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Abstract 

Resistance to antimalarial drugs inevitably follows their deployment in malaria 

endemic parts of the world. For instance, current malaria control efforts which 

significantly rely on artemisinin combination therapies (ACTs) are being 

threatened by the emergence of resistance to artemisinins and ACTs. 

Understanding the role of genetic determinants of artemisinin resistance is 

therefore important for implementation of mitigation strategies. Moreover, 

elucidating the mode of action for drugs that are in advanced stages of 

development is specifically critical as drug resistance mechanisms can be 

prospectively predicted and possible means of surveillance put in place. 

 

In the present work, CRISPR-Cas9 genome editing has been used to engineer 

candidate artemisinin resistance mutations (Kelch13 and UBP-1) in the rodent 

malaria parasite Plasmodium berghei. The role of these mutations in mediating 

artemisinin (and chloroquine) resistance under both in vitro and in vivo 

conditions has been assessed which up until now, has either remained un-

validated (UBP-1) or debated (Kelch13, under in vivo conditions) in human 

infecting Plasmodium falciparum. The results have provided an in vivo model for 

understanding and validating artemisinin resistance phenotypes which just like 

their Plasmodium falciparum equivalents do not just mediate resistance 

phenotypes, but also carry accompanying fitness costs.  

 

In addition to the above findings, biochemical and drug inhibition studies have 

been carried out to demonstrate that small molecule inhibitors targeting 

ubiquitin hydrolases (to which UBP-1 is a class member) display activity in 

human and rodent infecting malaria parasites in vitro and in vivo. These 

inhibitors also show evidence of ability to potentiate artemisinin action which 

can be exploited to overcome the emerging resistance as combination partner 

drugs. Untargeted metabolomic screens have also been used to characterize the 

mode of action of lead antimalarial drug candidates that are emerging from the 

Novartis Institute of Tropical Diseases drug discovery pipeline. A common 

biochemical and metabolic profile of these compounds which display a very fast 

parasite killing rate is presented and can hopefully be used to identify 

compounds that can achieve a similar feat. Moreover, these profiles have 
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pointed to possible mode of action for novel drugs whose mechanistic mode of 

parasite killing is still unknown or disputed. 
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1 Introduction 

1.1 Introduction outline 

The introduction addresses the general context of malaria in terms of disease 

burden, causative agents (Plasmodium spp.), their life cycle, control and 

intervention strategies. A specific detail will focus on artemisinins, their mode 

of action and resistance mechanisms. 

 

Specifically, each section of the introduction addresses the background 

literature as follows 

• section 1.2: a general overview of malaria disease burden and its 

causative agents 

• section 1.3: a detailed life cycle of Plasmodium spp. in the context of 

interventional points 

• section 1.4: malaria prevention and control strategies 

• section 1.5: antimalarial drugs and drug resistance 

• section 1.6: approaches to studying antimalarial drugs mode of action 

• Section 1.7: genome editing strategies for validating genetic 

determinants of antimalarial drug resistance 

• Section 1.8: role of animal models in understanding drug action and 

resistance in malaria  

• Section 1.9: outlines the aims and objectives of this thesis in context of 

the sections above. 
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1.2  Malaria 

Malaria is a haematoprotozoan tropical disease resulting from infection by 

apicomplexan parasites of the genus Plasmodium. The disease is a serious global 

health problem with nearly half of the world population at risk, over 200 million 

cases and greater than 400 000 deaths in 2018 alone (WHO, 2019). Over 90% of 

malaria deaths occur in the WHO-defined African region, mostly in children of 

less than five years old (WHO, 2019). Since the dawn of new millennium in the 

early 2000s, substantial progress has been made in malaria control. For example, 

between 2010 and 2018, the incidence rates of malaria have declined by ~19% 

globally (WHO, 2019). By 2018, 49 countries have reported less than 10 000 cases 

up from 40 in 2010 while 27 countries reported fewer than 100 local cases as 

compared to 17 in 2010 (WHO, 2019), Figure 1.1. More importantly, between 

2000-2016 the number of countries with endemic malaria has dropped from 106 

to 86 while annual mortality rates have declined by over 60% (Feachem et al., 

2019)

 
Figure 1.1: Global malaria status between 2000 and 2018. 

Figure adapted from (WHO, 2019) 

 

However, despite these remarkable feats, the disease continues to have a 

significant impact on people’s health and daily livelihoods. This is being recently 

worsened by failure of effective control efforts like the emergence of resistance 

to frontline antimalarial drugs, resistance to insecticides used in vector control 
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and absence of effective vaccines in the near future (Feachem et al., 2019, Cui 

et al., 2015, Hemingway et al., 2016b). More worryingly and likely consequence 

of these threats, a global stall in malaria control has been recently reported 

with an observed increase in malaria cases from 2014 to 2016 which has 

remained at similar levels through to 2018 (WHO, 2019). 

 

1.3  Life cycle of Plasmodium spp. 

Malaria is caused by Plasmodium spp. which are obligate intracellular parasites 

of the Protista kingdom in the phylum Apicomplexa. There are five Plasmodium 

spp. that cause human malaria: P. falciparum, P. vivax, P. ovale, P. knowlesi 

and P. malariae. Of these, P. falciparum is responsible for the most severe and 

lethal forms of the disease and accounts for >99% of malaria cases in Sub-

Saharan Africa (WHO, 2019). Malaria caused by P. vivax is also highly prevalent, 

which though not frequently associating with severe forms of the disease, 

accounts for more than half of all malaria cases in the WHO-defined South-East 

Asia and America regions (WHO, 2019). Meanwhile, Plasmodium spp. that infect 

rodents and cause rodent malaria (P. berghei, P. yoelii, P. chabaudi, P. vinckei) 

have also demonstrated remarkable utility in delineating the fundamental 

aspects of parasite biology because of their genetic similarity with human 

infecting counterparts, experimental tractability of all life cycle stages and their 

relative amenability to vast and powerful genetic manipulation systems (De Niz 

and Heussler, 2018).  

 

1.3.1 Sporozoite inoculation and pre-erythrocytic stages 

The basic life cycle features of Plasmodium spp. are conserved across the genus 

sharing almost all of the developmental stages, Figure 1.2. The cycle is initiated 

by the bite of a female anopheles’ mosquito which can inject up to 100 

sporozoites in experimental conditions. Injected sporozoites move by gliding 

motility through the extracellular matrix of the skin before eventually invading 

blood and lymphatic vessels (Menard et al., 2013). Consequently, sporozoites 

find their way to the liver where they invade hepatocytes aided by a sporozoite 

coat forming protein, the circumsporozoite protein (CSP) (Menard et al., 2013). 

Through a series of host cell invasions, traversal and exits, sporozoites invade a 

final hepatocyte where they develop to establish a parasitophorous vacuole (PV) 

(Menard et al., 2013, Prudencio et al., 2006). Thereafter, in an iterative series 
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of DNA replication and asexual proliferation, sporozoites differentiate into 

mature schizonts which contain tens of thousands of merozoites, a process which 

takes 2-16 days depending on the Plasmodium spp. Access of liver stage 

merozoites (in fully developed schizonts) to the blood stream to initiate the 

intraerythrocytic developmental cycle (IDC) is partly restricted as they are 

confined to the host hepatocytes and require an escape mechanism to exit the 

host cell, pass through the extracellular matrix and endothelium of liver blood 

vessels while at the same time evade constant surveillance from resident 

phagocytic cells. In an ingenious “stealth shuttle” mechanism, these late stage 

parasites allow hepatocytes to commit an unusual form of apoptosis by forming 

membrane enclosed structures that extrude from the infected host cell. These 

structures, called merosomes, act as shuttles that release merozoites into the 

blood stream while avoiding host defence mechanism (Sturm et al., 2006). 

Rudimentary details of merosome formation, traversal across the liver matrix 

and eventual bursting in the bloodstream are still unknown. However, this 

process is thought to involve initial disintegration of the PV, possibly through the 

action of a Plasmodium phospholipase (Burda et al., 2015), which releases 

merozoites into the host RBC cytosol followed by an arrest of host cell processes 

such as protein synthesis and mitochondrial energy homeostasis. In a “Trojan 

horse strategy”, released merozoites in the host cytosol are wrapped with the 

host cell membrane to form a shield that protects them from the host immune 

system (Graewe et al., 2011). At the same time, parasites mediate a dissociation 

of actin cytoskeleton from the host cell membrane and destabilisation of plasma 

membrane integrity by altering protein and phospholipid composition (Burda et 

al., 2017). Formed merosomes traverse through sinusoids and endothelial cell 

barriers to reach the blood where they rupture (by unknown triggers) to release 

merozoites which invade RBCs to initiate the IDC. 

 

Unlike in P. falciparum, the liver stage of other Plasmodium spp. particularly;  

P. vivax and P. ovale involves a small proportion of invading sporozoites 

developing into dormant non replicating forms called hypnozoites (Krotoski et 

al., 1982). Hypnozoites are characteristically persistent, refractory to killing by 

several antimalarial drugs (except primaquine) and are the frequent source of 

relapsing malaria caused by P. vivax (Wells et al., 2010). The mechanism behind 

hypnozoites formation and dormancy is unknown, with however, a distinct 
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variation between the length to relapse among various P. vivax strains which can 

range from days to years (Wells et al., 2010). 

 

 

 
 
Figure 1.2: Life cycle of Plasmodium spp. 

Upon a mosquito bite, sporozoites are injected at the base of skin where they migrate 

through the blood stream and lymph nodes to the liver. In the liver, sporozoites infect 

hepatocytes to initiate the exoerythrocytic liver stage. Depending on Plasmodium spp. (~2 

days in P. berghei or 6.5 days in P. falciparum), sporozoites develop into fully formed 

mature schizonts containing 29000-90000 merozoites after several rounds of asexual 

proliferation. Upon rupture of the host cell, free merozoites invade RBCs to initiate the 

blood stage IDC. The IDC comprises of a series of asexual developmental transitions; 

from metabolically less active ring stages to highly active trophozoites which mature to 

schizonts after further rounds of asexual proliferation and DNA replication. Mature 

schizonts which produce a species-specific number of merozoites (15-30) rupture to 

release merozoites which invade new RBCs to re-initiate the cycle. This process usually 

takes ~48 hours in P. falciparum and half the time (~24 hrs) in the rodent malaria P. 

berghei. Meanwhile, during the IDC, a small proportion of ring stage parasites commit to a 

sexual developmental cycle which results in formation of male and female gametocytes 

for transmission. Gametocytes are taken up into a mosquito midgut after a new blood 

meal where they activate, fertilise and develop into a zygote. The zygote undergoes a 
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meiotic cell division and develops into motile ookinetes which traverse the mosquito 

midgut to form oocysts. Oocysts go through another round of asexual propagation to 

generate thousands of sporozoites which migrate to and colonize the mosquito salivary 

glands to re-initiate the cycle upon a mammalian bite. Figure adapted from, (Kirchner et 

al., 2016). 

 

The liver stage of malaria parasites is mostly asymptomatic but provides unique 

opportunities to interrupt the parasite life cycle before the infection is 

established. A recent genome wide knockout screen in P. berghei has identified 

461 genes which are required for efficient progression through the liver stage 

providing opportunities for novel drug and vaccine targets (Stanway et al., 

2019). Targeting the liver stage through, for example, antibodies that elicit 

immune responses to sporozoites is also one of the lead vaccine initiatives aimed 

at achieving malaria eradication (Vaughan and Kappe, 2017).  

 

 

1.3.2 The Intra-erythrocytic developmental cycle 

Once released into the peripheral blood circulation, merozoites invade RBCs to 

initiate the blood stage IDC enclosed within a membranous PV. RBCs are 

terminally differentiated cells that lack a nucleus and more other important 

cellular and biochemical organelles that would promote intracellular survival of 

parasites such as Plasmodium spp., more so within a PV. To this, malaria 

parasites extensively remodel the host RBC to 1) ensure efficient acquisition of 

nutrients as nutrient transporters are lost during RBC differentiation 2) confer 

cytoadhesive properties to infected RBCs to minimise their splenic clearance 3) 

escape the immune system by exporting immunological variant proteins (Silvie et 

al., 2008, Gilson et al., 2017).   

 

1.3.2.1  Getting in, essential first steps of malaria parasites invasion 

Invasion of RBCs by merozoites, be it from hepatocyte derived or mature blood 

stage schizonts involves three distinct stages: 1) an initial merozoite RBC 

interaction that causes erythrocyte deformation, 2) merozoite apical end 

interactions with RBCs and subsequent invasion, 3) echinocytosis and RBC 

recovery stage. 
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Figure 1.3: Structure of P. falciparum merozoite. 

A three-dimensional sectioned merozoite highlighting the organelles and structures that 

are involved during invasion and egress. PfSUB1, a critical protease involved in merozoite 

egress, localises to the recently identified exonemes. Micronemes, rhoptry neck and 

rhoptry bulb are sites for adhesion and invasion proteins such as RON, AMA1, EBL and 

PfRH. Figure reproduced from (Cowman et al., 2012) with permission. 

 

 

Immediately upon release into the bloodstream, merozoites (Figure 1.3) 

encounter low potassium levels which act as a signal to trigger a rise in 

intracellular concentration of calcium which in itself triggers the release of 

adhesins and invasins from the merozoites rhoptries and micronemes (Singh et 

al., 2010). When the activated merozoite encounters a RBC, low level affinity 

interactions occur with the RBC cell membrane and these interactions are 

thought to be primarily facilitated by membrane anchored 

glycophosphotidyliniositol (GPI) merozoite surface proteins (MSPs) on the 

fibrillar merozoite surface. P. falciparum GPI anchored MSPs such as MSP1, 

MSP2, MSP3, MSP4, MSP5 and MSP5 as well as those belonging to the 6-cysteine 

domain protein family have all been predicted to play a role in initiating the 

early interactions with RBCs (Sanders et al., 2005, Ishino et al., 2005). Exact 

details on how MSPs mediate the initial contact and or facilitate the invasion 

processes remain unknown. For instance, even though MSP1 forms a complex 

with MSP3, MSP6 and MSP7 on the merozoite surface that appear to be involved 

in the invasion process (Kauth et al., 2006), parasites lacking MSP1 can still 
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invade RBCs downplaying the direct role of this protein in invasion or a potential 

functional redundancy (Das et al., 2015). Nevertheless, these initial merozoites 

RBC interactions are characterised by rapid movements of merozoites and a 

dramatic ruffling of the RBC membrane, all occurring within  ~11 seconds (Gilson 

and Crabb, 2009). 

 

After the initial contact, an irreversible interaction of the RBC and the parasite 

occurs at the apical end of the merozoites (Figure 1.3). This process is mediated 

by two protein families; the erythrocyte binding like (EBL) and reticulocyte 

binding–like homologues (PfRh), both of which localise to micronemes and neck 

rhoptries of merozoites, reviewed by (Cowman et al., 2012, Cowman et al., 

2017). The PfRh family comprises of five key proteins; PfRh1, PfRh2a, PfRh2b, 

PfRh4 and PfRh5. Host RBC receptors have been identified for PfRh4 

(complement receptor 1 (Tham et al., 2010)) and PfRh5 (basigin (Crosnier et al., 

2011)). Due to the significant role these proteins play in the invasion process, 

antibodies raised against PfRh proteins block merozoite invasion and are indeed 

being actively pursued as vaccine targets (Tham et al., 2012). However, out of 

the five PfRhs, only PfRh5 appears to be essential during the IDC in gene 

knockout studies which could be due to a functional redundancy or 

compensatory invasion mechanisms (Tham et al., 2012). PfRh5 is a leading 

vaccine target as antibodies raised against this protein have been shown to 

neutralise a broad spectrum of lab and clinical isolates of P. falciparum 

(Crosnier et al., 2011). The EBL family consists of four identified redundant set 

of proteins in P. falciparum (PfEBA-175, PfEBA-140, PfEBA-181, and PfEBL-1) 

which contain unique single or double Duffy Binding like (DBL) domains. Even 

though PfEBA-181 and PfEBL-1 are not yet structurally characterised, PfEBA-175 

and PfEBA-140 bind to host RBCs via glycophorin A and C respectively in a sialic-

acid–dependent manner. Antibodies raised against DBL domains in EBL proteins 

also block merozoite invasion and are potential vaccine candidates, reviewed by 

(Tham et al., 2012). Crucially, attachment of these ligands to the host RBC 

receptors appear to be a critical “no turning back” commitment stage of 

merozoites to the invasion process (Riglar et al., 2011). 

 

Downstream of the PfRh or EBL ligand host RBC receptor engagement, a high 

affinity interaction also known as the tight junction is formed at the interface of 
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the apical merozoite and host RBC membrane. At the centre of the junction are 

two proteins; rhoptry neck proteins (RON) and the apical membrane antigen 1 

(AMA1). RON4 and possibly other RON proteins such as RON2 are translocated to 

the cytosolic side of the RBC membrane immediately after merozoites ligands 

engage their receptors on the host RBC. AMA1 which is present on the surface of 

the merozoite then complexes with RON proteins to form a complex which acts 

as a molecular seal of the tight junction (Riglar et al., 2011). The AMA1-RON 

complex has been a lead malaria vaccine candidate especially with observations 

that antibodies raised against these proteins can block merozoite invasion 

(Collins et al., 2009, Srinivasan et al., 2011). However, there still remain some 

controversies on the role of the AMA1-RON interaction in facilitating parasite 

invasion because knockout studies have shown that inactivation of AMA1 in 

Plasmodium and closely related apicomplexan Toxoplasma can be achieved with 

resultant parasites able to invade host cells despite displaying impaired host cell 

attachment (Bargieri et al., 2013). This suggests involvement of other 

uncharacterised proteins in the formation and function of the tight junction. 

 

Formation of the tight junction and phosphorylation of adhesin proteins like 

AMA1 by a cAMP related protein kinase trigger the release of rhoptry bulb 

contents into the host RBC some of which include proteins and lipids required for 

the formation of the parasitophorous vacuole membrane (PVM) and PV (Leykauf 

et al., 2010, Riglar et al., 2011). At the same time, the parasite actinomyosin-

based molecular motor complex (also called glideosome) powers the forced 

entry of the merozoite into the host RBC. The glideosome which is specifically 

conserved between Plasmodium and Toxoplasma spp. localises between the 

inner membrane complex and plasma membranes of the parasites and is thought 

to be composed of myosin A, an associated myosin light chain (MLC1) and three 

gliding-associated proteins, GAP40, GAP45 and GAP50 (Frénal et al., 2010, Green 

et al., 2017). Recent conditional deletion of GAP45 has indeed demonstrated 

that this component of the glideosome is critically essential for malaria parasite 

invasion (Perrin et al., 2018). It is believed that the glideosome connects to 

various cytoplasmic tails of adhesins which then propels the merozoite into the 

shear space generated when contents of the rhoptry bulb are released through 

into the RBC (Cowman et al., 2017). 
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In the final stage, the tight junction is pulled across the merozoite pulling in 

part of the host RBC membrane until the merozoite is fully internalised within a 

PV (Riglar et al., 2011). This is typified by a dehydration like RBC morphology 

(echinocytosis) ~30-40 seconds after invasion following which the RBC retains its 

normal morphology within 5-11 minutes (Gilson and Crabb, 2009). 

 

1.3.2.2  Ring, trophozoite and schizont stages 

The first morphological feature of malaria parasites upon successful invasion is 

the appearance of a signet ring structure in Giemsa stained thin blood smears 

which characteristically defines the “ring” stage (Bannister et al., 2000). The 

very early ring stage of the parasite, contained within a PV, is metabolically less 

active and acquires nutrients from host haemoglobin through cytostomes as well 

as flux of solutes (sugar, amino acids, vitamins) by the induction of new 

permeability pathways (NPP). As the ring stage progresses, transcription of ring 

stage specific genes occurs (Spielmann and Beck, 2000) some of which transcribe 

for virulence proteins that are exported into the host RBC and mediate adhesion 

of infected RBCs into host endothelial blood vessels (Pouvelle et al., 2000). 

 

At approximately 22-24 hours post invasion (in P. falciparum), ring stage 

parasites have developed into trophozoites which are metabolically highly active 

and involve rapid growth differentiation as well as modification of the host RBC. 

In mid-late trophozoite stages, the parasite starts replicating its DNA (S-phase) 

and asexually divides its nucleus to enter the schizont stage. Typically, 10-30 

nuclei (depending on the Plasmodium spp.) are generated and these migrate 

into merozoite buds in the schizont periphery. Upon full maturation, merozoites 

separate from the cytoplasmic residual bodies ready to re-initiate a new invasion 

cycle upon rupture of the infected cell (Bannister and Mitchell, 2003). This 

results in cyclic increase of infected RBCs that accompany the associated disease 

pathology seen in malaria.  

 

1.3.2.3  Merozoite egress in mature schizonts 

Egress of merozoites from RBCs in mature schizonts possess a unique challenge 

to the parasite as it requires a breach of at least three cellular structures; the 

PVM, host cytoskeleton and RBC membrane. Surprisingly, this stage is uniquely 

synchronous in P. falciparum characterised by a unified ending of the replicative 
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cycle and subsequent simultaneous rupture and release of merozoites (Singh and 

Chitnis, 2017). Even though the exact details of how merozoites egress from host 

RBCs remain to be fully unravelled, this process is believed to be mediated by a 

tightly regulated proteolytic cascade which breaches the PVM and host RBC 

membranes immediately before merozoite escape. Several proteases and 

perforin like proteins (PLP) have been identified as key players of egress in 

malaria parasites (Blackman, 2008, Garg et al., 2013). Specifically, a secreted 

subtilisin-like protease, PfSUB1, and the P. falciparum PLP (PfPLP); both of 

which localise in micronemes and exonemes of merozoites (Figure 1.3) mediate 

the critical events that precede disruption of the PVM, host membranes and 

cytoskeletons and the eventual release of merozoites (Arastu-Kapur et al., 2008, 

Yeoh et al., 2007, Garg et al., 2013). 

 

PfSUB1 is refractory to deletion in blood stages of malaria parasites and is fully 

expressed in very late schizonts. Upon secretion into the PV from exonemes, 

PfSUB1 is thought to activate a secondary family of proteases, the serine-rich 

antigen 5 (SERA5) or other SERAs which upon activation lead to proteolysis of 

host cytoskeletal proteins which in turn mediates parasite egress (Arastu-Kapur 

et al., 2008, Yeoh et al., 2007). Recent work has demonstrated that SERA5 and 

SERA6 are both active proteases which cleave cytoskeletal membranes and 

results in RBC rupture while at the same time require activation by PfSUB1 

(Collins et al., 2017, Thomas et al., 2018). More intriguingly, besides activating 

SERA5 and SERA6, PfSUB1 appears to mediate the initial PVM rupture while 

SERA6 disintegrates the host RBC membrane and cytoskeleton in a coordinated 

proteolytic cascade (Thomas et al., 2018). PfSUB1 activity is apparently 

regulated by signalling through a Plasmodium falciparum cGMP-dependent 

protein kinase (PfPKG) which is required not just for the discharge of PfSUB1 

into the PV, but also other microneme proteins involved in merozoite invasion 

(Collins et al., 2013). Calcium dependent signalling of PfPLPs has also been 

shown to promote permeability and lysis of host RBC membranes during egress 

(Garg et al., 2013). 

 

Nevertheless, these processes appear to occur in a highly organised and 

coordinated manner that, in the first place, ensures that all merozoites are fully 

matured before schizont rupture.  PfPKG activation of PfSUB1 triggers its 
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proteolytic activation of SERA6 and possibly other SERA proteins while at the 

same time plays a role in disintegrating the PVM through its own protease 

activity or by activating PLPs. SERA6 and or SERA5 then accomplish the final step 

of RBC membrane rupture before merozoites are released (Thomas et al., 2018). 

Morphologically, just before rupture, the diameter of schizonts increases while 

merozoites become uniquely visible. A few seconds downstream, merozoites 

disaggregate and fill the RBC as the PVM ruptures. At this stage, merozoites 

become highly mobile which precedes rupture of the RBC membrane and their 

release into the blood stream to initiate a new invasion cycle (Gilson and Crabb, 

2009). 

 

1.3.2.4  Parasite RBC remodelling and immune evasion: an intricate 

renovation and escape 

After invasion, the parasite activates a host RBC remodelling program that 

converts this terminally differentiated cell lacking proper organelles and 

transporters into a “viable home” in which the parasite can reside and thrive 

(Boddey and Cowman, 2013). This process is facilitated by hundreds of exported 

parasite proteins which upon synthesis are trafficked to the host cell cytosol via 

secretory pathways through the parasite plasma membrane, PV and PVM. Malaria 

parasites exported proteins play a significant role in parasite growth and 

survival. Over 20% of these exported proteins are refractory to deletion 

illustrating a crucial role they play in mediating parasite survival and virulence 

(Maier et al., 2008). Some of these proteins include the P. falciparum 

erythrocyte membrane protein 1 (PfEMP1) which is one of most extensively 

studied exported protein in P. falciparum. PfEMP1 export to the surface of RBC 

extensively remodels the RBC cytoskeleton into knob like multiprotein 

complexes that facilitate binding and cytoadherence of infected RBCs to surface 

ligands in the microvasculature (Maier et al., 2008, Nash et al., 1989). This is 

crucial for parasite survival as it limits splenic clearance, but can eventually clog 

vascular structures and is indeed a significant contributor to severe malaria 

pathogenesis (Storm and Craig, 2014). The display of PfEMP1 (encoded by var 

genes) on the RBC surface also results in exposure to host antibodies. Parasites 

switch PfEMP1 expression among antigenically distinct isoforms to avoid immune 

destruction in what is classically called antigenic variation. The expanded 

spectrum of var genes (~60), differences in PfEMP1 receptor binding selectivity 



Chapter 1                                                                           General introduction 

 13 

and the resulting ability of PfEMP1 expressing infected RBCs to sequester in 

various tissues and organs do indeed play a significant role in mediating parasite 

host immune escape and the associated disease pathology (Hviid and Jensen, 

2015). 

 

 
 
Figure 1.4: Protein export in malaria parasites. 

PEXEL proteins or PNEPs are prepared for vesicular trafficking into the secretory pathway 

in the ER upon fusion and passage into the ER lumen through the ER membrane (ERM). 

Vesicular cargo proteins in ER fuse with the parasite plasma membrane (PPM) and 

release soluble proteins into the PV where they associate with a translocon, PTEX. The 

PTEX translocon unfolds cargo proteins and translocates them into the host cytosol where 

host chaperones facilitate their refolding and distribution to various destinations. Figure 

reproduced from (Crabb et al., 2010) with permission. 

 

The voyage of exported proteins in malaria parasites begins in the ER, Figure 

1.4. These processes are initially coordinated by vesicular transport coat 

proteins (COPII) which facilitate transfer of the exported proteins from the ER to 

the Golgi apparatus which at the same time require a signal sequence to enter 

into a network cascade of secretory pathways (Crabb et al., 2010, Gilson et al., 

2017). Using GFP marker proteins, it has been demonstrated that chemical 

inhibition of COPII traps exported and secreted proteins into the ER (Wickham et 

al., 2001). Meanwhile, the signal sequence is cleaved from the exported proteins 

and recycled in the ER by a signal peptide peptidase (SPP) immediately before 
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the cargo enters the secretory pathway (Adisa et al., 2003). Since the secretory 

pathway is utilised by several other proteins whose destiny is within the PVM, a 

highly conserved motif consisting of five core amino acid residues RnLnE/Q/D (n 

is any uncharged amino acid) is required to specifically tag proteins which 

require export and traverse through the PVM to the RBC cytosol (Hiller et al., 

2004, Marti et al., 2004). This motif, also called Plasmodium export element 

(PEXEL), is conserved in all Plasmodium spp. and occurs at the N-terminal of 

cargo proteins downstream of the signal sequence (Sargeant et al., 2006). 

 

The PEXEL motif acts as a cleavage site for an aspartic protease, Plasmepsin V 

(Russo et al., 2010, Boddey et al., 2010) and a binding site for 

phosphatidylinositol 3-phosphate (PI3P) in the ER (Bhattacharjee et al., 2012). It 

has been proposed that PI3P concentrates in the ER and binds to the PEXEL motif 

with high affinity segregating cargo proteins into export competent vesicles 

(Bhattacharjee et al., 2012). However, recent work has challenged this, as it has 

been demonstrated that PI3P does not bind the PEXEL motif nor does it 

concentrate in the ER, rather in the apicoplast and food vacuole (Boddey et al., 

2016). Nevertheless, PEXEL cleavage by Plasmepsin V and subsequent acetylation 

of the N-terminal is apparently critical for the cargo to be exported (Gruring et 

al., 2012, Gilson et al., 2017). How this links to the next stage of the trafficking 

pathway remains unclear. Moreover, an additional motif downstream of the 

PEXEl sequence has also been shown to play a role in the export process 

independent of PEXEL cleavage by Plasmepsin V and is thought to facilitate 

export of proteins that lack the PEXEL motif, PEXEL negative exported proteins 

(PNEPs), such as PfEMP1 (Gruring et al., 2012). 

 

Upon fusion with the parasite plasma membrane, cargo vesicles release their 

contents into the PVM where they apparently associate with a Plasmodium 

translocon of exported proteins (PTEX) which pumps cargo proteins into the host 

RBC cytosol (de Koning-Ward et al., 2009). Translocation across the PVM requires 

unfolded proteins and energy in form of ATP, reviewed by (Gilson et al., 2017). 

Early characterisation of PTEX revealed that this protein consisted of five key 

constituents; an AAA+-ATPase heat shock protein 101 (HSP101) which belongs to 

a chaperone family of proteins and likely plays a role in protein unfolding, an 

exported protein-2 (EXP2) which would form a transmembrane complex, 
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PTEX150, thioredoxin (TRX2) and PTEX88 which are all conserved across the 

Plasmodium spp. (de Koning-Ward et al., 2009). Knockdown studies of HSP101 

and PTEX150 as well as knockout of TRX2 significantly reduces export of both 

PEXEL positive as well PNEP proteins (Elsworth et al., 2014). A recent structural 

resolution of PTEX in P. falciparum has revealed that EXP2 and PTEX150 form a 

funnel shaped symmetric protein conductance channel spanning the PVM while 

HSP101 forms a spiral shape hexamer at the top of the funnel (Ho et al., 2018). 

Tellingly, TRX and PTEX88 could not be resolved with the PTEX structure which 

is suggestive of their transient association with the PTEX complex (Ho et al., 

2018, de Koning-Ward et al., 2009). 

 

Due to the significant role the parasite protein export machinery plays in 

mediating parasite virulence, transmission and survival, the pathway is actively 

being explored for novel antimalarial drug targets (Gilson et al., 2017). 

Inhibitors targeting the aspartyl protease SPP which is involved in the ER signal 

cleavage and recycling display potent activity against blood and liver stages of 

malaria parasites (Harbut et al., 2012). Moreover, the P. falciparum Plasmepsin 

V gene is refractory to deletion and compounds targeting the same inhibit 

protein export as well block ring-trophozoite stage transition during the IDC 

stage of malaria parasites (Sleebs et al., 2014). Plasmepsin V is also actively 

expressed in gametocyte stages and its chemical inhibition blocks formation of 

mature P. falciparum gametocytes and subsequent mosquito transmission 

(Jennison et al., 2019). 

 

1.3.3 Sexual developmental stages: adaptive plasticity or hedging the bets? 

Over the course of the parasite’s IDC cycle in the mammalian host, a small 

proportion (<10%) of ring stage parasites commit to a sexual developmental 

cycle that produce transmissible forms of the parasite, male and female 

gametocytes. This process appears to be a conserved approach of evolutionary 

adaptation in which upon exposure to certain environmental cues, parasites can 

make a special investment in production of these transmissible forms which 

minimises their risk to extinction while at the same time maximises their fitness 

across generations (Ngotho et al., 2019). This could also be a finely tuned 

strategy of spreading the risk where due to multiple and diverse environments 

the parasites will more likely encounter, an evolutionary bet is spread by a 
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situational production of a small number of transmissible forms of the parasites 

in optimal proportions and numbers to ensure continued species survival in 

virtually all possible environmental encounters (Waters, 2016).  

 

Generation of mature gametocytes (gametocytogenesis) in mammalian hosts 

varies significantly between Plasmodium spp., both in terms of duration to 

maturity and gametocyte morphology (Josling et al., 2018, Ngotho et al., 2019). 

In rodent malaria parasites P. berghei and P. yoelii, gametocytes maintain a 

spherical shape as they develop and take approximately 24-26 hours to mature 

(Josling et al., 2018, Mons, 1985). P. falciparum gametocytes take 9-12 days to 

mature and undergo five morphological distinguishable stages (stage I-V) over 

the course of development (Hawking et al., 1971). Typically, stage I 

gametocytes retain core structural features of trophozoites and cannot be 

morphologically distinguished. Stage II gametocytes attain a pointed end 

morphology with an oat grain or half-moon like shape. In stage III and IV, 

gametocytes attain a spindle shape that resemble blunt ends for the former and 

pointed ends for the latter. Mature, fully grown stage V gametocytes attain the 

signature falciform sickle shaped crescent shape (Figure 1.5). 

 
1.3.3.1  A molecular switch to sexual differentiation 

The underlying molecular mechanisms of switching from the asexual IDC to the 

sexual stage that generates transmissible forms of the parasite have for long 

been unknown. Meanwhile, forward genetic screens have recently been used to 

identify a key transcription factor that controls this intricate switch. As it is 

common for lab adapted P. falciparum isolates to lose the ability to produce 

gametocytes after an extended period of in vitro asexual propagation, 

sequencing of these P. falciparum gametocyte non-producers as well as P. 

berghei gametocyte non-producer lines which were generated by continuous 

blood passage in mice revealed that the lost ability to produce gametocytes was 

due to mutations in an ApiAP2 gene transcription factor, AP2-G (Sinha et al., 

2014, Kafsack et al., 2014). 
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Figure 1.5: Sexual developmental switch in malaria parasites. 

During the blood stage IDC, commitment to sexual differentiation occurs in a small 

proportion of the parasites during the previous asexual cycle that results in development 

of sexually committed schizonts to gametocyte stages even though artificial induction of 

sexual commitment in the same cycle has been reported. This sexual developmental 

switch is regulated by a master transcription factor AP2-G. AP2-G is epigenetically 

regulated by HP-1 and Hda-2 while at the same time regulates itself through a positive 

feedback loop mechanism. Other regulators of AP2-G include GDV-1 which evicts HP-1 

from epigenetically repressed AP2-G which in turn enhances gametocytogenesis. Even 

though parasite or environmental exogenous factors influence gametocytogenesis, AP2-G 

could also be amenable to a stochastic activation which would allow baseline low level 

production of gametocytes for continued transmission. Induction of AP2-G leads to 

transcription of gametocyte specific genes that facilitate development and maturation of 

stage I-V gametocytes in P. falciparum. Figure adapted from (Nilsson et al., 2015). 

 

 

Reverse genetics approaches confirmed the role of AP2-G in gametocytogenesis 

as deletion of this gene in both P. berghei and P. falciparum attenuates 

gametocyte production while allelic replacement of mutant AP2-G in 

gametocyte non-producer lines with wild type copies restores the gametocyte 

producing phenotype (Kafsack et al., 2014, Sinha et al., 2014). It has also been 

demonstrated in both P. falciparum and P. berghei that AP2-G recognizes a 

motif upstream of its own coding sequence, and deletion or mutation of this 

motif stops or impairs production of gametocytes in what would be an 
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autoregulatory positive feedback loop (Sinha et al., 2014, Josling et al., 2020). 

This level of sexual commitment appears to occur in a previous life cycle of the 

parasites where maturing schizonts in the ensuing cycle are already pre-

committed to either producing asexual cell progenies or gametocytes (Bruce et 

al., 1990, Brancucci et al., 2018). Meanwhile, consistent with the hallmarks of a 

master regular, conditional overexpression of AP2-G in both P. falciparum and P. 

berghei in ring stage parasites can reprogram these stages into sexual forms in 

the same cycle which results in a dramatic rapid increase in production of 

gametocytes (Bancells et al., 2019, Kent et al., 2018). AP2-G is epigenetically 

controlled by heterochromatin protein 1 (HP-1) and a histone deacetylase 2 

(Hda-2) (Coleman et al., 2014, Brancucci et al., 2014). Conditional depletion of 

both Hda-2 and HP-1 doesn’t just regulate the epigenetic status of AP2-G, but 

also disrupts the monoallelic expression of virulence associated genes which are 

also amenable to epigenetic silencing (Brancucci et al., 2014, Coleman et al., 

2014). More interestingly, a P. falciparum gametocyte development 1 (GDV-1) 

gene which was identified upon sequencing of other non-gametocyte producing 

lines (Eksi et al., 2012) appears to act upstream of the sexual commitment by 

evicting HP-1 from the epigenetically repressed AP2-G (Filarsky et al., 2018). 

Overexpression of GDV-1 results in markedly reduced occupancy of HP-1 at the 

AP2-G locus which in turn results in significant increase in gametocytogenesis 

(Filarsky et al., 2018). 

 

1.3.3.2  Environmental players of sexual commitment 

Several environmental factors that affect commitment to gametocytogenesis 

have been identified. Among these include the use of conditioned spent medium 

(Williams, 1999), presence of young RBCs “reticulocytes” (Trager and Gill, 1992) 

as well as antimalarial drugs (Buckling et al., 1999). The use of spent media 

relies on stressing parasites at high parasitaemia which is, indeed, the basis for 

most current lab methods used in inducing gametocytogenesis in P. falciparum  

in vitro (Brancucci et al., 2015). Nevertheless, how these environmental players 

link to molecular and genetic processes that regulate commitment remain 

unknown (Ngotho et al., 2019, Josling et al., 2018). 

 

Only recently, it has been demonstrated that a component of human serum, 

lysophosphatidylcholine (LysoPC), can mediate different levels of commitment 
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to gametocytogenesis in the right parasite genetic background (Brancucci et al., 

2017).  Depletion of LysoPC in in vitro P. falciparum cultures results in increased 

production of gametocytes which, thus far, is the only defined environmental 

inhibitor to the production of gametocytes. This would also partly explain 

numerous previous observations of using conditioned spent media to stimulate 

gametocytogenesis which would indeed be deficient in LysoPC (Brancucci et al., 

2017). Transcriptomic profiling of LysoPC treated and untreated parasites 

revealed that chromatin modifying enzymes are upregulated in LysoPC mediated 

sexual differentiation which would suggest a possible link between LysoPC and 

epigenetic de-repression of AP2-G (Brancucci et al., 2017). However, even 

though low LysoPC levels affect parasite growth and sexual differentiation in P. 

falciparum, these effects do not equally translate in P. berghei as despite 

influencing the schizont development stage, depletion of this factor does not 

affect gametocyte production in this parasite (Brancucci et al., 2017). This 

illustrates that differences in genetic and epigenetic makeup as well as diverse 

environmental cues can significantly influence how different Plasmodium spp. or 

parasite lineages in the same spp. commit to gametocytogenesis. Indeed, it has 

also been demonstrated that intensity of transmission can also influence 

different rates of commitment among field P. falciparum strains (Rono et al., 

2018). 

 

Nevertheless, even though it is clearly evident that environmental cues play a 

significant role in sexual commitment, it is more likely that basal levels of 

gametocytogenesis are an intrinsic feature of malaria parasites which through a 

stochastic and possibly bet hedged strategy allows for a production of low 

numbers of gametocytes that are ready for transmission during each IDC cycle. 

This could be due to various environment, genetic and epigenetic factors leading 

to stochastic expression of AP2-G (Waters, 2016, Ngotho et al., 2019, Josling et 

al., 2018), the molecular interplay of which require detailed characterisation. 

 

1.3.3.3  Gene regulation during commitment and gametocyte development 

Historical characterisation of transcription during gametocytogenesis has been 

challenging due to difficulties in isolating sufficient number of gametocytes at 

specific stages for transcriptomic profiling. However, recent identification of 

AP2-G and LysoPC has provided important genetic and environmental conditions 
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that can be manipulated to produce significant number of gametocytes for 

transcriptomic analysis. 

 

Comparisons of AP2-G mutant parasites with non-mutants revealed that AP2-G 

activity specifically enriches for gametocyte specific genes among which include 

P27/25, P14.744, P16, P14.745 and P14.748; all of which are important for 

gametocyte development (Kafsack et al., 2014). On the contrary, genes that are 

involved in host cell remodelling and or virulence during the asexual IDC stages 

are epigenetically silenced in gametocytes (Fraschka et al., 2018). In what is a 

classic “just in time expression system”, gene expression in gametocytes is also 

regulated by translational repression where genes that are required for 

development in the mosquito vector are actively transcribed in gametocyte 

stages but are stored in translationally repressed mRNA bodies until activated in 

the vector (Mair et al., 2006). Comparisons of transcriptomes of parasites in 

which sexual commitment is inhibited by LysoPC to untreated parasites has also 

revealed gene transcripts that are upregulated during early stages of 

gametocytes, some of which include metabolism related genes of the Kennedy 

pathway that appear to be involved in regulation and or induction of sexual 

commitment (Brancucci et al., 2017). Meanwhile, an AP2-G overexpression 

system in P. berghei has been used to identify gene transcripts that define and 

or predominate in very early stages of sexual commitment (~6 hours), some of 

which include male gametocyte developmental gene 1 and nucleic acid binding 

proteins (Kent et al., 2018). This is also seemingly evident when AP2-G is 

overexpressed in P. falciparum as up to 90% sexual conversion can be achieved 

despite the resultant gametocytes failing to transmit (Llorà-Batlle et al., 2020).  

 

1.3.3.4  Gamete formation and zygote development 

Mature gametocytes circulating in the mammalian host are taken up by a 

mosquito vector during a blood meal into the midgut where an active escape 

from RBCs leads to the formation of gametes in a process that is called 

gametogenesis. Within 10 minutes of ingestion, male and female gametocytes 

activate and differentiate into eight flagellate microgametes (exflagellation) 

and a single spherical macrogamete respectively (Aly et al., 2009).  
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Upon encountering the mosquito’s microenvironment in the midgut, three 

distinct environmental signals have been identified to play a crucial role in 

differentiation of gametocytes to gametes. These include a 50C temperature 

drop which is critical for gametocyte activation (Sinden et al., 1996), a pH rise 

from 7.3 to 8 (Kawamoto et al., 1991) and the presence of a mosquito derived 

intermediate of tryptophan catabolism, xanthurenic acid (XA) (Billker et al., 

1998, Garcia et al., 1998). Even though detailed signalling mechanisms involved 

are yet to be fully characterised, a XA triggered increase of intracellular calcium 

(Ca2+) is thought to activate a calcium dependent protein kinase, CDPK4, which 

upon activation mediates cell cycle progression and exflagellation of male 

gametocytes (Billker et al., 2004). XA can also enhance the activity of a guanylyl 

cyclase (GC) in gametocyte membrane fractions which increases the levels of a  

second messenger cGMP (Muhia et al., 2001). In Plasmodium, only 2 GCs (GCα 

and GCβ) have been identified, of which GCα is possibly central in cGMP 

synthesis as deletion of  GCβ is readily achievable and results in viable 

gametocytes that are able to exflagellate and fertilise (Moon et al., 2009). 

Increase in intracellular levels of cGMP activates a cGMP-dependent protein 

kinase (PKG) which acts as a master regulator of the signalling cascade during 

gametogenesis (McRobert et al., 2008). Indeed, chemical inhibition of PKG 

prevents rounding up of gametocytes and prevents male gametocyte 

exflagellation (McRobert et al., 2008). More recently, an intracellular membrane 

protein; gametogenesis essential protein 1 (GEP1) has been shown to play a 

critical role in regulating XA mediated gametogenesis in the rodent malaria 

parasite P. yoelii. Disruption of GEP1 blocks XA mediated synthesis of cGMP and 

downstream effects such as Ca2+ mobilisation and gamete formation. GEP1 also 

co-localises with GCα further illustrating that this parasite protein acts as a 

crucial XA-cGMP-PKG axis link in the gametogenesis signalling cascade and could 

thus be a crucial vaccine or drug target to block malaria transmission (Jiang et 

al., 2020). 

 

Activation of gametocytes is thus a rapid stage conversion which within 10 

minutes results in rounding up of gametocytes (in P. falciparum), egress from 

RBCs and transformation into male microgametes and female macrogametes. 

Activated male gametocytes replicate their genome three times into an 

octaploid which produces eight microgametes in a round of mitotic cell division 
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(Janse et al., 1986). Mediated by serine or cysteine proteases, egress of 

activated gametes from RBCs involves a rapid (seconds) multisite rupture of the 

PVM which is followed by a disintegration of subpellicular membrane and 

eventual rupture of the RBC (Sologub et al., 2011). Electron dense membrane 

vesicles (osmiophilic bodies) which predominantly associates with female 

gametocytes, but have also been observed in males, accumulate underneath the 

PVM immediately before rupture (Olivieri et al., 2015). Osmiophilic bodies carry 

several gametocyte specific proteins such as Pg377, MDV-1/Peg3 and the gamete 

egress and sporozoite traversal (GEST) which are released into the PV 

immediately after gametocyte activation, reviewed by (Bennink et al., 2016). 

Pg377 is involved in gamete egress in P. berghei (Olivieri et al., 2015), but this 

function is not conserved in P. falciparum (Suaréz-Cortés et al., 2014). Gene 

disruption of  MDV-1/Peg3 or GEST impairs egress of male and female gametes in 

the rodent malaria parasite P. berghei (Ponzi et al., 2009, Talman et al., 2011). 

 

            
Figure 1.6: An illustrated life cycle progression of malaria parasites in the mosquito 

vector. 

Uptake of mature stage V gametocytes (in P. falciparum) by a mosquito vector leads to 

their activation in the midgut. This is environmentally triggered by a drop in temperature, 

increase in pH and the mosquito derived factor, XA. Activated gametocytes egress from 

RBC as male gametes (microgametes) and female gametes (macrogametes). Micro and 

macrogametes fertilise upon contact to form a zygote which differentiates into an 

ookinete. The ookinete escapes the mosquito midgut into basal laminal epithelial cells 

where it develops into a mature oocyst carrying fully developed sporozoites in 10-12 days. 

Sporozoites bud off from the oocyst into the haemolymph where they migrate to the 

salivary glands. Once in the salivary glands, they can be taken up by a mosquito and re-

injected in a mammalian host. Figure adapted from (Nilsson et al., 2015). 
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For fertilisation to take place, emerged microgametes and macrogametes come 

into contact with each other and fuse their membranes. Just before this occurs, 

a calcium dependent protein kinase 1 (CDPK1) mediates a specific activation of 

some of the  translationally repressed mRNAs in macrogametes (Sebastian et al., 

2012) which are silenced during the mammalian stage of gametocyte maturation 

by the DDX6 class RNA helicase, DOZI (development of zygote inhibited) and  the  

Sm-like factor, CITH  (homolog  of worm CAR-I and  fly Trailer Hitch) (Mair et 

al., 2006, Mair et al., 2010). Motile microgametes actively seek macrogametes 

until an attachment is established. Proteins involved in microgamete attachment 

to macrogametes include LCCL-domain family of proteins as well as the 6-

cysteine motif family of proteins, most notably the P48/45 and P230, reviewed 

by (Bennink et al., 2016). P48/45, which is expressed on the surface of both 

micro and macrogametes, is essential for fertilisation to occur as disruption of 

this gene greatly impacts zygote formation (van Dijk et al., 2001). P48/45 and 

P230 are indeed lead vaccine targets for potential transmission blocking vaccines 

as antibodies targeting these proteins inhibit development of zygotes (Acquah et 

al., 2019). 

 

Fusion of microgametes and macrogametes plasma membranes initiates 

fertilisation which is preceded by entry of the microgamete’s nucleus and 

axonemes into the macrogamete. A microgamete-specific plant like 

reproduction factor, generative cell specific 1 (GCS1) also known as HAP2, plays 

a crucial role in these membrane fusions as it has been demonstrated that 

knockout of this gene leads to total male sterility and unsuccessful fertilization 

(Liu et al., 2008, Hirai et al., 2008). Nuclear fusion follows the plasma 

membrane fusion which then undergoes meiotic cell division producing a 

tetraploid zygote (Janse et al., 1986). A family of NIMA-related protein kinases, 

NEK-2 and NEK-4, play a critical role in this stage of meiotic division as 

disruption of these genes results in dysregulated DNA synthesis, blocks genome 

replication to tetraploid level and abolishes zygote differentiation into ookinetes 

(Reininger et al., 2005, Reininger et al., 2009). 

 

1.3.3.5  Ookinete-oocyst to sporozoite differentiation 

In the mosquito midgut, zygotes mature over 18-24 hours into motile forms of 

parasites called ookinetes which are characterised by an elongated and polarised 
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morphology and exhibit a tight gene expression cascade. Controlled by the 

APiAP2 transcription factor AP2-0 (Yuda et al., 2009), over 500 genes which are 

important for ookinete development have been identified in malaria parasites 

(Kaneko et al., 2015). Some of these genes include components of the 

glideosome GAP40, GAP45 and GAP50 which would play an important role in 

ookinete motility, putative ookinete secreted proteins PSOP-1, PSOP-2, PSOP-6, 

PSOP-7 and PSOP-12, putative ookinete surface proteins 1-10, P25 and P28 

(Kaneko et al., 2015). The ookinete surface proteins P25 and P28 are indeed 

potential transmission blocking vaccine targets as simultaneous knockout of 

these genes prevents the transition of ookinetes to oocysts by blocking traversal 

through the mosquito midgut epithelium (Tomas et al., 2001). Meanwhile, 

downregulation of GAP45 results in zygotes which fail to mature and transform 

into ookinetes (Sebastian et al., 2012). cGMP-PKG signalling also appears to play 

a role in regulating ookinete motility as PKG inhibitors blocks ookinete gliding 

(Moon et al., 2009). 

 

Mature motile ookinetes traverse the mosquito midgut into the basal lamina of 

the epithelial midgut where oocyst development takes place (Figure 1.6). Even 

though exact details of traversal are not clearly understood, several microneme 

proteins have been implicated some of which include the five members of the 

Plasmodium PLPs and the cell-traversal protein for ookinetes and sporozoites 

(CelTOS), reviewed by (Bennink et al., 2016). Just before exit from the midgut 

lumen, the ookinete releases a chitinase which facilitates the breakdown of a 

chitin polysaccharide rich membrane which lines the mosquito midgut and 

provide protection to the host from food particles as well as bacterial or viral 

infections (Vinetz et al., 1999, Shahabuddin et al., 1993). Chemical inhibition of 

chitinase and or gene disruption of the P. falciparum chitinase gene impairs 

ookinete traversal of the midgut and prevents oocyst development (Tsai et al., 

2001, Shahabuddin et al., 1993). Oocysts develop at the basal lamina of the 

mosquito immediately after ookinete traversal from the midgut with the sole 

aim of producing viable transmissible forms of the parasites, sporozoites. Oocyst 

development takes approximately 10-12 days and results in 50-60 µM diameter 

sized parasite stages making it the longest as well as largest life cycle stages of 

malaria parasites (Canning and Sinden, 1973). During the initial stages of 

sporozoite formation in the oocysts, the plasma membrane retracts to form 
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cytoplasmic lobes while at the same time the nucleus undergoes multiple rounds 

of division to produce thousands of haploid nuclei (Canning and Sinden, 1973). 

This process (called sporogony) which is partly aided by CSP, results in formation 

of sporoblasts which are precursor sporozoites marked with CSP on the 

membrane and nuclei localisation to the periphery (Thathy et al., 2002). CSP 

plays a critical role in formation of sporoblasts as disruption of this gene 

attenuates sporozoite development within oocysts (Ménard et al., 1997). After 

developmental maturation, sporozoites bud from sporoblasts into the oocyst and 

attain a crescent shape before escaping the oocyst into the mosquito 

haemolymph. It remains to be determined the exact molecular events that 

precedes sporozoite release. However, a cysteine protease “egress cysteine 

protease 1” (ECP-1) is likely essential during this process as deletion of ECP-1 in 

P. berghei traps mature sporozoites in the oocysts (Aly and Matuschewski, 2005). 

Sporozoite escape also seems to be aided by region II plus of CSP as substitution 

of this region with alternative amino acids (alanine residues) prevents exit of 

sporozoites from oocysts (Wang et al., 2005). More recently, gene deletion of 

newly identified oocysts rupture proteins (ORPs) 1 and 2 has been shown to 

prevent oocyst rupture and release of sporozoites (Currà et al., 2016).  

 

Thousands of sporozoites are released from each oocyst which migrate 

throughout the mosquito’s tissues aided by haemolymph circulation. While 

passing through the salivary glands, specific parasite ligands recognise host cell 

receptors in the basal lamina allowing a specific capture of sporozoites into the 

mosquito’s salivary glands. This process is highly inefficient as >75% of 

sporozoites are lost and degraded in circulation while less than a quarter make it 

to the salivary glands (Baton and Ranford-Cartwright, 2005). Several parasite 

ligands that facilitate sporozoite attachment into the salivary glands have been 

identified.  Specifically, region I of the CSP is apparently a ligand for receptors 

on the luminal surface of mosquito vectors and facilitates sporozoite attachment 

(Sidjanski et al., 1997). A thrombospondin-related anonymous protein (TRAP) 

also plays an important role in salivary gland invasion of sporozoites as deletion 

of this gene in P. berghei attenuates sporozoites gliding motility and blocks 

sporozoites infection of salivary glands (Sultan et al., 1997). The CSP 

multifunctional role in facilitating mammalian hepatocyte invasion of 

sporozoites as well as development and progression through the mosquito oocyst 



Chapter 1                                                                           General introduction 

 26 

to sporozoite stages has made it a very promising vaccine candidate. Indeed, a 

malaria vaccine which is currently under pilot rollout, RTS-S, is based on a 

recombinant CSP (Rts, 2015). When a mosquito bites a mammalian host, around 

100 sporozoites are injected into the blood stream in experimental conditions 

which can be as fewer as <50 in natural infections initiating the cycle again 

(Menard et al., 2013). 

 

 

1.4  Malaria prevention and control 

Despite the complicated life cycle of malaria parasites and several possible 

intervention points, there is a relatively small set of tools for malaria control 

and prevention. These mainly evolve around integrated vector management and 

effective malaria therapeutics even though malaria vaccines are slowly 

becoming an option.  

 

1.4.1 Insecticides in malaria control 

Malaria vector control is of special focus as it offers a direct interruption of the 

malaria parasite life cycle (Figure 1.2) by directly blocking transmission to 

humans (and zoonotic reservoirs). Major interventions which are being employed 

in mosquito vector control programs include the use of long-lasting insecticidal 

bed nets (LLINs) and indoor residual spraying (IRS) of insecticides. LLIN and IRS 

programs have been massively implemented in malaria endemic regions of the 

world and have accounted for 78% of the 663 million malaria cases averted since 

the early 2000s (Bhatt et al., 2015). As of 2018, over 50% of the population at 

risk in Sub-Saharan Africa was protected from malaria by LLINs interventional 

programs (WHO, 2019). Despite these significant gains, the use of insecticides in 

vector control has recently become under threat as mosquito vectors are 

increasingly becoming resistant to pyrethroids which are the primary insecticides 

currently in use in both LLIN and IRS programs (Hemingway et al., 2016a).  

 

Resistance to pyrethroids was first reported in the early 1970s in Sudan and 

subsequently spread to West Africa in the 1990s (Brown, 1986, Elissa et al., 

1993). Since the beginning of the 21st century, pyrethroid resistance has 

significantly spread and is now endemic in almost all parts of Africa with active 

malaria transmission (Ranson, 2017). As of 2016, 77% of countries monitoring 
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pyrethroid effectiveness have reported some form of vector resistance to this 

class of insecticides (WHO, 2018b). Four genetic bases of insecticide resistance 

have been described in mosquito vectors. Of these, the best characterised are 

target site point mutations which alter the voltage gated sodium channels 

(direct target of pyrethroids) by reducing their affinity to the compounds. In the 

African mosquito vector Anopheles gambiae, knock down resistance alleles in 

the same codon position of the sodium channel (1014F and 1014S) strongly 

associate with pyrethroid resistance and are indeed the basis of multiple on-site 

field molecular diagnostics for monitoring resistance (Donnelly et al., 2009, 

Wang et al., 2015c).  A second form of pyrethroid resistance is “metabolic” 

based as decreased susceptibility to insecticides is conferred by elevating the 

activities of cytochrome P450s or glutathione transferases (GSTs) which results 

in sequestration and detoxification of the compounds (Ranson, 2017). Even 

though the genetic mechanism underlying this form of resistance is yet to be 

characterised in detail, amino acid substitutions and or overexpression of the 

GST gene have been used to associate some pyrethroid metabolic resistance 

phenotypes to genotypes (Lumjuan et al., 2005, Riveron et al., 2014). 

Meanwhile, in Anopheles funestus, directional selection through mutations in a 

regulatory element close to the CYP9P9 gene of the cytochrome P450 family 

have been shown to drive pyrethroid resistance in field vector populations 

(Riveron et al., 2013). However, even though experimental transgenic expression 

of the CYP9P9 gene in Drosophila confers resistance to pyrethroids (Riveron et 

al., 2013) and many other studies have reported candidate cytochrome P450 

enzymes involved in driving metabolic resistance, identification of specific loci 

that drive overexpression of these genes has so far remained elusive (Ranson, 

2017).  

 

Besides the above major determinants of pyrethroid resistance, cuticular (or 

reduced penetrance) and behavioural resistance are other forms of resistance, 

which though minor, are seemingly evolving in Africa. Cuticular resistance 

involves thickening of the mosquito’s cuticle which reduces uptake and 

penetration of insecticides. Thickening of the cuticle has indeed been attributed 

to pyrethroid resistance in Anopheles funestus (Wood et al., 2010). 

Environmental use of LLINs and IRS programs could also force a behavioural 

adaptive evolution of mosquitos. Success of LLINs and IRS programs rely on 
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indoor transmission behaviour of mosquito’s and these have indeed been 

successfully exploited as despite intensive use of LLINs and IRS over the past 

decade, malaria transmission in Africa appear to still occur indoors (Bayoh et al., 

2014). However, these behaviour’s require constant surveillance and monitoring 

as evolution to outdoor transmission would be a further catastrophe to ITN and 

IRS programs in Africa as seems to be the current case in South America and Asia 

(Gryseels et al., 2015, Santos et al., 2009). 

 

1.4.2 Malaria vaccines 

Besides vector control, development of an effective malaria vaccine has 

remained a key priority in global malaria control programs especially in the 

current era of accelerated eradication efforts.  Modern pursuits of a malaria 

vaccine have largely been based on early seminal work which demonstrated a 

protective immunity in mice upon injection with irradiated sporozoites of the 

rodent malaria P. berghei (Nussenzweig et al., 1967). This was also later 

replicated in humans as experimental challenge with radiation-attenuated 

sporozoites resulted in protection against P. falciparum infection (Rieckmann et 

al., 1979). However, over five decades down the line, a highly effective malaria 

vaccine is still elusive despite some strides that have seen a malaria vaccine, 

RTS, S, entering pilot rollout in the malaria endemic regions of the world (Rts, 

2015, Draper et al., 2018, WHO, 2019). Research efforts towards malaria 

vaccines have focussed on targeting liver stages (pre-erythrocytic) to prevent 

establishment of infection, blood stages (erythrocytic) to prevent clinical 

disease and mosquito stages to block transmission. 

 

Pre-erythrocytic or sporozoite based vaccines have thus far been the most 

promising and extensively tested vaccine candidates with the lead RTS, S 

vaccine now entering pilot rollout (Draper et al., 2018, WHO, 2019). The RTS, S 

developed by GlaxoSmithKline is a virus like particle consisting of a recombinant 

C-terminal of CSP fused to the hepatitis B virus surface antigen (HBsAg) with a 

liposomal adjuvant system. So far, the RTS, S remains the only malaria vaccine 

that has shown clinical efficacy in Phase III clinical trials. However, efficacy of 

this vaccine appears to be modest as despite offering protection to clinical 

disease by up to 51% in three vaccination formulations for children aged 

between 5-17 months, this seems to be relatively lower in young infants aged 6-



Chapter 1                                                                           General introduction 

 29 

12 weeks (~26%). Moreover, this vaccine induced immunity appear to wane over 

time (Rts, 2015). Nevertheless, pilot rollout of the RTS, S vaccine is currently 

ongoing in Malawi, Ghana and Kenya (WHO, 2019, WHO, 2016). Besides subunit 

sporozoite vaccines, whole sporozoite vaccines made up of irradiated 

sporozoites (PfSPZ) have been actively pursued despite underlying challenges in 

isolating enough quantities of purified sporozoites for clinical trials in humans 

and the requirement of subcutaneous mosquito bites for delivery. However, 

recent technology advances have been used to successfully isolate and 

cryopreserve these irradiated sporozoites as well as use alternative intravenous 

administration to elicit robust immune responses (Seder et al., 2013, Hoffman et 

al., 2010). More encouragingly, exploratory clinical trials of the PfSPZ vaccine in 

Mali have shown protective efficacies of up to 48% even though further trials in 

multiple geographical areas are required (Sissoko et al., 2017). 

 

Frequent exposures to malaria parasites in the blood stream is known to elicit 

broad antibody repertoires and immuno-regulatory cellular states that provide a 

state of naturally acquired immunity (NAI) in preceding parasite exposures 

(Doolan et al., 2009).  Chemically attenuated blood stage vaccines as well as 

those targeting specific subunits such as the placental var gene antigen VAR2CSA 

have been developed and trialled not just to mimic NAI, but to also possibly 

prevent the outcomes of severe malaria disease (Raja et al., 2017, Pehrson et 

al., 2017). However, most of these approaches have failed to produce significant 

efficacy in trials. This is partly due to the complex life cycle of the parasite  

(Figure 1.2), polymorphic strain specific antigens which do not cover substantive 

antigenic variation as well as highly developed immune evasion mechanisms in 

the parasites (Draper et al., 2018). Use of NAI pooled antibodies from African 

adults have been used to demonstrate that passive immunisation can be used to 

prevent severe disease in children by lowering parasitaemia through a targeted 

immunological inhibition of blood stages of the parasites (Cohen et al., 1961). 

However, these approaches have again not been actively pursued possibly due to 

underlying problems listed above as well ethical and safety issues regarding 

potential viral contaminations. Recent pursuits in development of subunit blood 

stage vaccines have also benefitted from the identification of the merozoite 

invasion ligand PfRH5 and its interaction with the basigin receptor on RBCs 

(section 1.3.2.1). Experimental vaccination of Aotus monkeys with PfRH5 
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induces antibodies that can block development of several lab as well as clinical 

P. falciparum isolates and more importantly prevents infection in ensuing 

parasite challenges (Douglas et al., 2015). As further structural and functional 

characterisation of PfRH5 based vaccines continues, clinical evaluation of their 

efficacy in humans will hopefully provide a further scope of their potential. 

 

Transmission blocking vaccines (TBV) are malaria vaccine strategies that target 

sexual transmissible forms of the parasite. This is specifically important for 

recent accelerated efforts towards malaria eradication as these vaccines would 

crucially interrupt the parasite life cycle without necessarily delivering any 

clinical benefit. Several TBV vaccines have been trialled of which the leading 

candidates are those based on the ookinete surface protein P25 as well as the 

gamete antigens P45/P48 and P230 (Acquah et al., 2019). Preclinical evaluation 

of antibodies produced upon vaccination of mice with these antigens yielded 

strong transmission inhibitory phenotypes in standard membrane feeding assays 

using lab adapted P. falciparum strains (Kapulu et al., 2015). Hampered by the 

inability to produce clinically safe immunogens with most of these TBV 

candidates, efforts to develop P25 or P48/P45 based TBVs that are both safe and 

immunogenic are currently ongoing, reviewed by (Draper et al., 2018). 

 

Nevertheless, despite the slow pace, malaria vaccine development efforts are 

rapidly improving as evidenced by the recent pilot introduction of the RTS, S. 

However, significant challenges are still in place. For instance, despite the 

complicated life cycle of malaria parasites that involves multiple morphological 

stage transitions, stage transcending immunity is not known to occur.  As efforts 

to develop a vaccine that covers all life cycle stages continue in what would 

ideally be a “perfect vaccine”, a combination of different vaccines in “multi-

stage” vaccine strategies would alternately provide a quick way of assessing 

additive or synergistic vaccine combinations that can be progressed. Indeed, 

recent preclinical evaluation that has demonstrated synergy between TBVs and 

pre-erythrocytic vaccines in the rodent malaria P. berghei nicely illustrates this 

potential (Sherrard-Smith et al., 2018) and could be further exploited as more 

vaccines and vaccine candidates are developed. 

 

 



Chapter 1                                                                           General introduction 

 31 

1.5 Antimalarial drugs and resistance 

Antimalarial drugs are significant components of malaria control and prevention 

programs. They play a crucial role in preventing disease through 

chemoprophylaxis, intermittent prevention during pregnancy, preventing 

progression of severe disease and can as well be used in transmission blocking. 

Several classes of antimalarial drugs are currently in use for malaria treatment. 

These include quinolones, antifolates, naphthoquinones, artemisinin’s, 

macrolides and tetracyclines which are classified based on relatedness of 

chemical scaffolds or mode of action (Table 1.1, Figure 1.7). The use of 

antimalarial drugs in malaria control was revolutionised in the 1930s when 

chloroquine (CQ), a 4-aminoquinolone, was discovered and formed the basis of 

malaria treatment for over four decades from the early 1950s to the 1990s. 

However, this apparent success which almost drove malaria to eradication (Hay 

et al., 2004), was quickly offset by emergence of resistance which rendered CQ 

to an almost unusable state in the early 1990s. Emergence of drug resistance in 

malaria parasites has thus far been a historical trend to almost all clinically 

available drugs (Table 1.1). This appears to be an evolutionary adaptation 

through a positive selection strategy that allows for propagation and 

maintenance of parasite lineages that carry genetic or phenotypic traits which 

minimises their elimination from the host upon drug treatment. Ideally, the 

mode of resistance (MOR) to most antimalarial drugs is frequently related to the 

mode of action (MOA) as mutations or alterations in the drug target routinely 

leads to either reduced uptake of the drug, increased efflux or changes in the 

target that reduces drug binding affinity or results in its overexpression 

(Fairlamb et al., 2016). However, these associations can also be obscure as in 

some cases, the MOA of certain antimalarial drugs have remained unknown or 

debatable despite well characterised resistance mechanisms. 

In a simple linear evolutionary model, emergence of resistance is relatively 

straightforward when drugs are used as monotherapies. Under lab conditions, 

spontaneous mutations from drug sensitive to resistant alleles can emerge at the 

rate of 10-9 per nucleotide site per mitotic division (Paget-McNicol and Saul, 

2001). This means in a complex human host environment where parasite biomass 

can reach as high as 1012, at least 103 parasites will carry resistant conferring 

alleles and will be preferentially selected for upon further drug treatment or 

subsequent successful transmission. However, due to the complex parasite life 
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cycle (and or genetic differences between strains), differences in 

pharmacological profiles of individual drugs as well as recent combinational 

therapy approaches, these evolutions can be far from linear. For example, 

exposure of parasites with different pre-existing drug resistance conferring 

mutations to classes of drugs with different MOA can result in significant 

variations in the frequency of acquisition of resistance alleles (Rathod et al., 

1997). Using two different parasite clones, one which was sensitive to all 

traditional antimalarial agents (D6) and the other which was resistant (W2), it 

was demonstrated that acquisition of drug resistance mutations to novel drugs 

with different MOA was more frequent in the W2 clones (up to 1000 fold) 

relative to the D6 clones (Rathod et al., 1997). Such phenotypes, also called 

“accelerated resistance to multiple drugs” (ARMD) could indeed have significant 

implications in the emergence of drug resistant malaria as it would mean 

resistance emerging from very few geographically localised strains; and/or easy 

propagation of such mutations in parasite backgrounds that may be already 

carrying appropriate compensatory or synergistic mutations. Indeed, genetic 

analysis of parasites resistant to CQ and some antifolates has demonstrated that 

resistance to these drugs emerged and spread from very few independent strains 

despite the worldwide usage of the drugs at the time (Roper et al., 2003). The 

ARMD phenotypes have also attracted more attention recently as resistance to 

artemisinins has emerged and is seemingly dependent on permissive underlying 

genetic architectures (Zhu et al., 2018, Miotto et al., 2015). 

 

Nevertheless, in what is typical of an evolutionary arms race, drug resistance of 

malaria parasites has always preceded the introduction of almost all known 

antimalarial drugs. Even though the probability of developing resistance can be 

lowered by using combination therapies or high barrier compounds, this race 

which at times could be for the swift and strong, is also a question of time and 

chance as inevitably drug resistance in malaria parasites appear to always 

emerge. So far, drug resistance in malaria parasites has been reported for 

almost all clinically available forms of the drugs, Table 1.1 (Haldar et al., 2018).  

 

1.5.1 Quinolines 

Quinoline antimalarials include drugs such as CQ, quinine, primaquine and 

mefloquine which are and have been at the centre stage of malaria treatment 
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for over seven decades. These drugs can be further subdivided into 4-

aminoquinolines (CQ, amodiaquine, piperaquine), aryl aminoalcohols (quinine, 

lumefantrine and mefloquine) or 8-aminoquinolines (primaquine) based on the 

position of the amino group and or additional side chains (Figure 1.7). 

 

Quinine is the first reported chemical compound used to treat malaria with 

discovery dates going back as far as the early 1600s (Achan et al., 2011). It is 

derived from the bark of the Cinchona (quina-quina) tree from which it was first 

isolated as an active chemical in 1820 by Pierre Joseph Pelletier and Joseph 

Caventou. Over 400 years down the line, quinine remains an important drug for 

treatment of uncomplicated and severe malaria (WHO, 2019). Despite its long 

history, the MOA of quinine is not understood even though it is thought to act by 

inhibiting haem polymerisation as is seemingly the case for most quinolines. Low 

level resistance to quinine by malaria parasites was first reported in 1910 

(Peters, 1982), even though this has remained at relatively low grade up to date 

(Achan et al., 2011). This low-level resistance appears to be mediated by 

polymorphisms in standard drug resistance genes such as the P-glycoprotein 

multi drug resistance transporter (PfMDR1) and the CQ resistance transporter 

(PfCRT). However, the mechanistic details of which are still unknown (Ferdig et 

al., 2004). Nevertheless, poor tolerability of this drug limits its use for 

treatment of severe malaria even though it is clinically available for treatment 

of uncomplicated malaria in combination with other agents (WHO, 2019). 

 

After quinine, the 4-aminoquinoline drug CQ became the backbone of malaria 

treatment from the early 1950s up until resistance emerged but is still used in 

some parts of the world to a limited extent (Table 1.1). CQ remains one of the 

most efficacious, safe and affordable antimalarial drug to have ever been 

produced (Ecker et al., 2012). However, CQ resistance emerged only a decade 

after the inception of its use which led to its subsequent withdrawal from 

recommendation for primary treatment of P. falciparum infections. Malaria 

parasites, upon invading red blood cells, ingests large amounts of host 

haemoglobin into a localised parasite structure, the digestive vacuole (DV) also 

called the food vacuole. Within the DV, the parasite proteolytically cleaves 

haemoglobin which is aided by aspartic (Plasmepsin I and II) and cysteine 

proteases (falcipains)  to release amino acids for the parasite protein synthesis 
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(Goldberg, 2005). This catabolic process releases large amounts of Fe2+ haem 

which is rapidly oxidized to Fe3+ haem (ferriprotoporphyrin IX or FPIX). Fe3+ 

haem is an insoluble moiety that is highly toxic to the parasite as it can rapidly 

disrupt the parasite membranes. Malaria parasites, therefore, biomineralise Fe3+ 

haem moieties to b-haematin forming chemically inert brown pigments of 

haemozoin which are characteristic signatures of developing trophozoite and 

schizont stages as well as the non-toxic storage form of waste (Bannister and 

Mitchell, 2003). Microscopically, haemozoin has been historically defined as the 

classical “malaria pigment”(Roepe, 2009). 

 

CQ is a weak base which rapidly and freely diffuses across membranes in its 

neutral form. Upon crossing the DV, the acidic environment of the DV results in 

its protonation which makes its impermeable thereby accumulating in the DV up 

to 1000-fold. Protonated CQ is presumed to bind  Fe3+ haem which prevents 

haem detoxification pathway poisoning the parasite with its own waste 

machinery (Roepe, 2009). CQ resistance is known to have originated in six 

different regions in South East Asia, South America and Western Pacific regions 

in the 1950-1960s before spreading to Africa in the late 1970s (Figure 1.8). 

Mutations in the P. falciparum CQ transporter, PfCRT, have been widely 

accepted as markers of CQ resistance (Ecker et al., 2012). PfCRT natural role is 

thought to be the transportation of peptides produced by the proteolytic 

digestion of haemoglobin across parasite membranes. Mutations in PfCRT, 

specifically the K76T mutation, have been shown to mediate efflux of 

protonated CQ from the DV reducing the drugs accessibility to its Fe3+ haem 

target (Ecker et al., 2012). However, in malaria endemic countries, K76T 

mutations have sometimes been carried without conferring CQ resistance. Some 

patients still respond to CQ despite the parasites having the mutation landscape 

(Valderramos et al., 2010). PfCRT therefore, appears to  be a primary marker of 

resistance, but may require secondary determinants such as mutations in the 

PfMDR1 and other unidentified factors (Ecker et al., 2012). The current clinical 

status, proposed MOA and MOR for other quinoline antimalarial drugs are 

summarised in Table 1.1. 
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Figure 1.7: Chemical structure of common antimalarials in clinical usage. 

The structures are for antimalarial drugs as summarised in Table 1.1
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Drug Class Class Examples Current Clinical 
Usage 

Proposed Mode of Action Resistance Determinants 

4-aminoquinolines Chloroquine (CQ) Treatment of P. 
falciparum and P. 
vivax malaria, 
uncomplicated casesa 

Haem intoxication, 
accumulates in the 
digestive vacuole and 
inhibits parasite haem 
detoxificationb. 

PfCRT, PfMDR1 mutations, 
mediate efflux from 
digestive vacuoleb. 

Amodiaquine (AQ) Partner drug for ARTs 
and CQ for P. 
falciparum and P. 
vivax malaria, both 
severe and 
uncomplicated casesa. 

Haem intoxication, 
accumulates in the 
digestive vacuole and 
inhibits parasite haem 
detoxificationc. 

Point mutations and copy 
number variations of 
PfMDR1c 

Piperaquine (PPQ) Uncomplicated P. 
falciparum malaria in 
combination with 
DHAa. 

Unknown Amplification of 
plasmepsins 2 and 3d. 

Aryl aminoalcohols Quinine (Q) Severe malariaa Unknown, proposed to 
inhibit parasite haem 
detoxificationc. 

Point mutations and copy 
number variations of 
PfMDR1c. 

Mefloquine Severe and 
uncomplicated P. 
falciparum malaria, 
P. vivax malariaa. 

Inhibits parasites 80S 
ribosomep, proposed to 
inhibit parasite haem 
detoxificationc 

Copy number variations of 
PfMDR1c. 
 

Lumefantrine Combination with AMa Largely unknown Point mutations and copy 
number variations of 
PfMDR1f. 
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8-aminoquinolines Primaquine (PQ) Uncomplicated P. 
falciparum malaria in 
combination with CQ, 
SP or ARTsa, first 
choice drug for P. 
vivax malaria in 
combination with 
CQa. 

Unknown Unknown 

Endoperoxides Artemisinin (ARTs) Uncomplicated and 
severe forms of P. 
falciparum malaria in 
combination with 
other antimalarial 
agentsa.  

Unknown, disputed; 
promiscuous targeting of 
parasite componentse,f. 

