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Abstract 

Prehistoric art, like the Venus of Willendorf sculpture, shows that we have 

always looked for ways to distil fundamental human characteristics and capture 

them in physically embodied representations of the self. Recently, this 

undertaking has gained new momentum through the introduction of robots that 

resemble humans in their shape and their behaviour. These social robots are 

envisioned to take on important roles: alleviate loneliness, support vulnerable 

children and serve as helpful companions for the elderly. However, to date, few 

commercially available social robots are living up to these expectations. Given 

their importance for an ever older and more socially isolated society, rigorous 

research at the intersection of psychology, social neuroscience and human-robot 

interaction is needed to determine to which extent mechanisms active during 

human-human interaction can be co-opted when we encounter social robots.  

This thesis takes an anthropocentric approach to answering the question how 

socially motivated we are to interact with humanoid robots. Across three 

empirical and one theoretical chapter, I use self-report, behavioural and neural 

measures relevant to the study of interactions with robots to address this 

question. With the Social Motivation Theory of Autism as a point of departure, 

the first empirical chapter (Chapter 3) investigates the relevance of 

interpersonal synchrony for human-robot interaction. This chapter reports a null 

effect: participants did not find a robot that synchronised its movement with 

them on a drawing task more likeable, nor were they more motivated to ask it 

more questions in a semi-structured interaction scenario. As this chapter heavily 

relies on self-report as a main outcome measure, Chapter 4 addresses this 

limitation by adapting an established behavioural paradigm for the study of 

human-robot interaction. This chapter shows that a failure to conceptually 

extend an effect in the field of social attentional capture calls for a different 

approach when seeking to adapt paradigms for HRI.  

Chapter 5 serves as a moment of reflection on the current state-of-the-art 

research at the intersection of neuroscience and human-robot interaction. Here, 

I argue that the future of HRI research will rely on interaction studies with 

mobile brain imaging systems (like functional near-infrared spectroscopy) that 
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allow data collection during embodied encounters with social robots. However, 

going forward, the field should slowly and carefully move outside of the lab and 

into real situations with robots. As the previous chapters have established, well-

known effects have to be replicated before they are implemented for robots, 

and before they are taken out of the lab, into real life. The final empirical 

chapter (Chapter 6), takes the first step of this proposed slow approach: in 

addition to establishing the detection rate of a mobile fNIRS system in 

comparison to fMRI, this chapter contributes a novel way to digitising optode 

positions by means of photogrammetry.  

In the final chapter of this thesis, I highlight the main lessons learned conducting 

studies with social robots. I propose an updated roadmap which takes into 

account the problems raised in this thesis and emphasise the importance of 

incorporating more open science practices going forward. Various tools that 

emerged out of the open science movement will be invaluable for researchers 

working on this exciting, interdisciplinary endeavour.  
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Chapter 1 Introduction  

In the beloved children’s classic ‘The Adventures of Pinocchio’, a wooden 

marionette comes to life through the hands of master puppeteer Geppetto 

(Collodi, 1883). Pinocchio ventures out into the world and after a long series of 

misfortunes eventually learns to show empathy and kindness towards Geppetto 

and others. The puppet’s understanding of fundamental human virtues finally 

culminates in its metamorphosis into a real boy. The story of this 

transformation, from a lifeless object to a fully functioning human, has been re-

told in various forms in the science fiction literature, and echoes a principal 

desire in robotics today: to create a machine that perfectly embodies the traits 

that make us fundamentally human and fundamentally social - a robot that is 

independent and can learn.  

Since its inception, the scientific field of robotics has been closely intertwined 

with science fiction literature, with the first mention of the word robot made by 

Karel Čapek in his 1920 play ‘Rossum’s Universal Robots’ (Hockstein et al., 

2007). In this play, robots who look almost indistinguishable from humans are 

exploited as factory slaves and later rebel against their human makers, another 

popular trope in science fiction. A bit later, the term ‘robotics’ was coined by 

Isaac Asimov, in his short story ‘Liar!’, which features a robot that is compelled 

to lie so as not to upset its human creators (1941). While these terms were 

introduced historically quite late, visions of automata have existed for almost as 

long as humans have lived together in societies. From ancient Egypt, Greece and 

China, to the 18th century ‘Turk’ (a fake chess playing machine, which in fact 

was controlled by a human hiding inside the device) and the friendly Japanese 

‘Gakutensoku’ - mechatronic puppets and automatons have fuelled the public 

imagination of what might be possible in terms of human-fabricated autonomous 

agents that interact with us - almost as equals (Frumer, 2020; Schwartz, 2019). 

Goodrich and Schultz (2007) remark in their survey on human-robot interaction 

(HRI) that the impact of science fiction literature on robotics cannot be denied: 

the inventors of the very first industrial robot – ‘Unimate’, a mechanical arm 

deployed at the General Motors car factory in the spring of 1961, were initially 

inspired by Asimov’s stories. The authors reflect on the relatively young field of 
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human-robot interaction, which they define as “the field of study dedicated to 

understanding, designing and evaluating robotic systems for use by or with 

humans” (p. 204). In the late 1960s a big leap forward was accomplished when 

Nilsson published his work on the first autonomous robot (‘Shakey’), which was 

able to navigate around a block obstacle course (Kuipers et al., 2017; Nilsson, 

1969). 

These breakthroughs in autonomous robotics, as Broadbent (2017) and others 

have argued, were facilitated by developments in the nascent field of artificial 

intelligence and the foundations laid by Alan Turing in his work on digital 

computing (1950). Goodrich and Schultz (2007) cite the first meeting of the IEEE 

Symposium on Robot & Human Interactive Communication (RoMan) in 1992 and 

the first explicitly multidisciplinary meeting of the ACM International Conference 

on Human-Robot Interaction (ACM-HRI) in 2006 as defining moments in the 

emergence of HRI as a scientific field of study. In addition to these initial 

scientific meetings, the authors mention engineering and technical challenges as 

another important catalyst, such as the RoboCup Search and Rescue competition 

(Goodrich & Schultz, 2007). Further, the authors note that the field of human-

robot interaction has been driven by its applications, and they reflect that major 

developments have been facilitated in part due to interest in domains such as 

search and rescue, and space exploration. This is also evident in the ‘three Ds of 

robotization’: robots for dangerous, dull and dirty work (Takayama et al., 2008).  

Early enthusiasm for the potential of robotics is perhaps best illustrated with Bill 

Gates’ essay in the Scientific American (2008) ‘A robot in every home’, which 

envisioned that in the near future, robots would become part of our everyday 

lives – much like the personal computer. These robots, he wrote, would help 

with various tasks in the household, and in addition to providing assistance, 

would also provide companionship. While his vision of ubiquity has not quite 

come true yet, it is the case that many modern households employ robotic 

vacuum cleaners, like the Roomba robot, or speech-based personal assistants, 

like the Alexa system (Šabanović, 2010; Vallverdú & Trovato, 2016), suggesting 

his vision might be slowly but surely moving toward reality. 



20 

1.1. Defining social robots 

Within the field of human-robot interaction, social robots take on a special role, 

and fall under the category of ‘proximate interaction’, in which “humans and 

robots interact as peers or companions” (Goodrich & Schultz, 2007, p. 205). In a 

bibliometric analysis by Mejia and Kajikawa (2017), it becomes apparent that the 

social robotics literature comprises only a small part of the larger robotics 

knowledgebase: 2.3%, to be exact. According to their search in the Web of 

Science database, the authors identified discussions on social robotics appearing 

as early as 1970, but, as the authors illustrated, it was not until the late 1990s 

that the field started growing rapidly. Based on reference information of the 

extracted articles, the authors were also able to identify relevant clusters that 

represent the social robotics knowledgebase. The largest clusters in social 

robotics research can be summarized as ‘robots as social partners’ and ‘human 

factors in human-robot interaction’. Interestingly, Mejia and Kajikawa (2017) 

also point out that research trends emphasize the various fields of application 

for social robots: robots as companions, robots as educators for children, and 

robots as assistants for the elderly. This is consistent with a trend identified by 

Šabanović, who in interviews with robotics researchers in the US and Japan 

identified that social robots “often represent technological fixes”, i.e. using a 

technological approach to solve a pressing societal problem (2010, p. 349). 

Furthermore, when investigating what constitutes the majority of the 

knowledgebase in social robotics, Mejia and Kajikawa (2017) find that even 

though they play a central role, the social sciences are hardly represented 

(Figure 1). The authors write aptly: “Social robotics is social in its intention, but 

its knowledgebase is concentrated in the engineering and technology domains” 

(p.11). 
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Figure 1 - Subject areas in the ACM-HRI conference proceedings 

The subject areas are presented as a tree map with the size of the area representing the 
number of conference proceedings in each category. Robotics being one of the most 
prominent categories (947 results), there are some nods to the afore-mentioned social 
sciences: psychology (143 search results) and user studies (175 results). Data taken from: 
https://dl.acm.org/conference/hri  

 

Indeed, while the interdisciplinary nature of social robotics is emphasized 

throughout the literature, this observation by Mejia and Kajikawa reveals an 

interesting tension that has also been voiced by Broadbent (2017) and Eyssel 

(2017) – the literature could benefit from knowledge about the mechanisms of 

human social behaviour gained in psychology, the cognitive science and 

neuroscience (which are here referred to as ‘social sciences’, but depending on 

the country and higher education conventions are occasionally considered as 

part of science, technology, engineering, or mathematics). This issue is 

discussed in more detail in Chapter 2.   

When reviewing the social robotics literature, it becomes apparent that there is 

not a generally agreed upon understanding of what social robots are, and what 

effectively constitutes a robot as being ‘social’ continues to be negotiated and 

debated by various authors. Sarrica and colleagues (2019) investigated the 

question of how social robots are understood by analysing definitions in articles 

published by the International Journal of Social Robotics between 2009 and 

2015. An overview of the most popular definitions they identified is presented in 

https://dl.acm.org/conference/hri
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Table 1. By investigating the most often cited definitions, it becomes apparent 

how heterogenous the understanding of social robots is. 

Despite this lack of homogeneity, Sarrica and colleagues (2019) were able to 

identify a few shared traits of the definitions: social robots are physically 

embodied agents that have some (or full) autonomy and engage in social 

interactions with humans, by communicating, cooperating and making decisions. 

These behaviours are then interpreted by human onlookers as ‘social’, according 

to current norms and conventions. It is of note that in discussions of what 

constitutes a social robot, many authors listed in Table 1 acknowledge that a 

truly social robot, as described in their definition, remains a vision of the future. 

Lee and colleagues (2006) emphasize that we are still far away from 

sophisticated social robots depicted in popular movies like Stephen Spielberg’s 

A.I. Artificial Intelligence and Dautenhahn (2007) remarks that she remains 

sceptical: “It is unclear whether the ‘social-emotional’ dimension in human-

human interaction can be fulfilled by robots, whether the inherently mechanical 

nature of HRIs can be replaced by truly meaningful social exchanges” (p. 701). 

Interestingly, this point is somewhat at odds with her argumentation that 

exploring social competencies for robots might actually be the missing piece in 

building stronger artificial intelligence. 

Table 1 - Popular definitions of social robots in the literature, identified by Sarrica and 
colleagues (2019). 

Authors Year Key term(s) Definition 

Breazeal 2003 sociable “Denoting robots that pro-actively 
engage with humans, having their 
own internal goals and needs in order 
to satisfy internal social aims (drives, 
emotions, etc.). These robots require 
deep models of social cognition not 
only in terms of perception but also 
of human modelling.”  
(p. 169) 
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Fong 2003 socially 

interactive 

“We describe robots that exhibit the 
following ‘human social’ 
characteristics:  
express and/or perceive emotions; 
communicate with high-level 
dialogue; learn models of or 
recognize other agents; establish 
and/or maintain social relationships; 
use natural cues (gaze, gestures, 
etc.); exhibit distinctive personality 
and character; and may learn and/or 
develop social competencies.”  
(p. 145) 
 

Duffy 2003  “A physical entity embodied in a 
complex, dynamic, and social 
environment sufficiently empowered 
to behave in a manner conducive to 
its own goals and those of its 
community.”  
(p. 177) 
 

Bartneck & 

Forlizzi 

2004  “A social robot is an autonomous or 
semi-autonomous robot that 
interacts and communicates with 
humans by following the behavioural 
norms expected by the people with 
whom the robot is intended to 
interact.” 
(p.592)  
 

Lee 2006  “Social robots are a new type of 
robot whose major purpose is to 
interact with humans in socially 
meaningful ways.” 
(p.962)  
 

Dautenhahn 2007 socially 

intelligent 

“A robot companion is a robot that 
(i) makes itself ‘useful’, i.e. is able 
to carry out a variety of tasks in 
order to assist humans, e.g. in a 
domestic home environment, and (ii) 
behaves socially, i.e. possesses social 
skills in order to be able to interact 
with people in a socially acceptable 
manner.” 
(p. 685) 
 

Hegel 2009 social 

interface 

(form, 

“A social robot is a robot plus a 
social interface. A social interface is 
a metaphor which includes all social 
attributes by which an observer 
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function, 

context) 

judges the robot as a social 
interaction partner.”  
(p. 174) 

 

A few authors go further and present comprehensive frameworks. For example, 

Kahn and colleagues (2006) argue that social robots should be evaluated against 

‘psychological benchmarks’, which capture fundamental aspects of human life. 

Using illustrative scenarios of what our future lives with social robots could look 

like, the authors raise important questions about whether it is in the best 

interest of companies and stakeholders to produce fully autonomous robots. 

Giving a benign example, the authors ask: would users want a robot to disagree 

with them about which card game to play? Might it be problematic to think of 

social agents as ‘useable’ objects? Who should be held accountable, and do 

these robots possess intrinsic moral value? In total nine possible benchmarks are 

described, which illustrate the central problem Kahn and colleagues, as well as 

many other social robotics researchers, characterize: “to understand ourselves 

as a species is one of the profound undertakings of a lifetime” (p. 384). This 

point is further elaborated in Chapter 2, where I illustrate the importance of 

social robots for gaining more understanding about the human brain and social 

behaviour. 

Finally, Baraka and colleagues (2019), in the face of the growing diverse 

landscape of social robots, propose their extended framework, by illustrating 

seven relevant dimensions of social robots: their appearance, the social 

capabilities, autonomy and intelligence of the robot, the proximity and temporal 

profile of the interaction and the context of the interaction (i.e., its purpose 

and application area). In their appearance classification system, they distinguish 

between bio-inspired robots (these can be human- or animal-inspired), artifact 

shaped (for example robots resembling man-made objects or those that are 

imaginary) and functional robots (for example drones).  
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Figure 2 - Robots introduced in this chapter (and mentioned throughout this thesis) 

First row, from left to right: Kismet (1997), Paro (2003), iCub (2004) and the Kaspar (2006) 
robot. Second row, from left to right: Pepper (2014), MiRo (2015), Cozmo (2016) and Nao 
(2008). The ABOT database (http://www.abotdatabase.info/) and the IEEE “ROBOTS” 
website (https://robots.ieee.org/) provide more comprehensive overviews of available 
platforms. Image sources: Kismet by Rama on Wikipedia (CC BY-SA 3.0 fr); Paro Therapy 
Robot by Theron Trowbridge on Flickr (CC BY-NC 2.0); iCub by Jiuguang Wang on Flickr 
(CC BY-SA 2.0), Kaspar by Loz Pycock on flickr (CC BY-SA 2.0); ); https://www.so-
bots.com/robots; MiRo by UK in Japan- FCO on Flickr (CC BY 2.0). Nao artwork by Julia 
Fechner. 

 

After this initial ontological exploration, I will now briefly consider social 

robotics through the lens of popular platforms for research and their application 

areas outside of experimental research. 

1.2. Overview of popular social robots in scientific 

research  

In the following, robotic platforms are introduced which have fundamentally 

shaped the field of social robotics (Figure 2). This list is not intended to be 

representative of all commercially or custom designed robots that are currently 

available. Instead, it is intended to highlight some of the main social robots that 

are currently in use, the different applications that are being envisioned for 

social robots, and the various avenues of research that are currently being 

pursued. 

http://www.abotdatabase.info/
https://robots.ieee.org/
https://creativecommons.org/licenses/by-sa/3.0/fr/deed.en
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.so-bots.com/robots
https://www.so-bots.com/robots
https://creativecommons.org/licenses/by/2.0/
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1.2.1. Kismet  

Many consider Kismet to be the first ‘intelligent’ social robot (Breazeal & 

Scassellati, 1999). Kismet was designed following the principle of building a 

sociable robot (Table 1), which, as the authors reason, relies on in-depth models 

of social cognition (Breazeal, 2003). Kismet has rudimentary facial features that 

resemble those of a human and can convey positive and negative facial 

emotional expressions by dynamically moving its eyelids, eyebrows, mouth, and 

ears. Breazeal and Scassellati (1999) modelled Kismet’s behaviour on that of 

young infants, whose mothers, despite limited means of explicit communication, 

interpret infant behaviour as intentional and infant proto-typical speech as 

meaningful. Kismet is programmed to look for perceptual cues in the 

environment that satisfy its internal drives for socialness, stimulation or rest. By 

means of implementing this software architecture, the authors argue that they 

have implemented proto-social responses that will convey intentionality of the 

robot towards its human partners. Following an initial proof-of-concept 

evaluation (Breazeal & Scassellati, 1999), human-robot interaction experiments 

with Kismet have laid the foundation for the design of social robots that are able 

to detect and mirror human emotions (Breazeal, 2003). 

1.2.2. Paro  

This social robot, designed to look and behave like a baby harp seal, was 

developed by Shibata and colleagues at the National Institute of Advanced 

Industrial Science and Technology in Japan (Shibata et al., 2003). The Paro robot 

can move its eyelids, head, front and back flippers, listens via microphone and 

produces harp seal sounds via speakers. It responds to tactile stimulation by 

means of sensors located at various points across its body and thus interactively 

responds to the user’s touch. After initial favourable evaluations in science 

museums in Japan and the UK pertaining to the robots perceived likeability, Paro 

has been deployed and evaluated in the context of elderly care homes as a 

therapeutic companion for patients with dementia (Shibata et al., 2003). As one 

of the most successful and most-widely sold social robots, several studies have 

shown that though its behavioural repertoire is very limited, its interactive 

capabilities and appearance have had positive effects on elderly participants and 

patients suffering from dementia (Broadbent, 2017; Kidd et al., 2006; Robinson 
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et al., 2013; Selma et al., 2013). Data from a randomized controlled trial and a 

long-term observational study indicated that interactions with the seal robot 

reduced loneliness and increased opportunities for interactions among the care 

home residents (Kidd et al., 2006; Robinson et al., 2013). 

1.2.3. iCub  

Much like Kismet, iCub, the ‘robot child’, is based on theories of developmental 

psychology and cognitive neuroscience (L. Natale et al., 2017; Sandini et al., 

2004). Formerly known as RobotCub, this robot was developed as a testbed for 

the theory of embodied cognition. This theory describes the phenomenon of 

learning and development via physical interaction with the world through a 

human(oid) body (Sandini et al., 2004). Like a child exploring its environment, 

iCub was designed to manipulate its surroundings, imitate its human partners 

and communicate with them. iCub has been used in cognitive neuroscience 

studies to investigate whether humans perceive it as intentional and as an agent 

with a mind (Ghiglino et al., 2020; J. Perez-Osorio et al., 2018). Across several 

studies, it has been shown that especially knowledge cues about the behaviour 

of the robot influence the degree to which participants perceived the robot’s 

intentionality (Wiese et al., 2017; Wykowska et al., 2016).  

1.2.4. Kaspar  

Another field of application for social robots that is currently being explored is 

the context of social skills training for children with an autism spectrum 

condition (ASC). Kose-Bagci and colleagues (2009) argue that the reduced 

behavioural repertoire of the Kaspar robot might offer an opportunity to interact 

with children who lack social interaction skills typical for their age and their 

level of development, hallmark indicators of an ASC. Here, the humanoid form 

of the robot is preferred, as the authors speculate that the social skills learning 

may translate to human-human interactions outside the lab. However, the 

evidence base for this line of research is considered weak, and additional studies 

have repeatedly been invited to investigate these questions with larger sample 

sizes (Broadbent, 2017; Pennisi et al., 2016). 
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1.2.5. Pepper 

The commercially produced humanoid Pepper robot (SoftBank Robotics) has 

been used in a multitude of human-robot interaction studies to investigate its 

social acceptance, its role in educational contexts and general attitudes towards 

the robot (Jacobs, 2018; Kennedy et al., 2013; Thunberg et al., 2017). The robot 

was originally built as a business-to-business product for SoftBank Robotics stores 

in Japan, however, it eventually transformed into a popular platform to attract 

customers into stores worldwide (see Figure 3), and became a tool in academic 

research (Pandey & Gelin, 2018). Its design was informed by evaluations of the 

previous model, the Nao robot (Figure 2). Users expected robots to be taller 

than the 58cm-tall Nao, so Pepper’s height was targeted at the height of a 

person sitting in a chair (Pandey & Gelin, 2018). Pepper’s design also references 

themes from Japanese culture, including its manga-inspired eyes and the hip 

joint, which allows the robot to bow (Pandey & Gelin, 2018). This robotic 

platform was used in Chapter 3 of this thesis, and more details on its degrees-of-

freedom and inbuilt features are given there. While Pepper is the next 

generation of SoftBank’s robots, a study by Thunberg, Thellman and Ziemke 

(2017) found that participants were more likely to comply with the request of a 

Nao robot, compared to the Pepper robot’s requests to return a book to the 

experimenters. Mubin and colleagues (2018) investigated its use in public spaces 

and found that it was less popular than the Nao robot (maybe owing to the 

robots’ respective price points), with more papers designing and evaluating 

interaction scenarios for the Nao robot in public spaces. The authors identified 

papers that evaluated Pepper’s social acceptability in a shopping mall, an 

elderly care home, in a remote classroom and as a customer service employee in 

a hotel lobby scenario (Aaltonen et al., 2017; Stock & Merkle, 2018; Tanaka et 

al., 2015; Yang et al., 2017).  

1.2.6. MiRo 

Taking a different approach, the MiRo robot is a biomimetic system, whose 

design does not aim to imitate human social cognition, but rather the brain and 

behaviour of a simpler mammalian animal (Collins et al., 2015). The developers 
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explicitly justify their design choice of animal morphology as a strategy to 

mitigate potential disappointment of users and their expectations towards the 

social capabilities of the robot. The design of the robot features light patterns 

under the translucent shell of the back, which satisfies two goals: the simple 

communication of affect and increasing the salience of the interaction with an 

artificial, rather than a real, social agent (Collins et al., 2015). The robot, which 

evokes a pet-like impression, includes characteristics taken from “puppies, 

kittens and rabbits” (Collins et al., 2015, p. 2). The robot is described as an 

edutainment product, which alludes to its intended purpose as an educational 

tool for children. However, the robot has also been explored as a fall alert 

system, relevant especially to the population of over 80-year-olds, who are 

expected to fall in their home environments at least twice a year (Georgiou et 

al., 2020). In their proof-of-principle study, the authors demonstrate that MiRo 

could be used as a mobile and smart tool to locate a person on the ground, and 

send a help signal if no movement of the person is detected. 

1.2.7. Cozmo  

This commercial robot was initially developed by Anki (USA) as a children’s toy. 

However, the research community has embraced the palm-sized Cozmo (Figure 

2), especially for its engaging behavioural animations and expressive, emotional 

facial expressions, which were informed by an animator who worked on ‘Wall-E’, 

the Disney Pixar movie (Chaudhury et al., 2020; Skågeby, 2018). Initial studies 

show that long-term interactions in a socializing intervention with this social 

robot do not enhance human-like empathic responses towards it when it is 

shown in simulated pain, and another recent study implies that while 

participants behave reciprocally towards the robot in an economic game, there 

is no evidence for pro-social behaviour towards it (Cross, Riddoch, et al., 2019; 

Hsieh et al., 2020). As a platform for researchers, especially when it comes to 

long-term human-robot interaction, it could prove useful, as it collects a wide 

range of information about the user, similar to the behavioural sampling method 

(Chaudhury et al., 2020; Henschel, Hortensius, et al., 2020b). However, it should 

be noted that like many social robots, future research efforts might be limited 

by the demise of the company, which ultimately leads to ceased support for the 
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robot (Hoffman, 2019). This common problem will be discussed in the following 

sections. 

1.3. The social robot paradox  

Duffy coined the ‘social robot paradox’, which has remained a critical point in 

social robotics over the years (2005, p. 1): 

“In fact, humanoid robots outside of science fiction, have thus far only 

been toys or research platforms with nebulous applications. It is 
intriguing that one of the most powerful paradigms for adaptivity and 
flexibility, the human, has so far, when modelled in the form of a 
machine, resulted in little more than a toy. Its usefulness is very 
limited.”  

16 years later, this observation still rings true, with new, commercial- or 

bespoke social robots (like Cozmo and MiRo) moving away from referencing the 

human form. Humanoid robots, like Pepper, are designed to be reminiscent of 

human characteristics, and at the same time avoid imitating every aspect of 

appearance to pre-empt an Uncanny Valley effect (Pandey & Gelin, 2018). This 

effect references the phenomenon that almost fully humanlike androids elicit 

eery or uncanny feelings in the user (Mori et al., 2012). While the humanoid 

shape as a design feature is a powerful signal to users that the agent affords 

social interactions, it also makes the robot more prone to failing to deliver on 

high expectations regarding the nature of the interaction (Dereshev et al., 2019; 

Kahn et al., 2006).  

To investigate this phenomenon more closely, Dereshev and colleagues (2019) 

interviewed long-term, expert users of the Pepper robot. Their participants had 

lived and interacted with the robot on timescales ranging between 8 months and 

more than 3 years. The researchers report that one specific expectation 

regarding the humanoid Pepper robot was its ability to engage in a reciprocal 

conversation. The participants’ expectations were disappointed when the robot 

was not able to go beyond the smart-speaker like single-turn structure of 

conversation. One of the participants also pointed out that people who 

interacted with Pepper quickly lost interest, a finding which is echoed in a 

usability study by Aldebaran (later purchased by SoftBank Robotics), where 

Pepper was deployed to the homes of users over several weeks (Rivoire & Lim, 



31 

2016). The novelty effect is a common problem in social robotics, and long-term 

studies have often found a reduced engagement with various robotic platforms 

over time (Leite et al., 2013; Tanaka et al., 2007). 

 

Figure 3 - Examples of the Pepper robot ‘in the wild’ 

Left: The social robot was placed at the customer checkout in a German supermarket and 
reminded shoppers of the new hygiene regulations in April of 2020, during the global 
coronavirus pandemic.  Right: Another Pepper robot in a Dutch souvenir shop at Schiphol 
airport. Pictures taken by the author. 

 

Thus, the robots we are familiar with through science fiction films like ‘Ex 

Machina’ or ‘Robot & Frank’ remain a futuristic dream, whether they are 

depicted as helpers and companions, or villains (Broadbent, 2017; Garland, 

2014; Schreier, 2012; Wiese et al., 2017). When we encounter robots ‘in the 

wild’ (Figure 3), this discrepancy between the reality of social robots and our 

expectations towards them becomes even more salient. The Pepper robot, when 

used in supermarkets or airports, becomes little more than a puppet repeating 

the same script over and over, as the autonomous capacities of the robot are not 

advanced enough to sustain natural interactions in unconstrained, changing 

environments, especially when groups of people are present. Social interactions 

are a complex problem, to humans and robots alike. Designing and programming 

robots to successfully and seamlessly integrate into the human social world 

remains an especially “wicked problem” (Hannibal & Weiss, 2020, p. 1). 

Duffy wrote about these issues in the early 2000s, observing that machines are 

simply not to be equated with humans, and thus every attempt to design socially 
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accepted machines may only result in a colourless impression of key human 

social characteristics and traits (Duffy, 2004). Since then, researchers have 

echoed this sentiment when they reflect on the commercial failures of many 

social robotics start-up companies and the fact that as of 2019, there are still 

few fully-autonomous commercial robots available to consumers (Dereshev et 

al., 2019; Goodrich & Schultz, 2007; Hoffman, 2019; Tulli et al., 2019; Wiese et 

al., 2017; Yang et al., 2018). 

1.4. Towards truly sociable robots?  

Currently available social robots remain puppets in the hands of private 

consumers or research teams, not yet having realised their potential to 

becoming fully autonomous and transforming into sophisticated social agents. 

When encountered outside of the lab, these social robots often execute scripts 

(with puppet masters/programmers pulling the strings) and have little 

interactive capacities.  

In the late 1990s, Breazeal and Scassellati entitled their work on Kismet “robots 

that make friends and influence people” – however, to this day, this appears still 

utopic, with serious implications for the many fields of applications in which 

social robots are expected to prompt innovation right now.  

When thinking about the future with truly sociable robots, one can perhaps turn 

to an unexpected avenue for inspiration: animal models of social collaboration 

(Collins, 2019; Kahn et al., 2006). In a seminal study by Halloy and colleagues 

(2007), the researchers took advantage of self-organising behaviour of social 

animal societies, like the cockroach. The authors developed behavioural models 

for robotic cockroaches (that looked nothing like their biological counterparts), 

placing emphasis on appropriate behavioural responses and the correct chemical 

signal, which they determined were the key factors to the acceptance of robots 

in a cockroach group. Indeed, these robots autonomously interacted with the 

animals, and drove collective decision making, demonstrating social acceptance 

in the group and collaboration. Circling back to human-robot interaction, one 

key factor in designing successful interactions with humanoid robots will 

therefore be to “maximise […] both its mechanical advantages and [find] the 
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minimum humanlike aspects required for their social acceptance” (Duffy, 2006, 

p. 33). 

1.5. Summary 

In this chapter, I have briefly introduced the field of social robotics, by 

reflecting on its early developments in the 1990s, as well as crucial advances in 

autonomous robotics that have led to an increased interest and research and 

development investment into the field. Social robotics is a small subdiscipline of 

human-robot interaction that envisions robots as assistants and companions. As 

this introduction highlights, it is a heterogenous and multidisciplinary field. 

Important questions raised by researchers early on concern the ethical 

implications of developing fully autonomous, truly social robots. However, in the 

field’s relatively short history, many scientists acknowledge the limitations of 

currently available social robots. Indeed, by reviewing the most successful 

robotic applications, it becomes apparent that despite their potential to be used 

as companions for the elderly, as educators, or teachers for children with ASC, 

many questions remain regarding the capabilities of robots to take on more 

social roles, especially if they are to be working alongside human users 

autonomously. Studies by Dautenhahn and colleagues show that participants in 

their studies still do not see robots as companions or friends, but rather as useful 

household servants (2007). Despite this, the research reviewed in the context of 

these robotic platforms hints at their usefulness as a testbed for human social 

cognition, in terms of probing its flexibility and dimensions (Hortensius & Cross, 

2018a). 
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Chapter 2 An interdisciplinary approach to 

investigating questions in social cognition 

2. The role of the humanoid robot in experimental 

research – implications for experimental rigor and 

reproducibility  

The African Ubuntu philosophy states that personhood emerges through 

interactions with others (Birhane, 2017; Bolis & Schilbach, 2018). In their recent 

philosophical perspective on social cognition, Bolis and Schilbach (2018) 

emphasize that this dynamic perspective on personhood puts the construction of 

the self through social interaction front and centre. Importantly, this process is 

not only initiated by other humans, but also when we change our environment 

ourselves. From this viewpoint, tools become a part of the exchange, and here 

the authors explicitly include artificial intelligence and robots. According to 

them, a dialectical view would likely yield more advanced artificially intelligent 

and social systems, as well as facilitate the search for answers to fundamental 

questions of social cognition. To that effect, this chapter presents an update to 

the philosophical tenets of Vygotsky (Bolis & Schilbach, 2018; Vygotsky, 1987): 

“We become ourselves through others – including robotic others”  

By studying human-robot interaction and developing more advanced social 

robots, we are forced to reverse-engineer what it means to be human, what 

constitutes social interaction and what makes interpersonal relationships 

successful. On the other hand, experimental psychological might positively 

influence the future development of social robots (Wiese et al., 2017). As 

alluded to at the beginning of Chapter 1, the longstanding human fascination for 

trying to understand the human psyche better by means of creation is also a 

recurring theme in science fiction, inspiring gothic writers like Mary Shelley and 

Jewish folklore, where the golem is created from clay (Kieval, 1997).  

While contemporary robotics still suffers from the social robot paradox, we now 

have a tool at our fingertips that constitutes a (near-)perfect stimulus and allows 

us to answer fascinating questions about the dynamic changes in the social fabric 
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of our society. Humanoid robots are an ideal control group for studying 

interactions with other people, as they allow us to probe the limits and the 

flexibility of social cognition (Henschel, 2019; Hortensius & Cross, 2018a).  

Bolis and Schilbach’s (2018) perspective matches the tenets of those researching 

at the intersection of social robotics, experimental psychology and cognitive 

neuroscience. In her seminal review, Broadbent (2017) writes (p. 629): 

“The further we go down the path toward making and interacting with 

artificial humans, the more truths we learn about ourselves.” 

Indeed, integrating humanoid robots into empirical research is now an 

established and rich tradition in the multidisciplinary fields congregating around 

the social robot, including robotics, experimental and social psychology and 

cognitive neuroscience (Chaminade & Cheng, 2009; Chevalier et al., 2020; E. S. 

Cross, Hortensius, et al., 2018a; Kompatsiari et al., 2018; J. Perez-Osorio et al., 

2018; Wiese et al., 2017; Wykowska et al., 2016). The most prevalent recurring 

theme is that robots afford researchers interested in studying social interactions 

the benefit of ecological validity. While traditional research in social 

neuroscience used screen-based images and videos of socially relevant cues, 

humanoid robots allow scientists to retain experimental control while studying 

how people engage with a physically present agent.  

When including humanoid robots in embodied interaction experiments, the 

experimenter has control over the verbal and non-verbal cues of this agent and 

can take advantage of the social presence the robot exerts (Henschel, 2019; 

Kompatsiari et al., 2018; Wykowska et al., 2016). While some have argued that 

deploying humanoid social robots in the wild may lead to exaggerated 

expectations of the robot’s abilities, the subtle cues to humanness of the 

humanoids in their design and behaviour are ideally suited to experimental 

research, where they are steered by experimenters (Kahn et al., 2006). In the 

HRI literature, this is also referred to as ‘wizarding’ the robot, making a nod to 

the beloved American children’s classic novel ‘The wonderful wizard of Oz’ 

(Baum, 1900). In the story, a young girl is transported to a magical land, where 

she encounters the powerful wizard of Oz. However, the girl and her companions 
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finally realise that the magic is all smoke and mirrors: the great and powerful 

wizard turns out to be a fraud hiding behind a screen.  

Controlling the movements and the speech outputs of the robot in the lab allows 

experimenters to take on the role of the wizard, operating with a more socially 

advanced humanoid robot, presenting a form of illusory social ability that has 

sparked some concerns about deception (Broadbent, 2017; Prescott, 2017). 

Thus, the robots presented in the lab do not accurately reflect those met ‘in the 

wild’, however, even those robots that are wizarded by a human experimenter 

may not reach a level of socialness embodied by humans. Chevalier and 

colleagues (2020) acknowledge this limitation when they write that the 

humanoid robot might not elicit the same mechanisms that are at play when 

interacting with other humans, though these studies might nonetheless yield 

important insights in controlled lab environments.  

A popular approach researchers use is to take effects or theoretical concepts 

from experimental psychology and cognitive neuroscience and adapt them for 

human-robot interaction experiments (Kahn et al., 2006; J. Perez-Osorio et al., 

2018). Previous lines of research have especially focused on motor resonance 

(Chaminade & Cheng, 2009), empathy (Cross, Riddoch, et al., 2019; Rosenthal-

Von Der Pütten et al., 2014), joint attention (Chevalier et al., 2020; Willemse & 

Wykowska, 2019) and adopting the intentional stance towards robots (Wiese et 

al., 2017). For example, Chaminade and Cheng (2009) argue that motor 

resonance plays a fundamental role in human-human interaction and conducted 

a series of studies to test how strongly the actions of a humanoid robot arm 

would interfere with the motions of participants in a classic motor interference 

paradigm. The authors found that compared to an industrial robot arm, the 

humanoid robot (whose motions were informed by human motion capture) 

elicited a change in the movement of human participants, depending on whether 

the robot was moving its arm congruently or incongruently (Chaminade & Cheng, 

2009). These experiments show the success of adapting well-understood 

concepts for HRI and demonstrate on a behaviour and brain level that our 

responses towards humanoid robots may be akin to fellow humans (Wykowska et 

al., 2016).  
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On the other hand, some researchers have argued repeatedly that HRI as a 

discipline lacks the systematicity characteristic of experimental research and 

have stressed that psychological and neuroscientific methods add rigor to the 

investigation of interactions with robots (Kompatsiari et al., 2018; Wiese et al., 

2017, p. 1). According to Wiese and colleagues, motion-tracking and brain 

imaging measures are needed to “make robots appear more social” – an effort 

directed towards making the wizard hiding behind the screen redundant. These 

more sophisticated social robots, as I argue in Chapter 3, may be advantageous 

in many social contexts where they are framed as companions, carers and 

coaches. For example, Wiese and colleagues (2017) highlight that the perceived 

intentionality of social robots will play a major role in successfully orchestrated 

feelings of connection towards it, as well as better collaboration in shared 

environments. The perceived intentionality of the robot can only be achieved, 

the authors explain, if they are able to elicit activity in the hub regions of 

human social cognition. Thus, using neurophysiological measurements in HRI will 

contribute to a future with more sophisticated social robots (Wiese et al., 2017). 

However, this argument does not remain uncontested by other researchers, who 

see relying on only neurophysiological methods as one-sided, especially in 

investigations into the mind perception of robots (Kewenig, 2018). Kewenig and 

colleagues (2018) argue that the study of social robotics cannot only depend on 

these electrophysiological measures alone, but must take a more holistic 

approach, considering for example self-report and qualitative data observed in 

interactions with robots.  

2.1. Integrating perspectives from social robotics, 

neuroscience & psychology  

Here some tensions between the different fields involved become apparent: 

while social robotics relies on insights from psychology and neuroscience, the 

lines of communication appear broken, and insights generated at the 

intersections of these disciplines are often not fed back to the engineers and 

developers of social robots. Baxter and colleagues examine these tensions more 

closely in their review of three years of proceedings of the ACM-HRI conference 

(2016). The authors note that there is a strong need for establishing a shared 
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language between different disciplines and that the field should move towards a 

common ground, such as a community ‘FAQ’ to help establish a stronger 

collaborative infrastructure. The main difference between HRI and what has 

been classed the social sciences, is their research output (papers versus the 

more fast-paced conference proceedings), different specialist terminology, 

fundamental theories and methodological approaches. Thus, the communication 

gap between fields which has been described here is perhaps not surprising.  

