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Abstract 

Prostate cancer (PC) is the most commonly diagnosed disease in men, and is 

considered the second most likely cause of cancer-related death in the Western 

male population behind lung cancer. In recent years, the rate of disease 

detection has significantly increased in part due to the successful 

implementation of the prostate specific antigen (PSA) testing in clinics. 

Currently, PC is positively diagnosed when PSA levels are detected to be over 4.0 

ng/mL in the blood plasma. However, increasing evidence has shown that this 

number is often misleading and inaccurate. The prostate is known to have a very 

good blood supply, therefore small amounts of PSA can always be detected. 

Furthermore, the PSA reflects the state of the whole gland itself rather than 

indicating the presence of a tumour at this site. As the availability of PSA testing 

increases, this has also resulted in the detection of false positives as some men 

have naturally higher levels of PSA than others. On the other hand, some cancers 

can go undetected as it may have progressed so far that it no longer expresses 

PSA. Following a positive diagnosis, the most common course of treatment 

prescribed is androgen deprivation therapy (ADT). ADT refers to the treatments 

that aim to reduce the effects of testosterone and other androgens by surgically 

or chemically preventing their production. Although ADT is known as the gold 

standard in PC treatment, approximately 15% of men fail to respond to this form 

of therapy. Furthermore, after a mean time of 13-19 months, some men become 

castration resistant and no longer respond to ADT.  

There is currently a need to identify novel biomarkers in order to accurately 

diagnose and stage the disease. Furthermore, new drug targets need to be 

identified in order to provide the best course of treatment. Previous work by the 

Baillie laboratory, in collaboration with Philips Diagnostics, recently identified 

phosphodiesterase 4D7 (PDE4D7) to be a novel prognostic marker for disease. 

PDE4D7 expression was shown to be decreased in PC cell lines and primary 

tumours as the disease progressed to the hormone independent state. The 3',5'-

cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) are known to 

play a role in disease progression as they mediate downstream signalling 

pathways that can promote cell growth and disease progression. PDE enzymes 
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are the only known enzyme family to hydrolyse cAMP, and loss of PDE4D7 

expression, in particular, during PC correlates with disease progression. 

Interestingly, DHX9 has recently been identified as a novel interacting partner 

for PDE4D7. Work by Dr Ashleigh Byrne identified DHX9 as a novel interactor by 

using mass spectrometry, and since then DHX9 has become a subject of 

increased interest in the area of cancer research. DHX9 is an RNA/DNA helicase 

that is involved in multiple cellular processes, including transcription and 

maintaining genome stability. DHX9 expression is known to increase as cancers, 

such as lung and colorectal, progress towards their metastatic stages. Previous 

work by other lab groups have demonstrated that DHX9 is linked to multiple 

signalling pathways that are involved in cancer development, such as the mTOR 

and p53 pathway. Interestingly, DHX9 maps to the PC susceptibility locus, 

making it an interesting protein to study in the context of PC disease progression 

and metastasis.  

Work in this thesis provides further evidence that PDE4D7 and DHX9 proteins are 

novel interactors in PC. By using a series of biochemical techniques, PDE4D7 was 

shown to interact with DHX9 in androgen sensitive PC cell line. By using peptide 

array technology, I was able to map where this interaction took place and define 

docking sites on both protein partners. DHX9 was found to bind within the newly 

identified FLY multi docking site within the upstream conserved region-1 (UCR1) 

of PDE4D7. Furthermore, PDE4D7 was found to bind within DHX9’s helicase core 

domain, suggesting that it may play a role in regulating its activity. I was able to 

further validate these binding sites by designing cell permeable peptides 

designed to disrupt protein binding in vitro.  

Considering that many PKA substrates are found in complex with PDEs, DHX9 was 

found to be a PKA substrate in vitro. By using biochemical techniques, such as 

immunoprecipitations and proximity ligations assay, DHX9 was found to be 

readily phosphorylated by PKA, and this was significantly increased when cells 

were pre-treated with the adenylate cyclase activator forskolin and the general 

PDE inhibitor IBMX. By using peptide array technology and bioinformatic 

predictions, serine 449 within the helicase core of DHX9 was found to be in a 

PKA motif and phosphorylated by PKA. Interestingly, this serine can be found 

upstream of the PDE4D7 binding site. Disruption of the interaction between 
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PDE4D7 and DHX9 led to a significant increase in DHX9 phosphorylation, 

supporting the idea that PDE4D7 binding regulated DHX9 phosphorylation. Using 

the information gained in the peptide arrays, a phospho-specific antibody 

against DHX9 was raised. The newly synthesised antibody was able to detect 

phosphorylated DHX9 by western blotting and immunofluorescence with confocal 

microscopy. 

Although DHX9 is known to be differentially expressed in multiple cancers, little 

is known about its function in PC. Silencing of DHX9 expression using siRNA 

technology significantly inhibited PC cell growth. Interestingly, previous work by 

Erzikhan et al (2009) demonstrated that inhibiting DHX9’s oncogenic activity, by 

disrupting DHX9’s interaction with EWS-FL1 using YK-4-279, significantly 

decreased growth when assessed by xCELLigence technology. Unfortunately, 

disruption of this interaction between PDE4D7 and DHX9 did not alter the growth 

of PC cells following treatment with the cell permeable disruptor peptide. 

However, the disruption of the interaction between PDE4D7 and DHX9 

significantly decreased DHX9’s ability to promote R-loop formation when 

assessed by immunofluorescence and confocal microscopy. Using RPPA analysis, I 

was also able to show that the loss of DHX9 expression in PC cells can potentially 

affect the mTOR signalling pathway.  

To conclude, this thesis provides further evidence that PDE4D7 and DHX9 form a 

signalling complex that may be relevant in PC. I was able to map where these 

interactions took place and design cell permeable peptides that were able to 

disrupt this interaction. I was also able to show that DHX9 can be readily 

phosphorylated in vitro, and its phosphorylation is partly regulated by its 

interaction with PDE4D7. Loss of DHX9 expression, and interaction with EWS-FL1, 

significantly decreases cell growth, and this may partly be due to changes in 

mTOR pathways. However, future work on this topic is still needed. 

Unfortunately, due to time constraints, the functional implications of DHX9 

phosphorylation was not studied in this thesis and I was not able to use relevant 

human samples to further validate the relevance of my findings.
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Chapter 1 Introduction 

1.1 Advances in cancer research and treatment 

Since the 1970s, a dramatic reduction in the mortality rates of certain cancers 

has been observed, thanks to the use of classic therapeutic strategies such as 

chemotherapy, radiotherapy, and surgery (Alvarez and Besa, 2000). Despite this 

detection and treatment of cancer is increase in almost every country, becoming 

the most significant public health challenge in the 21st century (Bray et al., 

2018). Although cancer is the second leading cause of death in high income 

counties, the 5 year survival rate following treatment has increased to 70 % in 

2020, compared to 49 % in the 1970s (Schilsky et al., 2020). The complexity of 

cancer at a cellular and molecular level is often considered an obstacle to 

achieve important changes in the understanding of basic cellular and molecular 

changes that allow a cell to become cancerous (Alvarez and Besa, 2000). 

However, in the past decade, many researchers have focused on finding new 

drug targets and therapeutic strategies to overcome these obstacles (Pucci, 

Martinelli and Ciofani, 2019). 

1.1.1 Precision medicine 

Ove the past decade, it has become widely accepted that traditional cancer 

therapies are ineffective and expensive, often leading to unnecessary side 

effects. Current therapies do not take into the fact that no two patient cancers 

are the same, leading to different responses to treatments such as 

chemotherapy or radiation (Krzyszczyk et al., 2018). Recently, a shift from 

organ-centric treatment to a more personalised approach for treatment has 

greatly modernized the field. Tools such as next generation sequencing and RNA 

sequence has helped to identify novel druggable target for the treatment of 

different cancers (Gambardella et al., 2020). In recent years, RNA sequencing 

has become one of the most important tools for transcriptomic profiling. The 

revolutions from bulk RNA sequencing to single-cell sequencing has enabled 

researchers to identify novel biomarkers and characterise different types of 

cancer (Hong et al., 2020). To date, precision medicine has been proved to be 

highly successful in the identification of new targets in breast, and lung cancer, 

and in melanoma (Gambardella et al., 2020). Identifying specific molecular 
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changes, somatic or germline mutations, or gene fusions using these next 

generations techniques would allow doctors to tailor treatment to their specific 

cancer, resulting in better patient outcome (Kimmelman and Tannock, 2018). 

Precision medicine provides the best personalised therapies for cancer patients 

(Pucci, Martinelli and Ciofani, 2019). 

1.1.2 Novel Cancer Therapies 

During the last decade, traditional cancer therapy mainly consisted of 

chemotherapy which maximised damaged to the rapidly dividing cells. But this 

would often come at the expense of normal cells, leading to a poor quality of 

life to the patient. The development of new anticancer drugs has rapidly 

changed this, thanks to a greater understanding of tumour biology and cancer 

cells (Ramaswami, Harding and Newsom-Davis, 2013). These novel approaches 

aim to limit the damage to healthy normal cells, while enhacing tumour 

destruction (Shariff et al., 2019). 

One of these novel therapies aims to inhibit the epidermal growth factor 

receptor (EGFR). EGFR’s role in the body is to regulate epithelial tissue 

development and homeostasis. However, in cancer, EGFR is a driver of 

tumorigenesis, often caused by mutations, transcriptional upregulation, or ligand 

overproduction. (Sigismund, Avanzato and Lanzetti, 2018). EGFR is a tyrosine 

kinase receptor consisting of an extracellular ligand-binding domain, a 

transmembrane anchoring region, and an intracellular tyrosine kinase. Upon 

ligand binding, the receptor dimerises, leading to its phosphorylation. This in 

turn creates a docking site for numerous effector proteins such as PI3K (Gerber, 

2008). In recent years, EGFR has increasingly been recognised as a biomarker of 

resistance in tumours. Mutations and amplification of this receptor has been 

found to increase under drug pressure (Sigismund, Avanzato and Lanzetti, 2018). 

The identification of this novel biomarker has greatly impacted the treatment of 

non-small cell lung cancer (NSCLC). However, the introduction of EGFR inhibitors 

has greatly improved disease outcome (Gerber, 2008). First generation EGFR 

inhibitors, such as gefitinib and erlotinib, binds reversibly to the MgATP binding 

site within the EGFR tyrosine kinase catalytic domain. Studies have shown that 

binding of these drugs results in reduced cellular proliferation, increased 

apoptosis, and inhibition of cell migration (Lenz, 2006). Inhibition of the tyrosine 
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kinase region of EGFR leads to the greatest duration of disease control, the 

longest overall survival, and the best quality of life (Le and Gerber, 2019).  

In addition to inhibiting EGFR, immunotherapy has revolutionised the 

management of metastatic cancers (Le Saux et al., 2020). Immunotherapies 

against existing cancers include various approaches, ranging from stimulating the 

immune system to counteracting inhibitory and suppressive mechanisms 

(Farkona, Diamandis and Blasutig, 2016). Over the last decade, the primary 

approach to activate host T-cells against tumour antigens has been through 

therapeutic cancer vaccination, such as the vaccination against human 

papillomavirus (Mellman, Coukos and Dranoff, 2011). Alternatively, oncolytic 

viruses can be engineered in order to selectively replicate in and kill cancer cells 

(Kaufman, Kohlhapp and Zloza, 2015). These viruses can reduced tumour sizes 

by causing tumour cell infections, promoting cell lysis, or by inducing the 

antitumour immunity (Farkona, Diamandis and Blasutig, 2016). However, the 

most promising of the immunotherapies is the use of chimeric antigen receptor 

(CAR) engineered T-cells. CAR T-cell therapy involves genetically modifying a T-

cell to specifically express a chimeric antigen for a specific tumour antigen, the 

re-infused back into the patient. These engineered cells are then re-infused 

back into the patient (Miliotou and Papadopoulou, 2018). CAR T-cells has largely 

been successful in the treatment of haematological malignancies. Over the last 

10 years, clinical trial involving CAR T-cells engineered to express CD19 have 

shown high and durable response rate in patients suffering from acute 

lymphoblastic leukaemia and aggressive B-cell non-Hodgkin lymphomas (Leon, 

Ranganathan and Savoldo, 2020).  

1.1.3 Peptide mimetics for the treatment of cancer 

In addition to precisions medicine and immunotherapy, peptide therapeutic has 

become a promising field for emerging anti-cancer agents (Boohaker et al., 

2012). Protein-protein interaction have been recognised as key mediators of 

biological processes and the progression of certain cancers. So far, over 650 000 

disease relevant interactions have been identified, and the large majority of 

these have been deemed “undruggable” due to their highly dynamic nature. 

However, due to technological improvement, these interactions have slowly 

emerged as highly interesting drug targets (Mabonga and Kappo, 2020). By 
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identifying interacting regions that contain hot spots, defined as the residues 

which are crucial for interaction, researchers have been able to develop novel 

small molecule inhibitors to block interactions that are known to drive disease 

(Ma and Nussinov, 2014). Currently, there are over 60 approved peptide drugs 

for the treatment of different diseases, four of which have been approved for 

the treatment of cancer (Thundimadathil, 2012). Use of peptide in the 

treatment of cancer will be discussed in section 3.4.3. 

1.2 The human male prostate gland 

The prostate gland plays an important role in male reproduction. It contains a 

system of branching ducts composed of pseudo-stratified epithelium surrounded 

by a fibromuscular stroma. This gland secretes lipids, enzymes, amines, and 

metal ions that are essential in the normal function of spermatozoa. The gland 

itself is the source of some of the most common medical problems of men over 

the age of 40 (Toivanen and Shen, 2017). Benign inflammation of the prostate 

occurs in more than 50% of men within this age group, and post-mortem 

autopsies revealed that 31% of Caucasians and 51 % of African-American men 

between the age of 70-79 were found to have tumours within their prostate 

(Jahn, Giovannucci and Stampfer, 2015). Due to high occurrence of benign 

inflammation, the prostate is susceptible to oncogenic transformation at a 

significantly higher frequency than that of other accessory glands (Toivanen and 

Shen, 2017). 

The prostate surrounds the urethra at the neck of the urinary bladder. It is the 

size of a large walnut with a wide base on top. The gland is located underneath 

the floor of the bladder, and it’s narrow apex is directed towards the urogenital 

diaphragm (Aschoff et al., 2011). The prostatic gland is composed of two 

distinctive compartments: the epithelium and the stroma. These two 

compartments interact with each other via androgen receptors (AR) and this 

interplay is important in the development and differentiation of the prostate 

(Krušlin, Ulamec and Tomas, 2015). Structurally, it is organised anatomically 

into four zones: the peripheral (70%), central (25%), transition (5%), and anterior 

fibromuscular zones (Sidelsky, Setia and Vourganti, 2017) (Figure 1.1).  
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Figure 1.1 Structural organization of the prostate. The prostate is distributed into the peripheral, 
central, transition, and anterior fibromuscular zones. (Image adapted from Marzo et al. 2007). 

The main function of the stromal compartment of the prostate gland is to ensure 

an appropriate microenvironment for the epithelial compartment. It provides 

many supportive signals to retain or restore gland homeostasis in healthy 

conditions or during regeneration processes. In addition, the prostate epithelium 

has a glandular function as it secretes prostatic fluid that constitutes 

approximately one fifth to one third of the volume of the entire ejaculate. 

Prostatic fluid contains a number of factors that control the ejaculation process 

and regulate the proteins required to activate sperm maturation (Verze, Cai and 

Lorenzetti, 2016). 

1.3 Modelling human prostate cancer using mice 

Over the years, mouse models have been used for human cancer research as 

they have proven to be a useful tool due to their similar genomic and 

physiological characteristics of tumour biology between mice and humans 

(Lampreht Tratar, Horvat and Cemazar, 2018). These mouse models have played 

a central role in the study of disease aetiology, prevention, and treatment of 

PC. Although multiple cell models have been developed, they do not take into 

account the numerous cellular interactions within the tumour environment that 

play a key role in disease initiation and progression (Ittmann et al., 2013). 

Although the gross anatomy of the mouse prostate is different to that of 
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humans, the prostate of both species is composed of glands and ducts of similar 

organisation (Parisotto and Metzger, 2013). Mouse models for PC can be divide 

into two categories: xenograft models or genetically engineered models (GEM). 

In xenograft models, PC cell lines are directly implanted into 

immunocompromised host mice either subcutaneously or injected orthotopically 

into the prostate (Ittmann et al., 2013). Different PC cell lines have been used 

to perform various xenograft models that exhibit different features of PC, 

therefore creating models for different stages of disease (Rea et al., 2016). 

Although these models have been used in the past, they are faced with 

significant limitations for the establishment of PC models. In order for PC cell 

lines to adapt to in vitro growth environment, these cells lose their ability to 

grow in a three-dimensional structure, hence losing their inter- and intra-tumour 

heterogeneity and unable to accurately reflect major features of human PC (Shi, 

Chen and Tan, 2019). Furthermore, it has been reported that these xenografts 

models cannot provide reliable data to support drug development, efficacy and 

prognosis. Many anticancer drugs have been shown to be potent in xenograft 

models, only a few of these drugs have been shown to have the same potency 

when used as a therapy in humans (Sharpless and DePinho, 2006).  

The development of genome editing tools over the last three decades have 

allowed scientists to generate a number of PC mouse models (Parisotto and 

Metzger, 2013). These genetically modified mouse models can help define the 

molecular events of prostate tumorigenesis, and can be grouped into two types: 

those engineered to increase the expression of a specific promoter and those 

with target deletion of genes (Pienta et al., 2008). These two types of GEM have 

enabled researchers to validate the biological importance of different molecular 

changes that occurs during PC tumorigenesis (Ittmann et al., 2013). One of the 

most well-known GEM mouse model for PC is the transgenic adenocarcinoma of 

the mouse prostate (TRAMP) model generated and characterized in 1995-1997 

(Valkenburg and Williams, 2011). TRAMP mice are known to display high grade 

prostatic intraepithelial neoplasia (PIN) or prostate cancer by 10-12 weeks of age 

due to the overexpression of SV-40 T-antigen (TAG) by rat probasin gene 

promoter (Gelman, 2016). Since its characterization, this model has been used 

to investigate the roles of specific pathway mediators, transcription factors, or 

metabolic pathways in PC progression (Gelman, 2016). With over 400 
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publications to date, the TRAMP model has been extensively used in PC research 

and drug discovery (Ittmann et al., 2013). 

1.4 Development of prostate cancer 

Prostate cancer (PC) is the most commonly diagnosed malignancy and the second 

leading cause of cancer-related deaths in the Western male population (Rawla, 

2019). The high incidence can be attributed to modern day increased life 

expectancy as well as the implementation of prostate specific antigen (PSA) 

testing (Hessels et al., 2007). Many PC are diagnosed based on the elevated 

levels of PSA in the plasma (>4.0 ng/mL) (Rawla, 2019). However, in recent 

years, this test has been found to have problems with specificity and sensitivity. 

Although the screening of PC allows for early diagnosis and better management 

of disease, the use of the PSA testing has slowly become controversial (Stavridis 

et al., 2010). The prostate gland is known to have a very good blood supply, 

therefore small amounts of PSA is constantly present in the bloodstream. Rather 

than only being expressed at the point of disease, levels of PSA reflects the 

whole gland instead of the presence of a tumour specifically (Reynard, Peters 

and Gillatt, 1995). When using the 4.0 ng/mL cut off, over 91% of men are 

positively diagnosed with PC, but this also leads to the increase in morbidity and 

the prescription of unnecessary procedures because their PSA may have been 

elevated due to benign conditions (David and Gopal, 2020). As the availability of 

the PSA testing has increased, this has also resulted in the increased in the 

detection of false positive PC as some men have naturally increased levels of 

PSA without cancer. This in turn leads to performing unnecessary biopsies as 

well as overtreatment. On the other hand, certain cancers can go undetected as 

they are either asymptomatic or do not show the typical elevated levels of PSA 

(Wilt, 2003; Rawla, 2019). There is currently a need to overcome these 

sensitivity and specificity issues in order to provide a more accurate diagnosis.  

1.4.1 Steroid signalling in prostate cancer 

1.4.1.1  Androgen biosynthesis 

The two most important endogenous androgens are testosterone and 

dihydrotestosterone (DHT). Androgens are traditionally considered male sex 
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steroids responsible for the maintenance of male characteristics via the 

activation of the AR and its downstream signalling pathway (Freeman, Bloom and 

McGuire, 2001). Under normal physiological conditions, about 60% of circulating 

androgens are produced in the testicles. The remaining 40% derives from 

dehydroepiandrosterone (DHEA) synthesised in the zona reticularis of the 

adrenal glands (Pippione et al., 2017).  

The overall rate of steroidogenesis is controlled by peptide hormones, such as 

adrenocorticotropin hormone (ACTH), follicle stimulating hormone (FSH), and 

luteinizing hormone (LH). Binding of these peptide hormones to it’s appropriate 

G-protein couple receptor (GPCR) leads to the activation of the cAMP dependent 

PKA signalling pathway. Stimulation of the cAMP-PKA cascade promotes the 

increased delivery of circulating cholesterol into the mitochondria of the Leydig 

cells or the adrenal gland (Hu et al., 2010; Prough, Clark and Klinge, 2016). All 

steroid hormones are produced from cholesterol through a cascade of enzymes 

(Figure 1.2). In the mitochondria, cholesterol is converted to pregnenolone by 

P450scc, which is then further converted to DHEA by 17α-hydroxylase and 17,20 

lyase. DHEA is then rapidly converted to testosterone by 3β-hydroxysteroid 

dehydrogenasetype II or 17 β -hydroxysteroid dehydrogenase III enzymes. 

Testosterone can be further processed into DHT by 5α-reductase (Miller, 2002; Singh 

et al., 2005; Flück and Pandey, 2014; Miller and Auchus, 2019). The majority of 

circulating testosterone exists bound to carrier protein sex hormone binding 

globulin (SHBG) or albumin. (Heemers and Tindall, 2007). 
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Figure 1.2: Androgen biosynthesis in Leydig cells. G-protein coupled receptor (GPCR) 
activation by binding of a tropic hormone (TH) leads to the activation of adenylyl cyclase (AC) 
leading to an increase level of PKA in the cytoplasm. Activation of the cAMP-PKA signalling 
pathway increases the delivery cholesterol into the mitochondria of the cell. Cholesterol is then 
sequentially enzymatically cleaved in order to produce testosterone.  

1.4.1.2 Androgen receptor and signalling 

The AR is a member of the steroid and nuclear receptor superfamily (Bennett et 

al., 2010). The gene encoding this receptor can be found on the long arm of the 

X chromosome, more precisely at position Xq11-Xq12 (Tan et al., 2015). 

Structurally, the AR compromises three main functional domains: The N-terminal 

transcriptional regulation domain (NTD), the DNA binding domain (DBD), and the 

ligand binding domain (LBD) (Figure 1.3). While the DBD remains highly 

conserved between the different members of the steroid hormone nuclear 

receptor family, the N-terminal region is highly variable (Davey and Grossmann, 

2016). The LBD of the AR is only moderately conserved among the receptors, and 

contains activation function-2 (AF2) which is important for the ligand-dependent 

activation of the receptor (Culig et al., 2003; Tan et al., 2015). The activation 

function-1 (AF1) domain, located in the NTD, plays a pivotal role in AR function 

GPCR A
C 
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and significant loss in AR’s transcriptional activity can be seen when AF-1 is 

deleted (Culig et al., 2003). The lysine rich hinge region between the DBD and 

LBD regions are important for the nuclear localization of the receptor. Deletion 

of this hinge region eliminates nuclear localization and transcriptional activity of 

the AR in the presence of a ligand (Culig et al., 2003). All three domains are 

important for receptor function. The DBD region tethers the AR to a promoter 

and enhancer regions of AR regulated genes, or androgen responsive elements, 

by direct DNA binding to allow the activation functions of the NTD and LBD to 

stimulate transcription of these genes (Tan et al., 2015, Green, Mostaghel and 

Nelson, 2012). 

 

Figure 1.3 Functional domains of the AR. The N-terminal domain contains the activation 
function-1 domain (AF-1). The N-terminal domain is then followed by the DNA binding domain 
(DBD), the hinge region (H). The Ligand binding domain contains the activation function-2 
domain (AF-2). Nuclear localization signal (NLS) and nuclear export signal (NES) are responsible 
for transporting the AR in and out of the nucleus.  
 

In the absence of a ligand, the AR resides primarily in the cytoplasm in 

association with heat shock proteins (HSPs) as a monomer in an inactivate but 

highly responsive state. Nuclear import of the AR is crucial for its function. Upon 

ligand binding, the nuclear localization signal (NLS) is recognised in the 

cytoplasm by the importin-a/b complex allowing the receptor to move through 

the nuclear pore and into the nucleus (Cutress et al., 2008). Alternatively, AR 

can be activated via phosphorylation at multiple sites along the protein. 

Phosphorylation at these different sites has been implicated in a number of 

different cellular responses, including AR transcriptional activity, regulation of 

AR expression, cell growth, and AR degradation (Daniels et al., 2013). In 

response to androgen binding, Ser81 within the N-terminal transactivation 

domain is the most highly phosphorylated site within the AR (Russo et al., 2018). 

AR can be phosphorylated by multiple kinases at this site, including cyclin-

dependent kinase CDK1, CDK5, and CDK9, all of which are able to increase the 

transcriptional activity of AR as well as promoting its translocation into the 

nucleus (Daniels et al., 2013).Translocation of the androgen/AR complex into 

the nucleus leads to the dimerization of the receptor, where it can then bind to 
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androgen response elements (ARE) target genes and modulate gene transcription 

(Davey and Grossmann, 2016). AR dimers recruit an array of factors, including 

co-activators and mediators of proteins whose enzymatic activities promote 

chromatic remodelling and transcriptional regulation of target genes, leading to 

cell differentiation, survival and proliferation (Figure 1.4) (Burnstein, 2005).  

 
Figure 1.4 Classical androgen receptor signalling pathway. Binding of androgen or DHT, AR 
dimerizes and translocate to the nucleus where it can then bind to DNA. When bound to DNA, the 
AR forms a complex with co-activators, co-regulatory proteins, or ARE. Figure taken from Davey 
and Grossmann, 2016. 

1.4.2  Initial development of prostate cancer 

Although the prostate depends on androgens for normal prostate development, 

alone it does not promote the development of disease. Instead, PC development 

involves the accumulation of cancerous epithelial cells (Knudsen and Vasioukhin, 

2010). The AR signalling pathway is vital for the normal functioning of the 

prostate. However, it also plays a pivotal role in prostate carcinogenesis and the 

progression to androgen-independent disease (Lonergan and Donald, 2011). In 

the normal prostate, the rate of cell death is 1-2% per day, which is balanced by 

a 1-2% rate of proliferation (Heinlein and Chang, 2002). Both healthy and 

malignant prostate growth depends on the ratio of cells proliferating to those 

dying. Androgens are the main regulator of this ratio by both stimulating 

proliferation and inhibiting apoptosis (Feldman and Feldman, 2001). However, 

this balance is disrupted in prostate cancer, with the rate of proliferation 

overtaking the rate of cell death (Kim et al., 2017). The initiation of PC can be 

attributed to the activation of a distinct growth-promoting pathway. In a study 

Nucleus 

Cytoplasm 
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analysing 11 early-onset PC cases, an increase in the prevalence of structural 

rearrangements enriched in the AR binding sites was identified with 10 out of 11 

cases having the androgen driven Erythroblast Transformation Specific (ETS) 

gene fusions (Russo and Balk, 2018). Most of these fusions were the 

Transmembrane Serine Protease 2 (TMPRSS2):ETS related gene (ERG) fusions 

found in approximately 50% of PC. The presence of this rearrangement is a 

critical event in the development of disease (Hägglöf et al., 2014), with the 

fusions only been identified only in clinically localised and hormone-refractory 

metastatic PC (Tomlins et al., 2009).  

TMPRSS2 is a serine protease that is highly expressed in the epithelium of the 

human prostate gland and depends on the binding to an ARE for its expression 

(Chen et al., 2010). ERG is a member of the ETS family of transcription factor, 

with a role in the development and differentiation of a wide range of tissue and 

cell types (Adamo and Ladomery, 2016). This gene translocation occurs early 

during disease formation as it can be detected in precursor prostatic 

intraepithelial neoplasia lesions (PIN) (Cai et al., 2009). In PC, ERG can recruit 

the AR to novel genomic loci as well as co-bind to AR binding sites across the 

chromatin. This interaction leads to an alteration in the transcriptional output 

induced by the activation of the AR signalling pathway (Kron et al., 2017). The 

TMPRSS2:ERG gene fusion leads to an overexpression of a N-terminal truncated 

ERG protein that is still transcriptionally active (Zhou et al., 2019). This leads to 

an increase in ERG mRNA expression in 62% of PC (J. Wang et al., 2006), which 

may lead to the activation of pathways related to the initiation and progression 

of PC via the cGMP-PKG pathway (Zhou et al., 2019). 

Although AR activation most commonly stimulates growth through the 

TMPRSS2:ERG gene translocation (Sharifi, 2013), the ability of AR to activate and 

cross talk with other signalling pathways is known to contribute to disease 

initiation and progression (Kaarbø, Klokk and Saatcioglu, 2007). One such 

pathways is the phosphoinositide 3-kinase (PI3K)/Akt/ mammalian target of 

rapamycin (mTOR) pathway (Kaarbø et al., 2010). Activation of PI3K leads to the 

generation of the secondary messenger phosphatidylinositol 3,5-triphosphate 

(PIP3). This in turn leads to the recruitment and activation of the Akt kinase, 

which is then able to translocate to the nucleus to promote cell growth and 

proliferation. Akt is negatively regulated by tumour suppressor phosphatase and 
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tensin homolog deleted on chromosome 10 (PTEN) (Lonergan and Donald, 2011). 

Activation of this pathways leads to PC progression due to its ability to integrate 

intra- and extracellular growth factors which are critical to cellular processes. 

This pathway is frequently overactive in advanced PC due to the loss of the 

tumour suppressor PTEN (D. E. Butler et al., 2017). 30% of PC tumours are known 

to no longer express PTEN, which in turn leads to the constitutive activation of 

the PI3K/AKT/mTOR signalling pathway (Crumbaker, Khoja and Joshua, 2017). 

Interestingly, the AR and PI3K/AKT/mTOR signalling pathways are known to be 

activated in androgen sensitive (AS) cell line LNCaP. Combined inhibition of 

these two pathways using small molecular inhibitors results in an enhanced 

antitumoral activity in this cell line, indicating that these two pathways work 

synergistically in order to promote the progression of disease (Thomas et al., 

2013). 

In addition to its transcriptional activity, AR is known to play a role in regulating 

the cell cycle machinery (Schiewer, Augello and Knudsen, 2012). While in the G1 

phase, mammalian cells evaluate growth-promoting or growth inhibitory cues 

within their environment in order to progress through the mitotic cycle of enter 

quiescence. These cells depend on the cyclin-dependent kinases (Cdk) in order 

to regulate its transition through the mitotic cycle by promoting or inhibiting 

phosphorylation, binding to cyclins, and binding to CDK inhibitors (Knudsen, 

Arden and Cavenee, 1998). Studies have shown that androgen deprivation causes 

G0-G1 cell cycle arrest, while androgen stimulates cellular proliferation (Xu et 

al., 2006). Androgens have been shown to increase Cdk activity and stimulate 

cells to enter the S-phase of the cell cycles, which in turn promotes cellular 

proliferation (Lu, Tsai and Tsai, 1997). Not only is AR and androgens able to 

stimulate disease via its transcriptional activity, but its interaction with multiple 

signalling pathways and its ability to contribute to their activation plays an 

important role in disease initiation and progression.  

1.4.3  Progression into castration resistant prostate cancer 

Androgen deprivation therapy (ADT) has been the primary standard of care in 

patients with locally advance PC. ADT generally leads to a decrease in PSA level 

and disease remissions in about 90 % of patients (Huang et al., 2018). 

Unfortunately, after an average time of 2-3 years, the disease progresses despite 
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continuous hormone therapy. This PC is known as castrate-resistant PC (CRPC) 

(Karantanos, Corn and Thompson, 2013). CRPC is defined as disease progression 

following initial ADT and may present with an increased rise in serum PSA, 

progression of pre-existing disease, androgen insensitivity (AI), or the 

appearance of new metastases (Hotte and Saad, 2010). It has been shown that 

CRPC is characterised by the overexpression or hyperactivation of the AR 

(Nadiminty and Gao, 2012), despite being in an environment of serum 

testosterone below 50 ng/dL in the blood (Gomella, 2003). It is thought that the 

mechanisms involved in CRPC development include AR gene amplification and 

mutation, overexpression of co-activators, activation of growth factors, and 

cross-talk with other transcription factors and signalling pathways (Figure 1.5) 

(Nadiminty and Gao, 2012).  

 
Figure 1.5 Known mechanism that leads to metastatic prostate cancer, including immune 
evasion. Although ADT is successful in most patients, they often progress to the more aggressive 
CRPC phenotype. CRPC is known to be androgen insensitive and unresponsive to AR inhibitors. 
Multiple mechanisms have been identified and illustrated above (A-G). These mechanisms are 
known to be resistant to ADT and associated with complex molecular alterations, all leading to the 
increase in PSA expression, increased growth and PC cell survival. A. Crosstalk with other 
activated receptors leads to the phosphorylation of the androgen receptor. B. Amplification of AR. 
C. Chronic IFN1 pathway activation. D. Loss of MHC Class I expression. E. Decreased chemotaxis 
of inflammatory immune cells. F. Autocrine hormone production and AR mutations. G. Altered 
expression or activity of co-activators and co-repressors. (Mills, 2014; Vitkin et al., 2019).  
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1.4.3.1  Increased expression and amplification of AR 

Increased AR expression is one of the most frequent changes in CRPC and is 

highly associated with resistance to anti-androgen. Using fluorescent in situ 

hybridization staining (FISH), Visakorpi et al. (1995) and Koivisto et al (1997) 

have seen an amplification in the AR gene in 30% and 28 % of recurrent tumours 

respectively (Visakorpi et al., 1995; Koivisto et al., 1997). Interestingly, 

Visakorpi et al. reports that this gene amplification was not observed in primary 

tumours (Visakorpi et al., 1995) suggesting that AR amplification is an adaptive 

response to ADT (Jernberg, Bergh and Wikström, 2017). It has been suggested 

that AR gene amplification can lead to an increase in AR expression due to a 

gene dosing effect, which in turn can contribute to androgen resistance. The 

addition of even one gene copy of AR has been shown to increase AR expression, 

suggesting that even a small change gene dosage can dictate disease and therapy 

outcome (Edwards et al., 2003). Furthermore, the amplification of the AR gene 

sensitizes PC cells to castration levels of androgens. Research lead by Fujimoto 

et al (2007) has shown that stimulation with DHT lead to a 4-fold increase in 

nuclear AR expression in late stage androgen insensitive (AI) cells when 

compared to early stage androgen sensitive (AS) cells. It is thought that the 

increase in AR protein can contribute to androgen hypersensitivity as well as 

disease progression (Fujimoto et al., 2007). However, work by Edwards et al 

(2001), has suggested that AR gene amplification is not solely to blame for the 

development of antiandrogen-resistance PC. By studying paired tumours (early vs 

late-stage tumours) from 20 different patients, Edwards et al (2001) were able 

to investigate if AR gene amplification alone heavily contributes to CRPC 

progression. Of the 20 patients, only three patients were shown to have AR gene 

amplification after hormone relapse (Edwards et al., 2001).  

1.4.3.2  AR mutations 

To date, 159 AR mutations have been identified in PC tissues, and most of these 

mutations are single-base substitutions (Eisermann et al., 2013). Approximately 

45% of these mutations occurs in the LBD, while 30% of mutations occurs in exon 

1 (Gottlieb et al., 2012). The most frequently detected AR mutation is T878A, 

which is a gain of function mutation that can be activated by both steroid 

hormones and first-generation antiandrogens (Jernberg, Bergh and Wikström, 
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2017). This mutation is also associated with resistance to abiraterone (Rathkopf 

et al., 2017). A study by Romanel et al (2015) has shown that men who have this 

mutation in circulating tumour DNA (ctDNA) have a lower PSA response rate and 

shorter survival time following abiraterone treatment when compared with men 

with a wild-type AR gene (Romanel et al., 2015).  

1.4.3.3  AR splice variants 

AR-variants have recently emerged as important players in PC progression as 

well as drug resistance. More than a dozen variants lacking the ligand binding 

domain have been identified from human PC cell lines and xenografts (Xu and 

Qiu, 2016). Increased expression of these variants has been associated with 

persistent AR activity after ADT (He et al., 2018), as well as resistance to 

enzalutamide and abiraterone (Armstrong and Gao, 2019). AR-variant 7 (AR-V7) 

is the most widely studied of these variants, and its expression is known to be 

increased in patients that have progressed to CRPC. Expression of this variant 

has only been detected in response to primary ADT (Sharp et al., 2019). It has 

been shown that in AR-V7 dependent CRPC, full-length AR binds to AR-V7 to 

repress transcription of growth-suppressive genes. Silencing of either full length 

AR or AR-V7 significantly decreases cell growth in CRPC cell models (Cato et al., 

2019). Work by Guo (2009) showed that not only does the expression of this 

splice variant increase between early and late stage disease, but AR-V7 

expression is found to increase within the nuclear region in hormone-refractory 

tumours. Immunohistochemical staining of over 429 human tissue microarrays 

showed that ARV7 expression was significantly increased during PC progression. 

Interestingly, these stains also revealed that 44 % of AR-V7 in hormone resistant 

tumours samples was localised in the nucleus. In contrast, only 9% of AR-V7 was 

found in the nucleus when compared to their pair hormone-naïve tumours. AR-V7 

expression significantly increases within the nuclear regions of hormone-

resistant tumours, suggesting that the expression of this splice variant can drive 

PC progression (Guo et al., 2009) 

1.4.3.4  Alterations in cofactor recruitment 

Due to its direct interaction with the receptor, AR cofactors have the ability to 

stimulate or repress the transcriptional activity of AR function (Heinlein and 
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Chang, 2002; Fujita and Nonomura, 2018). It has recently been shown that 

multiple AR-associated cofactors are able to modulate and reprogram AR binding 

events (Augello, Den and Knudsen, 2014). In recent years, researchers have 

observed diverse expression patterns of co-factors involved in human PC. 

Increased expression of some co-factors, such as SRC1, and decreased expression 

of others, such as ARA70 and ART27, are found in PC tissue when compared with 

benign tissue. Changes in concentration of AR cofactors can influence the 

selective expression of AR target genes and this in turn can determine the switch 

between proliferation and growth inhibition (Peng et al., 2008).  

1.4.3.5  Ligand-independent activation via cross talk with signal transduction 
pathways.  

AR ligand independent activation is one of the key signalling mechanism under 

low androgen conditions (Lyons et al., 2008). Increasing evidence has shown that 

PC cells have acquired the ability to survive and grow in low androgen 

environments by activating the AR pathway using growth factors, cytokines, and 

steroids. In the absence of androgens, growth factors such as epidermal growth 

factor (EGF), interleukin-6 (IL-6) or insulin-like growth factor I (IGF-I), can 

increase AR transcriptional activity despite not binding to normal ligand. This is 

mediated through protein kinases which are able to inhibit or activate AR 

transcription (Jenster, 2000). Increasing evidence has implicated cyclic 

adenosine monophosphate (cAMP) and the protein kinase A (PKA) pathway in the 

activation of AR. The activation of the cAMP signalling pathway will be further 

discussed in section 1.5.1. A study by Nazareth and Weigel (1996) has shown that 

PKA activation using forskolin, an adenylyl cyclase (AC) activator, lead to the 

activation of AR in the absence of androgens in AI PC3 cells, and this activation 

was blocked in the presence of a PKA inhibitor (Nazareth and Weigel, 1996).  

In addition to the cAMP-PKA pathway, PI3K/Akt/mTOR pathway is known to 

contribute to disease progression by activating AR in absence of its ligand. This is 

most commonly mediated by the loss or mutation in PTEN, which in turn leads to 

an increased activation of Akt (Fang et al., 2007). Work by McCall et al (2008) 

examined how deletion of PTEN gene and lower PTEN protein expression can 

contribute to PC progression in matched tumour samples. By using fluorescent in 

situ hybridisation and immunohistochemistry analysis, 23% of hormone sensitive 



Introduction 41 

tumours were found to harbour PTEN gene deletions. This significantly increased 

to 52% when compared to their matched hormone refractory tumours (McCall et 

al., 2008). PTEN is a key regulator of growth factor signalling and is able to 

regulate different cellular processes, including cell growth (Conley-LaComb et 

al., 2013). Loss of PTEN expression leads to an activation in the PI3K/Akt/mTOR 

pathway, and is strongly associated with negative oncological outcomes 

(Jamaspishvili et al., 2018). However, loss of PTEN expression also lead to an 

increase in AR activity as these two proteins have been shown to be direct 

interactors in LNCaP cells (El Sheikh et al., 2008). The interaction between PTEN 

and AR has been shown to inhibit AR’s ability to translocate into the nucleus, 

thus acting as a negative regulator of the AR pathway (Lin et al., 2004). 

Additionally, loss of PTEN expression is known to increase Akt activity (D. E. 

Butler et al., 2017), which in turn can increase AR phosphorylation in vitro and 

can increase AR activation (Edwards and Bartlett, 2005).  

1.4.4  Detection and diagnosis of prostate cancer. 

The main diagnostic tools for PC include the digital rectal examination (DRE), 

serum concentrations of PSA, and transrectal ultrasound (Gaudreau et al., 2016). 

In 18% of patients, prostate cancer can be detected by DRE alone, highlighting 

the technique’s importance in disease detection (Heidenreich et al., 2014). 

Initial patient evaluation and treatment decisions are currently based on a risk 

stratification scheme that incorporates three important prognostic biomarkers at 

diagnosis: clinical stage, biopsy Gleason grade/score, and serum PSA (Gaudreau 

et al., 2016).  

1.4.4.1  PSA as a biomarker for PC 

Although biomarkers, such as PSA, reflect the state of the whole gland, early 

screening for PC biomarkers may predict the likelihood of disease during a man’s 

asymptomatic state of cancer progression. Diagnostic biomarkers can predict 

cancer in patients suspected of having disease, while prognostic biomarkers 

predict the course of disease progression. Many prostate cancer biomarkers have 

been identified, however only a few have been approved by the FDA, including 

the PSA protein. PSA is the most commonly used oncological biomarker and 

screening method to detect prostate cancer (Kohaar, Petrovics and Srivastava, 
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2019). PSA is a serine protease secreted exclusively by the prostate epithelial 

cells (Marshall and Kelch, 1986). PSA screening for PC has been associated with a 

substantial increase in the diagnosis of prostate cancer. In general, total serum 

PSA levels are less than 4ng/mL in healthy patients (Gao et al., 2019). PC causes 

PSA to be released into the circulatory system, increasing the level in blood up 

to 105 fold. An increased PSA level of above 4 ng/mL prompts a recommendation 

that the man undergo prostate biopsy (Lilja, Ulmert and Vickers, 2008). The 

concentration of PSA is related to the size and the amount of glandular 

epithelium. However, other factors are known to increase normal PSA levels, 

such as race, body mass index, drugs, and age. (Pérez-Ibave, Burciaga-Flores and 

Elizondo-Riojas, 2018).  

1.4.4.2  Disease staging and scoring 

The tissue diagnosis of the adenocarcinoma is essential for establishing a positive 

diagnosis of prostate cancer (Humphrey, 2017). Samples are obtained via a 

prostate biopsy under ultrasound guidance and local anaesthesia (Heidenreich et 

al., 2014). Currently, light microscopic examination by haematoxylin and eosin 

(H&E) staining of the tissue is most commonly used for patient diagnosis 

(Humphrey, 2017). The Gleason histopathologic grading is one of three 

determinants of prostate cancer staging and is an important indicator of the 

biologic behaviour. The classical Gleason system defines the tumour into one of 

five histological growth patterns. A Gleason grade of 1 indicates that the gland is 

well differentiated and is correlated with a favourable prognosis. While a grade 

of 5 indicates that the gland is least differentiated and correlate with poor 

prognosis (Chen and Zhou, 2016). The Gleason score is then the sum of the two 

most prevalent grades found within the gland, with values ranging between 2 

and 10 (Gordetsky and Epstein, 2016). This method specifically looks at the 

extent of glandular differentiations and the pattern of growth of the prostatic 

stroma by using haematoxylin and eosin (H&E) staining (Humphrey, 2004). Since 

the initial study published by Gleason in 1966, there have been revisions in the 

guidelines of pathological reporting. Modification in the grading system in recent 

years has made it more complex for clinicians to grade the cancer (Gordetsky 

and Epstein, 2016). The new grading system has been proposed to increase 

grading accuracy and simplify the grading system into 5 grades, rather than the 

original 10. Under this new system. The lowest grade a patient can receive is 1 
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instead of 6, reducing the overtreatment of patients (Epstein et al., 2016). 

Higher grades are associated with a greater likelihood of having metastasised 

disease and a worse outcome after treatment of localized disease (Figure 1.6) 

(Gaudreau et al., 2016).  

 
Figure 1.6 Five-year biochemical recurrence free progression probabilities in patients after 
radical prostatectomy. Patient in Gleason Grade group 5 have a 25% chance of being disease 
free 10 years after the removal of the prostate. On the other hand, patients in Gleason Grade 1 
have a 90 % of being disease free within this same time frame (Figure taken from Sunassee, Al 
Sannaa and Ro, 2019). 

 
1.4.5  Current courses of treatment 

1.4.5.1  Active surveillance and watchful waiting 

Active surveillance and watchful waiting are two non-invasive treatment options 

for patients with low-risk PC (Herden and Weissbach, 2018). However, they 

include two different strategies. Watchful waiting is used as a palliative option 

for patients who are asymptomatic but with reduced life expectancy and is 

currently considered the least aggressive course of treatment. It does not 

involve regular biopsies or frequent blood tests. Treatment is only provided 

when symptoms appear (Malinowski et al., 2019). On the other hand, active 

surveillance is a curative option for patients with low risk of PC progression. In 

effect, the intention is to provide delayed treatment (Loeb et al., 2017). This 

method of treatment mainly focuses on preventing overtreatment by selecting 

patients based on their low-risk features and strictly monitoring them overtime. 

This close follow up of the patients enables rapid re-classification of disease that 

would alter the course of treatment (Bul et al., 2013; Kinsella et al., 2018). 
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Patients undergo regular examinations with a yearly DRE, PSA check every six 

months, MRI and biopsy every one to three years (Malinowski et al., 2019). 

1.4.5.2  Androgen deprivation therapy (ADT) 

ADT refers to treatments that act by reducing the effects of testosterone and 

other androgens and this can be achieved either surgically or chemically, but 

both methods aim to inhibit the progression of PC (Thomas and Neal, 2013). 

Surgical castration is the simplest and the most effective method to reduced 

levels of circulating testosterone and involves surgical removal of the testicles, 

reducing levels of androgens by over 90% within the first 24 hours, making this 

the most effective method to achieve a castrate state (Singer et al., 2008). 

Androgen homeostasis in the normal adult male is maintained through the 

release of gonadotropin-releasing hormone (GnRH) by the hypothalamus 

(Gomella, 2003). GnRH is secreted in a pulsatile manner, which then induces the 

anterior pituitary gland to release LH (Gomella, 2003; Choi and Lee, 2011). ADT 

can achieve castration levels of androgens via the administration of GnRH 

agonist or antagonists. GnRH agonists are the most prescribed medication for 

ADT, with the two most commonly used being leuprolide and goserelin. GnRH 

agonists produce an intense stimulation of GnRH receptors, causing a rise in LH 

and FSH. This in turn results in a rapid release of testosterone, often referred to 

as a “surge”, during the first two weeks of treatment (Thompson, 2001). The 

continuous stimulation leads to receptor desensitization which suppresses LH 

and FSH secretion, reducing testosterone to castrate levels (Boccon-Gibod, Van 

Der Meulen and Persson, 2011; Choi and Lee, 2011; Mason et al., 2013). GnRH 

antagonists act by competitively binding to receptors in the pituitary gland, 

leading to reduced amounts of LH and FSH. Such compounds are able to 

decrease levels of testosterone immediately to castration levels, as well as 

avoiding the surge seen with the agonists (Kunath et al., 2015; Crawford et al., 

2018).  