Mutations and 
polymorphisms in the 
Kelch13 propeller 
domainsg. 

Dihydroartemisinin (DHA) Uncomplicated and 
severe forms of P. 
falciparum malaria in 
combination with 
other antimalarial 
agentsa. 

Artesunate (AS) Uncomplicated and 
severe forms of P. 
falciparum malaria in 
combination with 
other antimalarial 
agentsa. 

Artemether (AM) Uncomplicated and 
severe forms of P. 
falciparum malaria in 
combination with 
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other antimalarial 
agentsa. 

Antifolates Sulfadoxine-pyrimethamine Uncomplicated P. 
falciparum malaria in 
combination with AS 
or PQ, first choice for 
intermittent 
prevention in 
pregnancya. 

Inhibits folate metabolism 
by acting on two enzymes; 
dihydroforate reductase 
(dhfr) and dihydropteroate 
sythetase (dhpts)h. 

Mutations in dhfr and 
dhptsh. 

 Proguanil (PG) Chemoprophylaxis, 
uncomplicated P. 
falciparum malaria in 
combination with ATQ 

Inhibits dhfri Mutations in dhfrj 

Antibiotics Tetracycline/Doxycyclines Chemoprohylaxis, 
uncomplicated P. 
falciparum malaria, 
severe malaria in 
combination with Qa. 

Inhibits protein synthesis in 
the parasite’s apicoplastk. 

Clinical resistance not 
reported – aside rare 
chemoprophylatic 
failuresl. 

Macrolides (Clindamycin) Uncomplicated and 
severe malaria in 
combination with Qa  

Inhibits protein synthesis in 
the parasite’s apicoplastm. 

Not known 

Naphthoquinone Atovaquone (ATQ) Chemoprophylaxis in 
combination with 
PGa. 

Inhibits cytochrome bc-1 
complexn. 

Point mutations in the 
mitochondrial bc-1o.  

 
Table 1.1: Classes of selected antimalarial drugs in clinical use. 
(WHO, 2019)a, (Ecker et al., 2012)b c, (Witkowski et al., 2017)d, (O'Neill et al., 2010)e, (Tilley et al., 2016)f, (Ariey et al., 2014, Mbengue et al., 2015)g, (Plowe 
et al., 1997)h, (Srivastava and Vaidya, 1999)i, (Parzy et al., 1997)j, (Dahl et al., 2006)k, (Gaillard et al., 2015)l, (Sidhu et al., 2007)m, (Fry and Pudney, 
1992)n, (Srivastava et al., 1997)o, (Wong et al., 2017)
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Figure 1.8: Emergence and spread of CQ resistance. 
Figure reproduced with permission from (Packard, 2014), copyright Massachusetts 

Medical Society. 

 

1.5.2 Atovaquone 

Atovaquone is a hydroxynaphthoquinone that is known to specifically target the 

cytochrome bc1 complex, a crucial component of the electron transport chain in 

the parasite mitochondrion (Fry and Pudney, 1992). Activity of atovaquone is 

associated with a rapid onset of inhibition of the electron transport chain 

followed by an instant collapse of the parasite mitochondrial membrane 

potential (Srivastava et al., 1997). Resistance to atovaquone is however readily 

achieved through acquisition of point mutations in the cytochrome bc1 complex 

which abrogates drug binding efficiency (Srivastava et al., 1997). Uniquely, 

these atovaquone resistant parasites seemingly fail to transmit in mosquito 

vectors (Goodman et al., 2016). This is because the cytochrome bc1 complex, 

which is not entirely essential during the IDC, is critically required for the 

mosquito stages of the parasite and acquisition of mutations in the same impairs 

the parasites vector competency. Moreover, the cytochrome bc1 gene is 

encoded by the maternally inherited mitochondrial genome which acts as double 

hit to transmission as even in the case of outcrossing with the wild type 

parasites, resistance alleles cannot be successfully propagated (Goodman et al., 

2016). Still, emergence of resistance to ataovaquone was usually rapid when the 

drug was introduced for clinical use as a single agent which has necessitated its 

use in combination with other agents, more notably proguanil (Vaidya and 
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Mather, 2000). As of 2018, atovaquone (in combination with proguanil) is barely 

indicated for treatment of any form of malaria, aside prophylaxis for travellers 

(WHO, 2019). 

 

1.5.3 Antibiotics: tetracyclines and macrolides 

Tetracyclines are broad spectrum antibiotics that were discovered in the 1940s 

and are widely used in the treatment of bacterial infections. They inhibit 

protein synthesis by binding to 30S and 16S ribosomal subunits. Although not 

consensually agreed, it has been now recognised that the MOA of tetracycline in 

malaria parasites is associated with inhibition of protein synthesis in the parasite 

apicoplast (Dahl et al., 2006). Tetracyclines specifically disrupt expression of 

apicoplast specific genes which sequentially blocks downstream protein synthesis 

leading to parasite death (Dahl et al., 2006). Meanwhile, macrolides are 

macrocyclic lactone ring carrying antibiotics that inhibit protein synthesis by 

binding to the 50S subunit of bacterial ribosome and are widely used for 

treatment of bacterial infections. In malaria parasites, two macrolides; 

azithromycin and clindamycin display potent activity in malaria parasites and 

also target the apicoplast as their MOA (Sidhu et al., 2007). However, as is the 

case with almost all agents that target the apicoplast, both tetracyclines and 

macrolides display a delayed death effect which is characterised by parasites 

surviving a life cycle upon drug treatment without a functional apicoplast with 

death ensuing in the next cycle as daughter cells lack the organelle  (Dahl and 

Rosenthal, 2007). These antibiotics are therefore not recommended for 

treatment of acute clinical malaria where rapid parasite reduction is required. 

Nevertheless, as of 2018, tetracycline and clindamycin are mostly used as 

prophylaxis agents even though they are still recommended by the WHO for the 

treatment of severe malaria in combination with quinine in the Philippines 

(WHO, 2019). Thus far, malaria parasites resistant to either tetracyclines or 

macrolides have not been convincingly described (Gaillard et al., 2015). 

 

1.5.4 Antifolates 

As CQ resistance spread across the world in the 1970s, a combination of two 

antifolate drugs sulfadoxine and pyrimethamine (SP) became suitable 

alternatives. The first nationwide switch from CQ to SP was made in Malawi in 

1993 following which several countries adopted the same (Sibley et al., 2001). 
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However, SP resistance is readily achieved as it emerged in the 1970s almost 

immediately after introduction in the Asia Pacific and subsequently spread to all 

malaria endemic regions, reviewed by (Cui et al., 2015). These drugs act by 

inhibiting two key enzymes of the folate biosynthesis pathway; dihydrofolate 

reductase (dhfr) and dihydropteroate synthetase (dhpts) (Plowe et al., 1997). 

Their activity blocks downstream synthesis of tetrahydrofolate which is a critical 

cofactor in the synthesis of nucleotides and amino acids (Sibley et al., 2001). 

This is specifically important in malaria parasites as Plasmodium spp. cannot 

salvage one class of nucleotides (pyrimidines) and require de novo synthesis 

which makes these drugs particularly potent (Cassera et al., 2011, Plowe et al., 

1997). The MOR is attributed to point mutations in dhfr and dhps genes that 

renders resultant mutant enzymes less sensitive to the drugs (Plowe et al., 

1997). As of 2018, SP is no longer recommended for first line treatment of P. 

falciparum malaria infections, but is still used in some countries (in combination 

with other agents) and remains the principle drug for intermittent prevention of 

malaria in pregnancy (WHO, 2019). 

 

1.5.5 Artemisinins 

Artemisinins (ARTs) or qinghaosu (as locally called in Chinese) are sesquiterpene 

lactones derived from a Chinese herb Artemisia annua. The discovery of ARTs 

can be traced back to project 523, a secret Chinese government military project 

that was launched on 23rd of May in 1967 aimed at finding antimalarial 

medications to a disease that had caused more deaths than the actual battle 

during the Vietnam war (White et al., 2015). Directed by Dr Youyou Tu, the 

project led to the discovery of ARTs in 1970 and was publicly announced to the 

world as a potential antimalarial agent in 1979, reviewed by (Tu, 2011). Despite 

early concerns on their safety and efficacy in monotherapies, superior ART 

efficacy in combination therapies (ACTs) and subsequent address of safety 

profiles in extended clinical trials as well as the continued spread of SP and CQ 

resistance led to the WHO recommendation of ACTs for treatment of 

uncomplicated malaria in all endemic regions of the world in 2006 (White et al., 

2015). ARTs are highly effective antimalarial drugs and have indeed been partly 

credited with the recent declines in global malaria burdens (WHO, 2019, Cui et 

al., 2015). They are currently recommended by the WHO for first line treatment 

of malaria and are known to possess activity in both sexual and asexual blood 
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stages (Delves et al., 2012, WHO, 2019). A pharmacodynamic hallmark of ARTs 

and their derivatives is that they are highly active and fast acting against blood 

stages of malaria parasites, achieving up to 10,000 fold parasite reductions in 

the first life cycle upon drug exposure (White, 2008). This makes them 

specifically suited for treatment of severe disease. However, a significant 

disadvantage of ARTs is their short half-life in vivo (basically 1-2 hours) which 

necessitates their use in combination with longer half-life drugs to prevent 

recrudescence which is frequently common when they are used as single agents. 

Furthermore, parent ARTs have a poor bioavailability in vivo, and have been 

replaced by derivatives; dihydroartemisinin (DHA), artesunate and artemether 

(Figure 1.9) which display an improved pharmacokinetic profile. Structurally, 

ARTs are trioxane lactones with a characteristic endoperoxide bridge that forms 

a core and defining part of their structure (Figure 1.9). The endoperoxide bridge 

is central to the activity of ARTs and their derivatives in malaria parasites as it 

has been shown that, deoxyartemisinin, which lacks this bond displays no 

antimalarial activity (Wang et al., 2010). 

 

 
Figure 1.9: Structure of artemisinin and its derivatives dihydroartemisinin, 
artemether and artesunate. 
Dihydroartemisinin is the active in vivo metabolite of all artemisinins while artesunate and 

artemether have improved bioavailability. Central to the structural activity of artemisinins is 

the highlighted endoperoxide bond. 

 

1.5.5.1  ARTs MOA: a glass half full? 

ARTs appear to have a unique MOA that is characteristically distinct from other 

antimalarial agents. Though the exact mode of parasite killing remains 

debatable, iron/haem mediated activation of the endoperoxide bridge is central 

to the core activity of ARTs. Activation of the endoperoxide bond produces 

carbon centred radicals that alkylate/react with downstream parasite 

proteins/other targets leading to parasite death. 
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Inside the DV, malaria parasites ingest and digests large amounts of host 

haemoglobin as a source of amino acids for protein synthesis. This process 

produces Fe2+ haem iron which is rapidly sequestered into chemically inert 

haemozoin crystals (Goldberg, 2005). It is believed that some Fe2+ haem iron 

pool remains available to catalyse a reductive activation of the ARTs 

endoperoxide bridge that generates carbon radicals which mediate parasite 

killing (Meunier and Robert, 2010). In line with this hypothesis, ARTs display a 

rapid and efficient activity in trophozoite malaria stages which are associated 

with massive haemoglobin catabolism. In contrast, ARTs display reduced activity 

in mid-rings, pre-erythrocytic and gametocyte stages which is consistent with 

reduced or no haemoglobin degradation in these stages, reviewed by (Tilley et 

al., 2016). ARTs are however, also, active in very early ring stage parasites in 

what has been described as a short “hypersensitive stage” (Xie et al., 2016) 

which would suggest alternative sources of iron for ART activation or an entirely 

independent MOA. Some of the proposed alternative sources of iron for ART 

activation include biosynthetic haem produced by the parasite, free non-haem 

bound iron pools or the inherent parasite mediated redox catabolism of haem 

(Tilley et al., 2016). However, the haem-iron hypothesis remains compelling for 

now, as has been demonstrated that haemoglobinase inhibitors can strongly 

antagonise ART action more so than standard iron chelators (Tilley et al., 2016, 

Klonis et al., 2011). It remains a formal possibility though, that other factors 

other than iron haem may play a role in ART activation which might explain the 

early ring stage hypersensitivity. 

 

Once activated, ARTs are thought to target several parasite biological 

components, although the exact molecular targets remain under debate (O'Neill 

et al., 2010, Tilley et al., 2016). Among the key molecules thought to be 

targeted by ARTs is haem itself. Haem-ART adducts have been detected when 

ART is incubated with haem suggesting an interference with haematin formation 

as a possible mechanism of ART action (Meshnick et al., 1991). This remains 

disputed though, as even though these adducts have been detected in vivo, no 

clear evidence links them to ART action since their possible origin from ex-vivo 

interactions between the parasite and the drugs is yet to be ruled out (O'Neill et 

al., 2010). Another proposed mechanism is a generalised covalent 

modification/alkylation of parasite proteins. Over 120 proteins have been 
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identified to be covalently modified by ARTs in P. falciparum, suggesting a more 

complex and generalised protein damage that precedes parasite death (Wang et 

al., 2015a, Ismail et al., 2016). This has been further supported by a detection 

of polyubiquitination in parasites treated with ARTs suggesting a more 

pronounced and generalised protein damage (Dogovski et al., 2015, Bridgford et 

al., 2018). Early work on ARTs MOA identified a P. falciparum calcium ATPase, 

PfATP6 as a possible and sole target of these drugs (Eckstein-Ludwig et al., 

2003). PfATP6 was expressed in frog’s eggs (Xenopus oocytes) and it was found 

that ARTs significantly inhibited the purified enzyme while other antimalarials 

such as CQ and even deoxyartemisinin did not (Eckstein-Ludwig et al., 2003). In 

the same study, it was also demonstrated that PfATP6 inhibition by ARTs and 

another closely related endoperoxide thapsigargin can be abolished in the 

presence of an iron chelator further suggestive that ART activity requires iron 

activation. Even though several studies have  contradicted this hypothesis, 

reviewed by (O'Neill et al., 2010), PfATP6 was among the many proteins 

identified to be targets of ARTs (Ismail et al., 2016, Wang et al., 2015a)  

illustrating that this protein could be one among many targets that are inhibited 

by ARTs. Furthermore, ARTs are thought to inhibit energy production in the 

parasites by targeting the parasite mitochondria (Wang et al., 2010) as well as 

cause parasite membrane damage by inducing accumulation of neutral lipid 

bodies (Hartwig et al., 2009). ARTs have also been shown to inhibit a P. 

falciparum phosphatidylinositol-3-kinase (PfPI3K) (Mbengue et al., 2015). PfPI3K 

is thought to play a role in parasite haemoglobin endocytosis and its inhibition by 

ARTs blocks delivery of haemoglobin to the parasite DV which in turn blocks 

parasite growth (Vaid et al., 2010).  Nevertheless, despite the enormous 

research efforts to characterise ARTs MOA, the direct and indirect effects of 

these drugs on the malaria parasite are yet to be fully unravelled (O'Neill et al., 

2010, Tilley et al., 2016). 

 

1.5.5.2  Malaria parasite resistance to ARTs: a multifaceted trait 

Compared to other antimalarial drugs, ART resistance has emerged at a 

relatively slow rate. This is particularly due to their short half-life in vivo which 

reduces parasite exposure time minimising the selective pressure that would 

underpin emergence of resistance. Further to that, ARTs are administered as 

ACTs which further reduces the probability of acquiring resistance conferring 
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genetic traits. Nevertheless, resistance to ART has emerged and was first 

reported in 2009, mostly as a reduction in parasite clearance rate following ART 

monotherapy in Cambodia (Dondorp et al., 2009). As of 2018, ART resistance is 

almost endemic in the greater Mekong region of Southeast Asia (SEA) (WHO, 

2019). Meanwhile, ART resistance which is at the moment, defined by a delayed 

parasite clearance upon ART or ACT treatment, is still classified as “partial 

resistance” mostly because it is restricted to ring stage parasites and most 

patients with parasites harbouring the phenotype effectively clear the infection 

when an effective partner drug is used or treatment duration is extended (WHO, 

2018a). Furthermore, whether ART resistance or partial resistance qualifies to 

be called as such remains a subject of continuing debate. For instance, the in 

vivo delayed clearance phenotype which is observed in patients does not 

correlate with decreased susceptibility to DHA in standard in vitro growth 

inhibition assays where parasites are exposed to the drug during the entire life 

cycle over 1-2 generations (Dondorp et al., 2009, Amaratunga et al., 2012, Phyo 

et al., 2012). A ring-stage survival assay (RSA) where early ring stage parasites 

(0-3 hours old) are exposed to DHA for a short period of time (4-6 hours) at a 

relevant pharmacological concentration provides a better correlate for the in 

vivo delayed parasite clearance phenotype, and has been the principle in vitro 

assay for determining resistance of malaria parasites to ARTs (Witkowski et al., 

2013).   

 

Primary determinant of ART resistance 

In 2014, non-synonymous single nucleotide polymorphisms (SNPs) in the kelch13 

propeller domain of malaria parasites were identified as molecular markers of 

ART resistance after in vitro selection for resistance for 5 years in the Tanzanian 

F32 isolate (Witkowski et al., 2010, Ariey et al., 2014).  After identification of 

the M476I Kelch13 substitution in these resistance lines, subsequent mutations 

(C580Y, R539T, I543T, Y493H) were identified in clinical isolates that presented 

with delayed clearance rate phenotype (Ariey et al., 2014). Genetically 

engineered reversal of Kelch13 mutations has been used to confirm their role in 

mediating ART resistance in the in vitro RSA (Straimer et al., 2015, Ghorbal et 

al., 2014). However, additional genetic factors may play an additional role as 

has been shown that the level of ART resistance in clinical isolates harbouring 
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Kelch13 mutations is higher than in genetically engineered parasites (Straimer et 

al., 2015). 

 

P. falciparum Kelch13 is a 726 amino acid long protein that displays sequence 

homology to a class of BTB/POZ/Kelch family of proteins that are believed to act 

as substrate adaptors for Cullin-3 E3 ligases which mediate polyubiquitination of 

proteins and their degradation by the ubiquitin proteasome system (UPS) 

(Genschik et al., 2013). By acting as adaptors to these ligases, these proteins 

regulate several crucial cellular processes such as cell cycle progression, gene 

expression, cellular trafficking and endocytic processes (Dhanoa et al., 2013). In 

Drosophila and many other organisms, the BTB/POZ/Kelch proteins are 

structurally made up of the BTB/POZ domain (Broad complex_Tramtrack_Bric-a-

brac/Pox virus_Zinc finger) which is thought to act as an adaptor to the Cullin-3 

E3 ligases and the C-terminal propeller domain made up of a six propeller bladed 

structure that specifically binds substrates for ubiquitination (Figure 1.10) 

(Adams et al., 2000). P. falciparum Kelch13 ART resistance mutations localise to 

the C-terminal of this protein, lie exclusively in the propeller domain and have 

been proposed to reduce substrate protein binding (Mbengue et al., 2015). 

However, whether P. falciparum Kelch13 plays the role of substrate adaptor for 

these ligases is still unknown (Xie et al., 2020). Early functional studies on the 

function and consequences of Kelch13 mutations in malaria parasites revealed 

that PfPI3K can bind wild type Kelch13 more efficiently than mutant Kelch13. 

Reduced targeting of PfPI3K to the UPS in Kelch13 mutants was shown to 

increase PfPI3K levels which in turn increases the levels of its downstream 

product, phosphatidylinositol-3- phosphate (PI3P), which was found to mediate 

ART resistance phenotypes even in absence of Kelch13 mutations (Mbengue et 

al., 2015). Further to that, transcriptomic surveys of clinical ART resistant 

isolates have shown that ART resistance is associated with an upregulation of 

genes that are involved in the ER unfolded protein response, a cell stress 

response defence mechanism (Mok et al., 2015). Overall, these processes appear 

to protect the parasites from ART induced proteotoxicity by upregulation of the 

stress response mechanisms which allows for a quick recovery from the drug 

induced assault or a post-stress recovery system which may allow for 

accumulation of substrates such as PI3P that promote survival (Xie et al., 2020). 

Indeed, when exposed to DHA, both Kelch13 and wild type parasites experience 
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a significant level of protein damage in the first three hours. However, six hours 

later, mutant parasites display a rapid recovery to normal protein homeostasis 

consistent with relatively less stress or better recovery systems (Yang et al., 

2019). Using an ER stress response marker, eIF2α phosphorylation (eIF2α-P), 

eIF2α-P levels are less elevated in Kelch13 mutants as compared to wild type 

upon short exposure to DHA which further illustrates reduced stress (Zhang et 

al., 2017). This suggests that one consequence Kelch13 mutations may be to 

promote parasite survival by improving a rapid and efficient recovery system 

from the ART-induced proteopathy.  

 

More recently, functional studies of P. falciparum Kelch13 have revealed its 

cellular localisation to cytostomes, “cell mouths”, together with other endocytic 

markers such as the endocytosis protein Eps15, ubiquitin carboxyl-terminal 

hydrolase 1 (UBP-1) and the adaptor complex AP-2µ (Birnbaum et al., 2020). This 

cytostomal Kelch13 endocytic machinery appears to mediate haemoglobin 

endocytosis into the parasite. Kelch13 mutations lead to partial loss of protein 

function which impairs haemoglobin endocytic uptake thereby lessening ART 

activation and promoting parasite survival (Birnbaum et al., 2020, Yang et al., 

2019). Even though co-localisation studies by Birnbaum et al. do not identify 

stress response proteins or proteins involved in the Cullin-3 E3 ligase mediated 

ubiquitination, parallel immunoprecipitation studies have identified several 

other proteins which interact with Kelch13 in malaria parasites some of which 

include vesicular transport proteins Rab GTPases, mitochondrial proteins and 

proteins involved in the ER unfolded protein cell stress response (Gnädig et al., 

2020, Siddiqui et al., 2020). Kelch13 mediated resistance to ARTs therefore 

appears to be a multifaced process which may involve upregulated stress 

response mechanisms which mitigate the damage caused by ARTs or altered 

haemoglobin uptake which lessens ART activation. How these processes 

intricately interact (independently or dependently) to yield resistance 

phenotypes is still unknown. For example, Kelch13 mutant parasites display a 

prolonged ring stage during the blood developmental stages (Mok et al., 2015). 

Even though this could be one of the stress adaptation mechanism, how this 

phenotype links to Kelch13 mutations is still uncharacterised (Xie et al., 2020). 

Moreover, a characteristic signature of Kelch13 mutant parasites is their ability 

to enter a state of growth quiscence upon ART treatment, also called the 
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“sleeping beauty” phenotype. This allows the parasites to survive drug exposure 

during the growth stasis as ARTs would presumably target active cellular 

processes (Witkowski et al., 2010). Nonetheless, some Kelch13 mutations appear 

not to associate with these phenotypes (Breglio et al., 2018). 

 

Aside from these known primary determinants, there are other secondary 

determinants which have been proposed to play a role in Kelch13 mediated ART 

resistance. Mutations in PfCRT, PfMDR1, ribosomal proteins and several other 

proteins have been proposed to provide a genetic architecture upon which 

Kelch13 mediated ART resistance is more likely to occur (Miotto et al., 2015, 

Zhu et al., 2018). Kelch13 mediated resistance to ARTs is therefore not just 

unconventional, but also seemingly complex which is further compounded by a 

lack of detailed mechanism of ART-mediated parasite killing. The current 

definition of ART resistance as “partial resistance”  which is confirmed or 

suspected when patients carry parasites with certain Kelch13 gene mutations, 

display a parasite clearance half-life of >5.5 hours or are microscopically smear 

positive on day 3 after initiation of treatment; which is in itself still not fully 

predictable of ACT treatment failure (Ferreira et al., 2013, Krishna and 

Kremsner, 2013, Hastings et al., 2016, WHO, 2019, WHO, 2018a) further 

complicates the conventional definition of ART resistance. This is also 

confounded by a lack of association between Kelch13 mutations and ACT 

treatment failure in some regions (Kheang et al., 2017), the role of host 

immunity in modulating ART delayed clearance phenotypes (Ataide et al., 2017) 

and the lack of appropriate in vivo models to clearly confirm causality of 

Kelch13 mutations in ART resistance despite compelling in vitro RSA profiles. 

Using an in vivo Aotus monkey model, a recent genetic cross of the Kelch13 

C580Y ART-resistant line (most prevalent mutation in SEA) with an Aotus 

infecting P. falciparum strain has revealed that parasites carrying the C580Y 

mutation can display increased survival in in vitro RSAs with no accompanying in 

vivo ART resistance phenotypes which further complicates the definition and or 

causality of these mutations to ART resistance (Sa et al., 2018). 
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Secondary non-Kelch13 determinants of ART resistance 

Polymorphisms in several other proteins have been implicated in ART resistance 

phenotypes, mostly in the in vitro RSA. Mutations in the cysteine protease gene 

(Falcipain 2a) are some of the genetic polymorphisms which were selected for in 

series of incremental exposure to DHA in vitro (Rocamora et al., 2018, Ariey et 

al., 2014). Falcipains are involved in haemoglobin degradation, mutations of 

which could impact haemoglobin uptake hence force lessening ART activation 

(Goldberg, 2005). Falcipain 2a is also expressed in early ring stages of malaria 

parasites which would correspond with its potential role in initiating the 

haemoglobin catabolism pathway (Xie et al., 2016). Crucially, Falcipain 2a 

polymorphisms have been reported in SEA and they associate with ART 

resistance phenotypes (Siddiqui et al., 2018). 

 

Recently, long term evolution of P. falciparum isolates from Senegal identified 

mutations in the F-actin binding protein, coronin, that mediate reduced 

susceptibility to DHA in vitro (Demas et al., 2018). Pfcoronin belongs to the 

WD40-propeller domain containing protein family which share the β-propeller 

motif with P. falciparum Kelch13.  Pfcoronin seemingly interacts with the 

Plasmodium ESP15 containing domain protein which plays a role in endocytosis 

and vesicular trafficking (Thakur et al., 2015). In a similar manner as Kelch13, 

Pfcoronin would be involved in endocytic uptake of host factors such as 

haemoglobin which would be impacted on with the acquisition of the mutations. 

Nevertheless, Pfcoronin mutations that associate with ART resistance 

phenotypes have not yet been observed in field isolates (Velavan et al., 2019). 

 

Further mutations in an adaptor protein AP-2µ have been implicated in in vitro 

resistance to DHA (Henriques et al., 2015) as well as well as in vivo susceptibility 

to ARTs in rodent malaria parasite P. chabaudi (Henriques et al., 2013). 

Experimental introduction of one of the AP-2µ mutation I592T leads to increased 

survival of mutant parasites in the RSAs (Henrici et al., 2019a). AP-2µ colocalises 

with malaria parasite’s Kelch13 to the cytostome and appears to be involved in 

haemoglobin uptake and endocytosis (Henriques et al., 2013, Birnbaum et al., 

2020). Limited directional selection in clinical P. falciparum isolates from Kenya 

has been observed at the AP-2µ locus (Henriques et al., 2014). 
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Polymorphisms in a ubiquitin hydrolase, UBP-1 (HAUSP or USP7 close 

homologue), were also previously identified to modulate susceptibility to ART 

and CQ in the rodent infectious malaria parasite, Plasmodium chabaudi, after 

sequential experimental evolution and selection with a series of antimalarial 

drugs (Hunt et al., 2007). UBP-1, just like Kelch13 are all predicted components 

of the parasite UPS. More importantly, they both co-localise to the parasite 

cytostomes and their partial inactivation and or experimental engineered 

mutations lead to decreased susceptibility to ARTs in the in vitro RSA (Birnbaum 

et al., 2020). Even though UBP-1 has been shown to facilitate haemoglobin 

endocytosis (Birnbaum et al., 2020), its role in UPS mediated cell stress response 

mechanisms is yet to be ruled out. Ubiquitin hydrolases or deubiquitinating 

enzymes (DUBs) are proteases that cleave ubiquitin residues from conjugated 

substrate proteins in the UPS pathway. UPS targeting of proteins is initiated by 

ubiquitin (Ub) tagging of substrates which marks them either for specific cellular 

signal transduction processes like DNA repair and cell cycle progression or 

subsequent degradation at the 20s proteasomal unit (Lecker et al., 2006). Ub 

tagging is mediated by three sequential enzymes: E1, an activating enzyme; E2, 

a conjugating enzyme and Cullin-3 E3, a Ub ligase for substrate specificity 

(Figure 1.10). The activity of these enzymes results in polyubiquitination of 

substrate proteins, which signals for their degradation at the 20s complex 

depending on the number of Ub residues. DUBs reverse the activity of these 

downstream UPS enzymes by removing Ub from the conjugated substrates which 

results in diverse protein fates and cellular outcomes among which include; 

regulation of protein half-life, cell growth, differentiation, transcription; rescue 

of mis-tagged proteins as well as oncogenic and neuronal disease signalling 

(Hanpude et al., 2015). Over 100 DUBs have been identified in humans and they 

classify into five major families: Ub C- terminal hydrolases (UCHs), Ub specific 

proteases (USPs), ovarian tumour proteases (OTUs), josephins and 

JAMM/MPN/MOV34 (Hanpude et al., 2015). Owing to their role in multiple 

biological pathways and disease states signalling, DUBs are rapidly emerging as 

drug targets, mostly, in oncology (Harrigan et al., 2017). In malaria parasites, up 

to 30 DUBs have been predicted across five Plasmodium species (P. falciparum, 

P. vivax, P. berghei, P. chabaudi, P. yoelii); although their functions remain to 

be fully explored (Ponder and Bogyo, 2007, Ponts et al., 2011). Nevertheless, 

Plasmodium DUBs seem to have intrinsic protease activity, are significantly 
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divergent and their human orthologues are known to be important regulators of 

cellular pathway which makes them suitable and potential drug targets (Aminake 

et al., 2012). More importantly, the fact that mutations in a DUB (UBP-1) can 

mediate susceptibility to ARTs also offers the opportunity to target Plasmodium 

DUBs not just antimalarial drug targets, but also as a means to offset ART 

resistance. Indeed reports of UBP-1 mutations associating with ART treatment 

failure in Africa and SEA (Henriques et al., 2014, Adams et al., 2018, Cerqueira 

et al., 2017, Borrmann et al., 2013) as well the recently reported strong positive 

selection at the UBP-1 loci in SEA (Ye et al., 2019) are indicative of the 

requirement for such pre-emptive interventions. 

 

ART resistance is thus a complex trait which though primarily conferred by 

mutations in P. falciparum Kelch13, can also be mediated by several other 

independent mechanisms. Understanding of these mechanisms, such as the 

upregulation of the stress response and or protein trafficking/endocytic 

pathways, could therefore provide avenues to contain and rescue the emergent 

resistant to this important class of drugs. This could be through identification of 

suitable partner drugs or structural improvement of the already existing 

endoperoxides for increased in vivo half-life or high barrier to resistance 

characteristics. Some of these approaches are, indeed, already being pursued as 

targeting the cell stress response by inhibiting components of the UPS can 

enhance and synergize the activity of ARTs in both ART sensitive and resistant P. 

falciparum isolates (Dogovski et al., 2015). Figure 1.10 summarises the current 

outlook to ART MOA, MOR and possible intervention points. 
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Figure 1.10: Artemisinin action, resistance and possible intervention points. 
Endocytosis of haem precedes its degradation in the DV which releases Fe2+ haem iron 

and amino acids for parasite protein synthesis. Fe2+ haem catalyses reductive scission of 

the ARTs endoperoxide bond to produce radical ART adducts which in turn alkylate 

multiple parasite proteins. This leads to protein damage which when not sufficiently 

repaired results in parasite death. ART resistance is primarily conferred by Kelch13 

mutations which impair haemoglobin (Hb) uptake and in a cascade reduces Fe2+ haem 

available to activate ARTs as indicated by purple arrows. Reduced amount of activated 

ARTs leads to less protein damage hence force promoting parasite survival. This would 

be seemingly true for Pfcoronin, UBP-1, AP-2µ and Falcipain 2a mutations which are 

predicted or known to inhibit haemoglobin endocytosis or degradation as illustrated. An 

alternative mechanism of ART resistance which could be dependent or independent of 

haemoglobin uptake and degradation is through an enhanced cell stress response 

through the UPS.  Ubiquitin (Ub) tagging of protein substrates (S) for UPS mediated 

proteasomal degradation which is facilitated by Cullin-3 ligases can be aided by Kelch13 

as a substrate adaptor. Kelch13 mutations lead to less binding of substrates (PfPI3K) 

which make them accumulate and facilitate ART resistance phenotypes. Alternatively, the 

enhanced cell stress response could be facilitated by UBP-1 mutations (by unknown 

mechanisms) which are known components of the UPS. In these mutant parasites, the 

parasites rapidly employ the cell stress response (upward green arrow) to clear damaged 

proteins and mitigate the ART induced protein damage which in turn promotes survival. 

Targeting the proteasome (red inhibition arrow) or potentially DUBs blocks the parasite 

stress response and offsets ART resistance phenotypes. 
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1.5.5.3  ART derived antimalarials 

Due to the poor bioavailability of ARTs, their derivatives have been explored as 

alternatives for malaria treatment. DHA, artesunate and artemether were the 

first-generation ART derived antimalarials (Figure 1.9) that display an improved 

bioavailability and solubility profile. However, their inherent disadvantage 

remains their short half-life in vivo. ART derivatives with an improved 

bioavailability profile have therefore long been explored for development. 

Artemisone is among what are called “second generation ARTs” that display an 

improved bioavailability profile. Artemisone (Figure 1.11) is a synthetic 10-

alkylaminoartemisinin that is derived from DHA in a one-step synthesis process 

(Haynes et al., 2006). In contrast to ARTs, artemisone has a significantly 

improved bioavailability and displays an enhanced activity in human plasma as 

compared to artesunate (Haynes et al., 2006). Artemisone has also been shown 

to be 10 times more potent than artesunate against P. falciparum in vitro, and > 

four times more potent in the P. berghei in vivo model (Vivas et al., 2007). First 

phase clinical trials of artemisone showed promising results for treatment of 

uncomplicated malaria (Nagelschmitz et al., 2008). However, no further 

development has currently been reported (Wells et al., 2015). 

 

Another second-generation class of ART derived antimalarials is of the ozonide 

class. These are synthetic peroxide antimalarials that maintain an endoperoxide 

bridge for their activity but display a stable metabolic profile/half-life in vivo 

making them attractive ART substitutes (Charman et al., 2011, Maerki et al., 

2006). OZ277 (Figure 1.11) was among the first ozonides to be developed and 

displays rapid activity against asexual blood stages of malaria parasites (Maerki 

et al., 2006). Despite displaying a slightly short half-life in vivo (yet 2-3 fold 

higher than DHA), OZ277 was the first ozonide to be licensed for malaria 

treatment and is available in India (as a combination with piperaquine) and in 

seven African countries (Wells et al., 2015). OZ439 (Figure 1.11) is another 

current lead ozonide that is in advanced trials for malaria treatment.  OZ439 has 

a long half-life compared to OZ277, is metabolically stable, rapidly clears 

asexual and sexual blood stages, displays a single dose efficacy in P. berghei in 

vivo model with reported activity in Kelch13 ART resistant parasites (Wells et 

al., 2015, Charman et al., 2011). Results of phase 2a trials in humans have 

shown that OZ349 is well tolerated, has a good long-half life and rapidly clears 
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parasitaemia in both P. falciparum and P. vivax infections (Phyo et al., 2016b). 

Phase2/3 trials for OZ439 safety, efficacy and tolerability in combination with 

other antimalarial agents are currently ongoing. 

 
Figure 1.11: Structure of some of the second-generation ART-based antimalarials. 

  

1.5.6 Antimalarial drugs in the pipeline 

With the emergence of resistance to antimalarial drugs in current clinical use, 

efforts are ongoing to develop new and improved drugs. There are several drug 

candidates which are currently in the pipeline, underlying the enormous efforts 

drug development programs are investing in the field, reviewed by (Wells et al., 

2015). As explained in the above chapter, some of the lead compounds are ART 

derived or close relatives underscoring the importance of structure-based 

function studies to derive improved drugs out of the existing antimalarial 

arsenal. There are, however, several others promising candidates in the 

pipeline. 

 

KAE609 formerly NITD609, is a synthetic antimalarial compound of the 

spiroindolone class that has been developed by the Novartis Institute for Tropical 

Diseases (NITD) and is one of the lead antimalarial candidates currently in the 

pipeline (Wells et al., 2015). KAE609 is believed to act by inhibiting the 

Plasmodium Na+ ATPase pump, PfATP4 that plays an important role in 

maintaining cellular ion homeostasis (Rottmann et al., 2010). KAE609 is more 

potent than ARTs, has a long half-life in vivo and displays a single dose efficacy 

in the P. berghei in vivo model (Rottmann et al., 2010). Phase 2 trials have 

shown that KAE906 displays a rapid clearance of parasites in P. falciparum and 

P. vivax infections with an acceptable safety profile (White et al., 2014). KAE609 

is currently undergoing further trials in preparation for registration and approval 

(Cully, 2014). However, unlike ARTs which appear to be high barrier compounds, 

selection for resistance to KAE609 was readily achieved in laboratory isolates 
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within 3-4 months (~5 years for ARTs). Even though this does not imply that field 

resistance would rapidly emerge when these compounds are introduced, their 

use in combination therapy will hopefully be among the implementation 

strategies when they are rolled out. 

 

Another candidate of interest is MMV390048 which inhibits PfPI4K, a kinase that 

regulates the parasite’s intracellular signalling and trafficking (Ghidelli-Disse et 

al., 2014, McNamara et al., 2013). PfPI4K is presumed to be important in all 

stages of malaria parasites, with MMV390048 having a potential for multistage 

activity. MMV390048 has successfully gone through phase 1 clinical trials in 

Africa with additional trials currently ongoing (Wells et al., 2015). DDD107498 

has recently been identified as an antimalarial drug candidate with potential for 

multi-stage activity (Baragaña et al., 2015). DDD107498 has been shown to be 

more potent than ARTs, displays a multistage activity, has a single dose cure 

efficacy and displays a good pharmacokinetic profile. DDD107498 targets the 

parasites elongation factor 2 (eIF2α) responsible for translocation of mRNA and 

subsequent protein synthesis (Baragaña et al., 2015). Evaluation of DDD107498 is 

currently ongoing in phase 1 trials. KAF156, another lead antimalarial compound 

developed by the NITD, has successfully passed through phase 2 trials with good 

safety and efficacy profiles (White et al., 2016). Phase 2b combination studies 

for this drug candidate began in Africa in August 2017 and are ongoing. KAF156 is 

believed to target the cyclin amine resistance protein, PfCARL, the exact 

function of which remains unknown (Kuhen et al., 2014). Meanwhile, KAF156 

resistance can also be modulated by mutations in multidrug resistance genes 

UDP-galactose and acetyl-CoA transporters (Lim et al., 2016). More recently, it 

has been demonstrated that this class of compounds inhibit ER associated 

protein trafficking pathways (LaMonte et al., 2020). Nevertheless, for both 

KAF156 and DDD107498, in vitro resistance can be selected for (within 4 months) 

further illustrating the threat of resistance should these compounds be clinically 

deployed in isolation.  
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1.6 Approaches to characterising antimalarial drugs MOA 

1.6.1 Forward genetic approaches 

MOA elucidation in malaria parasites mainly involve forward genetics approaches 

which require in vitro selection for resistance to the drugs followed by whole 

genome sequencing, transcriptome and or proteome analysis (Flannery et al., 

2013). These approaches have (at least partially) identified the MOA of known 

antimalarial drugs such as CQ and pyrimethamine (Lukens et al., 2014, Ganesan 

et al., 2008). They have also pointed to potential molecular targets of novel 

compounds targeting PfPI3K (McNamara et al., 2013), protein and pyrimidine 

biosynthesis pathways (Lukens et al., 2014, Baragaña et al., 2015). However, 

these approaches have their own limitations in characterising the MOA of drugs 

as they do not reveal full molecular and biochemical networks involved in drug 

resistance cascades (Creek and Barrett, 2014). Moreover, these screens cannot 

be used to identify the MOA or molecular targets of drugs and drug candidates 

when drug resistance cannot be selected (high barrier compounds), drug 

resistance is phenotypic (no genetic architecture e.g. persistence) or when 

resistance is conferred by genetic mutations in multi-drug resistance 

transporters which provide little or no clue as to the intracellular target of the 

compounds. 

 

1.6.2 Metabolomics 

Ever since 1986 when Dr. Thomas Roderick first coined the word genomics, the 

omics field has exploded, providing an in depth understanding of biological 

systems from genomes, transcriptomes, proteomes, metabolomes all the way to 

the phenotype (“phenome”). Compared to other omics fields like genomics, 

metabolomics is rather a new field that provides a comprehensive biological 

aspect of cells by detecting and quantifying small molecule metabolites, 

typically less than 1.5 kDa (Wishart et al., 2007). Metabolomics has been a 

culmination of years of biochemistry applications where biomarkers like plasma 

cholesterol levels have been linked to atherosclerosis, plasma glucose to 

diabetes and many more others; reviewed by (German et al., 2005). 

Metabolomics is now being widely applied for the system level analysis of 

metabolites in biological systems providing application platforms in drug 

discovery, drug MOA studies, precision medicine, biomarker discovery and 

toxicological screens (Wishart, 2016). An inherent advantage of metabolomics is 



Chapter 1                                                                    General introduction 

 57 

that, metabolites, being closer to the phenotype provide a bridge between other 

omics technologies and the observed biological phenotypes as well as a closer 

and direct view of intracellular dynamics. 

 

1.6.2.1  Metabolomic approaches 

Metabolomics approaches are broadly categorised into two branches; untargeted 

or targeted based on the hypotheses driving the data acquisition paradigm. 

Untargeted metabolomics are hypothesis generating experiments where a global 

analysis of metabolites is conducted to provide a system wide screen of 

perturbations that may arise due to predefined set of experimental or natural 

conditions. On the other hand, targeted metabolomics are hypothesis driven 

where quantification of metabolites is restricted to a biochemical pathway of a 

particular interest (Patti et al., 2012). Untargeted analyses offer a classic 

unbiased system of investigating biological differences in identical or 

experimental conditions that may arise due to natural or experimentally induced 

pertubations. Coupled to other omics like genomics, transcriptomics, proteomics 

or standard molecular biological approaches like reverse genetics, untargeted 

metabolomics analyses provide a powerful scope of knowledge outputs that 

would otherwise remain unaddressed when employing upstream omics 

approaches. With targeted approaches, analyses are limited to known 

biochemical pathways by specifically quantifying metabolites in respect to 

predefined experimental conditions (Patti et al., 2012). This approach is 

particularly attractive in respect to answering very specific questions like drug 

metabolism/xenobiotics, perturbations due to enzyme specific alterations as 

well as specific biomarker responses in induced or un-induced conditions (Patti 

et al., 2012). Targeted metabolomics being “targeted” offer a unique challenge 

on the core definition of omics which are generally considered as being global, 

system-wide analyses. However, both targeted and untargeted metabolomics 

approaches are being widely applied with a huge wealth of knowledge outputs in 

biomarker discovery, pathogenesis of cancers, infectious diseases and many 

others (Creek and Barrett, 2014, Griffiths et al., 2010, Patti et al., 2012, 

Wishart, 2016).  
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1.6.2.2  Metabolomic platforms 

The human metabolome consists of over 2000 metabolites (Wishart et al., 2007) 

with over millions existing in the biosphere. Their diversity, ranging from 

structural to physicochemical, provide an enormous challenge to effectively 

quantify their abundance with a single analysing system (Kell, 2004). A basic 

metabolomics platform therefore relies on efficient sample or metabolite 

extraction, metabolite separation, detection and consequent identification. The 

importance of efficient sampling techniques, good biological replicates and 

sample handling for metabolomics studies cannot, therefore, be over-

emphasized (Wishart, 2016).  

 

The basic metabolomics workflow starts with sample preparation and extraction 

of metabolites. To maximise metabolome coverage, most metabolite extraction 

protocols employ a mixture of chloroform, methanol and water in the extraction 

solvent to comprehensively cover polar and non-polar metabolites (Mushtaq et 

al., 2014). Once extracted, metabolites are separated and detected using a 

diverse set of technology platforms. The commonly used detection platforms are 

mass spectrometry (MS) based or nuclear magnetic resonance (NMR) (de Raad et 

al., 2016, Markley et al., 2017). NMR has proven to be powerful for structural 

characterisation of unknown compounds, doesn’t need elaborate sample 

preparation as in MS, has good reproducibility as well as excellent in vivo 

performance (Markley et al., 2017). Indeed, NMR spectroscopy has been widely 

used to identify key metabolites associated with infections or disorders across a 

wide spectrum of plants, animals and human conditions; reviewed by (Pontes et 

al., 2017). Nevertheless, an inherent disadvantage of NMRs platforms is their low 

sensitivity which significantly lessens their appeal as compared to modern, 

ultrasensitive powerful MS (de Raad et al., 2016, Markley et al., 2017). The most 

commonly used MS platforms are GC-MS and LC-MS (de Raad et al., 2016). GC-MS 

platforms consists of MS coupled to a gas chromatography (GC). Extracted 

metabolites are passed through a GC column which allows initial separation of 

the metabolites based on migration through a column and later mass detection 

in the MS. Since the mobile phase in GC is a gas, samples are made volatile and 

polar which makes it less optimal for detecting non-polar metabolites. LC-MS on 

the other hand use liquid chromatography (LC) as a separation technique 

providing a good coverage of both polar and non-polar metabolites, with good 
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sensitivity and reproducibility as well as easier sample preparation (de Raad et 

al., 2016, Lei et al., 2011). Another MS platform is capillary electrophoresis (CE) 

based (CE-MS) which allows separation of ion metabolites and subsequent 

detection by MS. Despite being cheap and requiring less sample volume, CE-MS is 

no longer used widely due to its poor reproducibility (de Raad et al., 2016). For 

elaborate and comprehensive metabolome coverage, most metabolomics 

platforms are used together in dual sample analysis (for example a GC-MS and 

LC-MS) to provide complementary metabolite analyses. 

 

1.6.2.3  Metabolomic data analysis 

As is the case with other omics technologies, metabolomics data sets are 

complex requiring extensive pre-and post-acquisition data processing to get 

meaningful outputs. In classic MS screens, majority of MS peaks are due to 

background noise providing an analytical challenge to separate significant result 

outputs from mere noise. In standard LC-MS screens, for example, over 80% of 

detected mass peaks are due to noise background (Jankevics et al., 2012). 

Computational platforms that allow accurate distinction of mass peaks with 

efficient noise filtering are therefore required for meaningful interpretation of 

metabolomics data sets. There are currently several bioinformatic packages such 

as IDEOM and mZMatch that allow simultaneous MS peak detection, 

quantification and noise filtering, providing fast and efficient ways of handling 

metabolomic data sets (Creek et al., 2012, Scheltema et al., 2011). The 

development of automated metabolomics data analysis pipelines like PiMP by 

the University of Glasgow Polyomics has provided additional efficiency to 

handling of these data sets (Gloaguen et al., 2017). Another hurdle in handling 

of metabolomics data is accurate identification of metabolites and the challenge 

of mapping metabolites to their corresponding biochemical pathway. Thanks to 

the expanding online biochemical pathway databases like KEGG, and ongoing 

efforts to link these to metabolite databases, the full scope of metabolomics in 

biological systems is beginning to emerge (Okuda et al., 2008, Wishart et al., 

2007). 

 

1.6.5. Metabolomics and antimalarial drugs MOA 

Development of antimalarial drugs is largely dependent on phenotypic screens 

where thousands of compounds are screened to determine their anti-
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proliferative effects in Plasmodium species. These methods have indeed 

contributed to the arsenal of antimalarial drugs in current clinical use or in the 

pipeline. However, a disadvantage of  phenotypic screens is lack of detailed 

mechanics underlying the parasite killing properties of the drugs (Guiguemde et 

al., 2012). Indeed, as is the case with most antiprotozoal drugs, the MOA of most 

antimalarial drugs are currently uncertain, disputed or completely unknown 

(Creek and Barrett, 2014, Muller and Hyde, 2010). This provides a bottleneck 

challenge, especially in the context of predicting drug resistance, resistance 

mechanisms, rational medicinal chemistry-based improvement of current drugs 

as well as identification of suitable partner drugs which could be ideal in 

combination.  

 

Metabolomics has proven potential in drug discovery as well as characterising 

MOA of drugs already in use (Wishart, 2016, Creek and Barrett, 2014). 

Metabolomics platforms can detect metabolic perturbations induced by drug 

treatment which has allowed their usage in characterising the MOA of 

antiprotozoal compounds as well as several antibiotics (Creek and Barrett, 2014, 

Kwon et al., 2008, Vincent et al., 2016). In malaria parasites, targeted 

metabolomics screens have been used to characterise the action of polyamine 

inhibitors in P. falciparum (van Brummelen et al., 2009), validated the activity 

of new quinolone drugs targeting the parasite electron transport chain (Biagini 

et al., 2012) as well as metabolic specific phenotypes associated with 

antimalarial drugs in use such as DHA (Cobbold et al., 2016). Metabolomic 

screens of the malaria box compounds have also revealed established as well 

novel targets of potential malarial drug candidates (Creek et al., 2016, Allman 

et al., 2016). High-resolution metabolomics combined with peptidomics and 

biochemical analyses have also revealed that a fast acting lead drug candidate 

being developed by the Medicine’s for Malaria Venture (JPC-3210, MMV 892646) 

as well as the second generation ART derived ozonide’s possibly act by inhibiting 

haemoglobin catabolism and protein translation (Birrell et al., 2019, 

Giannangelo et al., 2020). This has illustrated the utility of metabolomics 

screens in ascertaining the MOA of antimalarial drugs under circumstances where 

other omics or forward genetic screens would be less informative. 
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1.7 Genome editing strategies for validating genetic determinants of 

antimalarial drug resistance 

Forward genetic screens and metabolomics approaches described above can 

easily identify genetic polymorphisms, SNPs or biochemical pathways that are 

unique in either resistant parasites or over-represented upon drug exposure. In 

such situations, candidate markers that confer drug action and resistance traits 

are consistently observed across several independent resistant clones or multiple 

biological repeats. Nevertheless, these lead candidates are always flanked by 

several other potential genetic and biochemical changes that would contribute 

to the observed phenotypes. It is imperative therefore, that these candidate 

markers are artificially introduced in naïve parasites to independently confirm 

causality. Reverse genetics approaches which are deployed in such situations are 

indeed incorporated in almost all current antimalarial drug discovery programs 

and in similar approaches used to understand and characterise antimalarial drug 

resistance determinants (Flannery et al., 2013). 

 

Since the successful adaptation of transfection technologies in P. falciparum and 

P. berghei between 1995-1996 (van Dijk et al., 1995, Wu et al., 1996), genetic 

manipulation of these parasites has provided a wealth of knowledge into the 

malaria parasite biology. However, up until recently, transfection of P. 

falciparum has mainly been restricted to episomal maintenance of plasmids or 

single cross over integration of transgenes. Due to low transformation efficiency, 

episomal transfection in P. falciparum requires maintenance of the introduced 

DNA as replicating concatemerized episomes for an extended period of time 

(O'Donnell et al., 2001). This is particularly disadvantageous as these episomes 

are unevenly segregated during mitosis and are easily lost in the absence of drug 

pressure. Even though chromosomal integration under such situations could be 

achieved, this can be slow and laborious with up to 6 months of selection 

required to obtain stable transformants (Crabb et al., 2004). Nevertheless, with 

recent improved technologies, single crossover methods are at the forefront of 

site-specific gene editing approaches for a reversed characterisation of drug 

resistance candidate mutations and polymorphisms in P. falciparum. 
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1.7.1 The Bxb1 integrase system 

A site-specific integration system was first successfully adapted in P. falciparum 

by the David Fidock lab in 2006 (Nkrumah et al., 2006). This system shortens the 

length of episomal maintenance by using the mycobacterial phage Bxb1 

integrase encoded in the plasmid which catalyses an artificial recombination 

between attP (co-engineered in the transfected plasmid) and attB (pre-inserted 

in the P. falciparum specific genomic loci) sites (Figure 1.12). By including a 

coding region of the gene of interest in the transfected plasmid, this allows for 

stable introduction of specific alleles of interest as transgenes in the parasite for 

subsequent phenotype analysis such as drug resistance traits. However, since 

cells still express the wild type endogenous locus, characterisation of the 

phenotypes can still be problematic. 

 

1.7.2 Zinc finger nucleases 

Despite the availability of the integrase system described above, site specific 

genome editing in P. falciparum was still less tractable until the development 

and adaptation of zinc finger nucleases (ZFNs) in 2012 (Straimer et al., 2012). 

ZFNs are customisable sequence specific endonucleases that can induce double 

stranded breaks at any genomic site of choice. These engineered ZFNs are made 

of up two domains: a zinc finger DNA binding domain and a catalytic nuclease or 

cleavage domain (Figure 1.12).  Specifically, the nuclease domain is typically a 

split FokI endonuclease which functions as an obligate heterodimer. Three to six 

individual zinc finger proteins that recognise triple DNA sequences on either side 

of the DNA strand of the genomic region of interest are fused to each half of the 

split FokI which allows the endonuclease to dimerise and induce a double 

stranded break when the fingers recognise and bind the target region. Since 

malaria parasites rely on the classic homologous recombination for DNA damage 

repair as the canonical non-homologous end joining pathway is absent (Kirkman 

et al., 2014), this can be specifically exploited by supplying donor DNA repair 

templates carrying polymorphisms of interest to achieve highly precise genome 

editing up to single base level. This approach has indeed been successfully 

deployed to validate the role of PfCRT and Kelch13 mutations in modulating in 

vitro resistance phenotypes to CQ and ART respectively (Straimer et al., 2015, 

Straimer et al., 2012).   
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1.7.3 CRISPR-Cas9 

Two years after the report of ZFNs in P. falciparum, two independent groups 

reported the first adaptation of CRISPR-Cas9 genome editing in malaria parasites 

in 2014 (Ghorbal et al., 2014, Wagner et al., 2014). Cas9 (CRISPR associated 

protein 9) is a bacterial derived endonuclease that uses CRISPR (clustered 

regularly interspaced short palindromic repeats) sequences as a guide to cleave 

foreign DNA sequences as part of the prokaryotic immune system (Ratner et al., 

2016). Cas9 forms a complex with ~20 bp short guide RNA (sgRNA) which is 

homologous to a particular region of the genome and induces a double stranded 

break immediately upstream of the protospacer adjacent motif (PAM) which is 

typically NGG for Cas9 and can be different for different Cas nucleases (Figure 

1.12) (Ratner et al., 2016). The 20 bp sgRNA and PAM motif are particularly 

important for specific targeting of Cas9 to a genomic locus of interest. Even 

though some mismatches in the 20 bp sgRNA can be tolerated, targets lacking 

the PAM motif are poorly or not recognised at all by the CRISPR-Cas9 complex 

(Hsu et al., 2013). Just like ZFNs, these customisable double stranded breaks can 

be exploited by supplying donor repair templates with modifications of interest 

to achieve highly precise editing. Unlike ZFNs which require initial identification 

of specific modules and screening for their activity, CRISPR-Cas9 is rapidly 

scalable by easy sgRNA designs and identification of PAM sites which is readily 

achieved with the availability of numerous online tools. 

 

Efficient CRISPR-Cas9 editing require precise transcription at the start site of 

sgRNA which corresponds to the Cas9 binding homology region in the target 

genome. This is achieved by driving the expression of sgRNA from an RNA 

polymerase III promoter. In P. falciparum, this has been achieved by using an 

endogenous U6 promoter or a T7 phage promoter (Wagner et al., 2014, Ghorbal 

et al., 2014). A similar approach using the endogenous U6 promoter has been 

successfully employed for rapid and iterative CRISPR-Cas9 genome manipulation 

in zoonotic and rodent malaria parasites, P. knowlesi and P. yoelii (Mohring et 

al., 2019, Zhang et al., 2014). Despite some limitations like low editing 

efficiency with some sgRNAs and paucity of PAM NGG motifs for some genes due 

to the A-T rich genome of malaria parasites, CRISPR-Cas9 systems are becoming 

employed widely to the study of Plasmodium biology with specific applications 

in rapid gene knockouts, mutagenesis, tagging and gene expression analyses, 



Chapter 1                                                                    General introduction 

 64 

reviewed by (Lee et al., 2019). Crucially the CRISPR-Cas9 system is now the 

principle reverse genetic approach to validating antimalarial drug resistance 

polymorphisms identified by most forward genetic screens (Ghorbal et al., 2014, 

Demas et al., 2018, Lim et al., 2016). 

 

 
Figure 1.12: Schematic overview of genome editing strategies in malaria parasites. 
The attP/attB integrase system relies on a Bxb1 mediated recombination between an attP 

plasmid encoded site with an attB site pre-engineered into the parasite specific locus. This 

can be through a one plasmid system which carries the attP sequence, gene of interest 

(GOI) and a drug selectable marker (SM) or a two-plasmid system where the Bxb1 can be 

expressed on a separate plasmid from the one carrying the SM-GOI. The recombination 

introduces the GOI (that can be modified to carry specific genetic polymorphisms) as a 

transgene into the parasite. ZFNs rely on a pair of zinc finger proteins which when bound 

to their recognition sequences allow dimerization and activation of the FokI cleavage 

domain to induce double stranded breaks. By supplying donor repair templates carrying 

mutations or polymorphism of interest (indicated by yellow star), these modifications are 

introduced into the parasite genome by homologous repair mechanisms. This is also 

similar for CRISPR-Cas9 mediated genome editing as Cas9 binds to a 20bp sgRNA and 

induces a double stranded break upstream of the NGG PAM motif (red lightning bolt) that 

can be repaired by supplying donor templates carrying modifications of interest. 
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1.8 Animal models of malaria and antimalarial drug resistance  

Throughout the history of malaria research, animal models (non-human primates 

and rodents) have been at the forefront of understanding malaria parasite 

biology. The use of these models to study human malaria are mainly based on 

the genetic and phenotypic similarities between the spp. which can be inferred 

to mimic actual disease conditions. 

 

1.8.1 Rodent models and antimalarial drug resistance  

Rodent models have been particularly attractive due to availability of malaria 

parasite species that readily infect rats and mice. Four species of rodent malaria 

parasites (P. berghei, P. yoelii, P. chabaudi, P. vinckei) that were isolated in 

Central African thicket rats have been extensively used for in vivo malaria 

research applications (De Niz and Heussler, 2018). The four rodent malaria 

parasites share a highly conserved chromosomal gene synteny (Janse et al., 

1994a) with however subtle differences in morphology, duration of life cycle and 

host cell preferences. P. chabaudi and P. vinckei preferentially invade mature 

RBCs just like the human P. falciparum and P. malariae while P. berghei and P. 

yoelii invade reticulocytes which is similar to human infecting P. vivax and P. 

ovale. Table 1.2 compares and summarizes features of rodent malaria parasites 

as they relate to disease pathology, duration and synchronicity of life cycle, host 

cell tropism and common use. 

 

The utility of rodent malaria parasites in understanding the genetic basis of drug 

resistance has been exploited (Carlton et al., 2001). Even though differences 

exist between P. falciparum and rodent malarias, these parasites still share a 

conserved gene synteny which has indeed been used either to confirm some of 

drug resistance mutations observed in P. falciparum in the rodent malaria P. 

berghei or using some of the candidate resistance mutation alleles as selection 

markers for transfection experiments across the spp. (Carlton et al., 1998b, van 

Dijk et al., 1995, Carlton et al., 2001). Another advantage of rodent malaria 

parasites is the ease of which drug resistance can be selected. In P. falciparum 

forward genetic screens, selection for drug resistance can be a long and tedious 

process which can take from a few weeks to years. For example, in vitro 

selection for resistance to ARTs took almost 4-5 years to obtain stable resistant 

parasites (Demas et al., 2018, Witkowski et al., 2010).  On the contrary, drug 
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resistant rodent malaria parasites P. berghei and P. chabaudi can be readily 

selected within a short period of time. Resistance to GNF179, a related 

compound to KAF156 was selected for just after 2 single in vivo dose treatments 

in P. berghei (Lim et al., 2016). In P. chabaudi, resistance to pyrimethamine  

was obtained within 2 weeks after a single dose treatment (Carter and Walliker, 

1975). From these pyrimethamine resistant P. chabaudi lines, additional lines 

resistant to ascending doses of CQ, mefloquine, ART and artesunate have been 

easily derived (Rosario, 1976, Padua, 1981, Carlton et al., 1998a, Afonso et al., 

2006, Cravo et al., 2003). Unlike in P. falciparum, drug resistance in rodent 

malarias can also be easily tested for phenotype stability in the absence of drug 

pressure through blood passage, freeze thaw cycles and the mosquito 

infectivity/transmission filter (Rosario, 1976, Afonso et al., 2006).  

 

After obtaining drug resistant parasites, genetic markers responsible for these 

phenotypes have been historically characterised by carrying out genetic crosses 

between sensitive parasites and resistant clones. This typically involves 

transmission of sensitive and resistant parasites in a mixture into a mosquito 

then into a new host which allows for selection of recombinant progenies from 

which chromosomal linkage analysis can be used to map candidate genes to the 

observed phenotypes. Even though this is also possible in P. falciparum (which 

may require non-human primates or adapted mouse models), rodent malaria 

parasites are uniquely suited for such endeavours due to the ease of handling 

rodents and the ability to complete the entire in vivo life cycle under lab 

conditions (Carlton et al., 2001). In the meantime, the advent of recent genome 

sequencing technologies means candidate drug resistant mutations in these 

rodent models can be quickly identified and characterised (Hunt et al., 2007, 

Hunt et al., 2010, Borges et al., 2011, Kinga Modrzynska et al., 2012). The role 

of rodent malaria parasites in understanding the MOA and MOR for principle 

antimalarial drugs that are and have been in clinical usage is described in detail 

in the following sections. 

 

1.8.1.1  Sulfadoxine and pyrimethamine 

Resistance to antifolates is perhaps one of the well-studied and characterised 

resistance mechanisms in malaria parasites. SP resistance emerged immediately 

after this drug combination was rolled out for clinical use, faster than CQ, the 
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mechanistic detail of which is well characterised (Plowe et al., 1997). 

Meanwhile, pyrimethamine resistance has historically been selected for in all the 

four rodent malaria parasites. The earliest report was perhaps in 1952 where a 

P. berghei strain with up to 20-fold resistance to pyrimethamine as compared to 

the wild type was obtained after two rounds of passages and treatment with 

single curative doses (Rollo, 1952). Several other P. berghei parasites resistant 

to pyrimethamine have also been easily obtained and reported (Diggens, 1970, 

van Dijk et al., 1994). Similar pyrimethamine drug resistance phenotypes have 

also been reported in P. chabaudi (Walliker et al., 1975), P. yoelii (Walliker et 

al., 1973) and P. vinckei (Yoeli et al., 1969). 

 

However, the mechanism of pyrimethamine resistance in these lines was not 

convincingly known until mutations in the dhfr gene, specifically the S108N 

substitution, was identified in P. falciparum after a genetic cross of 

pyrimethamine resistant field isolates with laboratory sensitive lines (Peterson 

et al., 1988, Cowman et al., 1988). In these crosses, resistant parasites 

consistently inherited a fragment within the dhfr gene which differed from 

sensitive parasites by either the S108N substitutions or other candidate 

mutations such as N51I or C59R. Crucially, equivalent mutations in the dhfr such 

as the S106N were later identified in the P. chabaudi pyrimethamine resistant 

line (AS-Pyr) (Cheng and Saul, 1994). A similar mutation (S110N) is also 

responsible for the dhfr mediated pyrimethamine resistance phenotype in P. 

berghei (van Dijk et al., 1994). More importantly, mutant dhfr coupled to 

thymidylate synthase (dhfr/ts) carrying pyrimethamine resistance mutations is 

currently the widely used drug selection marker for transfection experiments in 

both P. berghei and P. falciparum (van Dijk et al., 1995, Wu et al., 1996) as well 

as P. knowlesi (Mohring et al., 2019, van der Wel et al., 1997). 

 

Even though mutations in the dhps gene are predicted determinants of 

resistance to sulfadoxine (Plowe et al., 1997), this has remained circumstantial 

due to a lack of in vitro assays that can reliably distinguish sulfadoxine resistant 

from sensitive parasites (Wang et al., 1997). Sulfadoxine is a sulphonamide that 

acts as a substrate analogue of p-aminobenzoic acid (PABA) to competitively 

inhibit the dhps enzyme which in turn affects downstream folate synthesis for 

the parasite. Due to the variations in the levels of PABA in most culture medias, 
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phenotyping of resistance levels to sulfadoxine have been particularly difficult 

(Wang et al., 1997, Watkins et al., 1985). Nevertheless, transfection and allelic 

exchange experiments have been used to validate some of dhps enzyme 

mutations such as the A437G substitution in modulating in vitro susceptibility to 

this drug (Triglia et al., 1998). Due to these complexities, the genetics of dual 

resistance to SP drug combinations has been difficult to unravel. Parasites 

exhibiting SP drug resistance can carry mutations in the dhfr and dhps genes 

even though dhfr gene mutations alone are known to mediate resistance 

phenotypes to both drugs while dhps polymorphisms can sometimes less clearly 

correlate with SP resistance (Plowe et al., 1997). 

 

Rodent malaria parasites can, therefore, in these situations offer a unique 

opportunity for studying resistant phenotypes emanating from such drug 

combinations as levels of interfering parameters such as PABA can be controlled, 

physiologically or through artificial diet supplementation. Parasites resistant to 

sulfadoxine have been selected for in both P. berghei and P. chabaudi, both of 

which appear to need less PABA as they develop an increased capacity to 

synthesize this metabolite de novo (Singh et al., 1954, Carlton et al., 2001). 

However, the genetic determinants in these resistant lines have remained 

uncharacterised. Crucially, P. berghei parasites resistant to SP drug 

combinations have been successfully obtained using a continuous low dose 

selection strategy even though the resistant phenotypes were unstable and the 

genetic determinants have not be identified (Merkli and Richle, 1983b). Perhaps 

one of the best characterised SP resistant rodent malaria parasite line is the AS 

(50S/P) line. This line was obtained by further selection of the AS-Pyr line with a 

single four-day high dose exposure with the SP drug combination to obtain 

parasite progenies that were strongly resistant to the drug combination. 

However, quantitative trait loci and genetic analysis of the AS (50S/P) line 

revealed that dhfr mutations were still the major determinant of the SP drug 

resistance phenotype as no additional dhps mutations were identified (Hayton et 

al., 2002). 
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Strain characteristics P. berghei P. chabaudi P. vinckei P. yoelii 

Commonly used strains NK65, ANKA, K173 AS ATCC 30091 17X, YM 

Use Important model for 
genetic studies due to the 
ease of genetic 
manipulation. Can induce 
severe malaria and has 
been used as a model of 
cerebral malaria. Primary 
model for in vivo drug 
efficacy evaluation 

Results in chronic 
infection. Widely used 
model for drug resistance 
studies and antigenic 
variation. This model has 
also been used to study 
sequestration even though 
host tissue sequestration 
patterns significantly differ 
from P. falciparum 

Used in studying host 
immune responses to 
parasites. 

The two strains 17X and 
YM significantly differ in 
disease pathology which 
is particularly suited to 
studying differences in 
human disease pathology 
and immunity. Also 
widely used in RBC 
parasite ligand 
interaction studies 

Duration of lifecycle 
(hours) 

22-24 24 24 18 

Host cell tropism Reticulocytes Mature RBCs Mature RBCs Reticulocytes 

Synchronicity of blood 
stage life cycle 

No Yes Yes No 

Virulence ligands Unknown Plasmodium interspersed 
Repeat proteins (PIR) 

unknown YIR proteins 

Tissue sequestration Multi-organ, mostly in the 
lungs, spleen and adipose 
tissue 

Yes, mostly in the liver Yes (specific organs 
not characterised) 

Yes (specific organs not 
characterised) 

Natural cyclic hosts Grammomys surdaster Grammomys surdaster Grammomys surdaster Grammomys surdaster 

 
Table 1.2: Comparison of life cycle and utility features of rodent malaria parasites.  
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1.8.1.2  ART resistance 

Resistance to ARTs was first selected for in the rodent malaria parasites P. 

berghei and P. yoelii in the late 1990s (Peters and Robinson, 1999b). This 

involved the application of the 2% relapse technique where parasites are 

inoculated into mice and treated with a high subcutaneous dose of the drug 3-

hours post infection. Upon recrudescence, parasites are passaged into a new 

host and retreated with similar drug doses. Levels of resistance are quantified by 

graphing the changes in time required to reach 2% parasitaemia in the treatment 

group which can be graded as a progressive reduction in the time required to 

reach 2% parasitaemia over the course of the passages when resistance is 

successfully obtained.  

 

Using these approaches, resistance to ARTs was obtained in both P. berghei and 

P. yoelii which was, however, unstable as resistant parasites of both species 

easily lost the phenotype when the drug was withdrawn. Biochemical 

characterisation of one of the ART resistant P. yoelii strain which displayed up 

to four fold resistance compared to the sensitive lines revealed a reduced 

accumulation of the radiolabelled drug in the resistant parasites and even now 

the exact MOR are still unknown (Walker et al., 2000). Another selection for ART 

resistance in P. berghei was attempted using the ART derivative artemether in 

the early 2000s (Xiao et al., 2004). Infected mice were treated with high doses 

of artemether, passaged into a new host upon recrudescence and retreated 

every passage for 50 passages. Even though up to 8-fold resistance was achieved 

in these lines, the phenotype was unstable as drug sensitivity was retained after 

a few rounds of infections without drug pressure. The most studied rodent 

malaria parasites which displayed stable ART resistance phenotypes were 

obtained in P. chabaudi and were first reported in 2006 (Afonso et al., 2006). 

These lines were selected from P. chabaudi clones which had and were already 

previously selected for resistance to pyrimethamine and CQ. The original P. 

chabaudi AS isolate was exposed to four consecutive doses of pyrimethamine at 

50 mg/kg from which a pyrimethamine resistant line (AS-Pyr) was obtained and 

cloned (Walliker et al., 1975). The AS-Pyr line was then selected for resistance 

to CQ from which a line resistant to six consecutive doses of CQ at 3 mg/kg (AS-

3CQ) was obtained (Rosario, 1976). Selection of the AS-3CQ line with a stepwise 

CQ dose increment yielded a P. chabaudi line that was resistant to up six 
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consecutive daily doses of CQ at 15 mg/kg (AS-15CQ) (Padua, 1981). From the 

AS-15CQ line, several lines with differing drug resistance phenotypes were 

subsequently obtained. Exposure of the AS-15CQ line to a gradual ascending dose 

of mefloquine (7-30 mg/kg) resulted in the parasite line that was initially 

resistant to up to four consecutive doses of mefloquine at 30 mg/kg but 

eventually lost some degree of resistance by only surviving four consecutive 

doses of the drug at 15 mg/kg hence force was designated AS-15MF (Cravo et al., 

2003). The AS-15CQ line was also subjected to a further CQ selection until a line 

resistant to up to 30 mg/kg of CQ (AS-30CQ) was obtained (Padua, 1981, Carlton 

et al., 1998a). Selection of AS-30CQ with gradually increasing doses of ART (up 

to 300 mg/kg) yielded an ART resistant line (AS-ART) that survived three to five 

consecutive doses (up to 300 mg/kg) of the drug (Afonso et al., 2006, Henriques 

et al., 2013). From the AS-15CQ, another selection with incremental doses of 

artesunate also yielded an independent line (AS-ATN) that was resistant to 

artesunate surviving up to 60 mg/kg of the drug (Afonso et al., 2006). 

Interestingly, both the AS-30CQ and AS-ART appear to have shared a cross 

resistance to ART phenotype (Henriques et al., 2013).  

 

Three independent genetic crosses of the AS-ART line with a parallel P. chabaudi 

sensitive line and follow-up linkage group selection analysis identified a 

selection valley on chromosome 2 on the resistant parasites that strongly 

associated with the ART resistance phenotype. Within this locus, two mutations 

in a deubiqutinating enzyme, UBP-1 appear to have arose or fixated 

independently in the AS-ATN (V2697F),  AS-30CQ and AS-ART line (V2728F) (Hunt 

et al., 2007). Meanwhile, whole genome sequencing further revealed that the 

V2728F mutation was not just common in the AS-30CQ and AS-ART lines, but also 

in the AS-15MF line (Hunt et al., 2010). Prior analysis of the AS-Pyr already 

identified the S106N dhfr gene mutation that was chiefly responsible for the 

pyrimethamine resistance phenotype (Cheng and Saul, 1994). Further genetic 

analysis of these lines also revealed several other polymorphisms which may 

have arisen as a consequence of the drug selection cascade from the original AS 

line. These included a mutation (A173E) in the amino acid transporter (aat) that 

seemingly was responsible for the CQ resistance phenotype in the AS-3CQ line 

and another mutation (T719N) in a predicted unknown transporter 

(PCHAS_0313700) which appears to have led to the emergence of the CQ 
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resistance phenotype in the AS-15CQ line (Kinga Modrzynska et al., 2012). 

Nevertheless, it appears that the two UBP-1 mutations may have arose 

independently in the AS-15CQ uncloned line which resulted in their specific 

fixation when a drug pressure of mefloquine, artesunate or a higher dose of CQ 

was applied (Henriques et al., 2013). Further analysis of the ART cross resistance 

phenotype between the AS-30CQ and AS-ART also revealed that selection of the 

former line with ART led to successful acquisition of an additional mutation 

(I568T) in the AP-2µ gene which was responsible for the higher level of ART 

resistance in the AS-ART as compared to the AS-30CQ (Henriques et al., 2013). 

However, despite the observation of some of these mutations (UBP-1 and AP-2µ) 

in clinical isolates that have presented with potential ART resistance phenotypes 

(Henriques et al., 2013, Henriques et al., 2014), their role in mediating 

resistance to these drugs is yet to be fully explored which is in part due to the 

complexity of the selection procedure with multiple drugs as well as absence of 

appropriate reverse genetics approaches. Figure 1.13 summarises the selection 

procedures and candidate gene mutations responsible for the phenotypes in 

these P. chabaudi lines. 

 
 
Figure 1.13: selection strategies used to obtain P. chabaudi ART resistant lines and 
the causal genetic determinants. 
The original AS line was subjected to four daily doses of pyrimethamine to obtain the AS-

Pyr resistant line that carry the S106N mutation in the dhfr gene. Further selection of this 
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line with CQ resulted in the AS-3CQ resistant line that was able to tolerate up to six 

consecutive doses of CQ at 3 mg/kg. Whole genome sequencing identified the A173R 

mutation in an amino acid transporter (aat) to be responsible for this phenotype. Further 

selection of this line with incremental doses of CQ resulted in the AS-15CQ line which 

carried two UBP-1 mutations, V2697F and V2728F. From this line, incremental dose 

selection with mefloquine, artesunate and further high doses of CQ yielded the AS-15MF, 

AS-ATN and AS-30CQ which appear to have fixated the UBP-1 mutations differently as 

indicated. Selection of the AS-30CQ line with ART resulted in the AS-ART line which 

carries an additional mutation in the AP-2µ gene. 

 

 

1.8.1.3  Atovaquone 

Resistance to atovaquone (a chemical analogue of coenzyme Q) is readily 

achieved with the acquisition of mutations in the cytochrome bc1 complex both 

under laboratory conditions and in clinical field settings (Vaidya and Mather, 

2000, Srivastava et al., 1997). This appears to be a similar case in rodent malaria 

parasites, as resistant to atovaquone has been selected for in P. berghei, P. 

yoelii and P. chabaudi (Srivastava et al., 1999, Afonso et al., 2010, Syafruddin et 

al., 1999). The P. chabaudi atovaquone resistant line was selected from the AS-

3CQ line after stepwise dose escalation while resistant parasites in P. berghei 

and P. yoelii were selected from naïve parasite backgrounds. In all the three 

parasite species, genetic analysis revealed that the resistance phenotypes were 

due to mutations in the cytochrome bc1 complex even though independent 

reverse genetics have not been carried out to further validate their involvement. 