Interestingly, while researchers in experimental psychology and cognitive 

neuroscience mainly lament a missing objectivity in social robotics, HRI 

researchers observe a need for a more formalised structure of psychology and 

neuroscience knowledge, which might in the future contribute to lowering the 

barriers of engaging with other fields (Baxter et al., 2016). The dialogue 

between disciplines is fraught, as Hannibal and Weiss (2020, p. 1) write in their 

introduction to a special issue on current challenges and new methodologies in 

social robotics. As introduced in the previous chapter, these authors note that 

deploying sophisticated autonomous social robots remains a multifaceted 

challenge. Before robots can successfully integrate into a human-centric social 

environment, these complex challenges have to be addressed, which can only be 

achieved if all disciplines engage in a mutually respectful dialogue, 

acknowledging their own strengths and limitations. Hannibal and Weiss (2020) 

also observe a lack of consensus when it comes to methods and theory, a notion 

which is again echoed by Irfan and colleagues (2018a, p. 13), who adopt a more 

negative tone by characterising interdisciplinary ties between social psychology 

and HRI as an “uneasy marriage”. These authors reference and criticise the 

standard approach described by Kahn and colleagues (2006), by acknowledging 

that the fields of psychology and neuroscience have recently undergone a crisis 

leading to some unreliable findings and negatively impacting the trust HRI 

researcher subsequently express towards these adjacent fields. When non-

replicable concepts are carried over from social psychology to social robotics, 

studies are built on shaky grounds, they argue. Here the researchers call for a 

change in perspective, including raising awareness about the file-drawer 

problem, and admonishing questionable research practices. This point will be 

discussed in more detail in the final chapter of this thesis, building on the 

recommendations of Irfan and colleagues (2018). 
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In a similarly critical perspective on the interdisciplinary ties in HRI, Eyssel 

(2017) places a strong emphasis on the need for taking a theory-driven approach 

when conducting studies with humanoid robots. This renewed interest in building 

upon strong theoretical foundations is in line with a recently published 

perspective that sees the replication crisis as not solely exacerbated by 

questionable research practices, but also by a lack of overarching theoretical 

frameworks (Muthukrishna & Henrich, 2019). Eyssel (2017) draws on examples 

from her own work on adapting insights gained from intergroup relations 

research for a social robotics context. Here, dehumanising tendencies of 

outgroups become the starting point of investigation with humanoid social robots 

(Eyssel, 2017). 

While many researchers have raised critical concerns about the current state of 

the field, they also acknowledge the benefits of collaborating with multiple 

disciplines. Irfan and colleagues (2018) do not suggest researchers abandon 

established foundations in psychological research, but instead propose that 

researchers working in this field take advantage of a renewed emphasis placed 

on rigor in all those engaging in HRI research. This could also be beneficial when 

it comes to the problem of “putting the cart before the horse”, in terms of 

developing social robots first and then operating with the constraints of their 

emotional and behavioural capabilities (Vallverdú & Trovato, 2016, p. 325). 

Broadbent (2017) observes that more and more psychologists are getting 

involved in HRI research and Baxter and colleagues (2016) commend the richness 

that the multi-disciplinarity affords the research questions. They also argue that 

this diversity should be protected and nurtured. Finally, the pioneers of using 

humanoid robots in experimental research perhaps summarise this positive 

development best when they close with the notion that each field can mutually 

benefit and learn from each other (Chaminade & Cheng, 2009).  

2.2. Examining social behaviour toward robots: Social 

Motivation Theory 

Situating the empirical work of this thesis according to the taxonomy proposed 

by Baxter and colleagues (2016) and following the recommendation of Eyssel 

(2017), my dissertation work has taken a theory-driven and distinctly human-
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centric perspective to HRI research. Indeed, the improvement of a social robot 

per se is not a central goal of this work, rather, as Baxter and colleagues (2016) 

have expressed it, improvements to social robots could be a practical, future 

outcome. There are a multitude of theoretical models one can adopt as a point 

of departure when thinking about social robots. Two popular early theories are 

the Media Equation by Nass and colleagues (1996), originating from 

communication theory, and the “like me” framework embedded in 

developmental psychology (Meltzoff, 2007). Nass and Reeves (1996) established 

in their studies that people would apply the same social rules to computers used 

in their experiments as they did towards other humans. The researchers 

observed that participants used more positive adjectives when the subsequent 

evaluation was presented by a computer they had worked on, compared to a 

computer unrelated to the previous task. This, for example, has resulted in 

studies investigating the effects of social robots openly rejecting participants, 

finding that their self-esteem was lowered when a humanoid robot stated after a 

game of Connect-4 that it would not like to see them again (Nash et al., 2017). 

Another popular theory by Meltzoff represents the idea that fundamentally all 

social cognition originates in the recognition of other agents that are “like me” 

(2007). Empirical results from studies with very young children show that self-

other distinction takes place at a young age (Meltzoff, 2007). For example, when 

adults mimic babies, they are preferentially fixated when they act like the child. 

This finding was extended by the same authors in the field of HRI, where the 

gaze behaviour of 18-month old infants was recorded during the interaction with 

a small humanoid robot (Meltzoff et al., 2010). Those infants were more likely to 

follow the gaze of the humanoid robot if they had previously observed the 

experimenter engage socially with the robot, than those infants who had not 

observed this exchange. 

Overall, these theories seem to converge on the idea that humans tend to 

mindlessly apply social rules and conventions, even when confronted with 

inanimate agents, like computers or humanoid robots (Broadbent, 2017). This 

resonates with one of the most fundamental studies conducted in this area, 

which found participants applying social scripts and conventions to abstract 

moving shapes (Heider & Simmel, 1944). Moving circles and triangles were 

described as “lovers in the two-dimensional world” and framed in a social chase 
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situation that suggested participants engaged in anthropomorphizing behaviour, 

despite minimal cues to animacy being present (Heider & Simmel, 1944, p. 247). 

Anthropomorphising describes the tendency to ascribe human characteristics and 

traits to non-human entities (Epley et al., 2008). 

With this background, one of the questions I ask in this dissertation is whether 

and how interactions with humanoid robots are situated in terms of motivation. I 

used Chevallier and colleagues’ (2012) theory as a springboard: this framework 

considers social motivation as a fundamental human drive, affecting behaviour, 

biology and evolutionary selection. The authors propose the Social Motivation 

Theory of Autism, in which they argue that individuals with ASC show diminished 

social motivation, which may have far-reaching downstream consequences. On a 

conceptual level, typically developing individuals are thought to show a special 

attentional bias toward social stimuli, which has been honed over the course of 

human evolution, due to associated evolutionary fitness of being quickly able to 

differentiate between friends or foes. Chevallier and colleagues (2012) 

emphasize that across several cognitive science experiments, it has been 

repeatedly shown that human faces and bodies are attended to rapidly and 

consistently. A second pillar of the theoretical framework relates to the reward 

value of social interaction: here the authors propose that we are inherently 

motivated to engage in social interaction, and that we seek it out where 

possible. The final pillar relates to social maintaining, i.e. people’s drive to be 

seen in a favourable light and to (unconsciously) engage in behaviours that are 

conducive to sustaining interactions. For example, spontaneous movement 

imitation of others is referenced as a type of ‘social glue’ that fosters rapport 

and facilitates human social collaboration. 

This theory has sparked much research in HRI with obvious links to the 

prioritized field of research of engaging children with ASC in playful learning 

environments with social robots. However, this theory has also led to 

researchers asking fundamental questions on the motivational value of humanoid 

agents (Chaminade & Okka, 2013; Simut et al., 2016). This thesis takes a 

similarly fundamental approach, and asks across social orienting and reward, 

how humanoid robots rank in terms of their motivational value.  
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2.3. Summary and overview of the thesis 

This thesis is split in three parts. The first part (Chapters 1 and 2) has introduced 

core concepts and theories relevant to the thesis. This is followed by the main 

body, which includes published and submitted empirical and theoretical work on 

the subject. The third and final part of the thesis is a general discussion of the 

work as a whole. Author contributions are signposted in the section of the same 

name (see the Table of Contents).  

To summarise, the first two chapters have aimed to give a short introduction to 

the field of social robotics by examining what ‘socialness’ means in the context 

of robotics and by considering applications and research through the lens of 

popular robotic platforms. Chapter 1 also reflected on the current challenges 

and limitations associated with social robots, while Chapter 2 explored how 

social robots are currently used in experimental research, the resulting 

interdisciplinary tensions, and, finally, introduced the theoretical frame of 

reference for the present thesis, situating the research in terms of the social 

motivational value of humanoid robots.  

Chapter 3, the first empirical study, applied a phenomenon previously 

established in psychology and neuroscience, replacing a human interaction 

partner with a robot. Here we investigated whether the beneficial effects of 

interpersonal synchrony on rapport hold in this new context. In this between-

subjects study, we identified a gap in the availability of reliable behavioural 

measures of social motivation, which led to the empirical study described in 

Chapter 4. 

In Chapter 4, again, we adapted and conceptually extended a measure from 

cognitive neuropsychology. It was our aim to build on the eye-contact effect, 

which describes the phenomenon of human social cues claiming our attentional 

resources even when we are explicitly told to ignore them. It was our goal to 

extend this task by adding new stimulus material in the form of robot faces and 

pareidolic (object) faces, to adequately control for facial features in non-

interactive situations and compare how the demand on attention would be 
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shaped by these humanoid robot faces, in comparison to the socially more 

salient human faces.  

In Chapter 5, we reflect on the importance of applying cognitive neuroscience 

methods to social robotics, however, taking a graded and stepwise approach. In 

this opinion piece, my co-authors and I reflect on the replication crisis and its 

implications for conducting studies at the intersection of social robotics, 

psychology and neuroscience. It becomes clear that these interdisciplinary 

studies should aim to carefully replicate well-known effects in psychology and 

neuroscience, before extending and adapting them for HRI, using humanoid 

social robots.  

In the final empirical chapter (Chapter 6), I follow this proposed graded 

approach by identifying a brain region that plays a crucial role in governing 

human social interaction. In this study, I aimed to validate a new brain imaging 

system that allows mobile brain imaging in human-robot encounters, by 

identifying how brain activity recorded with functional magnetic resonance 

imaging (fMRI) compared to functional near-infrared spectroscopy (fNIRS). I used 

a robust localiser task, designed to elicit activity in the temporo-parietal 

junction. The motivation for testing the fNIRS system is its promise to further 

contribute to the ecological validity of experiments with humanoid robots by 

recording brain activity in natural interaction scenarios.  

In the final chapter of the thesis (Chapter 7), I reflect on the results of the 

empirical and theoretical work (chapters 3, 4, 5 and 6), and place an emphasis 

on methodological considerations going forward. I provide a road map for future 

studies, highlighting the need for direct replication studies, new theoretical 

developments following up on Social Motivation Theory and suggestions for more 

transparent data visualisation.  
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Chapter 3 No evidence for enhanced likeability 

and social motivation towards robots after 

synchrony experience  

 

 

 

This chapter is an exact copy of the author accepted manuscript of:  

Henschel, A., & Cross, E. S. (2020). No evidence for enhanced likeability and 

social motivation towards robots after synchrony experience. Interaction 

Studies, 21(1), 7-23. 
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3. Abstract 

A wealth of social psychology studies suggests that moving in synchrony with 

another person can positively influence their likeability and prosocial behavior 

towards them. Recently, human-robot interaction (HRI) researchers have started 

to develop real-time, adaptive synchronous movement algorithms for social 

robots. However, little is known how socially beneficial synchronous movements 

with a robot actually are. We predicted that moving in synchrony with a robot 

would improve its likeability and participants’ social motivation towards the 

robot, as measured by the number of questions asked during a free interaction 

period. Using a between-subjects design, we implemented the synchrony 

manipulation via a drawing task. Contrary to predictions, we found no evidence 

that participants who moved in synchrony with the robot rated it as more 

likeable or asked it more questions. By including validated behavioral and neural 

measures, future studies can generate a better and more objective estimation of 

synchrony’s effects on rapport with social robots.  
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3.1. Introduction 

In his book Deep Thinking, former chess grandmaster Gary Kasparov (2017) 

recounts the story of his failure against the IBM super-computer Deep Blue in 

1997. Contrary to what one might expect, he emphasizes that the triumph of the 

machine is ultimately the triumph of its human makers, and in order to thrive, 

humans must learn to live together with intelligent machines. Beyond chess 

playing devices, disembodied algorithms, and fully automatized factory lines, 

the present time is very much shaped by the rise of the social robots. These 

robots have the potential to provide society with economical care, company and 

therapy (Eriksson et al., 2005; Prescott et al., 2012; Robins et al., 2005). While 

robots are now deployed in various social contexts where they are framed as 

companions rather than tools (Darling, 2015; Duffy, 2000), roboticists and 

stakeholders are faced with the seemingly impossible challenge of making robots 

“truly social” (Duffy et al., 1999). Researchers describe this as a grand challenge 

with a vast problem space (Riek, 2014; Sandini et al., 2018). However, by 

endowing an artificial agent with socialness, patients as well as healthy 

individuals might benefit greatly from improved learning, companionship and 

therapeutic outcomes (Fasola & Matarić, 2012; Feil-Seifer & Matarić, 2011). 

Wiese and colleagues (2017) suggest that the best way to make robots appear 

more social is to use the toolbox provided by neurocognitive research methods 

to implement empirically supported behaviors that give “socially awkward” 

robots better “people skills”. Hence, psychological research methods will be 

crucial in engineering engaging, long-term and motivating interactions between 

humans and artificial agents (Broadbent, 2017). But how can we solve the 

problem of designing truly social robots (Duffy & Joue, 2005)? One approach may 

be to examine a kind of “lowest common social denominator” that helps 

establish common ground in human-human interaction: namely, interpersonal 

synchrony. Defined as movements matched in time (Hove & Risen, 2009), 

interpersonal synchrony has been established as an indicator of social closeness 

between two individuals, and also a causal factor in enhancing rapport between 

people (Berniere et al., 1988; Hove & Risen, 2009).  
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Researchers in human-robot interaction have started taking advantage of the 

fact that synchrony with another agent may foster rapport (Hove & Risen, 2009). 

In their proof of concept study, Mörtl, Lorenz and Hirche (2014) equipped a 

robot with the ability to synchronize its movements to those of human 

participants during a joint-action pick-and-place task. The authors report that 11 

out of 12 participants recognized the adaptability of the robot and 10 

participants liked this about the robot. Relatedly, Shen and colleagues (2015) 

used an information distance algorithm to generate real-time, adaptive motor 

coordination with the KASPAR2 robot. While the main goal of the experiment 

was to test the success of the synchrony-promoting algorithm, they also 

distributed a questionnaire to their 23 participants, inquiring about which of the 

games (adaptive condition versus non-adaptive baseline condition) they 

preferred. While most participants preferred the adaptive robot, there was no 

significant pre- to post- rating difference for their single-item measure of the 

robots’ social capabilities. However, results by Lehmann and colleagues (2015) 

suggest that movement synchrony of a non-anthropomorphic robot significantly 

improved participants ratings of the robot’s likeability and perceived 

intelligence.  

As Irfan and colleagues (2018) emphasized, when implementing concepts from 

social psychology to human-robot interaction studies, it is important to establish 

how reliable and robust these effects are in humans. A recent meta-analysis by 

Mogan and colleagues (2017) investigated the effect size of interpersonal 

synchrony on pro-social attitude and behavior. The authors included 42 

independent studies that experimentally manipulated synchrony. The 

researchers found that moving in synchrony had a medium effect on increasing 

prosocial behaviors (MES = 0.28), small to medium effects on perceived social 

bonding and cognition (MES =0.17) and a small effect on increasing positive 

emotions (MES =0.11). However, Mogan et al. (2017) did not take into account a 

potentially problematic methodological artefact: experimenter bias. In fact, a 

meta-analysis conducted by Rennung and Göritz (2016) reports that the effect of 

interpersonal synchrony (here they define synchrony both as “synchronous motor 

movement and sensory stimulation”, p. 169) on prosocial behaviors can be 

entirely explained by a lack of experimenter blinding. They found that the 

effect of interpersonal synchrony on prosocial attitudes and perceived social 
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bonding was greatly reduced when controlling for experimenter blinding but 

remained significant. 

Similar to the abundance of synchrony manipulations used in the field (L. Cross 

et al., 2016), no underlying mechanism is generally agreed upon (Mogan et al., 

2017). However, Rennung and Göritz (2016) remark that all potential 

explanations share a common trait: “[interpersonal synchrony] is a rewarding 

experience” (p. 169). Wheatley and colleagues (2012) hypothesize that moving 

in sync with another individual may engage the brain’s reward system, which in 

turn may incentivize further social interactions. This idea is closely related to 

the theory of social motivation, as proposed by Chevallier and colleagues (2012). 

These scientists highlight two main components of social reward: liking and 

seeking of social cues. Empirical support for the theory that interpersonal 

synchrony may be connected to reward comes from Kokal and colleagues’ (2011) 

study on synchronized drumming. For participants who acquired the drumming 

rhythm easily before the scanning session, activity in the caudate nucleus was 

enhanced during synchronous drumming, which furthermore predicted later 

prosocial behavior towards the experimenter (who was blind to the 

manipulation). All in all, a possible underlying social reward mechanism may be 

what promotes the positive interpersonal effects of synchrony, thus highlighting 

the need to investigate interpersonal synchrony in conjunction with social 

motivation. 

The goal of the present double-blind study was to investigate whether 

interpersonal synchrony with a robot improves social motivation towards the 

robot. We hypothesized that moving in sync with the robot would improve its 

likeability, analogous to the findings of Lehmann and colleagues (2015), and, 

based on Chevallier’s Social Motivation Theory (2012), would increase the 

motivation to interact with the robot, as measured by the number of questions 

participants chose to ask the robot during a free interaction.  
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3.2. Methods 

Data statement. We report all measures in the study, all manipulations, any 

data exclusions, and the sample size determination rule. The data and the R 

analysis script are publicly available via the OSF [link]. 

Participants. We aimed to recruit the highest number of participants within the 

testing period (February to April 2018). Initially, the sample consisted of 71 

participants. Four participants were excluded from further analysis due to large 

error rates (losing the metronome more than 30 times, see experimental 

procedure below) on the task, and four more had to be excluded due to missing 

data on the Godspeed questionnaires. Two participants were excluded because 

they reported studying computer science, and one participant was excluded due 

to reporting a diagnosis of Autism Spectrum Disorder. 11 participants were 

excluded, as they failed the manipulation check of correctly perceiving 

synchrony or asynchrony. Four additional participants were removed after 

completing statistical checks before analyses (see data analysis, below). The 

final sample consisted of 45 participants. The subjects’ ages ranged between 18 

and 31, with an average of 20.51 years (SD=2.69). Of the 45, 30 were female. 

Ethical approval was obtained from the Bangor University ethics review board 

(2018-16221). All subjects provided written informed consent prior to taking part 

and were reimbursed for their participation either by payment or course credit. 

Participants were naïve to the goal of the experiment. 

Robotic Platform. For the experiment, a Pepper robot was used. Pepper is a 

1.2m tall, commercially available humanoid robot from SoftBank Robotics 

(Tokyo, Japan). Pepper features 20 degrees of freedom and runs a Linux 

operating system programmable using NAOqi libraries with Python or C++. The 

robot can run in an automatic animation mode and a controlled animation mode. 

For the experiment, the controlled mode was used (sometimes referred to as the 

‘Wizard of Oz’ mode). The controlled mode allows full command over movement 

and speech, where it only acts as instructed by the experiment program, rather 

than by its inbuilt AI.   

https://osf.io/c7jwy/


50 

Dependent Measures. Participants were asked to assess likeability, 

anthropomorphism and perceived intelligence of the robot via the three 

Godspeed subscales of the same name (Bartneck et al., 2009). The items were 

presented in a scrambled order, as recommended by the authors. All subscales 

consist of 5 items, which are structured as a 5-point semantic differential scale 

(for example: “like-dislike”, “machinelike-humanlike”, “unintelligent-

intelligent”). The behavioral measure of social motivation was a list of questions 

provided to the participants, including such questions as “How are you?”, “Are 

you a boy or a girl?” and “Are you intelligent?” (Appendix A). The number of 

questions asked was used as a proxy for social motivation. 

 

Figure 4 - The set-up for the drawing task. 

 

Experimental Procedure. Upon arrival, participants received information about 

the experimental task and provided informed consent. Next, they filled out 

questionnaires relating to their demographic information and trait attitudes 

towards robots (Nomura, Kanda, & Suzuki, 2006; Syrdal, Dautenhahn, Koay et 

al., 2009). The Negative Attitude towards Robots Scale (Nomura et al., 2006) for 

example asks participants to rate statements such as “I would feel uneasy, if 

robots really had emotions” on a five-point scale from “strongly disagree” (1) to 
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“strongly agree” (5). Then they met Pepper, the robot, who introduced itself as 

a member of the University research department and invited participants to take 

a seat next to it. Importantly, the experimenter was blind to which condition the 

participant was randomly assigned to. The blinding was ensured via a room 

divider, hence, at no point during the synchrony manipulation could the 

experimenter see the movements of the robot or the participant.  

The two between-subjects experimental conditions involved drawing either in 

sync or out of sync with Pepper. We modelled our task after Hove and Risen 

(2009). In their study, participants were following a visual metronome (a rising 

and dropping bar), which resulted in them tapping either in synchrony or out of 

synchrony with a confederate (Hove & Risen, 2009). Similarly, we used a visual 

metronome (a small circle moving along a larger circular trajectory) and 

instructed participants to follow its movement with a pen. The practical reason 

for choosing this task was that it gave us a high degree of control of the 

participants’ movement, without explicitly asking them to synchronize with the 

robot, a potential confound. In the synchrony condition the metronome was 

linked to the movement of the robot, whereas in the asynchrony condition the 

robot was moving approximately 2.5 times as fast along the circle shape as the 

participant. Participants received the instruction from the experimenter that 

the goal of the task was to follow the moving target as closely as possible and 

deviate from it as little as possible. While participants followed the moving 

target with the drawing pen on the tablet, the robot (due to the technical 

constraints of it not being able to hold a pen), performed the drawing motion 

with some distance to the screen (Figure 4). The tablet in front of the robot was 

always turned off- participants were told that a film on the screen was used to 

prevent them from getting distracted from their task. When using the drawing 

pen, participants could see that the pen has indeed a wireless function, but they 

were always encouraged to keep the pen on the tablet, to minimize the chance 

of losing the visual metronome. To give a plausible justification for the task, 

participants were told that the experimenters were looking to investigate the 

effect of robotic presence on task performance.  

After an initial practice round was completed, participants received the 

additional instruction of monitoring an LED strip on Pepper’s right arm, similar, 

but not identical, to the one seen in Figure 4. They were told that the LED lights 
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would change colors randomly and they would be probed to report the color 

changes. However, due to technical difficulties with controlling the LED lights 

via a remote control, we only report a descriptive graph (Appendix A). Each 

experimental block consisted of four repetitions around the circle shape, 

resulting in four circular arm movements per block. After three experimental 

blocks of the drawing task, the participants filled out the three Godspeed 

subscales (Bartneck et al., 2009), which were presented to them via the drawing 

tablet screen. They proceeded with three more experimental drawing blocks.  

Finally, they received the instruction via their tablet that the main part of the 

experiment was over, and they now had the chance to get to know the robot 

better. They were also informed that this part of the study was optional and 

that they would not be compensated by research credits or money for the time 

spent talking to the robot. Then they picked up the piece of paper containing 

the questions, took a seat opposite to the robot and asked the robot questions, 

whose answers were Wizard-of-Oz controlled by the experimenter behind the 

room partition. Then, participants filled out a manipulation check probing them 

for suspicion and asking about perceived synchrony. Overall, the task took 12 

minutes to complete (2 minutes per experimental drawing block) and completing 

the entire study took roughly 45 minutes. 

Data analysis. We conducted a MANOVA on the Godspeed subscales, as this 

analysis accounts for the relationship between the outcome variables. Before 

the analysis, multivariate assumption checks were conducted. The Mardia 

skewness and kurtosis tests confirmed multivariate normality. Via Malanobis 

distance, four multivariate outliers were identified and removed. Moderate 

correlation between dependent measures was confirmed after running pairwise 

correlations. Bartlett’s test was not significant, indicating homogeneity of 

variances. Furthermore, a non-significant Box’s M test suggested homogeneity of 

the covariance matrices. A one-way multivariate analysis of variance (MANOVA) 

was conducted to investigate the effect of synchrony on the robot’s likeability, 

anthropomorphism and perceived intelligence. Furthermore, Welch’s Two 

Sample t-test was used to examine how the synchrony manipulation affected the 

participants’ social motivation. However, the manipulation check showed that a 

rather large proportion of the participants in the asynchrony condition had 

perceived to be in sync with the robot (n=10) and one participant in the 



53 

synchrony condition had failed to perceive this (n=1). Based on this insight, 

participants who had failed to correctly perceive the manipulation were 

excluded, resulting in N=45 participants (henceforth ‘original group split’). A 

second group split based on perceived synchrony was performed (henceforth 

‘perceived groups’), and within the context of exploration, the above analyses 

were repeated (N=56). This second group split on the basis of participants’ 

synchrony beliefs was investigated, since previous literature showed that top-

down beliefs about a robot’s behavior play an important role in agent 

perception, over and above bottom-up cues (Klapper et al., 2014; Cross et al., 

2016). 

3.3. Results 

Original group split. The one way MANOVA showed no significant differences 

between groups on the dependent measures: Pillai’s V=.07, F(3, 41)=.96, p=.42. 

There was no significant difference between the groups on the measure of social 

motivation: t(41.49)=-.45, p=. 67, d=-.13. These results are visualized in Figure 

5. Synchrony did not lead to increased liking or social motivation towards the 

robot.  

 

Figure 5 - Experimental groups. 
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The plot on the left-hand side depicts the groups’ ratings on likeability of the robot. The 
graph on the right depicts the distribution of number of questions participants asked the 
robot (N=45, n= 19 in the asynchrony group, n=26 in the synchrony group). The plots depict 
the raw data, the central tendencies and densities, and the 95% highest density intervals. 

 

Perceived groups. The second one way MANOVA showed also no differences, 

when the groups were split on perceived synchrony: Pillai’s V=.11, F(3, 52)=2.05, 

p=.12. In addition, there was no significant difference between the perceived 

groups in social motivation towards the robot: t(39.24)=-. 26, p=.60, d=-.15.  

 

Figure 6 - Perceived groups. 

On the left, the likeability ratings are shown for subjectively perceived synchrony with the 
robot. Individuals, who were in the asynchrony condition, but reported to have been in sync 
with Pepper were combined with those, who were objectively in sync with the robot. On the 
right, again the number of questions asked are shown, this time for perceived groups (N=56, 
n=20 in the asynchrony group, n=36 in the synchrony group). The plots depict the raw data, 
the central tendencies and densities, and the 95% highest density intervals.  

 

Likeability ratings and social motivation of the perceived groups are depicted in 

Figure 6. Perceived synchrony did not lead to an improved perception of Pepper 

or towards an increased motivation to ask the robot questions.  
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3.4. Discussion 

In this study, we investigated the effect of experiencing interpersonal synchrony 

with a humanoid robot on its likeability and participants’ social motivation 

towards the robot. Contradictory to our hypotheses, participants who moved in 

sync with Pepper did not rate the robot as more likeable, intelligent or 

humanlike than participants who performed the task out of sync with it. 

Participants in the synchrony condition did not show stronger social motivation 

towards the robot, as indexed by the amount of questions they asked the robot 

in a voluntary interaction after completion of the main task.  

One critical but interesting observation were the differences in experimentally 

manipulated and subjectively experienced synchrony. One third of the 

participants who were assigned to the asynchrony group reported that they 

believed they were moving in sync with Pepper. Given this finding, it may be 

that the experimental manipulation of synchrony was either too subtle or too 

short to fully immerse participants in the experience and to produce the 

hypothesized beneficial effect on rapport between synchronizing agents. Indeed, 

findings reported by Lehmann and colleagues’ (2015) suggest that movement 

synchrony should positively impact self-reported likeability of a synchronous 

robot. However, an important difference between the study reported here and 

their experiment was that in their videos, the robot was making goal-direct 

movements towards a person. They defined “positive synchrony” as the robot 

shifting its “gaze” towards the movement of a human agent, who was arranging 

flowers in a vase. In contrast, in our experiment, Pepper was making goal-

directed, synchronous movements reacting to the task, and not the participant. 

Hence, this was a markedly less social context, than reacting to the movements 

of the other interaction partner.  

In addition to the potential necessity of adaptivity in synchronous interpersonal 

movement, Lorenz, Weiss and Hirche (2016) argue that in order to reap the 

benefits of synchrony in social interactions with robots, the human interaction 

partner needs to attribute a mind to the robot. This idea is consistent with 

research by (Wiese et al., 2012), which shows that top-down beliefs about an 

agent’s intentional stance can influence basic attentional mechanisms. Even 
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though we assessed trait negative attitudes towards robots, we did not include a 

self-report or behavioral measure of mind attribution. While Pepper introduced 

itself before starting the drawing task, it remains unclear how much mind and 

intention the participants attributed to the robot. In addition to these factors 

that could have adversely affected the hypothesized positive influence of 

interpersonal synchrony, we saw a ceiling effect of likeability of the robot – in 

both groups, Pepper was rated as very likeable.  

More questions remain regarding why the synchrony manipulation did not impact 

participants’ social motivation towards Pepper. One possible explanation for this 

result could be that counting the amount of questions the participants chose to 

ask the robot may have been too crude a measure to pick up any small to 

medium sized effect we expected from a synchrony manipulation. Stronger 

motivational factors, such as the desire to finish an already long experiment, 

may have interfered with subjects’ desire to spend time with the robot. In 

addition, previous experiences with the robot might have influenced their 

behavior, with participants lacking any experience perhaps showing stronger 

curiosity to interact with Pepper or a lack of familiarity affecting the mind 

perception of the robot (Müller et al., 2011). This lack of sensitivity of the 

behavioral measure highlights an important gap in readily available, objective, 

dependent measures in social robotics. Behavioral and neuronal measures offer 

objectivity, which self-report measures are not able to provide, due to inherent 

reporting bias and social desirability effects. Drawing on established and 

validated measures from cognitive (neuro)science might help us to bridge this 

gap (Wiese et al., 2017). Future research in interpersonal synchrony with robots 

should invest in the implementation of these behavioral and neuroscientific 

dependent measures, to complement the limitations of self-report and enable 

more precise triangulation of the mechanisms and consequences of social 

affiliation via synchrony. Future experiments should further include a positive 

control to ensure the synchrony manipulation works as expected in human-

human interaction and additional loops of control to ensure that the synchrony 

manipulation is sufficiently immersive and salient. A final limitation we would 

like to highlight is the fact that given the rather high number of participants we 

had to exclude, the sample size may have been too small to show the expected 
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small to medium effect size of a synchrony manipulation on perception of and 

behavior towards the robot.  

Following the tenets of the recent HRI’18 workshop “What Could Go Wrong: 

Lessons Learned When Doing HRI User Studies with Off-the-Shelf Social Robots?”, 

below we summarize the insights gained as psychologists conducting experiments 

with commercially available robots, such as Pepper.  

The Pepper robot as an experimental confederate: lessons learned.  

Our initial motivation was to use the most natural, and most autonomous robotic 

behavior available. However, we quickly noticed in preceding pilot experiments 

that even little robotic movements away from the participant (due to it 

orienting to the experimenter’s voice behind the room partition), were 

interpreted as rejection, and especially the faulty behavior of the robot during 

the free interaction period (due to volume or accent issues), would obstruct the 

question asking scenario significantly. As such, we used an experimenter-

controlled, Wizard-of-Oz setting with gaze lock implemented, to ensure it would 

always face the participant during the introduction and free interaction period. 

Furthermore, we found it useful to use Pepper’s “alive and breathing” mode 

between experimental drawing blocks, as the change from complete stillness to 

the drawing motions might have been perceived as too uncanny. Further, when 

employing a humanoid robot in a psychology-informed synchrony experiment, we 

recommend facilitating a salient experience of synchronizing with the robot, to 

ensure that experimental results are driven by the manipulation and not the lack 

of synchrony immersion.  

In conclusion, we did not find that orchestrated synchrony, here induced via a 

drawing task with a physically present embodied robot, improved the rapport 

between participants and the robot. Future experiments will help to further 

elucidate the relationship between synchronous behavior and social affiliation 

toward robots by including both behavioral and neural measures of social 

motivation.  
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Chapter 4 Faces do not attract more attention 

than non-social distractors in the Stroop task 

 

 

 

This chapter is an exact copy of the following manuscript under review: 

Chapter 4 - Henschel, A., Bargel, H., & Cross, E. S. (2020). Faces do not attract 

more attention than non-social distractors in the Stroop task. Accepted pending 

minor revision at Collabra: Psychology. https://psyarxiv.com/pbfny   
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4. Abstract 

As robots begin to receive citizenship, are treated as beloved pets, and given a 

place at Japanese family tables, it is becoming clear that these machines are 

taking on increasingly social roles. While human-robot interaction research relies 

heavily on self-report measures for assessing people’s perception of robots, a 

distinct lack of robust cognitive and behavioural measures to gauge the scope 

and limits of social motivation towards artificial agents exists. Here we adapted 

Conty and colleagues’ (2010a) social version of the classic Stroop paradigm, in 

which we showed four kinds of distractor images above incongruent and neutral 

words: human faces, robot faces, object faces (for example, a cloud with facial 

features) and flowers (control). We predicted that social stimuli, like human 

faces, would be extremely salient and draw attention away from the to-be-

processed words. A repeated-measures ANOVA indicated that the task worked 

(the Stroop effect was observed), and a distractor-dependent enhancement of 

Stroop interference emerged. Planned contrasts indicated that specifically 

human faces presented above incongruent words significantly slowed 

participants’ reaction times. To investigate this small effect further, we 

conducted a second experiment (N=51) with a larger stimulus set. While the 

main effect of the incongruent condition slowing down the reaction time of the 

participants replicated, we did not observe an interaction effect of the social 

distractors (human faces) drawing more attention than the other distractor 

types. We question the suitability of this task as a robust measure for social 

motivation and discuss our findings in the light of recent conflicting results in 

the social attentional capture literature.   
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4.1. Introduction 

Glancing upon Giuseppe Arcimboldo’s famous 16th century artwork “Air”, a 

collection of colourful birds transforms into the side profile of an elegant man. 

The effect Arcimboldo cleverly applied to many of his paintings is also known as 

pareidolia, which describes the illusory perception of human faces in random 

patterns. This tendency is not only capitalized on in the arts, online 

communication, and product design, but also in research, where variations on 

the visual illusion are used to investigate mechanisms of face perception (Bubic 

et al., 2014; Guido et al., 2019; Martinez-Conde et al., 2015; Pavlova et al., 

2018; Robertson et al., 2017; Wodehouse et al., 2018).  

While the origin of the pareidolia phenomenon is somewhat contentious (with 

explanations ranging from “visual false alarms” to reflecting a deeply ingrained 

need for social contact), it points to the fact that human faces have a unique 

status in our visual environment (DiSalvo & Gemperle, 2003; Wodehouse et al., 

2018; Zhou & Meng, 2019). From birth, babies exhibit a preference for gazing at 

faces compared to scrambled faces, with a bias for gazing at others’ eyes 

developing within the first year of life (Hessels, 2020). Replications of a seminal 

eye-tracking study by Yarbus (1967) confirm that participants invariably have a 

gaze preference for people, faces and eyes (DeAngelus & Pelz, 2009). Faces are 

a rich source of information, giving insight into another person’s emotions, their 

intentions, and their personality traits. Willis and Todorov (2006), for example, 

have shown that the proverb “you only get one chance to make a first 

impression” is grounded in empirical truth. They found that participants were 

able to make reliable trait judgements on attractiveness, likeability, 

trustworthiness, competence and aggressiveness within split seconds. In yet 

another study, perceivers were capable of deducing the social class of unfamiliar 

faces above chance level, highlighting the importance of face perception and its 

potential societal impact (Bjornsdottir & Rule, 2017).   

An integrative theoretical account on the relative importance of social cues, 

such as faces, by Chevallier and colleagues describes social motivation by means 

of three main components: social reward, social maintaining, and social 

orienting (2012). Interactions with others, the authors argue, are inherently 
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rewarding, relationships are driven by our goals to maintain and improve them, 

and social cues are thus prioritized. The authors propose that social motivation 

is determined by specialized biological processes, which developed due to an 

evolutionary advantage of collaborating with other humans. Thus, social 

information in the form of facial cues is thought to be extremely powerful in 

terms of claiming attentional resources, increasing our chances for improved 

coordination and cooperative work with others (Chevallier et al., 2012). 

Given their prioritization in our visual environment, it is unsurprising that faces 

have been the central focus of many visual attention studies. Collectively, these 

studies point towards faces ranking above objects in capturing automatic 

attention. Using a change blindness paradigm, Ro, Russel and Lavie (2001) found 

that participants detected changes in temporarily presented faces more quickly 

than changes in any other object. This effect disappeared when the face stimuli 

were inverted. Automatic attentional capture by faces was further investigated 

by Theeuwes and Van der Stigchel (2006), who critized that Ro and colleagues’ 

(2001) results could have been due to merely a preference for attending to 

faces, and not reflective of truly exogenous attentional capture. In their 

inhibition of return paradigm, these authors found evidence for automatic 

attentional capture induced by faces as compared to object stimuli. The authors 

observed a delayed gaze response towards locations that had previously shown a 

face and reasoned that this represented true attentional capture by faces, 

rather than difficulties with disengaging attention from them. Bindemann and 

colleagues (2007) sought to understand whether attentional capture by facial 

cues could be entirely determined by their salience, or whether this effect is 

also modified endogenously, by participants’ own volition. As a matter of fact, 

participants were able to direct their attention away from faces towards objects 

when these were more predictive of the cued target location in a dot-probe 

paradigm. However, the authors claimed an overall face bias persisted, with 

participants showing greater ease at directing attention to predictive faces 

versus predictive objects. Experiments by Langton and colleagues (2008) further 

affirmed the notion that attentional capture by faces is automatic and 

involuntary. Searching a visual array for a butterfly was slowed by the presence 

of an “additional singleton”, a task-irrelevant face. Here, the authors concluded 

that humans became consciously aware of faces before any other none-face 
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item. Overall, a large body of evidence suggests that social attentional capture 

by facial cues is a robust phenomenon, providing evidence for the putative social 

orienting pillar of the social motivation model. 

Beyond seeing faces in oddly shaped clouds, Martian craters or pieces of burnt 

toast, we also encounter deliberate pareidolic design when we interact with 

humanoid robots (DiSalvo et al., 2002; DiSalvo & Gemperle, 2003; Wodehouse et 

al., 2018). Due to the face’s role in communicating emotions, and more 

generally, facilitating social interactions, the design of human-like (or at least 

human-readable) robot faces has attracted considerable attention and 

investment in the domain of social robotics. A key driver behind humanoid robot 

design is the desire to build a believable social agent, while mitigating the 

potential damaging effects an overly human-like appearance could have on the 

user (DiSalvo & Gemperle, 2003). Thus, in order to avoid an uncanny experience, 

or over-promise on the robot’s functionality, a popular design choice for socially 

assistive robots is a humanoid face with simple geometric shapes alluding to 

familiar, human features (Kalegina et al., 2018). Indeed, when participants were 

asked to rate the humanness of humanoid robot heads, only a few features 

accounted for more than 62% of variance: the eyes, eyelids, nose and mouth 

(DiSalvo et al., 2002). This is in line with a study by Omer and colleagues, which 

mapped the features that contributed to the global gestalt of pareidolia faces, 

identifying the eyes and the mouth (2019). Robots’ facial cues are viewed as one 

of the crucial four dimensions in driving human-likeness ratings, and in a survey 

of humanoid robots, 87.5% had at least some facial features (DiSalvo et al., 

2002; Phillips et al., 2018). It is of note that when establishing an impression of 

animacy, viewing the face as a whole is crucial, with participants being more 

hesitant to make judgements about the presence of mind in an agent when 

viewing cropped facial cues in isolation (Looser & Wheatley, 2010). Hence, and 

as Geiger and Balas (2020) point out, robot faces, which we have presented here 

as a special case of intentional pareidolia, constitute a border category of face 

processing, and while some research exists on attentional capture by pareidolic 

faces, less is known about the social relevance of robot faces. This question 

however is crucial, as humanoid robots become increasingly commonplace in 

modern society, taking on care, companionship and support roles. Hence, an 
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important goal is to develop robust behavioural tasks that probe the relevance 

of robotic, compared to human, social cues.  

