictability of the target word is consistent as 

a function of task difficulty. Furthermore, we observed no significant effects for 

the noise condition x articulation condition x age (F(1, 33) = 0.155, p = 0.696), 

noise condition x articulation type x information condition (F(1, 33) = 0.297, p = 

0.589), noise x articulation x information x age (F(1, 33) = 0.15, p = 0.701) 

interactions. 
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Figure 6. Articulation-type-related behavioural performance. (A) Group-level task performance 
as a function of age group, information condition, and articulation type. Performance as greater 
generally for non-labial (least visually predictive) nouns compared to labial nouns. (B) Group level 
AV enhancement (AVinf minus AOinf performance) as a function of age group and articulation type. 
AV enhancement is greater for labial words compared to non-labial words, and is consistent 
between age groups. (C) Group level visual predictability (labial minus non-labial performance) as 
a function of age group and noise level. Behavioural enhancement due to the visual predictability of 
the target word is consistent as a function of noise level, information condition and/or age-group. 

In the ageing group, AV enhancement was not related to cognitive status, and no 

significant correlations were observed between AV enhancement and Dspan 

score (rs = -0.177 [-0.684, 0.3663], p = 0.497), TN-E score (rs = 0.01 [-0.517, 

0.469], p = 0.981), or CP score (rs = 0.01 [-0.504, 0.45], p = 0.959). 
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4.3.2 Age-related changes in pre-target AEPs and PSD 

With the aim of replicating previous reports of an age-related slowing of sensory-

evoked activity, we computed AEP time-courses in response to background noise 

onset (Figure 7A)  and compared the amplitude Figure 7B) and latency (Figure 

7C) of the P1, N1, and P2 components between age groups. The peak amplitude 

of the N1 component was significantly larger in older adults (younger median = -

0.88, older median = -1.902 s, Z = 3.251, p = 0.001, r = 0.549), whereas no 

significant age-related differences in amplitude were found in the P1 or P2 

components (P1, younger median = 0.862, older median = 0.814, Z = -0.313, p = 

0.753, r = -0.053; P2, younger median = 3.049, older median = 3.782, Z = -1.171, 

p = 0.241, r = -0.198). The latencies of the N1 and P2 peaks were significantly 

delayed in adults (N1, younger median = 0.137 s, older median = 0.197 s, Z = -

3.671, p < 0.001, r = -0.62; P2, younger median = 0.247 s, older median =0.262 s 

, Z = -2.904 , p = 0.003, r = -0.491). No significant age-related difference in P1 

peak latency was observed (younger median = 0.107 s, older median = 0.102 s, Z 

= 1.133, p = 0.256, r =191).  

Previous research has reported age-related differences in the power spectra of 

ongoing brain activity between younger and older adults (Klimesch, 1999; McNair 

et al., 2019; Tran et al., 2016; Voytek et al., 2015). Thus, we analysed the 

spectral slope of ongoing brain activity of the EEG signal (Figure 7D). The PSD 

slopes of the older adults were significantly flatter than those of the younger 

adults (younger median = -0.389 dB, older median -0.211 dB, Z = -4.373, p < 

0.001, r = -0.739).  

We also tested whether, across subjects, the observed changes in AEP latency 

and amplitude correlated with changes in spectral slope. Differences in PSD 

slope correlated significantly with differences in AEP latency for the N1 (rs = 

0.391 [0.048, 0.654], p = 0.02) and P2 components (rs = 0.364 [0.02, 0.675], p = 

0.032, reduced slope corresponding to longer latency) but not the P1 component 

(rs = -0.146 [-0.482, 0.216], p = 0.402). Differences in PSD slope also correlated 

with the amplitudes of the N1 (rs = -0.522 [-0.707, -0.251], p = 0.001) and P2 (rs 

= 0.373 [0.057, 0.611], p = 0.027) peaks, with a flatter PSD spectrum correlating 

with stronger evoked responses. There was no correlation with the P1 amplitude 
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(rs = 0.226 [-0.118, 0.504], p = 0.192). Our results show that these two distinct 

features, namely AEP dynamics and PSD slope, are related. 

 

Figure 7.Auditory evoked responses to background onset and pre-stimulus power spectral 
density. (A) Grand-average AEPs with standard error (SEM) over central channels (FC1, FCz, 
FC2, C1, Cz, C2, CP1, CPz, CP2). Both younger and older subject display a clear P1-N1-P2 
potential. (B) A comparison of AEP peak amplitudes between groups revealed an age-related 
suppression of N1 peak amplitude. (C) Component peaks were also compared in terms of 
latencies, revealing an age-related delay in N1 and P2 peaks. (D left panel) Group-averaged PSD 
estimates (smooth curves) and fitted regression slopes (dashed lines) for frequencies up to 25 Hz, 
averaged over all channels. Slopes were computed whilst ignoring alpha power between 7 and 14 
Hz (indicated by shaded area). (D right panel) PSD slopes were flatter for the older adults. Grey 
circles indicate individual subject data. Yellow asterisks indicate significance as follows: **p < 0.01, 
***p < 0.001. 
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4.3.3 Age-related differences in late evoked responses 

In comparing evoked responses to target word onset between younger and older 

adults, significant age-related differences emerge between 360 to 520 ms 

following target onset (Figure 8A). Two significant clusters were found within 

this time window: younger adults showed more negative evoked activity over 

fronto-central channels (Tsum = -796.393, p = 0.002), and more positive evoked 

activity over posterior channels (Tsum = 678.697, p = 0.005 ), compared to older 

adults (Figure 8B). No significant differences were found between AVinf and AOinf 

condition (Figure 8A, center panel), or between low noise and high noise 

(Figure 8A, right panel), when averaged across age groups (at p < 0.05). 
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Figure 8.T-maps and time-courses of neural main effects in evoked activity in response to 
target word onset. (A) T-maps for age group, information condition, and noise level contrasts 
based on cluster-based premutation tests. Significant age-related differences were observed in two 
clusters representing  fronto-central negativity, and parieto-occipital positivity between 360 ms and 
520 ms. Significant clusters are outlined in black.  No significant contrasts were observed in 
comparing information condition or noise level. (B) Time-courses and scalp topography of the 
significant clusters found in the younger vs. older contrast. Time courses are grand-averages of 
evoked activity with standard error over significant channels highlighted in panel A. Evoked activity 
is shown as the difference between age groups in green, younger adults in blue, and older adults in 
red. Perforated lines indicate the temporal extent of the significant clusters.  
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Significant differences in AV enhancement between younger and older adults 

were found between 265 ms to 420 ms following target onset (Figure 9A left 

panel). A significant negative cluster was observed over central channels (Tsum = 

-223, p < 0.001, Figure 9B left panel), suggesting that older adults have greater 

positivity in AV enhancement-related evoked activity over these sites compared 

to younger adults. To examine this effect in more detail, we compared evoked 

activity between AVinf and AOinf conditions separately in younger (Figure 9A 

center panel) and older adults (Figure 9A right panel). A significant negative 

cluster was observed over fronto-central channels between 360 ms to 420 ms 

(Tsum = -428.002, p = 0.032, Figure 9B center panel), suggesting that AV 

enhancement in younger adults is reflected in late evoked negativity. In older 

adults however, a positive cluster was found over central electrodes between 

255 ms and 425ms (Tsum = 957.546, p = 0.002, Figure 9B right). AV enhancement 

in older adults, therefore, is reflected in late evoked positivity. Behavioural and 

neural AV enhancement were not significantly correlated in either younger or 

older adults (younger, r = -0.364 [-0.678, 0.138], p = 0.138; older, r = -0.142 [-

0.616, 0.366], p = 0.586).  
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Figure 9. T-maps, time-courses and topographies of the AVinf vs. AOinf contrasts (i.e. the 
neural signature of AV enhancement). (A) T-maps reflecting neural AV enhancement are shown 
for all participants, younger participants, and older participants separately. Across all participants, a 
negative cluster is observed centro-parietal channels between 265 ms and 420 ms. This contrast 
emerges as negative activity over fronto-central channels between 360 ms and 420 ms in younger 
adults, and as positive activity over centro-parietal channels between 255 ms and 425 ms in older 
adults. Significant cluster are outlined in black. (B) Time-courses and scalp topography of the 
significant clusters found displayed in panel A. Time courses are grand-averages of evoked activity 
with standard error over significant cluster-specific channels. In the left panel evoked activity is 
shown in blue for younger adults and red for older adults. AVinf and AOinf is represented in dark and 
light blue respectively in the central panel, and in dark and light red respectively in the right panel. 
Difference waves between age groups or information condition are always shown in green. 
Perforated lines indicate the temporal extent of the significant clusters being represented.  
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No significant interaction effect between age and noise level on evoked activity 

was observed (at p < 0.05). Furthermore, no significant differences in evoked 

activity between low noise and high noise conditions were observed for younger 

and older adults separately (at p < 0.05,Figure 10).  

 

Figure 10.T-maps for the low noise vs. high noise contrast by age group. No significant 
effects were observed in either age group. 

4.3.4 Late evoked activity emerges earlier in older adults 

We observed a significant difference in earliest AV enhancement-related evoked 

activity latency (two sample t-test:  t(1984) = 82.989, p < 0.001, d = 3.724). 

Younger adults’ AV enhancement-related evoked activity were delayed by a 

mean of 0.086 s in comparison to older adults (Bootstrapped 95% confidence 

interval of the difference in latency: [0.010 s, 0.135 s]).  

4.4 Discussion 

In the current study we have investigated the consistency of evoked activity 

underlying AV speech integration in a speech-in-noise discrimination task in 

younger and older adults.  
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4.4.1 Age-differences in visual influences on behavioural 

performance 

We observed significantly greater performance for visually-informative stimuli 

across participants, with older adults showing significantly greater improvement 

in performance for audio-visually informative stimuli compared to acoustically 

informative stimuli. Since the degree of AV enhancement does not correlate 

with cognitive status, and that our participants had only mild age-related 

impairment in hearing and visual capabilities, the behavioural AV enhancement 

observed in older adults is likely due to compensatory strategies in AV speech 

perception rather than as a result of cognitive or sensory impairment.  

In ageing studies, there are reports that performance in AV conditions between 

younger and older adults is comparable (Sekiyama et al., 2014; Winneke & 

Phillips, 2011), or poorer in older adults (Sommers et al., 2005). However, it is 

more common practice to compare visual enhancement (or some measure of 

visual influence) between age groups to investigate the magnitude of the benefit 

visual speech has in AV conditions over AO conditions. It is hypothesized that 

since auditory acuity and attentional resources become more limited with age, 

older adults depend more on visual speech in AV speech settings for 

comprehension compared to younger adults, providing that viewing conditions 

are good. 

Previous results have been inconsistent concerning the influence ageing has on 

AV enhancement. Both Sekiyama et al. (2014) and Maguinness et al. (2011) found 

that AV enhancement was greater in older adults compared to younger adults, 

which aligns with the results of the current study. Other studies, however, 

report that AV enhancement is comparable between age groups (Gordon & Allen, 

2009; Sommers et al., 2005; Winneke & Phillips, 2011). In particular, Sommers et 

al. (2005) found no difference in enhancement provided by AV speech-in-noise 

stimuli when controlling for age differences in lip-reading ability. In addition, 

they found that older adults’ speech discrimination performance was less 

accurate in AV conditions compared to younger adults, despite titrating noise 

level in participants individually and screening for impairments to visual and 

hearing abilities.  
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We also observed significantly poorer performance for high noise conditions 

compared to low noise across participants, and a greater difference between 

information conditions when there is high noise compared to low noise. Ross et 

al. (2007) found that visual gain increases up to an SNR of -12 dB, and thereafter 

visual gain decreases, thus describing the relationship between SNR and visual as 

curvilinear. The SNRs used in the current study were approximately -7.31 dB and 

-8.14 dB for the low noise and high noise conditions respectively, thus this result 

is in line with those of Ross et al. (2007), however further work is needed in 

comparing the SNR-visual-gain profile between younger and older adults as this 

could offer insight into the age-related differences in visual discussed above. We 

found that the interaction between noise and information condition was 

consistent across age groups (via the absence of an age group x information 

condition x noise level interaction).This was to be expected since noise levels 

were titrated around participants’ own 70% correct speech-in-noise 

discrimination threshold. 