Reverse genetics approaches could also be particularly difficult in these 

situations as the cytochrome bc1 complex is encoded by the mitochondrial 

genome. 

 

1.8.1.4  Mefloquine 

Until recently, the mechanism of action of and resistance to mefloquine has 

remained relatively elusive. An aryl aminoalcohol, mefloquine was initially 

believed to act by inhibiting the haem polymerisation pathway within the 

parasite DV while increased copy numbers of PfMDR1 have been implicated as a 

mechanism of resistance (Ecker et al., 2012, Price et al., 2004). However, a 

more recent study has demonstrated that this drug can also act as a protein 

synthesis inhibitor in malaria parasites, specifically targeting the 80s ribosomal 
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translational unit (Wong et al., 2017). Nevertheless, rodent malaria parasites 

resistant to mefloquine have been selected and characterised. The most studied 

line is perhaps the AS-15MF which emerged from the AS drug selection panel of 

lines as described in section 1.8.1.2. This line was selected from a pre-existing 

CQ resistant line (AS-15CQ) using an incremental dose of mefloquine until stable 

resistance at 15 mg/kg was obtained. Linkage and genetic cross analysis of this 

line further revealed that increased expression of the PcMDR1 through copy 

duplication was indeed a constant feature of all resistant progenies which 

inherited the resistant phenotypes (Cravo et al., 2003). However, further 

genetic analysis of the AS-15MF line also implicated the UBP-1 V2728F mutation 

(Hunt et al., 2010). Mefloquine resistant P. yoelii parasites have also been 

selected for, even though the genetic determinants have not been characterised 

(Merkli and Richle, 1983a). In P. berghei, cloning and sequencing of the PbMDR1 

gene from a line which was selected for and attained stable resistance to 

mefloquine also revealed 2-3 fold amplification of this gene in resistant parasites 

as compared to the sensitive wild type (Gervais et al., 1999). In these 

circumstances, even though the 50s ribosome might be the direct target of 

mefloquine, it can be relatively difficult to fully pinpoint the MOA as UBP-1 and 

MDR1 which are implicated in the MOR could be involved with transport of the 

drug. 

 

1.8.1.5  CQ 

Since resistance to CQ emerged in the 1970s, the MOR remained poorly 

characterised until the early 2000s (Ecker et al., 2012). This is because it proved 

specifically difficult to select for CQ resistance under laboratory conditions from 

naïve parasite strains. Identification of PfCRT as the principle determinant of CQ 

resistance involved detailed genomic, biochemical and allele exchange 

experiments to identify a 13-exon gene within a 36 kb chromosomal fragment 

that was strongly associated with the CQ resistance phenotype after a genetic 

cross of CQ resistance and sensitive parasites (Fidock et al., 2000, Wellems et 

al., 1990). 

 

Rodent malaria parasites have, however, provided an additional spectre into 

understanding CQ resistance as even though it has proved to be difficult to 

generate parasites with stable resistant phenotypes, a number of lines have 
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been reported. The most widely studied rodent models of CQ resistance are 

perhaps of the P. chabaudi AS lineage as described in section 1.8.1.2. The AS-

3CQ was the first P. chabaudi line with a stable CQ resistance phenotype 

(Rosario, 1976). In this line, initial biochemical analysis revealed reduced 

accumulation of CQ in the resistant parasites as compared to their sensitive 

counterparts (Ohsawa et al., 1991). Quantitative genome sequence analysis of 

the AS-3CQ line also identified a single mutation in an amino acid transporter 

aat (Figure 1.13) that could be a possible determinant of this drug resistance 

phenotype (Kinga Modrzynska et al., 2012). However, reverse genetics 

approaches have not been carried out to further validate its contribution. In the 

meanwhile, further selection of the AS-3CQ line generated higher degree CQ 

resistance lines (AS-15CQ and AS-30CQ), both of which carried UBP-1 mutations 

(V2697F and V2728F) as genetic determinants (Figure 1.13). A P. vinckei line 

resistant to CQ was also selected and reported in 1969 even though the genetic 

determinants have remained uncharacterised (Powers et al., 1969). In both of 

these P. chabaudi and P. vinckei lines, CQ resistance was selected from lines 

that were already resistant to pyrimethamine as attempts to select from naïve 

parasites was always unsuccessful. This is indeed in agreement with ARMD 

phenotypes where acquisition of certain drug resistance mutations is easily 

achieved in parasite backgrounds with pre-existing favourable architectures 

(Rathod et al., 1997). 

 

P. berghei strains resistant to CQ have also been selected and reported which, 

however, has in most cases resulted in relatively unstable phenotypes. In some 

of the early work, exposure of P. berghei parasites to CQ supplied in animal diet 

for four months resulted in highly resistant strains that easily tolerated above 

maximum effective doses of the drug under standard treatment conditions 

(Hawking, 1966). These CQ resistant parasites also displayed a cross resistance 

phenotype to other drugs such as sulfadiazine and pyrimethamine. However, the 

phenotype was easily lost and could not be resuscitated when the drug pressure 

was removed. Around the same time, other unstable CQ resistant P. berghei RC 

strains that displayed up to 60 fold resistance as compared to the wild type were 

also reported (Peters, 1965). However, these lines were seemingly mislabelled 

as P. berghei (Peters et al., 1978) as they were basically P. yoelii which is 

naturally highly resistant to CQ (Warhurst and Killick-Kendrick, 1967). The only 
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P. berghei parasites with stable CQ resistant phenotypes were reported in 1998. 

These lines were selected from the NK65 line with an incremental dose of CQ 

ranging from 1, 3, 6, 10 through to 30 mg/kg. From each of these doses, stable 

phenotypes were obtained at various levels of the drug selection (CQR3, CQR6, 

CQR10 and CQR30) which, crucially, displayed high level resistance in both the 

P. berghei in vitro short term assay as well as in vivo (Platel et al., 1998). 

Nevertheless, the genetic determinants of the CQ resistance phenotypes in these 

lines have not be characterised. 

 

1.8.2 Non-human primates, humanized mouse models and antimalarial drug 

resistance 

Apart from rodent models described above, non-human primates have also 

provided an invaluable resource for malaria drug and vaccine efficacy testing 

before actual clinical use in humans. Primates of the Aotus genus are susceptible 

to some P. falciparum and P. vivax strains providing good in vivo models of 

human disease (Galinski and Barnwell, 2012). Another advantage of using non-

human primates for antimalarial drug discovery programs is the ease of dose 

standardisation with humans as they can share comparable body mass, especially 

with young children. These models (the Aotus for example) have indeed been 

used to evaluate the in vivo efficacy of the second generation endoperoxide 

antimalarial artemisone in combination with either mefloquine or amodiaquine 

(Obaldia et al., 2009). More recently, the Aotus model has also been used to 

evaluate the in vivo ART resistance profile of the most prevalent Kelch13 

mutation in SEA, C580Y (Sa et al., 2018). Non-human primates (rhesus-monkeys 

in particular) are specifically important for the study of P. vivax biology, as they 

are readily infected by P. cynomolgi, which is the most genetically related 

parasite to P. vivax and share important life cycle features like the presence of 

hypnozoites (Joyner et al., 2016). The P. cynomolgi/rhesus monkey model 

remains at the centre stage of evaluating the efficacy of most antimalarial drugs 

against P. vivax and most importantly drugs with potential activity in difficult to 

eliminate liver stage hypnozoites, reviewed by (Zeeman and Kocken, 2017). 

Nevertheless, as ethics-based campaigns to end the use of non-human primates 

in biomedical research intensify, suitable alternatives for the broader malaria 

world will need to be identified. 
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Some of these alternatives could include humanized mouse models, which can 

recapitulate in vivo infections with human infecting P. falciparum. Humanized 

mouse models have improved over the last ten years providing invaluable tools 

for evaluating malaria parasite biology (Minkah et al., 2018). Human liver 

chimeric mice, have for instance, been used to evaluate antibody mediated 

inhibition of pre-erythrocytic development stages of P. falciparum (Sack et al., 

2014). However, the current generation of humanised mouse models are still 

incapable of fully reproducing a complete replica of P. falciparum life cycle 

(Minkah et al., 2018) and their use in characterising antimalarial drug resistance 

phenotypes in vivo is still in infancy. 

 

1.8.3 Precise genome editing: a new era to revive rodent models of malaria 

for genetic validation of candidate drug resistance markers in vivo? 

Rodent malaria parasites (P. berghei and P. yoelii) are easily amenable to 

genetic manipulation as they demonstrate high transfection efficiency as 

compared to P. falciparum (Janse et al., 2006a, Jongco et al., 2006). Moreover, 

rodent malaria parasites allow for the entire parasite life cycle to be reproduced 

under laboratory conditions, something which is technically and ethically not 

always feasible in human malaria. Reverse genetics approaches by introducing P. 

falciparum drug resistance alleles in these rodent parasites through allelic 

exchanges could thus be suitable alternatives as it would not just provide an 

opportunity to assess potential drug resistance phenotypes under in vivo 

conditions, but also delineate the fitness and transmission capacity of parasites 

carrying such polymorphisms. These approaches have indeed been tested as 

PfCRT mutant forms responsible for CQ resistance have been introduced in P. 

berghei (Ecker et al., 2011). Even though these PfCRT alleles did not result in 

equivalent CQ resistance phenotypes as observed in P. falciparum, it was 

demonstrated that under CQ pressure, P. berghei parasites carrying PfCRT 

mutant forms achieved better and efficient transmission. 

 

An inherent disadvantage of such approaches is that it involves introduction of a 

transgene into parasites that maintain normal gene expression of the internal 

loci irrespective of how conserved the alleles are between the spp. In such 

situations, it is relatively difficult to quantify drug resistance phenotypes 

especially if the markers under study occur in proteins or enzymes that are less 
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amenable to gene dosage or if the background expression is sufficient to 

overshadow any resulting phenotype from the introduced alleles. Nevertheless, 

with the development of recent highly precise genome editing technologies such 

as CRISPR-Cas9, instead of introducing P. falciparum antimalarial drug resistant 

candidate alleles in rodent malaria parasites as transgenes, orthologous 

polymorphisms can be introduced with high precision to characterise phenotypes 

based on gene function conservation. 

 

 

1.9 Aims and objectives 

1.9.1 Using genome editing to test orthologous ART resistance mutations in 

P. berghei  

With the continued development and adaptation of precise genome editing 

technologies such as CRISPR-Cas9 in malaria parasites, these approaches have 

been explored for use in introducing and validating several orthologous P. 

falciparum and P. chabaudi ART resistance mutations in the in vivo murine 

model of malaria, P. berghei. In light of the continued debate on the causal role 

of Kelch13 mutations in ART resistance especially under in vivo conditions, 

reported discrepancies between in vitro ART resistance profiles from actual in 

vivo conditions in the Aotus model and a lack of clear validation for other 

determinants such as UBP-1, equivalent mutations have been introduced in P. 

berghei using CRISPR-Cas9. Mutant parasites have been phenotyped to validate 

their role in ART resistance phenotypes both in vitro and in vivo. 

 

1.9.2 Profiling the activity of ubiquitin hydrolase inhibitors as candidate 

antimalarial agents with potential to overcome ART resistance 

With the supposed role of DUBs (ubiquitin hydrolases) in mediating ART and or 

CQ resistance, small molecule inhibitors targeting mammalian DUBs were 

profiled for in vitro and in vivo activities in both P. falciparum and P. berghei. 

Their potential in synergising ART action alone or in complex multi-drug 

combinations targeting different enzymatic pathways was also assessed. 
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1.9.3 Metabolomics profiling of NITD drug candidates to characterise their 

MOA 

Using metabolomics screening platforms, this work also characterised the MOA 

of some lead antimalarial drug candidates that are emerging from the NITD drug 

discovery programs. As ART resistance emerges, some of the potential lead 

replacement antimalarial drug candidates which are either in development 

phase or in advanced clinical trials have been developed by the NITD. However, 

the MOA for most of these leads are either unknown, uncharacterised or still 

debated. By employing LC-MS untargeted metabolomics, the biochemical 

features elicited by some of these leads has been profiled. 
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2 Materials and methods 

2.1 P. berghei general methods 

2.1.1 Maintenance of P. berghei parasites in rodents 

All mice infections with P. berghei parasites were carried out in female Theiler’s 

Original (TO) mice (Envigo) weighing between 25-30 g. Parasite infections were 

established either by intraperitoneal injection (IP) of 200-400 µl of 

cryopreserved parasite stocks or intravenous injections (IVs) of purified schizonts 

or diluted parasites (obtained by cardiac puncture or tail drop) in phosphate-

buffered saline (PBS). Cryopreserved parasites (~500 µl) were thawed at room 

temperature and the suspension was injected immediately by IP. Since P. 

berghei parasites preferentially invades reticulocytes (Cromer et al., 2006), pre-

treatment of mice by IP injection with 100 µl of phenylhydrazine-HCl (Phz) at 

12.5 mg/ml in physiological saline was done two days before the infections to 

induce reticulocytosis for some experiments. All animal work was performed in 

compliance with the UK home office licensing (Project reference: P6CA91811) 

and ethical approval from the University of Glasgow Animal Welfare and Ethical 

Review Body. 

 

2.1.2 P. berghei lines 

P. berghei parasite lines used in this work are derived from the ANKA strain, 

clone 15Cy1A from the Leiden Malaria research group also known as “HP”.  The 

820 line that express green fluorescent protein (GFP) and red fluorescent protein 

(RFP) in male and female gametocytes respectively as previously described by 

(Ponzi et al., 2009) was used. The 507 line which express GFP constitutively 

under the control of the constitutive P. berghei Ef-1α promoter (Janse et al., 

2006a) was used for some experiments.  Two other HP ANKA-derived parasite 

lines, 1804cl1 and G159, were also used. The 1804cl1 (Burda et al., 2015) and 

G159 (Katie Hughes, unpublished) lines express mCherry and GFP respectively, 

under the control of the strong constitutive Pbhsp70 promoter 

(PBANKA_0711900). 

 

2.1.3 Monitoring parasitaemia in infected mice 

Parasitaemia in infected mice was monitored by examining methanol fixed thin 

blood smears stained in Giemsa (Sigma) or by flow cytometry analysis of infected 

blood. A small drop (~2.5 µl) of blood from the tail vein of infected mice was 
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used to make thin blood smears which were air dried, fixed in methanol for 5-15 

seconds and stained in 12% Giemsa (Sigma) for 10-15 minutes. Slides were air 

dried and examined microscopically on a standard light microscope (100X 

objective, oil immersion). Estimated parasitaemia was quantified by counting 

the total number of parasites in at least 10 microscopy fields against the 

absolute number of RBCs. In some cases, percentage parasitaemia was estimated 

by flow cytometry analysis of blood stained with Hoescht 33342 (Invitrogen) or 

based on the expression of pre-engineered fluorescent reporters.  

 

2.1.4 In vitro short-term culture of P. berghei 

Blood from infected mice was collected by cardiac puncture under terminal 

anaesthetic conditions with the anaesthetic, isoflurane. Blood collection needles 

and syringes were pre-loaded with 10-50 µl heparin (200 U/ml, Sigma) to 

prevent blood clotting. P. berghei parasites in the infected blood (~1 ml) were 

cultured and maintained for one developmental cycle using schizont culture 

media (~150 ml in TC 150CM corning culture flasks) containing RPMI1640 with 5 

mM hypoxanthine, 25mM Hepes, 10 mM sodium bicarbonate, 20% foetal calf 

serum, 100 U/ml Penicillin and 100 µg/ml streptomycin. Culture flasks were 

gassed for 30 seconds with a special gas mix of 5% CO2, 5% O2, 90% N2 and 

incubated for up to 22-24 hours at 370 C with gentle shaking (50 rpm), conditions 

that allow for development of ring stage parasites to mature schizonts. Schizont 

maturation was monitored by microscopic examination of thin blood smears as 

described in section 2.1.3. 

 

2.1.5 Isolation of mature schizonts 

Schizonts were enriched from the cultures by Nycodenz density flotation as 

previously described (Janse et al., 2006a, Philip et al., 2013). Cultured parasites 

were pelleted by spinning at 1700 rpm for 8 minutes, supernatant removed and 

resuspended in 35 ml volumes in 50 ml Falcon tubes. 10 ml of 55% Nycodenz/PBS 

(% v/v) solution pre-warmed at 37 0C was then carefully laid at the bottom of 

the Falcon tube to create a visible layer of separation from the cells. This was 

then spun at 1700 rpm for 20 minutes with zero deceleration to generate a 

brown layer interphase of schizonts. Schizonts were pulled out using a sterile 

Pasteur pipette and pooled in a 15 ml falcon tube. These were further spun 
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down to obtain cell pellets of schizonts which were resuspended in 300-1000 µl 

volumes depending on yield and downstream application. 

 

2.1.6 Parasite transfection and positive selection of transformants 

Transfection of P. berghei parasites with episomal plasmid DNA was carried out 

as previously described (Janse et al., 2006a, Philip et al., 2013). In brief, ~10 µg 

of plasmid DNA was mixed with Nycodenz purified P. berghei schizonts and 

electroporated using the Amaxa Nucleofector Device II program U-o33. Parasites 

were then immediately IV injected into the tail vein of naïve mice. Positive 

selection of transfected parasites was commenced 24 hours later by inclusion of 

pyrimethamine (0.7 mg/ml, Sigma) in drinking water as all vectors carried the 

dhfr marker which confers resistance to pyrimethamine. Drug selection was 

maintained for 6-12 days or until transformant parasites were obtained. 

 

2.1.7 Parasite cryopreservation 

At a parasitaemia of between 1-5%, infected blood was collected by cardiac 

puncture under terminal anaesthesia. Preparation of stabilate cryotubes for long 

term parasite preservation was carried out by mixing in a 1:1 ratio infected 

blood and freeze mix. The latter solution contained 30% glycerol/PBS (% v/v) 

solution with Heparin 10 U/ml. The suspensions were transferred to labelled 

cryotubes, allowed to incubate at room temperature for 5 minutes and stored at 

-80 0C overnight. Long term storage was carried out by deep freezing in liquid 

nitrogen. 

 

2.1.8 Cloning by limiting dilution 

A donor mouse pre-treated with Phz two days before infection was inoculated 

with a thawed suspension of cryopreserved stabilates of the parasite line to be 

cloned. On day 2 post infection, at a parasitaemia of approximately ~0.5% (singly 

infected), actual parasitaemia in the donor mouse was accurately counted 

within 1-2 hours before cloning. A tail drop from the donor mouse (~5 µl) was 

collected into 1 ml of 1x PBS. 10 µl of this suspension was used to determine RBC 

counts using a haemocytometer. After obtaining the cell count, calculations and 

cell dilutions were carried out to ascertain how many RBCs are required to be 

injected in order to obtain 0.4 parasites per mouse. A final dilution of 0.4 

parasites per 100 µl was therefore made and injected IV into 10 naïve mice 
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which achieves an approximate infection rate of 40%. The levels of parasitaemia 

in the 10 mice was monitored in Giemsa-stained blood films a week after the 

injection of parasites. Blood from the infected clonal lines was collected by 

cardiac puncture and used either for cryopreservation or DNA extraction and 

downstream genotype analysis.  

 
 
2.1.9 Genomic DNA extraction 

Infected blood (~100 µl) was resuspended in in 50 ml of ice cold 1x erythrocyte 

lysis buffer (Thermo), incubated on ice for 10 minutes and spun at 2000 rpm for 

10 minutes to obtain parasite pellets. Parasite genomic DNA was extracted from 

these pellets using the Qiagen DNeasy Blood and Tissue kit according to 

manufacturers’ instructions. DNA was eluted in 50 µl volume of deionised water. 

Concentration and purity of the extracted DNA was analysed on a Nanodrop 

spectrophotometer. 

 

2.2 Generation of P. berghei mutant parasites by CRISPR-Cas9 

2.2.1 Sequence alignment and 3D structural homology modelling 

Amino acid sequences were retrieved from PlasmoDB or the standard NCBI 

protein databases. Amino acid alignments were carried out using the online tool 

Clustal Omega (Sievers et al., 2011). Basic phylogenetic analysis was carried out 

using CLC work bench 7.0 (Qiagen). For structural alignment and 3D homology 

modelling, protein structures for specific amino acid residues were constructed 

in SWISS-MODEL (Waterhouse et al., 2018) using built in PDB templates and 

visualized using pyMol 2.3. 

 

2.2.2 Primary vectors 

CRISPR-Cas9 vector constructs for P. berghei precise genome editing were 

generated by standard cloning techniques. The Cas9 expressing plasmid ABR099 

was used for targeted nucleotide replacement. ABR099 (kindly provided by Dr. 

Brett Roberts, Figure 2.1) contains the Cas9 endonuclease driven by the P. 

berghei Ef-1α promoter, a Cas9 binding scaffold (scRNA) and a site for cloning 

the sgRNA both driven by the P. yoelii U6 promoter, an hdhfr cassette (for 

pyrimethamine drug resistance selection) and a linker site for insertion of 

homologous repair templates. sgRNAs targeting the UBP-1 or Kelch13 locus were 

designed using the web based eukaryotic pathogen CRISPR guide RNA/DNA design 
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tool (http://grna.ctegd.uga.edu/) (Peng and Tarleton, 2015) by directly 

inputting the sequence of interest.  Primary vectors containing the sgRNAs were 

generated by annealing complementary oligonucleotide pairs (Appendix Table 

8.1, 8.2) encoding the guide sequence and cloning them in the dual Esp3I sites 

upstream of the Cas9 binding domain (Figure 2.1). sgRNA pairs were annealed by 

mixing 15 µl of each primer (100 µM) with 20 µl of deionised water. These were 

incubated at 720 C for 5 minutes on a heat block. The heat block was then 

switched off and allowed to cool to room temperature. To assemble the primary 

vector carrying the sgRNA, the ABR099 plasmid was digested with Esp3I (New 

England Biolabs) according to manufacturer’s instructions. The digested plasmid 

was run on a 0.8% agarose gel (w/v) in a 3x purple loading dye (New England 

Biolabs) and 1 Kb plus DNA ladder (Thermo). The plasmid backbone was gel 

extracted and purified using the QIAquick gel extraction kit (Qiagen) according 

to manufacturer’s instructions. 

   
Figure 2.1: Schematic of the ABR099 Cas9 plasmid. 
The plasmid contains the gene encoding Cas9 endonuclease and the hdhfr gene (for 

pyrimethamine drug selection) both under the control of separate P. berghei EF-1α 
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promoter units and the sgRNA expression cassettes under the control of P. yoelii U6 

promoter. A 20bp sgRNA designed to contain Esp3I digestion overhangs is cloned into 

the vector after restriction digestion with Esp3I. Donor templates containing mutations of 

interest are cloned into the secondary vectors carrying appropriate sgRNAs at the HincII 

linker site. 

 

A ligation reaction of the vector backbone and annealed sgRNAs was set up at a 

molar ratio of 1:10 using the Rapid DNA ligation kit (Roche) according to 

manufacturer’s instructions. Ligated plasmids were transformed into competent 

E-coli cells (DH5α) by mixing 5 µl of the ligation with 45 µl of competent cells 

and incubated for 30 minutes. In some cases, XL10-Gold® Ultracompetent cells 

(Agilent) were used for transformation as per manufacturer’s instructions. The 

cells were then heat shocked at 42 0C for 30 seconds, allowed to recover on ice 

for 2 minutes following which 250 µl of pre-warmed SOC media (Thermo) was 

added and incubated further at 37 0C in shaking conditions for 30-45 minutes. 

Transformed bacteria was then plated on LB (10 g/l tryptone, 5 g/l yeast 

extract, 5 g/l NaCl) agar plates (1.5 % (w/v) containing ampicillin (100 µg/ml) 

and incubated at 37 0C overnight. After overnight incubation, individual colonies 

were isolated and re-incubated in 10 ml of LB liquid broth (100 µg/ml ampicillin) 

overnight at 37 0C. Plasmid DNA was prepared from the overnight cultures using 

the QIAprep miniprep kit (Qiagen) according to manufacturer’s instructions. For 

long term storage of the plasmids, 1 ml of the culture was mixed with 100% 

glycerol in a 1:1 ratio and stored at -80 0C. To verify plasmid integrity and 

correct cloning of the sgRNAs, the plasmid was digested with appropriate 

restriction enzymes and analyzed by gel electrophoresis. Further confirmation of 

the sgRNA was confirmed by Sanger DNA sequencing (MWG eurofins). 

 
2.2.3 Site directed mutagenesis (SDM) and generation of secondary vectors 

To generate the final vectors for gene editing, donor DNA was amplified by high 

fidelity KAPA hifi PCR kit (Roche) using a master-mix and reaction conditions as 

detailed in Table 2.1, 2.2. PCR primers used for amplification of the donor 

fragments were designed to incorporate the HincII restriction site at the 5’ end. 

All primers were designed in CLC work bench 7.0 (Qiagen) and ordered from 

Sigma Aldrich.  Donor PCR fragments were purified using the QIAquick PCR 

purification kit (Qiagen) according to manufacturer’s instructions. Two 
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approaches to SDM were employed to insert mutations of interest in the donor 

fragments. 

 

Component 50µl reaction Final concentration 

Deionised water 30 µl N/A 

5X KAPA HIFI buffer 10 µl 1x 

10mM dNTP 1.5 µl 0.3 mM 

10µM forward primer 1.5 µl 0.3 µM 

10µM reverse primer 1.5 µl 0.3 µM 

Template DNA 5 µl 50-150 ng 

KAPA HIFI polymerase (1U/µl) 0.5 µl 0.5 U 

 
Table 2.1: PCR master mix components. 
 
PCR step Temperature (0C) Time  

Initial denaturation 95 3 min 

Denaturation 95 30 sec  

30 cycles Annealing Primer Tm 0C 30 sec 

Extension 68 1 min/kb 

Final extension 68 10 min 

Hold 10 For ever 

 
Table 2.2: PCR cycling conditions 
 
 
In the first approach, purified PCR fragments were A-tailed (additional of an A 

nucleotide overhang) using the standard Taq DNA polymerase and cloned into 

the TOPO 2.1 vector using the TOPO TA cloning kit (Invitrogen) according to 

manufacturer’s instructions. Primer sets (Appendix Table 8.1) complementary to 

the TOPO 2.1 cloned PCR fragments were designed to contain specific nucleotide 

substitutions that carried 1) silent mutations mutating the sgRNA and PAM sites 

to prevent Cas9 binding the donor templates and the edited loci in the mutant 

parasites as well as introducing restriction sites for restriction fragment length 

polymorphism (RFLP) analysis  2) the mutations of interest (Appendix Table 8.2). 

A site directed mutagenesis of the cloned PCR products in the TOPO 2.1 vector 

was then carried out using a QuikChange® multi-site directed mutagenesis kit 

(Agilent technologies) using primer mixes that achieved desired mutation 
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combinations. Resulting mutant fragments in the TOPO 2.1 vector were then 

digested out by HincII (New England Biolabs), gel purified and cloned into the 

linker site of the primary vectors carrying appropriate sgRNAs (section 2.2.2) to 

generate final vectors ready for transfection (Appendix Table 8.2). These final 

plasmids were also stored in glycerol stocks at -80 0C as described in section 

2.2.2.  

 

In the second approach, SDM was carried out using overlapping PCR as previously 

described (Heckman and Pease, 2007). Internal complementary primers carrying 

silent mutations (for mutating the sgRNA and PAM) and mutations of interest 

were used to amplify two overlapping PCR products from parasite DNA upon 

linkage to HincII introducing outer primers. Resulting PCR fragments were gel 

extracted and purified following which ~50 ng of each of the PCR fragment was 

used as template in a second round of PCR using the two outer primers to 

generate donor fragments with mutations of interest (Figure 2.2). The resulting 

fragments were subsequently cloned into the sgRNA carrying vectors (section 

2.2.2) at the linker site using the HincII restriction site. All plasmids and cloned 

in donor templates carrying mutations of interest were further verified by 

Sanger DNA sequencing prior to further use. 

 
Figure 2.2: Overview of site directed mutagenesis by overlapping PCR. 
Two internal complementary primers (C, D in green) carrying mutations of interest (orange 

and magenta star symbols) were linked to outer primers (A, B) to generate two PCR 
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fragments (AD, CB) that contain an overlapping sequence (green). These fragments were 

gel purified and used as templates in PCR 2 using primer sets A and B. Due to the 

complementary sequence in the AD CB PCR products, these fragments anneal in the first 

few cycles of PCR and are extended by the polymerase (indicated by arrows) to form a 

complete template that is amplified in subsequent cycles. 
 
 
2.2.4 Preparation of plasmid DNA for transfection 

~10 µg of plasmid DNA in 10 µl deionised water was used for episomal 

transfection as described in section 2.1.6. Glycerol stocks of bacterial colonies 

carrying plasmids of interest were inoculated in 10 ml LB liquid broth (100 µg/ml 

ampicillin) and incubated at 37 0C overnight. Plasmid DNA was extracted as 

described in 2.2.2. In case of low plasmid yields, large cultures (midi-preps) 

were prepared by inoculating 200 ml of LB liquid broth and plasmid DNA was 

extracted using the QIAprep midiprep kit (Qiagen) according to manufacturer’s 

instructions. 

 

2.2.5 Genotyping of mutant parasites 

Blood from parasite infected mice was collected by cardiac puncture under 

terminal anaesthesia and lysed by resuspension in 1x erythrocyte-lysis buffer 

(Thermo). Parasite genomic DNA was extracted as described in section 2.1.9. 

Genotype analysis of the transfected or cloned parasite lines was analysed, 

initially by a dual PCR-RFLP. PCR was carried out with procedures as specified in 

Tables 2.1 and 2.2 using primers that bind exterior of the donor DNA templates 

supplied in the transfection plasmids. Amplified PCR fragments were PCR 

purified followed by restriction digests with the artificially introduced restriction 

enzymes to verify successful editing of the target locus (Figure 2.3). 

Transfection efficiencies were estimated by relative densitometric 

quantification of individual RFLP fragments by ImageJ2 (Rueden et al., 2017). 

Further confirmation of the mutations was carried out by Sanger DNA sequencing 

(MWG eurofins). 

 

2.2.6 Asexual growth competitions of mutant and wild type parasites 

Clonal mutant lines in the 820 background were mixed with the 1804cl1 line (~5 

x 105 of each line) at a 1:1 mixture and injected IV in mice on a day 0. 

Parasitaemia in the competition mixtures was quantified by flow cytometry 
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quantification of mCherry positive parasites for the 1804cl1 proportional 

percentage and by subtracting the total parasitaemia (Hoechst positive) from 

the mCherry positive proportion for the 820 control and or mutant lines. 

Differentiation of the mCherry positive population from the RFP in the 820 line 

was carried out by applying flow gating strategies (Appendix Figure 8.1). For 

mutant lines in the 1804cl1 background, competition mixtures were set up as 

above, besides using the G159 GFP line as a comparative control. Parasitaemias 

and fractions of mutant versus wild type parasites in these competition mixtures 

were determined by flow cytometry-based quantification of mCherry or GFP 

positive parasite populations. In both cases, fractional representation of mutant 

or wild type lines in the competitions was monitored up to day 9. On day 4 or 5, 

when parasitaemia was ~5%, mice were bled, and blood diluted in 1x PBS. ~106 

parasites from each mouse were passaged into a new naïve host. 

 
Figure 2.3: Schematic of donor templates supplied in Cas9 plasmids and example 
RFLP analysis. 
Donor DNA templates (DDT) were PCR amplified from the loci of interest by forward and 

reverse primers as indicated by red arrows.  These fragments were modified by site 

directed mutagenesis to introduce silent mutations that in-activate the PAM site (PAMs), 

silent mutations to introduce restriction sites for restriction fragment length polymorphism 

(RFLP) and the mutation of interest as indicated by coloured star symbols. The donor 

templates were cloned in Cas9 plasmids carrying appropriate sgRNAs and transfected in 

parasites. To analyse the genotypes of mutant parasites, PCR was used to amplify 

fragments from genomic DNA of the mutant parasites using exterior diagnostic primers 

(blue arrows). These PCR fragments were digested by the introduced restriction site as 

shown in an RFLP analysis in the gel picture. In the displayed gel, diagnostic primers 
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amplify a 1,111 bp PCR product. In successfully edited parasites, mutants are 

represented by two RFLP fragments (701, 410bp; BstUI digestion) and some residual wild 

type (1, 1111 bp) which may or may not be present depending on the editing efficiency. In 

the wild type, only one fragment (1,111 bp) is observed. 

 

2.3 P. falciparum culture and maintenance 

Three P. falciparum lines, the CQ and ART sensitive 3D7 line, the 3D7 luciferase 

reporter line (Judith Straimer, unpublished) and the ART resistant Cambodian 

Kelch13 C580Y mutant line (a kind gift from David Fidock), were used in this 

work. All lines were cultured and maintained at 1-5% parasitaemia in fresh group 

O-positive RBCs re-suspended to a 5% haematocrit in custom reconstituted RPMI 

1640 complete media (Thermo Scientific) containing 0.23% sodium bicarbonate, 

0.4% D-glucose, 0.005% hypoxanthine 0.6% HEPES, 0.5% Albumax II, 0.03% L-

glutamine and 25mg/L gentamicin. Culture flasks were gassed with a mixture of 

1% O2, 5% CO2, and 94% N2 and incubated at 370 C. Prior to the start of the 

experiments, asynchronous stock cultures containing mainly ring stages were 

synchronised with 5% sorbitol as previously described (Lambros and Vanderberg, 

1979). In brief, cultures were pelleted by centrifugation at 1,600 rpm for 3 

minutes and resuspended in a 10x volume of 5% sorbitol (Sigma), followed by 

incubation at 37 0C for 10 min. Following incubation, the infected RBCs cells 

were pelleted again as above and washed in 40 pellet volumes of complete 

media before placing the infected RBCs back in fresh media and subsequent 

incubation at 37°C. Human blood was obtained and used within the ethical remit 

of the Scottish National Blood Transfusion Service for the work carried out at the 

University of Glasgow. 

 

2.4 Drug susceptibility assays 

2.4.1 Drugs and inhibitors 

DHA (Selleckchem) was prepared at 1 mM stock concentration in 100% DMSO and 

diluted to working concentration in complete (P. falciparum) or schizont media 

(P. berghei). ART (Sigma) and Epoxomicin (Sigma) were dissolved in 100% DMSO 

to stock concentrations of 100 µM and 90 µM respectively and diluted in 

complete culture media or schizont culture media to their respective working 

concentrations. CQ diphosphate (Sigma) was dissolved to a stock concentration 

of 10 mM in 1x PBS and diluted to working concentration in complete or schizont 

culture media. Seven different classes of DUB inhibitors screened in this work 
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(Appendix Table 8.6) were all obtained from Focus Biomolecules except for 1,10 

phenanthroline which was obtained from BPS biosciences. Stocks of DUB 

inhibitors were prepared at 10 mM in 100% DMSO and diluted in complete or 

schizont media to working concentrations. All DUB inhibitors were supplied at a 

purity grade of >97% (Appendix Table 8.6) and further analysed for chemical 

integrity on a High-Performance Liquid Chromatography (HPLC) platform 

(Appendix Table 8.7, Appendix Figure 8.16) as detailed below (section 2.4.2). 

Testing concentrations ranged from 2000-0.01 nM for epoxomicin, DHA, ART and 

CQ and 100-0.002 µM for DUB inhibitors. The Plasmodium selective proteasome 

inhibitor EY5-125 also known as compound 28 (Yoo et al., 2018) was used to 

further test synergy of proteasome inhibitors with DHA in some mutant and wild 

type parasites.  For in vivo drug treatment, AS (Sigma) was dissolved in 5 % 

sodium bicarbonate prepared in 0.9 % NaCl. CQ diphosphate (Sigma) was 

dissolved in 1x PBS. ART and b-AP15 were prepared in a 1:1 mixture of DMSO and 

Tween® 80 (Sigma) and diluted 10-fold in sterile distilled water immediately 

before administration. All drugs were prepared fresh before in vivo 

administration and drug delivery was carried out by IP injection. 

 

2.4.2 HPLC analysis of DUB inhibitors 

HPLC solvents were purchased from standard suppliers and used without 

additional purification. DUB inhibitors were analysed on a Shimadzu reverse-

phase HPLC (RP-HPLC) system equipped with Shimadzu LC-20AT pumps, a SIL-

20A auto sampler and a SPD-20A UV-vis detector (monitoring at 254 nm) using a 

Phenomenex, Aeris, 5 µm, peptide XB-C18, 150 x 4.6 mm column at a flow rate 

of 1 mL/min. RP-HPLC gradients were run using a solvent system consisting of 

solution A (H2O + 0.1% trifluoroacetic acid) and B (acetonitrile + 0.1% 

trifluoroacetic acid). Further gradient analyses were run from 0% to 100% using 

solution B over 20 minutes. Analytical RP-HPLC data was reported as column 

retention time in minutes. Percentage purity was quantified by percentage peak 

area in relation to main peak. 

 

2.4.3 P. berghei short term in vitro asexual growth inhibition assays 

Drug assays to determine in vitro growth inhibition of P. berghei by various 

compounds during the IDC were performed in standard short-term cultures as 

previously described (Franke-Fayard et al., 2008, Janse et al., 1994b). Briefly, 1 
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ml of infected blood with a non-synchronous parasitaemia of 3-5% was collected 

from an infected mouse and cultured for 22-24 hours in 150 ml of schizont 

culture media. Schizonts were enriched from the cultures by Nycodenz density 

flotation as described in section 2.1.5 followed by immediate IV injection into a 

tail vein of a naive mouse. Upon IV injection of schizonts, they immediately 

rupture with resulting merozoites invading new RBCs within minutes to obtain 

synchronous in vivo infection containing >90% rings and a parasitaemia of 0.5-

1.5%. Blood was collected from the infected mice 1-2 hours post injection and 

mixed with serially diluted drugs in schizont culture media in 96 well plates at a 

final haematocrit of 0.5% in a 200 µl well volume. Plates were gassed and 

incubated overnight at 37 0C. Schizont maturation was used as a surrogate 

marker of growth inhibition. This was quantified based on Hoechst-33258 

(Invitrogen) fluorescence intensity or mCherry expression on a BD FACS-Celesta 

or a BD LSR Fortessa (BD Biosciences, USA) flow cytometer. To determine growth 

inhibitions and calculate IC50, quantified schizonts in no drug controls were set 

to correspond to 100% with subsequent growth percentages in presence of drugs 

calculated accordingly. Dose response curves were plotted in Graph-pad Prism 8. 

 

2.4.4 Adapted P. berghei ring stage survival assay 

The P. falciparum RSA was adapted for P. berghei to further assess the in vitro 

ART resistance phenotypes of some mutant parasites based on a previously 

published protocol (Witkowski et al., 2013).  Blood from infected mice (~1.5-

hour old ring stage parasites obtained as described in 2.4.3) was adjusted to 

0.5% haematocrit and exposed to 700 nM DHA or 0.1% DMSO in 96-well plates or 

10 ml culture flasks. The plates and flasks were incubated with the drug under 

standard culture conditions for 3 hours, following which the drug was washed off 

at least three times. Parasites were then returned to standard culture conditions 

in new plates and flasks with fresh schizont media for in vitro maturation. After 

24 hours of incubation, parasite survival was assessed by flow cytometry analysis 

of Hoechst-33258 stained infected cells and by mCherry expression.  DHA 

treated samples were compared to DMSO treated controls processed in parallel. 

Percent survival was calculated using the formula below:  

 

% survival = (% viability (DHA-treated))/ (% viability (mock DMSO-treated)) 

 



Chapter 2  Methods 

 93 

To improve the robustness of the viability readouts beyond the 24-hour flow 

cytometry counts, an in vivo expansion of the 3-hour DHA or DMSO exposed 

parasites was used for selected mutants and the wild type control. After 24 

hours of recovery, 2 ml of DHA or DMSO treated parasites were pelleted and 

resuspended in a 1 ml volume, from which 200 µl was injected IV into mice. In 

vivo parasitaemia was quantified on day 4 post injection, from which % survival 

based on in vivo parasitaemia (absolute counts of mCherry positive parasites) 

was calculated using the slightly modified formula below: 

 

% survival = (parasitaemia (DHA treated))/(parasitaemia (mock DMSO-treated)) 

 

2.4.5 P. falciparum SYBR Green I® assay for parasite growth inhibition 

Parasitaemia in the stock cultures was determined and drug assays were 

performed when the parasitaemia was between 1.5-5% with >90% rings as 

described in section 2.3. The stock culture was diluted to a haematocrit of 4% 

and 0.3% parasitaemia in complete media following which 50 µl was mixed with 

50 µl of serial diluted drugs/inhibitors in complete media pre-dispensed in black 

96 well optical culture plates (Thermo scientific) for a final haematocrit of 2%. 

Plates were gassed and incubated at 37 0C for 72 hours followed by freezing at -

20 0C for at least 24 hours. The plate setup also included no drug controls as well 

as uninfected red cells at 2% haematocrit. After 72 hours of incubation and at 

least overnight freezing at -20 0C, plates were thawed at room temperature for 

~4 hours. This was followed by addition of 100 µl to each well of 1X SYBR Green 

I® (Invitrogen) lysis buffer containing 20 mM Tris, 5 mM EDTA, 0.008% saponin 

and 0.08% Triton X-100. Plate contents were mixed thoroughly by shaking at 700 

rpm for 5 minutes and incubated for 1 hour at room temperature in the dark. 

After incubation, plates were read to quantify SYBR Green I® fluorescence 

intensity in each well by a PHERAstar® FSX microplate reader (BMG Labtech) 

with excitation and emission wavelengths of 485 and 520 nm respectively. To 

determine growth inhibition, background fluorescence intensity from uninfected 

RBCs was subtracted first. Fluorescence intensity of no drug controls was then 

set to correspond to 100 % and subsequent intensity in presence of 

drug/inhibitor was calculated accordingly. Dose response curves and IC50 

concentrations were plotted in Graph-pad Prism 8.  
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2.4.6 P. falciparum viability assays 

The 3D7 or Kelch13 C580Y lines were synchronised with 5% sorbitol over three 

life cycles followed by Nycodenz enrichment of later schizonts. Enriched 

schizonts were incubated with fresh RBCs in a shaking incubator for 3 hours 

followed by another round of sorbitol treatment to eliminate residual late stage 

parasites. Resultant ring cultures were diluted to around ~1% parasitaemia and 

incubated with predefined drug combinations for set time periods. Drugs were 

washed off 3 times after the set incubation times. Parasite viability was assessed 

66 hours later in the second cycle by flow cytometry analysis of parasite cultures 

stained with Syber Green I and MitoTracker Deep Red dyes (Invitrogen). Flow 

cytometry analysis was carried on a MACSQuant® Analyzer 10. 

 

2.4.7 In vitro drug combinations 

P. berghei or P. falciparum parasites to be tested in drug combinations were 

maintained and cultivated as described in sections 2.4.3 and 2.4.5. To 

determine drug interactions of ARTs in combination with DUB or proteasome 

inhibitors, serial dilutions of DHA or ART were mixed with fixed ratios of the 

inhibitors or their fractional combinations at their respective IC50 or half IC50. 

The drug combinations were incubated with parasites from which parasite 

growth was quantified and dose response curves were plotted, for DHA or ART 

alone or in combination with the fixed doses of the DUB or proteasome 

inhibitors. IC50 values were obtained and the fold change or IC50 shifts were 

plotted in Graph-pad Prism. For drug interactions in fixed ratios, a modified 

fixed ratio interaction assay was employed as previously described (Fivelman et 

al., 2004).  Drug combinations were prepared in six distinct molar concentration 

combination ratios; 5:0, 4:1, 3:2, 2:3 1:4, 0:5 and dispensed in top wells of 96-

well plates. This was followed by a 2 or 3-fold serial dilution with precisely pre-

calculated estimates that made sure that the IC50 of individual drugs falls to the 

middle of the plate. The drug combinations were then incubated with parasites 

from which parasite growth and dose response curves were calculated for each 

drug alone or in combination. For some drug combinations in P. berghei, these 

interactions were assessed using a modified RSA as described in section 2.4.4. 

~1.5-hour old post invasion rings were exposed to combination drug ratios as 

above for 3 hours in 96-well plates following which the drugs were washed off at 

least 3-times.  Percent viability was quantified 24 hours later by flow cytometry 
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analysis of Hoechst-33258-stained infected cells and mCherry expression.  3-hour 

exposure dose-response curves were then plotted for each drug alone or in 

combination. In both cases, fractional inhibitory concentrations (FIC50) were 

obtained and summed to obtain the ∑FIC50 using the formula below:  

 

    ∑FIC50 = (IC50 of drug A in combination/ IC50 of drug A alone) + (IC50 of drug B 

in combination/ IC50 of drug B alone). 

 

An ∑FIC50 of >4 was used to denote antagonism, ∑FIC50 ≤0.5 synergism and ∑FIC50 

= 0.5-4 additivity (Odds, 2003). FIC50 for the drug combinations were plotted to 

obtain isobolograms for the drug combination ratios. 

 

2.4.8 In vivo drug assays: Peter’s 4-day suppressive test and recrudescence 

To evaluate in vivo activity of compounds against P. berghei, the Peters’ four 

day suppressive test was employed as previously described (Vega-Rodríguez et 

al., 2015). A donor mouse was initially infected with P. berghei parasites from 

which blood was obtained when the parasitaemia was between 2-5%. Donor 

blood was diluted in 1x PBS following which ~105 parasites were inoculated by IP 

into groups of mice (3-4 mice per group). 1-hour post infection, mice groups 

received drug doses by IP injection for four consecutive days. Parasitaemia was 

monitored daily by flow cytometry analysis of infected cells stained with 

Hoechst-33258 and microscopic analysis of methanol fixed Giemsa stained 

smears. To quantify drug resistance phenotypes based on recrudescence, 

infections were initiated by IP as above, inoculating ~106 parasites instead.  ~3 

hours post inoculation, mice were dosed with either ART or CQ for 3 consecutive 

days. Parasitaemia was monitored up to day 18 or until recrudescence was 

observed. 

 

2.4.9 In vivo drug assays: Rane’s curative test and parasite clearance  

To evaluate the potential synergy of some DUB inhibitors (b-AP15) and ART in 

vivo, a modified Rane’s curative test in established infections was used 

(Boampong et al., 2013). Blood was obtained from a donor mouse at a 

parasitaemia of 2-3% and diluted in 1x PBS. Mice were inoculated with ~105 

parasites by IP on day 0 allowing the parasitaemia to rise to ~2-2.5%, typically on 

day 4. Following the establishment of infection, mice were divided into groups 
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and received ART or b-AP15 drug doses alone or in combination for three 

consecutive days. Parasitaemia was monitored daily by flow cytometry analysis 

of infected cells stained with Hoechst-33258 and microscopic analysis of 

methanol fixed Giemsa stained smears. The Rane’s curative test was further 

modified to ascertain clearance kinetics of mutant and wild type parasites upon 

AS treatment. Briefly, the parasitaemia in mice infected with mutant or wild 

type parasites as above was allowed to rise to ~10%, typically on day 5. On day 

5, at time zero, 2 µl of blood was collected and diluted 200-fold in 1x PBS. Thin 

blood smears were also collected at this time. Mice were then dosed with AS at 

64 mg/kg at 0, 24 and 48 hours. Blood sampling (every 3 hours in the first 24 

hours and at least twice thereafter) was performed for flow cytometry analysis 

and thin blood smears. Parasite density at each time point was determined by 

absolute cell counts and mCherry expression (for lines in the 1804cl1 

background) in 0.1 µl of whole blood diluted in 1x PBS analysed on a 

MACSQuant® Analyzer 10.  Thin blood smears of parasite morphologies were 

analysed by microscopy. Significant viability counts in microscopy smears were 

based on microscopic confirmation of at least four viable parasites in a minimum 

of 10 fields.  Clearance kinetics of normalised parasite densities vs. time were 

plotted in GraphPad prism. 

 

2.4.10 General statistical methods 

All statistical methods (graphs, means and standard deviations) were carried out 

in at least three biological repeats in GraphPad prism unless otherwise stated. 

Error bars in graphs are standard deviations. Significant differences between 

variables were calculated using student’s paired t-test for two group 

comparisons or the one-way ANOVA alongside the Dunnet’s multiple comparison 

test for more than two groups. Significance is indicated with asterisks; *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

 

2.5 Untargeted metabolomics using LC-MS for MOA studies 

2.5.1 P. falciparum luciferase kill rate assay 

Standard metabolomics screens to characterise MOA of compounds in malaria 

parasites rely on adequate exposure of parasites to the drugs for a good 

metabolic signal while avoiding over-exposure which can lead to death related 
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metabolic signatures (Allman et al., 2016, Cobbold et al., 2016, Creek et al., 

2016). This is, however, difficult to quantify especially for fast acting 

compounds which could potentially elicit metabolic signatures very early on in 

the parasite killing cascade. A biochemical assay that monitors luciferase 

expression was therefore used to determine the killing kinetics for the 

compounds under study. A 3D7 reporter line that expresses NanoLuc and 

luciferase (3D7 luc; Judith Straimer, unpublished) under the control of a 

constitutive calmodulin promoter was used. Synchronised trophozoites (~30 

hours old) at 2% haematocrit and 2% parasitaemia were incubated with the 

compounds at 10x IC50 for 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6 hours. Luciferase 

expression was quantified on a CLARIOstar microplate reader (BMG Labtech). 

Briefly, 100 µl of the reconstituted Dual-Luciferase® Reporter reagent (Promega) 

was mixed with 100 µl parasite culture and incubated at room temperature in 

the dark for 15 minutes. Luciferase signal was quantified immediately after the 

incubation. Parasite viability was also monitored by microscopy analysis of 

methanol fixed Giemsa stained smears. 

 

2.5.2 Magnetic purification of trophozoites 

Drug induced metabolomics screens are mostly performed on 24-30 hour old 

trophozoites as they yield better metabolic signatures as well as less variability 

(Allman et al., 2016). To enrich for ~24-30 hour old trophozoites of the P. 

falciparum 3D7 line, a magnetic separation was employed as previously 

described (Kim et al., 2010). Custom magnet stands were 3D printed based on 

previously reported designs (Kim et al., 2010) and used to assemble a magnetic 

apparatus which was used to enrich for mature trophozoites in conjunction with 

cell separation LD columns (Miltenyi Biotech). Briefly, synchronized cultures at 

5-7% parasitaemia (~24-30 hours old) were re-suspended to 8% haematocrit 

following which 5 ml was loaded into the LD columns on the magnetic stands and 

allowed to flow through. Uninfected RBCs and early stage parasites were washed 

off by loading the LD column with 5 ml of clean complete media which allows for 

removal of all unbound RBCs. Bound parasites were then eluted in 5 ml of fresh 

complete media after removal of the LD columns from the magnetic stands. 

Eluted parasites were pooled into a single 50 ml Falcon tube from which cell 

counts (haemocytometer counting) were performed and adjusted to a 

concentration of ~1 x 108 cells/ml. Purified parasites, containing >90% purified 
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trophozoites were allowed to recover for ~1 hour at 37 0C at ~0.5% haematocrit 

before the start of experiments. Further quality and purity of the enriched 

trophozoites was assessed by microscopy analysis of methanol fixed Giemsa 

stained smears. 

 

2.5.3 Metabolite sample preparation 

Magnetically purified trophozoites as described above were exposed to 

compounds (Table 6.1) at 10 x IC50. Atovaquone was used as a positive control 

while DMSO (0.1%) was used in untreated controls. 1 ml of purified trophozoites 

(1 x 108 cells) was mixed with 4 ml of complete media containing the drugs at 

10x IC50 in 6-well plates for 2.5 hours initially. The concentration used and the 

time of exposure was based on time kill kinetics of these compounds based on 

the luciferase assay in section 2.5.1 as well as previously validated drug 

concentration and corresponding time points which are known to achieve a 

better metabolic signals (Allman et al., 2016). To resolve the metabolic profiles 

of fast acting compounds at earlier time points, a similar approach as above was 

used for selected compounds albeit with a dynamic drug exposure for 0.5, 1 and 

2 hours. Incubations at all time points were performed in triplicate over 2 

biological repeats. After drug incubation, 4 ml of media was aspirated from the 

6-well plates and cells were resuspended in 1 ml volume and centrifuged to 

pellet the cells. Metabolism was immediately quenched by aspirating the 

supernatant and resuspending the cells in ice cold 1x PBS. All experiments were 

performed on ice onwards. 

 

2.5.4 Metabolite extraction 

A mixture of water, methanol and chloroform (1:3:1) was used for metabolite 

extraction to allow for complimentary coverage of both polar and non-polar 

metabolites as previously described (Srivastava et al., 2015). The chilled 

suspension of cells was centrifuged at 8,500 g for 30 seconds at 4 0C. After 

removing the supernatant, the cells were further washed by re-suspending in 

fresh 500 µl of ice cold 1x PBS and the supernatant was removed again. Cell 

pellets were then re-suspended in 200 µl of ice-cold chloroform/methanol/water 

in a 1:3:1 ratio. After vigorously shaking for 1 hour in the cold room or chilled 

shaker at 4 0C, the samples were sonicated for 2 minutes in ice-cold water and 

centrifuged at 15, 300 g  for 5 minutes at 4 0C. ~180 ul of the supernatant was 
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transferred to 2 ml clean screw capped tubes for LC-MS analysis. Pooled sample 

controls were also prepared during this time for quality control during the LC-MS 

processing. An extraction solvent blank was also included as part of the internal 

controls. Samples were kept at -80 0C until processed. 

 

2.5.5 LC-MS Metabolomics analysis 

Untargeted LC-MS sample processing was carried out at the University of 

Glasgow Polyomics on a hydrophilic interaction liquid chromatography (pHILIC) 

on a Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific) using a ZIC-

pHILIC column (150 mm × 4.6 mm, 5 µm column) coupled to a Thermo Orbitrap 

Q-Exactive mass spectrometer (Thermo Fisher Scientific). 10 µl of the sample 

maintained on a 5 0C auto-sampler was injected on a column that was 

maintained at 30 0C. Samples were eluted on a linear gradient, starting with 20% 

A and 80%  B for 15 min, followed by a 2 min wash with 95% A and 5% B, and 8 

min re-equilibration with 20% A and 80% B, where solvent A is 20 mM ammonium 

carbonate in water while solvent B is acetonitrile. The LC-MS method was based 

on previously published protocols (Creek et al., 2011). Mass spectrometry was 

operated in polarity switching mode at a resolution of 70 000, 106 cts  AGC 

target, spray voltages + 3.8 and − 3.8 kV, capillary temperature of 320 °C, 

heater temperature of 150 °C, sheath gas flow rate of 40 a.u., auxiliary gas flow 

rate of 5 a.u., sweep gas flow rate of 5 a.u., and a full scan mass window of 70–

1050 m/z.  m/z 83.0604, 149.0233 and 445.1200 were used as lock masses in the 

positive mode while m/z 89.0244 was used as a lock mass in the negative mode. 

 

2.5.6 Mass spectrometry fragmentation 

Samples were also subjected to a fragmentation mass spectrometry analysis (LC-

MS/MS) to allow for additional structural information on detected mass features. 

Fragmentation of the samples was carried out in either the positive or negative 

ionisation modes or both using duty cycles (1 full scan event and 1 top 5 or top 

10 fragmentation event) as previously described (van der Hooft et al., 2016). 

 

2.5.7 Data acquisition 

Control runs consisting of blank runs and standardised internal controls were run 

in accordance with standard procedures at the Glasgow Polyomics to monitor the 

performance of the mass spectrometer in terms of chromatography and mass 
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intensities. A mixture of standards containing 150 reference compounds 

available from Glasgow Polyomics were also run to assess the quality of the mass 

spectrometer and to aid in metabolite annotation and identification (Creek et 

al., 2011). Pooled samples containing fractional representation of samples were 

run prior to and across the batch every 6th sample to monitor the stability and 

quality of the LC–MS run, whereas the actual samples were run in a randomised 

manner to minimise batch effects. Thermo Xcalibur Tune software was used for 

instrument control and data acquisition. After acquisition, all raw files were 

converted into mzXML format, separating positive and negative ionization mode 

spectra into two different mzXML files using the command line version of 

MSconvert (ProteoWizard). 

 

2.5.8 Data processing, analysis and metabolite identification 

Data files in mzXML format were processed using an excel interface, IDEOM 

(Creek et al., 2012), which is based on XCMS and mzmatch R tools that allow raw 

peak extraction, noise filtering, gap filling and peak annotations (Smith et al., 

2006, Scheltema et al., 2011). mzXML files were also processed using PiMP, a 

web based Glasgow Polyomics metabolomics data processing pipeline (Gloaguen 

et al., 2017). PiMP is also based on XCMS and mzmatch R tools (Smith et al., 

2006, Scheltema et al., 2011) but allows for easy and multiple sample 

comparisons across experimental conditions. Volcano plots and principal 

component analysis were visualised and plotted both in IDEOM, PiMP and 

Metaboanalysit 3 (Xia et al., 2015). Metabolite changes across different 

conditions and time points were plotted as fold changes or log2 fold changes. 

Identification of metabolites was based on fragmentation spectra, retention 

time and mass compared to authentic standards as previously outlined by the 

metabolomics standards initiative (MSI) (Sumner et al., 2007). Metabolites that 

matched an authentic standard with or without fragmentation spectra were 

classified as identified (MSI level 1). Metabolites which did not match to any 

authentic standards but had spectral similarities with spectral libraries 

https://www.genome.jp/kegg/pathway.html, were classified as putatively 

annotated and analysed further based on fragmentation spectra if available. 
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3 UBP-1 mutations mediate reduced in vivo susceptibility to ARTs and CQ in 

P. berghei 

3.1 Chapter aim 

The aim of this chapter was to examine the role of P. chabaudi UBP-1 mutations 

described in section 1.8.1.2 in modulating resistance to ARTs in an independent 

rodent model of malaria P. berghei. 

 

3.2 Introduction 

The emergence of ART (and even ACT) resistance in SEA is seriously threatening 

recent gains achieved in malaria control (Hamilton et al., 2019, Dondorp et al., 

2009). ART resistance is primarily conferred by specific mutations in the P. 

falciparum Kelch13 gene, and such mutations are currently endemic in most 

parts of SEA (Mbengue et al., 2015, Ashley et al., 2014, WHO, 2018c). 

Phenotypically, these mutations are associated with delayed parasite clearance 

rates in vivo and reduced susceptibility of ring stage parasites in vitro in RSAs 

(Dondorp et al., 2009, Witkowski et al., 2013). Interestingly, the prevalence of 

Kelch13 mutations remains low outside SEA (Menard et al., 2016) where the few 

observed Kelch13 polymorphisms in Sub-Saharan Africa do not associate with 

treatment failure and/or delayed parasite clearance rates (Sutherland et al., 

2017). Moreover, polymorphisms in other genes such as multidrug resistance 

protein 2, ferredoxin, coronin, AP-2µ, Falcipains and many others (section 

1.5.5.2) also associate with ART resistance phenotypes. Deconvoluting the 

geographic complexities of ART resistance, the direct causal role of genetic 

determinants and molecular mechanism involved would thus provide an avenue 

to contain or rescue the emergent ART resistance through efficient surveillance 

and/or suitable combinational therapies. 

 

UBP-1 mutations which were identified as determinants of ART resistance in P. 

chabaudi (Hunt et al., 2007) are some of the candidate ART resistance mutations 

which despite being observed in cases of ART clinical failure in the field 

(Henriques et al., 2014, Henriques et al., 2013, Adams et al., 2018, Borrmann et 

al., 2013, Cerqueira et al., 2017), have remained uncharacterised due to the 

absence of reverse genetics approaches to validate their involvement. Moreover, 

the reported drug resistant phenotypes that emerged in these P. chabaudi 

mutant lines were due to selection with a series of drugs in multiple cascades 
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(Section 1.8.1.2). Due to these complexities, it has been specifically difficult to 

confidently associate these P. chabaudi UBP-1 mutations with actual ART 

resistance phenotypes in the absence of appropriate reverse genetics 

approaches.  

 

To explore and validate the role of these UBP-1 mutations in mediating ART and 

possibly CQ resistance, CRISPR-Cas9 genome editing system was employed to 

engineer orthologous P. chabaudi candidate mutations (V2697F and V2728F) in P. 

berghei (V2721F and V2752F). Upon introduction of these mutations, further 

phenotype analysis was carried out to assess their direct involvement in 

conferring ART and CQ resistance both under in vitro and in vivo conditions. The 

relative fitness of these mutant parasites was also assessed and compared to the 

wild type non-mutant parasites. 

 

3.3 Results 

3.3.1 CRISPR-Cas9 introduction of UBP-1 mutations in P. berghei  

To experimentally demonstrate that UBP-1 mutations confer selective advantage 

upon ART pressure, P. chabaudi UBP-1 candidate mutation (V2697F and V2728F) 

equivalents (Figure 3.1a, Appendix Figure 8.2) were introduced in the P. berghei 

820 line using the CRISPR-Cas9 plasmid system as described in section 2.2. Two 

plasmids were initially designed to either introduce the single mutation, V2752F 

(V2728F P. chabaudi equivalent) or both mutations, V2721F (V2697F P. chabaudi 

equivalent) and V2752F in an attempt to generate a double mutant (Figure 

3.1b). Silent mutations to mutate the Cas9 cleavage site and introduce a 

restriction site (BseYI) were also introduced to prevent re-targeting of mutated 

loci by Cas9 for the former and diagnosis by RFLP for the latter (Figure 3.1b, 

3.1c, Appendix Table 8.2). Transfections of these plasmids (pG945, pG946, 

Appendix Table 8.2) into the 820 line yielded ~0.48% mutants for the V2752F 

mutant line (G1807, pG945) and ~23.00% mutants for the V2721F and V2752F 

double mutant line (G1808, pG946) as confirmed by RFLP analysis (BseYI 

digestion) of the edited UBP-1 loci (Figure 3.1d, Appendix Table 8.3).  
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Figure 3.1: Introduction of UBP-1 mutations in P. berghei. 
a. Schematic of P. berghei UBP-1 showing the predicted catalytic domain and localisation 

of the engineered mutations and their P. falciparum and P. chabaudi equivalents. 

Positions of P. falciparum UBP-1 D1525E and E1528D mutations which have been 

reported in the field but are not conserved in P. berghei and P. chabaudi are indicated. b. 
Plasmid constructs for the UBP-1 targeted gene editing to introduce the V2721F and 

V2752F mutation. The plasmid contains Cas9 and hdhfr (for pyrimethamine drug 

selection) under the control of the Pb EF-1α promoter and the sgRNA expression 

cassettes under the control of PyU6 promoter. A 20 bp sgRNA was designed and cloned 

into the sgRNA section of the vector illustrated in B. The donor UBP-1 sequence (610 bp) 

is identical to the wild type albeit with the desired mutations of interest as indicated by 

coloured star symbols: V2752F (pG945), V2721F V2752F (pG946) and silent mutations 

that mutate the Cas9 binding site as well as introduce the restriction site BseYI for RFLP 

analysis. c.  Illustrated 20 bp sgRNA. d. RFLP analysis of mutant parasites. Successful 

editing in the transfected parasites was observed on day 12 after transfection and 

pyrimethamine drug selection. RFLP (BseYI digestion) analysis of the transformed lines 

PCR products (primers GU4894 + GU4895, 807 bp) revealed ~0.5% and ~23% efficiency 

for the G1807 and G1808 lines respectively as indicated by 2 distinct bands (536 bp, 271 

bp) as compared to 807 bp bands in the parent 820 line. 

 

 

3.3.2 Engineered mutations in UBP-1 confer in vivo selective advantage to 

ART and CQ pressure in P. berghei 

Since the editing efficiency in these UBP-1 mutant lines was too low to clone out 

the mutant population by limiting dilution, a pre-emptive drug selection with CQ 

and ART was attempted for the G1807 and G1808 lines to examine if selective 

enrichment of the mutant population could be achieved with these drugs. 

Indeed, after infecting mice with the G1808 line and treating for three 

consecutive days with ART at 20 mg/kg, the recrudescent parasite population on 

Day 9 was enriched to ~90% mutant as confirmed by RFLP analysis (Figure 3.2a, 
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3.2b, Appendix Figure 8.3, Appendix Table 8.3).  Meanwhile, CQ at 15 mg/kg 

also enriched the G1808 line to ~80%, relatively less compared to ART (Figure 

3.2a, 3.2b, Appendix Table 8.3). On the contrary, a very low-level mutant 

enrichment of the G1807 line (0.5% to 2.6%) was observed with CQ at 15 mg/kg 

while ART did not produce any enrichment in the same line (0.5%). Interestingly, 

cloning of the G1808 ART enriched lines yielded six clones which were all single 

mutants positive for the V2721F mutation despite coming from a plasmid with 

donor templates that carried both the V2721F and V2752F mutations (Figure 

3.2c, Figure 3.2d). This suggests that the single V2721F mutation carrying 

parasites were predominant in the G1808 line (despite resulting from 

transfection with a plasmid carrying both mutations) and were selectively 

enriched by ART. These data also suggested that introducing both mutations into 

the same parasite could either be lethal or results in very unfit parasites that 

are easily cleared by the host during early growth following transformation. 

Indeed, bulk DNA sequence analysis of the G1808 uncloned line revealed the 

absence of traces for both mutations as only the V2721F with silent mutations 

were present (Appendix Figure 8.4). Sequence analysis of the G1808 line isolated 

after CQ challenge at 15 mg/kg also confirmed specific enrichment for the 

V2721F mutation (Appendix Figure 8.3) suggesting that despite being principally 

enriched by ART, the V2721F mutation also modulates some low-level protection 

to CQ. Meanwhile, when the G1807 line (V2752F single mutation) was challenged 

with CQ at higher doses (20, 30, 50 mg/kg), a recrudescent population was 

observed on Day 10 with CQ 30 mg/kg (Figure 3.2e). The CQ 30 mg/kg 

recrudescent parasites were enriched to ~61 % for the mutant population (Figure 

3.2f, Appendix Figure 8.5, Appendix Table 8.3) and were subsequently cloned 

(Figure 3.2g). Sanger sequencing of G1808 ART enriched and G1807 CQ enriched 

clones confirmed the presence of the single V2721F and V2752F mutations 

respectively, as well as the Cas9 cleavage silencing mutations and the silent 

mutations introducing the BseYI diagnostic restriction site (Figure 3.2d, 3.2h). 
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      h 

 
Figure 3.2: Enrichment of UBP-1 mutant lines by drug challenges and cloning of 
mutant lines. 
 a. pre-emptive challenge of the G1807 and G1808 lines with ART and CQ at 20 mg/kg 

and 15 mg/kg respectively. Mice were infected with ~2 x 107 parasites by IP on day 0. 

Treatment was started ~3 hours post infection by IP for three consecutive days. 

Parasitaemia was monitored by microscopy analysis until recrudescence was observed. 
b. RFLP analysis of recrudescent parasites. c. RFLP analysis of the cloned G1808 ART 

20 mg/kg recrudescent parasites. d. DNA sequencing confirming successful nucleotide 

editing in the G1808 clone1 line. The top sequence represents the 820WT unedited 

sequence with positions for sgRNA, PAM and V2721F mutations indicated. The bottom 

sequence illustrates the nucleotide replacements at the V2721F mutation loci and silent 

mutations to prevent Cas9 retargeting as well as introduce the BseYI restriction site for 

RFLP analysis in the G1808V2721F lines. e. Pre-emptive challenge of the G1807 line with 

higher doses of CQ. Mice were infected and treated with CQ as in Figure 3.2a. f. RFLP 

analysis (BseYI digestion) of the G1807 recrudescent population after challenge with 30 

mg/kg CQ. g. RFLP analysis of the cloned G1807 CQ 30 mg/kg recrudescent parasites. 

h. DNA sequencing confirming successful nucleotide editing in the G1807 clone2 line 

indicating mutation sites. 

 

 

3.3.3 The V2721F mutation confers observable reduced in vivo susceptibility 

to ARTs while the V2752F mutation confers resistance to CQ and low-

level protection to ARTs in P. berghei 

After cloning the UBP-1 mutant parasites (Figure 3.2), a quantification of the 

drug response profiles of the cloned lines (first clone in each of the lines) was 

carried out to assess their in vitro and in vivo phenotypic responses to DHA, ART 

and CQ. In short term P. berghei in vitro drug assays, both the G1808V2721F and 

G1807V2752F parasites showed no difference in sensitivity to DHA compared to the 

parental 820 line (Figure 3.3a, 3.3b). The lack of decreased drug sensitivity of 
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both lines is consistent with the failure of the standard 72-hour drug assays to 

differentiate similar Kelch13 ART resistant parasites from sensitive lines in P. 

falciparum (Witkowski et al., 2013, Dondorp et al., 2009). Meanwhile, a 1.8-fold 

increase in IC50 was observed for the G1807V2752F line when challenged with CQ 

(Figure 3.3c) and not the G1808 V2721F (Figure 3.3d).  However, rodent malaria 

parasites offer the advantage of experimental drug resistance assessment in 

vivo. Therefore, the in vivo drug responses of the mutant lines to parental ART, 

which with controlled parasite inocula has been shown to effectively suppress 

wild type parasites for up to 18 days following 100 mg/kg dosing for three 

consecutive days (Hunt et al., 2010) was profiled. This is unlike with the ART 

derivative, and clinically relevant AS, which permits recrudescence in wild type 

rodent malaria parasites at doses as high as 300 mg/kg within 14 days (Walker 

and Sullivan, 2017). This approach when applied to G1808V2721F demonstrated 

that this mutation does indeed confer enhanced in vivo tolerance to ARTs 

compared to the parental 820 line. G1808V2721F parasites survived three 

consecutive doses of 75 mg/kg ART with the recrudescent population appearing 

on day 9 after last dosing while 820 wild type parasites were effectively 

suppressed up to day 17 of follow-up (Figure 3.3e). Both the G1808V2721F and 820 

lines survived 45 mg/kg dose of ART with the former having a slightly faster 

recrudescence rate on day 7 while the latter recrudesced a day later (Figure 

3.3e). Even though ART at 45 mg/kg did not significantly separate wild type 

from mutant parasites, this could be due to the fitness cost that the V2721F 

mutation carries (Figure 3.4) which would explain their recrudescence at almost 

the same time as the wild type as they would require a slightly longer time to 

achieve quantifiable parasitaemias. Both lines remained sensitive to 125 mg/kg 

ART dose with no recrudescence observed up to day 17 (Figure 3.3e). In 

contrast, the G1807V2752F line was relatively resistant to CQ in vivo (Figure 3.3f), 

surviving three consecutive doses at 25 mg/kg, with recrudescent parasites 

observed on day 4 after the last dose as compared to the parental 820 line and 

the G1808V2721F lines which were susceptible and effectively suppressed up to day 

17. Interestingly, the G1807V2752F line also displayed low level reduced 

susceptibility to ART at 75 mg/kg dose, with parasites coming up on day 12, 

later than the G1808V2721F line (Figure 3.3f). These data confirmed that the 

V2721F mutation confers protection from ART drug challenge while the V2752F 

mutation mediates resistance primarily to CQ and to some extent, a low-level 



Chapter 3  P. berghei UBP-1 mutations 

 110 

protection to ARTs. The recrudescence of the wild type 820 and G1808V2721F at 

45 mg/kg ART is also in agreement with previous findings that P. berghei is less 

sensitive to ARTs, especially in the spleen and bone marrow which could be the 

source of recrudescent infection at relatively lower doses (Lee et al., 2018). 
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Figure 3.3: ART and CQ in vitro and in vivo resistance profiles of the G1807V2752F 
and G1808V2721F lines. 
a, b. DHA dose response curves and IC50 comparisons of the G1808V2721F (a) and 

G1807V2752F (b) lines relative to the wild type 820 line. c, d. CQ dose response curves and 

IC50 comparisons of the G1807V2752F (c) and G1808V2721F (d) lines relative to the wild type 

820 line. Significant differences between mean IC50 or IC50 shifts were calculated using 

the paired t-test. Error bars are standard deviations from three biological repeats. 

Significance is indicated with asterisks; **p < 0.01, ns; not significant. e, f. Modified Peters’ 

4-day suppressive test to monitor resistance to ART and CQ in vivo in the G1808V2721F (e) 

and the G1807V2752F (f) mutant lines. Groups of 3 mice were infected with 1 x 106 

parasites on day 0. Treatment started ~1.5 hours later with indicated drug doses every 24 

hours for three consecutive days (treatment days shown by arrows). Parasitaemia was 

monitored by microscopy analysis of Giemsa stained blood smears up to day 18. Error 

bars are standard deviations of parasitaemia from 3 mice. 

 

 

3.3.4 Growth of parasites carrying UBP-1 V2752F and V2721F mutations is 

impaired  

The spread of drug resistance as is the case in most microbial pathogens is partly 

limited by detrimental fitness costs that accompany acquisition of such 

mutations in respective drug transporters, enzymes or essential cellular 

components. The G1807 and G1808 lines carrying UBP-1 V2721F and V2752F 

mutations respectively were each grown in competition with a parental line 

expressing mCherry in vivo and shown to be characteristically slow growing 

(Figure 3.4a-c).  
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Figure 3.4: Growth kinetics of the 820, G1808V2721F and G1808V2752F relative to the 
1804cl1 line. 
a, b, c. The 1804cl1 line constitutively expresses mCherry under the control of the hsp70 

promoter.  The 820, G1808V2721F and G1808V2752F were mixed with the 1804cl1 at a 1:1 

ratio and injected at a parasitaemia of 0.01% by IV on Day 0. Daily percentages of 

representative parasitaemia of the 820 or mutant lines in the competition mixture were 

quantified by subtracting the total parasitaemia based on positivity for Hoescht DNA stain 

from the fraction of the population that is mCherry positive (1804cl1) as determined by 

flow cytometry. On day 4, when parasitaemia was ~5%, blood from each mouse was 

passaged into new naïve host and parasitaemia was monitored until day 9. Percentage 

population changes of the mutant and wild type lines relative to the 1804cl1 in the 820 (a), 

G1808V2721F (b) and G1807V2752F (c). Error bars are standard deviations from three 

biological repeats. 

 

Comparatively, the G1807V2752F mutation was severely impaired relative to the 

G1808V2721F being completely outcompeted by day 8 (Figure 3.4b, 3.4c). These 

data and the earlier failure to generate the double mutant (Figure 3.1, 3.2) 

demonstrated that UBP-1 is an important (possibly essential) protein for parasite 
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growth and that acquisition of resistance through mutation of UBP-1 confers 

mutation specific fitness costs. 

 

3.3.5 Reversal of the V2752F mutation restores CQ sensitivity in the 

G1807V2752F line while introduction of the V2721F in the same line 

appears to be lethal 

Drug pressure can select, in the long or short term, for mutations in sensitive 

parasite populations that would affect responses to the same drug. To further 

confirm that the phenotypes observed in the mutant lines were due to the 

V2721F or V2752F mutations and not possible secondary mutations which may 

have been acquired during the pre-emptive drug pressure, an attempt was made 

to reverse the V2752F mutation in the G1807V2752F line by swapping it to the 

V2721F genotype. This would allow for a determination of whether wild type CQ 

phenotypes can be restored in the G1807V2752F line while at the same time assess 

if the ART susceptibility profiles of the G1808V2721F mutants could be reproduced 

in an independent line. Using a CRISPR-Cas9 editing strategy similar to the one 

outlined in Figures 3.1, a sgRNA targeting a region ~50 bp upstream of the 

V2721F mutation was designed and cloned in the Cas9 expressing vectors (Figure 

3.5a, 3.5b). 698 bp of donor DNA (GU5189 + GU4787) containing the V2721F (for 

targeted mutation swap) or both the V2721F and V2752F mutations (for a forced 

introduction of the V2721F in the G1807V2752F background) was used to generate 

the vectors pG963 and pG962 respectively (Figure 3.2a, Appendix Table 8.2). 

