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Abstract 

Background: Small conductance Ca2+-activated K+ current (ISK) may change cardiac 

atrial action potentials (AP) in response to altered [Ca2+]i; a potential therapeutic 

target for treating atrial fibrillation (AF). However, the contribution of ISK to atrial 

APs under physiological conditions is unclear. Furthermore, ISK may be enhanced 

in ventricles by heart failure, but whether by [Ca2+]i elevation in the non-failing 

ventricle is unknown. Aims: To test whether ISK flows under normal or increased 

global [Ca2+]i, or with sub-sarcolemmal [Ca2+]i increase from APs in human and 

rabbit atrial cells. Also, to test an ISK blocker, ICAGEN (ICA), on rabbit left 

ventricular (LV) ion currents under [Ca2+]i elevation from Na+/Ca2+-exchanger 

(INa/Ca) stimulation. Methods: Myocytes were isolated enzymatically from hearts 

removed from anaesthetised rabbits, and from atrial tissues from consenting 

patients undergoing cardiac surgery. Whole-cell patch clamp (37°C) was used to 

record ion currents and APs (at 1, 2 or 3Hz), with [Ca2+]i measured using Fura-2. 

Results: A positive control tested stability/timing of K+ current (IK1) block: Ba2+ 

(0.5 mM) significantly and reversibly decreased inward IK1 (at-115 mV) in 94% of 

LV cells, from -38.9±5.9 to -12.9±4.5 pA/pF (by 67%), and in 92% of atrial cells, by 

43% (P<0.05, mean±SE, t-test, n=16-25 cells, 11-16 rabbits). Atrial ISK was 

investigated, under increasing [Ca2+]i (100-500 nM; with 5 mM BAPTA), with 

apamin (100 nM) and ICA (1 µM). Neither drug affected inward or outward current 

(P>0.05) at any [Ca2+]i, in rabbit or human (5-26 cells, 7-11 rabbits, 3-4 patients). 

APs recorded at 1 Hz (rabbit) were prolonged by 4-AP (ITO blocker; positive 

control): action potential depolarization at 30% repolarization (APD30) by 72%, at 

70% repolarization (APD70) by 31%. By contrast, ICA (1 µM) had no effect on APD30-

90, maximum diastolic potential (MDP), or Vmax, in human or rabbit. ICA at 10 µM 

(non-specific) increased APD70-90 vs time-matched controls. At 2 or 3 Hz, 1 µM ICA 

again had no effect on APs. In rabbit LV cells, stimulating INa/Ca increased [Ca2+]i 

(up to 2.8 µM) and inward /outward currents. ICA (1 µM) had no effect on [Ca2+]i 

or currents, whereas subsequent NiCl2 (10 mM; INa/Ca blocker) decreased them. By 

contrast, ICA 10 µM decreased outward (by 35%) and inward (49%) current, and 

[Ca2+]i (77%), with no effect of subsequent NiCl2. Conclusions: In rabbit and human 

atrial isolated myocytes, ISK may not flow under physiological conditions, nor 

during short bursts of supra-physiological stimulation, so atrial ISK activation (and 

thus its potential pharmacological inhibition during AF) may require changes to 

cellular electrophysiology or cell signalling systems to develop a sensitivity to ISK 
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block. Furthermore, in non-failing LV myocytes, 1 µM ICA-sensitive ISK may not be 

activated by [Ca2+]i-elevation, and high ICA conc. may inhibit INa/Ca. 
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Chapter 1 General Introduction  

 

 The excitation-contraction coupling in normal hearts 

Cardiac excitation-contraction coupling is a finely balanced physiological 

mechanism that begins with electrical signals in individual cardiomyocytes, 

action potentials (AP), and concludes with contraction of the whole heart (5). 

The depolarization stimulus that generates the AP initiates in a specific cardiac 

region called the sinoatrial node (SAN), which represents the primary pacemaker 

structure in healthy hearts. The cardiac impulse propagates through the atria 

causing depolarization and then contraction of the atrial musculature. 

Subsequently, the stimulus reaches the atrioventricular node (AVN) located at 

the base of the atrial septum which, together with SAN, represent the fastest 

route of AP propagation in normal heart. The AVN works as an access to the His-

Purkinje system and provokes a conduction delay between the atria and the 

ventricles. In fact, the fast pathway input to the AVN presents relatively short 

conduction delay and long refractory period, which play a crucial role in 

preventing the transmission of high frequency atrial APs to the ventricles, for 

example, during atrial fibrillation (AF) (13, 14). Finally, from the AVN, the AP 

waveform propagates into the ventricular tissue via the conductive cells of the 

bundle of His and Purkinje fibers and spreads throughout areas of ventricular 

cardiomyocytes, triggering coordinated cardiac pumping action (See Fig. 1.1). 
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 Ion channel currents and the cardiac action potential in atrial and 

ventricular myocytes 

Different ion currents define the 5 distinct phases (phase 0-4) that 

characterize the cardiac action potential (Fig. 1.2). The expression of these 

channels along with the shape and duration of the action potential varies among 

different species, and within the same species in diverse subregions of the heart 

(10) (Fig. 1.1 B). In particular, the differences in Na+, Ca2+, and K+ channel 

expression define the amplitude, shape and duration of the action potential, 

which are crucial physiological variables. These factors play a pivotal role in the 

modulation of the strength of the contraction, the length of the refractory period 

and the unidirectional propagation of activity that leads to the generation of 

cardiac sinus rhythms (SR).  

Figure 1.1 Representation of the heart and the cardiac conducting system . 

A) Representation of different regions of the human heart and the corresponding 

B) AP waveforms (below is a representative lead I ECG). Illustration taken from  

(5).  
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The cardiac action potential is the product of the sequential activation 

and inactivation of inward and outward currents, which in turn are influenced 

by the changing membrane potential (voltage). Upon AP initiation, the sudden 

shift in membrane voltage to positive values represent the start of the systolic 

period known as phase 0 (depolarization) of the AP and is driven by influx of Na+ 

ions, INa, through the NaV1.5 channel. The first phase of depolarization is 

followed by the phase 1 (early repolarization) caused by the inactivation of 

Nav1.5 and the activation of the transient outward K+ currents, divided into Ito,fast 

and Ito,slow (15). In figure 1.2 it is possible to appreciate the differences in 

repolarization time course, driven by the K+ currents, between atria and 

ventricle. In particular, this early repolarization phase of the atrial AP is also 

shaped by the ultra-rapid delayed rectifier K+ current (IKur), which is absent, or 

negligible, in ventricle (16). In addition, IKur will play a role from phase 1 to phase 

3 due to its slow and partial inactivation (17). Following the early repolarization, 

the phase 2 (plateau) occurs, which requires the balance between repolarizing 

outward K+ currents and depolarizing inward Ca2+ currents. The depolarization is 

caused by a net Ca2+ influx mainly through Cav1.2 (L-Type) channels, which 

activate at voltage positive to -30mV and inactivate slowly (18).  
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The inactivation of the L-type Ca2+ channels is both voltage- and 

Ca2+- dependent and together with the activation of K+ channels determines the 

end of phase 2 of the action potential (19). The K+ currents that take part in this 

phase are the slow delayed rectifier (IKs) and the rapid delayed rectifier (IKr). IKs 

shows a linear current-voltage (I-V) relation, is activated slowly and at more 

Figure 1.2 Cardiac action potentials and repolarizing currents that 

determine the AP shape in atrium and ventricle.  

Original traces from an action potential recording in human atrial trabecula 

(left) and ventricular septum (right). Note that the atrial resting membrane 

potential (RMP) is less negative than the ventricular RMP (indicated by the red 

dotted line). K+ current contributions to the different phases (0 –4) of the 

action potential are shown below with an approximate physiological time 

course. The current amplitudes are arbitrary and do not reflect their relative 

size. Taken from (10). 
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positive potentials, whereas IKr, characterized by a strong inward rectification, 

activates more rapidly and at more negative potentials (20, 21). While these two 

K+
 currents participate in both atrial and ventricular repolarization, IKur is 

predominantly expressed in mammalian atria. The activation of these K+ currents 

along with the inward rectifying K+ current (IK1) initiates the final phase of 

cardiac repolarization, also called phase 3. During this phase, the capability of 

IKs, IKr and IK1 to compensate for each other in the eventuality that one should 

fail, play a crucial role in securing the stability of the cardiac electrical activity, 

constituting the so called “cardiac repolarization reserve” (22). When full 

repolarization is achieved the phase 4 of the AP begins and it ends with the firing 

of a second AP. During this interval, the cardiac myocytes membrane is at resting 

potential, which is stabilised mainly by IK1 conducted via Kir2.x channels (23). In 

addition to the main repolarizing currents (IKs, IKr, IK1) there are other K+ currents 

which have been shown to play a role in cardiac repolarization (Fig. 1.2). Most 

importantly, the majority of the K+ channels that conduct these currents are 

predominantly expressed in atria. Among these currents there are the 

acetylcholine-activated inward-rectifying K+ current (IK,ACh) and IKur, which given 

their major importance in atria rather than ventricle, have been widely studied 

as possible atrial-selective targets in the treatment of diseases such as atrial 

fibrillation (24-26). However, in addition to these well-known currents, in recent 

years, another atrial-predominant channel family, the small-conductance Ca2+-

activated K+ channels (KCa2.x), the main subject of this thesis, has been shown 

to be involved in atrial repolarization in both animals and humans (27-30). The 

KCa2.x channels family, the currents they pass (IK,Ca, also known as ISK) and the 

possible role in AF, will be described more deeply later in this introduction. 

 

Ca2+ ions represent the most common second-messenger molecules and 

are involved in numerous cell functions including cardiac electrical activity and 

contraction. However, the intracellular Ca2+ levels must be tightly regulated 

through numerous binding and specialized extrusion proteins to prevent a 

prolonged intracellular Ca2+ ([Ca2+]i) overload and the consequent cell death. 

Normal [Ca2+]i during rest is around 100nM, which is 20,000-fold lower compared 

to the concentration outside the cell (~2mM). The difference between the 

intracellular and the extracellular concentration creates a high electrochemical 
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[Ca2+] gradient that allows Ca2+ inside the cell through voltage-gated calcium 

channels (L- and T-type), which activate subsequent to depolarization of the 

sarcolemma due to propagation of the AP. The current generated by the opening 

of the L-type calcium channels (ICaL), during the plateau phase of the AP, 

permits the small Ca2+ influx to trigger a much greater release of Ca2+ from the 

sarcoplasmic reticulum (SR) through the cardiac ryanodine receptors (RyRs). This 

positive-feedback process, known as calcium-induced calcium-release (CICR), 

provokes a significant increase in [Ca2+]i (to 0.6-2 µM) that allows Ca2+ to bind to 

the protein troponin-C (TnC), which then stimulates the actin-myosin interaction 

and promotes myocyte contraction (Fig. 1.3) (31). As the contraction step is 

completed the Ca2+ must dissociate from the myofilament and be extruded from 

the cytosol to allow myocyte relaxation, and this is achieved through several 

routes. A negative-feedback mechanism occurs and the transient rise in [Ca2+]i 

determines the Ca2+-dependent inactivation of the L-type channels by the 

formation of the Ca2+-calmodulin complex (Ca-CaM), which bind to the carboxyl 

tail of the Ca2+ channel and deactivates it (32). The main contribution to the Ca2+ 

sequestration from the cytosol comes from the SR Ca2+ -ATPase (SERCA) pump, 

which promotes the reuptake of the activator-Ca2+ into the SR. Whereas, the 

extrusion of Ca2+ to the extracellular space is mainly carried out by the 

electrogenic transporter sodium-calcium exchanger (NCX), which couples the 

extrusion of 1 Ca2+ with a the influx of 3 Na+, producing a net inward current, 

INa/Ca (Fig. 1.3) (2). 
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Figure 1.3 Diagram representing the Ca2+ transport system in cardiac

myocytes.  

Inset shows the time course of Ca2+ transient and contraction relative to the 

firing of an action potential (ATP, ATPase; NCX, Na+/Ca2+ exchanger; PLB, 

phospholamban; SR, sarcoplasmic reticulum; RyR, Ryanodine receptor) measured 

in a rabbit ventricular myocytes at 37°C. Taken from (2). 
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Atrial fibrillation (AF) was first documented on 12 leads 

electrocardiograms (ECG) more than 100 years ago (33, 34), it is nowadays 

considered as a major global health problem. AF is the most common sustained 

cardiac arrhythmia observed in the clinic with a prevalence of approximately 1% 

in the general population that increase with aging (35). The median age of 

patients with AF is 75 years, so that 50% of AF occurs in the 6% of the population 

75 years of age or older. However, given the possibility of AF being asymptomatic 

(silent AF) and, therefore, undiagnosed, the “true” percentage can probably rise 

to 2% of the population (36). The normal rhythm of the heart is characterized by 

coordinated electrical activity starting from the SAN, propagating to the atria 

and reaching the ventricle (Fig. 1.4 A). Whereas, AF presents completely 

irregular and disorganized electrical activity due to the spontaneous firing from 

sources different than SAN (Fig. 1.4 B). It is well accepted that the major source 

of these abnormal premature beats, intimately related to the onset and 

perpetuation of AF, resides in the pulmonary veins (PVs) (37, 38). The AVN plays 

a crucial role in filtering the impulses from the atria, which during AF are fired 

at rates of 400-600 times per minute. Nevertheless, the ventricular rate during 

AF become affected as well (increased to ~150 beats/min), and elevated heart 

rate results from the interaction between atrial rate and the effectiveness of 

AVN filtering (14). The improper and fast activation of the atria is reproduced in 

the ECG, where P waves (depolarization of the atria) are replaced by an 

undulating baseline and the QRS complexes (depolarization of the ventricles) are 

irregular (Fig. 1.4 A-B). AF is associated with increased cardiac morbidity and 

mortality, the risk of which almost double when compared with aged-matched 

controls (14, 39, 40). The compromised atria contraction, if prolonged, leads to 

stasis of blood in the atria and promotes formation of thromboemboli which can 

propagate to different organs and potentially lead to infarction; mainly stroke. 

Stroke rates have been shown to be comparable between sustained and 

paroxysmal AF (41), and overall, ~16% of all ischemic brain infarcts have been 

associated with AF (42). Although, controversy exists among studies regarding 

the increased risk of death carried by AF-associated stroke (43-49). Also, it is 

well documented that sustained AF in patients with fast ventricular response 

may result in functional and structural changes of the ventricle leading to 
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tachycardia-induced cardiomyopathy. (50-52). Furthermore, the sustained high 

atrial rates of AF also cause electrical and structural remodelling of the atria (6, 

53). 
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Figure 1.4 Electrical propagation and ECG recordings in sinus rhythm and 

during AF.  

(A) Top: normal ECG recording showing sinus rhythm. Schematics of major 

events in one cardiac activation cycle: rhythm is initiated by the SA node 

pacemaker, resulting in atrial depolarization (P waves), followed by 

atrioventricular conduction via the AV node and His-Purkinje conducting 

system, leading to ventricular depolarization (QRS complex). (B) Bottom: ECG 

showing onset of AF after one regular normal beat. Atrial activation is now rapid 

and irregular, producing an undulating baseline that is visible when not 

obscured by larger QRS and T waves (ventricle repolarization) (continuous atrial 

activity during this phase is represented by dotted lines). During atrial 

fibrillation the uncoordinated atrial conduction makes the atria quiver and the 

ventricular contraction irregular. Ventricular activation, now driven by the 

fibrillating atria, occurs rapidly and irregularly, weakening cardiac contraction 

efficiency and causing clinical symptoms. Taken from (1, 2). 
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The understanding of AF pathophysiology, over the past decades, has 

drastically improved as a result of a better understanding of the role of the 

remodelling of the atria within this disease (8, 54). The adaptation and 

remodelling of the atrial myocardial electrical and mechanical activity can occur 

in response to a variety of stimuli or diseases; including AF itself. Hypertension, 

mitral valve disease, and congestive heart failure (CHF) are only a few of the 

diverse cardiac disorders that can predispose to AF (14, 55). The remodelling 

processes that occur, consequently to these pathological conditions, generate 

the substrate for the fundamental mechanisms of arrhythmogenesis: abnormal 

automaticity, triggered activity and reentry (Fig. 1.5).  

Figure 1.5 Schema indicating the complex inter-relationships between the 

fundamental mechanisms of arrhythmogenesis, human atrial 

electrophysiological remodelling and atrial pathophysiologies known to be 

associated with AF in humans.  

Taken from (8). 



12 

 

Earlier in this introduction, the time-course of a normal action potential 

and the currents that contribute to shape the atrial AP were described. If the 

balance between inward currents (depolarization of the membrane through flux 

of positive ions) and outward currents (repolarization of the cell interior making 

it more negative by efflux of positive ions) changes in favour of the former, the 

cell membrane is able to reach the “threshold potential” and to fire an action 

potential. This mechanism in the SAN, differently from other region of the heart, 

generates spontaneous diastolic depolarization (automaticity) that is the basis 

of the pacemaker activity. However, if automaticity occurs in a region different 

from the SAN, the cell in that region will reach the threshold potential earlier 

and lead to the event defined as abnormal focal activity (or abnormal 

automaticity, AA) (56) (Fig. 1.6).  

The premature firing of an action potential can also depend on 

afterdepolarizations and, in this instance, the ensuing arrhythmogenic 

mechanism is known as triggered activity. Afterdepolarizations are defined as 

oscillations in membrane potential which, if reaching threshold, generates a 

successive action potential that follows the upstroke of the earlier one (57). If a 

premature impulse, propagating between different zone of tissue, encounters a 

region of unidirectional block, this can cause reentry. The reentry is rapid 

circuitous activation, which can occur when the depolarising wave front comes 

Figure 1.6 Representation of abnormal ‘automaticity’.  

Typical human atrial action potentials in bold, with hypothetical dashed lines 

indicating abnormal rapid firing event due to increased depolarization rate. 

Red dashed line designates threshold potential. Adapted from (6). 
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across areas that are capable of being re-excited, and therefore, are no longer 

in refractory period (5, 6). These fundamental mechanisms and their implications 

in AF will be detailed in the following sections. 

 Abnormal automaticity  

Although different areas of the heart have the intrinsic capability for 

automaticity, the SAN remains the fastest pacemaker under normal conditions. 