4.4.2 Influence of visual predictability on behaviour 

Behaviourally, we found that word discrimination accuracy was greater for 

target words with non-labial onset phonemes (assumed to be least visually 

predictive) compared to target words with labial-onset phonemes (assumed to 

be most visually predictive). We also found that behavioural AV enhancement 

varied as a function of visual predictability, wherein AV enhancement was 

greater for labial target words, compared to non-labial target words. These 

effects were consistent across age groups.  

The lack of age-related differences in behaviour is unsurprising in this case given 

the divergence of reports of age-related differences in the extent of the benefit 

afforded by AV speech (Gordon & Allen, 2009; Maguinness et al., 2011; Sekiyama 

et al., 2014; Sheldon et al., 2008; Sommers et al., 2005). It was expected that 

AV enhancement would be greater when the initial phoneme target words was 

visually predictive, since previous research has found that speech discrimination 

is enhanced by visual speech compared to auditory speech alone (Bernstein et 

al., 2004). Within a predictive coding framework, this enhancement occurs 

because the visual speech signal serves as a primer in reducing the uncertainty 
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of the upcoming voiced signal (Peelle & Sommers, 2015; van Wassenhove et al., 

2005).  

However, what was unexpected was the finding of poorer performance in 

discriminating target words with labial initial phonemes. Individual differences 

in lip-reading ability have been reported (Auer & Bernstein, 2007; Bernstein et 

al., 2000); however, in this case we did not test participants’ lip-reading 

abilities in the current study and thus cannot say whether lip-reading difficulties 

led to poorer performance in the labial condition and/or reliance on non-labial 

articulatory features within the target stimuli. Furthermore, in our analyses we 

have categorized visual predictability based on stable patterns of articulatory 

movements (Fisher, 1968; Owens & Blazek, 1985; Woodward & Barber, 1960) 

that do, or do not, involve labial articulation of the initial phoneme of the target 

word. This makes the assumption that the initial phoneme is indeed predictive 

of subsequent voicing, however, in terms of identification, research has shown 

that consonants are discriminated easiest at the end of an utterance (van Son et 

al., 1994). Furthermore, phoneme confusability is predictive of word 

discrimination accuracy (Mattys et al., 2002). It is perhaps the case that in the 

current design, initial phonemes are not the most task-relevant phonetic 

feature, and accurate performance may instead be driven by (with possible 

reliance on) phonetic features in other positions (e.g. vowels; Fogerty et al., 

2012; Fogerty and Humes, 2010; Richie and Kewley-Port, 2008).  

Lastly, we observed that the influence of visual predictability on behaviour was 

consistent as a function of listening difficulty (noise level), and this effect was 

stable across information conditions and age groups. This suggests either that 

the influence of visual predictability is robust under difficult listening 

conditions, and thus a consistent strategy can be applied regardless of acoustic 

reliability, or that the differences in SNR ratio between the low and high noise 

conditions were not low enough to elicit differential processing strategies. In 

this case the former is most likely given that we observe significant differences 

in word discrimination, and AV enhancement, between noise levels. 
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4.4.3 Age-related differences in early EEG activity 

In our data we expected to observe age-related differences in the P1-N1-P2 

evoked components of auditory evoked responses in two portions of the trial. 

Firstly, in alignment to background onset (and first visual frame), and in 

alignment to target word onset. Considering the former, we found an age-

related suppression of the N1 peak amplitude, which is inconsistent with 

previous findings reporting N1 peak enhancement in older adults (Anderer et al., 

1996; Harkrider et al., 2005; Henry et al., 2017; McNair et al., 2019; Rufener et 

al., 2014; Tremblay et al., 2003).The studies cited here used only auditory 

stimuli, whereas the current study contained audio-visual stimuli on every trial 

(through not always audio-visually informative), thus N1 peak suppression in this 

case may be a result of age-differences in attentional control. Furthermore, we 

found an age-related slowing of the N1 and P2 peak latencies, an effect 

replicated consistently in ageing research (Henry et al., 2017; McNair et al., 

2019; Tremblay et al., 2004).   

We also found that the profile of pre-target power spectral density of ongoing 

EEG activity was significantly flatter in older adults. This replicates our previous 

findings (McNair et al., 2019) and is in line with previous reports which propose a 

mediating role of spectral flattening in cognitive decline (Tran et al., 2016; 

Voytek et al., 2015). Our participants passed a battery of cognitive screening 

assessments designed to test a variety of cognitive abilities, suggesting that 

changes in spectral slope in the present data do not reflect cognitive decline per 

se but either compensatory mechanisms or basic changes in cellular physiology 

(Caspary et al., 2008; R. Gao et al., 2017; S. L. Hong & Rebec, 2012; Podvalny et 

al., 2015; Pozzorini et al., 2013; Voytek & Knight, 2015; Waschke et al., 2017). 

The second vein of inquiry of this study in relation to early AEPs considers 

activity in response to target word onset. Previous studies have reported 

suppressed and earlier N1 –P2 peak latencies and/or amplitudes in AV conditions 

(Alsius et al., 2014; Baart, 2016; Baart et al., 2014; Frtusova et al., 2013; 

Ganesh et al., 2014; Kaganovich & Schumaker, 2014; Klucharev et al., 2003; 

Stekelenburg & Vroomen, 2007; Treille et al., 2014; van Wassenhove et al., 

2005), and an age-related potentiation of the N1 (Frtusova et al., 2013) and P2 

peak (Winneke & Phillips, 2011) and reduction in latency of the N1 peak 
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(Frtusova et al., 2013; Winneke & Phillips, 2011, 2009). We did not observe any 

significant age- or AV-related effects within the early portion (i.e. < 255 ms) of 

post-target activity. The aim of our analyses was not to investigate the presence 

of evoked responses per se, but to investigate the contrasts between conditions 

of interest (namely information and noise conditions) and between age groups. 

However, the observance of age-related differences in behavioural AV 

enhancement suggests that age-related differences in early AEPs should also 

occur. Therefore, that we do not observe significant effects in these contrasts 

suggests two possibilities: that early evoked activity in the current sample 

remains consistent across information and noise conditions and age group, or 

that condition/age-group –related differences in early evoked activity exist but 

are not observable due to features of the current experimental design. 

Amplitude and latency modulation of early auditory components by sensory 

modality and age group are extensively replicated but are inconsistently 

reported, an effect most likely due to paradigm-specific demands. However, 

early auditory activity correlates well with behavioural task performance 

(Frtusova et al., 2013; Starke et al., 2017; Stevenson et al., 2012; Treille et al., 

2014), and given that we observe significant behavioural contrasts it is unlikely 

that the task-relevant neural correlates would remain consistent. It remains that 

such effects do not survive or are not observable due to design features. One 

possibility is that the current sample size was not sufficient to reveal systematic 

differences in early evoked activity. In the majority of studies published in this 

field, ERP analyses are carried out on single or small groups of channels chosen 

a-priori (e.g. Stekelenburg and Vroomen, 2007; van Wassenhove et al., 2005; 

Winneke and Phillips, 2011)  and in a short time window focused on early 

latencies (usually 300 ms or less; e.g. Shahin et al., 2018; Stekelenburg and 

Vroomen, 2007; Winneke and Phillips, 2011). Few studies in AV research 

investigate the development of event-related activity over time using whole-

scalp statistical methods (e.g. Besle et al., 2004; Boyle et al., 2017; Roa Romero 

et al., 2015). In the current study we used a whole-scalp approach in a wide 

time window, using cluster-based permutation procedures (S. J. Kayser et al., 

2015; Maris & Oostenveld, 2007; I. S. Rao & Kayser, 2017) in avoiding a-priori 

assumptions regarding the (in-)consistency of neural activity topographically 

(Cabeza, 2002; Davis et al., 2008; McNair et al., 2019) and temporally (Bieniek 
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et al., 2013; McNair et al., 2019; Price et al., 2017; Salthouse, 1996). It is 

therefore possible that weaker effects (but not significant in this case) exist, but 

do not survive multiple comparison correction during the cluster-permutation 

procedures. Future research could address this by adopting EEG-analyses which 

avoid spatio-temporal a priori assumptions and the multiple comparison 

problem, such as discriminant analyses (Boyle et al., 2017; S. J. Kayser et al., 

2016; McNair et al., 2019; Parra et al., 2005; Philiastides, 2006; Ratcliff et al., 

2009).  

4.4.4 Differential late activity could index differential predictive 
coding 

Though we did not observe significant contrasts in early evoked activity, we 

found significant age-related differences later in the trial. In comparing younger 

versus older adults, we observed a negative difference in EEG amplitude over 

fronto-central channels, and a positive difference at posterior channels at 360 

ms to 520 ms. Older adults tend to recruit anterior areas in compensation for 

increased noise in sensory systems and decreased support for memory processes, 

even when behavioural performance is comparable (Davis et al., 2008; Reuter-

Lorenz & Cappell, 2008). In EEG research, anterior-posterior shifts in topography 

have been observed in late evoked potentials (Anderer et al., 1996; Friedman, 

2012; Ortiz et al., 1990).   

Our results also revealed a significant negative difference between younger and 

older adults in the evoked activity representing the difference between AV and 

AO conditions at 265 ms to 420 ms over central channels. Further investigation 

into this effect revealed AV-related attenuation of the signal over fronto-central 

channels in younger adults between 360ms and 420 ms, and enhancement over 

central channels between 255 and 425 in older adults. This is in line with 

previous research which demonstrate AV influences on late ERP components such 

as the P3 (Andres et al., 2011; Hernández-Gutiérrez et al., 2018; Hessler et al., 

2013; Irwin et al., 2017, 2018; Starke et al., 2017; Stekelenburg et al., 2018) and 

N4 (Duncan et al., 2009; Kaganovich et al., 2016; Lebib et al., 2004; Van Petten 

et al., 1999) components. The P3 component indexes memory processes in 

mapping incoming sensory information onto matching internal representations  

(Polich, 2012). Increasing memory load is associated with reduced amplitude 
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over frontal sites (Segalowitz et al., 2001), however P3 topography is typically 

task-dependent. The N4 component is elicited in response to assessing 

congruence in mapping incoming sensory information to contextual cues. In AV 

speech paradigms, N4 amplitude increases when target stimuli and contextual 

information are incongruent (Duncan et al., 2009). 

It is possible that that since we observe age-related differences in neural AV 

enhancement polarity and topography it can be concluded that older and 

younger adults engage different task-relevant predictive strategies in target 

discrimination (S. J. Kayser et al., 2016; McNair et al., 2019). In younger adults 

we observe AV-related negativity over anterior sites. This differs from the 

canonical central topography of the N400, however there are reports of a frontal 

N4 response in lexical priming (Coulson et al., 2005), and in tasks engaging 

recognition memory (for review see Kutas and Federmeier, 2011), wherein N4 

amplitude scales with word familiarity (Curran, 2000). In older adults we observe 

AV-related positivity over centro-parietal channels, which is in line with the 

canonical P3 topography. The latencies of evoked activity reflecting AV 

enhancement are markedly different between two age groups also. Significant 

AVinf versus AOinf contrasts in older adults emerge as early as 255 ms and endure 

until 425 ms, while in younger adults effects are seen later and over a smaller 

duration of 360 ms to 420 ms. We found that bootstrap distributions of onset 

latencies for these effects were significantly different, suggesting that cognitive 

processing reflected by AV enhancement in late-latency activity occurs earlier in 

older adults compared to younger adults. This is inconsistent with previous 

results that show that evoked potentials are delayed in healthy ageing 

(Friedman, 2012; Gunter et al., 1992, 1996; van Dinteren et al., 2014). It is 

however, consistent with Raij et al.'s (2000) findings that phonetic auditory and 

graphemic visual activity converge around 225 ms after stimulus onset and 

interact in multisensory brain areas (temporo-parietal junction and superior 

temporal sulci) up to latencies of 535 ms.  