Silent mutations mutating the PAM site as well as introducing a second 

restriction site, SnaBI, for RFLP analysis were also included. Transfection of the 

G1807V2752F line with pG963 and pG962 vectors successfully edited the UBP-1 loci 

generating the G1918 and G1919 lines respectively with ~88 % and ~79 % 

efficiency as confirmed by SnaBI RFLP analysis (Figure 3.5c, Appendix Table 8.3). 

Cloning and sequencing of the G1918 line revealed successful targeted mutation 

swap, introducing the V2721F mutation and re-editing of the 2752F to 2752V 

wild type genotype (Figure 3.5d, 3.5e). Phenotype analysis of the G1918 clone1 

line revealed a restored in vitro susceptibility to CQ similar to the 820 wild type 

and a similar in vitro DHA sensitivity (Figure 3.5f, 3.5g). Under in vivo 

conditions, the G1918cl1 line displayed a similar ART susceptibility profile at 75 

mg/kg as the G1808V2721F line while CQ sensitivity was completely restored 

(Figure 3.5h). This provided further experimental evidence, that the drug 
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susceptibility profiles observed were due to the V2721F or V2752F amino acid 

substitutions and not the introduced silent mutations or secondary mutations 

that may have been acquired during the pre-emptive drug exposure. 

Interestingly, cloning and sequencing of the G1919 line (Figure 3.5d, 3.5j) 

revealed successful introduction of the silent mutations (PAM mutating and 

SnaBI) while the V2721F mutation was absent in all four clonal lines, yet 

retained the parental V2752F mutation. This suggested that introduction of the 

V2721F in the V2752F background is lethal or refractory in the parasite and 

further supported initial failed attempts to generate a double mutant line 

(Figure 3.1,3.2). Detailed sequence analysis of the transfected parasite 

populations before cloning revealed the presence of only one mutation trace in 

the G1919 line (despite the donor DNA containing both mutations) further 

confirming that the double mutant parasites do not survive or are severely 

growth-impaired and quickly overgrown by the single mutation parasites (Figure 

3.5i). 
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Figure 3.5: Swapping of the V2752F to V2721F mutations and attempted generation 
of a double mutant in the G1807V2752F line. 
a. Schematic of the UBP-1 donor DNA in the pG962 and pG963 vectors. b. A 20bp 

sgRNA used to target the UBP-1 region upstream of the V2721F mutation in the Cas9 

expressing vectors with introduced silent mutation sites indicated. c. RFLP (SnaBI 

digestion) analysis of PCR products (GU5186 + GU4895, 946bp) of the G1918 and 

G1919 lines relative to the mutants showing successful editing by 2 distinct RFLP bands 

for the mutants (632bp, 314bp) and residual traces of the parental wild type genotype. d. 

RFLP analysis of the cloned G1918 and G1919 lines. First six lanes to the left are RFLP 

analyses of G1918 and G1919 cloned lines PCR products (GU5186 + GU4895, 946bp) 

digested by SnaBI showing 2 bands (632bp, 314bp) as compared to 1 band for the 

parental G1807V2752F. Six lanes to the right are the same clones digested by both SnaBI 

and BseYI showing parental G1807V2752F with 2 RFLP bands (536bp, 410bp) as a result of 

digestion with BseYI only as the SnaBI restriction site is absent and 3 RFLP bands 

(536bp, 314bp, 96bp) in the G1918, G1919 clones as a result of digestion of the PCR 

product by both BseYI and SnaBI. e. Sequencing of G1918 clone1 showing successful 

swapping of the V2752F in the parent G1807V2752F line to the V2721F mutation. f, g. In 

vitro DHA and CQ dose response curves and IC50 comparisons of the G1918cl1 revertant 

line relative to the wild type showing reversion of the CQ phenotype and similar sensitivity 

to DHA. Significant differences between mean IC50s or IC50 shifts were calculated using 

the paired t-test. Error bars are standard deviations from three biological repeats. 

Significance is indicated with asterisks; ns, not significant. h.  In vivo tolerance to ARTs at 

75 mg/kg in the G1918cl1 line and complete restoration of CQ sensitivity. i, j. Sequence 

analysis of the G1919 uncloned (i) and G1919 (j) clone1 line showing absence of double 

mutant populations. 

 

 

3.4 Discussion 

Ubiquitin hydrolases or DUBs are essential elements of the eukaryotic UPS which 

is primarily involved in maintaining cellular protein homeostasis and responding 

to stress. Despite the proposed involvement of Plasmodium DUBs in modulating 
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susceptibility to multiple drugs, lack of conclusive experimental evidence has 

thus far limited studies into their detailed involvement in MOA and or resistance 

phenotypes such as those observed with ARTs. In this chapter, using a CRISPR-

Cas9 mediated reverse genetics approach; experimental evidence is provided on 

the direct involvement of a DUB (UBP-1) in modulating parasite responses to ART 

and CQ, more importantly under in vivo conditions. As the debate into the 

mechanism of action and resistance to ARTs continues, a consensus 

understanding is converging that ART resistance is more complex as several 

factors, genetic determinants and possibly mechanisms of action appear to be 

involved. In P. falciparum, ART resistance is confined to early ring stage 

parasites which has been translated in laboratory conditions to increased 

survival in RSAs (Witkowski et al., 2013). Mutations in kelch13, PfCoronin as well 

as transient (hypo-hyperthermic) temperatures have all been shown to enhance 

ring stage parasite survival in the RSAs (Straimer et al., 2015, Demas et al., 

2018, Henrici et al., 2019b). More recently, characterisation of Kelch13 

interacting factors has revealed that disruption of proteins that co-localise with 

Kelch13 such as the parasites endocytosis protein ESP15, UBP-1 and others of 

unknown function, modulate susceptibility to ARTs (Birnbaum et al., 2020). As 

demonstrated in this study, ART and more so, CQ reduced susceptibility can be 

mediated by mutations in UBP-1 underscoring a potential mechanism of cross-

resistance and some commonality in MOA between CQ and ART especially 

relating to haemoglobin digestion and trafficking in malaria parasites (Birnbaum 

et al., 2020, Yang et al., 2019, Klonis et al., 2011). 

 

3.4.1 UBP-1 mutations carry ART and CQ cross-resistance traits in P. berghei 

The UBP-1 V2728F mutation was previously designated as a principle 

determinant of ART reduced susceptibility despite its common fixation with 

mefloquine and higher doses of CQ (Hunt et al., 2010). Contrary to this 

argument, ART did not enrich for this mutation (V2752F) in this work enriching 

for the V2721F mutation instead which was fixed with AS in P. chabaudi.  

However, enrichment of the V2752F mutation with a higher dose of CQ was 

achieved showing that this mutation does indeed modulate parasite responses to 

CQ while the V2721F mutation is chiefly responsible for the ART reduced 

susceptibility phenotype in the P. berghei model in vivo. Interestingly, drug 

challenge of these mutant lines in vivo revealed that both mutations give low-
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level cross-protection to both ARTs and CQ.  This confirms that both of these 

UBP-1 mutations modulate some form of protection to both ARTs and CQ drug 

challenges albeit to some differing degrees which is, therefore, in strong 

agreement with previous observations in P. chabaudi (Hunt et al., 2010). This 

also demonstrates a plurality of pathways to resistance involving the same 

target. At a time when this work was ongoing, the exact equivalent UBP-1 

mutations in P. falciparum, V3275F and V3306F were successfully engineered 

(Henrici et al., 2019a).  In P. falciparum UBP-1, the V3275F mutation (V2721F P. 

berghei equivalent) shows enhanced survival to DHA in RSAs but remains 

sensitive to CQ. However, unlike in P. berghei, the V3306F (V2752F P. berghei 

equivalent) showed no enhanced survival to DHA in RSAs or resistance to CQ 

(Henrici et al., 2019a). Whilst not entirely in agreement with the data reported 

here, this could be due to limitations in the ability of in vitro assays to fully 

predict actual drug responses in vivo which data in this work highlights and has 

been a concern with Kelch13 mutations recently (Sa et al., 2018). These 

observations may also somewhat be confounded by species specific differences 

in drug responses, pharmacodynamics, MOA and resistance that, in part, remain 

to be fully investigated.  For example, previous and original linkage studies in P. 

chabaudi identified additional mutations in an amino acid transporter, aat, as 

being strongly  associated with CQ resistance phenotypes in tandem with UBP-1 

mutations (Hunt et al., 2010). Even though this could partly explain the 

observed in vitro sensitivity of P. falciparum V3275F mutants to CQ,  data in this 

work suggests that UBP-1 mutations are sufficient to mediate quantifiable 

protective phenotypes to both ARTs and CQ as the reversal of the V2752F 

mutation performed in this study, for example, completely restores CQ 

sensitivity. This has provided, therefore, additional independent evidence on the 

direct causative role of UBP-1 mutations in modulating parasite responses not 

just to ARTs, but CQ as well. The study also illustrates the potential of the P. 

berghei rodent model in proving causality to antimalarial drug resistance 

phenotypes under in vivo conditions especially in light of recent reported 

discrepancies between some in vitro RSA resistance profiles of P. falciparum 

Kelch13 mutants and actual in vivo phenotypes using the Autos monkey model 

(Sa et al., 2018).  
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3.4.2 Fitness costs could possibly explain lack of expansion of UBP-1 

mutations in P. falciparum 

Interestingly, the V2721F and V2752F mutation carrying parasites are 

significantly slow growing and are easily outcompeted in the presence of non-

mutants. Natural P. falciparum UBP-1 mutations have been reportedly 

associated with ART treatment failure in Kenya (Henriques et al., 2014, 

Borrmann et al., 2013), SEA (Cerqueira et al., 2017) and more recently in Ghana 

(Adams et al., 2018) (Appendix Figure 8.6). However, unlike their rodent 

counterparts which associate with ART reduced susceptibility, the natural 

reported E1528D and D1525E mutations occur towards the less conserved N-

terminus of the protein and outwith the conserved, bioinformatically predicted 

UBP-1 catalytic domain (Hunt et al., 2007) (Figure 3.1a). This would suggest that 

acquisition of the mutations at the well conserved C-terminal in P. falciparum 

has a potential growth defect as has been observed with P. berghei in this work. 

However, as these upstream mutation residues are not conserved between P. 

falciparum and P. berghei UBP-1, these hypotheses could not be tested in this 

model.  In fact, P. falciparum UBP-1 is highly polymorphic with over 480 

reported SNPs https://plasmodb.org all of which are in the N-terminal region.  

P. falciparum UBP-1 has also been recently shown to be undergoing a strong 

positive selection in SEA (Ye et al., 2019). UBP-1 mutations could, therefore, be 

an independent avenue to which ART or multidrug resistance phenotypes could 

emerge in endemic regions like has been seen in Africa (Ghana and Kenya), 

without actually requiring a permissive genetic background as seems to be the 

current landscape with Kelch13 mutations.  However, there are constraints upon 

the evolution of drug resistance and UBP-1.  Whilst these data confirm that a 

single protein that does not transport drugs can mediate resistance to two quite 

distinct drug entities, it was not possible to generate a P. berghei line that 

simultaneously contained the two UBP-1 drug resistance mutations examined in 

this work illustrating the balance between fitness cost and resistance. 

 

 

3.4.3 UBP-1 mutations could be impairing haemoglobin endocytosis in 

malaria parasites 

In yeasts, UBP-1 localises to the endoplasmic reticulum playing roles in protein 

transport specifically internalisation of substrates across membranes (Schmitz et 
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al., 2005). Mutations in UBP-1 could, therefore, modulate endocytosis of 

important essential host derived products such as haemoglobin to the DV in a 

similar manner thereby reducing exposure of the parasite to activated drug for 

both ARTs and CQ. Interestingly, mutations in the AP-2µ adaptor complex that is 

involved in clathrin mediated endocytosis have also been implicated in ART 

resistance in rodent malaria parasites (Henriques et al., 2013). One of the AP-2µ 

adaptor complex mutation (I592T) has been recently engineered in P. falciparum 

and has been shown to enhance ring stage parasite survival in RSAs (Henrici et 

al., 2019a). This further suggests that inhibition of the endocytic trafficking 

system is a possible generic mechanism for the parasites to survive lethal doses 

of drugs that require transport and activation in the DV. This would further 

explain the multidrug resistance phenotype observed with the UBP-1 mutations 

in P. chabaudi and P. berghei in this work. Acquisition of the V2728F mutation in 

P. chabaudi was structurally predicted to reduce deubiquitination (Hunt et al., 

2007). In such a situation, the cellular increase in ubiquitinated proteins would 

be anticipated to positively feedback to the cellular machinery to rapidly 

degrade protein substrates at the 20s proteasome promoting a non-specific and 

rapid protein turnover or impaired substrate trafficking. This would result in 

generally slow growing parasites with reduced expression of, for example, multi-

drug resistance transporters as well as reduced endocytosis of host-derived 

products like haemoglobin, which would in turn modulate parasite responses to 

these drugs. More recently, functional studies have revealed that P. falciparum 

Kelch13 localises to the parasite cytostomes and plays a role in haemoglobin 

trafficking (Birnbaum et al., 2020, Yang et al., 2019). Consequently, Kelch13 

mutations have been shown to lead  to a partial loss of the Kelch13 protein 

function which leads to decreased haemoglobin trafficking to the parasite DV 

and less DHA activation, which in turn mediates parasite survival (Yang et al., 

2019, Birnbaum et al., 2020). Strikingly, protein pulldowns at the parasite 

cytostomal foci where kelch13 localises have identified UBP-1 as a key 

interacting partner in the Kelch13 mediated endocytic machinery that is 

involved in haemoglobin trafficking. By analysing haemoglobin endocytosis in 

ring and trophozoite stages, it has been shown that partial inactivation of UBP-1 

impairs haemoglobin endocytosis in both rings and trophozoites as opposed to 

inactivation of Kelch13 which impairs haemoglobin uptake in ring stages of the 

parasites only (Birnbaum et al., 2020). This is indeed in agreement with the 
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observed P. berghei phenotypes in this work on the consequences of UBP-1 

mutations which in a similar manner could impair trafficking of haemoglobin 

leading to less activation of ARTs and CQ. Moreover, the potential role of UBP-1 

in trafficking haemoglobin in both rings and trophozoites would possibly explain 

the ART and CQ potential cross-resistance phenotype, which has been observed 

with UBP-1 mutations in this work; unlike with Kelch13 mutations which thus far 

are known to mediate resistance to ARTs only and in early ring stages.  The 

experimental validation on the involvement of UBP-1 mutations in mediating 

potential cross-resistance to ART and CQ in malaria parasites, therefore, 

provides an additional understanding of drug resistance in malaria parasites, 

specifically for compounds that require access and/or activation in the DV.  

Furthermore, the P. berghei model provides a useful sensitive and robust system 

in which to investigate the interplay and impact of simultaneous mutations of 

both Kelch13 and UBP-1 in vivo as well as assess whether Kelch13 mutations 

would modulate responses to CQ under in vivo conditions. 

 

3.4.4 Conclusion 

In conclusion, the work presented here provides further experimental evidence 

for the involvement of conserved mutations in a polymorphic ubiquitin hydrolase 

protein that serves as a nexus for resistance to two very diverse classes of drugs.  

The findings also underscore the potential difficulties that in vitro assays may 

have in appropriately assigning mutant parasites with appropriate phenotypes in 

absence of conclusive in vivo measurements. P. berghei should therefore, be a 

suitable and adaptable in vivo model for the rapid evaluation and/or genetic 

engineering of mutations associated with human-infectious Plasmodium drug 

resistance observed in the field for concurrent assigning of drug resistance 

phenotypes under both in vitro and in vivo conditions. 
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4 In vitro and in vivo phenotypes of orthologous ART resistance Kelch13 

mutations in P. berghei 

4.1 Chapter aim 

In light of the absence of appropriate in vivo models to infer causality of P. 

falciparum Kelch13 mutations in ART resistance, the aim of this chapter was to 

introduce a selected orthologous P. falciparum Kelch13 mutations in P. berghei. 

This would allow for quantification and assessment of associated ART resistance 

phenotypes under in vivo conditions which is still debated and has recently been 

disputed in P. falciparum.  

 

4.2 Introduction 

ART resistance which is primarily mediated by Kelch13 mutations is further 

complicated by high frequencies of recrudescence in ART monotherapies. The 

use of ARTs in ACTs is therefore an appropriate remedy and indeed originated 

from early clinical trials (before ART resistance emerged) that showed that 

despite achieving faster parasite clearance, ART monotherapies resulted in 

recrudescence rates of up to 40% (Li et al., 1984). ACTs deliver a 

pharmacological cure by  taking advantage of ARTs to rapidly clear the parasite 

biomass in the early days of treatment, while relying on the partner drug to 

eliminate residual parasites (WHO, 2018a). So far, ACTs remain highly effective 

in Sub-Saharan Africa, a region that harbours the highest disease burden, with 

efficacy rates of >98% (WHO, 2019). Nevertheless, ACTs have been threatened 

by the emergence and spread of resistance to ARTs in SEA, and resistance has 

the potential to spread to other malaria-endemic regions as has been a historical 

trend with prior antimalarial drugs (Dondorp et al., 2009, WHO, 2019, Ashley et 

al., 2014). Moreover, the recent aggressive expansion of a parasite lineage 

carrying the genetic determinants of both ART resistance (Kelch13 mutations) 

and resistance to the ACT partner drug piperaquine has been reported across 

SEA, further threatening the efficacy of such combinations (Hamilton et al., 

2019, van der Pluijm et al., 2019).   

 

Decreased susceptibility to ARTs is now widespread throughout SEA and 

manifests as reduced in vivo parasite clearance upon treatment with ACTs 

(WHO, 2019, Ashley et al., 2014). P. falciparum ART clearance phenotypes are 

based on the WWARN parasite clearance estimator (PCE) (Flegg et al., 2011), 
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which quantifies relative resistance by estimating parasitaemia lag phases and 

clearance half-lives upon treatment with AS or ACTs. This involves in vivo 

quantification of viable parasitaemia (in patients) upon treatment with AS (2-4 

mg/kg/day) or ACTs at specified time intervals, and subsequent graphing of 

parasite densities as a function of time (Flegg et al., 2011). The PCE has been 

used to generate massive baseline data that classifies ART resistance as 

parasites with clearance half-lives >5.5 hours and ART-sensitive parasites as 

those with clearance half-lives <3 hours (Group et al., 2015). However, 

interpretation of clearance half-lives can still be confounded by differences in 

initial parasite biomass, efficacy of partner drug and host immunity (Ataide et 

al., 2017, Group et al., 2015). Typically, ART resistance which is still classified 

as “partial resistance” is characterised by delayed in vivo parasite clearance and 

increased in vitro RSA survival which all strongly associate with genetic 

polymorphisms in the P. falciparum Kelch13 propeller domain (Section 1.5.5.2). 

Despite strong compelling reverse genetic approaches which have been 

successfully used to show that P. falciparum Kelch13 mutations such as M476I, 

R539T, I543T, Y493H and C580Y do indeed modulate increased in vitro DHA 

survival in RSAs (Straimer et al., 2015, Ghorbal et al., 2014), this remains 

obscure and controversial due to the many confounding factors to the definition 

of ART resistance especially under in vivo conditions (Section 1.5.5.2). This has 

even been made more complex with recent observations that the P. falciparum 

C580Y mutation does not replicate in vivo ART resistance phenotypes despite 

strong in vitro DHA RSA survival rates in the Aotus monkey in vivo model (Sa et 

al., 2018). 

 

Moreover, malaria drug resistance mutations are known to often associate with 

significant fitness costs (as demonstrated in Chapter 3) that can limit the 

prevalence and eventual propagation of resistance-conferring alleles in natural 

infections. For example, PfCRT mutations that modulate resistance to CQ 

massively expanded when CQ was in use in the 1970s but eventually were 

outcompeted and replaced with parasites carrying wild type alleles once the 

drug was withdrawn from use (Gabryszewski et al., 2016, Laufer et al., 2010). 

Similarly, P. falciparum Kelch13 mutations have been shown to carry in vitro 

fitness costs, however, the degree to which a given mutation is detrimental for 

growth seems to be dependent on the parasite genetic background (Straimer et 
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al., 2017). Relative to other Kelch13 mutations, P. falciparum R539T and I543T 

mutant parasites that are associated with the highest RSA survival rates 

(Straimer et al., 2015, Mbengue et al., 2015) and most significant delays in 

parasite clearance (Takala-Harrison et al., 2015) also carry the most pronounced 

fitness costs (Straimer et al., 2017). Intriguingly, the most prevalent SEA 

mutation, C580Y, is fitness neutral in vitro when experimentally introduced into 

recent Cambodian clinical isolates whereas when it is introduced into ART naïve 

parasites isolated before ARTs were widely clinically employed, it displays a 

significant growth defect (Straimer et al., 2017, Nair et al., 2018). Crucially, 

these Kelch13 mediated ART resistance phenotypes are associated with 

increased ER stress responses which can be targeted by selective inhibition of 

the downstream proteasomes to overcome resistance (Dogovski et al., 2015, Mok 

et al., 2015). 

 

This chapter describes the in vitro and in vivo phenotypes of orthologous P. 

falciparum Kelch13 mutations in the rodent malaria parasite P. berghei. Using a 

CRISPR-Cas9 genetic editing system, these mutations have been engineered in 

wild type P. berghei parasites and here in, a profile of their in vitro phenotypes 

in standard growth inhibition assays and adapted RSAs as well as their in vivo 

phenotypes upon treatment with AS and ART is provided. Fitness of these P. 

berghei Kelch13 mutant parasites relative to their isogenic wild type 

counterparts has also been assessed as well as their sensitivity to combinations 

of DHA and proteasome inhibitors.   

 

 

4.3 Results 

4.3.1 CRISPR-Cas9 mediated introduction of P. berghei orthologous Kelch13 

mutations and in vivo mutant enrichment by AS 

In order to generate P. berghei mutant parasites carrying orthologous P. 

falciparum Kelch13 mutations, an attempt was made to introduce P. berghei 

equivalents of five P. falciparum Kelch13 mutations (M476I, Y493H, R539T, I543T 

and C580Y) that, by reverse genetics, have been previously shown to confer 

enhanced in vitro DHA RSA survival (Straimer et al., 2015), as well as the F446I 

mutation that is predominant in Southern China along the Myanmar border 

(Ashley et al., 2014). These mutations are all validated determinants of reduced 
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P. falciparum susceptibility to ARTs (WHO, 2018a). Structural homology 

modelling and sequence alignment revealed that P. berghei (PBANKA_1356700) 

and P. falciparum (PF3D7_1343700) Kelch13 are highly conserved (~84% 

sequence identity overall, Appendix Figure 8.7) especially at the C-terminal 

propeller domain where resistance-conferring mutations localise (Figure 4.1a). 

P. berghei Kelch13 carries 12 extra amino acids (726 amino acids for P. 

falciparum, 738 for P. berghei, Figure 4.1b); however, modelling suggests these 

do not appear to change the overall propeller structure of Kelch13 or the amino 

acid identity at the orthologous positions of the mutations examined in this work 

(Figure 4.1a, Appendix Figure 8.7). Using a CRISPR-Cas9 system as in section 3.3 

(Appendix Figure 8.8), Cas9 plasmids carrying appropriate sgRNAs were designed 

to target the P. berghei Kelch13 locus with corresponding homology repair 

templates which carried the mutations of interest as well as silent mutations for 

PAMs and restriction sites for RFLP analysis (Appendix Table 8.1, 8.2). Episomal 

transfection of the plasmids pG1004 (C592Y), pG1005 (I555T) and pG1006 

(R551T) into the P. berghei 1804cl1 line yielded transformant parasites 

(G2022C592Y.1*, G2023C592Y.2*, G2024I555T* and G2025R551T*) with ~13.37%, ~18.53%, 

~7.74% and ~29.99% efficiencies respectively by RFLP analysis (Figure 4.1c, 

Appendix Table 8.3). Intriguingly, bulk DNA sequencing of these transformed 

parasites revealed that only the G2025R551T* line carried sequence traces for the 

R551T amino acid substitution and accompanying silent mutations (Appendix 

Figure 8.9c) while the rest had traces only of the silent mutations (Appendix 

Figure 8.9a, 8.9b). These data suggested that the C592Y and I555T mutations 

either result in extremely slow growing parasites or are entirely lethal in P. 

berghei. Attempts to clone the G2025R551T* line by limiting dilution were 

unsuccessful, possibly, due to the low mutant population (29.99%).  

 

In earlier efforts to introduce UBP-1 mutations in P. berghei (Chapter 3), it was 

demonstrated that a pre-emptive drug pressure to which the engineered 

mutation is anticipated to confer protective advantage can selectively enrich for 

the mutant in a mixed, transfected parasite population even when the mutant 

population is <1% in the mixture. Using this approach, a larger inoculum (~2 x 

107) of the G2022C592Y.1*, G2023C592Y.2*, G2024I555T* and G2025R551T* lines was 

subjected to AS at 20 or 64 mg/kg to see if any enrichment in the recrudescent 

parasite populations could be achieved (Figure 4.1d). Indeed, AS at both 20 and 
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64 mg/kg specifically enriched the R551T mutant population in the G2025R551T* 

line from 29.99% in the initial transfection to ~49.71% at AS 20 mg/kg and 

~99.78% at 64 mg/kg (Figure 4.1c, 4.1e, Appendix Table 8.3). In contrast, apart 

from a minor enrichment that was observed for the G2024I555T* line, no useful 

enrichment in both the G2022C592Y.1* and G2023C592Y.2* lines was observed by RFLP 

at either concentration of AS (Figure 4.1c, Appendix Table 8.3). Furthermore, no 

I555T or C592Y amino acid substitution traces could be seen after population-

level DNA sequencing of these lines. These data further supported the relative 

non-viability of P. berghei parasites bearing Kelch13 C592Y and I555T mutations. 

In agreement with the above observations, further attempts to introduce the 

C592Y mutation using a different sgRNA and or different codons for the tyrosine 

residue in the donor template (TAT or TAC) were also unsuccessful. A >90% 

editing efficiency was, however, observed when introducing only silent 

mutations that maintained the C592C wild type genotype in the donor template 

(Appendix Figure 8.9e, 8.9f, Appendix Table 8.3). This, plus other failed 

attempts to generate the I555T mutant further implies that these two Kelch13 

mutations are not viable in P. berghei. Meanwhile, transfection of the 1804cl1 

line with pG983 (F458I), pG984 (Y505H) and pG1008 (M488I) (Appendix Table 

8.2) successfully introduced these mutations in P. berghei Kelch13 yielding the 

G1957F458I*, G1979Y505H* and G1989M488I* lines with >93% efficiencies as confirmed 

by RFLP analysis (Figure 4.1f, Appendix Table 8.3) as well as population level 

DNA sequencing (Appendix Figure 8.9g, 8.9h, 8.9i). These three lines 

(G1957F458I*, G1979Y505H*, G1989M488I*) and the G2025R551T* AS 64 mg/kg challenged 

line were all cloned by limiting dilution and mutations further confirmed by RFLP 

analysis (Appendix Figure 8.9d) and sequencing. The V2721F UBP-1 mutant line, 

which mediates reduced susceptibility to ARTs in P. berghei (Chapter 3) was also 

generated in the 1804cl1 background and cloned (Appendix Table 8.3). 
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Figure 4.1: Introduction of orthologous Kelch13 nucleotide substitutions in P. 
berghei. 
a. 3D homology model of P. falciparum (PF3D7_1343700) and P. berghei 

(PBANKA_1356700) Kelch13 for amino acids residues 350-726 and 362-738, 

respectively. P. falciparum Kelch13 mutation sites (F446I, M476I, Y493H, R539T, I543T 

and C580Y) are indicated in the structure on the left and P. berghei orthologous mutation 

sites are modelled on the right. Models were created in SwissModel using PDB template 

4zgc.1.A. Structures were visualized and annotated using pyMol 2.3.  b. Kelch13 

schematic for the P. falciparum Kelch13 showing amino acid positions and the protein 

domains. Positions of Kelch13 mutations that have been investigated in this study are 

indicated. Equivalent amino acid positions for P. berghei are indicated in parallel at the 

BtsCI A>C PAM G>A R551T CG>AC

AS 20mg/kg AS 64mg/kg

1804WT

G2025R551T*

BtsCI A>C PAM G>A R551T CG>AC BtsCI A>C PAM G>A R551T CG>AC

original transfection
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bottom (in blue). c. RFLP analysis of transfected parasite populations before and after 

challenge with AS at 20 or 64 mg/kg for the G2022 (C592Y.1), G2023 (C592Y.2), G2024 

(I555T) and G2025 (R551T) lines.  RFLP analysis was carried out using the restriction 

enzymes shown on the bottom of the gel on PCR fragments amplified from genomic DNA 

of transfected parasites using primers binding exterior to the donor DNA (Appendix Table 

8.1, 8.3). * on the transfectant parasite lines indicates that the line is uncloned. d. 

Parasitaemia growth curves monitoring recrudescence of the G2022, G2023, G2024 and 

G2025 lines upon AS challenge. Mice were infected with ~2 x 107 parasites by IP injection 

on day 0. Treatment with AS was commenced ~3 hours post infection by IP and was 

continued for three consecutive days as indicated by arrows. Parasitaemia was monitored 

microscopically until recrudescence was observed. Mice were bled when the parasitaemia 

was less than 1.5% to minimize competition from wild type parasites in case mutants 

carried growth defects. e. Sanger sequencing of bulk DNA from the G2025 R551T line 

showing selective enrichment of this mutation upon AS treatment at 20 or 64 mg/kg. 

Enrichment of this mutation was also observed in the RFLP analysis shown in c. f. RFLP 

analysis of parasite bulk populations for the G1957 (F458I), G1979 (Y505H), G1989 

(M488I) transfected lines. RFLP analysis was carried out using the restriction enzymes 

shown on the bottom of the gel as described above. 

 

 

4.3.2 P. berghei Kelch13 mutants display reduced susceptibility to DHA in a 

standard 24-hour in vitro assay   

Unlike P. falciparum, P. berghei can only be maintained in one blood stage cycle 

in vitro which restricts drug susceptibility assays to one developmental 24-hour 

cycle, with readouts based on flow cytometry quantification of schizont 

maturation (Franke-Fayard et al., 2008, Janse et al., 1994b). Using this 

approach, DHA dose-responses of the P. berghei Kelch13 mutants were 

characterised and compared to wild type parasites or to UBP-1 mutant parasites 

with ART reduced susceptibility (Chapter 3). Interestingly, in contrast with the 

equivalent P. falciparum Kelch13 mutants, P. berghei M488I, R551T and Y505H 

Kelch13 mutant parasites display reduced susceptibility to DHA in standard 

growth inhibition assays with 3.3, 1.4 and 1.2-fold IC50 increases, respectively, 

as compared to isogenic Kelch13 wild type parasites (Figure 4.2). The P. berghei 

F458I Kelch13 mutant displayed equal sensitivity to DHA as the wild type, as did 

the UBP-1 V2721F mutant (Figure 4.2) which is in agreement with similar 

observations in Chapter 3. These data suggest that despite being limited to a 

single cycle 24-hour exposure, the P. berghei standard assay can distinguish even 
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modestly ART-resistant parasites from sensitive ones, unlike equivalent assays in 

P. falciparum.  

 

      
Figure 4.2: DHA dose response curves and IC50 values for P. berghei Kelch13 
mutant lines as compared to wild type 1804WT and the UBP-1 G1980V2721F mutant 
line. 
Error bars show standard deviation calculated from three biological repeats. Statistical 

significance was calculated using one-way ANOVA alongside the Dunnet’s multiple 

comparison test. Significance is indicated with asterisks; ns not significant *p < 0.05, 

**p < 0.01, ****p < 0.0001. 

 

 

4.3.3 P. berghei Kelch13 mutants display increased survival in an adapted 

RSA 

To assess DHA susceptibility of early ring stage parasites of the P. berghei 

Kelch13 mutants, the P. falciparum RSA (Witkowski et al., 2013) was adapted for 

P. berghei and used to profile survival rates of the mutants after short term 

exposure to DHA pulses. The P. falciparum RSA relies on exposure of early ring-

stage parasites (0-3 hours post invasion) to DHA at a pharmacologically relevant 

concentration (700 nM) for 4-6 hours, followed by assessment of viability in the 

2nd life cycle which allows drug-exposed parasites to re-invade fresh RBCs. With 

this approach, current RSA parameters define in vitro ART resistance as survival 

of ≥1% and ART sensitivity as <1% survival (Witkowski et al., 2013). Using a 
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similar approach, ~1.5-hour old post invasion P. berghei Kelch13 mutant ring-

stage parasites were exposed to DHA at 700 nM for 3 hours (to accommodate for 

the shorter life cycle in P. berghei). Viability was assessed 24 hours later by flow 

cytometry-based quantification of schizont maturation and mCherry expression. 

Interestingly, a significant fraction of the P. berghei wild type parasites survive 

exposure to DHA at 700 nM, with percentage survival rates of ~20.9% (Figure 

4.3a). This is in agreement with previous observations that P. berghei is less 

susceptible to ARTs as compared to P. falciparum (Lee et al., 2018). Both the 

UBP-1 mutant and F458I or Y505H Kelch13 mutant parasites had the same 

survival rates as the wild type line, while the M488I and R551T mutants 

exhibited significantly higher survival rates (32.3% or 39.0% respectively) (Figure 

4.3a). This is consistent with previous reports that in P. falciparum, the R539T 

mutation together with the I543T mutation are associated with the highest rates 

of RSA survival (Straimer et al., 2015). However, there were clear 

inconsistencies between drug susceptibility of the mutants in the standard assay 

(Figure 4.2) and the adapted RSA (Figure 4.3a). This may be due to the inability 

to maintain P. berghei in long-term culture and extend the analysis beyond the 

24-hour read out. Therefore, a modified in vivo RSA was developed where 

parasites (wild type, UBP-1 V2721F, M488I and R551T mutants) were injected 

back into mice 24 hours after DMSO or DHA exposure as in the adapted RSA 

described above. Viability was then assessed by quantifying in vivo parasitaemia 

on Day 4. Remarkably, percentage survival in the R551T mutant parasites 

significantly increased from ~39.0% (24-hours readout) to ~62.5%, while M488I 

mutant parasites survival increased from ~32.3% (24-hours readout) to ~38.0% 

(Figure 4.3b). In contrast, the percentage survival of the wild type and UBP-1 

mutant (which has a minor growth defect) did not significantly change in the 

extended assay, demonstrating that the P. berghei in vitro RSA and standard 

growth inhibition assays with 24-hour readouts may be less robust in quantifying 

resistance phenotypes, especially if mutant parasites are less fit.  
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         a 

                            
          b  

                                
Figure 4.3: RSA survival of P. berghei Kelch13 mutants. 
a. Results show the percentage of synchronized early ring-stage parasites (1.5 hours post 

invasion) that survived a 3-hour exposure to 700 nM of DHA relative to DMSO-treated 

parasites.  Survival was quantified 24 hours post treatment by flow cytometry analysis 
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based on Hoescht 33258 DNA staining and mCherry expression. b. In vivo RSA survival 

for two Kelch13 mutant lines (G1989M488I and G2025R551T) as compared to the wild type 

(1804WT) and UBP-1 mutant (G1980V2721F) controls.  After in vitro exposure to DHA or 

DMSO as described above, parasites were IV injected back into mice as described in 

methods. Parasitaemia was quantified by flow cytometry analysis of mCherry expression 

on Day 4 post IV, from which % survivals were calculated. Error bars show standard 

deviation calculated from three biological repeats. Statistical significance was calculated 

using one-way ANOVA alongside the Dunnet’s multiple comparison test. Significance is 

indicated with asterisks; ns not significant, ****p < 0.0001. 

 

 

4.3.4 P. beghei Kelch13 mutants mimic the delayed parasite clearance 

phenotype in vivo upon AS treatment 

In order to determine the clearance kinetics of the P. berghei Kelch13 mutants 

upon AS treatment, in vivo parasite clearance rates in mice with established 

infections were investigated. Parasite clearance rates are important measures of 

drug efficacy (White, 2011), particularly in the case of ARTs, which show 

accelerated clearance of ring-stage parasites (White, 2008) and manifest 

delayed clearance phenotypes as a mode of resistance (Dondorp et al., 2009). To 

monitor equivalent clearance of P. berghei Kelch13 mutants, mice were infected 

with a fixed inoculum of Kelch13 and UBP-1 mutant parasites (~105) in four 

cohorts and allowed the parasitaemia to rise to ~10%. This was followed by 

dosing with AS at 64 mg/kg, which is slightly higher than the equivalent of the 

maximal human clinical dose of 4 mg/kg (mouse equivalent = 49.2 mg/kg) to 

accommodate for the reduced ART susceptibility observed in P. berghei 

parasites. Parasitaemia was quantified by flow cytometry (mCherry positivity) 

and microscopic analysis every 3 hours for the first 24 hours and at least once 

after the second and third doses at 24 and 48 hours respectively. Plotting of 

parasite density in P. berghei Kelch13 and UBP-1 mutant parasites against time 

revealed that in the first 24-hours of sampling, parasite clearance kinetics do 

not sufficiently discriminate Kelch13 or UBP-1 mutant parasites from wild type. 

However, as the majority of dying parasites were cleared by the host and mice 

received further doses, extended analysis revealed that P. berghei M488I and 

R551T mutant parasites consistently and significantly persisted compared to the 

wild type, F458I, Y505H and UBP-1 mutant parasites (Figure 4.4a, Appendix 

Figure 8.10a-c).  
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Starting AS treatment at a high initial parasitaemia (~10%) also ensured a good 

proportion of parasites would be within the early ring-stage window and 

therefore, would be expected to preferentially survive the first AS dose.  

Surviving rings could be easily distinguished as viable trophozoites at 18, 21 and 

24 hours by microscopic examination of blood smears, which enabled 

comparisons of the drug responses between parasite lines.  Therefore, a 

concurrent collection and analysis of thin blood smears was carried out at all 

time points examined for flow analysis (Figure 4.4a, Appendix Figure 8.10a-c). 

These analyses demonstrated that enhanced survival of the first AS dose was 

evident for all four P. berghei Kelch13 mutant parasites as well as the UBP-1 

mutant compared to wild type (Figure 4.4b, Appendix Figure 8.10d). Microscopy 

provided a more sensitive discrimination than the flow estimation of clearance 

kinetics, which was unable to distinguish mutant from wild type parasites in the 

first 24 hours.  

 

      a      
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Figure 4.4: In vivo clearance kinetics and microscopy analysis of P. berghei 
Kelch13 mutants upon AS treatment. 
a. Parasite clearance curves in mice infected with Kelch13 mutant lines following 

treatment with AS. Six mice (in four cohorts) were infected with ~105 parasites of each of 

the four Kelch13 mutants, the UBP-1 mutant and wild type control on day 0. On day 5, at 
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a parasitaemia of ~10%, mice were dosed with AS at 64 mg/kg. Day 5 was the designated 

0 hours for the dosing regimen. Parasite density per μl of blood was quantified based on 

absolute counts of mCherry positive parasites at staggered time points for each of the two 

cohorts, with 5 time points in the first 24 hours (corresponding to at least 3-hour interval 

coverage between the two cohorts) and at least once daily thereafter. Mice were dosed 

three times at 0, 24 and 48 hours as indicated by arrows. Concurrent thin blood smears 

were prepared at each time point for microscopic analysis. b. i-vi. Microscopic analysis of 

Giemsa-stained thin blood smears showing preferential survival of UBP-1 (ii) and Kelch13 

mutant parasites; G1957F458I  (iii), G1979Y505H (iv)  , G1989M488I (v) and G2025R551T (v) as 

compared to wild type parasites (i)  upon treatment with AS for cohorts 1 and 2. Smears 

were taken at time points corresponding to those shown in the clearance plots in Figure 

4.4a, Appendix Figure 8.10a-c.  2nd and 3rd dose treatment days are indicated by black 

arrows. Red arrows indicate viable parasites. Viability was deemed significant if at least 4 

viable parasites were observed in minimum of 10 microscopic fields. 

 

 

False positives could be due to continual retention of mCherry positivity by dying 

parasites, as for instance, a significant proportion of wild type parasites 

remained mCherry positive and were counted as viable by flow cytometry 

(Figure 4.4a, Appendix Figure 8.10a-c) while microscopically, they were pyknotic 

forms (Figure 4b i, Appendix Figure 8.10d i). Remarkably, the M488I and R551T 

mutants remained smear positive after two consecutive AS doses (Figure 4.4b v, 

4.4b vi, Appendix Figure 8.10d v, 8.10d vi) while the wild type, F458I, Y505H or 

UBP-1 mutant parasites were cleared (microscopically smear negative) after 48 

hours (Figure 4.4b i, ii-iv, Appendix Figure 8.10d i, ii-iv). These data suggest that 

the M488I and R551T mutants meet the classical definition of ART resistance as 

defined by the WHO, which is based on day 3 (second generation) microscopy 

positivity if the duration of the P. berghei life cycle and dosing intervals are 

accounted for (WHO, 2018a). One of the four mice in the M488I treatment group 

remained smear positive after three consecutive AS doses (Figure 4.4b v). These 

data clearly show that P. berghei Kelch13 mutants modulate in vivo 

susceptibility to ARTs resulting in a persister/delayed clearance phenotype 

under controlled conditions of initial parasite biomass and host immune status 

(naïve mice of same age, gender, breed and genetic background were used).  
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4.3.5 P. beghei Kelch13 mutants achieve faster recrudescence than wild 

type parasites at higher ART doses 

Another in vivo marker of reduced ART susceptibility in P. falciparum is the rate 

of recrudescence upon AS treatment, which acts as a possible indicator of AS 

treatment failure. However, at pharmacologically safe doses in humans, ART 

treatment leads to >40% recrudescence rates (Li et al., 1984), making it difficult 

to use this approach to separate clinically ART-sensitive from ART-resistant 

parasites. This can also be further confounded by differences in the starting 

parasite inoculum, drug dosing strategies as well as the relative fitness of 

mutant parasites. P. berghei Kelch13 mutants, therefore, provide the 

opportunity to test for recrudescence rates using controlled parasite inocula as 

well as AS or ART dose ascendency, which could potentially provide separation 

between mutant and wild type parasites. Such experiments are practically and 

ethically not feasible in human malaria.  Groups of 3-4 mice were thus infected 

with ~106 parasites of the four Kelch13 mutants, the UBP-1 V2721F mutant and 

wild type parasites. Mice were then dosed with ART at 80mg/kg starting from 

three hours post infection for three consecutive days. This ART dose sufficiently 

suppresses the wild type for up to 18 days of follow-up (Section 3.3.3). At this 

dose, all UBP-1 mutant infections recrudesced 11 days after the last ART dose 

while no recrudescence (0%) was observed for the wild type, which is in 

agreement with previous observations (Section 3.3.3) (Figure 4.5, Appendix 

Table 8.4).  R551T mutant parasite infections achieved even faster 

recrudescence, 50% on day 4 after the last dosing and 100% a day later, 

indicating a higher level of in vivo resistance for this Kelch13 mutation than for 

the comparative UBP-1. M488I mutant parasites had a similar recrudescence 

profile beginning on day 6. The Y505H and F458I mutant lines both achieved 

recrudescence at approximately the same time as the UBP-1 mutant; however, 

the latter achieved only 50% recrudescence across the 18-days follow-up period 

(Figure 4.5, Appendix Table 8.4). These data further confirm that P. berghei 

Kelch13 mutants modulate in vivo susceptibility to ARTs and crucially, that 

recrudescence rates strongly correlate with in vitro DHA RSA profiles (Figure 

4.3) as well as in vivo clearance kinetics in established infections (Figure 4.4, 

Appendix Figure 8.10). 
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Figure 4.5: In vivo recrudescence rates of P. berghei Kelch13 mutants upon 
treatment with ART. 
Kaplan–Meier plots of recrudescence in wild type and UBP-1 mutant controls as 

compared to Kelch13 mutants. A modified Peters’ 4-day suppressive test was used to 

monitor susceptibility of the Kelch13 mutants to 80 mg/kg ART, a dose that effectively 

suppresses wild type parasites for up to 18 days. Groups of three (UBP-1 mutant, 1804WT) 

or four mice (Kelch13 mutants) were infected with ~1 x 106 parasites on day 0. ART 

treatment was initiated ~3 hours later and continued every 24 hours for three consecutive 

days (treatment days shown by arrows). Parasitaemia was monitored by microscopic 

analysis of Giemsa-stained blood smears up to day 18 (Appendix Table 8.4). 

Recrudescence rates were plotted as the proportion of mice in the treatment groups that 

became smear positive on every individual day for the 18 days of follow-up. 
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4.3.6 P. berghei Kelch13 mutants are associated with an in vivo fitness cost 

but are preferentially selected for in the presence of AS or CQ 

To assess the fitness of the P. berghei Kelch13 mutants, direct head-to-head 

competitions with wild type parasites under in vivo growth conditions were 

performed. P. berghei Kelch13 or UBP-1 mutant lines or the parental 1804WT 

(mCherry positive) line were mixed at a 1:1 ratio with the G159WT (GFP-positive) 

line and injected into mice, after which changes in the proportion of GFP- or 

mCherry-positive parasites in the competition mixture were quantified by flow 

cytometry over 9 days. These assays revealed that the F458I and Y505H mutant 

parasites were fitness neutral relative to the G159WT line while the M488I and 

R551T mutants carried significant fitness costs (Figure 4.6a-d). Both the M488I 

and R551T mutations were associated with high levels of reduced susceptibility 

to DHA in vitro (Figure 4.3), delayed clearance kinetics (Figure 4.4a, Appendix 

Figure 8.10a-c), and faster recrudescence following ART treatment in vivo 

(Figure 4.5, Appendix Table 8.4). Comparatively, the R551T mutant parasites 

had a more severe growth defect than the M488I mutants and were completely 

outcompeted by the GFP-positive wild-type line by day 7 (Figure 4.6c, 4.6d). 

This is consistent with previous observations of high in vitro fitness costs for the 

equivalent P. falciparum R539T mutation (Straimer et al., 2017).  In comparisons 

to the G159WT line, the parental wild type line (1804WT) was fitness neutral while 

the UBP-1 V2721F mutant carried a minor growth defect as previously observed 

(Section 3.3.4) (Appendix Figure 8.11a, 8.11b).  To examine the potential for 

preferential survival of P. berghei Kelch13 mutants in competition mixtures with 

the wild type (as described above) upon AS treatment, an examination of the 

proportions of GFP versus mCherry-positive parasites was carried out following 

drug treatment at the time of recrudescence. Mutant parasites were mixed at 

1:1 ratio with the G159WT line, injected into mice and treated with AS at 50 

mg/kg beginning 3 hours after infection for three consecutive days. Monitoring 

of recrudescence up to day 9 revealed that, upon AS treatment, the M488I and 

R551T mixtures recrudesced slightly faster than the wild type mixture and were 

highly enriched for the mutant population (>90%) at the time of recrudescence 

(Figure 4.6f, 4.6g). The F458I and Y505H mutant mixtures recrudesced slightly 

later (Figure 4.6e), as did the UBP-1 V2721F mutant (Appendix Figure 8.11d) and 

were all significantly enriched for the mutants. In contrast, the proportions of 

GFP-positive versus mCherry-positive parasites in the parent 1804WT and G159WT 
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competition mixture after AS treatment did not change at the time of 

recrudescence (Appendix Figure 8.11c). These data show that mutant P. berghei 

Kelch13 parasites are preferentially selected for upon AS treatment, despite 

some carrying growth defects that rendered them at a complete competitive 

disadvantage in the absence of drug. 

 

Recently, it has been shown that P. falciparum Kelch13 localises to the parasite 

cytostomes and plays a role in parasite haemoglobin endocytosis and trafficking 

DV (Birnbaum et al., 2020, Yang et al., 2019). Kelch13 mutations lead to a 

partial loss of function to this protein which impairs haemoglobin endocytic 

uptake henceforth lessening ART activation which culminates into a parasite 

resistance phenotype (Yang et al., 2019). Inactivation of Kelch13 interacting 

components such as Eps15, UBP-1 and AP-2µ which are involved in the Kelch13 

endocytic pathway also impact haemoglobin uptake and, more importantly, 

mimic ART resistance phenotypes (Birnbaum et al., 2020).  In the meanwhile, 

mutations in AP-2µ or UBP-1 do not just modulate susceptibility to ARTs, but to 

other drugs such as CQ which may need endocytic uptake into the DV or require 

sufficient haemoglobin endocytosis (exposure to haem moieties) to exert their 

activity (Hunt et al., 2007, Henrici et al., 2019a, Birnbaum et al., 2020). P. 

berghei Kelch13 mutant parasites with strong ART resistance phenotypes might, 

therefore, be able to modulate susceptibility to CQ (to some degree) through a 

similar dysregulation of the endocytic pathway. Using the in vivo competition 

assay under drug pressure as with AS above, the parental 1804WT line, the UBP-1 

V2721F line and the Kelch13 R551T mutant line were mixed at 1:1 ratio with the 

G159WT line and treated with CQ at 15 mg/kg. At the time of recrudescence, the 

proportion of 1804WT parasites (mCherry-positive) did not significantly change as 

compared to the proportion of GFP-positive G159WT parasites (Appendix Figure 

8.11c). In comparison, the UBP-1 V2721F mutant was enriched to ~70% (Appendix 

Figure 8.11d), which mirrors previous observations that this mutation can indeed 

be selectively enriched by CQ (section 3.3.2). Interestingly, upon CQ treatment, 

the combination of R551T mutant parasites and the G159WT line achieved 

recrudescence at almost the same rate as under AS pressure, with mutant 

parasites enriched to ~72% (Figure 4.6g). These data suggest that Kelch13 

mutations can contribute to low level protection to CQ (Birnbaum et al., 2020, 

Yang et al., 2019). 
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Figure 4.6: Relative fitness of P. berghei Kelch13 mutants in presence or absence of 
AS or CQ. 
Growth competition assays with Kelch13 mutant lines that constitutively express mCherry 

as compared to the wild type G159WT line that constitutively expresses GFP in the 

presence or absence of drug pressure. The G159WT line was mixed with a given mutant 

line at 1:1 ratio in three groups of mice on Day 0. The first group was left untreated, the 

second group received a dose of AS at 50 mg/kg starting from 3 hours after IP injection, 

for three consecutive dose while the third group consisting of the 1804WT , G1980V2721F 

and one Kelch13 mutant (G2025R551T) received CQ at 15 mg/kg at similar dosing times as 

AS.  Percentages of mCherry or GFP positive parasites were determined by flow 

cytometry as described in methods. a-d. Percentage population changes as measured by 

flow cytometry of the G1957F458I (a), G1979Y505H (b), G1989M488I (c) and G2025R551T (d) 

mutant lines relative to the G159WT wild type line. e-g. Proportion representation of the 

G159WT line in mixture with G1957F458I and, G1979Y505H (e), G1989M488I (f) and G2025R551T 

(g) lines on the days of recrudescence upon treatment with AS or CQ as indicated.  
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4.3.7 A Plasmodium-selective proteasome inhibitor is potent against P. 

berghei wild type and Kelch13 mutant parasites and synergizes DHA 

action 

An enhanced cell stress response characterised by upregulation of genes in the 

unfolded protein response (UPR) is a typical signature of ART resistant parasites 

(Mok et al., 2015).  Resistant parasites (Kelch13 mutants) also display enhanced 

activity of the UPS, a conserved eukaryotic pathway that acts downstream of the 

UPR by degrading unfolded proteins (Bridgford et al., 2018, Dogovski et al., 

2015). UPS inhibitors are available for cancer treatment and have been shown to 

synergize DHA activity in wild type and Kelch13 mutant P. falciparum both in 

vitro and in vivo marking them as promising agents for overcoming ART 

resistance (Dogovski et al., 2015, Li et al., 2016). The Plasmodium selective 

proteasome inhibitor, EY5-125 is a potent antimalarial (standard IC50 = 19 nM) 

and also acts in synergy with ART against both ART resistant and sensitive P. 

falciparum strains in vitro (Yoo et al., 2018). Therefore, the efficacy of EY5-125 

against P. berghei wild type and Kelch13 mutant parasites was tested as well as 

its potential ability to synergize DHA action. P. berghei wild type and the most 

ART-resistant Kelch13 mutant (R551T) were equally sensitive to EY5-125 (Figure 

4.7a, 4.7b) which is consistent with previous reports for this class of compounds 

against wild type and Kelch13 mutant P. falciparum lines (Stokes et al., 2019, 

Yoo et al., 2018). Compared to P. falciparum (standard IC50 ~19 nM and 1hr 

IC50~648 nM), EY5-125 is much less potent in P. berghei in both standard in vitro 

growth inhibition (IC50 = ~700 nM) and 3-hour assays (IC50 = ~1900 nM) 

respectively (Figure 4.7a, 4.7b). These differences could be due to species-

specific differences in drug sensitivity as has been observed with ARTs, Figure 

4.3, (Lee et al., 2018) and many other drugs (Fidock et al., 2004).  However, 

combinations of DHA and EY5-125 in fixed ratio isobologram analyses revealed a 

strong synergistic interaction against the P. berghei parent wild type and 

Kelch13 M488I and R551T mutant lines (Figure 4.7c-e). The in vivo RSA (Figure 

4.3b) was also employed to examine whether a combination of DHA at 700 nM 

and EY5-125 at the equivalent 3-hour IC50 (1.94 µM) or 2x IC50 (3.88 µM) could 

impact the parasite survival rates. Indeed, at both 3-hour IC50 or 2x IC50 

concentrations, EY5-125 strongly synergized DHA (700nM) as evidenced by 

significant abrogation of survival for both the wild type and R551T mutant lines 

(Figure 4.7e). These data demonstrated that proteasome inhibitors synergize 
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DHA action in P. berghei Kelch13 mutants equally as well as wild type parasites 

both in vitro and in vivo and have the potential to be used to overcome ART 

resistance. 

             a 
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Figure 4.7: Activity and DHA synergy of proteasome inhibitor in P. berghei Kelch13 
mutants. 
a, b. Dose response curves and mean IC50 values for the Plasmodium-selective 

proteasome inhibitor EY5-125 for the wild type 1804WT and Kelch13 mutant G2025R551T 

lines in standard 24-hour assays (a) or 3-hour exposure assays conducted on early ring-

stage parasites (b). Mean IC50 is a calculated average for the 2 lines independently 

screened in 3 biological repeats. c-e. Isobologram plots and ∑FIC50 values representing 

the interaction between DHA and EY5-125 in the wild type 1804WT, G1989M488I and 

G2025R551T lines. FIC50 plots and ∑FIC50 values are mean values for each drug ratio 

calculated from three biological repeats. f. Synergy of EY5-125 proteasome inhibitor with 

DHA in the in vivo RSA. After exposure to DMSO or DHA at 700 nM alone or in 

combination with EY5-125 at 3-hour IC50 or 2x IC50, parasites were injected back into mice 

24 hours later. Parasitaemia in mice infected with drug or DMSO-treated parasites was 

determined by flow analysis of mCherry expression on Day 4 post IV injection and used to 

calculate percent survivals relative to DMSO-treated parasites. Error bars are standard 

deviations from three biological repeats. Statistical significance was calculated using one-

way ANOVA alongside the Dunnet’s multiple comparison test. Significance is indicated 

with asterisks; ****p < 0.0001. 
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4.4 Discussion 

In this study, CRISPR-Cas9 genome editing was successfully employed to 

introduce four of the six targeted orthologous P. falciparum Kelch13 (F446I, 

M476I, Y493H, R539T) mutations in the Kelch13 gene of the rodent model of 

malaria P. berghei. Meanwhile, introduction of two mutations (C580Y and I543T) 

could not be achieved. As questions and debates continue on the role of Kelch13 

in mediating susceptibility to ARTs, particularly in vivo, phenotyping of these P. 

berghei Kelch13 (F458I, M488I, Y505H and R551T) mutants has provided 

experimental evidence for the ability of Kelch13 to confer in vivo resistance to 

ARTs and in a naïve genome background. These mutants displayed reduced in 

vitro susceptibility to DHA, and more importantly phenocopied P. falciparum 

delayed clearance phenotypes. Moreover, these Kelch13 mutants achieved faster 

recrudescence upon ART treatment under in vivo growth conditions. As in P. 

falciparum, certain P. berghei Kelch13 mutations carry significant growth 

defects, which further highlights the structural and functional conservation of 

this protein across the two Plasmodium species while at the same time 

illustrating the fitness trade-offs that acquisition of such mutations exerts on 

malaria parasite physiology. 

 

4.4.1 Acquisition of certain Kelch13 mutations may require permissive 

genetic backgrounds 

ART resistance, principally associated with mutations in Kelch13, is now almost 

endemic in SEA with risks of spreading threatening the utility of ACTs that are at 

the forefront of malaria control programs (WHO, 2019). The P. falciparum C580Y 

Kelch13 mutation is the most prevalent (>50% prevalence) and has reached 

fixation in most parts of SEA (Menard et al., 2016, Miotto et al., 2015). Why the 

P. falciparum C580Y mutation is so successful as compared to other Kelch13 

mutations remains unclear. For instance, this mutation does not associate with 

high RSA survival rates as compared to P. falciparum R539T or I543T mutations 

nor are treatment failure rates and parasite clearance rates more significant in 

C580Y-harbouring parasites as compared to other Kelch13 mutants (Anderson et 

al., 2017, Phyo et al., 2016a, Straimer et al., 2015).  Do fitness constraints, 

founder genetic landscapes or species-specific differences between P. berghei 

and P. falciparum Kelch13 explain failed attempts to introduce the C592Y or 

I555T mutations in P. berghei?  The structural homology model of the Kelch13 
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propeller domain presented here demonstrates that this Kelch13 region is highly 

conserved between P. berghei and P. falciparum, with identical amino acids at 

the sites of mutations associated with ART resistance.  Failed attempts to 

introduce the P. berghei C592Y or I555T mutations could therefore be more 

related to growth disadvantages or other deleterious effects. For example, in P. 

falciparum, the equivalent I543T and R539T mutations carry the most 

pronounced fitness costs (Straimer et al., 2017) which would partly explain 

failure to introduce the I555T mutation in P. berghei.  Moreover, P. berghei 

Kelch13 mutations were introduced into ART naïve PBANKA parasites with no 

history of ART exposure. These parasites might therefore be more sensitive to 

fitness impacts conferred by the I555T or C592Y substitutions, as it was 

previously demonstrated for the latter that introduction of the equivalent P. 

falciparum C580Y in parasites isolated before ART was clinically introduced 

carried significant growth defects as opposed to when it was introduced in more 

recent Cambodian isolates where it was fitness neutral (Straimer et al., 2017). 

Moreover, a less successful Kelch13 allele, P. falciparum R561H that associates 

with significant delays in parasite clearance and peaked in prevalence in 2012 

but has since declined (Anderson et al., 2017); easily outcompetes the P. 

falciparum C580Y mutation in head to head competitions (Nair et al., 2018). 

These data suggest that acquisition and propagation of certain P. falciparum 

Kelch13 alleles, mostly the C580Y substitution, require appropriate founder 

architectures to compensate for the deleterious phenotypes. In these situations, 

Kelch13 mutations (P. falciparum C580Y for example), would arise in a necessary 

compensatory background that mitigates the deleterious growth effects leading 

to an initial soft sweep. In case of ACTs, these compensatory backgrounds may 

also serve as general templates upon which partner drug resistance mutations 

might arise as seems to be the case with the recent aggressive expansion of 

parasite co-lineages carrying the P. falciparum C580Y mutation and piperaquine 

resistance determinants (Hamilton et al., 2019, van der Pluijm et al., 2019). 
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4.4.2 Some P. berghei Kelch13 mutations carry a pronounced fitness cost 

Introduction of the P. falciparum R539T equivalent in P. berghei (R551T) was 

achieved despite low editing efficiency in the initial transfection. Selection with 

AS applied in vivo was, however, used to enrich for this mutation yielding almost 

clonal levels of the P. berghei R551T mutants. Similar to the P. falciparum 

R539T mutants, clonal P. berghei R551T mutant parasites carried the strongest 

DHA resistance phenotypes in vitro as well as the clearest AS or ART resistance 

profiles in vivo.  The P. falciparum R539T and I543T mutations occur at 

relatively low frequencies in SEA with the prevalence of both mutations ranging 

between 0.3-3.5% (Takala-Harrison et al., 2015, Menard et al., 2016, Malaria, 

2016). This could be due to the pronounced fitness cost of these mutations 

(Straimer et al., 2017) limiting their expansion which was also observed with the 

P. berghei R551T mutant parasites. The combination of a naive genomic 

background and species-specific differences can also be invoked to explain some 

phenotypic differences (growth rate and level of ART resistance) seen between 

mutant lines of P. falciparum and P. berghei Kelch13 as observed in this study.  

For example, P. falciparum Y493H mutants clearly associate with increased RSA 

survival (Ariey et al., 2014, Straimer et al., 2015) and delayed parasite 

clearance phenotypes (Amaratunga et al., 2014, Takala-Harrison et al., 2015, 

Ariey et al., 2014) unlike the P. berghei counterpart (Y505H) which display low 

level resistance to ARTs in vitro (in the standard assay but not in the adapted 

RSA) and in vivo. This could indeed be due additional underlying genetic factors 

in P. falciparum isolates providing an additive effect to the observed phenotypes 

which would be absent in naive P. berghei.  Nevertheless, the other tested P. 

berghei Kelch13 mutations do, however, appear to directly reflect the impact of 

the equivalent mutations in P. falciparum.  Both P. berghei F458I (this work) and 

P. falciparum F446I Kelch13 mutants are fitness neutral (Siddiqui et al., 2020), 

offer no advantage in their RSA tests (Siddiqui et al., 2020, Wang et al., 2018) 

yet appear to offer ART protective phenotypes in vivo (Wang et al., 2015d, 

Huang et al., 2015, Tun et al., 2016). Furthermore, P. berghei M488I Kelch13 

mutants display a significant growth defect phenotype which has not yet been 

characterised in the P. falciparum equivalent (M476I) and might explain its 

relative scarcity in SEA (Tun et al., 2015, Nyunt et al., 2014).   
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4.4.3 Proteasome inhibition off-sets ART resistance in P. berghei Kelch13 

mutants 

Enhanced proteostasis is a characteristic signature of P. falciparum Kelch13 ART 

resistant parasites which is typified by upregulation of genes in the UPR as well 

as enhanced activity of the UPS (Mok et al., 2015, Dogovski et al., 2015, 

Bridgford et al., 2018). Inhibition of the UPS by 20s proteasome inhibitors 

synergizes DHA action both in vitro and in vivo, which has offered a potential 

avenue to overcome ART resistance (Dogovski et al., 2015). Despite UPS 

inhibitors (which are clinically available for treatment of certain cancers) 

displaying activity in malaria parasites and synergising DHA action, their 

translation into animal studies has been limited by host toxicity (Li et al., 2012, 

Gantt et al., 1998). Recent structure-based design of Plasmodium selective 

proteasome inhibitors has provided classes of compounds with a wider 

therapeutic window and improved host toxicity profiles (Li et al., 2016, Yoo et 

al., 2018). These inhibitors not only display activity in diverse genetic 

backgrounds of P. falciparum including those harbouring Kelch13 mutations but 

also synergize DHA action (Stokes et al., 2019). Even though the P. berghei 

proteasome structures have not been solved, functional and life cycle 

conservation between this parasite and P. falciparum is pronounced.  Therefore, 

using EY5-125, an inhibitor selective for the P. falciparum proteasome (Yoo et 

al., 2018), similar activity and synergy with DHA in P. berghei wild type and 

Kelch13 ART resistant mutants is demonstrated. More importantly, these 

activities are demonstrated in vivo, which significantly strengthens the potential 

of these compounds in overcoming ART resistance. 

 

4.4.4 Conclusion  

In conclusion, this work provides experimental evidence that Kelch13 mutations 

modulate in vitro and in vivo susceptibility to ARTs in the P. berghei rodent 

model of malaria.  The cause and effect link between P. falciparum Kelch3 

mutations with reduced ART susceptibility is strong (Straimer et al., 2015, Ariey 

et al., 2014).  However, the reason for ART clinical failure has remained obscure 

because, in some cases,  delayed parasite clearance phenotypes have been 

reported in parasites carrying wild type Kelch13 alleles (Kheang et al., 2017, 

Mukherjee et al., 2017). This confusion is further compounded by a lack of 

correlation between Kelch13 mutations and parasite clearance half-lives or the 
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frequencies of recrudescence in certain cases of ART monotherapies (Kheang et 

al., 2017). As demonstrated in this study, some of these observations may be 

attributable to fitness defects in mutant parasites which confound the 

interpretation of recrudescence rates. These fitness differences might be 

especially relevant at the relatively low ART doses used in humans, which are 

already known to permit higher rates of recrudescence (Li et al., 1984). 

Although a recent genetic cross of the P. falciparum Kelch13 C580Y mutant 

parasites with Aotus infecting strains demonstrated a lack of association of this 

mutation with in vivo ART resistance (recrudescence and clearance half-lives) 

(Sa et al., 2018), this could be due to  1) the AS doses used being insufficiently 

high to clearly separate the lineages;  2) the small sample sizes used; and 3) the 

inherent limitation of using heterogenous Aotus monkeys from varying history of 

parasite exposure and spleen status (spleen intact or splenectomised). 

Nevertheless, the in vitro and in vivo phenotypes for the P. falciparum F446I, 

M476I, Y493H and R539T Kelch13 mutation equivalents in P. berghei, presented 

here, support their direct involvement in mediating resistance to ARTs. These 

data also provide a robust immune-replete rodent host model to test for 

synergistic antimalarial combinations that can restore ART efficacy and 

overcome ART resistance.  Continued tracking of the emergence and spread of 

Kelch13 mutations should thus help in mitigating the spread of ART resistance as 

well as the preservation of this important class of antimalarial drugs through the 

identification of suitable partners. 
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5 Small molecule inhibitors of mammalian deubiquitinating enzyme display 

activity in malaria parasites and show evidence of potentiating ART 

action 

5.1 Chapter aim 

As resistance to front line antimalarial drugs, ARTs, emerges, there is urgent 

need to develop replacement antimalarial drugs or rescue the emergent 

resistance by identifying suitable partner drugs. The latter approach is being 

actively pursued through targeted inhibition of the downstream component of 

the UPS, the 20s proteasome, in classical MOA and MOR informed strategies. As 

demonstrated in Chapter 3, ART resistance (reduced susceptibility) can also be 

mediated by mutations in upstream UPS components, DUBs, offering another 

potential arm of the UPS which can be targeted to overcome ART resistance. 

Work in this chapter, was therefore aimed at screening DUB inhibitors for in 

vitro and in vivo activity in malaria parasites. There potential to synergize and 

potentiate ART action was also assessed. 

 

 

5.2 Introduction 

Despite recent significant gains achieved in malaria control, the disease remains 

the most important parasitic disease in tropical and Sub-Tropical regions of the 

world with high rates of morbidity and mortality (WHO, 2019). The recently 

reported global stalls in malaria control over the past 3-4 years are making the 

situation even more worrisome (WHO, 2018c, WHO, 2019). Even though P. 

falciparum causes the majority of infections in Sub-Saharan Africa where the 

disease is a big problem, human malaria caused by other Plasmodium spp. such 

as P. vivax, P. ovale, P. malaria and the zoonotic P. knowlesi also remains a 

significant public health problem causing significant morbidity and economic 

impact in already poverty stricken communities (WHO, 2019). 

 

A significant arm of current malaria control programs rely on ARTs, to which the 

emergence of resistance (described in detail in section 1.5.5.2) is a ticking time 

bomb. ART resistance in malaria parasites primarily correlates with point 

mutations in the Kelch13 protein which is a predicted adaptor protein of the 

Cullin E3 ligases of the UPS (section 1.5.5.2). Meanwhile ART resistant parasites 

(Kelch13 mutants) are associated with an upregulation of genes involved in the 
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UPR stress response pathways (Mok et al., 2015). Functional studies have, 

indeed, revealed that Kelch13 co-localises with multiple UPR components, 

proteins specific to the ER and mitochondria as well as intracellular vesicular 

trafficking Rab GTPases (Siddiqui et al., 2020, Nina F. Gnädig, 2020).  Central to 

the activity of the UPR is the UPS, a downstream pathway that plays a role in 

maintaining protein homeostasis.  Under ART pressure, activity of the UPS is 

more upregulated in Kelch13 mutant parasites compared to wild type while UPS 

inhibitors have been shown to synergize ART action suggesting that this pathway 

could be selectively targeted to overcome ART resistance (Dogovski et al., 2015, 

Li et al., 2016). Mutations in upstream components of the UPS (ubiquitin 

hydrolases or DUBs) also modulate susceptibility to ARTs, Chapter 3, (Hunt et 

al., 2007, Henrici et al., 2019a). Chemotherapeutic targeting of the UPS has 

been successfully pursued in cancers (Soave et al., 2017) and is increasingly 

becoming attractive in malaria parasites (Ng et al., 2017) even more so as 

potential combinatorial partners to ARTs to overcome resistance (Dogovski et 

al., 2015, Li et al., 2016). 

 

Here, the activity of DUB inhibitors in both rodent and human malaria parasites 

is provided. DUBs are proteases that act upstream of the 20s proteasome by 

removing ubiquitin residues from conjugated substrate proteins (section 

1.5.5.2). Using generic mammalian DUB inhibitors that have been used as 

exploratory research tools as well as in clinical trials, it is, here, demonstrated 

that DUB inhibitors do possess in vitro and in vivo inhibitory activities against 

malaria parasites across two diverged Plasmodium species. Different classes of 

DUB inhibitors can also be combined to provide greater killing efficacy as well as 

enhance the potency of ARTs both in vitro and in vivo. These data demonstrate 

that DUB inhibition can be exploited to overcome ART resistance with similar 

potency as first generation proteasome inhibitors.  Furthermore, inhibition of 

both the UPS and DUBs can be combined simultaneously to further improve the 

potency of ARTs and negate ART resistance.  These findings have the potential 

to be applied to the treatment of all human malaria. 
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5.3 Results 

5.3.1 In vitro activity of DUB inhibitors in malaria parasites 

To assay for in vitro activity of DUB inhibitors in malaria parasites, short term P. 

berghei culture assays and P. falciparum Sybergreen I® culture assays were 

employed. The P. berghei 820 and P. falciparum 3D7 lines were initially 

screened to determine susceptibility to inhibitors and antimalarials with known 

activity in malaria parasites; ART, DHA, CQ and epoxomicin (20s proteasome 

inhibitor). The IC50 obtained for epoxomicin, DHA, ART and CQ in both the 820 

and 3D7 lines (Table 5.1) were all in agreement with previously published IC50 

values in both Plasmodium species (Franke-Fayard et al., 2008, Janse et al., 

1994b, Kreidenweiss et al., 2008, Bhattacharya et al., 2008).  Next, seven DUB 

inhibitors (Table 5.1, Appendix Table 8.6) were screened in both the 820 and 

3D7 line to characterise their inhibitory activity during the intraerythrocytic 

stages of malaria parasites. The selected compounds are DUB inhibitors being 

currently pursued as promising anticancer agents (Table 5.1, Appendix Table 

8.6) that also offered a broad coverage targeting of the five classes of DUBs. As 

shown in Table 5.1, activity was observed for six of the seven DUBs tested in the 

820 and 3D7 lines. The activity of USP acting DUB inhibitors; b-AP15, P5091 and 

NSC632839 corresponds with the reported in vitro IC50s of the compounds 

screened in cancer cell lines (Chauhan et al., 2012, D'Arcy et al., 2011, 

Nicholson et al., 2008). b-AP15 IC50 also compared to previously reported IC50s of 

1.54± 0.7 µM and 1.10 ± 0.4  µM in P. falciparum CQ sensitive (3D7) and resistant 

(Dd2) lines respectively (Wang et al., 2015b). Growth inhibition was also 

observed for broad spectrum DUB inhibitors; PR-619 and 1,10 phenanthroline, as 

well as a partially selective DUB inhibitor, WP1130 (Table 5.1). These data 

suggested that DUBs are potentially essential enzymes in Plasmodium, and they 

could be pursued as potential antimalarial drug targets. Indeed, a manual 

curation of up to 17 of the predicted DUBs in malaria parasites (Ponts et al., 

2011, Ponder and Bogyo, 2007) shows that a majority of these (~70%, 12 of 17) 

are essential in either P. falciparum and P. berghei or both (Appendix Table 8.5) 

based on previous functional studies for selected DUBs (Artavanis-Tsakonas et 

al., 2006, Artavanis-Tsakonas et al., 2010) or recent genome wide gene knockout 

screens (Zhang et al., 2018, Bushell et al., 2017). Strikingly, no growth inhibition 

was observed for TCID (IC50 >100 µM), a UCH-L3 inhibitor, in both the 820 and 

3D7 lines (Table 5.1, Appendix Figure 8.12a, 8.12b). Among the well 
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characterised DUBs in malaria parasites is P. falciparum UCH-L3 (PfUCH-L3, 

PF3D7_1460400) which was identified by activity based chemical profiling and 

has been shown to retain core deubiquitinating activity (Frickel et al., 2007). 

Structural and functional characterisation of PfUCH-L3 also demonstrated that 

this enzyme is essential for parasite survival (Appendix Table 8.5) (Artavanis-

Tsakonas et al., 2010). Meanwhile, in this screen, TCID, a highly selective 

mammalian UCH-L3 inhibitor with an IC50 of 0.6 µM in mammalian cancer cell 

lines (Liu et al., 2003) displayed no activity in both the 820 and 3D7 lines (Table 

5.1, Appendix Figure 8.12a, 8.12b). To possibly address this (unexpected) lack of 

activity, a phylogenetic analysis of Plasmodium, human and mouse UCH-L3 based 

on predicted protein sequences was performed to infer their similarities which 

might possibly explain the observed lack of anti-plasmodial activity of TCID.  A 

distinct evolutionary divergence of this enzyme was observed between human, 

mouse and the most similar Plasmodium homologues (PBANKA_ 

1324100/PF3D7_1460400) which whilst annotated as UCH-L3 shares only 33% 

predicted protein sequence identity with the human UCH-L3 (Appendix Figure 

8.12c, 8.12d). Structurally, human UCH-L3 and PfUCH-L3 have similar modes of 

Ub recognition and binding. However, the PfUCH-L3 Ub binding groove is 

structurally different from the human UCH-L3 at atomic bonding level and 

possesses non-conserved amino acid residues (Artavanis-Tsakonas et al., 2010).  

This lack of complete identity across active sites would perhaps further explain 

the observed inactivity of TCID in both P. falciparum and P. berghei.  
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Table 5.1: In vitro activity of DUB inhibitors in rodent and human malaria parasites. 
 
IC50 values and error bars are means and standard deviations from at least 3 independent repeats. (Altun et al., 2011)a, (Chauhan et al., 2012)b, (Liu et 

al., 2003)c, (Kapuria et al., 2010)d (D'Arcy et al., 2011)e, (Nicholson et al., 2008)f, (Cooper et al., 2009)g.