Research on pareidolic faces and the extent to which they engage social 

attentional processes has yielded mixed results so far, with some researchers 

arguing for the crucial role of top-down information driving the face illusion 

effect (Takahashi & Watanabe, 2013, 2015), and others providing evidence for a 

bottom-up account of the phenomenon (Liu et al., 2014; Robertson et al., 2017). 

Takahashi and Watanabe (2013) investigated reflexive attentional shifts induced 

by pareidolic faces using a gaze cueing paradigm. The authors found a cueing 

effect of pareidolic faces, however, this effect disappeared when participants 

were not explicitly instructed that the presented objects could be interpreted as 

faces. In a follow-up study, Takahashi and Watanabe (2015) found that face 

awareness, i.e. perceiving an object (here: three dots arranged as a triangle) as 

a face improved participants performance on a target detection task. This 

advantage disappeared when subjects were instructed to detect a triangle target 

shape, rather than a face target. The authors concluded that despite their 

identical shape, faces receive prioritized further processing due to top-down 

modulation of face awareness. On the other hand, a study by Ariga and Arihara 

(2017) did not find that pareidolia faces captured visual attention when 

presented as task-irrelevant distractors in a letter identification task. However, 

when human faces were presented as distractors among a rapid serial 

presentation of letters, accuracy was significantly impaired. There was no 

difference between pareidolia faces and their defocused control images for any 

of the various time lag conditions in the letter identification task. While Ariga 

and Arihara (2017) conclude that attentional capture by facial cues is exclusively 

reserved for human faces, yet another study shows that pareidolia faces were 

able to elicit deeper forms of social engagement, surpassing an initial face 

detection stage and eliciting further specialized processing. In their study, 

Palmer and Clifford (2020) presented pareidolic stimuli exhibiting directional eye 

gaze and found that during a subsequent human direct eye gaze task, sensory 

adaptation had taken place: the illusory faces influenced the perception of the 

human face stimuli. This finding is at odds with Robertson, Jenkins and Burton’s 

(2017) conclusion: these authors claim that their participants’ performance on 

several pareidolia face detection tasks was unrelated to their performance on 
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face identification tasks, suggesting a functional dissociation and no higher-level 

face processing taking place elicited by illusory faces.  

While the evidence on how deeply illusory faces are perceived as social is mixed, 

they constitute an ideal control for human facial features in social attentional 

capture tasks. This also raises the question how deliberate pareidolic faces, such 

as humanoid robots, might engage our visual attention, as these agents are 

capable of at least some interactions with the physical world. Some preliminary 

evidence even exists from an electrophysiological study by Geiger and Balas 

(2020), which suggests that robot faces were more likely to be perceived as 

objects, rather than faces when presented in an inversion effect paradigm. The 

authors found that the face sensitive N170 ERP-component was moderately 

influenced by robot faces, ranking somewhere between objects such as clocks 

and real or computer-generated human faces.  

The neuronal architecture underlying the prioritization of social cues has been 

shown to include both cortical and subcortical regions, including the amygdala, 

the ventral striatum, the orbitofrontal cortex and the ventromedial prefrontal 

cortex. These brain structures, which are reliably engaged during other types of 

reward processing as well, seem to be sensitive to, or perhaps even signal, the 

importance of social aspects of our environment (Schilbach et al., 2011). A 

formal theory in favour of a specialized subcortical fast track was put forward by 

Senju and Johnson, who coined the “eye contact effect” (2009). The fast-track 

modulator model claims that eye contact receives prioritized processing via a 

subcortical route. To test this hypothesis, Conty and colleagues (2010a) 

conducted experiments on the distracting effect of social cues while participants 

were engaged in a cognitively demanding task: the classic colour Stroop 

paradigm (MacLeod & MacDonald, 2000; Stroop, 1935). 

Despite the above reviewed variety of paradigms which probe (social) 

attentional capture, the Stroop task has proven to be a particularly popular 

vehicle. Named after the psychologist who discovered the effect, hundreds of 

studies have shown that naming the ink colour of an incongruent colour word 

(i.e., the word “RED” presented in green) produces slower reaction times than 

determining the colour of a control word (the letters “XXX” presented in green). 

This interference effect, which highlights the fact that task-irrelevant 



66 

information is processed concomitantly and automatically, has inspired a 

multitude of extensions, including pictorial, spatial, and social versions 

(MacLeod & MacDonald, 2000). For example, in the facial-emotional Stroop, 

participants name the ink colour of emotional, compared to neutral faces, which 

are overlaid with a coloured filter. Past research has shown that sad participants 

and participants with higher trait anger are slower to name the colour of angry 

versus neutral faces (Isaac et al., 2012; Van Honk et al., 2000; van Honk et al., 

2001). Thus, the Stroop task has been validated as a suitable paradigm to assess 

the distracting power of task-irrelevant information, such as facial cues.   

In Conty and colleagues’ study (2010a), the cropped eye-regions of human faces 

with open or closed eyes - in one of two head orientations - were presented as 

task-irrelevant distractors on top of the Stroop task. The authors found that the 

interference effect produced by the competition between the automatic 

processing of word meaning and ink colour was further enhanced in the direct 

gaze condition, regardless of the head orientation. In a follow-up experiment, 

Conty et al. (2010a) showed participants visual gratings and grey colour blocks as 

distractors, which the authors argue excluded the possibility that the effect 

might have been driven by low-level visual properties of the images – as open 

eyes have an inherently stronger visual contrast than closed eyes. In a third 

experiment with a new participant sample, they again found no difference 

between closed or averted eyes when presented as distractors on the task. 

Conty and colleagues conclude that the salience of direct eye contact was so 

strong that it tapped into processing resources needed to perform well on the 

main task: responding quickly and accurately to the target words (2010a).   

A later study from the same lab by Chevallier and colleagues replicated and 

extended the costly eye contact effect (2013). Importantly, the authors tested 

the paradigm in two groups of children: typically developing boys and a group of 

male adolescents with Autism Spectrum Condition (ASC). Again, open and closed 

eyes were presented as distractors above the neutral and incongruent words, 

however, this time a non-social control condition was added: flower images. As 

expected, the authors report the Stroop interference effect, where incongruent 

words significantly slowed participants’ reaction times. The typically developing 

group showed the hypothesized enhanced interference in the social condition 

(here open and closed eyes were taken together as the ‘social’ category), while 
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the ASC group showed the opposite effect. However, when investigating only the 

open versus closed eyes, stronger interference for open eyes was preserved in 

adolescents with ASC. The authors interpreted their findings as yet another 

confirmation for the strong salience of task-irrelevant social distractors but 

remark that their results are limited by their specific stimulus set and invite 

future studies to investigate other types of social distractors, such as whole 

faces.  

In the current study, we built on their paradigm by testing the extent to which 

human, robot or object faces capture attention automatically, by presenting 

them on top of the classic colour Stroop task. We were interested in extending 

the Stroop paradigm to test a wider variety of social cues in terms of their 

motivational value, as well as in evaluating the utility of the social Stroop task 

with robot faces as a valid behavioural task to probe social perception in HRI 

research.  

Hypotheses. In line with a large body of literature on the Stroop interference 

effect, we expected that incongruent words would slow reaction times in 

comparison to the neutral target word condition, leading to the classic 

interference effect (MacLeod & MacDonald, 2000). Based on the findings by 

Conty et al. (2010a) and Chevallier et al. (2013), as well as the established 

literature on social attentional capture, we further predicted that the more 

socially salient a cue is, the more it would lead to enhanced Stroop interference 

in this conceptual extension of the paradigm. The most socially salient stimuli 

used in the present study were human faces, which we predicted would increase 

reaction times in the incongruent Stroop condition. Less salient distractors were 

the robotic faces, which in theory allow for a more minimal form of social 

interaction. Even less socially salient distractors, the object (pareidolic) faces, 

contained facial cues but no capacity for the object to interact with the world in 

a social manner. Finally, we expected the control images, which held no social 

relevance whatsoever, to have no effect on reaction times in the incongruent 

condition of the Stroop task.  
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4.2. Experiment 1 

4.2.1. Method 

Preregistration and data statement. The experiment was pre-registered via 

www.AsPredicted.org. The document can be found at https://osf.io/ky4b7/.  

We report all measures in the experiment, all manipulations, any data exclusions 

and the sample size determination rule (Simmons et al., 2012). Data and the R 

analysis scripts are available (https://osf.io/xyz4m/). Due to copyright 

restrictions, the full stimulus set is not openly available, however it can be 

shared upon request. 

 

Figure 7 - Stimulus categories.  

A representation of the four different stimulus categories: human faces, robot faces, 
pareidolic faces and the control images, flowers. The human, robot and object distractors 
all have a direct gaze orientation and show a neutral facial expression. The full stimulus set 
is available upon request, as individual images are restricted by copyright.  

 

Participants. An a-priori power analysis based on the contrast of interest 

resulted in a total sample size of 47 participants (dz=0.49, α= 0.05, power=0.95, 

noncentrality parameter = 3.359, critical t=1.678, Df=46, actual power=0.95). 

We recruited 50 participants, however, based on our pre-registered exclusion 

criteria (diagnosis of ASD and having had a previous interaction with a robot) we 

excluded 9 participants. Two additional participants had insufficient English 

language skills, and thus the total number of exclusions was 11. The pre-

registered exclusions were made based on participant answers on the 

experiment questionnaires’ self-report items (for example: “Do you have a 

diagnosis of Autism Spectrum Disorder?” and “Have you interacted with a robot 

before?”). The other exclusions had to be made in addition, based on the 

difficulties of the participants with the task. We report a final sample size of 

http://www.aspredicted.org/
https://osf.io/ky4b7/
https://osf.io/xyz4m/
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N=39. Of the 39 participants, 26 were female, and reported a mean age of 27.41 

years (SD= 7.35). Ethical approval was obtained from the University of Glasgow 

ethics review board (300170224). All participants provided written informed 

consent prior to taking part and were reimbursed for their participation by 

payment. As in the original study, the experiment was framed as an experiment 

on colour perception.   

Stimuli. A new stimulus set was built for this adapted version of the Stroop 

paradigm (Figure 7). The human faces were selected from neutral, frontally 

oriented facial expressions in the Radboud Faces Dataset and the London Faces 

Database (Langner, Dotsch, Bijlstra, et al., 2010; DeBruine & Jones, 2017). The 

robot and object faces, as well as the flowers, were selected from Google, with 

the aim to include only neutral, frontally-oriented faces. The rationale behind 

including only neutral faces was that emotional facial cues have been shown to 

draw attention, especially in comparison to neutral facial expressions (Pessoa et 

al., 2002; Theeuwes & Van der Stigchel, 2006; Vuilleumier, 2002). 

 

Figure 8 - Schematic representation of a trial time course.   

 

An independent sample rated the first pool of human and robot images, resulting 

in a pre-selection of more neutrally perceived faces (more details can be found 

in Appendix C). Twelve unique images were obtained in each of the 4 categories 
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and were edited to achieve a standard round form, mirrored, transformed to 

grey-scale and averaged according to mean contrast and luminance using the 

SHINE toolbox in MATLAB (Willenbockel et al., 2010). This resulted in 96 unique 

images in Experiment 1 (i.e. 24 per each of the four distractor conditions). Since 

the overall number of trials was 192 (closely modelled on the original study by 

Conty et al., 2010a), the distractor images were presented twice. 

Procedure. Participants were tested in a quiet, dark cubicle on a computer, 

sitting 50 cm away from the screen. Participants familiarized themselves with 

the key responses in two training rounds. In the first training, colour-unrelated 

words (such as “BOWL” or “HAT”) were presented in red, yellow, blue and green 

ink. Words low in arousal and with a medium valence score from the Affective 

Norms for English Words (Bradley & Lang, 1999) were selected. In this first 

practice block, participants received feedback on their performance accuracy 

and speed, whereas in the second round, the feedback was removed. Each 

practice block consisted of 48 trials. The experiment was split in 4 blocks, with 

short breaks after 48 trials. In total, the experiment took 25 minutes to 

complete.  

An experimental trial consisted of a centrally presented fixation cross, whose 

duration was jittered between 800 and 1300 milliseconds (Figure 8). After the 

fixation cross, the target word appeared, which extended horizontally over 1° of 

visual angle, and vertically over 0.5° of visual angle. Directly above the target 

words, the distractors were presented, extending over ca. 6° of visual angle. 

The images and word pairs remained on the screen until a response was made. 

There were equal numbers of incongruent and neutral Stroop trials, and no 

restrictions regarding the switch between incongruent and neutral trials were 

put in place, as they were presented randomly. The target word and distractor 

image pairs were fixed. Due to an error when setting up the PsychoPy 

experiment (Peirce, 2007), only female human faces were presented in the 

incongruent condition of the Stroop task, with all the male faces presented in 

the neutral condition. The object and robot distractor images in Experiment 1 

were not one-to-one controlled by their mirror images across the incongruent 

and neutral conditions. 
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Statistical analysis (pre-registered). The percentage of accurate responses was 

calculated and analysed by means of a repeated measures ANOVA. For the 

analysis of the reaction times, incorrect responses were excluded, as were RTs 

that were two standard deviations above the mean or below 200ms. As a result, 

606 trials (8.09%) were discarded (a detailed breakdown of the trial number per 

condition can be found in the Appendix C).  

We calculated a two-way repeated measures ANOVA with the target 

(incongruent vs. neutral) and distractor (human, robot, object, flower) as 

within-subjects conditions. Finally, we conducted planned contrasts. All analyses 

were conducted in R 3.5.3 (2019), using the {ez}, {psych}, {afex} and {emmeans} 

packages (Lawrence, 2016; Revelle, 2018; Singmann, Bolker, Westfall, & Aust, 

2019; Lenth, 2019).  

4.2.2. Results 

Accuracy. The repeated measures ANOVA showed a main effect of target, 

suggesting participants were more accurate in the neutral target word condition: 

F(1, 38)= 7.48, p=0.009, ηG2= .03. However, the overall accuracy was very high 

(95.72%) and the effect size is considered small, so this was not further 

investigated.  

Table 2 - Mean reaction times and standard errors in milliseconds (Experiment 1). 

 

Reaction times. A second repeated measures ANOVA was calculated and as 

predicted, we saw a main effect of target, with incongruent words slowing down 

the reaction times of the participants: F(1, 38)= 39.24, p<.001, ηG2= .03. This 

finding confirms that our modified task was still effective at inducing a Stroop 

interference effect. In addition, we observed a small interaction effect of target 

 Humans Robots Objects Flowers 

Incongruent 

target 

M (SE) 843 ± 11 807 ± 11 815 ± 11 796 ± 11 

Neutral target M (SE) 753 ± 10 768 ± 11 763 ± 10 760 ± 10 
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x distractor: F(3, 114)= 2.69, p=.049, ηG2= .003. To investigate the difference in 

reaction times between specific conditions (comparing the effect of the human 

distractors in the incongruent condition with the flower distractors in the 

incongruent condition), planned contrasts were computed.  

 

Figure 9 - Results (Experiment 1). 

The Stroop interference scores were calculated by subtracting the neutral from the 
incongruent trials. Here the mean Stroop interference scores are shown for each of the 
distractor categories in Experiment 1. 

 

They revealed that the human faces were significantly more distracting than the 

flower images in the incongruent condition: t(227)= -2.95, p=.004 and drew more 

attention than the robotic faces as well (t(227)=-2.15, p=.03), but there was no 

significant difference to the object faces: t(227)=-1.86, p=.06. The Stroop 

interference scores (neutral trials subtracted from incongruent trials) are 

visualized in Figure 9 and the mean reaction times with standard errors are 

summarized in Table 2. 

4.2.3. Discussion 

In Experiment 1 we found an interaction effect in the predicted direction: 

human faces drew more automatic attention than flower images and robot 

faces, leading to enhanced interference in the Stroop task. However, the 
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interaction that emerged, as evaluated by the ANOVA, was very small and just 

above the set significance level (p=.049). In addition, due to our conservative 

participant exclusion criteria, we experienced a larger drop-off in overall 

subject number than expected. Thus, the experiment was perhaps not 

adequately powered to detect the effect of interest. Furthermore, we 

speculated that the effect may have been influenced by the repetition of the 

distractor images, or due to the described programming error. We next decided 

to run the same paradigm again, this time recruiting a sufficiently large subject 

number (accounting for a drop-out rate of approximately 15-20% of 

participants), presenting both male and female faces in the incongruent Stroop 

condition, and doubling the number of unique distractors, thus preventing 

repeated viewing of the stimuli.  

4.3. Experiment 2 

4.3.1. Method 

Preregistration and data statement. We followed the same procedures that 

were described in our preregistration document, as reported in Experiment 1.  

Participants. A new set of participants (N=70) was recruited. In addition to the 

pre-registered exclusion criteria (outlined in Experiment 1 - Method), we added 

the condition of not having participated in the first experiment. After subject 

exclusion, 51 participants remained in the sample (39 female). The participants’ 

mean age was 23.24 years (SD=6.27).  All participants provided written informed 

consent prior to volunteering for this experiment and were reimbursed by 

payment. The experiment was approved by the University of Glasgow ethics 

review board (300180052).  

Stimuli. The stimulus set was extended to include 12 new unique images for 

each distractor condition, which were mirrored and edited in the same way as 

outlined in Experiment 1. In total, we now had 192 unique distractors.  

Procedure. The same experimental procedure was followed as described in 

Experiment 1. Following the completion of the Stroop task, we also asked 

participants to rate the unique (unmirrored) distractors based on agency (ability 
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to plan and act) and experience (ability to sense and feel), to establish that the 

distractor categories were indeed perceived differently, with regard to their 

varying levels of social saliency. Participants rated each of the 96 images on 

both characteristics using a sliding scale from 0 to 100 in FormR (Arslan et al., 

2019). The questions were derived from Gray, Gray and Wegner’s study (2007) 

on mind perception of different kinds of agents. We used mind perception as a 

socialness proxy to distinguish between the control condition (flowers), 

inanimate (robot and pareidolic faces) and agents with a mind (humans). The 

analysis of the ratings confirmed that the stimulus categories were perceived 

differently: the human images received the highest agency and experience 

ratings. A detailed report of the stimulus ratings can be found in Appendix C. 

Statistical analysis. We followed the same data cleaning and analysis procedure 

as in Experiment 1. Incorrect trials were excluded, as well as reaction times 

below 200ms or 2 standard deviations above the mean (i.e. 1910ms). With this 

reaction time trimming criterion, we discarded 1061 trials (10.84%). A detailed 

breakdown of the number of trials remaining per condition can be found in 

Appendix C.  

4.3.2. Results 

Accuracy. The repeated measures ANOVA showed no significant main effect of 

target or distractors, nor any significant interaction effects. Overall, the 

participants’ performance on the task was very accurate again (93.29%).  

Table 3 - Mean reaction times and standard errors in milliseconds (Experiment 2). 

 

 

 Humans Robots Objects Flowers 

Incongruent 

target 

M (SE) 811 ± 10 808 ± 11 809 ± 11 816 ± 10 

Neutral target M (SE) 723 ± 9 747 ± 9 730 ± 9 735 ± 9 
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Reaction times. The repeated measures ANOVA on the reaction time data 

revealed a main effect of target, consistent with the expected Stroop 

interference in the incongruent condition of the task: F(1, 50)=70.31, p<.001, 

ηG2=.06. Again, this showed that the task worked as expected. The target x 

distractor interaction was not significant: F(3, 150)= 0.36, p=.78, ηG2 =.0003. 

Planned contrasts were computed using estimated marginal means. No contrast 

of interest reached significance: there was no difference between human faces 

and flower images in the incongruent condition: t(300)= .094, p=.92. The mean 

reaction times and standard errors are summarized in Table 3 and the Stroop 

interference scores are visualized in Figure 10. 

 

Figure 10 - Results (Experiment 2). 

The mean Stroop interference scores (incongruent – neutral conditions) for each of the 
distractor categories in Experiment 2.  

 

Bayesian regression analysis (exploratory). Given the results of Experiment 2, 

we explored the extent to which our data provided compelling evidence for the 

null hypothesis (no enhanced Stroop effect when human faces are presented 

compared to the control flower condition) by using a Bayesian regression 

modelling approach {brms} package in R and Stan (Version 2.9.0, Bürkner, 2017), 

as the null cannot be confirmed with Frequentist statistics.  

Following Balota and Yap (2011), we fitted an ex-gaussian distribution to data, 

as the response shows a strong right-skew (Figure 11). The ex-gaussian 
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distribution is the convolution of the normal and exponential distributions and 

has been shown to provide a good fit to reaction time data (Balota & Yap, 2011). 

We included target word and distractor type as fixed effects predictors and 

included random intercepts and random slopes for each participant in a maximal 

random effects structure. The same weakly informative prior was applied to all 

variables, with a Student’s t-distribution of 3 degrees of freedom, a mean of 0 

and a scale of 1. We used the default number of 4 Markov chains, each with 4000 

iterations and a warm-up of 1000. This model converged, as supported by R-hat 

values below 1.01. 

 

Figure 11 - Reaction time distribution (Experiment 2). 

Distribution of the reaction times for each experimental condition (Experiment 2).  

 

We report the estimate (b), estimated error (EE) and the 95% credible interval in 

Table 4 below. The reaction time data was pre-processed in the same way as 

outlined in the data analysis section of Experiment 1.  

 



77 

Table 4 - Parameter estimates for the population-level effects of the maximal Bayesian 
model including random intercepts and slopes per participant.  

The beta-values of the parameters (b), estimated error (EE) and credible intervals (CI) are 
shown (Experiment 2). 

Predictor b (EE) 95% CI 

Intercept .76 (.01) [.74, .78] 

Incongruent target .04 (.01) [.02, .05] 

Human distractor .00 (.01) [-.02,.01] 

Object distractor .00 (.01) [-.02, .01] 

Robot distractor .00 (.01) [-.02, .01] 

Incongruent target x human distractor -.01 (.01) [-.01, .04] 

Incongruent target x object distractor .00 (.01) [-.02, .02] 

Incongruent target x robot distractor .00 (.01) [-.02, .02] 

 

To decide on the acceptance or rejection of a parameter null value we followed 

the approach outlined by Kruschke and colleagues (2018). Here, a range of 

plausible values are considered (indicated by the highest density interval (HDI) 

of the posterior distribution) and how they relate to a region of practical 

equivalence (ROPE) around null (Kruschke, 2018). The ROPE thus describes 

effects that are so small that they can be considered meaningless. In 

determining the ROPE range, we set the limits following the procedure based on 

half of what we consider a small effect (Kruschke, 2018). A small effect in our 

first experiment was an average difference of 47ms between the incongruent 

social and incongruent control distractor, compared to a difference in 34ms in 

Conty and colleagues’ task and 41ms in Chevallier and colleagues’ version 

(2010a, 2013). Choosing the most conservative small effect, we set the ROPE 

limits to [-.017, .017].  
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Figure 12 - Region of practical equivalence with zero analysis (Experiment 2). 

The region of practical equivalence (with zero) is shaded in grey. The effect of interest (the 
incongruent target with the human distractor image) is marked in dark blue as undecided 
(Experiment 2).  

 

As depicted in Figure 12, the ROPE approach here does not offer a 

straightforward decision on the null hypothesis, even though zero is included in 

the range of credible parameter values, a small part of the HDI lies outside of 

the ROPE region for the effect of interest (slower reaction times for human 

distractors in the incongruent condition).  

In summary, in defining our Bayesian regression model, we have increased the 

uncertainty of our estimates by including more random variance in the form of 

subject-level random effects. This increased uncertainty is expressed in Figure 

12. Based on the ROPE analysis, we cannot definitively support the null 

hypothesis. However, considering that zero is contained in the 95% interval of 

credible values of the parameter’s posterior distribution, the evidence for an 

effect is not very strong, and if real, goes in the opposite direction: -10ms [-10, 

40].   

4.4. General discussion 

Across two experiments, we investigated how distracting faces with varying 

degrees of social salience were during a classic Stroop paradigm. Contrary to 

(s) 
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predictions derived from the fast track modulator model by Senju and Johnson 

(2009), and previous studies demonstrating robust attentional capture by task-

irrelevant faces, we did not consistently observe the most salient social cues 

(human faces) leading to greater interference on the Stroop task. While we 

report a marginally significant interaction in Experiment 1, suggesting stronger 

distractibility of human faces in the incongruent condition, we caution 

interpretation of this finding, as we conducted our analysis on a smaller 

participant sample than planned. Thus, we reran our experiment with sufficient 

power, where we also used a larger number of unique distractor images. While 

we again observed the predicted general Stroop effect, the target by distractor 

interaction disappeared. Bayesian reanalysis of the data does not exclude the 

possibility of the human distractors influencing reaction times more than the 

neutral control distractors in the incongruent condition. However, this small 

predicted effect is likely not very strong. Overall, our findings contradict those 

reported by Conty and colleagues (2010a) and Chevallier and colleagues (2013), 

who both found task-irrelevant social cues automatically captured attention. 

While their findings provided empirical evidence for the fast-track modulator 

model, which posits that social cues should exogenously and automatically 

engage attention, we don’t see convincing evidence for this from our study. Our 

results not only appear counter-intuitive given the previous studies this work was 

based on, but also within the wider context of the literature documenting the 

reward value of social cues (Chevallier et al., 2012; Williams et al., 2019; 

Williams & Cross, 2018).  

However, empirical evidence for social distractors always capturing attention is 

less convincing than the two studies by Conty and colleagues (2010a) and 

Chevallier and colleagues (2013) suggest. A conceptual extension of their task 

from the lab of Hietanen, Myllyneva, Helminen and Lyyra (2016) failed to 

replicate the enhanced Stroop effect by direct gaze in a real-life version of the 

task. In their study, a confederate was looking at participants directly above a 

screen, which displayed a colour-matching version of the Stroop task. Hietanen 

and colleagues (2016) found a main effect of direct gaze speeding up the RTs of 

the participants, as compared to averted gaze. The authors reconcile their 

contradictory findings by relating them to the higher arousal produced by their 

stimuli: eye contact with a real person should be more engaging than pictorial 
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representations thereof. In so-called low arousal contexts, they argue, salient 

social cues should recruit attentional resources and interfere with participants’ 

performance on cognitive tasks. In our experiments, even in a context that 

Hietanen and colleagues (2016) describe as “low arousal”, it is most probable 

that any social salience effect is practically equivalent to zero.  

How can our results then be explained? Of course, the stimuli we presented were 

more complex than those used in the original studies, so it is possible that the 

eye-contact effect only holds in (more) simplified contexts. The eye region in 

our stimulus set appeared smaller than in the original experiments, due to it 

taking up a smaller percentage of pixels in our distractor images. While the eye 

region itself was smaller, all our social stimuli (the human, robot and object 

faces) depicted direct gaze and a frontally oriented face. They only varied in 

their potential as a social interaction partner. So, if the eye-contact effect were 

to hold, we should have seen a consistent difference between our most salient 

social stimuli with direct eye gaze (the human faces) and the neutral control 

condition (flowers). The fact that our data did not support this pattern is 

especially surprising given that past studies examining direct gaze have also used 

full-face stimuli in similar, cognitively demanding tasks (Burton et al., 2009; 

Conty, Russo, et al., 2010b). 

A close look at the social attentional capture literature reveals a variety of 

methodological issues and contradicting findings across studies investigating 

faces and facial features as task-irrelevant distractors. Many studies report 

effects based on very small samples (some as small as 8 participants per 

experiment; (Ariga & Arihara, 2017; Miyazaki et al., 2012; Sato & Kawahara, 

2015), make bold statements based on modest statistical evidence (“the three-

way interaction approached significance, F(2,76) = 2.46, p<.10”, p. 1103, 

Hietanen et al., 2016) or use small sets of distractor images which are repeated 

across many experimental trials (Bindemann et al., 2007; Theeuwes & Van der 

Stigchel, 2006). Indeed, some of these problematic confounds have been 

highlighted and tested by Pereira and colleagues (2019; 2020).  

Pereira and colleagues (2019, 2020) systematically controlled for each known 

confound in the social attentional literature, including the perceived 

attractiveness of stimuli, low-level features and a list of other stimulus 
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properties. In their studies, the authors utilized the dot-probe paradigm, with 

faces, houses and scrambled distractor images as task-irrelevant cues. The 

targets appeared with an equal likelihood at six different locations. Pereira and 

colleagues found across multiple experiments that faces did not reliably draw 

attention to their cued location, as indexed by participants’ reaction time. In a 

follow-up Bayesian analysis on one of their experiments, the authors found 

evidence for the null hypothesis of no reaction time differences emerging for 

targets appearing at locations that were cued by faces or houses (Pereira, 2019). 

While a different task was used in these studies, the authors’ findings closely 

align with ours: faces are not reliably capturing attention and impairing the 

performance on an unrelated cognitive task. Interestingly, in a direct replication 

of Bindemann and colleagues (2007), using less well-controlled stimuli, the 

authors were able to replicate the effect of attentional capture by task-

irrelevant faces, providing convincing evidence for systematic confounds 

obscuring the true picture in the existing literature. 

More evidence for the variable nature of findings on automatic attentional 

biasing by social cues comes from a series of experiments by Framorando and 

colleagues (2016), who, similar to Hietanen and colleagues (2016), also failed to 

replicate attentional capture by direct gaze, when faces were presented in a 

stare-in-crowd task paradigm. Based on previous literature on this effect, one 

should expect that faces with direct gaze should be more distracting than faces 

with averted gaze. The authors found that straight gaze had a faciliatory effect 

when it was part of the target of the task, not a task-irrelevant distractor cue. 

These findings were later extended by the same authors, emphasizing again the 

task-dependent nature of directly gazing faces, which in this study hinged on the 

social or non-social nature of the task (2018). These empirical findings echo an 

fMRI study by Pessoa and colleagues (2002), who investigated attentional 

capture by emotional facial cues. Here, like the fast-track modulator model, a 

popular theory suggests that a subcortical route gives preference to the 

processing of emotional facial cues. However, the authors found that brain 

regions implicated in emotion perception were only active when participants 

were able to attend to the emotional facial cues, and these same brain regions 

were not differentially modulated when participants were engaged in a 

cognitively demanding task. This, the authors conclude, means that attentional 
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resources are in fact necessary to allow the neural processing of emotional facial 

cues.   

While we can reconcile our results with these studies, one may still wonder why 

social cues, which are thought to be inherently rewarding, failed to engage 

participants in our experiments in the expected manner (Anderson, 2016). 

Speaking to this, recent findings on reward-related distractors impairing 

participants’ performance have also called this intuitive hypothesis into question 

(Rusz et al., 2019). A new meta-analysis suggests that the effect size of studies 

on reward-related distraction is small, and that findings across reviewed studies 

are highly variable, with reverse results not being uncommon (Rusz et al., 2020). 

This dovetails with the contradictory results we have found in the literature of 

social attentional biasing and which have also been addressed by Pereira and 

colleagues (2020). 

Of course, based on this small number of empirical studies, we do not wish to 

claim that salient social cues, such as faces, never capture automatic attention 

in any context. Indeed, there is mounting evidence that overt attention (i.e. eye 

saccades towards social cues), as opposed to covert attention, which is 

measured by manual reaction time, is consistently directed towards the eye 

region of faces (DeAngelus & Pelz, 2009; Hayward et al., 2017; E. J. Pereira et 

al., 2020). Still, we do wish to challenge the putative fast track modulator 

model and speculate that when faces are presented as task-irrelevant 

distractors, they may not be salient enough to draw attention and cognitive 

processing resources away from the task at hand. Furthermore, we question the 

suitability of the task as a “proxy for social motivation”, as suggested by 

Chevallier and colleagues (2013, p. 1649).  

However, our findings should also be interpreted with the following limitations 

in mind: over the course of two experiments, we recruited from an ethnically 

diverse participant pool at the University of Glasgow, while presenting rather 

homogenous looking human faces, consisting exclusively of Caucasian 

individuals. Given that the studies we based our experiments on did not 

explicitly mention or measure this factor, we did not assess ethnic background in 

the short demographic survey preceding both studies. As such, we cannot test 
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whether this aspect played a role in the missing enhanced Stroop interference 

effect for the human distractor images.  

A further stimulus-based limitation was that in Experiment 1, distractors were 

not controlled by their mirror and presented twice. Thus, the repeat 

presentation could have led to a particularly memorable stimulus set. In 

Experiment 2, the unique distractors in the incongruent condition were 

controlled by their mirror images. Of course, on the other hand, the repeat 

presentation of distractor images is common practice in the social attentional 

capture literature (for example, a set of four unique human and pareidolic face 

images used for an experiment consisting of 450 trials, (Ariga & Arihara, 2017). 

Takahashi and colleagues (2013) used stimuli with three unique identities over 

many trials, and only four unique stimuli in another study (Takahashi & 

Watanabe, 2015). Theeuwes et al. (2006) presented 12 unique distractor images 

across 96 trials. To put it differently, based on the conventions of the social 

attentional biasing literature, it is unlikely that we did not observe the expected 

effect due to the number of unique distractor images we presented. 

Despite our best efforts to only include neutral faces, the emotional content of 

the social stimuli could not be controlled to a fine-grained degree, as it was 

limited by the design and availability of the robots and objects that were 

identified through our Google search. In the emotion rating experiment, which 

we undertook prior to Experiment 1, the robot faces were not rated as 

unambiguously neutral as the human faces, even after excluding the outliers. 

Human faces were selected from the neutral category of the Radboud and 

London faces database, so these stimuli would have contained inherently less 

variance in perceived emotionality than the robot and object faces. However, 

given the scarcity of frontally oriented and high-quality robot and object faces, 

we chose to operate within those constraints. Moreover, in comparison with 

other studies on social attentional biasing we were able to control for the 

following confounds (as outlined in Pereira et al., 2020): size and shape of the 

distractors, luminance and contrast, distance from fixation, the internal 

configuration of facial features of the human, robot and object images (i.e. a 

comparable set of features including eyes, a nose and a mouth in most of the 

images), as well as the task context.  
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While this set of experiments constitutes a conceptual extension to face stimuli, 

rather than a direct replication of the eye contact effect, we kept most other 

aspects of the experimental procedure identical to the studies we modelled our 

task on. Based on these studies and the facial attentional capture literature, we 

would have expected that human faces would be most salient, regardless of the 

small modifications we made. Indeed, keeping in mind recent calls for more 

generalisation efforts in psychological science (Yarkoni, 2016), we feel that a 

conceptual replication adds crucial insight to the field of motivated cognition. 

Further to the arguments we presented, our question and approach directly 

relate to the conceptualized fast-track modulator model: we tested and failed 

to support Chevallier and colleagues’ (2013) hypothesis that this effect should 

generalize to other social cues – like faces - as well.  

For future research, our findings have important implications: many researchers 

in human-robot interaction (HRI) lament the absence of robust behavioural tasks 

to assess social interactions with robots, especially regarding changes in social 

motivation towards them (Baxter et al., 2016; Eyssel & Kuchenbrandt, 2012; 

Henschel & Cross, 2020a). A few research groups have successfully adapted 

cognitive tasks for HRI, for example the inversion effect (to examine 

anthropomorphism), and the Posner gaze-cueing paradigm (Wykowska et al., 

2014; Zlotowski & Bartneck, 2013). Yet, behavioural tasks that reliably assess 

social motivation towards robots are still scarce. Based on our findings, a 

suitable point of departure for future generations of social robotics researchers 

could be to examine overt attention in preferential looking paradigms or 

saccadic choice tasks, utilizing eye tracking technology (Crouzet & Thorpe, 2010; 

Fletcher-Watson et al., 2008), as these effects appear robust (Hayward et al., 

2017). Another option could be to implement more natural social interaction 

tasks and measure attentional engagement and shifts in a similar manner as 

Hayward and colleagues in their conversational paradigm, in which participants’ 

eye gaze behaviour was recorded with spyglasses and cameras (2017). 

Interestingly, the authors found that the social attention of participants in a 

natural context was unrelated to their behaviour in the classic Posner gaze 

cueing task. Their findings also speak to recent calls in the HRI literature to 

implement more natural, embodied experiments with robots to test changes in 
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attitudes, behaviours and neural correlates in a more ecologically valid context 

(Henschel, Hortensius, et al., 2020b).  

On a more fundamental level, one should reflect on the issue of small effect 

sizes to be expected in experimental psychology (Funder & Ozer, 2019; Ramsey, 

2020; Schäfer & Schwarz, 2019). Based on the insights of recent large scale 

replication projects, we can be fairly certain that many established effects in 

the literature are much smaller than initially presented, if replicable at all 

(Camerer et al., 2018). One should then question what the smallest effect size is 

that one would consider interesting. Going forward, researchers should aim to 

conduct well-powered direct replications and consider expected effect sizes 

before adapting social motivation paradigms for HRI. 

When Arcimboldo originally painted his whimsical portraits in the late 16th 

century, little did he know that machines today would be endowed with facial 

features to evoke illusory socialness – a simple, yet effective trick, corroborated 

by data that show that mechanical and screen-based robot faces are rated as 

humanlike, friendly, intelligent or in some cases, as uncanny (Chesher & 

Andreallo, 2020; Kalegina et al., 2018; Phillips et al., 2018; Vallverdú & Trovato, 

2016). As our surroundings become increasingly populated by a variety of 

artificial agents (including robots and virtual agents), an important aim will be 

to probe how different types of faces are processed, and what we might learn 

about humans’ intrinsic social motivation toward artificial agents’ faces (Geiger 

& Balas, 2020).  
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Chapter 5 Social Cognition in the Age of Human-

Robot Interaction 
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5. Abstract 

Artificial intelligence advances have led to robots endowed with increasingly 

sophisticated social abilities. These machines speak to our innate desire to 

perceive social cues in the environment, as well as the promise of robots 

enhancing our daily lives. However, a strong mismatch still exists between our 

expectations and the reality of social robots. We argue that careful delineation 

of the neurocognitive mechanisms supporting human-robot interaction will 

enable us to gather insights critical for optimising social encounters between 

humans and robots. To achieve this, the field must incorporate human 

neuroscience tools including mobile neuroimaging to explore long-term, 

embodied human-robot interaction in situ. New analytical neuroimaging 

approaches will enable characterisation of social cognition representations on a 

finer scale using sensitive and adequate categorical comparisons (human, 

animal, tool, or object). The future of social robotics is undeniably exciting, and 

insights from human neuroscience research will bring us closer to interacting and 

collaborating with socially sophisticated robots. 
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5.1. Human Neuroscience as the Icebreaker in a Social 

Robotics Winter  

Human-robot interaction (see Glossary) is a young field currently in a phase of 

unrest. Since the development of KISMET in the MIT Media Lab in the late 1990s, 

one of the first social robots, significant progress has been made towards 

engineering robots capable of engaging humans on a social level. Robots that 

respond to and trigger human emotions not only enable closer human-machine 

collaboration but can also spur human users to develop long-term social bonds 

with these agents. While progress in developing increasingly innovative and 

socially capable robots has advanced considerably over the past decade or so, 

some have suggested that the field is approaching a social robotics winter. 