1.4.5.3  Radiotherapy 

Radiotherapy for prostate cancer can be separated into two types: external 

beam radiotherapy (EBRT) and brachytherapy (BT). BT is recommended to 

patients with low-intermediate stage PC, while EBRT can be used for any PC 
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stages (Heidenreich et al., 2014).BT currently involves the permanent 

implantation of free or stranded iodine, called low-dose BT, as well as 

temporary placement of iridium, called high-dose BT. Low-dose BT has been 

shown to be one of the strategies that is recommended for the curative 

treatment as the implanted radioactive source is left within the prostate. (Stish 

et al., 2018). In a follow up study of 757 men who underwent low-dose BT, 2.3% 

of patients developed distant metastasis following treatment. There was an 

overall survival rate of 97% in patients highlighting the curative effects of BT 

(Lazarev et al., 2018). EBRT is a non-invasive treatment that delivers high-dose 

radiation to the region of interest (Kovacs and Pinkawa, 2019). The prescribed 

dose of radiation is delivered directly to the tumour to destroy the cancerous 

cells. The beams are arranged in a way that the tumour receives the maximum 

dose, sparing the normal tissue and surrounding organs (Podder, Fredman and 

Ellis, 2018). EBRT is recommended for patients with tumours that extend 

through the prostate capsule or that has invaded into the seminal vesicles 

(Kamran and D’Amico, 2018).  

1.4.5.4  Enzalutamide, Abiraterone and Casodex in CRPC 

Hormone therapies are currently considered the gold standard for PC treatment 

as they are safe and highly effective but their biggest downfall is the lack of 

sustained anti-tumour effects (Hara et al., 2018). As previously mentioned, CRPC 

is an advanced form of PC that is resistant to lower levels of testosterone and 

has metastasised to other parts of the body. It has been shown that 80% of men 

with CRPC will progress to metastatic CRPC (mCRPC), with this progression being 

rapid in half of these patients (Albala, 2017). Abiraterone and enzalutamide are 

currently the first-line treatment in patients with mCRPC as both improve 

patient survival, but after a median of ~18 months resistance develops (Attard et 

al., 2018). Abiraterone is an androgen biosynthesis inhibitor that irreversibly 

inhibits the enzymatic activity of cytochrome P45 17 (CYP17) (Rehman and 

Rosenberg, 2012). Administration of abiraterone supresses androgen production 

in the testes and adrenal glands, returning them to castrate levels (Altavilla et 

al., 2012). Enzalutamide, also referred to as MDV3100, was the first second-

generation anti-androgen to be characterised. This compound directly binds to 

AR and inhibits its androgen binding, AR translocation to the nucleus, and ARE 

mediated DNA-binding (Hussain et al., 2018). In this situation, AR is no longer 
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able to activate the expression of its downstream genes or recruit any co-

activators (Rice, Malhotra and Stoyanova, 2019). In addition to enzalutamide and 

abiraterone, casodex has also been used in the treatment of CRPC. Casodex, also 

known as bicalutamide, is a non-steroidal, first generation anti-androgen which 

has been approved for use in combination with LHRH analogue (Beebe-Dimmer 

et al., 2018). Casodex binds competitively to the AR in the cell, which in turn 

causes it to alter its co-activator binding sites so that the receptor can no longer 

initiate gene transcription (Osguthorpe and Hagler, 2011; Waller and Sampson, 

2018).  

1.4.6 Novel PC therapies 

Although ADT and other therapies are regarded as the first treatment of choice 

for PC, hormone resistant PC will eventually develop and will become CRPC. 

Although metastatic CRPC currently benefit from a wide range of treatment 

options, it remains incurable and the prognosis of these patients remain poor 

(He et al., 2020). In the last few years, novel therapies have been approved in 

order to improve CRPC patient outcome. Most recently, polyadenosine 

diphosphate [ADP]-ribose polymerase (PARP) inhibitors have been approved for 

the treatment of CRPC (Powers et al., 2020). Recent studies into CRPC have 

shown that mutations in DNA repair genes are associated with highly aggressive 

PC and CRPC. As such, these cancers are susceptible to PARP inhibitors. PARP 

are highly conserved enzymes that bind to DNA breaks and recruit DNA repair 

proteins to the damaged site (Virtanen et al., 2019). Data from the phase 3 

clinical trial PROfound has shown that PARP inhibitors are highly effective in the 

treatment of CRPC. In this trial, CRPC patients receiving PARP inhibitors had 

lower levels of PSA and an increase in overall survival following treatment. This 

inhibitor has been approved for the treatment of CRPC in May 2020 owing to its 

success in clinical trials (Powers et al., 2020). 

Furthermore, radium-223 is currently the only radiopharmaceutical treatment 

for metastatic CRPC.Radium-223 emits high energy alpha particles over a short 

range, results in a localised anti-tumour effect and the inhibition of tumour-

induced osteoblastic activity (Heidenreich et al., 2019). This radioactive isotope 

induces irreversible DNA double stranded breaks, leading to tumour and cell 

death. Treatment with radium-223 is known to increase the overall survival of 
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patients and a better biological response when compared to conventional CRPC 

treatments (Deshayes et al., 2017). 

As previously mentioned, cancer immunotherapy has made a huge impact on 

treatment of different cancers, and PC is not exempt from this. PC is often 

described as a cold tumour, with a immunosuppressive microenvironment. As 

such, current therapies are designed to enhance the presence of antigen-

presenting cells and effector T-cells in the PC tumour environment (Fay and 

Graff, 2020). One of these strategies is by designing monoclonal antibodies 

raised against a tumour-associated antigen (TAA). This method marks the tumour 

cell for destruction via multiple pathways: activation of the complement system; 

antibody-dependent cytotoxic T-cell activation; or enhancing the uptake of 

phagocytes, followed by the presentation to an immature T-cell (Powers et al., 

2020). This method has been used to develop the Sipuleucel-T vaccine for the 

treatment of PC. When administered, Sipuleucel-T induces cytotoxic T-cells to 

recognise and kill prostate tumour cells due to the presence of the prostatic acid 

phosphatase antigen (Fay and Graff, 2020). In late-stage clinical trials, 

Sipuleucel-T significantly increased the survival by at least 4.1 months and 

increase the overall survival by 20 months when compared to placebo. Men 

receiving Sipuleucel-T experience a 22.5% reduction in risk of death following 

treatment (Anassi and Ndefo, 2011). 

1.5  cAMP signalling  

1.5.1  cAMP signalling pathway 

Extracellular signalling cues, such as hormones, cannot enter the cell directly 

and rely on secondary messenger proteins that are produced inside cells 

following activation of cell surface receptors. cAMP was the first second 

messenger to be found and it remains the best characterised. cAMP is used by a 

range of Gs-coupled receptors to transduce extracellular signals into a 

compartmentalised signalling pathway in the target cell (Yan et al., 2016; 

Rinaldi et al., 2019). The levels of cAMP in any intracellular location are 

influenced by two key enzymes: adenylyl cyclase (AC) (the cAMP producer) and 

cyclic nucleotide phosphodiesterases (PDEs), the only family of enzymes capable 



Introduction 48 

of degrading the cyclic-nucleotide. (Sassone-Corsi, 2012; Baillie, Tejeda and 

Kelly, 2019a) (Figure 1.7).  

The classical model of activation of the cAMP pathway involves the 

heterotrimeric G-protein coupled receptor (GPCR). GPCRs are the largest of 

membrane proteins and mediates most cellular responses that involve an 

extracellular cue. These receptors are characterised by seven α-helical 

transmembrane domains separated by alternating intracellular and extracellular 

loop regions (Rosenbaum, Rasmussen and Kobilka, 2009). Heterotrimeric G 

proteins are made up of three subunits: Gα, Gβ, Gγ. In the inactive state, Gα is 

bound to Gβγ dimer and guanosine diphosphate (GDP) (Tuteja, 2009). Binding of 

a ligand to the extracellular domain of the receptor leads to a conformational 

change of the receptor to accommodate the association of the G-protein 

complex (Latorraca, Venkatakrishnan and Dror, 2017). G-protein association 

triggers the guanylyl nucleotide exchange, from GDP to guanosine triphosphate 

(GTP), which leads to the dissociation of Gα from Gβγ as a free active subunit. 

GTP-bound Gα binds and activates AC, which can then in turn hydrolyse ATP to 

form cAMP (Ferre, 2015). The hydrolysis of GTP to GDP terminates the AC 

signalling and promotes the dissociation of Gα from AC and the reassembly of 

the free heterotrimer (Ferre, 2015). Four main cAMP effector proteins have been 

identified that transduce the cAMP signal: PKA, exchange protein directly 

activated by cAMP (EPAC), cyclic-nucleotide-gated ion (CNG) channels, and the 

Popeye domain containing protein family (POPDC) (Sassone-Corsi, 2012; 

Schindler and Brand, 2016) (Figure 1.7).  
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Figure 1.7 Cyclic nucleotide signalling pathways. Ligand binding to a G-protein coupled 
receptor (GPCR) leads to the activation of adenylyl cyclase (AC) by the Gαs subunit. AC is then 
able to synthesise the production of cAMP from ATP. cAMP can activate exchange protein 
activated by cAMP (EPAC), protein kinase A (PKA), popeye-domain containing protein (POPDC) 
and cyclic nucleotide gated channels (CNGs). Activation of proteins downstream of cAMP leads to 
the phosphorylation of multiple target, including the transcription factor cAMP response element 
binding protein (CREB). Phosphodiesterase (PDE) are currently known to be the only proteins 
known to hydrolyse cAMP to 5’AMP. PDEs in black only hydrolyse cAMP. On the other hand PDEs 
highlighted in red are known to also hydrolyse cGMP. (Baillie, Tejeda and Kelly, 2019). 

1.5.2  Protein Kinase A  

The 3’, 5’-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A 

(PKA) is considered essential for mediating a wide range of biological effects 

that are initiated by cAMP (Figure 1.7) (Chung et al., 2009). The cAMP-PKA 

pathway is one of the major signalling pathways that is implicated in PC 

progression (Sarwar et al., 2014). PKA is a hetero tetramer consisting of two 

catalytic subunits that bind to a pair of regulatory subunits and it is ubiquitously 

expressed and involved in multiple cellular processes. Four genes encode the 

regulatory (R) subunit (RIα, RIIα, Riβ, RIIβ), and three encodes the catalytic (C) 

subunit (Cα, Cβ, Cγ) (Schächterle et al., 2015). PKA can phosphorylate multiple 

targets in each individual cell following binding of two cAMP molecules to each R 

subunit that induce a conformational change that serves to release and activates 

the C subunit (Koschinski and Zaccolo, 2017). In order to maintain the normal 

functioning of PKA signalling, its activity is tightly controlled in space and time 

by scaffolding proteins known as A-kinase anchoring proteins (AKAPs) (Søberg et 
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al., 2017). Although PKA phosphorylation plays an important part in disease 

progression, changes in expression of PKA and its subunits is also known to be 

important in PC. Initial work by Cho et al (2000) demonstrated that PKA-I 

expression was increased in multiple cancers, including PC (Cho et al., 2000). 

PKA-I is known to contribute to tumour growth and progression, as well as 

suppress the innate and adaptive arms of anti-tumour surveillance (Hussain et 

al., 2015). Overexpression of PKA-I is often associated with poor disease 

outcome due to its ability to increase cell growth and neoplastic transformation 

(Khor et al., 2008). Further details about PKA phosphorylation, and its role in 

PC, will be discussed in chapter 4. 

1.5.3  Other cAMP effector proteins 

EPAC proteins act as guanine nucleotide exchange factor (GEF) and activates the 

small GTP-binding proteins Rap1 and Rap2 (Tsalkova et al., 2009). An important 

downstream effect of EPAC activation is the induction of integrin-mediated cell 

adhesion and E-cadherin mediated cell-junction formation (Rehmann, de Rooij 

and Bos, 2010). Cyclic-nucleotide-gated ion channels (CNG) are opened by the 

binding of cAMP (Kaupp and Seifert, 2002). These channels play an important 

role in the transduction olfactory signals in olfactory receptor neurones. 

Stimulation of odorant receptors leads to an increase in the intracellular levels 

of cAMP, which in turn activates CNG, leading to an influx of sodium and calcium 

ions (Brown et al., 2006). There are currently three know isoforms of the 

membrane-bound POPDC proteins, POPDC1-3. Although their biochemical 

activity is poorly understood, some of their functions have been determined 

using genetically modified animal models (Amunjela and Tucker, 2016; Brand, 

2018) (Figure 1.7). Interestingly, the loss of POPDC expression correlates with 

enhanced cellular proliferation, migration, invasion, metastasis, drug resistance, 

and poor patient prognosis in various human cancers (Amunjela and Tucker, 

2016). 
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1.6  Phosphodiesterase 

1.6.1  Overview of the PDE family 

PDEs are currently the only known superfamily of enzymes that can hydrolyse 

cAMP to influence the spatial and temporal aspects of receptor-driven cAMP 

signalling and prevent the inappropriate activation of downstream signalling 

pathways under basal conditions (Fertig and Baillie, 2018). There are eleven 

known families of PDEs that exists in mammals, with multiple genes, alternative 

splicing and promoter diversity giving rise to many unique isoforms per family. 

Each isoform has different affinities for cAMP, cGMP or both and they are 

constrained within tight spatial localizations in order to sculpt the local cAMP or 

cGMP gradients formed by specific receptors (Formosa and Vassallo, 2014). All 

PDEs contain three functional domains: a conserved catalytic core, a regulatory 

N-terminus and a less well-defined C-terminus. The catalytic and C-terminal end 

of all PDEs share 18-46% sequence homology overall (Halpin, 2008). PDEs are 

categorised on their catalytic domain homology, however each isoform possesses 

a subfamily specific N-terminus containing differing lengths and complexity of 

regulatory domains. The role of PDEs is not only to control the total cellular 

content of cAMP but create nanodomains for compartmentalised cAMP signalling 

mechanisms that underpin receptor function that produced the cAMP in the first 

place. The precise subcellular location of a cornucopia of different PDEs within 

the cell allows a single cell to respond to multiple extracellular and intracellular 

signals. PDEs maintain the correct levels of cAMP in the correct place at the 

correct time and in doing so they regulate multiple physiological processes and 

their dysfunction is known to be a factor in many diseases (Baillie, Tejeda and 

Kelly, 2019a).  

1.6.2  Structure of PDE4 isoforms 

PDE4 was the first PDE to be characterised biochemically and can exclusively 

hydrolyse cAMP (Houslay and Adams, 2003). There are currently four genes (A, B, 

C, and D) that are able to generate approximately 25 different isoforms each 

containing a unique N-terminal targeting domain, and they are currently 

considered the largest of the 11 families of PDEs (Klussmann, 2016). The 
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regulatory region contains the upstream conserved regions 1 and 2 (UCR1 and 

UCR2), which is then followed by the catalytic domain (Figure 1.8). 

 
Figure 1.8 Schematic representation of PDE4A, B, C, and D. Each isoform distinguishes 
themselves from its unique N-terminal region. PDE4 isoforms are categorised based on their 
regulatory UCR1 and UCR2 region. All PDE4 isoforms share a highly conserved catalytic domain 
and a C-terminal region. (Figure taken from Tibbo, Tejeda and Baillie, 2019). 

The UCR1/2 region is connected to the catalytic domain by the linker region 1 

and 2 (LR1 and 2) respectively (Fertig and Baillie, 2018a). The unique N-terminal 

of each PDEs often mediates protein-protein or protein-lipid interactions in 

order to target each enzyme to the appropriate subcellular compartment or 

signalling complex. Each individual PDE4 isoform controls one or more distinct 

pools of cAMP and has unique physiological functions that do not overlap with 

another PDE4 isoform (Xie et al., 2014). Interestingly, the expression of PDE4 

isoforms has been shown to increase following prolonged, raised intracellular 

levels of cAMP. The long-term elevation in cAMP levels leads to the increase in 
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mRNA and protein expression of multiple PDE4 isoforms, particularly PDE4D1 and 

PDE4D2 (MacKenzie et al., 2002). 

PDE4s can be further divided into three categories: long, short and super short. 

Long isoforms contain both UCR1 and UCR2 regions, whereas short isoforms only 

express the UCR2 region and super short isoforms have a truncated UCR2 region 

(Houslay and Adams, 2003). It has also been demonstrated that PDE4s can form 

dimers via the UCR1 region. In general, long isoforms exist as dimers, whereas 

short isoforms are only able to behave as monomers as they lack components 

which facilitate interaction of the monomers. Specifically, the UCR1 region has 

been shown to mediate intermolecular interactions that allow the dimerization 

of long isoforms and deletions of this region leads to the ablation of this 

interaction and the formation of monomeric proteins. Furthermore, the isolation 

the UCR1 regions results in its oligomerization (Xie et al., 2014). It has been 

shown that C-terminal end of the UCR1 region of a long-isoforms is able to bind 

to the N-terminal end of UCR2 and that this interaction can be inhibited by the 

PKA phosphorylation of a serine within the UCR1 domain (Beard et al., 2000). 

 

1.6.3  PDE4 activation and regulation 

PDE4 isoforms are important in the cross talk between cAMP and other signalling 

pathways. Therefore, tight control of their catalytic activity is necessary in 

order to maintain normal cell homeostasis. In addition to aiding the dimerization 

of PDE4 long isoforms, the UCR1/2 region has been shown to be important in the 

regulation of its catalytic activity. Using structural analysis, it has been shown 

that the UCR2 region of one of the subunit of the dimers crosses over to the 

catalytic region of the other dimer (Cedervall et al., 2015). This conformational 

change regulates the autoinhibition of PDE4 activity. The evidence shows that 

the crossing over of the UCR1/2 region regulates the catalytic activity (Francis, 

Blount and Corbin, 2011) in a trans-capping modality whereby one member of 

the dimer has its catalytic pocket occluded by the other’s UCR2 . 

Phosphorylation of the UCR1 by PKA disrupts the UCR2’s ability to block the 

catalytic domain, activating the enzyme. Increased levels of intracellular cAMP 

are known to increase the cellular activity of long PDE4 isoforms in this manner 

(Figure 1.9) (MacKenzie et al., 2002).  
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Figure 1.9 Phosphorylation of PDE4s by PKA regulates its activation. Phosphorylation of long 
PDE4 isoforms leads to the phosphorylation of UCR1 region. This in turn leads to the binding of 
UCR1 to bind to its own UCR2 domain instead of the catalytic domain. Thin in turn leads to the 
activation of the catalytic activity of PDEs (figure taken from Baillie, Tejeda and Kelly, 2019). 

PDE4 activity can be further regulated by the phosphorylation via the ERK MAP 

kinase pathway. This pathway is a key route by which various growth factors and 

hormones exert their effects on cell growth and survival. All PDE4 isoforms, 

apart from PDE4A, contain a single ERK phosphorylation site within its catalytic 

domain (Houslay and Adams, 2003). In cells expressing long PDE4 isoforms, 

phosphorylation by ERK leads to the inhibition of its enzymatic activity leading 

to an increase in cellular levels of cAMP. This in turn allows for the activation of 

PKA and the phosphorylation of UCR1, leading to the ablation of the inhibitory 

effects of ERK phosphorylation. This provides a regulatory system, with the 

effects of ERK phosphorylation only being transient and rapidly overturned 

(Baillie et al., 2000).  
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Figure 1.10 Overview of PDE post-translational modifications. The intracellular concentration 
of cyclic nucleotides is highly dependent on the addition of different functional groups to PDEs. 
Phosphorylation of PDEs is the most common mechanism by PDE activity is regulated. Some PDE 
isoforms, such as PDE10A2, can be palmitoylated, enabling its translocation to the membrane. 
Ubiquitination, s-nitrosylation, and hydroxylation of PDE can all lead to the enzymes’ degradation 
by increasing their detection by an E3 ligase. SUMOylation of a PDE isoform can lead to an 
increase in its activity. Figure taken from Baillie, Tejeda and Kelly, 2019. 

1.6.4 PDE4D involvement in prostate cancer 

In the last 10 years, there has been increasing evidence indicating that PDE4D 

has a role in the progression in PC. First identified by Rahrmann et al (2009), the 

expression of PDE4D isoforms was found to be overexpressed in human PC 

patient samples and cell lines. Changes in PDE4D mRNA isoform expression was 

also observed in patient samples and this was verified when experimentation 

showed that knockdown of PDE4D lead to reduced growth and migration of PC 

xenografts in vivo. This study was the first indication that PDE4D promotes the 

proliferation of PC (Rahrmann et al., 2009). Since then, expression levels of 

various PDE4D isoforms have been determined. Using quantitative polymerase 

chain reaction (qPCR) technology, the mRNA expression levels of PDE4D was 

evaluated in 19 different PC cells lines and xenografts and led to the 
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identification that the overall levels of PDE4D mRNA was decreased during the 

transition between the AS to AI state (Henderson et al., 2014). Further 

investigation revealed that a significant proportion of this decrease was due to 

the decrease in PDE4D7 expression (Figure 1.11). This was observed at both 

mRNA and protein level. Decreased expression of PDE4D7 in AI samples lead to 

the reduced ability of PC cells to hydrolyse cAMP. In addition, it was noted that 

selective knockdown of PDE4D7 using small interfering RNA (siRNA) in an AS cell 

line (VCaP) resulted in increases in cellular proliferation. On the other hand, re-

expression of PDE4D7 in an AI cell line (PC3) by transfection impeded cellular 

proliferation, indicating that PDE4D7 mediated cAMP signalling processes within 

the AI cell results in the inhibition of proliferation. This same trend was 

observed when increases in cell cAMP were mimicked when PC3 cells were 

stimulated with the AC activator forskolin (Henderson et al., 2014). 

 
Figure 1.11 PDE4D1-9 expression in PC cell lines and xenografts. Expression of various 
PDE4D isoforms was assessed using Real Time qPCR. PDE4D7 expression was shown to have 
the highest expression in PDE4D transcripts in PC cells and is significantly downregulated in AI 
samples. (Henderson et al., 2014). 

The need for more accurate biomarkers to reflect molecular pathologies lead to 

the further characterisation of PDE4D7 in PC. In order to understand whether in 

vitro data can be translated to patient samples, over 1045 patient samples were 

screened for PDE4D7 expression. The TMPRSS2-ERG gene rearrangement status 

was also examined. PDE4D7 expression has been shown to positively correlate 

with disease progression and expression of this isoform significantly decreased 
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between primary PC tumours and CRPC samples. Interestingly, the expression of 

PDE4D7 was highest in primary PC samples indicating PDE4D7 may have a role 

with initial tumorigenesis. PDE4D7 was significantly highly expressed in tumour 

samples containing the TMPRSS2-ERG gene fusions when compared to TMPRSS2-

ERG negative samples (Böttcher et al., 2015).  

It has been proposed that the changes in PDE4D7 expression can be used as a 

novel prognostic marker for PC. This would then allow clinicians to provide 

patients with a “PDE4D7 score” that may reflect their stage of disease 

progression. Henderson et al (2019) propose that by determining the levels of 

PDE4D7 mRNA transcript, they could potentially predict post-surgical disease 

outcome (Henderson et al., 2019). For example, the risks of post-surgical 

progression would significantly increase in patients with a low PDE4D7 score. On 

the other hand, patients with a very high score are much less at risk of disease 

progression. In such a manner, the “PDE4D7 score” has the potential to be a 

more accurate and effective prognostic tool to clinicians (Böttcher et al., 2016; 

Henderson et al., 2019). Recent work by van Strijp et al (2018) further validated 

the prognostic power of PDE4D7 as a new biomarker for PC. The correlation 

between PDE4D7 scores were studied in pre-surgical and post-surgical samples. 

mRNA from patient and biopsy samples were extracted, and a Cox regression 

was applied to combine the clinical score with PDE4D7. Once again, results 

showed that PDE4D7 expression was highly associated with PSA recurrence after 

surgery and the expression of PDE4D7 was shown to provide risk information for 

pre-treatment risk stratification. Combinations of clinical scores with PDE4D7 

status significantly improved the clinical risk stratification before surgery (van 

Strijp et al., 2018). This combination allows a more accurate definition of the 

disease as well as suggesting the most appropriate course of treatment (Figure 

1.12). 
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Figure 1.12 Kaplan-Meier survival analysis of the biochemical recurrence free survival (BCR) 
in the patient diagnostic biopsy. A cohort of patient biopsies were given a PDE4D7 score, and 
this was plotted against BCR progression and survival probability. Patients with a lower PDE4D7 
score (brown) were less more to show disease progression. However, patients with a higher score 
(blue) were less likely to show signs of disease reoccurrence. Figure taken from van Strijp et al., 
2018. 

1.7  DExH-Box Helicase 9 (DHX9) and cancer 

1.7.1  Structure and function of DHX9  

DHX9, also referred to as RNA helicase A (RHA) or nuclear DNA helicase II, is a 

nucleoside triphosphate (NTP)-dependent helicase that has been shown to 

unwind both DNA and RNA, as well as aberrant polynucleotide structures (Lee 

and Pelletier, 2016). DHX9 is a protein that is approximately 140 kDa in size and 

it contains eight domains (Fidaleo, De Paola and Paronetto, 2016). The N-

terminal region of DHX9 is characterised by two copies of double stranded RNA 

binding domain (dsRBD), then followed by the minimal transactivation domain 

(MTAD). The dsRBD region has the ability to bind to the post-transcriptional 

control elements (PCEs) in the 5’ untranslated region (UTRs) of specific mRNAs 

to modulate their translation (Fidaleo, De Paola and Paronetto, 2016). The core 

helicase domain consists of 8 motifs that are subdivided into two Rec-A like 
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domains, with motifs 1-3 residing in the first domain while motifs 4-6 reside in 

domain 2 (Lee and Pelletier, 2016). The helicase region contains an ATP binding 

site with the consensus sequence GCGKT (A site) and FILDD (B site) in the first 

motif of the helicase domain (Zhang and Grosse, 1997). The C-terminal domain 

contains the helicase-associated domain 2 (HA2) followed by the 

oligonucleotide/oligosaccharide-binding fold (OB-fold) overlapping the nuclear 

localization/export signal (NLS/NES). Also of note is the arginine and glycine 

(RG) rich domain at the very end of the C-terminal end of the protein is able to 

bind to single-stranded nucleic acids (Lee and Pelletier, 2016) (Figure 1.12) 

 

Figure 1.13 Schematic representation of functional domains of DHX9. DHX9 is a 140kDa 
protein formed of eight distinct domains. The N-terminal region is composed of the dsRBD and 
MTAD regions. The helicase core domain contains the conserved ATP-dependent helicase 
domain. Finally, the C-terminal domain contains the HA2, OB-fold, NLS/NES, and RGG-box 
(Figure taken from Lee and Pelletier, 2016). 

DHX9 is a protein that is known to have diverse functions in the cell. The 

function of DHX9 includes regulating DNA replication, transcription, translation, 

microRNA biogenesis, RNA processing and transport, and maintenance of 

genomic stability (Lee and Pelletier, 2016). DHX9 is part of the DExD/H-box 

superfamily of helicases that form a large superfamily of proteins which are 

conserved from bacteria, viruses and humans (Tanner and Linder, 2001). DHX9, 

like other members of the family, has the ability to bind to both DNA and RNA 

via its dsRBD regions (Figure 1.14). DHX9 unwinds double stranded DNA and RNA, 

as well as aberrant structures such as DNA/RNA hybrids, R-loops, intramolecular 

triplex DNA, and G-quadruplexes (Figure 1.14) (Fidaleo, De Paola and Paronetto, 

2016). Although DHX9 is able to bind to both DNA and RNA, the dsRBD has a 

higher affinity for double stranded RNA (dsRNA) and a weaker affinity for single 

stranded DNA (ssDNA) (Zhang and Grosse, 2004). DHX9 moves in a 3’ to 5’ 

direction and can use ATP for its unwinding activity. In order for this enzyme to 

work efficiently, DHX9 binds to a 3’ single-stranded tail that serves as an anchor 

for enzyme binding (Lee and Pelletier, 2016). 
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Figure 1.14 DHX9 nucleic acid substrates. DNA is coloured in red, and RNA strands in blue. 
DHX9 binds to the 3’ single stranded tail that can be found on multiple substrates (Lee and 
Pelletier, 2016). 
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1.7.2  DHX9 in cancer  

The expression of multiple DNA helicases, including DHX9, are upregulated in 

cancer cells/tissues and is required for cancer cell proliferation or resistance to 

DNA damage in response to DNA damage acquired during chemotherapy (Figure 

1.15). This reflects the need to respond to increased replicative lesions that 

arise in highly proliferative states (Brosh, 2013). Multiple missense mutations in 

human helicase genes have been identified and linked strongly with cancer, 

highlighting the importance of this protein in maintaining genomic stability 

(Suhasini and Brosh Jr, 2013). Dysregulation of this functionally diverse 

superfamily can have disastrous effects on normal cellular homeostasis and 

contribute to cancer development and progression (Cai et al., 2017). 

 
Figure 1.15 DExD/H helicases in adult cancers. DExD/H helicases have been reported to be 
involved in multiple solid and blood cancers. DHX9 has is known to be involved in prostate, lung, 
breast and testicular cancers. Figure taken from Cai et al., 2017. 
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One cancer where the expression of DHX9 has been shown to be increased is in 

lung cancer. Using RT-PCR, DHX9 mRNA expression is increased in tumour 

samples when compared to normal lung tissue, however, there is no correlation 

between DHX9 expression and disease stage and survival (Wei et al., 2004). As 

well as being overexpressed, DHX9 has been shown to inhibit the effects of 

enoxacin in lung cancer cell lines. Enoxacin has been used as an anti-tumoral 

agent due to its ability to induce microRNA biogenesis (Sousa et al., 2013).  

 

In recent years, DHX9 has slowly become an interesting new target to slow the 

progression of different cancers. It has been reported that the inhibition of DHX9 

expression reduces the fitness of different cancer cell types. Cells lines derived 

from multiple myeloma, osteosarcoma, breast, lung, and cervical cancer were 

transfected with shRNA targeting DHX9 and suppression of DHX9 in all cell lines 

lead to an increase in the rate of cellular apoptosis and growth arrest. 

Interestingly, when this same experiment was repeated in murine lymphoma 

models, the prolonged suppression of DHX9 did not result in negative off-target 

effects being recorded and as body weight, blood biochemistry, and histology 

were similar to that of control mice. The suppressed expression of DHX9 was 

tolerated in vivo, suggesting that DHX9 can be a new chemotherapeutic target 

with tolerable side effects (Lee et al., 2016). Using FISH, Southern blotting and 

PCR analysis, the DHX9 gene was shown to locate to chromosome 1q25. This is 

known to be a major susceptibility locus for hereditary PC supporting the 

suggestion that potential mutation at this site can lead to dysfunctional 

regulation of transcription as well as increase cellular proliferation in the 

prostate (Lee et al., 1999). This observation is highly relevant to the direction of 

travel within my thesis and how will this impact the field. 
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1.8 PDE4D7 and DHX9 – Potential interactors in prostate 
cancer 

Recent work in the Baillie lab has identified DHX9 as a potential interacting 

partner for PDE4D7 in PC (unpublished work funded by Prostate Cancer UK). In 

recent years, DHX9 has emerged as an important protein in multiple cancers by 

either acting as an oncogene or as a tumour suppressor (Yan et al., 2019) and it 

has a large number of interacting partners, involving it in multiple biological 

processes (Lee and Pelletier, 2016). The function and molecular mechanisms 

surrounding the PDE4D7-DHX9 signalosome have not been characterised. To 

date, DHX9 and PDE4D7 has only been suggested to be novel interactors by the 

Baillie, and this can only be speculated as both proteins are expressed in the 

prostate (Figure 1.16).  

 
Figure 1.16 Expression of DHX9 and PDE4D in different tissues. Expression of DHX9 (B.) and 
PDE4D7 (A.) was investigated in multiple tissues sections, then analysed. Both proteins are 
expressed in the prostate, highlighted with an asterisk. Data obtained from The Human Protein 
Atlas (http://www.proteinatlas.org).  

Although PDE4D is highly expressed in the prostate, DHX9 is moderately 

expressed in the prostate. However, these two proteins are expressed in 

different compartments. Data from the Human Protein Atlas has shown that 



Introduction 64 

DHX9 is highly expressed in the nucleus, whereas PDE4D is expressed in the 

plasma membrane and the cytosol (Uhlen et al., 2017). However, recent work by 

multiple groups have shown that DHX9 is able to shuttle in and out of the 

nucleus thanks to a NLS/NES signal in its C-terminal region (Lee and Pelletier, 

2016). Interestingly, PDE4D is able to mediate reactions within the nucleus 

(Robinson et al., 2020), indicating that these two proteins can exist in the same 

cellular compartment. In addition to looking at the expression of these two 

proteins in healthy tissues, the expression of PDE4D and DHX9 was expression 

was investigated in diseased prostate tissue (Figure 1.17). Interestingly, these 

two proteins have opposite expression patterns in prostate cancer. Higher 

expression of DHX9 (figure 1.17 B) is associated with low survivability, while 

higher expression of PDE4D7 is associated with high survivability (figure 1.17 A).  

 
Figure 1.17 PDE4D and DHX9 expression in PC. The expression of PDE4D7 (A) and DHX9 (B) 
was investigated in multiple PC tissues. Protein expression was related to survival probability. Data 
taken from The Human Protein Atlas (Uhlen et al., 2017) 
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Data collected from the Human Protein Atlas, as well as from the Baillie lab, 

highly suggests that these two proteins are important in PC pathogenesis and 

progression. While the expression of PDE4D7, more specifically PDE4D7, 

decreases as the disease progresses, DHX9 expression increases, suggesting the 

expression and function of these two proteins are linked to one another.  

1.9 Thesis Aims 

The literature reviewed above has highlighted the importance of PDE4D7 in the 

development and progression of PC and has indicated that DHX9 is also involved 

in cancer, including PC. In this light, the fact that PDE4D7 and DHX9 form a 

signalling complex in PC cells suggests that they may coordinate cancer related 

signalling mechanisms. If true, the DHX9-PDE4D7 signalling axis could represent 

a novel target for therapeutic intervention in PC. My thesis seeks to verify the 

existence of the DHX9-PDE4D7 complex and to use novel biochemical tools and 

assays to gain some understanding of the molecular mechanisms that underpin 

the influence of the complex on PC cell growth. The thesis is divided into three 

sections with the following aims: 

AIM 1: To confirm the interaction between PDE4D7 and DHX9. Biochemical 

techniques were used to show the direct interaction between DHX9-PDE4D7 

and data was supported by complementary imaging techniques that 

visualised co-localisation of the proteins in a cellular context. Peptide array 

technology was used to map the DHX9-PDE4D7 protein-protein interaction 

domains and this information used to develop cell penetrating disruptor 

peptides that acted to specifically disassemble the complex. These novel 

bio-tools were used in “functional” assays as part of AIM 3. 

AIM 2: To determine whether DHX9 is a substrate for PKA phosphorylation. 

As many PDE4 containing protein complexes contain PKA substrates, I was 

keen to find out if DHX9 could be modified in this way. Using peptide array 

technology, a putative PKA phosphorylation site was identified on the 

helicase. Using sequence information, I developed novel custom phospho-

DHX9 to the site. Such a tool could be used to gauge the influence of 

PDE4D7 on putative PKA phosphorylation of DHX9. DHX9 phosphorylation 

was studied in vitro using biochemical and imaging techniques.  
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AIM 3: To characterise the role of DHX9 in PC cells. By using Real Time Cell 

Analyzer (RTCA) xCELLigence technology, the effects of DHX9 silencing via 

siRNA knockdown or treatment with a DHX9 inhibitor was studied. The 

functional implication of the disruption of the PDE4D7-DHX9 complex (using 

DHX9-PDE4D7 peptide from AIM1) was examined by measuring the levels of 

R-loops and monitoring PC cell growth. Finally, changes in downstream PC 

signalling pathways influenced by DHX9 were evaluated using Reverse Phase 

Protein Array (RPPA) following treatment of PC cell lines with DHX9-

specific siRNA .  
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Chapter 2 Material and Methods 

2.1  Molecular Biology 

2.1.1  Constructs 

 
Table 2.1 List of plasmids used for this thesis 

Construct Antibiotic Resistance Source 

pcDNA3.1 PDE4D7-VSV Ampicilin (Sigma, A9393) I. Gall 

pCMV3 DHX9-FLAG Kanamycin ( Thermo 

Fisher, 11815032) 

Sino Biological 

pGEX-6P-1 DHX9-GST Ampicilin (Sigma, A9393)  

 

Dr J. Capitanio and Prof 

R. Wozniak, University of 

Alberta, Canada 

 
 

pGEX-6P-1 GST-DHX9 1-

380 

Ampicilin (Sigma, A9393) 

pGEX-6P-1 GST-DHX9 

381-820 

Ampicilin (Sigma, A9393) 

pGEX-6P-1 GST-DHX9 

821-1270 

Ampicilin 

pGEX-5X-1 4D UCR1-GST Ampicilin (Sigma, A9393) Dr G. Bolger, University 

of Alabama, USA 

pGEX-4X-1 GST Ampicilin (Sigma, A9393) Dr Y.Y Sin, University of 

Glasgow, UK 

  
2.1.2 Transformation of plasmid DNA into competent cells 

DH5a (Agilent, 200231) and BL21(DE3) Codon Plus (Agilent, 230245) were stored 

at -80°C and thawed on ice prior to use. 1-10 ng of plasmid DNA (Error! R

eference source not found.) was added to 50 µL competent cells, mixed gently 

by pipetting, and incubated on ice for 30 minutes. After incubation, the cells 

were heat shocked for 45 seconds at 42°C and placed on ice for a further 2 

minutes. 450 µL of Luria broth (LB) (10g/L tryptone, 10g/L NaCl, 5 g/L yeast 

extract) was added to the transformant, then grown for an hour at 37°C, 300 

RPM. 50 - 150 µL of the transformation mixture was then spread onto a LB Agar 

plate (10g/L tryptone, 10g/L NaCl, 5 g/L yeast extract, 20 g/L agar) containing 

the appropriate antibiotic and incubated overnight at 37°C.  
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2.1.3  Isolation and quantification of plasmid DNA 

Single colonies from the transformation plate were picked and grown overnight 

in 5 mL of LB containing 50 µg/mL of kanamycin at 37°C, 220 RPM. Isolation of 2 

mL of the overnight culture was conducted using the QIAprep Miniprep kit 

(Qiagen, 27106) according to manufacturer’s instructions. For an overnight 250 

mL bacterial culture, plasmid DNA was purified using PureLink HiPure Plasmid 

Maxiprep kit (Invitrogen, K210007) according to manufacturer’s instruction. The 

purified DNA was resuspended in ultra-pure nuclease free H2O and stored at -

20°C.  

2.1.4  Quantification  

A NanoDrop 3300 spectrophotometer (Thermo Fisher Scientific) was used to 

determine the concentration and purity of the plasmid DNA. The absorbance of 

the sample was measured at 260 nm and 280 nm. Absorbance at 260 nm was 

used to quantify the concentration of dsDNA in the sample, whereas the 

A260/280nm ratio was used to determine the purity of the sample.  

2.1.5  Storage of plasmid DNA 

For plasmid storage, 1 mL of the overnight culture grown in 2.1.3 was mixed 

with 1 mL of 50% glycerol / 50% LB in a sterile cryovial. The glycerol stock was 

snap frozen on dry ice and stored at -80°C until needed. For future DNA 

preparations, a sterile pipette tip was used to scrape cells from the frozen vial 

an inoculate 250 mL of LB with the appropriate antibiotic. The culture was 

incubated overnight at 37°C, 220 RPM. Plasmid DNA was purified as described in 

2.1.3. 

2.1.6  Analysis of plasmid DNA  

In order to check the correct identity of purified plasmid DNA, 50 ng of plasmid 

DNA was incubated with 1 unit of restriction enzyme. Plasmid DNA was digested 

using the following reaction composition: 

 Enzyme 1: 1 µL 

 Enzyme 2: 1 µL 

 10 x reaction buffer: 5 µL  
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 Plasmid DNA: 50 ng 

 Nuclease free water: up to 50 µL 

6 x Purple Loading Dye: 10 µL 

 

The restriction enzymes used to cut each plasmid is included in table Table 2.2 

Restriction enzymes used for each plasmid 

Table 2.2 Restriction enzymes used for each plasmid 
Plasmids Restriction enzymes Fraction sizes 

pGEX-6-P-1 DHX9 BglII + BamHI 5 364bp + 3 424bp 
pGEX-6-P-1 DHX9 1-380 
aa 

BamHI + HindIII 5 334bp + 784bp 

pGEX-6-P-1 DHX9 381 - 
820 aa 

BamHI + NotI 4 955bp + 1 163bp 

pGEX-6-P-1 DHX9 821 - 
1270 aa 

BglII + BamHI 5 364bp + 967bp 

 

The digestion was allowed to incubate for one hour at 37°C. The reaction was 

stopped by adding 10 µL of 6 x Purple Loading Dye. Agarose gel electrophoresis 

was used to analyse 20 µL of the restriction enzyme digest. 1% agarose (w/v) 

was dissolved in Tris-acetate EDTA (TAE) buffer (40mM Tris, 20mM Acetate and 

1mM EDTA). The solution was allowed to cool slightly, and SybrSafe (Invitrogen, 

S33102) was added to visualise the DNA fragments under UV light. The gel was 

cast in the Bio-Rad SubCell GT Agarose gel system with a comb inserted to 

create wells and allowed to cool. Once set, the comb was removed, and the gel 

placed in gel tank containing TAE buffer. A 1kb DNA ladder (NEB) was used as a 

marker. The gel was run for an hour at 100 V, or until the dye front migrated 

two thirds of the gel. The gel was then removed from the tank and imaged using 

the Gel Doc XR+ system (Bio-Rad). If the digest suggested that the correct 

plasmid was purified, 100 ng plasmid DNA, in a final volume of 20 µL, was sent 

to GATC (Eurofins) for sequencing.  

2.2  Mammalian Cell Culture 

2.2.1  Culture of human cell lines 

All cell culture procedures were performed in class II hoods using aseptic 

technique with sterile plastics and instruments. All cell culture reagents were 

purchased from Sigma. Culture flasks were purchased from Corning. The cells 
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were observed using a phase contrast inverted microscope in order to ensure 

that the cells were healthy and free of any contaminants. Cells were maintained 

at 37°C with 5% CO2 and 95% air. DU145, VCaP, and HEK293 cells were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (SAFC, D5671) 

supplemented with 10% foetal bovine serum, 100 units/mL penicillin and 

streptomycin, and 2mM L-glutamine. HEK293 media was further supplemented 

with 1 x non-essential amino acids (Invitrogen, 11140050). VCaP media was 

further supplemented with 1 mM sodium pyruvate. LNCaP cells were maintained 

in RPMI-1640 (SAFC, R8758) supplemented with 10 % FBS and 100 units/mL of 

penicillin and streptomycin. All cells were sub-cultured when 80% confluent. 

Cells were passaged when 80% confluent. All culture medium, phosphate 

buffered saline (PBS), and trypsin was pre-warmed to 37°C. Conditioned VCaP 

media was set aside for future use. However, for all other cell lines, culture 

medium was aspirated from flasks. Cells were washed with 5 mL PBS. Cells were 

removed from the culture flasks with the addition of 5 mL of 0.25% trypsin-EDTA 

solution. The flask was placed back in the 37°C incubator for five minutes or 

until the monolayer has detached from the flask. An equal volume of growth 

medium was added to the flask to neutralise the trypsin, and the cell were 

collected by centrifugation at 700 RPM for three minutes at room temperature. 

The cell pellet was resuspended in fresh growth medium, or conditioned medium 

for VCaPs, and seeded as required.  

2.2.2  Cryopreservation of cells 

In order to freeze cells for future use, pelleted cells were resuspended in 1 mL 

freezing medium containing complete growth medium supplemented with 10% 

sterile DMSO. Cells were transferred to a sterile 1.8 mL cryovial and stored in a 

freezing container with 100 % isopropanol at -80°C for 24 hours. Frozen cells 

were transferred to liquid nitrogen for long term storage the following day. In 

order to revive cells, cryovials containing the cells was thawed by incubated in a 

water bath at 37°C. Cells were added to a 75 cm2 culture flask containing 10 mL 

of prewarmed media and placed in the 37°C 5% CO2 incubator. After 24 hours, 

the cells were washed with PBS and fresh medium was added in order to remove 

DMSO.  
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2.2.3  Transient transfection of plasmid DNA 

Plasmid DNA was transiently transfected into HEK293 cells. Cells were passaged 

24 hours prior to transfection and seeded into the appropriate culture flask in 

order to ensure cells were at 50-70% confluency on the day of transfection. 

Transfections were performed using Lipofectamine LTX (Thermo Scientific, 

15338100) and OptiMEM reduced serum medium (Thermo Scientific, 11058021) as 

per manufacturer’s instructions. Plasmid DNA and transfection reagent 

concentrations were either scaled up or down for the culture plate in use. Cells 

were incubated with transfection medium for 24-48 hours to ensure plasmid 

expression. Mock transfections were performed as control without plasmid DNA. 

2.2.4  siRNA mediated knockout  

Small interfering RNA (siRNA) gene knockdown was used in order to assess the 

function of DHX9 in PC cells, as well as to test the novel phosphor-DHX9 

antibody. ON-TARGETplus SMART POOL siRNA against human DHX9, PDE4D7, 

SFPQ, GAPDH, and non-targeting were purchased from Dharmacon. Cells were 

plated until they reached 50-70% confluency in the culture plate. The following 

day, the cells were transfected with siRNA to a final concentration of 25 nM 

using either DharmaFECT 1 for DU145 and HEK293 cells or DharmaFECT 3 for 

LNCaP cells according to manufacturer’s instructions. Percentage knockdown 

was assessed by western blotting after 48 hours incubation at 37°C with 5% CO2. 

Table 2.3 siRNA and reagents used in the thesis 
siRNA Catalogue number 

siNon-Targeting D-001810-10-05 

Human GAPDH D-001830-10 

Human DHX9 L-009950-00-0005 

Human PDE4D7 Custom Made against following sequence: 
Sense strand: 5’ AUACCUGUGAUUUGCUUUC 3’ 
Antisense strand: 5’ GAAAGCAAAUCACAGGUAU 3’ 

Human SFPQ J-006455-09-0005 

Dharmafect 1 T-2001-03 

Dharmafect 3 T-2003-03 

5 x siRNA Buffer B-002000-UB-100 

RNA/DNA Free water B-003000-WB-100 
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2.2.5  Treatment of cells 

2.2.5.1 Forskolin, IBMX, and rolipram 

Cells were seeded in either 6 well plates or 10 cm cell culture dishes. 

Treatments were carried out when cells reached 80% confluent. Cells were 

treated with 25 µM forskolin (Sigma, F6886), 100 µM IBMX (Sigma, I5879) or 10 

µM rolipram (Sigma, R6520) for the indicated times at 37°C with 5% CO2. All 

drugs were reconstituted in DMSO, aliquoted into 10 µl aliquots and stored at -

20°C until required. 

2.2.5.2 Disruptor peptide treatment 

Disruptor peptides were reconstituted in DMSO, aliquoted into 10 µl aliquots and 

stored at -20°C until required. All peptides were synthesised by Genescript. 

Cells were plated in the appropriate culture flask until they reached 80 % 

confluency. They were then either treated with 10 µM of scrambled peptide, 10 

µM of UCR1-disruptor peptide, or DMSO for two hours at 37°C with 5% CO2. The 

cells were washed and analysed by immunoprecipitation (IP) with western 

blotting or immunocytochemistry (ICC) with confocal microscopy. 
2.3  Preparation of whole cell lysate 

2.3.1  Whole Cell Lysate 

Protein extracts from were produced from cells in culture. Culture media was 

removed, and cells were washed once in PBS. The cells were then harvested in 

3T3 lysis buffer (25mM HEPEs, 10% v/v glycerol, 50 mM NACl, 1% v/v Triton X-

100, 50 mM NaF, 30 mM NaPPi, 5 mM EDTA, pH 7.4) supplemented with 

cOmplete, EDTA-Free Protease inhibitor cocktail and PhosStop Phosphotase 

inhibitor cocktail (Roche, 5056489001, 5892970001). When 80% confluent, 

culture plates were scraped and lysates were transferred into 1.5 mL Eppendorf 

tubes where they were then incubated for an hour on an end-on-end rotation at 

4°C. Samples were centrifuged at 14 000 x G for 10 minutes at 4°C and the 

supernatants were transferred to a fresh tube and stored at -20°C for short term 

storage. Samples were stored at -80°C for long term.  
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2.3.2  Protein concentration assay 

A Bradford dye-binding method was used to determine the total protein 

concentration in cell lysates and purified recombinant protein. One-part 

Bradford dye (Bio-Rad, 5000006) was mixed with four parts of dH2O. Protein 

standards ranging from 0-5 µg/µL of Bovine Serum Albumin (BSA) was prepared, 

and experimental samples were diluted accordingly. All samples were loaded 

onto a 96 well plate in triplicate, followed by 200 µL of Bradford Dye. The 

absorption was measure at 595 nm using the Spectra Max Plus 

spectrophotometer. Protein concentrations corrected for the dilution factor was 

determined based on the standard curve. 