Inhibitor Predicted UPS target IC50 

P. berghei 820 P. falciparum 3D7 

Artemisinin  - 17.23±0.4 nM  6.50±0.4 nM 

Dihydroartemisinin  - 13.89±0.1 nM  6.23±0.34 nM 

Chloroquine  - 20.4±0.3 nM  16.23±0.5 nM  

Epoxomicin 20s proteasome 14.20±3.0 nM 11.12±0.23 nM 

PR-619 broad spectrum DUB inhibitora 3.30±2.0 µM 2.41±0.5 µM 

P5091 USP7 and USP47 DUBsb 8.38±2.10 µM  Not done 

TCID UCH-L3 and UCH-L1 DUBsc >100 µM >100 µM 

WP1130 UCH-L1, USP9X, USP14, UCH37 DUBsd 1.19±1.0 µM 2.92±0.1 µM 

b-AP15 USP14 and UCH-L5 DUBse 1.06±0.9 µM 1.55±0.1 µM 

NSC-632839 USP2, USP7, SENP2 DUBsf 27.97±0.8 µM  Not done 

1,10 phenanthroline Metalloproteases and JAMM isopeptidasesg 0.63±0.3 µM  Not done 
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5.3.2 Different classes of DUB inhibitors can be combined to provide more 

effective blocking of malaria parasite growth in vitro 

To explore interactions between DUB inhibitors, and their potential synergy, b-

AP15, a highly selective USP14 inhibitor (D'Arcy et al., 2011) and the relatively 

most potent inhibitor of parasite growth in both P. falciparum and P. berghei, 

was tested in fixed ratios with broad-spectrum DUB inhibitors; PR-619 and 

WP1130. Combinations at fixed ratios of 5:0, 4:1, 3:2, 1:4 and 0:5 were serially 

diluted and incubated with parasite cultures of the 3D7 line from which parasite 

growth and IC50s were obtained. FIC50s and ∑FIC50s were calculated and 

isobologram interactions were plotted.  A combination of b-AP15 and PR-619 is 

mostly additive with a mean ∑FIC50 of 0.753±0.23, (Figure 5.1a). Meanwhile, b-

AP15 and WP1130 seemingly trends towards synergy with a mean ∑FIC50 of 

0.653±0.23, (Figure 5.1b) even though the interaction remains overall additive.  

These data suggested that DUB inhibitors, as potential antimalarial drug 

candidates, can be used in combination to block parasite growth presumably by 

simultaneously targeting several different DUB enzymatic targets. 

       a 

                        

 

 

 

 

 



Chapter 5  DUB inhibitors in malaria parasites 

163  

        b 

                     
Figure 5.1: In vitro interaction of different classes of DUB inhibitors in malaria 
parasites. 
Isobologram interaction plots and ∑FIC50 values of interactions between DUB inhibitors in 

the P. falciparum 3D7 line. a. Interaction between b-AP15 and WP1130 and their raw 

∑FIC50 values. b. Interaction between b-AP15 and PR-619 and their raw ∑FIC50 values. 

∑FIC50 values, plotted FIC50s and error bars are means and standard deviations from 

three biological repeats. 
 
 

5.3.3 DUB inhibitors alone or in combination can potentiate DHA action in 

malaria parasites in vitro 

In order to test the hypothesis that DUB inhibitors might have a similar effect of 

potentiating ART activity as 20s proteasome inhibitors, the effects of DUB 

inhibitors on the dose response profiles of DHA in vitro on wild type P. berghei 

and P. falciparum growth as well as their potential to synergize DHA action in 

fixed ratio interaction assays was investigated. The most potent DUB inhibitor b-

AP15 at equivalent IC50 concentration improved DHA action with up to ~8-fold 

IC50 shift in wild type P. berghei growth inhibition (Figure 5.2a) and up to 15-fold 

enhancement in the wild type P. falciparum growth inhibition (Figure 5.2b). The 

differences in potentiation between P. berghei and P. falciparum could be due 

to the inherent reduced susceptibility of P. berghei to ARTs (Lee et al., 2018). 

The enhancement of DHA action by b-AP15 was also almost similar to previously 
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reported profiles with epoxomicin, a 20s proteasome inhibitor (Dogovski et al., 

2015). In the meanwhile, it was demonstrated that experimental introduction of 

mutations in a DUB, UBP-1, mediates reduced susceptibility to ARTs in P. 

berghei (Chapter 3). UBP-1 has a close human orthologue, HAUSP/USP7, which is 

itself inhibited by P5091, a drug which in this Plasmodium screen was poorly 

potent with a relatively high micromolar IC50 (Table 5.1).  Nevertheless, b-AP15 

(a USP-14 inhibitor) potentiated DHA action to the same extent as in wild type 

ART-sensitive P. berghei (9-11-fold) in two UBP-1 mutant lines that have reduced 

susceptibility to ART (V2721F) or both ART and CQ (V2752F) (Appendix Figure 

8.13a, 8.13b).  Therefore, ART (and potentially CQ) reduced susceptibility could 

be offset by a combinatorial drug administration approach involving DUB 

inhibitors through a targeted disruption of protein homeostasis most likely at the 

level of the UPS.  

 

In an attempt to maximise DUB inhibitor combinations, which offered improved 

inhibition of parasite growth (Figure 5.1) as a strategy for simultaneously 

targeting several DUBs in the presence of DHA, the effect of combining b-AP15, 

PR-619 and WP1130 on the dose response profile of DHA was tested. WP1130 and 

PR-619 at IC50 concentration mildly potentiated DHA action with 1.8- and 1.4-

fold improvements respectively (Appendix Figure 8.14a, 8.14b).  Meanwhile, a 

combination of b-AP15 and WP1130 at half IC50 mildly potentiated DHA action 

(~2-fold, Figure 5.2c), while all three inhibitors (b-AP15, WP1130 and PR-619) at 

half IC50 improved DHA action up to 5-fold in the ART sensitive P. falciparum 

(Figure 5.2d) and P. berghei (Figure 5.2e) as well as the ART resistant P. 

falciparum Kelch13 C580Y mutant lines (Figure 5.2f). Further isobologram 

interaction assays for DUB inhibitor ratio combinations were also carried out in 

an attempt to achieve improved in vitro killing (Table 5.1, Figure 5.1) in 

combination with DHA. Both b-AP15 and WP1130 were essentially additive when 

combined with DHA in isobologram interactions with ∑FIC50s of 0.967 and 1.013 

respectively (Appendix Figure 8.14c, 8.14d). However, when b-AP15 and WP1130  

were mixed at a 3:2 molar concentration ratio as a cocktail and combined with 

DHA, a slight improvement in efficacy was observed with an ∑FIC50 of ~0.868 

(Figure 5.2g) compared with 0.972 at 1:4 b-AP15 WP1130 molar concentration 

ratios (Figure 5.2h) or 0.941 at 2:3 b-AP15 WP1130 molar concentration ratio 

(Figure 5.2i).  These data would suggest that optimized ratios of (improved) DUB 
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inhibitor combinations or other proteasome inhibitors might yet achieve synergy 

with DHA, which would be a prerequisite to simultaneously targeting multiple 

DUBs or parallel enzymes in the UPS in future antimalarial combination 

therapies. 

          a                                                              b 

                     
  

             c                                                             d 
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            e                                                             f 

                          
            g                                                            h 
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Figure 5.2: In vitro potentiation of DHA by DUB inhibitors. 
a, b. Dose response profiles and IC50 values of DHA in the presence of b-AP15 at IC50 

equivalent concentration (DHA δ) in the P. berghei 820 line (a) and 3D7 line (b). c. Dose 
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response profiles and IC50 values of DHA in the presence of WP1130 and PR-619 at their 

respective half IC50s (DHA α+β) in the 3D7 line. d, e. Dose response profiles and IC50 

values of DHA in combination with b-AP15, WP1130 and PR-619 at half IC50 (DHA 

α+β+γ) in the 3D7 (d) and 820 line (e). f. Dose response profiles and IC50 values of DHA 

combined with b-AP15 and WP1130 at IC50 (DHA δ, DHA ε) or b-AP15, WP1130 and PR-

619 at half IC50 (DHA α+β+γ) in ART resistant Kelch13 C580Y mutant line. Dose response 

curves were plotted in Graph pad prism 7. Error bars are standard deviations from 3 

independent biological repeats. g-i. Isobologram plots of DHA in combination with b-AP15 

and WP1130 at 3:2 (g), 1:4 (h) and 2:3 (i) ratios and their raw ∑FIC50 values. ∑FIC50 

values, plotted FIC50s and error bars are means and standard deviations from three 

biological repeats. 

 

 

5.3.4 A combination of DUB and 20s proteasome inhibitor can synergize with 

DHA  

An alternative approach to alleviating antimalarial resistance is combination 

therapies that target multiple points within known resistance mediating 

pathways and/or novel antimalarial drug pathways to prevent the emergence of 

or overcome resistance. Therefore, a combination of an upstream DUB inhibitor 

(b-AP15) and a 20s proteasome inhibitor (epoxomicin) with DHA in fixed ratio 

isobologram interactions was explored. Firstly, epoxomicin in combination with 

DHA as well as b-AP15 was tested in fixed ratios against P. falciparum. 

Epoxomicin improved DHA action mildly with an ∑FIC50 of 0.881 (Figure 5.3a) 

which corresponds with previously reported profiles (Dogovski et al., 2015). 

Interestingly, b-AP15 and epoxomicin as a combination alone were not an 

improved regimen with an ∑FIC50 of 1.162 (Figure 5.3b). This failure may result 

from a suppression mechanism where targeting the USP14 DUB upstream by b-

AP15 (Figure 5.3d) would potentially counteract the activity of downstream 20s 

proteasome inhibitor and vice versa (Yeh et al., 2009). However, a 1:1 molar 

ratio of b-AP15 and epoxomicin when combined with DHA, an improved 

interaction with DHA (∑FIC50 of 0.614) was achieved (Figure 5.3c) than by either 

of the drugs alone (Figure 5.3a, Appendix Figure 8.14c). This illustrates that 

targeting the UPS at several points with the optimized inhibitor concentrations 

can significantly improve DHA efficacy. 
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       a                                                               b 

               
 
        c                                                              d                                                       

         
Figure 5.3: A combination of DUB and 20s proteasome inhibitor improves synergy 
with DHA. 
a-c. Isobologram interaction between epoxomicin and DHA (a), b-AP15 and epoxomicin 

(b) and a mixture of b-AP15 and epoxomicin at 1:1 molar concentration ratio in 

combination with DHA (c). ∑FIC50 values, plotted FIC50s and error bars are means and 

standard deviations from three biological repeats. d. Illustrated figure of the UPS 

indicating positional scope of USP14 and 20s units of the UPS and the inhibitor targets. 

 

 

5.3.5 Pre-incubation of malaria parasites with UPS inhibitors efficiently 

mediates DHA potentiation 

A further way to combat drug resistance in malaria, which is being explored with 

antibiotics (Tyers and Wright, 2019) and has been the case with cancer neo-

adjuvant therapies, would be to pre-expose parasites to lethal or sub-lethal 
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doses of inhibitors that target the resistance pathways before the main 

treatment course. A targeted inhibition of the resistance conferring pathways 

might then in turn improve the activity of any downstream main treatment drug. 

Therefore, the effect of pre-exposing malaria parasites to DUB or 20s 

proteasome inhibitors on the short time exposure dose response profiles to DHA 

in both P. berghei and P. falciparum was investigated.  The P. berghei 507 line, 

which expresses GFP constitutively, was used to monitor GFP intensity across the 

life cycle after exposure to serial concentrations of DHA for 3 hours, 

administration of which followed prior exposure of the parasites (~1.5-hour old 

rings) for 3 hours to IC50 concentrations of b-AP15. Quantification of the GFP 

fluorescent signal expressed from a constitutive promoter in P. berghei would 

permit investigation of the global dynamics of protein homeostasis, recycling, 

unfolding and or damage which occurs in the parasites upon exposure to DHA 

and or UPS inhibitors. Monitoring of GFP intensity at 6, 18 and 24 hours revealed 

that b-AP15 pre-exposure enhances the potency of DHA as indicated by 

significant abrogation of GFP intensity at all the time points (Figure 5.4a). 

Additional administration of b-AP15 after DHA incubation further abrogates GFP 

intensity illustrating that b-AP15 compromises UPS activity in tandem with DHA, 

which would make them suitable partner drugs. In the P. falciparum 3D7 line, 

pre-incubation of ~0-3 hour old rings with b-AP15 at IC50 or half IC50  for 3 hours 

followed by DHA treatment for 4 hours markedly impacts parasite viability (5 

and 1.6 fold respectively) compared to DMSO exposed parasites, while pre-

exposing the parasites to b-AP15 at 4x IC50 is almost entirely lethal to the 

parasites (Figure 5.4b). Meanwhile, pre-exposure of the 3D7 or an ART resistant 

Kelch13 C580Y line to epoxomicin at IC50 or 0.2x IC50 followed by DHA also 

significantly impacted parasite viability (~4.6 and ~1.4 fold respectively) as 

compared to DMSO (Figure 5.4c, 5.4d). Remarkably, in both the 3D7 and ART 

resistant Kelch13 C580Y lines, a combination of  b-AP15 and epoxomicin at half 

IC50 achieves better potency with DHA (18 and 33-fold respectively) compared to 

either of the drugs alone at IC50 (Figure 5.4b-d) further illustrating that targeting 

multiple UPS components (Figure 5.3c) could be a flexible approach to 

overcoming ART resistance. 
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Figure 5.4: Pre-exposure of malaria parasites to UPS inhibitors alone or in 
combination enhances DHA action. 
a. pre-treatment of the P. berghei 507 line (~1.5 hours old rings) with b-AP15 at IC50 (1.5 

µM) for 3 hours followed by a wash and then DHA for another 3 hours. Median GFP 

intensity was quantified by flow cytometry at 6 hours, 18 hours and 24 hours. b-AP15 at 

IC50 was re-added after DHA wash off in one experimental condition (magenta plot) while 

b-AP15 alone was used as an additional control. Results are representative of three 

independent experiments. b. DHA dose response viability plots and lethal dose (LD50) 

comparisons at 66 hours after pre-exposure of 0-3 hours old rings of the 3D7 line to 

DMSO (0.1%) or b-AP15 at half IC50 (0.75 µM), IC50 (1.5 µM) or 4x IC50 (6 µM) followed by 

DHA for 4 hours. c, d. DHA dose response viability plots and LD50 comparisons at 66 

hours after pre-exposure of  0-3 hours old rings of the 3D7 line (c) and ART resistant  

Kelch13 C580Y line (d) to DMSO (0.1%) or epoxomicin at 0.2x IC50 (2 nM), IC50 (12 nM) 

or a combination of b-AP15 and epoxomicin at half IC50 followed by DHA for 4 hours. Data 

from three independent experimental repeats. Significant differences between the 

conditions were calculated using one-way ANOVA alongside the Dunnet’s multiple 

comparison test. Significance is indicated with asterisks; ****p < 0.0001. 

 

 

5.3.6 b-AP15 fails to block parasite growth but potentiates ART action in vivo 

Following on to the in vitro experiments that demonstrated activity of DUB 

inhibitors in malaria parasites in above sections, the ability of b-AP15 (the most 

potent lead) to block parasite growth in vivo and its potential to enhance ART 

action was investigated. An analogue of b-AP15, VLX1570 entered clinical trials 
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for the treatment of multiple myeloma (Wang et al., 2016), despite being later 

terminated due to dose ascending toxicities (NCT02372240).  b-AP15 showed 

strong antiproliferative effects in human cancer cell lines and displayed 

significant antitumor activity at 5 mg/kg in in vivo mouse models without any 

side effects (D'Arcy et al., 2011). However, in a Peters’ 4 day suppressive test, 

b-AP15 failed to clear P. berghei parasites in vivo at both 1 mg/kg and 5 mg/kg 

with only minor reductions in parasite burdens on day 4 and 5 post treatment at 

the latter dose which corresponds to ~70% parasite suppression on day 4 (Figure 

5.5a-c). Contrary to the previous reported safety profiles of b-AP15 (D'Arcy et 

al., 2011), mice (Theiler’s Original) treated with 5 mg/kg b-AP15 started to 

develop toxicity signs as demonstrated by significant weight loss on day 4 and 5 

post-treatment. Further treatments at 5 mg/kg or higher doses were thus not 

pursued. To investigate the ability of b-AP15 to potentiate ART action in vivo, b-

AP15 was administered at 1 mg/kg (a safe dose that did not have any effect on 

parasite growth alone, Figure 5.5a) in combination with ART at 5 mg/kg and 10 

mg/kg in established mice infections at a parasitaemia of 2-2.5% for three 

consecutive days. A combination of ART (5 mg/kg) and b-AP15 (1 mg/kg) did not 

have any significant parasite reduction as compared to ART (5 mg/kg) alone, 

while ART at 20mg/kg cleared the parasites after three consecutive doses as 

anticipated (Figure 5.5d). However, a combination of ART (10 mg/kg) and b-

AP15 (1 mg/kg) significantly abrogated parasite burden as compared to ART (10 

mg/kg) alone to the same extent as ART at 20 mg/kg (Figure 5.5e). These data 

further showed that b-AP15 can enhance ART action in vivo, to a similar extent 

as observed in vitro. 
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        e 

     
Figure 5.5: In vivo activity of b-AP15 alone and or in combination with ART. 
a. Mice (4 groups of 3 mice each) were infected with ~105 parasites on day 1 and treated 

with indicated drug doses ~1-hour post infection for four consecutive days (indicated by 

arrows). Parasitaemia was monitored daily by flow cytometry and analysis of Giemsa 

stained smears.  b, c. Percentage suppressions on day 4 (b) and bar plots of 

parasitaemia’s on day 4 and day 5 (c). d, e. Combination of ART and b-AP15 in 

established mouse infections. ART at 5 mg/kg (d) or 10 mg/kg (e) combined with b-AP15 

(1 mg/kg) administered in established mice infections at a parasitaemia of 2-2.5% for 

three consecutive days (indicated by arrows). Parasitaemia was monitored daily. ART at 

20 mg/kg was used as a curative control. Significant differences were calculated using 

one-way ANOVA alongside the Dunnet’s multiple comparison test. Significance is 

indicated with asterisks; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

 

 

5.4 Discussion 

With the increasing incidence of resistance to (even combinations of) 

antimalarial drugs by P. falciparum and the lack of rapidly amenable drug 

discovery programs for related Plasmodium spp. such as P. vivax, pipelines to 

develop new antimalarial drugs to treat the disease as well as improve the 

activity of current antimalarials and tackle resistance are urgently needed. Work 

in this chapter reports the in vitro and in vivo activity of a class of compounds 

targeting the parasite upstream UPS components, DUBs, in P. falciparum and P. 

berghei.  Antimalarial drugs are typically discovered for their activity against P. 

falciparum in vitro. Lead compounds from P. falciparum in vitro screens are 

evaluated for in vivo efficacy using rodent malaria parasites which have been for 
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a long time, crucial components of these drug discovery programs (Fidock et al., 

2004). P. berghei is the most commonly used rodent model (in what is called the 

Peters’ four-day suppressive test) and the development of methods that allow 

assessment of both in vitro drug sensitivity and in vivo efficacy in this model, 

(Janse and Waters, 1995) as is demonstrated in this work, permits easy 

comparisons with P. falciparum in vitro efficacy data. Moreover, this provides 

crucial in vitro bridging information on whether potential drug efficacy 

discrepancies between P. falciparum in vitro and P. berghei in vivo are due to 

pharmacokinetics of the drug or intrinsic differences in drug sensitivity between 

the Plasmodium spp. As a species of Plasmodium that is well diverged from both 

P. falciparum and other human-infectious Plasmodium, P. berghei drug efficacy 

assessment also offers a useful comparative for other non P. falciparum human 

causing Plasmodium spp. as chemical entities that display P. falciparum 

inhibitory activity in vitro and P. berghei inhibitory activity in vitro and in vivo 

are also likely to be active against other (human infectious) Plasmodium species.  

 

 

5.4.1 DUB inhibitors inhibit malaria parasites IDC proliferation 

Herein, activity is reported for six DUB inhibitors covering most of the DUB 

enzyme families and include b-AP15, P5091 and NSC632839 which specifically 

target USPs that all displayed antimalarial activity against both rodent and 

human malaria parasites in vitro. USPs are the largest family of DUBs comprising 

of up to 56 individual enzymes in humans (Davis and Simeonov, 2015). However, 

since less is known of USPs in malaria parasites, with their current assignations 

largely based on in silico predictions (Ponder and Bogyo, 2007, Ponts et al., 

2011), the precise targets of these drugs remain largely obscure. Human USP14 

has been demonstrated to be the target of b-AP15 (D'Arcy et al., 2011) and its P. 

falciparum orthologue PfUSP14 (PF3D7_0527200) has been recently 

characterised and shown to bind the parasite 20s proteasome (Wang et al., 

2015b). Moreover, purified PfUSP14 cleaves di-ubiquitin bonds in intact 

polyubiquitin chains illustrating functional identity of this Plasmodium DUB with 

its human counterpart (Wang et al., 2015b). This provides evidence that PfUSP14 

may be specifically essential in parasite proliferation during the asexual blood 

cycle which was supported by a whole genome piggyBac saturation mutagenesis 

screen in which PfUSP14 was shown to be refractory to deletion (Zhang et al., 
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2018), Appendix Table 8.5).  Data in this work also support these observations in 

both P. falciparum and P. berghei despite the P. berghei counterpart 

(PBANKA_1242000) appearing to be dispensable in a recombinase mediated 

genetic screen (Bushell et al., 2017). The differences in essentiality could be 

due to functional differences between the two Plasmodium spp. USP14s as they 

seem to share only ~62% sequence identity (Appendix Figure 8.15). The activity 

of b-AP15 in both P. falciparum and P. berghei however, at almost equivalent 

potencies, could thus be suggestive of possible suitable compensatory effects 

from other DUBs upon deletion in P. berghei which is not sufficiently 

compensated for when an inhibitor is used. b-AP15 may also target other DUB (or 

possess off target) activities in Plasmodium as the inhibition of purified PfUSP14 

by b-AP15 is less potent than its overall parasite killing potency (Wang et al., 

2015b). Nevertheless, the observed structural difference between human USP14 

and PfUSP14 at the core catalytic domain, it’s possible essentiality during the 

IDC and the activity of b-AP15 in both P. falciparum and P. berghei in vitro 

suggests that PfUSP14 can be selectively targeted throughout the Plasmodium 

genus (Wang et al., 2015b). Furthermore, the observed activity of other USP 

inhibitors, P5091 and NSC632839 in this study suggests that their targets are 

essential (Appendix Table 8.5) during the asexual proliferation stages of malaria 

parasites and can serve as useful chemical leads for more potent antimalarial 

drugs discovery. More importantly, b-AP15 possesses antiparasitic activity in vivo 

achieving up to 70% parasite suppression of P. berghei at the highest 

concentrations that have been tested in cancer models (D'Arcy et al., 2011). 

Malaria parasites have been shown to rapidly replenish proteasomes in the 

presence of sub-lethal doses of proteasome inhibitors (Li et al., 2012) which 

would possibly explain the observed inability of b-AP15 to completely block 

parasite growth at this concentration as compared to control antimalarial drugs. 

Whilst promising, some host toxicity profiles of b-AP15 at 5 mg/kg were noted as 

mice significantly lost weight after 4 consecutive doses despite reported safety 

records at similar doses in cancerous mouse models (D'Arcy et al., 2011). This 

effect could be due to the combination of a chemical inhibitor and parasite 

challenge making the mice more susceptible to toxic effects of b-AP15, a 

phenomenon which has been previously reported with carfilzomib, a 20s 

proteasome inhibitor (Li et al., 2012).  Meanwhile, the in vitro activity of broad-

spectrum DUB inhibitors, PR-619 and WP1130 as well as a zinc chelating 
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metalloprotease inhibitor (1, phenanthroline) further alludes to the promise of 

DUBs as drug targets in malaria parasites. 

 

5.4.2 Plasmodium UCH-L3 could be an even more attractive drug target 

A further striking finding was the inactivity of TCID (a UCH-L3 inhibitor) in both 

rodent and human malaria parasites. PfUCH-L3 has been well characterised in 

malaria parasites and has been shown to retain core deubiquitinating activity 

(Frickel et al., 2007). Moreover, disruption of PfUCH-L3 by experimentally 

replacing the native enzyme with a catalytically dead form was shown to be 

lethal to the parasite (Artavanis-Tsakonas et al., 2010). The inactivity of TCID in 

both rodent and human malaria parasites reported here is therefore suggestive 

of striking differences between mammalian and Plasmodium UCH-L3s. Sequence 

analysis demonstrated that PfUCH-L3 shares ~33% sequence identity with human 

UCH-L3 consistent with previous structural and molecular docking comparisons 

of PfUCH-L3 and human UCH-L3 which also revealed significant differences 

between the enzymes especially at the ubiquitin binding groove (Artavanis-

Tsakonas et al., 2010). This makes PfUCH-L3 an even more attractive drug target 

for ultra-selectivity as it is also known to possess denedylating activities which 

are absent in mammalian UCH-L3s (Frickel et al., 2007). 

 

5.4.3 DUBs can be targeted to overcome ART resistance 

Targeting the Plasmodium UPS is an emerging interventional point, not just as a 

potential drug target, but now also to curb emerging ART resistance. 20s 

proteasome inhibitors have been shown to enhance ART action in both ART 

sensitive and resistant lines (Li et al., 2016, Dogovski et al., 2015). Data in this 

work also show that upstream targeting of the UPS by some but by no means all 

DUB inhibitors can potentiate and enhance ART action in certain cases to a 

similar extent as 20s proteasome inhibitors.  ARTs act by targeting several 

(possibly random) parasite proteins upon activation (Ismail et al., 2016, Wang et 

al., 2015a) which necessitates, among other things, an upregulated UPS 

mediated stress response which rapidly recycles and clears damaged proteins 

henceforth promoting survival in ART resistant parasites (Tilley et al., 2016, 

Bridgford et al., 2018, Dogovski et al., 2015).  As with 20s proteasome inhibitors, 

(Li et al., 2016, Dogovski et al., 2015) inhibition of parasite UPS by targeting 

single or multiple DUBs simultaneously potentiates ART or DHA action. Inhibition 
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of parasite UPS by b-AP15, for example, would prevent the normal protein 

homeostasis flux through the UPS, boosting the activity of pleiotropic ARTs by 

blocking the parasite stress and recovery system. Indeed, despite DHA being only 

additive in isobole analyses with b-AP15, sublethal concentrations of b-AP15 can 

boost DHA activity up to 15-fold. This boost is further enhanced when 2-3 DUB 

inhibitors at sub-lethal concentrations are combined as they improve DHA 

activity more than either inhibitors alone. This suggests that carefully titrated 

use of current DUB inhibitors in isolation, or simultaneously in mixtures may be a 

means to overcome ART resistance and the rodent model deployed here could be 

useful tool to optimise such drug combinations. Indeed, recent findings have 

shown that accumulation of polyubiquitinated proteins in malaria parasites 

either by DUB or 20s proteasome inhibition is critical in activating the stress 

responses and contributes to DHA lethality in malaria parasites (Bridgford et al., 

2018). The observed increase in ART efficacy when combined with DUB inhibitors 

which is of a similar level to that achieved by inhibition of the proteasome by 

epoxomicin in vitro and Carfilzomib in vivo (Dogovski et al., 2015) further 

alludes to the potential of DUB inhibitors for achieving similar attributes in 

malaria parasites. 

 

Whilst useful as independent potential antimalarial agents, DUB inhibitors show 

potential for partnership and this study demonstrated that different classes of 

DUBs can be targeted simultaneously to achieve better parasite killing while 

potentially minimising the resistance emergence window. More importantly, low 

and safe doses of b-AP15 with no effect on parasite growth alone significantly 

potentiated sub-curative dose of ART to almost curative levels in vivo providing 

a proof of concept that DUB inhibitors can enhance the activity of ARTs both in 

vitro and in vivo making them potential adjunct drugs to enhance ART action 

and tackle resistance. Similarly, other potential radical ways of overcoming 

resistance in malaria parasites would be  combining drugs with different MOAs in 

complex combinations or using multiple (different) first line combinational 

therapies at once to raise the probability barrier of developing resistance by 

simultaneously targeting several pathways (Boni et al., 2016). Data in this work 

exemplify these concepts, as for example when b-AP15 and epoxomicin are 

combined in a fixed ratio isobole analysis, their appears to be no interaction or 

possibly even an antagonistic effect. This observation would be symptomatic of 
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an antagonistic suppression mechanism where the activity of two inhibitors in 

the same pathway upstream or downstream negatively feeds back to the activity 

of the other leading to counteractive effects. However, when b-AP15 and 

epoxomicin are mixed in equal concentration ratios and combined with DHA, 

their overall activity achieves a better efficacy with DHA than either of the 

inhibitors alone. The optimal simultaneous exposure of the parasite UPS to DUBs 

and 20s proteasome inhibitors could thus act as an additional opportunity to 

overcome resistance to ARTs if the parasites would acquire resistance mutations 

to either of the UPS inhibitors. This has indeed been recently illustrated where 

combined inhibition of the parasite β2 and β5 subunits of the parasites 20s 

proteasome was shown to strongly synergize DHA activity (Kirkman et al., 2018). 

 

5.4.4 Conclusion 

In conclusion, work in this chapter confirm DUBs as potential druggable 

candidates in malaria parasites. Drug discovery programs take a long time, with 

for example a minimum of five years required to take a lead compound to a 

clinical candidate in malaria (Lotharius et al., 2014, Wells et al., 2015). The 

emergent resistance to ACTs, a paucity in the number of antimalarial drugs in 

the developmental pipeline and a lack of scalable pipelines for drug discovery in 

other human malaria parasites such as P. vivax and P. ovale (Wells et al., 2015),  

all necessitates both radical as well as alternative approaches to identify new 

drugs and drug targets. As DUBs are already being actively explored as 

anticancer agents with candidate inhibitors already entering clinical trials 

(Harrigan et al., 2017), antimalarial drug discovery programs could take 

advantage to structurally improve or re-purpose such entities not just as 

potential drug targets in malaria, but also as combinational partners to ARTs to 

overcome the spectre of resistance.  
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6 A metabolic profile of fast acting antimalarial drugs and drug candidates 

6.1 Chapter aim 

Development of replacement antimalarial drugs is urgently needed for rapid 

deployment in case ARTs or even ACTs completely fail. Some of these lead 

antimalarial drug candidates are being developed by the NITD and are, indeed, 

in advanced clinical trials (section 1.5.6). Even though selection for resistance 

and forward genetic screens have been used to identify the potential MOA and 

MOR for some of these leads, a full mechanistic overview on how they exert 

their antimalarial activity is still unknown, disputed or uncharacterised. This 

chapter was, therefore, aimed at using LC-MS untargeted metabolomics to 

decipher the MOA of some of these lead compounds. By characterising the MOA 

and or biochemical features that arise when parasites are exposed to these 

compounds, the MOR can be identified or anticipated for with appropriate 

interventions put in place even before the drugs are clinically deployed. 

 

6.2 Introduction 

ARTs in ACTs, are and have been the backbone of malaria control strategies for 

the last decade (Hemingway et al., 2016b, WHO, 2018c, WHO, 2019). However, 

despite high ACT efficacy rates in Sub-Saharan Africa, resistance to ARTs (and 

now to some ACTs) which has emerged in SEA (Hamilton et al., 2019, van der 

Pluijm et al., 2019, Ashley et al., 2014, Dondorp et al., 2009) is seriously 

threatening the utility of this class of compounds which have significantly 

contributed to recent reductions in malaria cases (WHO, 2019). Pipelines to 

identify new drugs to combat the emerging resistance or for effective 

combination therapies are thus urgently needed. 

 

Over the past ten years, thousands of chemical entities that block malaria 

parasite growth have been reported from pharmaceutical companies and public 

funded product development partnerships (Guiguemde et al., 2010, Van Voorhis 

et al., 2016, Gamo et al., 2010). These libraries are serving as appropriate 

starting points for antimalarial drug discovery which could serve as potential 

replacements and/or suitable combination partners with current drugs to 

combat and overcome resistance. However, as is the case with a majority of 

antimalarial drugs (antiprotozoal drugs at large), the MOA of these leads is 

unknown (Muller and Hyde, 2010, Creek and Barrett, 2014). Characterising the 
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MOA of lead drug candidates, or drugs which are already in clinical use, though 

not critically essential during drug development, is important as it provides a 

platform to understand or predict resistance mechanisms as well as identify 

suitable combination drug partners using MOA informed strategies. MOA 

characterisation also helps in identifying the actual drug targets which can be 

exploited in structure-based design of better drugs or improvement of the 

existing drugs. MOA elucidation in malaria parasites has primarily involved 

forward genetics approaches, which involve in vitro selection for resistance 

followed by whole genome sequencing, transcriptome and or proteome analysis 

(Section 1.6). However, due to numerous limitations of these approaches 

(Section 1.6.1), a complimentary approach that utilises several independent 

platforms is required.  

 

Metabolomics platforms have recently provided an alternative approach to 

elucidating the MOA of both known drugs and lead drug candidates in bacterial 

pathogens (Vincent et al., 2016, Zampieri et al., 2018) and malaria parasites 

(Allman et al., 2016, Cobbold et al., 2016, Creek et al., 2016) as many 

antimicrobial agents target metabolic enzymes and pathways. This has been 

made possible because metabolomics platforms can detect perturbations 

induced by drug treatment under controlled in vitro exposure conditions (Creek 

and Barrett, 2014, Vincent et al., 2016, Kwon et al., 2008). In malaria parasites, 

these approaches have been successfully adapted for characterisation of the 

MOA of several known and candidate antimalarial drugs (Section 1.6.5). 

 

In this work, an untargeted metabolomics approach was used to screen novel 

fast acting drug candidates of the ITD class that are emerging from the NITD 

drug discovery pipelines. The metabolic profile of ITDs, which display an even  

faster parasite killing rate as compared to DHA, was compared to other drug 

candidates from the NITDs pipeline; spiroindolones which are known to target 

the P. falciparum Na+ H+ ATPase (PfATP4) (Rottmann et al., 2010) and KAF156 

whose MOA is still unknown (LaMonte et al., 2016, Lim et al., 2016) even though 

more recent evidence suggests inhibition of the parasite’s protein trafficking as 

the possible MOA (LaMonte et al., 2020). Using a fixed time point exposure as 

well as a dynamic time course over the early 2 hours of drug exposure, a 

metabolic profile of fast acting antimalarial drugs and drug candidates is 



Chapter 6                                       Metabolomics antimalarial drug candidates 

182  

provided, which despite some differences appear to be fundamentally similar. 

Validating these metabolic profiles using atovaquone which has a well 

characterised metabolic fingerprint (Allman et al., 2016, Cobbold et al., 2016), 

it is here demonstrated that fast acting compounds display a common metabolic 

profile, which may highlight a commonality in the MOA or a common parasite 

response to rapidly induced death. 

 

 

6.3 Results and discussion 

6.3.1 ITDs display a fast killing rate relative to DHA and Spiroindolones 

Parasite killing rates allow for identification of fast acting compounds which are 

required for malaria control as they allow for rapid clearance of parasitaemia in 

patients which in turn minimises parasite drug exposure time and narrows the 

window for the parasites to develop resistance. In vitro assays to predict the 

parasite killing rates of antimalarial compounds are based on parasite reduction 

ratios (PRR), quantified over 28 days by fresh exposure of defined parasite 

inoculum every 24 hours in series of limiting dilutions (Sanz et al., 2012). Even 

though the PRR method allows for determination of parasite clearance times as 

well as drug lag phases (the time required for compounds to achieve maximum 

killing effect), the extent to which parasite metabolic and biochemical 

fingerprints change, especially for potential pleiotropic fast acting compounds, 

cannot accurately be predicted. The killing kinetics of ITDs, KAE609a, DHA, 

KAF156a and atovaquone (Table 6.1) were thus determined by biochemically 

monitoring luciferase expression using a P. falciparum 3D7 luc line which 

constitutively express a dual NanoLuc and luciferase reporter. Synchronised 

trophozoites at 2% parasitaemia and 2% haematocrit were cultured with the 

compounds at 10x IC50 (Table 6.1) or DMSO (0.1%) after which the relative 

luminescence signal (RLU) was monitored over the course of 6 hours. DHA (1µM), 

which is a known fast acting compound, depleted the luciferase signal after 2.5 

hours of incubation (Figure 6.1a). Spiroindolone analogue (KAE609a) also 

depleted the signal at 2.5 hours but at a faster rate than DHA (Figure 6.1a). This 

is in agreement with previous observations that spiroindolones exert a faster 

MOA and parasite clearance than ARTs in patients (White et al., 2014). 

Meanwhile, both ITD1a and ITD2a at 10x IC50 displayed an even faster killing 

rate, depleting the luciferase signal after 2 hours of drug incubation. On the 
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contrary, KAF156a and atovaquone which are known to act slowly did not have 

any effect on the luciferase signal over the course of 6 hours, displaying an 

almost identical response to the DMSO control (Figure 6.1a). Microscopic analysis 

of parasite morphologies during the time points did not show any significant 

differences relative to the DMSO control (Figure 6.1b). Based on these data, the 

2.5 hour time point was chosen for initial metabolomics drug incubation as it 

was the time which corresponded with maximal biochemical signal disruption 

(based on luciferase expression) for the fast acting compounds (Figure 6.1a) and 

was also previously shown to yield good metabolic signals even for slow acting 

compounds such as atovaquone (Allman et al., 2016). 

 

Abbreviation Name IC50 (nM) 

ATQ Atovaquone 1.05±0.03 

ITD1a ITD1a 31.25±0.83 

ITD2a ITD2a 24.15±2.06 

KAE609a KAE609 analog 0.72±0.04 

KAE609ia KAE609 inactive analog  143.55±7.75 

KAF156a KAF156 analog 27.14±0.61 

ITD1ia Inactive analog of ITD1a >1000 

ITD2ia Inactive analog of ITD2a >1000 

DHA Dihydroartemisinin 6.23±0.34 

 
Table 6.1: In vitro growth inhibition of the P. falciparum 3D7 line for the compounds 
used in the metabolomics screen. 
IC50 values are means and standard deviations from three biological repeats. 
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Figure 6.1: Killing kinetics of KAE609a, DHA, Atovaquone, ITD1a, ITD2a and 
KAF156a in the 3D7 luc line. 
~30-hour old trophozoites at 2% haematocrit and 2% parasitaemia were incubated with 

the compounds at the indicated concentrations for the indicated times. Luciferase 

expression was quantified at each time point. a. plot of relative luminescence unit (RLU) 

over the 6-hour incubation periods for the compounds. Incubations were carried out in 

quadruplicate over 2 independent biological repeats. b. Microscopy analysis of Giemsa 

stained smears at the 3- and 6-hour incubation periods for all the compounds. 
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6.3.2 Atovaquone disrupts pyrimidine biosynthesis pathway in malaria 

parasites 

Atovaquone targets the mitochondrial electron transport chain bc1 complex that 

plays a crucial role in oxidative phosphorylation in most organisms (Srivastava et 

al., 1999). However, malaria parasites do not require oxidative phosphorylation 

and have maintained an active mitochondrial electron transport chain for the 

sole purpose of recycling ubiquinone, which acts as an electron acceptor for  

dihydroorotate dehydrogenase (DHODH), a critical enzyme in the pyrimidine 

biosynthesis pathway (Painter et al., 2007). Treatment of malaria parasites with 

atovaquone, therefore, leads to a rapid accumulation of pyrimidine 

intermediates upstream of DHODH with a corresponding drop in downstream 

metabolites (Cobbold et al., 2016, Allman et al., 2016). Indeed when purified 

trophozoites were incubated with atovaquone at 10x IC50 for 2.5 hours, a rapid 

accumulation of N-carbamoyl L-aspartate and dihydroorotate was observed while 

the level of downstream pyrimidine metabolites; uridine diphosphate (UDP) and 

uridine triphosphate (UTP) declined (Figure 6.2a, 6.2b) which is in agreement 

with previously reported profiles (Allman et al., 2016, Cobbold et al., 2016). A 

steady maintenance of orotate pools was also observed (Figure 6.2a iii) despite 

DHODH inhibition with atovaquone, as previously observed (Cobbold et al., 

2016), the mechanisms of which are basically unknown. Atovaquone treatment 

also disrupted the citric acid cycle (TCA) leading to a decrease in cellular levels 

of citrate (Figure 6.2c). The electron transport chain and TCA cycles are 

sequentially linked as the TCA plays a role in maintaining a steady supply of 

ubiquinone which is a critical component of the electron transport chain and is a 

required co-factor for DHODH activity in the pyrimidine biosynthesis pathway. 

Enzymes of the TCA cycle, specifically succinate dehydrogenase (SDH) and 

malate dehydrogenase (MDH) reduce ubiquinol to ubiquinone which in turn acts 

as an electron acceptor for DHODH.  Treatment of malaria parasites with 

atovaquone, therefore, blocks the bc-1 complex of the electron transport chain, 

preventing the recycling of ubiquinol to ubiquinone which in effect inactivates 

all ubiquinone requiring enzymes such as SDH, MDH and DHODH. Indeed, isotope 

glucose labelling studies have shown a significant decrease in flux through the 

TCA cycle upon atovaquone treatment (Ke et al., 2015). Moreover, previous 

atovaquone metabolomics profiles also revealed disruption in the TCA cycle as 

an accumulation of fumarate was observed, consistent with interference of SDH 
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or MDH, as a consequence of bc-1 complex inhibition (Cobbold et al., 2016).  

Even though an accumulation of fumarate in this metabolomics screen was not 

observed (Figure 6.2c), this could be due to relatively shorter drug exposure 

time. A steady decrease in the TCA cycle metabolites which was 

comprehensively profiled upon stable isotope labelling (Cobbold et al., 2016) is, 

however, mirrored by the observed decrease in levels of citrate in this work. 

Taken together, these results validated the metabolomics approach for MOA 

elucidation of selected NITD drug candidates (Table 6.1). 
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Figure 6.2: Metabolomics profile of atovaquone. 
~1 x 108 purified trophozoites were exposed to either DMSO or atovaquone at 10x IC50 for 

2.5 hours. Untargeted metabolomics on an LC-MS platform was carried out on extracted 

metabolites. a. Relative abundance of the indicated pyrimidine metabolites in DMSO vs 

atovaquone treatments. b. Schematic of the pyrimidine pathway indicating atovaquone 

target point. c. Relative abundance of citrate and fumarate, metabolites of the TCA cycle, 

in DMSO vs atovaquone treatments. Relative abundance measurements are comparisons 

of total ion counts of the metabolites in the treatment conditions. Treatments were carried 

out in triplicates over 2 independent biological repeats. mzXML mass spectrometry files 

and graphs were processed and plotted in PiMP. 
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6.3.3 KAE609a elicits a pleiotropic metabolic response in malaria parasites 

KAE609a, a spiroindolone analog of KAE609, is one of the fast-acting compounds 

developed by NITD and has shown promising results in clinical trials (White et 

al., 2014). Using forward genetic screens after in vitro selection for resistance, 

spiroindolone KAE609 has been proposed to target PfATP4, a Na+ H+ ATPase,  

even though the exact events preceding parasite death remain mostly unknown 

(Rottmann et al., 2010). Meanwhile, treating malaria parasites with KAE609 was 

shown to enlicit a rapid influx of sodium, parasite membrane rigidity and 

consequent alteration of parasite morphology (Das et al., 2016). In this 

metabolomic profiling, incubation of malaria parasites with KAE609a for 2.5 

hours at 10x IC50 led to a massive loss of peptides, many of them potentially 

haemoglobin derived (Figure 6.3a).  Moreover, KAE609a incubation resulted in 

accumulation of cholines and phosphocholine derivatives (Figure 6.3b), disrupted 

pyrimidine biosynthesis pathway (but with a different signature to atovaquone, 

Figure 6.3c, 6.3d) and it also caused a loss in purine metabolites (Figure 6.3e). 

This is in contrast to the inactive analogues which yielded profiles similar to the 

DMSO control. These observations are also similar to the previous metabolomic 

profiles for KAE609 which reported a loss of haemoglobin derived peptides, 

amino acid derivatives and central carbon metabolites (Allman et al., 2016). 

This illustrates a potential pleoitoropic metabolic response which could arise as 

a result of rapid disruption of cellular homeostasis upon PfATP4 inhibition and 

sodium influx. Nevertheless, despite the evidence that KAE609 targets PfATP4, 

questions remain on whether PfATP4 is a direct target of this compound or a 

multidrug resistance gene. This is because mutations in PfATP4 do not just 

confer resistance to KAE609, but to a diverse array of chemically unrelated 

compounds which possess antimalarial activity (Spillman and Kirk, 2015, Lehane 

et al., 2014, Jimenez-Diaz et al., 2014). Thus, if a wide array of chemotypes 

converge on PfATP4, there remains a possibility that the exact killing events of 

this class of compounds could be unrelated to PfATP4 inhibition. As observed in 

this study, this could indeed be in part due to primary or secondary pleotropic 

events such as a shutdown in haemoglobin catabolism and inhibition of  

pyrimidine pathways. Interestingly, the pyrimidine metabolic fingerprint of 

KAE609a which though different from atovaquone (Figure 6.3d) is similar to the 

previously reported pyrimidine metabolomic profile of DHA albeit at differing 

time points (Cobbold et al., 2016). This would suggest that both DHA and 
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spiroindolones directly or indirecly perturb the early enzymes of the pyrimidine 

biosynthesis pathway (ATCase, CPSII) leading to a shutdown in the synthesis of 

downstream metabolites. In a different metabolomics profiling of malaria box 

compounds, metabolic fingerprints of DHA were  shown to cluster together with 

KAE609 and some other PfATP4 inhibitors; SJ733 and MMV006427 (Creek et al., 

2016). Even though the metabolomics profiles observed in this study (KAE609a) 

and previously for both DHA and KAE609 could be unspecific pleiotropic events 

of fast acting compounds, this remains to be fully explored as some of the 

known PfATP4 inhibitors (MMV011567, MMV665805) (Lehane et al., 2014) which 

rapidly disrupt parasite ion homeostasis, just like KAE609 elicit no metabolomic 

signatures at all (Creek et al., 2016). The actual events leading to parasite death 

in KAE609a could thus potentially involve promiscous targeting, just like with 

DHA, shutting down the parasite’s multiple biochemical and molecular 

pathways. 
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Figure 6.3: Pleiotropic metabolic response of malaria parasites after exposure to 
KAE609a for 2.5 hours. 
a. Global untargeted metabolomic response of selected peptides in KAE609a treated 

trophozoites as compared to DMSO. Peptides with haemoglobin matching sequences as 

well as those which are potentially haemoglobin derived (Allman et al., 2016, Creek et al., 

2016, Cobbold et al., 2016) are highlighted. b. Relative abundance of choline and choline 

derivatives in the KAE609a treated parasites as compared to DMSO and in-active 

analogues. c. Relative abundance of the indicated pyrimidine biosynthesis pathway 

metabolites in the KAE609a treated parasites as compared to DMSO and in-active 

analogue. d. Schematic of the pyrimidine biosynthesis pathway showing atovaquone 
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(Figure 6.2) and KAE609a /DHA potential action points. Potential target points for DHA 

are based on previously reported profiles (Cobbold et al., 2016) while target points for 

KAE609a are based on the observed profiles in this work. The table is a direct 

comparison of atovaquone and KAE609a pyrimidine biosynthesis pathway metabolites. e. 

Relative abundance of purine derived metabolites; guanosine diphosphate (GDP), 

adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine 

monophosphate (AMP) in the KAE609a treated parasites as compared to DMSO and in-

active analogue. Fold changes (relative to DMSO control) and relative abundance 

comparisons are means from 2 biological repeats collected in triplicate at each time of 

drug incubation. 

 

 

6.3.4 ITD series elicit minimal metabolic responses that suggest inhibition of 

haemoglobin catabolism as a possible MOA 

ITD1a and ITD2a are analogues of another novel class of compounds in the 

development pipeline at the NITD. They are very fast acting, faster than 

spiroindolones (KAE609a) and DHA (Figure 6.1a). Attempts to generate parasites 

lines highly resistant to these compounds by in vitro selection have so far been 

unsuccessful making attempts to characterise their MOA particularly difficult. In 

this metabolomics screen, ITD1a and ITD2a induced very similar metabolic 

profiles, almost entirely restricted to peptides, and mainly consist of loss and or 

gain of peptides (Figure 6.4a, Figure 6.4b). Some of the peptides which 

significantly decreased in the ITD treatment include Trp-Gly, Phe-Gly, Leu-Ala, 

Lys-Gly-His, Pro-Glu-Glu which can be mapped to the  α and β sequences of 

haemoglobin, the perturbation of which was also reported previously in 

metabolic profiling of DHA, a known inhibitor of haemoglobin uptake and 

catabolism (Cobbold et al., 2016, Creek et al., 2016). This would suggest that 

ITDs, in a similar manner, could be potentially targeting haemoglobin breakdown 

as their MOA. However, the ITD peptide response with some identical peptides 

appear to be similar to the ones observed with KAE609a as well as DHA. Even 

though DHA is known to target haemoglobin catabolism, KAE609a on the other 

hand is believed to target PfATP4, a Na+ H+ ATPase (Rottmann et al., 2010), 

which seemingly has no role in haemoglobin breakdown. The ITD peptide 

response could thus be a secondary consequence of a target specific inhibition 

which these metabolomics screen could not reveal.  Moreover, it is difficult to 

tell the true source of di/tripeptides with short sequences which metabolomics 
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screening platforms like the LC-MS platform used in this work reveal and 

quantify. For example, the Met-Ala, Trp-Pro, Leu-Met peptide combinations 

which are significantly perturbed in the ITDs metabolic profile (Figure 6.4a, 

6.4b), are not present in haemoglobin sequences. This could point towards a 

more general inhibition of protein degradation systems or a signal of dying 

parasites which would be characteristically unrelated to the MOA. Moreover, 

several compounds with unrelated MOA have been shown to perturb 

haemoglobin catabolism (Murithi et al., 2019, Allman et al., 2016). Assigning the 

MOA of compounds based on haemoglobin peptide profiles is, therefore, 

specifically difficult. Nevertheless, the uniqueness of the ITD peptide response 

which does not correspond with disruption to other pathways such as pyrimidine 

or purine responses as is the case with KAE609a or DHA suggests that these 

compounds could be specifically targeting enzymes involved in haemoglobin 

catabolism. More interestingly, another fast acting compound which has been 

developed by the MMV, JPC-3210, elicits a similar metabolic profile like ITDs 

which is mostly restricted to peptides and has been proposed to target 

haemoglobin catabolism as its MOA after follow-up biochemical and peptidomic 

analyses (Birrell et al., 2019). Meanwhile, JPC-3210 also appears to interfere 

with protein translation (Birrell et al., 2019), suggesting that besides interfering 

with haemoglobin catabolism, ITDs could also, in a similar way, affect other 

parasite’s metabolic and biochemical pathway such as protein translation as 

their mode of activity. 
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Figure 6.4: Peptide metabolic responses of the ITD series compounds in malaria 
parasites. 
a, b. Global response of selected peptides upon treatment with ITD1a (a) or ITD2a (b). 

Peptides with haemoglobin matching sequences as well as those which most likely derive 

from the same (Cobbold et al., 2016, Creek et al., 2016) are highlighted. Fold changes 

relative to the DMSO control are means from 2 biological repeats collected in triplicate at 

each time of drug incubation. 
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6.3.5 KAF156a elicits a minimal non-specific metabolic response 

KAF156 belongs to the imidazolopiperazines class of compounds that have been 

developed by the NITD and have shown potential as antimalarial agents for use 

in malaria treatment, prophylaxis and transmission blocking (Kuhen et al., 2014, 

White et al., 2016). The exact MOA of KAF156 is currently unknown but 

mutations in the P. falciparum cyclic amine resistance locus (PfCARL) as well as 

UDP-galactose and Acetyl-CoA transporters have all been shown to confer 

resistance to KAF156 and its close analogues (Lim et al., 2016, LaMonte et al., 

2016). In this metabolomics screen, KAF156a did not induce any significant 

metabolic effect after incubating parasites with the compound for 2.5 hours. 

Some low-level increase in purine metabolites (Figure 6.5a) was observed along 

with a low-level accumulation of central carbon metabolism metabolites 

(malate, succinate and oxoglutarate) (Figure 6.5b). This is in agreement with 

previous reported metabolomics profiles of KAF156 as no significant changes in 

the parasites metabolome was observed after the same period of drug 

incubation (Allman et al., 2016). It is therefore difficult to predict the MOA of 

KAF156a based on these profiles. Nevertheless, it is important to note that 

KAF156a is relatively slow acting (Figure 6.1a) which would potentially suggest 

that the 2.5 hours of drug incubation is relatively short to elicit a significant 

biochemical response. A longer incubation period (which was not pursued) would 

perhaps reveal unique signatures specific to this compound MOA. This seems 

unlikely though, as atovaquone (with a similar biochemical killing rate) seemed 

to induce a significant metabolic signal over the same duration of drug exposure 

(2.5 hours). Recently, in vitro selection for resistance and forward genetic 

screens have pointed towards inhibition of protein trafficking as a possible MOA 

of KAF156 and other imidazolopiperazines (LaMonte et al., 2020). 
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Figure 6.5: KAF156a metabolomic response for selected metabolites. 
a, b Relative abundance of adenine (a) and a selected central carbon metabolism 

intermediates (b) in KAF156a treated parasites as compared to DMSO. Relative 

abundance comparisons of total ion counts are means from 2 biological repeats collected 

in triplicate at each time of drug incubation. 

 

 

6.3.6 Metabolomics time point resolution of fast acting compounds; DHA, 

ITD2a and KAE609a during early points of drug incubation 

Fast acting compounds appear to exert a malaria parasite killing event in 

seconds or minutes with resulting metabolic profiles over time reminiscent of 

parasite dying cascades that are perhaps unrelated to the exact MOA of the 
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compounds. For example, the spiroindolone, KAE609 was shown to lead to a 

rapid influx of sodium which disrupts the parasite ion homeostasis within 

seconds of drug exposure (Das et al., 2016, Spillman et al., 2013). DHA is also 

known to simultaneously target several (possibly random) parasite proteins in a 

promiscuous targeting cascade leading to parasite death as a result of a 

disruption in several biological pathways (Wang et al., 2015a, Ismail et al., 

2016). In such events, metabolic and biochemical perturbation in essential 

pathways that are directly or indirectly involved in the MOA of the compounds 

would be quantifiable within minutes of drug exposure. To this end, the dynamic 

parasite’s metaprints upon exposure to these fast-acting compounds at 10x IC50 

for 30 minutes, 1 hour and 2 hours was resolved. Enriched trophozoites as 

described above were incubated with the drugs for the stated time period 

following which untargeted metabolomics LC-MS was carried out on the 

extracted metabolites at each time point. 

 

6.3.6.1  Global metabolomic responses to DHA, ITD2a and KAE609a are 

unique and respond to duration of drug exposure 

In all the three compounds, significant changes to the global parasite 

metabolome were observed after 30 minutes of drug exposure. However, this 

change was time dependent. Of the ~3000 mass features which were detected 

by LC-MS, 4.3%, 1.6% and 4.6% significantly changed at 30 minutes which 

increased to 5.6%, 5.8% and 5.2% at 1 hour and 7.8%, 8.1% and 7.9% at 2 hours 

for DHA, KAE609a and ITD2a respectively.  Meanwhile, careful analysis of the 

volcano plots (Figure 6.6) revealed that despite the compounds eliciting a 

similar change in the number of features that are perturbed at each time point, 

DHA elicited a stronger downregulated response after 30 minutes of drug 

exposure which became relatively similar to KAE609a after 1 and 2 hours. On the 

contrary, ITD2a global metabolomic response seemed to be different from both 

DHA and KAE609a at all the time points displaying less intensity and equal 

distribution in upregulated and downregulated mass features (Figure 6.6). This 

would suggest that, despite displaying a similar fast killing rate, these 

compounds exert their killing cascade in a slightly different mode which would 

reflect differences in their MOA. 
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Figure 6.6: Global volcano plots of all detected mass features in DHA, ITD2a and 

KAE609a treatments according to their fold change relative to DMSO treatments. 

Significant features are represented as black dots while non-significant features are in 

light blue. n=2 with three technical replicates at each biological repeat. 

 

  

6.3.6.2 KAE609a perturbation of choline, pyrimidine and purine metabolites 

at 2.5 hours is reflected in time dependent changes at earlier time 

points 

KAE609a significantly perturbs metabolites in the pyrimidine, purine and choline 

biosynthesis pathway after 2.5 hours of drug incubation (Figure 6.3). The 

dynamic profiles of these metabolites at the earlier time points was therefore 

analysed to see if the changes observed reflect a gradual and dynamic response 

or a mere one-off metabolic shock response. Indeed, in complete agreement 

with these observations (Figure 6.3), KAE609a induces a gradual accumulation of 

cholines (Figure 6.7a) which is not significantly observable after 30 minutes, but 

gradually increases at 1- and 2-hour time points. Interestingly, DHA elicits a 

similar choline profile as KAE609a which would suggest that this response is 

perhaps a consequence of a global alteration to the parasite metabolism as a 

result of simultaneous targeting of multiple targets by DHA or rapid disruption of 

ion homeostasis by KAE609a. On the contrary, ITD2a does not alter choline 

homeostasis with choline metabolites comparable to DMSO control (Figure 6.7a). 

These data would further suggest that the metabolic consequences of DHA and 

KAE609a exposure in malaria parasites overlap while ITD2a acts via a different 

MOA which does not elicit a global repression of other biochemical pathways. A 

similar trend is observed for pyrimidine and purine derived metabolites that 

gradually decrease over 2 hours of KAE609a drug incubation (Figure 6.7b, 6.7c). 

Uniquely, orotate pools sharply accumulate in KAE609a treated parasites after 

30 minutes of drug incubation and rapidly decline thereafter to significantly 

lower levels after 2 hours. This could be a result of preferential inhibition of the 

orotate phosphoribosyltransferase (ORPP) enzyme in the pyrimidine pathway 

during the parasites initial ion insult, which would lead to accumulation of 

orotate that rapidly declines as other enzymes upstream of the pathway respond 

to the inhibition. ITD2a and DHA do not induce any significant alteration in 
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either purines or metabolites of the pyrimidine biosynthesis during the 2 hour 

time period which, although is in contrast to the previously reported pyrimidine 

profiles for the latter (Cobbold et al., 2016), may be due to the short duration of 

exposure time in this study 

 

             a 

 

 

           b 

             i 

 

 
 
 
 



Chapter 6                                         Metabolomics antimalarial drug candidates 

202  

            ii 

 
 
          iii 

   

 

        c     

        i         

 



Chapter 6                                         Metabolomics antimalarial drug candidates 

203  

       ii   

 
Figure 6.7: Time course comparisons of choline, pyrimidine and purine metabolites 

in DHA, KAE609a and ITD2a parasite treatments.             

a-c. Relative abundance of choline (a), selected indicated pyrimidine (b) and purine (c) 

metabolites. Comparisons of total ion counts are means from 2 biological repeats 

collected in triplicate at each time of drug incubation. 

 

6.3.6.3 Time dependent changes in peptide response for KAE609, DHA and 

ITD2a 

Next, the metabolomics peptide response in KAE609a, DHA and ITD2a treated 

parasites was profiled over the 0.5, 1 and 2 hours of drug incubation. Clustering 

of the global peptide response in the three drug treatments revealed that this 

response is minimal at 30 minutes of drug incubation and becomes more 

pronounced at 1-and 2-hours respectively (Figure 6.8a). Moreover, even though 

the global responses appear similar across the three compounds, ITD2a elicits a 

unique peptide response as compared to DHA and KAE609a which would suggest 

a unique targeting of parasite haemoglobin catabolism by this class of compound 

that does not directly or indirectly impact other biochemical pathways. Indeed, 

supervised clustering of the global peptidomes in these treatments by principal 

component analysis (PCA) revealed that at both time points, DHA and KAE609a 

peptide response clustered closer together as compared to ITD2a or DMSO in the 

first and second principle components (Figure 6.8b). Furthermore, some of the 

potentially haemoglobin derived peptides such Trp-Gly show a time-dependent 

decline (Figure 6.8c) in both compounds further suggestive of a global decline in 

parasite haemoglobin catabolism as a consequence of drug treatment. 
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Figure 6.8: Time point resolution of global peptide responses in KAE609a, DHA and 

ITD2a treated parasites. 

a. Global responses of top 20 significantly changed peptides upon treatment with DHA, 

KAE609a and ITD2a for 30 minutes, 1 and 2 hours. Peptides with haemoglobin matching 

sequences as well as those which are likely to be haemoglobin derived (Cobbold et al., 

2016, Creek et al., 2016) are highlighted. b. PCA plots of the peptidomes of the three 

compounds after treatment for 30 minutes, 1 and 2 hours. c. Relative abundance of a 

potential haemoglobin derived peptide Trp-Gly in DMSO vs the three compounds at the 

three time points. Fold changes and relative abundance comparisons are means from 2 

biological repeats collected in triplicate at each time of drug incubation. PCA plots were 

carried out on log transformed data in Metaboanalysit 3 (Xia et al., 2015). 95% confidence 

intervals for each treatment group in the PCAs are highlighted with the indicated colors. 

 

 

6.4 Conclusions 

In conclusion, this study reports the metabolomic profile of a novel class of fast 

acting compounds belonging to the ITD class which suggests haemoglobin 

catabolism as their possible MOA or an essential event that precedes their 

parasite killing mechanism. By direct comparison with DHA and spiroindolones, it 

is demonstrated that fast acting compounds elicit a unique, but broadly similar, 

metabolomics profile which could form a useful biochemical metaprint to 

identify fast acting compounds.  



Chapter 7                                                                    Summary and future work 

207  

7 Summary and future work 

7.1 Drug resistance in rodent malaria parasites in the CRISPR-Cas9 era 

As discussed in section 1.8.1, rodent malaria parasites have played significant 

roles in deciphering the MOR, and sometimes the MOA for several antimalarial 

drugs. Of the four rodent malaria parasites (P. berghei, P. yoelii, P. chabaudi, P. 

vinckei), the choice of which model to use is always dependent on the primary 

question of interest as these species can display significant differences in their 

host cell tropisms or synchronicity of infection (Table 1.2). P. chabaudi and P. 

vinckei infections, for example, result in highly synchronous parasitaemia with a 

specific tropism for mature RBCs just like the human infecting P. falciparum. 

This is basically the opposite case for P. berghei and P. yoelii which are largely 

asynchronous and preferentially invade reticulocytes. In these situations, P. 

chabaudi and P. vinckei are ideal models to test and or characterise the in vivo 

stage specificity of antimalarial drugs. Moreover, rodent malaria parasite display 

variations in sensitivity to different classes of antimalarial drugs. P. berghei is 

relatively resistant to ARTs and iron chelating drugs as compared to  P. chabaudi 

or P. vinckei (Peters and Robinson, 1999a). P. yoelii is also inherently more 

resistant to CQ (Warhurst and Killick-Kendrick, 1967) making it less suitable for 

evaluation of antimalarial drugs belonging to the aminoquinoline class. Further 

to that, rodent malaria parasites (P. berghei and P. yoelii), just like the human 

infecting P. vivax, can escape or survive extended drug assaults due to the rich 

metabolic niche of reticulocytes that provide appropriate compensatory 

mechanisms and or nutrient reserves (Srivastava et al., 2015). In view of these 

variables, the choice of which rodent malaria parasite to use should, indeed, be 

tailored to specific hypotheses and on a case to case basis. 

 

Nevertheless, P. berghei is the mostly used rodent malaria parasite for initial in 

vivo efficacy evaluation of antimalarial drugs in drug discovery programs (Peters 

and Robinson, 1999a, Fidock et al., 2004). An added advantage of P. berghei and 

to some extent P. yoelii, is the availability of high efficiency transfection 

technologies for these parasites which allow for easy genetic manipulation 

(Janse et al., 2006b, Jongco et al., 2006). Through allelic exchange 

experiments, P. falciparum drug resistant or MOA alleles can be introduced in P. 

berghei to assess associating phenotypes under in vivo conditions. These 

approaches have indeed been pursued as mutant PfCRT forms have been 
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introduced in P. berghei to characterise equivalent drug resistant phenotypes as 

well as transmission capacity of such alleles (Ecker et al., 2011). As 

demonstrated in this work for UBP-1 and Kelch13 (Chapters 3 and 4), 

development and successful adaptation of highly precise genome editing by 

CRISRP-Cas9 means gene and allele orthology between P. falciparum, P. berghei 

or other Plasmodium spp. can be investigated at a single nucleotide base and 

amino acid level. This is particularly important in antimalarial drug resistance 

studies as this will allow for simultaneous interrogation of P. falciparum in vitro 

phenotypes of drug resistance genetic determinants with in vivo phenotypes. 

 

Between P. berghei, P. falciparum and P. chabaudi, UBP-1 is syntenic but poorly 

conserved overall. P. berghei and P. falciparum UBP-1 share 41.4% sequence 

identity while P. chabaudi and P. falciparum share 40.2% identity. As expected, 

given their phylogenetic proximity, P. berghei and P. chabaudi UBP-1 are 

relatively conserved with ~70% sequence identity. Even though these 

observations illustrate a potential evolutionary divergence, the C-terminal of 

this protein which forms the catalytic component of the enzyme (Figure 3.1a) is 

highly conserved, and more importantly the amino acid residues that were 

associated with the modulation of ART resistance in P. chabaudi (section 

1.8.1.2) are conserved across the three Plasmodium species (Appendix Figure 

8.2). In contrast, Plasmodium Kelch13 is much more conserved between P. 

berghei and P. falciparum than UBP-1 sharing over 80% sequence identity 

(Appendix Figure 8.7). All crucial P. falciparum ART resistance Kelch13 mutation 

sites are conserved between the two spp. both in terms of localisation and 

predicted structures. Using CRISPR-Cas9 editing to introduce orthologous 

mutations in P. berghei, work in Chapters 3 and 4 does indeed demonstrate a 

functional conservation of these proteins in modulating resistance to ARTs and 

CQ. Subtle to major differences can exist in the overall amino acid sequence 

identity of a protein, but the ability to precisely alter single amino acids at 

conserved loci as demonstrated in this work provides a unique opportunity to 

test P. falciparum candidate drug resistance mutations in a P. berghei model for 

concurrent in vivo evaluation of equivalent phenotypes. Moreover, such P. 

berghei mutant parasites offer an opportunity to evaluate the fitness impacts as 

well as evolution of drug resistant mutations in the context of single or multiple 

infections under in vivo conditions, something which is not possible in vitro with 



Chapter 7                                                                    Summary and future work 

209  

human infecting P. falciparum. The versatility of P. berghei to various and or 

multiple levels of genetic manipulation also provides a unique opportunity to 

assess the impact of several different mutations in a single parasite line, 

evolutionary events that are observed in complex natural infections (Miotto et 

al., 2015, Zhu et al., 2018, Hamilton et al., 2019, van der Pluijm et al., 2019). 

Indeed, preliminary work which is not part of this thesis has demonstrated some 

degree of mutual exclusion to simultaneous acquisition of certain drug resistance 

mutations in malaria parasites as several ART resistance Kelch13 mutations could 

not be introduced in parasites carrying UBP-1 ART resistance alleles in P. berghei 

(Simwela, unpublished). 

 

Acquisition of certain if not all drug resistance mutations in malaria parasites 

can require “ARMD” like backgrounds to compensate for potential deleterious 

consequences such polymorphisms can render to parasites on their own (Rathod 

et al., 1997). These phenomena have been observed in multiple situations, as for 

instance, CQ resistance in P. chabaudi could only be selected from parasites that 

were resistant to pyrimethamine as selection for resistance to the same from 

naive parasites was always unsuccessful (section 1.8.1.5). This is, seemingly, 

more evident with P. falciparum ART resistant Kelch13 mutations which require 

a necessary architectural landscape to either compensate for the fitness impact 

of these mutations or synergize for stronger ART resistance phenotypes (Zhu et 

al., 2018, Miotto et al., 2015). As evidenced in Chapter 4, introduction of some 

Kelch13 mutations, more importantly the C580Y and I543T mutation equivalents, 

could not be achieved in naive PBANKA parasites with no history of pre-exposure 

to or resistance to either ARTs or other antimalarial drugs. Polymorphisms in 

ferredoxin, apicoplast ribosomal protein S10, PfMDR2 and PfCRT are some of the 

possible markers of a genetic landscape upon which Kelch13 mutations are more 

likely to arise (Miotto et al., 2015). Even though it is likely to be far from 

simple, naive P. berghei parasites with powerful CRISPR-Cas9 genome editing 

strategies as demonstrated in Chapters 3 and 4 could serve as important tools to 

investigate such relationships. This could involve engineering some of these 

candidate compensatory polymorphisms in wild type P. berghei parasites and 

assessing whether introduction of refractory mutations such as the C592Y or 

I555T could be achieved in such situations. 
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7.2 Targeting the upstream components of the UPS to overcome ART 

resistance 

One of the key aims of ART MOA or MOR studies in malaria parasites is to identify 

drugs that target the drug action or resistance pathways directly or indirectly so 

that they can be used in combination with ARTs to overcome resistance. A key 

feature of ART resistance Kelch13 mutant parasites is that they display an 

enhanced cellular stress response through the upregulation of genes in the UPR 

and an over-active UPS (Dogovski et al., 2015, Mok et al., 2015). Inhibition of 

the UPS by targeting the 20s proteasome can indeed synergize ART activity to 

the extent that the resistance phenotypes can be offset. Central to the UPS 

activity are DUBs which recycle Ub pools by cleaving off Ub residues from 

substrate proteins before they enter the 20s proteasome complex for 

degradation. The activity of DUBs on determining the cellular fate of proteins 

result in numerous outcomes (Lecker et al., 2006), which as demonstrated in 

Chapter 3 can among other things result in drug resistance phenotypes upon 

acquisition of mutations in malaria parasites. As further demonstrated in 

Chapter 5, DUB inhibition could be a source of novel antimalarial drugs, and 

more importantly drugs which can be used in combination with ARTs to impair 

the parasite UPS while boosting the activity of ARTs. A multipronged attack on 

the parasite UPS by simultaneously targeting several components of this pathway 

could also serve as the parasite’s Achilles heel through which the emergent 

resistance to ARTs can be overcome. 

 

The UPS is a highly conserved eukaryotic pathway which makes it specifically 

challenging to identify inhibitors that would specifically target Plasmodium DUBs 

or the 20s proteasome as evidenced by in vivo toxicities of b-AP15 in this work 

and 20s proteasome inhibitors previously (Li et al., 2012). However, recent 

characterisation of the Plasmodium DUB, USP14, which identified unique 

conserved Plasmodium residues (Wang et al., 2015b) offers hope that selective 

inhibition can be achieved. More importantly, structure-based design of 

Plasmodium selective 20s proteasome inhibitors that display minimal to no host 

cell toxicities (Li et al., 2016, Yoo et al., 2018) offers even more hope of 

selectively targeting the UPS not just as antimalarial drug target, but also as a 

direct countermeasure to curb ART resistance. Recent solving of the P. 

falciparum 20s proteasome complex (Xie et al., 2019) has also provided unique 
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opportunities for more precise structure-based design of Plasmodium selective 

proteasome inhibitors that would achieve superior potency and ultra-selectivity. 

 

7.3 Capturing the metabolomic fingerprint of fast acting antimalarial drugs 

and drug candidates: any cues to the MOA? 

Application of metabolomics platforms to characterising antimalarial drugs MOA 

and antiprotozoal drugs at large has been clearly demonstrated, reviewed by 

(Creek and Barrett, 2014). Untargeted metabolomics in particular, offer a 

unique opportunity to decipher the biochemical responses that drug treatment 

induces in pathogens of interest without prior knowledge of the compounds 

MOA. These approaches have been used to classify hundreds of antimalarial 

compounds based on the biochemical metaprints with probable cues to their 

MOA (Allman et al., 2016). As demonstrated in part of this work (Chapter 6), the 

MOA of novel antimalarial drugs belonging to the ITD class was predicted by 

application of untargeted metabolomics despite failure to select for resistance 

and henceforth unable to apply forward genetics approaches for MOA 

elucidation. ITDs were shown to elicit a unique peptide perturbation which 

points to inhibition of haemoglobin catabolism as a possible MOA. However, this 

response, was to some extent, shared with other fast acting antimalarial drugs, 

notably; DHA which is known to interfere with haemoglobin catabolism as well 

as spiroindolones which, thus far, are not known to interfere with any form of 

haemoglobin biosynthesis pathways in malaria parasites. 

 

These observations illustrate the limitations of these untargeted metabolomics 

approaches in providing clear distinction of the compounds MOA especially if the 

responses observed are due to non-specific stress related metabolic features or 

other secondary responses. This is specifically relevant for fast compounds like 

the ones examined in this work, which would either exert a parasite killing event 

rapidly or result in pleiotropic responses which could be unrelated to the MOA. 

Nevertheless, these metabolomics approaches provide crucial hypothesis 

generating questions which can be followed up by other systems biology 

approaches or functional studies to fully characterise the MOA of the compounds 

of interest. 
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7.4 Future work 

7.4.1 Cellular localisation of UBP-1 and Kelch13 in P. berghei 

P. falciparum Kelch13 tagged at the N-terminal localises to a discrete single 

punctum in ring stage parasites that spreads out into multiple puncta as the 

parasite progresses through the life cycle. These structures, called 

“cytostomes”, occur near to the parasites cytoplasmic periphery and tend to 

segregate into individual merozoites in developing and maturing schizonts 

(Birnbaum et al., 2020, Yang et al., 2019). Cytostomes are believed to play a 

role in facilitating invaginations of the parasites PM and PVM which delivers the 

hosts cytoplasmic components, most importantly, haemoglobin into the parasites 

DV (Bakar et al., 2010). More intriguingly, P. falciparum Kelch13 appears to act 

as an endocytic organiser of several proteins among which include UBP-1 and 

Eps15 which facilitate haemoglobin uptake and endocytosis in malaria parasites 

(Birnbaum et al., 2020). Parasites co-expressing fluorescent tagged Kelch13 with 

UBP-1, Eps15 or AP-2µ also revealed a distinct overlap and co-localisation of 

these proteins into a distinct endocytic machinery that is devoid of clathrin in 

what is seemingly a clathrin independent endocytic pathway (Birnbaum et al., 

2020). Are P. berghei Kelch13 or UBP-1 similarly conserved in their cellular 

localisation and co-expression? 

 

Some of the future studies that would stem from this work would be to 

characterise the cellular localisation of the P. berghei Kelch13 and UBP-1 by 

fluorescent microscopy of fluorescently tagged parasites (N or C-terminally). Co-

localisation of these proteins would be investigated by co-expressing them with 

different fluorescent markers in the same lines or other cell compartment 

markers especially in light of further observations that P. falciparum Kelch13 

does not just localise to the cystostomes, but to other cellular structures such as 

the mitochondria, ER and several vesicular transport compartments (Gnädig et 

al., 2020, Siddiqui et al., 2020). Further investigations would also include co-

immunoprecipitation of both P. berghei Kelch13 and UBP-1 to characterise the 

interacting partners. Overall, these outcomes would further help in establishing 

P. berghei as an even better model to understanding ARTs MOA and MOR. 
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7.4.2 Transmission competency and competitive release of drug resistance 

mutations in P. berghei 

Drug resistance mutations in malaria parasites are often associated with fitness 

defects which can limit their spread in natural populations where a competitive 

suppression from wild type parasites would easily offer an evolutionary barrier. 