Referencing the period of disillusionment following escalating hype surrounding 

artificial intelligence (S. Natale & Ballatore, 2020), the still-limited social 

repertoire of even the most advanced embodied robots calls into question the 

proclaimed “rise of the social robots” (Campa, 2016; Tulli et al., 2019). 

With robots failing to deliver on expectations, social interaction has been named 

one of the ten grand challenges the field of robotics is now facing (Yang et al., 

2018). To facilitate progress toward this endeavour, the rich literature of 

cognitive neuroscience offers many insights into human social behaviour, not 

only on a surface level, but also relating to underlying functional and biological 

mechanisms (Chaminade & Cheng, 2009; Hortensius & Cross, 2018a; Wykowska 

et al., 2016). Both human-robot interaction researchers and neuroscientists 

working with robots converge in their interest in facilitating smooth and 

successful social encounters between robots and humans. This joint effort should 

ultimately enable society at large to take advantage of the often-heralded 

potential of robots to provide economical care, company and coaching. 

In this Opinion, we argue that studying the human brain when we perceive and 

interact with robots will provide insights for a clearer and deeper understanding 

of the human side of human-robot interaction, and will thus set the stage for a 

social robotics spring. Our focus on the human side of these interactions, 

including consideration of the constraints of social cognition, serves to highlight 

what recent advances in human neuroscience, in terms of method and theory, 
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can contribute to fluent human-robot encounters. The focus of the majority of 

past studies has been the passive perception of other agents. While this work 

provides a first step towards characterising social interactions, a focus on 

perception alone neglects the rich, complex, and dynamic nature of behaviours 

that unfold during social exchanges in the real world. How can social 

neuroscience further our understanding of not only perception but also of 

dynamic relationships with robots? These insights will explain how people view 

and treat these new agents in relation to humans, pets and other animals, and 

tools and objects. Moreover, answers to these questions will help us to 

understand and support resulting societal changes in the domain of care, 

education, ethics and law. In reflecting on the neurocognitive machinery that 

supports human-robot interactions, we suggest that focusing on representations 

of social cognition and how these change during actual and sustained 

interactions with physically present robots will be important. Moreover, we 

argue that minimally invasive mobile neuroimaging techniques offer exceptional 

promise for deepening our understanding of the human side of human-robot 

interaction. These methods will accelerate human-robot interaction research by 

incorporating social dimensions into our exchanges with these machines, thus 

generating crucial insights helpful in meeting the grand challenge of creating 

truly social robots. After all, roboticists, neuroscientists and robots will all 

benefit from an improved understanding of human social cognition in an age of 

robots (Chaminade & Cheng, 2009; Hortensius & Cross, 2018a; Wiese et al., 

2017).  

5.2. The Origins of Imaging the Human Brain During 

Interactions with Robots  

Human fascination with creating a mechanical self dates back to antiquity, with 

writers in ancient Greece and ancient China conjuring human-like automata to 

serve as workers and servants (Broadbent, 2017). In the past century, the type 

of automaton that has most captured the human imagination (and research and 

development investment) is robots, with some contemporary models edging 

closer to the fictionalised ideals that first appeared centuries ago. Concurrent 

with advances in robotics technology has been the advent and rapid 

development of human brain imaging technology. This technology has been vital 
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in developing our understanding of the neurocognitive mechanisms that support 

social behaviour among humans. More recently, the fields of human-robot 

interaction and neuroscience have begun to intersect, providing new vistas on 

social cognition during interactions with social robots, with seminal studies 

investigating motor resonance, action observation, joint attention, and empathy 

felt towards robots. These studies showcase the diversity of brain imaging 

modalities involved and the technical advances evident from early human-robot 

interaction research and provide a starting point for neurocognitive perspectives 

on these interactions. 

One initial study in this domain (Gazzola et al., 2007) probed the flexibility of 

the Action Observation Network and reported that the parts of the parietal, 

premotor, and middle temporal cortices ascribed to this network respond both 

to watching humans grasp and manipulate objects as well as an industrial robot 

arm perform these same actions. These findings were corroborated by an 

electroencephalography (EEG) study showing mu-suppression over sensorimotor 

or Action Observation network regions for both robotic and human agents 

(Oberman et al., 2007). Insights into motor resonance for robotic actions were 

further replicated and extended when researchers (Cross et al., 2012) reported a 

series of two fMRI experiments that found the Action Observation Network to be, 

in fact, more strongly engaged during observation of (unfamiliar) robot-like 

motion, regardless of whether a human or robotic agent performed the 

movement. These and other surprising findings (reviewed in Press, 2011) were 

attributed to greater modulation of the Action Observation Network following 

greater prediction errors due to the unfamiliarity of robotic motion.  

While observing robotic movements engages action-related brain areas, 

questions remain regarding the extent to which human observers also ascribe 

emotions and intentions to lifeless machines. Past brain imaging studies reveal 

that humans do indeed show engagement of the Person Perception Network 

when observing emotional expressions of robots (Hortensius et al., 2018b) and 

interactions between robots and other humans (Wang & Quadflieg, 2014). The 

circumstances under which similar brain responses linked to empathy might 

emerge when observing humans and robots in simulated pain (Rosenthal-Von Der 

Pütten et al., 2014; Suzuki et al., 2015), or when attempting to decipher the 

intentions of robots (Hortensius & Cross, 2018a), remain an active field of 
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inquiry. An fMRI experiment using the gaze cueing paradigm showed behavioural 

and brain responses linked to mentalising, such as enhanced activation of 

bilateral anterior temporo-parietal junction, only when people believed that 

another person controlled the robot (Özdem et al., 2016). 

5.3. State-of-the-Art of Human Neuroscience 

Approaches to Human-Robot Interaction  

Major strides have been made in applying advances in human neuroimaging 

technology to studying human-robot interaction in contexts that approximate 

more naturalistic social interactions. These studies further illuminate not only 

the flexibility and limits of human social neurocognition when perceiving and 

interacting with robots, but also some of the challenges and opportunities that 

roboticists face (and will continue to face) as they develop increasingly social 

robots. Work in this domain highlights the importance of not only stimulus cues 

to socialness (i.e., does the agent look and move like a human or a machine?), 

but also, and arguably even more importantly, how perceivers’ prior beliefs or 

expectations shape brain responses and behaviour (Cross et al., 2016; Gowen, 

2016; Klapper et al., 2014).  

Neuroscientists are now also taking advantage of increasingly sophisticated and 

multivariate analytical approaches to more sensitively probe how the human 

brain represents robots compared to people (Box I). Recent work has applied 

representational similarity analyses to fMRI data collected when participants 

viewed three agents (a human, an android, and a mechanical-looking robot) 

performing different actions (Urgen et al., 2019). Results revealed that different 

nodes of the Action Observation Network represent distinct aspects of these 

actions, and these representations appear to be hierarchically arranged. 

Specifically, occipitotemporal regions coded for lower level action features (such 

as form and motion integration), while parietal regions coded more abstract and 

semantic representational content, such as the action category and intention. 

These findings corroborate related work that examined effective connectivity 

between these two nodes when participants viewed actions of varying familiarity 

(Gardner et al., 2015).  
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Additional recent work highlights important aspects of how the human brain 

computes and evaluates anthropomorphism (Rosenthal-von der Pütten et al., 

2019; Waytz et al., 2019; Wiese, 2018). One study has attempted to evaluate the 

uncanny valley hypothesis using an elegant combination of modelling 

behavioural ratings and functional connectivity brain data (Rosenthal-von der 

Pütten et al., 2019). The authors reported a response profile within the 

ventromedial prefrontal cortex that closely reflected the hypothesised, 

nonlinear, uncanny valley shape when viewing images of robots and humans 

rated more or less unsettling. Further modelling demonstrated that a distinct 

signal originating in the amygdala predicted when participants would reject 

artificial agents. This finding ties in with another recent study (Waytz et al., 

2019) that examined anthropomorphising behaviour among a small group of 

individuals with rare basolateral amygdala lesions. These individuals were able 

to anthropomorphise animate and living entities similarly to neurologically intact 

individuals, but anthropomorphised inanimate stimuli (such as a robot) less than 

controls. The authors suggest that the limbic system plays a key role in 

processing signals originating from artificial agents in a social versus non-social 

manner. 

However, mere observation of robots in one-off laboratory studies can tell us 

only so much about human-robot interaction. Two recent fMRI studies highlight 

further innovations in bringing together neuroscience, robots, and real-world 

interactions to advance the fields of social cognition and social robotics 

collectively. The first paves the way for future social neuroscience studies that 

incorporate unrestricted social interactions with autonomous agents while 

simultaneously measuring brain responses (Rauchbauer et al., 2019). The authors 

describe a framework that allows participants to interact with a conversational 

agent (a Furhat robot) or a human partner while a multimodal dataset is 

collected including behaviour (e.g., speech, eye gaze) and physiology (e.g., 

respiration, neural activity). Initial results show less engagement of specific 

brain regions playing a role in everyday social cognition, such as the temporo-

parietal junction and medial prefrontal cortex, during live human-robot 

interaction compared to human-human interaction (Rauchbauer et al., 2019). 

Another study examined the extent to which a prolonged period of time spent 

socialising with Cozmo, a palm-sized, playful robot, shapes empathic responses 
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to seeing that same robot “in pain” (Cross, Riddoch, et al., 2019). These authors 

employed pre- and post-socialisation intervention fMRI sessions and measured 

repetition suppression within the pain matrix to determine whether a week of 

daily interactions with Cozmo would shift participants’ empathy toward the 

robot to look more like empathy for another person, based on neural activity as 

well as behavioural responses. While this study did not find compelling evidence 

that a week of socialising with a robot discernibly shifted empathic responses to 

look more human-like (Cross, Riddoch, et al., 2019), this work nonetheless sets 

the stage for studying the impact of longer-term interactions with robots on 

social neurocognitive processes. This area of work is crucial if robots will indeed 

be taking on more social roles in close proximity to humans in our daily lives and 

should inform robotics developers on ways to maximise social engagement not 

just for an hour or during an initial encounter, but over the long term.  

Together, the findings currently emerging from neuroscientific investigations 

into human-robot interactions highlight how robots are useful tools for probing 

core features (actions, emotions, intentions) as well as the flexibility of social 

cognitive processing in the human brain. While significant progress has been 

made, efforts to capture and characterise brain responses during live, ongoing 

interactions with robots remain in the very early stages. As we suggest below, 

this is likely to be one of the most fruitful areas for further exploration and 

development. However, before moving forward with real social interactions, 

clarification is required regarding the engagement of social cognitive brain 

regions.   

5.4. How Should we Probe the Neurocognitive Reality of 

Human-Robot Interaction? 

Neural responses, as measured with fMRI and EEG, when perceiving or 

interacting with robots differ vastly across different brain networks. Generally, 

activity within the Person Perception Network is not reduced when people 

observe social robots and other artificial agents compared to people, while 

activity within the Theory-of-Mind network is reduced (Cross et al., 2019; 

Hortensius & Cross, 2018a). Going beyond differences in neural activation 

magnitude, future research in this area will be propelled by mapping the neural 
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representation of social cognition when we engage with robots and 

characterising how these representations change over time (Box I).  

Many studies examining how humans perceive and interact with robots have 

focussed on the Theory-of-Mind network and the Person Perception Network. 

These two networks underlie everyday social cognition and are a suitable 

starting point to investigate the engagement of social cognitive brain regions 

when encountering robots. Yet, emerging evidence suggests that other brain 

regions, including the inferior parietal lobule, play a key role when we engage 

with social robots (Figure 13). Increased activity in object-selective brain regions 

has consistently been reported across studies using different robotic agents 

(Cross et al., 2012; Cross, Riddoch, et al., 2019b; Rauchbauer et al., 2019). It is 

therefore critical to capture changes beyond the standard Person Perception and 

Theory-of-Mind networks to provide an unbiased account of human-robot 

interaction, while simultaneously acknowledging the possibility that the robots 

are perceived as objects after all, at least in some respect or in certain 

circumstances. 

 

Figure 13 - Activity in object-specific brain regions during human-robot interactions. 

Across several studies that employed different robotic platforms and experimental 
procedures, a consistent finding is that engaging with robots, compared to engaging with 
humans, robustly activates object-specific brain regions. (1) Observing robots compared to 
humans ostensibly experiencing pain or pleasure elicited more activity in the fusiform gyrus 
(FG), middle occipital gyrus (MOG), and the inferior parietal lobule (IPL) (Cross et al., 2019b). 
While (2) live interactions with a robot elicited some of these regions (Rauchbauer et al., 
2019), observations of (3) emotions and intentions expressed by a robot (Hortensius & 
Cross, unpublished data), and (4) robotic movements (Cross et al., 2012) lead to widespread 
activity across these regions. These results indicate the importance of considering brain 
regions that are selective for object perception. Maps for each study are overlaid on top of 
an independent object localizer (Pitcher et al., 2011). Unthresholded group-maps are shown 
for the four studies, while the objects vs faces and bodies statistical map (n = 28) for the 
object localiser is thresholded at FWE < .05 (k = 10). Data for (1) and (2) are from 
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https://identifiers.org/neurovault.image:108836 and 
https://identifiers.org/neurovault.image:112530 respectively (Gorgolewski et al., 2015). 

 

Researchers have almost exclusively tested whether robots elicit human-like 

responses (i.e., do we perceive and react to emotions expressed by a robot 

similarly to those expressed by a human?). Focusing on direct comparisons 

between robots and humans does not acknowledge the possibility that robots 

could elicit subthreshold brain responses in relation to a particular object 

category. Increased activity in response to human stimuli could therefore be the 

result of a narrow (univariate) comparison between the two agent categories. A 

central question in human-robot interaction studies should be what the 

appropriate comparison categories are for different types of robots. Of course, 

these could range from humans to objects to animals, and the best answer will 

naturally depend on the specific research question being tested (Collins, 2019). 

To establish the place robots might occupy in our social milieu, we need to 

measure the (dis)similarity to animate agents (e.g., a human or pet) as well as 

objects (e.g., a phone). Answers to these questions will not only advance our 

understanding of how people perceive robots and the development of 

psychological benchmarks for the success of social robots, but also touch upon 

philosophy, cognitive science and law, which have important implications for 

society at large (e.g. morality, ethics; Bigman, 2019; Kahn et al., 2006; Prescott, 

2017).  

5.5. Towards Understanding Real Interactions with 

Social Robots 

Screen-based experiments, third-person observation and one-off or short-term 

interactions with robots already provide crucial insights on the social cognitive 

processes that underlie engagement with these novel agents. For the field to 

move forward, future studies should investigate real and long-term interactions 

with embodied robots in ecologically valid settings. These studies will provide 

much needed evidence as to how the human brain negotiates interactions with 

these agents in real-life settings. Interactions in social spaces that go beyond the 

laboratory and are relevant to the robotic platform and the user (e.g. schools, 

care facilities, hospitals) will be particularly important (Broadbent, 2017). The 

field of social robotics has a long tradition of usability and user experience 
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studies and these investigations will benefit from the sharpened focus on rigor 

and reproducibility that contemporary psychology and neuroscience bring to the 

table (Box II).  

The field of social neuroscience in general still needs to answer the call for 

taking into account the importance of the second person in an interaction 

(Schilbach, 2012); this challenge is especially relevant for the study of human 

interactions with social robots. Paradigms employing free-flow interactions, 

wherein a recursive perception-action loop exists between two or more agents, 

are needed. Fortunately, several studies have begun to look at the impact of 

exposure to or interactions with robots – covering a wider variety of robot design 

and morphology (Özdem et al., 2016; Wiese et al., 2017). This work is starting to 

explore neurocognitive aspects of human-robot interactions by integrating 

information derived from behaviour (e.g., speech, eye gaze) and physiology 

(e.g., respiration, neural activity) (Cross, Riddoch, et al., 2019; Rauchbauer et 

al., 2019). One of next steps towards measuring truly unrestricted social 

interactions is through the use of mobile functional near-infrared spectroscopy 

(as highlighted below). Combining these state-of-the-art neuroscience methods 

with new developments in natural language processing should enable 

researchers to step away from Wizard-of-Oz methods and provide new ways to 

examine the social nature of human-robot interactions.  

Human-robot interactions are shaped by prior experiences, expectations and 

beliefs that are continuously updated (Hortensius & Cross, 2018a). It is therefore 

critical to go beyond contrasting pre- versus post-interaction measures and 

incorporate longitudinal experimental designs to address questions on 

experience-dependent plasticity of human social cognition when interacting with 

social robots. Of note, several commercially available robots allow researchers 

to collect large datasets per experimental subject over long periods of time, 

somewhat akin to the experience sampling method (an intensive longitudinal 

collection of self-report measures). For example, the Cozmo robot (Ciardo et 

al., 2020; Cross, Riddoch, et al., 2019) collects a rich set of data spanning facial 

recognition, game performance, and “emotional responses” performed by the 

robot. Of course, these procedures must consider privacy, data protection and 

other ethical issues (Rafaeli et al., 2019), but nonetheless offer promise if 

employed responsibly.  
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A consideration to keep in mind in the context of social cognition when 

interacting with robots is the target population that the robots are designed for, 

and the purpose of these interactions. Whereas two key target populations for 

robotics developers are children and older adults, participant samples in 

neuroscience and psychology are predominantly comprise young adults and are 

often biased towards specific sectors of society (e.g., educated and a relatively 

high socio-economic status; Henrich et al., 2010). Further, cultural variation 

exists in the acceptance and uptake of robots (Broadbent, 2017), and this 

cultural heterogeneity is not fully represented in basic research, which tends to 

be conducted in industrialized countries, often in western ones. As research on 

human-robot interaction gradually moves towards broader geographical and 

societal representation, it is important to consider differences in expectations, 

attitudes, and beliefs, as well as in prior experiences with robots. This variation 

needs to be considered in the forms of individual differences (e.g. in learning 

and plasticity), as well as differences between age groups (e.g. Kirsch & Cross, 

2018) and cultures. As one example, one needs to take into consideration that 

countries such as Japan and South Korea have a longer tradition of research and 

development in this area (Cameron et al., 2017; Hinz et al., 2019; Jairo Perez-

Osorio et al., 2019). Similar to an individualised approach that many technology 

companies adopt (e.g., social media, streaming services), for which cognitive 

neuroscience has also advocated (Gordon, 2017), the time is ripe for research 

into human-robot interaction to adopt methods that are sensitive to and 

capitalise upon individual differences. Considering how quickly people adopt and 

can adapt to new technologies, as well as the impact of potential generational 

differences on attitudes towards such technologies, and the continuous 

development of new social robotics platforms, it is imperative to keep in mind 

what a fast-moving and continuously evolving target human-robot interaction is. 

In order for research in this dynamic area to maximise relevance and 

generalisability, we argue for the use of specialised methods that enable 

researchers to map this variation. Combining real and extended interactions with 

continuous data collection, neuroscience methods and machine learning, could 

thus be major step towards personalised human-robot interaction (Clabaugh & 

Matarić, 2018). 
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5.6. The Promises and Pitfalls of Using Mobile Brain 

Imaging in Embodied Human-Robot Interaction 

Studies  

New developments in mobile neuroimaging techniques provide the necessary 

testing ground for how robots might resonate at the social level. One promising 

technique for studying human-robot interactions is functional near infrared 

spectroscopy (fNIRS). This technique has been advancing steadily since a 

connection between human brain function and corresponding light absorption 

was originally established (Chance et al., 1993). This imaging modality, like 

fMRI, maps the blood oxygen level dependent response, taking advantage of the 

transparency of biological tissue (such as skin and bone) in the near-infrared 

spectrum (for a comprehensive review see Pinti, Tachtsidis, et al., 2020). Light 

shone on the head with laser diodes or LEDs travels through the skull, scatters 

back in a banana-shaped curve and is eventually picked up by a detector located 

at approximately 3 cm separation. The constraints of fNIRS relate to its 

relatively shallow penetration depth (reaching the outer layers of the cerebral 

cortex) and relatively low spatial (2-3cm) and temporal resolution (up to 10Hz). 

It has a lower spatial resolution than fMRI and a slower temporal resolution than 

EEG, yet brings the advantages of being cost effective, portable and relatively 

robust to movement artefacts. 

 

These advantages allow for mobile and unobtrusive neuroimaging, thus 

presenting fNIRS as an optimal candidate for conducting embodied human-robot 

experiments - especially with under-represented groups such as young children, 

patients and older adults that often cannot participate in more constraining 

types of data collection. Researchers in human-robot interaction have embraced 

fNIRS as a tool to construct feedback loops to control robotic movement or 

behaviour (Solovey et al., 2012) and as an implicit response evaluation to various 

robotic systems (Kawaguchi et al., 2012; Mehta, 2019; Strait & Scheutz, 2014b; 

for a review see Canning & Scheutz, 2013). Various high-quality, commercial 

imaging systems that allow high-density channel and hyper-scanning set-ups with 

great potential for research on dyads or groups interacting with a robot are now 
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available, and some recent proof of concept studies have shown the possibility 

of using fNIRS for connectivity analysis (Bulgarelli et al., 2018). 

The transition from lab-constrained experiments that employ screen-based 

evaluations of social robots to the measurement of unrestricted real-world 

interactions with physically embodied robots using fNIRS should be a gradual 

process, adding complexity in a stepwise fashion (Figure 14). For example, in 

recent years, the brain networks involved in observing social interaction have 

been mapped in detail (Quadflieg & Koldewyn, 2017). Two regions, the posterior 

STS and the TPJ, code different aspects of observed interactions (Isik et al., 

2017; Walbrin et al., 2018; Walbrin & Koldewyn, 2019). A logical next question is 

the extent to which the presence and content of interactions with robots is also 

coded in these regions in third-person encounters. Following on, insights gained 

from these experiments will pave the way for an embodied research approach 

where brain activity can be measured during real interactions between humans 

and robots in unconstrained interactions. In a recent study, for instance, the 

authors used a GLM-based analysis to automatically identify functional events in 

fNIRS data, and employed  a “brain-first” approach, where instead of being 

constrained by a block- or event-related task design, a more ecologically valid 

setting can be chosen (Pinti, 2017). One can envision applying similar 

methodologies in the context of human-robot interaction experiments. 
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Figure 14 - Employing functional near infrared spectroscopy for unconstrained human-robot 
interactions.  

A stepwise approach can be undertaken to allow for unconstrained human-robot 
interactions outside the laboratory in the real world. A first step is the identification of brain 
regions implicated in a social cognitive process of interest as identified in previous findings 
(e.g., literature, pilot studies). This is followed by a screen-based exploration of the 
involvement of these regions during the observation of human-human and human-robot 
interactions. A third step is the relatively unconstrained interaction with a robot in the 
context of a laboratory, followed by a final step that allows for embodied interactions with a 
robot in everyday environments (e.g. schools, homes). The result of each step can inform 
the methodology and analysis employed in the next step. Photographs provided by 
Michaela Kent, Anna Henschel and Rebecca Smith. 
 

 

When using fNIRS in embodied interaction experiments with social robots, 

several decisions need to be taken: will the device be used to control the robot 

or inform the evaluation of the robot? How long and “natural” or unconstrained 

can the interaction be and still yield reliable and interpretable data? Most fNIRS 

systems, while lightweight and portable in a fitted backpack, cannot be worn for 

longer than about 45 minutes, due to the pressure of the optodes on 

participants’ scalps. When performing games or tasks that involve joint 

movement, another important limitation to keep in mind is that most 

commercially available social robots are not capable of repeating the same 

motions for hours on end, as motors can overheat, and batteries run out. 
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However, despite these constraints, using fNIRS in embodied social robotics 

studies promises to take us one step closer to following the tenets of a two-

person neuroscience (Schilbach, 2012): only by freeing the robots from the 

screen can we begin to understand how embodied interactions affect cognitive 

processes in socially relevant areas of the cortex – including the superior 

temporal sulcus, temporo-parietal cortex and orbitofrontal cortex. 

 

5.7. Concluding remarks 

Neuroscience-informed human-robot interaction is making important advances in 

changing the landscape of social robotics, while concurrently deepening our 

understanding of the human brain. Beyond perceiving robots in screen-based 

experiments, recent insights have shown that more sophisticated analysis 

methods and the trend of gathering data during real-time, embodied 

interactions with robots can deepen our knowledge of core mechanisms 

supporting social cognition. An added (and natural) benefit to this basic human 

neuroscience research is that it also stands to inform the development and 

design of next generation social robots – the same robots that may eventually 

become social companions that provide support and care. With that, just over a 

decade of neuroscientific contributions to human-robot interaction have shown 

that major questions still remain, for instance: How does the sophisticated 

neural machinery of the human brain support our interactions with these novel, 

mechanical companions? How does the representation of social cognition change 

over time as robots become more deeply integrated into our social life (see 

Outstanding Questions)? The insights from future studies combining human 

neuroscience and social robotics will prepare us for a future of living with 

autonomous robots that resonate with us at the social level. 
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5.8. Box 1. Delineating the neural mechanisms of 

human-robot interaction 

How can we examine the functional and temporal changes in neural 

representations of social cognition during human-robot interaction? 

Neuroimaging techniques such as EEG and fMRI provide detailed temporal and 

spatial information on these changes. Traditionally, researchers have looked at 

relative differences in measures of neural activity during the perception of 

human and robotic agents. Most research used univariate analyses thereby 

focussing on distinct networks in the brain, such as the Action Observation 

Network, Person Perception Network and Theory-of-Mind network. This approach 

allows researchers to answer questions such as whether brain activation when 

observing a “happy” robot is higher or lower compared to observing a happy 

human. In recent years, however, the development and employment of 

increasingly more detailed analyses, ranging from repetition suppression, to 

representational similarity analysis, to multi-voxel pattern analysis, provide 

further and new ways to address questions regarding the overlap of neural 

architectures for social engagement with humans compared to robots. Repetition 

suppression enables mapping of potential overlap between similar or dissimilar 

categories, as repeated stimuli lead to deactivation of regions responsive to 

these stimuli. For example, does a “happy” robot followed by a happy human (or 

vice versa) lead to reduced neural activity in a particular region of interest? The 

presence of repetition suppression would argue for shared neural resources 

underlying the processing of perceived robotic and human happiness. The critical 

next step to capture the changes in the representation of social cognition during 

perception and interaction with social robots is the use of multivariate analyses. 

Representational similarity analyses can establish the similarity in neural 

activation during the observation of a happy or angry human and a happy- or 

angry-appearing robot (Figure 15-A). This approach can test if the neural 

activation represents a particular stimulus dimension. For example, does activity 

reflect a representation at the level of agent (activity for robots is dissimilar to 

humans, regardless of expression) or emotion (activity is dissimilar between 

happy and angry expressions, but similar across humans or robots). Lastly, a 

promising way to probe the extent to which perceiving and interacting with 

humans and robots truly share representations at the neural level is to use 
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multivoxel pattern analyses (Figure 15 -B). Instead of measuring magnitude 

changes, this technique assesses patterns of neural activity that are predictive 

of specific task conditions, i.e. the representation of different emotions. One 

way to test possible shared representations is to train a classifier to distinguish 

the observation of a robot displaying happiness from a robot displaying anger, 

and to test this classifier to distinguish a human experiencing happiness from 

experiencing anger. If the human brain represents perceived human and robot 

emotions similarly, then the decision criteria of the classifier can be used to 

distinguish these two different categories. Together, these analytical tools 

provide new vistas on human social cognition during real and long-term 

interactions with social robots and the representation thereof.  

 

Figure 15 - Towards a Shared Representation of Social Cognition During Human–Robot 
Interaction. 
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5.9. Box 2.  Integrating Open Science Practices into 

Human-Robot Interaction studies 

The movement towards open science practices and increased reproducibility is 

gaining momentum across research domains in the life and physical sciences, 

including psychology and human neuroscience (Munafò, 2017; Poldrack et al., 

2019). Similarly, these issues are acknowledged in Artificial Intelligence research 

(Hutson, 2018), and have recently been further reflected upon by robotics 

researchers (Bethel & Murphy, 2010; Eyssel, 2017; Irfan, Kennedy, Lemaignan, et 

al., 2018). Issues of transparency and reproducibility are especially important for 

investigations of the neurocognitive mechanisms supporting human-robot 

interaction. Integrating methods and tools from psychology and neuroscience, 

researchers not only face reproducibility issues key to these fields (e.g. 

reliability of fMRI findings (Button et al., 2013), and researchers’ degrees of 

freedom in pre-processing pipelines of fNIRS and fMRI data (Carp, 2012; Pinti et 

al., 2019), but also issues specific to the field of social robotics (e.g. cross-

platform generalisability, access to expensive and bespoke robotic platforms). 

Encouragingly, experimental reform is being implemented in the human-robot 

interaction community, with the 2020 ACM/ IEEE International Conference on 

Human-Robot Interaction being the first to invite replication studies for 

submission. In recent years, psychologists and neuroscientists are more broadly 

embracing open science practices, which will help to remedy many of the 

abovementioned issues. Concrete actions along these lines include taking steps 

like pre-registering studies, conducting replication studies, sharing research 

materials and (anonymized) data, as well as posting pre-print articles (Munafò, 

2017; Poldrack et al., 2019). This scientific reform can especially benefit human-

robot interaction research, as studies are often resource- and time-intensive and 

include relatively small samples of subjects. Sharing data and scripts will enable 

the wider community to conduct secondary and meta-analyses and exploratory 

tests on published data. Sharing of research resources and products should also 

contribute to a more inclusive community, giving, for example, access to data 

from bespoke robotic platforms. Finally, a movement toward greater openness 

and transparency should facilitate more exchange between disciplines as well as 

a more robust human-robot interaction literature, by creating an ecosystem 

conducive of cross-platform replication. One question the field needs to address 
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is the cross-platform generalizability of previous findings (Cross, Hortensius, et 

al., 2019; Hortensius et al., 2018b). Developmental social robotics already 

successfully implements artificial architectures to test cross-platform 

generalizability (Cangelosi & Schlesinger, 2018) and future research should 

further incorporate this practice to replicate and extend previous findings. 

Moving forward, the implementation of open science practices can help 

facilitate more reproducible user studies and can foster a common ground in 

terms of methodology between human-robot interaction researchers and 

cognitive neuroscientists. 
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5.10. Glossary 

Action Observation Network – a collection of brain regions comprising parts of 

parietal, premotor and occipitotemporal cortices that responds when watching 

other agents (human or robotic) in action. 

Automatic imitation – see motor interference.  

Brain-computer interface – a setup that allows for signal relay between the 

brain and an external device, such as robot, usually via a computer.  

Gaze cueing paradigm – a commonly used psychological paradigm used to 

investigate the mechanisms of joint attention. The gaze of an observed other 

(human or non-human, physically present or viewed on a screen) either looks 

towards or away from a visual target the participant is required to attend to, 

and the cost in a participant’s response time is thought to be a measure of social 

engagement. 

Human-robot interaction – see social robotics. 

Mentalising – a cognitive process by which an individual reflects on, explores and 

interprets their own and others’ thoughts and feelings, and how these influence 

behaviour and actions. 

Motor Interference – Observing others perform movements incongruent to one’s 

own has been found to produce motor interference. Motor interference is closely 

related to automatic imitation, a phenomenon that describes the tendency of 

humans to implicitly imitate others’ actions and other social cues.  

Natural language processing – field of study concerned with the recognition and 

production of natural language by computers and algorithms.  

Pain Matrix – collection of brain regions associated with empathy and emotional 

processing when seeing another individual in pain or distress. Primary nodes of 

this network include bilateral anterior insular and medial anterior cingulate 

cortices 
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Person Perception Network – a collection of brain regions responsive to other 

individuals, especially their faces and bodies. Regions include the fusiform face 

area and extrastriate body area, among others.  

Prediction Error – a mismatch between a predicted and observed response. 

Repetition Suppression – In a brain imaging context, this refers to a reduction in 

a neural response that emerges when a stimulus (or a certain aspect of a 

stimulus) is repeated more than once. Also referred to as repetition priming. 

Social robotics – this term encompasses a wide variety of research relating to 

robots designed to engage humans on a social level, often framed in a 

companionship or assistance context. Human-robot interaction is one facet of 

this diverse field, which specifically investigates how humans perceive and 

interact with robots.  

Social robotics winter –a term used to describe the current disillusionment 

surrounding social robots, as technological developments have failed to live up 

to the hopes and expectations fed by robotic depictions in film, television, and 

other media, as well as the failure of several recent robotics start-ups.  

Theory of Mind – the ability to attribute other mental states (thoughts, desires, 

and intentions) to other individuals. Commonly associated with a network of 

brain regions, the Theory-of-Mind network including the medial prefrontal 

cortex, bilateral temporoparietal junction and the precuneus. 

Uncanny Valley Hypothesis – humans prefer anthropomorphic agents but reject 

them if they appear too human-like - to what extent the uncanny valley is an 

artefact of contemporary experimental procedures remains unknown.  

Wizard-of-Oz – describes an experimental set-up in which the robot does not 

operate autonomously, but rather is controlled by the experimenter, thus 

resembling the trickster turned wizard in the eponymous film. 
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5.11. Outstanding questions 

What are the scope and limitations of social cognition when interacting with 

social robots? Beyond responding to movement, recognising emotions, and 

incorporating gaze behaviour of the robot into the equation, are we able to feel 

empathy for, attribute intentions to, and collaborate with these mechanical 

beings? Can we form meaningful social relationships with them? Will it ever be 

possible to develop a robot with a range of social cognitive abilities that 

resembles (or even improves upon) that of humans? 

How do long-term interactions with social robots shape social cognition? Could 

the human brain’s representation of emotions expressed by a robot ever become 

indistinguishable from the representation of emotions expressed by a human? To 

what extent can neurocognitive processes be repurposed during human–robot 

interaction, resulting in shared representations of social cognition when humans 

or robots are involved? 

Do robots need to be framed as social agents at all in order to be useful in social 

contexts? Or are there some situations (e.g., elderly care) where social robots 

are perhaps most successful and useful when introduced simply as ‘tools’? While 

most studies focussed on testing the extent to which robots elicit responses 

similar to humans, might it be more instructive to assign robots to their own 

distinct category, which stands apart from the categories of animate agents 

(e.g., a human or pet) and objects (e.g., a phone)? 

Establishing the neural mechanisms supporting human–robot interaction beyond 

the theory-of-mind network and PPN, what role do object-specific brain regions 

play during human–robot interaction? 

With the field moving towards naturalistic interactions, to what extent will 

previous findings from the laboratory on passive observation of robots (whether 

in situ or on screens) replicate and generalise to the real world? Also, to what 

extent do findings replicate across robotic classes (e.g., humanoid vs. 

mechanoid vs. animal-like) and platforms? 
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What are the individual, cultural, and developmental constraints of human–robot 

interaction? How best can we incorporate findings from ongoing work examining 

questions in these domains to create more diverse, adaptable, and engaging 

robots? 

Does the field need a unifying theoretical framework to explain how robots 

impact different aspects of social cognition (e.g., empathy or reward)? 
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Chapter 6 Validating functional near-infrared 

spectroscopy as a tool for studying embodied 

social interactions with robots 

6. Abstract 

Functional near infrared spectroscopy (fNIRS) is a promising tool for the 

evaluation of embodied human-robot encounters. In this study, we compared the 

quality of the fNIRS signal with the fMRI blood oxygen-level dependent (BOLD) 

response, to establish the detection rate of brain activity with each modality, 

using a robust Theory of Mind (ToM) localiser task. Using a new method for the 

digitisation of fNIRS probe positions, we also investigated overlap sensitivity of 

the probes and individual participants’ functional regions of interest. We found 

that on the individual subject level, the localiser evoked robust activity in the 

bilateral temporoparietal junction (TPJ), as measured with fMRI. However, the 

channel-wise fNIRS analysis showed more variable results. Finally, the 

photogrammetry and subsequent co-registration with subjects’ anatomical brain 

scans was successfully accomplished for every subject, revealing how inter-

individual differences in the subjects’ brain anatomy could have contributed to 

the lower signal-to-noise (SNR) ratio using fNIRS.  
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6.1. Introduction 

Recent advances in fNIRS have allowed researchers to transform brain imaging 

experiments from those where participants observe social interactions into 

experiments where participants take part in actual embodied social interactions, 

moving the field closer towards a more ecologically valid ‘second-person 

neuroscience’ (Pinti et al., 2018; Schilbach, 2012). There are clear advantages 

of using fNIRS over other brain imaging methods like electroencephalography 

(EEG) and functional magnetic resonance imaging (fMRI) in naturalistic HRI 

environments. Both social neuroscientists and HRI researchers have reflected on 

the synergies that emerge from implementing fNIRS into evaluations of social 

robots, i.e. those robots that are designed to engage humans on an interpersonal 

level (Henschel, Hortensius, et al., 2020b). Indeed, Strait and Scheutz (2014a, p. 

1) see fNIRS as an innovative tool, which can “build […] a literal bridge between 

robotics and neuroscience” either as a brain-computer interface or as an offline 

evaluation method. In comparison to EEG and fMRI, fNIRS offers a reasonable 

option for in-situ neuroimaging, although with lower spatial resolution than 

fMRI, and lower temporal resolution than EEG. Thus, HRI researchers seeking to 

increase the ecological validity of their experiments with fNIRS should keep 

these limitations in mind.    

While EEG offers higher temporal resolution in the millisecond range, it is 

extremely sensitive to subject motion, and is thus only of limited use in 

embodied encounters with robots. Functional MRI, which offers relatively 

superior spatial resolution, also constrains the scope of participants’ motor 

responses. Young children in particular, who have been shown to exhibit 

differential reactions to social robots (as compared to adults), are not ideal 

scanner participants due to the signal’s susceptibility to motion (Greene et al., 

2018; Vollmer et al., 2018). Mobile fNIRS systems, on the other hand, are more 

robust to subject motion, as long as the optodes are tightly fixed to the head of 

the participant (Huppert et al., 2009). With this brain imaging modality, very 

young children can move more freely and can be directly supported by their 

parents while data are recorded (Powell et al., 2018). To summarize, fNIRS 

might not have the spatial resolution of fMRI or the temporal resolution of EEG, 

yet it fares better than these more established modalities in terms of robustness 
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to motion, as well as better portability and lower cost associated with scanning 

time.   

In addition to these advantages, fNIRS has also been emphasized as a valuable 

tool to objectively assess human-robot encounters (Balconi & Molteni, 2016). 