It could be hypothesized that, in support of a predictive coding perspective, the 

late activity we observe in the current study are likely to be top-down signatures 

of memory processes engaged in updating mental representations of audio-visual 

speech (Polich, 2012), and/or of prediction error (Kutas & Hillyard, 1989; Swaab 
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et al., 2012). This hypothesis would suggest a prediction strategy based on 

mental representation maintenance in working memory is used by older adults, 

and a strategy based on lexical priming in semantic memory is used by younger 

adults. Support for this comes from the observance of P3 and N4-like effects in 

older and younger adults respectively, and through a lack of neurobehavioural 

correlation in AV enhancement, which suggests that the late-evoked activity 

observed is not a signature of sensory encoding but possibly of higher-order 

processing. Our finding of systematic changes in the overall spectral profile of 

EEG activity and a general slowing of early auditory evoked responses in the 

older participants (in response to background onset), discussed earlier, could 

suggest that differential functional strategies in sensory encoding could have a 

knock-on-effect on subsequent cognitive strategies. Future research should 

address this hypothesis by varying memory processes and load in AV speech 

paradigms.  

4.5 Conclusion 

The present data demonstrate age-related differences in EEG signatures 

underlying visually-informative AV speech discrimination. Behaviourally, we find 

that overall, younger and older adults performed comparably, but older adults 

derived greater AV enhancement than younger adults. Younger adults show 

later, more frontal, and more negative activity in late evoked activity compared 

to older adults, however these effects do not correlate with behaviour AV 

enhancement. Age-related differences in the profiles of late evoked activity, 

suggest differential cognitive processing strategies, likely involving differential 

memory processes, between age groups, which calls for a more systematic 

assessment in varying and/or controlling for memory processing a load in AV 

speech perception.   
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4.6 Supplementary material: target word list 

Word Sound 

type 

Articulation 

type 

Word 

length 

Word 

duration 

(s) 

Concreteness 

category 

Concreteness 

rating 

Familiarity 

rating 

ACT vowel non-labial 3 2.66 low 379 566 

AGE vowel non-labial 3 2.9 low 390 582 

AID vowel non-labial 3 2.78 low 372 536 

AIM vowel non-labial 3 2.46 low 324 549 

APE vowel non-labial 3 2.98 high 654 547 

BEAT plosive labial 4 2.3 low 361 536 

BOAT plosive labial 4 2.74 high 637 584 

CAKE plosive non-labial 4 2.78 high 624 594 

CAUSE plosive non-labial 5 3.06 low 287 557 

CHAIR affricate non-labial 5 2.38 high 606 617 

CHAIR affricate non-labial 5 2.38 high 606 617 

CHALK affricate non-labial 5 2.5 high 634 560 

CHANCE affricate non-labial 6 3.02 low 254 563 

CHARM affricate non-labial 5 2.54 low 352 514 

CHEAT affricate non-labial 5 2.7 low 329 549 

DART plosive non-labial 4 2.5 high 608 496 

EAR vowel non-labial 3 2.46 high 640 560 

EASE vowel non-labial 4 3.1 low 305 519 

EGG vowel non-labial 3 2.78 high 613 608 

END vowel non-labial 3 2.7 low 320 592 

EYE vowel non-labial 3 2.9 high 634 611 

FACT fricative labial 4 3.26 low 332 593 
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FEET fricative labial 4 2.9 high 642 611 

GLOVE plosive non-labial 5 2.9 high 607 575 

GUILT plosive non-labial 5 2.74 low 299 559 

HATE fricative non-labial 4 2.78 low 335 552 

HEAD fricative non-labial 4 2.7 high 603 611 

ICE vowel non-labial 3 3 high 621 564 

INK vowel non-labial 3 2.9 high 608 542 

JAW affricate non-labial 3 2.8 high 617 529 

JAW affricate non-labial 3 2.8 high 617 529 

JOIN affricate non-labial 4 2.38 low 292 544 

JOKE affricate non-labial 4 2.5 low 388 580 

JOKE affricate non-labial 4 2.5 low 388 580 

JOY affricate non-labial 3 2.78 low 300 545 

KEY plosive non-labial 3 2.5 high 612 603 

KIND plosive non-labial 4 2.78 low 323 575 

KNIFE nasal non-labial 5 2.9 high 612 573 

KNOW nasal non-labial 4 2.86 low 274 605 

LAND fricative non-labial 4 2.5 high 604 574 

LEAST fricative non-labial 5 2.98 low 275 529 

MAKE nasal labial 4 2.58 low 299 618 

MILK nasal labial 4 2.5 high 670 588 

MIND nasal labial 4 2.26 low 333 591 

MOOD nasal labial 4 2.62 low 234 541 

MOUSE nasal labial 5 2.5 high 624 520 

MYTH nasal labial 4 3.02 low 334 514 
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NAG nasal non-labial 3 2.26 low 293 492 

NEED nasal non-labial 4 2.58 low 314 589 

NONE nasal non-labial 4 2.34 low 288 569 

NOSE nasal non-labial 4 2.8 high 628 584 

PLAN plosive labial 4 2.54 low 357 571 

PLUM plosive labial 4 2.5 high 632 547 

RAIN rhotic non-labial 4 2.6 high 600 604 

RAT rhotic non-labial 3 2.4 high 624 548 

RATE rhotic non-labial 4 2.58 low 308 527 

REACH rhotic non-labial 5 3.06 low 368 577 

RICE rhotic non-labial 4 2.94 high 608 548 

RIGHT rhotic non-labial 5 2.82 low 361 599 

ROCK rhotic non-labial 4 2.54 high 600 583 

ROLE rhotic non-labial 4 2.5 low 335 524 

ROPE rhotic non-labial 4 2.54 high 608 539 

ROSE rhotic non-labial 4 2.86 high 608 556 

RULE rhotic non-labial 4 2.66 low 286 534 

RUSH rhotic non-labial 4 2.82 low 350 546 

SAVE fricative non-labial 4 2.86 low 314 559 

SHAME fricative non-labial 5 2.66 low 287 534 

SOUP fricative non-labial 4 2.42 high 615 576 

TERM plosive non-labial 4 2.46 low 374 575 

THREAD fricative non-labial 6 2.78 high 607 522 

THROW fricative non-labial 5 2.78 low 400 548 

VOTE fricative labial 4 2.7 low 389 567 
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WANT approximant labial 4 2.7 low 302 606 

WEALTH approximant labial 6 2.78 low 370 557 

WEAR approximant labial 4 2.5 low 360 536 

WEED approximant labial 4 2.54 high 600 542 

WEST approximant labial 4 2.78 low 355 563 

WILD approximant labial 4 2.9 low 381 572 

WILL approximant labial 4 2.3 low 275 584 

WINE approximant labial 4 2.54 high 621 570 

WISE approximant labial 4 2.86 low 268 533 

WOOD approximant labial 4 2.42 high 606 574 

WOOL approximant labial 4 2.54 high 608 540 

WORM approximant labial 4 2.34 high 611 498 

Table 5. Target word stimuli list. List of monosyllabic nouns used as target stimuli and 
accompanying statistics. Sound type, articulation type, concreteness ratings and familiarity ratings 
were derived from the MRC Linguistics Database (Coltheart, 1981) 
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Chapter 5 Neurophysiological correlates of 
phonemic visual predictability in audio-visual 
speech-in-noise discrimination in younger and 
older adults  

5.1 Introduction 

Seeing visual speech helps us to discriminate auditory speech-in-noise faster 

(Klucharev et al., 2003) and more accurately (Bernstein et al., 2004). Speech is a 

complex, hierarchically organized stimulus; to parse an excerpt of acoustic 

speech, the listener must segment the signal in constituent parts such as 

phrases, words, syllables, and phonemes (Giraud & Poeppel, 2012a). EEG 

research has investigated the cortical oscillatory tracking (entrainment) of the 

temporal components of speech by cortical oscillatory activity. AV speech 

enhances entrainment and comprehension (Crosse et al., 2015; Hyojin Park et 

al., 2016; Zion Golumbic et al., 2013) within multiple feature-dependent 

frequency bands (Keitel et al., 2018). Keitel et al. (2018) report that 

entrainment to phonetic features occurs within alpha-band activity (8-12.4 Hz) 

in the right hemisphere, while syllables and words are reported to be tracked 

within low frequency (delta, theta) activity. Furthermore, irregularity of speech 

rate reduces the fidelity of auditory delta-band entrainment (S. J. Kayser et al., 

2015). 

Different phonemic categories have been found to elicit distinct patterns in 

evoked activity. Khalighinejad et al. (2017) found that AEP amplitude fluctuated 

as a function of the phonemic features of the presented speech targets at 

multiple timescales between 50 ms and 400 ms. Differences in the spatio-

temporal profile of evoked activity are often markedly different for different 

phoneme classes (fricative, plosive, nasal, vowel, etc.), with key differences 

emerging between phonemes engaging labial articulatory cues and less 

predictable, non-labial phonemes (Khalighinejad et al., 2017; Mesgarani et al., 

2008, 2014).  Generally speaking, N1 and P2 AEP peaks reflecting, early sensory 

encoding processes, are suppressed and earlier in light of predictive visual 

information (Stekelenburg et al., 2013; Stekelenburg & Vroomen, 2007, 2012), 

specifically when dynamic labial articulations are predictive of upcoming speech 

targets (Arnal et al., 2009; Besle et al., 2004; Klucharev et al., 2003; 



Chapter 5 106 
 
Stekelenburg & Vroomen, 2007; van Wassenhove et al., 2005). Modulation of N4 

peak, on the other hand, is reflective of predictive coding in matching sensory 

phonetic (Lebib et al., 2004), lexical (Kaganovich et al., 2016), and semantic 

information (Van Petten et al., 1999) with internal schema, and its amplitude is 

enhanced when word stimuli are predicted (Kutas & Federmeier, 2011; Lau et 

al., 2008).  

It remains unclear, however, whether and how neural AV enhancement might 

vary as a function of the visual predictability of speech targets. Additionally, it 

is unclear whether such effects would be stable across the lifespan. Previous 

work has studied the behavioural and neural correlates of phonemic perception 

by using either McGurk-style syllabic utterances (Besle et al., 2004; Stekelenburg 

& Vroomen, 2007; van Wassenhove et al., 2005) or continuous speech 

(Khalighinejad et al., 2017; Mesgarani et al., 2008, 2014). Studies have not yet 

investigated the visual predictability of phonemes at word onset using a speech-

in-noise word discrimination task.  

The aim of the current chapter was to separate target words based on the visual 

predictability of the initial phoneme (labial, non-labial) and then quantify the 

influence of phoneme type on the behavioural benefit of visual predictability 

and its associated ERP correlates. Thus, the current chapter is an extension to 

the analyses presented in Chapter 4. Our goal was to study the neural correlates 

underlying the visual predictability of AV speech under noisy listening conditions 

in younger and older adults. Using the same datasets collected from the AV 

speech-in-noise paradigm described in Chapter 4, we tested for the additional 

behavioural and neural main effects of articulation type (labial, non-labial), and 

its interaction with age group (younger, older), information condition (AVinf, 

AOinf), and noise level (low noise, high noise).  

5.2 Analysis and statistical methods: auditory evoked 
responses to stimuli onset 

The current chapter is an extension of the analyses reported in Chapter 4, thus 

only methodological details specific to this chapter are reported here. See 

Chapter 4 for details regarding participants, stimuli, experimental procedure, 

and EEG recording and pre-processing processes. 
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Our aim was to derive ERP signatures reflecting the visual predictability of 

target word initial phonemes. To this end, we tested for main effects and 

interactions in the four-factor mixed design age group x information type x noise 

condition x articulation type, using spatio-temporal cluster-based permutation 

tests (Maris & Oostenveld, 2007) across all channels and in a time window of -

0.1s to 1s relative to target word onset. The procedure computed a two-tailed t-

test for each channel and controlled for multiple comparisons. The cluster test 

statistic (Tsum) was computed by summing the t-value of adjacent channels 

where p < 0.05 during clustering, with a required cluster size of at least 2 

significant neighboring channels and based on 2000 iterations.  