As demonstrated in Chapters 3 and 4, P. berghei parasites carrying Kelch13 or 

UBP-1 mutations do indeed suffer from significant growth defects. Would these 

fitness constraints limit the transmission of parasites carrying such mutations? As 

further demonstrated in Chapters 3 and 4, the effects of some of these 

mutations on malaria parasite growth are very significant to the extent that in 

the absence of drug, they are completely outcompeted within few days. 

However, this can be reversed when drug pressure is applied which would 

suggest that continued drug use can serve as an important driver through which 

certain drug resistance alleles (especially those with more pronounced fitness 

costs) can be maintained in natural circulation. This would be specifically 

important as in a previous study, it was  demonstrated that P. falciparum 

Kelch13 ART resistance mutations offer no barrier to transmission to a wide 

variety of mosquito vectors (St Laurent et al., 2015).  

 

With the availability of P. berghei lines that express fluorescent reporters in 

male and female gametocytes, further studies would involve introducing these 

mutations in such lines and assessing the specific physiological impacts of the 

mutations in these transmission stages. The transmission capacity of both UBP-1 

and Kelch13 mutants in Chapters 3 and 4 could also be assessed in the absence 

and or presence of drug (AS) which would hopefully mirror the actual 

environmental conditions in the natural field settings. Moreover, in a large 

multi-site clinical study, patients carrying parasites with Kelch13 mutations 

seemingly carried more gametocytes both before and after drug treatment 

(Ashley et al., 2014). Whether these were biologically linked to Kelch13 

mutations is unknown. P. berghei Kelch13 mutations in gametocyte fluorescent 

reporter lines could help in further unravelling such relationships. 

Crucially, most of the above scenarios assume that at one time point, a patient 

is infected with either a sensitive parasite or utmost a sensitive and resistant 

parasite. However, this can be far from simple. In complex natural 

environments, especially in areas of high malaria transmission, there is always a 
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high chance that a patient would be infected with parasites carrying more than 

one drug resistance mutation (Juliano et al., 2010). In such situations, if a 

patient is infected with wild type and say, more than one Kelch13 mutant 

parasites, the within host competition would favour wild type parasites as well 

as Kelch13 mutant parasites that are fitness neutral in what is called a 

competitive suppression (de Roode et al., 2004). In face of drug treatment, this 

competitive suppression could be alleviated resulting in a competitive release of 

mutant parasites which would accelerate the spread of drug resistance (Pollitt 

et al., 2014). P. berghei Kelch13 and UBP-1 mutant parasites generated in this 

work offer a unique opportunity to assess such relationships. The ability to use 

PCR-RFLP to discriminate the mutant lines and quantify mutant alleles would 

mean a mixture of wild type and up to four different mutant parasites can be 

mixed in a single host infection which would allow for assessment of the within 

host competition of different drug resistant alleles. These could also be carried 

out in the presence of drug to examine the extent to which, for instance, drug 

resistance alleles that are associated with minimal drug resistance phenotypes 

would behave when mixed with mutant parasites carrying alleles with significant 

fitness defects as well as strong drug resistance phenotypes. By further 

manipulating such parasites to introduce gametocyte specific fluorescent 

reporters, these relationships can be further analysed to examine the 

transmission dynamics and interplay in such complex situations. 

 

7.4.3 Phenotypic heterogeneity of drug resistance mutants in P. berghei 

Current in vitro assays for ART resistance rely on the RSA which defines ART 

resistance as ring stage survival of ≥1% and ART sensitivity as survival of <1% 

(Witkowski et al., 2013). This assay is technically challenging and can be subject 

to high levels of intra-lab variations even between the same parasite isolates 

(Ariey et al., 2014, Straimer et al., 2015). As demonstrated in Chapter 4, the 

adapted RSA in P. berghei results in significant survival in M488I and R551T 

mutant parasites as compared to the wild type. Nevertheless, in both P. 

falciparum and P. berghei Kelch13 mutant parasites, ART resistance (as 

measured by % survival) does not result in absolute or 100% survival rates. 

Basically, in isogenic parasite populations that differ only by a single SNP, why 

does ART survival occur only in a fraction of the parasites (~13% survival when P. 

falciparum C580Y is introduced in PfNF54 vs <1% in parent wild type or ~38% 



Chapter 7                                                                    Summary and future work 

215  

survival for M488I mutants in P. berghei vs ~21% in parent wild type) while the 

majority of the population remains sensitive?  Despite the observations that 

Kelch13 mutant parasites are associated with an upregulation of genes involved 

in the stress response pathways (Mok et al., 2015) which could possibly explain 

such observations, population level transcriptomics cannot precisely deconvolute 

such phenotypic differences. Further work with these P. berghei Kelch13, and 

possibly UBP-1 mutant parasites would be to capture these levels of phenotypic 

heterogeneities by using single cell transcriptomics on mutant parasites exposed 

or not exposed to drug under in vivo conditions.
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8 Appendix 

8.1 Appendix figures for chapter 2 

 

 
Figure 8.1: Flow cytometry gating strategy for growth competition experiments. 

Representative flow cytometry gating strategies for growth competitions of wild type and 

mutant UBP-1 lines on Day 3. Acquired events were plotted on a forward (FS) and side 

(SS) scatter. Gate A was drawn to exclude debris. Events from gate A were plotted on a 

FS vs FH where gate B was drawn to exclude cell clumps and potential doublets. Events 

from gate B were then plotted on Hoescht vs FS and Total PT gate was drawn to quantify 

total parasitaemia. Events from gate B were also plotted on mCherry vs RFP where the 

mCherry positive population was distinguished from RFP positive female gametocytes by 

applying compensation spill-over filters that allow discrimination of the two colours as 

illustrated in the plots. Parasitaemia of mutant parasites was quantified by subtracting the 

mCherry positive population from the total parasitaemia as quantified by Hoescht staining 

of parasite DNA. 
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8.2 Appendix figures for chapter 3 

 

 
Figure 8.2: Sequence alignment of P. falciparum, P. chabaudi and P. berghei UBP-1 

at the conserved C-terminal. Mutation sites are indicated for P. falciparum and P. 

chabaudi on top and P. berghei on the bottom. Conserved sites are indicated by the * 

symbol. 

 

 

 
Figure 8.3: Enrichment of the G1808 line with CQ and ART. DNA sequencing and 

trace analysis of CQ and ART challenged G1808 lines (Figure 3.2a) showing enrichment 

of the V2721F mutation by both drugs.  
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Figure 8.4: DNA sequence analysis of the G1808 uncloned line compared to the 

parent wild type showing the presence of traces for the V2721F mutation and 

absence of double mutants. 

 

 

 

    
Figure 8.5: Enrichment of the G1807 line with CQ. DNA sequence and trace analysis of 

the G1807 recrudescent parasites in Figures 3.2a, 3.2e showing enrichment with CQ at 

30 mg/kg. 
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Figure 8.6: Distribution of ART and CQ resistance mutations in Africa and South 

East Asia. CQ resistance is believed to have originated in SEA and some parts of South 

America and eventually spread to Africa (Ecker et al., 2012). Current distribution of 

Kelch13 mutations in SEA (Mbengue et al., 2015, Ashley et al., 2014, Menard et al., 2016) 

and reported UBP-1 polymorphisms (Cerqueira et al., 2017, Adams et al., 2018, 

Henriques et al., 2014, Borrmann et al., 2013) . 
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8.3 Appendix figures for chapter 4 

 

 
Figure 8.7: Protein alignment of P. falciparum and P. berghei Kelch13 showing 

conservation at the mutation sites. Alignments were carried out using Clustal Omega 

protein alignment tool. Conserved sites are indicated by * 
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Figure 8.8: Schematic of the CRISPR-Cas9 strategy used to introduce Kelch13 

mutations in P. berghei. 20bp sgRNA targeting regions within 0-30 bp of the mutation 

site (Appendix Table 8.1, 8.2) were designed to contain Esp3I digestion overhangs and 

cloned into the illustrated Cas9 plasmid, ABR099, as previously described in section 

3.3.1. Donor templates were generated by overlapping extension PCR as described in 

methods and subsequently cloned into the ABR099 plasmids carrying the appropriate 

sgRNA (Appendix Table 8.1, 8.2) at the HincII linker site. The donor templates carried the 

mutation of interest as well as silent mutations to introduce a restriction site for RFLP 

analysis and to inactivate the PAM site recognition sequence (as illustrated in the 

schematic). Details of plasmids, sgRNA and lines generated are shown in Appendix 

Tables 8.1, 8.2, 8.3.  
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       i 

               

Figure 8.9: DNA sequence and RFLP analysis of P. berghei Kelch13 mutant lines a, 

b. DNA sequencing showing the absence of the C592Y and I555T nucleotide 

substitutions and the presence of minor traces of the silent mutations in the G2023 (a) 

and G2024 (b) transfected lines. c. Sequencing analysis of the G2025 line showing the 

presence of traces for both the silent mutations and the R551T substation in the original 

transfection. * on the transfectant parasite lines indicates that the line is uncloned. d. 

RFLP analysis with indicated restriction enzymes for the cloned parasite lines; G1957 

(F458I), G1979 (Y505H), G1989 (M488I) and G2025 (R551T, AS 64 mg/kg). e. RFLP 

analysis of the G2042 (C592Y, sgRNA 2, TAT codon), G2043 (C592Y, sgRNA 2, TAC 

codon) and G2044 (C592Y, sgRNA 1, TAC codon) transfected lines (Appendix Table 8.2, 

8.3), showing further unsuccessful attempt to introduce the C592Y in P. berghei. RFLP 

analysis of the G2045 control line (C592C, sgRNA 1, silent mutations control) where 

editing was readily achieved is shown for comparison. f. Sequencing analysis of the 

G2045 line showing successful editing with high efficiency to introduce silent mutations 

without the C592Y substitution. g-i. DNA sequence analysis showing high efficiency 

editing to introduce silent mutations and mutations of interest in the G1957 (F458I; g), 

G1979 (Y505H; h) and G1989 (M488I; i) lines. 
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     d 

 

 

 

Figure 8.10: Clearance kinetics and microscopy analysis of P. berghei Kelch13 

mutants upon AS treatment. a, b, c. Parasite clearance curves in mice with established 

parasitemia's of Kelch13 mutant lines following treatment with AS at 64 mg/kg for cohorts 

2, 3 and 4 as described in Figure 4.4a. d. Microscopic analysis of Giemsa-stained thin 

blood smears showing preferential survival of UBP-1 (ii) and Kelch13 mutant parasites; 
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G1957F458I  (iii), G1979Y505H (iv)  , G1989M488I (v) and G2025R551T (v) as compared to wild 

type parasites (i)  upon treatment with AS for cohorts 3 and 4. Smears were collected and 

analyzed as described in Figure 4.4b. 
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Figure 8.11: Growth competition of the parent 1804WT and UBP-1 V2721F mutant line 

as compared to the G159WT in the presence or absence of AS or CQ drug pressure. 

Parasites were mixed at a 1:1 ratio, injected into mice and left treated or untreated with 

AS at 50 mg/kg or CQ at 15 mg/kg. a. Percentage population changes of the 1804WT and 

wild type G159WT in the absence of drug. b. Proportion representation of the G159WT line 

in mixture with G1980V2721F in the absence of drug. c, d. Proportion representation of the 

1804WT (c) or G1980V2721F (d) as compared to the G159WT line upon AS or CQ treatment 

on the days of recrudescence.  
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8.4 Appendix figures for chapter 5 
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Figure 8.12: UCH-L3 inhibitor displays no activity in malaria parasites. a, b.  

Selected growth inhibition plots of TCID in 3D7 (a) and 820 line (b). c. Amino acid 

sequence alignment of indicated Plasmodium spp. UCH-L3 against human UCH-L3. 

Conserved residues across human and Plasmodium UCH-L3s are indicated by asterisks. 

d. Phylogenetic tree of human, mouse and Plasmodium UCH-L3 predicted protein 

sequences showing their evolutionary divergence. 
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          a                                                             b 

               

Figure 8.13: b-AP15 potentiates DHA action in UBP-1 G1808V2721F and G1807V2752F 

mutant lines.  a, b. Dose response curves and IC50 values of DHA alone or combined 

with b-AP15 at IC50 (DHA δ) in the UBP-1 G1808V2721F (a) and G1807V2752F (b)UBP-1 

mutant lines. 
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          a                                                             b 

                

         c                                                              d 

          
Figure 8.14: Interaction of DHA and WP1130, PR-619 and b-AP15. a, b. Dose 

response curves and IC50 values of DHA alone or combined with WP1130 (DHA ε) (a) or 

PR-619 (DHA λ) (b) at IC50 concentration in the P. falciparum 3D7 line. c, d. Isobologram 

plots of DHA in combination with b-AP15 (c) and WP1130 (d) and their raw ∑FIC50 

values. ∑FIC50 values, plotted FIC50s and error bars are means and standard deviations 

from three biological repeats. 
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Figure 8.15: Amino acid sequence alignment of indicated P. berghei and P. 
falciparum USP14. Conserved residues are indicated by asterisks. 
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HPLC chromatogram of DMSO 

 
 
 
 
HPLC chromatogram of 1,10-phenanthroline
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HPLC chromatogram of 1,10-phenanthroline, gradient zoom 

 
 
 
 
HPLC chromatogram of b-AP15 
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HPLC chromatogram of b-AP15, gradient zoom 

 
 
 
 
HPLC chromatogram of P5091
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HPLC chromatogram of P5091, gradient zoom 

 
 
 
 
HPLC chromatogram of PR-619 
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HPLC chromatogram of PR-619, gradient zoom 

 
 
 
 
HPLC chromatogram of WP-1130 
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HPLC chromatogram of WP-1130, gradient zoom 

 
 
 
 
HPLC chromatogram of TCID 
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HPLC chromatogram of TCID, gradient zoom 

 
 
 
 
HPLC chromatogram of NSC-632839  
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HPLC chromatogram of NSC-632839, gradient zoom  

 
 

Figure 8.16: HPLC chromatograms of the drug solvent (DMSO) and indicated DUB 

inhibitors. HPLC runs were carried out as described in section 2.4.2.
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8.5 Appendix tables 

Appendix table 8.1: List of primers used for Chapters 3 and 4 
 
Primer 

ID 

Gene target Sequence (5’-3’) Description 

GU4783 UBP-1 (PBANKA_0208800) TACATTTGAACAGCTGGGAGGGTCAGAAAAAAGATTTC Shield Mutations and BseYI introducing mutagenesis primer 

GU4784 UBP-1 (PBANKA_0208800) TTCTGGAGTTGTTATACAAAAATTTCAATGTCAAAAATG V2752F Mutagenesis primer 

GU4785 UBP-1 (PBANKA_0208800) TAACAATAGAAATCAACAAGATTTCACAGAATTATTTAG V2721F Mutagenesis primer 

GU4786 UBP-1 (PBANKA_0208800) cgttaacGATAGCTACACAAACCTTCTTTC Mutagenesis donor DNA forward primer 

GU4787 UBP-1 (PBANKA_0208800) cgttaacCTCATTTGAGGTAAATGACCAG     Mutagenesis donor DNA reverse primer  

GU4788 UBP-1 (PBANKA_0208800) tattGATTTGAACAGTTGGGTGGGT sgRNA forward UBP-1 mutagenesis 

GU4789 UBP-1 (PBANKA_0208800) aaacACCCACCCAACTGTTCAAATC sgRNA reverse UBP-1 mutagenesis 

GU4894 UBP-1 (PBANKA_0208800) CCAAAGTTCCTCTAACATAATATCTATC UBP-1 mutagenesis diagnostic primer forward 

GU4895 UBP-1 (PBANKA_0208800) CTGATGATGCTGATACACCAC UBP-1 mutagenesis diagnostic primer reverse 

GU5186 UBP-1 (PBANKA_0208800) CCCCTGTTGGTTTAATAAATTTAG UBP-1 mutagenesis diagnostic primer forward (upstream) 

GU5189 UBP-1 (PBANKA_0208800) cgttaacCCAAAGTTCCTCTAACATAATATCTATC GU4894 plus HincII introducing sequence at 5’ end 

GU5190 UBP-1 (PBANKA_0208800) GAATAAAAAATACGTATCACCATATAGCATCTTAAGCATAC V2752F to V2721F swapping internal primer carrying V2721F mutation, 

SnaBI and PAMs sites 

GU5191 UBP-1 (PBANKA_0208800) GTATGCTTAAGATGCTATATGGTGATACGTATTTTTTATTC Reverse complement of GU5190 

GU5206 UBP-1 (PBANKA_0208800) tattGTATGCTTAAAATGCTATAT V2752F to V2721F swapping: sgRNA forward 

GU5207 UBP-1 (PBANKA_0208800 aaacATATAGCATTTTAAGCATAC V2752F to V2721F swapping: sgRNA reverse 

GU5274 Kelch13 (PBANKA_1356700) tattATTGTGGTATCACATCAAAT R551T I555T sgRNA forward primer  

GU5275 Kelch13 (PBANKA_1356700) aaacATTTGATGTGATACCACAAT R551T I555T sgRNA reverse complement  

GU5276 Kelch13 (PBANKA_1356700) GTGGTATCACATCCAATGGAACAATATAC forward primer introducing R551T, BtsCI for RFLP and PAMs 
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GU5277 Kelch13 (PBANKA_1356700) GTATATTGTTCCATTGGATGTGATACCAC Reverse complement of GU5276 

GU5278 Kelch13 (PBANKA_1356700) cgttaacGAAATCCACTAACCATACCTATACC Kelch13 mutagenesis donor DNA (R551T, I555T, C592Y) PCR forward 

GU5279 Kelch13 (PBANKA_1356700) cgttaacCCCTGAACTTCTAGCTTC Kelch13 mutagenesis donor DNA (R551T, I555T, C592Y) PCR reverse 

GU5280 Kelch13 (PBANKA_1356700) GTGGTATCACATCCAATGGACGAATATACTGTACTGGTGGT forward primer introducing I555T, BtsCI for RFLP and PAMs 

GU5281 Kelch13 (PBANKA_1356700) ACCACCAGTACAGTATATTCGTCCATTGGATGTGATACCAC Reverse complement of GU5280 

GU5282 Kelch13 (PBANKA_1356700) tattACACATAGCGGAAGATCTCG C592Y 1st sgRNA forward  

GU5283 Kelch13 (PBANKA_1356700) aaacCGAGATCTTCCGCTATGTGT C592Y 1st sgRNA reverse  

GU5284 Kelch13 (PBANKA_1356700) GTTAAATACACCGCGATCTTCCGCTATGTATGTAGC forward primer introducing C592Y, BstUI for RFLP and PAMs 

GU5285 Kelch13 (PBANKA_1356700) GCTACATACATAGCGGAAGATCGCGGTGTATTTAAC Reverse complement of GU5284 

GU5286 Kelch13 (PBANKA_1356700) cgttaacAACATCACCATTTTCACCTCCTG Reverse primer for donor DNA, C592Y mutation 

GU5287 Kelch13 (PBANKA_1356700) tattGTACACATACGCCAGCATTGT M488I Y505H sgRNA forward primer 

GU5288 Kelch13 (PBANKA_1356700) aaacACAATGCTGGCGTATGTGTAC M488I Y505H sgRNA reverse complement  

GU5289 Kelch13 (PBANKA_1356700) TATAAGTCAACAATGCTGGCGGATGTGTACACCCATTTCAAC forward primer introducing M488I, BtsCI for RFLP and PAMs 

GU5290 Kelch13 (PBANKA_1356700) GTTGAAATGGGTGTACACATCCGCCAGCATTGTTGACTTATA Reverse complement of GU5290 

GU5291 Kelch13 (PBANKA_1356700) cgttaacTGTAGGAGGAGCTCTTTTTGAAAC Forward primer for donor DNA (F458I, M488I, Y505H)  

GU5292 Kelch13 (PBANKA_1356700) CTTTTTACATGTATTCGGTGG forward primer introducing Y505H  

GU5293 Kelch13 (PBANKA_1356700) CCACCGAATACATGTAAAAAG  Reverse complement of GU5293 

GU5294 Kelch13 (PBANKA_1356700) TATAAGTCAACAATGCTGGCGGATGTGTACACCCATGTCAAC Y505H mutagenesis 2nd forward primer introducing BtsCI for RFLP and 

PAMs 

GU5295 Kelch13 (PBANKA_1356700) GTTGACATGGGTGTACACATCCGCCAGCATTGTTGACTTATA Reverse complement of GU5294 

GU5296 Kelch13 (PBANKA_1356700) tattAACCTCCAATAGAAAAAACT F458I sgRNA forward  

GU5297 Kelch13 (PBANKA_1356700) aaacAGTTTTTTCTATTGGAGGTT F458I sgRNA reverse  

GU5298 Kelch13 (PBANKA_1356700) CCATTCCCACTAGTTATTTCTATTGGAGGTTTT forward primer introducing F458I PAMs and SpeI for RFLP 

GU5299 Kelch13 (PBANKA_1356700) AAAACCTCCAATAGAAATAACTAGTGGGAATGG Reverse complement of GU5298 
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GU5300 Kelch13 (PBANKA_1356700) TTGTAGATGCTAATATAGCAACTG Kelch13 mutagenesis forward diagnostic primer 

GU5301 Kelch13 (PBANKA_1356700) GGTGGACCAATTTGCCATTC Kelch 13 mutagenesis reverse diagnostic primer 

GU5458 Kelch13 (PBANKA_1356700) tattATCAAAAGCTACACACATAG C592Y 2nd sgRNA forward  

GU5459 Kelch13 (PBANKA_1356700) aaacCTATGTGTGTAGCTTTTGAT C592Y 2nd sgRNA reverse  

GU5460 Kelch13 (PBANKA_1356700) TACCCCGCGATCTTCAGCTATGTATGTAGCTTTTG forward primer introducing C592Y Y TAT codon, BstUI for RFLP and 

PAMs  

GU5461 Kelch13 (PBANKA_1356700) CAAAAGCTACATACATAGCTGAAGATCGCGGGGTA Reverse compliment of GU5460 

GU5462 Kelch13 (PBANKA_1356700) TACCCCGCGATCTTCAGCTATGTACGTAGCTTTTG forward primer introducing C592Y Y codon TAC, BstUI for RFLP and 

PAMs 

GU5463 Kelch13 (PBANKA_1356700) CAAAAGCTACGTACATAGCTGAAGATCGCGGGGTA reverse complement of GU5262 

GU5464 Kelch13 (PBANKA_1356700) GTTAAATACACCGCGATCTTCCGCTATGTACGTAGCT forward primer introducing C592Y Y codon TAC for 1st sgRNA, BstUI for 

RFLP and PAMs 

GU5465 Kelch13 (PBANKA_1356700) AGCTACGTACATAGCGGAAGATCGCGGTGTATTTAAC reverse complement of GU5464 

GU5466 Kelch13 (PBANKA_1356700) GTTAAATACACCGCGATCTTCCGCTATGTGTGTAGCT forward primer, 1st sgRNA C592C control; only silent mutations BstUI 

and PAMs 

GU5467 Kelch13 (PBANKA_1356700) AGCTACACACATAGCGGAAGATCGCGGTGTATTTAAC reverse complement of GU5466 
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Appendix table 8.2: List of plasmids generated, sgRNA pairs and details of supplied donor templates 
 
Plasmid ID Primary plasmid ID (sgRNA primer pair cloned into ABR099) Donor template DNA (PCR primers) and nucleotide substitutions 

pG945 pG944 (GU4788+GU4789) GU4786 + GU4787 (516 bp), V2752F, BseYI, PAMs 
pG946 pG944 (GU4788+GU4789) GU4786 + GU4787 (516 bp), V2721F, V2752F, BseYI, PAMs 
pG962 pG960 (GU5206 + GU5207) GU5189 + GU4787 (698 bp), V2721F, V2752F, SnaBI, PAMs 
pG963 pG960 (GU5206 + GU5207) GU5189 + GU4787 (698 bp), V2721F, SnaBI, PAMs 
pG983 pG975 (GU5296 + GU5297) GU5291 + GU5279 (811 bp), F458I, SpeI/PAMs 
pG984 pG976 (GU5287 + GU5288) GU5291 + GU5279 (811 bp), Y505H, BtsCI, PAMs 
pG1004 pG1001 (GU5282 + GU5283) GU5278 + GU5286 (845 bp), C592Y, BstUI, PAMs 
pG1005 pG1002 (GU5274 + GU5275) GU5278 + GU5279 (644 bp), I555T, BtsCI, PAMs 
pG1006 pG1002 (GU5274 + GU5275) GU5278 + GU5279 (644 bp), R551T, BtsCI, PAMs 
pG1008 pG976 (GU5287 + GU5288) GU5291 + GU5279 (811 bp), M488I, BtsCI, PAMs 
pG1010 pG1009 (GU5458 + GU5459) GU5278 + GU5286 (845 bp), C592Y_Y TAT codon, BstUI, PAMs 
pG1011 pG1009 (GU5458 + GU5459) GU5278 + GU5286 (845 bp), C592Y_Y TAC codon, BstUI, PAMs 
pG1012 pG1001 (GU5282 + GU5283) GU5278 + GU5286 (845 bp), C592Y_Y TAC codon, BstUI, PAMs 
pG1013 pG1001 (GU5282 + GU5283) GU5278 + GU5286 (845 bp), C592C sgRNA control, BstUI, PAMs 
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Appendix table 8.3: Plasmids, generated lines, transfection efficiencies and outcome line genotypes for Chapters 3 & 4. RFLP 

analysis of the bulk transfected parasites was carried out on PCR fragments amplified using diagnostic PCR primers exterior of the donor 

template; GU5300 + GU5301 (1,111 bp) for Kelch13 and GU4894 + GU4895 (807 bp), GU5186 + GU4895 (946 bp) for UBP-1.  

 
Plasmid ID Target 

gene 
Parent 
line 

Outcome line ID RFLP expected 
fragment sizes 

~ RFLP efficiency Outcome line genotype 

pG945 UBP-1 820 G1807 BseYI RFLP 536, 271 
bp 

99.52% wild type, 
0.48% mutant 

V2752F positive? BseYI & PAMs positive? 

pG946 UBP-1 820 G1808 BseYI RFLP 536, 271 
bp 

77.268% wild type, 
22.732% mutant 

V2721F positive, V2752F negative, BseYI & 
PAMs positive 

pG962 UBP-1 G1807V2752F G1919 SnaBI RFLP 632, 314 
bp 

20.828% wild type 
79.172% mutant 

V2721F negative, SnaBI & PAMs positive 

pG963 UBP-1 G1807V2752F G1918 SnaBI RFLP 632, 314 
bp 

11.671% wild type,  
88.329% mutant 

V2721F positive, SnaBI & PAMs positive 

pG963 UBP-1 1804cl1 G1980 SnaBI RFLP 632, 314 
bp 

34.503% wild type, 
65.497% mutant 

V2721F positive, SnaBI & PAMs positive 

pG983 Kelch13 1804cl1 G1957 SpeI RFLP 803, 308 
bp 

1.676% wild type, 
98.324% mutant 

F458I, SpeI/PAMs positive 

pG984 Kelch13 1804cl1 G1979 BtsCI RFLP 714, 397 
bp 

6.05% wild type, 
93.950% mutant 

Y505H, BtsCI, PAMs  
positive 

pG1004 Kelch13 1804cl1 G2022 BstUI RFLP 701, 410 
bp 

86.625% wild type, 
13.374% mutant 

C592Y negative, BstUI & PAMs positive 

pG1004 Kelch13 1804cl1 G2023 BstUI RFLP 701, 410 
bp 

81.467% wild type, 
18.534% mutant 

C592Y negative, BstUI & PAMs positive 

pG1005 Kelch13 1804cl1 G2024 BtsCI RFLP 582, 529 
bp 

92.261% wild type, 
7.739% mutant 

I555T negative, BtsCI & PAMs positive 

pG1006 Kelch13 1804cl1 G2025 BtsCI RFLP 582, 529 
bp 

70.006% wild type, 
29.994% mutant 

R551T positive, BtsCI & PAMs positive 
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pG1008 Kelch13 1804cl1 G1989 BtsCI RFLP 714, 397 
bp 

2.087% wild type, 
97.913% mutant 

M488I, BtsCI, PAMs  
positive 

pG1010 Kelch13 1804cl1 G2042 BstUI RFLP 701, 410 
bp 

99.861% wild type, 
0.138% mutant 

C592Y negative, BstUI & PAMs positive 

pG1011 Kelch13 1804cl1 G2043 BstUI RFLP 701, 410 
bp 

97.381% wild type, 
2.619% mutant 

C592Y negative, BstUI & PAMs positive 

pG1012 Kelch13 1804cl1 G2044 BstUI RFLP 701, 410 
bp 

91.883% wild type, 
8.117% mutant 

C592Y negative, BstUI & PAMs positive 

pG1013 Kelch13 1804cl1 G2045 BstUI RFLP 701, 410 
bp 

5.539% wild type, 
94.461% mutant 

C592C positive, BstUI & PAMs positive 

 
G1807 CQ 15mg/kg BseYI RFLP 536, 271 

bp 
97.375% wild type, 
2.625% mutant 

V2752F positive? BseYI & PAMs positive? 

G1807 CQ 30mg/kg BseYI RFLP 536, 271 
bp 

38.927% wild type, 
61.073% mutant 

V2752F positive, BseYI & PAMs positive 

G1807 ART 20mg/kg BseYI RFLP 536, 271 
bp 

99.539% wild type, 
0.461% mutant 

V2752F positive? BseYI & PAMs positive? 

G1808 CQ 15mg/kg BseYI RFLP 536, 271 
bp 

19.791% wild type, 
80.209% mutant 

V2721F positive, V2752F negative, BseYI & 
PAMs positive 

G1808 ART 20mg/kg BseYI RFLP 536, 271 
bp 

9.545% wild type, 
90.455% mutant 

V2721F positive, V2752F negative, BseYI & 
PAMs positive 

G2022 AS 20mg/kg BstUI RFLP 701, 410 
bp 

96.13% wild type, 
3.87% mutant 

C592Y negative BstUI & PAMs positive 

G2022 AS 64mg/kg BstUI RFLP 701, 410 
bp 

97.299% wild type, 
2.701% mutant 

C592Y negative BstUI & PAMs positive 

G2023 AS 20mg/kg BstUI RFLP 701, 410 
bp 

87.814% wild type, 
12.186% mutant 

C592Y negative, BstUI & PAMs positive 

G2023 AS 64mg/kg BstUI RFLP 701, 410 
bp 

97.139% wild type, 
2.861% mutant 

C592Y negative, BstUI & PAMs positive 
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G2024 AS 20mg/kg BtsCI RFLP 582, 529 
bp 

81.484% wild type, 
18.516% mutant 

I555T negative, BtsCI & PAMs positive 

G2024 AS 64mg/kg BtsCI RFLP 582, 529 
bp 

88.154% wild type, 
11.846% mutant 

I555T negative, BtsCI & PAMs positive 

G2025 AS20mg/kg BtsCI RFLP 582, 529 
bp 

50.295% wild type, 
49.705% mutant 

R551T positive, BtsCI & PAMs positive 

G2025 AS 64mg/kg BtsCI RFLP 582, 529 
bp 

0.219% wild type, 
99.781% mutant 

R551T positive, BtsCI & PAMs positive 
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Appendix table 8.4: Recrudescence of P. berghei Kelch13 and UBP-1 mutants as compared to wild type. Groups of 3 or 4 mice (M0-

M3) were infected with ~106 parasites on Day 0 and treated from 3 hours with ART at 80 mg/kg as indicated by arrows. A recrudescent 

event was recorded as – for negative smears or + with associated parasitaemia.  
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Appendix table 8.5: A manually created list of 17 DUBs in malaria parasites, their predicted function and essentiality.  The list was 

created based on previous in silico  predictions (Ponder and Bogyo, 2007, Ponts et al., 2011) and a selected functional studies (Artavanis-

Tsakonas et al., 2006, Artavanis-Tsakonas et al., 2010) as well as recent genome wide knockout screens (Bushell et al., 2017, Zhang et 

al., 2018). 

P. falciparum / P. berghei gene ID Close human orthologue Essential? (P. falciparum / P. 

berghei) 

Predicted function in malaria parasites 

PF3D7_1460400/PBANKA_1324100 UCH-L3 Yes/not characterised deNeddylase/DUB activity 

PF3D7_1117100/PBANKA_0930900 UCH54 Yes/dispensable deNeddylase/DUB activity 

PF3D7_0726500/PBANKA_0210600 UCH-L1 Yes/Yes Not known 

PF3D7_0104300/PBANKA_0208800 HAUSP/USP7 (UBP-1) Yes/not characterised Implicated in drug resistance 

PF3D7_0413900/PBANKA_0715900 USP13 Yes/not characterised Not known 

PF3D7_0527200/PBANKA_1242000 USP14 Yes/dispensable DUB activity 

PF3D7_0516700/PBANKA_1231500 USP2 not characterised/dispensable Not known 

PF3D7_0904600/PBANKA_0416800 USP14? dispensable/dispensable Not known 

PF3D7_1317000/PBANKA_1415500 USP39 Yes/not characterised Not known 

PF3D7_1414700/PBANKA_1028000 UCH36? dispensable/not characterised Not known 

PF3D7_1226800/PBANKA_1441600 Ataxin 3 Yes/dispensable Not known 

PF3D7_0403500/PBANKA_1001100 USP? Yes/Yes Not known 

PF3D7_1111900/PBANKA_0935700 Josephin domain Yes/not characterised Not known 
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PF3D7_0923100/PBANKA_0824000 OTU domain dispensable/dispensable Not known 

PF3D7_1031400/PBANKA_0515350 OTU like not characterised/dispensable Not known 

PF3D7_1141700/PBANKA_0907300 OTU domain Yes/not characterised Not known 

PF3D7_0920300/PBANKA_0821200 OTU domain Yes/not characterised Not known 
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Appendix table 8.6: A list of DUB inhibitors used in the study, their targets, chemical structure, supplier and primary references. 

 

Inhibitor, Mw 

 

UPS target Supplier Purity grade Chemical structure 

PR-619, 223.28 broad spectrum 

DUB inhibitora 

 
Focus biomolecules (CAS 
#: 2645-32-1) 

 

98% by TLC NMR 
 

P5091, 348.23 USP7 and USP47 

DUBsb 

 

Focus biomolecules (CAS 

#: 882257-11-6) 

 

98% by TLC NMR 

 

TCID, 283.93 UCH-L3 and UCH-

L1 DUBsc 

 

 

Focus biomolecules (CAS 

#: 30675-13-9) 

 

 

97% by TLC NMR 

    

WP1130 UCH-L1, USP9X, 

USP14, UCH37 

DUBsd 

 

Focus biomolecules (CAS 

#: 856243-80-6) 

 

98% by TLC NMR 
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b-AP15, 419.4 USP14 and UCH-L5 

DUBse 

 

Focus biomolecules (CAS 

#: 1009817-63-3) 

 
 
>98% by HPLC  

 

NSC-632839, 

339.86 

USP2, USP7, SENP2 

DUBsf 

Focus biomolecules (CAS 

#: 157654-67-6) 

>98% by HPLC NMR 

 

1,10 

phenanthroline, 

198.2 

Metalloproteases 

and JAMM 

isopeptidasesg 

 

BPS biosciences 

(CAS #: 5144-89-8) 

 

≥99% by HPLC 

 

 

(Altun et al., 2011)a, (Chauhan et al., 2012)b, (Liu et al., 2003)c, (Kapuria et al., 2010)d (D'Arcy et al., 2011)e,  

(Nicholson et al., 2008)f, (Cooper et al., 2009)
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Appendix table 8.7: HPLC chemical purity and retention times of DUB 
inhibitors used in chapter 5  
 

DUB inhibitor HPLC Purity (%) Retention time (minutes) 

1,10-phenanthroline >99 12.433 

b-AP15 >99 19.095 

P5091 >99 21.303 

PR-619 >99 13.708 

WP1130 >99 20.205 

TCID >99 19.755 

NSC-632839 99 16.612 
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Experimentally Engineered Mutations in a Ubiquitin
Hydrolase, UBP-1, Modulate In Vivo Susceptibility to
Artemisinin and Chloroquine in Plasmodium berghei

Nelson V. Simwela,a Katie R. Hughes,a A. Brett Roberts,a Michael T. Rennie,a Michael P. Barrett,a Andrew P. Watersa

aInstitute of Infection, Immunity and Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom

ABSTRACT As resistance to artemisinins (current frontline drugs in malaria treat-
ment) emerges in Southeast Asia, there is an urgent need to identify the genetic de-
terminants and understand the molecular mechanisms underpinning such resistance.
Such insights could lead to prospective interventions to contain resistance and pre-
vent the eventual spread to other regions where malaria is endemic. Reduced sus-
ceptibility to artemisinin in Southeast Asia has been primarily linked to mutations
in the Plasmodium falciparum Kelch-13 gene, which is currently widely recognized as
a molecular marker of artemisinin resistance. However, two mutations in a ubiquitin
hydrolase, UBP-1, have been previously associated with reduced artemisinin suscep-
tibility in a rodent model of malaria, and some cases of UBP-1 mutation variants as-
sociated with artemisinin treatment failure have been reported in Africa and SEA. In
this study, we employed CRISPR-Cas9 genome editing and preemptive drug pres-
sures to test these artemisinin susceptibility-associated mutations in UBP-1 in Plas-
modium berghei sensitive lines in vivo. Using these approaches, we show that the
V2721F UBP-1 mutation results in reduced artemisinin susceptibility, while the
V2752F mutation results in resistance to chloroquine (CQ) and moderately impacts
tolerance to artemisinins. Genetic reversal of the V2752F mutation restored chloro-
quine sensitivity in these mutant lines, whereas simultaneous introduction of both
mutations could not be achieved and appears to be lethal. Interestingly, these muta-
tions carry a detrimental growth defect, which would possibly explain their lack of
expansion in natural infection settings. Our work provides independent experimental
evidence on the role of UBP-1 in modulating parasite responses to artemisinin and
chloroquine under in vivo conditions.

KEYWORDS artemisinin, Plasmodium berghei, Plasmodium falciparum, drug
resistance, malaria

Artemisinins (ARTs) in artemisinin combinational therapies (ACTs) remain the main-
stay of malaria treatment globally and thus far remain mostly effective in sub-

Saharan Africa, where most of the disease burden occurs (1). However, ART (and even
ACT) resistance has emerged in Southeast Asia (SEA), with a risk of spreading that is
seriously threatening recent gains achieved in malaria control (2, 3). ART resistance is
thought to be primarily conferred by specific mutations in the Plasmodium falciparum
Kelch-13 (PfKelch13) gene, and such mutations are currently almost endemic in most
parts of SEA (1, 4, 5). Phenotypically, these mutations are associated with delayed
parasite clearance rates in vivo and with reduced susceptibility of ring stage parasites
in vitro in ring stage survival assays (RSA) (3, 6). Interestingly, the prevalence of
PfKelch13 mutations remains low outside SEA (7), and the few observed PfKelch13
polymorphisms in sub-Saharan Africa are not associated with treatment failure and/or
delayed parasite clearance rates (8). Moreover, large-scale genome-wide association
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studies have revealed that polymorphisms in other genes such as multidrug resistance
protein 2, ferredoxin, and others are also associated in SEA with delayed parasite
clearance rates (9). More recently, mutations in an independent gene, P. falciparum
coronin (PfCoronin), have been shown to confer enhanced survival in ring stage
parasites exposed to dihydroartemisinin (DHA) (10). Deconvoluting the geographic
complexities of ART resistance, genetic determinants, and the molecular mechanism
involved would thus provide an avenue to contain or rescue emergent ART resistance
through efficient surveillance and/or suitable combinational therapies.

Mutations in a ubiquitin hydrolase, UBP-1 (a close homologue to HAUSP or USP7),
were previously identified to modulate susceptibility to ART and chloroquine (CQ) in
the rodent-infectious malaria parasite Plasmodium chabaudi after sequential experi-
mental evolution and selection with a series of antimalarial drugs (11). The reported
drug-resistant phenotypes emerged from in vivo passage and exposure of the P.
chabaudi drug-sensitive AS line to sublethal doses of pyrimethamine, CQ, mefloquine,
and ARTs (11–13). Interestingly, in these P. chabaudi lineages, CQ resistance at 15 mg/kg
emerged first, and from this uncloned line, whole-genome sequencing revealed two
UBP-1 mutations (V2697F and V2728F) that were associated with the resistance phe-
notype (13, 14). Further selection of this uncloned CQ-resistant line generated lines with
different drug resistance profiles, as follows: (i) a line resistant to 15 mg/kg mefloquine,
(ii) a line resistant to CQ at 30 mg/kg, (iii) a line resistant to up to 300 mg/kg ART, which
was selected from the CQ 30 mg/kg-resistant line, and (iv) a line resistant to up to
60 mg/kg artesunate. Upon further cloning and genome sequencing of these lines, it
was found that the UBP-1 V2728F mutation was common in the ART-, CQ (30 mg/kg)-,
and mefloquine-resistant lines, while the V2697F mutation only fixated upon artesunate
selection (11, 12, 14). Due to the complexity of the selection procedure with multiple
drugs, it has been difficult to confidently associate these UBP-1 mutations with ART and
CQ susceptibility in the absence of appropriate reverse genetics approaches. Recently,
these mutations have been introduced into UBP-1 in P. falciparum, and the V2721F
equivalent has been shown to associate with increased DHA RSA survival with no CQ
resistance phenotype, whereas the V2728F orthologue appeared to have no ART or CQ
resistance profiles (15). More interestingly, UBP-1 mutation variants have been associ-
ated with decreased effectiveness of ARTs in Africa and some parts of Asia (16–19).

In our present study, we successfully engineered UBP-1 candidate mutations in an
independent rodent model of P. berghei infection using a CRISPR-Cas9 genome editing
system. We provide a causal link to the reduced ART and CQ susceptibility profiles of
these mutant lines both in vitro and in vivo. We have also characterized their relative
fitness compared to that of the wild-type nonmutant parasite.

RESULTS
CRISPR-Cas9-engineered mutations in UBP-1 confer in vivo selective advantage

to ART and CQ pressure in Plasmodium berghei. To experimentally demonstrate that
UBP-1 mutations confer selective advantage upon ART pressure, we introduced P.
chabaudi UBP-1 candidate mutation (V2697F and V2728F) equivalents (see Fig. S1 in the
supplemental material) into the P. berghei 820 line using a CRISPR-Cas9 system devel-
oped and optimized in our lab (Fig. 1A). Two plasmids were initially designed to either
introduce the single mutation, V2752F (V2728F P. chabaudi equivalent), or both mu-
tations, V2721F (V2697F P. chabaudi equivalent) and V2752F, in an attempt to generate
a double mutant (Fig. 1A). Silent mutations to mutate the Cas9 cleavage site and
introduce a restriction site (BseYI) were also introduced to prevent retargeting of
mutated loci by Cas9 for the former and diagnosis by restriction fragment length
polymorphism (RFLP) for the latter (Fig. 1A and B). Transfections of these plasmids into
the 820 line yielded !0.5% mutants for the V2752F mutant line (G1807, pG945) and
!23.00% mutants for the V2721F and V2752F double-mutant line (G1808, pG946), as
confirmed by RFLP analysis (BseYI digestion) of the edited UBP-1 locus (Fig. 1B). Since
the efficiency was too low to clone out the mutant lines by serial dilution, we attempted
a preemptive drug selection with CQ and ART of the G1807 and G1808 lines to examine
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FIG 1 Introduction of UBP-1 mutations in P. berghei. (A) Schematic plasmid constructs for the UBP-1-targeted gene editing to introduce the V2721F and V2752F
mutation. The plasmid contains Cas9 and hdhfr (for pyrimethamine drug selection) under the control of the P. berghei EF-1! promoter and the sgRNA expression
cassettes under the control of the PyU6 promoter. A 20-bp guide RNA was designed and cloned into the sgRNA section of the illustrated vector. The donor
UBP-1 sequence (610 bp) is identical to that of the wild type, albeit with the desired mutations of interest (indicated by colored star symbols): V2752F (pG945),
V2721F and V2752F (pG946), and silent mutations that mutate the Cas9 binding site as well as introduce the restriction site BseYI for restriction fragment length

(Continued on next page)
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if selective enrichment of the mutant population could be achieved. Indeed, after
infecting mice with the G1808 line and treating for three consecutive days with ART at
20 mg/kg, the recrudescent parasite population on day 9 was enriched to !90%
mutant population, as confirmed by RFLP analysis (Fig. 1C; see also Fig. S2D in the
supplemental material). Meanwhile, CQ at 15 mg/kg also enriched the G1808 line to
!80%, relatively less than did ART (Fig. 1C). On the contrary, a very low-level mutant
enrichment of the G1807 line (0.5% to 2.6%) was observed with CQ at 15 mg/kg, while
ART did not produce any enrichment in the same line (0.5%). Interestingly, cloning of
the G1808 ART-enriched lines yielded six clones that were all single mutants positive for
the V2721F mutation despite coming from a plasmid with donor templates that carried
both the V2721F and V2752F mutations (Fig. 1E and F). This suggests that the single
V2721F mutation-carrying parasites were predominant in the G1808 line (despite
resulting from transfection with a plasmid carrying both mutations) and were selec-
tively enriched by ART. These data also suggested that introducing both mutations into
the same parasite could either be lethal or result in very unfit parasites that are easily
cleared by the host during early growth following transformation. Indeed, bulk DNA
sequence analysis of the G1808 uncloned line revealed the absence of traces for both
mutations, as only parasites carrying V2721F with silent mutations were present (Fig.
S2B). Sequence analysis of the G1808 line isolated after CQ challenge at 15 mg/kg also
confirmed specific enrichment for the V2721F mutation (Fig. S2D), suggesting that
despite being principally enriched by ART, the V2721F mutation also modulates some
resistance to CQ. Meanwhile, when we challenged the G1807 line (V2752F single
mutation) with CQ at higher doses (20, 30, and 50 mg/kg), a recrudescent population
was observed on day 10 with CQ 30 mg/kg (Fig. 1D). The CQ 30 mg/kg recrudescent
parasites were enriched to !61% for the mutant population (Fig. 1D, Fig. S2C) and were
subsequently cloned. Sanger sequencing of G1808 ART-enriched and G1807 CQ-
enriched clones confirmed the presence of the single V2721F and V2752F mutations,
respectively, as well as the Cas9 cleavage silencing mutations and the silent mutations
introducing the BseYI diagnostic restriction site (Fig. 1F).

The V2721F mutation confers observable reduced in vivo susceptibility to
ARTs, while the V2752F mutation confers resistance to CQ and low-level protec-
tion against ARTs. We next quantitated the drug response profiles of the G1808V2721F

and G1807V2752F cloned lines (first clone in each of the lines) in vitro and in vivo using
DHA, ART, and CQ. In short-term P. berghei in vitro drug assays, both the G1808V2721F

and G1807V2752F parasites showed no difference in sensitivity to DHA compared to that
of the parental 820 line (Fig. 2A and B). The lack of decreased drug sensitivity of both
lines is consistent with the failure of the standard 72-h drug assays to differentiate
similar Kelch-13 ART-resistant parasites from sensitive lines in P. falciparum (3, 6).
Meanwhile, a 1.8-fold increase in the half-inhibitory concentration (IC50) was observed
for the G1807V2752F line when challenged with CQ (Fig. 2C), but not for the G1808V2721F

line (Fig. 2D). However, rodent malaria parasites offer the advantage of experimental
drug resistance assessment in vivo. Therefore, we profiled the in vivo drug responses of
the mutant lines to parental ART, which with controlled parasite inocula has been
shown to effectively suppress wild-type parasites for up to 18 days following 100 mg/kg

FIG 1 Legend (Continued)
polymorphism (RFLP) analysis. (B) Illustrated 20-bp sgRNA and RFLP analysis of mutant parasites. Successful editing in the transfected parasites was observed
on day 12 after transfection and pyrimethamine drug selection. RFLP (BseYI digestion) analysis of the transformed line PCR products (primers GU4894 "
GU4895, 807 bp) revealed !0.5% and !22% efficiency for the G1807 and G1808 lines, respectively, as indicated by 2 distinct bands (536 bp and 271 bp)
compared to 807-bp bands in the parent 820 line. (C) Preemptive challenge of the G1807 and G1808 lines with ART and CQ at 20 mg/kg and 15 mg/kg,
respectively, and RFLP analysis of recrudescent parasites. Mice were infected intraperitoneally (i.p.) with !2 # 107 parasites on day 0. Treatment was started
!4 h postinfection by i.p. injection for three consecutive days. Parasitemia was monitored by microscopy analysis until recrudescence was observed. (D)
Preemptive challenge of the G1807 line with higher doses of CQ and RFLP (BseYI digestion) analysis of the G1807 recrudescent population after challenge with
30 mg/kg CQ. (E) RFLP analysis of the cloned G1808 and G1807 ART- and CQ-challenged recrudescent parasites. (F) DNA sequencing confirming successful
nucleotide editing for the G1807 clone 2 and G1808 clone 1 lines. The top sequence represents the wild-type 820 line (820WT) unedited sequence with positions
for sgRNA, protospacer adjacent motif (PAM), and V2721F or V2752F mutations indicated. The bottom sequence illustrates the nucleotide replacements at the
V2721F or V2752F mutation locus and silent mutations to prevent Cas9 retargeting, as well as to introduce the BseYI restriction site for RFLP analysis in the
G1807V2752F and G1808V2721F lines.
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dosing for three consecutive days (12). This is unlike responses to the clinically relevant
ART derivative artesunate, which permits recrudescence in wild-type rodent malaria
parasites at doses as high as 300 mg/kg within 14 days (20). This approach, when
applied to the G1808V2721F line, demonstrated that this mutation does indeed confer

FIG 2 ART and CQ in vitro and in vivo resistance profiles of the G1807V2752F and G1808V2721F lines. dihydroartemisinin (DHA) dose-response curves and
half-inhibitory concentration (IC50) comparisons of the G1808V2721F (A) and G1807V2752F (B) lines relative to that of the wild-type 820 line. CQ dose-response
curves and IC50 comparisons of the G1807V2752F (C) and G1808V2721F (D) lines relative to that of the wild-type 820 line. Significant differences between mean
IC50 values or IC50 shifts were calculated using the paired t test. Error bars are standard deviations from three biological repeats. Significance is indicated with
asterisks as follows: *, P $ 0.05; **, P $ 0.01; ***, P $ 0.001; ****, P $ 0.0001; ns, not significant. Modified Peters’ 4-day suppressive test to monitor resistance to
ART and CQ in vivo in the G1808V2721F (E) and the G1807V2752F (F) mutant lines. Groups of three mice were infected with 1 # 106 parasites on day 0. Treatment
started !1.5 h later with indicated drug doses every 24 h for three consecutive days (treatment days shown by arrows). Parasitemia was monitored by
microscopy analysis of Giemsa-stained blood smears up to day 18. Error bars are standard deviations of parasitemia values from 3 mice.
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enhanced in vivo tolerance to ARTs compared to that of the parental 820 line.
G1808V2721F parasites survive three consecutive doses of 75 mg/kg ART, with the
recrudescent population appearing on day 9 after the last dosing, whereas 820
wild-type parasites are effectively suppressed up to day 17 of follow-up (Fig. 2E). Both
the G1808V2721F and 820 lines survived a 45 mg/kg dose of ART, with the former having
a slightly faster recrudescence rate on day 7, while the latter recrudesced a day later
(Fig. 2E). Even though ART at 45 mg/kg does not significantly separate wild-type from
mutant parasites, this could be due to the fitness cost that the V2721F mutation carries
(Fig. 3), which would explain the recrudescence of mutant parasites at almost the same
time as that for the wild type, since they would require a slightly longer time to achieve
quantifiable parasitemia. Both lines remain sensitive to a 125 mg/kg ART dose, with no
recrudescence observed up to day 17 (Fig. 2E). In contrast, the G1807V2752F line is
relatively resistant to CQ in vivo (Fig. 2F), surviving three consecutive doses at 25 mg/kg,
with recrudescent parasites coming up on day 4 after the last dose, unlike the parental
820 line and the G1808V2721F lines, which are sensitive and are effectively suppressed
up to day 17. Interestingly, the G1807V2752F line also displays low-level reduced
susceptibility to ART at 75 mg/kg dose, with parasites coming up on day 12, later than

FIG 3 Growth kinetics of the 820, G1808V2721F, and G1808V2752F lines relative to the 1804cl1 line. The
1804cl1 line constitutively expresses mCherry under the control of the hsp70 promoter. The 820,
G1808V2721F, and G1808V2752F lines were mixed with the 1804cl1 line at a 1:1 ratio and injected
intravenously at a parasitemia of 0.01% on day 0. Daily percentages of representative parasitemia of the
820 or mutant lines in the competition mixture were quantified by subtracting the total parasitemia
based on positivity for Hoechst DNA stain from the fraction of the population that is mCherry positive
(1804cl1) as determined by flow cytometry. On day 4, when parasitemia was !5%, blood from each
mouse was passaged into a new naive host, and parasitemia was monitored until day 8. Percent
population changes of the mutant and wild-type lines relative to the 1804cl1 line in the 820 (A),
G1808V2721F (B), and G1807V2752F (C) lines. Error bars are standard deviations from three biological
repeats.
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in the G1808V2721F line (Fig. 2F). These data confirm that the V2721F mutation confers
protection from ART drug challenge, while the V2752F mutation mediates resistance,
primarily to CQ and, to some extent, low-level protection to ARTs. The recrudescence
of the wild-type 820 and G1808V2721F parasites at 45 mg/kg ART is also in agreement
with our previous finding that P. berghei is less sensitive to ARTs, especially in the spleen
and bone marrow, which could be the source of recrudescent infection at relatively
lower doses (21).

Growth of parasites carrying UPB-1 V2752F and V2721F mutations is impaired.
The spread of drug resistance, as is the case in most microbial pathogens, is partly
limited by detrimental fitness costs that accompany acquisition of such mutations in
respective drug transporters, enzymes, or essential cellular components. The G1807 and
G1808 lines carrying UBP-1 V2721F and V2752F mutations, respectively, were each
grown in competition with a parental line expressing mCherry in vivo and were shown
to be characteristically slow growing (Fig. 3A to C). In comparison, the G1807V2752F line
is severely impaired relative to the G1808V2721F line, being completely outcompeted by
day 8. These data and the earlier failure to generate the double mutant (Fig. 1)
demonstrate that UBP-1 is an important (possibly essential) protein for parasite growth
and that acquisition of resistance through mutation of UBP-1 confers mutation-specific
fitness costs.

Reversal of the V2752F mutation restores CQ sensitivity in the G1807V2752F

line, while introduction of the V2721F in the same line appears to be lethal. Drug
pressure can select, in the long or short term, for mutations in sensitive parasite
populations that would affect responses to the same drug. To further confirm that the
phenotypes observed in our mutant lines were due to the V2721F or V2752F mutations
and not to possible secondary mutations that may have been acquired during the
preemptive drug pressure, we attempted to reverse the V2752F mutation in the
G1807V2752F line by swapping it to the V2721F genotype. This would allow us to
determine if wild-type CQ phenotypes can be restored in the G1807V2752F line, while at
the same time assessing if the ART susceptibility profiles of the G1808V2721F mutants
could be reproduced in an independent line. Using a CRISPR-Cas9 editing strategy
similar to the one outlined above, a single guide RNA (sgRNA) targeting a region !50
bp upstream of the V2721F mutation was designed and cloned in the Cas9-expressing
vectors (Fig. 4A). Donor DNA (698 bp; GU5189 " GU4787) containing the V2721F (for
targeted mutation swap) or both the V2721F and V2752F mutations (for a forced
introduction of V2721F in the G1807V2752F background) was used to generate the
vectors pG963 and pG962, respectively (Fig. 4A). Silent mutations mutating the proto-
spacer adjacent motif (PAM) site, as well as introducing a second restriction site, SnaBI,
for RFLP analysis were also included. Transfection of the G1807V2752F line with pG963
and pG962 vectors successfully edited the UBP-1 locus, generating the G1918 and
G1919 lines, respectively, with !88% and !79% efficiency as confirmed by SnaBI RFLP
analysis (Fig. 4A). Cloning and sequencing of the G1918 line revealed a successful
targeted mutation swap, introducing the V2721F mutation and reediting the 2752F to
2752V wild-type genotype (Fig. 4B and C). Phenotype analysis of the G1918 clone line
revealed a restored in vitro susceptibility to CQ similar to that of the 820 wild type and
a similar DHA sensitivity (Fig. 4D). Under in vivo conditions, the G1918cl1 line displayed
a similar ART susceptibility profile at 75 mg/kg as the G1808V2721F line, while CQ
sensitivity was completely restored (Fig. 4E). This provided further experimental evi-
dence that the drug susceptibility profiles observed were due to the V2721F or V2752F
amino acid substitutions and not to the introduced silent mutations or secondary
mutations that may have been acquired during the preemptive drug exposure. Inter-
estingly, cloning and sequencing of the G1919 (Fig. 4B and F) line revealed successful
introduction of the silent mutations (PAM mutating and SnaBI); the V2721F mutation
was absent in all four clonal lines, yet the parental V2752F mutation was retained. This
suggested that introduction of V2721F in the V2752F background is lethal or refractory
in the parasite and further supported our failed first attempt to generate the double-
mutant line (Fig. 1). Detailed sequence analysis of the transfected parasite populations
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before cloning revealed the presence of only one mutation trace in the G1919 line
(despite the donor DNA containing both mutations), confirming that the double-
mutant parasites do not survive or are severely growth impaired and quickly overgrown
by the single-mutation parasites (Fig. 4G).

DISCUSSION
Ubiquitin hydrolases or deubiquitinating enzymes (DUBs) are essential elements of

the eukaryotic ubiquitin proteasome system (UPS), which is primarily involved in
maintaining cellular protein homeostasis and responding to stress. Despite the pro-
posed involvement of Plasmodium DUBs in modulating susceptibility to multiple drugs,
lack of conclusive experimental evidence has thus far limited studies into their detailed
involvement in mode of action and or resistance phenotypes, such as those observed
with ARTs. In this study, using a CRISPR–Cas9-mediated reverse genetics approach, we

FIG 4 Swapping of the V2752F to V2721F mutations and attempted generation of a double mutant in the G1807V2752F line. (A) Schematic of the UBP-1 donor
DNA in the pG962 and pG963 vectors, a 20-bp guide RNA used to target the UBP-1 region upstream of the V2721F mutation in the Cas9-expressing vectors,
with introduced silent mutation sites indicated. RFLP (SnaBI digestion) analysis of PCR products (GU5186 " GU4895, 946 bp) of the G1918 and G1919 lines
relative to the mutants showing successful editing by 2 distinct RFLP bands for the mutants (632 bp and 314 bp) and residual traces of the parental genotype.
(B) RFLP analysis of the cloned G1918 and G1919 lines. The first six lanes to the left are RFLP analyses of G1918 and G1919 cloned line PCR products
(GU5186 " GU4895, 946 bp) digested by SnaBI, showing 2 bands (632 bp and 314 bp) compared to 1 band for the parental G1807V2752F line. Six lanes to the
right are the same clones digested by both SnaBI and BseYI, showing parental G1807V2752F with 2 RFLP bands (536 bp and 410 bp) as a result of digestion with
BseYI only, as the SnaBI restriction site is absent, and 3 RFLP bands (536 bp, 314 bp, and 96 bp) in the G1918 and G1919 clones as a result of digestion of the
PCR product by both BseYI and SnaBI. (C) Sequencing of G1918 clone 1 showing successful swapping of V2752F in the parent G1807V2752F line to the V2721F
mutation. (D) In vitro DHA and CQ dose response curves and IC50 comparisons of the G1918cl1 revertant line relative to those of the wild type, showing reversion
of the CQ phenotype and similar sensitivity to DHA. Significant differences between mean IC50 values or IC50 shifts were calculated using a paired t test. Error
bars are standard deviations from three biological repeats. Significance is indicated with asterisks as follows: *, P $ 0.05; **, P $ 0.01; ***, P $ 0.001; ****,
P $ 0.0001; ns, not significant. (E) in vivo tolerance to ARTs at 75 mg/kg in the G1918cl1 line and complete restoration of CQ sensitivity. Sequence analysis of
the G1919 clone1 (F) line and the G1919 uncloned (G) line, showing absence of double mutant populations.
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have provided experimental evidence on the direct involvement of a DUB (UBP-1) in
modulating parasite responses to ART and CQ, most importantly under in vivo condi-
tions. As the debate into the mechanism of action and resistance to ARTs continues, a
consensus understanding is converging that ART resistance is complex, as several
factors, genetic determinants, and possibly mechanisms of action appear to be in-
volved. In P. falciparum, ART resistance is confined to early ring stage parasites, which
has been translated in laboratory conditions to increased survival in ring stage survival
assays (RSAs) (6). Mutations in Pfkelch13 and PfCoronin, as well as transient
(hypothermic-hyperthermic) temperatures, have been shown to enhance ring stage
parasite survival in the RSAs (10, 22, 23). More recently, characterization of Kelch-13
interacting factors has revealed that disruption of proteins that colocalize with Kelch-
13, such as the parasite endocytosis proteins ESP15, UBP-1, and others of unknown
function, modulate susceptibility to ARTs (24). As demonstrated in this study, reduced
ART and, more, reduced CQ susceptibility can be mediated by mutations in UBP-1,
underscoring a potential mechanism of cross resistance and some commonality in
mode of action between CQ and ART, especially relating to hemoglobin digestion and
trafficking in malaria parasites (24–26).

The UBP-1 V2728F mutation was previously designated a principle determinant of
reduced ART susceptibility despite its common fixation with mefloquine and higher
doses of CQ (12). Contrary to this argument, ART did not enrich this mutation (V2752F)
in our study, but instead enriched the V2721F mutation, which was fixed with artesu-
nate in P. chabaudi. However, enrichment of the V2752F mutation with a higher dose
of CQ was achieved, showing that this mutation does indeed modulate parasite
responses to CQ, while the V2721F mutation is chiefly responsible for the reduced ART
susceptibility phenotype in the P. berghei model in vivo. Interestingly, drug challenge of
these mutant lines in vivo revealed that both mutations give low-level cross-protection
against both ARTs and CQ. This confirms that each of these UBP-1 mutations modulates
some form of protection to both ARTs and CQ drug challenges, albeit to differing
degrees, which is, therefore, in strong agreement with previous observations in P.
chabaudi (12). This also demonstrates a plurality of pathways to resistance involving the
same target. Recently, the exact equivalent UBP-1 mutations in P. falciparum, V3275F
and V3306F, have been successfully engineered (15). In P. falciparum UBP-1, the V3275F
mutation (V2721F P. berghei equivalent) shows enhanced survival to DHA in RSAs but
remains sensitive to CQ. However, unlike in P. berghei, the V3306F (V2752F P. berghei
equivalent) showed no enhanced survival to DHA in RSAs or resistance to CQ (15). While
not entirely in agreement with the data reported here, this could be due to limitations
in the ability of in vitro assays to fully predict actual drug responses in vivo, which our
data highlight and which has been a concern recently with Kelch-13 mutations (27).
These observations may also somewhat be confounded by species-specific differences
in drug responses, pharmacodynamics, modes of action, and resistance that, in part,
remain to be fully investigated. For example, previous and original linkage studies in P.
chabaudi identified additional mutations in an amino acid transporter (pcaat), in
tandem with UBP-1 mutations, as being strongly associated with CQ resistance phe-
notypes (12). Even though this could partly explain the observed in vitro sensitivity of
P. falciparum V3275F mutants to CQ, our data suggest that UBP-1 mutations are
sufficient to mediate quantifiable protective phenotypes to both ARTs and CQ, as the
reversal of the V2752F mutation performed in this study, for example, completely
restores CQ sensitivity. This provides, therefore, additional independent evidence on
the direct causative role of UBP-1 mutations in modulating parasite responses not just
to ARTs, but to CQ as well. The study also illustrates the potential of the P. berghei
rodent model in proving causality to antimalarial drug resistance phenotypes under in
vivo conditions, especially in light of recent reported discrepancies between some in
vitro RSA resistance profiles of P. falciparum Kelch-13 mutants and actual in vivo
phenotypes using the Aotus monkey model (27).

Interestingly, the V2721F and V2752F mutation-carrying parasites are characteristi-
cally slow growing and are easily outcompeted in the presence of nonmutants. Natural
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P. falciparum UBP-1 mutations have been reportedly associated with ART treatment
failure in Kenya (16, 19), SEA (18), and, more recently, in Ghana (17) (see Fig. S4 in the
supplemental material). However, unlike their rodent counterparts, which are associ-
ated with reduced ART susceptibility, the reported natural E1528D and D1525E muta-
tions occur toward the less conserved N terminus of the protein and outside the
conserved, bioinformatically predicted UBP-1 catalytic domain (11) (Fig. S1). This sug-
gests that acquisition of the mutations at the well-conserved C terminus in P. falciparum
leads to a potential growth defect, as we observed with P. berghei in this study.
However, as these upstream mutations are not conserved between P. falciparum and P.
berghei UBP-1, we cannot test the hypothesis in this model. In fact, P. falciparum UBP-1
is highly polymorphic, with over 480 reported single-nucleotide polymorphisms (SNPs)
(https://plasmodb.org), all of which are in the N-terminal region. P. falciparum UBP-1
has also been recently shown to be undergoing a strong positive selection in SEA (28).
UBP-1 mutations could, therefore, be an independent avenue by which ART or multi-
drug resistance phenotypes could emerge in regions where malaria is endemic, as has
been seen in Africa (Ghana and Kenya), without actually requiring a permissive genetic
background, as seems to be the current landscape with Kelch-13 mutations. However,
there are constraints upon the evolution of drug resistance and UBP-1. While these data
confirm that a single protein that does not transport drugs can mediate resistance to
two quite distinct drug entities, it was not possible to generate a P. berghei line that
simultaneously contained the two UBP-1 drug resistance mutations examined in this
study.

In yeasts, UBP-1 localizes to the endoplasmic reticulum and plays a role in protein
transport, specifically in internalization of substrates across membranes (29). Mutations
in UBP-1 could, therefore, modulate endocytosis of important essential host-derived
products such as hemoglobin to the digestive vacuole in a similar manner, thereby
reducing exposure of the parasite to activated drug for both ARTs and CQ. Interestingly,
mutations in the AP2 adaptor complex that is involved in clathrin-mediated endocy-
tosis have also been implicated in ART resistance in rodent malaria parasites (14). One
of the AP2 adaptor complex mutations (I592T) has been recently engineered in P.
falciparum and has been shown to enhance ring stage parasite survival in RSAs (15).
This further suggests that inhibition of the endocytic trafficking system is a possible
generic mechanism for the parasites to survive lethal doses of drugs that require
transport and activation in the digestive vacuole. This would further explain the
multidrug resistance phenotype observed with the UBP-1 mutations in P. chabaudi and
P. berghei in this study. Acquisition of the V2728F mutation in P. chabaudi was
structurally predicted to reduce deubiquitination (11). In such a situation, the cellular
increase in ubiquitinated proteins would be anticipated to positively feedback to the
cellular machinery to rapidly degrade protein substrates at the 20s proteasome, pro-
moting nonspecific and rapid protein turnover or impaired substrate trafficking. This
would result in generally slow-growing parasites with reduced expression of, for
example, multidrug resistance transporters, as well as reduced endocytosis of host-
derived products like hemoglobin, which would in turn modulate parasite responses to
these drugs. More recently, functional studies have revealed that PfKelch13 (a known
determinant of ART resistance) localizes to the parasite cytostome and plays a role in
hemoglobin trafficking (24, 26). Consequently, PfKelch13 mutations have been shown
to lead to a partial loss of PfKelch13 protein function, leading to decreased hemoglobin
trafficking to the parasite digestive vacuole and less DHA activation, which in turn
mediates parasite survival (24, 26). Strikingly, protein pulldown at the parasite cytos-
tomal foci where Kelch-13 localizes identified UBP-1 as a key interacting partner in the
Kelch-13-mediated endocytic machinery that is involved in hemoglobin trafficking. By
analyzing hemoglobin endocytosis in the ring and trophozoite stages, it has been
demonstrated that partial inactivation of UBP-1 impairs hemoglobin endocytosis in
both rings and trophozoites, unlike inactivation of Kelch-13, which impairs hemoglobin
uptake only in ring stages of the parasites (24). This is indeed in agreement with our
hypothesis on the consequences of UBP-1 mutations, and with observed P. berghei
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phenotypes, which in a similar manner could impair trafficking of hemoglobin, leading
to less activation of ARTs and CQ. Moreover, the potential role of UBP-1 in trafficking
hemoglobin in both rings and trophozoites could explain the ART and CQ potential
cross-resistance phenotype that we have observed with UBP-1 mutations unlike with
Kelch-13 mutations, which, thus far, are known to mediate resistance to ARTs only and
only in early ring stages. The experimental validation on the involvement of UBP-1
mutations in mediating potential cross-resistance to ART and CQ in malaria parasites,
therefore, provides an additional understanding of drug resistance in malaria parasites,
specifically for compounds that require access and/or activation in the digestive
vacuole. Furthermore, the P. berghei model provides a useful sensitive and robust
system in which to investigate the interplay and impact of simultaneous mutations of
both Kelch-13 and UBP-1 in vivo, as well as to assess whether PfKelch13 mutations
would modulate responses to CQ under in vivo conditions.

In conclusion, the work presented here provides further experimental evidence for
the involvement of conserved mutations in a polymorphic ubiquitin hydrolase protein
that serves as a nexus for resistance to two very diverse classes of drugs. The findings
also underscore the potential difficulties that in vitro assays may have in appropriately
assigning mutant parasites with appropriate phenotypes in the absence of conclusive
in vivo measurements. P. berghei should therefore, be a suitable and adaptable in vivo
model for the rapid evaluation and/or genetic engineering of mutations associated
with human-infectious Plasmodium drug resistance observed in the field for concurrent
assigning of drug resistance phenotypes under both in vitro and in vivo conditions.

MATERIALS AND METHODS
CRISPR-Cas9 generation of UBP-1 mutant lines. (i) Primary vectors. The Cas9-expressing plasmid

ABR099 was used for targeted nucleotide replacement at the UBP-1 locus. ABR099 (Fig. 1A) contains the
Cas9 endonuclease driven by the P. berghei Ef-1! promoter, a Cas9 binding scaffold, a site for cloning the
guide RNA (sgRNA) driven by the Plasmodium yoelii U6 promoter, an hdhfr cassette (for pyrimethamine
drug resistance selection), and a linker site for insertion of homologous repair templates. sgRNAs
targeting the UBP-1 locus were designed using the Web-based eukaryotic pathogen CRISPR guide
RNA/DNA design tool (http://grna.ctegd.uga.edu/) (30) by directly inputting the sequence of interest.
Primary vectors containing the sgRNA of interest were generated by annealing the oligonucleotide pairs
(GU4788"GU4789 and GU5206"GU5207; see Table S1 in the supplemental material) encoding the guide
sequence and cloning them into the dual Esp3I sites upstream of the Cas9 binding domain of the vector
ABR099. These plasmids were called pG944 and pG960 for the GU4788 " GU4789 and GU5206 "
GU5207 annealed guides, respectively.

(ii) Mutagenesis and generation of secondary vectors. To generate the final vectors for editing the
UBP-1 locus, 610 bp of UBP-1 donor DNA (PlasmoDB gene ID PBANKA_0208800) was PCR amplified using
primers GU4786 and GU4787 (Table S1) designed to contain a HincII site at the 5= end. The PCR product
was purified, A tailed, and cloned into the TOPO 2.1 vector using the TOPO TA cloning kit (Invitrogen)
according to the manufacturer’s instructions. To mutate the UBP-1 locus, 3 primer sets (Table S1)
complementary to the amplified UBP-1 PCR product were designed to contain specific nucleotide
substitutions, as follows: (i) a shielding primer (GU4783) containing three silent mutations mutating the
sgRNA and PAM sites targeted by the GU4788 " GU4789 sgRNA (to prevent Cas9 binding the donor
templates and the edited loci in the mutant parasites), as well as an introduced BseYI restriction site for
restriction site fragment polymorphism (RFLP) analysis, and (ii) 2 primer sets carrying the mutations of
interest, V2721F (GU4785) and V2752F (GU4784). A site-directed mutagenesis of the cloned UBP-1 PCR
product in the TOPO 2.1 vector was carried out using a QuikChange multisite-directed mutagenesis kit
(Agilent Technologies) using the following primer combinations: GU4783 " GU4784 for the V2752F
single mutant and GU4783 " GU4784 " GU4785 for the double mutant. The resulting mutant fragments
in the TOPO 2.1 vector were digested out and cloned into the linker site of the vector pG944 using the HincII
restriction site to generate pG945 (single mutant) and pG946 (double mutant). For targeted mutation
swapping and a second attempt to generate a double mutant line, a second sgRNA (GU5206 " GU5207)
upstream of the V2721F mutation was designed and cloned into the ABR099 vector as described. Donor DNA
was amplified from the G1808V2721F or pG946 vector to generate single- or double-mutation templates,
respectively, by using overlapping PCR as previously described (31). Briefly, internal complementary
primers (GU5190 " GU5191; Table S1) carrying 3 silent mutations (2 for mutating the sgRNA and PAM
of the GU5206 " GU5207 sgRNA and 1 to introduce the SnaBI restriction site for RFLP analysis) were used
to amplify 2 overlapping PCR products from the G1808V2721F DNA or pG946 plasmid upon linkage to
HincII, introducing outer primers GU5189 and GU4787 (Table S1). After gel purification, !50 ng of the
overlapping PCR fragments was used as the template in a second round of PCR using the two outer
primers (GU5189 " GU4787) to generate donor fragments with mutations of interest. The resulting
fragments were subsequently cloned into the pG960 vector at the linker site using the HincII restriction
site to generate the vectors pG963 (silent mutations to GU5206 " GU5207 sgRNA, V2721F mutation) and
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pG962 (silent mutations to GU5206 " GU5207 sgRNA, V2721F and V2752F mutation). All PCRs were
carried out using the Kapa high-fidelity PCR kit (Roche). Plasmids were verified by Sanger DNA sequenc-
ing prior to further use.

P. berghei animal infections. P. berghei parasites were maintained in female Theiler’s Original (TO)
mice (Envigo) weighing between 25 and 30 g. Parasite infections were established either by intraperi-
toneal (i.p.) injection of !200 "l of cryopreserved parasite stocks or by intravenous (i.v.) injection of
purified schizonts. Monitoring of parasitemia in infected mice was done by examining methanol-fixed
thin blood smears stained in Giemsa (Sigma) or by flow cytometry analysis of infected blood stained with
Hoechst 33342 (Invitrogen). Blood from infected mice was collected by cardiac puncture under terminal
anesthesia. All animal work was performed in compliance with UK home office licensing (project
reference no. P6CA91811) and with ethical approval from the University of Glasgow Animal Welfare and
Ethical Review Body.

Parasite lines and transfections. An 820 line that express green fluorescent protein (GFP) and red
fluorescent protein (RFP) in male and female gametocytes, respectively (32), was used for initial
transfection experiments, while the 1804cl1 line, which constitutively expresses mCherry throughout the
life cycle (33), was used for growth competition assays as a control. Episomal plasmid DNA (!10 "g) from
the vectors described above was transfected by mixing with Nycodenz-purified schizonts and electro-
porated using the Amaxa Nucleofector device II program U-o33 as previously described (34). Parasites
were then immediately i.v. injected into the mouse tail vein. Positive selection of transfected parasites
was commenced 24 h later by inclusion of pyrimethamine (Sigma) in drinking water.