2.4 Subcellular fractionation 

All centrifugation steps were performed at 4°C. VCaP cells were plated into 10 

cm2 dishes and grown until 80% confluent. Cells were washed twice in phosphate 

buffered saline (PBS) then scraped in 500 µL of fractionation buffer (20 mM 

HEPES, 10 mM KCl, 2mM MgCl2, 1 mM EDTA, 1 mM EGTA) supplemented with 1 

mM DTT and cOmplete EDTA free protease inhibitor. Scraped cells were 

transferred to 1.5 mL Eppendorf tubes and incubated on ice for 15 minutes. Cells 

were then homogenised by passing the suspension through a 25-gauge needle 10 

times, then further incubated on ice for 20 minutes. 100 µL of the suspension 

was transferred into a fresh Eppendorf and used as the whole cell lysate (WCL). 

The remaining suspension was centrifuged at 720 x G for 5 minutes to pellet the 

nuclei from the sample. The supernatant was transferred into a fresh Eppendorf 

tube in order to obtain the cytoplasmic, mitochondrial, and membrane fractions. 

The nuclear sample was resuspended in 200 µL of nuclear preparation buffer 

(NPB) (10 mM NaCl, 10 mM Tris-HCl pH 7.5, 2 mM MgCl2, 0.5% NP-40). The 

nuclear pellet was lysed by passing the suspension through a 25-gauge needle 10 

times then incubated on ice for 15 minutes. The suspension was sonicated 3 

times for 15 seconds, then centrifuged for 5 minutes at 720 x G. The supernatant 

was transferred into a fresh tube and kept as the nuclear fraction (NF).  

The supernatant from the first spin was further centrifuged at 10 000 x G for 5 

minutes. The pellet from the spin was further processed as mentioned above. 
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The supernatant was then transferred into 1 mL UltraCentrifuge tubes (Beckman 

Coulter, 343778) and centrifuged for one hour at 100 000 x G in an Optima TLX 

Ultracentrifuge. The supernatant was transferred into a fresh Eppendorf tube 

and used as the cytoplasmic fraction (CF). The pellet was washed in 400 µL of 

fractionation buffer and resuspended by passing through a 25-gauge needle 10 

times. Samples were then centrifuged again at 100 000 x G for 45 minutes. The 

pellet was resuspended in 400 µL of fractionation buffer and used as the 

membrane fraction (MF). Samples were stored at -20˚C until required. 

Fractionation was checked by SDS-PAGE gel with western blotting. 

2.4.1  SDS-PAGE gel electrophoresis  

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) was used 

in order to separate samples based on protein molecular weight. Following the 

Bradford assay, equal concentrations of protein samples were boiled in 5 x SDS 

loading buffer (10% SDS, 300 mM Tris-HCl pH 7.2, 0.05% bromothymol blue, 10% 

β-mercaptoethanol) to denature the proteins. Samples were loaded onto precast 

NuPage 4-12% SDS-PAGE gels (Invitrogen, NP0321BOX, NP0322BOX) in MOPs 

(Invitrogen, NP0001) according to manufacturer’s instructions. A protein ladder 

(Bio-Rad, 1610393) was loaded alongside protein samples and the gel was run at 

200 V for 50 minutes.  

2.4.2  Western Immunoblotting 

 SDS-PAGE gels were transferred onto nitrocellulose membrane using the 

Invitrogen Mini Blot module. Transfer sponges, filter paper, and nitrocellulose 

membranes (ThermoFisher Scientific, 88018) were soaked in transfer buffer (5% 

v/v Invitrogen transfer buffer Invitrogen NP00061, 20 % v/v methanol). The 

transfer sandwich was assembled in the Mini blot module and subjected to a 

constant 25 V for an hour and a half in transfer buffer. Nitrocellulose membranes 

were stained with Ponceau S (0.1% w/v Ponceau S, 5% v/v acetic acid) in order 

to confirm protein transfer, after which the membrane was washed in TBST until 

the stain was removed. Membranes were either blocked in 5% (w/v) non-fat milk 

(Marvel) or 5% (w/v) BSA) in TBST for one hour at room temperature after which 

they were incubated overnight with the appropriate primary antibody in 1% 

(w/v) milk or 1% BSA (w/v) in TBST (Table 2.4).  



Material and Methods 75 

Table 2.4 Primary antibodies used for western blotting 

Primary 

Antibody 

Company and 

Catalogue 

Number 

Host Dilution Factor 

Β-Actin Sigma, A5441 Mouse 1:5000 

Cofilin pSer3 Cell Signalling, 

3313S 

Rabbit 1:1000 

DHX9  Abcam, ab26271 Rabbit 1:1000 

E-Cadherin Cell Signalling, 

3195 

Rabbit 1:1000 

FLAG Thermo, PA1-

984B 

Rabbit 1:1000 

GAPDH  Abcam, ab8245 Mouse 1:5000 

GST Santa Cruz, sc-

138 

Mouse 1:1000 

NDH II (DHX9) Santa Cruz, sc-

137232 

Mouse 1:1000 

P70 S6 Kinase 

pThr 389 

Cell Signalling, 

9205S 

Rabbit 1:1000 

PAN4D In House Goat 1:5000 

PDE4D7 In House Sheep 1:1000 

Phospho AKT 

Substrate 

Cell Signalling, 

9614S 

Rabbit 1:1000 

Phospho PKA 

substrate 

Cell Signalling, 

9624S 

Rabbit 1:1000 

Phospho-DHX9 In House Rabbit 1:200 

PKA Rii Ser96 Merck, ABT58 Rabbit 1:1000 

S6 Ribosomal 

Protein Ser 235 

236 

Cell Signalling, 

2211S 

Rabbit 1:1000 

S6 Ribosomal 

Protein Ser 240 

244 

Cell Signalling, 

5364S 

Rabbit 1:1000 

VSV Abcam, ab1874 Rabbit 1:1000 
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Membranes were washed three times in TBST the next day, after which it was 

incubated in the appropriate secondary antibody for one hour at room 

temperature (Table 2.5). Following a final three washes in TBST, membranes 

were imaged using either ECL substrate with X-ray film development or using the 

Odyssey Licor scanner. 

Table 2.5 Western Blot secondary antibody 

Antibody Company and 

Catalogue number 
Dilution 

IRDye® 800CW Donkey anti-

Rabbit IgG Secondary Antibody 

Licor, 926-32213 1:5000 

IRDye® 680RD Donkey anti-Mouse 

IgG (H + L) 

Licor, 925-68072 1:5000 

IRDye® 680RD Donkey anti-Goat 

IgG (H + L) 

Licor, 925-68074 1:5000 

Anti-Mouse Licor 1:5000 

Goat Anti Rabbit HRP  Jackson 

ImmunoResearch, 

111-035-144 

1:2000 

Rabbit Anti Mouse HRP Jackson 

ImmunoResearch, 

315-035-003 

1:2000 

Donkey Anti Sheep HRP Invitrogen, A16041 1:2000 

 

2.5 GST Protein Purification 

2.5.1  Determining IPTG concentration 

This protocol was developed by Amy J. Tibbo and adapted for DHX9 expression 

plasmids (Table 2.1). In order to determine the optimum concentration of 

isopropyl β-d-1-thiogalactopyranoside (IPTG), 5 mL of LB supplemented with 100 

µg/mL of ampicillin was inoculated with the DHX9-GST constructs overnight at 

37°C, 220 RPM. 10 mL of fresh LB supplemented with 100 µg/mL was inoculated 

with 200 µL of the overnight culture until the OD600 reached between 0.6-0.8. 

The OD600 of 1 mL of culture was recorded in order to calculate the volume in 
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which 1 mL of cell culture needed to be normalised to. 1 mL of culture was 

centrifuged for 10 minutes at 13 000 x G, and the pellet kept in the -20˚C and 

kept as the pre-induced sample. The remainder of the culture was induced for 

protein expression with either 1, 0.5, 0.2 or 0.1 mM of IPTG. Cultures were left 

to incubate overnight at 16°C 220 RPM. At the end of the induction period the 

next day, the OD600 was measured of 1 mL of culture. 1 mL of the culture was 

centrifuged for 10 minutes at 13 000 x G and the pellet was kept as the post-

induction sample. The remainder of the culture was appropriately discarded. 

The pre- and post-induction cell pellets were resuspended in 60 µL of GST 

binding buffer (25 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1 mM EDTA) 

supplemented with 25 units of Benzonase (Sigma, E1014-5KU). Each sample was 

then made up to a final volume of 150 x OD600 with water. 5 µL of each sample 

was transferred into a fresh Eppendorf tube. 10 µL of water was added to each 

sample, and these were kept as either the total pre-induction or the total post-

induction sample. The remainder of the post-induction sample was further 

centrifuged for 5 minutes at 13 000 x G. The supernatant was transferred into a 

new Eppendorf tube and used as the post-induction soluble fraction. The pellet 

was resuspended in the original final volume, and 5 µL was transferred into a 

fresh Eppendorf tube. 10µL of water was added, and the sample was used as the 

post-induction pellet fraction. 3 µL of 5 x SDS sample buffer was added to each 

tube, then boiled for 5 minutes at 85˚C. Samples were loaded onto a SDS-PAGE 

gel and stained using Coomasie blue in order to determine optimum IPTG 

concentrations.  

2.5.2  Purification of GST tagged proteins 

BL21 E.Coli cells containing an N-terminal GST-tagged plasmid of the UCR1 

domain, GST tag only, or N-terminal GST-tagged DHX9 constructs were 

inoculated in 10 mL of LB supplemented with 100 µg/mL of ampicillin. Cells 

were incubated overnight at 37°C, 220 RPM. The overnight was then added to 

500 mL of fresh LB supplemented with 100 µg/mL of ampicillin. OD600 nm was 

measured every 30 minutes in order to assess cell growth. When OD600 reached 

between 0.6-0.8, the protein expression was induced with 0.2 µM of IPTG. The 

GST-UCR1 and GST tag constructs were incubated at 37°C, 220 RPM, for 3-5 

hours. DHX9 constructs were incubated overnight at 16°C, 220 RPM. Cultures 
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were then pelleted at 4°C by centrifugation at 6 000 x g for 10 minutes. Pellets 

can be stored at -80˚C until required.  

Pellets were resuspended in GST-binding buffer (25 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 0.1 mM EDTA) supplemented with 0.5 % Triton X-100 and protease inhibitor 

tablets. Suspensions were frozen at -80°C for 30 minutes then thawed on ice and 

subjected to sonication (40-60 kHz) for seven 30 second cycles with 30 second 

pause for cooling. Following sufficient lysis, cell debris was removed by 

centrifugation at 13 000 RPM for 15 minutes at 4°C. The supernatant was then 

collected and incubated with pre-equilibrated glutathione beads (GE Healthcare, 

GE17-0756-01) for 1 hour at 4°C with gentle rotation. The protein bound beads 

were then transferred to a gravity flow column (BioRad, 7321010) and washed 

three times with GST-binding buffer. Elution buffer (50 mM Tris-HCl pH 8.0, 10 

mM reduced glutathione) was then used to collect successive fractions of 

recombinant purified protein. Purity of the sample was assessed by SDS-PAGE, 

Coomassie staining, and immunoblotting as described in section 2.5. The purest 

fractions were subjected to ultrafiltration using Vivaspin with a 20 kDa or 50 kDa 

molecular weight cut off (Sartorius, VS15RXETO, VS0631) containing dialysis 

buffer (5% glycerol (v/v), 50 mM Tris-HCl pH 8.0, 100 mM NaCl) for buffer 

exchange and sample concentration. Protein concentration was determined by 

Bradford assay as described in 2.3.2, and samples were aliquoted and stored at -

80°C until required.  

2.6 Protein Chemistry 

2.6.1  Peptide array synthesis 

Peptide arrays were synthesised by automatic SPOT synthesis using the Auto Spot 

Robot (Intavis Instruments) and 9-fluorenylmethoxycarbonyl chloride (FMOC) 

chemistry (Figure 2.1). Solutions containing the amino acids and coupling 

reagents are spotted onto specific locations on a membrane. Spots are absorbed 

and form a circular spot to then acts as a reaction vessel. Full length DHX9 and 

PDE4D7 was spotted as overlapping 25-mer peptides, shifted by 5 amino acids. 

Specific protein domains were further spotted in order to determine crucial 

amino acids for protein-protein interactions (PPIs). Peptide array membranes 
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can be overlaid with purified protein, overexpressing cell lysate, or antibodies to 

verify PPIs and antigen epitopes.  

 
Figure 2.1 Principles of SPOT synthesis. Peptide array SPOT synthesis allows for the 
immobilization of peptide onto supports such as cellulose membranes (left panel). Peptides 
can be spotted as 5-mer shifts in order to spot the full-length protein, or specific regions can be 
spotted in order to investigate post-translational modifications or crucial amino acids for protein-
protein interaction. Figure taken from Volkmer, Tapia and Landgraf, 2012. 

2.6.2  In vitro PKA phosphorylation of DHX9 peptide arrays 

DHX9 peptide arrays were blocked in 5% BSA containing 0.5 mM DTT and 1 mM 

ATP in TBST for one hour at RT with gentle shaking. Peptide arrays were then 

incubated in phosphor-buffer (20 mM Tris-HCl; pH 7.5, 10 mM MgCl2, 0.5 mM 
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CaCl2, 1 mM DTT, 0.2 mg/ml BSA, 1 mM ATP) with or without 100 units of active 

bovine PKA catalytic subunit for 1 hours at 30°C with gentle shaking. Following 

the phosphorylation, the arrays were washed three times in TBST and incubated 

PKA phospho-substrate antibody that detects the conserved RXXpS/T consensus 

sequence. Following three TBST washes, the array was incubated in the 

appropriate HRP secondary antibody and subjected to ECL western blotting 

substrate with X-ray film development.  

2.6.3  Peptide array validation of novel phospho-DHX9 antibody 

The epitope for the novel phospho-DHX9 membranes were spotted onto 

membranes with truncations, alanine substitutions, and 5-mer shifts. Membranes 

were activated and blocked as described in 2.6.2, after which the array was 

incubated overnight in phospho-DHX9 antibody at 4°C with gentle agitation. The 

membrane was washed three times in TBST, then incubated with rabbit HRP 

secondary antibody for one hour at RT. After three final washes in TBST, the 

membrane was subjected to Immobilon Western blotting substrate (Merck, 

WBLUC0100) for X-ray film development.  

2.7  Protein-Protein Interaction studies 

2.7.1  Immunoprecipitation (IP) 

IPs were performed using 500 µg of cell lysate, adjusted to a final volume of 500 

µL with 3T3 lysis buffer, which were pre-cleared for one hour at 4˚C with pre-

washed protein G Sepharose beads. Beads were briefly centrifuge and the 

supernatant was transferred into a fresh 1.5 mL Eppendorf with 1 µg/µL of the 

appropriate antibody, or IgG control, and protein G Sepharose beads (Table 2.6). 

The IP left overnight at 4˚C on an end-end rotator with the appropriate antibody 

and the beads. 

  



Material and Methods 81 

Table 2.6 Antibodies used for IPs 
Antibody Company and 

Catalogue Number 

Host 

DHX9 Abcam, ab26271 Rabbit 

PDE4D7 In House Sheep 

VSV Abcam, ab1874 Rabbit 

FLAG Sigma, F3165 Mouse 

phosphoPKA Substrate Cell Signalling, 9624S Rabbit 

Mouse IgG Millipore, NI03 Mouse 

Rabbit IgG Millipore, NI01 Rabbit 

Sheep IgG Thermo Fisher, 31243 Sheep 

 

The samples were centrifuged four times at 500 x G for 3 minutes the next day 

with a TBS wash between spin. IP samples were then eluted off the beads by 

boiling for 5 minutes at 95˚C in 2 x SDS loading buffer. Samples were analysed 

for interacting partners and post-translational modification by SDS-PAGE with 

western blotting using the antibodies in Table 2.4Table 2.5.  

 

2.7.2  Peptide array validation for PDE4D7-DHX9 binding 

Peptide array membranes were incubated in 100 % ethanol for 5 minutes in order 

to activate the spots, after which they were washed three times in 1 x TBST. 

The membranes were then blocked in 5% non-fat milk in TBST for 1 hour at RT 

with gentle shaking. Arrays were then incubated with either purified protein or 

overexpressing cell lysate in 1% milk overnight at 4°C with gentle shaking. The 

arrays were washed three times the following day in incubated with the 

appropriate antibody in 1% milk for three hours at RT, washed then incubated 

with the appropriate HRP secondary antibody for one hour at RT (Table 2.4Table 

2.5). The arrays were washed a final three times in TBST before subjected to 

enhance chemiluminescence (ECL) western blotting substrate for X-ray film 

development. Dark spots that were detected is indicative of a positive 

interaction with the array (Figure 2.2). 
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Figure 2.2 Peptide array workflow. Peptide array spotted for the protein of interest with 
overlaid with its interacting protein overnight at 4˚C. The array is then washed the following 
days and incubated with primary antibody that recognises the overlaid protein for three hours at 
RT, then washed. The membranes are then finally incubated in the appropriate secondary antibody 
and binding sequences are determined using HRP with ECL development. 
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2.8 Microscopy techniques 

2.8.1 Immunocytochemical (ICC) staining 

HEK293 cells were seeded onto sterile glass coverslips in either a 12 or 24 well 

plates and transfected as previously mentioned. PC cells were seeded in either 

12 or 24 well plate until it reached 80% confluency. Cells were fixed onto 

coverslips in 4% (v/v) paraformaldehyde in PBS for one hour at RT. The cells 

were washed three times in PBS. If only staining for one protein, the membrane 

was counter stained using Wheat Germ Agglutinin (WGA) (Thermo Scientific, 

W11261) in the dark for 20 minutes at RT. Cells were washed three times then 

blocked in blocking buffer (PBS, 0.5% BSA, 0.25% Triton-X100) for one hour. 

Primary antibodies were then incubated overnight at 4˚C diluted in blocking 

buffer in a humidity chamber at the appropriate concentration (Table 2.7). 

Coverslips were wash three times in PBS the following day, then incubated for 

two hours in a humidity chamber with Alexa-Fluor secondary antibody in the 

dark at RT. Cells were washed a further three times in PBS, before mounting 

face down onto glass slides with either DAPI or Sytox Orange nuclear stain 

(Thermo, P36935, P36987). Slides were left to dry overnight in the dark and 

imaged using a Zeiss Pascal laser scanning microscope (LSM) 510 Meta and an 

Axiovert 100 microscope with oil immersion objective. Images were acquired on 

the Zeiss LSM examiner and mean fluorescence intensity (MFI) was obtained on 

ImageJ. 
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Table 2.7 Antibodies and stains for ICC  
Primary Antibody Company and 

Catalogue Number 

Host Dilution Factor or 

Concentration 

DHX9  Abcam, ab26271 Rabbit 1:500 

NDH II (DHX9) Santa Cruz, sc-

137232 

Mouse 1:1000 

PDE4D7 In House Sheep 1:500 

Phospho PKA 

Substrate 

Cell Signalling, 

9624S 

Rabbit 1:1000 

Phospho-DHX9 In House Rabbit 1:100 

VSV Abcam, ab1874 Rabbit 1:500 

Nucleolin Cell Signalling, 

14574S 

Rabbit 1:1000 

Anti-DNA-RNA 

Hybrid Antibody, 

clone S9.6 

Merck, MABE1095 Mouse 1:100 

Alexa Fluor anti 

Rabbit 488 

Thermo, A32790 Donkey 1:500 

Alexa Fluor anti 

Mouse 546 

Thermo, A10036 Donkey 1:500 

Alexa Fluor anti 

Sheep 488 

Thermo, A-11055 Donkey 1:500 

Alexa Fluor anti 

Rabbit 546 

Thermo, A10040 Donkey 1:500 

Wheat Germ 

Agglutinin Alexa 

Fluor 488 

Thermo, W11261 N/A 1.0 mg / mL 
 

 

2.8.2 Proximity ligation assay (PLA) 

All PLA reagents were purchased from Sigma. PLA enzymes and buffers were 

provided as a kit (Sigma, DUO92105, DUO92101). HEK293 cells were seeded onto 

sterile glass coverslips in a 24 well plate and transfected as previously 

mentioned. AS PC cells were seeded in a 24 well plat until it reached 80% 

confluency. Cells were fixed and stained for the membrane and blocked as 

described in section 2.8.1. Primary antibodies were then incubated overnight at 
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4˚C as previously describe (Table 2.7). After washing the coverslips three times 

in PBS, cells were blocked for 30 minutes at RT in blocking buffer. Secondary 

PLA probes, that are combined with oligonucleotides, was pre-incubated for 20 

minutes on an end-to-end rotor at RT. Coverslips were then incubated with 

secondary probes in a humidity chamber for one hour at 37˚C. Coverslips were 

washed three times in Wash Buffer A (Sigma), then incubated for 30 minutes 

with ligase enzyme at 37˚C. Oligonucleotides on the secondary probes would 

only be able to hybridize if proteins or PTM were less than 40 nm of each other. 

Coverslips were then washed a further three times in wash buffer A, then 

incubated for 100 minutes with polymerase enzyme at 37˚C. After a final two 

washes in wash buffer B, coverslips were mounted face down onto glass slides 

with Sytox Orange nuclear stain. Images were taken the next day to allow the 

mounting media to dry. Interacting proteins or PTMs can only be visualised as 

small punctuate dots under the microscope (Figure 2.3).  

 

 
Figure 2.3 Principal of DuoLink proximity ligation assay. a. Binding of primary antibodies to 
target proteins. b. Binding of PLA secondary antibodies containing complementary DNA strands. c. 
Oligos will only bind if proteins are less than 40 nm from each other. d. Ligation of the oligos forms 
a circular template. e. Rolling circle amplification. f. Amplification results in the replication of the 
oligos, which is labelled with fluorophore indicating a positive reaction. Signal can be imaged using 
a confocal microscope. Figure taken from Bobrich et al., 2013. 

2.8.3  DHX9 Functional Assay – R-Loop assay 

This protocol was developed by Dr.Prasun Chakraborty from the University of 

Dundee and adapted for LNCaP cells. LNCaP were seeded onto a sterile cover 

glasses in a 24 well plate and left to grow until 80% confluent. Cells were then 

transfected with siRNA targeting Splicing Factor Proline and Glutamine Rich 

(SFPQ), GAPDH, or non-targeting control as mentioned in 2.2.4. The cells were 

washed with PBS, then fixed for 20 with 100 % methanol at -20˚C. The methanol 

was then removed and replaced with 100 % acetone for one minute. The 

coverslips were washed three times in PBS, then blocked with blocking buffer for 

a
. 

b
. 

c
. 

d
. 

e
. 
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one hour. Coverslips were incubated with primary antibody against nucleolin and 

DNA-RNA hybrids overnight. After a further three washes PBS, coverslips were 

incubated in the appropriate secondary antibody for two hours at room 

temperature. Cells were washed a further three times in PBS, before mounting 

face down onto glass slides. Slides were left to dry overnight in the dark and 

imaged using a Zeiss Pascal laser scanning microscope (LSM) 510 Meta and an 

Axiovert 100 microscope with oil immersion objective. Images were acquired on 

the Zeiss LSM examiner and mean fluorescence intensity (MFI) was obtained on 

Image J. 

2.9 Real Time Cell Analysis (RTCA) measurement of cell 
proliferation (xCELLigence) 

The xCELLigence is a non-invasive electrical impedance instrument that is able 

to quantify cell proliferation. Cell growth can be monitored based on the change 

in the resistance of current flowing through the gold-electrode plate. Changes in 

electrical impedance is recorded by the RTCA instrument and interpreted by the 

software. Changes in impedance is represented as cell index (CI), where a CI of 0 

indicates there are no cells present. Increase in CI indicates that the cells are 

proliferating (Figure 2.4). 

 

Figure 2.4 Overview of xCELLigence technology. In the absence of cells, the electrical 
current is allowed to freely flow through the culture medium. It can complete the circuit 
between the electrode. In the presence of adhering and proliferating cells, the electrical current is 
impeded. This system provides a sensitive readout of cell number, cell morphology, and 
attachment quality. Figure taken from ACEA Biosciences. 

The xCELLigence system comprises a gold-plated 96 well plate, often referred to 

as E-Plate, a docking unit placed inside the incubator, and an impedance 

measurement unit kept at room temperature. The measurement unit is 
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connected to a computer with the software running in order to collect the data. 

The collected CI data is plotted as a growth curve and analysed using the RTCA 

software. 

2.9.1  RTCA plate set up 

96 cell E-plates (ACEA Biosciences, 300600910) were used to monitor cell 

growth. These plates are specifically designed as they contain interdigitated 

electrodes used to monitor cell growth. A cell number titration was initially 

carried out in order to obtain the optimum cell number to produce a growth 

curve. Prior to the addition of the cells, 10 sweeps every minute was performed 

with just media in order to obtain the background reading. A cell number 

titration for VCaP and LNCaP was then carried out into order to obtain the 

optimum cell number and cell line required to produce a growth curve. The 

appropriate cell number was seeded into each well. The plate was left in the 

hood for thirty minutes to allow the cells to settle to the bottom. The plate was 

then returned to the docking stations and the electrical impedance was 

measured every 15 minutes for 5 days. 5 000 cells per well of LNCaP cells was 

found to be the optimum cell density and cell line. The E-plate was set up as 

previously mentioned. However, after recording the impedance for 24 hours, 

cells were treated with either siRNA (Table 2.3), YK-4-279 (Tocris, 4067), or 

disruptor peptides (custom made by Genescript) at the required concentration. 

Impedance was measured every 15 minutes for a further four days. YK-4-279 was 

reconstituted to a stock concentration of 10 mM in DMSO and stored at 4˚C until 

required. The cell growth data was analysed using the RTCA software. Changes 

in maximum cell index or slope were extrapolated from the growth curves and 

analysed using GraphPad Prism 8. 

2.10  Reverse Phase Protein Assay (RPPA)  

All RPPA assay were performed at the HTPU MicroArray services at the MRC 

institute of Genetics and Molecular Medicine, University of Edinburgh. DU145 

cells were plated into a 10 cm dish and transfected with either non-targeting or 

DHX9 specific siRNA as previously described. Cells were washed twice in ice-cold 

PBS then lysed in1 x lysis buffer (1% Triton X-100, 50 mM HEPES (pH 7.4), 150 mM 

NaCl, 1.5 mM MgCl2, 1 mM EGTA, 100 mM NaF, 10 mM Na4P2O7, 1 mM Na3VO4, 
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10% glycerol, freshly added protease and phosphatase inhibitors). The cells were 

then scraped and collected into a fresh 1.5 mL Eppeondorf tube and centrifuged 

at 14 000 x G for 10 minutes at 4˚C. The supernatant was collected, and the 

protein concentration was determined using a standard Bradford assay. The 

samples were normalised to 2 mg/mL in sample buffer and boiled at 95˚C for 5 

minutes. Samples were stored at -80˚C until required. Samples for RPPA analysis 

was then sent to the University of Edinburgh for analysis. 

The samples for RPPA analysis were transferred into a 96-well plate and serially 

diluted in order to serially dilute the samples to 1.5mg/ml, 0.75 mg/ml, 0.375 

mg/mL, and 0.1875 mg/mL. Dilutions were prepared in PBS containing 10% 

glycerol. RPPA samples were then printed in arrays of 12 x 12 spots at a 500µm 

spot-to-spot distance using the Aushon 1740 Arrayer platform with two rounds of 

sample deposition. Sample dilution series were spotted in triplicate on each 

array, with 16 arrays per slide, on a single pad SuperNova Nitrocellulose slides 

(GraceBioLabs). The slides were incubated with the sample for at least one hour 

in order to ensure sample capture on the nitrocellulose membrane.  

RPPA slides were washed four time for 15 minutes in deionised water with gentle 

agitation, the incubated with Antigen Retrieval Reagent for 15 minutes. The 

membrane was then washed another two times with deionized water then 

washed twice in PBS with tween for 15 minutes. RPPA slides were then 

incubated for 10 minutes in SuperBlock blocking buffer (ThermoScientific, 

37536), washed once in PBS-Tween, then incubated for one hour with primary 

antibody (Table 2.8) diluted 1:250 in SuperBlock. The slides were then washed 

twice in TBST for five minutes each time, then blocked for 10 minutes as 

previously mentioned. Slides were then incubated with secondary antibody 

diluted 1:2500 in Superblock for 30 minutes. After a final wash in TBST and 

deionised water, the slides were left to dry for 10 minutes at RT and imaged 

using an Innopsys 710 slide scanner. Array images were analysed using Mapix 

software, with the spot diameter set to 270 µm. The net signal for each spot was 

determined by subtracting the background signal from the sample spot.  
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Table 2.8 Primary antibodies used for RPPA analysis 
Antibody Type Pathway, Function 

CamKII P Thr286 rabbit Calcium Signaling 

HSP27 (HSPB1) P Ser78 rabbit Chaperones, MAPK Signaling, 
Stress pathway 

MEK1/2 P Ser217/221 rabbit MAPK Signaling 

MNK1 (MKNK) P Thr197,Thr202 rabbit MAPK Signaling, 
Translational Control 

MSK1 P Ser376 rabbit MAPK Signaling 

PKA RII P Ser96 rabbit cAMP Signaling 

Rap1 rabbit Integrin Signaling, cAMP 
Signaling 

IGF-1R beta P Tyr1162,Tyr1163 rabbit Metabolism, Receptors, 
Tyrosine Kinases 

Stat5 P Tyr694 rabbit Cytokine Signaling, Jak/Stat 
Signaling 

Akt P Thr308 rabbit Akt Signaling, Metabolism 

S6 Ribosomal protein P 
Ser235,Ser236 

rabbit Lipid Signaling, Metabolism, 
Translational Control 

p44/42 MAPK (ERK1/2) rabbit MAPK Signaling 

p44/42 MAPK (ERK1/2) P 
Thr202/Thr185,Tyr204/Tyr187 

rabbit MAPK Signaling 

Akt rabbit Akt Signaling, Metabolism 

Akt P Ser473 rabbit Akt Signaling, Metabolism 

beta-actin rabbit Housekeeping, Cytoskeleton 

NFkB p65 Ser536 rabbit inflammatory and immune 
responses 

Chk1 P Ser345 rabbit Cell Cycle Control 

Chk2 P Thr68 rabbit Cell Cycle Control 

E-Cadherin rabbit Adhesion 
 

4E-BP1 P Ser65 rabbit Metabolism, Translational 
Control, mTOR signalling 

4E-BP1 P Thr37,Thr46 rabbit Metabolism, Translational 
Control, mTOR signalling 

p70 S6 Kinase P Thr389 rabbit Lipid Signaling, Metabolism, 
Translational Control 

p70 S6 Kinase P Thr421,Ser424 rabbit Lipid Signaling, Metabloism, 
Translational Control 

GSK-3-alpha/beta P Ser21/Ser9 rabbit Akt Signaling, Metabolism, 
Wnt Signaling, Hedgehog 
Signaling 

Stat6 P Tyr641 rabbit Cytokine Signaling, Jak/Stat 
Signaling 

p38 MAPK PThr180,Tyr182 rabbit MAPK Signaling, Stress 
pathway 

mTOR P Ser2448 rabbit mTOR Signaling, 
Translational Control, 
Metabolism 
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mTOR rabbit mTOR Signaling, 
Translational Control, 
Metabolism 

PLC-gamma1 P Tyr783 rabbit Calcium, cAMP, Lipid 
Signaling  

p90 S6 kinase (Rsk1-3) P 
Thr359,Ser363 

rabbit MAPK Signaling 

p70 S6 Kinase rabbit Lipid Signaling, Metabolism, 
Translational Control 

c-Myc P Thr58,Ser62 rabbit MAPK Signaling, 
Transcription Factors 

S6 Ribosomal protein p 
Ser240,Ser244 

rabbit Lipid Signaling, Metabolism, 
Translational Control 

S6 Ribosomal Protein rabbit Lipid Signaling, Metabolism, 
Translational Control 

Rb P Ser807,Ser811 rabbit Apoptosis, Cell Cycle Control 

AMPK alpha rabbit Metabolism 

AMPK alpha P Thr172 rabbit Metabolism 

Caspase 3 rabbit Apoptosis 

Caspase 3 cleaved rabbit Apoptosis 

CREB rabbit Calcium, cAMP, Lipid 
Signaling, PKC Signaling 

GSK-3-beta P Ser9 rabbit Akt Signaling, Metabolism, 
Wnt Signaling, Hedgehog 
Signaling 

GSK-3-beta rabbit Akt Signaling, Metabolism, 
Wnt Signaling, Hedgehog 
Signaling 

Tau Phospho/non Phos ser 305 rabbit Neuroscience 

Profilin (C56B8) rabbit actin binding proteins, cell 
motility 

4E-BP1 rabbit Metabolism, Translational 
Control, mTOR signalling 

mTOR (7C10) rabbit mTOR Signaling, 
Translational Control, 
Metabolism 

Integrin Beta 1 [EP1041Y] rabbit scaffold protein 

Eph1A [EPR1786] rabbit metastasis and invasion 

EphB3 [EPR8280] rabbit brain development 

EphB2 [EPR10072(B)] rabbit regulating growth and 
development of multiple 
tissues and organs, interacts 
with FAK 

Cofilin P Ser3 (C77G2) rabbit cytokinesis, endocytosis, 
embryonic development, 
stress response, and tissue 
regeneration 

Cortactin (H222) rabbit coordinate actin 
reorganization during cell 
movement 
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Integrin alpha 4 rabbit scaffold protein 

Integrin beta3 rabbit scaffold protein 

Integrin beta4 rabbit scaffold protein 

Akt substrate P (RXXS/T) (110B7E) rabbit Akt Signaling, Lipid 
Signaling, Metabolism 

PKA substrate P (RRXS/T) (100G7E) rabbit cAMP Signaling 

mTOR P Ser2481 rabbit mTOR Signaling, 
Translational Control, 
Metabolism 

CamKII alpha (22B1) P Thr286 mouseI
gG1 

Neuroscience, Calcium, 
cAMP, Lipid Signaling, PKC 
Signaling 

 

2.11 Fluorescence Polarization (FP) Assays 

This protocol was developed by Dr Yuan Yan Sin and adapted for PDE4D7-DHX9 

binding assays. All FP measurements were performed on Mithras LB 940 plate 

reader (Berthold technologies) in a black 384 nonbinding well plate. Polarisation 

was measured at λexc = 485 nm and λem = 535 nm at room temperature. The 

sequence to which PDE4D7 binds to DHX9 was determined was determined by 

scanning peptide array. A 25-mer peptide was generated based on the DHX9 

peptide array data (E576DCIQMTHFVPPPKDKKKKDKDDDG600), with an N-terminal 5-

FAM tag. The peptide was synthesised by GenScript and dissolved in DMSO to a 

stock concentration of 10 mM. 

2.11.1 Determining minimum peptide concentration 

In order to determine the stable range of the DHX9 peptide, an assay was 

performed where the polarisation of a decreasing concentration of peptide was 

measure. A 1 µM peptide stock was prepared in FP buffer (PBS, 1 mM DTT and 

0.25% Tween-20), then serially diluted by 2 fourteen times. 10 µL of the diluted 

peptide was transferred in duplicate into the 384 dark walled plate then read on 

the Mithras LB 940 plate reader. All polarisation results were expressed in 

millipolarisation (mP). mP was then plotted on a Log scale and the minimum 

peptide concentration was determined. 
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2.11.2 Direct binding assay 

62.5 nM of the 5-Fam DHX9 peptide, in FP buffer, was added into the 384-assay 

plate. Purified protein was serially diluted in dialysis buffer in a 96 well plate, 

then transferred to the 384 well assay plate. The plate was incubated for a 

maximum five hours at room temperature, with a reading taken at 0.5, 1, 3 and 

5 hours of incubation. mP values were plotted in GraphPad Prism 8 and a 

sigmoidal curve was produced.  

2.12  Statistical analysis 

All data generated are representative of three independent experiments, unless 

stated otherwise. Values are presented as the mean ± the standard error of the 

mean (SEM). Statistical significance was determined using an ordinary one-way 

analysis of variance (ANOVA) with a Dunnet’s multiple comparison test or a T-

test if only comparing two variables. A p>0.05 value was considered not 

significant, a p of < 0.05 was considered significant (*), p<0.01 was considered 

highly significant (**), p<0.001 considered extremely significant (***), and 

p<0.0001 as considered most significant (****). All statistical analysis and data 

plotting were performed on GraphPad Prism 8. 
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Chapter 3 PDE4D7-DHX9 interaction in Prostate 
Cancer 

3.1 Introduction 

PDE4 enzymes degrade cAMP and are important in controlling the 

compartmentalized signalling of cAMP through their targeting to specific 

downstream protein complexes (Omar et al., 2019). In recent years, increasing 

evidence has shown the PDE4D7 expression is “protective” in PC, with high 

expression at early stages of PC predicting a better disease outcome (van Strijp 

et al., 2018). However, the molecular mechanisms behind these protective 

effects remains uncharacterised. One potential mechanism that could help 

explain how PDE4D7 is able to protect PC patients is the targeting of the enzyme 

to protein complexes that influence cell signalling during PC progression. 

Protein-protein interactions (PPIs) represent a highly promising, but challenging, 

class of targets for therapeutic intervention. In cancer, PPIs form signalling 

networks that can promote tumorigenesis, tumour progression, and metastasis 

(Ivanov, Khuri and Fu, 2013). Understanding these networks has gradually 

changed our view on cell biology by offering new ways of understanding the 

internal organization of a cell. With the rise of omics analysis, increasing 

information about PPIs in PC has emerged, providing important biological 

information for uncovering molecular mechanisms of PC progression (Chen et al., 

2016). If successful, drugs that either interrupt or enhance PPI could replace 

ADT or AR inhibitors in the treatment of PC.  

There is currently a need to develop new therapies to overcome resistance to 

ADT and AR inhibitors. In PC, recruitment of co-regulators to the AR could 

potentially offer an opportunity to develop new therapeutic agents that could be 

used during early and late stages of disease. Key structural surfaces involved in 

PPIs have been identified with co-regulators with the aim of developing novel 

binding inhibitors (Biron and Bédard, 2016). Cell-penetrating peptides (CPP) 

have quickly emerged as alternatives to classic drugs with the ability to directly 

disrupt target PPIs. CPPs are short peptides with the ability to cross biological 

membranes in an energy-dependent and -independent manner. Since initial 

discovery, natural and synthetic CPPs have been developed for applications 

ranging from imaging to gene editing and therapeutic delivery. CPP-based 
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therapies are considered highly efficacious due to their rapid delivery and low 

toxicity compared to most drugs (Habault and Poyet, 2019). Therapeutic CPPs 

are a promising new approach for the development of anti-cancer agents 

(Marqus, Pirogova and Piva, 2017).  

Previous work by the Baillie lab has revealed that DHX9 is a novel PDE4D7 

interactor (unpublished work). Increasing evidence has shown that DHX9 is 

important in the progression of multiple cancers, including breast and colon 

cancer (Fidaleo, De Paola and Paronetto, 2016; Lee and Pelletier, 2016). The 

potential PDE4D7-DHX9 interaction could indicate that these two proteins are 

part of a signalosome that could coordinate PC-related mechanisms. 

Development of small molecule inhibitors from CPPs has great potential in 

cancer biology, with specific peptides currently being developed against the Ras-

Raf-MEK-ERK pathway (Marqus, Pirogova and Piva, 2017). For example, work by 

Blair et al. (2019) has shown promising data supporting the use of CPPs in the 

treatment of cell models for melanoma by targeting the PDE8A-CRAF complex . 

PDE8A can bind c-Raf inhibiting PKA phosphorylation, leading to CRAF activation. 

Using a rational substitution approach, a peptide designed against the protein-

binding domains between PDE8A and CRAF was developed and shown to 

significantly increase levels of protective c-Raf phosphorylation both in vitro and 

in mouse melanoma models. This in turn resulted in significantly decreased cell 

growth and decreased ERK signalling (Blair et al., 2019). Due to the high success 

of targeting PDE8A-c-Raf interaction in melanoma, the hope would be that 

disruption of the interaction between PDE4D7-DHX9 could have similar results 

for PC.  
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3.2  Chapter Aims 

PDE4D7 is known to be protective in PC, with decreased expression of this 

protein known to drive disease progression leading to poor patient prognosis. 

However, the mechanism underlying how its decreased expression leads to 

increased cell growth is still unknown (Henderson et al., 2014). The interaction 

between PDE4D7-DHX9 could potentially be a novel PPI target that could have a 

role in the progression of disease. Hence, the aims of this chapters are as 

follows: 

 Aim 1: Show that interaction between PDE4D7 and DHX9 can be verified 

in my hands. By using a range of biochemical techniques, such as 

immunoprecipitation and proximity ligation assay, this will show the 

direct and robust interaction between these two proteins.  

 Aim 2: Map the PDE4D7-DHX9 PPI domains using peptide array technology. 

This information can then be used to develop CPPs that act specifically to 

disassemble the PDE4D7-DHX9 complex 

 Aim 3: Determine PDE4D7-DHX9 binding affinity using fluorescence-

polarization technology. This platform could then be configured into a 

small molecule screening assay to discover compounds with the ability to 

enhance or disrupt the PDE4D7-DHX9 interaction.  
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3.3 Results 

3.3.1  DHX9 and PDE4D7 expression in PC cell lines 

Although previous work by the Baillie lab has shown that PDE4D7 was highly 

expressed in AS (Henderson et al., 2014; Böttcher et al., 2015) , the expression 

levels of DHX9 in different stages of PC are still unknown. The expression levels 

of DHX9 and PDE4D7 was therefore determined in DU145, LNCaP and VCaP cell 

lines. DU145 was once considered one of the most highly used cell line PC 

research. This cell line was first isolated from a brain metastasis. It is hormone 

independent and no longer expresses AR at both the mRNA and protein level 

(Table 3.1) (Cunningham and You, 2015). Although both LNCaP and VCaP are 

both AS cell lines, they differ in AR expression. The LNCaP cell line was first 

derived from a needle aspiration biopsy of a lymph node metastatic lesion. 

Although it does express the AR, it contains the T877A mutations which alters its 

response to steroids (Table 3.1). VCaP were first derived from a vertebral 

metastatic lesion and expresses WT AR. Furthermore, this cell line expresses the 

TMPRSS2:ERG gene translocation, making it an ideal cell line to study the early 

stages of PC (Table 3.1) (Sobel and Sadar, 2005). DU145, LNCaP and VCaP cell 

lysates were therefore run on an SDS-PAGE gel and protein expression of DHX9 

was assessed by western blotting (Figure 3.1).  

 

Table 3.1 PC cell line characteristics  
DU145 LNCaP VCaP 

Androgen 

Sensitive 

No Yes Yes 

PSA expression No  RNA + protein RNA + Protein 

AR Expression  No RNA + protein 

T877A AR 

mutation 

RNA + Protein 

WT AR 

Derived from  Brain Lymph Vertebrate 
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Figure 3.1 PDE4D7 and DHX9 expression in PC cell lines. A. PDE4D7 and DHX9 expression 
was assessed by SDS-PAGE with western blotting. B. PDE4D7 expression in all cell lines were 
determined densitometrically. C. DHX9 expression in all cell lines were determined 
densitometrically. Data is presented as the mean ± SEM of three independent experiments and 
analysed using a one-way Anova. Data is not significant. 

Western blot analysis showed that DHX9 expression is highest in DU145 cell line 

(Figure 3.1 C). In recent years DU145, along with PC3, have become the most 

widely used cell models of late stage PC as they no longer express the AR 

(Cunningham and You, 2015). On the other hand, LNCaP and VCAP cells are 

currently used as models for early stage disease due to their expression of a 

functional AR. VCaP cells also express the TMPRSS2:ERG fusion protein, making it 

a very useful tool to study PC (Sampson et al., 2013). Previous work has shown 

that PDE4D7 expression is highest in AS cell lines, whereas AI cell lines no longer 

express high levels of this protein (R. Böttcher et al., 2015). My data confirms 

what has previously been reported (Figure 3.1 B), and in addition, I show that as 

the expression of PDE4D7 decreases, the expression of DHX9 increases. Due to 

the expression of both proteins of interest in the cell lysate, these three cell 
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lines were used throughout this thesis to study the interaction of PDE4D7 and 

DHX9 in prostate cancer. 

3.3.2  PDE4D7 mainly localizes to the cytoplasm, while DHX9 is 
expressed in the nucleus and cytoplasm 

So far, we have observed a negative correlation between the expression of 

PDE4D7 and DHX9 in cell lines. As the disease progresses into a more metastatic 

state, the expression of PDE4D7 decreases as the expression of DHX9 increases. 

Although previous work by Henderson et al (2015) demonstrated that PDE4D7 

expression was found at the plasma membrane (Henderson et al., 2014), I 

wanted to see if PDE4D7 could be expressed in other cellular compartments 

where DHX9 could also be present. Additionally, DHX9 is mainly expressed in the 

nucleus, however it has the ability to shuttle in and out of this compartment 

using the nuclear localisation (NLS) and nuclear export signal (NES) found within 

the C-terminal region of DHX9 (Lee and Pelletier, 2016; Ng et al., 2018). I 

therefore decided to perform a cellular fractionation in order to separate 

subcellular compartments for analysis. VCaP were chosen for these experiments 

as they had the highest expression of both PDE4D7 and DHX9 (Figure 3.1). Using 

a series of centrifugation steps at different speeds, VCaP cells were separated 

into the nuclear, mitochondrial, cytoplasmic, and membrane fractions by 

sequentially centrifuging the cell lysate at different speeds. Each fraction was 

then run on an SDS-PAGE gel and protein expression was assessed by western 

blotting. The percentage of protein expressed in each fraction was normalised to 

the whole cell lysate (Figure 3.2).  
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Figure 3.2 VCaP fractionation. A. VCaP cells from a confluent 10 cm dish were lysed, then 
separated into nuclear, mitochondrial, cytoplasmic, and membrane fractions by sequential 
centrifugation. Each fraction was run on an SDS-PAGE gel for protein expression analysis with 
western blotting. GAPDH was used as a control to ensure that each fraction was separated 
correctly. B and C. PDE4D7 and DHX9 expression from each . Data is presented at the mean ± 
SEM of two independent experiments.  

By running the different cellular fractions on an SDS-PAGE gel with western 

blotting, I was able to determine where each of these proteins were mainly 

expressed when probed with the appropriate antibody. By blotting for GAPDH, I 

was able to confirm that each fraction was separated from one another by 

sequential centrifugation (Figure 3.2 A bottom membrane) as the protein was 

only present in the cytoplasmic fraction. The cellular fractionation showed that 

PDE4D7 was almost completely expressed in the cytoplasm (Figure 3.2 A and B), 

whereas DHX9 expression was predominantly expressed in the nucleus (Figure 

3.2 A and C). Although PDE4D7 expression was previously reported to be at the 

plasma membrane by Henderson et al (2015), no detectable amounts of PDE4D7 

could be seen in the membrane fraction. Although I did not blot for a positive 

control for the nuclear fraction, DHX9 is known to be highly expressed in the 

nucleus in order to play an active role in gene transcription (Ng et al., 2018). 
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The fractionation presented here further supports the fact that DHX9 is almost 

exclusively expressed in the nucleus (Figure 3.2 A), while PDE4D7 is only 

expressed in the cytoplasmic region (Figure 3.2 B). 

However, this fractionation does raise the questions as to where the interaction 

between PDE4D7 and DHX9 could take place. The data shown here suggests that 

these two proteins exist in two separate compartments. Subcellular 

fractionations are known to enrich proteins in their cellular compartment. This 

technique is most commonly used in proteomic analysis to study a protein when 

expressed in its original organelle (Lee, Tan and Chung, 2010). Furthermore, 

data from the Human Protein Atlas (Figure 3.3) support the data presented here. 