We computed two measures in assessing the influence of visual information on 

performance (and also neural activity later). Firstly we calculated AV 

enhancement as the difference between AVinf and AOinf , as per Chapter 4 

(McNair & Kayser, 2019). Secondly, we calculated visual predictability of the 

target word stimuli by the word’s onset phoneme as the difference between 

visually predictive (labial) and non-predictive (non-labial) conditions.  

5.3 Results  

5.3.1 Visual predictability is reflected in late evoked activity in 
older adults only 

To investigate the main effect of articulation type of target word onset, we 

compared evoked time courses between words with labial versus non-labial 

initial phonemes across noise level, information condition, and age group. 

Significant articulation-related differences emerged in the form of a negative 

cluster between 345 to 380 ms following target onset over frontal channels (Tsum 

= -322.313, p = 0.031, Figure 11A). Target words with non-labial onset 

phonemes therefore induced more negative deflections in evoked activity 

compared to target word with labial onset phonemes (Figure 11B).  
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Figure 11.T-maps, time-courses and topography of the neural main effect of articulation 
type in response to target word onset. (A) T-map for labial vs. non-labial contrast based on 
cluster-based premutation tests. Significant articulation-related differences were observed in a 
cluster representing fronto-central negativity between 345 ms and 380 ms. Significant clusters are 
outlined in black. (B) Time-courses and scalp topography of the significant cluster displayed in 
panel A. Time courses are grand-averages of evoked activity with standard error over significant 
channels. Evoked activity is shown as the difference between articulation types (labial minus non-
labial) in green, labial in purple, and non-labial in orange. Perforated lines indicate the temporal 
extent of the significant clusters. 

To examine this effect further we tested the interaction between articulation 

type and age group by comparing the difference in articulation-related evoked 

responses (labial minus non-labial, thus reflecting activity underlying visual 

predictability) between younger and older age groups. A significant difference in 

activity representing visual predictability was found between younger and older 

adults (Tsum  = 337.357, p = 0.029, Figure 12A left) between 245 to 315 ms. In 

this case, younger adults show more positive activity over frontal channels 

compared to older adults (Figure 12B, left). Age-related idiosyncrasies in 

articulation-evoked response patterns were further tested by comparing labial 

versus non-labial evoked responses for both age groups separately. No significant 

differences were observed in younger adults (at p < 0.05, Figure 12A center), 

however older adults show a more negative evoked deflection (Figure 12B, 

right) over fronto-central channels between 260ms and 380ms (Tsum =  -765.866, 

p < 0.001, Figure 12A right). Taking these results together, we observe a neural 

signature representing the visual predictiveness of target word onset phoneme 

which is specific to older adults. 
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Figure 12.T-maps, time-courses and topographies of the labial vs. non-labial contrasts (i.e. 
the neural signature of visual predictability of target words). (A) T-maps reflecting visual 
predictability are shown for the younger vs. older contrast (left), younger participants (center) and 
older participants (right) separately. Across all participants, a positive cluster is observed in fronto-
central channels between 245 ms and 315 ms. This contrast emerges as negative activity over 
fronto-central channels between 260 ms and 380 ms in older adults, however no significant 
contrasts were observed in younger adults. Significant cluster are outlined in black. (B) Time-
courses and scalp topography of the significant clusters as displayed in panel A. Time courses are 
grand-averages of evoked activity with standard error over significant cluster-specific channels. In 
the left panel evoked activity is shown in blue for younger adults and red for older adults. Labial 
and non-labial evoked activity is represented in dark and light red respectively in the right panel. 
Difference waves between age groups or articulation condition are shown in green. Perforated lines 
indicate the temporal extent of the significant clusters being represented. 

 

5.3.2 Visual predictability does not vary as a function of AV 
enhancement in evoked activity 

We tested for an articulation type x information condition interaction by 

comparing time courses reflecting AV enhancement (AVinf – AOinf) between labial 

and non-labial articulation conditions both across all participants Figure 13A), 

and in younger and older participants separately (Figure 13C). No significant 
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clusters were identified (at p < 0.05), suggesting that AV enhancement-related 

evoked responses are unaffected by the type of the target onset phoneme. 

Similarly, no significant clusters were observed (at p < 0.05) in testing the 

articulation type x information condition x age interaction (Figure 13B), which 

was computed by comparing the differences in articulation-related AV 

enhancement between age groups (i.e. Younger (labial AV – labial AO) – (non-labial AV - non-

labial AO) versus Older(labial AV – labial AO) – (non-labial AV - non-labial AO)). Together, this suggests 

that though visual predictability has a distinct event-related profile in older 

adults, AV enhancement-related activity is unaffected by visual predictability. 

 

Figure 13.T-maps for the contrasts of differences in articulation-related AV enhancement 
(i.e. (labial AVinf – labial AOinf ) – (non-labial AVinf – non-labial AOinf )) across all participants (A), 
between age groups (B), for each age-group separately (C). No significant contrasts were 
observed in any case. 

To investigate the interaction between information condition and articulation 

type further, we compared event-related time courses for information condition 

(AVinf versus AOinf) for each articulation type and age group separately. No 
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significant clusters were observed in either the labial (Figure 14A) or non-labial 

(Figure 14B) articulation conditions in younger adults. In older adults, however 

a significant positive cluster over parieto-occipital channels was found in labial-

related evoked activity (Figure 14D) for older adults at 325 to 380 ms (Tsum = 

261.758, p = 0.023, Figure 14C). Thus, more positive activity over posterior 

channels may be an index of visual enhancement of the auditory signal for 

visually predictive targets. A significant information-related cluster was also 

observed in older adults’ non-labial evoked activity (Figure 14F). A positive 

cluster was found over centro-parietal channels at 260 to 420 ms (Tsum = 

843.071, p < 0.001, Figure 14E). Therefore, more positive activity over central 

channels may index visual enhancement of speech when visual predictiveness of 

the target word is low.  
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Figure 14.T-maps, time-courses and topographies of the AVinf vs. AOinf contrasts (i.e. the 
neural signature of AV enhancement) in evoked activity by articulation type and age group. (A-C, 
E). T-maps reflecting AV enhancement in evoked activity are shown for both age groups and 
articulations conditions separately. (D) Time-courses and scalp topography of the significant 
clusters in older adults’ labial evoked activity, displayed in panel C. This contrast emerges as 
positive activity over centro-parietal channels between 325 ms and 380 ms. (F) Time-courses and 
scalp topography of the significant clusters in older adults’ non-labial evoked activity, displayed in 
panel E. This contrast emerges as positive activity over centro-parietal channels between 260 ms 
and 420 ms.Difference waves between information conditions are shown in green, AVinf activity is 
shown in purple, and AOinf activity is shown in orange. Perforated lines indicate the temporal extent 
of the significant clusters being represented. 
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5.3.3 Neural correlates of visual predictability do not vary by task 

difficulty  

AV enhancement, and the use of visual cues is greater when auditory signals are 

degraded (Puschmann et al., 2019; L. A. Ross et al., 2007). We therefore tested 

whether evoked signatures reflecting visual predictiveness (labial minus non-

labial time courses) differed between low and high noise conditions (articulation 

type x noise condition interaction) both across all participants (Figure 15A), and 

in younger and older participants separately (Figure 15C),  however no 

significant effects were observed (at p < 0.05). We also tested the articulation 

type x noise condition x age group interaction (Figure 15B) by comparing the 

noise-related differences in activity underlying visual predictability between age 

groups (i.e. Younger (low noise labial – low noise non-labial) – (high noise labial – high noise non-labial) 

versus Older(low noise labial – low noise non-labial) – (high noise labial – high noise non-labial)), but no 

significant effects were observed (at p < 0.05). Therefore, we find no evidence 

that evoked activity underlying the visual predictiveness of speech differs as a 

function of listening difficulty and age.  
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Figure 15.T-maps for the contrasts of noise-related differences in visual predictability in 
evoked activity (i.e. (low noise labial – low noise non-labial) – (high noise labial – high noise non-
labial)) across all participants (A), between age groups (B), for each age-group separately (C). No 
significant contrasts were observed in any case.  

5.4 Discussion 

In the current chapter, we have investigated the consistency of evoked activity 

underlying the visual predictability of AV speech, using a speech-in-noise 

discrimination task in younger and older adults.  

Visual predictability (labial – non-labial) was reflected by negative evoked 

activity over frontal channels between 345 ms and 380 ms, across all 

participants. Conversely, this indicates that evoked activity to non-labial initial 

phonemes is significantly more positive. Thus, what we observe here is a 

reduction in the amplitude of evoked activity in relation to visually predictive 

stimuli. Comparing visual predictability between younger and older adults, 

younger adults show more positive activity over frontal channels between 245 
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ms and 315 ms, compared to older adults. Younger adults do not exhibit a 

significant effect of visual predictability (labial vs. non-labial contrast), whereas 

older adults have more negative activity over fronto-central channels between 

260 ms and 380 ms. Taking these results together, we observe a neural signature 

representing the visual predictiveness of target word onset phoneme which is 

specific to older adults.  

These results suggest that late evoked activity is sensitive to articulatory 

features of lexical stimuli in older adults, and is consistent with previous 

research that shows AV suppression of evoked activity peaks. AV-related ERP 

suppression has been observed in relation to the N1 – P2 early auditory potential 

(Alsius et al., 2014; Baart, 2016; Baart et al., 2014; Frtusova et al., 2013; 

Ganesh et al., 2014; Kaganovich & Schumaker, 2014; Klucharev et al., 2003; 

Stekelenburg & Vroomen, 2007; Treille et al., 2014; van Wassenhove et al., 

2005), and the later P3 component reflecting the mapping of auditory and visual 

representations to internal representations (Hernández-Gutiérrez et al., 2018; 

Hessler et al., 2013; Irwin et al., 2017, 2018; Klucharev et al., 2003; Starke et 

al., 2017). In line with our results, P3 peak suppression in AV speech  is often 

demonstrated over fronto-central sites (Hernández-Gutiérrez et al., 2018; 

Hessler et al., 2013; Irwin et al., 2017, 2018; Starke et al., 2017). Most similar to 

our findings is that of Klucharev et al. (2003) who observed a reduction in 

amplitude between congruent versus incongruent spoken phonemes, peaking at 

325 ms after stimulus onset. According to Van Wassenhove et al. (2005), in line 

with a predictive coding view under an analysis-by-synthesis framework, AV-

related modulation of evoked activity is influenced by the predictability of visual 

speech and thereafter the redundancy of visual and auditory information. 

Specifically, modulation of the N1 – P2 component is reflective of prediction 

error following the mapping of sensory input against an internal predictor. Our 

results are in line with this interpretation and extend its scope beyond early 

auditory activity to later-occurring components which closely resemble P3 and 

N4, and thus top-down, activity.  

Given that we do not observe behavioural labial versus non-labial contrasts 

between younger and older adults (see Chapter 4), it is likely that neural 

differences are reflective of compensatory mechanisms supporting accurate 
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performance given healthy changes in cognitive function with age (Cabeza, 

2002; Davis et al., 2008). In Chapter 4, we discussed age-related differences in 

AV enhancement, possibly reflecting differential cognitive strategies in 

predictive coding that are reliant on distinct memory processes. We needed to 

understand the interaction between visual predictability and AV enhancement in 

the neural data. AV enhancement-related evoked responses were unaffected by 

articulation type in either age group. Significant spatio-temporal profiles of AV 

enhancement were observed in older adults for labial and non-labial words 

separately, however when comparing these profiles no significant differences 

were observed. Similar effects are not observed in younger adults, despite 

significant AVinf versus AOinf contrasts observed in younger adults in Chapter 

4suggests that such effects in this age group are made weaker when separating 

the data by articulation type, and thus are not significant here.  

In neither age group does neural AV enhancement vary as a function of visual 

predictability. This is inconsistent with our behavioural findings, in which we 

observe heightened AV enhancement with increased visual predictability. 