Genotype analysis of mutant lines. Blood was collected from parasite-infected mice by cardiac
puncture under terminal anesthesia and lysed by resuspension in 1# E-lysis buffer (Thermo). Parasite
genomic DNA was extracted using the Qiagen DNeasy blood and tissue kit according to manufacturer’s
instructions. Genotype analysis of the transfected or cloned parasite lines was conducted initially by dual
PCR-RFLP. PCR using exterior primers (GU4894 " GU4895 or GU5186 " GU4895) was used to amplify
fragments from the DNA of the mutant lines, followed by restriction digests with either BseYI or SnaBI
restriction enzymes to verify successful editing of the UBP-1 locus. Transfection efficiencies were
estimated by relative densitometric quantification of RFLP fragments by ImageJ2 (35). Further confir-
mation of the mutations was carried out by Sanger DNA sequencing.

P. berghei in vitro culture and drug susceptibility assays. For in vitro maintenance of P. berghei,
cultures were maintained for one developmental cycle using a standardized schizont culture medium
containing RPMI 1640 with 25 mM hypoxanthine, 10 mM sodium bicarbonate, 20% fetal calf serum, 100
U/ml penicillin, and 100 "g/ml streptomycin. Culture flasks were gassed for 30 s with a special gas mix
of 5% CO2, 5% O2, and 90% N2 and incubated for 22 to 24 h at 37°C with gentle shaking, conditions that
allow for development of ring stage parasites to mature schizonts. Drug assays to determine in vitro
growth inhibition during the intraerythrocytic stage were performed in these standard short-term
cultures as previously described (36). Briefly, 1 ml of infected blood with a nonsynchronous parasitemia
of 3 to 5% was collected from an infected mouse and cultured for 22 to 24 h in 120 ml of schizont culture
media. Schizonts were enriched from the cultures by Nycodenz density flotation as previously described
(34), followed by immediate injection into a tail vein of a naive mouse. Upon i.v. injection, schizonts
immediately rupture, with the resulting merozoites invading new red blood cells within minutes to
obtain synchronous in vivo infection containing %90% rings and a parasitemia of 1 to 2%. Blood was
collected from the infected mice 2 h postinjection and mixed with serially diluted drugs in schizont
culture medium in 96-well plates at a final hematocrit of 0.5% in a 200-"l well volume. Plates were gassed
and incubated overnight at 37°C. After 22 to 24 h of incubation, schizont maturation was analyzed by
flow cytometry after staining the infected cells with the DNA dye Hoechst-33258. Schizonts were gated
and quantified based on fluorescence intensity on an FACSCelesta or an LSRFortessa (BD Biosciences,
USA). To determine growth inhibitions and calculate half-inhibitory concentrations (IC50), quantified
schizonts in no-drug controls were set to correspond to 100% with subsequent growth percentages
in the presence of drugs, calculated accordingly. Dose-response curves were plotted in GraphPad
Prism 7.

In vivo drug assays. A modified Peters’ 4-day suppressive test was employed to assess in vivo drug
responses and/or resistance profiles in the wild-type and mutant lines, as previously described (37).
Parasitemia was initiated by i.p. inoculation of between 106 and 107 parasites, followed by three daily
consecutive drug doses initiated !4 h postinoculation. CQ was prepared at 50 mg/ml in 1# phosphate-
buffered saline (PBS) and diluted to working stock in 1# PBS, while ART was prepared at 12.5 mg/ml in
a 1:1 mixture of dimethyl sulfoxide (DMSO) and Tween 80 (Sigma), followed by a 10-fold dilution in sterile
water to an injectable working solution. All drugs were delivered by i.p. injection and were prepared
fresh immediately before injection. Parasitemia was monitored daily by flow cytometry and analysis of
methanol-fixed Giemsa stained smears.

In vivo growth competition assays. Clonal mutant lines in the 820 background were mixed with the
1804cl1 line, which constitutively express mCherry under the control of the hsp70 promoter, in a 1:1
mixture and injected intravenously into mice. Parasitemia in the competition mixtures was quantified by
flow cytometry quantification of mCherry-positive parasites for the 1804cl1 proportional percentage and
by subtracting the total parasitemia (Hoechst positive) from the mCherry-positive proportion for the 820
control and or mutant lines. Differentiation of the mCherry-positive population from the RFP in the
820 line was carried out by applying flow compensation gating strategies (see Fig. S3 in the supple-
mental material).
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ABSTRACT The recent emergence of Plasmodium falciparum parasite resistance to
the first line antimalarial drug artemisinin is of particular concern. Artemisinin resis-
tance is primarily driven by mutations in the P. falciparum K13 protein, which en-
hance survival of early ring-stage parasites treated with the artemisinin active me-
tabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in
vivo. However, association of K13 mutations with in vivo artemisinin resistance has
been problematic due to the absence of a tractable model. Herein, we have em-
ployed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum
K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei ro-
dent model of malaria. Introduction of the orthologous P. falciparum K13 F446I,
M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited para-
sites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro
assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant
P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment
with artesunate and achieved faster recrudescence upon treatment with artemisinin.
Orthologous C580Y and I543T mutations could not be introduced into P. berghei,
while the equivalents of the M476I and R539T mutations resulted in significant
growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly
synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing
further evidence that the proteasome can be targeted to overcome artemisinin resis-
tance. Taken together, our findings provide clear experimental evidence for the in-
volvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro
and, most importantly, under in vivo conditions.

IMPORTANCE Recent successes in malaria control have been seriously threatened
by the emergence of Plasmodium falciparum parasite resistance to the frontline arte-
misinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated
with mutations in the parasite K13 protein, which associates with a delay in the time
required to clear the parasites upon drug treatment. Gene editing technologies have
been used to validate the role of several candidate K13 mutations in mediating P.
falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless,
the causal role of these mutations under in vivo conditions has been a matter of de-
bate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations as-
sociated with artemisinin resistance into the related rodent-infecting parasite, Plas-
modium berghei. Phenotyping of these P. berghei K13 mutant parasites provides
evidence of their role in mediating artemisinin resistance in vivo, which supports in
vitro artemisinin resistance observations. However, we were unable to introduce
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some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding
amino acid residues, while other introduced mutations (M476I and R539T equiva-
lents) carried pronounced fitness costs. Our study provides evidence of a clear
causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and
in vivo using the well-characterized P. berghei model. We also show that inhibition of
the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant
lines.

KEYWORDS malaria, Plasmodium berghei, Plasmodium falciparum, artemisinin
resistance, K13, gene editing, ring-stage survival assays, parasite clearance times,
proteasome, synergy

Artemisinin (ART)-based combination therapies (ACTs) have been at the forefront of
globally coordinated efforts to drive down the burden of malaria. A pharmacody-

namic hallmark of ARTs and their derivatives is that they are highly active and fast
acting against blood stages of malaria parasites. These drugs can achieve up to
10,000-fold parasite reductions in the first replication cycle upon drug exposure (1).
Such is the effectiveness of ARTs that recently reported reductions in malaria morbidity
and mortality are, indeed, partly attributed to ACTs (2). The use of ARTs in combination
therapies originated from early clinical trials, which showed that despite achieving
faster parasite clearance, ART monotherapies resulted in recrudescence rates of up to
40% (3). ACTs deliver a pharmacological cure by taking advantage of ARTs to rapidly
clear the parasite biomass in the early days of treatment while relying on the partner
drug to eliminate residual parasites (4). So far, ACTs remain highly effective in Sub-
Saharan Africa, the region that harbors the highest disease burden, with efficacy rates
of !98% (2). Nevertheless, ACTs have been threatened by the emergence of Plasmo-
dium falciparum resistance to ARTs in Southeast Asia, and resistance has the potential
to spread to other regions of malaria endemicity, as has been a historical trend with
earlier first-line antimalarial drugs (2, 5–7). Recently, locally derived K13 variants that are
able to mediate ART resistance in vitro have been identified in P. falciparum parasites
in French Guiana and in Rwanda (8, 9), further illustrating the emergent threat to ART
efficacy. Moreover, an aggressive expansion of a parasite lineage carrying the genetic
determinants of resistance to both ART derivatives and the ACT partner drug piper-
aquine has been reported across Southeast Asia, resulting in a dramatic loss of clinical
efficacy (10–13).

Clinically, P. falciparum resistance to ARTs manifests as reduced in vivo parasite
clearance upon treatment with ACTs or ART monotherapies (2, 14, 15). These clearance
rates are based on the Worldwide Antimalarial Resistance Network (WWARN) parasite
clearance estimator (16), which quantifies relative resistance by estimating parasitemia
lag phases and clearance half-lives upon treatment with artesunate (AS) or ACTs. This
involves in vivo quantification of viable parasitemia (in patients) upon treatment with
AS (2 to 4 mg/kg body weight/day) or ACTs at specified time intervals and subsequent
calculation of parasite densities as a function of time (16). The parasite clearance
estimator has been used to generate substantial baseline data that classify ART
resistance as parasite clearance half-lives of !5.5 h and ART sensitivity as parasite
clearance half-lives of "3 h (17, 18). However, interpretation of clearance half-lives can
be confounded by differences in initial parasite biomass, the efficacy of the partner
drug, and the level of host immunity (17, 19). Moreover, this in vivo phenotype does not
correlate with decreased susceptibility to dihydroartemisinin (DHA) in standard growth
inhibition assays where P. falciparum parasites (which have a #48-h intraerythrocytic
developmental cycle) are exposed to the drug for a total of 72 h (15, 20, 21). The
ring-stage survival assay (RSA), where highly synchronized early-ring-stage parasites (0
to 3 h postinvasion) are exposed for a short period of time (3 to 6 h) to DHA (at the
pharmacologically relevant concentration of 700 nM), provides an improved correlate
for the in vivo delayed parasite clearance phenotype and has been the principal in vitro
assay for determining P. falciparum resistance to ARTs (22, 23). At the genetic level,
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polymorphisms in the P. falciparum K13 propeller domain have been strongly associ-
ated with ACT treatment failure (21, 24) and also correlate with delayed parasite
clearance in vivo and increased parasite survival in vitro in RSAs (25–27). Reverse genetic
approaches have been successfully used to show that the P. falciparum K13 mutations
M476I, R539T, I543T, Y493H, and C580Y can confer DHA resistance in vitro, as defined
by !1% survival in RSAs (28, 29). However, the parasite genetic background as well as
underlying polymorphisms in drug resistance determinants such as pfcrt (P. falciparum
chloroquine resistance transporter) and pfmdr2 (P. falciparum multidrug resistance
protein-2) may play a role either by modulating different levels of susceptibility to DHA
or by providing a suitable biological landscape upon which these K13 mutations are
more likely to arise (25, 28).

ART resistance as typified by the “delayed clearance phenotype” is, however, still
classified as “partial resistance,” primarily because most patients with parasites harbor-
ing the phenotype effectively clear the infection when an effective partner drug is used
or duration of monotherapy is extended (4). ART partial resistance is, therefore, con-
firmed or suspected when patients carry parasites with certain K13 mutations, display
a parasite clearance half-life of !5.5 h, or are microscopically smear positive on day
three after initiation of treatment (2, 4). The full extent to which these parameters
predict subsequent ACT treatment failure or define ART resistance remains an area of
continuing debate (30–35). The definition of ART resistance in these contexts would
thus benefit from experimentally accessible in vivo models that would help interrogate
ART parasite susceptibility parameters, including clearance half-lives, recrudescence
rates, and treatment failures. Such models would allow for a genetic dissection of the
role of K13 mutations in mediating resistance in vivo in the absence of confounding
factors such as secondary genetic factors and/or host factors (25, 28). Currently, the K13
C580Y polymorphism is the most prevalent and dominant ART-resistant mutation in
Southeast Asia (14, 36). A recent genetic cross of the K13 C580Y ART-resistant line with
an Aotus monkey-infecting P. falciparum strain provided evidence, in this nonhuman
primate model, that parasites carrying the C580Y mutation can display increased
survival in in vitro RSAs with no accompanying in vivo ART resistance (37).

Moreover, P. falciparum drug resistance mutations are known to often associate with
significant fitness costs that limit the prevalence and eventual propagation of
resistance-conferring alleles in natural infections. For example, mutations in the P.
falciparum chloroquine (CQ) resistance transporter (pfcrt) that modulate resistance to
CQ massively expanded when CQ was in use in the 1970s but eventually were
outcompeted and replaced with parasites carrying wild-type alleles in African high-
transmission settings following withdrawal of CQ use (38, 39). Similarly, P. falciparum
K13 mutations have been shown to carry in vitro fitness costs; however, the degree to
which a given mutation is detrimental for growth seems to depend on the parasite
genetic background (40). Relative to other K13 mutations, P. falciparum R539T and
I543T mutant parasites that are associated with the highest RSA survival rates (23, 28)
and most significant delays in parasite clearance (41) also carried the most pronounced
fitness costs (40). Intriguingly, the most prevalent K13 mutation in Southeast Asia,
C580Y, was fitness neutral in vitro when gene edited into recent Cambodian clinical
isolates, whereas it displayed a significant growth defect when introduced into ART-
susceptible parasites isolated before ARTs were widely deployed (40, 42). Recently, it
was demonstrated that P. falciparum K13 localizes to the parasite cytostomes and other
intracellular vesicles and plays a role in parasite hemoglobin endocytosis and trafficking
to the lysosome-like digestive vacuole (43–45). K13 mutations are thought to lead to a
partial loss of protein function, which subsequently impairs hemoglobin endocytic
uptake, thereby lessening ART activation and conferring ART resistance (43). This has
pointed toward a K13-mediated hemoglobin-centric mechanism of ART resistance,
which could possibly be shared with other drugs such as CQ that act by binding to
heme moieties in the digestive vacuole, following cytostome-mediated hemoglobin
endocytosis (44, 46–48). Of note, mutant K13-mediated ART resistance phenotypes are
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associated with upregulated cellular stress responses, which can be targeted by selec-
tive inhibition of the parasite 26S proteasome (49, 50).

Here, we report the in vitro and in vivo phenotypes of orthologous P. falciparum K13
mutations that were gene edited into an in vivo rodent model of malaria, Plasmodium
berghei. We profiled the fitness of these P. berghei K13 mutant parasites relative to their
isogenic wild-type counterparts as well as their sensitivity to combinations of DHA and
proteasome inhibitors. Our data provide evidence that K13 mutations are causal for
reduced susceptibility to ARTs in an in vivo model and link these mutations to in vitro
and ex vivo phenotypes. Our findings also demonstrate that inhibition of the Plasmo-
dium proteasome is an effective strategy to restore ART action in resistant parasites that
survive treatment with ART alone.

RESULTS
CRISPR/Cas9-mediated introduction of P. berghei orthologous K13 mutations

and in vivo mutant enrichment by AS. To generate P. berghei mutant parasites
carrying orthologous P. falciparum K13 mutations, we attempted to introduce P. berghei
equivalents of five P. falciparum K13 mutations (M476I, Y493H, R539T, I543T, and C580Y)
that by reverse genetics were previously shown to confer enhanced P. falciparum
survival in in vitro RSAs (28). We also introduced the equivalent of the F446I mutation
that is predominant in Southern China along the Myanmar border (14). These muta-
tions are all validated determinants of reduced P. falciparum susceptibility to ARTs (4).
Structural homology modeling revealed that P. berghei and P. falciparum K13
(PBANKA_1356700 and PF3D7_1343700, respectively) are highly conserved (#84%
sequence identity overall) at the C-terminal propeller domain, especially where
resistance-conferring mutations localize (Fig. 1A). P. berghei K13 carries 12 extra amino
acids, resulting in 738 amino acids for P. berghei compared to 726 for P. falciparum.
However, modeling suggests that the extra amino acids in P. berghei do not change the
overall propeller structure of K13 or the amino acid identity at the orthologous
positions of the mutations examined in this study (Fig. 1A; see also Fig. S1A and B in
the supplemental material). Using a CRISPR/Cas9 system (Fig. S2A) (46), we designed
Cas9 plasmids carrying single guide RNAs (sgRNAs) to target the P. berghei K13 locus
with corresponding homology repair templates. The repair templates carried the mutations
of interest as well as silent mutations that inactivated the protospacer adjacent motif (PAM)
and introduced restriction sites for restriction fragment length polymorphism (RFLP) anal-
yses (see Table S1). Electroporation of the plasmids pG1004 (C592Y), pG1005 (I555T), and
pG1006 (R551T) into the K13 wild-type P. berghei 1804cl1 line yielded edited parasites
(G2022C592Y.1*, G2023C592Y.2*, G2024I555T* and G2025R551T*) with calculated 13.4%, 18.5%,
7.7%, and 30.0% efficiencies, respectively, by RFLP analysis (see Fig. S2B; Table S1).
Intriguingly, bulk DNA sequencing of these transformed parasites revealed that only
the G2025R551T* line carried sequence traces for the R551T amino acid substitution and
accompanying silent mutations (Fig. S3A), while the rest had traces only of the silent
mutations (Fig. S3B and C). Our prior studies with refractory mutations have also
revealed the parasite’s ability to restrict CRISPR/Cas9-mediated double-stranded break
repair to the region immediately proximal to the cut site, thereby capturing the silent
mutations without extending to nearby deleterious single nucleotide polymorphisms
(SNPs) (46). We suspect this is a consequence of very short resection events (51). These
data suggested that the C592Y and I555T mutations either result in extremely slow
growing parasites or are entirely lethal in P. berghei. We attempted to clone the
G2025R551T* line by limiting dilution, but this could not be achieved, possibly due to the
low mutant population (30.0%) combined with a potentially low growth rate of
the mutants compared to that of wild-type parasites.

In earlier efforts to introduce UBP-1 mutations in P. berghei, we found that preemp-
tive drug pressure to which the engineered mutation is anticipated to confer a
protective advantage can selectively enrich for the mutant in a mixed, transfected
parasite population, even when the mutant population is "1% in the mixture (46).
Using this approach, we subjected a larger inoculum (2 $ 107) of the G2022C592Y.1*,
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G2023C592Y.2*, G2024I555T*, and G2025R551T* lines to AS at 20 or 64 mg/kg to see if any
enrichment in the recrudescent parasite populations could be achieved (Fig. 1B).
Indeed, AS at both 20 and 64 mg/kg specifically enriched the R551T mutant population
in the G2025R551T* line from 30.0% in the initial transfection to 49.7% at AS 20 mg/kg
and !99% at 64 mg/kg (Fig. 1C; Fig. S2B and Table S1). In contrast, apart from a minor
enrichment that was observed for the G2024I555T* line, no useful enrichments in both
the G2022C592Y.1* and G2023C592Y.2* lines were observed by RFLP at either concentra-
tion of AS (Fig. S2B; Table S1). Furthermore, no I555T or C592Y amino acid substitution
traces could be seen after population-level DNA sequencing of these lines. These data
further supported the relative nonviability of P. berghei parasites bearing K13 C592Y

FIG 1 Introduction of orthologous K13 nucleotide substitutions in P. berghei. (A) Three-dimensional homology model of P. falciparum
(PF3D7_1343700) and P. berghei (PBANKA_1356700) K13 for amino acid residues 350 to 726 and 362 to 738, respectively. P. falciparum K13
mutation sites (F446I, M476I, Y493H, R539T, I543T, and C592Y) are indicated in the structure on the left, and P. berghei orthologous mutation sites
are modeled on the right. Models were created in SWISS-MODEL using PDB template 4zgc.1.A. Structures were visualized and annotated using
PyMOL 2.3. (B) Parasitemia growth curves monitoring recrudescence of the G2022, G2023, G2024, and G2025 lines upon artesunate (AS) challenge.
Mice were infected with 2 $ 107 parasites by i.p. injection on day 0. Treatment with AS was commenced #3 h postinfection by i.p. injection and
was continued for three consecutive days as indicated by arrows. Parasitemia was monitored microscopically until recrudescence was observed.
Mice were bled when the parasitemia was less than 1.5% to minimize competition from wild-type parasites in case mutants carried growth
defects. (C) Sanger sequencing of bulk DNA from the G2025 R551T line showing selective enrichment of this mutation upon AS treatment at 20
or 64 mg/kg. Enrichment of this mutation was also observed in the RFLP analysis (see also Fig. S2B in the supplemental material).
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and I555T mutations. In agreement with the above-described observations, further
attempts to introduce the C592Y mutation using a different sgRNA and/or different
codons for the tyrosine residue in the donor template (TAT or TAC) were also unsuc-
cessful. We did, however, observe !90% editing efficiency when introducing only silent
mutations that maintained the C592C wild-type genotype in the donor template
(Fig. S3 and E; Table S1). This, plus other unsuccessful attempts to generate the I555T
mutant, further implies that these two K13 mutations are not viable in P. berghei.
Meanwhile, transfection of the P. berghei 1804cl1 line with pG983 (F458I), pG984
(Y505H), and pG1008 (M488I) successfully introduced these mutations in P. berghei K13,
yielding the G1957F458I*, G1979Y505H*, and G1989M488I* lines with !93% efficiencies, as
confirmed by RFLP analysis (Fig. S2C; Table S1) as well as population-level DNA
sequencing (Fig. S3F, G, and H). These three lines (G1957F458I*, G1979Y505H*, and
G1989M488I*) and the G2025R551T* AS 64 mg/kg-challenged line were all cloned by
limiting dilution. Mutations were further confirmed by RFLP analysis (Fig. S3I) and
sequencing. The V2721F UBP-1 mutant line, which we previously found to mediate
reduced susceptibility to ARTs in P. berghei (46), was also generated in the 1804cl1
background and cloned (Table S1).

P. berghei K13 mutants display reduced susceptibility to DHA in 24-h assays
and increased survival in P. berghei-adapted RSAs. Unlike that for P. falciparum, P.
berghei can only be maintained in one blood-stage cycle in vitro, which restricts drug
susceptibility assays to one 24 h developmental cycle. Drug susceptibility readouts are
therefore based on single-generation flow cytometry quantification of schizont matu-
ration (46, 52, 53). Using this approach, we aimed to characterize the DHA dose-
response profiles of the P. berghei K13 mutants compared to those of wild-type
parasites or to a previously reported UBP-1 mutant with reduced ART susceptibility (46).
Interestingly, in contrast to the equivalent P. falciparum K13 mutants, P. berghei M488I,
R551T, and Y505H K13 mutant parasites displayed reduced susceptibility to DHA in
standard growth inhibition assays with 3.3-, 1.4-, and 1.2-fold 50% inhibitory concen-
tration (IC50) increases, respectively, compared to that of isogenic K13 wild-type
parasites (Fig. 2A). The P. berghei F458I K13 mutant displayed equal sensitivity to DHA
as the wild-type and the UBP-1 V2721F mutant (Fig. 2A), in agreement with our
previous observations (46). These data suggest that, despite being limited to a single-
cycle 24 h exposure, the P. berghei standard assay can distinguish even modestly
ART-resistant parasites from sensitive ones. We next investigated the DHA susceptibility
of early ring-stage P. berghei K13 mutant parasites by adapting the P. falciparum RSA
(22). The P. falciparum RSA relies on exposure of early ring-stage parasites (0 to 3 h
postinvasion) to 700 nM DHA for 4 to 6 h, followed by assessment of viability in the 2nd
life cycle. This protocol allows drug-exposed parasites to reinvade fresh red blood cells.
With this approach, current RSA parameters define in vitro ART resistance as survival of
!1% and ART sensitivity as "1% survival (22). Using a similar approach, we exposed
#1.5-h postinvasion K13 mutant P. berghei ring-stage parasites to DHA at 700 nM for
3 h (to accommodate for the shorter life cycle in P. berghei). Viability was assessed 24 h
later by flow cytometry-based quantification of schizont maturation and mCherry
expression. Interestingly, we observed that a significant fraction of P. berghei wild-type
parasites survived exposure to DHA at 700 nM, with percentage survival rates of
#20.9% (Fig. 2B). This is in agreement with our previous observations that P. berghei is
less susceptible to ARTs than P. falciparum (46, 54). Both the UBP-1 mutant and F458I
or Y505H K13 mutant parasites had the same survival rates as the wild-type line,
whereas the M488I and R551T mutants exhibited significantly higher survival rates
(32.3% or 39.0%, respectively, P " 0.001) (Fig. 2B). This is consistent with previous
reports that, in P. falciparum, the R539T and I543T mutations are associated with the
highest rates of RSA survival (28). However, we noted inconsistencies between drug
susceptibility data of the mutants in the two in vitro tests (standard 24-h assay and
adapted P. berghei RSA). This might result from the inability to maintain P. berghei
in long-term culture and extend the analysis. We therefore developed a modified in
vivo RSA, where we injected wild-type, UBP-1 V2721F, M488I, and R551T parasites
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back into mice 24 h after dimethyl sulfoxide (DMSO) or DHA exposure in the RSA as
described above and then assessed viability by quantifying in vivo parasitemia on
day 4. Remarkably, percentage survival in the R551T mutant parasites significantly
increased from #39.0% (24 h readout) to #62.5%, while M488I mutant parasite
survival increased from #32.3% (24 h readout) to #38.0% (Fig. 2C). In contrast, the
percentage survival of the wild-type and UBP-1 mutant lines did not significantly

FIG 2 In vitro and ex vivo susceptibility of P. berghei K13 mutants to DHA. (A) DHA dose-response curves
and IC50 values for P. berghei K13 mutant lines compared to those of the wild-type 1804WT and the UBP-1
G1980V2721F mutant lines. (B) Survival of P. berghei K13 mutant lines in the P. berghei RSA. Results show
the percentages of synchronized early ring-stage parasites (1.5-h postinvasion) that survived a 3 h
exposure to 700 nM DHA relative to DMSO-treated parasites. Survival was quantified 24 h posttreatment
by flow cytometry analysis based on Hoechst 33258 DNA staining and mCherry expression. (C) In vivo
RSA survival for two K13 mutant lines (G1989M488I and G2025R551T) compared to that of the wild-type
(1804WT) and UBP-1 mutant (G1980V2721F) controls. After in vitro exposure to DHA or DMSO as described
above, parasites were i.v. injected back into mice as described in Materials and Methods. Parasitemia was
quantified by flow cytometry analysis of mCherry expression on day 4 after i.v. injection, from which
percentage survival rates were calculated. Error bars show standard deviations calculated from three
biological repeats. Statistical significance (compared to the 1804WT line) was calculated using one-way
analysis of variance (ANOVA) alongside the Dunnett’s multiple-comparison test. ns, not significant;
*, P " 0.05; **, P " 0.01; ****, P " 0.0001.
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change in the extended assay, despite the minor growth defect in the UBP-1
mutant, demonstrating that the P. berghei in vitro RSA and standard growth
inhibition assays with 24-h readouts may be less robust in quantifying resistance
phenotypes, especially if mutant parasites are less fit (Fig. 2C).

P. berghei K13 mutants mimic the delayed parasite clearance phenotype in vivo
upon AS treatment and achieve faster recrudescence than wild-type parasites at
high ART doses. We next investigated the in vivo parasite clearance rates of P. berghei
K13 mutant parasites in infected mice treated with AS. Mice were infected with a fixed
inoculum of K13 and UBP-1 mutant parasites (105) in four cohorts, and parasitemias
were allowed to rise to #10%. This was followed by dosing with AS at 64 mg/kg body
weight, which is slightly higher than the equivalent of the maximal human clinical dose
of 4 mg/kg (mouse equivalent % 49.2 mg/kg) to accommodate for the reduced ART
susceptibility observed in P. berghei parasites. Parasitemias were quantified by flow
cytometry (based on mCherry positivity) and microscopic analysis every 3 h for the first
24 h and at least once after the second and third doses at 24 and 48 h, respectively.
Plotting parasite density in P. berghei K13 and UBP-1 mutant parasites against time
revealed that in the first 24 h of sampling, parasite clearance kinetics did not sufficiently
discriminate K13 or UBP-1 mutant parasites from the wild type. However, as the
majority of dying parasites were being cleared by the host and mice received further
doses, extended analysis revealed that P. berghei M488I and R551T mutant parasites
consistently and significantly persisted compared to wild-type, F458I, Y505H, and UBP-1
mutant parasites (Fig. 3A; see also Fig. S4). Starting AS treatment at a high initial
parasitemia (#10%) also ensured that a good proportion of parasites would be within
the early ring-stage window and, therefore, would be expected to preferentially survive
the first AS dose. Surviving rings were easily distinguished as viable trophozoites at

FIG 3 In vivo clearance and recrudescence rate of P. berghei K13 mutants following treatment with AS or ART. (A)
Parasite clearance curves in mice infected with P. berghei K13 mutant lines following treatment with AS. Six mice
(in each of four cohorts) were infected with 105 parasites of each of the four K13 mutants, the UBP-1 mutant, and
wild-type control on day 0. On day 5, at a parasitemia of #10%, mice were dosed with AS at 64 mg/kg body weight.
Day 5 was the designated 0 h time point for the dosing regimen. Parasite density per microliter of blood was
quantified based on absolute counts of mCherry-positive parasites at staggered time points for each of the two
cohorts, with 5 time points in the first 24 h (corresponding to at least 3 h interval coverage between the two
cohorts) and at least once daily thereafter. Mice were dosed three times at 0, 24, and 48 h as indicated by arrows.
Concurrent thin blood smears were prepared at each time point for microscopic analysis (Fig. S4). (B) Kaplan-Meier
plots of recrudescence in wild-type and UBP-1 mutant controls compared to that of K13 mutants. A modified
Peters’ 4-day suppressive test was used to monitor susceptibility of the K13 mutants to 80 mg/kg ART, a dose that
effectively suppresses wild-type parasites for up to 18 days. Groups of three (UBP-1 mutant, 1804WT) or four mice
(K13 mutants) were infected with 1 $ 106 parasites on day 0. ART treatment was initiated #3 h later and continued
every 24 h for three consecutive days (treatment days shown by arrows). Parasitemias were monitored by
microscopic analysis of Giemsa-stained blood smears up to day 18 (Table S3). Recrudescence rates were plotted as
the proportion of mice in the treatment groups that became smear positive on every individual day for the 18 days
of follow-up.
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either 18-, 21-, or 24-h time points by microscopic examination of blood smears, which
enabled comparisons between parasite lines. We therefore carried out concurrent
collection and analysis of thin blood smears at all time points examined for flow
analysis (Fig. 3A; Fig. S4). Results demonstrated that enhanced survival after the first AS
dose was evident for all four P. berghei K13 mutant parasites as well as the UBP-1
mutant compared to wild-type parasites (see Fig. S5). Microscopy provided a more
sensitive discrimination than flow cytometry-based estimation of clearance kinetics that
was unable to distinguish mutant from wild-type parasites in the first 24 h. False
positives could be due to the retention of mCherry positivity by dying parasites. For
instance, we observed that a significant proportion of wild-type parasites remained
mCherry positive and were counted as viable by flow cytometry (Fig. 3A; Fig. S4),
whereas, microscopically, they were pyknotic forms (Fig. S5A and G). Remarkably, the
M488I and R551T mutants remained smear positive after two consecutive AS doses
(Fig. S5E, F, K, and L), whereas the wild-type, F458I, Y505H, and UBP-1 mutant parasites
were cleared (microscopically smear negative) after 48 h. These data suggest that the
M488I and R551T mutants meet the classical definition of ART resistance, as defined by
the WHO based on day 3 (second generation) microscopy positivity, when accounting
for the duration of the P. berghei life cycle and the dosing intervals (4). One of the four
mice in the M488I treatment group remained smear positive after three consecutive AS
doses (Fig. S5E). These data provide evidence that P. berghei K13 mutants modulate in
vivo susceptibility to ARTs, resulting in a persister/delayed clearance phenotype under
controlled conditions of initial parasite biomass and host immune status. Of note, we
consistently used naive mice of same age, sex, breed, and genetic background.

Another in vivo marker of reduced ART susceptibility in P. falciparum is the rate of
recrudescence upon AS treatment, which acts as a possible indicator of AS treatment
failure. However, at pharmacologically safe doses in humans (2 to 4 mg/kg), ART
monotherapy treatment leads to !40% recrudescence rates (1, 3), making it difficult to
use this approach to separate clinically ART-sensitive from ART-resistant parasites. P.
berghei K13 mutants, therefore, provide the opportunity to test for recrudescence rates
using controlled parasite inocula as well as AS or ART dose ascendency. We treated
groups of mice initially infected with 106 K13 mutant, ART-resistant UBP-1 mutant, or
wild-type parasites with a daily ART dose of 80 mg/kg for three consecutive days. This
ART dose sufficiently suppresses the P. berghei wild type at equivalent parasite inocula
for up to 18 days of follow-up (46). All UBP-1 mutant infections recrudesced 11 days
after the last ART dose, whereas no recrudescence (0%) was observed for the wild type
(Fig. 3B; see also Table S3). These data are consistent with our previous observations
(46). However, R551T mutant parasite infections achieved even faster recrudescence,
namely, 50% on day 4 after the last dosing and 100% a day later, indicating a higher
level of in vivo resistance for this K13 mutation compared to that of the UBP-1 mutant.
M488I mutant parasites had a similar recrudescence profile beginning on day 6. The
Y505H and F458I mutant lines both achieved recrudescence at approximately the same
time as the UBP-1 mutant; however, the latter achieved only 50% recrudescence across
the 18-day follow-up period (Fig. 3B; Table S3). These data further confirm that P.
berghei K13 mutants modulate in vivo susceptibility to ARTs and, crucially, that recru-
descence rates strongly correlate with our in vitro DHA RSA profiles (Fig. 2) as well as
with in vivo clearance kinetics in established infections (Fig. 3A; Fig. S4 and S5).

P. berghei K13 mutants are associated with an in vivo fitness cost but are
preferentially selected for in the presence of AS or CQ. To assess the fitness of our
P. berghei K13 mutants, we performed direct head-to-head competitions with wild-type
parasites under in vivo growth conditions. P. berghei K13 or UBP-1 mutant lines or the
parental 1804WT (mCherry positive) line were mixed at a 1:1 ratio with the G159WT

(green fluorescent protein [GFP] positive) line and injected into mice. Changes in the
proportion of GFP- or mCherry-positive parasites in the competition mixture were then
quantified by flow cytometry over 9 days. These assays revealed that the F458I and
Y505H mutant parasites were fitness neutral relative to the G159WT line, whereas the
M488I and R551T mutants carried significant fitness costs (Fig. 4A). Both the M488I and
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R551T mutations were associated with high levels of reduced susceptibility to DHA in
vitro (Fig. 2), delayed clearance kinetics (Fig. 3A; Fig. S4), and faster recrudescence
following ART treatment in vivo (Fig. 3B; Table S3). Comparatively, the R551T mutant
parasites had a more severe growth defect than the M488I mutants and were com-
pletely outcompeted by the GFP-positive wild-type line by day 7 (Fig. 4A). This is
consistent with previous observations of high in vitro fitness costs for the equivalent P.
falciparum R539T mutation (40). In comparison to the G159WT line, the parental
wild-type line (1804WT) was fitness neutral, whereas the UBP-1 V2721F mutant carried
a minor growth defect as previously observed (46) (see Fig. S6A and B). We also
examined the proportions of GFP-positive versus mCherry-positive parasites over time
in P. berghei K13 mutant and wild-type parasites upon treatment with AS. Mutant
parasites were mixed at 1:1 ratios with the G159WT line and injected into mice that were
treated with AS at 50 mg/kg beginning 3 h after infection for three consecutive days.
Monitoring of recrudescence up to day 9 revealed that, upon AS treatment, the M488I
and R551T mixtures recrudesced slightly faster than the wild-type mixture and were
highly enriched for the mutant population (!90%) at the time of recrudescence
(Fig. 4B). The F458I and Y505H mutant mixtures recrudesced slightly later (Fig. 4B), as

FIG 4 Relative fitness of P. berghei K13 mutants in presence or absence of AS or CQ. Growth competition assays
with K13 mutant lines that constitutively express mCherry compared to the wild-type G159WT line that constitu-
tively expresses GFP in the presence or absence of drug pressure. The G159WT line was mixed with a given mutant
line at a 1:1 ratio in three groups of mice on day 0. The first group was left untreated, the second group received
a dose of AS at 50 mg/kg starting from 3 h after i.p. injection for three consecutive doses, while the third group
consisting of the 1804 WT, G1980V2721F, and K13 mutant G2025R551T lines received CQ at 15 mg/kg at similar dosing
times as AS. Percentages of mCherry- or GFP-positive parasites were determined by flow cytometry as described
in Materials and Methods. (A) Percentage population changes as measured by flow cytometry of the G1957F458I,
G1979Y505H, G1989M488I, and G2025R551T mutant lines relative to that of the G159WT wild-type line. (B) Proportion
representation of the G159WT line in mixtures with G1957F458I, G1979Y505H, G1989M488I, and G2025R551T lines on the
days of recrudescence upon treatment with AS or CQ as indicated.

Simwela et al. ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 10



did the UBP-1 V2721F mutant (Fig. S6B), and were all significantly enriched for the
mutants. In contrast, the proportions of GFP-positive versus mCherry-positive parasites
in the parent 1804WT and G159WT competition mixture after AS treatment did not
change at the time of recrudescence (Fig. S6A). These data show that mutant P. berghei
K13 parasites are preferentially selected for upon AS treatment, despite some carrying
growth defects that rendered them at a complete competitive disadvantage in the
absence of drug.

With the supposed role of P. falciparum K13 in mediating parasite hemoglobin
endocytosis (43–45), we also speculated that P. berghei K13 mutant parasites with
strong ART resistance phenotypes might be able to modulate susceptibility to CQ (to
some degree) through a similar dysregulation of the endocytic machinery. Using the in
vivo competition assay under drug pressure as with AS as described above, the parental
1804WT line, the UBP-1 V2721F line, and the K13 R551T mutant line were each mixed
at 1:1 ratios with the G159WT line and treated with CQ at 15 mg/kg. At the time of
recrudescence, the proportion of 1804WT parasites (mCherry positive) did not signifi-
cantly change compared to the proportion of GFP-positive G159WT parasites (Fig. S6A).
In comparison, the UBP-1 V2721F mutant was enriched to #70% (Fig. S6B), which
mirrors our previous observations that this mutation can indeed be selectively enriched
by CQ (46). Interestingly, upon CQ treatment, the combination of R551T mutant
parasites and the G159WT line achieved recrudescence at almost the same rate as that
under AS pressure, with mutant parasites enriched to #72% (Fig. 4B). These data
suggest that K13 mutations can also contribute to low-level protection to CQ (43, 44).

A Plasmodium-selective proteasome inhibitor is potent against P. berghei
wild-type and K13 mutant parasites and synergizes DHA action. An enhanced cell
stress response characterized by upregulation of genes in the unfolded protein re-
sponse (UPR) is a typical signature of ART-resistant parasites (50). Resistant parasites
(K13 mutants) also display enhanced activity of the ubiquitin proteasome system (UPS),
a conserved eukaryotic pathway that acts downstream of the UPR by degrading
unfolded proteins (49, 55). UPS inhibitors are available for cancer treatment and have
been shown to synergize DHA activity in wild-type and K13 mutant P. falciparum both
in vitro and in vivo, marking them as promising agents for overcoming ART resistance
(49, 56). The Plasmodium-selective proteasome inhibitor EY5-125 is a potent antima-
larial (standard IC50 against P. falciparum % 19 nM) that acts in synergy with ART against
both ART-resistant and -sensitive P. falciparum strains in vitro (57). Here, we tested the
efficacy of EY5-125 against P. berghei wild-type and K13 mutant parasites and examined
its potential ability to synergize DHA action. P. berghei wild-type and the most ART-
resistant K13 mutant (R551T) parasites were found to be equally sensitive to EY5-125
(Fig. 5A and B). Compared to that in P. falciparum (72-h IC50 of #19 nM and 1-h IC50 of
#648 nM), EY5-125 is much less potent in P. berghei in both standard in vitro growth
inhibition (IC50 % #700 nM) and 3-h assays (IC50 % #1,900 nM), respectively (Fig. 5A
and B). These differences could be due to species-specific differences in drug sensitivity
as we have observed with ARTs (46, 54) and many other drugs (58). However, combi-
nations of DHA and EY5-125 in fixed-ratio isobologram analyses revealed a strong
synergistic interaction against the P. berghei K13 wild-type and M488I and R551T
mutant lines (Fig. 5C; see also Table S4). We also employed our in vivo RSA to examine
whether a combination of DHA at 700 nM and EY5-125 at the equivalent 3-h IC50

(1.94 "M) or 2$ IC50 (3.88 "M) could impact parasite survival rates. Indeed, at both the
3-h IC50 and 2$ IC50 concentrations, EY5-125 strongly synergized with DHA (700 nM),
as evidenced by significant abrogation of survival for both the wild-type and R551T
mutant lines (Fig. 5D). These data demonstrate that proteasome inhibitors synergize
DHA action in P. berghei K13 mutants equally as well as wild-type parasites both in vitro
and in vivo and have the potential to be used to overcome ART resistance.

DISCUSSION
In this study, we successfully employed CRISPR/Cas9 editing to introduce four of the

six targeted orthologous P. falciparum K13 (F446I, M476I, Y493H, and R539T) mutations
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into the K13 gene of the rodent model of malaria P. berghei. Meanwhile, introduction
of two mutations (C580Y and I543T) could not be achieved. As debate continues on the
role of K13 in mediating in vivo susceptibility to ARTs (37), phenotyping of these P.
berghei K13 (F458I, M488I, Y505H, and R551T) mutants provides experimental evidence
for the ability of mutant K13 to confer in vivo resistance to ARTs in a naive parasite
genome background. These mutants displayed reduced in vitro susceptibility to DHA
and phenocopied P. falciparum delayed clearance phenotypes upon AS treatment.
Moreover, these K13 mutants achieved faster recrudescence upon ART treatment under
in vivo growth conditions. As in P. falciparum, certain P. berghei K13 mutations were

FIG 5 Activity and DHA synergy of proteasome inhibitor in P. berghei K13 mutants. Dose-response curves
and mean IC50 values for the Plasmodium-selective proteasome inhibitor EY5-125 for the wild-type
1804WT and K13 mutant G2025R551T lines in standard 24-h assays (A) or 3-h exposure assays conducted
on early ring-stage parasites (B). Mean IC50 is a calculated average for the two lines independently
screened in three biological repeats. (C) Isobologram plots representing the interaction between DHA
and EY5-125 in the wild-type 1804WT, G1989M488I, and G2025R551T lines. Plots show mean FIC50 values
(Table S4) for each drug calculated from three biological repeats. (D) Synergy of EY5-125 proteasome
inhibitor with DHA in the in vivo RSA. Parasites were exposed to DMSO or DHA at 700 nM alone or in
combination with EY5-125 at 3-h IC50 or 2$ IC50 and then injected back into mice 24 h later as described
in Materials and Methods. Parasitemias in mice infected with drug or DMSO-treated parasites were
determined by flow analysis of mCherry expression on day 4 after i.v. injection and were used to calculate
percent survivals relative to that of DMSO-treated parasites. Error bars are standard deviations from three
biological repeats. Statistical significance was calculated using one-way ANOVA alongside the Dunnett’s
multiple-comparison test. ****, P " 0.001.
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found to cause significant growth defects, which highlights the structural and func-
tional conservation of this protein across the two Plasmodium species and illustrates the
fitness trade-offs that the acquisition of such mutations exerts on malaria parasite
physiology.

ART resistance, principally associated with mutations in K13, is now almost endemic
in Southeast Asia, with risks of global spread threatening the utility of ACTs that are at
the forefront of malaria control programs (2). The P. falciparum C580Y K13 mutation is
the most frequently observed (with !50% prevalence) and has reached fixation in most
parts of Southeast Asia (25, 59). Why the P. falciparum C580Y mutation is so successful
compared to other K13 mutations remains unclear. This mutation does not associate
with high RSA survival rates compared to P. falciparum R539T or I543T mutant parasites,
and treatment failure rates and parasite clearance rates are not more significant in
C580Y-harboring parasites than those with other K13 mutations (27, 28, 60). Do fitness
constraints, founder genetic landscapes, or species-specific differences between P.
berghei and P. falciparum K13 explain our failed attempts to introduce the C592Y or
I555T mutations in P. berghei? The structural homology model of the K13 propeller
domain presented here demonstrates that this region is highly conserved between P.
berghei and P. falciparum K13, with identical amino acids at the sites of mutations
associated with ART resistance. Our unsuccessful attempts to introduce the P. berghei
C592Y or P. berghei I555T mutations could therefore be more related to growth
disadvantages or other deleterious effects. For example, in P. falciparum, the equivalent
I543T and R539T mutations carry the most pronounced fitness costs (40), which could
partly explain our inability to introduce the P. berghei I555T mutation in P. berghei.
Moreover, P. berghei K13 mutations were introduced into PBANKA parasites with no
history of ART exposure. These parasites might therefore be more sensitive to fitness
impacts conferred by the P. berghei I555T or P. berghei C592Y substitution, as intro-
duction of the equivalent P. falciparum C580Y in parasites isolated before ART was
clinically introduced carried significant growth defects, as opposed to more recent
Cambodian isolates where it was fitness neutral (40). A less prevalent K13 allele, P.
falciparum R561H, that associates with significant delays in parasite clearance and
peaked in prevalence in 2012 in Southeast Asia but has since declined (60) also easily
outcompeted the P. falciparum C580Y mutation in head-to-head competitions (42).
These data suggest that acquisition and propagation of certain P. falciparum K13 alleles,
notably the C580Y substitution, might require appropriate founder genome architec-
tures to compensate for the deleterious phenotypes. In these situations, K13 mutations
(P. falciparum C580Y, for example), would arise in a necessary compensatory back-
ground that mitigates the deleterious growth effects leading to an initial soft sweep. In
the case of ACTs, these compensatory backgrounds may also serve as general tem-
plates upon which partner drug resistance mutations might arise. This seems to be the
case with the recent aggressive expansion of parasite colineages carrying the P.
falciparum C580Y mutation and piperaquine resistance determinants (10, 11).

Despite the obstacles to introducing the P. berghei C592Y and I555T mutations,
introduction of the P. falciparum R539T equivalent was achieved in P. berghei (R551T)
despite low editing efficiency in the initial transfection. We were, however, able to
enrich for this mutation with AS selection applied in vivo, yielding almost clonal levels
of the P. berghei R551T mutant. Similar to the P. falciparum R539T mutant, clonal P.
berghei R551T mutant parasites carried the strongest DHA resistance phenotypes in
vitro as well as the clearest AS or ART resistance profiles in vivo. The P. falciparum R539T
and P. falciparum I543T mutations occur at relatively low frequencies in Southeast Asia,
with the prevalence of both mutations ranging between 0.3% and 3.5% (36, 41, 59).
This could be due to the pronounced fitness cost of these mutations (40) limiting their
expansion, which we also observed with the P. berghei R551T mutant parasites. The
combination of a naive genomic background and species-specific differences can also
be invoked to explain some phenotypic differences (growth rate and level of ART
resistance) seen between mutant lines of P. falciparum and P. berghei K13, as observed
in this study. For example, P. falciparum Y493H mutants clearly associate with increased

Plasmodium berghei K13 Mutations ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 13



RSA survival (23, 28) and delayed parasite clearance phenotypes (23, 41, 61), unlike the
P. berghei counterpart (Y505H) that displayed low-level resistance to ARTs in vitro (in the
standard assay but not in the adapted RSA) and in vivo. This could be due to additional
underlying genetic factors in P. falciparum isolates providing an additive effect to the
observed phenotypes, which would be absent in P. berghei. Nevertheless, the other P.
berghei K13 mutations tested here appear to directly reflect the impact of the equiv-
alent mutations in P. falciparum. Both P. berghei F458I (this study) and P. falciparum
F446I K13 mutants are fitness neutral (62) and do not enhance RSA survival in vitro (62,
63) yet carry ART-protective phenotypes in vivo (64–66). Furthermore, P. berghei M488I
K13 mutants display a significant growth defect that has not yet been characterized in
the P. falciparum equivalent (M476I) and might explain its relative scarcity in Southeast
Asia (67, 68).

Enhanced proteostasis is a characteristic signature of P. falciparum K13 ART-resistant
parasites, which is typified by upregulation of genes in the UPR as well as enhanced
activity of the UPS (49, 50, 55). Inhibition of the UPS by 26S proteasome inhibitors
synergizes DHA action both in vitro and in vivo, which has offered a potential avenue
to overcome ART resistance (49). Despite UPS inhibitors (which are clinically available
for treatment of certain cancers) displaying activity in malaria parasites and synergizing
DHA action, their translation into animal studies has been limited by host toxicity (69,
70). Recent structure-based design of Plasmodium-selective proteasome inhibitors has
yielded vinyl sulfone inhibitors with a wider therapeutic window and improved host
toxicity profiles (56, 57). These inhibitors not only display activity in diverse P. falci-
parum backgrounds, including those harboring K13 mutations, but also strongly syn-
ergize with DHA (71). Even though P. berghei proteasome structures have not been
solved, functional and life cycle conservation between this parasite and P. falciparum is
pronounced. Using EY5-125, an inhibitor selective for the P. falciparum proteasome (57),
we demonstrate similar activity and synergy with DHA in P. berghei wild-type and K13
ART-resistant mutants. Importantly, we demonstrate these properties in vivo, which
significantly strengthens the potential of these compounds in overcoming ART resis-
tance in infected hosts.

In conclusion, our work provides robust experimental evidence that K13 mutations
modulate in vitro and in vivo susceptibility to ARTs in the P. berghei rodent model of
malaria. The cause and effect link between P. falciparum K13 mutations and reduced
ART susceptibility is strong (23, 28). However, the reason for ART clinical failure has
remained obscure because, in some cases, delayed parasite clearance phenotypes have
been reported in parasites carrying wild-type K13 alleles (35, 72). This lack of clarity is
further compounded by a reduced correlation between K13 mutations and parasite
clearance half-lives or the frequencies of recrudescence in certain cases of ART mono-
therapy (35). As we demonstrate in this study, some of these observations may be
attributable to fitness defects in mutant parasites that could confound the interpreta-
tion of recrudescence rates. These fitness differences might be especially relevant at the
relatively low ART doses used in humans, which are already known to permit higher
rates of recrudescence (3). Although a recent genetic cross between a P. falciparum K13
C580Y mutant parasite and an Aotus-infecting K13 wild-type parasite demonstrated a
lack of association of this mutation with in vivo ART resistance metrics (recrudescence
and clearance half-life) (37), we propose that this could be due to (i) the AS doses used
being insufficiently high to clearly separate the lineages, (ii) the small sample sizes used,
and (iii) the inherent limitation of using heterogeneous Aotus monkeys with various
individual histories of parasite exposure and spleen status (spleen intact or splenecto-
mized). Our in vitro and in vivo phenotypes for the P. falciparum F446I, M476I, Y493H,
and R539T K13 mutation equivalents in P. berghei support their direct involvement in
mediating resistance to ARTs. Our data also provide a robust immune-replete rodent
host model to test for synergistic antimalarial combinations that can restore ART
efficacy and overcome resistance.
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MATERIALS AND METHODS
CRISPR/Cas9 generation of P. berghei K13 mutant lines. The Cas9 plasmid ABR099 was used to

target mutations of interest into the P. berghei K13 locus (PlasmoDB gene identifier [ID]
PBANKA_1356700) (46). To obtain P. berghei equivalents of P. falciparum ART-resistant K13 mutations
(PlasmoDB gene ID PF3D7_1343700), the amino acid sequences of the two proteins were retrieved and
aligned using Clustal Omega (73). To structurally align the equivalent mutations in P. berghei K13,
three-dimensional homology models of P. berghei and P. falciparum K13 were constructed using
SWISS-MODEL (PDB template 4zgc.1.A) for amino acid residues 362 to 738 for P. berghei and 350 to 726
for P. falciparum. Models were visualized using pyMol 2.3. sgRNAs designed to target a region within 0
to 30 bp of the mutation of interest within the P. berghei K13 locus were initially cloned into the ABR099
plasmid (see Fig. S2A in the supplemental material). Donor DNA repair templates were designed to carry
the mutation of interest in addition to silent mutations that introduced restriction sites for RFLP and that
inactivated the PAMs. These templates were generated by overlap extension PCR (74) and were
subsequently cloned into ABR099 plasmids carrying corresponding sgRNAs at the linker sites (Fig. S2A).
Generated plasmids and all corresponding sgRNAs are listed in Table S1 in the supplemental material.

Parasite lines and animal infections. This study employed two P. berghei ANKA-derived parasite
lines, 1804cl1 and G159. The 1804cl1 (75) and G159 (Katie Hughes, unpublished) lines express mCherry
and GFP, respectively, under the control of the strong constitutive hsp70 promoter. Infections were
carried out in female Theiler’s Original mice (Envigo), 6 to 8 weeks old, weighing 25 to 30 g. Infections
were established either by intraperitoneal (i.p.) injections of #200 "l of cryopreserved parasite stocks or
by intravenous (i.v.) injections of purified schizonts or mixed-stage parasites diluted in phosphate-
buffered saline (PBS). Parasitemias in infected mice were monitored by microscopic examination of
methanol-fixed thin blood smears stained with Giemsa (Sigma) or flow cytometry-based analysis of
infected blood stained with Hoechst 33342 (Invitrogen). Blood from infected mice was collected by
cardiac puncture under terminal anesthesia. All animal work was performed in compliance with UK home
office licensing (project reference P6CA91811) and ethical approval from the University of Glasgow
animal welfare and ethical review body.

Transfections. Primary transfections were carried out in the 1804cl1 line. Approximately 10 "g of
episomal plasmid DNA from the vectors described above (Table S1) was transfected by electroporation
of Nycodenz-purified schizonts using the Amaxa Nucleofector Device II program U-o33, as previously
described (76). Parasites were then immediately i.v. injected into mice. Positive selection of transfected
parasites was commenced 24 h later by adding pyrimethamine (0.07 mg/ml; Sigma) to their drinking
water.

Genotyping of transformed parasites. Parasite pellets were prepared from infected mouse blood
that was lysed by resuspension in 1$ E-lysis buffer (Thermo). Genomic DNA was extracted from the
pellets using the Qiagen DNeasy blood and tissue kit according to the manufacturer’s instructions. Initial
analysis of the transfected or cloned parasite lines was performed using a dual PCR-RFLP approach. PCR
using primers exterior to the donor templates (Table S1 and S2) was used to amplify fragments from the
genomic DNA of the mutant lines, followed by restriction digests with the artificially introduced RFLP
restriction enzymes. Relative transformation efficiencies were estimated by densitometric quantification
of wild-type and mutant RFLP fragments by ImageJ2 (77). Mutations and initial RFLP analyses were
further confirmed by Sanger DNA sequencing.

Antimalarial agents. DHA (Selleckchem) at 10 mM was diluted to a working concentration in
schizont culture medium. The Plasmodium-selective proteasome inhibitor EY5-125, also known as
compound 28 (57), was used to test for proteasome inhibitor synergy with DHA in K13 mutant and
wild-type parasites. For in vivo drug treatment, AS (Sigma) was dissolved in 5% sodium bicarbonate
prepared in 0.9% sodium chloride. CQ diphosphate (Sigma) was dissolved in 1$ PBS. ART (Sigma) was
prepared at 50 mg/ml in a 1:1 mixture of DMSO and Tween 80 (Sigma) and diluted 10-fold in sterile
distilled water immediately before administration. All drugs were prepared fresh before in vivo admin-
istration, and drug delivery was carried out by i.p. injection.

Twenty-four-hour P. berghei in vitro culture and drug susceptibility assays. In vitro culture and
drug susceptibility assays were carried out beginning with synchronized ring-stage parasites over 24-h
schizont maturation cycles, as P. berghei can only be maintained for one intraerythrocytic developmental
cycle in vitro. Parasites were cultured and exposed to drugs as previously described (46), after which
schizont maturation was analyzed by flow cytometry. Infected cells were stained with the DNA dye
Hoechst 33258. Schizont maturation was used as a surrogate marker of growth inhibition and was
quantified based on Hoechst 33258 fluorescence intensity or mCherry expression. To determine growth
inhibition and calculate half-maximal inhibitory concentrations (IC50s), the percentage of schizonts in
no-drug controls was set to 100% growth, and subsequent growth percentages in the presence of drugs
were calculated accordingly. Dose-response curves were plotted in GraphPad Prism.

Adapted P. berghei ring-stage survival assays. The P. falciparum RSA was adapted for P. berghei to
further assess the in vitro phenotypes of K13-mutant parasites based on a previously published protocol
(22). Schizonts were obtained from in vitro cultured parasites as previously described (76) and injected
i.v. into naive mice to obtain synchronous in vivo infections containing !90% rings at parasitemias of
0.5% to 1.5%. Approximately 1.5 h postinjection, blood was collected from the infected mice, adjusted
to 0.5% hematocrit, and exposed to 700 nM DHA or 0.1% DMSO (Thermo Fisher Scientific) in 96-well
plates or 10-ml culture flasks. The plates and flasks were incubated with drug under standard culture
conditions for 3 h, after which, the drug was washed off at least three times. Parasites were then returned
to standard culture conditions in new plates and flasks with fresh schizont medium for in vitro
maturation. After 24 h of incubation, parasite survival was assessed by flow cytometry analysis of Hoechst
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33258-stained infected cells. Viability was assessed by gating on the Hoechst 33258 DNA stain and live
mCherry expression. DHA-treated samples were compared to DMSO-treated controls processed in
parallel. Percent survival was calculated using the following formula: survival (%) % (viability [%] [DHA &
treated])/(viability [%] [mock DMSO & treated]).

To improve the robustness of the viability readouts beyond the 24-h flow cytometry counts, an in vivo
expansion of the 3 h DHA- or DMSO-exposed parasites was used for selected mutants and the wild-type
control. After 24 h of recovery, 2 ml of DHA- or DMSO-treated parasites was pelleted and resuspended
in a 1-ml volume, from which, 200 "l was injected i.v. into mice. In vivo parasitemias were quantified on
day 4 postinjection, from which percentage survivals based on in vivo parasitemia (absolute counts of
mCherry positive parasites) were calculated using the following slightly modified formula: survival (%) %
(parasitemia [DHA & treated])/(parasitemia [mock DMSO & treated]).

In vitro isobologram drug combinations. DHA and EY5-125 drug interaction analyses in fixed ratios
were carried out using a modified fixed-ratio interaction assay as previously described (78). DHA and
EY5-125 combinations were prepared in molar concentration combination ratios of 5:0, 4:1, 3:2, 2:3, 1:4,
and 0:5 and were dispensed into 96-well plates. This was followed by a 3-fold serial dilution with
precalculated estimates to ensure that the test wells containing the 3-h IC50s of the two drugs were
located near the middle of the plate. The drug combinations were then incubated with synchronized
#1.5-h-old ring-stage wild-type or K13 mutant parasites for 3 h, after which, the drugs were washed off
at least 3 times. Percent viability was quantified 24 h later by flow cytometry analysis of Hoechst
33258-stained infected cells and mCherry expression. Dose-response curves were calculated for each
drug alone or in combination, from which fractional inhibitory concentrations (FIC50) were obtained and
summed to obtain the !FIC50 using the following formula: 'FIC50 % (IC50 of DHA in combination/IC50 of
drug DHA alone) ( (IC50 of EY5-125 in combination/IC50 of EY5-125 alone).

An 'FIC50 of !1 was used to denote antagonism, 'FIC50 "1 synergism, and 'FIC50 % 1 additivity.
FIC50 values for the drug combinations were plotted to obtain isobolograms for the drug combination
ratios.

In vivo drug assays. (i) Parasite clearance. Parasite clearance upon treatment with AS was used to
evaluate potential delayed clearance phenotypes in K13 mutant parasites. These studies were based on
a modified Rane’s curative test in established mice infections as previously described (79). Donor mice
were infected with mutant lines and the wild-type control. Once a parasitemia of #2% was reached,
blood was obtained from the donor mice and diluted in 1$ PBS. Approximately 105 parasites were
inoculated in 4 cohorts of mice (4 mice per line) by i.p. injections on day 0, and parasitemias were allowed
to rise to #10%, typically on day 5. On day 5, at time zero, 2 "l of blood was collected and diluted
200-fold in 1$ PBS. Thin blood smears were also collected at this time. All four cohorts were then dosed
with AS at 64 mg/kg at 0, 24, and 48 h. Blood sampling was performed for flow cytometry analysis, and
thin blood smears were prepared five times during the first 24 h for each cohort and at least daily
thereafter in a staggered manner that allowed for a 3 h life cycle coverage in the first 24 h for at least
two cohorts. Parasite density at each time point was determined by absolute cell counts and mCherry
expression in 0.1 "l of whole blood diluted in PBS analyzed on a MACSQuant Analyzer 10. Thin blood
smears of parasite morphologies were analyzed by microscopy. Significant viability counts in microscopy
smears were based on microscopic confirmation of at least four viable parasites in a minimum of 10
fields. Clearance kinetics of normalized parasite densities versus time were plotted in GraphPad prism.

(ii) Recrudescence. A modified Peters’ 4-day suppressive test was used to assess in vivo response
profiles and recrudescence rates of wild-type and mutant lines as previously described (46, 80). Infections
were initiated by i.p. inoculation of 106 parasites diluted from donor mice and were followed by three
daily consecutive drug doses of ART at 80 mg/kg, with the first initiated #3 h postinoculation. Para-
sitemia was monitored by microscopic analysis of methanol-fixed Giemsa-stained smears up to day 18
or until recrudescence was observed.

In vivo growth competition assays in presence or absence of drug treatment. Mutant lines in the
1804cl1 mCherry background line were mixed with the G159 GFP line at 1:1 ratios and injected i.p. (total
parasite inocula of 106) into 3 groups of mice. The groups were either left untreated or treated with AS
at 50 mg/kg for 3 consecutive days starting 3 h postinfection or CQ at 15 mg/kg. Parasitemias and
fractions of mutant versus wild-type parasites were determined by flow cytometry-based quantification
of mCherry- or GFP-positive parasite populations.

Reagent availability. Parasite lines and plasmids are available upon request from A. Waters.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.9 MB.
FIG S2, TIF file, 2.8 MB.
FIG S3, TIF file, 2.8 MB.
FIG S4, TIF file, 2.7 MB.
FIG S5, TIF file, 2.8 MB.
FIG S6, TIF file, 2.7 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.1 MB.

Simwela et al. ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 16



TABLE S4, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Diane Vaughan and the University of Glasgow flow cytometry facility for

assistance. We also thank Euna Yoo (Stanford University and NCI-Frederick) for provid-
ing the EY5-125 proteasome inhibitor.

This work was supported in part by grants from the Wellcome Trust to A.P.W.
(083811/Z/07/Z, 107046/Z/15/Z, and 104111/Z/14/Z). Partial funding for this work was
provided by the NIH (R01 AI109023 to D.A.F. and R33 AI127581 to M.B. and D.A.F.), the
Department of Defense (W81XWH-19-1-0086 to D.A.F.), and the Columbia University—
University of Glasgow Research Exchange Program. N.V.S. is a Commonwealth Doctoral
Scholar (MWCS-2017-789), funded by the UK government. B.H.S. gratefully acknowl-
edges earlier support from the Columbia University Graduate Training Program in
Microbiology and Immunology (T32 AI106711; Program Director, D. A. Fidock).

REFERENCES
1. White NJ. 2008. Qinghaosu (artemisinin): the price of success. Science

320:330 –334. https://doi.org/10.1126/science.1155165.
2. WHO. 2019. World malaria report. World Health Organization, Geneva,

Switzerland.
3. Li GQ, Arnold K, Guo XB, Jian HX, Fu LC. 1984. Randomised comparative

study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in pa-
tients with falciparum malaria. Lancet 2:1360 –1361. https://doi.org/10
.1016/s0140-6736(84)92057-9.

4. WHO. 2018. Artemisinin resistance and artemisinin-based combination
therapy efficacy: status report. World Health Organization, Geneva, Swit-
zerland.

5. Gregson A, Plowe CV. 2005. Mechanisms of resistance of malaria para-
sites to antifolates. Pharmacol Rev 57:117–145. https://doi.org/10.1124/
pr.57.1.4.

6. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. 2002.
Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209 –218.
https://doi.org/10.1016/S1473-3099(02)00239-6.

7. Blasco B, Leroy D, Fidock DA. 2017. Antimalarial drug resistance: linking
Plasmodium falciparum parasite biology to the clinic. Nat Med 23:
917–928. https://doi.org/10.1038/nm.4381.

8. Mathieu LC, Cox H, Early AM, Mok S, Lazrek Y, Paquet J-C, Ade M-P, Lucchi
NW, Grant Q, Udhayakumar V, Alexandre JS, Demar M, Ringwald P, Neafsey
DE, Fidock DA, Musset L. 2020. Local emergence in Amazonia of Plasmo-
dium falciparum K13 C580Y mutants associated with in vitro artemisinin
resistance. eLife 9:e51015. https://doi.org/10.7554/eLife.51015.

9. Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa
N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P,
Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyu-
muremyi A, Menard D. 2020. Emergence and clonal expansion of in vitro
artemisinin-resistant Plasmodium falciparum Kelch13 R561H mutant para-
sites in Rwanda. Nat Med 26:1602–1608. https://doi.org/10.1038/s41591
-020-1005-2.

10. Hamilton WL, Amato R, van der Pluijm RW, Jacob CG, Quang HH,
Thuy-Nhien NT, Hien TT, Hongvanthong B, Chindavongsa K, Mayxay M,
Huy R, Leang R, Huch C, Dysoley L, Amaratunga C, Suon S, Fairhurst RM,
Tripura R, Peto TJ, Sovann Y, Jittamala P, Hanboonkunupakarn B, Pukrit-
tayakamee S, Chau NH, Imwong M, Dhorda M, Vongpromek R, Chan
XHS, Maude RJ, Pearson RD, Nguyen T, Rockett K, Drury E, Goncalves S,
White NJ, Day NP, Kwiatkowski DP, Dondorp AM, Miotto O. 2019.
Evolution and expansion of multidrug-resistant malaria in Southeast
Asia: a genomic epidemiology study. Lancet Infect Dis 19:943–951.
https://doi.org/10.1016/S1473-3099(19)30392-5.

11. van der Pluijm RW, Imwong M, Chau NH, Hoa NT, Thuy-Nhien NT, Thanh
NV, Jittamala P, Hanboonkunupakarn B, Chutasmit K, Saelow C, Runjar-
ern R, Kaewmok W, Tripura R, Peto TJ, Yok S, Suon S, Sreng S, Mao S, Oun
S, Yen S, Amaratunga C, Lek D, Huy R, Dhorda M, Chotivanich K, Ashley
EA, Mukaka M, Waithira N, Cheah PY, Maude RJ, Amato R, Pearson RD,
Gonçalves S, Jacob CG, Hamilton WL, Fairhurst RM, Tarning J, Winterberg
M, Kwiatkowski DP, Pukrittayakamee S, Hien TT, Day NP, Miotto O, White
NJ, Dondorp AM. 2019. Determinants of dihydroartemisinin-piperaquine
treatment failure in Plasmodium falciparum malaria in Cambodia, Thai-
land, and Vietnam: a prospective clinical, pharmacological, and genetic

study. Lancet Infect Dis 19:952–961. https://doi.org/10.1016/S1473-3099
(19)30391-3.

12. Imwong M, Dhorda M, Myo Tun K, Thu AM, Phyo AP, Proux S, Suwan-
nasin K, Kunasol C, Srisutham S, Duanguppama J, Vongpromek R, Prom-
narate C, Saejeng A, Khantikul N, Sugaram R, Thanapongpichat S,
Sawangjaroen N, Sutawong K, Han KT, Htut Y, Linn K, Win AA, Hlaing TM,
van der Pluijm RW, Mayxay M, Pongvongsa T, Phommasone K, Tripura R,
Peto TJ, von Seidlein L, Nguon C, Lek D, Chan XHS, Rekol H, Leang R,
Huch C, Kwiatkowski DP, Miotto O, Ashley EA, Kyaw MP, Pukrittayaka-
mee S, Day NPJ, Dondorp AM, Smithuis FM, Nosten FH, White NJ. 14 July
2020. Molecular epidemiology of resistance to antimalarial drugs in the
greater mekong subregion: an observational study. Lancet Infect Dis
https://doi.org/10.1016/S1473-3099(20)30228-0.

13. Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S,
Sreng S, Drury E, Stalker J, Miotto O, Fairhurst RM, Kwiatkowski DP. 2018.
Origins of the current outbreak of multidrug-resistant malaria in South-
east Asia: a retrospective genetic study. Lancet Infect Dis 18:337–345.
https://doi.org/10.1016/S1473-3099(18)30068-9.

14. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng
S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovann-
aroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K,
Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV,
Phu NH, Htut Y, Han K-T, Aye KH, Mokuolu OA, Olaosebikan RR, Folar-
anmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN,
Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP,
Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA,
Ghose A, Hossain MA, Samad R, Tracking Resistance to Artemisinin
Collaboration (TRAC), et al. 2014. Spread of artemisinin resistance in
Plasmodium falciparum malaria. N Engl J Med 371:411– 423. https://doi
.org/10.1056/NEJMoa1314981.

15. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey
F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M,
Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day
NPJ, Lindegardh N, Socheat D, White NJ. 2009. Artemisinin resistance in
Plasmodium falciparum malaria. N Engl J Med 361:455– 467. https://doi
.org/10.1056/NEJMoa0808859.

16. Flegg JA, Guerin PJ, White NJ, Stepniewska K. 2011. Standardizing the
measurement of parasite clearance in falciparum malaria: the parasite
clearance estimator. Malar J 10:339. https://doi.org/10.1186/1475-2875
-10-339.

17. WWARN Parasite Clearance Study Group, Abdulla S, Ashley EA, Bassat Q,
Bethell D, Björkman A, Borrmann S, D’Alessandro U, Dahal P, Day NP,
Diakite M, Djimde AA, Dondorp AM, Duong S, Edstein MD, Fairhurst RM,
Faiz MA, Falade C, Flegg JA, Fogg C, Gonzalez R, Greenwood B, Guérin
PJ, Guthmann J-P, Hamed K, Hien TT, Htut Y, Juma E, Lim P, Mårtensson
A, Mayxay M, Mokuolu OA, Moreira C, Newton P, Noedl H, Nosten F,
Ogutu BR, Onyamboko MA, Owusu-Agyei S, Phyo AP, Premji Z, Price RN,
Pukrittayakamee S, Ramharter M, Sagara I, Se Y, Suon S, Stepniewska K,
Ward SA, White NJ, et al. 2015. Baseline data of parasite clearance in
patients with falciparum malaria treated with an artemisinin derivative:
an individual patient data meta-analysis. Malar J 14:359 –359. https://doi
.org/10.1186/s12936-015-0874-1.

Plasmodium berghei K13 Mutations ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 17



18. WWARN K13 Genotype-Phenotype Study Group. 2019. Association of
mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700)
with parasite clearance rates after artemisinin-based treatments-a
WWARN individual patient data meta-analysis. BMC Med 17:1. https://
doi.org/10.1186/s12916-018-1207-3.

19. Ataide R, Ashley EA, Powell R, Chan JA, Malloy MJ, O’Flaherty K, Takashima
E, Langer C, Tsuboi T, Dondorp AM, Day NP, Dhorda M, Fairhurst RM, Lim P,
Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Faiz MA,
Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJ. 2017. Host immunity
to Plasmodium falciparum and the assessment of emerging artemisinin
resistance in a multinational cohort. Proc Natl Acad Sci U S A 114:
3515–3520. https://doi.org/10.1073/pnas.1615875114.

20. Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, Zhou
C, Mao S, Anderson JM, Lindegardh N, Jiang H, Song J, Su X-z, White NJ,
Dondorp AM, Anderson TJC, Fay MP, Mu J, Duong S, Fairhurst RM. 2012.
Artemisinin-resistant Plasmodium falciparum in Pursat Province, Western
Cambodia: a parasite clearance rate study. Lancet Infect Dis 12:851– 858.
https://doi.org/10.1016/S1473-3099(12)70181-0.

21. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, Ler
Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NPJ,
White NJ, Anderson TJC, Nosten F. 2012. Emergence of artemisinin-
resistant malaria on the Western border of Thailand: a longitudinal
study. Lancet 379:1960 –1966. https://doi.org/10.1016/S0140-6736(12)
60484-X.

22. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao
S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WR, Suon
S, Mercereau-Puijalon O, Fairhurst RM, Menard D. 2013. Novel pheno-
typic assays for the detection of artemisinin-resistant Plasmodium falci-
parum malaria in Cambodia: in-vitro and ex-vivo drug-response studies.
Lancet Infect Dis 13:1043–1049. https://doi.org/10.1016/S1473-3099
(13)70252-4.

23. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N,
Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon
S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T,
Miotto O, Ringwald P, Le Bras J, Berry A, Barale J-C, Fairhurst RM,
Benoit-Vical F, Mercereau-Puijalon O, Ménard D. 2014. A molecular
marker of artemisinin-resistant Plasmodium falciparum malaria. Nature
505:50 –55. https://doi.org/10.1038/nature12876.

24. Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, Se
Y, Chann S, Ittiverakul M, Sia-Ngam P, Kuntawunginn W, Arsanok M,
Buathong N, Chaorattanakawee S, Gosi P, Ta-Aksorn W, Chanarat N,
Sundrakes S, Kong N, Heng TK, Nou S, Teja-Isavadharm P, Pichyangkul S,
Phann ST, Balasubramanian S, Juliano JJ, Meshnick SR, Chour CM, Prom
S, Lanteri CA, Lon C, Saunders DL. 2015. Dihydroartemisinin-piperaquine
failure associated with a triple mutant including Kelch13 C580Y in
Cambodia: an observational cohort study. Lancet Infect Dis 15:683– 691.
https://doi.org/10.1016/S1473-3099(15)70049-6.

25. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amara-
tunga C, Lim P, Mead D, Oyola SO, Dhorda M, Imwong M, Woodrow C,
Manske M, Stalker J, Drury E, Campino S, Amenga-Etego L, Thanh TN,
Tran HT, Ringwald P, Bethell D, Nosten F, Phyo AP, Pukrittayakamee S,
Chotivanich K, Chuor CM, Nguon C, Suon S, Sreng S, Newton PN, Mayxay
M, Khanthavong M, Hongvanthong B, Htut Y, Han KT, Kyaw MP, Faiz MA,
Fanello CI, Onyamboko M, Mokuolu OA, Jacob CG, Takala-Harrison S,
Plowe CV, Day NP, Dondorp AM, Spencer CC, McVean G, Fairhurst RM,
White NJ, Kwiatkowski DP. 2015. Genetic architecture of artemisinin-
resistant Plasmodium falciparum. Nat Genet 47:226 –234. https://doi.org/
10.1038/ng.3189.

26. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV,
Rizk SS, Njimoh DL, Ryan Y, Chotivanich K, Nguon C, Ghorbal M, Lopez-
Rubio JJ, Pfrender M, Emrich S, Mohandas N, Dondorp AM, Wiest O,
Haldar K. 2015. A molecular mechanism of artemisinin resistance in
Plasmodium falciparum malaria. Nature 520:683– 687. https://doi.org/10
.1038/nature14412.

27. Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K,
Nair S, White MM, Dziekan J, Ling C, Proux S, Konghahong K, Jeeyapant
A, Woodrow CJ, Imwong M, McGready R, Lwin KM, Day NPJ, White NJ,
Nosten F. 2016. Declining efficacy of artemisinin combination therapy
against P falciparum malaria on the Thai-Myanmar border (2003-2013):
the role of parasite genetic factors. Clin Infect Dis 63:784 –791. https://
doi.org/10.1093/cid/ciw388.

28. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani
AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD,
Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Menard D, Fidock DA.

2015. K13-propeller mutations confer artemisinin resistance in Plasmo-
dium falciparum clinical isolates. Science 347:428 – 431. https://doi.org/
10.1126/science.1260867.

29. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-
Rubio J-J. 2014. Genome editing in the human malaria parasite Plasmo-
dium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32:
819 – 821. https://doi.org/10.1038/nbt.2925.