The data presented in the database suggests that DHX9 is only expressed in the 

nucleus, while PDE4D7 is expressed in the cytoplasm (Berglund et al., 2008).  

 

 
Figure 3.3 PDE4D and DHX9 expression in vitro. PDE4D (A) and DHX9 (B) was investigated in 
HeLa and U2-OS cells. The protein of interest is stained in green in both images, while 
microtubules are stained in red (Berglund et al., 2008). Image were obtained from the Human 
Protein Atlas (https://www.proteinatlas.org/).  

Although DHX9 was not detected in the cytoplasmic fraction, DHX9 is known to 

shuttle in and out of the nucleus to the cytoplasm using its nuclear export signal 

(NES) and nuclear localization signal (NLS) both found within DHX9’s C-terminal 

domain (Lee and Pelletier, 2016). NLS signals direct the import of the proteins 

form the cytoplasm into the nucleus, whereas NES directs the export of protein 

from the nucleus to the cytoplasm (Xu et al., 2012). DHX9 therefore can shuttle 

in and out of the nucleus, and this is mediated by the NES/NLS signal. I therefore 
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decided to use immunocytochemistry with confocal microscopy to further 

investigate where the two proteins are expressed naturally in the cell. DU145, 

LNCaP and VCaP were all stained for PDE4D7 (green), DHX9 (red), and the 

nucleus (blue). Images were taken using a Zeiss LSM confocal microscope where I 

was able to visualise where each protein was expressed. I then used these 

images to quantify the levels of colocalization between the signal from PDE4D7 

and DHX9 using the Pearson’s coefficient (Figure 3.4). The Pearson’s coefficient 

between the staining for PDE4D7 and DHX9 was measured using the 

colocalization tool on Image J. Colocalization can often be considered subjective 

and only judged by the merging of colours. Pearson’s coefficient is a statistic 

tool to quantify the colocalization between two probes, with a value near 0 

indicating that the probes are unrelated to one another, whereas a value closer 

to 1 indicates that the two probes are overlapping (Dunn, Kamocka and 

McDonald, 2011). 
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Figure 3.4 PDE4D7 and DHX9 staining in PC cells. A. DU145, LNCaP, and VCaP cells were 
stained for PDE4D7 and DHX9 expression using immunocytochemistry with confocal microscopy. 
Images were taken under a x 40 water immersion lens on the Zeiss LSM microscope. B. The 
Pearson’s coefficient between PDE4D7 and DHX9 staining across the whole cells was determined 
using the Colocalization plug in on Image J. Data is presented as the mean ± SEM of 15 cells from 
each cell line. 

Immunocytochemical staining of DU145 (Figure 3.4 A top row) further confirmed 

that there is very little PDE4D7 expressed in this cell line. However, DHX9 could 

be seen in both the nuclear and cytoplasmic regions of the cell (Figure 3.4 A top 

row). DU145 served as a negative control for quantifying the levels of 

colocalization between PDE4D7 and DHX9. The lack of PDE4D7 signal in DU145 

resulted in a Pearson coefficient of 0 (Figure 3.4 B). On the other hand. LNCaP 

and VCaP both expressed PD4D7 within the cytoplasmic region, and small 
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amounts of PDE4D7 could be seen in the nucleus. The opposite observation could 

be made for DHX9, where the majority of the protein could be seen in the 

nucleus, and small amounts of it could be seen in the cytoplasm (Figure 3.4 A 

middle and bottom panel). The Pearson coefficient of the whole cell between 

PDE4D7 and DHX9 was 0.910 in VCaPs and 0.920 in LNCaPs, indicating that these 

two proteins are likely to be co-localizing in vitro (Figure 3.4 B). However, these 

images contradict the subcellular fractionation. The subcellular fractionation, as 

well as the data collected from the Human Protein Atlas, suggests that DHX9 is 

only expressed in the nucleus, while PDE4D7 is only expressed on the cytoplasm. 

However, subcellular fractionations are known to enrich proteins in their 

respective organelles (Lee, Tan and Chung, 2010), meaning DHX9 that may be 

expressed in the cytoplasm may not be detected using this method. Using 

confocal microscopy, we show here the DHX9 cam be expressed in the cytoplasm 

due to the presence of an NLS/NES sequence in its C-terminal (Lee and Pelletier, 

2016). Collectively, the data in this chapter so far has shown that DHX9 is mainly 

expressed in the nucleus, but small traces of this protein can be detected in the 

cytoplasm by confocal microscopy.  

As PDE4D7 and DHX9 were predominantly in different cellular locations I then set 

up an experiment to determine whether the colocalization between these two 

proteins could be increased when subjected to leptomycin B treatment. 

Leptomycin B (LMB) was originally identified as a metabolite of Streptomyces 

and has recently been used as a potent anti-tumour agent against murine 

tumours. LMB was shown to inhibit the function of chromosomal region 

maintenance/exportin 1 (CRM1) which is critical for the import/export of RNA 

and proteins that contains NES and NLS signals. Proteins that are expected to 

shuttle between the nucleus and the cytoplasm become trapped in the nucleus 

after LMB treatment, which in turn leads to their accumulation in this region 

(Kudo et al., 1998; Jang et al., 2003). DHX9 is known to be insensitive to LMB 

treatment and does not lead to any changes in DHX9’s cellular location following 

treatment (Lee and Pelletier, 2016), however PDE4D7 has never before been 

subjected to LMB treatment. Here, LNCaP cells were treated for either 0, 3 or 8 

hours with 20 nM of LMB, then stained for PDE4D7 and DHX9. The 8 hour time 

point was chosen as the longest treatment time as previous work has shown that 

this was the shortest time point used to inhibit nuclear export (Wolff, Sanglier 
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and Wang, 1997). The cells were visualised as previously mentioned, and the 

Pearson’s coefficient between the PDE4D7 and DHX9 staining was measured 

(Figure 3.5). 

 
Figure 3.5 Leptomycin B time course in LNCaP. A. LNCaP cells were treated for 0, 3 or 8 hours 
with 20 nM of leptomycin, then stained for PDE4D7 (green), DHX9 (red) and the nucleus (blue). 
Images were taken using a Zeiss confocal microscope under a x 40 water immersion lens. B. 
Pearson’s coefficient between the PDE4D7-DHX9 staining was determined using the 
Colocalization tool on ImageJ. Data is presented as the mean ± SEM of N > 15 individual cells from 
each condition. The data was analysed using a One-way Anova. Data was not significant. 

Treatment of LNCaP with LMB resulted in a visible increase of PDE4D7 within the 

nuclear region as the cells were subjected to longer exposure to LMB (Figure 3.5 

A). This also correlated to an increased in the Pearson’s coefficient between 

NS 
NS 
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PDE4D7 and DHX9 across the whole cell, although this was not shown to be a 

statistically significant increase when analysed using a One-way Anova (Figure 

3.5 B). To date, only the short PDE4D1 isoforms has been reported to be 

expressed in the nucleus, whereas other PDE4D isoforms are restricted to the 

cytoplasm. Sequence analysis revealed that the unique N-terminal region of 

PDE4D1 contains an NLS sequence allowing it shuttle in and out of the nucleus 

(Chandrasekaran et al., 2008). Using the NLS Mapper (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi), the PDE4D7 amino acid 

sequence was analysed in order to identify potential NLS (Kosugi et al., 2009) 

(Figure 3.6). The NLS predictor identified a 33 amino acid sequence 

(D187RAPSKRSPMCNQPSINKATITEEAYQKLASET220) within the linker and UCR2 

region of PDE4D7 that is a potential NLS sequence (Beard et al., 2000). In 

addition to identifying NLS sequences, this predictor is also able to predict the 

protein’s cellular location. A score between 7 and 10 indicates that the protein 

is only expressed in the nucleus. A score between 3 and 6 indicates that the 

protein can be expressed in both the nucleus and the cytoplasm. A score below 3 

indicates the protein is expressed only in the cytoplasm (Kosugi et al., 2009). 

The NLS mapper revealed that PDE4D7 has a score of 5.3 indicating that the 

protein can be expressed in both the nucleus and the cytoplasm. 

 
Figure 3.6 NLS prediction in PDE4D7. A potential NLS sequence within the linker and UCR2 
region was identified using the software (Kosugi et al., 2009). 
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Using confocal microscopy and bioinformatic analysis, my data suggests that the 

interaction between PDE4D7 and DHX9 could potentially take place in both the 

nucleus or the cytoplasm of LNCaP and VCaP.  

3.3.3  Confirming PDE4D7-DHX9 interaction using pulldown and 
proximity ligation assays 

So far, I have shown that PDE4D7 and DHX9 proteins express well in PC cell lines 

and that there is a small amount of cross-over in their cellular location. In order 

to provide further evidence that these two proteins are novel interactors in PC, I 

transfected HEK293 cells with plasmids containing VSV-tagged PDE4D7 and FLAG-

tagged DHX9 and performed immunoprecipitation assays on the resulting cell 

lysates. This was used as a “proof of concept” step in order to verify that these 

two proteins could interact with one another. VSV-tagged PDE4D7 and Flag-

tagged DHX9 plasmids were transiently transfected into HEK293 for 24 hours, 

then lysed using 3T3 lysis buffer. The cell lysates were then incubated with 

Protein G beads with either anti-VSV or anti-FLAG antibody for three hours. The 

beads were thoroughly washed in order to remove any unbound protein, and the 

remaining protein was boiled off the beads in SDS-PAGE sample buffer. The 

eluate was separated on an SDS-PAGE gel and immunoblotted for VSV or FLAG 

(Figure 3.7).  
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Figure 3.7 PDE4D7-VSV and DHX9-FLAG IPs in overexpressing HEK293 Lysates. A. VSV-
tagged PDE4D7 was pulled down from HEK293 cells and probed for Flag-tagged DHX9 and VSV-
tagged PDE4D7 B. Flag-tagged DHX9 was pulled down from HEK293 cells and probed for Flag-
tagged DHX9 and VSV-tagged PDE4D7Data is representative of N=3 independent experiments.  

Both IPs were successful with respect to pulling down proteins using their 

respective tags (Figure 3.7) and a positive co-IP was clearly observed in the cells 

that were pulled down for PDE4D7-VSV (Figure 3.7 A) and blotted for the FLAG 

tag of DHX9. Conversely, a pull down for DHX9-FLAG did not result in the co-IP 

for PDE4D7-VSV (Figure 3.7 A). This effect could possibly be due to the native 

structure of DHX9, as the natural 3D structure of DHX9 could prevent the protein 

from binding both the antibody and PDE4D7 concomitantly. Despite this, I was 

able to show that PDE4D7 and DHX9 are interacting when overexpressed in 

HEK293 cells. I then repeated this IP in VCaP and DU145 in order to ensure that 

this interaction could take place endogenously. Endogenously-expressed PDE4D7 

and DHX9 were pulled down in VCaP or DU145 cells using target-specific 

antibodies (Figure 3.8). The cell lysate was incubated with either PDE4D7 

isoform-specific or DHX9 antibody overnight with protein G beads. The 

supernatant was then separated on an SDS-PAGE gel and the PPI was 

investigated using western blotting (Figure 3.8).  
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Figure 3.8 IP assay in PC cells to confirm PDE4D7-DHX9 binding. A+B. PDE4D7 was pulled 
down using an isoform specific antibody in VCaP (A) and DU145 (B). Membranes were probed for 
PDE4D7 and DHX9. C. DHX9 was pulled down in VCaP lysate using a target specific antibody. 
The membrane was probed for PDE4D7 and DHX9. Data is representative of N=3 independent 
experiments. 

As in the HEK293 experiment with transfected proteins (Figure 3.7), pulldown of 

endogenous PDE4D7 lead to a successful co-IP of endogenous DHX9 in VCaP cells 

(Figure 3.8 A). However, as expected, this co-IP was not observed in DU145 cells 

where no PDE4D7 expression could be seen (Figure 3.8 B). Furthermore, like in 

the HEK293 cells, pulldown for DHX9 in VCaP cells did not lead to a positive 

pulldown for PDE4D7 (Figure 3.8 C). Again, it is possible that the DHX9 antibody 

epitope and the PDE4D7 docking domain are close on the 3D structure preventing 
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IP. Nevertheless, I show here that DHX9 and PDE4D7 interact with each other 

endogenously in PC cell lines. 

Next, to further verify existence of the interaction, I performed proximity 

ligation assay (PLA) in the same cell lines. PLA uses oligonucleotide-modified 

antibodies, also called PLA probes, to visualise target proteins. Upon binding of 

the PLA probes, the conjugated oligonucleotides pair to generate circular DNA, 

and replication of this DNA signals that the target proteins are interacting at this 

site. DNA signals can be visualised using a fluorescent microscope as these PLA 

probes are often hybridized with a fluorophore. A positive reaction will only be 

seen if the two target proteins are less than 40 nm from each other (Klaesson et 

al., 2018). Overexpressing HEK293 cells, as well as LNCaP and VCaP, were 

stained for PDE4D7 and DHX9 then subjected to PLA staining (red). The cells 

were also stained for the membrane (green) and the nucleus (blue) in order to 

visualise where putative DHX9 and PDE4D7 PPI may happen (Figure 3.9 and 

Figure 3.10). 

 
Figure 3.9 PLA between PDE4D7-VSV and DHX9-FLAG in overexpressing HEK293 cells. 
Wheat Germ Agglutinin (green) was used to stain the membrane of these cells, while SYTOX 
orange was used to stain the nucleus (blue). PLA signal are shown in red. Images are 
representative of eight different cell images. A. Negative control for PLA, where no primary 
antibody was present. B. Positive control for PLA, where the cells were probed for anti-mouse and 
anti-rabbit DHX9. C. PLA between VSV-tagged PDE4D7 and Flag-tagged DHX9.  
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As expected, no PLA signal was visible in the negative control as no primary 

antibody was present (Figure 3.9 A). PLA signal could be seen in the positive 

control, which was probed for DHX9 using a rabbit and mouse primary antibodies 

(Figure 3.9 B) indicating that the PLA probes can successfully bind to each other 

and generate a fluorescent signal. Interestingly, PLA signals was also visible in 

the sample probed for VSV tagged PDE4D7 and Flag tagged DHX9 (Figure 3.9 C), 

indicating that PDE4D7-DHX9 are within 40 nm of each other and are potentially 

interacting with one another. The PLA spots were observed across the whole 

cell, which is often the case in HEK293 cells transfected with plasmid constructs. 

In order to pinpoint where this interaction occurred, the PLA was performed in 

LNCaP and VCaP to probe for endogenous PDE4D7-DHX9 complexes (Figure 3.10 

C and F). 
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Figure 3.10 PLA between PDE4D7 and DHX9 in LNCaP and VCaP cells. Wheat Germ 
Agglutinin (green) was used to stain the membrane of these cells, while SYTOX orange was used 
to stain the nucleus (blue). PLA signal are shown in red. Images are representative of eight 
different cell images. Cells were stained with different antibodies. A+D. Negative control for PLA 
where the cells were not probed for primary antibody. B+E. Positive control for PLA where the cells 
were probed for anti-rabbit and anti-mouse DHX9 primary antibody. C+F. PLA between PDE4D7 
and DHX9.  

As in the HEK293 cells, a PLA signal was observed in the positive control (Figure 

3.10 A and D), indicating that the probes are able to bind to each other and 

generate a fluorescent signal. This signal was absent in the negative control 
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where no primary antibody was present (Figure 3.10 B and E). Visible spots could 

be observed in the cells probed for PDE4D7 and DHX9 (Figure 3.10 C and F) 

indicating that these two protein are able to interact with each other in an 

intact cell. Upon closer inspection, PDE4D7 and DHX9 complexes could be 

observed in the cytoplasm and the nucleus (Figure 3.10 C and F). Hence I have 

been able to provide further evidence that these two proteins are interacting 

and that this interaction takes place within the cytoplasmic and nuclear regions. 

3.3.4  Mapping PDE4D7-DHX9 binding domains 

Although I have been able to show that PDE4D7-DHX9 exist in a complex, it is 

unknown whether the binding between these two proteins is direct and if so, the 

binding domains remain undetermined. I therefore used peptide array 

technology to demonstrate direct interactions and map the binding domains 

between the two interactors. A large proportion of PPIs are mediated by 

compact interaction motifs within different regions of the protein. These regions 

are recognised and/or post-translationally modified by a structured domain of an 

interacting partner (Tompa et al., 2014). These regions, most commonly known 

as peptide motifs, can be categorised into two groups: binding motifs which 

mediate the interaction between two proteins, and posttranslational 

modification sites recognised by modifying enzymes (Tompa et al., 2014). These 

protein binding motifs are short segments found within either the terminal end 

or within a loop of an interacting protein. Interestingly, numerous oncogenic 

proteins either contain a motif, or recognise these binding motifs, for which 

inhibiting these is a potential drug target (Corbi-Verge and Kim, 2016). These 

binding motifs not only help PPIs, but they also coordinate protein function, 

localization, and degradation (Tompa et al., 2014). Modulating PPIs with small 

drug-like molecules targeting these motifs holds great promise in drug discovery 

(Shen et al., 2019). Traditionally, mapping of binding motifs were discovered 

using tandem affinity purifications or yeast-two hybrids experiments, However, 

in recent years, high throughput screening assays and computational studies, 

such as direct peptide library and protein chip-based assays, have been used to 

identify novel binding motifs that mediate PPIs Tompa et al., 2014) 

In recent years, peptide array technology has been used to map novel PPI 

binding motifs. Peptide array technology was first developed by Ronald Frank in 
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the early 1990s and since then, it has become a powerful tool to investigate PPI 

as well as post translational modifications (PTMs) (Volkmer, Tapia and Landgraf, 

2012). Using an array approach, specific domains or sequential sequences of full-

length proteins can be immobilised on cellulose for further investigation. Here, 

full length DHX9 or PDE4D7 amino acid sequences were spotted onto CelluSpot™ 

glass slides as 25-mer spots, with each spot shifting by 5 amino acids (Figure 

3.11).  

 
Figure 3.11 Peptide Array design layout. Full length protein in 25-amino acid peptides is spotted 
onto a glass slide with a cellulose membrane where each spot is shifted by 5 amino acids.  

PDE4D7 full length slides were incubated with HEK293 lysate overexpressing 

DHX9-FLAG, then probed for the FLAG tag in order to identify which 25-mer 

peptides from PDE4D7 could be bound by DHX9-FLAG. The slides were then 

probed with the appropriate secondary antibodies, then imaged using 

chemiluminescence detection (Figure 3.12). 
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Figure 3.12 PDE4D7 peptide array overlaid with HEK293 overexpressing DHX9-FLAG lysate. 
A. Whole peptide array images. Regions of interest are highlighted in the red box. B. Full length 
PDE4D7 peptide array was incubated with DHX9-FLAG cell lysate, then probed for the binding 
sites using a FLAG tag antibody. Image adapted from Tibbo, Tejeda and Baillie, 2019. 

Peptide array technology revealed that DHX9 binds to a PDE4D7 25mer within 

the UCR1 region (Figure 3.12). Within this binding site is the FLY motif, 

highlighted in green in Figure 3.12, has recently been shown to be an important 

multi-docking site for protein interactors of PDE4 isoforms (Houslay et al., 

2017). Although the UCR1 is highly conserved between all long PDE4 isoforms 

there are some small areas of divergence and the binding site sequence 

identified above (Figure 3.12) is unique to PDE4D isoforms due to the presence 

of a single serine at residue 205 (Figure 3.13).  

 
Figure 3.13 PDE4 Sequence alignment. PDE4 isoforms were BLASTed against each other in 
order align the newly identified DHX9 binding site. This site is unique to long PDE4 isoforms due to 
the presence of a single serine at position 205 (highlighted by a red arrow). (Altschul et al., 1997). 
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In order to identify any crucial amino acids for DHX9 binding, a walking alanine 

substitution scan on the sequence was performed. Furthermore, single and triple 

substitution of the FLY docking site (to alanine) was also performed in order to 

determine whether the loss of one or all these amino acids is detrimental to 

DHX9 binding (Figure 3.14). 

 
Figure 3.14 Walking alanine and triple substitution of DHX9 binding site. A. Walking alanine 
scan of the DHX9 binding site. B. Single and triple substitution of the FLY docking site. 
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Alanine substitution of Ser190 at spot 5 (Figure 3.13 A) appears to decrease the 

binding between PDE4D7 and DHX9 when compared to the control spot (spot 1). 

However, single amino substitutions between spots 12 and 21 increases the 

interaction probably due to change in the overall charge of the peptide 

sequence (Figure 3.14 A). Interestingly, single substitutions of the amino acids 

between spots 14 and 23 increases the binding of DHX9-FLAG to the peptide 

array (Figure 3.14 A). As with other binders of the FLY motif (Houslay et al., 

2017) , triple substitution of the FLY with alanine decreases the interaction 

between PDE4D7 and DHX9, however this interaction is not completely ablated 

(Figure 3.14 B). We can then assume that this region may be needed for the 

interaction between the two proteins as reported for the interaction between 

PDE4A5 and mitogen-activated protein kinase-activated protein kinase 2 (MK2) 

(Houslay et al., 2017).  

I was then interested in repeating this peptide array experiment with purified 

recombinant DHX9. A group led by Professor Richard Wozniak at the University of 

Alberta had recently been able to purify a full length functional, as well as 

truncated, DHX9 GST recombinant protein (Capitanio, Montpetit and Wozniak, 

2017). The truncated proteins consisted of a 67.8 kDa N-terminal region protein, 

a 75 kDa helicase core domain protein, and a 75.8 kDa C-terminal protein (Figure 

3.14 A). The full-length protein has an expected molecular weight of 166 kDa. I 

transformed each GST-tagged DHX9 plasmids into E.coli BL21-Codon Plus (DE3) 

cells (Figure 3.15 A). Protein expression was induced with the addition of 0.2 mM 

of IPTG and the cells were left overnight at 16˚C with shaking. The cells were 

pelleted and lysed the next day and the proteins purified as detailed in the 

methods. Protein expression was determined by running the samples on an SDS-

PAGE gel with western blotting, where the membrane was probed for GST 

(Figure 3.15 B,C and D).  
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Figure 3.15 Purification of recombinant DHX9 purified protein. A. Schematic diagram showing 
the full-length and truncated DHX9 recombinant proteins used in these experiments. DHX9 
plasmids were a kind gift from Prof Richard Wozniack at the University of Alberta. B-D. E.coli cells 
transformed with these plasmids were induced overnight with 0.2 mM of IPTG at 16˚C. Quality 
control samples were taken at each step of the purification and run on an SDS-PAGE gel. Protein 
expression was assessed by western blotting. All membranes were probed for GST. This work was 
carried out by Dr Yuan Yan Sin. 

Although we were able to express the N-terminal and Helicase domain of DHX9 

(Figure 3.15 D, lane 4 and 5), we were unable to elute the protein from the GST 

tagged beads (Figure 3.15 D, lane 8). Bizarrely, the bands representing the N-

terminal and helicase domain of DHX9 was not detected in the other gels, 

potentially indicating that the expression is at very low levels and can only be 

detected when bound to GST beads (Figure 3.15 B and C). We were therefore 

unable to verify our peptide arrays using the purified DHX9 protein. Alternative 

methods were used to elute the protein, such as the addition of NaCl to increase 

the ionic strength, however this remained unsuccessful (data not shown here). I 

was therefore unable to verify that the purified DHX9 protein could bind the 

same peptide sequence as the DHX9-FLAG lysate. However, using HEK293 DHX9-

FLAG lysate I was able to show that DHX9 binds to the UCR1 region of PDE4D7 
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(Figure 3.12); I therefore purified this region of PDE4D to investigate where 

PDE4D7 binds to DHX9 using full length DHX9 peptide arrays. Unfortunately, I did 

not have access to an appropriate construct to purify the full length PDE4D7 

protein for these experiments. I chose to purify this region as it is highly 

conserved within PDE4D isoform (Houslay, 2010). PDE4D-UCR1 was cloned by a 

previous member of the Baillie lab into the pGEX-5X-1 expression vector then 

transformed into BL21 E.Coli competent cells. The GST tag alone was also 

purified in order to ensure that any possible positively interacting spots were 

due to protein binding, and not due to the tag itself. Each construct was induced 

with 0.2 mM of IPTG for 5 hours at 37˚C, then pelleted and lysed in order to 

obtain the protein (Figure 3.16 A and B). Proteins eluted from GST beads was 

then dialysed in order to remove any remaining salts and detergents, and 

proteins were stored at -80˚C until required (Figure 3.16 C and D). Quality 

control samples, eluted, and dialysed proteins were then all run on an SDS-PAGE 

in order to check for protein expression by western blotting (Figure 3.16).  
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Figure 3.16 PDE4D UCR1-GST purification from BL21 E.Coli. The following samples were all 
run on an SDS-PAGE gel and UCR1-GST expression was assessed by western blotting using a 
GST antibody. A. Pre, post-inductions, soluble and insoluble fractions. B. Flow through, washes 
and beads from the purification column. C. Elutions 1-9 in D. UCR1-GST and GST purified protein 
after dialysis.  

By running all the elution samples on an SDS-PAGE gel and probing for GST by 

western blotting, I was able to show that I successfully purified recombinant 

PDE4D-UCR1 GST, as shown by a band at 39 kDa (Figure 3.16 C and D). Purified 

PDE4D proteins are highly prone to protein degradation, even in the presence of 

protease inhibitor, as shown by the presence of multiple smaller bands (Figure 
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3.16 C). In order to obtain the purest recombinant protein, I decided to only 

dialyse elutions 9-13 as these samples contained the least amount of degradation 

(Figure 3.16 C). The dialysed protein (Figure 3.16 D) was then used in order to 

map PDE4D7 binding on immobilised DHX9 peptides via peptide array. The 

recombinant purified proteins were overlaid onto full length DHX9 peptide array 

slides, then probed using a GST antibody. Purified recombinant GST alone was 

used as a control in order to ensure that the spot detected were due to protein 

binding, and not the tag binding to the peptide sequence (Figure 3.17 B).  

 
Figure 3.17 Mapping PDE4D7 binding on DHX9. A. Whole peptide array. Regions of interest are 
highlighted in the red boxes. B. Full length DHX9 peptide array, spotted as duplicates on the slide, 
was overlaid with either GST or PDE4D UCR1-GST, then probed using a GST antibody. PDE4D 
UCR1 was shown to bind to DHX9 within its helicase core domain. 

The data from the peptide array suggests that PDE4D7 binds within the helicase 

core domain of DHX9. This could mean that the binding of PDE4D7 could have a 

role in regulating the helicase activity of DHX9 by potentially regulating its 

phosphorylation. This helicase core domain is highly conserved between species, 

and its structure has been partially solved using X-Ray crystallography (Schütz et 
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al., 2010). However, the sequence used for this structure unfortunately does not 

include the PDE4D7 binding sequence therefore we were unable to model the 

potential binding site. Interestingly, this binding region also contains multiple 

prolines, lysines and aspartic acids (Figure 3.17 B). In order to identify which 

amino acids were crucial for PDE4D7 binding, peptide array membranes were 

synthesised with a walking alanine scan, as well as substitutions of specific 

amino acids (Figure 3.18).  

 
Figure 3.18 Amino Acid Substitutions of the PDE4D7 binding site on DHX9. The peptide array 
membranes were incubated with either GST or PDE4D-UCR1 GST. They were then probed with 
GST primary antibody. Binding sites were detected after probing the membrane with an anti-mouse 
HRP secondary. A. Walking alanine scan of the PDE4D7 binding sequence. B. Single and multiple 
substitution of the proline to an alanine. C. Single and multiple substitution of the lysine to a 
glutamic acid. D. Single and multiple substitution of aspartic acid to an arginine.  

The walking alanine scan suggests that the I579 (spot 5) and H583 (Spot 9) are 

important for PDE4D7 binding (Figure 3.18 A). Interestingly, substitution of the 

lysines between spots 18-20 (Figure 3.18 A) lead to a decrease in PDE4D-UCR1 

binding. Furthermore, when these lysines were substituted with a negatively 

charged glutamic acid led to inhibition of PDE4D7 binding onto the membrane 

indicating that these residues are important for protein binding at spot 8 (Figure 

3.18 C). Substitution of the prolines and the aspartic acids had no deleterious 

effects on binding (Figure 3.18 B and D). Studies have shown that lysine residues 
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of proteins play an important role in protein-protein and protein-DNA binding. 

The amino group of the residue itself often binds to the hydrogen bonds and 

catalyses the interaction with a ligand that may be important for protein 

function and substrate specificity (Sun et al., 2013). Lysine-rich regions are also 

known to be important in multiple post translational modifications, such as 

SUMOylation (Lamoliatte et al., 2014). I was then interested to see if the 

deletion, rather than substitution, of any of these lysines led to a decrease in 

PDE4D7 binding. Peptide array membranes with either N-, C-, or simultaneous N- 

and C-terminal truncations of the DHX9 binding sequence were constructed 

(Figure 3.19) and overlaid with either GST, as a control, or recombinant PDE4D-

UCR1 GST. 

 
Figure 3.19 PDE4D7 binding site truncations A. N-terminal truncations. B. C-terminal truncations 
C. Simultaneous N and C terminal truncations  
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Loss of F584 to P587 by N-terminal sequence truncation appeared to reduce the 

interaction between PDE4D7 and DHX (Figure 3.19 A spot 9-12). Single alanine 

substitution of F584 in Figure 3.17A (spot 10) also led to a loss in interaction. It 

has been shown that in soluble proteins, hydrophobic amino acids such as 

phenylalanine play a significant role in rapid protein folding as well as stabilizing 

protein scaffolds (Makwana and Mahalakshmi, 2015). Loss or substitution of this 

F584 in DHX9 could potentially cause the interaction to destabilise, leading to a 

decrease in protein-protein interaction. Truncations that resulted in the loss of 

the lysine at position 593 lead to a complete loss of PDE4D7 binding, indicating 

that this is a crucial residue for binding (Figure 3.19 A spot 19 and B Spot 10). 

This was also observed in the simultaneous N- and C-terminal truncations (Figure 

3.19 C spot 11). In order to further investigate if this lysine is crucial binding, 

site-directed mutagenesis of this lysine (K592) could be undertaken in our DHX9-

FLAG plasmids. The PDE4D7 IPs could be repeated, and if there is a decrease in 

co-IP this could further confirm that this lysine is important for the interaction 

between PDE4D7 and DHX9. Unfortunately, due to time constraints, I was unable 

to design and create these mutants.  

3.3.5 Development of cell penetrating peptides to disrupt PDE4D7-
DHX9 interaction 

In recent years, peptide therapeutics have played an important role in medical 

practices. Currently, there are over 60 peptide drugs approved in the United 

Stated and other major countries, and an increasing amount of clinical trials 

include the use of therapeutic peptides (Lau and Dunn, 2018). These therapeutic 

peptides have a maximum of 40 residues and are not limited to the 20 

genetically encoded amino acid (Davenport et al., 2020). These peptides have a 

high affinity and specificity to their target tissue or cell. They are typically 

identified using phage display experiments. In recent years, therapeutic 

peptides have grown in interest due to the fact that they can easily be 

synthesised, are smaller in size, and have a lower toxicity. These peptides can 

often be conjugated with carriers or therapeutic agents, improving its 

pharmacokinetics (Mousavizadeh et al., 2017; Davenport et al., 2020). 

Classically, these peptides are delivered as injectable. However, alternative 

methods of administration forms are gaining interests, such as oral, intranasal, 

and transdermal delivery routes (Fosgerau and Hoffmann, 2015).The main 
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diseases currently driving the use of peptide drugs are metabolic diseases, such 

as type 2 diabetes, and oncology. However, with the development of alternative 

delivery methods, such as topical administration, the hope is to enable the 

greater use of peptide therapeutics in other disease areas (Fosgerau and 

Hoffmann, 2015). 

Although we have been able to map putative binding sites between the two 

proteins using peptide arrays, these needed to be further verified in vitro using 

the overexpressing HEK293 and VCaP cell lines. One way of doing this would be 

to use peptide disruptors that could disassociate the PDE4D7-DHX9 complex. 

Hence, I used information gathered from the peptide arrays (Figure 3.12 and 

Figure 3.17), to devise cell-permeable peptide encompassing residues R187-S212 of 

PDE4D7. This peptide was synthesised and named “UCR1 disruptor peptide” 

(Figure 3.20 A). At the same time, a complementary approach using a peptide 

containing residues E576-G606 from DHX9 was also used. This peptide was named 

“DHX9 disruptor peptide” (Figure 3.20 B). Both peptides were made by 

GenScript, to a purity of 98% and dissolved in sterile DMSO to a stock 

concentration of 10 mM for future use. Although these peptides were synthesised 

using the information gained in the peptide arrays, they may not be specific to 

this interaction alone. The UCR1 domain is shared between all long PDE4D 

isoforms (Houslay and Adams, 2003), while the helicase domain is shared 

between all DExD/H helicases (Lee and Pelletier, 2016). This could potentially 

mean that these peptides have the potential to disrupt other protein-protein 

interactions that could take place in these domains.  

 



PDE4D7-DHX9 interaction in Prostate Cancer 125 

 
Figure 3.20 Designing peptide to disrupt the PDE4D7-DHX9 interaction. A. The UCR1 
disruptor sequence in based on the DHX9 binding domain on PDE4D7. B. The DHX9 disruptor 
peptide is based on the PDE4D7 binding domain of DHX9. 

A control peptide which consisted of a 25-mer peptide that was different from 

both disruptor peptides (PEVPLSYRRKLPGEFKKVRIKELM) was also synthesised and 

named “scrambled peptide”. This scrambled peptide was made by a previous 

member of the Baillie lab and was shown to not have any effects on their 

protein-protein interaction of interest (data not shown here). This scrambled 

peptide sequence was checked against the UCR1 and DHX9 disruptor peptide 

sequence in order to ensure that there were no similarities between peptides. 

Furthermore, this scrambled peptide was used by a previous member of the lab 

and was not shown to disrupt any PPIs or interest. All peptides contained an N-

terminal stearic acid allowing it to cross the cell membrane. The ability of these 

peptides to displace the PDE4D7-DHX9 interaction was first assessed by IP. By 

repeating the IPs shown in Figure 3.7 and Figure 3.8 in the presence of our newly 

synthesised disruptor peptides, I would be able to further confirm that I had 

successfully mapped the binding sites in PDE4D7 and DHX9. PDE4D7 was pulled 

down from lysates extracted from overexpressing VSV-tagged PDE4D7 in HEK293 

and VCaP cells using a VSV and PDE4D7 isoform-specific antibody respectively. 

The IPs were then thoroughly washed, and the amount of DHX9 that was co-IPed 

with PDE4D7 was assessed by SDS-PAGE gel electrophoresis with western blotting 

(Figure 3.21 and Figure 3.22).  
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Figure 3.21 Disruption of PDE4D7-DHX9 interaction in HEK293 and VCaP using the UCR1 
disruptor peptide. A. HEK293 were transfected with a plasmid encoding PDE4D7-VSV and 
treated with 10 µM of either disruptor peptide, scrambled peptide or DMSO vehicle control for 2 
hours. Lysates were immunoprecipitated for PDE4D7-VSV and probed for VSV and DHX9. The 
amount of DHX9 pulled down was normalised to PDE4D7-VSV IP, then normalised to DMSO 
vehicle control. B. VCaP cells were treated with 10 µM of either disruptor peptide, scrambled 
peptide or DMSO vehicle control for 2 hours. Lysates were immunoprecipitated for PDE4D7 and 
probed for Pan4D and DHX9. The amount of DHX9 pulled down was normalised to PDE4D7 IP, 
then normalised to DMSO vehicle control. The data is presented as mean ± SEM of three 
independent experiments. Statistical significance was determined using a One-Way Anova. 
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Figure 3.22 Disruption of PDE4D7-DHX9 interaction in HEK293 and VCaP following DHX9 
disruptor peptide treatment. A. HEK293 were transfected with PDE4D7-VSV and treated with 10 
µM of DHX9 disruptor peptide, scrambled peptide or DMSO vehicle control for 2 hours. Lysates 
were immunoprecipitated for PDE4D7-VSV and probed for VSV and DHX9. The amount of DHX9 
pulled down was normalised to PDE4D7-VSV IP, then normalised to DMSO vehicle control. B. 
VCaP cells were treated with 10 µM of either disruptor, scrambled peptide or DMSO vehicle control 
for 2 hours. Lysates were immunoprecipitated for PDE4D7 and probed for Pan4D and DHX9. The 
amount of DHX9 pulled down was normalised to PDE4D7 IP, then normalised to DMSO vehicle 
control. The data is presented as mean ± SEM of three independent experiments. Statistical 
significance was determined using a One-Way Anova, where p*=0.0355. 

Although not significant in statistical terms, treatment of PDE4D7-VSV-

overexpressing HEK293 and VCaP with the UCR1 disruptor peptide decreased the 

interaction between both ectopic PDE4D7-VSV (HEK293, Figure 3.21 A lane 6 

compared to lane 2) and endogenous PDE4D7 (VCaP, Figure 3.21 B lane 6 

compared to lane 2) and DXH9 when compared to the DMSO vehicle control. 

Treatment with the DHX9 disruptor peptide had little effect in overexpressing 

HEK293 (Figure 3.22 A), but significantly reduced the interaction of endogenous 

PDE4D7-DHX9 in VCaP cells (Figure 3.22 B lane 6 compared to lane 2). As often is 

the case, exogenously expressed proteins do not reflect what is occurring 

endogenously. Overexpressing a protein in cell line is often used in order to 

understand a function of a protein, as well as identify any interacting proteins. 

However, this does potentially force an interaction to take place (Prelich, 2012), 

thus not truly reflecting what is happening when endogenous levels of proteins 

are expressed. Overexpression of PDE4D7 and DHX9 in HEK293 cells allowed for 
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the protein to remain bound to one another, despite being treated with the 

disrupted peptide.  

 

The newly synthesised UCR1 disruptor peptide was able to disrupt the 

interaction between PDE4D7 and DHX9 by out-competing DHX9 for binding site 

within the UCR1 domain. I then decided to repeat the PLA experiments 

investigating the interaction between PDE4D7 and DHX9 in the presence of the 

UCR1 disruptor peptide or the scrambled peptide. VCaP cells were treated for 

two hours with DMSO, 10 µM UCR1 disruptor peptide, or 10 µM scrambled 

peptide. The PLA was then performed and imaged, and the red fluorescent spots 

representing each PLA signal was quantified using Image J (Figure 3.23). Since 

the FLY region has been shown to be a multi-docking site for PDE4 isoforms, I 

decided to first further validate this binding domain. Unfortunately, due to time 

constraints, I was unable to further test the DHX9 disruptor peptide by PLA assay 

with confocal microscopy.  
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Figure 3.23 Disruption of the PDE4D7-DHX9 interaction by the UCR1 disruptor peptide. A. 
VCaP cells were treated with 10 µM of disruptor peptide, scrambled peptide or DMSO vehicle 
control for 2 hours, then probed by PLA for PDE4D7 and DHX9. Cell membrane was stained using 
wheat germ agglutinin (green), and PLA was detected using a x 40 oil immersion lens. B. Mean 
fluorescence intensity of at least 20 cells from each condition was measured. Statistical 
significance was determined using a One-Way Anova where p>0.0001. Data is presented as the 
mean ± SEM of n>20 cells.  

Treatment of VCaP cells with the UCR1 disruptor peptide significantly decreased 

the interaction between PDE4D7 and DHX9 (Figure 3.23 A, last row). I then 

quantified the PLA signal from the cells treated with DMSO, scrambled peptide 

or UCR1 disruptor peptide (Figure 3.23, middle column). These values were 

plotted against each other, and a One-Way Anova was performed (Figure 3.23 

B). This analysis revealed that the interaction between PDE4D7 and DHX9 was 

significantly decreased when compared to the DMSO and scrambled peptide 

controls (Figure 3.23 B). The data presented so far confirms that DHX9 binds 

within the UCR1 domain of PDE4D7, and this interaction can be ablated with the 

use of our newly synthesised disruptor peptide.  
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3.3.6 Determining PDE4D7-DHX9 binding affinity using 
fluorescence polarization 

The data presented thus far in this chapter has confirmed that PDE4D7 and DHX9 

are novel interactors in PC cell lines. By using peptide array technology, I was 

able to map where these interactions took place. PDE4D7 binding to DHX9 within 

its helicase domain, while DHX9 binds within the UCR1 region of PDE4D7. By 

using the peptide array information, novel cell penetrating peptides were 

developed in order to confirm these binding sites. Treatment of VCaP and 

HEK293 cells with these peptides lead to a decrease in PDE4D7 and DHX9 

interaction when compared to the vehicle control (Figure 3.21Figure 3.22Figure 

3.23). Knowing that the interaction of PDE4D7 and DHX9 took place within the 

UCR1 domain, I was then interested in determining the binding affinity between 

these two proteins. Currently, fluorescence polarization (FP) is the most 

commonly used technique to study molecular interactions including PPIs (Lea 

and Simeonov, 2011). FP provides a nondisruptive way of measuring the 

association of a fluorescent ligand with a larger molecule, such as a purified 

recombinant protein (Rossi and Taylor, 2011). When a fluorophore is covalently 

bonded to small ligand, such as a peptide in solution, it is excited by the 

polarized light causing the emitted light to be largely depolarized. This is due to 

the rapid reorientations, or tumbling, of the fluorophore giving a low 

polarization value (Figure 3.24 A). However, if the labelled ligand is bound to a 

high molecular weight protein (> 10 kDa), the fluorophore reorients itself and 

this results in a slower molecular rotation. The binding of the larger molecule 

leads to a decrease in ligand rotation, which in turn leads to an increase in FP 

signal (Moerke, 2009) (Figure 3.24 B). By plotting these FP values, we are then 

able to then produce a sigmoidal curve from which we can obtain the 

dissociation constant of a PPI. By interpolating this information from the 

sigmoidal curve, we are able to quantify the strength of the interaction between 

two partners (Rossi and Taylor, 2011). 
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Figure 3.24 Ligand binding analysis by fluorescence polarization. A. In the absence of a high 
molecular weight protein, the rapidly rotations ligand gives low FP signal. B. The association of the 
ligand with a large molecule slows does the motion of the fluorophore, leading to an increase in the 
FP signal. Image adapted from Arkin et al., 2004. 

In this series of experiments, the interaction between UCR1-GST, or GST control, 

and a fluorescently tagged DHX9 peptide (5-FAM DHX9) was studied using FP. 

The DHX9 peptide sequence was the same sequence as the disruptor peptide as 

this contains the binding domain for PDE4D7. The UCR1-GST and the GST protein 

that was previously purified was used for this assay (Figure 3.16 D). 

Furthermore, full length PDE4D5-GST was also used in this assay in order to 

investigate if the full-length protein conformation is needed for the interaction. 

Like PDE4D7, PDE4D5 is a long isoform and shares the same UCR1 region (Tibbo, 

Tejeda and Baillie, 2019). These two proteins are identical in their sequences, 

apart from their unique N-terminal regions, and both contain the unique Ser196 

previously identified as only being expressed in PDE4D isoforms (Figure 3.13). 

PDE4D5-GST, expressed in the pGEX-6P-1 expression vector, was previously 

purified by Connor Blair (Baillie Lab) from BL21 E.Coli bacterial cells. Protein 

expression was induced 0.1 mM IPTG at 16˚C overnight. Cells were collected the 

next day and subjected to lysis. Cells lysates were then sonicated, and the 

supernatant incubated in Glutathione Sepharose beads. Recombinant purified 

protein was then eluted from the beads (Figure 3.25 A). 
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Figure 3.25 PDE4D5-GST and GST protein purification. PDE4D5-GST and GST were purified 
from E.Coli. A. Expression and purity of the recombinant protein was assessed via SDS-PAGE gel 
stained with Coomassie Blue. Presence of a 140 kDa protein confirmed that PDE4D5-GST was 
successfully purified. This protein purification was performed by Connor Blair. B. Expression and 
purity of recombinant GST protein was assessed via SDS-PAGE with Coomasie Blue staining. 
Presence of a 25 kDa protein confirmed that GST was successfully purified.  

By running the eluted proteins on an SDS-PAGE gel, then staining with coomasie 

blue, I was able to show that both PDE4D5-GST (Figure 3.25 A)and GST alone 

(Figure 3.25 B) were both purified to the highest quality. Although the UCR1-GST 

sample previously purified showed slight protein degradation (Figure 3.16 D), 

this sample was still taken forward for FP binding assays. Using the information 

from the peptide array (Figure 3.17 Spot 116), a 25-mer peptide was generated 

from the PDE4D7 binding site in DHX9. Residues E576-G606 based on the PDE4D7 

binding sequence on DHX9 was synthesised with an N-terminal 5-FAM fluorescent 

tag. This peptide was generated by Genscript and dissolved in DMSO to a stock 

concentration of 10 mM. Although we have been able to purify the proteins of 

interest, a pilot assay with just the newly synthesised peptide needs to be 

performed. This allows us to determine the minimum amount of peptide needed 

for future FP binding assays (Figure 3.26). 
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Figure 3.26 Determining minimum DHX9 peptide concentration for FP assay. Fluorescently 
tagged DHX9 peptide was serially diluted, and the FP value was plotted against the concentration 
of peptide present.  

By using the linear portion of the graph (indicated by dotted lines in Figure 

3.26), we were able to determine the lowest amount of peptide needed for 

future FP assays. The lowest peptide concentration was chosen in order to 

minimise the amount of DMSO present in the FP assay. DMSO concentration 

above 4% of the final volume can potentially destabilize PPI (Chan et al., 2017). 

The minimum peptide needed for future binding assays was found to be 62.5 nM. 

Using this information, the direct binding assay was performed using the 

previously obtained purified recombinant protein. All proteins were serially 

diluted 1:2, from a starting concentration of 10 µM. 62.5 nM of the 5’FAM-DHX9 

peptide was then added and the reaction was left to incubate at room 

temperature. The FP value was recorded after 0.5, 1, 3 and 5 hours, and the 

values obtained were plotted against the log10 of the protein concentration 

present (Figure 3.27).  
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Figure 3.27 PDE4D UCR1-GST and PDE4D5-GST binding assay to DHX9 peptide. Serial 
dilutions of purified PDE4D UCR1-GST protein, full-length PDE4D5 protein or GST alone (10 µM to 
0.02 µM) were incubated with 62.5 nM of 5-FAM DHX9 peptide. FP values were measured at the 
indicated times and plotted against the log10 values of protein concentration. This is representative 
of two independent protein purifications.  
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Upon ligand-protein binding, the FP value would normally result in a reading 

above 100 mP (indicated as a dotted line in Figure 3.27) (Speranzini, Fish and 

Mattevi, 2014, and personal conversation with Dr Yuan Sin). Highest mP values 

could be seen after 30 minutes of incubation (Figure 3.27 A), however no 

difference could be seen between any of the protein samples. Furthermore, the 

presence of the UCR1 domain, either in the truncated or full-length protein, did 

not result in the increase in mP values indicating the our DHX9 peptide was not 

binding to the protein. Increased incubation at room temperature led to a 

decrease in the mP values, suggesting that the protein was slowly degrading at 

room temperature (Figure 3.27 B,C and D). Due to continuous decrease in the FP 

values after the first 30 minutes reading, it can be suggested that if the 

interaction were to take place, it may have taken place prior to the first 

reading. This could mean that the interaction between PDE4D7 and DHX9 is rapid 

and transient. Ideally, the UCR1 peptide sequence should have been synthesised 

and binding assays be performed using purified recombinant DHX9. However, as 

we were unable to purify recombinant DHX9 protein, this approach was not 

possible. UCR1 and PDE4D5 GST tagged protein was used for these binding assays 

as they were highly abundant in the lab at the time. Unfortunately, I was unable 

to repeat these experiments and optimise conditions in order to obtain any 

binding affinity information due to time constraints.  
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3.4 Discussion 

3.4.1  DHX9 is a novel interactor of PDE4D7 in PC cell lines 

In recent years, PC has become one of the most common type of cancers 

diagnosed in men over the age of 50 across Europe and the USA. Although risk 

factors have been identified, these are not fully understood. There is currently a 

need to identify and understand PC-associated cell signalling processes and how 

these link to pathogenesis. In order to fully understand the signalling machinery 

that leads to disease progression, identification of new protein-protein 

interactions is needed in order to understand molecular regulatory networks 

(Chen et al., 2016). Importance of these interactions can be assessed using 

network analysis which can predict how mutations within the genome can affect 

each interaction, as well as any other downstream pathways (Ruffalo and Bar-

Joseph, 2019). Detection of key regulators and regulatory pathways is important 

in order to discover new genes in cancer (Mangangcha et al., 2019).  