Previous research (discussed above) suggests that this should result in 

heightened AV-related suppression of evoked activity. This does not necessarily 

suggest that such effects do not exist. One possibility is that potential weaker 

effects do not survive multiple comparisons owing to the spatio-temporal nature 

of our analysis approach. Analyses at the single-channel level would eliminate 

the spatial dimension, but inherently rely on a-priori assumptions about which 

channels most strongly reflect the neuroanatomical sources generating visual 

predictability-related and AV enhancement-related activity. These assumptions 

are complicated by evidence that visual enhancement has been associated with 

activity at multiple sites including superior temporal areas (Beauchamp et al., 

2004; Nath & Beauchamp, 2012; Riedel et al., 2015; Van Atteveldt et al., 2014), 

inferior frontal and pre-motor areas (Arnal et al., 2009; Evans & Davis, 2015; 

Hasson et al., 2007; H. Lee & Noppeney, 2011; I. G. Meister et al., 2007; Skipper 

et al., 2009; Wright et al., 2003), and early auditory cortices (Besle et al., 2008; 

Chandrasekaran et al., 2013; Ghazanfar et al., 2005; C. Kayser et al., 2010; 

Lakatos et al., 2009; Zion Golumbic et al., 2013). Alternatively, LDA is increasing 

used in cognitive neuroscience to reduce the spatial dimension of EEG data to 

one-dimensional scalp projections maximally separating experimental conditions 
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(Boyle et al., 2017; S. J. Kayser et al., 2016; McNair et al., 2019; Parra et al., 

2005; Philiastides, 2006; Ratcliff et al., 2009). Our previous work has 

demonstrated that clustering these projections can reveal systematic temporal 

patterns in the sensory-perceptual cascade (S. J. Kayser et al., 2016; McNair et 

al., 2019). Therefore, further work is required in reconciliating effects observed 

in task-relevant neuroanatomical sources, and in identifying their scalp-level 

correlates.  

Lastly, we found that evoked activity reflecting visual predictability did not vary 

with listening difficulty, and this was consistent across information conditions 

and age groups. These results were to be expected as they are in line with our 

behavioural findings (see Chapter 4). 

5.4.1 Conclusion 

The present data demonstrate age-related differences in EEG signatures 

underlying visual predictability of AV speech. Behaviourally, we found that 

words with non-labial initial phonemes are discriminated from noise more 

accurately than non-labial words, while AV enhancement was greater for labial 

words, compared to non-labial words. Our behavioural results show that though 

older adults benefit more from AV speech in noisy settings compared to younger 

adults (see Chapter 4) this effect is not necessarily driven by the predictiveness 

of phonemes at word onset. Neurally, we found that visual predictability was 

reflected by late fronto-central negativity in older adults, but not in younger 

adults. However, we did not find evidence of an interaction between visual 

predictability and AV enhancement in terms of evoked activity, raising further 

questions about how visual predictability of speech is represented the brain’s 

electrophysiology.  
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Chapter 6 Discussion 

This thesis aimed to address questions in two distinct areas of research in ageing 

and cognitive neuroscience. Firstly, given that the pre-stimulus state of cortical 

oscillations had been shown to predict behavioural and neural responses, we 

addressed the question of whether pre-stimulus oscillatory mechanisms change 

or remain consistent in the ageing brain. Secondly, previous research had shown 

that AV speech influences the amplitude and latency of evoked activity. Our 

research addressed the questions of whether/how AV enhancement and visual 

predictability of AV speech is represented in evoked activity in noisy listening 

conditions, and whether such EEG signatures remain stable with age. 

In Chapter 3 we investigated the consistency of how pre-stimulus activity 

influences auditory frequency discrimination performance in young and older 

participants. In both groups the power of pre-stimulus activity influenced the 

encoding of sensory evidence reflected by early evoked components, while the 

phase influenced choice formation in later-activated EEG components. 

Importantly, for the early EEG components we did not find evidence for a 

systematic difference in the time scales of the perceptually relevant pre-

stimulus activity. In the later-activated EEG component we found a trend for 

perceptually relevant rhythmic activity to arise from slower frequencies in the 

ageing brain. At the same time our data replicate previous findings of a 

significant age-related slowing of AEP latency, modulations of AEP amplitudes, 

and a flattening of the spectral profile of EEG activity.  

In Chapter 4, we investigated the consistency of behaviour and evoked activity 

underlying AV speech integration in a speech-in-noise discrimination task in 

younger and older adults. Behaviourally, younger and older adults performed 

comparably. Performance was greater for AVinf speech compared to AOinf speech 

across groups and noise levels, and was poorer at low noise levels. AV 

enhancement was greater in high noise levels, across all participants, and older 

adults derived greater AV enhancement compared to younger adults (an effect 

that was consistent across noise levels). In terms of visual predictability, we 

found that behaviourally, word discrimination performance was greater for 

target words with non-labial initial phoneme, compared to labial initial 

phonemes. Furthermore, we found that AV enhancement was greater for labial 
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target words, compared to non-labial target words, and was consistent across 

age groups. Neurally, we found that AV enhancement is represented by a centro-

parietal P3-like activity in older adults and an N4-like fronto-central activity in 

younger adults, but found that this activity did not correlate with behavioural AV 

enhancement. Our results point to distinct patterns of late evoked activity 

underlying AV enhancement between younger and older adults, possibly 

representing distinct cognitive (memory) strategies in predicting upcoming 

target stimuli. At the same time our data replicate previous findings of a 

significant age-related slowing of AEP latency, modulations of AEP amplitudes, 

and a flattening of the spectral profile of EEG activity. 

In Chapter 5 we investigated the consistency of evoked activity underlying the 

visual predictability of AV speech. We found that visual predictability was 

reflected by late fronto-central negativity in older adults, but not in younger 

adults. However, we did not find evidence of an interaction between visual 

predictability and AV enhancement in terms of evoked activity, raising further 

questions about how visual predictability of speech is represented the brain’s 

electrophysiology. Our results point to distinct patterns of late evoked activity 

underlying visual predictability of visual speech, again possibly reflecting 

differential strategies in predictive coding. 

6.1 Oscillatory activity 

6.1.1 Pre-stimulus influences on perception remain consistent in 
ageing 

In Chapter 3we investigated the consistency of how pre-stimulus activity 

influences auditory frequency discrimination in young and older adults. We 

found that in both age groups, perceptual performance was reliably influenced 

by oscillatory activity prior to the presentation of the task-relevant stimuli. This 

is consistent with a body of literature showing that pre-stimulus oscillatory brain 

activity can influence perception (Florin et al., 2017; Henry et al., 2014; Henry 

& Obleser, 2012; Iemi et al., 2017; S. J. Kayser et al., 2016; Ng et al., 2012; 

Pinheiro et al., 2017; Samaha et al., 2017; Samaha & Postle, 2015; VanRullen, 

2016).  
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Furthermore, we replicate our previous finding delineating two mechanisms by 

which pre-stimulus oscillatory activity influences auditory pitch perception (S. J. 

Kayser et al., 2016). We found that oscillatory power of low frequency, alpha, 

and beta band activity shaped the encoding of task-relevant sensory information 

in early EEG components, likely reflecting emerging from auditory cortical 

networks. Additionally, the phase of alpha band activity influenced behavioural 

choice in a later-activated fronto-parietal EEG component. Therefore, we find 

that that multiple and distinct rhythmic processes control perceptual decisions 

and suggest that the relevant time scales of neural activity are largely conserved 

along the life span. Furthermore, our results demonstrate that the relation of 

pre-stimulus brain activity and perception is not mandatorily affected by a 

general increase in neural response latencies with age. 

Furthermore, we observed that alpha phase influences sensory evidence in the 

late EEG component, but only in older adults. This component was not 

significantly related to behavioural choice, however it may suggest that in the 

elderly subjects the encoding of the task-relevant sounds in fronto-parietal 

regions was affected by a reduced attentional commitment (Henry et al., 2017; 

Strauss et al., 2015; Wostmann et al., 2015; Wöstmann et al., 2016). Support for 

this interpretation comes from research showing that enhanced alpha power is 

reflective of reductions in attention (Thut et al., 2012; Wöstmann et al., 2016) 

and of stronger selection of sensory evidence through the modulation of cortical 

excitability in sensory areas (Iemi et al., 2017; C. Kayser et al., 2015; Strauss et 

al., 2015), and that alpha power has been shown to increase with decreased 

acoustic reliability and thus may reflect compensatory mechanisms engaged due 

to more challenging listening conditions (Becker et al., 2013; Henry et al., 2017; 

McMahon et al., 2016; Obleser et al., 2012; Obleser & Weisz, 2012; Scharinger et 

al., 2014; Steinmetzger & Rosen, 2017; Wostmann et al., 2015). Furthermore, 

behavioural studies show that older adults tend to find difficulty in controlling 

attention (H. Meister et al., 2013; Passow et al., 2014) and ignoring irrelevant 

stimulus information (Chao & Knight, 1997; de Villers-Sidani et al., 2010; 

Gazzaley et al., 2005; Rossi-Katz & Arehart, 2009; Tun et al., 2002). Therefore, 

the differences we observe in the relationship between alpha band activity and 

the encoding of sensory information may be reflective of age-related differences 
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in strategies used in parsing a noisy acoustic scene at sensory and cognitive 

levels, in light of age-related attentional decline (McGovern et al., 2018). 

6.1.2 Oscillatory frequency changes with age  

In Chapter 3 we reported age-related consistencies in two oscillatory 

mechanisms by which pre-stimulus influences perception: the power of low 

frequency, alpha, and beta band activity shaped the encoding of task-relevant 

sensory information in early EEG components, while the phase of alpha band 

activity influenced behavioural choice in a later-activated fronto-parietal EEG 

component. In the early-activated (“auditory”) EEG component we observed no 

significant differences in peak frequencies between younger and older adults. 

However, we observed a trend in which oscillatory frequency was more variable 

and shifted more towards lower peak frequencies in older adults, though this 

shift was not found to be statistically significant. Together, these results suggest 

that though pre-stimulus influences on auditory pitch perception remain 

consistent between younger and older adults, they may be more variable as we 

get older for processes involving higher-level cognitive processes (McGovern et 

al., 2017; Sander et al., 2012; Zanto & Gazzaley, 2014).   

Furthermore, in Chapter 3 and Chapter 4 we found that the spectral profile of 

ongoing EEG activity was significantly flatter in the older participants. This fits 

with previous studies reporting age-related reduction in power spectral density 

slopes (Tran et al., 2016; Voytek et al., 2015). Spectral flattening possibly 

occurs due to a decreased neuronal synchrony (Podvalny et al., 2015; Pozzorini 

et al., 2013; Voytek & Knight, 2015; Waschke et al., 2017), increased 

spontaneous activity (S. L. Hong & Rebec, 2012), or changes in the balance of 

inhibitory-excitatory neuronal function (Caspary et al., 2008; R. Gao et al., 

2017). It has been reported that spectral flattening is a mediator of cognitive 

decline (Tran et al., 2016; Voytek et al., 2015). This is supported by studies 

which have found that alpha and theta activity are engaged differentially in the 

younger and older adult brain, both in cognitive performance and at rest 

(Cummins & Finnigan, 2007; Hartikainen et al., 1992; Kardos et al., 2014; 

Karrasch et al., 2004; McEvoy et al., 2001; Polich, 1997; Tóth et al., 2014; 

Vlahou et al., 2014; Volf & Gluhih, 2011; Widagdo et al., 1998). In both Chapter 

3 and Chapter 4, participants passed a battery of cognitive assessments, testing 
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a wide range of cognitive abilities including reasoning, attention, working 

memory, abstraction, orientation, and language. Therefore, our finding of an 

age-related spectral flattening does not reflect cognitive decline but rather 

compensatory mechanisms or changes in cellular physiology. Support for the 

latter comes from research showing that pathological changes such as the 

amyloid plaques and neurofibrillary tangles (Braak & Braak, 1991), and changes 

in cerebral blood flow (Beason-Held et al., 2013) can occur before the 

behavioural manifestations of cognitive decline.  