However, abnormal automaticity risk can increase during acute myocardial 

ischemia, β-adrenergic stimulation or decreased vagal activity (58). The region 

which has been found to be more prone to accommodate focal (nonreentrant) 

arrhythmias is around pulmonary veins. In fact, specialized cells with pacemaker 

activity are located in this region, the resting membrane potential of PV 

myocytes is less negative as a consequence of reduced IK1 and the action 

potential duration (APD) is shorter, also due to smaller ICa, compared to LA-free 

wall cells (59, 60). Considering these characteristics, if the rate at which these 

cells reach threshold exceeds that of the sinoatrial node (SAN), then an ectopic 

rhythm will supersede. Generally, this form of rapid and regular tachycardia, 

called paroxysmal (episodic) tachycardia or atrial flutter may come and go, while 

progression into more persistent and eventually permanent AF can arise from 

stabilization of the altered rhythm (8).  

 Triggered activity 

Pacemaker activity can initiate at an ectopic focus either in the atria or 

in the ventricle, as a consequence of ischemia-induced depolarization or 

increased sympathetic activity, and lead to afterdepolarizations. As briefly 

described earlier, this form of abnormal impulses can generate a new action 

potential if critical threshold for activation is reached. Depending on the phase 

of the preceding action potential during which they occur, two types of 

afterdepolarization have been classified: early (EADs) and delayed (DADs) 

afterdepolarizations.  

 

The EAD is a depolarising afterpotential that begins before the complete 

repolarization of an action potential (Fig. 1.7 A). Therefore, EADs are expected 

to disrupt the plateau level of the action potential or occur during phase 3 (late 
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EADs) of repolarization. EADs have been most closely related to arrhythmias that 

are bradycardia-related and are associated with slow pacing or a long pause (61). 

On the other hand, DADs are defined as oscillation in the membrane potential 

that occur when repolarization of the action potential is completed (phase 4) 

and are frequently associated with tachycardia. Hence, EADs are more prominent 

at slow stimulation rates and low levels of extracellular potassium, while DADs 

appear more frequently at fast rates and is usually induced by increased 

intracellular levels of calcium (62).  

 

EADs are more frequently induced in conducting tissues (Purkinje fibers) 

rather than in isolated myocardial tissues (63), albeit their presence has been 

documented in atrial preparations (64). Several cellular mechanisms are involved 

in the generation of EADs, including elevated intracellular Ca2+ and a reduction 

in rapid and slow delayed rectifier currents (IKr and IKs). However, the 

combination of a markedly prolonged time-dependent INa activation and a 

reduction of the repolarization reserve, both accounting for the prolongation of 

the action potential, can involve reactivation of a Ca2+ current (ICa,L) in its 

‘window region’ voltage range (65) allowing the time- and voltage- dependent 

recovery from inactivation of it and to self-amplify sufficiently to reverse 

repolarization, generating the EAD upstroke. In the scenario which sees ICa,L 

predominate on the repolarization, the current can facilitate the AP upstroke 

that can result in a triggered beat or a run of triggered beats (66). 
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DADs are generated during conditions of calcium overload, which induce 

spontaneous calcium release from the SR. This SR calcium release during the 

phase 4 of the AP (Fig. 1.7 B) activates the transient inward current (ITI) 

responsible for membrane depolarization. ITI comprises the nonselective cationic 

current (INS) the sodium–calcium exchange current (INa/Ca), and the calcium-

activated chloride current,(ICl,Ca) (67, 68). If the voltage oscillation produced by 

the DAD is sufficient to reach the critical threshold it will lead to triggered 

activity. 

 

It is worth mentioning that the mechanism underlying the development of 

both late-phase 3 EADs, more clinically relevant, is similar to the one that 

generates DADs and conventional Cai-dependent EAD (69). In fact, during 

shortening of the atrial APD INa/Ca and ICl,Ca, normally weakly inward, are strongly 

recruited consequently to the spontaneous release of calcium from the SR and 

contribute to the generation of Cai-dependent EADs as well as DADs (61, 67). The 

apparent difference resides in the type of SR release, which can occur 

Figure 1.7 Representations of A) EADs and B) DAD in human atrial 

myocytes.  

Typical human atrial action potentials in bold and afterdepolarizations 

represented by dashed lines. Star symbol indicate triggered activity 

generated by EADs and DADs. Adapted from (6). 

A 

B 



16 

 

spontaneously (i.e. non-ICa,L-gated) before repolarization is complete for 

conventional EADs/DADs, and normally ICa,L-gated for late EADs. In conclusion, 

although there is a strong implication for EADs and/or DADs as primary triggers 

for promoting arrhythmias such as AF, the complete mechanism remains not fully 

understood (58, 70). 

 Reentry 

The mechanism of reentry involves the presence of a functional 

(electrical) or anatomical (obstacle) block around which the wave front can 

travel and return to the refractory tissue when it is newly excitable, this creates 

a circuit (2 dimensional circus-type, Fig. 1.8). However, for the perpetuation of 

the reentry, all points within the circuit must recover from refractoriness before 

the re-entrant impulse arrival (excitable gap), which has to travel sufficiently 

slowly to allow such recovery. In contrast, if the excitation wave has a long 

duration and propagates at a high rate, the whole circuit would be excited at 

the same time, causing the excitation to die out. The distance travelled by the 

impulse (wavelength, λ) is the product of the effective refractory period (ERP) 

and the conduction velocity (θ). Thus, the rate of propagation of an impulse is 

defined as the distance covered by that impulse in one refractory period. 

Therefore, any variable that could reduce the conduction velocity or ERP, thus 

reducing wavelength, or prolong conduction time or increase path length will 

promote reentry and consequently AF. Decreased AP maximal upstroke velocity 

(Vmax) consequent to a reduced INa or decreased ICal or increase potassium 

currents, will reduce AP duration (APD) and ERP, hence, reentry will be more 

likely and more re-entrant circuits can fit in the same area. 
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The first detailed model of functional reentry, named the “leading-circle 

model” (Fig. 1.8-1.9) was firstly described by Allessie et al. (71, 72). Since then 

a different but related concept has been suggested from advances in biophysics 

and theoretical analysis, named “spiral wave” reentry (Fig. 1.9) (11, 73). 

Technically, a spiral wave is a two-dimensional wave of excitation which keeps 

its shape and rotates around a core of constant size with unvarying angular 

velocity. In cardiac tissue, the generation of a spiral wave can depend on self-

organizing source of functional reentry activity, termed rotor. A rotor is the 

neighbourhood of the wavetip of a wavefront in an excitable medium. Basically, 

Figure 1.8 Schematic display of the formation of a 2 dimensional re-entrant 

circuit.  

The premature impulse divides at a functional or anatomical obstacle and blocks

conduction at tissue with normal (right side) but conducts with short (left) ERP 

and re-enters previously refractory zone, biting at its own tail of refractoriness. 

Inspired by (6). 
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it is the core centre around which the wave rotates, and it does not propagate 

forward like the rest of the wavefront. In the scenario represented in figure 1.8, 

a wavefront is initiated by an ectopic beat which traverses the recovery front 

following a previous sinus beat. The tissue in different states of refractoriness 

will define the direction of propagation of the wavefront, which will curve, 

tangentially in 3-dimensions, in the direction of the newly excitable myocytes. 

This wavefront can continue as long as tissue recovers from refractoriness, until 

it completes a full revolution. The point where the repolarization and the 

activation fronts meet (dashed circled line, figure 1.8 right) represents the phase 

singularity (11). In conclusion, “spiral wave” and “leading-circle” concepts 

Figure 1.9 (Left) The leading circle concept:  

Activity establishes itself in the smallest pathway that can support reentry, 

shown as the tight fit between the wavelength (big grey arrow) and the circuit 

path. Inside the leading circle, centripetal wavelets (small arrows) emanating 

from it constantly maintain the central core in a refractory state. (Right) Spiral

wave model: Schematic diagram of a spiral wave with the activation front 

shown in black and the repolarization front in red, with the grey area being the 

refractory tissue. The outer arrows depict the direction of the depolarization 

front. The point at which the red and black curves meet has an undefined 

voltage state and is usually referred to as the phase singularity point. Modified 

from (11). 
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differs for level of complexity, but more importantly the first predicts an 

antiarrhythmic effect of Na+ current inhibition, in contrast to the leading circle, 

due to increased core size and decreased maximum curvature, possibly leading 

to termination of reentry, consistent with experimental observation (74, 75) 

 

The occurrence of AF has been shown to cause structural and electrical 

remodelling through acceleration of atrial rate, which promotes AF, thus leading 

to advancement and auto perpetuation of AF (8). It is nowadays well established 

that the presence and sustainability of AF, the longer it persists, lower the 

probability of successful cardioversion, and increases the difficulty to manage 

AF (76) a process named “AF begets AF”. In a goat model of induced AF, atrial 

tachypacing led to remodelling of the atrium, progressive shortening of ERP and 

AF interval over 24 hours with an increase in λ which favoured AF vulnerability 

and duration (77). The mechanism of the shortening of atrial refractoriness by 

AF are not completely understood. However, the electrical remodelling, during 

AF, is characterized by a maladaptation of the atrial effective refractory period 

(aERP) to changes in APD (77). By this means, the physiological rate adaptation, 

which results in proportional shortening of APD and ERP with increased heart 

rate, is poor or absent and it could be one of the causes of AF sustainability (77, 

78).  

 

These results have been also documented in humans, where chronic AF 

was shown to be associated with an attenuation in adaptation of the ADP and 

ERP parameters to fast rates (79). Rate-dependent reduction in ICaL and ITO has 

been shown in both humans and animals, which could account, albeit partially, 

for the APD rate response (79-81).  
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AF is sustained by re-entrant circuits propagating in a re-modelled atria, 

which generates rapid electrical activity (up to 600 beats per minute) (82, 83). 

The almost tenfold increase in atrial rate, provoked by recent-onset AF, 

produces substantially increased influx of Ca2+ through ICa at each action 

potential (84). The consequent calcium overload leads to a rapid cell response, 

aimed to mitigate the effect of an intracellular Ca2+ load, inactivating ICa (85). 

However, this mechanism of defence might result in a shortening of the aERP as 

described by Yue et al. in dogs after rapid atrial pacing for 42 days (80). These 

findings are also in agreement with the study made by Lai et al. in 1999, in 

humans with persistent AF for more than 3 months, who found a downregulation 

in mRNA levels of L-Type calcium channels and sarcoplasmic reticular Ca2+-

ATPase. Furthermore, a long-term change during AF involves the decrease of SR 

Ca2+-ATPase, which is responsible for calcium reuptake into the SR, which will 

produce an accumulation of intracellular Ca2+ (86). This may result from rapid 

atrial depolarization which cause the cells to spend more time in the systolic 

phase, allowing additional Ca2+ influx into the cytosol and further CICR. Studies 

in goats or dogs demonstrate, mitochondria swelling and disruption of 

sarcoplasmic reticulum with rapid atrial pacing (87-89), all characteristic 

consequences of intracellular calcium overload. Additionally, changes in atrial 

diameter and pressure during contractility, during several days of AF, appear to 

occur in parallel with electrical remodelling (90), implying a possible correlation 

between these two processes. However, after long periods of AF (weeks to 

months) contractile dysfunction may require several weeks to months for 

recovery (91-94), while ERP and atrial activation may recover within days or a 

few weeks, respectively, supporting the crucial role of duration of AF for 

successful therapeutic intervention (77, 95-98).  

 

Overall, it appears clear that calcium overload plays a pivotal role in atria 

electrical remodelling. In particular, the protective effect, against electrical 

remodelling and atrial contractile dysfunction, of the calcium antagonist 

verapamil has been shown by several authors (89, 99, 100), which however seems 

to lose effectiveness after long lasting AF (101). In support to this finding, the L-

Type Ca2+ channel agonist Bay K8644 promoted atrial hypocontractility after the 
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cessation of short periods of AF (100). However, electrical remodelling has been 

shown to be caused also by a reduction of ICaL during sustained atrial tachycardia 

(80) and the use of a different L-type Ca2+ channel agonist, Bay Y5959, increased 

atrial contractility and prolonged the refractory period (90).  

 

AF can be defined as a “sustained” asymptomatic episode lasting at least 

30 seconds (102). From there, it can be categorized as paroxysmal AF when 

recurrent AF (≥two episodes) terminates spontaneously within 7 days or in less 

than 48 hours with electrical or pharmacologic cardioversion; persistent when 

continuous AF is sustained beyond 7 days or if it is cardioverted ≥48 hours, but 

prior to 7 days; longstanding persistent AF is defined as continuous AF of greater 

than 12 months duration; permanent AF refers to a group of patients for which 

a decision has been made to not pursue further with treatment to restore or 

maintain sinus rhythm (103).  

 

During AF the ventricular rate become affected as well, due to the limited 

impulse-carrying capacity of the AVN, causing the majority of the symptoms and 

increasing the mortality rate associated with increased risk of stroke and 

congestive heart failure (104-106). The most important therapeutic goal in 

management of AF is stroke prevention, the risk of which is reduced by oral 

anticoagulant (OACs), like warfarin (vitamin K antagonists) (107), albeit this drug 

is frequently not administered (108). Since 2011 novel oral anticoagulants 

(NOACs, non-vitamin K antagonists) have been introduced in substitution of 

warfarin for patients with non-valvular AF (109). However, prevention of stroke 

does not prevent the unpleasant, sometimes debilitating, symptoms of AF, nor 

mitigate the deleterious consequences of reduced and irregular atrial 

contraction. Furthermore, blood thinning drugs are not without risk of bleeding. 

Therefore, it is desirable to try to prevent the abnormal atrial rhythm during AF. 

When it comes to the treatment of the abnormal rhythm, two principal strategies 

are adopted: rate control or rhythm control. The latter one aims to restore and 

maintain the sinus rhythm, while rate control, used as an alternative strategy, 

simply regulates the ventricular response rate of AF. Although the optimal rate 

is currently not clear, the recommendation is to maintain a ventricular rate of 

<80 beats per minute (bpm) at rest and <115 bpm at moderate exercise (110). 
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Rate control is usually accomplished with the use of drugs that can prolong the 

AVN conduction, such as digoxin, beta blockers or calcium channel blockers (e.g. 

verapamil, diltiazem), which slow conduction in the AVN by blocking the major 

depolarizing current in nodal cells (ICa,L). However, rate control by AV-nodal 

ablation and permanent ventricular pacing is recommended in patients with AF 

when rate control with medications or rhythm control therapies failed (109). On 

the other hand, rhythm control is performed by availing of antiarrhythmic drugs 

(e.g. amiodarone, disopyramide, flecainide), electrical cardioversion, catheter 

ablation, surgical procedures (both surgical ablation and cut-and-sew technique) 

or a combination of these methods. Regarding rhythm control therapy, although 

catheter ablation results are more effective than antiarrhythmic drugs in 

maintaining sinus rhythm (111), it remains unclear if catheter ablation improves 

the long-time survival and reduces cardiovascular events but, currently, rhythm 

control is indicated for symptom improvement in AF patients (111-113). 

Nonetheless, many studies comparing rhythm control versus rate control have 

not been able to show clear advantage of the first over the strategy of controlling 

the ventricular rate and allowing atrial fibrillation to persist, in reducing the risk 

of stroke and mortality (114-118). Overall, freedom from AF after catheter 

ablation (CA) remains a powerful predictor of stroke-free survival while the use 

of antiarrhythmic drugs (AADs) after CA, except in some cases (119, 120), has 

been documented to increase mortality (119, 121, 122). Generically, AADs have 

four modes of action (123), targeting either Na+, K+ or Ca2+ channels or 

interfering with intracellular mechanism regulated by adrenergic activity. 

Specifically, Class I drugs produce moderate (Ia), weak (Ib), or marked (Ic) Na+ 

channel block and provoke reduction of excitability and enhance post-excitatory 

refractoriness. They reduce AP phase 0 slope and overshoot while increasing (Ia), 

reducing (Ib), or conserving (Ic) AP duration (APD) and effective refractory period 

(ERP), respectively (75, 124). Class II drugs targets β-adrenergic receptors 

reducing sinoatrial node (SAN) pacing rates and slow atrioventricular node (AVN) 

AP conduction (125). Class III drugs, comprising K+ channel blockers, delay AP 

phase 3 repolarization and lengthen the ERP. Finally, Class IV blocks Ca2+ channel 

reducing heart rate and conduction (123). The possible cause behind the adverse 

association of AADs and all-cause mortality in patients can be attributed to the 

proarrhythmic effect of these drugs in situation like myocardial ischemia (MI) or 

sympathetic stimulation (121, 126). Additionally, Amiodarone, the most 
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frequently prescribed AAD, has important side effects, including Cushingoid 

appearance, proximal myopathy, adrenal suppression, and reactivation of retinal 

toxoplasmosis as well as alterations in thyroid gland function test and thyroid 

hormones (127). 

 

CA techniques and device based therapies for cardiac arrhythmias have 

improved over the years, but there is still a necessity of AADs for any 

comprehensive therapeutic strategy. However, as briefly discussed, AADs are 

also not without risk, e.g. cardiac and extracardiac toxicity or partial efficacy. 

This paragraph will focus on atrial selective antifibrillatory agents targeting 

atrial specific channels. 

 

As mentioned, triggers and reentry propagation of electrical signals are 

fundamental mechanisms of AF. Therefore, any approach aimed to prolong ERP 

and to terminate reentry-based arrhythmias constitute a valid strategy. Typical 

Class III AADs, targeting K+ channel subspecies, includes IKr blockers dofetilide, 

ibutilide or d,l-sotalol, and nonselective blockers like amiodarone and 

dronedarone, which are defined as multichannel inhibitors (128-131). In fact, 

these last two antiarrhythmic agents have been shown to block a variety of ion 

channels among atria and ventricle (e.g. IKr in ventricle, IK,ACh in atria), including 

transmembrane Na+,K+,Ca2+, and slow L- type calcium currents (e.g. IC50: ICa-L 0.2 

µM and 10 µM respectively for Dronedarone and Amiodarone) (132). Given that 

the K+ channels inhibited by these drugs are expressed across the heart, both 

atrial and ventricular signalling will be influenced, and it is obvious that many of 

their undesired and deleterious effects on the ventricle would be reduced if they 

target solely, or at least predominantly, atrial ion channels. 