Wiese and colleagues’ (2017) recent perspective on the intersection between 

neuroscience and HRI critically reflects on current empirical work with social 

robots, which, they argue, is limited by inconsistent assessments of robots. The 

authors argue that in order to build successful social robots (where ‘successful’ 

means robots that are accepted by humans as a social companion), behavioural 

and neuroscientific methods are needed to systematically probe neurocognitive 

mechanisms at play (Chevalier et al., 2020; Wiese et al., 2017). Chevalier and 

colleagues (2020) stress that cognitive neuroscience can bring this meticulous 

approach to the table when studying human-robot interaction, as specific, 

isolated (social-)cognitive mechanisms are targeted and observed.  

Recently, we proposed that before adapting embodied paradigms for human-

robot interaction experiments, an iterative process should occur: first, 

researchers should identify a target region relevant in human-human interaction 

and replicate activity of this region with fNIRS in screen-based paradigms 

(Henschel, Hortensius, et al., 2020b). In the next step - if robust activation is 

found, complexity can be added in the form of embodied interactions with 

robots in the laboratory. In the final step, brain activity can be recorded in 

naturalistic environments, for example in care-homes or children’s nurseries – 

current popular use cases for human-robot interaction (Pinti, Devoto, et al., 

2020; Pinti et al., 2018; Quaresima & Ferrari, 2019). A rationale for using this 

gradual approach is that the evaluation of each step can inform the pre-

registration of the methodology and analytical plans for the more complex, 

following steps. Further, this method could also help social neuroscientists 

uncover discrepancies or overlap between real encounters and their passive 

observation (Schilbach, 2012).  

Following our proposal, in this proof-of-concept study, we sought to test the 

feasibility of fNIRS as a tool for embodied social interaction experiments with 

robots. The main focus of the investigation was to transparently report and 

highlight any challenges we encountered, as well as test a new methodology to 



115 

spatially register the probes, in order to inform the development of future fNIRS-

for-HRI studies (Clausner et al., 2017; Hu et al., 2020).  

6.2. Mechanisms of optical brain imaging  

fNIRS, an optical imaging technique, benefits from the fact that biological 

tissue, like skin and bone, is relatively invisible in the near-infrared light range 

(600-900nm) and thus offers an ‘optical window’ into the activity of the outer 

layers of the cerebral cortex (Ferrari & Quaresima, 2012; Scholkmann et al., 

2014). Oxygenated hemoglobin (HbO) and deoxygenated (HbR) are chromophores 

- they absorb near-infrared light to a different extent. Based on the differential 

absorbance of light, concentrations of HbO and HbR can be calculated, which is 

closely tied to the stimulus-evoked response, eliciting local vascular and 

metabolic effects that are commonly known as the hemodynamic response 

function (HRF; Huppert et al., 2009). 

 

Figure 16 - Schematic depiction of the shape of the hemodynamic response function (HRF) 

Here the different traces relate to differences in BOLD response magnitude due to variations 
in stimulus conditions – or differences in individual participants (see also Poldrack et al, 
2011, p. 3). Graph by Dan Gale used with permission.    

 

The HRF maps the time-lagged vascular response induced by brain activity, 

which is followed by a local oversupply of HbO, coupled with a decrease in HbR. 
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Thus, similar to fMRI, the fNIRS signal is based on neurovascular coupling (Wan et 

al., 2006), as it measures the increase in cerebral blood flow following neuronal 

activation (Figure 16). The HRF is elicited through the presentation of a 

stimulus, and for healthy adults it peaks at about 5-6 seconds (Friston et al., 

2000; Poldrack et al., 2011). Depending on the stimulus (or repeated 

presentation of the stimulus), the magnitude of the HRF may differ (Figure 16). 

Light shone on the head with the light-emitting optodes penetrates a little less 

than half the source-detector separation, usually spaced at 3cm distance for 

adults (Pinti et al., 2019). The investigated tissue volume that lies in between is 

referred to as a ‘channel’. fNIRS, despite being constrained to a relatively 

shallow penetration depth, has been used to study a multitude of processes, 

including motor, visual, language, auditory and cognitive systems (Huppert et 

al., 2009).  

6.3. Validating fNIRS with fMRI 

To validate fNIRS as a feasible tool for embodied HRI studies, we followed the 

established tradition of fMRI-based verification, as fMRI is still considered the 

“gold standard for neuroimaging” (Wijeakumar et al., 2017, p. 204). Using the 

new spatial registration method, it was our goal to establish an anatomical and 

functional ground truth using MRI and relate this ground truth back to the fNIRS 

probe placement. Evidence from previous studies validating NIRS with fMRI has 

shown that overall there is a relatively strong degree of correspondence 

between the signals. Cui and colleagues (2011) scanned participants 

concurrently with fMRI and fNIRS, placing optodes over frontal and parietal 

regions and testing a battery of cognitive tasks. The fNIRS measure showed a 

lower signal-to-noise (SNR) ratio than fMRI (as would be expected). However, the 

authors reported a significant correlation between HbO and the BOLD response, 

which they attribute to the fact that HbO has a higher SNR than HbR. Task-

characteristics also played a role: motor, language and visual tasks showed 

robust correlations, however, the authors also report that longer scalp-brain 

distance negatively impacted the signal correlations. A mean scalp-brain 

distance of 16.8mm was reported, importantly, with a larger distance in parietal 

regions (i.e. those of interest to social neuroscientists and HRI researchers). The 
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authors explicitly encouraged future research to investigate the correspondence 

of fNIRS and fMRI for event-related (rather than block-design) tasks with more 

subtle effects, which we addressed in the current validation study.  

Noah and colleagues (2015) compared fNIRS and fMRI by sequentially recording 

brain activity using an adapted dance video game task designed to assess the 

integration of multi-modal stimuli. The authors correlated the two signals and 

found good correspondence between them, concluding that this constitutes 

positive evidence for the feasibility of replicating fMRI findings using fNIRS in a 

naturalistic scenario. In their scanner-adapted version of Dance Dance 

Revolution, participants responded on a modified foot platform in a block-design 

task consisting of rest and play epochs. These authors highlight that they chose a 

block design paradigm to “yield strong cortical responses in both procedures” 

(p.9). In a sophisticated study by Wijeakumar and team (2017), fNIRS and fMRI 

was recorded simultaneously, and to test the correspondence of the signals, an 

image-reconstruction approach for the fNIRS data was used. To allow for direct 

comparison with the voxel-based fMRI results, the authors transformed the data 

from channel to voxel space. Here they found significant voxel-wise correlations 

for all experimental conditions in frontoparietal and temporal cortices.  

Overall, the reviewed studies seem to generally support good methodological 

correspondence between fMRI and fNIRS, with some variability in the 

correlations that can be attributed to larger scalp-brain-distances in fNIRS.  

6.4. The role of the TPJ in HRI 

In the current study, we targeted a hub-region central to day-to-day social 

cognition – i.e. “a suitable starting point” when transitioning to the investigation 

of embodied human-robot encounters (Henschel, Hortensius, et al., 2020b, p. 5). 

During human-human interaction, the TPJ forms part of a domain-general 

network, involved in person perception, action observation and mentalizing, but 

also non-social functions (Darda et al., 2018; Olmen, 2018; Schurz et al., 2014, 

2017). Converging results from fMRI and fNIRS studies have added further 

support for TPJ playing a role in imitation and self-other distinction in some 
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observation-only and embodied human-human interaction paradigms (Gallagher 

& Frith, 2003; Oliver et al., 2018; Olmen, 2018; Schurz et al., 2014).  

Due to its crucial role in controlling social interactions with other humans, the 

TPJ has been a central subject of investigation in HRI brain imaging studies as 

well (Hortensius & Cross, 2018a). In an fMRI study by Gobbini and colleagues 

(2011), participants viewed emotionally evocative facial expressions by humans 

and robots. The researchers found that activity in regions commonly referred to 

as the ToM network – which are engaged when we are thinking about the inner 

mental lives of others – was reduced. Specifically, participants’ right medial 

prefrontal cortex (MPFC) and right TPJ showed less activation in the robot 

condition. Hortensius and Cross (2018a) reviewed several fMRI studies reporting 

reduced engagement of the bilateral TPJ when robots are observed, compared 

to cues to humanness, and summarised that this reduced activation can be 

linked not so much to the external features of robots, but rather beliefs and 

expectations about them. Hence, an interesting question for future embodied 

HRI studies is whether this reduced activation of the mentalising regions of the 

brain holds in direct interactions with autonomous or Wizard-of-Oz controlled 

robots.  

To effectively target the bilateral TPJ, a validated functional localiser task from 

the fMRI literature was selected for the present study (Jacoby et al., 2016; 

Richardson et al., 2018; Richardson & Saxe, 2020). In their original study, Jacoby 

and colleagues found that the functional region of interest (fROI) detection rate 

for this short Pixar-animated movie was high for the bilateral TPJ: for the left 

TPJ (LTPJ), it was successful for 17 out of 17 participants, and for the right TPJ 

(RTPJ), it was able to elicit functional activity in 16 out of the 17 participants. 

Since then, many fMRI studies have enthusiastically implemented the localizer, 

and a follow-up experiment by Richardson and colleagues (2018) showed that 

ToM regions, including the bilateral TPJ, are developed and functionally distinct 

very early in life – as early as 3.5 years of age. The rationale for using this short 

functional localiser task was that it has shown to be efficient in eliciting robust 

activity on the single-subject level. Using the fMRI activity as our ground truth, 

we wanted to investigate the translation of these findings into the fNIRS 

modality.  



119 

6.5. The current study: research questions and 

hypotheses 

The main research question we wanted to address in the current study relates to 

overlap sensitivity, i.e. how much would the spatially registered fNIRS probes 

overlap with the functional MRI activity on the single subject level? Related to 

this, we asked how consistent the optodes placements would be over our region 

of interest: bilateral TPJ. The second major question we wanted to address was 

how the detection rate for functional activity on the single-subject level would 

compare across the two modalities. 

As this was an exploratory, proof-of-concept study, we had no directional 

hypotheses about either of these two research questions, however, for each one 

of the two modalities we expected to see increased activity in the bilateral TPJ 

for the contrast of interest: mentalising events in the movie task versus pain 

events.  

6.6. Methods 

6.6.1. Open science statement 

Owing to the exploratory nature of this study, no pre-registration was published 

before data collection, however, the insights gained in here will guide future 

pre-registrations. The task was presented as part of a larger validation project 

posing additional questions regarding test-retest replicability (for both 

modalities) and spatial specificity of the fNIRS modality. Hence, here we report 

only the measures, data exclusions and the sample size determination rule for a 

subsection of this wider project (BOLDlight): the bilateral TPJ functional 

localiser task. Brain and the spatial registration data will be shared at 

Neurovault (https://neurovault.org/) after they are appropriately anonymized 

and de-faced. The data sharing issue is especially salient for the sensitive data 

recorded during the photogrammetry-based spatial registration. Homölle and 

Ooostenveld (2019) have recommended that only the X,Y and Z coordinates of 

the final probe positions should be shared as point clouds, to avoid the 

identification of subject identities.  

https://neurovault.org/
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6.6.2. Participants 

Matching the sample sizes of previous fMRI-fNIRS validation studies (Cui et al., 

2011; Wijeakumar et al., 2017), twelve subjects (26.4 ± 6.4 years of age, 8 

female/ 4 male), who met our selection criteria of normal or corrected-to-

normal vision, no learning disability and normal hearing abilities were invited to 

participate for monetary compensation. Subjects were contacted by the 

investigators prior to the testing date to ensure that they understood what their 

participation entailed, as well as to rule out any contraindications for the fMRI 

aspect of the experiment. All procedures were approved by the University of 

Glasgow local ethics committee (Ethics numbers: 300180151 and 300180301) and 

the subjects provided written informed consent.  

6.6.3. Experimental Procedure 

Participants passively observed the CGI-animated short film “Partly Cloudy” 

(Pixar Animation Studios). The movie played after a 10 second fixation cross and 

was presented in PsychoPy (Peirce, 2007). Subjects were given the instruction to 

quietly sit (or lie, in fMRI) and observe the movie, while making as few 

movements as possible. In the 5.36 minutes film, clouds conjure human and 

animal babies, which are delivered to earth by helpful storks (Figure 17). 

Throughout the movie, painful events take place (a stork is injured by the spikes 

of a baby porcupine), as well as ToM, during which the observer is prompted to 

consider a character’s thoughts (for example: the stork, who has been 

repeatedly injured by the dangerous babies is caught looking at a cloud 

conjuring fluffy puppies). In the original validation study by Jacoby and 

colleagues (2016), 4 types of events were coded (‘control’, ‘social’, ‘pain’ and 

‘mental’), however, in this study we selected those ‘pain’ and ‘mental’ events 

identified in the reverse correlation analysis by Richardson and colleagues 

(2018).  
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Figure 17 - Screenshot taken from the Partly Cloudy short film.  

Image by Plidezus Leo on Flickr (CC BY-NC-SA 2.0) 

 

We selected those events that reliably replicated in an independent sample of 

adults, which resulted in 7 ToM events and 9 pain events, with durations ranging 

from 4 to 16 seconds. The order of the scanning modalities (fMRI or fNIRS) was 

counterbalanced – half of the participants saw the movie first in the MRI 

scanner, half in the fNIRS lab. In the fNIRS modality, we encountered a problem 

with manually sending the triggers – sometimes when the trigger was elicited, 

the task did not start right away. In those cases, a second trigger was sent, 

which was the one we used for the analysis. However, in all three cases there 

was only a 100-millisecond difference between the first and second trigger. 

6.6.4. Photogrammetry-based spatial registration  

A particular challenge associated with fNIRS is the consistent placement of 

optodes onto participants’ heads, once a target brain area has been identified 

(Powell et al., 2018). The standard approach is to follow the landmarks (nasion, 

inion, auricles and Cz) associated with the 10-20 system and spatially register 

optode locations with a 3D magnetic digitizer (such as the Polhemus) to either 

subject brain anatomy or an age-matched template (Clausner et al., 2017; Noah 

et al., 2015). However, several limitations have been identified that are 

associated with this method: the high cost of such electromagnetic digitizers 

https://creativecommons.org/licenses/by-nc-sa/2.0/
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(the Polhemus costs ~ $8000), distortions introduced by nearby metal objects, 

and low spatial accuracy (Clausner et al., 2017; Homölle & Oostenveld, 2019). 

To address these issues, recent advances in computer-vision technology have 

allowed for a more accurate and cost-effective registration method: 

photogrammetry, which describes the method of building 3D models based on 2D 

images, reconstructed from information of overlapping pictures (Wesencraft & 

Clancy, 2019). This new method of spatial registration, which was developed by 

Clausner and colleagues (2017) for EEG electrodes and MEG fiducial markers, 

seems to promise higher accuracy and flexibility.  

The authors developed an open-source toolbox for Matlab (janus3D), which maps 

the spatial location of electrodes to a participants’ anatomical brain scan via a 

matching technique that takes advantage of rigid facial features. Using a replica 

adult head, Clausner and colleagues (2017) compared the performance of this 

technique to the performance of the Polhemus magnetic digitizer and found that 

EEG electrodes were co-registered with an average error of less than .10mm 

with photogrammetry, while the electromagnetic digitizer resulted in an average 

error of 6.1mm. However, the success of the 3D model reconstruction with a 

participant wearing the EEG cap depends on colour difference information, 

which raises the question how successful the translation of this technique will be 

when constructing 3D models of participants wearing fNIRS caps.  

An initial validation study by Hu and colleagues (2020), who were also interested 

in implementing Clausner and colleagues’ toolbox for fNIRS, gives tentative 

support for the feasibility of the method. Although the authors reported a larger 

registration error than Clausner and colleagues, they compared the technique to 

spatial registration of fNIRS optodes with an MRI-derived spatial registration 

technique (using vitamin E capsules sewn in the fNIRS cap). The authors 

attribute the resulting larger error to the movement of the fNIRS cap when 

participants were placed in the MRI head-coil. Complementing the findings of Hu 

and colleagues (2020), in the current validation study, we tested the feasibility 

of the new photogrammetry-based spatial registration method for fNIRS.  
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Figure 18 - The Shimadzu LIGHTNIRS system demonstrated in its portable configuration.  

During the experiment, subjects were seated and the fNIRS recording device was placed on 
a table behind them. The probes were protected from stray light with a dark silk cap placed 
on top of the cap. The subject gave consent for this image to be shared. 

 

To digitise the optode positions, we followed the photogrammetry for EEG 

procedure described by Clausner and colleagues (2017). To ensure consistency, 

the Shimadzu cap (Figure 18) was placed on participants’ heads according to the 

10-20 landmarks: nasion, inion and left and right preauricular points (Jasper, 

1958). Additional colourful stickers (Figure 19) were added to the cap to aid the 

3D reconstruction of the head models, which as described above, relies on 

colour difference information (Clausner et al., 2017). The centre of the cap was 

aligned with the centre of the head, as measured by the distance between 

nasion and inion, as well as the left and right preauricular points. However, due 

to constraints of the setup (i.e. challenges of precisely replicating placement 

between participants), for a subset of the subjects the landmark points 

themselves were not marked and spatially registered. 

In the first step of the spatial registration, pictures were taken with a Canon 

D3500 DSLR camera while participants rotated on the chair in front of a chroma 

key green screen. To ensure consistent lighting, two studio lights were placed to 

the left and right of the subject (Figure 19). Participants rotated with closed 

eyes (to ensure minimal facial motion) in small steps of 10 degrees for three 

different height settings. The procedure was repeated twice, to allow for back-

up photos, should the first run not result in a good quality model. Between 40 
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and 90 pictures were taken for each participant on each of the two 

photogrammetry runs. The photography was not timed; however, this step 

usually took between 15 and 25 minutes to complete.  

The configuration of the camera and further information are described in more 

detail in our manual (Henschel, Kent, et al., 2020c), which can be found at 

[https://zenodo.org/record/4146985#.X5ny0VngphE]. The processing of the 

images was performed offline, after data collection was completed. To build the 

3D head-model, images were first loaded into janus3D, and using the Photo 

Masker functionality, a mask of the chroma green background was created for 

each picture. The pictures and their corresponding masks were then loaded into 

Metashape (Agisoft). 

 

 

 

https://zenodo.org/record/4146985#.X5ny0VngphE
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Figure 19 - Overview of the photogrammetry-based optode digitisation. 

Three steps are involved in the photogrammetry-based co-registration of the optodes: 
taking the photos, building the 3D head model in Metashape and finally co-registering the 
model and the subject’s MRI anatomical scan in janus3D. The subject gave consent for 
these images to be shared. 
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In Metashape, a matching point cloud was built, then a dense point cloud, a 

polygonal mesh and finally a dense mesh. To obtain the final 3D head model, 

texture information was added. The resulting object file, along with participants 

MRI anatomical scan, was then loaded in janus3D, to perform the final step of 

registering the optode positions to subject brain anatomy (Figure 19). For 11 out 

of 12 subjects we obtained good quality 3D head models. However, even the 

head model that was classified as subpar allowed us to visually identify and mark 

optode positions. Between the two runs, the best quality head model was 

selected for co-registration in janus3D.  

In the first step of the co-registration, the head models are rotated from 

Metashape’s arbitrary to MRI space. Then the head model and MRI scan are 

aligned by outlining the side profile of the subject’s face. Next, the facial 

features are matched to the anatomical scan. The resulting overlay had to be 

manually corrected for most subjects. Three out of the 12 subjects already had 

de-faced MRI anatomical scans. For these three cases, the manual correction of 

the alignment was more comprehensive. After manual correction of the 

alignment, the optode holders of interest were each manually marked, as the 

automatic selection algorithm relies on the contrast between the “electrodes 

and surrounding texture” (Clausner et al., 2017, p. 6). In the case of the grey 

optode holders and the black cap, the contrast was not salient enough for the 

automatic detection to reliably work.  

Extraction of the optode coordinates from the matrix file was completed using 

the MarsBaR toolbox (Brett et al., 2002) in SPM12 (Wellcome Trust Centre for 

Neuroimaging, UCL, London) in MATLAB version 8.5 (The MathWorks Inc., Natick, 

USA, 2018b). Using MarsBaR, it is possible to create spheres with the exact 

coordinates obtained during co-registration. This step created 16 nifti files (from 

8 source and 8 detector locations), each one corresponding to the location of 

one of the optodes. To combine these nifti files, again MarsBaR was utilised to 

create a “master” nifti file containing the 16 spheres.  

Finally, the fNIRS optode coordinates were mapped onto the anatomical images 

of the brain in MRIcro (Rorden, 2007). This step was completed in native space 

for each participant. 
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6.7. Data acquisition (fNIRS) 

We used a wearable Shimadzu LIGHTNIRS system (Kyoto, Japan) to record HbO, 

HbR and total hemoglobin concentration changes. 8 light sources (near-infrared 

semiconductor lasers) and 8 detectors (avalanche photodiodes, APD) were 

arranged covering participants’ putative temporoparietal cortex following a 2x4 

(R), 2x4 (L) probe geometry (Figure 20). This probe geometry approximately 

matched previous fNIRS studies’ probe geometry which targeted the TPJ (Hyde 

et al., 2015; Oliver et al., 2018; Olmen, 2018). The configuration resulted in 20 

logical channels: #1-10 on the right side of the head, #11-20 on the left side. The 

LIGHTNIRS uses 3 wavelengths to account for scattering when converting changes 

in optical density to HbO and HbR concentrations: 780, 805, and 830nm (Pinti et 

al., 2018). Before the optodes were attached, hair under the cap probe holders 

was removed with blunt knitting needles, as other fNIRS researchers have 

highlighted that removing the hair from the optode surface is one of the key 

strategies to ensure a good signal to noise ratio (Noah et al., 2015). 

 

Figure 20 - Schematic representation of the fNIRS probe geometry. 

The design of this figure is modelled after Pinti et al. (2020a). 

 

Once the optodes were connected to the cap, a probe check, i.e. the assessment 

of the quality of optical coupling, in the Shimadzu “fNIRS” software was 
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conducted. Channels with low SNR or with an overflow error were adjusted on 

the participant’s head until they showed satisfactory signal quality. Further SNR 

improvements were undertaken by adjusting the voltage of the APDs.  

6.8. Data analysis (fNIRS) 

Data was recorded with a 13.33Hz sampling frequency. The fNIRS data was 

preprocessed with the open-source Matlab toolbox Homer2 (Huppert et al., 

2009). Our preprocessing pipeline was derived from the one described by Pinti 

and colleagues (2020a), taking into consideration recent recommendations for 

standardizing NIRS data processing pipelines (Pinti et al., 2019). Prior to loading 

the files into Homer2, the raw intensity data was transformed from the 

proprietary Shimadzu format into the nirs file format with the help of a custom 

Matlab script.  

Raw intensity was processed with the enPruneChannels function, which 

automatically removes channels from the measurement if the signal is too 

strong, too weak or the standard deviation is too great (Perry, 2019; Powell et 

al., 2018). One channel (channel 3, subject 11) was discarded. Given the fact 

that participants were instructed to sit still and observe the movie, this low 

exclusion rate is perhaps not surprising. The raw intensity data was then 

transformed into changes in optical density (function, hmrIntensity2OD). We 

then removed motion artifacts using a wavelet-based approach (function, 

hmrMotionCorrectWavelet, iqr=1.5), which has been shown to be the most 

effective strategy for identifying spike artifacts elicited by decoupling of optical 

probes from the skin (Molavi & Dumont, 2012; Pinti et al., 2018). Next, many 

sources of noise (heart rate, low frequency noise, & slow trends) were removed 

using a standard third-order Butterworth bandpass filter (function, 

hmrBandpassFilt, band-pass frequency range [0.01, 0.4]). The optical density 

rather than the concentration signal was filtered to avoid “artifact contaminated 

data in calculation of oxygenated and deoxygenated hemoglobin” (Molavi & 

Dumont, 2012, p. 263). Then, using the modified Beer-Lambert law, the changes 

in optical density were converted to changes in concentration (function, 

hmrOD2Conc) with a differential path length factor of 6.  
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One chromophore (HbO) was considered for further analysis, as past work has 

focused on this signal due to a higher SNR and better correspondence with the 

BOLD response - however, at the same time this signal may be more confounded 

by physiological noise (Cui et al., 2011; Hyde et al., 2015; Pinti, Tachtsidis, et 

al., 2020b). A general-linear modelling approach was chosen, as this takes 

advantage of the fast event-related task design and is considered more powerful 

than block averaging (Pinti et al., 2019; Wijeakumar et al., 2017). The design 

matrix was composed of the two-task related regressors (pain events and 

mentalizing events), as well as the constant term. We investigated the 

Mental>Pain contrast of interest. Beta values were estimated for each channel, 

for each participant. One-sample t-tests were conducted to investigate the 

hypothesis that the signal in one channel was active at a significance level of α 

=.05. The p-values in this exploratory, single-subject level analysis were not 

corrected for multiple comparisons.  

 

Figure 21 - Time course of HbO and HbR for channel 19 of participant 6. 

Only the mental events are marked. HbO is shown with the solid, and HbR with the dashed 
green line. 
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In Figure 21, an example of preprocessed signal for one subject is reported. The 

preprocessing pipeline was effective in minimizing the noise components in the 

raw fNIRS signals, including slow trends, cardiac pulsation, and motion artifacts. 

In fact, increases in HbO and decreases in HbR can be observed, which are time-

locked to the stimuli presentations (dashed lines). 

6.9. Data analysis (fMRI) 

Participants were scanned with a 3-Tesla Siemens Tim Trio MRI scanner with a 

32-channel head coil and integrated parallel imaging techniques at the Centre 

for Cognitive Neuroimaging, University of Glasgow (CCNi), University of Glasgow. 

Functional images were acquired using an echo planar image (EPI) sequence 

[multi-band EPI, TR =  2000 ms, TE = 26 ms, 68 slices per volume, 2 mms 

isotropic voxels, no gap]. Structural images were acquired using a three-

dimensional T1-weighted imaging sequence scan [1 mm isotropic resolution, TR  

= 2300 ms, TE = 30 ms, FA = 9, field of view = 192 x 256 mm2 ]; as well as a field 

map [3.28 x 3.28 x 3.3 mm voxels, TR = 488 ms, TE = 4.92 / 7.38 ms, FA = 60, 

field of view = 192 x 192 mm2].   

6.9.1. Pre-processing (fMRI) 

Results included in this manuscript come from preprocessing performed using 

fMRIPrep 1.5.2 (Esteban et al., 2019) [RRID:SCR_016216], which is based on 

Nipype 1.3.1 (K. Gorgolewski et al., 2011) [RRID:SCR_002502]. Some of the tasks 

and sessions that are referenced in this pipeline were part of a larger project 

(BOLDlight) and are not reported in this chapter. The following fMRI processing 

steps are also reported in a secondary analysis of these data (Hortensius et al., 

in preparation). 

6.9.2. Anatomical data preprocessing 

A total of two T1-weighted (T1w) images were found within the input BIDS 

dataset. All of them were corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 

(Avants et al., 2008) [RRID:SCR_004757]. The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 



131 

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 

performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, 

(Zhang et al., 2001)). A T1w-reference map was computed after registration of 2 

T1w images (after INU-correction) using mri_robust_template (FreeSurfer 6.0.1, 

Fischl, 2012). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was selected for 

spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 

[Fonov et al., 2011, RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym]. 

6.9.3. Functional data preprocessing 

For each of the 10 BOLD runs found per subject (across all tasks and sessions), 

the following preprocessing was performed. First, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. 

A deformation field to correct for susceptibility distortions was estimated based 

on a field map that was co-registered to the BOLD reference, using a custom 

workflow of fMRIPrep derived from D. Greve’s epidewarp.fsl script and further 

improvements of HCP Pipelines (Glasser et al., 2013). Based on the estimated 

susceptibility distortion, an unwarped BOLD reference was calculated for a more 

accurate co-registration with the anatomical reference. The BOLD reference was 

then co-registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson & 

Smith, 2001) with the boundary-based registration (Greve & Fischl, 2009) cost-

function. Co-registration was configured with nine degrees of freedom to 

account for distortions remaining in the BOLD reference. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and 

six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD 

runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox & Hyde, 

1997) [RRID:SCR_005927]. The BOLD time-series (including slice-timing 

correction when applied) were resampled onto their original, native space by 

applying a single, composite transform to correct for head-motion and 

susceptibility distortions. These resampled BOLD time-series will be referred to 
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as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD 

time-series were resampled into standard space, generating a preprocessed 

BOLD run in [‘MNI152NLin2009cAsym’] space. First, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. 

Several confounding time-series were calculated based on the preprocessed 

BOLD: framewise displacement (FD), DVARS and three region-wise global signals. 

FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al., 2014). The 

three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (Behzadi et al., 2007) [CompCor]. Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor 

variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 5% variable voxels within a mask 

covering the subcortical regions. This subcortical mask is obtained by heavily 

eroding the brain mask, which ensures it does not include cortical GM regions. 

For aCompCor, components are calculated within the intersection of the 

aforementioned mask and the union of CSF and WM masks calculated in T1w 

space, after their projection to the native space of each functional run (using 

the inverse BOLD-to-T1w transformation). Components are also calculated 

separately within the WM and CSF masks. For each CompCor decomposition, the 

k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of 

variance across the nuisance mask (CSF, WM, combined, or temporal). The 

remaining components are dropped from consideration. The head-motion 

estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of 

temporal derivatives and quadratic terms for each (Satterthwaite, 2013). Frames 

that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were 

annotated as motion outliers. All resamplings can be performed with a single 

interpolation step by composing all the pertinent transformations (i.e. head-

motion transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) 
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resamplings were performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels 

(Lanczos, 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer). 

6.10. First and second level analysis (fMRI) 

The data was analysed in SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, 

London) in MATLAB version 8.5 (The MathWorks Inc., Natick, USA, 2018b). First-

level analyses were conducted by using a general linear model (GLM). The design 

matrix included the previously introduced mental and pain events (Richardson et 

al., 2018), as well as the following predictors of no interest (Hortensius et al, in 

preparation): framewise displacement, six head-motion parameters, and a 

subset of anatomical CompCor confounds (white matter and CSF 

decompositions). A standard hemodynamic response function was modelled, 

complying with the recommendations of Jacoby and colleagues (2016). A grey 

matter mask was used with a threshold of 0.8. For the mental > pain contrast 

images were smoothed using a 5mm smoothing kernel. For the second level 

(group level) analysis, a one-sample t-test was computed (p <0.001 uncorrected, 

k=10). The ROI analysis was done by extracting contrast values for the left and 

right TPJ using the MarsBaR toolbox (Brett et al., 2002) in MATLAB (version 8.5) 

(Mathworks, Natick, MA, USA, 2018b). A 9mm sphere was built using the same 

coordinates (LTPJ: x = -48, y = -62, z = 30 and RTPJ: x = 48, y = 60, z = 30 in MNI 

space) as Richardson and colleagues (2018).  
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Figure 22 - Region of interest analysis (fMRI). 

The region-of-interest analyses showed robust activation for mental events compared to 
pain events across the ToM network, specifically the left and right TPJ. Contrast estimates 
for Mental>Pain (left and right TPJ) are shown on the individual subject level. Colourful dots 
represent each participant’s estimate. The dashed line shows the contrast level of 0. 

 

6.11. Results 

6.11.1. fMRI: Task validation  

The localiser was successful, as it evoked robust activation of the ToM network 

for the mental > pain contrast, as shown by Figure 22 on the individual level for 

bilateral TPJ, and Figure 23 on the group level.  
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Figure 23 - Group map, left side (fMRI) 

The group map shows robust engagement of the ToM network for the Mental > Pain contrast 
(in red) across all participants (middle temporal lobe, superior temporal sulcus, left TPJ 
(arrow), ventro- and dorsolateral medial prefrontal cortex).  

 

6.11.2. fNIRS: Contrast effects 

As illustrated in Figure 24, we report the uncorrected single-subject level results 

for the contrast of interest (Mental > Pain). Channels that were significant at the 

uncorrected level for p <.05 are indicated in green, channels that were not 

active are indicated in grey. These results show that there were significant 

changes in HbO only for a subset of participants: the array over the left side of 

the putative lTPJ shows activation for 7 out of 12 participants, for the putative 

rTPJ (as measured with the fNIRS system), 4 out of 12 participants show 

significant changes. 

We speculated that due to the participants seeing the movie task at least twice 

(as fNIRS and fMRI was not measured concurrently, but subsequently), maybe an 

anticipatory shift was occurring. This has been reported in a recent study by 

Richardson and Saxe, who presented the same localiser to their participants 

twice (2020). To investigate this, we conducted an exploratory second analysis 

for those participants (#1-5, and #12), shifting the events of interest forward for 

two seconds (i.e. one TR, as reported by Richardson & Saxe, 2020). However, we 
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observed the same response pattern, with the only difference of participant 3 

showing no active channels on the left side, and for participant 5 on the right-

side channel 6 was no longer significant.  

 

Figure 24 – Channels significant at the .05 significance level for the Mental>Pain contrast. 

 

Channel 3 (subject 11) was excluded from the analysis. The original event timings were 

used here. More details of the analysis on shifted event timings can be found in section 

6.11.2. 

 



 

 

Figure 25 - Composite images consisting of each subject’s anatomical image, functional activity and co-registered optodes in native space. 

 

 



A closer look at Figure 24 reveals no consistent pattern of active channels: for 

some participants, only the area under the dorsal or ventral channels shows 

activation, for other participants (number 6 & 7), all channels are active for the 

contrast of interest. After checking whether an anticipatory shift had taken 

place, we turned to our overlap sensitivity analysis, to investigate how well the 

co-registered optode positions corresponded with the subject’s functional 

activity in native space.  

6.11.3. Overlap sensitivity (fNIRS/fMRI) 

In Figure 25, we show the composite images resulting from the first level MRI 

analysis. Here we can see the optode positions that were extracted with the 

MarsBaR toolbox on top of individual participants’ anatomical and functional 

images. For 10 out of 12 participants (>83%), we see a good overlap between the 

fMRI functional activity and the positions of the channels. However, inspecting 

individual subjects we also see large variability in the areas of covered cortex 

and arrangement of the optodes. A further important point, which becomes 

evident in this figure, is that some subjects show a much larger distance 

between the cortex and the optodes than others. This could explain some of the 

‘quiet’ arrays we have shown in the previous Figure 24. Overall, Figure 25 shows 

large inter-subject variability of functional activation, anatomical structure and 

variation in optode placement and brain areas covered.  

6.11.4. Detection rate (fNIRS/fMRI) 

Comparing the detection rate on an individual subject level of the two 

modalities revealed that, as in the original study (Jacoby et al., 2016), the 

functional localiser was successful in eliciting activity in the expected functional 

ROIs (Figure 22). The left TPJ fROI was successfully identified for 11 out of 12 

participants, and the right TPJ fROI was significantly active for 10 out of 12 

participants. Hence, the detection rate of the fMRI functional localiser task was 

more successful compared to the fNIRS modality (7 out of 12 participants for the 

left-side probes, 4 out of 12 for the right-side probes).   
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6.12. Discussion 

In this proof-of-concept experiment, we set out to answer two questions: (1) 

how well would optode placement, which was guided by participants’ identified 

fiducial points, overlap with the anatomical and functional MRI images; and (2) 

how would the detection rates of fMRI and fNIRS compare? In addition, we 

sought to investigate how feasible adapting a new method for spatial 

registration from the EEG to the fNIRS modality would be. We answered these 

questions by taking a descriptive approach, visually inspecting the composite 

images consisting of co-registered optode positions, the subject’s anatomy and 

functional activity. For most participants the optodes seemed to cover the brain 

activity recorded with fMRI, but we observed many interindividual differences 

relating to scalp-brain distance, location of the functional activity and 

inconsistent placement of the optodes. Comparing the results of the first-level 

analysis, we were able to replicate a high detection rate in the fMRI modality, 

showing that the localiser task elicited activity of the ToM network at the 

individual subject level. However, our fNIRS channel-wise analysis showed less 

consistent increases in HbO. A little over 50% of the participants had any active 

channels on the left side of the head, and even fewer showed any increases in 

HbO on the right side. 

One possible reason for a muted response could have been that upon viewing the 

movie for a second time, when fNIRS was the second experimental block, an 

anticipatory shift occurred. We investigated this possibility by shifting the events 

2 seconds earlier in time for those participants who had seen the movie for the 

second time. This resulted in a very similar pattern, if not even more reduced 

than the first analysis we conducted, thus suggesting this possibility is less likely.  

Another plausible explanation for the variability of the fNIRS activation is the 

scalp-brain-distance between the probes and the cortex. For those subjects with 

larger scalp-brain-distance, we can be almost certain to have not recorded any 

signal at all. Indeed, a relatively high attrition rate seems to be commonly 

reported in the fNIRS literature. For example, Plichta and colleagues (2006) 

observe good results at the group-level, however a poor outcome on the single-

subject level. Ferrari and Quaresima (2012) highlight that fNIRS activity can be 
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reliably reproduced even over years, at the group level. To summarise, further 

group-level analyses are necessary to definitively answer how successful the 

localiser was at evoking reliable increases in HbO. We can, however, confirm 

previous findings that on the subject-level, for an event-related social task, 

consistent activity is not observed. Thinking further about the proportion of 

active channels reported in the literature, it is often the case that in arrays of 

40 or more channels, 1 or a maximum of 3 channels are reported that also 

survive multiple comparisons correction (Hyde et al., 2015; Powell et al., 2018; 

Wijeakumar et al., 2017).  

Overall, physiological confounds may explain the results we report here. For 

instance, speculating further on why we did not observe consistent HbO 

increases on the individual subject level, one could also imagine that the repeat 

presentation of the movie stimulus could have led to repetition suppression – 

instead of an anticipatory shift (Bhandari et al., 2020; Larson et al., 2013). In 

fMRI and fNIRS studies, repetition suppression is a common approach to 

investigate the engagement of the same brain network (for example the putative 

pain network) for different types of experimental conditions, such as humans or 

robots experiencing pleasure or pain (Cross, Riddoch, et al., 2019; Nordt et al., 

2016). Thus, future analysis could follow-up on possible suppression of the brain 

signal due to repeat presentation of the movie stimulus. Further, we cannot 

exclude the possibility of extracerebral noise playing a role in obscuring the 

signal, as we were constrained by the design of the cap and thus were not able 

to include short-separation channels, which have been proposed as a strategy to 

better account for different types of signal that does not originate from the 

brain (Tachtsidis & Scholkmann, 2016). Task-related systematic activity relating 

to heart rate, blood pressure, breath and the response of the autonomous 

nervous system contribute and obfuscate the true brain signal. As a solution, 

Tachtsidis and Scholkmann (2016) have proposed the use of these short 

separation channels, which can be used to partition the influence of the 

extracerebral activity.  
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6.13. Alternative analytical approaches for fNIRS 

Reflecting on the perhaps not sensitive enough channel-wise analysis approach, 

we also consider alternative methods for future analysis. Indeed, Pinti and 

colleagues (2020a) implemented additional steps when processing the fNIRS 

signal, which were not used in this exploratory study. These authors applied 

correlation-based signal improvement (CBSI), and further down-sampled the 

signal to minimise the impact of serial autocorrelations on the GLM (Pinti et al., 

2019). Beyond the standard array-based analysis we report here, another option 

can be to use an ROI approach, i.e. to consider groups of channels within an ROI 

– which, in the absence of individual anatomical scans can be guided by the fOLD 

toolbox (Zimeo Morais et al., 2018) and which may be more robust to the 

pruning of bad channels (Pinti et al., 2018). Olmen (2018), who was interested in 

identifying relevant channels for their analysis of rTPJ activity, estimated 

cortical sensitivity using the Monte Carlo photon migration simulation algorithm 

with Atlasviewer (a separate functionality of the Homer2 toolbox). With this 

method, one channel of interest was identified and a time-window of 2 seconds 

around the peak of the HRF was analysed.  