6.2 Latency and amplitude of early evoked activity 

In Chapter 3 and Chapter 4, we investigated the effects of ageing on the latency 

and amplitude on the P1-N2-P2 components of auditory evoked activity in 

response to background noise onset. In Chapter 3 we found that older adults’ P1 

and N1 component amplitudes were significantly larger compared to younger 

adults, yet their P2 peaks were reduced, whereas in Chapter 4, we only found an 

age-related suppression of the N1 peak amplitude. In both Chapter 3 and 

Chapter 4, we report an age-related slowing of the N1 and P2 peak latencies.  

Our results in Chapter 3 are consistent with previous research which have 

observed enhanced P1 and N1 components in older adults, compared to younger 

adults (Anderer et al., 1996; Harkrider et al., 2005; Tremblay et al., 2003). 

Increases in ERP amplitude with age could be explained by an age-related 

reduction in inhibitory processes stemming from reduced GABA activity (Caspary, 

Milbrandt, & Helfert, 1995; Caspary, Ling, Turner, & Hughes, 2008; Caspary, 

Schatteman, & Hughes, 2005; de Villers-Sidani et al., 2010; Hughes, Turner, 

Parrish, & Caspary, 2010). Our findings in Chapter 4 of an age-related 

suppression of N1 peak amplitude is not consistent with this literature, however 

N1 suppression has been found in response to unattended, compared to 

attended, acoustic stimuli (Giard, 2000; Hillyard & Kutas, 1983; Na ̈a ̈ta ̈nen, 

1992). Therefore, age-related N1 suppression could be reflective of greater, or 

more effortful, suppression of background noise in older adults.  

The ageing profile of the P2 component remains less clear, with reports of both 

enhancement (Amenedo & Díaz, 1998, 1999; Pfefferbaum et al., 1980) and 

diminution (Czigler et al., 1992; Henry et al., 2017; Rufener et al., 2014) with 
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age. Furthermore, Anderer et al., (1996) report a non-linear relationship 

between P2 amplitude and age, with enhancement until around 60 years of age 

and diminution thereafter. In Chapter 3 we found an age-related reduction in P2 

amplitude, which could be explained by changes in attentional control. Like the 

N1 component, the auditory P2 component has been shown to vary with 

attentional control and is reflective of the listeners’ ability to filter irrelevant 

information (Crowley & Colrain, 2004; Lister et al., 2011; Rufener et al., 2014). 

Given that the AEP we investigated was in response to background noise (i.e. the 

stimulus to be ignored), it is possible that  the age-related P2 modulation we 

observed is due to age-related differences in selective attention (Chao & Knight, 

1997; Gazzaley et al., 2005; H. Meister et al., 2013; Passow et al., 2014; Tun et 

al., 2002).  

As the brain ages cognitive and neural processes become slower (Bieniek et al., 

2013; Price et al., 2017; Salthouse, 1996), resulting in N1 and P2 evoked 

responses that are typically delayed (Anderer et al., 1996; Bertoli et al., 2005; 

Harkrider et al., 2005; Harris et al., 2007; Henry et al., 2017; Pfefferbaum et 

al., 1980; B. Ross et al., 2007; Tremblay et al., 2002, 2003) in the aged brain. In 

Chapter 3 and Chapter 4, in concordance with these results, we also found that 

N1 and P2 components were significantly delayed in older adults, compared to 

younger adults. Age-related delays in auditory neural processing have been 

attributed to grey matter degeneration in A1 (Price et al., 2017), while declining 

hearing abilities have been attributed to functional changes such as poorer 

frequency tuning in A1 (Caspary et al., 2008; de Villers-Sidani et al., 2010; 

Kamal et al., 2013; J. G. Turner, 2005), desynchronized spiking (de Villers-Sidani 

et al., 2010; Kamal et al., 2013), and reductions in GABA (Burianova et al., 2009; 

F. Gao et al., 2015; Ling et al., 2005). Thus, delays in auditory evoked activity is 

likely a result of structural and/or functional changes in the ageing auditory 

pathway.   

6.3 AV speech processing 

6.3.1 AV influences on behavioural performance 

Behaviourally, we observed significantly greater performance for visually 

informative stimuli across participants, with older adults showing significantly 
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greater improvement in performance for audio-visually informative stimuli 

compared to acoustically informative stimuli. Since the degree of AV 

enhancement does not correlate with cognitive status, and that our participants 

had only mild age-related impairment in hearing and visual capabilities, the 

behavioural AV enhancement observed in older adults is likely due to 

compensatory strategies in AV speech perception rather than as a result of 

cognitive or sensory impairment. We also observed significantly poorer 

performance for high noise conditions compared to low noise across participants, 

and a greater difference between information conditions when there is high 

noise compared to low noise. Lastly, we found that the interaction between 

noise and information condition was consistent across age groups. Previous 

literature shows discrepancies in whether ageing has an influence on AV 

enhancement. Some studies have found that AV enhancement is greater in older 

adults than in younger adults, which is consistent with our findings (Maguinness 

et al., 2011; Sekiyama et al., 2014); however, other studies have shown that AV 

enhancement remains stable with age (Gordon & Allen, 2009; Sommers et al., 

2005; Winneke & Phillips, 2011). Our results are also in accordance with research 

which has shown that visual gain increases as SNR decreases (L. A. Ross et al., 

2007). 

In terms of the visual predictability of audio-visual speech, we found that word 

discrimination accuracy was greater for target words with non-labial onset 

phonemes, compared to target words with labial-onset phonemes. We also found 

that, across age-groups, behavioural AV enhancement varied as a function of 

visual predictability, wherein AV enhancement was greater for labial target 

words, compared to non-labial target words. However, we unexpectedly found 

poorer performance in discriminating target words with labial initial phonemes. 

Lastly, we observed that the influence of visual predictability on behaviour was 

consistent as a function of listening difficulty (noise level), and this effect was 

stable across information conditions and age groups. In a predictive coding 

framework, it has been hypothesised that (audio-) visual enhancement occurs 

when visual speech can reduce the uncertainty of upcoming voiced stimuli 

through lexical or semantic priming (Peelle & Sommers, 2015; van Wassenhove 

et al., 2005). Therefore, our finding of greater AV enhancement for words with 

labial onset phonemes, compared to non-labial onset phonemes, is in accordance 
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with this view. However, our finding of poorer overall discrimination of words 

with labial onset phonemes conflicts with this hypothesis and might be explained 

by differences in methodological approaches between the current research and 

previous literature. For example, lip reading abilities can influence the accuracy 

of AV speech perception (Auer & Bernstein, 2007; Bernstein et al., 2000), and 

was not assessed in the current research. Furthermore, we assume that the 

target word onset phoneme is the more task-relevant phonetic feature of the 

stimuli, which might not be the case considering previous research has found 

that some phonetic features are best discriminated at the end of utterances (van 

Son et al., 1994). Lastly, our finding of stability in the influence of target word 

visual predictability on AV enhancement between age groups conflicts with the 

predictive coding framework. However, this is unsurprising considering the 

discrepancies of reports of age-related differences in AV enhancement (Gordon 

& Allen, 2009; Maguinness et al., 2011; Sekiyama et al., 2014; Sheldon et al., 

2008; Sommers et al., 2005). 

In multisensory research, Bayesian probability models have been used to 

estimate the combination of multiple sensory inputs in multisensory 

environments. The linear cue combination model estimates an optimal linear 

combination of the cues based on their precision. Research diverges on whether 

age-related differences exist in the weighting of sensory cues, with some studies 

reporting similar weighting between younger and older adults (Braem et al., 

2014; Brooks et al., 2015) while others report impaired weighting (Bates & 

Wolbers, 2014) or differential reweighting strategies wherein older adults place 

increasing weight on visual information (Alberts et al., 2019). We found that 

visually informative AV stimuli led to enhanced discrimination of speech-in-

noise, compared to auditory-only informative AV stimuli, and we found that this 

enhancement was greater in older adults, compared to younger adults. Within a 

cue-combination framework, this suggests that informative visual information 

might be weighted more in the presence of degraded auditory input across age 

groups, and that older adults might weight informative visual information even 

more than younger adults. However, as we did not employ Bayesian modelling in 

our analysis approach, future research should test this objectively.  
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In the current research, any potential age-related differences in sensory cue-

weighting should be a result of age-related differences in the cue-weighting 

processes themselves, rather than as a result of declining sensory or cognitive 

processes. Controlling for perceptual threshold between age groups has been 

shown to result in different cue-weighting strategies in older adults, compared 

to when the same physical stimuli is presented to both age groups (Brooks et al., 

2015). To eliminate differences caused by sensory decline, our participants 

passed a battery of auditory and visual acuity tests and we controlled for 

perceptual threshold by scaling task difficulty (SNR) around participants’ 70% 

correct speech-in-noise thresholds. Furthermore, ineffective cue weighting in 

older adults has been suggested to be due to an increase in sensitivity to 

irrelevant sensory information (Hugenschmidt et al., 2009). In Chapter 4 and 

Chapter 5, our participants passed a battery of cognitive tests which included 

measures of attentional capacity (e.g. MoCA and D2 test of attention). Taking all 

of this together, we can reasonably assume that any age-related differences in 

sensory cue-weighting, as reflected in age-related differences in AV 

enhancement, are a result of differences in cue-weighting processes themselves. 

Causal inference models estimate multisensory integration via a weighted 

average of an estimate assuming that sensory cues are generated by the same 

source and an estimate assuming that sensory cues are generated by 

independent sources (Körding et al., 2007). Age-related differences in 

perception have been reported in situations involving temporal order 

judgement. For example, older adults have wider multisensory temporal binding 

windows (Bedard & Barnett-Cowan, 2016; Stevenson et al., 2018), are more 

susceptible to multisensory illusions dependent on temporal tracking (Bedard & 

Barnett-Cowan, 2016; De Boer-Schellekens & Vroomen, 2014; Hirst et al., 2018), 

and explicit judgments of temporal order (Bedard & Barnett-Cowan, 2016). Age-

related differences in causal inference have been attributed to sensory decline 

(Jones et al., 2019; Hame Park et al., 2020) and changes in cognitive function 

(Allred et al., 2016; Cao et al., 2019; Dobreva et al., 2012; Körding et al., 2007; 

Hame Park & Kayser, 2019; Rohe & Noppeney, 2015; Wozny & Shams, 2011). Any 

differences in causal inference in the current study would be with regards to 

binding the auditory stimuli of the actor’s voice together with the visual stimuli 

of the actor’s face. Since, audio-visual speech perception is facilitated by wider 
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temporal binding windows in older adults (Bedard & Barnett-Cowan, 2016; De 

Boer-Schellekens & Vroomen, 2014; Hirst et al., 2018; Stevenson et al., 2018), it 

is possible that that the behavioural (and neural) gains we observe, and the age-

related differences we report, are correlates of increased temporal binding 

windows. However, as we did not systematically vary the temporal order of the 

auditor and visual stimuli, we cannot objectively confirm this.  

6.3.2 AV influences on Neural Processes 

In Chapter 4, we investigated the consistency of evoked activity underlying AV 

speech integration in noisy listening conditions. In comparing younger versus 

older adults, across all trials, we observed a negative difference in EEG 

amplitude over fronto-central channels, and a positive difference at posterior 

channels at 360 ms to 520 ms. Our results also revealed a significant negative 

difference between younger and older adults in the evoked activity representing 

the difference between AV and AO conditions (AV enhancement) at 265 ms to 

420 ms over central channels. Further investigation into this effect revealed AV-

related attenuation of the signal over fronto-central channels in younger adults 

between 360ms and 420 ms, and enhancement over central channels between 

255 and 425 in older adults. 