 

Regional differences in ion channels distribution between atria and 

ventricular cells, generate imbalance of inward and outward ion currents 

between these two regions of the heart, creating the perfect opportunity for 

pharmacological atrial-selective strategies, and to try to prevent pro-arrhythmic 

effects in the ventricle (133, 134). Some of these currents have already been 

mentioned, like IKur (135) and IK,Ach (136), however, atrial selectivity could also 

be achieved by targeting atrial Na+ channels exploiting rate-dependent blocking 
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properties, which allow a strong suppression in the atria compared to the 

ventricle of Na+ current during high activation rate, typical of AF (137). The more 

depolarized resting membrane potential in atria cells and the more negative 

steady-state inactivation is sufficient to reduce Na+ channel availability in 

comparison with ventricle during diastole (138). Therefore, the fraction of 

resting channels is smaller in atrial versus ventricular cells at RMPs. As a 

consequence of this, high frequencies during AF favour drug binding during the 

APs and restrict drug dissociation during the short diastolic intervals. Thus, atrial 

cells show a greater accumulation of use-dependent Na+ channel block (139). 

 

The ultra-rapid rectifier K+ channel (Kv1.5) encoded by KCNA5, which 

conducts IKur, were first cloned from the human heart in 1991 and found to be 

present in atria but not in ventricles (140, 141). Although targeting this current 

seems to represent an optimal atrial-selective approach, it remains a great 

challenge because agents directed to block IKur often also inhibit other currents 

(e.g. INa by vernakalant and ITO/IK,ACh/CA-IK,ACh by AVE011) (142, 143). In addition, 

data from both humans and animals for IKur are equivocal regarding a possible 

reduction of this current during AF (80, 144, 145). Despite these evidences, 

recent studies describe that selective IKur inhibition causes shortening of APD90 in 

SR, while producing APD90 and ERP prolongation in human permanent AF tissue, 

probably due to an overall reduction in atrial repolarization reserve due to AF-

induced remodelling (146). Different compounds targeting IKur with more 

attractive selectivity profile have been investigated (147). Nevertheless, the 

potential clinical benefit of this atrial-selective target in antiarrhythmic therapy 

is still not confirmed.  

 

The acetylcholine (ACh)-regulated potassium current, IK,ACh, is conducted 

through G-protein coupled inwardly rectifying K+ channels (GIRK1 and GIRK4) 

whose α-subunits are encoded by Kir3.1/Kir3.4. These form heteromeric 

assembly Kir3.1/GIRK1 and Kir3.4/GIRK4, encoded by KCNJ3 and KCNJ5 

respectively (148, 149). These channels have been found to be more abundant 

in atrial than in ventricular muscle (150, 151), constituting another interesting 

atrial selective antiarrhythmic target in AF. GIRK channels have been shown to 

mediate AF induced by vagal stimulation via activation of muscarinic M2 

receptors in mice (152). IK,ACh hyperpolarizes the membrane and shortens atrial 
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action potentials duration, thereby contributing to maintenance of AF by 

promoting reentry (reduced wavelength) and/or stabilizing rotors. Despite 

parasympathetic-regulated IK,ACh is becoming reduced in long-term AF (153), a 

constitutively active (CA) IK,ACh, which does not require its endogenous agonist, 

contribute to basal inward rectification in AF (25). These are the reasons which 

make IK,ACh an interesting target for AF therapy. Selective block of IK,ACh has 

revealed clear antiarrhythmic effects, by prolongation of the ERP, in different 

in vivo models of experimental AF and in vitro (136). A more recent study 

described decreased incidence of AF, reduced duration of AF and prolonged aERP 

in conscious dogs by selective inhibition of IK,ACh (with tertiapin-Q, a derivative 

of the honeybee toxin tertiapin) (154). However, species differences regarding 

the relative roles of different atrial ionic currents, continue to raise difficulties 

in translating antiarrhythmic results obtained in animals to those in humans. 

Therefore, results obtained in experimental animal models of AF should be 

translated to human clinical settings with caution, with further studies required 

to assess the role of IK,ACh block in patient with AF (154). 

 

The presence of Ca2+-activated K+ current (KCa) has been observed firstly 

in red blood cells, where their activation caused membrane 

afterhyperpolarization (AHP) and cell shrinking (155). From there, based on their 

physiological role and pharmacology, multiple subtypes of these channels have 

been identified. Then cloning has revealed three subfamilies of channel subunits: 

big conductance KCa1.1 (encoded by KCNMA1), intermediate conductance 

KCa3.1(encoded by KCNN4) and small conductance KCa2.1, KCa2.2, KCa2.3 

(encoded by KCNN1, KCNN2 and KCNN3, respectively) channels. From now on the 

trivial name (SK1-3) of small conductance Ca2+-activated K+ channels, the focus 

of this thesis, will be used for simplicity, although the correct IUPAC 

nomenclature is KCa2.x. SK channels are tetrameric with each subunit displaying 

a Shaker-like membrane topology of six-transmembrane segments, with 

intracellular N- and C-termini and S5 and S6 in line with the pore (Fig. 1.10). 

Finally, in contrast with the other channel subfamilies, SK channels have not 

been reported to present regulatory β-subunits (156). The expression of SK 

channels has been documented in different tissues, from nervous system, 

skeletal muscle, vasculature, smooth muscle and cardiac tissue (157-162).  
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The latter (cardiac tissue) is the region of interest of this thesis, where 

the investigation of SK channel has been addressed. Moreover, the main part of 

this work has been focused on atrium, where SK channels have been documented 

to be predominantly expressed, compared to ventricle, where they seem to play 

a negligible role (27-29). Evidence for homo- and heteromultimerization of 

cardiac SK subunits has been provided from studies in both human and mice 

myocytes where mutation in SK1 and SK3 channel subunits suppressed wild-type 

SK2 currents (163, 164). As shown in both human and animal cells, SK channels 

are rapidly activated by a rise in [Ca2+]i (27, 30), at a rate similar for the rapid 

activation of ligand-gated ion channels, with all three subtypes exhibiting a 

similar Ca2+ dose-response relationship, yielding half maximal activation at 

approximately 300 nM [Ca2+]i with a Hill coefficient of ~4 (165-167). This gives 

rise to a fast activating inwardly rectifying K+ current (168-170). The activation 

Figure 1.10 Representation of a single SK channel subunit. 

Each subunit has six transmembrane segments, S1-S6, and both intracellular N 

and C-termini. The pore of the channel is formed between S5 and S6, and 

within it lies the P-loop. The calcium-sensing protein CaM is bound to SK 

subunits through the CaMBD region, located at the C-terminal. Image created 

using elements from SMART, Servier Medical Art by Servier, licensed under a 

Creative Commons Attribution 3.0 Unported License. Adapted from Zhang X. 

et al (11). 
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of SK channels is achieved solely by submicromolar [Ca2+]i and is voltage-

independent, making SK a unique class among KCa channels (161). These 

characteristics allow SK channels to directly translate changes in intracellular 

Ca2+ with changes in K+ conductance (171). However, Ca2+ does not bind directly 

to SK channels but to calmodulin (CaM) which is constitutively bound to the 

channel subunit via a CaM-binding domain (CaMBD) in the C-terminus of each α-

subunit (Fig. 1.10).  

 

In hippocampal neurons LTCCs and SK channels have been shown to be 

functionally coupled, exploiting the proximity and submembrane calcium 

microdomains, with the latter contributing to the regulation of neuronal 

excitability and function in different brain regions (161, 172). This regulation is 

controlled by the level of [Ca2+]i, which rises along with neuronal firing activity 

and leads to a remarkable increase in SK current amplitude providing a 

negative-feedback mechanism reducing neuronal excitability by prolongation of 

the AHP (173). In addition, the coupling between L-type Ca2+ channels (LTCCs) 

and SK channels has been described in cardiac tissue, which is achieved by 

colocalization of the 2 channels via their interaction with the cytoskeletal 

protein α-actinin 2 (174).  

 Pharmacological inhibition and identification of SK channels  

SK channels were first characterised pharmacologically in cultured rat 

skeletal muscles using the toxin apamin (175). This octadecapeptide, found in 

the venom of the honey bee (Apis mellifera), was one of the first peptides shown 

to block selectively the SK channels and was used in their identification and 

characterization (176, 177). SK channels have been shown to be selectively 

blocked by apamin, in human and mouse atrial cells, and in Xenopus oocytes 

expression vector, in concentrations ranging from 50 pM to 100 nM (27, 178), 

which distinguish them from all other KCa channels. Dose-response curves 

revealed specific affinity for the apamin-induced inhibition of the three SK 

channel-subtypes, which could allow the determination of the expression pattern 

of the different subtypes in native tissue (179). Besides apamin, SK channel 

inhibition can be achieved by using other blockers, including scorpion toxins such 

as scyllatoxin and tamapin (161). For example, by delineating the channel-

binding surfaces of two toxins (Leiurotoxin I and PO5) Lei-Dab7 was generated, 



28 

 

which represents a highly selective inhibitor of SK2 channels (180). Later, 

different non-peptidic selective blockers of SK channels, like dequalinium, were 

identified (181) and the development of this chemotype led to other derivate 

agents such as UCL1684, which display similar potency to apamin (182). During 

an initial structure-activity relationship (SAR) study, Gentles. et al. described 

the level of activity of a small neutral molecule, N-(pyridin-2-yl)-4- (pyridin-2-

yl)thiazol-2-amine (ICA), which showed excellent potency as an SK blocker. The 

compound, which display the [125I] apamin binding site, appears to compete off 

the peptide for the apamin binding site and they hypothesized that it could act 

by blocking the channels through its chelation to a cation (183). A different type 

of compounds like isoquinoline analogues related to bicuculline and N-methyl 

laudanosine have been reported, as well as the non-apamin displacing 2-

aminobenzimidazoles, such as NS8593 (184, 185). The latter represent an 

example of a novel class of synthetic SK channel inhibitors that do not block the 

channel pore, rather acting as negative gating modulators (186, 187). A 

compound from this class, (R)-N-(benzimidazol-2-yl)-1,2,3,4- tetrahydro-1-

naphthylamine (NS8593), has been shown, in human, mice and rat neurons, to 

decrease the Ca2+-sensitivity of SK channels, and inhibited all the SK1-3 subtypes 

indiscriminately (at 500 nM [Ca2+]i), however, this only slightly affected the 

maximal Ca2+ activated SK current (186). Although these compounds appear 

promising, the classical SK channels pharmacology has largely focused on the 

peptide apamin, which acts as an allosteric inhibitor occluding the pore of SK 

channels (188). As stated earlier, SK-subtypes have differential sensitivity 

toward apamin, with SK2 channels being highly sensitive (IC50 0.03–0.14 nM) 

whereas SK1 channels are the least sensitive (IC50 in the 0.1–12 nM) and SK3 

channels are intermediate (IC50 0.6–4 nM) (179, 189). The binding site for apamin 

is located in both the pore region, between S5 and S6, and at a serine residue 

located in the extracellular region between S3 and S4 (178, 190). The lower 

sensitivity of SK1 channels to apamin compared to SK2 channels is due to 

replacement of this serine residue with a threonine on the SK1 subunit (190, 

191). Apamin, targeting SK channels, has been studied as a possible therapeutic 

treatment for learning deficit, in preservation of red blood cells and also for 

Parkinson disorders (192, 193). However, if on one hand the specific distribution 

of apamin in the central nervous system (CNS) and its capacity to cross the brain 

blood barrier (BBB) make a drug delivery system based on apamin feasible, the 
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toxicity of this peptide does not permit the use of it (194). In fact, the 

administration of apamin caused neuronal over-excitability with epileptic 

activity and tremors with a relatively low LD50 (2.5 µM/Kg) (194, 195).  

 

Therefore, attention has been switched to another compound, briefly 

introduced earlier, N-(pyridin-2-yl)-4- (pyridin-2-yl)thiazol-2-amine, also known 

as ICA, which is considered as a pore blocker of SK channels acting at the apamin 

binding site (183, 196). This compound represents a 2-aminothiazol derivate 

which showed high potency and selectivity for the inhibition of cardiac SK 

channels (29, 183). Moreover, the antiarrhythmic effects of this small neutral 

molecule has been shown in rat, guinea pig, and rabbit ex vivo and in vivo models 

of AF (196) as well as in isolated rat right atrium (197). Finally, ICA has also been 

shown to significantly prolong APD90 in isolated myocytes from sinus rhythm 

patients (29). 

 SK channels in the heart 

Changes of [Ca2+]i in cardiac muscle significantly influence various 

transmembrane currents and at least some of the resultant effects may be 

accounted for by assuming the existence of Ca2+-activated K+ channels in the 

heart. Nevertheless, a review published by Eisner in 1983 concluded that there 

were not convincing results to support the existence of a K+-specific current 

activated solely by an increase in [Ca2+]i (i.e. SK current) (198). However, a few 

years later, the presence of a Ca2+-activated K+ current, larger in atria than 

ventricles was reported (199). Until a decade ago, after no further significant 

publications about the functional role of cardiac SK channels were reported, Xu 

et al. described the molecular identity and functional significance of SK channels 

in human and mouse hearts. With this study they confirmed the observation 

made by Giles et.al in 1988, showing the presence of SK2 channels functionally 

expressed predominantly in the atria compared to the ventricle, in accordance 

with the apamin-sensitive current recorded in both chambers (27). These results 

were confirmed two years later by Tuteja et al., who also showed atrial selective 

distribution of both SK1 and SK2 channel subtypes in mouse hearts, through 

quantification of SK channels transcripts using real-time quantitative PCR (RT-

PCR) from single, isolated cardiomyocytes (28). SK channels have since been 
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reported, by many studies, to be expressed in atrial cardiomyocytes of various 

species, including rats, mice, rabbits, dogs and humans (27-29, 196, 200-202).  

However, the function played by these channels is still disputed. While SK 

channels have been shown to contribute to the AHP modulating the firing 

properties of neurons, in cardiomyocytes the SK current, recorded as apamin-

sensitive current activated by increased [Ca2+]i, has been shown to contribute to 

the late phase of the cardiac repolarization (27, 28). In contrast, Nagy et al. 

questioned the significance of previous observations concluding that SK channels 

play a negligible role in cardiac repolarization under physiological conditions. 

Although the study was conducted using different conditions of either high [Ca2+]i 

(900nM) or under attenuated repolarisation reserve with 100nM apamin (203), it 

represents a solid and elegant study, which strongly opposes the previous 

findings. However, as they speculate, SK channels role in disease needs further 

investigation. During AF, the tenfold increase in atrial rate substantially raises 

[Ca2+]i (14, 84), which could trigger SK channels and promote APD shortening 

favouring the perpetuation of AF. Hence, SK channels may represent an 

attractive target to modulate atrial conduction during atrial arrhythmias.  

 SK channels in chronic AF-remodelled atria  

As described earlier in this chapter, chronic AF is characterized by a 

shortening of the AP due to electrical remodelling (204). The first indication that 

SK might play a role in atrial electrical remodelling was demonstrated by Ozgen, 

et al. (2007), who showed that intermitting burst focus in PVs leads to APD 

shortening mediated by SK2 channel trafficking to the membrane and consequent 

upregulation of the apamin-sensitive outward current, which facilitates 

propagation of triggered activity (201). However, the duration of AF in this study 

was only of few hours (3 hours intermittent burst pacing), and so shouldn’t be 

expected to cause any remodelling. Subsequently, Zhang et al. availing 

themselves of a mouse model with overexpression of SK2 channel, provided 

evidence of a possible role of these channels in producing profound changes in 

AVN conduction under pathological conditions characterized by increased [Ca2+]i, 

like AF (162). Additional support to these results was provided by Li, et al. in 

2009, who reported prolongation of the atrial APD, especially during late 

repolarization, in SK2 null mutant mice compared to WT littermates. Moreover, 

APD were further prolonged in homozygous mutant mice compared to 
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heterozygous animals, consistent with a significant role of SK2 channel in the 

repolarization of the atrial myocytes. These results were solidified by the 

evidence of absence of apamin-sensitive current in atrial myocytes isolated 

from SK2 homozygous mutant animals On the other hand, no changes in 

ventricular APD was observed in the mutant mice compared to the WT 

counterpart. In addition, during in vivo electrophysiological recordings in SK2 

knockout mice, the occurrence of atrial arrhythmias associated with 

prolongation of the AVN conduction was observed. Importantly, null mutation of 

the SK2 and relative APs prolongation promoted atrial arrhythmias, possibly 

correlated with increased frequency of EADs (200). These important findings 

highlight the possibility for a pro-arrhythmic effect consequent to 

pharmacological inhibition of SK channels, with relevant clinical implications. A 

year later, in a meta-analysis of genome-wide association studies Ellinor et al. 

identified a new locus for lone AF (atrial fibrillation in the absence of overt 

cardiovascular disease or precipitating illness) (205) at the calcium activated 

potassium channel gene, KCNN3, which, however, does not necessarily indicate 

involvement in the pathogenesis of AF (206). However, more recent studies 

corroborated the association of synonymous single-nucleotide polymorphisms 

(SNP) in KCNN3 with lone AF (207, 208). Additional ex vivo and in vivo studies 

with small animal models of experimental AF, demonstrated the antiarrhythmic 

effects of SK channel inhibition (196, 209, 210). Relevantly, quantitative real-

time PCR analyses showed significantly higher transcript for SK2 and SK3 subtypes 

compared to SK1 in human atria, with the first two being ~50% lower in AF 

compared to sinus rhythm indicating a profound change of gene expression 

consequent to atria remodelling (29). In addition, the study revealed no effect 

of the putative selective blocker ICA (1 µM) or the negative allosteric modulator 

NS8593 on chronic AF patients, while both SK channels blockers reduced, albeit 

moderately, inwardly rectifying K+ current in sinus rhythm patients (29). Other 

studies reported similar results (211, 212), while others have reported a 

significantly increase in atrial SK2 current density in patients with persistent AF 

(213). Skibsbye et al. hypothesized a possible up-regulation of SK channels 

followed by down-regulation during long-lasting AF consequent to electrical 

remodelling (29). A more recent study reported comparable findings, with 

significant reduction of mRNA and protein levels for all SK1-3 subtypes in chronic 

AF, however, the resultant increase in current is explained by an improved SK 
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channel [Ca2+]i - sensitivity in AF patients mainly due to Ca2+/Calmodulin-

dependent protein kinase II (CaMKII) phosphorylation and [Ca2+]i elevation (30). 

CaMKII can increase Ca2+ entry through L-type Ca2+ channels and affect Ca2+ 

uptake and release through the SR by phosphorylation of cardiac regulatory 

proteins like phospholamban (PLB) (214, 215). On the other hand, long-term 

defence mechanisms against the progressive Ca2+ loading due to the fast atrial 

rate in AF, include decreased ICa and reduced Ca2+ entry aimed to prevent Ca2+ 

overload (80, 81, 216), which might explain a reduced/absent ISK in chronic AF 

(cAF). 