Very closely related to the multiple or single channel ROI approach, is the 

promising functional channel of interest (fCOI) method proposed by Powell and 

colleagues (Powell et al., 2018). In their study, which used a similar movie-

stimulus (Baby Einstein, Walt Disney Productions), the authors tested a new 

analytical method by which channels of interest are identified in individual 

subjects, and the response is then tested in an independent set of data. Powell, 

Deen & Saxe (2018) argue that if the contrast of interest is sufficiently specific 

(in their case, video clips containing faces versus scenes, in our case mentalising 

vs. pain events), instead of treating channels with the same array positions as 

equivalent, one could be guided by the functional response profile on the 

subject level to identify the channels of interest in the left out data. Comparing 

the array-based and the fCOI approach (for the HbO results), the authors 

reported that no channel survived multiple comparisons correction in the array-

based approach for the adult sample, and only one channel survived in their 

infant sample. However, with the more sensitive fCOI analysis, the authors were 

able to show that when the anterior portion of the array was analysed, responses 
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were significantly higher for face compared to scene trials for both adults and 

infants, confirming the finding that very young children under the age of 1 

preferentially respond to faces relative to scenes. Powell and colleagues (2018) 

criticise the approach implemented in the current study, where overlap of the 

channels with underlying subject specific functional regions is checked, as the 

size and location of these functional profiles can be highly variable (something 

we have observed also in this study). Thus, accurately matching channels to 

specific functional regions is insufficient. However, an important point to 

consider is power, as both in our study and in the studies by Powell and 

colleagues (2018) subject numbers were small (12, 20, 16, respectively) and 

thus, as they have also argued, the possibility cannot be excluded that with a 

larger sample size, the inherent noisiness in the array-based approach could be 

overcome. Finally, the authors remark that limitations of the fCOI approach 

could be partially addressed by still mapping optode locations to anatomical 

images, where possible.  

6.14. Spatial registration methods 

On balance, spatial registration remains an important point when implementing 

fNIRS studies for HRI. Evaluating the feasibility of the photogrammetry method 

for fNIRS, we conclude that for the majority of participants, with two runs of 

picture-taking, we obtained excellent quality head models. Issues we faced were 

mainly related to the black-and-white design of the cap, which we addressed by 

adding colourful stickers to the cap and then manually selecting the probe 

locations in janus3D. This of course adds time to the processing procedure: 

researchers can budget about 20 minutes for the photography, and between 1 

and 2 hours for the construction of the head models in Metashape (depending on 

number and quality of the pictures), as well as an additional hour rotating and 

aligning the head models with the anatomical scans in janus3D. This would be 

the most salient disadvantage of using this method compared to faster methods, 

like for example video-based construction of head models. When we were 

piloting the video-based method, the resulting head models did not look like an 

accurate representation of reality, so this approach was abandoned early on. 

Since 2019 however, technical advances have resulted in alternative spatial 
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registration methods, that might be more fast-paced and especially useful for 

infant study participants.  

Jaffe-Dax and colleagues used a GoPro with the slow-motion feature and 3D 

surface reconstruction software (Structure from Motion, Visual SfM) to build the 

head models. These authors added colourful stickers on the fiducial points and 

covered the fNIRS cap with a pattern of blue and pink colourful cut-outs. This 

more time-efficient method showed good correspondence between the optode 

positions obtained from the video-based source reconstruction and the 3D 

magnetic digitizer method. This method has the additional advantage of subjects 

being able to move freely while the video is taken.  

Another technical innovation is the use of structured-light 3D scanners for the 

estimation of probe locations (Homölle & Oostenveld, 2019). These low-cost 

scanners (which are for example used in Kinect cameras for Xbox), also allow 

relatively fast (the authors estimate 2 minutes, compared to the 7 minutes 

needed with the Polhemus digitizer) mapping of probe locations. The authors 

also highlight that they tested the approach on 50 subjects, compared to the 

single-subject (or single replica head) that has been commonly observed in the 

spatial registration literature. Overall, the authors found that the structured 

light scanning method showed good overlap with the Polhemus-obtained 

positions, however that this strategy was also not flawless. In one out of 50 

participants the transmission of the electrode positions from the iPad to the 

computer failed, and in one out of 50 participants the Polhemus locations were 

not on the scalp. Homölle and Oostenveld (2019) recommend the 3D structured 

light scanning also for the recording of the position of NIRS optodes, as in their 

study it yielded comparable results to the positions obtained with Polhemus.  

Finally, another promising method could be to use virtual registration, based on 

simulations (Tsuzuki & Dan, 2014), or a further alternative (in the absence of 

structural MRI scans) could be to spatially register probe positions to age-

matched templates (like the MNI template brain) avoiding the need for MRI 

scanning (Bulgarelli et al., 2018). 
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6.15. Limitations 

Several limitations have to be acknowledged. The probe positions in our set up 

were obtained via photogrammetry, before the optodes were attached to the 

fNIRS cap. Experimenters went to great lengths to avoid movement of the cap 

when attaching the optodes, however, especially in those cases where the initial 

probe check flagged problematic sources or detectors, the removal and 

reattachment of the probes could have led to a small margin of error in the final 

co-registered composite images. This small registration error can be assumed to 

lie between 1 - 10mm based on the findings of Clausner and colleagues (2017), 

and Hu and colleagues (2020). Hence, the putative registration error is smaller 

than the fNIRS spatial resolution (Pinti, Tachtsidis, et al., 2020b).  

Furthermore, our placement of the array was guided by standards in the 

previous fNIRS literature, however, a better strategy would be to obtain 

probabilistic brain regions and their corresponding optode locations by using the 

new open-source fOLD toolbox (Zimeo Morais et al., 2018). With the help of the 

toolbox, the initial selection of the array placement could be better guided by 

brain regions of interest, as identified by the simulated photon transport method 

this toolbox applies. Different parcellation methods can be used, but the results 

of the toolbox are currently still restricted to the 10-10 and 10-5 international 

cap systems.  

Another important limitation in this study is the difficulty we encountered with 

the digitisation of participants’ landmarks, which prevented the spatial 

normalisation step to MNI space and the planned mapping of all participants’ 

optode locations, to inspect the variability of the probe placement 

quantitatively. Common approaches in the literature are either adding colourful 

stickers or felt-tip marker points on the subjects’ fiducial points, to later extract 

this important information in the spatial co-registration step (Homölle & 

Oostenveld, 2019; Jaffe-Dax et al., 2019). This information is missing for many 

participants in the current study, so we could not take this part of the analysis 

further.  
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6.16. Planned analyses for BOLDlight 

Future analyses for BOLDlight will include group-level analysis of the fNIRS 

functional localiser task to compare how the channel-level detection rate 

compares to the overall fNIRS literature. Further, the HbR response will also be 

taken into consideration, as well as the multiple comparisons corrected results. 

Moreover, as we have a second dataset of the same task available for the second 

session that participants underwent for the re-test, we will investigate the 

feasibility of the fCOI approach outlined by Powell and colleagues (2018). In 

addition, we will aim to probe the spatial specificity of fNIRS utilizing a finger 

and foot tapping task, as well as a separate functional superior temporal sulcus 

localiser task (Isik et al., 2017).  

It will be interesting to compare the results from these block-design tasks to the 

currently presented event-related functional localiser. Taking into consideration 

also the second scanning sessions for both modalities, we will establish and 

compare test re-test reliability for both fNIRS and fMRI, as recently concerns 

have been raised on the reliability of the fMRI modality (Elliott et al., 2020). 

Future experiments following on from BOLDlight will adhere to the initially 

proposed stepwise procedure of moving “cognitive neuroscience […] from lab to 

life” (Henschel, Hortensius, et al., 2020b; Pinti et al., 2018, p. 369). We plan to 

conduct a direct replication of Walbrin and colleagues’ experiments (2018) using 

social versus non-social animations of interacting geometric shapes, and then 

move to a more ecologically valid stimulus set of robots and humans (Brough, 

Henschel, Rabagliati, Harris, Cross, & Branigan, 2020: Scotbots database, in 

preparation). 

 

 

 

 

 

https://osf.io/a5fby
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6.19. Citation Diversity Statement  

Recent work in several fields of science has identified a bias in citation practices 

such that papers from women and other minority scholars are under-cited 

relative to the number of such papers in the field (Dworkin et al., 2020). Here 

we sought to proactively consider choosing references that reflect the diversity 

of the field in thought, form of contribution, gender, race, ethnicity, and other 

factors. First, we obtained the predicted gender of the first and last author of 

each reference by using databases that store the probability of a first name 

being carried by a woman (Dworkin et al., 2020). By this measure (and excluding 

self-citations to the first and last authors of our current paper), our references 

contain 16.22% woman(first)/woman(last), 12.16% man/woman, 14.03% 

woman/man, and 57.59% man/man. This method is limited in that a) names, 

pronouns, and social media profiles used to construct the databases may not, in 

every case, be indicative of gender identity and b) it cannot account for 

intersex, non-binary, or transgender people. We look forward to future work 

that could help us to better understand how to support equitable practices in 

science. 

Adapted from Dworkin and colleagues (2020). 
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Chapter 7 General discussion 

The primary aim of this thesis was to develop robust behavioural and neural 

methods for the investigation of interactions with humanoid robots. Based on 

insights stemming from psychology and neuroscience, I adapted paradigms for 

human-robot interaction, with the ultimate goal of conducting more reliable and 

ecologically valid experiments probing social motivation towards robots. Across 

the chapters outlined in this thesis, I uncovered important issues in adapting 

these paradigms for HRI research. Below, I summarise the main findings and 

contributions, and critically reflect on the limitations of the present work. In the 

sections following the general discussion of the results, I summarise 

methodological implications and highlight recent theoretical considerations. 

Here, I especially highlight the impact of the replication crisis and a move 

towards incorporating open science methods across disciplinary boundaries.  

7. Summary, Contributions & Limitations 

In Chapter 1, I presented a general overview of the field of social robotics and 

its historical development. While reviewing popular definitions of social robots, 

it became clear that the terminology for referring to these machines is far from 

clear-cut. However, most authors describe a social robot as an embodied agent 

that is able to communicate and collaborate with humans in a socially engaging 

way. My review of these definitions also showed that many researchers framed 

social robots in future-oriented terms, with the currently available machines 

perhaps not quite meeting the ideal vision of a truly sociable robot. I also 

reviewed mainstream robotic platforms and highlighted their fields of 

application, which revealed that social robots are expected to be deployed in 

care scenarios, functioning as companions for the elderly and as social skills 

teachers for children with ASC. The introduced robots demonstrate the 

heterogenous morphology of currently available commercial and bespoke 

research systems. In the final part of the chapter, I discussed the social robot 

paradox, which describes a mismatch of expectations and reality when it comes 

to the limited success of integrating especially humanoid robots into the human 

social ecosystem.  
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7.1. Humanoid robots to advance our understanding of 

social cognition 

Despite this limitation, humanoid robots are useful research tools, a point I 

highlighted in Chapter 2. Using robots in cognitive neuroscience and psychology 

experiments allows researchers to explore how these agents, which occupy a 

liminal space in terms of their socialness, appeal to cognitive systems that 

developed over the evolution of successful human-human interaction.  

Humanoid robots also help address a major challenge social neuroscience is 

facing at the moment. The investigation of social perception and behaviour has 

been a primary aim, but experiments have been historically limited by 

presenting mainly screen-based social scenarios (Schilbach, 2012). Bringing 

humanoid robots into the lab allows researchers to take advantage of excellent 

experimental control (to a fine-grained degree), and at the same time achieves 

better ecological validity with embodied, co-located social agents.  

Finally, an important advantage of using social robots in an experimental 

context is that it forces a close examination of fundamental questions, thereby 

contributing to an overall advanced understanding of human social cognition 

(Bolis & Schilbach, 2018). In Chapter 2 I also discussed the tensions that emerge 

at the heart of these interdisciplinary efforts. Given these tensions, some 

researchers have emphasized that a strong theoretical foundation is crucial 

when adapting paradigms for HRI (Eyssel, 2017). After reviewing popular theories 

in HRI, I gave an overview of the framework that underlies this thesis: The Social 

Motivation Theory of Autism (Chevallier et al., 2012). This theory set the stage 

for the following empirical pieces of work, which address two fundamental 

pillars of the framework: the reward value of social interaction and attentional 

capture by salient social cues.  

Chapter 3 was motivated by an observation described in the previous two 

chapters: although many social robots are already deployed in contexts with 

vulnerable users, they often fail to deliver on their promise to adequately and 

autonomously respond in social situations. Other researchers in the field have 

similarly observed that features and behaviours are often implemented in social 
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robots before they are evaluated as being beneficial or crucial for facilitating 

engaging, long-term interactions (Vallverdú & Trovato, 2016).  

In this study, we tested how movement synchrony with a robot would affect its 

likeability and participants’ motivation to spend more time with it in a free, 

conversational interaction. However, after reviewing meta-analyses on the 

effects of interpersonal synchrony on rapport in human-human interaction, we 

identified a problematic confound highlighted by Rennung and Göritz (2016) that 

could obscure the true experimental effect of synchrony on factors such as 

likeability or perceived social cohesion. Many studies failed to ensure 

experimenter blinding, which is particularly problematic as it has been recently 

established that experimenter beliefs influence participant behaviour in 

experimental contexts (Gilder & Heerey, 2018).  

One major contribution of this work is that we ensured a double-blind 

experimental procedure, where neither participants, nor the experimenter, 

were aware of the experimental condition. We found that participants who had 

synchronised with the Pepper robot in a drawing task did not rate the robot as 

more likeable, intelligent or more human-like compared to the group of 

participants that did not synchronise with the robot on this task. Further, we did 

not see that participants in the synchrony group chose to ask the robot more 

questions in a semi-structured conversational interaction scenario that was 

presented as an optional part of the experiment. Across the two groups, 

participants were equally motivated to engage in an interaction with Pepper, as 

the number of questions the participants asked did not differ statistically based 

on their group assignment. An interesting finding that we observed in this 

experiment was that there was a discrepancy between objectively manipulated 

and subjectively perceived synchrony. A larger proportion of participants in the 

asynchrony group stated that they perceived to have been in sync with the robot 

– which highlights the need for including careful manipulation checks in these 

types of experiments.  

Another contribution of this study relates to the lessons we learned using 

humanoid robots in experimental contexts. Through extensive piloting prior to 

data collection, we established that the autonomous mode of the robot was not 

able to successfully sustain interactions with different participants, especially 
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under changing light conditions and when participants spoke with varying 

accents. 

When we piloted the free interaction scenario, we (anecdotally) observed that 

participants quickly felt rejected by the robot when it did not immediately 

orient towards them, when spoken to. This moved us to take advantage of 

remote controlling the robot via a Wizard-of-Oz (WoZ) procedure, where the 

gaze of the robot was always directed at the correct angle towards the 

participant, and it responded to the questions without any larger delays, as the 

answers were triggered by the experimenter behind a room divider. An 

important limitation of this chapter is that we did not outline in detail the scope 

of the perceptual and cognitive WoZ control according to the guidelines 

proposed by Riek (2012). Future studies should seek to report details of wizard 

training (e.g. when experimenters of this study practiced the control of the 

verbal utterances of the robots) and any potential experimenter error (e.g. if 

there was any delay in eliciting the answers of the robot) in more detail.  

Another observation, which is interesting in the light of how the Pepper robot 

was designed (see Chapter 1), was that in order to successfully set up the 

drawing task with the participant and the robot side-by-side, we had to take into 

account the robot sensors, which would lead to freezing its motions if the 

participant, the screen or the table were positioned too close to one another.  

Some additional challenges have to be acknowledged and I will briefly discuss 

these in the following. We did not pre-register our analytical plans and the 

statistical analysis of the null result was limited to a Frequentist approach. To 

investigate whether these data provide evidence for the absence of an effect of 

the synchrony manipulation, an additional Bayesian analysis would have been 

desirable.  

A further limitation, which was addressed by reviewers of the manuscript 

(Appendix B), relates to the fact that we did not assess the extent to which 

participants attributed mind or intentionality to the robot. While the robot 

introduced itself as a member of the research department, the influence of the 

synchrony manipulation could have been obscured by the participants not finding 

the robot believable as an intentional agent. Anecdotally, one participant found 
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the robot stating that it did not have a birthdate so devastating, that they 

offered to bake it a cake. Unfortunately, these spontaneous responses were not 

recorded, and point to a need of implementing both quantitative and qualitative 

measures of evaluating interactions in HRI to capture a complete picture of 

perceived mind and intentionality (Riddoch & Cross, 2020). 

Another limitation of the study reported in Chapter 3 was the fact that no 

positive control in the form of a human interaction partner was included. In the 

light of the findings described in the subsequent chapters, I will make the case 

that in addition to including positive controls, it will be important to conduct 

direct replication studies of original effects – and where possible, to go one step 

further by using the Registered Replication Report format (Simons et al., 2014). 

These ideas are outlined in more detail in the following sections of this chapter.   

To evaluate the robot, we used self-report measures developed and validated 

for embodied HRI scenarios (Bartneck et al., 2009; Nomura et al., 2005). 

However, this study uncovered important limitations in using these 

questionnaires: indeed, we detected that subscales of the popular Godspeed 

Questionnaire Series contained duplicate items, which led to the inclusion of 

only 3 of the 5 subscales (Weiss & Bartneck, 2015). The limitations of the 

Godspeed questionnaire have been highlighted by other researchers as well 

(Shen et al., 2015), and in conjunction with the null result, a distinct lack of 

robust behavioural measures to quantify social motivation towards robots 

became apparent (Chevallier et al., 2016). We originally attributed the lack of 

an observed effect to our interaction measure as not sensitive enough to capture 

the subtle experimental manipulation. This led to the empirical study described 

in Chapter 4.  

7.2. Towards robust behavioural measures of social 

motivation 

In Chapter 4, we investigated the social relevance of humanoid robot faces by 

means of conceptually extending the eye-contact effect (Conty, Gimmig, et al., 

2010a). Conty and colleagues (2010a) found that when presenting socially salient 

cues as distractors during a demanding cognitive task, the cues would impair the 
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performance of participants by slowing down reaction times over and above of 

what is normally expected for the Stroop interference effect. This task has been 

proposed as a behavioural “proxy for social motivation” (Chevallier et al., 2013, 

p. 1694). 

In Experiment 1, we found the expected Stroop interference effect, indicating 

that despite the modifications we made in this conceptual extension, the task 

worked as expected.  

The main contribution of this chapter relates to the extension of the eye contact 

effect (Conty, Gimmig, et al., 2010a; Senju & Johnson, 2009) with a newly 

collected stimulus set, that included well-controlled greyscale images of human 

faces (DeBruine & Jones, 2017; Langner et al., 2010), humanoid robot faces, 

object faces and non-social control images of flowers. Chevallier and colleagues 

(2013) anticipated that the effect would extend to other cues, such as whole 

faces, but we cannot support this idea with the data collected in our 

experiments.  

A small, distractor-dependent interaction emerged in Experiment 1, yet this 

effect disappeared in Experiment 2, which was adequately powered to detect 

the effect size of interest. We found no differences across the four different 

stimulus categories of capturing attention due to their more or less social 

nature. Thus, our main conclusion across these two experiments was that 

despite previous literature on social attentional capture, we were not able to 

adapt this effect for HRI. Indeed, we failed to show that the most salient social 

distractor, the human faces, would robustly captured participants’ attention. 

Our findings initially appeared at odds with the established literature around this 

effect. But even so, recent studies by Pereira and colleagues (2019, 2020), which 

carefully controlled for known confounds, also failed to show a social attentional 

capture by human facial cues.  

Some limitations to this empirical work must also be acknowledged. While we 

pre-registered the processing of the reaction time data, we did not take into 

account the garden of forking paths inherent in this procedure. One example of 

this can be seen in the multitude of available processing methods in the R-

package ‘trimr’ (Grange, 2015). Our method of pre-processing the reaction times 
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involved using a standard deviation reaction time trimming criterion, which was 

criticised by a peer reviewer (Appendix D). To investigate whether a 

conservative exclusion of experimental trials played a role, we used an 

alternative, participant-sensitive standard deviation criterion. Still, this resulted 

in similarly shaped reaction time distributions (Appendix D).  

A further challenge was determining adequate limits for the region of practical 

equivalence with zero approach (ROPE) used in the exploratory Bayesian 

modelling analysis. After initially using an automatic procedure via a function 

built into the ‘BayesFactor’ package (Morey et al., 2018), the resulting ROPE 

range was too large, so that we determined it based on half of what we consider 

a small effect (Kruschke, 2018). Contrary to our expectations, the analysis was 

inconclusive. We were not able to find strong support for the null hypothesis, as 

the posterior samples only partially overlapped with the ROPE. We can only 

speculate about the nature of this inconclusive result; however, one underlying 

reason might have been the strategy we chose to determine the bounds of the 

ROPE.  

Together with the recent work by Pereira and colleagues demonstrating the 

influence of confounds in measuring social attentional capture (2019, 2020), we 

can conclude that the task is not suitable for measuring social motivation in 

human-robot interaction studies. Whereas covert measures of social attention 

may not be a fruitful avenue for HRI researchers, overt measures, such as eye-

tracking, may yield more informative findings (Hayward et al., 2017). 

7.3. Mobile brain imaging to facilitate embodied 

experiments with humanoid robots 

In Chapter 5, my co-authors and I provided an intermediate reflection and 

opinion on the current state-of-the-art neuroscience tools in embodied human-

robot interaction studies. Overall, we foresee that the field will be driven 

forward by more transparent, embodied and mobile neuroscience. Here we 

especially highlighted the ‘promises and pitfalls’ of fNIRS, which affords the 

advantage of allowing brain imaging during embodied and interactive encounters 

with social robots. Recent advances in the development of portable and 
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lightweight fNIRS systems can support more ecologically valid experimental 

interaction paradigms.  

Finally, my co-authors and I argue that it will become important in the coming 

years to move beyond a predominantly anthropocentric approach and consider 

other comparison categories (for example pets or objects), as well as brain 

regions beyond popular ‘hub regions’ of social cognition. I will reflect on this 

point in the final sections of this thesis discussion. 

In this chapter, we also highlighted the repercussions of the replication crisis, 

and the move towards open science practices in psychology and neuroscience. 

Especially when implementing fNIRS in embodied human-robot encounters it is 

important to follow a stepwise approach, starting with a replication of effects. 

We argued that it is in the interest of various stakeholders that research builds 

on strong foundations, using rigorous and robust methods.  

Chapter 6 implemented the proposed stepwise approach of the previous 

chapter: here we sought to validate a novel mobile fNIRS system, by comparing 

this brain imaging modality to the current gold-standard in social neuroscience: 

fMRI. A second contribution of this chapter was the adaptation of a new, 

photogrammetry-based method to co-registering the positions of the fNIRS 

probes. The main focus of this chapter was to transparently describe and 

highlight challenges encountered when using this brain imaging method, 

especially in comparison with the results yielded by fMRI.  

We investigated two main questions: the first being the overlap sensitivity 

between the placement of the optodes and the functional regions of interest – as 

determined by fMRI. Secondly, we were interested in the detection rate of each 

modality at the single-subject level. After extensive piloting we constructed a 

reliable photogrammetry pipeline that resulted in 11 out of 12 excellent quality 

head models. We provide a detailed description of every step in the openly 

available manual (Henschel, Kent, et al., 2020c). This new method to digitise 

optode positions was only successful after adding colourful markers to the fNIRS 

cap. We found that the automatic identification algorithm of the janus3D co-

registration toolbox (Clausner et al., 2017) was not reliable for the fNIRS optode 

holders (as opposed to the EEG electrode holders it was designed to detect). 
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Consequently, the experimenters had to choose a more time-consuming route of 

manual tagging the optode locations in janus3D. 

While we found that the position of the optodes overlapped well with 

participants’ functional MRI activity, this method, as highlighted by Powell and 

Saxe (2018), is not without issues. It is challenging to support the success or 

failure of probe location overlap based on single-subject functional activity, as 

anatomical and functional locations were highly variable. The detection rate on 

the single subject level was better for fMRI, as compared to fNIRS. Indeed, by 

showing composite images of the optodes mapped to subject anatomical and 

functional MRI images, we identified that strong inter-subject variability in 

terms of scalp-brain distance was one of the contributing factors. However, we 

also investigated the possibility that an anticipatory shift had taken place, as a 

recent paper by Richardson and colleagues had shown that repeat viewing of this 

particular localiser movie led to a predictive response of the brain (2020). 

Shifting the events forward in time did not lead to more observed fNIRS activity; 

on the contrary, the activity was even more subdued.  

Overall, we can conclude that on the single-subject level, the signal recorded 

with fNIRS showed a lower signal to noise ratio than the fMRI signal, which 

replicated reliable activation of the left and right TPJ almost 100% of the time 

across all subjects. This point is important, as future studies will seek to 

implement the fNIRS system in mobile interaction paradigms with robots, and 

thus through more subject movement, noise levels might further increase. In the 

current task, subjects sat still and passively observed a movie, which still only 

resulted in a success rate of elicited fNRIS activity in just over half of the 

participants. This will be a crucial factor when planning subject recruitment 

numbers, and when calculating power for future studies.  

7.4. What does the replication crisis mean for the future 

of HRI research?  

Most empirical findings reported in this thesis are null results, which are 

inherently challenging to interpret due to the complex factors that could be at 

play contributing to the failure of conceptually extending an effect (Shrout & 
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Rodgers, 2018; Simmons et al., 2017). Publishing null results has become more 

acceptable in the research community in recent years, as more and more 

scientists grappled with replicating well-known effects. This led to the 

replication crisis in psychology and neuroscience (Aarts et al., 2015; Schimmack, 

2020; Shrout & Rodgers, 2018). As is perhaps evident through examples 

presented in this thesis, the ripples of these crises have not been limited to 

psychology and neuroscience. They are reaching HRI as well, exacerbating the 

interdisciplinary tensions discussed in Chapter 2 (Irfan et al., 2018).   

Some researchers note that trust in the ‘social sciences’ has been shaken as a 

result of the crisis (Irfan et al., 2018), others have a more optimistic outlook: 

indeed, as Shrout and Rodgers (2018) argue, the sense of urgency invoked 

through the imagery of a crisis has sparked fundamental and sustained positive 

change. The authors highlight how, as a result of this crisis, some of the open 

science movement’s most valuable tools have been created: the Open Science 

Foundation (Nosek, 2013) and a global shift in research conventions, such as the 

increased adoption of pre-registering hypotheses, design and analysis plans 

(2018). As Schimmack (2020) writes in his perspective on replication ‘failures’ 

(where a recent Nature Human Behaviour editorial argues strongly for the fact 

that “replications do not fail”; Kousta, 2020, p. 559), the crises in psychology 

and neuroscience might serve as an important warning message to other 

disciplines, who have not yet felt the severe repercussions riding on their back.   

7.4.1. Adoption of open science methods among the HRI community 

Researchers in HRI have acknowledged this crisis and have started to adopt some 

of the practices that scientists in related fields have been lobbying for over the 

past nine years (Baxter et al., 2016; Belpaeme, 2020; Irfan et al., 2018; 

Schimmack, 2020; Strait et al., 2020). Baxter and colleagues (2016), who 

analysed three years of proceedings stemming from the field’s most important 

meeting, the ACM-HRI conference, note that they observe a clear trend towards 

the adoption of open science practices: for example, journals such as PLOSOne 

now require datasets to be shared openly. Taking even more positive steps in 

this direction, in 2020, ACM-HRI for the first time explicitly invited replication 

studies in a dedicated conference track, with five proceedings replicating their 

studies across robotic platforms and data collection sites (Kubota et al., 2020; 
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James Li et al., 2020; A. Pereira et al., 2020; Sandygulova et al., 2020; Strait et 

al., 2020).  

Strait and colleagues (2020) conducted a conceptual extension and three-site 

replication of the robot-adapted Joint Simon Effect (JSE), which examines how 

people represent the actions of a robotic co-actor (Stenzel et al., 2012). In their 

collaborative replication effort, the authors found that the expected JSE 

replicated. The authors noted that a key component to the success of this effort 

was that all three, international replication sites had access to the same 

platform: the Nao robot (Strait et al., 2020). This speaks to an observation 

described in Chapter 2: commercially available humanoid robots offer many 

advantages to HRI researchers, despite their limited social abilities ‘in the wild’. 

Strait and colleagues (2020) conclude with the reflection that replicating effects 

will become ever more important in the HRI community, especially given the 

fact that attempts of running source code from the 2017 IEEE International 

Conference on Robotics and Automation (ICRA) proceedings were crowned with 

success in only 2% of the cases (Cervera, 2019).   

7.4.2. Adoption of open science methods in the fNIRS community 

However, HRI is not the only research community to be weighing up the next 

steps in a move toward more open and reproducible research practices: the 

relatively young field surrounding fNIRS research has been relatively slow to 

adopt open science conventions already embraced in other neuroimaging 

communities, for instance among fMRI researchers (Bratt, 2017). Currently, 

there are not many open fNIRS data sets available, and perhaps as a 

consequence, meta-analytical investigation of the robustness of social and 

cognitive tasks measured with fNIRS are scarce (Bendahan et al., 2019). This is 

mainly due to the heterogeneity of fNIRS devices and data processing methods 

used – for example Bendahan and colleagues (2019) sought to conduct a meta-

analysis on the connection between cerebral oxygenation and the presence of 

delirium in patients. The meta-analysis could not be completed due to a large 

variability in fNIRS systems and pre-processing procedures. Increased use of 

standardized localiser tasks in fNIRS could lead to a better comparability across 

studies, and perhaps an increased motivation to share data. As of October 2020, 

there are only 7 datasets shared on OpenFNIRS (Figure 26, 
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https://openfnirs.org/data/). 

 

Figure 26 - The Openfnirs database (https://openfnirs.org/data/). 

 

Another recent development in the fNIRS community may prompt an increased 

uptake of open science practices, as the sNIRF format has been introduced 

(https://github.com/fNIRS/snirf). Encouragingly, a brain imaging data structure 

(BIDS) extension proposal for NIRS has been raised (BIDS Extension Proposal, 

BEP030), which implements the file-naming and file-structure convention 

initially developed for fMRI (and which was used in Chapter 6 to run the 

standardized pre-processing pipeline fMRIprep). The BIDS format, which is 

essentially a standardized brain data management plan, has the potential to 

greatly enhance reproducibility and open science efforts (Gorgolewski et al., 

2016). The extension of BIDS for NIRS will incorporate the already developed 

sNIRF raw data format, which can be converted from most proprietary 

manufacturer file formats (e.g. in Chapter 6 we initially translated the 

Shimadzu files to the nirs format).  

Bratt (2017) laments a lack of open data repositories for fNIRS (in studies on 

emotion – yet, as Figure 26 shows, this is a global problem), in particular relating 

to the ‘curse of dimensionality’ known in the machine learning field. 

Researchers who may want to use machine learning procedures to analyse their 

data, are faced with small samples in fNIRS studies. Using machine learning 

classifiers on highly dimensional data, such as the fNIRS signal, is challenging as 

these data have many features with relatively few observations (Jie Li et al., 

2016). As a result, models are ‘overfit’ and are not generalisable beyond 

individual datasets (Bratt, 2017). One way to address this issue (and in the 

future implement machine-learning methods for fNIRS) may be the aggregation 

https://openfnirs.org/data/
https://github.com/fNIRS/snirf
https://docs.google.com/document/d/1FzPt7TVpIAtlhrF9_9b2VBCZOrRXJASEMyHndhDQKl8/edit#heading=h.4k1noo90gelw
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of large, open datasets. In addition, Bratt (2017) argues that while fNIRS and 

FMRI are facing validity issues, increased data sharing, including text-based 

metainformation (see Neurosynth, https://neurosynth.org/), also has the 

potential to facilitate communication (and collaboration) between international 

fNIRS labs.   

To summarise, the HRI research community can greatly benefit from using fNIRS 

as an innovative tool in embodied interaction studies with humanoid robots. HRI 

researchers, who use this new methodology, may further profit from improving 

data sharing infrastructure like the sNIRF file format and data bases such as 

Openfnirs.  

7.5.  Future directions  

To summarise, lessons learned through the replication crisis in psychology and 

neuroscience, and the subsequent increased implementation of open science 

practices, may be of great value to the interdisciplinary HRI research community 

at large (Belpaeme, 2020). As various researchers have noted, conducting 

embodied HRI experiments in conjunction with using brain imaging tools is not a 

trivial challenge – various pieces of hardware and software have to be 

synchronised to ensure a smooth experimental procedure (Belpaeme, 2020; 

Perez-Osorio et al., 2018; Strait et al., 2020). Belpaeme (2020) foresees a new 

future in which experiments will benefit from increased rigor and the field might 

move towards more transparency in reporting findings – including ‘failed’ 

replications and null results.  

7.5.1. Valuable tools (or: Where to go from here?) 

Going forward, researchers working at the intersection of social robotics, 

experimental psychology and cognitive neuroscience should strive to pre-register 

their hypotheses, study designs and analysis plans. Several platforms are 

available for this purpose. Compared to the AsPredicted format, which is 

designed to cover essential aspects of the experimental design and analysis in 

nine short questions (e.g.: https://osf.io/ky4b7/), OSF preregistrations allow for 

more detail and nuance, especially when specifying mixed effects models (e.g: 

https://osf.io/a5fby). As many researchers have observed, there is an increased 

https://neurosynth.org/
https://osf.io/ky4b7/
https://osf.io/a5fby
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uptake of Bayesian analysis methods across all fields (Baxter et al., 2016; 

Belpaeme, 2020; Shrout & Rodgers, 2018). Although more diverse analytical 

approaches are commended, researchers also point out that analysts should 

follow a “principled Bayesian workflow” (Schad et al., 2020, p. 1). For example, 

Bayesian modelling, which was described in Chapter 4, offers the researcher 

great flexibility regarding the types of models that can be specified and the kind 

of data that can be modelled. Despite accessible R packages, like ‘brms’, 

beginners may struggle to navigate across the often-confusing labyrinth of 

decisions that need to be taken in modelling (Bürkner, 2016; Schad et al., 2020). 

Here the authors again emphasize the crucial need for specifying models that 

describe a maximal effects structure already in the pre-registration, to limit 

later researcher degrees of freedom in the analysis. With greater acceptability 

of the publishing of null results will come a greater need for reporting evidence 

for the null. Although the modelling approach used here offers great flexibility, 

in many cases free programmes such as JASP might be a more beginner-friendly 

first step in Bayesian analysis (Belpaeme, 2020). 

One promising opportunity for researchers at the intersection of these 

disciplines lies in new article formats (and journals), that place a focus on 

methodological rigor and meta-scientific perspectives. The vicious cycle of a 

decreased reward structure to pursue replication projects may be broken by 

Registered Reports (Chambers et al., 2015) and Registered Replication Reports 

(RRR) formats (Simons et al., 2014), which encourage large scale collaborative 

efforts and ensure acceptance at the journal before the results are known 

(Schimmack, 2020; Shrout & Rodgers, 2018). Adopting these new article formats 

may contribute to an overall more accurate picture of the scientific evidence 

base, as it has been recently revealed that the reporting rate of significant 

results is reduced from about 90 to a mere 50% when the Registered Report 

format is used (Scheel et al., 2020).  

Importantly, these strides to encompass greater transparency in research 

methods should ideally be accompanied by an acknowledgement and awareness 

of systematic disadvantages underlying large parts of the existing literature 

(Dworkin et al., 2020; Pownall et al., 2020; Zurn et al., 2020). In a recent 

preprint, we argue that just as the open science movement has prompted 

researchers to adopt more transparent approaches to research, feminist 
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psychology has much to contribute in constructing an equitable movement 

towards open science (Pownall et al., 2020). One small step could be to include 

citation diversity statements (Zurn et al., 2020), as implemented in Chapter 6 of 

this thesis. Whilst not completely without problems, this new convention may 

contribute to more transparency about diversity issues evident across scientific 

disciplines.  

7.5.2. Transparent data visualisation  

Another important tool for future HRI studies will be to use transparent data 

visualisation to communicate research findings (Allen et al., 2019). Repeatedly, 

HRI researchers have lamented issues with the interpretability of psychology and 

neuroscience findings, noting a missing shared language between disciplines 

(Baxter et al., 2016; Belpaeme, 2020; Irfan et al., 2018). One crucial factor in 

efficient communication of experimental findings is the use of clear data 

visualisations. Currently the most commonly used visualisations across research 

and the news media remain bar charts, although it has been shown that these 

visualisations lead to poor decision making when interpreting experimental 

findings (Newman & Scholl, 2012). For example, Newman and Scholl (2012) 

found that when they presented bar graphs, participants were more prone to 

believe that the data were contained within the bars. This visualisation method 

thus does not offer a good impression of the often-chosen measures of central 

tendencies. A popular new visualisation method - the raincloud plot – may be a 

better approach. These graphs depict raw data, distributional information and a 

boxplot with the median and interquartile range (Allen et al., 2019).   

Throughout this thesis, I have used various types of visualisation methods that 

offer the advantage of “inference at a glance” (Allen et al., 2019, p. 33), 

including pirate plots (Chapter 3), box plots, density graphs of distributions 

(Chapter 4) and raincloud plots (Chapter 6). In his chapter on ‘fair statistical 

communication’, Dragicevic (2016, p. 291) applies “End User Dissatisfaction” (p. 

311) as a metaphor. He critically reflects that the field of human-computer 

interaction (adjacent and interrelated with human-robot interaction, see Figure 

1), despite its strong tradition of user experience studies, has adopted 

visualisations that lead to suboptimal communication of empirical findings. New 

approaches to graphically representing data may serve as better “user interfaces 
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meant to help researchers in their task of producing and disseminating 

knowledge, [and] the fields of HCI and infovis can take a head start and show 

the way to other disciplines.” (Dragicevic, 2016, p. 326) 

7.5.3. Our future with social robots: beyond ‘the social brain’? 

Recent years have not only seen a shift in methodological and analytical 

approaches, but also a move towards incorporating new theoretical perspectives 

on social cognition (Cross & Ramsey, under review). As these authors argue, the 

current perspective of using a predominantly anthropocentric approach to 

investigating interactions with robots may limit the scope of potential questions 

and might overall stifle progress in this research area. Cross and Ramsey (under 

review) urge researchers at the intersection of psychology, neuroscience and 

social robotics to consider a wider, shared feature space between social agents 

(like humanoid robots) and objects, rather than focusing solely on the 

commonalities and differences of processing human social interactions compared 

to interactions with machines. Overall, the authors argue that a more domain-

general understanding of human cognition should be adopted, which echoes 

recent critical reflections by researchers requesting more nuance when parsing 

‘the social brain’ – as it remains to be investigated how the purported specificity 

for social perception may be represented in the brain (Lockwood, 2020). These 

recent criticisms can also be seen as a challenge of Chevallier’s Social Motivation 

Theory (2012).  
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Figure 27 - Synthesis of the proposed stepwise process. 