In Chapter 5we aimed to extend these findings by investigating whether evoked 

activity underlying the visual predictability of AV speech differed between age 

groups. We found that visual predictability of the initial phoneme of AV speech 

was reflected by negative evoked activity over frontal channels between 345 ms 

and 380 ms, across all participants. In comparing neural visual predictability 

between younger and older adults, we found that younger adults show more 

positive activity over frontal channels between 245 ms and 315 ms. Younger 

adults do not exhibit a significant effect of visual predictability (labial vs. non-

labial contrast), whereas older adults have more negative activity over fronto-

central channels between 260 ms and 380 ms. We did not find evidence that 

neural AV enhancement varies as a function of visual predictability in either age 

group. The following subsections explore how these results from Chapter 4 and 

Chapter 5 fit within the current ageing literature.  
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6.3.2.1 AV enhancement and visual predictability in late evoked activity 

Previous studies have reported suppressed and earlier N1–P2 peak latencies 

and/or amplitudes in AV conditions (Alsius et al., 2014; Baart, 2016; Baart et al., 

2014; Frtusova et al., 2013; Ganesh et al., 2014; Kaganovich & Schumaker, 2014; 

Klucharev et al., 2003; Stekelenburg & Vroomen, 2007; Treille et al., 2014; van 

Wassenhove et al., 2005). Furthermore, there is evidence of an age-related 

potentiation of the N1 (Frtusova et al., 2013) and P2 peak (Winneke & Phillips, 

2011) and reduction in latency of the N1 peak (Frtusova et al., 2013; Winneke & 

Phillips, 2011, 2009). Therefore, our finding that age group contrasts in evoked 

activity reflecting AV enhancement, and visual predictability of speech, emerge 

at longer latencies, with the earliest significant effect reported at 245 ms and 

the latest at 520 ms. As discussed in Chapter 4 and Chapter 5, our main aim was 

not to investigate the existence of evoked potentials at certain latencies, but 

instead to examine whether contrasts in evoked activity existed between 

variables of interest (age groups, information condition, noise level, and 

articulation type). Thus, that we do not observe significant contrasts in early 

AEPs does not suggest that they do not exist, but instead are consistent between 

the groups/conditions being compared.  

In Chapter 4 we found that AV enhancement was reflected by negative activity 

between 306 ms and 420 ms in younger adults, and by positive activity between 

255 ms and 425 ms in older adults. These patterns of activity are consistent with 

P3-like activity and with previous research which demonstrate AV influences on 

late ERP components such as the P3 (Andres et al., 2011; Hernández-Gutiérrez 

et al., 2018; Hessler et al., 2013; Irwin et al., 2017, 2018; Starke et al., 2017; 

Stekelenburg et al., 2018) and N4 (Duncan et al., 2009; Kaganovich et al., 2016; 

Lebib et al., 2004; Van Petten et al., 1999) components. There is evidence that 

the P3 component is an index of processes involved in mapping incoming sensory 

information onto internal representations in working memory (Polich, 2012), and 

of decision-making (Dully et al., 2018). In AV paradigms, the P3 peak amplitude 

is suppressed in response to congruent AV stimuli in comparison to incongruent 

AV stimuli (Andres et al., 2011; Stekelenburg et al., 2018), and in comparison to 

AO stimuli ( Hernández-Gutiérrez et al., 2018; Hessler et al., 2013; Irwin et al., 

2018, 2017; Starke et al., 2017). The P3 amplitude is also sensitive to changes in 

working memory load (Segalowitz et al., 2001). Therefore, our finding that AV 
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enhancement-related, and visual predictability – related, positivity in older 

adults possibly represents cognitive processes involved in mapping sensory 

information onto internal representations in working memory. The N4 

component is believed to index the mapping of sensory input to contextual 

representations (for review see Duncan et al., 2009) in semantic processing, and 

is sensitive to semantic cloze probability (Kutas & Federmeier, 2011). The N4 

peak is enhanced when AV stimuli is incongruent; an effect which has been 

shown for phonetic (Lebib et al., 2004), lexical (Kaganovich et al., 2016), and 

semantic congruence (Van Petten et al., 1999). Therefore, our finding that AV 

enhancement – related negativity in younger adults possibly represents cognitive 

processes involved in mapping of sensory input onto contextual representations 

in semantic memory.  

6.3.2.2 Topography of late evoked activity 

Support for differential strategies reflecting predictive coding between age 

groups comes from our finding of age-related differences in scalp topography of 

activity underlying AV enhancement and visual predictability. In younger adults, 

AV enhancement-related negativity had a fronto-central scalp distribution 

(Chapter 4), while in older adults both AV enhancement-related (Chapter 4) and 

visual predictability-related positivity (0) were centro-parietally distributed. 

In younger adults we observe AV-related negativity over anterior sites. This 

differs from the canonical central topography of the N4, however there are 

reports of a frontal N4 response in lexical priming (Coulson et al., 2005), and in 

tasks engaging recognition memory (for review see Kutas and Federmeier, 2011), 

wherein N4 amplitude scales with word familiarity (Curran, 2000). In older adults 

we observe AV-related positivity over centro-parietal channels, which is in line 

with the canonical P3 topography. Furthermore, that we observe differences 

between younger and older adults in AV-enhancement and visual predictability- 

related evoked activity could also be attributed to age-related compensatory 

mechanisms. 

In Chapter 4 and Chapter 5 we observed symmetrical scalp topographies for AV 

enhancement and visual predictability-related evoked activity in both younger 

and older adults. We also observed an age-related anterior to posterior shift in 
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topography along the coronal plane. These results are inconsistent with the 

HAROLD model of compensatory patterns of neural recruitment in the ageing 

brain. The HAROLD model suggests that an increase in bilateral recruitment of 

pre-frontal brain regions acts as a compensatory mechanism in neurocognitive 

decline. For example, an age-related reduction in specificity has been found in 

in the fusiform face area during face processing tasks (Burianová et al., 2013; 

Zebrowitz et al., 2016). In auditory speech perception, older adults do not show 

the same hemispheric specificity typical in younger adults in the processing of 

slowing changing speech cues (Keller et al., 2019). Much of this research has 

measured neural activity using fMRI, however there is evidence of HAROLD-like 

shifts in the topography of early evoked activity (the N1-P1 complex) underlying 

speech perception (Bellis et al., 2000). Since we observed age-related 

differences in evoked activity profiles at later latencies, we interpret our results 

in terms of age-related differences in late semantic processing. There is 

evidence that semantic processing itself might not follow a HAROLD trajectory, 

and instead might follow a trajectory along the coronal plane (M. T. Diaz et al., 

2014; Methqal et al., 2017). Therefore, it is unlikely that the age-related 

changes we observed in the scalp topography of AV enhancement and visual 

predictability of AV speech is a result of compensatory mechanisms under the 

HAROLD model. 

The PASA model (Davis et al., 2008), on the other hand, describes a shift in 

neural recruitment along the coronal plane. Grady et al. (1994) observed an age-

related recruitment of the pre-frontal cortex in response to reduced activity in 

the visual cortex due to the decline of sensory processing functions in the 

occipital and temporal cortices. However, these effects are not limited to visual 

processing, but have also been observed in tasks involving attention (Cabeza et 

al., 2004; Madden et al., 2002) , working memory (Grossman et al., 2002; Rypma 

& D’Esposito, 2000), and episodic memory (N. D. Anderson et al., 2000; Cabeza 

et al., 1997, 2004; Daselaar et al., 2003; Dennis et al., 2007; Grady et al., 2002; 

Madden et al., 1999). While the PASA model has been investigated mostly in 

studies investigating cognitive function itself, there is evidence of PASA in 

speech and multisensory processes. In a speech-discrimination-in-noise 

paradigm, Wong et al. (2009) found reduced auditory cortex activity and 

increased pre-frontal and pre-cuneus activity in older adults when compared 
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with younger adults, particularly in the noisiest listening conditions. They found 

that age-related increases in frontal brain regions was positively correlated with 

behavioural accuracy, suggesting that such activity is reflective of compensatory 

mechanisms supporting perception. Furthermore, Diaconescu et al. (2013) found 

that the detection of semantically congruent multisensory events resulted in 

increased activity in parietal and medial pre-frontal brain areas 100 ms following 

stimulus onset exclusively in older adults. The age-related increase in activity in 

these areas was predictive of faster behavioural detection of the multisensory 

events and was mediated by age-related decreases in pre-frontal grey matter 

volume. Therefore, PASA compensatory mechanisms in multisensory integration 

could be a result of reductions in pre-frontal grey matter integrity. 

Though the shifts in topographies we observed along the coronal plane are in the 

opposite direction to the PASA model, our results are in accordance with the 

findings of Nyberg et al. (2010), who found an age-related under-recruitment of 

frontal regions during a semantic categorisation task when participants were 

tested longitudinally. Furthermore, Morcom and Henson (2018) found that 

increased pre-frontal activation was not reflective of supportive, compensatory 

mechanisms, but rather a reflection of reduced specificity and reduced 

efficiency in frontal neural processes in both short-term memory maintenance 

and long-term memory encoding functions. This suggests that the PASA model, 

on its own, might not fully represent the full extent and function of age-related 

shifts in neural activity along the coronal plane, and does not fully consider the 

task-dependent nature of this mechanism. Indeed, the CRUNCH model posits 

that compensatory activity is only of benefit to older adults when cognitive load 

is kept low, and becomes less effective with increasing cognitive load (Reuter-

Lorenz & Cappell, 2008). This suggests that there is a limit to the benefit of 

compensatory neural recruitment can afford, which is bound by age-related 

changes in cognitive capacity.  

6.4 Modelling age-related cognitive and neurobiological 
changes 

One question that arises from this discussion on age-related differences in the 

neural correlates of cognitive processes in predictive coding is how do these 

findings fit within the various theories of ageing? Several models have been 
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suggested in an attempt to describe how ageing influences sensory, cognitive, 

neural processing.  

Firstly, the common cause hypothesis argues that age-related changes in sensory 

and cognitive processes occur simultaneously and are attributable to wide-

spread changes in the ageing nervous system (Baltes & Lindenberger, 1997; 

Christensen et al., 2001; Lindenberger & Baltes, 1994). Lindenberger and Baltes 

(1994) investigated the relationships between visual and auditory acuity and 

various measures of cognitive function (including perceptual speed, memory, 

fluency and reasoning functions). They found that visual and auditory acuity 

explained 93.1% of the age-related variance in intelligence. Furthermore, in a 

large sample study, Baltes and Lindenberger (1997) found that individual 

differences in cognitive function linked to sensory function increased from 

younger adulthood (25 to 69 years) to older adulthood (over 70 years). 

Additionally, the strength of the association between sensory functioning and 

measures of fluid intelligence increased with age. More recently, Olderbak et al. 

(2015) found that visual acuity and self-reported physical health are related to 

performance in face-matching and face-memory tasks. Furthermore, they found 

that a common factor explained some of the age-related variance in these 

measures, and that the relationship between visual acuity and physical health 

could be explained by fluid cognition. The precise common cause of shared 

variance of sensory and cognitive functions in ageing remains under investigation 

and may be task dependent. Studies have suggested that the common cause is 

the ageing of a physiological process or set of processes (Baltes & Lindenberger, 

1997; Lindenberger & Baltes, 1994), of the central nervous system (Anstey et al., 

1997), or of general physiology (Anstey & Smith, 1999). In considering the 

current thesis, the participants that were recruited for each study were 

screened for impaired hearing, vision, and cognitive function. The data analysed 

in Chapter 3, Chapter 4, and Chapter 5 were derived from participants who 

passed the screening, thus resulting in older adult samples which had no 

significant sensory or cognitive impairments, and which were homogenous with 

respect to these domains. Furthermore, our sample of participants may have had 

a particularly high cognitive and/or neural reserve and were thus less 

susceptible to the effects of ageing on sensory, cognitive and neural processes 

(Kaup et al., 2011). In Chapter 3, we found no evidence of an association 
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between AV enhancement and cognitive status, nor evidence of associations 

amongst cognitive measures, however in this thesis we were limited in being 

able to fully investigate whether any age-related differences in behavioural and 

neural metrics were associated with sensory acuity or cognitive function, as per 

the common cause hypothesis, due to the homogeneity of sensory and cognitive 

function within our samples. 