Here, I was able to confirm that PDE4D7 and DHX9 are novel interactors in vitro. 

This interaction was first identified by Dr Ashleigh Byrne in a PDE4D7 IP coupled 

with mass spectrometry (MS) (Byrne, 2014), which is a tool that can be used to 

identify novel interacting proteins (Smits and Vermeulen, 2016). By using 

biochemical techniques, we were able to provide further evidence that these 

two proteins are interacting in vitro (Figure 3.7 and Figure 3.8), and this 

interaction could be disrupted in the presence of the newly synthesized CPP 

(Figure 3.21, Figure 3.22, and Figure 3.23). Interestingly, DHX9 was found to 

bind a sequence containing the newly discovered FLY multi docking site (Houslay 

et al., 2017) for PDE4 interacting proteins, whereas PDE4D7 binds within the 

helicase domain of DHX9 (Figure 3.12 and Figure 3.17). As previously mentioned, 

DHX9 belongs to the DExD/H box superfamily of proteins that are highly 

conserved across all species. RNA helicases are enzymes that are able to unwind 

dsRNA and DNA in an energy-dependent fashion through the hydrolysis of ATP 

(Tanner and Linder, 2001b). Members of this family are defined by the presence 

of seven or eight evolutionarily conserved motifs that are involved in the binding 

of ATP within the helicase domain (de la Cruz, Kressler and Linder, 1999). While 

individual DExD/H helicase family members have been extensively studied, 

identifying novel cofactors and protein interactors for them is crucial in order to 
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fully understand the function and regulation of these helicases (Silverman, 

Edwalds-Gilbert and Lin, 2003).  

Recent work has identified DHX9 and Nup98 to be novel interactors. Nup98 is a 

member of the highly conserved nuclear pore complex (NPC) family of proteins. 

Nup98 lies near or at the nuclear membrane and forms scaffolds that act as 

binding surfaces for other members of the NPC family. This in turn helps to 

facilitate the movement of nuclear transport factors, and their cargo, across the 

nuclear membrane. Nup98, is also involved in the export of mRNA as well as the 

shuttling of proteins from the nucleus via its numerous interacting partners 

(Franks and Hetzer, 2013). DHX9 was recently identified as a novel interactor of 

Nup98. Using a bead halo assay, they were able to show that Nup98 was able to 

bind to the N-terminal region of DHX9, containing the RNA binding motif, and 

the C-terminal region, containing the RGG box. The interaction of Nup98 and 

DHX9 within this region appeared to be facilitated by the presence of RNA as this 

interaction was sensitive to the endoribonuclease RNAse A. Interestingly, the 

binding of NUP98 within these regions of DHX9 stimulated the ATPase activity of 

DHX9. In the presence of RNA, the addition of recombinant NUP98 induced a 

dose-dependent increase in the ATPase activity of DHX9 (Capitanio, Montpetit 

and Wozniak, 2017). This data indicates that Nup98 acts as a positive regulator 

of DHX9 helicase activity. PDE4D7, and other members of the PDE4 family, are 

able to control the total cellular content of cyclic nucleotides and are able to 

create nanodomains of cyclic nucleotide signalling. (Baillie, Tejeda and Kelly, 

2019a; Houslay et al., 2019). As previously discussed, the PDE8A-cRAF 

interaction was shown to activate downstream signalling pathways, which could 

in turn lead to the progression of melanoma (Blair et al., 2019). I suggest here 

that the interaction between PDE4D7 and DHX9 could potentially influence DHX9 

helicase activity that could have a knock-on effect on disease progression. This 

interaction could potentially regulate the expression of downstream proteins, 

which in turn could alter the rate at which the disease could progress. The 

effects of PDE4D7 and DHX9 interaction on cell growth and helicase activity will 

be further investigated in chapter 5. 

Interestingly, DHX9 is also able to form a complex formation with cAMP Response 

Element-Binding Protein (CREB) binding protein (CBP) and RNA polymerase II 

(Nakajima, Uchida, Stephen F. Anderson, et al., 1997). CREB is one of the best 
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characterised phosphorylation-dependent transcription factors, and several 

kinases have been shown to promote its phosphorylation at its transactivation 

site. Once phosphorylated, CREB interacts with its coactivator protein, CBP or 

p300, at CREB responsive-genes (Wen, Sakamoto and Miller, 2010). CBP/p300 is 

thought to serve as a bridge between diverse gene-specific transcription factors 

and components of the basal transcriptional machinery (Karamouzis, 

Konstantinopoulos and Papavassiliou, 2007). Using transient transfections, DHX9 

was found to cooperate with CBP in mediating target gene activation via CREB, 

and mutation of its helicase domain was found to reduce the expression of 

proteins containing CREB-dependent transcription factors (Nakajima, Uchida, 

Stephen F. Anderson, et al., 1997). Examination of the promoter regions of 

PDE4D7 identified multiple CREB binding sites upstream of the starting 

methionine, suggesting that the cAMP/ PKA pathway may regulate the 

transcriptional expression of PDE4D7 (Wang et al., 2003). I tentatively suggest 

here that DHX9 could potentially play a role in the transcriptional expression of 

PDE4D7. DHX9 could form a complex with RNA polymerase II and CBP (Aratani et 

al., 2001) at one of the CREB binding sites in the PDE4D7 gene, potentially 

altering its expression at different stages of disease. It has been suggested DHX9 

can reduce expression of certain proteins. Binding of DHX9 to the transcriptional 

activator of tonicity-responsive enhancer (TonE) binding protein (TonEBP) results 

in the decreased activity of TonEBP, leading to a decrease in its transcriptional 

activity (Colla et al., 2006). Furthermore, the C.elegans DHX9 homologue RHA-1 

is required for silencing transcription. Transcriptional silencing due to RHA-1 

activity lead to a decrease in lysine methylation of histone H3, which in turn 

lead to defects in meiosis and a sterile phenotype. RHA-1 has since been 

suggested to be an important protein in maintaining appropriate transcriptional 

activity in order to control germline proliferation and development in C.elegans 

(Walstrom et al., 2005). My data has shown that the expression of DHX9 

increases from early to late stage models of disease, whereas PDE4D7 expression 

decreases (Figure 3.1). It can be suggested that the increased expression of 

DHX9 in the late stages of disease acts as a repressor of PDE4D7 expression by 

recruiting other transcription factors, which in turn could contribute to disease 

progression. Further work is needed to verify this hypothesis. 
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3.4.2  DHX9 binds within the UCR1 domain of PDE4D7 

PDEs represent a large family of enzymes that hydrolyse cAMP and cGMP and at 

least 25 PDE genes have been identified and cloned. By using multiple promoters 

and alternative mRNA splicing, a single PDE gene can generate variant products 

in a tissue-specific manner (Ong et al., 2009). PDE4 enzymes exclusively 

hydrolyse cAMP and it is the predominant cAMP degrading enzyme in a number of 

specific cell types. PDE4 plays a crucial role in cell signalling and it has been a 

target for clinical drug development for various diseases, with actions ranging 

from anti-inflammation to memory enhancement (Zhang et al., 2005). 

Functional PDE4 isoforms can be divided into four major categories: long, short, 

super short, and dead short (Figure 1.8). The expression of various UCR1/2 

combinations allows each specific PDE4 isoform to regulate distinct pools of 

cAMP by their cellular location and ability to be phosphorylated by a variety of 

kinases, including PKA (Omar et al., 2019). The PDE4D family is characterised by 

the expression of seven long isoforms (D3, D4, D5, D7, D8, D9, D11), one short 

isoform (D1), and three super short isoforms (D2, D6, D10) (Tibbo, Tejeda and 

Baillie, 2019). Of the long PDE4D isoforms, PDE4D3, D5, D7, D9 are expressed in 

PC, and the mRNA expression of PDE4D3 and PDE4D7 is differentially affected 

between AS and AI models (Henderson et al., 2014).  

Long PDE4D isoforms all contain a UCR1 domain and, along with UCR2, provide 

the molecular machinery that confers key regulatory functions on the PDE4D 

catalytic unit (Houslay and Adams, 2003). The presence or absence of these UCR 

domains determines critical functional differences between long and short 

isoforms. The UCR1 region of all PDE4 isoforms harbours a PKA consensus site 

which in turn activates the cellular activity of PDE4 when modified (Xie et al., 

2014). The data presented in this chapter has shown that the UCR1 region of 

PDE4D7 can also act as a binding site for interaction partners. DHX9 was seen to 

bind within the UCR1 domain by peptide array (Figure 3.12), and this interaction 

was significantly reduced in IPs and PLA when cells were treated with disruptor 

peptide that was designed based on the binding sequence (Figure 3.21 and 

Figure 3.23). This binding sequence is unique to PDE4D isoforms by the presence 

of a single serine at residue 196 (Figure 3.13) and shared between other long 

PDE4D isoforms. This could indicate that DHX9 has the potential to bind to other 

long PDE4D isoforms that are present in the prostate. However, as PDE4D7 is the 
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most highly expressed isoform in PC (Henderson et al., 2014), we can assume 

that the majority of the DHX9 would be bound to PDE4D7. It is unknown if the 

single serine change at residue 196 is enough to make this binding site PDE4D-

specific, though this could easily be resolved by further peptide array 

experiments. 

Interestingly, the UCR1 binding sequence for DHX9 contained the newly 

identified FLY multi-docking sequence. PDE4 enzymes having binding domains 

that allow interactions with various kinases, and domains that allow binding to 

other scaffolding proteins. These allow for the spatial degradation of cAMP in 

order to provide compartmentalised signalling, which in turn can then regulate 

the cross talk with other signalling processes (Houslay, 2010). The FLY docking 

site was first identified as a binding site for MK2 on PDE4A5 (Houslay et al., 

2017). The stress-activated p38 mitogen activated protein kinase (p38MAPK) 

pathway regulates a range of cellular processes, including apoptosis and cell 

invasion. The downstream substrate of this pathway, mitogen-activated protein 

kinase-activated protein kinase 2 (MK2), is involved in the post-translational 

regulation of cytokines (Soni, Anand and Padwad, 2019). Interestingly, PDE4A5 

can be phosphorylated by MK2 on Ser 147 within the UCR1 domain. 

Phosphorylation of this serine was shown to attenuate the activation of PDE4A5 

by PKA phosphorylation at Serine 140 (MacKenzie et al., 2002b, 2011). Mutation 

of the FLY sequence within the UCR1 domain was shown to completely inhibit 

the interaction with MK2. Furthermore, loss of MK2-PDE4A5 interaction led to a 

reduction in the phosphorylation of Serine 147 in PDE4A5. The interaction 

between PDE4A5-MK2 via the docking site is needed to facilitate the efficient 

activation of PDE4A5 at Ser 147 (Houslay et al., 2017). Although the 

phosphorylation of PDE4D isoforms by MK2 has not been extensively studied, we 

can assume that DHX9 and MK2 could potentially be competing for this binding 

domain. Binding with MK2 could act as a negative regulator of PDE4D7 activity by 

attenuating PKA phosphorylation of the UCR1 domain, whereas DHX9 could 

potentially act as a positive regulator by outcompeting for this binding site. The 

loss of regulation of PDE4D activity can have a profound effect on 

compartmentalised cAMP signalling, and could contribute to disease progression 

(Böttcher et al., 2016).  
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3.4.3  Using cell permeable peptides as therapeutic agents in PC 

In recent years, ADT has been the mainstay treatment for PC, and a marked 

increase in its use can be observed (Liu et al., 2019). In most men, ADT leads to 

the relief of PC-related symptoms, regression of metastases, and a fall in serum 

PSA levels. If managed correctly, the median survival for men with metastasis is 

30-49 months with the potential to extend it to 10 years if managed correctly. 

However, with time, the disease no longer responds to hormone treatment and 

the patient eventually develops the CRPC lethal phenotype (Varenhorst et al., 

2016). Furthermore, long-term use of ADT has been reported to reduce quality 

of life and increase the risk of adverse events, such as cardiovascular events, 

fractures, metabolic syndrome, and memory loss (Casey, Corcoran and 

Goldenberg, 2012; Kim et al., 2018). There is currently a need to find new 

therapeutic targets for the treatment of PC in order to potentially alleviate the 

negative outcomes of long-term ADT use. Therapeutic peptides are potentially a 

novel approach to treat many diseases, including cancer (Marqus, Pirogova and 

Piva, 2017). Furthermore, protein-protein interactions in cancer has slowly 

become a new target in multiple cancers as they allow clinicians to target 

cancer cells expressing protein complexes that are known to progress the 

disease (Ruffalo and Bar-Joseph, 2019). 

Using the information obtained from our peptide arrays, we were able to 

synthesise two cell penetrating peptides. The UCR1 disruptor peptide was based 

on the DHX9 binding sequence in PDE4D7, while the DHX9 peptide was based on 

the PDE4D7 binding sequence in DHX9 (Figure 3.12 and Figure 3.17). These 

peptides were synthesised with an N-terminal stearic acid making them cell 

permeable. Using biochemical techniques, the interaction between PDE4D7 and 

DHX9 was significantly reduced when the cells were treated with the UCR1 

disruptor peptide (Figure 3.21 and Figure 3.23). In recent years, peptides have 

become promising therapeutic agents in the treatment of cancer. When 

compared to other biological treatment options, such as monoclonal antibodies, 

peptide therapeutics possess many advantages such as their small size, ease of 

synthesis and their tumour penetrating ability (Thundimadathil, 2012). The 

TMPRSS2:ERG gene fusion product remains an attractive therapeutic target as it 

is known to be an oncogenic driver in both early and late stage of PC (Brenner et 

al., 2011). By screening a phage display peptide library, Wang et al. (2017) were 
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able identify peptides that were able to interact specifically with wild-type ERG. 

Specifically, they discovered 12 unique ERG inhibitory peptides (EIPs) that were 

able to bind to the protein itself. These EIPs were able to block the interaction 

of ERG with both DNA and interaction partners, which attenuated ERG-mediated 

transcription, PPIs, cell invasion and proliferation in vitro (Wang et al., 2017). In 

my view, the newly designed UCR1 disruptor peptide has the potential to impact 

the progression of PC in a similar manner to EIPs. The disruption of the PDE4D7-

DHX9 interaction could potentially decrease the transcriptional activity of DHX9, 

as the EIPs did on ERG-mediated transcription. This would then lead to 

decreased mRNA translation, potentially resulting in PC cell death. Methods such 

as individual-nucleotide resolution UV crosslinking and immunoprecipitation 

(iCLIP) can be used to map mRNA DHX9 binding sites in different cell lines to 

determine how DHX9 mRNA binding can be affected by the disruption of PDE4D7-

DHX9 complex (Huppertz et al., 2014; Murat et al., 2018).  

Alternatively, cell penetrating peptides could potentially be used to transport 

therapeutic cargos into cells (Hoffmann et al., 2018). Discovery of novel 

peptides has traditionally been performed by screening large libraries of 

peptides, produced either synthetically or biologically. These large libraries 

include phage, ribosomal, and mRNA displays and have become the standard for 

peptide discovery (Henninot, Collins and Nuss, 2018). Peptides can be used 

directly as cytotoxic agents by targeting protein complexes or receptors, or they 

can be modified to act as a carrier of cytotoxic agents and radioisotopes to 

specifically target cancer cells. These types of therapies have been extensively 

studied in PC (Boohaker et al., 2012). As well as the UCR1 peptide, we also 

synthesised a disruptor peptide that was able to compete with PDE4D7 for the 

DHX9 binding site (Figure 3.17 and Figure 3.22). Although this peptide did not 

lead to a significant decrease in PDE4D7-DHX9 interaction in both cell models, 

this peptide could potentially be reutilised as a homing peptide to specifically 

target cancer cells that are expressing both PDE4D7 and DHX9. Homing peptides 

are capable of selectively delivering many kinds of molecules and hold great 

promise for the development of less toxic therapies in several diseases (Wada et 

al., 2019). Normal and diseased organs can be treated with a specific 

macromolecular tag, or homing peptide, that can be used to specifically target 

only the diseased cells (Laakkonen and Vuorinen, 2010).  
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Such an approach has already been shown to be successful in mouse models of 

PC. D(KLAKLAK)2 is an amphipathic D-amino acid peptide that binds selectively 

to bacterial cell membrane. This peptide is known to initiate apoptosis in 

eukaryotic cells by disrupting mitochondrial membranes (Ma et al., 2012). In 

recent years, D(KLAKLAK)2 has been conjugated with multiple homing peptides to 

target specific cancer, in turn causing cell death (Agemy et al., 2011). By 

conjugating the prostate homing peptide with D(KLAKLAK)2 and delivering it 

systemically through an IV, they were able to cause tissue destruction in the 

prostate, but not in other organs in PC mouse models (Ma et al., 2012) This 

chimeric peptide also delayed the development of cancers in PC-prone 

transgenic mice (Arap et al., 2002). Our newly synthesised DHX9 peptide could 

potentially be reutilised as homing peptide that could transport anti-cancer 

agents to the prostate directly. If delivered systemically, this would be an 

alternative to ADT and could reduce PC recurrence. However, due to the 

expression of DHX9 in multiple organ systems, further phage display studies 

would need to be carried out in order to ensure that this peptide will only target 

the prostate itself. Additionally, we would also need to ensure that this peptide 

would not interfere with other members of the DExD/H helicase proteins.  

3.4.4  Fluorescence polarization as a new screening tool to 
identify binding enhancers or disruptors 

Since its discovery in the 1920s, FP has become one of the most widely used 

methods in clinical and biomedical sciences for assessing protein-protein 

interactions (Croney, 2003). FP is a powerful tool for characterizing the 

interaction between two proteins, or between a protein and DNA fragments, in 

order to provide details on the strength of these interactions (Lundblad, 

Laurance and Goodman, 1996). FP assay allows the user to closely monitor the 

association and dissociation of a fluorescent ligand with its interacting protein 

without the need to separate the bound ligand from the unbound ligand (Rinken, 

Lavogina and Kopanchuk, 2018). This allows ligand binding to be quantified 

without perturbing the binding equilibrium, making it a suitable way to measure 

low affinity interactions. Once the assay is optimized, the FP assay can be used 

to provide high throughput screening in order to find small molecule drugs that 

can either enhance or disrupt an interaction. FP assays are non-destructive, 

allowing repetitive measurements of the same sample under different conditions 
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(Rossi and Taylor, 2011). In this chapter, I tried to establish a simple binding 

assay between the purified recombinant UCR1 protein and a fluorescently tagged 

DHX9 peptide. I was able to show that the minimum peptide required for the 

assay was 62.5 nM (Figure 3.26). However, once the peptide was incubated with 

the purified recombinant protein, no binding information could be obtained as 

all FP measurements were similar to the GST tag negative control (Figure 3.27). 

Furthermore, as we increased the incubation time between the protein and the 

fluorescent peptide, the FP value continually decreased (Figure 3.27 B, C and D). 

Highest FP values could be observed after 30 minutes of incubation (Figure 3.27 

A), suggesting that the interaction between the UCR1 region and DHX9 is rapid 

and transient. However, lack of FP change in the samples of interest can also be 

due to the purity of the sample. Although we were able to purify the UCR1 

domain, the dialysed protein still contained multiple smaller bands indicating 

that the protein itself was highly degraded (Figure 3.16). Although we were able 

to use these protein samples in our peptide array experiments, this sample may 

not have been suitable for FP. The presence of precipitated matter in the assay 

solution can cause light scattering interference with FP measurements (Moerke, 

2009). It could be possible that the high presence of degraded UCR1 protein was 

interfering with the accurate detection of FP.  

Once a successful binding assay can be established, the assay can be adapted in 

order to identify small molecular drugs that are able to modulate the 

interaction. Although therapeutic peptides have emerged as a novel tool in the 

treatment of PC, it would be of interest to find small molecule drugs that can 

complement or replace the existing peptide therapy. Small molecules that 

inhibit the interaction between the protein and the fluorescent peptide, and are 

able to displace the peptide from the its binding site, can be observed as a 

decrease in FP value (Lea and Simeonov, 2011). Alternatively, if maintenance of 

the interaction between two proteins is needed to inhibit progression of a 

disease, small molecules that are able to stabilize and enhance the interaction 

can be identified (Simonetta et al., 2019). Such an approach has been used in 

order to increase the interaction between the oncogenic transcription factor β-

catenin and its E3 ligase β-TRCP (Simonetta et al., 2019). β-catenin is a 

multifunctional protein that is central to many physiological processes but high 

expression of this protein contributes to various diseases such as cancer. It acts 
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both as a transcriptional regulator and an adaptor protein for intercellular 

adhesion. Continuous activation of its signalling pathway gives rise to the 

accumulation of β-catenin in the nucleus, which in turn promotes the 

transcription of many oncogenes such as c-Myc and Cyclin-D1. β-catenin 

contributes to the carcinogenesis and progression of several cancers, such as 

colorectal cancer (Shang, Hua and Hu, 2017). Oncogenic activation of β-catenin 

occurs by escaping ubiquitin-mediated proteasomal degradation. Proteasomal 

degradation of β-catenin is mediated by the β-TrCP subfamily of F-box proteins, 

which regulate the turnover of many proteins by acting as a E3 ubiquitin-protein 

ligase that target its substrates for protein degradation. However, mutations 

within β-catenin can impair the ability of β-TrCP to effectively bind, leading to 

β-catenin stabilization and oncogenic activity (Ougolkov et al., 2004). Simonetta 

et al. (2019) therefore used FP to find prospective small molecule drugs that 

work by restoring the binding between β-TrCP and mutant β-catenin. They were 

able to identify a compound that was able to potently increase the interaction 

between β-TrCP and mutant β-catenin, and induced β-catenin degradation in 

vitro. This small molecule was able to insert into the PPI binding site, and 

increase the interaction between substrate and ligand (Simonetta et al., 2019). 

Although I was unable to determine if the interaction between PDE4D7 and DHX9 

increases the speed at which PC progresses, FP assays such as the one described 

above could help find novel small molecule drugs that could be used to enhance 

or disrupt the interaction. When established, the optimized FP conditions can be 

used in high throughput screening assays (HTSs) to evaluate more than 20 000 

compounds from a library (Alquicer et al., 2012) in order to identify novel small 

molecules for the treatment of PC. This in turn could potentially modulate 

down-stream signalling pathways that could alter the progression of disease. 

3.4.5  Chapter summary 

The data presented in this chapter has confirmed the interaction between 

PDE4D7 and DHX9. These two proteins can interact with each other in 

overexpressing VSV-tagged PDE4D7 and Flag-tagged DHX9 HEK293 and 

endogenously in VCaP cells. Although these two proteins are expressed in two 

different cellular compartments, PDE4D7 has the potential to shuttle into the 

nucleus through an NLS sequence that has been identified within the linker and 

UCR2 domain of PDE4D7. Treatment with LMB increased the presence of PDE4D7 
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within the nuclear region, which in in turn increased the interaction between 

PDE4D7 and DHX9 in LNCaP cells. The interaction between PDE4D7 and DHX9 was 

confirmed by IPs and PLA imaging and using peptide array we were able to map 

where this interaction takes place in each protein. DHX9 was found to bind 

within the UCR1 region of PDE4D7 and this binding sequence was found to 

contain the FLY docking site of PDE4 isoforms. Although this domain is shared 

between all long PDE isoforms, this binding sequence was found to be unique to 

PDE4D due to the presence of a serine at residue 196. PDE4D7 was found to bind 

within the helicase domain of DHX9, indicating that this interaction could 

potentially have a role in regulating the helicase activity of DHX9. By using cell 

permeable peptides, I was able to confirm that DHX9 binds within the UCR1 

domain, but the binding site of PDE4D7 within DHX9 still needs further 

confirmation. Using purified recombinant UCR1 and PDE4D5, FP binding assays 

were performed in order to determine the dissociation constant. Unfortunately, 

due to the purity of UCR1 I was unable to determine this constant. However, if 

this binding assay was established, this assay would permit us to find new small 

molecules that could enhance or disrupt the interaction between PDE4D7 and 

DHX9.  
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Chapter 4 DHX9 Phosphorylation by Protein 
Kinase A 

4.1  Introduction 

The cAMP-PKA signalling pathway is known to have an important role in a range 

of physiological processes, including cell growth, secondary metabolism, and cell 

differentiation (Zhu et al., 2017). cAMP controls a wide range of cellular 

processes that are triggered by a variety of extracellular signals, such as 

hormones or neurotransmitters. Many signalling pathways are initiated by the 

binding of a ligand to a GS-coupled GPCR at the plasma membrane, which in turn 

leads to the activation of AC converting ATP into cAMP (Figure 1.7) (Koschinski 

and Zaccolo, 2017). GPCRs are the largest family of plasma membrane 

receptors, mediating the effects of multiple ligands. Due to their involvement in 

fundamental biological processes and their accessibility, GPCRs are targets for 

major drug classes, including beta-blockers (Calebiro, Nikolaev and Lohse, 

2010). The major effector for cAMP in cells is PKA, which has the ability to 

phosphorylate multiple targets in each individual cell (Koschinski and Zaccolo, 

2017). PKA is a serine/threonine kinase which is composed of a dimer of two 

regulatory subunits (R) that each bind to a catalytic subunit (C) when inactive. 

Four types of R subunits (RIα, RIβ, RIIα, and RIIβ) and three types of C subunits 

(Cα, Cβ, Cγ) have been identified in humans. All PKA holoenzymes are named 

based on their R subunit isoform, referred to as PKA-I and PKA-II. PKA-I contain 

homodimers of RIα and Riβ, whereas PKA-II contain homodimers of RIIα or RIIβ 

subunits (Yang and Yang, 2016; Smith and Scott, 2018). Each R subunit contains 

two cAMP binding sites, and binding of cAMP leads to a conformational change 

that results in release of the active C subunit (Figure 4.1) (Yang and Yang, 2016). 

Furthermore, each R subunit contains an N-terminal docking and dimerization 

domain (D/D domain) that not only facilitates formation of the heterotetramer, 

but also tether is to an A-kinase anchoring protein (AKAP) (Nygren and Scott, 

2015). Once activated by cAMP, the C subunit can phosphorylate nearby 

substrates, before being sequestered by an AKAP bound to an R subunit, forming 

small signalling complexes in the cell (Autenrieth et al., 2016). AKAPs tether PKA 

and other signalling proteins, such as PDEs, to defined cellular sites, providing 

compartmentalized cAMP signalling. AKAPs can coordinate multiprotein 

complexes, allowing for compartmentalized signalling (Christian et al., 2011).  
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Figure 4.1 Structure of inactive and active PKA. A. Inactive PKA is as a dimer of two regulatory 
subunits (R) that each bind to a catalytic subunit (C). B. When bound to cAMP, the C-subunit is 
released from the R-subunit, allowing it to phosphorylate near-by proteins. Figure taken from 
Zhang et al., 2012. 

Although ADT is seen as a highly successful therapy, PC tumours often become 

hormone refractory (androgen insensitive) and can grow despite low levels of 

androgens. One possible way that these tumours can grow in such conditions is 

through cross talk with other signalling pathways, such as the cAMP-PKA pathway 

(G. Wang et al., 2006). The activity of many transcription factors, including AR, 

is regulated by their phosphorylation status. In the case of steroid receptors, 

increased phosphorylation of the receptor itself leads to an increase in its 

transcriptional activity. The AR is phosphorylated by PKA, which in turn can 

modulate AR activity and downstream gene expression (Nazareth and Weigel, 

1996). The AR is a phosphoprotein with at least 16 residues that can be 

phosphorylated by multiple kinases (Figure 4.2). These residues are sequentially 

phosphorylated upon the treatment of PC cells with androgens, antiandrogens, 
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or reagents that activate downstream signalling pathways. This results in 

alteration in the transcriptional activity of AR, its cellular localization, and its 

stability (van der Steen, Tindall and Huang, 2013). Interestingly, phosphorylation 

of different serines or threonines in AR can predict disease outcome. For 

example, phosphorylation of Ser515 by Cdk1 may predict biochemical relapse in 

PC patients. Work by Willder et al (2013) suggested that phosphorylation at AR 

at Ser515 may be the driving force in PC disease progression. However, their work 

also showed that high expression of Ser515 lead to a shorter time to biochemical 

relapse and a reduction in disease specific survival in hormone naïve PC patients 

(Willder et al., 2013). Furthermore, phosphorylation of AR at Ser81 by PKC was 

also shown to be associate with poor disease outcome. Increase expression of 

pAR Ser81 has been shown to be associated with decrease disease-specific 

survival (Patek et al., 2017). 

 
Figure 4.2 AR can be phosphorylated at multiple sites and by multiple kinases. A. Schematic 
representation of AR phosphorylation within different regions of the protein. B. Overview of AR 
phosphorylation, their kinases, and functional effects. (Figure taken from Koryakina, Ta and Gioeli, 
2014). 
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Elevated levels of cAMP/PKA in LNCaP cells following treatment with the PDE4 

inhibitor rolipram induces an increase in expression of AR and PSA proteins in the 

absence of androgens. Lower expression of PDE4 isoforms and increased levels of 

cAMP/PKA at later stages of disease favours the constitutive activation of the AR 

pathway, which in turn could contribute to disease progression (Sarwar et al., 

2014; van Strijp et al., 2018).  

Changes in protein phosphorylation represent a major way transcription factors 

can regulate their activity. Exposure of cells to different extracellular stimuli 

leads to the phosphorylation of downstream transcription factors by different 

kinases, such as PKA, which can change the cell’s behaviour due to altered gene 

expression (Whitmarsh and Davis, 2000). Although DHX9 is not considered as a 

transcription factor itself, most of DHX9’s functions have been found because of  

its interaction with multiple transcription factors, such as CREB and RNA 

polymerase II (Fuller-Pace, 2006). Through its ability to unwind secondary RNA 

structures, DHX9 is able to mediate the initiation of transcription (Murat et al., 

2018). To date, DHX9 is only known to be phosphorylated by DNA-dependent 

protein kinase (DNA-PK) in the presence of RNA, as well as by 

phosphatidylinositol 3-kinase-related kinases (PI3KKs) (Zhang et al., 2004; Lin et 

al., 2020). The phosphorylation of DHX9 was increased when mediated by RNA 

binding (Zhang et al., 2004). Inhibition of PI3KK-mediated phosphorylation of 

DHX9 was shown to decrease the ability of colorectal cancer cells to develop 

chemoresistance. This was the first study where phosphorylation of DHX9 was 

linked with the development of chemoresistance (Lin et al., 2020). 
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4.2 Chapter aims 

Increasing evidence has shown that the cAMP-PKA pathway is involved in PC by 

modulating the activity of AR. However, nothing is known about whether DHX9 

can be phosphorylated by PKA and if this phosphorylation could be modulated by 

PDE4D7 activity in the vicinity of DHX9. The aims of this chapter are as follows: 

AIM 1: Determine if DHX9 can be phosphorylated by PKA. By using a range 

of biochemical techniques, the ability of DHX9 to be PKA phosphorylated 

will be investigated in vitro. 

AIM 2: Map putative DHX9 PKA phosphorylation site using peptide array 

technology and develop a phospho-DHX9 antibody. This antibody can be 

used to confirm DHX9 phosphorylation. 

AIM 3: Investigate if interaction between PDE4D7 and DHX9 has a role in 

regulating the phosphorylation of DHX9. Using the UCR1 disruptor peptide 

described in other chapters of this thesis, I have investigated if the 

disruption of this interaction can alter the levels of DHX9 phosphorylation.  
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4.3 Results 

4.3.1  DHX9 can be phosphorylated by PKA at multiple serines. 

To date, DHX9 is only known to be phosphorylated by DNA-PK and PI3KKs. 

However, due to the role the cAMP/PKA has in PC and disease progression, I was 

interested to know if DHX9 can also be phosphorylated by PKA. Using the 

NetPhos 3.1 server, I was able to predict whether DHX9 could potentially be 

phosphorylated by PKA. This server was first developed by Blom et al. (1999) in 

order to identify serine, threonine or tyrosine residues that can be 

phosphorylated by multiple protein kinases (Blom, Gammeltoft and Brunak, 

1999). Here, the full-length sequence for DHX9 (accession number Q08211) was 

submitted. The server can identify putative PKA phosphorylation sites that 

contain the consensus sequence RX1-2S/T, where X1-2 means one or two amino 

acid residues follows the first arginine. The server identified 5 serines that can 

potentially be phosphorylated by PKA. A prediction score above 0.500 indicates 

that these are most likely to be phosphorylated in vitro (Table 4.1).  

 

Table 4.1 DHX9 can be phosphorylated at multiple serines by PKA 

Residue Number Sequence Score 

449 PRRISAVSV 0.870 

477 VRFESILPR 0.552 

485 RPHASIMFC 0.600 

506 IRGISHVIV 0.723 

1142 ISRPSAAGI 0.505 

 

Of the 5 serine residues identified, residues 449, 477, 485, and 506 are all found 

within the helicase core domain of DHX9. Interestingly, PDE4D7 binds DHX9 from 

residues 576-600 (Figure 3.16), indicating that PKA-mediated phosphorylation of 

DHX9 may be partly regulated by the interaction with PDE4D7. The last serine 

residue potentially phosphorylated by PKA (1142) is situated between the OB-

fold and NLS/NES sequence of DHX9 (Figure 1.13).  
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4.3.2  Serine 449 is readily phosphorylated in DHX9 

One of the advantages of peptide array technology is the ability to identify novel 

post-translational modifications (PTMs) using PTM-specific antibodies. Knowing 

that DHX9 could potentially be phosphorylated at 5 different serine residues, the 

DHX9 peptide arrays that, were prepared at the same time as the arrays used in 

chapter 3, were used to identify which of these residues could readily be 

phosphorylated in vitro using a PKA phosphorylation assay. To do so, the peptide 

arrays were incubated with the PKA catalytic subunit and ATP for 30 minutes at 

37˚C. The peptide arrays were then incubated with Phospho-(Ser/Thr) PKA 

Substrate Antibody (CST, 9621L) overnight at 4˚C. Phospho-(Ser/Thr) PKA 

Substrate Antibody is able to detect peptides or proteins with a phosphorylated 

PKA consensus site (RXXpS/pT). The DHX9 was incubated with the appropriate 

secondary antibody, and the spots detected using chemiluminescence (Figure 

4.3). 

 

 
Figure 4.3 Serine 449 is phosphorylated by PKA in vitro. Full length DHX9 peptide array was 
incubated with purified recombinant PKA catalytic subunit and ATP. Phosphorylated serine or 
threonine were detected using a Phospho-(Ser/Thr) PKA Substrate Antibody. This experiment was 
performed by Jane Findlay. 

Of the 5 residues that was predicted to be phosphorylated by PKA (Table 4.1), 

only the serine at residue 449 was detected by peptide array analysis at spot 89 

(Figure 4.33). Although the PKA consensus sequence was available on spots 88 

and 90, these did not result in a positive detection by the PKA antibody (Figure 

4.33). As previously mentioned, and illustrated in Figure 4.1, the serine that is 

readily phosphorylated by PKA was found within the helicase core domain of 

DHX9. Interestingly, this site was recently identified as an important 

phosphoprotein by mass spectrometry (MS)-based phosphoproteomics (Zhou et 
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al., 2013). In order to provide further evidence that this serine is readily 

phosphorylated by PKA, the sequence at spot 89 was truncated at either the N- 

or C-terminus. Furthermore, the PKA consensus site was substituted with either 

an alanine, aspartic acid or a phospho-serine in order to ensure that changes to 

this sequence also leads to a change in detection. These peptide array 

membranes were incubated with PKA catalytic subunit and PKA antibody as 

previously described. (Figure 4.4 and Figure 4.5) 
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Figure 4.4 Substitution and truncation of the newly identified PKA site of DHX9. Peptide 
array membranes were spotted for the newly identified DHX9 PKA site. One set of 
membranes were incubated with bovine catalytic PKA subunit in order to phosphorylate the Serine 
449. A. Substitution of serine 449 with an alanine and arginine 446 and 447 with aspartatic acid 
leads to a loss of DHX9 phosphorylation. B. Simultaneous N- and C- terminal truncation 
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Figure 4.5 N- and C-Terminal truncation in order to identify minimum sequence for DHX9 
phosphorylation. Peptide array membranes were spotted for the newly identified DHX9 PKA site. 
One set of membranes were incubated with bovine catalytic PKA subunit in order to phosphorylate 
the Serine 449. A. N-Terminal truncation. B. C-terminal truncation 
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Loss of the RRIS PKA sequence, either by substituting the serine with an alanine 

(Figure 4.4 A spot 2 and 3) or the arginine with aspartic acid (Figure 4.4 A spot 

5), inhibited the ability of this sequence to be phosphorylated by the PKA 

catalytic subunit. Recent advances in peptide array technology permits the 

direct spotting of phosphorylated amino acids (Parikh et al., 2009). By doing so, 

I was able to design a spot that already contains a phosphorylated serine in the 

PKA consensus sequence (Figure 4.4 A spot 4). Although this phospho-serine was 

detected, it was detected at a much lower level than spot 1, where the serine 

was only phosphorylated after incubation with bovine PKA C-subunit (Figure 4.4 

A spot 1 and 4). Although this serine was predicted to have the highest score in 

the NetPhospho analysis, the sequence specifically spotted with this phospho-

serine could barely detect it. This could potentially be due to the fact that this 

particular spot was not correctly deposited on the membrane. By creating N- and 

C-terminal truncations of this, I was able to determine the minimum amino acids 

required to phosphorylate DHX9. These peptides arrays provided further 

evidence that DHX9 can be phosphorylated by PKA at serine 449. Interestingly, 

loss of arginine 446 and the alanine at residue 450 by sequence truncation also 

leads to a loss of DHX9, highlighting the importance of these amino acids in the 

phosphorylation of serine 449 (Figure 4.5 A and B). Using the information 

gathered in Figure 4.4 and Figure 4.5, the minimum sequence for DHX9 

phosphorylation was found to be T443QPRRISAVS452. This information was then 

used later in the chapter in order to generate a custom DHX9 phospho-specific 

antibody.  

4.3.3  DHX9 can be phosphorylated by PKA in vitro 

My data so far has shown that the serine at residue 449 of DHX9 is readily 

phosphorylated by PKA on peptide arrays. Although detection of PTMs on peptide 

arrays is a useful tool, this may not always mimic what is happening in vitro. The 

DHX9 peptide arrays were incubated with purified PKA catalytic domain, 

therefore we may have forced this phosphorylation to occur by creating the 

optimum conditions. In order to ensure that DHX9 can be phosphorylated in a 

cellular context, HEK293 cells were transfected with Flag-tagged DHX9 plasmid 

for 24 hours. They were then treated for 5 minutes with 25µM of forskolin and 

100 µM of 3-isobutyl-1-methylxanthine (IBMX) in order to increase the levels of 

intracellular cAMP. IBMX is a nonspecific PDE inhibitor that is known to elevate 
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the levels of intracellular cAMP (Schroeder et al., 2012). Forskolin is a rapid and 

reversible activator of AC, which in turn contributes to an increase of 

intracellular levels of cAMP (Alasbahi and Melzig, 2012). After forskolin and IBMX 

treatment, the cells were lysed and the protein concentration was determined 

using a standard Bradford assay. Before subjecting these lysates to IP, 30 µg of 

the non-treated and treated lysates from all experiments were run on an SDS-

PAGE gel and blotted for phosphorylated PKA substrate and GAPDH. This was 

done in order to ensure that all cells treated with forskolin and IBMX did lead to 

an increase in the detection of total PKA phosphorylated proteins (Figure 4.6).  

 

Figure 4.6 Treatment of HEK293 cells transfected with Flag-tagged DHX9 with forskolin and 
IBMX. A. Lysates from 6 independent experiments were run on an SDS-PAGE gel and blotted for 
phospho-PKA substrate and GAPDH. B. Total PKA phosphorylation from each sample was 
measured densitometrically and normalised to the GAPDH loading control. The data is presented 
as the mean ± SEM of 6 independent experiments. Statistical significance was determined using a 
Student’s T-Test, where p*= 0.0277. 
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Treatment with forskolin and IBMX led to a visible increase in PKA 

phosphorylation when compared to the non-treated controls (Figure 4.6 A). 

When the signal from each lysate was quantified, forskolin-IBMX treatment led 

to a significant increase in the total amount of proteins that could be 

phosphorylated by PKA (Figure 4.6 B). Knowing that the treatment with 

forskolin-IBMX led to an increase in PKA phosphorylation, these lysates were 

then further used for an IP. The lysates were incubated for 3 hours at 4˚C with 

protein G beads that were conjugated with FLAG antibody to pull down ectopic 

DHX9. The beads were thoroughly washed, and the protein was eluted off the 

beads by boiling. IP samples were run on an SDS-PAGE gel and blotted for FLAG 

and phospho PKA substrate (Figure 4.7).  

 
Figure 4.7 Flag-tagged DHX9 IP following forskolin-IBMX treatment in HEK293. A. Flag-
tagged DHX9 was pulled down in HEK293 transfected cells following treatment with 25 µM 
forskolin and 100 µM IBMX. Western blot membranes were probed for Flag (top) and phospho 
PKA substrate (bottom). B. The ratio between Flag-tagged DHX9 in the PKA substrate and FLAG 
blot was measured. Data is presented as the mean ± SEM of six independent experiments. 
Statistical significance was determined using a T-Test where p*=0.049. 
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Flag-tagged DHX9 was successfully pulled down from the HEK293 transfected 

cells (Figure 4.7 A top membrane). Furthermore, a band representing DHX9 was 

recognised by the PKA substrate from this pulldown (Figure 4.7 A bottom 

membrane). The ratio between phosphorylated and total DHX9 was then 

measured from the six independent experiments. Treatment with forskolin-IBMX 

lead to a 50% increase in the detection and pulldown of phosphorylate DHX9, and 

this was shown to be significant when statistically analysed (Figure 4.7 B). The 

data presented above demonstrate that DHX9 is readily phosphorylated by PKA 

when over-expressed in HEK293 cells. This same experiment was then repeated 

in VCaP cells in order to see if endogenously expressed DHX9 can be 

phosphorylated by PKA. VCaP cells from a 10 cm dish were treated with 25 µM of 

forskolin and 100 µM IBMX for five minutes. The cells were then lysed and 

protein concentration of was determined using a standard Bradford assay. These 

lysates were then incubated with protein G beads and DHX9 specific antibody 

overnight at 4˚C. IP samples were then washed and analysed by SDS-PAGE gel 

and western blotting. Membranes were probed for DHX9 and PKA substrate 

(Figure 4.8) 

 
Figure 4.8 DHX9 IP following forskolin-IBMX treatment in VCaP. VCaP cells were treated with 
25 µM forskolin and 100 µM IBMX, after which endogenously expressed DHX9 was IPed. Western 
blot membranes were probed for DHX9 (top) and phospho-PKA substrate (bottom). Representative 
of N=3. 
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Although endogenously expressed DHX9 was pulled down in the VCaP lysates 

(Figure 4.8 top membrane), I could not clearly identify if it was readily 

phosphorylated in these cells due to smear that appeared in the IP (Figure 4.8 

bottom membrane). I therefore decided to use PLA to identify if DHX9 can be 

phosphorylated in vitro. LNCaP cells were chosen for this experiment as their 

morphology was better suited for confocal microscopy. LNCaP cells were plated 

in a 24 well plate with glass coverslips for 24 hours. They were then treated with 

25 µM of forskolin for five minutes then fixed and stained for phospho-PKA 

substrate and DHX9. The cells were then subjected to PLA secondary antibody 

treatment and visualised using the Zeiss LSM confocal microscope (Figure 4.9).  

 
Figure 4.9 PLA between DHX9 and phospho-PKA substrate in LNCaP cells. LNCaP were 
plated onto coverslips and probed for either DHX9 alone for the positive control (B), or DHX9 and 
PKA phospho-substrate with or without 250 µM forskolin (C+D). No primary antibody was included 
for the negative control (A). All cells were stained for the membrane (green) and the nucleus (blue) 
in order to appropriately identify each cell. PLA signal is visible in the red channel. 

As expected, the positive control resulted in the detection of spots when 

visualised under the microscope (Figure 4.9 B), whereas no spots were detected 

in the negative control (Figure 4.9 A). This indicated that any spots detected can 

only be attributed to the interaction between secondary antibodies bound to our 

primary antibody. Furthermore, PLA spots could be detected in samples stained 

with DHX9 and phospho-PKA substrate antibody (Figure 4.9 C and D) indicating 
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that DHX9 can readily be phosphorylated by PKA in LNCaP cells. The PLA signal 

from the cells from each conditions were then quantified using Image J in order 

to determine if treatment with forskolin led to any changes in detection (Figure 

4.10). 

 
Figure 4.10 Quantification of PLA in LNCaP. PLA signal from the non-treated control and 
forskolin treated cells were quantified. Data is presented as the mean ± SEM of at least 20 cells 
from each condition. Statistical significance was determined using a T-Test, where p****<0.0001. 

Interestingly, treatment with forskolin led to a significant increase in PLA signal 

when compared to the other condition (Figure 4.9 D and Figure 4.10) The data so 

far has shown that DHX9 is readily phosphorylated by PKA in exogenous and 

endogenous settings. Further experiments, such as site-directed mutagenesis of 

S449, would have added more support to this chapter. By creating a phospho-null 

mutant, I could have investigated if the loss of S449 ablates the phosphorylation 

of DHX9 by PKA.  

4.3.4  Testing of novel phospho-DHX9 antibody  

My data so far has shown that DHX9 is readily phosphorylated by PKA in 

exogenous and endogenous settings. DHX9 has been shown to be phosphorylated 

at S449, and the phosphorylation of this serine can be increased by forskolin-IBMX 

treatment. Using the information gathered in Figure 4.4, a custom phospho-

antibody (Ab) against DHX9 was commissioned. The amino acid sequence 

T443QPRRIpSAVS452 was used to create a peptide antigen that was injected into a 

rabbit to raise the antibody. The rabbit was immunized six times at two weeks 
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intervals and a blood samples were taken after each immunization. After the 

final round of immunisation, the rabbit serum was collected from which the 

phospho-antibody was purified using an affinity column. The purified antibody 

was first tested on peptide arrays in order to ensure that the antibody was able 

to recognise the epitope against which it was raised. Encouragingly, the DHX9 

phospho-Ab recognised phosphorylated epitopes, and these were attenuated 

following treatment with a blocking peptide (T443QPRRISAVS452) (Figure 4.111). 

 
Figure 4.11 Testing of novel pDHX9 antibody using peptide array technology. Peptide array 
technology was used to verify that the novel pDHX9 antibody was able to bind to its epitope. A. 
Non-phosphorylated sequence. B. Phosphorylated sequence. 
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The strongest signal could be seen between spots 4-6 where the full antigen was 

present (Figure 4.11 B array 2). Interestingly, the presence of the blocking 

peptide in the third peptide array ablated the detecting of the antigen (Figure 

4.11 B array 3). Spot 8, where only the last two amino acid of the antibody 

epitope was observed to show a positive signal, in all three arrays including the 

two negative controls. This may be due to unspecific binding from the secondary 

antibody (Figure 4.11 all three arrays). Although the antibody was able to detect 

the non-phosphorylated epitope (Figure 4.11 A), the signal was visibly weaker 

when compared to the arrays with the phosphorylated serine. In order to provide 

further evidence that the newly purified antibody was able to detect phospho-

S449, the in vitro PKA assay previously performed should have been repeated. 

This would have confirmed that the antibody does in fact recognise its epitope 

and would have also further validated the results from the initial PKA assay. 

Furthermore, this antibody should have been tested against other members of 

the DExD/H helicase family by peptide array in order to ensure that the antibody 

is able to only detect DHX9, and no other isoforms. This is due to the high 

homology within the helicase core domain amongst the DExD/H helicase family. 

Spotting of other DExD/H helicase proteins on peptide arrays, such as DHX15 

which has recently been shown to be involved in CRPC (Xu et al., 2019), would 

have allowed us to test the specificity of this antibody. Unfortunately, due to 

time constraints and technical issues with the peptide array spotter, I was 

unable to perform this experiment.  