 

To summarise, the future of adapting paradigms for HRI may include new 

methodological, analytical and theoretical approaches, that will contribute to 

our understanding of sharing a social sphere with artificial agents. Through 

Figure 27, I have attempted to integrate the messages of several researchers 

working at the intersection of psychology, neuroscience and HRI, as well as one 

of the main conclusions from this thesis: before conducting studies with 

humanoid robots, researchers should aim to conduct a (pre-registered) direct 

replication of the effect first (Irfan et al., 2018), then implement and adapt the 

paradigm appropriately for (embodied) interactions robots (Perez-Osorio et al., 

2018), take these paradigms outside of controlled lab environments into the real 

world (Henschel, Hortensius, et al., 2020b; Pinti et al., 2018), and finally utilise 

the knowledge gained to inform the design of social robots (Wiese et al., 2017). 

These longitudinal and interdisciplinary efforts, as I have argued, are a 

fundamentally challenging, yet ultimately rewarding undertaking, which may 

herald a sustainable future for social robots as the helpful companions we 

envision them to be.  
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7.6.  Conclusions 

In this thesis, I sought to adapt methods derived from psychology and 

neuroscience for the study of embodied interactions with humanoid social 

robots. Resting on the shoulders of Social Motivation Theory, I have shown that 

an effect that has already been implemented for some robotic platforms (i.e. 

the ability to synchronise movements) may have little grounding in empirical 

truth. Acknowledging the limitations of this null result, I conducted experiments 

to develop a robust behavioural measure for social motivation, adapting a well-

known effect for HRI. Here, the thesis contributes the important insight that this 

putative behavioural proxy for social motivation may not be easily translatable 

to HRI, as I failed to replicate the original effect of salient human social cues in 

this conceptual extension. Taking these mounting findings into account, I 

proposed that when integrating new methodologies into HRI research, a stepwise 

process should occur. One emerging methodology, mobile brain imaging, can be 

used for enhanced ecological validity in the study of social robots outside of the 

lab. Finally, I introduced a new method to spatially register optode positions in 

fNIRS studies and compared the fNIRS signal to fMRI via a validated and robust 

localiser task. Of course, isolated pieces of empirical work cannot be the end of 

the story on social motivation towards humanoid robots – further replication 

efforts are needed to challenge or confirm these findings with new robotic 

platforms and in different experimental contexts. The 2017 workshop ‘The 

Emerging Social Neuroscience of Human-Robot Interaction’ set the stage for this 

budding field of research, bringing together researchers from neuroscience, 

robotics, social cognition and engineering, all with a common interest to 

leverage advances in social neuroscience to inform and advance HRI. Overall, 

the findings of this thesis contribute toward this aim, by placing a stronger 

emphasis on open science methods in the field and contributing to a more 

realistic picture of the nature of social encounters between humans and robots. 
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Appendix A Supplementary materials for “No 

evidence for enhanced likeability and social 

motivation towards robots after synchrony 

experience” 

A) Objective manipulation check: LED bracelet colour changes 

 

 

 

 

 

F1 - Descriptive visualisation of the LED bracelet-based attention check.  

Participants were asked to report potential colour changes of the LED bracelet on 
Pepper’s arm. There were two colour checks, one after the first three drawing blocks and 
one after the final three drawing blocks. Participants first had to report if they noticed 
any colour change (the correct answer is yes, there was one colour change), then how 
many changes they observed, and which colour the bracelet changed to. In the first 
check, the correct colour the bracelet changed to was green, in the second round the 
bracelet changed to red. Due to technical difficulties with the remote control of the LED 
lights, it is however not informative to interpret these results beyond the obvious fact 
that a majority of the participants reported the correct answers on all six checks.  
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B) Subjective manipulation check 

 

 

 

 

 

 

 

 

 

 

F2 - Descriptive visualisation of the subjective manipulation check.  

To probe perceived synchrony, we asked the participants “Did the robot draw … in 
synchrony with you? …out of synchrony with you?” 10 participants in the asynchrony 
group reported to have been in sync with Pepper on the drawing task, whereas one 
participant in the synchrony condition reported to have been out of sync with Pepper.  
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C) Table specifying the group compositions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 - Participant numbers in the planned analysis 

Asynchrony Synchrony Total 

19 
 

26 45 

Participant numbers in the exploratory analysis 
 

Perceived 
asynchrony 

Perceived 
synchrony 

 

20 
 

36 56 
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D) List of questions participants could choose from 

 

 

 

F3 - List of questions. 

The maximum amount of questions participants could ask Pepper was 28 (the two 
additional questions resulting from participants being able to ask for the second and 
third law of robotics after Pepper cites the first one. However, since this was a free 
interaction, some participants chose to either ask zero questions or asked more than 28, 
in which case we had programmed the robot to be able to answer “I don’t know”, 
“Maybe”, and “Yes” or “No”. Thus, individual participants would end up with a score 
higher than the number of questions provided by us.  
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Appendix B Rebuttal for “No evidence for 

enhanced likeability and social motivation towards 

robots after synchrony experience” 

NB: Reviewers gave consent for their anonymous comments to be shared as part 

of this thesis. The Media Consent forms remain with the guest editors of the 

Interaction Studies special issue.   

We would first like to thank the reviewers and the editors for their constructive 

and helpful comments. We very much appreciate that they have taken the time 

to help us improve this manuscript. We have revised the paper according to their 

suggestions and have detailed our response in the comments below. Please note 

that all changes to the main manuscript are denoted in bold face font. 

The major changes that we have made relate to Reviewer 1’s concerns about the 

data analysis. We have followed their suggestion to exclude participants from 

the main analysis, who failed the subjective manipulation check. We have 

followed Reviewer 1, 2 and 3’s suggestions to provide stronger links to previous 

literature to justify the task and to illustrate the expected positive effects of 

interpersonal synchrony on the robots’ perception and behaviour towards it. We 

have added more points to the critical discussion of the nature of these null 

results and hope to have addressed all of the editors’ and reviewers’ concerns by 

doing so. The changes in the manuscript have been marked with track changes. 

The data and the R analysis script are now openly available via the OSF [link]. 

Editors’ comments 

Comment 1 – We would like to add to the reviewer’s comments that it should 

be much clearer what the exact relationship is between cognitive 

neuroscience and psychology is in regard to how these fields have been 

drawn on for the presented study, it seems that studies on cognition on the 

level of neurons is today a more independent field of research? 

To clarify the link between cognitive (neuro)science and psychology, we cite 

Wiese and colleagues (2017), who argues that neurocognitive methods can help 

https://osf.io/c7jwy/
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develop advanced social robots, and Wykowska and colleagues (2016), who 

elaborate that by using robots in psychological experiments we can learn more 

about the scope and limitations of human social cognition. These two lines of 

argumentation are the underlying scaffolding for the present study. Embedding 

cognitive and experimental psychology, we use the Social Motivation Theory by 

Chevallier and colleagues (2012) as a theoretical framework, to experimentally 

test if synchronizing with a robot can improve its likeability and participants’ 

social motivation towards it. 

Line 73: “Wiese and colleagues (2017) suggest that the best way to make robots 

appear more social is to use the toolbox provided by neurocognitive research 

methods to implement empirically supported behaviors that give “socially 

awkward” robots better “people skills”.” 

Comment 2 – Moreover, it would be great to consider having a separate 

section on lessons learned (instead of including these points in different 

places in the manuscript) to make it very explicit that there were problems 

with the design of the experiment. 

Thank you for this very helpful suggestion. We agree that these points should be 

collected in one place. A final section entitled The Pepper robot as an 

experimental confederate: lessons learned (line 352) has been added to the 

manuscript.  

Comment 3 – We also wonder why the problem of “awkward” social robots is 

paradoxical? It is unclear what this sentence aims to suggest given that it only 

seems to be a challenge for developers to make robots seem more social.  

We agree with the editors that this sentence was unclear. It refers to two papers 

by Duffy (2004) and by Duffy and Joue (2005): ‘The Paradox of Social Robotics: A 

Discussion’. In encounters with naïve participants, off-the-shelf humanoid robots 

such as Pepper can still come across as awkward. We believe that making robots 

appear more social is a team effort to be undertaken by developers and 

roboticists based on evidence derived from psychological research and user 

studies. However, to avoid any misinterpretations, the sentence in line 78 has 

been rephrased to make the message clearer. 
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Line 77: “But how can we solve the problem of designing truly social robots 

(Duffy & Joue, 2005)?” 

Reviewers’ comments 

Reviewer 1 

Comment 1 - A methodological drawback, which is also pointed out by the 

authors, is related to the choice of the synchrony manipulation: Firstly, the 

authors do not motive their choice for drawing as a suitable task that can 

induce the experience of synchrony and expected effects of rapport. In fact, 

a third of the study participants failed to experience the intended feeling of 

asynchrony during the drawing task with the robot (p 11). Thus, it seems that 

this manipulation was too subtle to induce the experience of synchrony. 

Perhaps this could have been avoided by running a pilot study to test the 

perception of the conditions? 

We chose this task based on conceptual and practical grounds that are now 

described on line 197:  

Line 197: “We modelled our task after Hove and Risen (2009). In their study, 

participants were following a visual metronome (a rising and dropping bar), 

which resulted in them tapping either in synchrony or out of synchrony with a 

confederate (Hove & Risen, 2009). Similarly, we used a visual metronome (a 

small circle moving along a larger circular trajectory) and instructed participants 

to follow its movement with the pen. The practical reason for choosing this task 

was that it gave us a high degree of control of the participants’ movement, 

without explicitly asking them to synchronize with the robot, a potential 

confound. In the synchrony condition the metronome was linked to the 

movement of the robot, whereas in the asynchrony condition the robot was 

moving approximately 2.5 times as fast along the circle shape as the participant. 

Participants received the instruction from the experimenter that the goal of the 

task was to follow the moving target as closely as possible and deviate from it as 

little as possible.” 
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Comment 2 - Secondly, it seems there was no objective measure of 

manipulation check. Due to technical difficulties, it was not possible to 

analyse the answers to the colour change attention test - this would have 

been a more accurate way to check whether the participants accurately 

realised whether they were in sync with the robot or not. It would be 

interesting to report precisely what type of questions were used to check for 

self-reported perception of synchrony with the robot (i.e. yes/no question, 

scale).  

To probe perceived synchrony, we asked the participants finally “Did the robot 

draw …  

- In synchrony with you 

- Out of synchrony with you?” 

We agree that the more objective attention check is preferable and have 

included the colour checks in the supplementary material. Unfortunately, it is 

impossible for us to trace back in which cases the remote control was not 

working as expected and in which cases participants simply gave the wrong 

answers. However, looking at the plots in Appendix A, most of the participants 

gave the correct answers on all instances of the checks. Thus, we can be 

confident that they were indeed able to at least see the movement of the 

robotic arm.  

[To avoid duplication, graphs in the supplementary materials are cross-

referenced in the rebuttals.] 

Figure F1, Appendix A 

Comment 3 – Social motivation was assessed using a behavioural measure – 

the number of questions the participants ask the robot in a free interaction, 

after completing a drawing task together. As discussed by the authors, this 

measure was probably “too crude” to reveal the participant’s true 

motivation to engage with the robot socially. A different type of behavioural 

or neural measures could have generated more objective findings. Numerous 



175 

factors – unrelated to the preceding drawing task might have influenced the 

number of questions asked by the participants. Some of those factors are 

discussed in the paper. Prior experience with the robot is another factor that 

might have influenced the participants’ behaviour – someone who is 

unfamiliar with the robot might be more “curious” to interact socially with it 

-potentially irrespectively of its behaviour during the drawing task. A free 

verbal interaction with the robot is a task that involves a different type of 

robot skills. Therefore, independently of the robot’s synchronisation 

abilities, it is possible that some participants wanted to test the robot’s 

“intelligence” or verbal interaction abilities, and thus engaged in this task. 

We concur with Reviewer 1 that the measure we chose to quantify social 

motivation towards the Pepper robot may have been to crude to pick up on the 

subtle effects the experience of synchrony might have had on their behaviour 

towards the robot. However, an advantage of using this measure is that it 

ensures high ecological validity, as this type of interaction is mainly how users 

are currently interacting with Pepper. Researchers in human-robot interaction 

are actively trying to implement reciprocal and synchronous movements into the 

behavioural toolbox of robots (see: Lorenz, Weiss & Hirche, 2016). However, if 

for example movement synchrony doesn’t affect the quality of the real 

interaction with a user, this is critical for HRI researchers and roboticists to 

know. Indeed, a more objective measure, such as neural activity would have 

been desirable. We are currently working on developing more objective 

measures of social motivation towards robots, as there appears to be a scarcity 

of them available to HRI researchers. Following the suggestions of Reviewer 1, 

we have included ‘prior experiences with the robot’ as one of the factors that 

could have played a stronger motivational role than the preceding experience of 

synchrony/ asynchrony in the manuscript.  

Line 327: “In addition, previous experiences with the robot might have 

influenced their behavior, with participants lacking any experience perhaps 

showing stronger curiosity to interact with Pepper or a lack of familiarity 

affecting the mind perception of the robot (Müller et al., 2011).” 

Comment 4 – Finally, my biggest concern is related with the data analysis. 

Since the goal of the study was to investigate whether synchrony has an 
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effect on social motivation towards the robot, I would expect that 

participants who did not perceive the synchrony manipulation as intended, 

would be excluded from the analysis (manipulation check). Although the 

authors claim to take this into consideration (p 9, line 198), the data analysis 

reporting is difficult to follow. The “Original group split” results, as well as 

Figure 2, do not take into account the manipulation check – and are 

therefore not conclusive (by mixing the ratings of participants who failed to 

perceive the synchrony effects and participants who accurately perceived 

them it is not possible to draw any conclusions about the effects of synchrony 

on the dependent variables). 

We thank Reviewer 1 for bringing to our attention that aspects of our data 

analyses were difficult to follow. We can see how some confusion could arise 

following our line of argumentation in the paper. Based on prior work by our 

group, as well as other research teams, on the role of participants’ beliefs about 

artificial agents’ behaviour (c.f., Klapper et al., 2014; Cross et al., 2016; Liepelt 

& Brass, 2010, Wiese et al., 2012), we were interested in exploring participants’ 

top-down perception of synchrony in addition to the actual synchrony 

manipulation. This is why we also split the data based on participants’ synchrony 

beliefs. Since we can be fairly confident that a majority of participants’ 

attention was on Pepper’s arm (due to the additional colour change detection 

task, added in the supplementary material of the manuscript, Appendix A), we 

explored whether the subjective experience of participants would play a more 

important role than objectively manipulated synchrony. To address the concerns 

of Reviewer 1, we have replaced the first analysis with a new analysis following 

Reviewer 1’s suggestions: we have excluded all participants who failed the 

subjective manipulation check. However, we have kept our second exploratory 

analysis in the manuscript, as we consider the resulting ‘perceived group’ split 

still very interesting, and potentially valuable for future studies to pursue. In 

addition to the corrected results section and figures in the manuscript, our 

analysis script and data are now available via the OSF for any interested 

researchers to explore further. 

Line 159: “11 participants were excluded, as they failed the manipulation check 

of correctly perceiving synchrony or asynchrony.” 

https://osf.io/c7jwy/
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Comment 5 – In Figure 3, “Individuals, who were in the asynchrony 

condition, but reported to have been in sync with Pepper were combined 

with those, who were objectively in sync with the robot.”. It is unclear why 

the authors follow this approach. Ideally one would expect to see the graphs 

showing only the ratings of participants who passed the manipulation check 

and were thus objectively in/out-of-sync with the robot. 

We have amended the data analysis following the suggestions in the previous 

comment, so that Figure 2 now reflects this case. However, as illustrated above, 

we have kept the exploratory analysis for the perceived groups and thus Figure 3 

remains in the manuscript. To avoid confusion of how the final groups for the 

analysis are composed, we have added a table in the supplementary materials 

(Appendix A) and added this information in the caption of Figure 5 and Figure 6.  

Table T1, Appendix A 

Comment 6 - Taken together, the points mentioned above render the 

experimental results of this study rather weak and inconclusive. Even though 

the lessons learned from this study are interesting and relevant in terms of 

"What Could Go Wrong during HRI studies", the overall impact is limited. In 

revising this paper, the authors should justify methodological choices and 

focus on improving the data analysis, as well as the clarity of the 

presentation of the results. 

Following the suggestions of Reviewer 1, we have clarified our methodological 

choices, data analyses, and figures. 

Reviewer 2 

Strengths 

a) Well-organized paper. Very straightforward use of a couple key 

measures (though they could be explained better and justified better). 

b) Great job of talking about the results section, the analyses used, and 

displaying your data! 
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c) The authors seemed quite intentional about making sure they included 

only participants for whom the study worked well. Keep it up :-) 

We thank Reviewer 2 for their positive feedback. There might have been a slight 

misunderstanding regarding how we excluded participants. Though this study 

was unfortunately not pre-registered, we excluded participants based on a pre-

defined set of criteria. The rationale behind the exclusion criteria is as follows:  

- In the case of participants who deviated significantly from the 

metronome, the manipulation would not work as desired, thus those with 

a large error rate were excluded.  

- Those participants with missing responses on the crucial Godspeed 

questionnaire were excluded as well.  

- Two more participants were excluded because despite our recruitment 

criteria, they reported studying computer science. Our rationale behind 

this was that computer scientists might be more sceptical towards the 

robot, and in the free interaction period might want to test the robot’s 

inbuilt AI, instead of focusing on the social aspect of the interaction.  

- One participant reported a diagnosis of ASD, which, based on previous 

literature on altered social motivation in individuals with ASD (Chevallier 

et al., 2012; Chevallier et al., 2013), we had also defined as an exclusion 

criterion.  

- Following the suggestions of Reviewer 1, for our main analyses we also 

exclude all participants who failed the subjective manipulation check as 

well.  

Weaknesses 

Comment 1 - Missing some pertinent information in the literature review 

regarding studies on synchrony with robots. I include 

recommended studies to look at the detailed comments. 
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In agreement with the comment made by Reviewer 2, we now include additional 

citations based on the literature recommendations given to us. We believe the 

revised manuscript now covers the key aspects of the relevant literature.   

Comment 2 - Further, the study does not take into account other factors of 

importance without which synchrony with the robot will have no effect. It is 

unclear if participants thought the robot had any intentionality or that the 

robots motion had any meaning for them, without which, participants have 

already been shown to have no effects of synchrony (Oberman, McCleery et 

al. 2007, Press, Gillmeister et al. 2007, Wiese, Wykowska et al. 2012). 

We thank Reviewer 2 for raising this issue and for drawing our attention to these 

studies. We address this problem starting from line 303 in the discussion section. 

We have now included the citation of the study by Wiese and colleagues (2012), 

which is in line with the point we are making here: 

Line 303: “In addition to the potential necessity of adaptivity in synchronous 

interpersonal movement, Lorenz, Weiss and Hirche (2016) argue that in order to 

reap the benefits of synchrony in social interactions with robots, the human 

interaction partner needs to attribute a mind to the robot. This idea is 

consistent with research by Wiese and colleagues (2012), which shows that top-

down beliefs about an agent’s intentional stance can influence basic attentional 

mechanisms. Even though we assessed trait negative attitudes towards robots, 

we did not include a self-report or behavioral measure of mind attribution. 

While Pepper introduced itself before starting the drawing task, it remains 

unclear how much independence and intention the participants attributed to the 

robot.” 

Comment 3 - How did the authors choose their synchrony task? The finding of 

no effect of synchrony on liking of/talking to the robot would be more 

interesting if there were a condition in which synchrony with the human 

under the same circumstances did increase liking/talking to the human. This 

is something that the authors can do, and I recommend running parallel 

human conditions for future studies if they follow up on this paradigm. 
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Regarding the nature of the task, please see how we addressed comment 1 of 

Reviewer 1. We agree with Reviewer 2 that the study would be even more 

convincing if it included a positive control, i.e. a human-human condition that 

provides evidence for the success of the manipulation. We aim to include this in 

future studies following up on this one and mention this limitation/future 

direction on line 338 of the revised manuscript.  

Line 338: “Future experiments should further include a positive control to 

ensure the synchrony manipulation works as expected in human-human 

interaction and additional loops of control to ensure that the synchrony 

manipulation is sufficiently immersive and salient.” 

Comment 4 - Incomplete method section makes it unclear if the lack of effect 

of synchrony was because there is no effect or because the experimenter 

treated the robot like a thing (in addition to the concerns in the above bullet 

point). It will also help to justify the question asking measure you chose using 

previous literature. 

In the methods section, we describe how the robot introduces itself (as a 

member of the University research department) in the experimental procedure. 

Experimenters were encouraged to avoid the use of gendered pronouns and 

instead referred to the robot as ‘Pepper’ or ‘the robot’. Our measure of social 

motivation, which relied on how many questions participants chose to ask 

Pepper from a list, was custom made for this experiment, and does not directly 

relate to a similar measure that has been previously used in human-robot 

interaction studies. Our rationale for choosing this measure was that human-

robot interactions with Pepper in real life are usually characterized by these 

question-answer dynamics, so we chose this measure to gauge whether our 

manipulation would have an effect in a relatively natural scenario (see response 

to comment 3 of Reviewer 1).  

Comment 5 - Line 23 "Positively influences likability and prosocial behavior 

towards that individual" sounds strange 

This sentence has been rephrased (line 27):  
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“A wealth of social psychology studies suggests that moving in synchrony with 

another person can positively influence their likeability and prosocial behavior 

towards them.” 

Comment 6 - Around line 71, you assume that adaptive behavior is similar to 

synchrony, but you don't explain why.  

Conceptually, there are two forms of synchrony that are discussed in the 

literature. One refers to orchestrated synchrony, i.e. synchrony that is induced 

by following a shared metronome (the framework chosen for this study), while 

the other form of synchrony is naturally emerging and requires adaptive 

movements from each agent. Shen and colleagues (2015) wanted to emulate 

naturally emerging synchrony and equipped their robot with an information 

distance algorithm, designed to promote emerging synchrony between human 

and robot. Hence, we do not assume that adaptive movements are equivalent 

with synchrony but are important components of naturally emerging synchrony.  

Comment 7 - You are missing a section talking about studies that have 

already examined synchrony (not just adaptive behavior) with robots. I 

recommend the following articles: 

As we explained in our answer to the above comment, the two studies by Mörtl 

and colleagues (2014) and Shen and colleagues (2015) are indeed focused on 

synchrony with robots and even go one step further by trying to emulate the 

natural occurring synchrony we can observe between humans in everyday life 

(for example, synchronized clapping at concerts). However, we appreciate that 

many other articles have discussed human-robot synchrony as well and have 

studied the articles suggested below. The papers by Oztop, Franklin and 

colleagues (2005), Kilner, Paulignan and team (2003) and Sartori et al (2011) 

measure automatic imitation and not interpersonal synchrony. We thank 

Reviewer 2 for recommending additional references – where relevant we have 

included them in the paper (see our answer to comment 2 and line 318 in the 

manuscript).  
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Comment 8 - It is not clear why participants were excluded for studying 

computer science. If you exclude the students, should you also exclude 

psychology students who might be able to guess your purpose? 

This decision mainly relates to their more comprehensive knowledge of robotics 

and artificial intelligence. We expected that they would approach the 

interaction with the robot very differently to a naïve participant. Furthermore, 

all of the included Psychology participants were naïve to the purpose of the 

experiment. Indeed, they repeated the cover story they were told. We explained 

to them in the beginning of the experiment, that we were interested in 

investigating how the presence of a robot might affect their performance on a 

task. We would have removed participants that were able to guess the purpose 

of the study (but this was not necessary). Please see response to Comment 13 of 

Reviewer 2. 

Line 166: “Participants were naïve to the goal of the experiment.” 

Comment 9 - Studies indicate that answering demographic information first 

changes the way the participants respond to experimental protocol. I 

recommended future studies, you ask them demographic information last. 

We were not previously aware of this and thank Reviewer 2 for this 

recommendation, which we will happily follow in the future.  

Comment 10 - When you asked them about "trait attitudes toward robots," - a 

couple of questions arise. What do you mean by trait attitudes? Has someone 

validated a scale for trait attitudes? What questions were asked?  

When talking about trait attitudes towards robots, we use this as a qualifier to 

distinguish it from attitudes towards robots that arise due to the state of a 

situation. We used the NARS (Negative Attitudes towards Robots Scale) by 

Nomura and colleagues (2006) (in the English version by Syrdal, Dautenhahn et 

al., 2009). These references have been added to the paper (line 190/191). The 

scale has been widely used in the field and has been validated in different 

languages (for example, Picarra et al., 2015). 



183 

Comment 11 - Second, the measure that you said you use is that they were 

responding regarding attitudes about "they" robot (line 141). If they hadn't 

met the robot yet, how did they do this? What did they know about the robot 

when they were answering this question? 

The ‘they’ here refers to the participants, who were asked to fill out the 

questionnaires before the start of the task. The Negative Attitudes Towards 

Robots Scale asks about negative feelings about situations of interactions with 

robots, the social influence of robots and the negative attitude towards 

emotions in interactions with robots (Nomura, 2006). Thus, it asks about robots 

in general, and not the Pepper robot specifically. This is why we refer to it as 

‘trait’ negative attitudes of the naïve participants, before they met the robot. 

We did not enquire what they knew specifically about the Pepper robot before 

introducing it. However, it is unlikely that our participants had met a Pepper 

robot previously, as we were the first lab at the University to conduct an 

experiment with it.  

Comment 12 - How did you treat the robot? Did you call it by name, treated 

like a human, or did you treated like a thing? Some of the above studies cited 

indicate that if people don't think the robot is intentional, synchrony won't 

matter. If the experimenter doesn't treat the robot as a human, people likely 

will not perceive it as intentional. 

As we have addressed this point already above (Reviewer 2, comment 4), we 

only want to briefly explain that the robot was treated as a supposed ‘member 

of the research department’ and was referred to by the experimenters as 

‘Pepper’ or ‘the robot’.  

Comment 13 - What was your cover story? You emphasize the importance of 

experimenter bias, which is great! - but participants might also start guessing 

your purpose if you don't have a solid cover story and they were made to go 

in sync with the robot. 

We agree with Reviewer 2 that a plausible cover story is very important. We 

informed participants that we were interested in investigating the effect of the 

presence of a robot on the performance of a (drawing) task. No participant 
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raised suspicion and all of them remained naïve to the true purpose of the 

experiment. See response to comment 8 of Reviewer 2.  

Comment 14 - What questions were on the paper that they picked up (line 

181)? 

We have added the list of questions to the supplementary material (Appendix 

A). 

Comment 15 - In line 208, P only goes out to one decimal place. Keep it 

consistent please. 

The p-value we found was .6037, so we had rounded to .6. This has now been 

amended to .60.  

Comment 16 - Figures 2 and 3 look great! Very informative.  

We agree with Reviewer 2 that the pirate plots generated with the R yarrr 

package give a great overview of the data, since they show raw data, central 

tendencies and densities, and the 95% highest density intervals, thus combining 

raw, descriptive and inferential visualisation. This information has been added 

to the figure captions on page 11.  

Comment 17 - When participants were split by perceived synchrony, how 

many people were in each condition? 

We have addressed this question by adding a table in the supplementary 

material (Appendix A). The information on how many subjects were in each 

group has also been added to the figure captions on page 11.  

Comment 18 - The paragraph starting in line 224 is great, love it! The 

paragraph after it is also very important. I wish this were earlier and that the 

study could have included this information. 

We feel like the position of this point in the discussion of the findings is 

appropriate, given that we are considering here explanations for why we are 

observing null results using this particular experimental manipulation. In our 
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next studies, we will keep in mind to consider perceived intentionality and add a 

measure to capture it.  

Comment 19 - The information in paragraph starting on line 259 is great! I 

think it should be included in the method section because it relates to how 

you actually ran the study. 

We respectfully disagree with this suggestion, especially as it was suggested by 

the editors to collate the lessons learned into one section, which seems 

appropriate at the end of the paper, following the logical flow of ‘what have we 

learned from the human-robot interaction study as experimental psychologists’.  

Reviewer 3 

Comment 1 - Firstly, at times I missed a clear link between the design and 

the literature, of which I gave the most prominent examples under the minor 

comments below. 

We thank Reviewer 3 for drawing our attention to this problem. We hope that 

Reviewer 3 finds that the revised manuscript makes the link between the design 

and literature far clearer, as the other 2 reviewers raised related points which 

we have addressed in this revision (Reviewer 1: comment 1,3; Reviewer 2: 

comment 2,3,7,10). In our specific answers in response to Reviewer 3’s points 

below, we provide more details as to how we have changed the manuscript to 

reflect this. 

Comment 2 - My other main concern is as follows. I believe strongly in the 

publication of null-results, as long as the study has a scientific contribution, 

which this paper clearly offers. However, I worry that it might also be driven 

by the experimental design or by a lack of statistical power. In terms of 

experimental design, I specifically wonder if the experience of synchrony was 

too subtle (l.222) because the immersion was not deep enough due to mostly 

technical constraints (such as robot movements, its screen turned off, and 

the physical distance between the robot's pen and its screen). Perhaps a 

brief summary of the manipulation check that was carried out would be 

informative.  
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We thank Reviewer 3 for raising their concern regarding the depth of the 

synchrony immersion. We have addressed Reviewer 1 and 2’s concerns regarding 

the two manipulation checks we carried out and have subsequently added two 

figures in the supplementary materials, visualising the objective attention check 

and the check for the participants’ subjective impressions of synchrony 

(Appendix A). While analysing the objective attention check was not informative 

due to technical difficulties with the remote control that changed the colours of 

the LED bracelet, we can see that most participants were able to report the 

colour changes correctly, so we can be fairly confident that they were attending 

to Pepper’s arm movements (also see: comment 2 of Reviewer 2). Future studies 

might include either more loops of control to ensure that the depth and saliency 

of the synchrony experience can be quantified or could include a more natural 

manipulation, based on emerging synchrony between the interacting agents.  

Comment 3 - Additionally, was the task analogous to one used in the reported 

human-human studies? Since the metronome is quite an exogenous cue, 

perhaps social feedback/interaction is not relevant to the participant's 

mindset, as they are simply carrying out the task. If other studies used a 

similar design, please report it. If not, discuss it in more detail; as it would 

enhance the issue touched upon in the paragraph starting at l.224. 

We have addressed the underlying motivation for choosing a paradigm that 

orchestrates synchrony via a shared metronome in response to Reviewer 1 and 

2’s concerns (Reviewer 1, comment 1). We have added the information in the 

manuscript that the task design was modelled on the seminal study by Hove and 

Risen (2009), who used a similar visual metronome to synchronize finger tapping 

between their participants and the confederate.  

Comment 4 - About statistical power: as far as I understood, there were 6 

blocks of 4 trials (=24 trials) in total; or are the 4 repetitions part of the 

same trial? I realise that no variables were measured from 

this interaction itself, so the issue I raise here is not one of measure 

repetition; but I do wonder if it ties back to the immersion aspect. Namely, 

relative to the duration of the entire experimental session, 

the interaction was quite short. I feel like a short sentence or two addressing 

this in the discussion would make this information more transparent. 
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There seems to have been a slight misunderstanding concerning how the blocks 

are composed: Each drawing block consists of the participants following the 

moving dot 4 times around the circle. In total we have 6 drawing blocks, each 

followed by a break, which amounts to 24 trials (=24 drawn circles). We concur 

with Reviewer 3 that this indeed led to a rather short immersion into synchrony 

with the robot, however, this is directly modelled on the short synchrony 

interventions reported in the human-human interaction literature (Hove & Risen, 

2009; Cross, Wilson, & Golonka, 2016). We have added a sentence in the 

discussion addressing this issue.  

Line 292: “Given this finding, it may be that the experimental manipulation of 

synchrony was either too subtle or too short to fully immerse participants in the 

experience and to produce the hypothesized beneficial effect on rapport 

between synchronizing agents.” 

Line 338: “Future experiments should further include a positive control to 

ensure the synchrony manipulation works as expected in human-human 

interaction and additional loops of control to ensure that the synchrony 

manipulation is sufficiently immersive and salient.” 

Comment 5 - In summary, these concerns can mostly be simply addressed in 

the discussion section, to provide a more critical evaluation. Other than that, 

I read this manuscript with great interest and I really recognised a number of 

issues myself (for example, we recently had a near-ceiling effect of 

likeability on the Godspeed questionnaire as well: people just like humanoid 

robots!). I particularly enjoyed the recommendations toward the end. Great 

work in general! 

We thank Reviewer 3 kindly for their feedback.  

Comment 6 - Please describe the task in more detail. Were participants 

meant to trace the visual metronome? I found this unclear. 

We thank Reviewer 3 for drawing our attention to the fact that the task 

description was unclear in the manuscript. We have added an additional 

sentence of explanation in the Experimental Procedure to make clear that the 
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participants were informed that it was the goal of the task to follow the moving 

dot (=visual metronome) as closely as possible and too make as little mistakes as 

possible: 

Line 207: “Participants received the instruction from the experimenter that the 

goal of the task was to follow the moving target as closely as possible and 

deviate from it as little as possible.” 

Comment 7 - Compliments on being so straight-forward about selecting the 

final pool of participants, which appears analogous to the 21-word statement 

by Simmons, Nelson and Simonsohn, 2012. However, to complete this, could 

you provide a sample-size justification? 

This experiment was set up as an initial proof of concept study. Our sample size 

results from our motivation to recruit the highest number of participants in a 

limited amount of time (i.e., before our lab moved in the spring of last year).  

Line 153: “. We aimed to recruit the highest number of participants within the 

testing period (February to April 2018).” 

We now also include a data statement. 

Line 150: “Data statement. We report all measures in the study, all 

manipulations, any data exclusions, and the sample size determination rule. The 

data and the R analysis script are publicly available via the OSF [link].” 

And we critically discuss the fact that the sample size might have been too small 

to detect our effects of interest: 

Line 341: A final limitation we would like to highlight is the fact that given the 

rather high number of participants we had to exclude, the sample size may have 

been too small to show the expected small to medium effect size of a synchrony 

manipulation on perception of and behavior towards the robot. 

Comment 8 - The goal of the study (paragraph starting at l.115) could do with 

more explicit linking to the previous paragraph(s) to clarify these links to the 

https://osf.io/c7jwy/
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reader. I suggest something along the lines of: "likeability, analogous to the 

findings by Chevallier et al. (2012)" and "increased number of questions 

during a subsequent free interaction as a measure of prosocial behaviour". 

We agree with Reviewer 3 that this would clarify the links to the previous 

paragraphs and have added these references at the end of the introduction 

section.  

Line 140: “We hypothesized that moving in sync with the robot would improve 

its likeability, analogous to the findings of Lehmann and colleagues (2015), and, 

based on Chevallier’s social motivation theory, would also increase the 

motivation to interact with the robot, as measured by the number of questions 

participants chose to ask the robot during a free interaction.” 

Comment 9 - Similarly, I would add a "see experimental procedure" after the 

"losing the metronome" statement in l.123; as the metronome has not been 

introduced yet at this point. 

We thank Reviewer 3 for drawing our attention to this, we have added a 

reference to the experimental procedure.  

Line 154: “Four participants were excluded from further analysis due to large 

error rates (losing the metronome more than 30 times, see experimental 

procedure below) on the task, and four more had to be excluded due to missing 

data on the questionnaires.” 

Comment 10 - Would you be able to provide open data plus a link to it in the 

manuscript? 

We have uploaded the data and the R analysis script, as well as the html output 

file to the OSF and have made the project available to the public. Thank you for 

your helpful comments. 

 

https://osf.io/c7jwy/
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Appendix C Supplementary materials for “Faces 

do not attract more attention than non-social 

distractors in the Stroop task” 

A) Emotion rating (online validation study) 

Prior to study 1, we ran an online stimulus validation study to ensure that the 

faces would receive comparable ratings in perceived emotionality. At the time 

of this online validation study (June 2018), we had not yet added the third 

control condition (pareidolic faces), so only the emotional content of unique 

human and robot faces were rated. Furthermore, as this was the first set of 

stimuli, there were less unique images (12 images per condition) compared to 

study 2 (24 images per condition). The validation experiment was presented in 

Jisc Online Surveys (formerly Bristol Online Surveys). Participants rated 18 

unique robot and 18 unique human faces (male and female) on a bespoke 

semantic differential scale between ‘1 – sad’ to ‘7 – happy’. ‘4’ was considered 

‘neutral’, for the purpose of the analysis. The scale was made for this study. 84 

participants (age: M=34.67, SD=11.77) completed the rating study.  
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Most participants were female (n=64) and most reported never having interacted 

with a robot before (n=61). The participants were recruited via advertisements 

on social media.  

While the two groups didn’t differ in mean ratings at first glance (human faces: 

M= 3.69, SD=1.08, robot faces: M=3.97, SD=1.39), ordinal logistic regression with 

the ‘ordinal’ package (Christensen, 2019) suggests that human faces were rated 

more negatively (estimate = -.37, SE= .07, p<.001). Following this result, we 

inspected the mean ratings of the individual stimuli visually and discovered that 

the robotic faces were rated much more variably than the human faces. As the 

stimulus exclusions were costly (i.e. the time and effort to replace and re-

process all images), and we had to work towards keeping at least 12 unique 

images within the pool of 18 images in each condition, we removed the strongest 

outliers in the robot condition (robots  2, 6, 7, 10, 11, & 12) and removed those 

human faces that were rated more negatively than the average, with 3 male and 

3 female faces each (19, 22, 23, 28, 33 & 35).  While the procedure we followed 

is not optimal (limited by the time and stimulus availability constraints), we 

F4 - Emotion ratings. 

The bold dots represent the mean rating scores for each image, and the bars 
represent the standard error. Red & labelled points indicate that those images were 
excluded.  
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gained valuable insights. The robot faces we considered “neutral” upon selection 

were, in fact, perceived not as unambiguously neutral by the raters, and despite 

selecting human faces from the neutral condition of the Radboud Faces Database 

(Langner et al., 2010), they were perceived slightly more negatively than the 

midpoint of our scale.  
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B) Agency and experience ratings (Experiment 2) 

In conjunction with study 2, we included a second survey component, which 

required participants to rate all the unique (un-mirrored) images on agency and 

experience. Again, we used a bespoke rating scale modelled on the conceptual 

ideas of Gray, Gray and Wegner (2007), who define agency as the ability to plan 

and act and experience as the ability to sense and feel. The images and rating 

scales were presented via FormR (Arslan, Walther & Tata, 2019) and the one-

sentence definitions of agency and experience were presented below each 

image. Fifty-one participants (the same sample as in Study 2) rated 96 unique 

images on agency and experience (24 per category, 4 categories). The three 

inbuilt attention checks (for example: “Did the last image show a) an objects or 

b) a human?” were all answered correctly by all subjects.  

 

A within-subjects ANOVA conducted with the R package {ezAnova} suggests that 

there is a main effect of agent: F(3, 150) = 189.71, p<.001. Mauchly’s test for 

sphericity was significant, thus the assumption was violated (W) = 0.37, p < 

F5 - Agency and experience ratings (Experiment 2). 