 ISK in new-onset or paroxysmal AF 

Based on the discrepancies between the mentioned studies, currently the 

role of SK channels and whether ISK is up-or down-regulated in remodelled atria 

is still far from being clear. However, it is true that some studies on animal 

models of acutely induced AF (i.e. non-remodelled atria) showed an 

antiarrhythmic effect of SK channels inhibition in both ex vivo and in vivo (196, 

197, 209, 210). Diness et al. showed for the first time the possibility of 

prevention and reversion of AF consequent to inhibition of SK channels. 

Specifically, two pore blockers (UCL1684 and ICA) and a negative modulator 

(NS8593) were tested in 3 different species (rat, guinea pig and rabbit) both in 

isolated hearts and in an vivo model of paroxysmal AF (196). Relevant to the 

study presented in this thesis, ICA (1µM) terminated and prevented the 

reinduction of induced-AF in all hearts (196). These results suggests that SK 

channels may participate in initiation and perpetuation of AF. However, studies 

on single atrial cells from SK2 null mutant mice showed APD90 prolongation 

compared to control, which was associated with increased propensity to EADs 

and AF inducibility (200). This proposes a possible protective role played by SK 

channels against the insurgence of AF. Clearly in contrast with previous findings 

made by Diness et al., this has important clinical implications concerning the 

current use of pharmacological inhibitors of K+ channels, and on the future 

possibility of developing a pharmacological treatment targeting specifically SK 

channels in the atria. Especially, given the contrasting findings, further 

investigation of SK channels role in new-onset or paroxysmal AF are needed; 

circumstances under which ISK has not been studied yet in human atrial myocytes. 

In fact, considering that remodelling has not yet occurred during these 
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conditions, SK channels contribution to cardiac repolarization may still be 

relevant to physiological conditions. Moreover, it has been shown that cellular 

Ca2+-overload, consequent to the increased atrial rate (84), may play a role in 

the pathogenesis of short-term electrical and mechanical dysfunction, which can 

occur even after brief periods of atrial tachycardia, producing a shortening of 

the aERP (92, 99, 100, 217-219). Therefore, taken all together, these studies 

leave space for speculation of a possible role of ISK during paroxysmal AF, where 

channels expression is not compromised and the increased [Ca2+]i can increase 

the current to an extent that it may substantially contribute to the shortening 

of aERP, thus promoting the perpetuation of AF. 

 

The previously described discrepancies between studies raise doubts 

regarding the possible role of SK channels in cardiac repolarization during both 

short and long-term AF. The majority of the single-cell studies cited above have 

investigated ISK activity either with non-physiological solutions or calculated 

[Ca2+]i, which can lead to misleading results. Moreover, most of the patch-clamp 

experiments were performed in myocytes from cAF patients, where SK channels 

have been found to be down-regulated. On the other hand, only one study (203) 

focused the attention on the role of ISK under physiological conditions, although 

mostly in the ventricle. Hence, there is a demand for further investigation of ISK 

under physiological conditions in atria. In particular, as mentioned above, this 

could be especially relevant to new-onset AF where [Ca2+]i is elevated by the 

increased atrial rate. Therefore, the overall aim of this thesis is to partially 

elucidate these focal points by addressing the role of SK channel under 

physiological conditions, using a well-established (apamin) and a putative 

selective (ICA) blocker, using the ruptured whole-cell patch clamp technique in 

human and rabbit atrial cells. Along with electrophysiological recordings, the 

role of Ca2+ in the activation of SK channels will be investigated by using precisely 

measured buffered [Ca2+]i exceeding global average systolic levels. Also, high 

pacing frequency will be used, intended to elevate [Ca2+]i physiologically in atrial 

cells.  
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 Specific aims  

 Learn whole cell patch-clamp technique availing of a well-studied 

pharmacological intervention. By this means, I have tested the block provided 

by BaCl2 on IK1 to verify my patch-clamping configuration, reversal of 

intervention and software precision in order to create a positive control. 

(Chapter 2)  

 Use calcium imaging techniques to generate precise [Ca2+]i (typical of global 

diastolic-to-systolic values) solutions by titration of Ca2+ with a fast buffer 

(BAPTA). Verify the [Ca2+]i in cells and generate calibration curves to compare 

the measurements in vitro with those in single rabbit left atrial myocytes 

(Chapter 3) 

 Test ISK [Ca2+]i -sensitivity by generating a Ca2+ dose-response curve for ISK 

at both room and physiological temperature using inside-out patch clamp 

technique for electrical recordings. (Chapter 4) 

 Utilize the buffered [Ca2+]i solutions to study ISK in voltage-clamped single 

rabbit and human atrial myocytes using the two SK pore blockers mentioned 

above. (Chapter 5) 

 Investigate the possible ISK contribution to AP repolarization, in human and 

rabbit atrial myocytes, under physiological conditions and at high pacing 

frequency meant to increase [Ca2+]i physiologically, using ICA at both selective 

and unselective concentrations. (Chapter 6) 

 Reproduce a protocol to gradually raise [Ca2+]i through activation of sodium-

calcium exchanger current (INa/Ca). Then exploit this protocol to elicit ISK and 

investigate the effect of the SK blocker ICA at physiological [K+] in both atrial 

and ventricle single rabbit myocytes. (Chapter 7) 
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Chapter 2 Measurements of inward rectifying potassium current 

(IK1) in rabbit and human cardiomyocytes: validation of patch-

clamp method using a predictable pharmacological response  

 

The small conductance calcium-activated K+ (SK) channels, as the name suggests, 

are characterized by a current of small amplitude (ISK), as previous studies among 

different species have demonstrated. For example, in the study from Yu et al., 

ISK (recorded as apamin-sensitive current, ISK) at – 120 mV was − 1.5 ± 0.2 pA/pF 

in patients from sinus rhythm, using 100nM apamin with 900nM [Ca2+]i (211), 

while Xu et al. reported ISK of -2.5 pA/pF at -120mV in mouse atrial myocytes 

with 50pM apamin and 500nM [Ca2+]i (27). Interestingly, Nagy et al. reported a 

complete lack of effect of 100nM apamin on SK current in both action potential 

and voltage clamped (with 900nM [Ca2+]i) single canine and rat myocytes (203). 

Therefore, albeit the presence of high [Ca2+]i and the use of reasonably elevated 

concentration of a specific SK channel blocker (apamin) the resulting current is 

small and potentially difficult to detect. For this reason, before starting the 

investigation of ISK I sought for a positive control relying on a stimulation protocol 

similar to those observed in previous SK current studies (27, 29, 203). Thus, a 

ramp voltage-pulse protocol was chosen to test temporal stability, timing, and 

reversibility of a well-established pharmacological intervention: the inwardly 

rectifying K+ current (IK1) block by Ba2+. In fact, this extracellular ion has been 

shown to be a potent selective blocker of both the inward and outward 

components of IK1 in a voltage-dependent manner (220-222). Although, at high 

concentration (i.e. >10mM) barium is known to have multiple off-target effects, 

such as L-type calcium channels and, consequently, it can be unspecific for IK1 

(223, 224). However, at the concentration used in my experiments (0.5mM) Ba2+ 

provides a selective block of IK1 (225, 226). Importantly, barium has been widely 

adopted by previous publications to show the difference of rectification 

properties of IK1 between ventricle and atrium. From these studies IK1 current 

density results are higher in the ventricles than in the atria and the outward 

current-voltage (I/V) relationship, which is characterized by an “n shape” or 

‘‘negative slope conductance’’ at depolarized potentials (from -60mV 
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and -20mV) is virtually absent in atrial cells but tends to be prominent in 

ventricular myocyte IK1 (199, 227-229). Also, the outward component of IK1 plays 

the most important physiological role, generating the resting membrane 

potential and modulating the final repolarization phase of the action potential 

in both atria and ventricle (23, 199). However, the inward rectifier currents like 

IK1, preferentially conduct K+ inwardly rather than in the outward direction. In 

fact, at voltages negative to the equilibrium potential for potassium (more 

negative than -95.9 mV based on [K+] in solutions) the conductance of the IK1 ion 

channels is time- and voltage-independent, so the I/V relationship for IK1 is a 

straight line, also known as an ohmic relationship. Moreover, at these voltages, 

the current density of IK1 is relatively large and the block provided by Ba2+ is 

expected to be equally big, which drive the rationale for the design of the 

positive control protocol. 

 

 Learn whole cell patch-clamp technique availing of a predictable 

pharmacological experiment with barium chloride (BaCl2 or Ba2+). 

 Seek for a solid response in order to test my patch-clamping configuration, 

reversal of intervention and software precision. 

 Measure currents using voltage ramps to check and validate voltage control 

(theoretical EK versus observed reversal potential), especially when using 

corrections like liquid-liquid junction potential (LLJP). 

 Create a positive control by testing temporal stability, timing, and 

reversibility of K+ current (IK1) block by Ba2+. 

Ba2+ was chosen because is well known and produces a predictable effect 

at 0.5 mM providing a selective block of IK1 at this concentration (222, 225). 

Through measurements of IK1, one of the aims was to check and validate the 

voltage control by comparing the measured EK value to the calculated value. To 

do so, the bigger ventricle IK1 current density was exploited, which allowed to 

measure EK directly from raw traces recorded using my setup, as shown later in 

this chapter. Secondly, this study also aimed to study the already observed 

substantial difference in IK1 densities between atria and ventricles in rabbits 
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(199). In particular, this study was performed in rabbit left atrial (LA) and 

ventricle (LV) and human right atrial (RA) myocytes. Furthermore, since ISK will 

be studied on both single rabbit and human atrial cardiomyocytes, it was 

required to test inter-cellular as well as inter animal or patient variation in both 

control currents and drug response. The purpose was to optimise the protocol by 

accounting for any variation in currents under drug or simply control conditions. 

This includes biological variations as well as lack of drug effect. Finally, given 

the possible correlation of IK1 with arrythmias (230, 231) and its striking inward 

rectification properties, it appeared a perfect starter model for the study of 

potassium currents that share these characteristics, such as ISK 
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 Solutions for cell isolation of rabbit cardiomyocytes 

 Isolation medium: 130 mM NaCl, 4.5 mM KCl, 3.5 mM MgCl2·6H2O, 0.4 

mM NaH2PO4, 5 mM HEPES, 10 mM glucose. Solution pH was adjusted to 7.25 at 

37˚C using 1 M KOH.  

 Krebs solution: 120 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.52 mM 

NaH2PO4, 3.5 mM MgCl2·6H2O, 20 mM taurine, 10 mM creatine and 11.1.mM 

glucose hexahydrate. Solution pH was adjusted to 7.4 at 37˚C using 1 M NaOH.  

 Kraft-Bruhe (KB) solution: 70 mM KOH, 40 mM KCl, 50 mM L-glutamic acid, 

20 mM taurine, 20 mM KH2PO4, 3 mM MgCl26H2O, 10 mM glucose, 10 mM 

HEPES, 0.5 mM EGTA, pH 7.4 at 37˚C using 1 M KOH.  

 Enzyme: Collagenase enzyme (Type II powder; Worthington Biochemical 

Corporation) was added to KB solution (217 IU/mL) and re-circulated through 

the perfusion system for ~5 minutes until the heart tissue began to 

moderately swell and lighten in colour. 

 Animals 

Animals used in this work were male New Zealand White rabbits (2.5-

3.5kg) sourced from Envigo (Huntingdon, UK). Procedures and experiments 

involving rabbit cells (UK Project Licences: 60/4206, 70/8835) were approved by 

Glasgow University Ethics Review Committee and conformed with the guidelines 

from Directive 2010/63/EU of the European Parliament on the protection of 

animals used for scientific purposes. 

 Cell isolation of rabbit cardiomyocytes 

All animal handling and procedures including surgical interventions and 

Langendorff procedures were carried out by laboratory technicians Aileen 

Rankine and Michael Dunne. Ventricular and atrial myocytes were isolated from 

male New Zealand White rabbits. Rabbits were anaesthetized of 0.5mL/kg 

Euthatal (200 mg/mL, Sodium pentobarbitone, Rhone Merieux Inc, Athens, GA, 

USA) mixed with 500IU of heparin (CP Pharmaceutical Ltd, Wrexham, UK) via the 
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left marginal ear vein. Following absence of pain reflexes, hearts were quickly 

excised with ~0.5 cm of the ascending aorta and placed in ice-cold KB (Ca2+-free) 

solution to inhibit muscle contraction, which has significant beneficial effects on 

the long-term viability of adult cardiac myocyte (232). Excess tissue was trimmed 

away and the heart was connected to Langendorff perfusion system (Fig. 2.1). 

The heart was retrogradely perfused with calcium-free oxygenated KB (37°C) 

using a peristaltic pump at a constant flow rate of 20ml/min for 5 minutes. The 

heart was then perfused with enzyme solution, which was collected and re-

circulated. After 3 min, 100 mM CaCl2 solution was added to achieve a final 

calcium concentration of 0.05 mM. The presence of calcium ions has been 

reported to enhance the binding of collagen-binding domain to collagen (233). 

Digestion was continued for 5-6 minutes, until the heart began to soften to the 

touch and lighten in colour. A this point the heart was perfused with KB solution 

containing a 10 g/L bovine serum albumin (BSA) containing 0.075 mM calcium. In 

infarcted hearts, the apex and a 3-5 mm rim around the infarct zone were 

removed. This procedure was adopted because the edge or border zone cells 

were subjected to ischaemia and then reperfused, which means that they 

present a varying extent of damage. So, eventual results obtained from these 

cells would be difficult to evaluate statistically, given the extensive 

electrophysiologic inhomogeneity within the ischemic subendocardium (234). 

The equivalent apical region was removed in Sham animals to keep consistency 

between sham and MI rabbits. Perfusion was stopped and the heart was 

dissected. The ventricles were cut into ~1 mm2 segments in BSA solution. Tissue 

pieces were placed in a 15 mL culture flask and placed on a shaker for 20 min. 

Cells were gently triturated with a Pasteur pipette to further dissociate 

myocytes, and the supernatant was filtered through polyamide mesh (250 µm 

pore size) prior to resuspension in KB solution. 

 Rabbit cells preparation for experimentation  

Ventricle cells were left to settle by gravity only (exploiting cell size) for 

10min. Atrial cells were manually centrifuged for <1min at ~500rpm (31g). All 

cells experienced serial incubations using 15mL Falcon tubes containing Krebs 

and increasing calcium concentrations (using 1M stock CaCl2 solution): 100 µM, 

300 µM, 1 mM, and 1.8 mM CaCl2, respectively. Experiments were only performed 
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on cells with clear striation and showing no signs of abnormal electrical 

behaviour, such as EADs, alternans, or irregular beats. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic depiction of the Langendorff perfusion system.  

Simplified diagram of Langendorff setup using peristaltic pump and water bath 

system for retro-perfusion of coronary arteries with enzyme solution at 37ᵒC. 
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 Specimen collection and cell isolation of human cardiomyocytes 

2.3.5.1 Isolation solutions: 

 Ca-free solution 'B': NaCl 120 mM, KCl 5.4 mM, MgSO4 5 mM, pyruvate 5 

mM, glucose 20 mM, taurine 20 mM, NaHEPES 10 mM, nitrilotriacetic acid 5 mM 

and titrated to pH 7.0 with NaOH 1 M solution. 

 solution ‘C’: (NaCl 120 mM, KCl 5.4 mM, MgSO4 5 mM, pyruvate 5 mM, 

glucose 20 mM, taurine 20 mM, NaHEPES 10 mM, nitrilotriacetic acid 5 mM, CaCl2 

50 µM and titrated to pH 7.0 with NaOH 1M solution) 

 Enzymes: Collagenase (CLS 1 Type 1, Worthington 330 IU/ml) and 

Protease enzyme (protease type XXIV powder, final protease concentration: 4U/ml; 

Worthington Biochemical Corporation) were added to KB solution (217 IU/mL). 

2.3.5.2 Ethical approval 

The tip of the right atrial appendage was obtained from patients 

undergoing cardiac surgery whose characteristics are shown in Table 1. 

Procedures and experiments involving human atrial cells were approved by the 

West of Scotland Research Ethics Service REC 99MC002 (up to 20th July 2017), 

then REC 17/WS/0134 (from 21st July 2017). Written, informed consent was 

obtained from all patients. The investigation conforms with the principles 

outlined in the Declaration of Helsinki(235).  

2.3.5.3 Cell isolation 

The tip of the right atrial appendage (weight: typically, 0.25 g) was 

removed at the time of cardiac cannulation for aortopulmonary bypass and 

collected in 50ml KB (Kraft-Bruhe solution) in a labelled plastic screw top bottle. 

Then the tissue was placed on a glass slide, cleaned of visible connective tissue 

and fat and chopped with scalpels into chunks of ~1mm3 (in KB). Subsequently, 

these chunks were transported to the laboratory for processing within 30-35 

minutes of excision. Atrial cells were isolated by enzymatic dissociation and 

mechanical disaggregation, using the chunk method described in detail 
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previously by Escande et al. (236) and subsequently modified by Harding (237) 

and Workman(79). These chunks were then transferred to a beaker which was 

placed into a water bath maintained at 37°C, shaken at 130 strokes per minute 

and continuously oxygenated in 40 ml nominally Ca-free solution 'B'. The 'chunks' 

were hand filtered through nylon gauze (200 µm mesh, Barr & Wray, Lanark, UK) 

and transferred to another beaker containing a fresh sample of 40 ml oxygenated 

solution ‘B’ at 3-minute intervals in order to prevent hypoxia and remove any 

toxic metabolites like methylglyoxal (a by-product of glycolysis). After a total of 

12 minutes agitation the sample was transferred to another beaker containing 

15 ml solution ‘C’ with protease (Type XXIV, Sigma, 4 IU/ml) added and were 

incubated under identical conditions for a further 45 minutes. This semi-digested 

sample was then placed in another 12 ml of modified solution ‘C’ with 

collagenase (CLS 1 Type 1, Worthington 330 IU/ml) added in the absence of 

protease and incubated for consecutive periods of 15, 15 and 20 minutes. Each 

of these three cell suspensions was filtered through nylon gauze, as before. 