Although I was unable to test the specificity of the antibody by peptide array, 

the newly synthesised antibody was tested for western blotting detection of 

phospho-DHX9. HEK293 cells were transfected with Flag-tagged DHX9, and the 

next day the cells were treated for 0, 3, 10, 15 or 30 minutes with 25 µM 

forskolin and 100 µM IBMX. 30 µg of cell lysate were then run on an SDS-PAGE gel 

and both total and phosphorylated DHX9 was detected by western blotting 

(Figure 4.12 A). The ratio between phosphorylated and total protein was 

determined in order to see if the treatment with forskolin and IBMX lead to an 

increase in the detection of phospho-DHX9. (Figure 4.12 B).  
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Figure 4.12 Forskolin and IBMX in Flag-tagged DHX9 transfected HEK293 cells. A. HEK293 
cells transfected with Flag-tagged DHX9 were treated with 25 µM forskolin and 100 µM IBMX for 
the indicated times. Lysates were run on an SDS-PAGE gel and proteins were detected using 
western blotting. Membranes were probed for total DHX9, phospho-DHX9, and GAPDH. B. The 
ratio between phospho-DHX9 and total DHX9 was measured and normalised to the non-treated (0) 
control. C. B. The ratio between phospho-DHX9 and total DHX9 was measured and normalised to 
the non-treated (0) control after being incubated with the phospho-Ab and the blocking peptide. 
Data is presented as the mean ± SEM of three independent experiments. No statistical significance 
was found when analysed using a One-Way Anova. 

Our newly synthesised antibody was able to detect phosphorylated DHX9 by 

western blotting (Figure 4.12 A membrane 2 and 3). Interestingly, treatment 

with forskolin-IBMX for 3- and 10-minutes led to the highest levels of 

phosphorylated DHX9 detected. Although this data is not significant due to the 

high variability between experiments, this western blot shows that the purified 

phospho-DHX9 antibody is able to recognise the protein (Figure 4.12 A, blot 2). 

When incubated with the phospho-Ab and a blocking peptide, I am still able to 

detect phosphorylated DHX9 after 3- and 10-minutes of treatment (Figure 4.12 

A, blot 3). However, when analysed, these bands were detected at a much lower 

level (Figure 4.12 C), indicating that like in the peptide array in Figure 4.11, 
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incubating the membrane with the blocking peptides reduces the detection of 

phosphorylated DHX9. Interestingly, treatment for longer than 15 minutes lead 

to a rapid decrease in DHX9 phosphorylation, like that of the non-treated control 

(Figure 4.122 B). Knowing that the antibody can successfully detect 

phosphorylated DHX9 by western blotting, I then decided to test its ability to 

detect phospho-DHX9 by confocal microscopy. HEK293 were transfected with a 

Flag-tagged DHX9 plasmid, the treated with 25 µM forskolin and 100 µM IBMX for 

0, 3 or 10 minutes. These times were chosen as the western blots showed that 

these times points lead to the highest detection of phospho-DHX9 (Figure 4.12 

B). The cells were then fixed and stained for phospho-DHX9 using our newly 

commissioned antibody (Figure 4.13).  
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Figure 4.13 Testing of Novel phospho-DHX9 antibody by confocal microscopy. A. HEK293 
overexpressing Flag-tagged DHX9 were treated for either 0, 3, or 10 minutes with 25 µM forskolin 
and 100 µM IBMX, then stained for the membrane using wheat germ agglutinin (green) and 
phospho-DHX9 (red). B. The mean fluorescence intensity of each condition was measured in at 
least n>30 cells. The data is presented as the mean ± SEM. Statistical significance was measures 
using a One-Way Anova, where p**=0.0041.  

The newly synthesised phospho-DHX9 antibody was able to detect the protein by 

ICC with confocal microscopy. Under basal conditions, some phospho-DHX9 

staining can be visible. However. treatment with forskolin-IBMX for 3- or 10-

minutes led to a visible increase in phospho-DHX9 staining (Figure 4.13 A). When 
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the mean fluorescence intensity (MFI) was measured, treatment for 3-minutes 

with forskolin-IBMX led to a significant increase in the detection of phospho-

DHX9. Treatment for 10-minutes also led to an increase in the detection of 

phospho-DHX9, however this was shown not to be a statistically significant 

increase (Figure 4.13 B). Interestingly, phosphorylated DHX9 could only be 

detected in the cytoplasmic region, which is also where the highest 

concentration of cAMP and PKA can be found (Koschinski and Zaccolo, 2017). In 

order to confirm that this is truly the case, a subcellular fractionation following 

forskolin-IBMX treatment could be performed. We would expect to only detect a 

band in the cytoplasmic fraction, compared to the nuclear fraction, following 

treatment with forskolin-IBMX. 

My data so far has shown that the newly synthesised antibody is able to detect 

phospho-DHX9 in HEK293 overexpressing Flag-tagged DHX9. However, I was 

interested to know if this antibody can detect endogenously expressed phospho-

DHX9. Therefore, the ICC experiment was repeated in DU145 cells. Previous 

work has shown that out of the three PC cell lines used in this thesis, DU145 has 

the highest expression of DHX9 (Figure 3.1 C). Furthermore, DU145 expresses the 

lowest amount of PDE4D7 (Figure 3.1 B), leading to a potential accumulation of 

cAMP and PKA in the cell. This could mean that DHX9 exists in a 

hyperphosphorylated state in DU145 cells. DU145 cells were seeded onto glass 

coverslips in a 24 well plate, then treated with 25 µM forskolin and 100 µM IBMX 

for 0, 3, or 10 minutes. The cells were then stained for the membrane using 

wheat germ agglutinin, and for phospho-DHX9 using the custom antibody. The 

cells were then fixed onto a glass slide then visualised using the Zeiss LSM 

confocal microscope (Figure 4.14). 
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Figure 4.14 Testing of the new phospho-DHX9 antibody in DU145 cells. A. DU145 cells were 
treated with 25 µM forskolin and 100 µM IBMX for 0, 3, or 10 minutes. Cells were stained for the 
membrane (green), phospho-DHX9 (red), and nucleus (blue), then visualised using the Zeiss LSM 
confocal microscope. B. The mean fluorescence intensity for phospho-DHX9 from each condition 
was measured. Data is presented as the mean ± SEM of n>6 cells. Statistical significance was 
determined using a One-Way Anova where p*=0.0255. 

Phosphorylated DHX9 could be detected in DU15 by confocal microscopy. 

Treatment with forskolin-IBMX led to a visible increase in the detection of 

phospho-DHX9 after 3-minutes of treatment (Figure 4.14 A middle row). 

However, very little phospho-DHX9 could be detected in DU145 cells treated for 
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10-minutes (Figure 4.14 A bottom row). As in the HEK293 cells, phosphorylated 

DHX9 was mainly found in the cytoplasm where highest levels of cAMP and PKA 

can be found (Figure 4.14 A second column). Unlike in the HEK293 ICC staining 

(Figure 4.13), some phosphorylated DHX9 could be detected within the nuclear 

region of DHX9. This data is further supported by the fact that PLA signal 

between endogenously expressed DHX9 and phospho-PKA substrate could be 

found across the whole cell in LNCaP cells (Figure 4.9) When the MFI for 

phospho-DHX9 was measured from each condition, treatment with forskolin-IBMX 

did lead to an increase in phospho-DHX9 detection after three minutes. Although 

this was not shown to be significant when compared to the non-treated control, 

there was a significant increase in the detection of phospho-DHX9 when the 3-

minute condition was compared to the 10-minute condition (Figure 4.14 B).  

4.3.5 Disruption of the DHX9-PDE4D7 leads to an increase in 
DHX9 phosphorylation. 

So far, my data has suggested that DHX9 can be readily phosphorylated by PKA 

at Ser449 and our newly synthesised antibody is able to detect it by western 

blotting and ICC with confocal microscopy. However, I was interested to know if 

PDE4D7 can influence the levels of DHX9 that can be phosphorylated in vitro. 

Previous work in chapter 3 has shown that PDE4D7 binds downstream of the 

newly identified PKA phosphorylation site. The interaction between PDE4D7 and 

DHX9 could potentially regulate the levels of DHX9 being phosphorylated by 

modulating the local levels of cAMP (Fertig and Baillie, 2018). The UCR1 

disruptor peptide (described previously in chapter 3 and in Figure 3.20 A) was 

used in order to investigate how PDE4D7 can influence the phosphorylation of 

DHX9. To do so, HEK293 cells were transfected with VSV-tagged PDE4D7 for 24 

hours. The cells were then treated for two hours with either DMSO, 10 µM 

scrambled peptide, or 10 µM UCR1 disruptor peptide, after which they were 

lysed, and total protein concentration was determined used a standard Bradford 

assay. The lysates were then subjected to IP, where they were incubated with 

DHX9 antibody and protein G sepharose beads overnight at 4˚C. The IPs were 

thoroughly washed the next day and boiled in sample buffer. IPs were run on an 

SDS-PAGE gel and protein expression was assessed by western blotting. The 

membranes were probed for total DHX9, phospho-PKA substrate, and VSV (Figure 
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4.15). The commercially available phospho-PKA substrate antibody was used 

here as the custom phospho-DHX9 antibody was not available at the time.  

 
Figure 4.15 Disruption of the PDE4D7-DHX9 interaction leads to an increase in DHX9 
phosphorylation A. IPs were run on an SDS-PAGE gel and protein expression was assessed by 
western blotting. Membranes were probed for DHX9 (top blot), phospho-PKA substrate (middle 
blot), and VSV (bottom blot). B. The ratio between DHX9 in the PKA substrate and DHX9 blot was 
measured. Data is presented as the mean ± SEM of three independent experiments. Statistical 
significance was determined using a One Way Anova.  

I was able to successfully pull down DHX9 from transfected HEK293 cell lysate, 

and this was also detected in the phospho-PKA blot (Figure 4.15 A top and 

middle blot). PDE4D7-VSV was also successfully transfected into the cells (Figure 

4.15 A bottom blot). Under basal conditions, disruption of the interaction 

between PDE4D7 and DHX9 led to an increase in the levels of phospho-DHX9 

detected. However, this was not found to be significant when compared to the 

DMSO-treated condition (Figure 4.15 B). This data indicates that PDE4D7 acts as 
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a negative regulator of DHX9 phosphorylation. PDE4D7 can hydrolyse the cAMP 

located within close proximity to DHX9, and by doing so, it can inhibit the 

phosphorylation of DHX9, potentially regulating the helicase activity of DHX9. 

Loss of this interaction using our UCR1 disruptor peptide leads to a ~37.5% 

(Figure 4.15 B) increase in the levels of DHX9 being phosphorylated by PKA under 

basal conditions.  

In order to provide further evidence that the decreased interaction between 

PDE4D7 and DHX9 leads to an increase in DHX9 phosphorylation, HEK293 cells 

were transfected with FLAG-tagged DHX9 and PDE4D7-VSV overnight on 

coverslips in a 12 well plate. The cells were then treated with the UCR1 

disruptor peptide, or appropriate controls, as previously described. A subset of 

the UCR1 disruptor peptide, scrambled peptide and DMSO treated cells were 

further treated with 25 µM forskolin and 100 µM IBMX for 3-minutes in order to 

investigate if this could lead to any further increase in DHX9 phosphorylation. 

This timepoint was chosen as it was shown to lead to the highest detection of 

phospho-DHX9 by our custom-made antibody (Figure 4.13 and Figure 4.14). The 

cells were then stained for the membrane using wheat germ agglutinin, for 

phospho-DHX9 using our custom antibody, and for total DHX9. The cells were 

then fixed and visualised using a Zeiss LSM confocal microscope (Figure 4.16). 
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Figure 4.16 Detection of phosopho-DHX9 following UCR1 disruptor peptide treatment. A. 
HEK293 overexpressing Flag-tagged DHX9 and PDE4D7-VSV were stained with phospho-DHX9 
and DHX9 following peptide treatment. B. HEK293 overexpressing Flag-tagged DHX9 and 
PDE4D7-VSV were stained with phospho-DHX9 and DHX9 following peptide and forskolin and 
IBMX treatment. 
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By staining for both phospho- and total-DHX9, it can be noted that the 

distribution of these two stains are completely different. Total DHX9 is found 

exclusively in nucleus, while phospho-DHX9 is only found within the cytoplasm 

(Figure 4.16). In order to investigate if peptide treatment led to any changes in 

the detection of phosopho-DHX9, the MFI from each condition was measured 

from each. The statistical significance of the mean was determined using a Two-

Way Anova (Figure 4.17).  

 
Figure 4.17 MFI of phosho-DHX9 from cells treated with UCR1 disruptor peptide and 
forskolin-IBMX. The MFI from cells stained with phospho-DHX9 in Figure 4.16 was determined. 
The data presented is representative of the mean ± SEM of N>14 cells from each condition. 
Statistical significance was determined using a Two-Way Anova, where p*=0.0138, p***=0.0007, 
and p****<0.0001. 

Treatment with the UCR1 disruptor and scrambled peptide led to a slight non-

significant decrease in the amount of phospho-DHX9 detected in the cells under 

basal conditions (Figure 4.16 A, last row, and Figure 4.17). However, a 

significant increase in levels of phospho-DHX9 could be detected in cells where 

the interaction between PDE4D7 and DHX9 was inhibited in conjunction with 

increased levels of intracellular cAMP due to the forskolin-IBMX treatment 

(Figure 4.16 B, last row, and Figure 4.17). Treatment of the cells with the UCR1 

disruptor peptide and forskolin-IBMX led to a highly significant increase in levels 

of phospho-DHX9 detected when compared to all other conditions (Figure 4.17). 

Interestingly, this effect was not observed when the cells were pre-treated with 
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the scrambled peptide control. Although treatment of these cells with forskolin-

IBMX did lead to a slight increase in the detection of phospho-DHX9, this was not 

to the same extent as the UCR1 disruptor peptide (Figure 4.16 A and B, middle 

row, and Figure 4.17). The increase in the levels of DHX9 phosphorylated can be 

attributed to the fact that DHX9 and PDE4D7 are no longer interacting with each 

other. This data provides further evidence that the binding of PDE4D7 to DHX9 

gates DHX9 phosphorylation. PDE4D7 acts as a negative regulator of DHX9 

phosphorylation, and dissociation of this complex leads to an increase in DHX9 

phosphorylation by PKA.  
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4.4 Discussion 

4.4.1 DHX9 PKA phosphorylation is regulated by PDE4D7 

PTMs are known to be essential mechanisms in eukaryotic cells to diversify the 

function any single protein can have within the cells. Dynamic coordination of 

different signalling networks allows a single protein to respond to multiple 

extracellular signals. Reversible, or irreversible, biochemical reactions allow 

cells to regulate downstream signalling pathways and alter their physiological 

state (Wang, Peterson and Loring, 2014). Understanding the roles and 

mechanisms of PTMs is essential in biomedical sciences as certain PTMs are 

known to interfere with drug action. This in turn can influence different 

biochemical networks than can alter drug response (Brunk et al., 2018).  

Protein phosphorylation is one of the most important PTMs, with the ability to 

orchestrate a variety of cellular functions and processes (Gao et al., 2008). This 

reversible reaction occurs through protein kinases that can mediate the addition 

of a phosphate group to the polar R group of various amino acids. This addition 

allows the protein to change its conformation when interacting with other 

molecules (Ardito et al., 2017). The phosphate group has been shown to be used 

to regulate critical biological functions, as well as coordinate an appropriate 

drug response (Schwartz and Murray, 2011). Protein phosphatases are slowly 

being recognised as crucial regulators of signalling pathways (Reiterer et al., 

2020). The phosphorylation state of a single protein is a dynamic process that 

depends on the activities of both protein kinases and phosphatases acting on 

their appropriate substrate (Barford, Das and Egloff, 1998). PP1 is the major 

Ser/Thr phosphatase and it is expressed in all eukaryotic cells. This protein is 

involved in multiple cellular processes, including cell cycle regulation, 

highlighting its importance in maintaining normal cellular functions (Shi, 2009). 

Modification of proteins via their phosphorylation and subsequent 

dephosphorylation, is a critical function in multiple signalling pathways (Vitrac, 

Mallampalli and Dowhan, 2019).  

In this chapter, I have shown that DHX9 is phosphorylated by PKA in biochemical 

assays and in vitro in cultured cells. Although DHX9 has previously been shown to 

be phosphorylated by DNA-PK and PI3KKs (Zhang et al., 2004; Lin et al., 2020), 
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this is the first study to show that DHX9 may be phosphorylated by PKA. Using 

PKA consensus site prediction software and peptide array technology, I was able 

to show that DHX9 can be phosphorylated at S449 in the helicase domain (Table 

4.1 and Figure 4.3). Interestingly, loss of the PDE4D7-DHX9 interaction due to 

the UCR1 disruptor peptide treatment also led to an increase in DHX9 

phosphorylation under basal conditions when investigated by IP (Figure 4.15). 

Further treatment by forskolin-IBMX lead to a highly significant increase in the 

detection of phospho-DHX9 (Figure 4.16). It is now widely accepted that 

compartmentalization of cAMP signalling and PKA action is regulated by localised 

pools of PDEs. The direct interaction between AKAP, PDEs, and PKA is complex 

and governs the dynamic signalling changes which in turn can direct down-

stream signalling pathways and protein activity (Willoughby et al., 2006). 

Interestingly, inhibition of PDEs using a combination of different inhibitors 

results in the global increase in levels of cellular cAMP (Beltejar et al., 2017). 

Using a mass spectrometry-based phosphoproteomic analysis after treatment 

with various selective PDE inhibitors, Beltejar et al. (2017) attempted to 

characterise how PDEs can regulate the phosphoproteome in the Jurkat T-cell 

line. Using this approach, they were able to identify 3241 proteins that were 

phosphorylated when different PDEs were directly inhibited. Upon further 

inspection, phosphorylation of a subset of these proteins was directly mediated 

by PKA when PDE3 and PDE4 isoforms were directly inhibited. The proteins 

identified as being phosphorylated in this analysis were found to be associated 

with a wide range of biological functions, highlighting the ability of the cAMP to 

regulate multiple processes in T-cells (Beltejar et al., 2017). Although this study 

was conducted in T-cells, it demonstrates the importance of PDEs in regulating 

the global phosphoproteome. However, interactions with specific PDE isoforms 

are known to regulate phosphorylation. The targeting of single PDE-protein 

interactions allows for the precise regulation of individual cAMP nanodomains 

(Blair and Baillie, 2019). Such is the case with the interaction between PDE4D 

and heat shock protein 20 (HSP20) in cardiac myocytes (Sin et al., 2011). HSPs 

are a large family of molecular chaperones which have important roles in cell 

survival and development. While some HSPs are constitutively expressed, 

expression of certain Hsps are upregulated under stress conditions (Miller and 

Fort, 2018). The protective action of HSP20 is triggered following 

phosphorylation by PKA at S16. Activation of β-adrenergic stimulation and 
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increases in levels of intracellular cAMP leads to the phosphorylation of HSP20 by 

PKA, which is vital for cardioprotective actions of this protein (Edwards, Scott 

and Baillie, 2012). Using peptide array technology, Sin et al. (2011) were able to 

show that HSP20 binds to the catalytic region of PDE4D. Disruption of this 

interaction using cell permeable peptides was shown to increase the levels of 

PKA-mediated phosphorylation of HSP20 in neonatal rat cardiomyocytes. This in 

turn protected these cardiac cells against β-adrenergic-induced hypertrophy (Sin 

et al., 2011; Martin et al., 2014).  

Due to the importance of the cAMP/PKA pathway in multiple key processes, such 

as cell survival, proliferation, and differentiation (Palorini et al., 2016), it is 

important that we identify novel proteins that can be phosphorylated by PKA. In 

this chapter, I suggest that disruption of the interaction between PDE4D7 and 

DHX9 leads to an increase in DHX9 phosphorylation detected by western blotting 

and ICC using an antibody directed towards a novel PKA phosphorylation site in 

DHX9 (S449) (Figure 4.15 and Figure 4.16). Future work into the functional 

implication of DHX9 phosphorylation is needed in order to understand how this 

change can alter its helicase activity. Previous work by Lin et al (2020) 

demonstrated that the inhibition of DHX9 phosphorylation by PI3KKs decreased 

the expression of oxaliplatin-induced circRNA expression, which in turn blocked 

the development of chemo-resistant cells (Lin et al., 2020). It would be 

interesting to find out if DHX9 phosphorylation promotes the expression of 

circRNA that could lead to chemo-resistance. Inhibition of DHX9 PKA 

phosphorylation could potentially desensitize chemo-resistant cells, and 

potentially ameliorate treatment outcome of patients with hormone refractory 

or CRPC tumours. 

Interestingly, other members of the helicase superfamily have been reported to 

be phosphorylated, which in turn affected their activity. The DDX1 helicase has 

recently been shown to be phosphorylated (Gustafson and Wessel, 2010). DDX1 is 

a member of the DEAD family of RNA helicases and its activity is associated with 

multiple aspects of cellular metabolism (Li, Monckton and Godbout, 2008). 

Research by Li et al. (2008) demonstrated that DDX1 colocalizes with ataxia 

telangiectasia mutated (ATM) kinase at DSBs within the nucleus following 

ionising radiation treatment . Interestingly, this co-localisation was associated 

with an increase in DDX1 phosphorylation in vitro and in vivo, suggesting that 
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DDX1 phosphorylation promotes DDX1 role in the repair (Li, Monckton and 

Godbout, 2008; Gustafson and Wessel, 2010). By identifying DHX9 as a novel PKA 

phospho-substrate is a step towards identifying a mechanism by which this 

protein is regulated.  

4.4.2 DHX9 and other PTMs 

Although I have shown that DHX9 is readily phosphorylated by PKA, DHX9 is 

known to be SUMOlyated at its N-terminus and methylated at its C-terminus 

(Fidaleo, De Paola and Paronetto, 2016). Many enzymes that are responsible for 

PTMs are able to recognise and modify multiples sites within the same target 

protein (Barber and Rinehart, 2018). Over 59% of proteins within the human 

genome are modified by more than one PTM (Woodsmith, Kamburov and Stelzl, 

2013). Modified proteins are key regulators of signalling pathways and cellular 

homeostasis (Perchey et al., 2019). PTMs represent a key mechanism by which a 

cell can regulate protein function (Beltrao et al., 2013). Owing to the reversible 

nature of most PTMs, normal cells can use this switch in order to determine the 

resting and proliferative state of cells, enabling rapid and tight regulation of cell 

proliferation. However, in cancer cells, activation of oncogenes and loss of 

tumour suppressor genes provides continuous proliferative signals in part due to 

the changes in PTMs of effector proteins that are involved in proliferation 

(Hitosugi and Chen, 2014). Sustained proliferative signalling due to changes in 

PTMs and their downstream signalling pathways is recognised as one of the 

hallmarks of cancer, and understanding these changes is vital in order to find 

new therapeutic targets (Hanahan and Weinberg, 2011). In this chapter, DHX9 

was shown to be by phosphorylated by PKA but I did not investigate whether this 

PTMs had any downstream effects on DHX9´s ability to mediate CREB 

transcription. Recent work in the Baillie lab used a PDE4D7 luciferase construct 

in order to investigate if AR signalling influenced PDE4D7 expression (Henderson 

et al., 2014). This assay could be adapted in order to investigate whether DHX9 

phosphorylation by PKA alters PDE4D7 mRNA expression via its CREB sites. Not 

only would this experiment show that DHX9 has a role in PDE4D7 expression, it 

would also allow us to determine if PKA phosphorylation of DHX9 alters its 

transcriptional activity. 
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As previously mentioned, DHX9 has recently been shown to be SUMOylated by 

the SUMO-conjugating ubiquitin-conjugating enzyme 9 (UBC9) (Fidaleo, De Paola 

and Paronetto, 2016). SUMOylation is an evolutionarily conserved PTM, 

characterised by the covalent attachment of the small ubiquitin-like modifier 

(SUMO) to its target proteins (Li et al., 2020). The SUMO conjugation pathway 

involves the use of three enzymes (E1-3), each having individual roles during the 

reaction (Hannoun et al., 2010). The first step in this pathway is the activation 

of the mature SUMO protein at its C-terminus by a SUMO-specific E1 enzyme. 

The active SUMO protein is then transferred to an E2 conjugating enzyme UBC9, 

which can then transfer SUMO to its target protein. The transfer of the SUMO 

protein is mediated by a SUMO E3 ligase (Geiss-Friedlander and Melchior, 2007). 

Although several proteins have been reported to be SUMOylated, including 

PDE4D5 (X. Li et al., 2010), SUMO modification is less commonly detected in 

cells when compared to other PTMs as it is more difficult to identify (Chen and 

Lu, 2015). Attachment of a SUMO peptide to its target protein has been 

implicated in numerous cellular processes, including DNA repair and cell cycle 

regulation (Andreou and Tavernarakis, 2009).  

Recent studies have shown that transcription factors can be modified by 

SUMOylation, affecting target gene expression (Rosonina, 2019). Therefore, it 

comes as no surprise that DHX9 has been shown to be a substrate for SUMO 

modification. Work by Argasinska et al. (2004) recently showed that the N-

terminal region of DHX9 (amino acids 1-37) can interact with UBC9. This in turn 

led to the attachment of a Sumo-1 complex to DHX9, both in vitro and in vivo. 

Interestingly, the interaction between UBC9 and DHX9 was shown to mediate 

CREB transcription by DHX9. However, DHX9 does not need to be SUMOylated to 

mediate CREB transcription. They suggested that although DHX9 has been shown 

to be SUMOylated in the presence of UBC9, this modification is not necessary in 

regulating DHX9 helicase activity (Argasinska et al., 2004). However, DHX9 

SUMOylation may have an impact on disease progression. Using mass 

spectroscopy analysis from Kaposi’s sarcoma-associated herpesvirus (KSHV) cell 

lysate, DHX9 was recently found to contain a SUMO interacting motif (SIM). This 

SIM was shown to potentially regulate virus-mediated gene expression through 

SUMOylation of DHX9, therefore having an important role in KHSV persistence 

and pathogenesis (Gan et al., 2015). The GPS-SUMO website can predict the 
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potential SUMOylation sites and SIMS within a protein of interest (Zhao et al., 

2014). The SUMOylation sites were classified into two groups (consensus and 

non-consensus) based on the canonical ψ–K–X–E, where ψ is a hydrophobic amino 

acid (I, V, L, A, P, or M), K is lysine and x is an arbitrary amino acid (Zhao et al., 

2014; Chang et al., 2018). SUMOylation at a non-consensus site refers to the fact 

that a Lysine residue can be phosphorylated despite not being flanked by a 

hydrophobic amino acid (Impens et al., 2014). By using the GPS-SUMO predictor 

site (http://sumosp.biocuckoo.org/online.php) I was able to identify 5 potential 

SIMs and SUMOylation consensus sites within DHX9 (Table 4.2).  

Table 4.2 Identification of multiple SIMs and SUMOylation sites within DHX9. 
Position Peptide Type 

54 GMGNSTNKKDAQSNA Sumoylation 
Nonconcensus 

69 - 73 ARDFVNYLVRINEIKSEEV SUMO Interaction 

76 LVRINEIKSEEVPAF Sumoylation Concensus 

120 LPPHLALKAENNSEV Sumoylation Concensus 

152 LKDYYSRKEEQEVQA Sumoylation 
Nonconcensus 

365 EQISMDLKNELMYQL Sumoylation Concensus 

406 - 410 EAISQNSVVIIRGATGCGK SUMO Interaction 

560 - 564 EYFFNCPIIEVYGRTYPVQ SUMO Interaction 

596 KDKKKKDKDDDGGED Sumoylation 
Nonconcensus 

725 - 729 TSITINDVVYVIDSCKQKV SUMO Interaction 

1081 - 1085 KVQSDGQIVLVDDWIKLQI SUMO Interaction 

1111 - 1115 RAAMEALVVEVTKQPAIIS SUMO Interaction 

 

Interestingly, the GPS-SUMO analysis identified a SUMOylation non-consensus site 

within the PDE4D7 binding domain (Table 4.2 Position 596). This could suggest 

that binding between PDE4D7 and DHX9 could be further regulated by the 

SUMOylation status of DHX9. Interestingly, a study by Li et al. (2010) revealed 

that inhibiting the interaction between two interacting protein by blocking 

SUMOylation of a target protein, using a synthetic SIM peptide, inhibits DNA 

repair and increases cancer cell sensitivity to radiation (Y.-J. Li et al., 2010). By 

treating cells with a SIM peptide designed to compete with SIM sites within a 

protein, they were able to inhibit SUMO-dependent protein-protein interactions. 

They were then able to test the effects of the disruption of these interactions on 

the cellular DNA damage response. Following SIM or control peptide treatment, 
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the cells were treated with the chemotherapeutic drug doxorubicin. 

Interestingly, treatment with the SIM peptide increased the sensitivity to 

doxorubicin treatment when compared to the control peptide (Y.-J. Li et al., 

2010). Inhibiting SUMO-mediated PPI are of pharmaceutical interest as an 

increasing number of studies have revealed that disruption of these interactions 

could potentially alter chemo- and drug sensitivity (Voet et al., 2014). 

Interestingly, protein phosphorylation and SUMOylation are known to be linked 

to one another. Rather than modification at a single site, a protein is 

dynamically altered at multiple sites by an array of modifications, including 

phosphorylation and SUMOylation (Yang and Grégoire, 2006) Studies have 

revealed that certain lysine residues are flagged for SUMOylation following the 

phosphorylation of a serine/threonine immediately downstream of the SUMO 

consensus sequence (Anckar and Sistonen, 2007). In addition to the ψ–K–X–E 

SUMO consensus site, a second phosphorylation-dependent SUMOylation motif 

(PDSM), composed of a SUMO and a proline-directed phosphorylation site (Ψ-K-x-

E-x-x-S-P) has been identified. This motif has been involved in the 

phosphorylation-dependent SUMOylation of transcription factors nuclear factor 

erythroid-derived 2 (NF-E2) and shown to alter their activity (Hietakangas et al., 

2006). Work by Su et al. (2012) demonstrated that the transcriptional activity of 

NF-E2 was increased following SUMOylation and PKA-mediated phosphorylation. 

By purifying recombinant NF-E2 protein, they showed that PKA phosphorylation 

increased protein SUMOylation, which in turn promoted the dimerization of NF-

E2 which in turn regulated its activity (Su et al., 2012). Although not studied 

here, it would be interesting to investigate if the SUMOylation of DHX9 is 

dependent on DHX9 phosphorylation.  

In addition to being PKA phosphorylated and SUMOylated, DHX9 is also 

methylated at its C-terminal end (Fidaleo, De Paola and Paronetto, 2016). 

Proteins can be methylated on the sidechain nitrogen of arginine and lysine 

residues on their C-terminal ends. This PTM subtly changes their primary protein 

structure in order to encode more information (Bedford, 2006). Interestingly, 

arginine methylation is associated with gene regulation, including regulating the 

binding between DNA and transcriptional activators (Lee et al., 2005). DHX9 has 

recently been shown to be methylated within its RGG-box at its C-terminal 

domain (Smith et al., 2004). Methylation of DHX9 was found to be crucial in its 
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ability to localise to the nucleus. Inhibition of DHX9 methylation using protein 

arginine methyltransferase (PRMT) inhibitors led to the accumulation of DHX9 in 

the cytoplasm when visualised by confocal microscopy. However, when a 

methylated DHX9 was expressed in Hela cells, this led to the immediate 

expression of DHX9 within the nuclear region, indicating that DHX9 methylation 

is crucial for its nuclear import (Smith et al., 2004). Interestingly, the data 

presented in this chapter shows that PKA phosphorylation of DHX9 appears to 

lead to the accumulation of DHX9 within the cytoplasm when investigated by ICC 

with confocal microscopy (Figure 4.13, Figure 4.14 and Figure 4.16). Unlike 

protein methylation, phosphorylation of DHX9 by PKA could potentially act as an 

inhibitor of DHX9 import in order to sequester the protein within the cytoplasm 

to promote DHX9’s translational activity. Multiple mRNA structures relies on 

DHX9 for efficient folding and unfolding (Murat et al., 2018). Therefore, PKA 

phosphorylation of DHX9, and its sequestering in the cytoplasm, could promote 

the unwinding of aberrant mRNA structures in order to initiate protein 

translation. Translation initiation is known to play an important role in PC 

tumorigenesis and hyperactivation of the mTOR pathway in PC is often 

associated with increased translational output (Hernández et al., 2019). In order 

to confirm that this is the case, further investigation such as subcellular 

fractionation need to be performed. If DHX9 phosphorylation does lead to its 

accumulation in the cytoplasm, we would expect to see a band representing 

phospho-DHX9 in the cytoplasmic fraction and unphosphorylated DHX9 within the 

nuclear fraction. DHX9 has recently been shown to be recruited by the mTOR 

pathway to promote the translation of specific mRNA (Nandagopal and Roux, 

2015). Therefore, the accumulation of DHX9 in the cytoplasm as a result of PKA 

phosphorylation could lead to an increase in mRNA translation via the mTOR 

pathway.  

4.4.3 Can DHX9 phosphorylation promote PC progression? 

Protein phosphorylation is one of the most important mechanisms by which 

different cellular processes are regulated. Many enzymes and receptors are 

activated and deactivated by the reversible action of phosphorylation (Ardito et 

al., 2017). Although protein phosphorylation is essential for normal cellular 

processes, abnormal phosphorylation is one of the main PTMs that causes 

structural and functional changes that lead to disease (Singh et al., 2017). 
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Although the AR is activated by ligand binding, it is known to be phosphorylated 

at least 15 different sites, most of which are found within the N-terminal region. 

Phosphorylation of AR leads to an increase in its transcriptional activity, 

increased expression of AR, and changes in cell growth. Activation of AR has 

been identified as one of the mechanisms by which a PC tumour can progress 

into the lethal CRPC phenotype. Despite ADT lowering the levels of androgens, 

AR phosphorylation by PKA has been identified as a key mechanism by which PC 

can progress via the cross talk with the cAMP-PKA pathway (Daniels et al., 2013). 

It is widely accepted that the PKA signalling pathway is highly involved in PC 

progression. Elevated levels of intracellular cAMP are known to increase the 

expression of PSA, highlighting the importance in PC (Sarwar et al., 2014). This 

may potentially be due to the decrease in the global expression of PDE4 isoforms 

that has recently been reported by our group and others (R. Böttcher et al., 

2015; Böttcher et al., 2016; van Strijp et al., 2018). 

The data presented in this chapter has shown that decreased interaction 

between PDE4D7 and DHX9 leads to an increase in DHX9 phosphorylation by PKA 

(Figure 4.15 and Figure 4.16). Although these experiments were performed in 

HEK293 cells overexpressing these proteins, we can suggest that the effect could 

be observed in PC cell lines. But this also poses the question: does DHX9 

phosphorylation change depending on the stage of disease? Decreased expression 

of PDE4D7, and other PDE4D isoforms, could potentially contribute to an overall 

increase in intracellular levels of cAMP and PKA activation. This in turn could 

increase the amount of phosphorylation of DHX9 and other proteins such as AR in 

vivo. This could contribute to progression of the disease to the more lethal CRPC 

phenotype. In order to investigate if there is a difference in level of phospho-

DHX9 between early and late stage disease, PC cells could be probed for 

phospho-DHX9 under basal conditions. We could also investigate if the 

interaction between DHX9 and other binding partners are also altered by PKA 

phosphorylation. Furthermore, by using our newly synthesised phospho-DHX9 

antibody, we would be able to directly detect changes in levels of 

phosphorylated DHX9 from matched patient-derived tumours. These experiments 

could help us understand if DHX9 phosphorylation in crucial for PC progression.  
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4.4.4 Chapter summary 

Data in this chapter has provided evidence that DHX9 is a novel substrate for 

PKA phosphorylation. Using PKA consensus site prediction software and peptide 

array technology, I was able to show that DHX9 is phosphorylated at Ser449 in the 

helicase domain of DHX9. Interestingly, this site is found upstream of PDE4D7’s 

binding site. Loss of this serine by sequence substitutions and truncations shows 

that DHX9 phosphorylation is completely lost in biochemical assays, further 

providing evidence that DHX9 can be phosphorylated by PKA. Using the 

information obtained from the peptide array, a custom phospho-DHX9 antibody 

was synthesised. This antibody was able to successfully detect phospho-DHX9 by 

western blotting and confocal microscopy. Such a phosphorylation could 

potentially alter the activity of DHX9 and could contribute to a change in mRNA 

levels. The interaction between PDE4D7 and DHX9 was shown to be important in 

regulating the levels of DHX9 phosphorylation. Loss of this interaction was shown 

to increase the levels of PKA-mediated DHX9 phosphorylated. Unfortunately, the 

effects of DHX9 phosphorylation on its activity was not studied in this chapter. 

By performing a helicase assay using purified recombinant DHX9, we would be 

able to determine if DHX9 phosphorylation can increase its helicase activity. This 

assay directly looks at helicase activity by detecting levels of single stranded 

DNA or RNA by agarose gel electrophoresis following incubation with a helicase 

(Wang et al., 2014). By phosphorylating DHX9 in the assay, we would be able to 

directly observe how this modification can affect DHX9 activity. This information 

could potentially provide us with information on whether DHX9 phosphorylation 

and activity contributes to PC disease progression.  
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Chapter 5 Characterising the role of DHX9 in 
Prostate Cancer 

5.1  Introduction 

5.1.1  DHX9 in prostate cancer 

As PC is a mainly driven by testosterone and DHT, it is understandable that 

current research focuses on trying to find innovative ways to inhibit hormone 

production and initiation of hormone-activated signalling pathways (Crawford et 

al., 2019). Although ADT is known to be a highly successful course of treatment, 

the mean progression time to CRPC was found to be 13.1 – 19.3 months under 

this regime. The majority of patients eventually progress into the more 

phenotypically lethal PC, with a significant proportion of their life span spent in 

this castration-resistant state (Damodaran, Kyriakopoulos and Jarrard, 2017). 

There is currently a need to find alternative targets that have the potential to 

supplement and strengthen therapies in use today. In recent years, the DNA 

damage response and repair mechanism has become a potential new therapeutic 

target. DNA helicases are found to be involved in every aspect of nucleic acid 

metabolism and are known to unwind alternate DNA structures and displace 

proteins bound to ssDNA/dsDNA. Mutations in these helicases are known to be 

associated with various cancers (Datta and Brosh, 2018).  

In recent years, DHX9 has emerged as a potential new target in multiple cancers. 

Dysregulation of the mechanisms guiding cell death plays an important part in 

cancer. One of the hallmarks of cancer is the evasion of apoptosis leading to 

drug resistance and tumorigenesis. Genetic mutations and changes in DHX9 

expression have been observed in different cancers, indicating that this protein 

may be involved in the development of disease. Work by Mills et al. (2013) has 

shown that suppression of DHX9 was able to reverse the resistance of Eµ-

Myc/Bcl-2 lymphoma to the chemotherapeutic agent ABT-737. Loss of DHX9 

expression in these cells was shown to lead to activation of the p53 apoptosis 

pathway via an increase in cellular stress (Mills et al., 2013). Not only has it 

been observed that DHX9 increases cell sensitivity to chemotherapeutic agents 

but decreasing DHX9 levels also has profound cellular effects and can be lethal 

in vitro. Knockdown of DHX9 in a panel of cancer cells has a detrimental effect 
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on cell growth, and when suppressed in mice, it had not negative impact on 

their health (Lee et al., 2016). YK-4279 has the unique ability to be lethal only 

to cancer cells, but not have any deleterious effects in animal models, thus 

demonstrating that DHX9 is new target in cancer treatment. 

In prostate cancer, DHX9 has been shown to be a target gene of SOX4. The sex 

determining region Y (SOX), is a family of transcription factors that plays an 

important role in development. SOX4 is a 47 kDa protein that is overexpressed in 

multiple cancers, such as PC: increased expression at an mRNA and protein level 

is correlated with high Gleason scores and tumour grades (Liu et al., 2006). 

Activation of the transcriptional activity of SOX4 via the Wnt pathway leads to 

an increase in the binding of SOX4 to the DHX9 promoter (Lai et al., 2011). 

Stimulation with recombinant WNT3A and leptomycin B (LMB) resulted in a 

decrease in the promoter binding (Lai et al., 2011; Cai et al., 2017). These 

studies suggest that DHX9 may play a role in the development of PC, however 

the direct mechanisms through which it contributes to the disease are still 

unknown (Lee and Pelletier, 2016). Current research suggests that DHX9 may be 

a contributor to tumorigenesis. 
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5.2 Chapter Aims  

DHX9 is known to play a major role in cancer development and response to 

therapy. Although DHX9 maps to a PC susceptibility locus, its function in PC and 

cellular proliferation is currently undefined. Considering this, the aims of this 

chapter are as follows: 

AIM 1: Determine if changes in DHX9 expression or its interaction with EWS-

FL1 affects the proliferation of PC cells. Using the RTCA XCELLigence plate 

reader, the importance of DHX9 expression and its interactions with EWS-

FL1 will be assessed. DHX9 expression will be suppressed using siRNA 

technology, while the interaction between DHX9 and EWS-FL1 will be 

disrupted using the small molecule YK-4-279.  

AIM 2: Determine if disruption of the PDE4D7-DHX9 complex affects the 

proliferation of PC cells. Using the RTCA XCELLigence plate reader, the 

importance of PDE4D7-DHX9 complex will be assessed in order to 

understand if this interaction promotes or slow down PC cell growth.  

AIM 3: Determine if the disruption of the PDE4D7-DHX9 complex affects the 

ability of DHX9 to unwind nascent RNA structures in order to promote R-

loop formation. This will be assessed using ICC with confocal microscopy.  

AIM 4: Determine if changes in DHX9 expression result in changes to 

downstream signalling pathways using Reverse Phase Protein Array (RPPA) 

technology. DHX9 expression will be suppressed using siRNA technology, 

and changes to any downstream signalling pathways can be reviewed using 

RPPA technology.  
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5.3 Results 

5.3.1 siRNA-mediated knockdown of DHX9 leads to a decrease in 
cell proliferation in AS and CRPC cell lines 

5.3.1.1  DuCaP growth is reduced in cells treated with siDHX9 

The DuCap cell line was first established in 2001, DuCaP has since been used as a 

model for androgen sensitive PC (Lee et al., 2001) . Interestingly, this cell line 

also harbours the TMPRSS2-ERG gene fusion, which results in the androgen-

regulated expression of ERG (Pfeiffer, Mulders and Schalken, 2010). DuCaP were 

first derived from mouse SCID xenograft model (Sobel and Sadar, 2005) To 

determine if the cellular proliferation of prostate cancer cell lines is affected by 

decreased expression of DHX9, siRNA targeting DHX9 (and the controls GAPDH 

siRNA, and non-targeting siRNA) were transfected into DuCaP cells to check for 

siRNA efficiency. DuCaP cells were plated into six well plates, transfected with 

the appropriate siRNA the next day and left to incubate for 48 hours at 37˚C 

with 5% CO2. Cell lysate was extracted and proteins separated on an SDS-PAGE 

gel. Protein expression was then assessed by western blotting. DHX9 expression 

in all samples were normalised to loading control, then compared to cells 

treated with non-targeting siRNA (Figure 5.1) 
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Figure 5.1 siRNA mediated knockdown of DHX9 in DuCaP cells. A. DuCaP cells were 
transfected with either siDHX9, siGAPDH, or siNon-Targeting. Protein expression was assessed by 
SDS-PAGE with western blotting. Membranes were probed with antibody against DHX9 and α-
tubulin. B. DHX9 protein expression was normalised to α-tubulin, then normalised to the si Non-
Targetting. Data is presented as the mean ± SEM from two separate experiments. Significance 
was determined using a One-Way Anova where p<0.0001. This work was carried out by Jane 
Findlay. 

Transfection with the DHX9-specific siRNA led to a highly statistically significant 

50% decrease in protein expression (Figure 5.1B). This siRNA was then used to 

investigate whether the decreased expression of DHX9 leads to a change in 

DuCaP proliferation. 10 000 cells were seeded into each well of the 96 well E-

Plate and left to grow for 48 hours. They were then transfected with siRNA and 

left to grow for an additional five days (Figure 5.2). The cell growth of each 

condition was monitored using the RTCA software where cell growth is reported 

as the cell index (CI).  
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Figure 5.2 siRNA-mediated knockdown of DHX9 leads to a decrease in DuCaP cell 
proliferation. A. xCELLigence technology was used to measure proliferation of DuCaP cells 
transfected with siRNA against DHX9, GAPDH and Non-targeting. The cell index was normalised 
at the time of siRNA Transfection. Growth curves are represented as the mean ± SEM of three 
independent experiments. B. The maximum cell index for each growth curve was identified and 
represented as the mean ± SEM of three independent experiments. The maximum cell index was 
normalised to the cells-only condition and statistical significance was calculated using a One-Way 
Anova. C. The slope of each growth curve was calculated from the point of treatment to 100 hours. 
The slope is represented as the mean ± SEM of three independent experiments. The slope was 
normalised to the cells-only condition and statistical significance was calculated using a One-Way 
Anova. This work was carried out by Jane Findlay. 

During the first 48 hours of the experiment, the CI is seen to steadily increase 

due to the cells coming out of suspension and adhering to the bottom of the 

well. When transfected with non-targeting siRNA and siGAPDH, the cells are seen 

to continue to increase over the 5 days of the experiment, indicating that cell 

growth is unaffected by these transfections (Figure 5.2 A, red and green traces). 
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However, when transfected with siDHX9, the CI steadily decreases when 

compared to the other conditions, indicating that decreased expression of DHX9 

slows down DUCaP cell growth (Figure 5.2 A purple trace). Although in general, 

treatment with any siRNA reagents resulted in an overall reduction in cell 

growth (as assessed by the slope of exponential growth), growth of cells that 

were treated with siRNA specifically targeting DHX9 was significantly reduced 

when compared to the cells-only and siNon-Targeting conditions (Figure 5.2 C). A 

similar result was seen when the maximum cell index was evaluated (Figure 5.2 

B). The maximum cell index represents the timepoint at which the cells have 

reached their maximum attachment strength and confluency. The maximum cell 

index of cells treated with siRNA against DHX9 was significantly reduced when 

compared to the other treatments and cells-only. The data presented here 

shows that expression of DHX9 is crucial for PC cell growth and proliferation. 

Previous work by Lee et al (2014) demonstrated that suppression of DHX9 

expression in human fibroblast cells leads to an activation in the p53 pathway 

(Lee et al., 2014), which is potentially what is observed in the cell growth 

curves.  

5.3.1.2  LNCaP growth is reduced in cells treated with siDHX9 

In order to investigate if this effect was also seen in other AS cell lines, a pilot 

study with AS VCaP and LNCaP cells was carried out.. This was to determine the 

best cell density and cell line to use in future experiments. 40 000, 20 000, 10 

000 or 5 000 cells were plated into the 16 well E-P6ate, and their growth was 

monitored over 5 days (Figure 5.3). A pilot study was not conducted for the 

DuCaP experiments (Figure 5.2) as the optimum cell density was determined by 

previous members of the Baillie Lab. 
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Figure 5.3 AS cell line pilot study. In order to use the correct cell line and cell density for future 
experiments, LNCaP (A) and VCaP (B) were plated at different densities and growth was 
monitored using the RTCA cell analyser over five days. 

Based on the information obtained in Figure 5.3 A, I decided to use 5 000 LNCaP 

cells per well. This cell density provided three days of growth, giving us a large 

window of opportunity to study how growth can be affected by siRNA treatment. 

Although 10 000 and 20 000 LNCaP cells per well were able to show growth after 

seeding, they reached maximum cell index at 72 hours and 48 hours 

respectively. Unlike the other cell densities, when 40 000 LNCaP cells were 

seeded no growth was observed, potentially due to overcrowding of the well 

(Figure 5.3 A). VCaP cells were not chosen for any future experiments as most 

growth curves remained negative for 48 hours (Figure 5.3 B). Although VCaP 

have been used as a model for early stage PC, this cell line has a doubling time 

of 5-6 days (Cunningham and You, 2015), potentially explaining why it has taken 

them over 48 hours to recover from seeding. In order to use VCaP cells for future 
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xCELLigence experiments, more than 40 000 cells per well would be required in 

order to obtain an appropriate growth curve. Based on the information obtained 

in Figure 5.3 A, 5000 LNCaP cells per well was selected for future cell growth 

assays. siRNA transfection efficiency in LNCaP was then assessed by SDS-PAGE 

with western blotting (Figure 5.4) prior to starting xCELLigence experiments. 