The agency and experience ratings of the 4 stimulus categories: human faces, robot faces, 
pareidolic faces (objects) and flowers. There is a clustering at the midpoint of the scale, 
which can be explained by the fact that the starting point of the rating scale was always at 
50. 
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.001).  The Greenhouse-Geisser estimate of sphericity (ε = 0.74) was used and 

the corrected p-value remains significant (p<.01). Upon inspecting figure 5, it 

appears that humans were rated highest on agency and experience, robots were 

attributed some agency and little experience, pareidolic faces rated lowest on 

both dimensions of mind and surprisingly there was a large spread of ratings for 

the ability of flowers to sense and feel. This satisfies our internal criterion for 

‘category difference’, to ensure that each of the faces were sufficiently distinct.  
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C) Pre-processing of response times 

Table T2 lists the number of remaining trials per experimental condition after 

applying our pre-registered trimming criterion in Experiment 1. Table T3 depicts 

the mean reaction times using our pre-registered standard deviation criterion 

and Figure F6 and F7 depict density plots of the response times for each of the 

pre-processing methods. Applying the suggested standard deviation per 

participant criterion resulted in overall slower reaction times (Table T3), 

compared to the original analysis (Table T2). As the pattern of results 

nonetheless looks similar to what we originally reported, and in the interest of 

adhering to our pre-registration, we decided to keep the current results section 

of Experiment 1 as it is. 

 

T2 - Experiment 1: Number of remaining trials per experimental condition 

after reaction time trimming using the pre-registered standard deviation 

criterion. 192 trials, 39 participants.  

Condition Total number of 

trials 

Trials remaining  % of trials 

remaining 

incongruent_human 936 847 90.5 

incongruent_robot 936 835 89.2 

incongruent_object 936 857 91.6 

incongruent_flower 936 829 88.6 

neutral_human 936 883 94.3 

neutral_robot 936 870 92.9 

neutral_object 936 883 94.3 

neutral_flower 936 878 93.8 
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T3 - Experiment 1: Mean reaction times (in ms) per condition using the pre-

registered standard deviation criterion. 

 Distractor 

 Human Robot Object Flower 

Incongruent 

target 

843 807 815 796 

Neutral target 753 768 763 760 

 

 

 

 

 

F6 - Density plots for reaction times (ms) in Experiment 1 with the pre-registered standard 
deviation trimming criterion. 
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T3 - Experiment 1: Mean reaction times (in ms) per condition using the 

standard deviation per participant criterion. 

 Distractor 

 Human Robot Object Flower 

Incongruent 

target 

840 833 833 809 

Neutral target 769 770 780 776 

 

 

Repeating the same procedure for Experiment 2, we find that with our pre-

registered standard deviation criterion we discard 1061 trials (10.84%) in total 

(with the participant sensitive criterion we discard 11.35% of all trials). Again, 

we see that the overall patterns of results remain the same across these two 

pre-processing methods (illustrated in tables and figures below).  

F7 - Density plots for reaction times (ms) in Experiment 1 with the participant-sensitive 
standard deviation trimming criterion. 
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T4 - Experiment 2: Number of remaining trials per experimental condition 

after reaction time trimming using the pre-registered standard deviation 

criterion. 192 trials, 51 participants.  

Condition Total number of 

trials 

Trials remaining % of trials 

remaining 

incongruent_human 1,224 1062 86.8 

incongruent_robot 1,224 1072 87.6 

incongruent_object 1,224 1061 86.7 

incongruent_flower 1,224 1056 86.3 

neutral_human 1,224 1120 91.5 

neutral_robot 1,224 1100 89.9 

neutral_object 1,224 1109 90.6 

neutral_flower 1,224 1101 90.0 

 

T5 - Experiment 2: Mean reaction times (in ms) per condition using the pre-

registered standard deviation criterion (Experiment 2). 

 Distractor 

 Human Robot Object Flower 

Incongruent 

target 

811 808 809 816 

Neutral target 723 747 730 735 
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T6 - Experiment 2: Mean reaction times (in ms) per condition using the 

standard deviation per participant criterion. 

 Distractor 

 Human Robot Object Flower 

Incongruent 

target 

833 828 834 825 

Neutral target 748 755 750 749 

 

 

 

F8 - Density plots for reaction times (ms) in Experiment 2 with the pre-registered 
standard deviation trimming criterion. 
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F9 - Density plots for reaction times (ms) in Experiment 2 with the per participant standard 
deviation trimming criterion. 
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Appendix D  Rebuttal for “Faces do not attract 

more attention than non-social distractors in the 

Stroop task” 

NB: Shared with permission from the editor. This manuscript is currently 

accepted pending minor revision at Collabra: Psychology (i.e. we opted for open 

peer review).   

Editor 

Summary: Three expert reviewers have provided comments on your work and 

find that some revisions are necessary before it would be suitable for 

publication. The reviewers have made suggestions that cover most of the work 

and many of these points are critical, while described in much more detail in 

the reviewer comments below, I would like to highlight a few that I found 

particularly important to be addressed. (1) Structure of the introduction, as 

detailed by Reviewer 2. (2) Reporting the number of excluded trials. (3) Further 

methodological details need to be included. All of the reviewers thought the 

figures and tables were well done. 

Response: We are very grateful for the reviewers’ detailed comments and 

suggestions and the editor’s synthesis of the overarching points on how best to 

improve this paper. In the revised manuscript and our responses below, we 

detail how we have taken this feedback onboard. In line with the suggestions of 

the reviewers we have placed the strongest emphasis on reworking the 

introduction and the discussion section, providing more synthesis, critical 

commentary and making more explicit our study’s rationale. We have detailed 

the exact number of excluded trials in the supplementary materials (Appendix 

C), as well as added the overall number of excluded trials in each experiment to 

their respective results sections. In order to ensure full transparency, we 

included the alternative reaction time pre-processing method which was 

recommended by one of the reviewers in the supplementary materials as well 

(Appendix C). Finally, we have carefully followed the reviewers’ suggestions to 

include more details on our methods while at the same time removing some 
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information that was flagged as redundant. We highlighted the changes to the 

manuscript in bold typeface. 

Reviewers 

Reviewer D: The authors were interested in human-robot social interaction with 

a focus on social motivation towards artificial agents. In two studies, they 

investigated the effects of distractors with varying social salience on an 

adaptation of a classic Stroop task. In both studies conducted, a classic Stroop 

effect emerged, yet there was no significant effect of salient social cues 

(human face distractors) capturing attention.   

D.1a: The authors do a good job setting up the study's aims by providing a big 

picture question. However, the organization of the literature review is 

somewhat hard to follow. The studies reviewed contain details that do not 

seem necessary and distracts the reader from the main point. For example, 

the sample sizes each study had are unnecessary as well as step-by-step 

accounts of their experimental procedures. I think the introduction would 

benefit from succinct accounts of the main manipulations of the studies (e.g., 

direct vs averted gaze, open vs closed eyes) and relevant results (as the 

authors already do). Additionally, we do not see synthesis or commentary by 

the authors. It would be useful if they could provide their own interpretation 

of the literature and its implications.  

Response: As the introduction has been criticized by all three reviewers, we 

have made major changes to its structure and content, now focusing less on very 

detailed accounts of each study’s experimental procedure and proving a bird’s 

eye view on the current state of the art social attentional capture research.  

Thus, we have removed superfluous details such as participant numbers in the 

revised introduction, for example: 

P.8, l. 237-239: Importantly, the authors tested the paradigm in two groups of 

children: typically developing boys and a group of male adolescents with Autism 

Spectrum Condition (ASC). 
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We agree that our evaluations of the literature should include more critical 

reflection, which we have added as well in rewriting the introduction.  

P.6, l. 187-191: While the evidence on how deeply illusory faces are perceived as 

social is mixed, they constitute an ideal control for human facial features in 

social attentional capture tasks. This also raises the question how deliberate 

pareidolic faces, such as humanoid robots, might engage our visual attention, as 

these agents are capable of at least some interactions with the physical world.   

The more strongly emphasized synthesis and critical commentary is especially 

evident in the revised discussion, for example: 

P.21, l. 522-529: Many studies report effects based on very small samples (some 

as small as 8 participants per experiment; Ariga & Arihara, 2017; Miyazaki, 

Wake, Ichihara, & Wake, 2012; Sato & Kawahara, 2015), make bold statements 

based on modest statistical evidence (“the three-way interaction approached 

significance, F(2,76) = 2.46, p<.10”, p. 1103, Hietanen et al., 2016) or use small 

sets of distractor images which are repeated across many experimental trials 

(Bindemann et al., 2007; Theeuwes & Van der Stigchel, 2006). Indeed, some of 

these problematic confounds have been highlighted and tested by Pereira and 

colleagues (2019; 2020). 

And:  

P.21, l. 539-545: While a different task was used in these studies, the authors’ 

findings closely align with ours: faces are not reliably capturing attention and 

impairing the performance on an unrelated cognitive task. Interestingly, in a 

direct replication of Bindemann and colleagues (2007), using less well-controlled 

stimuli, the authors were able to replicate the effect of attentional capture by 

task-irrelevant faces, providing convincing evidence for systematic confounds 

obscuring the true picture in the existing literature. 

D.1b: Refrain from using direct quotations as it takes away from the authors' 

original thinking. Where "centrally presented direct gaze delay[ing] 

attentional disengagement and recruit[ing] cognitive processing resources, 

and hence, processing times of the peripheral targets and the Stroop 
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interference are increased” is written, perhaps the authors could paraphrase 

the central idea. 

Response: This point is well taken, and similar points have been raised by other 

reviewers. In the revised version of the manuscript, we have completely 

restructured/rewritten the introduction taking this feedback onboard. 

D.1c: Details such as “The experimenter explained the procedure of the 

study and ensured participants understood the task” and “During this part of 

the study, the light in the cubicle was still switched on, and was switched off 

when participants started the test phase of the experiment“ do not 

necessarily have to be in the body of the paper. If the authors would like to 

keep this, it would be better to move this in Supplementary Materials.  

Response: We agree that this information is unnecessary and have removed it.  

D.1d: It might be worth thinking about the importance of controlling for 

emotional valence when using human face stimuli and provide this as a 

motivation for using neutral stimuli, which is missing in the paper. This might 

be useful in the Introduction or in the General Discussion and set this up as a 

limitation or a note for future studies. There are several studies showing that 

emotional human faces (or emotional stimuli in general) have been found to 

capture attention faster than neutral when task-irrelevant (e.g., Theuuwes & 

Van der Stigchel 2006; Pessoa, McKenna, Gutierrez, & Ungerleider, 2002; 

Vuilleumier, 2002). This could influence the degree of social salience of 

social agents. 

Response: Indeed, emotional valence of faces plays a crucial role in social 

interaction and has been repeatedly shown to influence attention differentially. 

Thank you for the helpful literature recommendations. We added our rationale 

for selecting neutral faces to the methods:  

P.10, l. 299-306: The rationale behind including only neutral faces was that 

emotional facial cues have been shown to draw attention, especially in 

comparison to neutral facial expressions (Pessoa, McKenna, Gutierrez, & 

Ungerleider, 2002; Theeuwes & Van der Stigchel, 2006; Vuilleumier, 2002). An 
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independent sample rated the first pool of human and robot images, resulting in 

a pre-selection of more neutrally perceived faces (more details can be found in 

the Supplementary Materials). 

To illustrate the point of possibly more varied robot and object images, we show 

below additional stimulus examples for Reviewer D’s information, which, due to 

copyright restrictions we cannot include in the manuscript:  

[This figure had to be excluded due to copyright restrictions.] 

In the revised discussion, we write: 

P.23, l. 605-614: Despite our best efforts to only include neutral faces, the 

emotional content of the social stimuli could not be controlled to a fine-grained 

degree, as it was limited by the design and availability of the robots and objects 

that were identified through our Google search. In the emotion rating 

experiment, which we undertook prior to Experiment 1, the robot faces were 

not rated as unambiguously neutral as the human faces, even after excluding the 

outliers. Human faces were selected from the neutral category of the Radboud 

and London faces database, so these stimuli would have contained inherently 

less variance in perceived emotionality than the robot and object faces. 

However, given the scarcity of frontally oriented and high-quality robot and 

object faces, we chose to operate within those constraints. 

D1e: Statistical analyses are sound. 

D.2: (Figures, Tables, data availability) While sufficiently described, I would 

like to see a schematic of the Stroop task as it is always helpful to readers. 

The plots are beautiful. 

Response: In line with this helpful suggestion, we have added a schematic 

representation of the Stroop task in the Methods section (p.11). 

D.3: (Ethical approval) Ethical approval is present and informed consent is 

declared. 
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D.4: (Language) English is excellent. As per my comments above, the authors 

could be more concise when reviewing the literature, as well as describing 

the methods. 

Response: We hope to have addressed this concern by making the changes we 

outline in the above responses.  

Reviewer H: This manuscript featured two nearly-identical experiments 

designed to examine the impact of social salience during the Stroop Task. 

Specifically, the authors varied the social salience of distractors, including 

images of human faces, robot faces, objects that looked like faces, and flowers, 

and predicted that faces would amplify the stroop effect due to their high 

social salience. They found evidence for this in Experiment 1, but when they 

controlled for a stimulus confound in Experiment 2, they were not able to 

reject the null hypothesis. This investigation has some strengths. For example, 

comparing evaluations of human and robot faces is interesting, their analyses 

were appropriately simple and clear, and basic visual characteristics of the 

stimuli were well controlled for. The authors also took care to evaluate 

whether their data provided evidence in favor of the null hypothesis, which I 

appreciated. In general, I don’t have any concerns about the methods, the data, 

the analyses, or their interpretation. However, I did have quite a few major 

concerns about more general issues that tempered my enthusiasm for the work. 

I’ll explain these in more detail below. 

H.1a: First, the majority of the Introduction is highly specific to research on 

gaze perception, as is the Discussion. And yet gaze direction is not examined, 

nor is it even important, in the current investigation. This reflected a larger 

issue with the Introduction, which seems to cover many topics before finally 

focusing on the hypothesis and aims of the investigation. It didn’t feel like 

the gaps in the literature (as described) necessarily led to the current work 

and its design. Rather, it felt a bit like a literature review was forced around 

the current experiment. In this sense, I did not think that the article was as 

logically structured as it could have been. 

Response: Thank you for this critical reflection – as we have written in response 

to the editor and the other reviewers, we have reframed both our introduction 
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and discussion to better explain our rationale for designing the conceptual 

extension of the eye contact effect. We agree wholeheartedly with this 

criticism. The revised introduction includes a general overview of the social 

attentional capture focusing on whole faces (rather than gaze perception) and 

relates this literature back to human-robot interaction research, as this was one 

of the main motivators for designing this conceptual extension.  

For example: 

P.4, l. 101-105: Given their prioritization in our visual environment, it is 

unsurprising that faces have been the central focus of many visual attention 

studies. Collectively, these studies point towards faces ranking above objects in 

capturing automatic attention. Using a change blindness paradigm, Ro, Russel 

and Lavie (2001) found that participants detected changes in temporarily 

presented faces more quickly than changes in any other object. 

And: 

P.5, l.149-153: Hence, and as Geiger and Balas (2020) point out, robot faces, 

which we have presented here as a special case of intentional pareidolia, 

constitute a border category of face processing, and while some research exists 

on attentional capture by pareidolic faces, less is known about the social 

relevance of robot faces. 

H.1b: Second, it’s not clear to me that the design the authors have selected 

is the best one to examine their main question. In describing previous work 

by Conty and then Chevallier, the authors state that “the lack of difference 

in arousal would lead to “centrally presented direct gaze delay[ing] 

attentional disengagement and recruit[ing] cognitive processing resources, 

and hence, processing times of the peripheral targets and the Stroop 

interference are increased”. They then go on to state that testing this claim 

was the goal of the current investigation. But as far as I can tell, their design 

does not examine arousal, nor is it confirmed that the stimuli themselves 

differ in the extent to which they arouse the participants. I don’t have an 

issue with their stimulus choices per se (they’re rather clever), but they 

don’t seem to fall out of the literature reviewed, and it seems like not 
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manipulating gaze direction was a missed opportunity. Thus, although I have 

no issues with the analysis or the data, it’s not clear to me that the 

conclusions reflect the underlying question, at least as it’s framed in the 

introduction. 

Response: This comment is very much in line with the comments of the other 

reviewers and editor, so we decided to reframe the introduction to clarify the 

rationale for our task, reduced the discussion of the follow-up experiment by 

Hietanen and colleagues (2016), removed the direct quote, which was criticised 

by another reviewer as well (see comment D.1b), and moved the entire section 

to the discussion. 

In this paragraph, we were trying to establish that another conceptual extension 

of the eye-contact effect by Hietanen and colleagues failed to show the 

predicted effect: these researchers reported an effect in the opposite direction 

(reaction times speeding up) and credit levels of arousal in their experiment 

with an embodied confederate as an explanation. They describe studies with 

pictorial stimuli (as our studies, or the studies by Conty, Chevallier and 

colleagues) as low-arousal situations, in which the original effect should hold. 

However, we were of course unable to provide convincing evidence for a social 

salience effect in this version of the Stroop task. While we did not measure 

arousal directly, we wanted to pick up this point by Hietanen and colleagues, to 

continue the conversation on why a null effect could be observed in conceptual 

extensions of this paradigms.  

P.20, l. 499-506: Hietanen and colleagues (2016) found a main effect of direct 

gaze speeding up the RTs of the participants, as compared to averted gaze. The 

authors reconcile their contradictory findings by relating them to the higher 

arousal produced by their stimuli: eye contact with a real person should be more 

engaging than pictorial representations thereof. In so-called low arousal 

contexts, they argue, salient social cues should recruit attentional resources and 

interfere with participants’ performance on cognitive tasks. In our experiments, 

even in a context that Hietanen and colleagues (2016) describe as “low arousal”, 

it is most probable that any social salience effect is practically equivalent to 

zero.  
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Like Chevallier and colleagues (2013), we chose not to manipulate gaze direction 

in this task, but rather include the neutral flower distractors (just as Chevallier 

and colleagues did) and vary the levels of socialness of the distractor agents. 

Based on the findings of Chevallier and colleagues, we expected a human 

distractor-dependent enhancement of the Stroop effect in the incongruent 

condition, compared to the flower distractor. Despite the experiments not 

explicitly investigating eye gaze, the gaze direction of all “social” stimuli 

(humans, robots, objects) was direct, towards the observer. Thus, despite taking 

up a smaller region in the distractor image, the direct eye gaze was controlled 

across social distractors, and any one of these categories should then draw more 

attention than the flower images. We added this point to our discussion: 

P.20, l.507-519: How can our results then be explained? Of course, the stimuli 

we presented were more complex than those used in the original studies, so it is 

possible that the eye-contact effect only holds in (more) simplified contexts. 

The eye region in our stimulus set appeared smaller than in the original 

experiments, due to it taking up a smaller percentage of pixels in our distractor 

images. While the eye region itself was smaller, all of our social stimuli (the 

human, robot and object faces) depicted direct gaze and a frontally oriented 

face. They only varied in their potential as a social interaction partner. So, if 

the eye-contact effect were to hold, we should have seen a consistent 

difference between our most salient social stimuli with direct eye gaze (the 

human faces) and the neutral control condition (flowers). The fact that our data 

did not support this pattern is especially surprising given that past studies 

examining direct gaze have also used full-face stimuli in similar, cognitively 

demanding tasks (Burton, Bindemann, Langton, Schweinberger, & Jenkins, 2009; 

Conty, Russo, et al., 2010a). 

H.1c: Third, critical information about the task is missing. Yes, the Stroop 

Task is well known and quite simple, but it isn’t adequately described in the 

Methods, nor is any background provided about the history of the task or its 

mechanisms. This wouldn’t be too difficult to rectify, but as it stands, it’s a 

curious omission. 

Response: We have added detailed information and figures on the number of 

discarded trials in the main text and supplementary materials (see also Reviewer 
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comment I.4) and have added more information on the design of the Stroop task 

(see also Reviewer comment I.8).  

Further to Reviewer H’s request, we have added a section discussing the history 

of the task and its mechanisms in the introduction.  

P.7, l. 208-222: Despite the above reviewed variety of paradigms which probe 

(social) attentional capture, the Stroop task has proven to be a particularly 

popular vehicle. Named after the psychologist who discovered the effect, 

hundreds of studies have shown that naming the ink colour of an incongruent 

colour word (i.e., the word “RED” presented in green) produces slower reaction 

times than determining the colour of a control word (the letters “XXX” 

presented in green). This interference effect, which highlights the fact that 

task-irrelevant information is processed concomitantly and automatically, has 

inspired a multitude of extensions, including pictorial, spatial, and social 

versions (MacLeod & MacDonald, 2000). For example, in the facial-emotional 

Stroop, participants name the ink colour of emotional, compared to neutral 

faces, which are overlaid with a coloured filter. Past research has shown that 

sad participants and participants with higher trait anger are slower to name the 

colour of angry versus neutral faces (Isaac et al., 2012; van Honk, Tuiten, de 

Haan, vann de Hout, & Stam, 2001; Van Honk et al., 2000). Thus, the Stroop task 

has been validated as a suitable paradigm to assess the distracting power of 

task-irrelevant information, such as facial cues.   

H.1d: Finally, I found it hard to process the takeaway message of the 

manuscript. The authors found evidence against the null hypothesis in 

Experiment 1, but there were issues with a stimulus confound, and then in 

Experiment 2, there appears to be no effect of category, but the authors 

were at the same time not able to support a case in favor of the null--of faces 

not drawing more attention in the Stroop task. In other words, it’s just really 

difficult to get a clear sense of what the study demonstrates, and thus what 

it’s impact will be. 

Response: Following comments from Reviewer I, we have revised the section on 

the Bayesian re-analysis of the data (including Figure 6). We hope that our 

interpretation of the results is now clearer: while the ROPE analysis does not 
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offer compelling evidence in support of the null hypothesis, we can quantify our 

uncertainty. The 95% credible interval of the posterior distribution contains zero 

and overlaps to ~ 50% with our region of practical equivalence. Thus, if human 

faces draw more attention in the incongruent condition than the flower 

distractors, this effect is much smaller than expected and the evidence for it is 

not very strong. By providing our posteriors, other Bayesians may include them 

as priors and collect enough evidence to support one decision over the other. 

Science is cumulative, and Bayesian statistics give us an important advantage of 

quantifying our uncertainty, which would have not been possible if we stopped 

at the point of describing the null effect of the Frequentist analysis. 

P.19, l.462-468: In summary, in defining our Bayesian regression model, we have 

increased the uncertainty of our estimates by including more random variance in 

the form of subject-level random effects. This increased uncertainty is 

expressed in Figure 5. Based on the ROPE analysis, we cannot definitively 

support the null hypothesis. However, considering that zero is contained in the 

95% interval of credible values of the parameter’s posterior distribution, the 

evidence for an effect is not very strong, and if real, goes in the opposite 

direction: -10ms [-10, 40].   

H.2: (Figures, Tables, data availability) The tables and figures are nice. Well 

done. 

H.3: (Ethical approval) This seemed adequate. 

H.4: (Language) In general, yes. The quality of English was good. 

Reviewer I: In this preregistered study, the question was investigated whether 

human faces automatically attract attention more than other types of 

distractors (human-like faces or non-faces) while participants solve a Stroop 

task. Two studies are presented, where in study 1 (N=39) a small effect seemed 

to favour the prediction with slightly increased Stroop effects in the presence 

of human faces, but a second study (N=51) that increased the number of unique 

distractor images failed to find differences between response times to the 

different distractor types.  
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I enjoyed reading this well-written manuscript, the theoretical background is 

nicely developed, the methods are sound and the statistical analyses are 

sophisticated. I have a few observations nevertheless that I would like the 

authors to consider. 

I.1: The task involved the concurrent presentation of a Stroop colour-word 

interference test and distractors. While this setup seems to follow methods 

by Conty et al. (2010), the main measure involves a form of “dual 

distraction” - distraction from the colour-incongruent words and distraction 

from the faces. It would have been nice to have baseline trials in which no 

distractors were shown, in order to evaluate people’s Stroop effect per se, 

without imposing a second task. 

Response: Indeed, our experiments were designed as a conceptual extension of 

Conty and colleagues (2010a), and we followed the original procedure as closely 

as possible. Seeing as the Stroop effect is considered robust in the literature, we 

did not include another control condition without any distractor images to 

establish this as a ground truth. Given that we find a main effect of target in the 

pre-registered analysis of both experiments, we can assume that the task itself 

worked and, overall, induced the desired Stroop interference effect (with some 

variance between participants, of course).  

We reemphasized this point (in addition to raising it in the abstract), by 

including it in the Results sections of Experiments 1 & 2: 

P.12, l. 355-356:  This finding confirms that our modified task was still effective 

at inducing a Stroop interference effect.    

P.15, l. 421-422: Again, this showed that the task worked as expected. 

I.2: The visual layout of these stimuli on the screen was not entirely clear to 

me as it is not shown in the figures, although described in the text. Was the 

distance between the words and the distractors different or the same as in 

the original study? In other words, was it perhaps easier to ignore the 

distractors here than in Conty et al., especially given that ignoring the 

distractors was indeed what participants were asked to do.  
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Response: We agree with the Reviewer that a visual representation of the 

experimental paradigm would be helpful, which we have added to the Methods 

section and is also visualised below: 

[See Figure 8] 

The distance between the distractors in our experiments and the original studies 

was matched as closely as possible given the difference in shape.  

In trying to emulate the stimulus size, we faced the following problem: to 

compute size based on reported visual angle, information on the distance at 

which the stimulus is viewed is also necessary. This information was missing from 

the 2010 paper. As a workaround, we referred to the later paper by the same 

group, which used a similar paradigm (exchanging the averted gaze control 

condition for flower distractors): Chevallier et al. (2013). This allowed us to 

calculate the size of the distractor images using the following code in R: 

desiredSize <- function(visAngle, distance){ 

Rad = visAngle/(180/pi)  

size = 2*distance*tan(Rad/2) 

return(size) 

} 

dist=50 

ang=6 

desiredSize(visAngle = ang, distance = dist)  

5.24 

(Code taken from: http://stephenrho.github.io/visual-angle.html)  

Thus, we can be confident that the target words and distractor images had a 

comparable size and were at the same distance from each other as in the 

original studies.  

http://stephenrho.github.io/visual-angle.html
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I.3: The skewed RTs (as nicely shown in Figure 4, for study 2) were analysed 

in raw format without further transformation (log) – have the authors tried to 

analyse log-transformed RTs? 

Response: As the Reviewer correctly observed, here we only report the 

untransformed reaction times, as we did not pre-register any data 

transformations. However, upon initially inspecting the skew, we did try the log-

transform, thus achieving an approximately normal distribution: 

 

The log-transformation did not change the results of either of the two studies, 

and as a recent preprint questions the usefulness of this convention (Schramm & 

Rouder, 2019), we decided to focus our exploratory report on the Bayesian re-

analysis of Experiment 2. In the Bayesian analysis we fit an exgaussian 

distribution to the data, which represents the inherent right-skew better 

(Baayen & Milin, 2010).  

References 

• Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International 

Journal of Psychological Research, 3(2), 12-28. 

Log-transformed reaction time data of Experiment 1. 
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• Schramm, P., & Rouder, J. (2019). Are Reaction Time Transformations 

Really Beneficial? https://psyarxiv.com/9ksa6/. 

I.4: Perhaps most critically, it seems that trials in which response times 

larger than 2 SD above the sample mean were excluded. This is likely too 

stringent since individual response times are quite variable and in fact, the 

most interesting trials in this task would be those in which distraction was 

maximal (i.e., response times are long). In order to avoid “overcleaning”, I 

would strongly recommend either not to exclude long trials, or to use 

individual response time distributions - exclude trials that are 2 (or 3) SDs 

above each participant’s own mean RT instead of the sample mean.  Numbers 

of excluded trials and excluded trials per condition are also not reported and 

should be added. As a result, the remaining trials could be biased towards 

those that were not distracting (no matter which condition). 

Response: We agree with the Reviewer that the criterion for pre-processing the 

reaction time data was perhaps too inflexible and did not accommodate 

between-participant variability. As outlined in our previous responses, we 

followed the procedure of the original studies and thus specified in our pre-

registration: “Outlier data are defined as reaction times below 200 ms and as 

more than 2 standard deviations above the mean.”  

To investigate the concerns of the Reviewer, we used the {trimr} package, which 

allows the implementation of various response time trimming criteria. We used a 

standard deviation criterion sensitive to the participants’ own means (8.9% of all 

trials were removed), as well as the standard deviation criterion we pre-

registered (8.09% of all trials were removed). We included two tables side by 

side that show the means for both methods. Using the suggested standard 

deviation per participant criterion resulted in overall slower reaction times 

(Table 2), compared to the original analysis (Table 1).  

[To avoid duplication, a cross-reference to above figures and tables is given 

below] 

Appendix C 

https://psyarxiv.com/9ksa6/
https://osf.io/39eqd/
https://osf.io/39eqd/
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However, the pattern of results nonetheless looks similar to what we originally 

reported, and in the interest of adhering to our pre-registration, we decided to 

keep the current results section of Experiment 1 as it is, but add a table on the 

number of discarded trials in the supplementary materials, as well as add the 

percentage of the total amount of discarded trials in the main text:  

P.12, l. 338-340: As a result, 606 trials (8.09%) were discarded (a detailed 

breakdown of the trial number per condition can be found in the Supplementary 

Materials).    

Repeating the same procedure for Experiment 2, we find that with our pre-

registered standard deviation criterion we discard 1061 trials (10.84%) in total 

(with the participant sensitive criterion we discard 11.35% of all trials). We 

added the information on discarded trials in the main text:  

P,15, l. 410-412: With this reaction time trimming criterion, we discarded 1061 

trials (10.84%). A detailed breakdown of the number of trials remaining per 

condition can be found in the Supplementary Materials.   

For comparison, we list Table 5 and 6 with the mean reaction times for 

Experiment 2 using our reported method and the method recommended by the 

Reviewer: 

[To avoid duplication, a cross-reference to above figures and tables is given 

below] 

Appendix C 

Again, we see that the overall patterns of results remain the same across these 

two pre-processing methods.  

References 

Grange, J. A. (2015). trimr: An implementation of common response time 

trimming methods. R package version 1.0. 1 
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I.5: The Bayesian analyses are sufficiently esoteric for me that I require more 

clarification here. 

Response: We agree with the Reviewer that the report of the exploratory 

Bayesian analysis in its original form was not as clear as it could (or should) have 

been. We hope we have addressed this concern sufficiently in the following 

responses. 

I.5a: Page 13 states “Given the results of Study 2, we explored the extent to 

which our data provided compelling evidence for the null hypothesis (no 

difference in reaction times in the incongruent and neutral conditions when 

human faces are presented)“. This implies to me that the null hypothesis 

would predict no Stroop effect when the human faces were presented. I 

believe this is not what the authors meant, but instead that the size of the 

Stroop effect would not differ between distractor conditions. Is this the case? 

If so, this needs to be changed in the text. 

Response: We thank the reviewer for pointing out this mistake. We have 

amended the text accordingly: 

P.16, l. 428-433: Given the results of Experiment 2, we explored the extent to 

which our data provided compelling evidence for the null hypothesis (no 

enhanced Stroop effect when human faces are presented compared to the 

control flower condition) by using a Bayesian regression modelling approach 

({brms} package in R and Stan (Version 2.9.0), Bürkner, 2017), as the null cannot 

be confirmed with Frequentist statistics. 

I.5b: How are R-hat values of 1.00 for each of the tested parameters in Table 

3 to be understood? 

Response: The R-hat value provides information on how well the algorithm could 

estimate the posterior distribution of each parameter. Since we already 

provided information in the main text on the convergence of the model, this 

column has been removed to avoid redundancy.  
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I.5c: The ROPE outcomes do not support the presence of a Stroop effect at 

all, if I understood this correctly. The size of the general Stroop effect was 

sufficiently large, in both studies, based on the conventional outcomes (study 

1:  F(1, 38)= 39.24, p<.001, ηG2= .03; study 2: F(1, 50)=70.31, p<.001, 

ηG2=.06). Can the authors comment more directly on this discrepancy? And 

if the outcomes of the Bayesian analysis are taken seriously, what are the 

consequences for the rest of the paper? For example, page 15 in the 

discussion states “While we again observed the predicted Stroop effect” – did 

you? The different outcomes need to be reconciled better, in my opinion. 

Response: We thank the Reviewer for raising this issue. Determining the limits of 

the ROPE is a somewhat controversial issue in the literature (Kruschke, 2018; 

Kelter, 2020). Instead of relying on the automated procedure we opted for 

initially via the {BayesfactoR} package’s rope_range() function, in the revised 

manuscripts, we choose the limits based on half of what is considered a small 

effect. The rope_range() function returned a range that is considered a large 

effect and because of this, the robust Stroop effect was classified as 

“undecided”. Based on Experiment 1 (∆ 47ms) and the findings of Conty et al. (∆ 

34ms) and Chevallier et al. (∆ 41ms), we set the ROPE limits to [-.017, .017] and 

observe a plot that is easier to reconcile with the Frequentist analysis.  

P.18, l. 451-457: In determining the ROPE range, we set the limits following the 

procedure based on half of what we consider a small effect (Kruschke, 2018). A 

small effect in our first experiment was an average difference of 47ms between 

the incongruent social and incongruent control distractor, compared to a 

difference in 34ms in Conty and colleagues’ task and 41ms in Chevallier and 

colleagues’ version (2010, 2013). Choosing the most conservative small effect, 

we set the ROPE limits to [-.017, .017]. 

I5.d: Figure 5 is unclear to me. What is zero on the x-axis – this can’t be 

“reaction time (s)” ? Also, going back to point 4 a) is this testing the 

presence/absence of any Stroop effect or the slow-down of RTs (i.e., bigger 

Stroop effect) for human faces compared to the other conditions? 
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Response: We included an updated version of Figure 5, now with a corrected x-

axis label. Thank you for pointing out this issue. The graph depicts all 

parameters estimated in the Bayesian regression model. So, for instance, the 

estimated effect of the incongruent target on the reaction time (the Stroop 

interference effect), for which H0 is rejected. We also see the parameter 

estimates for the different distractor types, as well as the interactions. The 

effect of interest (as outlined in the figure description in the manuscript) is the 

incongruent target with the human distractor type. This effect is now shaded in 

yellow, and we do not have a clear decision on H0 based on the ROPE analysis. 

However, as we have written in our updated Bayesian analysis section, the 

estimated effect is small and likely not very strong (if present at all). Moreover, 

it is smaller than the smallest effect we consider interesting (based on our 

previous experiment and the literature), and in the 95% CI zero is contained as a 

likely value.  

P.19, l. 462-468: In summary, in defining our Bayesian regression model, we 

have increased the uncertainty of our estimates by including more random 

variance in the form of subject-level random effects. This increased uncertainty 

is expressed in Figure 5. Based on the ROPE analysis, we cannot definitively 

support the null hypothesis. However, considering that zero is contained in the 

95% interval of credible values of the parameter’s posterior distribution, and 

more than 50% of its values are practically equivalent with zero, the evidence 

for an effect is not very strong and even goes in the opposite direction: 10ms [-

.01, .04].   

[See Figure 12] 

I.6: Using mirror-images also in study 2 arguably may not have created 

unique distractors. A mirror image could act as a particularly strong 

distractor, as it would appear familiar but not identical. This could be 

considered in the limitations section.  

Response: We agree that this point should be raised in the limitations section 

and have added it: 
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P.23, l. 593-604: A further stimulus-based limitation was that in Experiment 1, 

distractors were not controlled by their mirror and presented twice. Thus, the 

repeat presentation could have led to a particularly memorable stimulus set. In 

Experiment 2, the unique distractors in the incongruent condition were 

controlled by their mirror images. Of course, on the other hand, the repeat 

presentation of distractor images is common practice in the social attentional 

capture literature (for example, a set of four unique human and pareidolic face 

images used for an experiment consisting of 450 trials, Ariga & Arihara, 2017). 

Takahashi and colleagues (2013) used stimuli with three unique identities over 

many trials, and only four unique stimuli in another study (Takahashi & 

Watanabe, 2015). Theeuwes et al. (2006) presented 12 unique distractor images 

across 96 trials. To put it differently, based on the conventions of the social 

attentional biasing literature, it is unlikely that we did not observe the expected 

effect due to the number of unique distractor images we presented. 

I.7: The decision to move the stimulus rating into a supplement abbreviated 

the rating outcomes presented in the paper, but I would still have liked to 

see some details. In fact, the supplement also does not state what exactly 

was being judged regarding these stimuli. The paper states on page 11, 

“mind perception of different kinds of agents” – what does this mean and 

what was the actual outcome of the ratings? Is it relevant or irrelevant for 

this paper? 

Response: We have tried to clarify our rationale for the ratings of our distractor 

images in Experiment 2. As we have written, we wanted to establish that the 4 

different categories were perceived differently with regard to “having a mind”, 

which we implicitly equated with the agent’s potential for socialness. The two 

items (and their descriptions), which we called “agency” (ability to plan and 

act) and “experience” (the ability to sense and feel), were derived from Gray, 

Gray & Wegner (2007). 

P.14, l. 402-407: We used mind perception as a socialness proxy to distinguish 

between the control condition (flowers), inanimate (robot and pareidolic faces) 

and agents with a mind (humans). The analysis of the ratings confirmed that the 

stimulus categories were perceived differently: the human images received the 
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highest agency and experience ratings. A detailed report of the stimulus ratings 

can be found in the Supplementary Materials. 

I.8: Some missing details on the Stroop task itself included the number/ratio 

of congruent and incongruent trials, and any restrictions regarding the switch 

between the two (e.g., no more than 2 incongruent trials after each other 

etc.) 

Response: We have added this information in the methods section: 

P.11, l. 327-329: There were equal numbers of incongruent and neutral Stroop 

trials, and no restrictions regarding the switch between incongruent and neutral 

trials were put in place (as they were presented randomly). The target word and 

distractor image pairs were fixed. 

I.9: Since several participants were excluded, I wonder whether these 

criteria were too stringent. At least the method of excluding participants 

should be detailed. For example, excluding participants with ASD diagnoses – 

how was this done? 

Response: We have added this information.  

The rationale for specifying these exclusion criteria was that Chevallier and 

colleagues (2013) found diverging results for the ASD participant group in their 

sample, and we wanted to ensure that all participants were equally naïve 

towards robots (as the initial goal was to establish this as a robust measure for 

social motivation, and then in future experiment integrate this task following 

prolonged human-robot interaction. We were curious about seeing any potential 

differences between a robot-naïve group of participants and a group that has 

encountered humanoid robots on this task).  

P.9, l. 284-289: We recruited 50 participants, however, based on our pre-

registered exclusion criteria (diagnosis of ASD and having had a previous 

interaction with a robot) we excluded 9 participants. Two additional participants 

had insufficient English language skills, and thus the total number of exclusions 

was 11. The pre-registered exclusions were made based on participant answers 
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on the experiment questionnaires’ self-report items (for example: “Do you have 

a diagnosis of Autism Spectrum Disorder?” and “Have you interacted with a robot 

before?”). The other exclusions had to be made in addition, based on difficulties 

participants had with the task. We report a final sample size of N=39. 

I.10: (Figures, tables, data availability) Very nice use and high quality of 

Figures. 

I.11: (Ethical approval) Ethical approval was obtained from the University of 

Glasgow ethics review board (300170224). 

I.12: (Language) English is appropriate. 
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