These three “filtrates” formed three consecutive aliquots which were then 

centrifuged (Model PK110, A.L.C. International) for two minutes at 40 g. The 

resulting supernatant was aspirated by hand and discarded and the remaining 

cells were re-suspended for a maximum of 10 minutes in 1 ml of Kraftbrühe (KB) 

solution214 (KOH 70 mM, KCl 40nM, L-glutamic acid 50 mM, taurine 20 mM, 

KH2PO4 20 mM, MgCl2 3 mM, glucose 10 mM, NaHEPES 10 mM, EGTA 0.5 mM and 

titrated to a pH of 7.2 with 1M KOH solution) in order to wash off any remaining 

enzymes.  
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Patients characteristics No. of patients n(%) 
Patient demographics   

male 18 82 

Age (years) 70.1±2.3  

Female 4 18 

Age (years) 70±3.5  

Mean heart rate  
(beats/min) 65.1±2.6  

Pre-op drugs   
Beta-Blocker 17 77 

CCB 3 14 
ACE- Inhibitor 14 64 

Digoxin 1 5 
Nicorandil 3 14 

Eplerenone 0 0 
Nitrate 14 64 
Statin 20 91 

Other(s) 6 27 
Operative Procedure   

CABG 20 91 
AVR 6 27 

CABG + AVR 6 27 
CABG+MVR 0 0 

LVEF   
None (Normal) 9 41 

Mild 0 0 
Moderate 3 14 

Severe 1 5 
Pre-op disease   
History of HT 12 55 
History of MI 10 46 

Angina 17 77 
Diabetes  5 23 

Tissue   
AA 18 82 
AW 4 18 

Table 1 Patient clinical characteristics.  

CABG = coronary artery bypass graft, MVR = mitral valve replacement, 

AVR = aortic valve replacement, Pre-op = before surgery, ACE = 

angiotensin converting enzyme, CCB = calcium channel blocker, LVEF 

=left ventricular ejection fraction, MI= myocardial infarction, HT= 

hypertension, AA=atrial appendage, AW= atrial wall, 

PFA=Paraformaldehyde.  
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The centrifugation process was then repeated and after removing as much 

of the KB solution as possible the cells were re-suspended in 1 ml of a low calcium 

solution (NaCl 130 mM, KCl 4 mM, CaCl2 0.2 mM, MgCl2 1 mM, NaHEPES 10 mM, 

glucose 10 mM and titrated to a pH of 7.4 with 1M NaOH solution). Each of the 

three aliquots was transferred to a separate petri-dish for storage at room 

temperature prior to use in experiments. Cells were examined under high power 

(x40) light microscopy (Nikon TMS microscope) and cells which were isolated, 

striated, elongated, straight-edged and stable in the perfusion chamber were 

selected for electrophysiological recordings (Fig. 2.2). 

 

 

 

 

 

Glass pipette  

Figure 2.2 Photograph of human atrial myocyte 

(red circle) obtained by 40x resolution objective 

during whole-cell patch clamp configuration. 
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 Solution used for functional characterization of both human and rabbit 

cardiomyocytes 

In general, the perfusate, or external solution (EPSS2: extracellular physiological 

salt solution), was composed of: 140 mM NaCl, 4 mM KCl, 1.8 mM CaCl2·2H20), 

1.0 mM MgCl2·6H2O, 11 mM glucose, 10 mM HEPES. pH adjusted to 7.4 with 1M 

NaOH. The external perfusate could be collected to measure drug 

concentrations. 

 

The internal (PIP35: pipette solution) solution, contained: 130mM K-aspartate, 

15mM KCl, 10mM NaCl, 1mM MgCl2·6H2O, 10mM HEPES, 0.1mM EGTA, pH adjusted 

to 7.25 with 1M KOH. The resulting liquid–liquid junction potential (+9 mV; bath 

relative to pipette) was compensated for a priori (79, 238). All experiments were 

performed at 37oC. 

 Electrical recordings and analysis 

Electrophysiological signals were recorded from single cardiac myocytes in the 

whole-cell ruptured patch clamp configuration using AxoClamp 2B patch-clamp 

amplifier (Axon Instruments) and WinWCP 5.3.4 electrophysiology software (J. 

Dempster, University of Strathclyde, UK). Patch pipettes (2.5-5 MΩ filled with 

intracellular solution) were pulled from borosilicate glass capillaries 1.2 OD 

Figure 2.3 Voltage ramp protocol used during recordings of IK1 

0 mV 

-120 mV 

+50 mV 



46 

 

(outer diameter) x 0.69 x 100 L (length) mm (Harvard Apparatus, USA) with a 

gravity puller (model PP-83, NARISHIGE, USA). Voltage-dependent activation of 

IK1 was measured by stimulating cells at 0.1 Hz from a holding potential of −50 

mV, with voltage ramp (for quasi steady-state) of 7s duration increasing from 

−120 to +50 mV (Fig. 2.3) replicating from Marshall et al.(222). IK1 amplitude was 

calculated as the barium-sensitive current at -115mv. Data are presented as 

mean ± standard error of the mean (   s.e.m) unless otherwise stated. Statistical 

analyses were performed using GraphPad Prism 8. Single comparison of means 

was conducted using standard 2-tailed t-test (paired where appropriate). For 

parametric data, one-way ANOVA followed by multiple comparison tests were 

used to compare three or more groups of data. For non-parametric, independent 

datasets, Mann-Whitney U test or Spearman correlation were used. All tests were 

set at a significance threshold of P<0.05. 

 

The peak current (picoamperes, pA) at -115mV was normalized for each 

cell capacitance (picofarad, pF), which was calculated using the algorithm 

showed in the following equation (239):  

Equation 1 The relationship between capacitance and the permittivity 

distribution can be formulated by this equation: 

Where Q is the electric charge; V represents the potential difference between 

two electrodes forming the capacitance; ε (x, y) and ϕ (x, y) indicate the 

permittivity and electrical potential distributions, respectively; ∇ is the 

divergence: represents the volume density of the outward flux of a vector field 

from an infinitesimal volume around a given point; Г stands for the electrode 
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Consequently to normalization I plotted the peak current density 

at -115mV, that is the electric current per unit of capacitance and has as units 

pA/pF for each cell at any conditions. 

 

Neher and Sakmann originally described the whole cell configuration of 

the patch clamp technique as a variant used to measure ion currents within living 

cells (240). This technique requires the use of heat-polished micropipettes 

containing an electrolyte solution (similar to the intracellular milieu) and a silver 

chloride wire. The pipette is gently lowered onto the surface of an enzymatically 

isolated cardiac myocyte maintained in a perfusate solution which mimics the 

extracellular milieu. Using gentle suction, the pipette attaches to the cell and 

forms a tight, high resistance electrical seal with a patch of membrane in the 

order of approximately 100 GΩ. The advantage of a pipette-membrane seal of 

greater resistance, termed a giga-seal, is that background electrical noise or 

interference is reduced, less current ‘leaks’ around the pipette into the 

perfusion chamber reducing inaccuracy of measurements and the mechanical 

stability is improved. Once the seal is obtained the current flowing through the 

pipette is identical to the current flowing through the membrane covered by the 

pipette. At this point it is possible to rupture the patch of membrane by further 

application of gentle suction allowing low resistance access to the whole cell and 

enables the measurement of ion currents flowing across the whole cell 

membrane. This is known as the whole cell configuration and was used for the 

majority of experiments in this thesis. Measurements of these ion currents can 

be made using a single electrode voltage clamp technique. Using this technique, 

the cell membrane potential is controlled by use of an amplifier which both 

measures the membrane potential and can change it to a pre-set command 

potential by injection of the necessary amount of charge. The magnitude of this 

charge represents the size of the current that flows at the command potential 

and is measured using the same electrode. In order to limit vibration artefacts 

cells were permitted to sediment in the perfusion bath (RC-24E fast exchange 

perfusion chamber, Warner instruments) (Fig. 2.5) positioned on an air 

suspension table (Wentworth laboratories) (Fig. 2.4) coupled with an 

AxoClamp2B amplifier. 
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 Patch clamp setup 

The arrangement of the equipment for patch clamp is shown in Figure 2.5. 

The microscope, perfusion chamber, microelectrodes and micromanipulator 

(Narishige group) were mounted on an air table in order to minimise vibration 

and were all earthed to eliminate electrical noise. The reservoirs for external 

solution were mounted above the level of the perfusion chamber on the wire 

cage on the left. A suction bottle, located on the floor beneath the perfusion 

chamber, allowed the collection of external solution by the use of a pump. The 

amplifier, oscilloscope and computer, programmed to generate stimulus 

protocols and acquire data, were all placed in a tower on the right side (not in 

the picture). All the equipment was “isolated” inside a wire cage (Faraday cage) 

in order to minimize any electrical noise.  
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 The perfusion chamber 

After the isolation, a small aliquot (~200 µl) of cell suspension was 

dropped into the bath of the polycarbonate perfusion chamber (RC-24E fast 

exchange perfusion chamber, Warner) mounted on the stage of a microscope 

(Nikon TMS). The myocytes were allowed to settle and adhere to a glass coverslip 

that sealed the bottom of the well of the perfusion chamber illustrated in Figure 

2.5. The External solution flowed into the perfusion port by gravity flow from a 

reservoir mounted at a higher level than the perfusion chamber at a rate of 

approximately 2 ml/minute. The diamond shape of the bath provides laminar 

solution flow and prevents cell from being washed away, while the very small 

Figure 2.4 Picture of patch clamp equipment.  

The perfusion chamber and microelectrodes were located on the 

microscope stage. 
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bath volume facilitates very fast solution exchange. Before the external solution 

entered the well it flowed through an in-line heater (Warner Instrument 

Corporation Model SH-27A Inline Heater) which heated the solution to 35-37ºC. 

The temperature was monitored using a temperature probe placed inside the 

bath (see Fig. 2.6). Each reservoir is joined by a small channel which allowed 

equalisation of the volumes of solution among the wells. This means that from 

the perfusion port the solution could reach the suction tube in a continuous flow. 

The electrical circuit between the earth electrode and the recording electrode 

(in the bath) was completed using an agar bridge. The agar bridge well was filled 

with a 3 M KCl solution into which the earth electrode was placed. The role of 

the agar bridge was to keep the Cl- concentration around the earth electrode 

constant, as fluctuations in the concentration of Cl - would have resulted in an 

offset voltage between the earth and recording electrode. The agar bridges were 

made by heating short lengths of borosilicate glass capillaries without inner 

filaments (Clark electromedical instruments) into “U” shapes that were filled by 

immersion in agarose (3% Gibco BRL, Life Technologies inc. MD, USA) which was 

dissolved in 3 M KCl solution (salt bridges were stored in the 3 M KCl solution).  
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Top View 

Figure 2.5 Schemata of the perfusion chamber apparatus.  

Red arrows show the direction of the flow. 
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A 

Figure 2.6 Picture of the microscope stage:  

(A Suction tube slot; B) Agar bridge; C) Temperature 

probe; D) Perfusion port; E) Glass patch pipette. 

B 
C 

E 

D 
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Pipette microelectrodes were constructed in advance by hand cutting a 

~15cm long (1.5 mm outer diameter x 1.17 mm inner diameter), borosilicate thin 

wall with filament capillary (Clark Electromedical), with a diamond tip cutter in 

2 segments of 7 cm each. Then each segment was pulled using a vertical, two 

stage, micropipette puller. Each microelectrode was pulled in two steps, the 

first at 12 A (current flowing through heating element) and the second at 9 A and 

then the tips of the resulting micropipettes were heat polished. From this process 

resulted an average resistance (Rp) of 2-5 MΩ at the tip. The polishing process 

removed any imperfections that might damage the cell membrane and prevent 

the formation of the high resistance seal. A silver-chloride wire was placed into 

the micropipette and connected to the amplifier. Before each day’s experiment, 

both this wire and the wire used as the earth electrode, were cleaned and 

chlorinated using electrolysis and a chloride containing solution. The electrical 

resistance of a number of microelectrodes was measured to enable adjustments 

to be made in the pulling process. This enabled the microelectrode resistance to 

be kept low and thus minimising voltage errors relative to the cell seal resistance 

and, therefore, diminishing the leakage current when patching the cells. The 

resistance was measured before patching a cell by applying a 1 mV voltage pulse 

once the electrode was lowered into the external solution. The current 

generated across the electrode tip by the voltage step was measured and the 

resistance calculated using Ohms Law (R=V/I).   

 

An AxoClamp2B amplifier was used in cSEVC mode in conjunction with the 

software programme WinWCP (J Dempster, Strathclyde University) to record ion 

currents. The voltage at the top of the pipette is controlled by a voltage-clamp 

circuit and the cell membrane potential was measured at the same time. In 

cSEVC, the same electrode is used simultaneously for voltage recording and for 

current passing. The voltage recorded at the top of the pipette is the sum of the 

resting membrane potential (Vm), which the experimenter wishes to control, 

and the current-induced voltage drop across the pipette. The current through 

the series resistance of the pipette and the residual resistance of the ruptured 
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patch is often sufficiently large to introduce significant voltage errors which can 

affect the current recordings and can be compensated for either prior to, or 

during, recordings using the amplifier. Firstly, when the electrode is lowered 

into the external solutions offset potentials occur, which includes a current 

which flows between the internal and external solutions, that contain different 

concentrations of potassium ions, known as the liquid-liquid junction potential 

(LLJP). Adjusting the "junction null" control on the amplifier inserts a 

compensatory voltage in an attempt to correct for all voltage offsets, including 

that of the LLJP. However, when the electrode is in contact with the inside of 

the cell and the cytoplasm has dialysed with the pipette solution, the liquid 

junction potential no longer exists, as the internal solution of the electrode is 

the same as the interior of the cell, and so the LLJP compensatory voltage would 

then slightly re-assert itself (upon going in whole cell) as a voltage error (of the 

same magnitude of the LLJP) if not correctly adjusted for. Therefore, to make 

this adjustment, according to the method of Neher 1992, the electrode was 

nulled “a-priori” at a predetermined voltage that is the same size but opposite 

polarity to that of the LLJP (238). The value of the LLJP, when using the external 

solution and internal solution described in this chapter, has been measured as 

+9 mV (bath relative to pipette; according to the Barry Convention) (79), and so 

the “a-priori” nulling voltage was -9 mV. The validity of this LLJP compensation 

method was further confirmed by comparing the measured EK with the 

theoretical EK (data shown in results). Following adjustment of the “junction 

null” a square voltage pulse was applied from a holding potential of zero to -1 

mV in order to measure the electrode resistance. The electrode was then 

lowered onto the cell membrane of a single myocyte using a micromanipulator 

and gentle suction applied in order to obtain a gigaseal. At this point, a second 

voltage pulse was applied, from a holding potential of -40 with a step to -50 mV, 

in order to visualise the capacity transients of the electrode which could then be 

nullified with the “fast magnitude” control on the amplifier. Further gentle 

suction was then applied in order to rupture the patch of cell membrane at the 

tip of the electrode and gain access to the interior of the cell. This generates 

further larger current transients as the voltage pulse charges the cell membrane 

capacitance. These current transients along with the pipette resistance are 

associated with voltage errors during peak IK1 recording, which were minimized 

by bridge-balancing prior to sealing and expected to be <5 mV. The final setting 
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on the whole cell capacitance control is a measure of the capacitance of the 

cell, which is proportional to its surface area and this was recorded for all cells 

patch clamped. The values of the cell membrane capacitance and the access 

resistance can be directly read from the Axopatch amplifier controls. The 

absolute value of the membrane capacitance was displayed on the whole-cell 

capacitance dial after the whole-cell current transient has been eliminated. This 

value may be used to estimate the surface area of the cell assuming that the 

membrane capacitance per unit area is 1 µF/cm2. The final setting on the series 

resistance control is a measure of the combined resistance of the electrode tip 

and the open patch in the membrane. This resistance was kept to a minimum by 

ensuring only low resistance electrodes were used and only cells in which a high 

resistance seal was initially achieved. However, even with low series resistance, 

large currents can result in a significant voltage error whereby the voltage 

recorded by the amplifier is different from that actually occurring at the cell 

membrane. The voltage error was minimised by using series resistance 

compensation. Series resistance compensation was used to keep the average 

voltage error less than 5mV. Once the current transients were compensated for, 

various voltage pulse protocols, designed using the WinWCP software, were 

applied in order to measure currents. 

 

 Comparison between measured Ek and theoretical Ek in rabbit left 

ventricle myocytes: a test of correct voltage measurements 

The equilibrium potential for potassium (EK) was calculated using the 

Nernst-Planck equation, which is a conservation of mass equation used to 

describe the motion of a charged chemical species in a fluid medium. Cell 

membrane potential is the results of ions, differently charged, moving through 

the phospholipidic layer and establishing an electrical gradient. The resulting 

electrical gradient grows in magnitude until it exactly balances the chemical 

gradient. When the chemical and electrical gradients are equal in magnitude, 

the ion is said to be in electrochemical equilibrium, and the membrane potential 

that is established at equilibrium is said to be the equilibrium potential (Veq.) for 

that ion under the existing concentration gradient. For potassium ions the 
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chemical gradient (ΔGChemical) and the electrical gradient (ΔGElectrical) can be 

defined as:  

ܩܣ = ܴ݈ܶ݊ [శ]
[శ]

  eq(1) 

ா௧ܩܣ =  eq(2)   ܸܨ(1+)

Where R is the gas constant, T is the absolute temperature, F is the Faraday 

constant, V is the voltage, and z is the valence of K+ (+1). Since during 

electrochemical equilibrium ΔGElectrical and ΔGChemical are equal, the next equation 

follows: 

ܸܨ(1+) = ܴ݈ܶ݊ [శ]
[శ]

  eq(3) 

Solving for V: 

ܸ. = ோ்
(ାଵ)ி

݈݊ [శ]
[శ]

 eq(4) 

 

Substituting for the concentration of [K+]o (4mM) and [K+]i (145mM) to the 

equation (4) a value of -95.9mV was obtained, which represents the calculated 

value for EK. Using the Nernst-Planck equation the potential that will be 

established across the membrane based on the valence and concentration 

gradient of K+  was calculated, but provided that only K+ channels are present. 

During cell stimulation using a voltage ramp protocol a classic striking inward 

rectification of IK1 was observed. As expected Kir2.x channels pass inward 

currents at potentials more negative than the reversal potential of K+ (EK) but 

allow significantly less current at more positive potentials compared to non-

rectifying channels (241) (Fig. 2.7). As a consequence of this channel behaviour, 

and as described previously, the conductance through the inwardly rectifying K+ 

channel present an ohmic portion (242), termed ohmic because it follow Ohm’s 

law (221), for voltages more negative than -100mV, which was used to draw a 

slanted line that would eventually cross the 0 mV baseline. The voltage at the 

intersection point, in theory should be EK as calculated from the Nernst equation. 

In the present experiment, the measured intersection voltage was -94.6 ± 0.5mV 

(measured EK; n=6 cells; n=6 rabbits), which is less than 1mV different from the 

calculated EK of 95.9mV. Thus, validating my voltage control for the subsequent 

voltage-clamp experiments. 
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-95mV  (1) 

Figure 2.7 Representative raw current trace used for EK measurement 

in rabbit left ventricle myocytes. 