 

 
Figure 5.4 siRNA transfection efficiency in LNCaP cells. A. Lysates from three independent 
siRNA transfection reactions were separated by SDS-PAGE, and protein expression was assessed 
by western blotting. B. DHX9 expression in siRNA-transfected cells were normalised to the β-actin 
loading control, then to the siNon-Targeting control. Statistical significance was determined using a 
One-Way Anova. p**=0.0046 and p**=0.0004 C. GAPDH expression in siRNA-transfected cells 
were normalised to β-actin loading control, then to the siNon-Targeting control. Statistical 
significance was determined using a One-Way Anova. 
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Transfection of LNCaP with siRNA directly targeting DHX9 expression led to a 

visible reduction in protein expression as shown in Figure 5.4 A. When probed for 

DHX9 (Figure 5.4 A top membrane) DHX9 expression is visibly significantly 

reduced. When quantified and normalised to cells treated with non-targeting 

siRNA, DHX9 expression was shown to be statistically significantly reduced by 

approximately 75%. Although not significant, transfection with siRNA targeting 

GAPDH led to a 25% reduction in expression when compared to cells treated with 

non-targeting siRNA. Interestingly, treatment of LNCaP with siGAPDH increased 

the expression of DHX9 (Figure 5.4 A and C). GAPDH is widely used as a 

housekeeping gene. These genes are essential endogenous regulatory genes that 

are involved in various processes in the cell, such as metabolism, transcription, 

and homeostasis. The expression levels of references genes should remain 

constant between the cells of different tissues and under different experimental 

conditions in order to normalise the expression of the gene or protein of interest 

(Zainuddin et al., 2010). Previous work by Phadke et al (2009) has shown that 

reduction of GAPDH protein in A549 human carcinoma cell lines arrested cell 

proliferation, and cells with reduced expressions of GAPDH accumulated in the 

G0/G1 phase of the cell cycle (Phadke et al., 2009). DHX9 expression may have 

increased during this experiment due to the accumulation of cells in the G0/G1 

phase. Work by Thacker et al (2020) has shown that DHX9 expression is required 

for the efficient progression of cells from G1 to S phase of the cell cycle 

(Thacker et al., 2020). Knockdown of GAPDH may have led to the increase in 

DHX9 expression due to its role in cell cycle progression. Using the information 

gained from figure 5.4, I can confidently say that the siDHX9 directly affects 

expression of the DHX9 protein (Figure 5.4 C). This siRNA was then used in a 

proliferation assay to investigate how the reduced expression of DHX9 affects 

LNCaP growth (Figure 5.5). 
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Figure 5.5 siRNA-mediated knockdown of DHX9 in LNCaP cells. A. xCELLigence technology 
was used to measure the proliferation of LNCaP cells transfected with siRNA against DHX9, Non-
targeting, and mock transfection. The cell index was normalised at the time of siRNA transfection. 
Growth curves are represented as the mean ± SEM of three independent experiments. B. The 
maximum cell index for each growth curve was identified and presented as the mean ± SEM of 
three independent experiments. The maximum cell index was normalised to the cells only condition 
and statistical significance was calculated using a One-Way Anova, where p***=0.0006 and 
p****<0.001 

Although I was able to achieve approximately 75% knockdown in DHX9 expression 

(Figure 5.4 B), siRNA treatment in this cell line led to an overall decrease in 

cellular growth. Treatment with the siRNA transfection reagent alone lead to a 

50% decrease in cell growth, which was shown to be very significant when 

compared to the cells only condition (Figure 5.5 B purple bar). When the cells 

were treated with both non-targeting and DHX9 specific siRNA, this led to very 

significant decrease in cell growth when compared to the cells-only condition 

(Figure 5.5 B red and green bars). In addition, there was no significant 

difference in growth between these two conditions, indicating that this 
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reduction in cell growth is due to the treatment rather than the decreased 

expression of DHX9. Although the initial data from the DuCaP growth assay 

indicated that the decreased expression of DHX9 leads to a significant decrease 

in cellular proliferation, this observation cannot be made in LNCaP despite 

showing that the same siRNA can reduce DHX9 expression by western blot 

(Figure 5.4 B).  

5.3.2 YK-4-279 inhibition of DHX9 leads to a decrease in PC cell 
proliferation 

Many cancers, such as PC, carry non-random chromosomal translocations 

encoding tumour-specific fusion transcription factors that are essential for 

disease progression. Ewing’s Sarcoma family tumours (ESFTs) express the EWS-

FL1 fusion protein, which is known to interact with DHX9. This binding is 

important for oncogenic function of DHX9 in ESFT cells, and disruption of this 

interaction using the small molecule YK-4-279 induces apoptosis (Erkizan et al., 

2009). Disruption of PPI using small molecule inhibitors is a rapidly evolving field 

(Bhalla et al., 2006) and disruption of the interactions of DHX9 with its 

interacting partners using disruptor peptides leads to a decrease in cell growth 

as demonstrated by Erzikan et al. (2009). YK-4-279 was initially identified from a 

library of over 3000 compounds after showing that it significantly reduced the 

interaction between the C-terminal end of DHX9 and EWS-FL1 without affecting 

expression levels of either protein. These authors also further showed that 

treatment of mouse ESFT xenograft models with 1.5 mg of YK-4-279 significantly 

reduced tumour growth when compared to PC3 prostate tumour xenografts that 

does no express EWS-FL1 protein. When tumours from DMSO- and YK-4-279-

treated mice were stained for caspase-3 by immunohistochemistry, tumours 

from YK-4-279 mice had a threefold increase in caspase-3 staining when 

compared to control mice. Not only did YK-4-279 inhibit tumour growth, but it 

also increased apoptosis in this xenograft model (Erkizan et al., 2009). 

Interestingly, this small molecule inhibitor is gaining the interest of PC 

researchers due to the fact that 40-70% of PC tumours have been shown to have 

gene rearrangements involving ETS transcription factors, with the most common 

of them being the TMPRSS2-ERG gene fusion (Rubin, 2012). Previous work by 

Rahim et al (2011) showed that growth of YK-4-279-treated LNCaP and VCaP PC 

cells was significantly reduced when compared with non-treated cells. 
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Furthermore, treatment with YK-4-279 reduced the invasive nature of LNCaP in a 

scratch assay (Rahim et al., 2011). In order to confirm this, further xCELLigence 

studies were carried out with this DHX9-specific inhibitor. 5 000 LNCaP cells 

were plated in each well of the 96 E-plate and left to grow overnight. The cells 

were then treated with YK-4-279 over a range of concentrations to establish a 

dose response curve and determine an IC50 for LNCaP growth.  
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Figure 5.6 Growth of LNCaP cells following treatment with YK-4-279. A. xCELLigence 
technology was used to monitor the growth of LNCaP cells over the course of three days. Cells 
were treated with YK-4-279 at the indicated concentrations after 24 hours, and all growth curves 
were normalised to growth at this point. Growth curves are represented as means of four 
independent experiments. B. The maximum cell index was plotted as a dose response curve, and 
the IC50 was calculated using a non-linear regression. Data is presented as the mean ± SEM from 
four independent experiments. 

YK-4-279 significantly reduced LNCaP cell growth at 10 µM and 1 µM after 

normalization when compared to the cells-only and DMSO controls (Figure 5.6 A). 

Interestingly, as the cells were exposed to lower concentrations of YK-4-279, the 

growth curve can be seen to increase up to basal levels in a dose-dependent 

manner (Figure 5.6 A). At 10 µM and 1 µM, we can assume that the treatment 

with YK-4-279 lead to the activation of caspase-3 as previously reported (Erkizan 

et al., 2009). The maximum cell index for each growth curve was identified and 

plotted as a dose response curve in order to calculate the IC50 of YK-4-279 in this 

cell line. Using log (inhibitor) vs response model on GraphPad Prism, a non-linear 
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regression was plotted in order to determine the concentration at which a 

response halfway between the maximum response and the maximally-inhibited 

response. The IC50 of YK-4-279 was found to be 0.46 µM in LNCaP cells (Figure 5.6 

B). Previous work by Sun et al (2017) showed that the IC50 of YK-4-279 in 

different neuroblastoma cells lines ranged from 0.218 µM to 2.255 µM (Sun et 

al., 2017). VCaP cells, although they are known to harbour the ERG gene 

rearrangement, has been shown to have an IC50 of 16 µM (M. S. Butler et al., 

2017). Such large differences in YK-4-279 can be explained by the difference in 

cell doubling time. LNCaP are known to have a doubling time of 28-60 hours, 

compared to 5-6 days for VCaPs (Cunningham and You, 2015). IC50 values are 

thought to decrease with increasing numbers of cell doublings during the 

incubation period (Baguley, Hicks and Wilson, 2002). Within the same day, 

LNCaP can go through more cell doublings than VCaPs, indicating that lower 

concentrations of YK-4-279 are required to inhibit growth.  

So far, I have been able to show that LNCaP growth is significantly affected by 

YK-4-279. We then investigated if growth of the AI cell line DU145 was affected 

by YK-4-279 . Previous work in our lab had determined that 10 000 cells per well 

is the most appropriate cell density for this cell line for xCELLigence 

experiments (Byrne, 2014). DU145 cells were seeded at the previously 

mentioned cell density and left to grow overnight. They were then treated with 

either 10 µM or1 µM of YK-4-279 or with DMSO vehicle control (Figure 5.7).  
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Figure 5.7 Treatment of DU145 cells with YK-4-279. A. xCELLigence technology was used to 
monitor the response of DU145 to YK-4-279. Cells were treated with either 10 µM or 1 µM of YK-4-
279 24 hours after seeding and this was the point to which the growth curves were normalised to. 
B. The maximum cell index of each growth curve was measured, then normalised to the DMSO 
vehicle control. Data presented is N=1. 

Unlike LNCaP cells, DU145 cells remained unaffected by the inhibitor. YK-4-279 

did not significantly decrease the proliferation of DU145 cells at either of the 

concentrations used (Figure 5.7). DU145 is an AI cell line that is most commonly 

used as a model for aggressive PC. However, this cell line does not naturally 

express ETS fusion protein (Swanson et al., 2011), explaining why this cell line 

remained unresponsive to the inhibitor. The data presented so far indicates that 

YK-4-279 is only able to target cells that express ETS fusion proteins that can 

bind to DHX9. Interruption of this DHX9-ETS interaction leads to an activation in 
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caspase-3 activity (Erkizan et al., 2009), which in turn leads to a significant 

decrease in cell growth (Figure 5.6). 

5.3.3 Disruption of the PDE4D7-DHX9 complex has no effect on 
cell proliferation  

My data has so far shown that disruption of the interaction between DHX9 and 

EWS-FL1 protein significantly reduces cell growth. Not only did this indicate that 

DHX9 is important for cell growth but also showed that by disrupting of the 

interaction between DHX9 and its partners negatively impacts growth. With this 

in mind, I then investigated if disruption of PDE4D7 and DHX9 complex in PC 

cells has similar effects as YK-4-279. The same proliferation assay as used in 

Figure 5.7 was repeated with our newly designed disruptor peptides previously 

described in chapter 3. These peptides were designed to recognise the binding 

sites between DHX9 and PDE4D7 from peptide array data. The UCR1 disruptor 

peptide inhibits DHX9 binding to PDE4D7, whereas the DHX9 disruptor peptide 

inhibits PDE4D7 binding to DHX9 (Figure 3.20). The cell-permeable disruptor 

peptide was shown to be effective in pull-down and PLA imaging assays (Figure 

3.21, Figure 3.22, and Figure 3.23). Therefore, I carried out these experiments 

to determine if disruption of this interaction by our newly synthesised peptides 

affected cell growth. 5000 LNCaP cells were seeded into each well of 96 well E-

Plate, and the cells were left to grow for 24 hours. The cells were then treated 

with DMSO, scrambled peptide, or our disruptor peptides (UCR1 or DHX9 

peptides), after which growth was monitored for 2 days (Figure 5.8).  
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Figure 5.8 Growth of LNCaP cells following treatment with disruptor peptides. A. Cells were 
treated with UCR1 disruptor peptide at concentrations ranging from 10uM to 10pM. B. Cells were 
treated with DHX9 disruptor peptide at the same concentration as in A. C. Cells were treated with 
scrambled peptide at the same concentrations as in A. All data is representative of N=4 and were 
normalised to the point of treatment.  
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During the first 21 hours of the experiment, the CI of all the different conditions 

was shown to rapidly increase as the cells settled and adhered to the bottom of 

the well (Figure 5.8 A-C). After the cells were treated with the different 

peptides, all cells continued to grow as shown by the steady increase in CI over 

the 2 days of the experiment (Figure 5.8 A-C). However, a small dip in the CI can 

be seen between the time of treatment and 26 hours. In order to investigate 

whether there was a dose-response effect in the growth curves, the growth 

between the 20 and 26 hours was plotted for further analysis. (Figure 5.9).  

 

Figure 5.9 LNCaP growth between 20 and 26 hours. A. Cells were treated with UCR1 disruptor 
peptide. B. Cells were treated with DHX9 disruptor peptide. C. Cells were treated with scrambled 
peptide. All data is representative of N=4 and were normalised to the point of treatment.  

Interestingly, cell growth can be seen to be briefly interrupted after the addition 

of the UCR1 and DHX9 disruptor peptides. During the first two hours of peptide 

incubation, all growth curves can be seen to decrease (Figure 5.9). 

Unfortunately, this decrease was not shown to be statistically different between 
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our two disruptor peptides and the scrambled peptide control, indicating that 

this effect may not be due to the disruption between PDE4D7 and DHX9 (Figure 

5.9). Furthermore, unlike with YK-4-279, treatment with our disruptor peptide 

did not lead to any significant decrease in cell growth when looking at the traces 

over the two-day peptide incubation. Instead, LNCaP cells can be seen to 

continue to grow after the 26 hour time point in all peptide treatments (Figure 

5.8 and Figure 5.9). Unfortunately, the disruption of the interaction between 

PDE4D7 and DHX9 does not affect long-term PC cell growth. This interaction, 

unlike the DHX9-EWS-FL1 interaction, may not be essential for cell growth and 

our disruptor peptides may not be a viable tool to slow disease progression. In 

order to evaluate the effects of peptides at early timepoints, the normalised cell 

index at the 24 hour “peak” was measured and normalised to the DMSO vehicle 

control (Figure 5.10). 
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Figure 5.10 Dose response of UCR1 and DHX9 disruptor peptides at the 24-hour peak. A+B. 
The cell index of LNCaP at the 24 hour peak was measured and compared to the scrambled 
peptide. The data presented here is the mean ± SEM of four independent experiments. Cell index 
of all points was normalised to the DMSO vehicle control-treated cells. Statistical significance was 
determined using a Two-Way Anova with multiple comparisons, where p****>0.0001. 

Unlike YK-4-279, both newly designed disruptor peptide significantly increased 

cell growth during the first two hours of treatment when compared to the 

scrambled peptide control (Figure 5.10). However, the cells were able to 

recover from peptide treatment as reflected by the increase in all growth curves 

after two hours of peptide treatment (Figure 5.8 and 5.10). In order to consider 

these peptides as “proof of concept” novel therapeutics, any changes in cell 

growth must be observed over a longer period of time. The ideal scenario in 

cancer drug development is to kill all tumour cells, while leaving the healthy 
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cells intact so that the patients survive treatment (Eastman, 2017). Additionally, 

measuring the potency of small molecule drugs is a critical step in the 

development of novel therapeutic agents (Niepel et al., 2017). Unfortunately, 

the disruptor peptide developed in this thesis did not have any long-term effects 

on the growth of PC cells. Although an initial decrease in growth can be 

observed during the first two hours of treatment, the cells eventually were able 

to overcome this and continue to grow over the three days of this experiment 

(Figure 5.8). Although I have shown that our disruptor peptides are able to 

disassemble the PDE4D7-DHX9 complex in an IP and PLA (Figure 3.21, Figure 

3.22,Figure 3.23), this does not lead to any changes in LNCaP cells growth. 

However, this assay does provide us with a platform to test other therapeutic 

agents that could potentially lead to a decrease in PC cell growth.  

5.3.4  Disruption of PDE4D7-DHX9 complex alters DHX9 activity 

The data in this thesis so far has shown that disruption of the PDE4D7-DHX9 

complex only leads to a short-term decrease in cell growth during the first two 

hours of peptide treatment. Although promising, this did not lead to any long-

term changes in LNCaP cell growth. However, I was interested to see if the 

disruption of this interaction could affect DHX9’s helicase activity. Previous 

peptide array data showed that PDE4D7 binds within the helicase domain of 

DHX9 (Figure 3.16), suggesting that it may play a role in regulating its activity.  

Recent work by Chakraborty et al (2018) has shown that DHX9 activity can be 

studied by looking at levels of specific DNA-RNA hybrids known as R-loops. R-

loops are three-stranded nucleic acid structures that include an RNA strand 

hybridized with the DNA template, leaving the non-template DNA single stranded 

(Figure 1.14). These structures occur naturally during transcription, however the 

prolonged formation of these structures can have deleterious effects on genome 

integrity (Skourti-Stathaki and Proudfoot, 2014). DHX9 has recently been shown 

to promote the formation of R-loops in cells that are deficient for the Splicing 

Factor Proline and Glutamine rich (SFPQ). In the absence of SFPQ, there is a 

prolonged interaction between DHX9 and RNA polymerase II (RNA pol II) leading 

to increased production of R-loops (Chakraborty, Huang and Hiom, 2018). In 

order to investigate if the activity of DHX9 is affected by dissociation from 

PDE4D7, the same R-Loop assay was repeated. In order to ensure that SFPQ 
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could be successfully knocked down in LNCaP cells, SFPQ protein expression was 

first assessed by western blotting after siRNA treatment (Figure 5.11). 

 

 
Figure 5.11 LNCaP siSFPQ treatment efficiency. A. SFPQ protein expression was assessed by 
SDS-PAGE with western blotting. B. SFPQ expression was normalised to β-actin loading control. 
Percentage knockdown was then determined by normalising protein expression to cells treated 
with non-targeting siRNA. Data is presented as the mean ± SEM of three independent 
experiments. C. GAPDH expression was normalised to β-actin loading control. Percentage 
knockdown was then determined by normalising protein expression to cells treated with non-
targeting siRNA. Data is presented as the mean ± SEM of three independent experiments. 
Statistical significance was determined using a One-Way Anova, where p*>0.01 and 
p****>0.00001. 

Transfection with siRNA targeting SFPQ expression led to a visible decrease in 

protein expression (Figure 5.11 A top membrane). When quantified and 

normalised to the loading control, SFPQ expression was significantly reduced by 

approximately 60% when compared to the non-targeting siRNA control (Figure 

5.11 B). Although GAPDH expression did not seem to be visible decreased (Figure 

5.11 last membrane), its expression was reduced by 15% when compared to the 

non-targeting siRNA control (Figure 5.11 C). As siRNA against SFPQ was so 
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efficient, I can then attribute any changes in R-loops formation to the reduction 

of expression of this specific splicing factor. LNCaPs were plated onto sterile 

glass coverslips and treated with siRNA against SFPQ alone, or in combination 

with siRNA against PDE4D7. siRNA PDE4D7 was previously designed by Dr Ashleigh 

Byrne and shown to significantly decrease its expression in PC cell lines (Byrne, 

2014). The cells treated with siSFPQ alone were then treated with either UCR1 

or DHX9 disruptor peptide, the scrambled control peptide, or DMSO vehicle 

control. Following fixing and blocking of the coverslips, the cells were stained 

for nucleolin and for DNA-RNA hybrids using the S9.6 antibody overnight. In 

recent years, the monoclonal S9.6 antibody has been used to purify, analyse and 

quantify R-loop structures in cells (König, Schubert and Längst, 2017). After 

counter staining with the appropriate secondary antibodies, the coverslips were 

mounted cell side down and imaged using a confocal microscope (Figure 5.12 

and Figure 5.12).  
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Figure 5.12 Staining for R-loops in LNCaP cells following treatment with siRNA and 
disruptor peptide. Representative images showing immunostaining for R-loops using the S96 
antibody (red) and nucleolin (green). LNCaP were transfected with siNon-targeting (A) or siSFPQ 
(B) as indicated. Certain cells were also transfected with siPDE4D7 (C), or treated with scrambled 
peptide (D), or disruptor peptide (E+F). S9.6 staining from 30 different individual cells were 
measured as described in Figure 5.13. This work was performed in collaboration with Prof Kevin 
Hiom, University of Dundee.  
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In order to measure the levels of R-loops formed directly due to DHX9 helicase 

activity, the S9.6 staining from the regions stained with anti-nucleolin was 

subtracted from the S9.6 staining in the nucleus, as described in Figure 5.13. 

 
Figure 5.13 Determining R-loop staining in the nucleus following siRNA and peptide 
treatment. In order to determine if there were any changes in formation of R-loops due to siRNA 
transfection or peptide treatment, the mean fluorescence intensity (MFI) of the nucleolin regions (B-
D) was subtracted from the total nuclear S9.6 staining (A). All data acquisition was performed on 
Image J and analysed using GrahphPad Prism 8. 

S9.6 staining from at least 30 individual cells was measured from each condition. 

The mean S9.6 staining was then plotted, and any statistical difference in 

staining was determined using a One-Way Anova with multiple comparisons 

(Figure 5.14). 
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Figure 5.14 Quantification of R-loop staining following siRNA and peptide treatment. R-loop 
staining in LNCaP cells following siRNA and disruptor peptide. Data is presented as the mean ± 
SEM of at least 30 individual cells per treatment. Statistical significance was determined using a 
One-Way Anova with multiple comparisons where p****>0.0001. This work was performed in 
collaboration with Prof Kevin Hiom, University of Dundee. 

When LNCaPs were treated with non-targeting siRNA, R-loop staining is low as 

splicing factors are still able to bind to nascent RNA structures, physically 

preventing R-loop formation (Figure 5.12 A and Figure 5.14). R-loop formation is 

normally protected by splicing factors which coat the nascent mRNA, which in 

turn allows for normal transcription to take place (Crossley, Bocek and Cimprich, 

2019). However, when treated with siSFPQ alone and siSFPQ with scrambled 

peptide, S9.6 staining in these cells increased significantly by three-fold and 

four-fold respectively (Figure 5.12 B+D and Figure 5.14). However, when LNCaP 

cells were treated with siSFPQ and the UCR1 disruptor peptide, this led to a 

significant decrease in R-loop detection when compared to the scrambled 

peptide control. Interestingly, levels of R-loops detected in these cells were not 

significantly different from those in cells treated with non-targeting siRNA, 

indicating that R-loop formation had returned to normal levels (Figure 5.12 E 

and 5.14). This same response was seen in cells transfected with siFPQ and 

siPDE4D7 (Figures 5.12 C and 5.14). My results suggest that the interaction 

between DHX9 and PDE4D7 is required for DHX9 to unwind nascent RNA 

structures within the nucleus. Loss of this interaction leaves DHX9 unable to 



Characterising the role of DHX9 in Prostate Cancer 213 

unwind nascent RNA structures, leading to a decrease in R-loop formation and 

detection. Interestingly treatment with siSFPQ and our DHX9 disruptor peptide 

also led to a significant decrease in R-loop detection when compared to the 

scrambled peptide treated cells (Figure 5.12 F and 5.14). However, there was 

still a two-fold increase in R-loops when compared to the non-targeting siRNA 

treated control. Although my DHX9 disruptor peptide was able to lower R-loop 

formation, it is possible that not all DHX9-PDE4D7 complexes were disrupted 

within the nucleus. This could lead to continued DHX9 helicase activity and R-

loop formation. The data presented here suggests that disruption of the 

interaction between PDE4D7 and DHX9 using our cell penetrating peptides 

inhibits DHX9’s ability to promote R-loop formation.  

5.3.5 Decreased expression of DHX9 leads to changes of 
downstream signalling pathways.  

Although DHX9 is known to be involved in multiple signalling pathways, such as 

the p53 pathway (Lee and Pelletier, 2017), little is known about how changes in 

DHX9 protein expression can alter different downstream signalling pathways. 

Reverse phase protein array (RPPA) is a high throughput antibody-based 

proteomic technique which enables the concomitant quantification of multiple 

proteins and post-translational modifications of these proteins in multiple 

samples. Proteins extracted from cultured cells are denatured by SDS treatment 

and spotted onto nitrocellulose-coated glass slides. Using over 60 highly 

validated antibodies (Figure 5.16), these slides can measure changes in levels of 

total or post translationally modified proteins from the whole proteome 

available in the cell lysate (Creighton and Huang, 2015; Macleod, Serrels and 

Carragher, 2017). In this instance, RPPA was used to investigate how the 

decreased expression of DHX9 can affect linked signalling cascades by looking at 

the total levels and phosphorylation state of signalling intermediates. In this 

way, novel roles for DHX9 can be identified in PC cells. AI cells (DU145) were 

treated with siRNA against DHX9, GAPDH, or non-targeting control. Protein 

expression was assessed by SDS-PAGE with western blotting in order to ensure 

decreased protein expression (Figure 5.15). DU145 cells were used for this 

experiment as they had the highest endogenous level of DHX9 expression out of 

the three PC cell lines used in this thesis (Figure 3.1). 
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Figure 5.15 DHX9 expression in DU145 for RPPA analysis. A. DHX9 protein expression was 
assessed by SDS-PAGE with western blotting. B. DHX9 expression was normalised to β-actin 
loading control. Percentage knockdown was then determined by normalising protein expression to 
cells treated with non-targeting siRNA. Data is presented as the mean ± SEM of three independent 
experiments. C. GAPDH expression was normalised to β-actin loading control. Percentage 
knockdown was then determined by normalising protein expression to cells treated with non-
targeting siRNA. Data is presented as the mean ± SEM of three independent experiments. 
Statistical significance was determined using a One-Way Anova, where p*>0.01 and 
p****>0.00001. 

When treated with siDHX9, this led to a visible decrease in DHX9 expression by 

western blotting (Figure 5.15 A, top membrane). When quantified and 

normalised against the non-targeting siRNA control, DHX9 expression was 

significantly decreased when transfected with siDHX9 (Figure 5.15 B). 

Furthermore, western blotting and densitometry analysis showed that GAPDH 

expression was significantly decreased after siRNA transfection (Figure 5.15 A, 

bottom membrane, and Figure 5.15 C). Knowing that DHX9 expression is 
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significantly decreased when treated with siDHX9, this sample, as well as the 

lysate treated with non-targeting siRNA, were sent to the Edinburgh Cancer 

Research Centre for RPPA analysis. Spot and initial data analysis was performed 

by Kenneth Macleod at the University of Edinburgh (Figure 5.16).  

 

  
Figure 5.16 RPPA data from DU145 cells treated with siNon-target or siDHX9. A+B. Over 60 
antibodies were tested. Arrays were scanned using a slide scanner and adjusted for maximal 
signal in order to avoid saturation. This data was generated by Kenneth Macleod at the University 
of Edinburgh. 
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Interestingly, the RPPA analysis revealed that the Mitogen-Activated Protein 

Kinase (MAPK) pathway (Figure 5.16 A) and the mTOR pathway (Figure 5.16 A 

and B) were altered after DHX9 knockdown. HSP27 pSer78, MEK1/2 pSer 217, 

MNK1 pThr197, Thr202 from the MAPK pathway, and 4E-BP1 P Ser65, p70 S6 

Kinase P Thr389, mTOR (7C10), from the mTOR pathway, were all shown to 

increase in expression following siDHX9 transfection. Interestingly, these two 

pathways are often associated with each other in prostate cancer. Work by 

Kinkade et al (2008) showed that inhibition of the mTOR pathway by rapamycin 

and inhibition of the MAPK pathway using MEK inhibitor significantly inhibits cell 

growth in PC cell lines and AI PC tumours in mouse models (Kinkade et al., 

2008). Furthermore, inhibition of the mTOR pathway has been shown to activate 

the MAPK pathway as compensation (D. E. Butler et al., 2017). The data here 

suggests that these two pathways may be reliant on DHX9 expression in order to 

successfully allow signalling via these pathways. In addition to the MAPK and 

mTOR pathways, phosphorylation of S6 Ribosomal protein P Ser235, Ser236 and 

S6 Ribosomal protein p Ser240, Ser244 expression increased following siDHX9 

transfection. The ribosomal protein is an important component of the 40S 

ribosomal subunit (Puighermanal et al., 2017) as it has the ability to bind to 

mRNA, tRNA, and initiation factors (Williams et al., 2003). Phosphorylation of 

this protein is known to promote mRNA translation (Williams et al., 2003) under 

the regulation of the mTOR pathway (Ruvinsky and Meyuhas, 2006). Initial RPPA 

analysis potentially suggests that knockdown of DHX9 expression can potentially 

affect the mTOR pathway, either by altering the phosphorylation of downstream 

proteins or by altering the translational activity of the cell. 

It should also be noted that the decrease in DHX9 expression also led to the 

decreased detection of Cofilin pSer 3. Cofilin is an F-actin severing protein 

required for the reorganization of the cytoskeleton, which in turn drives cell 

migration. Cytoskeletal rearrangement is regulated by the phosphorylation of 

cofilin at Ser 3 in response to growth factor stimulation (Collazo et al., 2014). 

The RPPA analysis presented here shows that total cofilin expression remains 

unchanged but cofilin pSer 3 expression decreases following siDHX9 transfection 

(Figure 5.16 B). Phosphorylation of cofilin abolishes its actin-binding activity, 

thereby reducing filament breakdown and promoting cell migration (Lee and 

Dominguez, 2010). This could indicate a role for DHX9 in regulating levels of 
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phosphorylated cofilin, thus regulating cellular migration and invasion. In 

addition to cofilin, DHX9 knockdown also led to a decrease in Chk1 P Ser345 and 

Chk2 P Thr68 detection. Chk1 and Chk2 are both kinases that play an important 

role in genome integrity and cell cycle control. Although these two proteins are 

structurally unrelated to each other, both play a role in relaying the checkpoint 

signals in response to DNA damage. Phosphorylation of these proteins promotes 

activation of DNA repair pathways (Bartek and Lukas, 2003). Interestingly, 

inhibition of CHK1 can promote tumour cell killing by different genotoxic agents 

(Smith et al., 2010). This could mean that by decreasing phosphorylation of 

these two proteins by suppressing DHX9 expression, we could potentially 

increase the potential for PC cells to succumb to different anti-cancer drugs.  

In order to further validate the RPPA analysis, the proteins presented in Figure 

5.17 were selected for western blot analysis. These proteins were selected as 

the initial RPPA analysis showed that their expression was altered following 

siDHX9 transfection. Unfortunately, I was unable to further validate the other 

proteins above due to antibody availability and time constraints.  
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Figure 5.17 RPPA proteins selected for further validation. DU145 cells were treated with either 
siNon-targeting or siDHX9 for 48 hours. Cells were then lysed and the lysates were spotted onto 
glass nitrocellulose slides. Lysates were serially diluted 1:2 four times from a starting concentration 
of 1.5 mg/mL, then spotted in triplicate. The data presented here is the representative spot images 
and the net intensity following normalisation to loading control and siNon-targeting control. Data is 
presented as the mean ± standard deviation of the triplicate data. N=1. A+B+C. S6 Ribosomal 
protein P Ser235,Ser236, S6 Ribosomal protein p Ser240,Ser244, and p70 S6 Kinase P Thr389 
expression increases following siDHX9 transfection. D. Cofilin pSer 3 expression decreases 
following siDHX9 transfection.  

As previously described, the expression S6 Ribosomal protein P Ser235, Ser236, 

S6 Ribosomal protein p Ser240, Ser244, and p70 S6 Kinase P Thr389 increased 

after siDHX9 transfection (Figure 5.17 A-C). This could suggest that decreased 

expression of DHX9 could lead to changes in mTOR signalling. Additionally, 

expression of cofilin pSer 3 decreased following siDHX9 transfection. DHX9 could 

potentially have a role in mediating its phosphorylation, in turn regulating cell 

migration (Figure 5.17 D). The expression of the proteins mentioned in Figure 

5.17 was then further validated by western blotting. DU145 cells were treated 



Characterising the role of DHX9 in Prostate Cancer 219 

with either siNon-targeting, siGAPDH, or siDHX9 for 48 hours, then lysed. The 

expression of the proteins of interest was then assessed by SDS-PAGE with 

western blotting (Figure 5.18) in order to validate the original RPPA analysis 

(Figure 5.16). 

 

Figure 5.18 Effects of DHX9 knockdown on the phosphorylation of downstream proteins. 
Western blot analysis of the levels of phosphorylated proteins in cells treated with siRNA against, 
DHX9, GAPDH, or non-targeting control. The data is presented as the mean ± SEM of three 
independent experiments. Statistical significance was determined using a One-Way Anova. 
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Unlike in Figure 5.17 A, the expression of S6 Ribosomal protein pSer 235 236 and 

cofilin pSer 3 do not significantly change following siDHX9 transfection (Figure 

5.18 A and D). However, S6 Ribosomal protein pSer 240 244 expression was 

increased following siDHX9 transfection (Figure 5.18 B). Interestingly, p70 S6 

Kinase P Thr389 expression doubled following siDHX9 transfection (Figure 5.18 

C), but it was not statistically significant due to high variability between 

experiments. Although these increases were not significant when compared to 

the non-targeting siRNA control, this data further validates the initial RPPA 

analysis from Figure 5.16 and 5.17. Interestingly, DHX9 has been shown to be an 

interactor of p70 S6 kinase (p70S6K) as well as a new possible target to regulate 

p70S6K activity (Pavan et al., 2016). Although I was only able to validate a 

handful of proteins from the initial 60 from the RPPA analysis, this novel 

interaction as well as its role in the mTOR pathway could be of interest in order 

to identify alternate signalling pathways that are dysregulated in PC.  
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5.4 Discussion 

5.4.1  Suppression of DHX9 leads to cell death 

Cancer cells are reliant on the cell’s transcriptional machinery for protein 

synthesis and translation of specific mRNA that promote tumour cell survival. 

Therefore, targeting this machinery has increasingly become a potential new 

target for cancer therapies. DHX9, as well as other members of the DEAD/H 

helicases, are involved in almost all steps of RNA metabolism and this process is 

thought to mediate oncogenic transformation of cancer cells (Heerma van Voss, 

van Diest and Raman, 2017). DHX9 thus may play a critical role in cellular 

metabolism and in cellular proliferation / neoplastic transformation (Fuller-

Pace, 2013).  

Part of this chapter’s aim was to understand how DHX9 influences the 

proliferation of PC cells. When expression of DHX9 was knocked down using 

siRNA in AS and AI PC cell lines, proliferation of these cells was significantly 

affected (Figure 5.2 and Figure 5.5). Interestingly, this effect was most 

significant in the AI cell line highlighting the importance of DHX9 in promoting 

oncogenic growth. The loss of cancer cell proliferation can be partially explained 

by the potential activation of p53. P53 is a nuclear transcription factor and is 

known to activate numerous target genes involved in the induction of cell cycle 

arrest and apoptosis. In conditions where DNA damage is detected, p53 is 

activated and induces the activation of the pro-apoptotic pathway (Ozaki and 

Nakagawara, 2011). Suppression of DHX9 has been shown to lead to changes in 

cell cycle and DNA damage response protein expression. Suppression of DHX9 in 

MRC-5 cells resulted in a moderate increase in p53 expression. Interestingly, 

senescence was not induced in MRC-5 cells where both DHX9 and p53 expression 

were suppressed (Lee et al., 2014). However, when repeated in p53 null mice 

and cell lines, DHX9 suppression led to cell death (Lee and Pelletier, 2017). 

Decreased proliferation of DUCaP and LNCaP cells in our experiments after 

knock-down of DHX9 may be due to the activation of the p53 pathway. Both 

DUCaP and LNCaP cells are known to express p53 (van Bokhoven et al., 2003; 

Chappell et al., 2012), providing a potential mechanism to explain why a 

decrease in cell proliferation was observed in PC cells. The DHX9-p53 “pathway” 

may be a potential new target for drug development. In cases where classic 
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chemotherapy targeting the p53 pathway is no longer a feasible option, p53-

deficient cells expressing functional DHX9 can be a possible new target to 

suppress tumour growth (Lee and Pelletier, 2017). In order to confirm that this 

was the case, expression levels of p53 could be investigated by western blotting. 

Previous work by Lee et al (2017) showed that the suppression of DHX9 led to an 

increase in expression of p53 as well as its downstream effector protein (Lee and 

Pelletier, 2017). 

5.4.2  YK-4-279 significantly inhibits cell growth in AS cell lines 

YK-4-279 has quickly emerged as a new small molecule drug that can specifically 

target the oncogenic fusion protein EWS-FL1. This fusion protein is only 

expressed after chromosomal translocation, making it specific to tumour cells 

and a potential new therapeutic target in Ewing’s Sarcoma. YK-4-279 can block 

the interaction of DHX9 and EWS-FL1 in ESFT cell lines, leading to a decrease in 

cell growth. Since its initial discovery in 2009, YK-4-279 has the potential to 

become a new therapeutic agent to target cancers that are known to express 

ERG fusion proteins, such as PC or Ewing’s Sarcoma (Erkizan et al., 2009). 50-

70% of prostate tumours are characterised by the expression of ETS gene fusion 

proteins, with the most common one being the TMPRSS2-ERG fusion which occurs 

in 50% of tumours. Fusion proteins involving other members of the ETS gene 

family, such as FL1, have only been identified in less than 2% of cases (Kedage et 

al., 2016). Currently, ETS transcription factors are grouped into four classes (I-

IV) according to their sequence homology (Poon and Kim, 2017). FL1 and ERG are 

both part of Class I ETS factors and share more than 80% homology in their amino 

acid sequences. In this chapter, I show that disruption of the interaction 

between DHX9 and EWS-FL1, using YK-4-279, leads to a significant decrease in 

LNCaP proliferation. At the highest concentrations (10 µM and 1µM), YK-4-279 

was shown to almost immediately alter cell growth (Figure 5.6). Although I did 

not investigate if LNCaP expresses the EWS-FL1 protein, YK-4-279 has previously 

been used to study how this drug can affect the efficacy of docetaxel in the 

treatment of PC (Yu et al., 2017). Treatment of these cells with 10 µM and 1µM 

of drug led to a 75% decrease in the maximum cell index. My data suggests that 

the interaction between EWS-FL1 and DHX9 is required for oncogenic cell growth 

in LNCaP cells, and disruption of this interaction retards cellular proliferation. 

When repeated in the AI cell line (DU145), growth was not affected (Figure 5.7) 
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as they do not naturally express ETS fusion proteins (Swanson et al., 2011). My 

data and conclusion are supported by the 2011 study by Rahim et al. who also 

looked at the effects of YK-4-279 on PC cells lines. YK-4-279 reduced the 

motility of PC lines in a scratch test as well as inhibiting the invasive nature of 

LNCaP cells. When the AI cell line PC3 was treated with YK-4-279, they remained 

unresponsive as they do not express ETS fusion proteins (Rahim et al., 2011). 

This result was very similar to that reported in my thesis as I provide more 

evidence showing how YK-4-279 is dependent on the expression of ETS fusions 

proteins and inhibits the growth of LNCaP cells (Figure XX?).  

YK-4-279 has the potential to become a new inhibitor of ETS-positive PC growth 

and metastasis. This small molecule has already been shown to be effective in 

slowing down the growth of primary tumours in mouse xenograft models (Rahim 

et al., 2011). Severe combined immunodeficient mice (SCID) were 

subcutaneously transplanted with ETS fusion positive LNCaP and fusion negative 

PC3. These animals were then treated with YK-4-279, and primary tumour 

growth was evaluated. Treatment with YK-4-279 resulted in a decrease in the 

growth of primary tumours only in LNCaP-transplanted mice. Interestingly, YK-4-

279 also inhibited metastasis to the lungs in these mice, indicating that this 

small molecule could be a powerful new therapeutic tool for treatment of PC at 

different stages of disease (Rahim et al., 2014). Interestingly, when YK-4-279 

was administered to SCID mice subcutaneously inoculated with lymphoma cells, 

this did not alter tumour volume, but the drug itself was well tolerated by all 

mice (Chung et al., 2017). Recent work by Yu et al (2017) suggested that YK-4-

279 can also be used as a combination therapy with docetaxel. The 

chemotherapeutic agent docetaxel is currently the first line treatment for CRPC 

patients. However, it is currently used as a monotherapy and is associated with 

high toxicity and resistance. Yu et al. has shown that YK-4-279 may have a 

synergistic effect with docetaxel. LNCaP cells were treated with low-dose 

docetaxel and YK-4-279, and the combination of these two drugs significantly 

decreased the expression of AR, PSA and ETV1. The use of YK-4-279 and 

docetaxel could permit the decrease in docetaxel dose necessary for patients 

with CRPC and lower its toxicity (Yu et al., 2017). However, this would limit the 

treatment to tumours that are known to express the EWS-FL1 fusion protein.  
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As YK-4-279 has the potential to become the next cell growth inhibitor, 

alternative PPI disruption strategies need to be investigated in order to find 

alternative targets to inhibit growth. This is clear from my data, which shows 

that DU145 cells did not react to YK-4-279 as there was no change in cell 

growth. Other protein complexes could be targeted to halt AI PC cell growth. 

5.4.3  Disruption of the PDE4D7-DHX9 complex does not change 
cell growth, but affects DHX9 activity 

Due to the success of YK-4-279, a small molecule PPI inhibitor, we were 

interested to determine if the interaction between PDE4D7-DHX9 is crucial for 

cell growth. Previous work by Henderson et al. (2014) showed that PDE4D7 

mediates the proliferation of PC cells. Using a dominant-negative approach, wild 

type PDE4D7 was displaced from endogenous anchoring sites and this resulted in 

an accumulation of cellular cAMP. Expression of the catalytically inactive 

PDE4D7 also led to an increase in cellular proliferation, a result that was 

confirmed using siRNA-mediated knockdown of global PDE4D7. Suppression of 

PDE4D7 was found to lead to an increase in the rate of proliferation. 

Interestingly, re-expression of PDE4D7 in AI PC3 cells lead to a significant 

decrease in proliferation (Henderson et al., 2014). In this chapter I show that 

displacement of PDE4D7 from DHX9 using our new cell penetrating peptides does 

not affect LNCaP proliferation (Figure 5.8). Both UCR1- and DHX9-directed 

peptides significantly increased the normalised cell index two hours after 

treatment when compared to the scrambled peptide (Figure 5.10), indicating 

that the disruption of this interaction leads to a short-term increase in 

proliferation when compared to the scrambled peptide control. However, this 

did not lead to a change in cellular proliferation over the following three days. 

Unlike YK-4-279, our new cell penetrating peptides did not lead to an overall 

change in cell growth suggesting that the interaction between PDE4D7-DHX9 is 

not crucial for cell growth. 

However, the disruption of the interaction between PDE4D7-DHX9 leads to a 

significant decrease in DHX9 activity as shown by the R-loop staining (Figure 5.12 

and Figure 5.14). R-loops are transient, reversible structures that form in many 

parts of the genome. These structures facilitate transcription by regulating DNA 

methylation, which then promotes or inhibits gene expression (Crossley, Bocek 
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and Cimprich, 2019; Hegazy, Fernando and Tran, 2019). R-loops are generally 

formed during transcription. As the RNA polymerase moves along the DNA double 

helix, the newly formed RNA strand threads back to hybridise with the 

transiently accessible template strand and this displaces the non-template 

strand, which can be between 100-200 base pairs in length (Figure 5.19) (Allison 

and Wang, 2019). R-loops are generally formed by RNA polymerase II transcribing 

a cytosine (C)-rich template so that a guanine (G)-rich transcript is generated, 

and initial formation of this structure is favoured by G clusters and DNA nicks 

downstream from the promoter of the non-template strand (Skourti-Stathaki and 

Proudfoot, 2014). Once formed, R-loops are thermodynamically stable due to 

the formation of G quadruplexes formed in the single-stranded exposed RNA 

strand (Skourti-Stathaki and Proudfoot, 2014). Currently, the most widely used 

antibody to detect and understand R-loops is the monoclonal hybrid-specific S9.6 

antibody (Boguslawski et al., 1986; Niehrs and Luke, 2020). Genomic instability 

remains one of the hallmarks of cancer with replication stress and genome 

instability contributing to cancer development. Inappropriate accumulation of R 

loops is thought to play a role in a number of human cancers (Richard and 

Manley, 2017).  

 
Figure 5.19 Model of R-loop formation and suppression. R-loops form during transcription 
when a nascent RNA hybridizes with DNA, generating and DNA-RNA hybrid. R-loops are 
suppressed by splicing factors which coat the nascent RNA structure, allowing for progression of 
transcription. Currently, DHX9 is thought to resolve these structures, releasing the nascent RNA for 
processing. (Figure taken from Crossley, Bocek and Cimprich, 2019).  
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Recent work by Chakrabortty et al (2018) showed that defects in the SFPQ 

splicing factor can cause R-loop formation and DNA replication stress. Defects in 

RNA splicing factors leads to an increase in genomic instability due to the 

formation of R-loops. Using siRNA technology, they observed that loss of SFPQ 

expression led to a significant increase in R-loops staining using the S9.6 

antibody. They then showed that expression of DHX9 is needed to promote the 

formation of R-loops. In cells that are defective for splicing factors, such as 

SFPQ, formation of R-loops is dependent on DHX9 as shown by the significant 

increase in S9.6 staining (Chakraborty, Huang and Hiom, 2018). However, this 

concept is directly opposed to that published by others in the field. Other 

researchers have proposed that DHX9 is required for the suppression of R-loops. 

Work by Cristini et al (2018) initially identified DHX9 as one of the main proteins 

involved in the suppression of R-loop formation. DHX9 was shown to interact 

with R-loops by IP, and this interaction was shown to be reduced following 

treatment with a transcriptional inhibitor. By using DNA/RNA IPs, they were able 

to investigate how this interaction could affect the transcription of the β-actin 

and γ-actin genes in HeLa cells following siRNA transfection. This experiment 

revealed that the loss of DHX9 expression lead to an accumulation of R-loops 

within the transcription termination region of each gene when compared to the 

control siRNA condition. They suggested that the normal expression of DHX9 

promotes the suppression of R-loops formed within the genome, allowing for 

successful gene transcription termination. Suppression of DHX9 within these cells 

also led to an accumulation of read-through transcripts, which results from 

continuous transcription of adjacent genes (Pintarelli et al., 2016), due to the 

increased presence of R-loops at the termination region (Cristini et al., 2018). 

Unlike Chakrabroty et al (2018), Cristini et al. (2018) conclude that DHX9 is 

needed to supress R-loop formation within the genome in order to limit R-loop 

associated DNA damage (Cristini et al., 2018). 

Using the newly developed method by the Hiom lab outlined above, we wanted 

to understand if the interaction between PDE4D7-DHX9 could modulate DHX9 R-

loop formation. This work was carried out in collaboration with Prof Kevin 

Hiom’s laboratory at the University of Dundee where I undertook a placement. 

My data (Figure 5.12 and Figure 5.14) showed that the disruption of PDE4D7-

DHX9 using our cell penetrating peptides resulted in a significant decrease in 
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DHX9 activity with respect to R-loop formation (Figure 5.14). My conclusion is 

that the interaction between DHX9-PDE4D7 is essential for DHX9 to resolve 

secondary structures in RNA. As such, when this interaction is interrupted by our 

custom peptides and with siRNA targeting PDE4D7, DHX9 is no longer able to 

resolve secondary structures in the nascent RNA, inhibiting R-loop formation. 