Secondly, there are models which argue that reduced quality and/or quantity of 

sensory input, through reduced sensory acuity, has a knock-on declining effect 

on cognition (sensory deprivation hypothesis and information degradation 

hypothesis). In support of the information degradation hypothesis, studies have 

shown that memory for auditory language is poorer when the auditory stimulus is 

degraded, compared to when the stimulus is heard clearly. For example, McCoy 

et al. (2005) compared the recall of spoken words presented within sentences of 

varying approximation to English, in a running memory task, between older 

adults with good hearing and those with mild to moderate hearing loss. Older 

adults with poorer hearing recalled fewer non-final words than those with good 

hearing, despite performing comparably when recalling the final 3 words of the 

sentences. This implies that age-related changes in peripheral hearing processes 

can create higher cognitive load in terms of long-term memory function. In 

younger adults, Piquado et al. (2010) found that masking spoken words with 

noise not only impaired the recall of the masked words, but also words 

presented prior to the masked words. The authors argue that degradation 

disrupts working memory processes whereby associative links between words are 

weakened, thus reducing working memory capacity. However, studies have also 

shown that older adults show an overall poorer recall of spoken words, even 

when perceptual performance is equated between age groups (Murphy et al., 

2000; Schneider et al., 2002).  

In all studies within this thesis, participants were required to discriminate 

acoustic targets embedded within masking noise. It is possible that the age-

related differences we observe in each study are a result of differential 

compensatory mechanisms recruited to support the processing of degraded 

sensory information. In Chapter 3, participants discriminated the pitch of tones 

embedded within a noisy cacophony, and while we found that while the ways in 
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which pre-stimulus oscillatory activity influences behavioural choice remained 

consistent across age groups, there were age-related differences in the 

oscillatory frequency bands within which these influences operated, namely a 

shift from alpha/beta activity towards the lower frequency bands. Since alpha 

activity is often inversely related to signal intelligibility, differential 

engagement of neural resources within alpha band activity might reflect distinct 

strategies used to process the noisy stimuli by each age group (Becker et al., 

2013; Henry et al., 2017; McMahon et al., 2016; Obleser et al., 2012; Obleser & 

Weisz, 2012; Scharinger et al., 2014; Steinmetzger & Rosen, 2017; Wostmann et 

al., 2015). In Chapter 4 and Chapter 5, participants discriminated audio-visual 

target words embedded within multi-talker babble noise, and we found age-

related differences in behavioural and late evoked measures of AV enhancement 

(Chapter 4) and visual predictability (0) of AV speech. Based on the differences 

in polarity and latency of evoked activity between age groups, we attribute 

these differences to the engagement of differential strategies of predictive 

coding, based on distinct, age-differential memory processes, in attempting to 

reduce the uncertainty of upcoming stimuli (Andres et al., 2011; Duncan et al., 

2009; Hernández-Gutiérrez et al., 2018; Hessler et al., 2013; Irwin et al., 2017, 

2018; Kaganovich et al., 2016; Lebib et al., 2004; Starke et al., 2017; 

Stekelenburg et al., 2018; Van Petten et al., 1999). 

Evidence in support of the sensory deprivation hypothesis, however, is more 

scarce. Humes et al. (2013) computed several principal components factor 

analyses on a variety of psychophysical measures (threshold sensitivity, gap 

detection, temporal order identification, and temporal masking across multiple 

sensory domains) and cognitive tasks (via the Wechsler Adult Intelligence Scale). 

The authors found that age, a component reflecting global sensory processing, 

and a component reflecting global cognitive function were correlated; however, 

the correlation between age and global cognitive function disappeared after 

controlling for global sensory processing. Structural equation modelling 

confirmed global sensory processing as a mediator of age-related changes in 

global cognitive function. Since all participants had good sensory acuity and 

since task difficulty in all experimental tasks were scaled to participant’s 70% 

correct thresholds, we cannot conclude that age-related differences in 
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behavioural or neural metrics are due to degraded sensory input as a result of 

reduced sensory acuity, as per the Sensory Deprivation hypothesis. 

Lastly it has been suggested that deterioration of cognitive abilities influences 

sensory processing via top-down control (cognitive load on perception 

hypothesis); however, there is little evidence of this in an ageing population. In 

a longitudinal study, Kiely et al. (2012) tested older adults’, aged 50 years and 

over, hearing thresholds four times over a period of 11 years. They found that 

age and cognitive impairment, along with hypertension and baseline age, were 

significant, independent predictors of the rate of decline in hearing threshold. 

Despite the lack of evidence in the older adult population, several studies have 

demonstrated an influence of cognitive load on perception. Another study 

investigated age-related differences in the perception of foreign-accented 

speech and its underlying cognitive processes (Ingvalson et al., 2017). Younger 

and older adult participants judged which of two presented spoken phrases was 

the most accented, and their cognitive status was measured via a battery of 

tests assessing auditory working memory, processing speed, task-switching, 

receptive vocabulary and inhibitory control. Overall, older adults’ performance 

was poorer in discriminating accents compared to younger adults, and further 

age-related differences were found in the cognitive processing strategies 

involved in the perception of foreign-accented speech. While younger adults’ 

accent-discrimination accuracy was found to be associated with a main effect of 

working memory and an interaction between auditory acuity and processing 

speed, older adults’ performance was associated with a main effect of working 

memory and interactions between hearing acuity and cognitive flexibility and 

between hearing acuity and inhibitory control. In studies focussing on younger 

adults, increasing working memory demands often leads to impairments in 

speech perception (Chiu et al., 2019; Hunter & Pisoni, 2018; Mitterer & Mattys, 

2017), training to improve working memory capacity has shown to improve 

speech perception-in-noise (Ingvalson et al., 2015). 

 In relation to the current thesis, since all analysed data were derived from 

participants with good cognitive function, we cannot make any objective 

conclusions regarding the influence of cognitive decline on sensory processing. It 

is possible that age-related differences in oscillatory (Chapter 3) and evoked 
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signatures (Chapter 4 and Chapter 5) of auditory/audio-visual perception-in-

noise is reflective of top-down influences on perception. Thus, the same 

argument that could be made regarding the information degradation hypothesis, 

could be made regarding the cognitive load on perception hypothesis. In the 

work contained in this thesis, is has not been possible to determine whether age-

related differences in behavioural and neural measures of auditory and audio-

visual perception are reflective of mechanisms supporting the processing of 

degraded sensory information or those supporting the deficits resulting from 

declining cognitive function. For example, in Chapter 4 and Chapter 5, we 

describe age-related differences in the neural correlates of AV enhancement and 

the visual predictability of speech. We attribute these differences to the 

engagement of differential strategies of predictive coding in attempting to 

reduce the uncertainty of upcoming stimuli. Predictive coding theorizes that 

top-down processes generate mental models in order to make predictions about 

the nature of upcoming stimuli, while bottom-up processes feedforward 

prediction errors to update these models (Friston, 2018; R. P. N. Rao & Ballard, 

1999). Within this framework it is possible that there is an interplay between 

models that suggest that degraded sensory information influences cognitive and 

neural processing and models that suggest that changes in top-down processing 

influences sensory encoding. Declining sensory acuity would, theoretically, result 

in the collection of less reliable sensory evidence on which prediction error 

would be assessed. Declining top-down processes may either generate less 

accurate models and would thus return greater prediction error, or may engage 

additional cognitive and neural resources in an attempt to reduce prediction 

error. Future research should attempt to delineate these processes and assess 

their relative contribution to age-related differences in AV speech processing.  

6.5 Limitations  

In this thesis we screened our older adults participants for signs of mild cognitive 

impairment, as well as declines in visual and auditory acuity. This was done in 

an attempt to ensure that these participants could be considered under the 

umbrella of healthy ageing.  However, healthy ageing cannot always be 

guaranteed as dementia-related pathology can be present without showing any 

behavioural or cognitive symptoms (Beason-Held et al., 2013; Braak & Braak, 

1991). Furthermore, some degree of sensory, cognitive and neural decline is to 
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be expected with age, and thus screening out individuals who do not perform 

comparably to younger adults may then result in an older adult sample that is 

not representative of the wider population. Individual differences in cognitive 

reserve have been reported, however several predictive factors (and thus risk 

factors for age-related dementia) include lifestyle (Scarmeas & Stern, 2003), 

education (Farfel et al., 2013), and occupational complexity and attainment 

(Boots et al., 2015; Ghaffar et al., 2012). The majority of our older adult 

participants were highly educated, having attained some form of further or 

higher education (Scottish Higher National Certificate/Diploma, or 

undergraduate degree), and approximately one quarter of our older sample had 

attained a postgraduate qualification (masters degree or PhD). All participants 

were in good physical and mental health at the time of taking part. Therefore, 

our older adults sample is unlikely to be fully representative of the wider 

population of older adults in Scotland demographically. Specifically, due to a 

higher-than-average educational attainment, our older sample may have had a 

higher neural and/or cognitive reserve compared to the typical older adult. 

However, the extent to which cognitive and neural reserve contributes to pre-

stimulus influences on auditory pitch perception, or on differences in the latency 

and amplitude of evoked activity underlying AV speech perception, has yet to be 

determined.  

As well as sampling bias, another limitation is that we only used cross-sectional 

designs across all experiments in this thesis. Therefore, cohort effects such as 

educational attainment and differences in lifestyle are not controlled for and 

therefore may pose as potential confounding variables. For example, individual 

differences in cognitive reserve may influence the compensatory strategies 

engaged in AV speech processing, for. Some discrepancies in findings have been 

found in comparing cross-sectional versus longitudinal designs. Nyberg et al. 

(2010) reported differential effects in the age-related recruitment of frontal 

regions in longitudinal versus cross-sectional designs. Together this suggests that 

longitudinal research is required to further investigate the influence of various 

lifestyle factors as potential confounds, as well as in replicating results found in 

cross-sectional designs.  
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There are also limitations imposed by our choice of neuroimaging technique. 

While EEG excels in its temporal resolution, its spatial resolution is very limited. 

Therefore, we are unable to precisely attribute any of the effects we report in 

this thesis to a specific location in the brain. This would be particularly useful in 

identifying which brain areas are specifically engaged in the early “auditory” 

and later “decision-making” components reported in Chapter 3. Furthermore, in 

being able to locate the source of evoked activity reflecting AV enhancement 

and visual predictability in Chapter 4 and Chapter 5 respectively, we would be 

able to assess more accurately whether and what kind of compensatory 

mechanisms are engaged. Also, we have not been able to assess whether our 

older sample displays evidence of dedifferentiation, which would be possible by 

localising brain activity to specific areas. An alternative approach which would 

make these investigations possible, would be to use neuroimaging techniques 

which have better spatial resolution such as fMRI or MEG. Notably, MEG shares a 

similar temporal resolution to EEG, but has greater spatial resolution.  

Lastly, the spatio-temporal nature of EEG usually means that researchers must 

make a choice on whether to analyse channels (or a subset of channels) across 

the whole scalp, and thus carry out correction for  multiple comparisons, or to 

analyse single (or group-averaged) channels, and thus make a priori assumptions 

on which channels best represent task-relevant activity. In Chapter 4 and 

Chapter 5, we use a whole-scalp approach meaning that it is possible that 

weaker effects existed in our analyses that did not survive multiple comparison 

correction. Weaker effects were lost may have been observed had the spatial 

dimension of the data been reduced. One approach which considers the whole 

scalp, but which eliminates the multiple comparison problem is to reduce the 

spatial dimension of the EEG data to a singleton dimension through a linear 

combination of EEG signals using LDA as we did in Chapter 3. This way we can 

derive a one-dimensional, single trial representation of cognitive function. 

Several studies have shown that information about sensory encoding and 

cognitive processing can be derived from such neural signals (Gherman & 

Philiastides, 2015; S. J. Kayser et al., 2016; McNair et al., 2019; Philiastides et 

al., 2014; Philiastides & Sajda, 2006). Applied to AV speech perception, this 

could be a promising method of extracting evoked activity which maximally 
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separates information or articulation conditions, but it has yet to be applied to 

this field.  
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