1) Slanted line representing the oblique asymptote which describe the 

ohmic Kir2.x channel behaviour on voltage more negative of EK. The 

oblique asymptote was defined by the equation: y=mx + b, where  m≠0. 

Oblique asymptotes occur when the degree of the denominator of a 

rational function is one less than the degree of the numerator. 2) The 

voltage ramp protocol shown below the current trace is described in the 

method section 3.4.8. The figure has been generated with the 

electrophysiology software WinWCP (version 5.3.4). 

(2) 
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 Investigation of effects of a pharmacological intervention (acute BaCl2 

superfusion), in terms of response timing, magnitude and inter-cellular 

variability: the positive control  

Intracellular and extracellular biochemical differences can have profound 

effects on cell phenotype. These dissimilarities cause genetically identical cells 

to vary significantly in their responsiveness to stimuli and drugs even in a uniform 

environment (243, 244). Importantly, this could also be expected to be the case 

when applying SK blockers. Since SK blocker responses are also expected to be 

small in magnitude – e.g.: sensitive fraction of 15% of the total current (29)- it 

was decided to first investigate the variation in response to a drug anticipated to 

have a relatively large effect: BaCl2 at 0.5 mM (222), as a suitable positive control 

for later measurements of ISK. 

0 mV 

BaCl2 

W 

C 

V m  

100 
mV 

500 ms 

500  
pA 

Figure 2.8 Effect of BaCl2 on a single rabbit left atrium isolated myocyte.  

Representative traces showing the effect of BaCl2 (0.5mM) during stimulation at 

0.1Hz (10s). C (control), W (washout), Ba2+ (Barium Chloride). All the records are 

performed at physiological temperature (37°C). Traces were generated using 

WinWCP 5.3.4. 

-120 mV 

+50 mV 

Im 
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Several traces were recorded during my pharmacological experiments 

where Ba2+ was administrated at a concentration of 0.5 mM for at least 90s, at 

which time it was usually possible to observe full effect of the drug (time-course 

of effect and time of effect onset at ~30s, Fig. 2.9 and Fig.2.10, respectively). 

This concentration is expected to provide reasonable selectivity for Kir2.1 

channel (245). The barium as a bivalent cation enters the inward rectifier 

channel binding site and blocks it, denying the potassium transient to repolarize 

the cell (246) (Fig. 2.8). The validation of the effect of barium on the current 

was tested, firstly, by following the time-course of the control traces and 

ensuring that the administration of the Ba2+ causes a shift of the trace that goes 

in the opposite direction compared to the voltage ramp driven current.  

 

 

 

 

 

1000 ms 

500 mV 
BaCl2 at 30s 

40s 
50s 

60s 
70s 

Figure 2.9 Representative traces showing typical time-course of the 

effect of BaCl2 recorded in rabbit left ventricle. 

The red line indicates the 5 superimposed traces for control (i.e. 50s of 

recording) showing the stability of the recordings prior to administration of 

BaCl2. Each black line indicates the time course of the effect of BaCl2 at 

each consecutive recording (i.e. every 10s)  

Control  
(5 traces) 
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   500 pA 

    50 mV 

1000 ms

Figure 2.10 Representative traces showing typical time of effect onset and 

time to full effect of BaCl2. 

At 30s the typical start of barium effect is visible and the full block of IK1 provide 

by BaCl2 (0.5 mM) occurred at 90s. 
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1.5 
nA BaCl2 at 30s 
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To understand this concept, it is necessary to remember the Ohm’s law 

(V(voltage)=R(resistance)•I(current)). The simplest resistor, which can be 

defined as a hypothetical channel which is independent of time and voltage, has 

a linear current-voltage (I/V) relationship. This behaviour can be experienced 

when the patch-pipette loses the seal, which immediately provokes a drop in the 

resistance given by the cell (Fig. 2.11). Usually this predicts the loss of the cell 

and the recording, thus is always excluded from the analysis. When the seal is 

practically lost, the resistance become constant and the voltage (V) is calculated 

just as a function of the current (I). This event is easily recognizable and opposite 

to the effect of barium.  

 

Figure 2.11 Representative control current trace showing the time-

course of seal-loss.  

Seal leakage provokes a drift of the current traces (after 60 s), which start 

following the voltage-ramp. Numbers 1-4 represent current traces every 60s 

of recording. Traces were generated using WinWCP 5.3.4. 
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A second validation of the effect of Ba2+ was obtained after washing the 

cell with control solution and observing, eventually, the reversibility of the drug 

effect. However, the effect of Ba2+ on cells was not always present, an example 

of which is shown in figure 2.12, and this depends on the cell biological 

variability. In that particular cell Ba2+ was applied after 205s and washed at 325s, 

thus I waited more than 2 min to ensure that no effect by Ba2+ could possibly be 

detected. In addition, the figure 2.12 is a perfect example of the stability of the 

recordings and the low level of electrical noise, which become extremely 

important, especially with small currents. However, an absence of effect was 

always included in the analysis and considered as the results of cell-to-cell 

variability, which is an extremely important concept to account for the study of 

different currents. Based on this background, several traces from both human 

right atrium and rabbit left atrium and ventricle myocytes were recorded. The 

barium had different effect among single cells, showing different response to 

the drug within the same chamber (Fig. 2.14-2.15) and among different species 

(Fig. 2.13), demonstrating that biological variability is an important factor to 

Im 

Vm 

   500 pA 

   100 mV 

500 ms

Ba2+ 

0.5mM 
(205s) 

C W 
(325s) 

Figure 2.12 Absence of effect of BaCl2 on K+ channels (rabbit left atrium).  

Representative traces showing the effect of BaCl2 (0.5 mM) during stimulation 

at 0.1Hz. C control, W washout, Ba2+ Barium Chloride. All the records are 

performed at physiological temperature (~37°C). Traces were generated using 

WinWCP 5.3.4. 
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consider even with such a predictable effect. Specifically, Barium 0.5mM 

reduced the peak current density from 38.9 ± 5.9 pA/pF to -12.9 ± 4.5 pA/pF (by 

133 %), in 15 out of 16 (94%) rabbit left ventricle cells, from 20.3±4.2 to -11.6±2.9 

pA/pF (by 157 %) in 23 out of 25 (92%) rabbit left atrial cells and from 4.3 ± 1.3 

to 1.2 ± 0.2 (72%) in 11 out of 12 (92%) human right atrial myocytes. Overall, 

however, barium significantly reduced the current density at -115mV (Fig.2.16) 

and at -65mV (Fig. 2.17) in all species and chambers.  
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Figure 2.13 Heterogeneity of Ba2+ effect among cells from different rabbit 

left atrium and human right atrium.  

Peak currents density recorded at -115mV for all conditions: control (C), 

barium (Ba2+) and wash (W). Some wash records are missing due to cell death 

during recordings. Sample size: n=25 cells n=16 rabbits (rabbit left atrium); 

n=16 cells n= 11 rabbits (rabbit left ventricle); n=12 cells n=6 patients 

(human right atrium). 
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Figure 2.14 Heterogeneity of Ba2+ effect among cells from rabbit left 

ventricle.  

Peak currents density recorded at -115mV for all conditions: control (C), 

barium (Ba2+) and wash (W). Some wash records are missing due to cell 

death during recordings. Sample size: n=16 cells n=11 rabbits. 
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Figure 2.15 Heterogeneity of Ba2+ effect among cells from human right 

atrium.  

Peak currents density recorded at -115mV for all conditions: control (C), 

barium (Ba2+) and wash (W). Some wash records are missing due to cell 

death during recordings. Sample size: n=12 cells n=6 patients. 
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Figure 2.16 Inhibitory effect of 

BaCl2 on the inward rectifier 

potassium current (IK1).  

In (A) rabbit left atrial and (B) left 

ventricle and in (C) human right 

atrium myocytes peak current 

density at -115mV was 

significantly reduced after 

administration (90 seconds) of 

0.5mM Ba2+ compared with 

control. Sample size: n=16 cells 

n=11 rabbits (rabbit left 

ventricle); n=25 cells n=16 rabbits 

(rabbit left atrium); n=12 cells n=6 

patients (human right atrium).

Currents are represented as 

positive values. The data are 

expressed as mean ±  s.e.m. Values 

of P<0.05 (*) were considered 

significant.  
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Figure 2.17 Inhibitory effect of 

BaCl2 on the outward portion of the 

inward rectifier potassium current 

(IK1).  

In (A) rabbit left atrial and (B) left 

ventricle and in (C) human right 

atrium myocytes peak current density 

at -65mV was significantly reduced 

after administration (90 seconds) of 

0.5mM Ba2+ compared with control.

Sample size: n=16 cells n=11 rabbits 

(rabbit left ventricle); n=25 cells 

n=16 rabbits (rabbit left atrium); 

n=12 cells n=6 patients (human right 

atrium).The data are expressed as 

mean ±  s.e.m. Values of  P<0.05 were 

considered significant.  
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 Measurement of IK1 in atrial cells, and comparison with ventricular 

cells. 

IK1 makes an important contribution to APD in heart ventricular cells and the 

large inward rectification ensures the resting potential is stabilized close to EK 

(220). 

 

As Fig. 2.18 shows, and as stated earlier, IK1 properties are markedly 

different in the atria compared to the ventricles. In fact, rabbit atrial IK1 was a 

third compared to ventricular IK1 current density, which explains the more 

Figure 2.18 Comparison of current-voltage relationships of rabbit left atrial 

and left ventricular IK1. 

[    ] LV IK1 has greater current density than [    ] LA IK1.Ventricular IK1 has a 

prominent negative slope conductance, which is significantly smaller in atrial IK1. 

Curves are plotted as barium-sensitive current. Values are mean ± s.e.m and 

P<0.05 was considered significant, unpaired t-test, left atrial n=10 cells

(n=6rabbits) vs left ventricle n= 12 cells (n= 6 rabbits). 

✱
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hyperpolarized resting membrane potential and faster phase 3 repolarization in 

the ventricles (220, 221). 

In addition, the mean outward current at voltages more negative than -30 

mV and more positive than -80 mV is characterized by an “n-shape” or negative 

slope conductance region, which is less evident in atrial IK1 (221).  

Peak inward IK1 was recorded at -115mV with a mean current density of 

21.1 ± 2.3 pA/pF (n=12 cells, n=6 rabbits) for left ventricle and 8.6 ± 3.2pA/pF 

(n=10 cells, n=6rabbits) for left atrium. Peak outward IK1, was recorded at -65mV 

with a mean current density of 4.5 ± 0.7 pA/pF (n=12 cells, n=6 rabbits) for left 

ventricle and 1.5 ± 0.9 pA/pF (n=10 cells, n=6rabbits) for left atrium. In human 

right atrial cardiomyocytes IK1 was almost a fifth smaller than IK1 recorded in 

rabbit left atrial cells. Peak inward current was recorded at -115mV with a mean 

current density of 8.6 ± 3.2 pA/pF (n=10 cells, n=6 rabbits) for rabbit left atrium 
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Figure 2.19 Comparison of current-voltage relationships of rabbit left atrial 

and human right atrial IK1. 

Comparison between [    ] rabbit LA IK1 and [     ] human RA IK1.Rabbit left atrial

IK1 has a greater current density than human right atrial IK1 for both inward and 

outward portion. Curves are plotted as barium-sensitive current. Values are mean 

± s.e.m and P<0.05 was considered significant, unpaired t-test, right atrial n=9

cells (n= 5 patients) vs left atrial n=10 cells (n=6rabbits). 
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and 1.8 ± 0.3 pA/pF (n=9 cells, n=5 patients) for human right atrium. Peak 

outward IK1, recorded at -65mV presented a mean current density of 1.5 ± 0.9 

pA/pF (n=12 cells, n=6 rabbits) in left atrium and -0.2 ± 0.1 pA/pF (n=9 cells, 

n=5 patients) for human right atrium. However, the small amplitude of IK1 

recorded in human right atrium is due to the presence of patient treated with β-

blockers, which are reported to reduce the peak inward IK1 (at -120mV) (222). 

 High control current correlates with high Ba2+-sensitive current  

At the drug concentration used (0.5millimolar), and in a limited voltage 

range (approximatively from -115mV to-90mV), the Ba2+-sensitive current 

displayed a marked inward rectification and behaved as expected for a pure K+ 

current (at physiological [K+]o) suggesting that under these conditions the only 

current affected by Ba2+ was IK1. Therefore, to verify the hypothesis that IK1 was 

the main component of the current recorded at -115mV, further analyses were 

performed. Firstly, the barium-sensitive current magnitude was compared 

among species and chambers. Figure 2.18 demonstrates that the current blocked 

by Ba2+ at -115mV is significantly bigger in ventricle (25.9 ± 3 pA/pF) compared 

to atrium (8.7 ± 1.9 pA/pF) in rabbit isolated myocytes, which is in accordance 

to the literature for IK1 (220, 221, 241). Moreover, the barium-sensitive current 

in rabbit left atrium was 4 times larger than the current recorded in human right 

atrium (2.1 ± 0.5 pA/pF). The barium chloride is a reasonable intervention to 

inhibit IK1, even though it is probably not very selective for it (depending also on 

species and chamber); in fact, it targets all the potassium inward rectifier 

channels (IRCs) of the KCNJx gene family (247). Nevertheless, a relatively high 

concentration (0.5 mM) was chosen for these studies, especially because I could 

compare the results directly with previous data from human atrial cells (222). 

Interestingly, two different populations of cells were identified based on the 

response to barium (Fig.2.21 A), composed by the lowest half and the highest 

half of the barium sensitive current among all cells.  
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Moreover, it was noticed that most of current data from ventricle were 

included in the highest half. Consequently, it was found that these two 

populations were significantly different, confirming the variable sensitivity of Kir 

channels to Ba2+ among different heart chambers, and especially supporting the 

evidence that ventricular IK1 is greater compared to atrium (220, 221). In 

addition, the current component blocked by Ba2+ increased proportionally to the 

current amplitude, despite barium concentration, which was kept constant, 

verifying that 0.5 mM BaCl2 is sufficient to block effectively IK1, as confirmed 

previously by literature (222, 225) and that the barium-sensitive current is 

mainly composed by IK1 (225, 226). Figure 2.21 shows that the barium-sensitive 

current is very variable among cells and species, as supposed, and the degree of 

inhibition of barium increases with the increasing of the control current 

B A 

Rabbit left 
ventricle 

Rabbit left 
atrium 

Rabbit left 
atrium 

Human right 
atrium 

Figure 2.20 Comparison of barium-sensitive currents from rabbit left 

atrial and ventricle and human right atrial myocytes.  

(A) Comparison of peak current density at -115mV between rabbit left 

ventricle and left atrium. Sample size: rabbit left ventricle n=16 cells (n=11 

rabbits) vs rabbit left atrium n=25 cells (n=16 rabbits), unpaired t-test (B) 

Comparison of peak current density at -115mV between rabbit left atrium 

and human right atrium. Rabbit left atrium n=25 cells (n=16 rabbits) vs 

human right atrium n=12 cells (n=6 patients), unpaired t-test. The data are 

expressed as mean ±  s.e.m. Values of P<0.05 were considered significant. 

* 

* 
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amplitude. This is confirmed by the graph (B) that shows significant correlation 

among heart chambers and species between the barium-sensitive current and 

the control current at -115mV.  
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Figure 2.21 Relationship between high current in control condition and high 

effect of barium, in rabbit left atrial and ventricle and in human right atrium 

single cells.  

A) The aligned dot-plot graph shows the comparison between Ba2+- sensitive 

currents in two portion of cells: 1) the block provided by Ba2+ was small or not 

visible (   low-half) 2) the current blocked by Ba2+ was large (   high-half). B) 

The linear regression graph confirms the correlation between higher control 

current and high barium-sensitive current density. A linear regression line was 

used based on the equation Y = a + bX, where X is the explanatory variable 

(control current) and Y (barium-sensitive current) is the dependent variable. 

The slope of the line is b, and a is the intercept (the value of y when x = 0). 

Sample size: n=41 cells n=11-16 rabbits; n=13 cells n=6 patients (rabbit left 

atrium); n= 16 cells n=11 rabbits (rabbit left ventricle)  n=12 cells n=6 patients 

(human right atrium). The data are expressed as mean ± s.e.m., Values of 

P<0.05 were considered significant. 
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The experiments outlined in this chapter demonstrated validation of my 

patch-clamp technique (including appropriate voltage control), and of the 

temporal stability, timing and reversibility of a pharmacological intervention 

which will serve as positive control in the next experiments. In fact, the voltage 

protocol used, after validation, revealed the presence of a large current 

significantly blocked by 0.5 mM BaCl2 in both human and rabbit which, based on 

previous literature (199, 222), was classified as IK1. Also, IK1 amplitude was 

compared among heart chambers and species showing inter-cellular and inter-

animal or patient variability.  

 Validation of voltage control 

Prior to the experiments both the software and the patch clamp electrical 

components have been tested for correct voltage measurements and for 

background noise (test for electrical and vibration isolation), which were 

minimal, showing clean current and voltage traces (Fig. 2.7). Also, as described 

previously in this chapter, considering that IK1 is much larger in ventricle than in 

atrium and that this current in rabbit presents a bigger inward component 

compared to human, it was chosen to validate the voltage patch clamp technique 

in terms of voltage control in single rabbit left ventricle cells. IK1 reversal 

potential was measured and resulted equal to EK calculated by Nernst equation, 

which confirmed that my recording conditions and technique are correct.  

 Biological variability  

0.5 mM BaCl2 was expected to have a large effect on the current in each 

cell, however, it was demonstrated that in some cells (~7%) the current was not 

affected by the drug. The percentage of cells that did not respond to the 

application of the drug did not significantly alter the results, on average, but 

proved that extreme inter-cellular and inter-animal or patient variability has to 

be considered. In fact, within the same chamber and species it was discovered 

that the response to 0.5mM BaCl2 differed substantially (e.g. Fig. 2.14), even 

with such a predictable intervention. Considering the large magnitude of IK1, the 

variation in drug effect was not masked by the average but represent an essential 
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component to be considered when it comes to study currents with small 

amplitude, such as ISK.  