30. Krishna S, Kremsner PG. 2013. Antidogmatic approaches to artemisinin
resistance: reappraisal as treatment failure with artemisinin combination
therapy. Trends Parasitol 29:313–317. https://doi.org/10.1016/j.pt.2013
.04.001.

31. Ferreira PE, Culleton R, Gil JP, Meshnick SR. 2013. Artemisinin resistance
in Plasmodium falciparum: what is it really? Trends Parasitol 29:318 –320.
https://doi.org/10.1016/j.pt.2013.05.002.

32. Hastings IM, Kay K, Hodel EM. 2016. The importance of scientific debate
in the identification, containment, and control of artemisinin resistance.
Clin Infect Dis 63:1527–1528. https://doi.org/10.1093/cid/ciw581.

33. Bethell D, Se Y, Lon C, Tyner S, Saunders D, Sriwichai S, Darapiseth S,
Teja-Isavadharm P, Khemawoot P, Schaecher K, Ruttvisutinunt W, Lin J,
Kuntawungin W, Gosi P, Timmermans A, Smith B, Socheat D, Fukuda
MM. 2011. Artesunate dose escalation for the treatment of uncompli-
cated malaria in a region of reported artemisinin resistance: a random-
ized clinical trial. PLoS One 6:e19283. https://doi.org/10.1371/journal
.pone.0019283.

34. Saunders D, Khemawoot P, Vanachayangkul P, Siripokasupkul R, Bethell
D, Tyner S, Se Y, Rutvisuttinunt W, Sriwichai S, Chanthap L, Lin J,
Timmermans A, Socheat D, Ringwald P, Noedl H, Smith B, Fukuda M,
Teja-Isavadharm P. 2012. Pharmacokinetics and pharmacodynamics of
oral artesunate monotherapy in patients with uncomplicated Plasmo-
dium falciparum malaria in western Cambodia. Antimicrob Agents Che-
mother 56:5484 –5493. https://doi.org/10.1128/AAC.00044-12.

35. Kheang ST, Sovannaroth S, Ek S, Chy S, Chhun P, Mao S, Nguon S, Lek DS,
Menard D, Kak N. 2017. Prevalence of K13 mutation and day-3 positive
parasitaemia in artemisinin-resistant malaria endemic area of Cambodia:
a cross-sectional study. Malar J 16:372. https://doi.org/10.1186/s12936
-017-2024-4.

36. MalariaGEN Plasmodium falciparum Community Project. 2016. Genomic
epidemiology of artemisinin resistant malaria. Elife 5:e08714. https://doi
.org/10.7554/eLife.08714.

37. Sa JM, Kaslow SR, Krause MA, Melendez-Muniz VA, Salzman RE, Kite WA,
Zhang M, Moraes Barros RR, Mu J, Han PK, Mershon JP, Figan CE, Caleon
RL, Rahman RS, Gibson TJ, Amaratunga C, Nishiguchi EP, Breglio KF,
Engels TM, Velmurugan S, Ricklefs S, Straimer J, Gnadig NF, Deng B, Liu
A, Diouf A, Miura K, Tullo GS, Eastman RT, Chakravarty S, James ER,
Udenze K, Li S, Sturdevant DE, Gwadz RW, Porcella SF, Long CA, Fidock
DA, Thomas ML, Fay MP, Sim BKL, Hoffman SL, Adams JH, Fairhurst RM,
Su XZ, Wellems TE. 2018. Artemisinin resistance phenotypes and K13
inheritance in a Plasmodium falciparum cross and Aotus model. Proc
Natl Acad Sci U S A 115:12513–12518. https://doi.org/10.1073/pnas
.1813386115.

38. Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. 2016.
Combinatorial genetic modeling of pfcrt-mediated drug resistance evo-
lution in Plasmodium falciparum. Mol Biol Evol 33:1554 –1570. https://
doi.org/10.1093/molbev/msw037.

39. Laufer MK, Takala-Harrison S, Dzinjalamala FK, Stine OC, Taylor TE, Plowe
CV. 2010. Return of chloroquine-susceptible falciparum malaria in Ma-
lawi was a reexpansion of diverse susceptible parasites. J Infect Dis
202:801– 808. https://doi.org/10.1086/655659.

40. Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, Fidock DA.
2017. Plasmodium falciparum K13 mutations differentially impact ozo-
nide susceptibility and parasite fitness in vitro. mBio 8:e00172-17.
https://doi.org/10.1128/mBio.00172-17.

41. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp
AM, Fukuda MM, Hien TT, Mayxay M, Noedl H, Nosten F, Kyaw MP, Nhien
NTT, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Ariey F,
Mercereau-Puijalon O, Menard D, Newton PN, Khanthavong M, Hongv-
anthong B, Starzengruber P, Fuehrer H-P, Swoboda P, Khan WA, Phyo
AP, Nyunt MM, Nyunt MH, Brown TS, Adams M, Pepin CS, Bailey J, Tan
JC, Ferdig MT, Clark TG, Miotto O, MacInnis B, Kwiatkowski DP, White NJ,
Ringwald P, Plowe CV. 2015. Independent emergence of artemisinin
resistance mutations among Plasmodium falciparum in Southeast Asia. J
Infect Dis 211:670 – 679. https://doi.org/10.1093/infdis/jiu491.

42. Nair S, Li X, Arya GA, McDew-White M, Ferrari M, Nosten F, Anderson TJC.
2018. Fitness costs and the rapid spread of Kelch13-C580Y substitutions

Simwela et al. ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 18



conferring artemisinin resistance. Antimicrob Agents Chemother 62:
e00605-18. https://doi.org/10.1128/AAC.00605-18.

43. Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL,
Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. 2019.
Decreased K13 abundance reduces hemoglobin catabolism and proteo-
toxic stress, underpinning artemisinin resistance. Cell Rep 29:
2917.e5–2928.e5. https://doi.org/10.1016/j.celrep.2019.10.095.

44. Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flem-
ming S, Toenhake CG, Schmitt M, Sabitzki R, Bergmann B, Fröhlke U,
Mesén-Ramírez P, Blancke Soares A, Herrmann H, Bártfai R, Spielmann T.
2020. A Kelch13-defined endocytosis pathway mediates artemisinin re-
sistance in malaria parasites. Science 367:51–59. https://doi.org/10.1126/
science.aax4735.

45. Gnädig NF, Stokes BH, Edwards RL, Kalantarov GF, Heimsch KC, Kuder-
javy M, Crane A, Lee MCS, Straimer J, Becker K, Trakht IN, Odom John AR,
Mok S, Fidock DA. 2020. Insights into the intracellular localization,
protein associations and artemisinin resistance properties of Plasmo-
dium falciparum K13. PLoS Pathog 16:e1008482. https://doi.org/10.1371/
journal.ppat.1008482.

46. Simwela NV, Hughes KR, Roberts AB, Rennie MT, Barrett MP, Waters AP.
2020. Experimentally engineered mutations in a ubiquitin hydrolase,
UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in
Plasmodium berghei. Antimicrob Agents Chemother 64:e02484-19. https://
doi.org/10.1128/AAC.02484-19.

47. Hunt P, Afonso A, Creasey A, Culleton R, Sidhu AB, Logan J, Valderramos
SG, McNae I, Cheesman S, do Rosario V, Carter R, Fidock DA, Cravo P.
2007. Gene encoding a deubiquitinating enzyme is mutated in
artesunate- and chloroquine-resistant rodent malaria parasites. Mol Mi-
crobiol 65:27– 40. https://doi.org/10.1111/j.1365-2958.2007.05753.x.

48. Henrici RC, van Schalkwyk DA, Sutherland CJ. 2019. Modification of
pfap2mu and pfubp1 markedly reduces ring-stage susceptibility of Plas-
modium falciparum to artemisinin in vitro. Antimicrob Agents Che-
mother 64:e01542-19. https://doi.org/10.1128/AAC.01542-19.

49. Dogovski C, Xie SC, Burgio G, Bridgford J, Mok S, McCaw JM, Chotivanich
K, Kenny S, Gnadig N, Straimer J, Bozdech Z, Fidock DA, Simpson JA,
Dondorp AM, Foote S, Klonis N, Tilley L. 2015. Targeting the cell stress
response of Plasmodium falciparum to overcome artemisinin resistance.
PLoS Biol 13:e1002132. https://doi.org/10.1371/journal.pbio.1002132.

50. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong
M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon
S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN,
Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NPJ,
Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z. 2015. Drug
resistance. Population transcriptomics of human malaria parasites re-
veals the mechanism of artemisinin resistance. Science 347:431– 435.
https://doi.org/10.1126/science.1260403.

51. Lee AH, Symington LS, Fidock DA. 2014. DNA repair mechanisms and
their biological roles in the malaria parasite Plasmodium falciparum.
Microbiol Mol Biol Rev 78:469 – 486. https://doi.org/10.1128/MMBR
.00059-13.

52. Franke-Fayard B, Djokovic D, Dooren MW, Ramesar J, Waters AP, Falade
MO, Kranendonk M, Martinelli A, Cravo P, Janse CJ. 2008. Simple and
sensitive antimalarial drug screening in vitro and in vivo using transgenic
luciferase expressing Plasmodium berghei parasites. Int J Parasitol 38:
1651–1662. https://doi.org/10.1016/j.ijpara.2008.05.012.

53. Janse CJ, Waters AP, Kos J, Lugt CB. 1994. Comparison of in vivo and in
vitro antimalarial activity of artemisinin, dihydroartemisinin and sodium
artesunate in the Plasmodium berghei-rodent model. Int J Parasitol
24:589 –594. https://doi.org/10.1016/0020-7519(94)90150-3.

54. Lee RS, Waters AP, Brewer JM. 2018. A cryptic cycle in haematopoietic
niches promotes initiation of malaria transmission and evasion of che-
motherapy. Nat Commun 9:1689. https://doi.org/10.1038/s41467-018
-04108-9.

55. Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S, Yang T, Gillett DL,
Dick LR, Ralph SA, Dogovski C, Spillman NJ, Tilley L. 2018. Artemisinin kills
malaria parasites by damaging proteins and inhibiting the proteasome. Nat
Commun 9:3801. https://doi.org/10.1038/s41467-018-06221-1.

56. Li H, O’Donoghue AJ, van der Linden WA, Xie SC, Yoo E, Foe IT, Tilley L,
Craik CS, da Fonseca PCA, Bogyo M. 2016. Structure- and function-based
design of Plasmodium-selective proteasome inhibitors. Nature 530:
233–236. https://doi.org/10.1038/nature16936.

57. Yoo E, Stokes BH, de Jong H, Vanaerschot M, Kumar T, Lawrence N,
Njoroge M, Garcia A, Van der Westhuyzen R, Momper JD, Ng CL, Fidock
DA, Bogyo M. 2018. Defining the determinants of specificity of Plasmo-

dium proteasome inhibitors. J Am Chem Soc 140:11424 –11437. https://
doi.org/10.1021/jacs.8b06656.

58. Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. 2004. Antimalarial
drug discovery: efficacy models for compound screening. Nat Rev Drug
Discov 3:509 –520. https://doi.org/10.1038/nrd1416.

59. Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O,
Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen J-H,
Collet L, Cui L, Thakur G-D, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-
Moukoko CE, Espino F-E-CJ, Fandeur T, Ferreira-da-Cruz M-F, Fola AA,
Fuehrer H-P, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim
ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M,
Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati J-B,
Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K,
Nambozi M, Niaré K, Noedl H, KARMA Consortium, et al. 2016. A world-
wide map of Plasmodium falciparum K13-propeller polymorphisms. N
Engl J Med 374:2453–2464. https://doi.org/10.1056/NEJMoa1513137.

60. Anderson TJ, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic
F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. 2017.
Population parameters underlying an ongoing soft sweep in Southeast
Asian malaria parasites. Mol Biol Evol 34:131–144. https://doi.org/10
.1093/molbev/msw228.

61. Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Ménard D,
Fairhurst RM. 2014. Plasmodium falciparum founder populations in western
Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents
Chemother 58:4935–4937. https://doi.org/10.1128/AAC.03055-14.

62. Siddiqui FA, Boonhok R, Cabrera M, Mbenda HGN, Wang M, Min H, Liang
X, Qin J, Zhu X, Miao J, Cao Y, Cui L. 2020. Role of Plasmodium falciparum
Kelch13 protein mutations in P falciparum populations from northeast-
ern Myanmar in mediating artemisinin resistance. mBio 11:e01134-19.
https://doi.org/10.1128/mBio.01134-19.

63. Wang J, Huang Y, Zhao Y, Ye R, Zhang D, Pan W. 2018. Introduction of
F446I mutation in the K13 propeller gene leads to increased ring survival
rates in Plasmodium falciparum isolates. Malar J 17:248. https://doi.org/
10.1186/s12936-018-2396-0.

64. Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B, Wu Y, Kemirembe K, Hu
Y, Liang X, Brashear A, Shrestha S, Li X, Miao J, Sun X, Yang Z, Cui L. 2015.
Artemisinin resistance at the China-Myanmar border and association
with mutations in the K13 propeller gene. Antimicrob Agents Che-
mother 59:6952– 6959. https://doi.org/10.1128/AAC.01255-15.

65. Huang F, Takala-Harrison S, Jacob CG, Liu H, Sun X, Yang H, Nyunt MM,
Adams M, Zhou S, Xia Z, Ringwald P, Bustos MD, Tang L, Plowe CV. 2015.
A single mutation in K13 predominates in southern China and is asso-
ciated with delayed clearance of Plasmodium falciparum following arte-
misinin treatment. J Infect Dis 212:1629 –1635. https://doi.org/10.1093/
infdis/jiv249.

66. Tun KM, Jeeyapant A, Imwong M, Thein M, Aung SS, Hlaing TM, Yuen-
trakul P, Promnarate C, Dhorda M, Woodrow CJ, Dondorp AM, Ashley EA,
Smithuis FM, White NJ, Day NP. 2016. Parasite clearance rates in upper
Myanmar indicate a distinctive artemisinin resistance phenotype: a ther-
apeutic efficacy study. Malar J 15:185. https://doi.org/10.1186/s12936
-016-1240-7.

67. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Lin K, Kyaw
MP, Plewes K, Faiz MA, Dhorda M, Cheah PY, Pukrittayakamee S, Ashley
EA, Anderson TJC, Nair S, McDew-White M, Flegg JA, Grist EPM, Guerin
P, Maude RJ, Smithuis F, Dondorp AM, Day NPJ, Nosten F, White NJ,
Woodrow CJ. 2015. Spread of artemisinin-resistant Plasmodium falci-
parum in Myanmar: a cross-sectional survey of the K13 molecular
marker. Lancet Infect Dis 15:415– 421. https://doi.org/10.1016/S1473
-3099(15)70032-0.

68. Nyunt MH, Hlaing T, Oo HW, Tin-Oo L-LK, Phway HP, Wang B, Zaw NN,
Han SS, Tun T, San KK, Kyaw MP, Han E-T. 2015. Molecular assessment of
artemisinin resistance markers, polymorphisms in the K13 propeller, and
a multidrug-resistance gene in the eastern and western border areas of
Myanmar. Clin Infect Dis 60:1208 –1215. https://doi.org/10.1093/cid/
ciu1160.

69. Li H, Ponder EL, Verdoes M, Asbjornsdottir KH, Deu E, Edgington LE, Lee
JT, Kirk CJ, Demo SD, Williamson KC, Bogyo M. 2012. Validation of the
proteasome as a therapeutic target in Plasmodium using an epoxyk-
etone inhibitor with parasite-specific toxicity. Chem Biol 19:1535–1545.
https://doi.org/10.1016/j.chembiol.2012.09.019.

70. Gantt SM, Myung JM, Briones MR, Li WD, Corey EJ, Omura S, Nussenz-
weig V, Sinnis P. 1998. Proteasome inhibitors block development of
Plasmodium spp. Antimicrob Agents Chemother 42:2731–2738. https://
doi.org/10.1128/AAC.42.10.2731.

Plasmodium berghei K13 Mutations ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 19



71. Stokes BH, Yoo E, Murithi JM, Luth MR, Afanasyev P, da Fonseca PCA,
Winzeler EA, Ng CL, Bogyo M, Fidock DA. 2019. Covalent Plasmodium
falciparum-selective proteasome inhibitors exhibit a low propensity for
generating resistance in vitro and synergize with multiple antimalarial
agents. PLoS Pathog 15:e1007722. https://doi.org/10.1371/journal.ppat
.1007722.

72. Mukherjee A, Bopp S, Magistrado P, Wong W, Daniels R, Demas A,
Schaffner S, Amaratunga C, Lim P, Dhorda M, Miotto O, Woodrow C,
Ashley EA, Dondorp AM, White NJ, Wirth D, Fairhurst R, Volkman SK.
2017. Artemisinin resistance without PfKelch13 mutations in Plasmo-
dium falciparum isolates from Cambodia. Malar J 16:195. https://doi.org/
10.1186/s12936-017-1845-5.

73. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R,
McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011.
Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal omega. Mol Syst Biol 7:539 –539. https://doi
.org/10.1038/msb.2011.75.

74. Heckman KL, Pease LR. 2007. Gene splicing and mutagenesis by PCR-
driven overlap extension. Nat Protoc 2:924 –932. https://doi.org/10
.1038/nprot.2007.132.

75. Burda P-C, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT. 2015.
A Plasmodium phospholipase is involved in disruption of the liver stage

parasitophorous vacuole membrane. PLoS Pathog 11:e1004760. https://
doi.org/10.1371/journal.ppat.1004760.

76. Philip N, Orr R, Waters AP. 2013. Transfection of rodent malaria parasites.
Methods Mol Biol 923:99 –125. https://doi.org/10.1007/978-1-62703-026
-7_7.

77. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET,
Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific
image data. BMC Bioinformatics 18:529. https://doi.org/10.1186/s12859
-017-1934-z.

78. Fivelman QL, Adagu IS, Warhurst DC. 2004. Modified fixed-ratio isobo-
logram method for studying in vitro interactions between atovaquone
and proguanil or dihydroartemisinin against drug-resistant strains of
Plasmodium falciparum. Antimicrob Agents Chemother 48:4097– 4102.
https://doi.org/10.1128/AAC.48.11.4097-4102.2004.

79. Boampong JN, Ameyaw EO, Aboagye B, Asare K, Kyei S, Donfack JH,
Woode E. 2013. The curative and prophylactic effects of xylopic acid on
plasmodium berghei infection in mice. J Parasitol Res 2013:356107.
https://doi.org/10.1155/2013/356107.

80. Vega-Rodríguez J, Pastrana-Mena R, Crespo-Lladó KN, Ortiz JG, Ferrer-
Rodríguez I, Serrano AE. 2015. Implications of glutathione levels in the
Plasmodium berghei response to chloroquine and artemisinin. PLoS One
10:e0128212. https://doi.org/10.1371/journal.pone.0128212.

Simwela et al. ®

November/December 2020 Volume 11 Issue 6 e02312-20 mbio.asm.org 20



 1 

Mammalian deubiquitinating enzyme inhibitors display in vitro and in vivo activity against malaria 1 
parasites and potentiate artemisinin action 2 

Nelson V. Simwela1, Katie R. Hughes1, Michael T. Rennie1, Michael P. Barrett1, Andrew P. Waters1* 3 
1Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, 4 

University of Glasgow 5 
 6 
 * Corresponding author: Andrew P. Waters, email: Andy.Waters@glasgow.ac.uk  7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 14, 2020. . https://doi.org/10.1101/2020.08.13.249425doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249425
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract 35 
Current malaria control efforts rely significantly on artemisinin combinational therapies which have 36 
played massive roles in alleviating the global burden of the disease. Emergence of resistance to 37 
artemisinins is therefore, not just alarming but requires immediate intervention points such as 38 
development of new antimalarial drugs or improvement of the current drugs through adjuvant or 39 
combination therapies. Artemisinin resistance is primarily conferred by Kelch13 propeller mutations 40 
which are phenotypically characterised by generalised growth quiescence, altered haemoglobin 41 
trafficking and downstream enhanced activity of the parasite stress pathways through the ubiquitin 42 
proteasome system (UPS). Previous work on artemisinin resistance selection in a rodent model of 43 
malaria, which we and others have recently validated using reverse genetics, has also shown that 44 
mutations in deubiquitinating enzymes, DUBs (upstream UPS component) modulates susceptibility 45 
of malaria parasites to both artemisinin and chloroquine. The UPS or upstream protein trafficking 46 
pathways have, therefore, been proposed to be not just potential drug targets, but also possible 47 
intervention points to overcome artemisinin resistance. Here we report the activity of small 48 
molecule inhibitors targeting mammalian DUBs in malaria parasites. We show that generic DUB 49 
inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess 50 
antiparasitic activity in vivo and can be used in combination with additive effect. We also show that 51 
inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in 52 
vitro as well as in vivo to the extent that ART resistance can be overcome. Combinations of DUB 53 
inhibitors anticipated to target different DUB activities and downstream 20s proteasome inhibitors 54 
are even more effective at improving the potency of artemisinins than either inhibitors alone 55 
providing proof that targeting multiple UPS activities simultaneously could be an attractive approach 56 
to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to 57 
both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB 58 
inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of 59 
human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug 60 
repurposing programs. 61 
 62 
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 4 

Introduction 90 
Malaria remains the most important parasitic disease in tropical and sub-tropical regions of the 91 
world with high rates of morbidity and mortality.  Despite significant gains in malaria control over 92 
the past decade, over 220 million cases and 400 000 deaths were reported in 2018, with >90% of 93 
these occurring in the WHO African region. 1 More worryingly, a global stall in malaria control has 94 
been reported with a steady increase in malaria cases being observed between 2015 and 2018. 1-2  95 
Caused by apicomplexan parasites of the genus Plasmodium, the most lethal form of human malaria 96 
is caused by Plasmodium falciparum which accounts for >99% of malaria cases and deaths in Sub-97 
Saharan Africa. 1 However, human malaria caused by other Plasmodium spp. such as P. vivax, P. 98 
ovale, P. malaria and the zoonotic P. knowlesi remains a significant public health problem causing 99 
significant morbidity and economic impact in already poverty stricken communities. 1 The life cycle 100 
of malaria parasites comprises of multiple developmental stages between mosquito and mammalian 101 
hosts. Antimalarial drugs, which form principle components of malaria control programs, target the 102 
parasite at different life cycle stages, mostly the proliferating trophozoites and schizont stages 103 
during the intraerythrocytic development cycle of the parasites which are associated with most of 104 
the disease pathology. Artemisinins (ARTs) in ART combination therapies are the current front line 105 
drugs in malaria treatment. 1 They display fast and potent activity against virtually all blood stages of 106 
the parasites, as well as gametocytes that mediate transmission to mosquito vectors. 3-4 Indeed, such 107 
is the effectiveness of ARTs, that recent gains in malaria control have been partly attributed to ART 108 
combination therapies. 2, 4 Unfortunately, P. falciparum (PF) resistance to ARTs has emerged in the 109 
Southeast Asia greater Mekong region and is characterised by point mutations in the Kelch13 110 
propeller domain that associate with decreased parasite clearance rates in clinical phenotypes. 1, 4-5 111 
 112 
ARTs are sesquiterpene lactones derived from the Chinese herb Artemisia annua.  Central to the 113 
activity of ARTs is the activation of the core endoperoxide bridge by haem which triggers the 114 
production of carbon centred radicals which in turn alkylate multiple and random downstream 115 
parasite targets. 6-7 The actual events leading to ART mediated parasite death remain elusive as well 116 
as disputed. However, a promiscuous targeting of several parasite proteins by the ART generated 117 
radicals is widely accepted. 8-9  The ART resistance- associated mutations lie in the beta propeller 118 
domain of the Kelch13 protein in PF. 10 Recent work on the biological function and consequences of 119 
these Kelch13 mutations has revealed that Kelch13 localises to the parasite cytoplasmic periphery in 120 
cellular compartments called cytostomes and plays a role in haemoglobin endocytosis.  ART 121 
resistance-associated mutations in Kelch13 lead to reduced abundance of this protein leading to 122 
impaired haemoglobin trafficking which lessens ART activation hence promoting parasite survival. 11-123 
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 5 

12 In addition, ART induced pleiotropic targeting is also known to activate ER stress and the unfolded 124 
protein response (UPR) which allow parasites to survive drug assault by rapidly turning over 125 
damaged proteins while employing cell repair mechanisms. 6-7, 13  ART resistant parasites (Kelch13 126 
mutants) are indeed associated with an upregulation of genes involved in these cellular stress 127 
response pathways. 14 Meanwhile, parallel functional and localisation studies have also revealed that 128 
Kelch13 co-localises with multiple UPR components, proteins specific to the ER and mitochondria as 129 
well as intracellular vesicular trafficking Rab GTPases. 15-16  Central to the activity of the UPR is the 130 
ubiquitin proteasome system (UPS), a conserved eukaryotic pathway that plays a role in protein 131 
homeostasis by degrading unfolded proteins.  Under ART pressure, activity of the UPS is more 132 
upregulated in Kelch13 mutant parasites compared to wild type while UPS inhibitors have been 133 
shown to synergize ART action suggesting that this pathway could be selectively targeted to 134 
overcome ART resistance. 17-18 Of note, Kelch13 is also predicted to play additional roles as substrate 135 
adaptor for ubiquitin E3 ligases, crucial components of the UPS; 7, 10 while mutations in upstream 136 
components of the UPS (ubiquitin hydrolases or deubiquitinating enzymes) also modulate 137 
susceptibility to ARTs. 19-21 Chemotherapeutic targeting of the UPS has been successfully pursued in 138 
cancers 22 and is increasingly becoming attractive in malaria parasites, 23 even more so as potential 139 
combinatorial partners to ARTs to overcome resistance. 17-18 140 
 141 
Here we report the activity of deubiquitinating enzyme (DUBs) inhibitors in both rodent and human 142 
malaria parasites. DUBs are proteases that cleave ubiquitin residues from conjugated substrate 143 
proteins in the UPS pathway. UPS targeting of proteins is initiated by ubiquitin (Ub) tagging of 144 
substrates which marks them either for specific cellular signal transduction processes like DNA repair 145 
and cell cycle progression or subsequent degradation by the 20s proteasome. 24 Ub tagging is 146 
mediated by three sequential enzymes: E1, an activating enzyme; E2, a conjugating enzyme and E3, 147 
a Ub ligase for substrate specificity. The activity of these enzymes results in polyubiquitination of 148 
substrate proteins which signals for their degradation at the 20s proteasome complex depending on 149 
the number of Ub residues. DUBs reverse the activity of these downstream UPS enzymes by 150 
removing Ub from the conjugated substrates which results in diverse protein fates and cellular 151 
outcomes among which include; regulation of protein half-life, cell growth, differentiation, 152 
transcription; rescue of mis-tagged proteins as well as oncogenic and neuronal disease signalling. 25 153 
Over 100 DUBs have been identified in humans and they classify into five major families: Ub C- 154 
terminal hydrolases (UCHs), Ub specific proteases (USPs), ovarian tumour proteases (OTUs), 155 
josephins and JAMM/MPN/MOV34. 25  In malaria parasites, up to 30 DUBs have been predicted 156 
across five Plasmodium species (PF, P. vivax, P. berghei (PB), P. chabaudi, P. yoelii); even though their 157 
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functions remain to be fully explored. 26-27 Nevertheless, Plasmodium DUBs seem to have intrinsic 158 
protease activity, are significantly divergent and their human orthologues are known to be 159 
important regulators of cellular pathway which makes them suitable and potential drug targets. 28 160 
The role of DUBs in mediating susceptibility to standard drugs like ARTs, the diversity in the classes 161 
of DUBs and the predicted repertoire in malaria parasites would also mean an expanded chemical 162 
space for drug discovery, potential inhibitor combination for different classes as well as using DUB 163 
inhibitor combinations to overcome ART resistance. Herein, using generic mammalian DUB inhibitors 164 
that have been used as exploratory research tools as well as in clinical trials, we show that DUB 165 
inhibitors do possess in vitro and in vivo inhibitory activities against malaria parasites across two 166 
diverged Plasmodium species. We demonstrate that different classes of DUB inhibitors can be 167 
combined to provide greater killing efficacy as well as enhance the potency of ARTs both in vitro and 168 
in vivo. Our data demonstrate that DUB inhibition can be exploited to overcome ART resistance with 169 
similar potency as first generation proteasome inhibitors.  Furthermore, inhibition of both the UPS 170 
and DUBs can be combined to further improve the potency of ARTs and negate ART resistance.  171 
These findings have the potential to be applied to the treatment of all human malaria. 172 
 173 
 174 
Results 175 
In vitro activity of DUB inhibitors in malaria parasites 176 
To assay for in vitro activity of DUB inhibitors in malaria parasites, short term PB culture assays and 177 
PF Sybergreen I® culture assays were employed. The PB 820 and PF 3D7 lines were initially screened 178 
to determine susceptibility to inhibitors and antimalarials with known activity in malaria parasites; 179 
ART, dihydroartemisinin (DHA), chloroquine (CQ) and epoxomicin (20s proteasome inhibitor). The 180 
half-inhibitory concentrations (IC50) obtained for epoxomicin, DHA, ART and CQ in both the 820 and 181 
3D7 lines (Table 1) were all in agreement with previously published IC50 values in both Plasmodium 182 
species. 29-32  Next, we screened seven DUB inhibitors (Table 1) in both the 820 and 3D7 line to 183 
characterise their inhibitory activity during the intraerythrocytic stages of malaria parasites. The 184 
selected compounds are DUB inhibitors being currently pursued as promising anticancer agents 185 
(Table 1) that also offered a broad coverage targeting of the 5 classes of DUBs. As shown in Table 1, 186 
activity was observed for six of the seven DUBs tested in the 820 and 3D7 lines. The activity of USP 187 
acting DUB inhibitors; b-AP15, P5091 and NSC632839 corresponds with the reported in vitro IC50s of 188 
the compounds screened in cancer cell lines 33-35. b-AP15 IC50 also compared to previously reported 189 
IC50S of 1.54± 0.7 µM and 1.10 ± 0.4 μM in PF CQ sensitive (3D7) and resistant (Dd2) lines 190 
respectively. 36 Growth inhibition was also observed for broad spectrum DUB inhibitors; PR-619 and 191 
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1,10 phenanthroline, as well as a partially selective DUB inhibitor, WP1130 (Table 1). These data 192 
suggest that DUBs are potentially essential enzymes in Plasmodium, and they could be pursued as 193 
potential antimalarial drug targets. Indeed, a manual curation of up to 17 of the predicted DUBs in 194 
malaria parasites 26-27 shows that a majority of these (~70%, 12 of 17) are essential in either PF and 195 
PB or both (Supplementary Table 1) based on previous functional studies for selected DUBs 37-38 or 196 
recent genome wide gene knockout screens. 39-40 Strikingly, no growth inhibition was observed for 197 
TCID (IC50 >100 µM), a UCH-L3 inhibitor, in both the 820 and 3D7 lines (Table 1, Supplementary 198 
Figure 1A, 1B). Among the well characterised DUBs in malaria parasites is PF UCH-L3 (PfUCH-L3, 199 
PF3D7_1460400) which was identified by activity based chemical profiling and has been shown to 200 
retain core deubiquitinating activity. 41 Structural and functional characterisation of PfUCH-L3 has 201 
also shown that this enzyme is essential for parasite survival (Supplementary Table 1). 38 Meanwhile, 202 
in our screen, TCID, a highly selective mammalian UCH-L3 inhibitor with an IC50 of 0.6 µM in 203 
mammalian cancer cell lines, 42 displayed no activity in both the 820 and 3D7 lines (Table 1, 204 
Supplementary Figure 1A, 1B). To possibly address this (unexpected) lack of activity, we performed a 205 
phylogenetic analysis of Plasmodium, human and mouse UCH-L3 based on predicted protein 206 
sequences to infer their similarities which might explain the observed lack of anti-plasmodial activity 207 
of TCID.  A distinct evolutionary divergence of this enzyme was observed between human, mouse 208 
and the most similar Plasmodium homologues (PBANKA_ 1324100/PF3D7_1460400) which whilst 209 
annotated as UCH-L3 shares only 33% predicted protein sequence identity with the human UCH-L3 210 
(Supplementary Figure 1C, D). Structurally, human UCH-L3 and PfUCH-L3 have similar modes of Ub 211 
recognition and binding. However, the PfUCH-L3 Ub binding groove is structurally different from the 212 
human UCH-L3 at atomic bonding level and possesses non-conserved amino acid residues. 38  This 213 
lack of complete identity across active sites would perhaps further explain the observed inactivity of 214 
TCID in both PF and PB.  215 
 216 
 217 
Different classes of DUB inhibitors can be combined to provide more effective blocking of malaria 218 
parasite growth in vitro. 219 
To explore interactions between DUB inhibitors, and their potential synergy, b-AP15, a highly 220 
selective USP14 inhibitor 34 and the relatively most potent inhibitor of parasite growth in both PF 221 
and PB, was tested in fixed ratios with broad-spectrum DUB inhibitors; PR-619 and WP1130. 222 
Combinations at fixed ratios of 5:0, 4:1, 3:2, 1:4 and 0:5 were serially diluted and incubated with 223 
parasite cultures of the 3D7 line from which parasite growth and IC50s were obtained. FIC50s and 224 
∑FIC50s were calculated and isobologram interactions were plotted.  A combination of b-AP15 and 225 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 14, 2020. . https://doi.org/10.1101/2020.08.13.249425doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249425
http://creativecommons.org/licenses/by/4.0/


 8 

PR-619 is mostly additive with a mean ∑FIC50 of 0.753±0.23, (Figure 2A). Meanwhile, b-AP15 and 226 
WP1130 seemingly trends towards synergy with a mean ∑FIC50 of 0.653±0.23, (Figure 2B) even 227 
though the interaction remains overall additive.  These data suggested that DUB inhibitors, as 228 
potential antimalarial drug candidates, can be used in combination to block parasite growth 229 
presumably by simultaneously targeting several different DUB enzymatic targets. 230 
 231 
DUB inhibitors alone or in combination can potentiate DHA action in malaria parasites in vitro 232 
In order to test the hypothesis that DUB inhibitors might have a similar effect of potentiating ART 233 
activity as 20s proteasome inhibitors, we investigated the effects of DUB inhibitors on the dose 234 
response profiles of DHA in vitro on wild type PB and PF growth as well as their potential to 235 
synergize DHA action in fixed ratio interaction assays. The most potent DUB inhibitor b-AP15 at 236 
equivalent IC50 concentration improved DHA action with up to ~8-fold IC50 shift in wild type PB 237 
growth inhibition (Figure 2A) and up to 15-fold enhancement in the wild type PF growth inhibition 238 
(Figure 2B). The differences in potentiation between PB and PF could be due to the inherent reduced 239 
susceptibility of PB to ARTs. 20, 43 The enhancement of DHA action by b-AP15 was also almost similar 240 
to previously reported profiles with epoxomicin, a 20s proteasome inhibitor. 17 We have recently 241 
shown that experimental introduction of mutations in a DUB, UBP-1, mediated reduced 242 
susceptibility to ARTs in PB. 20  UBP-1 has a close human orthologue HAUSP/USP7 which is itself 243 
inhibited by P5091, a drug which in our Plasmodium screen was poorly potent with a relatively high 244 
micromolar IC50 (Table 1).  Nevertheless, b-AP15 (a USP-14 inhibitor) potentiated DHA action to the 245 
same extent as in wild type ART-sensitive PB (9-11-fold) in two UBP1 mutant lines that have reduced 246 
susceptibility to ART (V2721F) or both ART and CQ (V2752F) (Supplementary Figure 2A & B).  247 
Therefore, ART (and potentially CQ) reduced susceptibility could be offset by a combinatorial drug 248 
administration approach involving DUB inhibitors through a targeted disruption of protein 249 
homeostasis most likely at the level of the UPS.  250 
 251 
In an attempt to maximise DUB inhibitor combinations, which offered improved inhibition of 252 
parasite growth (Figure 1) as a strategy for simultaneously targeting several DUBs in the presence of 253 
DHA, we tested the effect of combining b-AP15, PR-619 and WP1130 on the dose response profile of 254 
DHA. WP1130 and PR-619 at IC50 concentration mildly potentiate DHA action with 1.8- and 1.4-fold 255 
improvements respectively (Supplementary Figure 3A, 3B).  Meanwhile, a combination of b-AP15 256 
and WP1130 at half IC50 mildly potentiated DHA action (~2-fold, Figure 2C), while all three inhibitors 257 
(b-AP15, WP1130 and PR-619) at half IC50 improved DHA action up to 5-fold in the ART sensitive PF 258 
(Figure 2D) and PB (Figure 2E) as well as the ART resistant PF Kelch13 C580Y mutant lines (Figure 2F). 259 
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We carried out further isobologram interaction assays for DUB inhibitor ratio combinations in an 260 
attempt to achieve improved in vitro killing (Figure 1) in combination with DHA. Both b-AP15 and 261 
WP1130 were essentially additive when combined with DHA in isobologram interactions with ∑FIC50s 262 
of 0.967 and 1.013 respectively (Supplementary Figure 3C, 3D). However, when b-AP15 and WP1130  263 
were mixed at a 3:2 molar concentration ratio as a cocktail and combined with DHA, a slight 264 
improvement in efficacy was observed with an ∑FIC50 of ~0.868 (Figure 2G) compared with 0.972  at 265 
1:4 b-AP15 WP1130 molar concentration ratios (Figure 2H) or 0.941 at 2:3 b-AP15 WP1130 molar 266 
concentration ratio (Figure 2I).  These data would suggest that optimized ratios of (improved) DUB 267 
inhibitor combinations or other proteasome inhibitors might yet achieve synergy with DHA, which 268 
would be a prerequisite to simultaneously targeting multiple DUBs or parallel pathways/enzymes in 269 
the UPS in future antimalarial combination therapies. 270 
 271 
A combination of DUB and 20s proteasome inhibitor can synergize with DHA  272 
An alternative approach to alleviating antimalarial resistance is combination therapies that target 273 
multiple points within known resistance mediating pathways and/or novel antimalarial drug 274 
pathways to prevent the emergence of or overcome resistance. Therefore, we explored a 275 
combination of an upstream DUB inhibitor (b-AP15) and a 20s proteasome inhibitor (epoxomicin) 276 
with DHA in fixed ratio isobologram interactions. Firstly, we tested epoxomicin in combination with 277 
DHA as well as b-AP15 and epoxomicin in fixed ratios against PF. Epoxomicin improved DHA action 278 
mildly with an ∑FIC50 of 0.881 (Figure 3A) which corresponds with previously reported profiles. 17 279 
Interestingly, b-AP15 and epoxomicin as a combination alone was not an improved regimen with an 280 
∑FIC50 of 1.162 (Figure 3B). This failure may result from a suppression mechanism where targeting 281 
the USP14 DUB upstream by b-AP15 (Figure 3D) would potentially counteract the activity of 282 
downstream 20s proteasome inhibitor and vice versa. 44 However, a 1:1 molar ratio of b-AP15 and 283 
epoxomicin when combined with DHA, an improved interaction with DHA (∑FIC50 of 0.614) was 284 
achieved (Figure 3C) than by either of the drugs alone (Figure 3A, Supplementary Figure 3C). This 285 
illustrates that targeting the UPS at several points with the optimized inhibitor concentrations can 286 
significantly improve DHA efficacy. 287 
 288 
 289 
Pre-incubation of malaria parasites with UPS inhibitors efficiently mediates DHA potentiation 290 
A further way to combat drug resistance in malaria, which is being explored with antibiotics 45 and 291 
has been the case with cancer neo-adjuvant therapies, would be to pre-expose parasites to lethal or 292 
sub-lethal doses of inhibitors that target the resistance pathways before the main treatment course. 293 
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A targeted inhibition of the resistance conferring pathways might then in turn improve the activity of 294 
any downstream main treatment drug. Therefore, we investigated the effect of pre-exposing malaria 295 
parasites to DUB or 20s proteasome inhibitors on the short time exposure dose response profiles to 296 
DHA in both PB and PF.  The PB 507 line, which expresses a green fluorescent protein (GFP) 297 
constitutively, was used to monitor GFP intensity across the life cycle after exposure to serial 298 
concentrations of DHA for 3 hours, administration of which followed prior exposure of the parasites 299 
(1.5 hour old rings) for 3 hours to IC50 concentrations of b-AP15. Quantification of the GFP 300 
fluorescent signal expressed from a constitutive promoter in PB would allow us to investigate the 301 
global dynamics of protein homeostasis, recycling, unfolding and or damage which occurs in the 302 
parasites upon exposure to DHA and or UPS inhibitors.   Monitoring of GFP intensity at 6, 18 and 24 303 
hours revealed that b-AP15 pre-exposure enhances the potency of DHA as indicated by significant 304 
abrogation of GFP intensity at all the time points (Figure 4A). Additional administration of b-AP15 305 
after DHA incubation further abrogates GFP intensity illustrating that b-AP15 compromises UPS 306 
activity in tandem with DHA, which would make them suitable partner drugs. In the PF 3D7 line, pre-307 
incubation of ~0-3 hour old rings with b-AP15 at IC50 or half IC50  for 3 hours followed by DHA 308 
treatment for 4 hours markedly impacts parasite viability (5 and 1.6 fold respectively) compared to 309 
DMSO exposed parasites, while pre-exposing the parasites to b-AP15 at 4x IC50 is almost entirely 310 
lethal to the parasites (Figure 4B). Meanwhile, pre-exposure of 3D7 or an ART resistant Kelch13 311 
C580Y line to epoxomicin at IC50 or 0.2x IC50 followed by DHA also significantly impacted parasite 312 
viability (~4.6 and ~1.4 fold respectively) as compared to DMSO (Figure 4C, 4D). Remarkably,  in both 313 
the 3D7 and ART resistant Kelch13 C580Y lines, a combination of  b-AP15 and epoxomicin at half IC50 314 
achieved better potency with DHA ( 18 and 33-fold respectively) compared to either of the drugs 315 
alone at IC50  (Figure 4B, 4C, 4D) further illustrating that targeting multiple UPS components (Figure 316 
3C) could be a flexible approach to overcoming ART resistance. 317 
 318 
 319 
b-AP15 fails to block parasite growth but potentiates ART action in vivo 320 
We next investigated the ability of b-AP15 to block parasite growth in vivo and potentially enhance 321 
ART action. An analogue of b-AP15 (itself a lead first generation DUB inhibitor), VLX1570 entered 322 
clinical trials for the treatment of multiple myeloma (Wang et al., 2016), despite being later 323 
terminated due to dose ascending toxicities (NCT02372240).  b-AP15 has strong antiproliferative 324 
effects in human cancer cell lines and has displayed significant antitumor activity at 5mg/kg in in vivo 325 
mouse models without any side effects. 34 However, in a Peters’ 4 day suppressive test, b-AP15 fails 326 
to clear PB parasites in vivo at both 1mg/kg and 5mg/kg with only minor reductions in parasite 327 
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burdens on day 4 and 5 post treatment at the latter dose which corresponds to ~70% parasite 328 
suppression on day 4 (Figure 5A, 5B, 5C). Contrary to the previous reported safety profiles of b-AP15, 329 
34 mice (Theiler’ s Original) treated with 5mg/kg b-AP15 started to develop toxicity signs as 330 
demonstrated by significant weight loss on day 4 and 5 post-treatment. Further treatments at 331 
5mg/kg or higher doses were thus not pursued. To investigate the ability of b-AP15 to potentiate 332 
ART action in vivo, b-AP15 was administered at 1mg/kg (a safe dose that did not have any effect on 333 
parasite growth alone, Figure 5A) in combination with ART at 5mg/kg and 10mg/kg in established 334 
mice infections at a parasitaemia of 2-2.5% for three consecutive days. A combination of ART 335 
(5mg/kg) and b-AP15 (1mg/kg) did not have any significant parasite reduction as compared to ART 336 
(5mg/kg) alone, while ART at 20mg/kg cleared the parasites after three consecutive doses as 337 
expected (Figure 5D). However, a combination of ART (10mg/kg) and b-AP15 (1mg/kg) significantly 338 
abrogated parasite burden as compared to ART (10mg/kg) alone to the same extent as ART at 339 
20mg/kg (Figure 5E). These data further showed that b-AP15 can enhance ART action in vivo, to a 340 
similar extent as observed in vitro. 341 
 342 
 343 
Discussion 344 
With the increasing incidence of resistance to (even combinations of) antimalarial drugs by PF and 345 
the lack of rapidly amenable drug discovery programs for related Plasmodium spp. such as P. vivax, 346 
pipelines to develop new antimalarial drugs to treat the disease as well as improve the activity of 347 
current antimalarials and tackle resistance are urgently needed. Here, we report in vitro and in vivo 348 
activity of a class of compounds targeting the parasite upstream UPS component (DUBs) in PF and 349 
PB.  Antimalarial drugs are typically discovered for their activity against PF in vitro. Lead compounds 350 
from PF in vitro screens are evaluated for in vivo efficacy using rodent malaria parasites which have 351 
been for a long time, crucial components of these drug discovery programs. 46 PB is the most 352 
commonly used rodent model (in what is called the Peters’ four-day suppressive test) and the 353 
development of methods that allow assessment of both in vitro drug sensitivity and in vivo efficacy 354 
in this model, 47 as we demonstrate in this study, permits easy comparisons with PF in vitro efficacy 355 
data. Moreover, this provides crucial in vitro bridging information on whether potential drug efficacy 356 
discrepancies between PF in vitro and PB in vivo are due to pharmacokinetics of the drug or intrinsic 357 
differences in drug sensitivity between the Plasmodium spp. As a species of Plasmodium that is well 358 
diverged from both PF and other human-infectious Plasmodium, PB drug efficacy assessment also 359 
offers a useful comparative for other non-PF human causing Plasmodium spp. as chemical entities 360 
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that display PF inhibitory activity in vitro and PB inhibitory activity in vitro and in vivo are also likely 361 
to be active against other (human infectious) Plasmodium species.  362 
 363 
Herein, activity is reported for six DUB inhibitors covering most of the DUB enzyme families and 364 
include b-AP15, P5091 and NSC632839 which specifically target USPs that all displayed antimalarial 365 
activity against both rodent and human malaria parasites in vitro. USPs are the largest family of 366 
DUBs comprising of up to 56 individual enzymes in humans. 48 However, since less is known of USPs 367 
in malaria parasites, with their current assignations largely based on in silico predictions, 26-27 the 368 
precise targets of these drugs remain largely obscure. Human USP14 has been demonstrated to be 369 
the target of b-AP15 34 and its PF orthologue PfUSP14 (PF3D7_0527200) has been recently 370 
characterised and shown to bind the parasite 20s proteasome. 36 Moreover, purified PfUSP14 371 
cleaves di-ubiquitin bonds in intact polyubiquitin chains illustrating functional identity of this 372 
Plasmodium DUB with its human counterpart. 36 This provides evidence that PfUSP14 may be 373 
specifically essential in parasite proliferation during the asexual blood cycle which was supported by 374 
a whole genome piggyBac saturation mutagenesis screen in which PfUSP14 was shown to be 375 
refractory to deletion (Supplementary Table 1). 39   Our data also support this in both PF and PB 376 
despite the PB counterpart (PBANKA_1242000) appearing to be dispensable in a recombinase 377 
mediated genetic screen. 40 The differences in essentiality could be due to functional differences 378 
between the two Plasmodium spp. USP14s. as they seem to share only ~62% sequence identity 379 
(Supplementary Figure 4). The activity of b-AP15 in both PF and PB however, at almost equivalent 380 
potencies, could thus be suggestive of possible suitable compensatory effects from other DUBs upon 381 
deletion in PB which is not sufficiently compensated for when an inhibitor is used. b-AP15 may also 382 
target other DUB (or possess off target) activities in Plasmodium as the inhibition of purified 383 
PfUSP14 by b-AP15 is less potent than its overall parasite killing potency. 36 Nevertheless, the 384 
observed structural difference between human USP14 and PfUSP14 at the core catalytic domain, its 385 
possible essentiality and the activity of b-AP15 in both PF and PB in vitro suggests that PfUSP14 can 386 
be selectively targeted throughout the Plasmodium genus. 36 Furthermore, the observed activity of 387 
other USP inhibitors, P5091 and NSC632839 in this study suggests that their targets are essential 388 
(Supplementary Table 1) during the asexual proliferation stages of malaria parasites and can serve as 389 
useful chemical leads for more potent antimalarial discovery. More importantly, b-AP15 possesses 390 
antiparasitic activity in vivo achieving up to 70% parasite suppression of PB at the highest 391 
concentrations that have been tested in cancer models. 34  Malaria parasites have been shown to 392 
rapidly replenish proteasomes in the presence of sub-lethal doses of proteasome inhibitors 49 which 393 
would possibly explain the observed inability of b-AP15 to completely block parasite growth at this 394 
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concentration as compared to control antimalarial drugs. Whilst promising, we noted issues with the 395 
reported safety profiles of b-AP15 at 5mg/kg 34 where mice significantly lost weight after 4 396 
consecutive doses.  This effect could be due to the combination of a chemical inhibitor and parasite 397 
challenge making the mice more susceptible to toxic effects of b-AP15, a phenomenon which has 398 
been previously reported with carfilzomib, a 20s proteasome inhibitor. 49  Meanwhile, the in vitro 399 
activity of broad-spectrum DUB inhibitors, PR-619 and WP1130 as well as a zinc chelating 400 
metalloprotease inhibitor (1, 10 phenanthroline) further alludes to the promise of DUBs as drug 401 
targets in malaria parasites. 402 
 403 
A further striking finding was the inactivity of TCID (a UCH-L3 inhibitor) in both rodent and human 404 
malaria parasites. PfUCH-L3 has been well characterised in malaria parasites and has been shown to 405 
retain core deubiquitinating activity. 41 Moreover, disruption of PfUCH-L3 by experimentally 406 
replacing the native enzyme with a catalytically dead form was shown to be lethal to the parasite. 38 407 
The inactivity of TCID in both rodent and human malaria parasites reported here is therefore 408 
suggestive of striking differences between mammalian and Plasmodium UCH-L3s. Our sequence 409 
analysis demonstrated that PfUCH-L3 shares ~33% sequence identity with human UCH-L3 consistent 410 
with previous structural and molecular docking comparisons of PfUCH-L3 and human UCH-L3 which 411 
also revealed significant differences between the enzymes especially at the ubiquitin binding groove. 412 
38 This makes PfUCH-L3 an even more attractive drug target for ultra-selectivity as it is also known to 413 
possess denedylating activities which are absent in mammalian UCH-L3s. 41 414 
 415 
Targeting the Plasmodium UPS is an emerging interventional point, not just as a potential drug 416 
target, but now also to curb emerging ART resistance. 20s proteasome inhibitors have been shown 417 
to enhance ART action in both ART sensitive and resistant lines. 17-18 Our data in this study also show 418 
that upstream targeting of the UPS by some but by no means all DUB inhibitors can potentiate and 419 
enhance ART action in certain cases to a similar extent as 20s proteasome inhibitors.  ARTs act by 420 
targeting several (possibly random) parasite proteins upon activation 8-9 which necessitates, among 421 
other things, an upregulated UPS mediated stress response which rapidly recycles and clears 422 
damaged proteins henceforth promoting survival in ART resistant parasites. 6, 13, 17  As with 20s 423 
proteasome inhibitors, 17-18 inhibition of parasite UPS by targeting single or multiple DUBs 424 
simultaneously potentiates ART or DHA action. Inhibition of parasite UPS by b-AP15, for example, 425 
would prevent the normal protein homeostasis flux through the UPS, boosting the activity of 426 
pleiotropic ARTs by blocking the parasite stress and recovery system. Indeed, despite DHA being only 427 
additive in our isobole study with b-AP15, sublethal concentrations of b-AP15 can boost DHA activity 428 
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up to 15-fold. This boost is further enhanced when 2-3 DUB inhibitors at sub-lethal concentrations 429 
are combined as they improve DHA activity more than either inhibitors alone. This suggests that 430 
carefully titrated use of current DUB inhibitors in isolation, or simultaneously in mixtures may be a 431 
means to overcome ART resistance and the rodent model deployed here could be useful tool to 432 
optimise drug dosages. Indeed, recent findings have shown that accumulation of polyubiquitinated 433 
proteins in malaria parasites either by DUB or 20s proteasome inhibition is critical in activating the 434 
stress responses and contributes to DHA lethality in malaria parasites. 13 The observed increase in 435 
ART efficacy when combined with DUB inhibitors which is of a similar level to that achieved by 436 
inhibition of the proteasome by epoxomicin in vitro and Carfilzomib in vivo 17 further alludes to the 437 
potential of DUB inhibitors for achieving similar attributes in malaria parasites. 438 
 439 
Indeed, whilst useful as independent potential antimalarial agents, DUB inhibitors show potential for 440 
partnership and this study demonstrated that different classes of DUBs can be targeted 441 
simultaneously to achieve better parasite killing while potentially minimising the resistance 442 
emergence window. More importantly, low and safe doses of b-AP15 with no effect on parasite 443 
growth alone significantly potentiated sub-curative dose of ART to almost curative levels in vivo 444 
providing a proof of concept that DUB inhibitors can enhance the activity of ARTs  both in vitro and 445 
in vivo making them potential adjunct drugs to enhance ART action and tackle resistance. Similarly, 446 
other potential radical ways of overcoming resistance in malaria parasites would be  combining 447 
drugs with different mode of actions in complex combinations or using multiple (different) first line 448 
combinational therapies at once to raise the probability barrier of developing resistance by 449 
simultaneously targeting several pathways. 50 Our data exemplify this concept, as for example when 450 
b-AP15 and epoxomicin are combined in a fixed ratio isobole analysis, their appears to be no 451 
interaction or possibly even an antagonistic effect.  This observation would be symptomatic of an 452 
antagonistic suppression mechanism where the activity of two inhibitors in the same pathway 453 
upstream or downstream negatively feeds back to the activity of the other leading to counteractive 454 
effects. However, when b-AP15 and epoxomicin are mixed in equal concentration ratios and 455 
combined with DHA, their overall activity achieves a better efficacy with DHA than either of the 456 
inhibitors alone. The optimal simultaneous exposure of the parasite UPS to DUBs and 20s 457 
proteasome inhibitors could thus act as an additional opportunity to overcome resistance to ARTs if 458 
the parasites would acquire resistance mutations to either of the UPS inhibitors. This has indeed 459 
been recently illustrated where combined inhibition of the parasite β2 and β5 subunits of the 460 
parasites UPS has been shown to strongly synergize DHA activity. 51 461 
 462 
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In conclusion, our work confirms DUBs as potential druggable candidates in malaria parasites. Drug 463 
discovery programs take a long time, with for example a minimum of five years required to take a 464 
lead compound to a clinical candidate in malaria. 52-53 The emergent resistance to ACTs, a paucity in 465 
the number of antimalarial drugs in the developmental pipeline and a lack of scalable pipelines for 466 
drug discovery in other human malaria parasites such as P. vivax and P. ovale, 53  all necessitates 467 
both radical as well as alternative approaches to identify new drugs and drug targets. As DUBs are 468 
already being actively explored as anticancer agents with candidate inhibitors already entering 469 
clinical trials, 54 antimalarial drug discovery programs could take advantage to structurally improve 470 
or re-purpose such entities not just as potential drug targets in malaria, but also as combinational 471 
partners to ARTs to overcome the spectre of resistance.  472 
 473 
 474 
Materials and methods 475 
Parasite lines 476 
Experiments in PB were carried out in an 820 line that expresses green fluorescent protein (GFP) and 477 
red fluorescent protein (RFP) in male and female gametocytes respectively, and a 507 line that 478 
constitutively expresses GFP under the control of the Pbeef1αa promoter. Generation and 479 
characterisation of the 820 and 507 lines has been previously described. 55-56 Growth inhibitory 480 
experiments in PF were performed in the CQ and ART sensitive 3D7 line and the ART resistant 481 
Cambodian Kelch13 C580Y mutant line (a kind gift from D. Fidock). 482 
 483 
Drugs and inhibitors 484 
DHA (Selleckchem) was prepared at 1mM stock concentration in 100% DMSO and diluted to working 485 
concentration in complete (PF) or schizont media (PB). ART (Sigma) and Epoxomicin (Sigma) were 486 
dissolved in 100% DMSO to stock concentrations of 100 µM and 90µM respectively and diluted in 487 
complete culture media or schizont culture media to their respective working concentrations. CQ 488 
diphosphate (Sigma) was dissolved to stock concentration of 10 mM in 1X phosphate buffered saline 489 
(PBS) and diluted to working concentration in complete or schizont culture media. Seven different 490 
classes of DUB inhibitors (Table 1) were screened and were all obtained from Focus Biomolecules 491 
except for 1, 10 phenanthroline which was obtained from BPS biosciences. Stocks of DUB inhibitors 492 
were prepared at 10 mM in 100% DMSO and diluted in complete or schizont media to working 493 
concentrations. Testing concentrations ranged from 2000-0.01nM for epoxomicin, DHA, ART and CQ 494 
and 100-0.002µM for DUB inhibitors. All DUB inhibitors were supplied at a purity grade of >97% 495 
(Supplementary Table 2) and further analysed for chemical integrity on a High-Performance Liquid 496 
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Chromatography (HPLC) platform (Supplementary Table 3, Supplementary Figure 5) as detailed 497 
below. 498 
 499 
HPLC analysis of DUB inhibitors 500 
HPLC solvents were purchased from standard suppliers and used without additional purification. 501 
DUB inhibitors were analysed on a Shimadzu reverse-phase HPLC (RP-HPLC) system equipped with 502 
Shimadzu LC-20AT pumps, a SIL-20A auto sampler and a SPD-20A UV-vis detector (monitoring at 254 503 
nm) using a Phenomenex, Aeris, 5 µm, peptide XB-C18, 150 x 4.6 mm column at a flow rate of 1 504 
mL/min. RP-HPLC gradients were run using a solvent system consisting of solution A (H2O + 0.1% 505 
trifluoroacetic acid) and B (acetonitrile + 0.1% trifluoroacetic acid). Further gradient analyses were 506 
run from 0% to 100% using solution B over 20 minutes. Analytical RP-HPLC data was reported as 507 
column retention time in minutes. Percentage purity was quantified by percentage peak area in 508 
relation to main peak. 509 
 510 
PB animal infections 511 
PB parasites were maintained in female Theiler’s Original (TO) mice (Envigo) weighing between 25-512 
30g. Parasite infections were established either by IP of ~200µl of cryopreserved parasite stocks or 513 
intravenous injections (IVs) of purified schizonts. For infections from a donor infected mouse 514 
(mechanical passage), 5-30µl of infected blood was diluted in phosphate buffered saline (PBS) 515 
followed by injections of 100-200µl by IP. Since PB preferentially invades reticulocytes, 57 mice were 516 
pre-treated with 100µl of phenylhydrazine at 12.5mg/ml in physiological saline 2 days before the 517 
infections to induce reticulocytosis for some experiments. Routine monitoring of parasitaemia in 518 
infected mice was done by monitoring methanol fixed thin blood smears stained in Giemsa (Sigma) 519 
or flow cytometry analysis of infected blood stained with Hoescht 33342 (Invitrogen). Blood from 520 
infected mice was collected by cardiac puncture under terminal anaesthesia. All animal work was 521 
approved by the University of Glasgow’s Animal Welfare and Ethical Review Body and by the UK’s 522 
Home Office (PPL 60/4443) and carried out by appropriately licenced individuals. The animal care 523 
and use protocol complied with the UK Animals (Scientific Procedures) Act 1986 as amended in 2012 524 
and with European Directive 2010/63/EU on the Protection of Animals Used for Scientific Purposes. 525 
 526 
PB in vitro culture and drug susceptibility assays 527 
For in vitro maintenance of PB, cultures were maintained for one developmental cycle using a 528 
standardised schizont culture media containing RPMI1640 with 25mM hypoxanthine, 10mM sodium 529 
bicarbonate, 20 % fetal calf serum, 100U/ml Penicillin and 100μg/ml streptomycin. Culture flasks 530 
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were gassed for 30 seconds with a special gas mix of 5% CO2, 5% O2, 90% N2 and incubated for 22-531 
24 hours at 370C with gentle shaking, conditions that allow for development of ring stage parasites 532 
to mature schizonts. Drug assays to determine in vitro growth inhibition during the intraerythrocytic 533 
stage were performed in these standard short-term cultures as previously described. 29-30 Briefly, 1 534 
ml of infected blood with a non-synchronous parasitaemia of 3-5% was collected from an infected 535 
mouse and cultured for 22-24 hours in 120 ml of schizont culture media. Schizonts were enriched 536 
from the cultures by Nycodenz density flotation as previously described 58 followed by immediate 537 
injection into a tail vein of a naive mouse. Upon IV injection of schizonts, they immediately rupture 538 
with resulting merozoites invading new red blood cells within minutes to obtain synchronous in vivo 539 
infection containing >90% rings and a parasitaemia of 1-2%. Blood was collected from the infected 540 
mice 2 hours post injection and mixed with serially diluted drugs in schizont culture media in 96 well 541 
plates at a final haematocrit of 0.5% in a 200µl well volume. Plates were gassed and incubated 542 
overnight at 370 C. After 22-24 hours of incubation, schizont maturation was analysed by flow 543 
cytometry after staining the infected cells with DNA dye Hoechst-33258. Schizonts were gated and 544 
quantified based on fluorescence intensity on a BD FACSCelesta or a BD LSR Fortessa (BD 545 
Biosciences, USA). To determine growth inhibitions and calculate IC50, quantified schizonts in no drug 546 
controls were set to correspond to 100% with subsequent growth percentages in presence of drugs 547 
calculated accordingly. Dose response curves were plotted in Graph-pad Prism. 548 
 549 
PF culture and the SYBR Green I® assay for parasite growth inhibition 550 
PF 3D7 or C580Y lines were cultured and maintained at 1-5% parasitaemia in fresh group O-positive 551 
red blood cells re-suspended to a 5% haematocrit in custom reconstituted RPMI 1640 complete 552 
media (Thermo Scientific) containing 0.23% sodium bicarbonate, 0.4% D-glucose, 0.005% 553 
hypoxanthine 0.6% Hepes, 0.5% Albumax II, 0.03% L-glutamine and 25mg/L gentamicin. Culture 554 
flasks were gassed with a mixture of 1% O2, 5% CO2, and 94% N2 and incubated at 370C. Prior to the 555 
start of the experiments, asynchronous stock cultures containing mainly ring stages were 556 
synchronised with 5% sorbitol as previously described. 59 Parasitaemia was determined with drug 557 
assays performed when the parasitaemia was between 1.5-5% with >90% rings. The stock culture 558 
was diluted to a haematocrit of 4% and 0.3% parasitaemia in complete media following which 50µl 559 
was mixed with 50µl of serial diluted drugs/inhibitors in complete media pre-dispensed in black 96 560 
well optical culture plates (Thermo scientific) for a final haematocrit of 2%. Plates were gassed and 561 
incubated at 370 C for 72 hours followed by freezing at -200 C for at least 24 hours. The plate setup 562 
also included no drug controls as well as uninfected red cells at 2% haematocrit. After 72 hours of 563 
incubation and at least overnight freezing at -200 C, plates were thawed at room temperature for ~4 564 
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hours. This was followed by addition of 100µl to each well of 1X SYBR Green I® (Invitrogen) lysis 565 
buffer containing 20 mM Tris, 5 mM EDTA, 0.008% saponin and 0.08% Triton X-100. Plate contents 566 
were mixed thoroughly by shaking at 700 rpm for 5 minutes and incubated for 1 hour at room 567 
temperature in the dark. After incubation, plates were read to quantify SYBR Green I® fluorescence 568 
intensity in each well by a PHERAstar® FSX microplate reader (BMG Labtech) with excitation and 569 
emission wavelengths of 485 and 520nm respectively. To determine growth inhibition, background 570 
fluorescence intensity from uninfected red cells was subtracted first. Fluorescence intensity of no 571 
drug controls was then set to correspond to 100% and subsequent intensity in presence of 572 
drug/inhibitor was calculated accordingly. Dose response curves and IC50 concentrations were 573 
plotted in Graph-pad Prism 7. Human blood was obtained and used within the ethical remit of the 574 
Scottish National Blood Transfusion Service. 575 
 576 
In vitro drug combinations 577 
Parasites were maintained and cultivated as described above. To determine drug interactions of 578 
DHA in combination with DUB or proteasome inhibitors, serial dilutions of DHA were mixed with 579 
fixed ratios of epoxomicin, b-AP15, PR-619 and WP1130 or their fractional combinations at their 580 
respective IC50s or half IC50s. The drug combinations were incubated with parasites from which 581 
parasite growth was quantified and dose response curves were plotted, for DHA alone or in 582 
combination with the fixed doses of the DUB or proteasome inhibitors. IC50 values were obtained 583 
and the fold change or IC50 shifts were plotted in Graph-pad Prism using the extra sum of squares F-584 
test for statistical comparison. For drug interactions in fixed ratios, a modified fixed ratio interaction 585 
assay was employed as previously described. 60  Drug combinations were prepared in six distinct 586 
molar concentration combination ratios; 5:0, 4:1, 3:2, 2:3 1:4, 0:5 and dispensed in top wells of 96-587 
well plates. This was followed by a 2 or 3-fold serial dilution with precisely pre-calculated estimates 588 
that made sure that the IC50 of individual drugs falls to the middle of the plate. The drug 589 
combinations were then incubated with parasites from which parasite growth and dose response 590 
curves were calculated for each drug alone or in combination. Fractional inhibitory concentrations 591 
(FIC50) were obtained for drugs in combination and summed to obtain the ∑FIC50 using the formula 592 
below: 593 
    ∑FIC50 = (IC50 of drug A in combination/ IC50 of drug A alone) + (IC50 of drug B in combination/ IC50 594 
of drug B alone). 595 
An ∑FIC50 of >4 was used to denote antagonism, ∑FIC50 ≤0.5 synergism and ∑FIC50 = 0.5-4 additivity. 596 
61 FIC50 for the drug combinations were plotted to obtain isobolograms for the drug combination 597 
ratios. 598 
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PF viability assays 599 
The 3D7 line was synchronised with 5% sorbitol over three life cycles followed by Nycodenz 600 
enrichment of later schizonts. Enriched schizonts were incubated with fresh red blood cells in a 601 
shaking incubator for 3 hours followed by another round of sorbitol treatment to eliminate residual 602 
late stage parasites. Resultant ring cultures were diluted to around ~1% parasitaemia and incubated 603 
with predefined drug combinations for set time periods. Drugs were washed off 3 times after the set 604 
incubation times. Parasite viability was assessed 66 hours later in cycle 2 by flow cytometry analysis 605 
of parasite cultures stained with Syber Green I and MitoTracker Deep Red dyes (Invitrogen). Flow 606 
cytometry analysis was carried on a MACSQuant® Analyzer 10. 607 
 608 
In vivo anti-parasitic activity of DUB inhibitors 609 
To evaluate the activity of DUB inhibitors (b-AP15) in vivo, the Peters’ 4 day suppressive test was 610 
initially employed as previously described. 62 Stock concentrations of b-AP15 were prepared at 611 
3mg/ml and 1mg/ml in a 1:1 mixture of DMSO and Tween® 80 (Sigma) followed by a 10-fold dilution 612 
to stock working concentrations (5% DMSO and Tween® 80 final) in sterile distilled water. CQ was 613 
prepared at 50mg/ml in 1X PBS and diluted to working stock in 1X PBS. A donor mouse was initially 614 
infected with PB 820 line from which blood was obtained when the parasitaemia was between 2-5%. 615 
Donor blood was diluted in rich PBS following which ~105 parasites were inoculated by IP into four 616 
mice groups (3 mice per group). 1-hour post infection, mice groups received drug doses by IP 617 
injection as follows: group 1 (vehicle; 5% DMSO & Tween® 80), group 2 (CQ; 20mg/kg), group 3 (b-618 
AP15; 1mg/kg) and group 4 (5mg/kg) for 4 consecutive days. Parasitaemia was monitored daily by 619 
flow cytometry analysis of infected cells stained with Hoechst-33258 and microscopic analysis of 620 
methanol fixed Giemsa stained smears. To evaluate the potential synergy of b-AP15 and ART in vivo, 621 
a modified Rane’s curative test in established infections was used. 63 Blood was obtained from a 622 
donor mouse at a parasitaemia of 2-3% and diluted in rich PBS. Seventeen mice were inoculated 623 
with ~105 parasites by IP on day 0 allowing the parasitaemia to rise to ~2-2.5%, typically on day 4. 624 
Following the establishment of  infection, mice were divided into five groups and received drug 625 
doses as follows: group 1 (5mg/kg ART n=3), group 2 (10mg/kg ART, n=3), group 3 (20mg/kg ART 626 
n=3), group 4 (5mg/kg ART + 1mg/kg b-AP15, n=4), group 5 (10mg/kg ART + 1mg/kg b-AP15, n=4). 627 
ART and b-AP15 were prepared at 12.5mg/ml and 1mg/ml respectively in 1:1 mixture of DMSO and 628 
Tween® 80 and diluted 10-fold (final 5% DMSO and Tween® 80) to their respective working 629 
concentrations. Parasitaemia was monitored daily by flow cytometry and analysis of methanol fixed 630 
Giemsa stained smears. 631 
 632 
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Table and figure legends 870 
Table 1: In vitro activity of DUB inhibitors in rodent and human malaria parasites. IC50 values and 871 
error bars are means and standard deviations from at least 3 independent repeats. 872 
 873 
Figure 1: In vitro interaction of different classes of DUB inhibitors in malaria parasites. Isobologram 874 
interaction plots and ∑FIC50 values of interactions between DUB inhibitors in the PF 3D7 line. A. 875 
Interaction between b-AP15 and WP1130 and their raw ∑FIC50 values. B. Interaction between b-AP15 876 
and PR-619 and their raw ∑FIC50 values. ∑FIC50 values, plotted FIC50s and error bars are means and 877 
standard deviations from three biological repeats. 878 
 879 
Figure 2: In vitro potentiation of DHA by DUB inhibitors. A, B. Dose response profiles and IC50 values 880 
of DHA in the presence of b-AP15 at IC50 equivalent concentration (DHA δ) in the PB 820 line (A) and 881 
3D7 line (B). C. Dose response profiles and IC50 values of DHA in the presence of WP1130 and PR-619 882 
at their respective half IC50s (DHA α+β) in the 3D7 line. D, E. Dose response profiles and IC50 values of 883 
DHA in combination with b-AP15, WP1130 and PR-619 at half IC50 (DHA α+β+γ) in the 3D7 (D) and 884 
820 line (E). F Dose response profiles and IC50 values of DHA combined with b-AP15 and WP1130 at 885 
IC50 (DHA δ, DHA ε) or b-AP15, WP1130 and PR-619 at half IC50 (DHA α+β+γ) in ART resistant Kelch13 886 
C580Y mutant line. Dose response curves were plotted in Graph pad prism 7. Error bars are standard 887 
deviations from 3 independent biological repeats. Isobologram plots of DHA in combination with b-888 
AP15 and WP1130 at 3:2 (G), 1:4 (H) and 2:3 (I) ratios and their raw ∑FIC50 values. ∑FIC50 values, 889 
plotted FIC50s and error bars are means and standard deviations from three biological repeats. 890 
 891 
Figure 3: A combination of DUB and 20s proteasome inhibitor improves synergy with DHA. A-C. 892 
Isobologram interaction between epoxomicin and DHA (A), b-AP15 and epoxomicin (B) and a 893 
mixture of b-AP15 and epoxomicin at 1:1 molar concentration ratio in combination with DHA (C). 894 
∑FIC50 values, plotted FIC50s and error bars are means and standard deviations from three biological 895 
repeats. D. Illustrated figure of the UPS indicating positional scope of USP14 and 20s units of the UPS 896 
and the inhibitor targets. 897 
 898 
Figure 4: pre-exposure of malaria parasites to UPS inhibitors alone or in combination enhances 899 
DHA action. A pre-treatment of the PB 507 line (1.5 hours old rings) with b-AP15 at IC50 (1.5µM) for 900 
3 hours followed by a wash and then DHA for another 3 hours. Median GFP intensity quantified by 901 
flow cytometry at 6 hours, 18hours and 24 hours. b-AP15 at IC50 readded after DHA wash off in one 902 
experimental condition (green plot) while b-AP15 alone used as an additional control. Results are 903 
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representative of three independent experiments. B. DHA dose response viability plots and lethal 904 
dose (LD50) comparisons at 66 hours after pre-exposure of 0-3 hours old rings of the 3D7 line to 905 
DMSO (0.1%) or b-AP15 at half IC50 (0.75µM), IC50 (1.5µM) or 4X IC50 (6µM) followed by DHA for 4 906 
hours. C, D. DHA dose response viability plots and lethal dose (LD50) comparisons at 66 hours after 907 
pre-exposure of  0-3 hours old rings of the 3D7 line (C) and ART resistant  Kelch-13 C580Y line (D) to 908 
DMSO (0.1%) or epoxomicin at 0.2x IC50 (2nM), IC50 (12nM) or a combination of b-AP15 and 909 
epoxomicin at half IC50 followed by DHA for 4 hours. Data from three independent experimental 910 
repeats. Significant differences between the conditions were calculated using one-way ANOVA 911 
alongside the Dunnet’s multiple comparison test. Significance is indicated with asterisks; 912 
****p < 0.0001. 913 
 914 
Figure 5: In vivo activity of b-AP15 alone and or in combination with ART. A Mice (4 groups of 3 915 
mice each) were infected with 105 parasites on day 1 and treated with indicated drug doses ~1 hour 916 
post infection for four consecutive days (indicated by arrows). Parasitaemia was monitored daily by 917 
flow cytometry and analysis of Giemsa stained smears.  B, C. Percentage suppressions on day 4 (B) 918 
and bar of parasitaemias on day 4 and day 5 (C). D, E. Combination of ART and b-AP15 in established 919 
mouse infections. ART at 5mg/kg (D) or 10mg/kg (E) combined with b-AP15 (1mg/kg) administered 920 
in established mice infections at a parasitaemia of 2-2.5% for three consecutive days (indicated by 921 
arrows). Parasitaemia was monitored daily. ART at 20mg/kg was used as a curative control. 922 
Significant differences were calculated using one-way ANOVA alongside the Dunnet’s multiple 923 
comparison test. Significance is indicated with asterisks; *p < 0.05, **p < 0.01, ***p < 0.001, 924 
****p < 0.0001. 925 
 926 
 927 
 928 
 929 
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List of tables and figures 938 
  Table 1 939 
 940 

 941 
 a, 64 b,33 c, 42  d, 65 e, 34 f, 35 g. 66 942 
                                                                                                    943 
            944 
 945 
 946 
 947 

Inhibitor Predicted UPS target 
IC50 

PB 820 PF 3D7 

Artemisinin  - 17.23±0.4nM  6.50±0.4nM 

Dihydroartemisinin  - 13.89±0.1nM  6.23±0.34nM 

Epoxomicin 20s proteasome 14.20±3.0nM 11.12±0.23nM 

PR-619 broad spectrum DUB inhibitora 3.30±2.0µM 2.41±0.5µM 

P5091 USP7 and USP47 DUBsb 8.38±2.10µM  Not done 

TCID UCH-L3 and UCH-L1 DUBsc >100µM >100µM 

WP1130 UCH-L1, USP9X, USP14, UCH37 DUBsd 1.19±1.0µM 2.92±0.1µM 

b-AP15 USP14 and UCH-L5 DUBse 1.06±0.9µM 1.55±0.1µM 

NSC-632839 USP2, USP7, SENP2 DUBsf 27.97±0.8µM  Not done 

1,10 phenanthroline 

Metalloproteases and JAMM 

isopeptidasesg 0.63±0.3µM  Not done 
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