When LNCaP cells were treated with siRNA against SFPQ alone, this led to a 

significant increase in S9.6 staining in the nucleus as DHX9 is able to unwind 

abnormal RNA structures (Figure 5.12 B and Figure 5.20 B). However, when the 

cells were depleted for SFPQ and treated with the UCR1 cell penetrating 

disruptor peptide, S9.6 staining significantly decreased and was comparable to 

the level of staining in the non-targeting siRNA control (Figure 5.12 E and F, 

Figure 5.20 C). This effect was also observed in cells treated with the DHX9 

peptide and siRNA against PDE4D7 (Figure 5.12 C). My data further supports the 

idea that normal DHX9 expression is required in the formation to RNA-DNA 

hybrids as the protein can resolve secondary structures in the nascent RNA 

strand.  
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Figure 5.20 DHX9 promotes the generation of R-loops. A. Formation of R-loops in cells with 
impaired splicing factors can be due to a prolonged association of DHX9 with RNA Pol II during 
transcription. In normal cells, DHX9 can bind to RNA Pol II during the early phases of transcription, 
but this interaction in absent during elongation. The dissociation of DHX9 from RNA Pol II is 
dependent on the presence of SFPQ. SFPQ stabilizes the nascent RNA strand, preventing the 
formation of secondary structures. B. In the absence of these splicing factors, DHX9 remains 
bound to the transcription complex where it can then bind to the nascent RNA strand. These RNA 
strands are then able to invade DNA duplexes where it can form RNA-DNA hybrids. C. In cells 
deficient for splicing factors and decreased DHX9 activity, the nascent RNA remains in its 
secondary structures, leading to a decreased in RNA-DNA hybrid. Figure is adapted from 
Chakraborty, Huang and Hiom, 2018.  
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As previously mentioned, the role that DHX9 plays in R-loop formation is 

controversial as several groups have suggested that DHX9 promotes the 

suppression of R-loops in cells. Work by Cristinin et al. (2018) showed that DHX9 

directly binds to these DNA-RNA hybrids and promotes the suppression of R-

loops. DHX9 was also shown to be important in maintaining genome stability in 

response to camptothecin, a topoisomerase inhibitor, by preventing the 

accumulation of R-loops in the genome (Cristini et al., 2018). Additionally, DHX9 

has been identified as a protein that is involved in preventing and suppressing 

the formation of R-loops (Skourti-Stathaki and Proudfoot, 2014). Here we show 

that the interaction between PDE4D7-DHX9 is required in the formation of R-

loops as the loss of this interaction is detrimental to DHX9 activity. Although it 

was not investigated here, the R-loop assay developed by the Hiom lab would 

have allowed us to understand how the inhibition or activation of these different 

pathway could affect DHX9 activity. LNCaP could have been treated with an 

array of inhibitors or activators, such as enzalutamide or rapamycin, and DHX9 

activity could be assessed using this assay. This would have allowed us to 

understand how these different pathways can affect DHX9 activity. 

The assay developed by the Hiom Lab, although effective, also presents with its 

own limitations. The main limitation is the reliance on the levels of SFPQ 

expressed in the cells. Although we have been able to show that SFPQ expression 

can be reduced in LNCaPs, the expression of this protein was very low to start 

with. Furthermore, the relationship between DHX9 and R-loops remains 

controversial between lab groups. Therefore, other methods need to be used in 

order to determine whether or not PDE4D7 does in fact have a role in regulating 

DHX9 activity. One such assay is the helicase assay, which has been previously 

used to show that DHX9 unwinds triplex DNA. This assay requires full length 

purified DHX9 protein and DNA substrates that have the ability to form triplex 

structures. DHX9 activity can be measured by the extent of strand displacement 

from the triplex DNA substrates. Briefly, purified DHX9 protein is incubated with 

5 nM of specific DNA substrate in assay buffer containing DTT and ATP. The 

reaction is then placed in a temperature-controlled PCR machine at 32˚C for 20 

minutes. The products can then be resolved by DNA agarose gel electrophoresis 

(Jain et al., 2010, 2013). This method could potentially be modified in order to 

investigate if the interaction of PDE4D7 increases the helicase activity of DHX9. 
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We can also potentially hyper-phosphorylate DHX9 in order investigate how PKA 

phosphorylation alters its activity. Although this assay would be considered as an 

in vitro assay, it may be more accurate and reliable than the R-loop assay used 

in this chapter. The helicase assay was initially considered as a method to 

evaluate DHX9 activity in my thesis; however due to the complex nature of the 

purification of full length DHX9, we were unable to perform this assay. Full 

length protein is required for this assay as the HA2 region of DHX9 is required for 

helicase activity. Commercially available protein was therefore not an option as 

these only sold truncated versions of the protein.  

5.4.4  p70 S6 Kinase P Thr389 in prostate cancer 

RPPA based analysis has increasingly become a useful and highly efficient tool to 

quantify protein analytes with high precision, sensitivity, throughput and 

robustness. Due to its large antibody database, RPPA can assess a large number 

of proteins in many samples in a cost-effective and sensitive matter (Akbani et 

al., 2014). Recently, the Cancer Genome Atlas group has employed this 

technology to characterise patients samples across a broad range of cancers, 

generating expression data of over 200 total and phosphorylated protein markers 

in major signalling pathways (Li et al., 2017). Using RPPA, we were able to show 

that the levels of p70 S6 Kinase pThr 389 increases in DU145 cells with 

suppressed expression of DHX9. As total levels of p70 S6 kinase remained 

unchanged in the experiment, the data suggests that DHX9 may have a role in 

regulating p70 S6 kinase activity via its phosphorylation (Figure 5.17 and Figure 

5.18).  

p70S6K is a 85 kDa ribosomal protein that is a member of the AGC subfamily of 

serine/threonine protein kinases (Bahrami-B et al., 2014). AGC kinases include 

more than 60 proteins in the genome and this group is highly expressed in 

eukaryotic cells. AGC kinases are involved in diverse cellular functions and have 

become potential targets in human diseases such as cancer. The AGC kinase was 

named after 3 representative families: the cAMP dependent PKA, the cGMP 

dependent protein kinase G (PKG), and protein kinase C (PKC) (Arencibia et al., 

2013). For many AGC proteins, activation requires the phosphorylation of two 

highly conserved regulatory motifs. This includes the activation segment, which 

can be located in the protein’s catalytic domain, and the hydrophobic motif, 
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which is found in a non-catalytic region following the kinase domain (Pearce, 

Komander and Alessi, 2010) (Figure 5.21).  

 

Figure 5.21 Domain structures of p70 S6 Kinase. P70SK contains an acidic N-terminal region, a 
kinase domain, a linker region, and an acidic C-terminal region. Figure taken from Magnuson, Ekim 
and Fingar, 2011. 

In recent years, efforts have been made to map to the interactome of p70S6K 

involved in the regulation of multiple cellular processes. These newly identified 

interactors could represent new regulators or targets of p70S6K, furthering the 

understanding of this family of kinases. Such efforts have revealed that DHX9 is a 

novel interactor of p70S6K, and can potentially regulate its activity (Pavan et 

al., 2016). Our data suggests that DHX9 could play an important role in 

regulating the phosphorylation of p70SK. Knockdown of DHX9 using target 

specific siRNA revealed that levels of phosphorylation of p70S6K at Thr389 were 

increased in both our RPPA and western blot analysis. This is further supported 

by levels of total p70S6K remaining unchanged in the RPPA analysis after DHX9 

suppression. Interestingly, an increase in the levels of 4E-BP1 pSer 65 was also 

observed. These two proteins are both downstream effectors of the mammalian 

target of rapamycin (mTOR) complex 1 (mTORC1). Activation of mTORC1 results 

in the phosphorylation of 4E-BP1 and p70S6K which results in the initiation of 

protein synthesis (Choo et al., 2008). 

The mammalian target of rapamycin (mTOR) is a an evolutionarily conserved 

phosphatidylinositol 3-kinase (PI3K)-related Ser/Thr kinase that can integrate 

signals from nutrients, energy sufficiency, and growth factors to regulate cell 

growth as well as organ and body size. mTOR forms two distinct complexes, 

complex 1 which is rapamycin sensitive and complex 2 which is insensitive 

(Julien et al., 2010). Currently, the most accepted models is that mTOR complex 
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1 phosphorylates p70S6K hydrophobic motif at Thr 389, and the process can be 

reversed by rapamycin (Zhang et al., 2019) (Figure 5.22 panel A). P70S6K is one 

of the predominant effectors of the mTOR complex 1, and this pathway is known 

to play an important role in regulating protein synthesis, cell growth, 

metabolism, and aging (Laplante and Sabatini, 2009; Doscas et al., 2014).  

 

The mTORC1 substrate 4E-BP1, which is unrelated to p70S6K, inhibits translation 

by binding and sequestering the translation initiation factor eIF4E to prevent the 

formation of the eIF4F complex (Saxton and Sabatini, 2017). When 4E-BP1 is 

phosphorylated at serine 65 by mTOR complex 1, it no longer sequesters eIF4E, 

allowing formation of the eIF4F complex initiating cap-dependent translation. 

When mTORC1 is inhibited, 4E-BP1 becomes dephosphorylated, increasing its 

affinity for eIF4E (Sun et al., 2019). Interestingly, DHX9 has recently been shown 

to be recruited by mTOR to a 5’mRNA cap structure following its activation. 

DHX9 was shown to assist eIF4A in the unwinding of secondary structures with 

the 5’UTR of mRNAs (Nandagopal and Roux, 2015). In recent years, mTOR 

signalling has been shown to be dysregulated during disease progression. 

Upregulation of mTOR signalling can promote tumour growth and progression 

through multiple mechanisms (Hua et al., 2019). mTOR has specifically been 

implicated in PC metastasis via the regulation of HIFα and the inhibition of 

transforming growth factor β1 (TGFβ1) (Kremer et al., 2006). Furthermore, 

PDE4D has recently been shown to be regulate mTORC1 transcriptional activity 

via Rheb. mTORC1 is a direct substrate of Rheb, a small GTPase. The direct 

binding of Rheb and mTORC1 allows for the activation of mTORC1 and activates 

pathways that are downstream of this activation (Long et al., 2005). Under basal 

conditions, PDE4D binds to Rheb which in turn inhibits activation of the pathway. 

However, when cAMP levels are elevated, the interaction between PDE4D and 

Rheb is disrupted, inducing activation of mTORC1 and cap-dependent translation 

(Kim et al., 2010). This could potentially mean that in late stage disease, where 

global PDE4D expression is low, disease progression could be initiated through 

mTORC1-p70S6-RHEB1 pathway. Our data suggests that the suppression of DHX9 

in DU145 cells would potentially lead to an increase in translational activity via 

the mTORC1 pathway. Human mRNA translation requires DHX9 for folding / 

unfolding within their 5’UTR region. If these remain unresolved, the mRNA is 

unable to be read by ribosomal structures and inhibits the translation of 
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downstream open reading frames (Murat et al., 2018). It can therefore be 

proposed that the normal expression of DHX9 is required to maintain normal 

protein expression as well as PC progression. Suppression of DHX9 can then lead 

to the accumulation of mRNA structures leading to the formation of aggregates 

in the cell (Figure 5.22 panel B). These aggregates create stress granules, and 

can potentially initiate the apoptotic pathway and decrease cellular 

proliferation (Khong et al., 2017; Falcone and Mazzoni, 2018). 

 
Figure 5.22 Schematic diagram illustrating the proposed interaction between DHX9 and the 
mTOR pathway. A. Activation of mTOR pathway leads to the phosphorylation of p70 S6 Kinase at 
threonine 389 and of 4E-BP1 at serine 65. DHX9 is also recruited to the pathway, and these three 
proteins promote the initiation of translation, allowing for cell growth and proliferation. B. Here, we 
propose that the decreased expression of DHX9 leads to an increase in phosphorylation of p70 S6 
Kinase at threonine 389 and of 4E-BP1 at serine 65. Translation is still able to occurs, but due to 
the absence of DHX9, secondary RNA are not resolved and this leads to the accumulation of RNA 
that cannot be correctly translated into protein. This can then lead to the formation of stress 
granules and cell death. (Laplante and Sabatini, 2009; Pavan et al., 2016; Khong et al., 2017) 

Various in vitro models have been used in PC in order to understand the 

mechanisms that leads to treatment resistance and disease progression. DU145 

was once considered as the “gold standard” of PC cell lines. DU145 was first 

isolated from a brain metastatic prostate tumour, and no longer expresses mRNA 

or protein for AR or PSA. This observation has since cast doubts on this cell line 

as a true model for PC (Cunningham and You, 2015). Due to the absence of AR, 
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this cell line is most commonly used as an AR- control or to study AR singling by 

ectopic expression (Sampson et al., 2013). Most PC tumours still express AR, 

further supporting the idea that DU145 is not a true representation of late stage 

PC (Heinlein and Chang, 2004). As such, in order to ensure that the mTOR-DHX9 

signalling axis is worth investigating, this RPPA should be repeated in other PC 

cell lines such as VCaPs or PC3. If RPPA results in these other cell lines indicate 

that the same signalling axis is altered, then further work on how PDE4D7-DHX9 

is involved in this pathway should be carried out.  

Although RPPA remains a very useful tool in cancer biology, it can only look at 

changes in protein levels. However, DHX9 is involved in RNA processing, 

biogenesis and processing. Increasing evidence has shown that different RNA 

markers are differentially expressed in PC and such is the case with circular RNA 

(cRNA). cRNA are a novel type of non-coding RNA (ncRNA) which can regulate 

the function of microRNA (miRNA), and can play a key role in the development 

of drug resistance in PC (Greene et al., 2019). Furthermore, long-noncoding RNA 

(lncRNA) are known to bind to DHX9 and mediate cell invasion and angiogenesis 

of cervical cancer (Ding et al., 2019). These two types of ncRNA have important 

functional roles and are frequently dysregulated in PC. There is evidence 

showing that these RNAs are responsible for oncogenesis and tumour progression 

(Hua, Chen and He, 2019). It would be interesting to investigate if the 

suppression of DHX9 could also alter the levels of ncRNA or cRNA in PC cell lines 

or patient samples. These changes could indicate which ncRNA plays a critical 

role in the progression of PC, potentially revealing new drug targets of DHX9 

interactors. Unfortunately, RPPA does not have the ability to look at levels of 

RNA, therefore other approaches such as RNA-Sequencing could be used to look 

at changes in RNA levels due to decreased DHX9 expression.  

5.4.5  Chapter Summary  

The data presented in this chapter has provided further support to the current 

literature. I have shown that reduced expression of DHX9 in PC cell lines leads to 

a decrease in cellular proliferation. This supports the idea that DHX9 can be 

considered an oncogenic protein, and its increased expression in late-stage 

cancers further promotes disease progression. Disruption of the interaction 

between EWS-FL1-DHX9 also leads to very significant decrease in cell growth, 



Characterising the role of DHX9 in Prostate Cancer 235 

however this was not seen in the fusion negative cell line DU145. YK-4-279 has 

the potential to be a successful drug in treating fusion positive tumours and 

slowing the progression of disease. Unfortunately, our novel disruptor peptides 

targeting the interaction between PDE4D7-DHX9 did not have the same effect as 

YK-4-279, and instead showed that this interaction is not essential for cell 

growth or a viable target to slow down disease. Instead, this interaction has 

been shown to be important in DHX9’s helicase activity. Disruption of PDE4D7-

DHX9 interaction significantly reduced R-loop formation in cells that are 

deficient for splicing factors. This was also observed in cells that were co-

treated with siRNA against PDE4D7. In order to confirm that this was the case, 

alternative DHX9 helicase activity assays need to performed using purified 

protein. Our RPPA analysis confirmed that DHX9 plays an important role in the 

mTORC1 signalling pathway, and PDE4D isoforms plays a role in regulating the 

activation of this pathway. Increasing evidence has implicated this pathway in 

the progression of disease, and DHX9 is known to be recruited by mTOR to 

mediate 5’UTR cap dependent translation. However, further validation in AS cell 

lines is needed in order to confirm that the pathways affected in DU145 is also 

seen in either LNCaP or VCaP. If the mTOR pathway in both these cell models is 

affected by DHX9 knockdown, this could be a potentially new pathway to 

investigate.  
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Chapter 6 Final Discussion 

6.1 DNA/RNA helicases in PC 

RNA/DNA helicases are ubiquitous enzymes that are involved in many different 

aspects of nucleic acid function. They utilise energy, derived from the hydrolysis 

of ATP, to unwind abnormal DNA or RNA structures such as R-loops. Due to the 

importance of helicases in different cellular functions, mutations in these 

helicases are linked to hereditary diseases or associated with various cancers 

(Datta and Brosh, 2018). Changes in expression levels, mutations in human 

tumours, and roles in different signalling pathways that alter tumour growth are 

all ways in which cancerous cells utilise helicases in order to initiate disease 

(Robert and Pelletier, 2013).  

In recent years, members of the DExD/H and DEAD helicase family have emerged 

as having a role in the progression of PC. DDX5, also known as p68, has recently 

been shown to be a novel AR transcriptional co-activator that is overexpressed in 

PC (Clark et al., 2008). DDX5, like DHX9, is an RNA-dependent ATPase capable of 

unwinding abnormal RNA structures (Dai et al., 2014). DDX5 is thought to be 

involved in cellular proliferation and early organ maturation, as well as 

transcriptional regulation of multiple genes. Like DHX9, it is mainly expressed in 

the nucleus, but can be shuttled in and out of this compartment via RanGTPase-

dependent pathways (Wang et al., 2009). DDX5 was identified as a novel 

interactor of AR by yeast-two-hybrid screening by Clark et al. (2003). This 

interaction was further verified by ICC and IPs in LNCaP. Interestingly, DDX5 was 

found to contain the LXXLL motif that can be seen in cofactors that interact with 

hormone receptors. The LXXLL motif is a multifunctional binding sequence that 

participates in several protein-protein interactions between transcription factors 

and their cofactors. This binding sequence mediates these interactions in order 

to activate or repress the transcription of specific genes (Plevin, Mills and Ikura, 

2005). DDX5 was found to contain this motif between amino acid 146 and 150. 

Using chromatin-immunoprecipitation (ChIP) assays, DDX5 was shown to interact 

with AR at ARE within the promoter and enhancer regions of the PSA gene. This 

interaction at the ARE region was enhanced following prolonged activation of 

the AR by androgens. Suppression of DDX5 using siRNA technology reduced the 

expression of PSA and AR mRNA and protein, indicating the DDX5 is an important 
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co-activator of AR mediated gene expression. DDX5 expression was also seen to 

be increased when compared to benign tissue (Clark et al., 2008).  

In addition to DDX5, DHX15 is also known to be involved in PC. DHX15 is another 

member of the DExD/H helicase family and shares many of the same functions as 

DHX9. Additionally, DHX15 mediates the innate immune system in sensing of 

viral RNA (Murakami et al., 2017). DHX15 was identified as another AR co-

activator, and this interaction is required to regulate AR activity by modulation 

E3 ligase Siah2 AR ubiquitination (Jing et al., 2018). The E3 ligase Siah2 is 

thought to target chromatin-bound inactive AR, which in turn can regulate the 

expression of genes that control growth, survival, and tumorigenic abilities of PC 

cell (Qi et al., 2013). Work by Jing et al (2018) has shown that DHX15 promotes 

the binding of Siah2 to the AR, which in turn regulates its ubiquitination. DHX15 

was found to stabilize the interaction between Siah2 and AR, allowing for the 

activation of AR transcriptional activity (Jing et al., 2018). Furthermore, DHX15 

expression was found to be upregulated in CRPC samples. This increased 

expression was suggested to be protective towards these CRPC cells. Using a 

CRPC cell line model, the knockdown of DHX15 using siRNA technology reduced 

AR sensitivity to DHT and inhibited cell growth as well as increasing sensitivity to 

enzalutamide. Increased DHX15 could contribute to PC progression into CRPC (Xu 

et al., 2019).  

Many parallels between DDX5, DHX15, and DHX9 can be found. Data in this thesis 

has shown that the expression of DHX9 was increased in DU145 cells, which is 

currently used as a model for late stage disease (Figure 3.1). Multiple studies 

have shown that DHX9 is required for the appropriate expression of multiple 

genes via its interaction with different transcription factors (Lee and Pelletier, 

2016). Like DHX15, DHX9 could potentially play a role in regulating AR activity by 

modulating the interaction of AR with different co-activators. This could be the 

case with CBP. CBP is known to be a co-activator of AR, and this interaction is 

thought to play a role in prostate tumorigenesis. CBP alters chromatic 

structures, allowing for the binding of transcription factors such as AR (Debes et 

al., 2005). CBP is also known to form a complex with RNA polymerase II and 

DHX9 in order to mediate the targeting of genes activated by CREB (Nakajima, 

Uchida, Anderson, et al., 1997). It could be possible that these three proteins 

could form a complex within the nucleus in order to promote the expression of 
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different ARE genes that could promote the progression of disease. Increased 

expression of DHX9 could further promote such activities. Owing to the highly 

conserved nature of the DExD/H helicase family (Jankowsky, 2000), it can be 

proposed that DHX9 could potentially interact with AR. Interestingly, a study 

conducted by Heemers et al (2009) has identified DHX9 as a coregulator of AR 

activity. By using a cDNA-mediated annealing, selection, extension, and ligation 

(DASL) RNA profiling array, a tool designed to monitor gene expression from 

tissues or cells, they were able to identify DHX9 as a coregulator of AR in LNCaP 

cells. However, treatment with R1881, a synthetic form of androgens, did not 

change DHX9 expression after 48 hours (Heemers and Tindall, 2007). 

Furthermore, recent work by Chen et al (2020) has shown that although the AR 

has a role in regulating the expression of multiple RNA editing genes, AR was not 

reported to alter DHX9 mRNA expression in cells (Chen et al., 2020). Although 

these studies indicate that DHX9 can act as a coregulator of AR, no studies have 

further investigated whether DHX9 activity it required for AR’s transcriptional 

activity. DHX9 has often been described as a transcriptional coactivator that acts 

a bridging factor between transcription factors (Fuller-Pace, 2006). As DHX9 

expression increases at later stages of disease, it could potentially act as a co-

activator of AR transcription despite low levels of circulating androgens.  

6.2 PDE4D7 regulates DHX9 phosphorylation and helicase 
activity 

Experimental work reported in this thesis has provided extensive evidence that 

PDE4D7 and DHX9 are novel interactors in prostate cancer. By using extensive 

biochemical and peptide array techniques, not only was I able to show that the 

two proteins were interacting (Figure 3.6-3.9), but I was able to map where this 

interaction took place (Figure 3.11 and 3.16). DHX9 binds within the UCR1 

domain of PDE4D7, and this binding site contains the previously reported FLY 

PDE4 multi-docking site. On the other hand, PDE4D7 binds within the helicase 

core domain of DHX9, downstream of Ser449 that is readily phosphorylated by 

PKA (Figure 4.1). Treatment of HEK293 and PC cells with the UCR1 disruptor 

peptide led to a reduction in PDE4D7-DHX9 interaction (Figure 3.19 and 3.21). 

This interaction could potentially take place in the nucleus due to the expression 

of NLS in both proteins (Figure 3.5, Lee and Pelletier, 2016). Bioinformatic 

analysis showed that PDE4D7 potentially has a novel NLS sequence between its 
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linker and UCR2 domain (Figure 3.5), whereas DHX9 is known to have an NLS/NES 

sequence within its C-terminal domain (Lee and Pelletier, 2016; Ng et al., 2018). 

Interestingly, this loss of interaction also leads to an increase in DHX9 

phosphorylation by PKA under basal conditions (Figure 4.12) as well as a 

decrease in DHX9’s helicase activity (Figure 5.13). This could be due to the 

sequestering of phosphorylated DHX9 in the cytoplasm (Figure 4.10), inhibiting 

its ability to unwind nascent mRNA  that are found within the nuclear region, 

therefore decreasing R-loop formation. 

Modulation of RNA structures by members of the DExD/H family of helicases is a 

crucial step for many fundamental cellular processes (Sheng et al., 2006). In 

addition to their important cellular roles, subtle changes in their shape or 

activity can result in altered development, uncontrolled growth, or adaptation 

to environmental changes (Linder and Fuller-Pace, 2013). Therefore, it is 

important that these helicases are appropriately regulated via PTMs. Based on 

the data presented in this chapter, PKA phosphorylation of DHX9 could act as a 

negative regulator of its helicase activity within the nucleus owing to its 

translocation into the cytoplasm. It can be suggested that PKA phosphorylation 

has a role in modulating DHX9’s subcellular location and PDE4D7 prevents DHX9 

accumulation in the cytoplasm. Such protective interactions have been seen in 

the NF-κB signalling pathway. NF-κB is a family of transcription factors that 

plays an important role in inflammation, immunity, cellular proliferation, 

differentiation and survival. PKA is known to phosphorylate the NF-κB protein 

p65 in order to increase its transcriptional activity (Oeckinghaus and Ghosh, 

2009). However, PKA phosphorylation of NF-κB has also been shown to regulate 

its ability to translocate into the nucleus. Recent work by King et al (2011) has 

shown that the complex between A kinase interacting protein 1 (AKIP1), the 

catalytic PKA subunit (PKAc), and p65 regulates the rate at which p65 

translocates to the nucleus. P65 was found to be phosphorylated at Ser276, and 

inhibition of its ability to be phosphorylated by PKA by creation of a phospho-

null mutant lead to the accumulation of p65 in the nucleus. Furthermore, 

increased nuclear expression of p65 was observed when PKAc expression was 

suppressed using siRNA technology. This translocation was found to be mediated 

by AKIP1, where PKAc overexpression in cells resulted in increased expression of 

p65 in the nucleus. It was suggested AKIP1 protects p65 from PKA 
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phosphorylation, allowing p65 translocation into the nucleus and act as a 

transcription factor (King et al., 2011).  

Interestingly, the same observation was made in this thesis. The worked 

conducted in this thesis has shown that PKA phosphorylation directs the 

subcellular location of the proteins of DHX9. Conceptually, DHX9 phosphorylation 

by PKA should be “gated” by local PDE4D7 activity, allowing DHX9 to be mainly 

expressed in the nucleus. This interaction promotes DHX9’s helicase activity 

allowing it to unwind RNA secondary structures. This in turn increases R-loop 

formation as explained in Figure 5.20 B. However, disruption of this interaction 

either using our cell permeable peptides or by lowering PDE4D7 expression using 

siRNA, resulted in a significant loss in R-loop detection as well as an increase in 

the level of phosphorylated DHX9. Like AKIP1, PDE4D7 activity can protect DHX9 

phosphorylation and allow DHX9 to remain in the nucleus. PKA phosphorylation 

of DHX9 then leads to the translocation of DHX9 into the cytoplasm, which in 

turn leads to a decrease in its ability to unwind secondary RNA structures in the 

nucleus. Furthermore, phosphorylation of DHX9 could instead promote its 

translational activity. PKA phosphorylation not only promotes the enzymatic 

activity of certain proteins, but can also acts a molecular switch in order to 

promote other protein functions (Shwab et al., 2017). Modification of DHX9 by 

PKA phosphorylation could potentially act as a way of promoting its translational 

activity. Phosphorylation of translation initiation factors can help reduce the 

amount of energy required for this process and provides a rapid way to adapt to 

cellular changes (Pierrat et al., 2007). The majority of mRNA that exists in the 

cell are capped and polyadenylated, which requires unwinding prior to the 

initiation of translation (Marintchev, 2013). To date, the translation initiation 

factor eIF2 is the most well-known helicase to be recruited to these sites in 

order to unwind secondary structures, and failure to do so leads to inefficient 

translation initiation (Murat et al., 2018). DHX9 is emerging as an additional 

helicase that has a role in translation initiation. For example, DHX9 has been 

shown to be required in the efficient translation of Type I collagen by unwinding 

its unique 5’ stem-loop structure. siRNA mediated knockdown of DHX9 led to a 

significant loss in the synthesis of collagen protein, and has since been suggested 

to be an important factor in collagen synthesis in the human body (Manojlovic 

and Stefanovic, 2012). Therefore, the phosphorylation by PKA and loss of PDE4D7 
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could potentially promote DHX9’s translational activity and initiate the 

translation of certain mRNAs.  

6.3 DHX9 is involved in multiple signalling pathways 

Initial ADT treatment has proven to be successful in PC, but it is widely accepted 

that the majority of men treated with either surgical or chemical ADT will 

develop disease progression due to the propagation of androgen-independent PC 

cells (Perlmutter and Lepor, 2007). Increasing evidence has shown that ADT for 

the treatment of PC carries significant health risks and some side effects, which 

is generally tolerated by the men receiving treatment (Fang, Merrick and 

Wallner, 2008). Furthermore, the age at which the men are being treated can 

affect the overall effect of ADT. A retrospective study by Keating et al. (2019) 

has shown that younger patients had no significant difference in overall survival 

between patients receiving active surveillance and ADT (Keating et al., 2019). 

There is currently a need to find alternative therapies that could potentially be 

used in parallel with ADT in order to improve patient outcomes and limit the 

secondary effects associated with this course of treatment.  

Considering the data presented here and that in the literature it could be 

considered that DHX9 has the potential to be an alternate target for the 

treatment of PC. Suppression of DHX9 expression using siRNA resulted in a 

significant decrease in DuCaP growth (Figure 5.2). Work by Lee et al (2014) has 

shown that this significant change in cellular growth rate can be attributed to 

the activation of the p53 apoptotic pathway (Lee et al., 2014). However, using 

RPPA analysis, I was able to show that decreased expression of DHX9 by siRNA 

leads to an increase in p70 S6 Kinase phosphorylation at Thr389 and 4E-BP1 at 

Ser65 (Figure 5.15-17), both of which are known to be part of the mTOR signalling 

pathway. DHX9 has been shown to be recruited by mTOR to regulate the 

expression of specific mRNA (Nandagopal and Roux, 2015), and suppression of 

DHX9 could lead to the accumulation of these untranslated mRNA molecules. 

This in turn could potentially increase cellular stress, which could in turn 

activate pathways that activate cell death (Fulda et al., 2010). These two 

signalling pathways are not mutually exclusive from each other, and research 

has shown that the mTOR and p53 pathways are needed in order to regulate 

their respective pathways. Work by Feng et al (2005) demonstrated that the 



Final Discussion 242 

activation of the p53 pathway leads to an inhibition of the mTOR pathway 

through the activation of AMP kinase (AMPK) (Feng et al., 2005). DHX9 could 

potentially act as protein that bridges these two signalling pathways in order to 

prevent the activation of the p53 pathway. In wild type cells, DHX9 could act as 

a negative regulator of p53 activation, which in turn allows for the activation of 

the mTOR pathway and translation of mRNA. However, when DHX9 is no longer 

expressed at normal levels, this leads to the activation of the p53 pathway and 

the inhibition of mTOR pathway. A potential way this can be studied is by 

looking at the expression of IGF-BP3, PTEN, TSC2, AMPK β1, Sestrin1, and 

Sestrin2. The expression of these proteins are only induced following p53 

activation and directly suppress the mTOR pathway (Feng, 2010). We could 

design an experiment where the expression of these protein changes following 

modulation of DHX9 expression using siRNA. It can by hypothesised that 

expression of IGF-BP3, PTEN, TSC2, AMPK β1, Sestrin1, and Sestrin2 increases 

following siDHX9 treatment due to the activation of the p53 pathway, which in 

turn can negatively regulate the mTOR pathway.  

6.4 Clinical trials involving mTOR and ERK signalling 
pathways 

Since the 1990s, great efforts have been made to increase the detections of 

prostate cancer while at the same time reducing the number of PC related 

deaths (Ahdoot et al., 2019). Although ADT has been the primary treatment of 

early and late-stage PC, patients ultimately progress to CRPC where the cancer 

becomes resistant to ADT. As such, these tumours develop ways to grow, 

decreasing the rate of survival (Ritch and Cookson, 2018). As such, alternative 

targets are currently being investigated in order to overcome these challenges.  

As previously discussed, the PI3K-mTOR signalling pathway is frequently altered 

in PC, facilitating tumour formation, disease progression and therapeutic 

resistance (Shorning et al., 2020). Drugs that target and inhibit the mTOR- PI3K 

activity is expected to therefore provide therapeutic value in a number of 

cancer types, including PC (Don and Zheng, 2011). Recent work by Statz et al 

(2017) evaluated the results of clinical trials investigating mTOR inhibition in 

CRPC, and predicted the clinical outcomes using the preclinical data. A total of 

14 studies were evaluated, all using mTOR inhibitors either as a monotherapy or 
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in combination. Most studies showed that PSA levels declined during treatment, 

but often increased shortly after (Statz, Patterson and Mockus, 2017). 

Furthermore, the use of the mTOR kinase inhibitor voxtalisib showed limited 

clinical efficacy in the treatment of CRPC due to the dose reductions secondary 

to toxicity. Treatment of CRPC patients with this drug resulted in poor mTOR 

and signalling target inhibitions, which in turn led to increased AR Activation and 

PSA expression (Graham et al., 2018). Work by George et al (2020) have also 

shown that the treatment of CRPC with the FDA approved mTOR inhibitor 

Everolimus has no clinical effect on CRPC treatment. Out of 35 men enrolled in 

this phase 2 trial, no changes in PSA levels were observed while patients were 

taking everolimus. Instead, several patients had declines in PSA levels following 

cessation of everolimus treatment (George et al., 2020). Although promising, 

mTOR is still yet to become an effective drug target in PC. Despite mTOR 

inhibitors being used in the treatment of different cancers, such as pancreatic 

and breast cancer (Hua et al., 2019), mTOR inhibitors are yet to be used in the 

treatment of CRPC.  

In addition to the mTOR pathway, the ERK pathway is frequently altered in PC. 

In recent years, an increasing number of clinical trials are being performed on 

ERK inhibitors (Georgi et al., 2014). Recent work by Nickols et al (2019) has 

shown that the ERK pathway may be a viable treatment strategy for patients 

suffering from CRPC. They compared the differential phosphorylation of key 

downstream kinases between metastatic and localised CRPC, as well as the 

expression of mRNA, in order to infer differential ERK activity. From this study, 

32% of patients showed signs of amplified ERK pathway as well as increased 

levels of phosphorylated ERK1/2 when comparing CRPC to untreated primary PC 

(Nickols et al., 2019). Currently, the only approved ERK inhibitor is trametinib, 

which is commonly used for the treatment for metastatic melanoma showing 

favourable safety profile (Georgi et al., 2014). Work by Li et al (2019) has shown 

that inhibition of ERK using trametinib suppresses the growth of enzalutamide-

resistant CRPC (Li et al., 2019). Trametinib is currently in phase 2 clinical trial in 

order to study how this drug can help treat patients suffering from metastatic 

CRPC. Unfortunately, there is no data to date to indicate how efficacious 

trametinib was in treating these patients as the study is due to be completed in 

January 2022 (Retting, 2020).  
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6.5 DHX9 – A new druggable target? 

Although the disruption of the interaction between DHX9 and PDE4D7 using our 

cell permeable disruptor peptide did not lead to any long-term effects on cell 

growth (Figure 5.8-5.10), the YK-4-279 DHX9 inhibitor significantly decreased the 

growth of AS LNCaP cells (Figure 5.6). Disruption of the interaction between 

DHX9-EWS-FLI1 using this compound significantly decreased the growth of LNCaP 

cells, but not in DU145 cells (Figure 5.7). Treatment with YK-4-279 is selective 

for cells expressing the EWS-FL1 fusion protein (Erkizan et al., 2009) which is 

mainly detected in early stages of PC (Gierisch et al., 2016). Interestingly, YK-4-

279 is gaining clinical interest as this small molecule is currently being used in 

early-phase human trials for the treatment of Ewing Sarcoma (ES). Original work 

by Erkizan et al (2009) demonstrated that YK-4-279 was specific for ES due to 

the presence of the of the fusion protein (Erkizan et al., 2009). By using an oral 

formulation of YK-4-276, Lamhamedi-Cherradi et al (2015) were able to use this 

inhibitor in order to slow tumour growth. When murine models of ES were 

administered daily with the oral formulation of YK-4-279, this led to a significant 

delay in ES tumour growth when compared to mice receiving a placebo drug. 

Daily dosing with YK-4-279 was required in order to achieve tumour regression 

and slower growth rates. Interestingly, all 7 mice receiving this oral formulation 

showed no signs of toxicity or weight change, indicating that this drug regiment 

was well tolerated (Lamhamedi-Cherradi et al., 2015).  

Most of the work on YK-4-279 has mainly looked at its use in the treatment of 

Ewing’s Sarcoma and there is growing interest in using this small molecule drug 

in the treatment of other cancers that are known to be driven by ERG fusion 

proteins. Work by Winter et al (2017) showed that mouse xenograft models of 

ERG positive PC patient derived tumours were greatly affected by YK-4-279 

treatment. YK-4-279 was administered subcutaneously to these mice, which 

resulted in the reduction of tumour volume, decreased tumour progression, and 

decreased levels of PSA (Winters et al., 2017). Interestingly, work by Kollareddy 

et al. (2017) showed that YK-4-279 is able to overcome drug resistance in two 

different neuroblastoma cell lines (Kollareddy et al., 2017). Most patients who 

have progressed to the lethal CRPC phenotype have very little treatment options 

due drug resistance and clinical complications (Semenas et al., 2012). YK-4-279 

could be a potential new treatment for patients in the later stages of disease. 
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Due to its ability to only target cells expressing the fusion protein, and its ability 

to overcome drug resistance, YK-4-279 could potentially lead to decrease PC 

metastasis and could be considered as a putative curative treatment.  

6.6 Thesis limitations and future work 

Using a range of biochemical techniques, the work in this thesis has 

demonstrated that DHX9 is a novel interactor of PDE4D7 in PC cells. I was able to 

show that DHX9 binds within PDE4D7’s UCR1 region, and this interaction can be 

disrupted using a competing, custom-made, cell penetrating peptide. Although 

IPs are most commonly used technique in studying PPI, some may argue that this 

technique may force the interaction between two proteins when IPs are 

performed using tagged proteins. Therefore, other methods should have been 

used in order to provide stronger evidence of PDE4D7-DHX9 interaction. One 

such way that we could have studied PDE4D7-DHX9 interaction is through the use 

of Fluorescence Resonance Energy Transfer (FRET) imaging, a method that is 

routinely used in the Baillie lab (Di Benedetto et al., 2008). FRET is a distance-

dependent physical process by which energy is transferred from one fluorophore 

(the donor) to another fluorophore (the acceptor). This technique can measure 

the molecular proximity between two proteins that are within 3-6 nm of each 

other. FRET microscopy is also reliant on the ability to capture fluorescent 

signals from single living cells. If FRET occurs, the donor channel signal will be 

quenched, while the acceptor channel increases. Not only does this technique 

allow the user to visualise colocalization between the donor and acceptor 

labelled probes, but is also allows the user to verify the molecular association 

between two proteins (Sekar and Periasamy, 2003; Rainey and Patterson, 2019). 

Such approaches have already been used to study the interaction between the 

oestrogen receptor and transcription co-activators. Gunther et al (2009) were 

able to design a FRET assay where they were able to monitor ER interaction with 

steroid receptor coactivators. This assay was then used to identify small 

molecules inhibitors to disrupt this interaction (Gunther et al., 2009). Knowing 

that multiple FRET probes are available in the Baillie lab, we could potentially 

create FRET probes in order to study the interaction between PDE4D7 and DHX9 

in live cells. We can then also monitor the dissociation of this interaction 

following peptide treatment. Alternatively, surface plasmon resonance (SPR) 

could be another way to study PPI. SPR is a powerful tool to study PPI and 
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quantify binding affinities. SPR allows the use to investigate PPI without having 

to label the proteins of interest (Nikolovska-Coleska, 2015). SPR depends on the 

binding of a molecule to a bait molecule that is immobilised onto a thin metal 

film. Binding between these two molecules then leads to a change in the 

refractive index. This information can then be used to determine binding 

affinities in order to characterize PPIs (Drescher, Ramakrishnan and Drescher, 

2009). We could potentially immobilize PDE4D7 onto SPR metals film and 

investigate if DHX9 binds directly to it.  

Like in FRET, FP can also be used to find small molecules that can enhance or 

disrupt PPI (Hall et al., 2016). Although I attempted to establish an FP assay to 

study the PDE4D7 and DHX9 interaction, I was unable to unable to obtain 

proteins that were pure enough to obtain any binding information. In vast 

majority of cases, purified recombinant GST tagged proteins can be purified 

from bacterial lysates under non-denaturing conditions by affinity 

chromatography (Smith and Johnson, 1988). Although GST protein purification is 

a technique that is commonly used in the Baillie lab, successful GST protein 

purification relies on optimization of the methods and conditions for each 

protein (Harper and Speicher, 2011). Once the target protein has been cloned in 

the appropriate vectors, the optimization of protein expression conditions, such 

as E.Coli host strain, temperature, IPTG concentration, and length of induction 

should be optimized. (Harper and Speicher, 2011). Unfortunately, due to time 

constraints, I was unable to determine the optimal condition for the purification 

of GST tagged PDE4D-UCR1 or full length DHX9. Although I was able to purify this 

fragment, the eluate was highly degraded and of low yield (Figure 3.16). More 

time should have been invested in order to find the best conditions to purify this 

protein. Perhaps this would have enabled us to establish an FP assay that would 

have allowed me to determine the binding constant between PDE4D7 and DHX9.  

Using peptide array technology, IPs, and PLA technology, I was able to show that 

DHX9 is readily phosphorylated at Ser449. This information was used in order to 

generate a custom antibody which was able to specifically detect phospho-DHX9 

by western blotting and ICC. However, more effort should have been made to 

further validate the newly identified PKA phosphorylation site. Unfortunately, I 

was unable to make a phospho-null DHX9 construct where Ser449 could be 

substituted with an alanine. By substituting this serine with and alanine, we 
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would expect to see a significant decrease in DHX9 phosphorylation in PKA pull 

down assays. This approach has previously been used by Byrne et al (2015) in 

order to validate that Ser42 within the unique N-terminal region of PDE4D7 can 

be PKA phosphorylated. By creating a phospho-null mutant using site directed 

mutagenesis, they were able to demonstrate that the S42A mutant led to an 

ablation of PDE4D7 phosphorylation at this site (Byrne et al., 2015). 

Furthermore, most of the work relating to validating the newly synthesised 

phospho-DHX9 was performed in HEK293 cells. In recent years, HEK293 cell lines 

has been used as a tool to easily express a range of proteins (Chin et al., 2019). 

Ideally, the expression of phospho-DHX9 should have been studied in PC related 

cell lines in order to ensure that this antibody is able to detect phospho-DHX9 in 

disease related cells. The most commonly used cell line for this could be PC3, 

DU145, LNCaP, and VCaP cells (Wu et al., 2013). Additionally, expression of 

phospho-DHX9 and total DHX9 should also be investigated in non-tumour 

prostatic cell lines. These cells are models for normal prostate cell growth, and 

the prostatic intraepithelial neoplasia (PIN) is the most commonly used cell line 

to investigate oncogenic processes prior to disease formation (Cunningham and 

You, 2015). Ideally, the expression of phospho- and total-DHX9 should have been 

investigated in all these cell lines in order to see if expression of phospho-DHX9 

changes during the progression of disease. When phosphorylated, DHX9 is 

sequestered in the cytoplasm (Figure 4.13), suggesting that this PTM not only 

regulates the subcellular location of the helicase but potentially also its cellular 

function. DHX9 is known to be involved in the translation machinery by 

unwinding different RNA structures in the cytoplasm (Lai et al., 2011; Murat et 

al., 2018; Ding et al., 2019). Furthermore, the interaction between PDE4D7 and 

DHX9 was shown to be important in regulating the levels of DHX9 phosphorylated 

by PKA. Loss of this interaction led to an increase in DHX9 phosphorylation under 

basal conditions (Figure 4.15 and Figure 4.16). It would be interesting to 

investigate if the interaction, and phosphorylation of DHX9, is needed to 

promote DHX9’s translational activity. This could be investigated by looking at 

the change in mRNA expression using RNA-Sequencing. RNA sequencing is now a 

commonly used tool to analyse gene expression, allowing the user to identify any 

changes in RNA biogenesis and metabolism (Hrdlickova, Toloue and Tian, 2017).  
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One of the biggest limitations in this thesis is the lack of specificity testing of 

the newly synthesised phospho-DHX9 antibody. Although I was able to detect a 

band at the molecular weight representing DHX9 using this new antibody (Figure 

4.9), By BLASTing the antibody epitope without a phosphorylated serine 

(TQPRRISAVS) (https://blast.ncbi.nlm.nih.gov/) revealed that the epitope can 

be found in other members of the DExD/H helicase family such as DHX36, DHX57, 

and DHX16 (Figure 6.1). However, there is no information addressing whether 

these other isoforms can be phosphorylated by PKA. Interestingly, the BLAST 

sequence revealed that only DHX57 and DHX8 are similar in amino acid length 

when compared to DHX9 (Table 6.1). All other isoforms were less than 1000 

amino acids in length; therefore, we can assume that the band identified in our 

western blots were not these isoforms. 

Table 6.1 Amino Acid length of DHX57, DHX8 and DHX9. 
Protein Length (AA) 
DHX57_HUMAN 1,386 
DHX8_HUMAN 1,220 
DHX9_HUMAN 1,270 

 

 

 

Figure 6.1 BLAST of the phospho-DHX9 epitope. 

In order to confirm that the band seen in the western blots, and the signal 

detected in the ICC experiments, further siRNA experiments should be carried 
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out. Cells could be transfected with siDHX9, or other DExD/helicase isoforms, 

then treated with forskolin-IBMX for 3 minutes. In order to ensure that our new 

phospho-DHX9 antibody is detecting its unique antigen, we would only expect to 

see a decrease in phospho-DHX9 detection only in cells transfected with siDHX9. 

Furthermore, peptide arrays against other members of the DExD/H helicase 

family could have been synthesised and incubated with the phospho-DHX9 

antibody. If this antibody could only specifically detect phosphorylated DHX9, 

we would not expect to see any spots in these other peptide arrays.  

 

In addition to confirming that these two proteins are novel interactors, my thesis 

has also provided some information on how this interaction can influence DHX9’s 

activity. By adapting the R-loop assay from the Hiom lab, I was able to 

demonstrate that the loss of PDE4D7-DHX9 interaction, either by decreasing 

PDE4D7 expression using siRNA or using our newly synthesised disruptor peptide, 

significantly decreased DHX9’s ability to unwind the nascent RNA structure. 

However, for this assay to work correctly, it is reliant on the knockdown of SFPQ 

using siRNA. Unfortunately, theirs is no way of ensuring that the expression of 

this protein is sufficiently decreased before proceeding with ICC staining and 

confocal microscopy. Alternative assay should have been performed in order to 

further determine how PDE4D7 binding can affect DHX9 activity. Previous studies 

by Jain et al (2010) have used helicase assay in order to study DHX9 activity. 

This assay relies on the purification of recombinant DHX9, which is then 

incubated with DNA substrates and ATP. The reaction mix is then run on a DNA 

agarose gel to visualise how DHX9 can displace a strand of DNA (Jain et al., 

2010). Alternatively, other groups have used ATPase assays to study helicase 

activity. DHX9, like other members of the DExD/H helicase family, are ATPase 

dependent helicases and this is has been shown to be important in helicase 

activity (Ng et al., 2018). ATPase assays have been used to characterize the 

helicase activity of UAP56, which is also a member of the DExD/H helicase 

family (Shen, Zhang and Zhao, 2007). ATPase assays rely on the incubation of the 

purified recombinant ATPase proteins with ATP, which in turn leads to the 

release of inorganic phosphate. The amount of phosphate released due to 

ATPase activity can be quantified using a colorimetric assay (Rule, Patrick and 

Sandkvist, 2016). Unfortunately, I was not able to use either of these two 

methods as I was unable to purify DHX9 from bacterial cells. Although I was able 
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to express the N-terminal and helicase fragments of DHX9, these remained stuck 

to the beads (Figure 3.14 D) and therefore not suitable for these assays. Future 

work for this project needs to include the optimization of the purification of 

GST-tagged DHX9. Not only would I be able to use this protein for helicase and 

ATPase assay, but we would be able to study how the interaction between 

PDE4D7 and DHX9 can affect DHX9’s helicase activity. Furthermore, PDE4D7 and 

DHX9 purified protein can be used to further validate PDE4D7-DHX9 interaction 

by performing pure-protein IPs. The information collected from all these assays 

could provide us with invaluable information on how the interaction between 

PDE4D7 and DHX9 is important in the progression of disease.  

6.7 Thesis conclusion 

To conclude, the data presented in this thesis has shown that DHX9 is a novel 

interacting partner for PDE4D7 in vitro. DHX9 binds to PDE4D7 within its UCR1 

domain, while PDE4D7 binding to DHX9 within its helicase domain. This 

interaction can be disrupted using the newly designed cell permeable disruptor 

peptides, which enabled me to confirm where the binding sites were. 

Interestingly, peptide array analysis revealed that DHX9 is readily 

phosphorylated by PKA at Ser449, which can be found upstream of the PDE4D7 

binding sequence. Disruption of the PDE4D7-DHX9 complex leads to the increase 

in the phosphorylation of DHX9 under basal conditions, suggesting that PDE4D7 

plays an important role in regulating the phosphorylation of DHX9. The 

interaction between PDE4D7 and DHX9 was shown to be needed in order to 

unwind nascent RNAs when studied using an R-loop assay. Finally, using RPPA 

analysis, I was able to show that DHX9 is potentially part of the mTOR pathway. 

Research into DHX9, and other DExD/H helicases, is crucial in order to 

understand how this large family of proteins contributes to disease progression. 

My thesis has only scratched the surface on how DHX9 is involved in PC.  
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