 Atrial vs ventricular IK1: a comparison with other studies 

In this study Ba2+ was shown to reduce IK1 at both -115mV and -65mV, with 

a mechanism of Ba2+ block that is probably of the “open channel block” type, at 

concentration lower than 1 mM, as suggested by the pronounced fast inactivation 

component of the resulting current (224). The major problem was represented 

by the identification of IK1 and its kinetics, which lies in the presence of other 

time dependent and time-independent components overlapping IK1 changes 

during voltage-clamp pulses (225). However, it was confirmed that the main 

component blocked by Ba2+, at relatively high concentration, is represented by 

IK1, also confirmed by the literature (222, 225), verifying that the current block 

was directly proportional to the size of the current. Moreover, the size of IK1 was 

3-10 times larger in ventricle compared to atrium in single rabbit cells in 

accordance with previous results by Giles et al. (199). Also, IK1 in rabbit left 

atrium was 4 times greater than in human right atrium, with current amplitudes 

of ~8.6 pA/pF vs 1.8 pA/pF, respectively. The  average current density for IK1 is 

recognised to be small in human right atria cells from patients in SR (79). Also, 

considering that the average IK1, recorded at -115mV in my experiments, results 

from both patient treated and not-treated with β-blockers, which have been 

shown to reduce IK1 magnitude at -120 mV, it can be concluded that the current 

density value is very similar to the one reported by our lab in an earlier study 

(222).  

 

Interestingly, dissimilarities in IK1 can be addressed also as a result of 

different isolation methods. For example, Hoshino et al., report that IK1 is 

strongly affected by the chunk method compared with the Langendorff perfusion 

procedure in myocytes isolated from mouse heart (248). However, it is not 

possible to utilise the perfusion procedure in human tissue, therefore, the 

hypothesis that the difference in IK1 magnitude recorded in myocytes isolated 

from patients can be caused by the utilization of the chunk method, cannot be 

ruled out.  
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To conclude, I successfully mastered the patch-clamp technique studying 

a well-known current as IK1. Solid responses were obtained validating my patch-

clamp configuration, reversal of intervention and software precision. 

Importantly, I have proved that the theoretical and the measured EK were 

identical, confirming that the voltages I was commanding were correct. Lastly, I 

succeeded to create a positive control profile that will serve as a validation for 

the next experiments involving the study of ISK. 
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Chapter 3 Fluorescence imaging of intracellular Ca2+: calibration 

procedures and verification of [Ca2+]i in vitro and in rabbit 

cardiomyocytes 

 

The SK current (ISK), may change the cardiac atrial action potential shape 

in response to altered intracellular [Ca2+], and thus may be a potential 

therapeutic target for treating atrial fibrillation (AF) (29, 174, 249-253). 

Specifically, cardiac SK channels are functionally linked to voltage-gated Ca2+ 

channels (174) and are expected to be activated during systole thereby 

participating in the repolarization of the cardiac action potential (AP). Previous 

studies have reported that Ca2+ entry through voltage-gated Ca2+ channels 

(VGCC), can trigger neuronal SK channels in mice. Furthermore, there is a unique 

specificity of coupling between L-type VGCCs and SK channels (172). However, 

the molecular mechanisms underlying the coupling of the Ca2+ channels and SK 

channels are not known. In conclusion, additional experiments are required to 

further define the roles of global versus local Ca2+ rise as well as the roles of 

sarcoplasmic reticulum Ca2+ in the SK channel activation in atrium (172, 254).  

 

In addition to the background above, the investigation of ISK required 

aqueous media that mimic the physiological intracellular fluid and the 

adjustment of the free [Ca2+]i in these media is of critical importance because 

of the essential role of Ca2+ in the regulation of K+ efflux through the cell 

membrane (155, 249, 255). Moreover, it has been reported that, beside calcium, 

no diffusible second messengers or protein kinases appear to be necessary for 

SK-channel gating, and that gating reflects interactions between the channel and 

Ca2+ only (165). However, the concentration of calcium ions in physiological 

buffers is normally calculated using either tabulated constants or software (203, 

256, 257). In fact, many papers cite the use of different programs to calculate 

the [Ca2+]i or they simply mention the addition of CaCl2, without mentioning 
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whether the final concentration of free-calcium described had been measured 

(29, 250, 251). McGuigan et. al showed that the ligand optimization method (258) 

was the most accurate when it comes to measuring the ionized concentration in 

buffer solutions (259). Therefore, this technique has been previously used to 

compare the measurements of the [Ca2+] in EGTA [ethylene glycol-bis (β-

aminoethylether)-N,N,N|,N|-tetraacetic acid] and BAPTA [1,2-bis (o-

aminophenoxy) ethane- N,N,N|,N|-tetraacetic acid], buffers with calculated 

values (252). The results showed that the ionized concentrations [X2+] calculated 

using software programs or tabulated constants always differed from measured, 

and calculated values differed among themselves by a factor of at least 2 (252). 

These variations cast doubts on the published resting values for [Ca2+] in cells. 

The conclusion is that until buffer standards become internationally defined the 

measurements of [Ca2+] is more reliable than calculation (252). 

 

It is clear that such calculations can be seriously misleading, and this has 

major repercussions for fields in which precise buffering of [Ca2+] is essential 

such as in patch clamping, measurement of intracellular [Ca2+], and molecular 

biology (256). Therefore, considering the crucial role that [Ca2+] plays in 

determining the behaviour of numerous physiologically vital proteins (260, 261), 

and the importance for measurement over calculation of this ubiquitous second 

messenger, the aim was to generate solutions with precise [Ca2+]i. Since 

submicromolar (0.3-0.5 µM) concentration of this divalent cation have been 

demonstrated to be sufficient to activate SK channels (175), due to their high 

Ca2+ sensitivity (165, 262), it was decided to perform accurate measurements of 

calcium and buffering, verified first in vitro then in cells, to ensure that during 

the current recordings the myocytes were experiencing the expected amount of 

intracellular free-calcium. This contrasts with general methods, where the 

[Ca2+]i is estimated (165, 175, 203, 250, 256, 257) and the current measurements 

are limited by the use of unphysiological solutions or cell type (e.g. HEK cells, 

Xenopus oocytes) (29, 165, 251). Hence, the present goal was to design a 

protocol to generate calibration curves utilising EGTA-buffered solutions (253) 

and calcium imaging apparatus. Subsequently, to utilise the curves to replace 

EGTA with BAPTA in the solutions, in order to exploit its higher speed of 

interaction with calcium and its much less pH dependent affinity for calcium to 



79 

 

compensate for the intrinsic cell buffer power (263-265). The final objective 

consisted of the generation of 3 different known [Ca2+]i (100, 300, and 500nM) 

BAPTA-based solutions. The hypothesis is that the utilization of these solutions 

will help determine the global [Ca2+]i necessary to elicit SK current in left atrial 

rabbit and in human right atrial adult myocytes. 

 

 Fura-2 free acid: intracellular ratiometric calcium indicator 

Fura-2-Pentapotassium (PP) salt (Fig. 3.1) has been widely used as a 

fluorescent probe, which binds to calcium and allows the quantification of 

[Ca2+]i. This fluorometric dye was become essential in the investigation of Ca2+ 

handling mechanisms and its role in multiple signalling pathways (266). Fura-2 

provides some advantages over other fluorescent probes in the study of 

physiological properties and pathophysiological states of cells. 

Firstly, the fluorescence quantum yield, which is defined as the ratio of the 

number of photons emitted to the number of photons absorbed (267): 

 

(1) Φ(λ) = # ௧௦ ௧௧ௗ 
# ௧௦ ௗ௦ௗ 

 

Fig 3.1. Fura-2 chemical structure (7).  
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This value for fura-2 ranges up to ~0.5 with Ca2+, which is typical of dyes normally 

considered to be highly fluorescent (Fig. 3.2)(7). In addition, this indicator’s 

selectivity for Ca2+ is considerably better when compared to other dyes (7, 268) 

(table 2).  

Furthermore, this dye is more resistant to photochemical alteration 

(photobleaching) which can modify the outcome of the ratio method and, 

consequently, prevent accurate calcium concentration estimation. It has been 

Fig 3.2. Excitation spectra for 1 µM fura-2 at 20°C in buffers with free Ca2+

values ranging from <1 nM to >10µM.  

An example of a set of excitation spectra for fura-2 in calibration buffers of 

varied [Ca2+]. Given such calibration data, the [Ca2+] in an unknown solution 

containing the dye can be deduced from the shape of the excitation spectrum. 

The fluorescence excitation spectra shift to shorter wavelengths as [Ca2+] 

increases, much as the absorption spectra do. EGTA is buffering all the 

established free [Ca2+] values. Equality of Ca2+ and EGTA contents in the 

K2CaEGTA solutions was insured by titration of K2H2EGTA and CaCl2. The 

excitation peak shifts towards 340 nm as [Ca2+] increases. Taken from 

Grynkiewicz et al (7). 
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calculated that an 8% loss of total fluorescence intensity is sufficient to produce 

a large error (269). There are different classes of Indicators, which are 

characterized by their own advantages and limitations, but they can be simply 

divided into either single wavelength or ratiometric dyes. Each class requires 

specific lasers, filters, and/or detection methods that depend on their spectral 

properties.  

Table 2 Comparison of commonly used fluorescent indicators (268, 270) 

 

Single wavelength indicators are generally very bright and optimal for Ca2+ 

detection while ratiometric indicators, where fluorescence is measured at two 

excitation wavelength (e.g. Fura-2, table 2), can be calibrated very precisely 

and they minimize the most common problems associated with chemical Ca2+ 

indicators: uneven dye loading, leakage, photobleaching, and changes in cell 

volume (271). 

 Buffering of intracellular Ca2+ 

It has been demonstrated that large amounts of the fluorescent indicators, 

when loaded into the cells, can buffer the [Ca2+]i  and this results in lowering of 

[Ca2+]i or blunting of Ca2+ transients (272) The fluorescent indicator Fura-2 has 

approx. 30-times more Ca2+-dependent fluorescence intensity than some other 

dyes (7), therefore, it is possible to decrease intracellular dye loading, and 

consequent buffering, to obtain usable Ca2+-dependent fluorescence signals 

(268, 273). Moreover, the absolute concentration of EGTA employed in the 

present solutions for the calibration procedures was not critical but could be 

Dye 
Excitation 

Wavelength (nm) 

Emission 

Wavelength (nm) 

Apparent 

dissociation 

constant (Kd) for 

Ca2+ (nM) 

Fura-2 340 & 380 500 224 

Indo-1 340 405 & 485 250 

Fluo-3 500 530 400 
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varied to set the ionic strength of these solutions at the level of interest. 

However, the absolute level of EGTA should be high enough that Fura-2 

represents an insignificant Ca2+-buffering contribution in comparison 

(EGTA:Fura-2 >>100:1) (274) 

 Fura-2 ratiometric wavelength dependency 

Dyes that are characterized by low fluorescence intensities, present a 

shift of the peak excitation wavelength (when bound to Ca2+) such as Fura2 and 

Fura-2-PP, but due to the long-wavelength end of their excitation spectrum, this 

shift cannot be directly related to intracellular Ca unless compared with the two 

spectra measured at high and low Ca2+levels (7). For this reason, ratiometric 

property of the Fura-based dyes including fura-2-PP is very important, as it 

allows for calibration of [Ca2+] and obviates the need for experimental 

corrections for photobleaching, sample thickness variability, dye concentration, 

etc. in intracellular systems (275). As shown in fig.3.2 the binding of Ca2+ by 

Fura-2 shifts the wavelengths of the emission maxima much less than it shifts the 

excitation maxima. Basically, the 340nm excitation increases upon the formation 

of Ca2+ -Fura-2 complexes, while signal from 380nm excitation is reduced (7). 

This means that the ratio (R) of fluorescence emission intensity of this indicator 

(at two excitation wavelengths) allows, in principle, the use of standard 

calibrations to calculate [Ca2+]i  that is independent of dye concentration (276). 

However, It has been reported that solution viscosity influences the fluorescence 

properties of Fura-2, affecting the calibration of fluorescent signals in some cell 

types (277). Therefore, the in vitro calibration of Fura-2 needs to be performed 

in a solution that mimics the intracellular composition of the cells. In addition, 

the measurements of the fluorescent emission spectrum were obtained from 

increasing concentrations of Ca2+ (7) and the conversion of the resultant 

fluorescent ratio by plotting it as a function of the applied Ca2+ concentration. 

Furthermore, in the 90’s Lattanzio et. al, showed that the probes have a 

reduction in binding affinity at acidic pH, and measured the appropriate Kd 

corrections (278). Therefore, when Fura-2 is used in a new cell type, the 

applicability of in vitro calibration must be checked by comparing in vitro and 

ex-vivo calibration curves (268). Finally, to ensure that the correct pH was used 

for physiological solutions, this was measured precisely with a pH electrode 

calibrated with commercially available, internationally defined standards.  
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 Calibration procedures for Fura-2 measurement of free Ca2+ 

As stated, Kd corrections are essential for the determination of precise 

[Ca2+] measurements (278, 279). The majority of the literature has opted simply 

to refer to the original in vitro Kd determined by Grynkiewicz et al (7). However, 

to more precisely calibrate the fluorescence of Fura-2, it become necessary the 

use of the same cell type (280, 281), or at least the utilisation of the same optical 

system and experimental techniques with which the actual experiments were 

conducted, including any Kd correction (282-284). Therefore, following these 

guidelines, the relationship between excitation ratios (340nm:380nm), [Ca2+]i 

and the dissociation constant (Kd) for Fura-2 were accurately determined through 

several calibration procedures utilising solutions of increasing [Ca2+] at a given 

temperature, ionic strength and pH.  

 

 Conversion of fluorescence to [Ca2+]  

A dye species which is excited at two wavelengths, like Fura-2-PP, upon 

binding calcium shifts peak excitation wavelength and the resulting ratio values 

of the dye's fluorescence intensities, at just two excitation wavelengths, are 

sufficient to calculate [Ca2+] (7). The sigmoidal relationship observed in Fig 3 can 

be explained by the following equation: 

(2) [ Caଶା]  =  Kୢ ∗ ቂቀୖିୖౣ
ୖౣ౮ିୖ

ቁ − 1ቃ 

Where Rmin is the ratio in the Ca2+-free solution, Rmax represents the ratio 

at a saturating Ca2+ concentration of the dye and Kd is the apparent dissociation 

constant (Kd app). The apparent Kd is linked to the real Kd by the equation: 

 

(ܽ) ݀ܭ                        (3) = ݀ܭ ∗  ߚ

 

Where β is the result of the ratio of the 380 fluorescence at Rmin divided 

by the 380 fluorescence at Rmax. 
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The filter system used presented a β value ranging from 10-12 (Godfrey Smith 

personal communication). 

I availed of the software Origin version 7.5 to create a curve by fitting the 

data points generated with the logistic equation: 

(4) R =  R୫ୟ୶ +  (R୫୧୬– R୫ୟ୶)/ (1 +  (x/Kୢ)) 

With the same software the best fit for this curve was applied and after the 

substitution of Rmin and Rmax values to the equation (2) an intracellular estimation 

of Ca2+ was obtained. 

 Data recording, analysis and curve fitting  

The output voltage from the PMT (photomultiplier tube) for the individual 

wavelengths (340nm and 380nm) and the ratio were saved on a hard disk for later 

evaluation. The interpretation of fluorescent ratio and channel data required the 

use of the software Origin version 7.5 and GraphPad Prism version 8. The 

calibration experiments were selected manually and for each experiment, 

potential artefact or noise, resulting from the chamber loading and stirring step, 

were removed. When inconsistencies concerning time length or reagents load 

timing were detected among readings, they were adjusted to be consistent 

across triplicates. Ratiometric data were converted into [Ca2+] adopting the 

parameters obtained from the Fura-2 calibration curves. Data are presented as 

mean values ± s.e.m. Unless otherwise stated, statistical significance was 

calculated using One-way ordinary ANOVA and statistical significance defined as 

p<0.05. 
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 The microscope  

The selection of Fura-2-PP for this type of experiment was driven by the 

necessity of a ratiometric dye which allowed an accurate estimation on [Ca2+]i 

with less susceptibility to possible movement artefacts (285), which can be 

experienced during recordings in cells. The signals were registered using an 

inverted microscope (schematic configuration in Fig 3.3) which greatly facilitates 

viewing living cells using a high numerical aperture oil-immersion objective (9). 

A xenon arc lamp (75W) was utilised, which are generally superior to mercury 

lamps for excitation ratioing, because xenon gives a broader and relatively 

uniform spectral output. The xenon lamp was utilised to excite Fura-2 every 100 

milliseconds for the 380 nm channel and at every 50 milliseconds for the 340nm. 

Fluorescent data were collected at both wavelengths and processed with a PMT, 

which can give continuous records of fluorescent intensity, ratio signal and it 

allows a rapid time course of [Ca2+]i changes (268). 500Hz rotating optical 

chopper and bandpass filters were utilized as the main system for selecting 

wavelengths. Thus, the total fluorescence of Fura-2 was recorded at 510nm 

(emission wavelength) after excitation by alternating 340nm and 380nm 

wavelengths. Finally, IonWizard (by IonOptix, LLC) software was employed for 

data acquisition and trace analysis (background subtraction, ratio and ion 

calculation). 
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Figure 3.3 Apparatus used for measurement of [Ca2+] with fluorescent 

indicator probes that binds free-Ca2+.  

(A) Bandpass filter to pass 730-770 nm infrared from the tungsten lamp above.

(B) 20x Objective lens (Nikon Plan Flour w20 D). (C) Dichroic mirror to reflect 

below 405 nm and transmit above 405 nm. D) Convex lens to decrease the size 

of the projected image by focusing it less far outside the microscope. (E) Filter 

to contribute additional blocking of infrared wavelengths. (F) Long-pass barrier 

filter to block wavelengths below 420 nm or 455 nm. (adapted from Tsien et al. 

1990) (9). 
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 The Perspex block bath  

To proceed to the calibration, firstly, a Perspex block bath (similar to a 

home-made Plexiglas multiwell, fig. 3.4) was prepared, with 12 wells which 

served as chambers for testing samples of different dilutions. A coverslip was 

attached underneath each well of the Perspex block using silicone grease.  

Then, each one of the seven dilutions of EGTA/CaEGTA was loaded in 100 

µl chambers with the fluorescent indicator and manually stirred with the aid of 

a pipette tip. Specifically, 2 µL of Fura-2PP (0.02 mM) were added to 98 µL of 

each solution to test and agitated to ensure interaction between Fura-2-PP and 

Ca2+. Agitation was characterised by the pipette circularly moving, to ensure a 

homogeneous mixture.  

 

 

Figure 3.4 Perspex block composed of 12 wells for the analysis of solution 

samples. 
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 Calibration protocol using standard buffer solutions 

The comparison between in vitro and in vivo is made possible by 

calibration of Fura-2 ratios that includes the preparation of solutions of known 

total ([Ca]T) in the nM and µM range (276). 

We adopted the ratio method (with Fura-2-PP) for the preparation of the buffer 

solutions. This method requires the use of two background solutions: one 

containing only ligand and the other containing Ca–ligand (Table 3). The two 

solutions are then mixed in the appropriate proportion to give the 7 buffer 

solutions, in which the [Ca]T  is known but the ionized [Ca2+] needs to be 

measured (table 4). Sufficient KOH was substituted for KCl to compensate for 

the acidity of the ligands so that the pH of both the ligand solution and the Ca–

ligand solution was just slightly more alkaline than pH 7.25. Both solutions were 

100mM EGTA solution 

Compound 
Stock solution 
concentration 

(M) 

Desired 
concentration 

(mM) 

Volume of each 
compound to be 

added to make up 
100mL solution 

(mL) 
EGTA 0.1 10 10 
KCl 1 100 10 
NaCl 1 10 1 

HEPES 0.5 25 5 
MgCl2 1 1 0.1 

100mM CaEGTA solution 

Compound 
Stock solution 
concentration 

(M) 

Desired 
concentration 

(mM) 

Volume of each 
compound to be 

added to make up 
100mL solution 

(mL) 
CaEGTA 0.1 10 10 

KCl 1 100 10 
NaCl 1 40 4 

HEPES 0.5 25 5 
MgCl2 1 1 0.1 

Table 3 List of chemicals used to make 10mM EGTA and 10mM CaEGTA from 

100mM stock solutions for generation of the Fura-2 calibration curve.  

Stock solution were calibrated to pH 7 using KOH at 20-24°C. They were 

stored in the fridge for further use. 
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titrated to pH 7.25 with 1M KOH. Buffer solutions were obtained through the 

creation of a series of mixed dilutions starting from stock solutions of 100mM 

EGTA and 100mM CaEGTA (table 3). Then, small aliquots of the resulting 10mM 

EGTA and 10mM CaEGTA solutions were added, in different proportions, to make 

a series of calcium calibration buffers (1 ml each) that exhibited different well-

established free Ca2+ values with free calcium concentrations ranging from zero 

(10mM EGTA) to 60μM (10mM CaEGTA). The purity of the EGTA must be known, 

to maintain the calcium contamination at as low a level as possible (253). 

 

 

 

Seven different dilutions of EGTA/CaEGTA will represent the multiple 

points in the Fura-2 calibration curve. Dilutions commonly used are: 10mM EGTA, 

10:1, 3:1, 1:1, 1:3, 1:10, 10mM CaEGTA. For each one of these solutions, the 

calcium values are already known (table 4). Intracellular [Ca2+] concentrations 

were estimated using the React software (286). Values concerning the buffering 

capacity of EGTA were obtained from Smith and Miller (287). Importantly, the 

free [Ca2+] is a function of the apparent Ca-EGTA association constant (KCaEGTA) 

which will impact strongly on the Kd of Fura-2 and consequently on the [Ca2+] 

measurements (276).Therefore, accurate pH adjustment (within 0.01 pH units) 

was adopted, due to the high sensitivity of EGTA to pH variations around 7.00 

(276), and the calibration experiments were performed at a specified 

temperature. 

 

 

 

  Volume to be added 
 (µL) 

        EGTA:CaEGTA EGTA CaEGTA         [Ca2+] in M 
1:0 (10mM EGTA) 1000 0 1E-09 

10:1 900 100 4.18E-08 
3:1 600 400 1.25E-07 
1:1 500 500 3.75E-07 
1:3 400 600 1.2E-06 
1:10 100 900 4E-06 

0:1 (10mM CaEGTA) 0 1000 6E-05 

Table 4 Shows 7 different dilutions which were required to create the 

calibration curve for EGTA. 
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 BAPTA, tetrapotassium salt: when faster kinetics are required. 

In some circumstances BAPTA-tetrapotassium salt can have limitations, 

since it is not possible to get avoid the potassium which may be a requirement 

of certain experiments. In order to achieve zero potassium solution, normally 

the BAPTA-free acid buffer is required, because it gives more scope with 

chemistry. This is not the case, since my solution, required potassium for the 

detection of ISK. The calcium buffering power of the cell is of the order of 100µM, 

depending on where its measured, so it must be countered with a higher buffer 

power (at least 3 times stronger, so in the order of mM) (265). BAPTA 

(tetrapotassium salt, cell impermeant) was chosen because is more selective for 

Ca2+ than EDTA, and its metal binding is also much less sensitive to pH (259, 288). 

In addition, BAPTA has a similar buffering range to EGTA for Ca2+, but with faster 

kinetics (100-fold increase) (265). This is a very important feature, since there 

was the necessity to obtain a maximum buffer power close to the inner 

subsarcolemmal surface. So, it was needed to maximise the BAPTA level, and 

even though 1 mM would have been sufficient for the objective, the uncertainty 

of calcium contamination would have been high. Therefore, to be absolutely 

sure, 5mM BAPTA was used, which guaranteed the fastest calcium buffering 

envisaged in an experiment. Kd  remains an important determinant for accurate 

[Ca2+] measurements, but since BAPTA is not pH sensitive (or very low) and the 

temperature and [Ca2+]i achieved were constant, the Kd could be extrapolated. 

Therefore, no calibration curves was performed for BAPTA but instead the 

amount of calcium necessary to get to 100nM and 300nM was measured; this 

indirectly generated the Kd. More precisely, an internal check was performed 

calculating the amount of exogenous calcium that was added and the [Ca]T in 

the solution. The result of this calculation permitted extrapolation of the Kd for 

in vitro measurements and to compare it with the Kd obtained from ex-vivo 

measurements (in rabbit left atrial myocytes). In fact, during the course of the 

measurements, endogenous fluorescence may change the background 

fluorescence as the result of compounds and compartmentalized Fura-2 indicator 

(289) and consequently this artefact, un-corrected with suggest changes the 

BAPTA Kd values. 
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 Creation of final intracellular solutions with BAPTA: PIP42 

The protocol required the creation of new solutions, based on the 

intracellular solution PIP35 composition, to which BAPTA (5mM) was added, and 

to compensate for the potassium concentration reached in the solution KOH was 

used to bring the pH to neutral values. Then the ratio values needed, to achieve 

100 nM, 300 nM and 500 nM [Ca2+]i in my solutions, were established (with ± 5% 

of error) using the EGTA/CaEGTA calibration curve. The next step demanded 

precise measurement of volume for PIP42 (i.e. PIP35 with BAPTA) and the 

addition of small quantity of solution, from high [Ca2+] stock, to maintain the 

difference in volume negligible (<5%). Initially, only 120 µL of CaCl2 from 1 M 

stock solution were added to 10 mL of PIP42, in order to reach a safe point of 

calcium concentration. At this point, the process of titration started with the 

addition of 1-2 µL of stock solution (1 M [Ca2+]i) each time. Every addition of 

CaCl2 was monitored, using 98 µL of solution sample to which 2 µL of Fura-2 were 

added, and using the same apparatus described above, the ratio was measured 

to ensure that the right [Ca2+]i was achieved (based on the ratio value obtained 

with Fura-2 calibration in EGTA). Values were originated from at least three 

technical replicates of 3. This procedure was repeated until the ratios that 

represented 100nM, 300nM and 500nM [Ca2+] were reached. 
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 Creation of calibration solution based on the pipette solution for 

ruptured patch-clamp 

The first calibration experiment was carried out using standard buffer 

solutions (table 2). The resulting ratio (340:380) values are plotted against the 

calcium concentration in logarithmic scale (in M) (Fig. 3.5). This procedure was 

necessary to calibrate the apparatus and get the Kd values for Fura-2 at a certain 

temperature and ionic strength. 

Figure 3.5: Calibration curve for Fura-2 pentapotassium based on mixtures 

of EGTA and CaEGTA using standard buffer solutions.  

The ratio of the Fura-2 fluorescence was plotted against the LogCa (M) in order 

to generate a sigmoidal curve fitted according to the logistic function (equation: 

y = A2 + (A1-A2)/(1 + (x/x0)^p)) utilising an analysis program (Origin, Version 

7.5) for nonlinear data. Rmin was calculated to be 0.34 ± 0.2, Rmax was 

equivalent to 8.27 ± 0.3 and, measured Kd was 2.7 µM ± 0.3 µM . Slope was equal 

1. Data is represented as means ± s.e.m (n=6). Readings were performed in 

triplicate at 22-23°C. The value of each point represents the ratio recorded for 

that particular [Ca2+]i. 

-10 -9 -8 -7 -6 -5 -4 -3 

Log[Ca2+]i M 
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Once the calibration using standard buffer solutions was completed, the 

next step involved the use of a solution that reproduced the intracellular milieu 

used in cells, called “PIP35”(in mM): 130 K-aspartate, 15 KCl, 10 NaCl, 1 

MgCl2(·6H2O), 10 HEPES. The pH was set to 7.25 by back titration with 1M KOH. 

Based on this solution two background solutions were generated adding 10mM 

EGTA and 10mM CaEGTA from 100mM stocks. The compensation for the acidity 

and the potassium concentration was accomplished using KOH. An inverted 

microscope was used to detect fluorescence changes in the bath due to the 

binding of Fura-2 to free-Ca2+ present in different concentrations in each well. 

One by one, wells were positioned on the stand of the inverted microscope and 

the fluorescence ratios produced at 340nm and 380nm were recorded. A 

calibration curve of fluorescence ratio against the Ca2+ concentration (in M) was 

plotted in logarithmic scale (Fig. 3.5). This procedure was routinely used to 

calibrate the fluorescent signals. To proceed to the calibration, the first step 

involved the preparation of 500mL of a pipette solution for ruptured patch-clamp 

(PIP35) that was used throughout this project, with ionic concentration within 

mammalian physiological ranges, i.e. “PIP35” as used in previous studies from 

the Workman laboratory (58, 290). A 10 mL sample was used to run the protocol. 

The setup facilitated the access to each small well and permitted the following 

up of 340:380 dynamics, so that Fura-2-PP loading and stirring steps could be 

performed manually, without any physical impediments. Pipette tips were 

inserted perpendicularly all the way down to the centre of the bath chamber. 

 Results of calibration: advantages of self-prepared buffers 

The calibration was performed with self-prepared buffer and calibration 

solutions, which can be tedious and time-consuming, and the measurements 

were taken between 60 and 80 minutes. However, the use of self-prepared 

calibration solutions, guaranteed a great control on the coefficient of variation 

(CV). An upper limit of ± 10% deviation from the mean value for [Ca2+] is 

attainable if the CV is less than 5% (252, 256). This CV percentage can be reduced 

by increasing the accuracy of solutions preparation, pipetting and improving the 

control of pH in the buffer solution (256). Initially, the fluorescence of Fura-2 

was measured in the solutions deprived of the standard buffer, in this way it was 

possible to calibrate the system for background fluorescence at the excitation 

wavelengths of 340 and 380nm. The initial stirring process is necessary for the 
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Fura-2 to not precipitate and being uniformly mixed. This was followed by 

withdrawing of the tip from the chamber. Then, fluorescence was recorded 

without external interference. Importantly, the microscope was focused to the 

bottom of the well to reduce the out-of-focus blur. At this point, the Perspex 

block with the different dilutions was positioned on the stage of the microscope, 

and one by one each well was tested for fluorescence emission. The calibration 

traces produced were recorded for 3 minutes, which was enough time to 

generate stable signals as EGTA bound to Ca2+ and reduced free [Ca2+]. The 

optical train was converted to epifluorescence using a xenon arc excitation 

source and fluorescence emission detection with a photometer and 

photomultiplier tube (Cairn Research Ltd, Kent, UK). Subsequently, background 

measurements are subtracted from the in vitro measurements. Then, the 

obtained ratio (340:380 nm) of the two resulting measurements is calculated 

and, finally, ratio images are calibrated in terms of mean [Ca2+]i (268) (Fig. 3.6 

B). 
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Figure 3.6  Calibration curves for Fura-2-PP based on mixtures of 

EGTA:CaEGTA.  

A) Four independent calibration curves recorded on different days and B) 

the mean calibration curve. The ratio of the Fura-2 fluorescence was plotted 

against the Log [Ca2+] (M). Average Rmin was calculated to be 0.35 ± 0.01, 

Rmax was equivalent to 7.4 ± 0.4 and, measured Kd was 3.6 µM ± 0.6 µM. 

Slope was equal 1. Data is represented as means± s.e.m (n=4). Readings were 

performed in triplicates at 22-23°C. The value of each point represents the 

ratio recorded for that particular [Ca2+]i. 

 

A 
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 Estimation of Fura-2 dissociation constant for Ca2+  

The free Ca concentration can be estimated from the relative proportion of 

CaEGTA to EGTA in each of the solution mixtures. However, such estimations 

contain many sources of error, such as the value adopted for apparent affinity 

constant (K’Ca) for EGTA association with Ca2+ or the actual total concentration of 

EGTA in a solution due to impurities and an unknown and a variable degree of 

hydration of EGTA. Importantly, this uncertainty spreads into the estimation of 

fluorescence ratio-[Ca2+] relationship and the Kd for Ca/Fura-2 (274). Therefore, 

to bypass this issue the Kd of Fura-2 was extrapolated from the absorbance spectra 

measured in calibration solutions, in vitro. Single calibration curves (Fig. 3.6A) 

were obtained on different days from a series of replicates in order to test the 

consistency of Kd. The results of the analysis of these curves showed dissimilarity 

in Kd values from the same experimental setup (table 5). Rmax (CaEGTA) 

calibration points showed the main variability. These readings were performed at 

22-23°C. Values for Kd were found to vary in some determinations. This could 

depend on the relationship between Kd and the ratio of the fluorescence intensity 

coefficient at 380 nm in the virtual absence of Ca2+ to that in the presence of an 

excess amount of Ca2+, which is known as β. Although the β ratios give 

intermediate dynamic range on the [Ca2+] dependence of R (340:380), the 

variations of ratios are large, especially at high Ca2+ concentrations, as shown in 

table 5. And this variation can affect the Kd in part because of the very weak 

fluorescence intensity for Ca2+-bound Fura-2 at 380 nm and in part due to Fura-2 

partial vulnerability to photobleaching (266, 269). However, the standard Kd 

obtained can be considered a reliable constant which is being regularly checked 

and, despite some discrepancies, Kd values are still within the acceptable range 

of variation. The average Kd in my experiments was 3.6 µM which, assuming the 

beta value of 12 (for the set of filter used), gives an apparent Kd of 0.3 µM (see 

eq. 2), which is not far from the value previously reported, if the differences in 

experimental conditions are considered (7). This dataset allowed the 

determination of the relationship between excitation ratio and Ca2+, and for 

calculation of the Kd for Ca2+ Fura-2 in rabbit left atrial and human right atrial 

cardiomyocytes. 
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 Verification of [Ca2+]i  in rabbit left atrial cells. 

Concentration of 500nM [Ca2+]i was considered borderline for patch-clamp 

recordings in cells. The reason lies on the fact that, usually, cells experiencing 

500nM [Ca2+]i continuously for a long period of time (>3 minutes) will contract, 

shorten (291) and lose the electrode seal. It is true that SK channel activity has 

been reported at higher [Ca2+]i ( ̴ 10µM) (257), but as stated in the beginning of 

this chapter, this was not measured in cardiac myocytes.  

Therefore, it was decided to verify the calcium concentration in single rabbit 

left atrial cells loaded with Fura-2PP through the patch pipette, at 37°C, using 

a similar setup to the one used for Fura-2 calibration. However, due to the 

change of the apparatus and experimental conditions, many variables had to be 

considered. The limiting value of the apparent Kd of Fura-2PP is about a 4-fold 

increase in Kd when compared to that without proteins (266). Thus, on the 

hypothesis that Kd would be altered in cells, a set of calibration curves was 

plotted, based on three standardization points (Fig. 3.7). Figure 3.7 shows the 

results obtained from the calibration measurements of fluorescence in rabbit left 

atrial cells dialysed with 3 different [Ca2+]i intracellular solutions loaded with 

Fura-2PP.  

Calibration 

curve 
Rmin 1:1 Rmax Kd (M) 

1 0.35 0.89 6.53 4.2 E-06 

2 0.33 0.86 7.21 4.9E-06 

3 0.34 1.52 8.27 2.7E-06 

4 0.36 1.50 7.42 2.4E-06 

Table 5 Summary of calibration parameters and Kd across multiple 

experiments. Values were originated from at least three technical 

replicates. 
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Each one of the three points represent the individual average measurement 

(fluorescence ratio) for single cells dialysed with 3 different [Ca2+]i solutions. For 

each single cell it was possible to measure only one [Ca2+]i at time, since the 

cells were loaded with the specific intracellular [Ca2+]i solution and patched. 

These experiments were challenging and only three points were required to 

define the curve of a sigmoidal relationship, which was established based on the 

more extensive in-vitro calibration measurements. In addition, since Kd is 

reported to be strongly dependent on the ionic strength of a solution (7, 269, 

292, 293) the variation was maintained sufficiently small in order to not affect 

Kd. The pH of solutions was kept within ± 0.01 pH unit and ionic strength was 

kept constant using KCl. Once the sigmoidal curve from calibration 

measurements in cells was obtained, the next step was to measure the ratio 

value of the actual [Ca2+]i present in cells loaded with 3 different [Ca2+]i 

solutions. Figure 3.8 shows the results obtained from the application of a BAPTA 

buffering system to intracellular solutions at 3 different [Ca2+]i  based on the 
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Figure 3.7 Mean calibration curve for Fura-2-PP based on PIP35.  

The ratio of the Fura-2 fluorescence was plotted against the Log [Ca2+] (M) in 

order to generate a sigmoidal curve fitted according to the logistic function 

(equation: y = A2 + (A1-A2)/(1 + (x/x0)^p)) utilising an analysis program 

(GraphPad Prism version 8) for nonlinear data. Rmin was calculated to be 

0.31±0.02; Rmax was equivalent to 2.71 ± 0.14 and, measured Kd was 2.03 µM

± 0.2 µM. Slope was equal 1. Data is represented as means± s.e.m (n=8-10 cells, 

2-3 rabbits). Readings were performed in triplicate. 
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calibration curve shown in figure 3.7. Ratio values were recorded after cells were 

loaded with each one of the 3 designated [Ca2+]i solutions containing 5 µM of 

Fura-2-PP (Thermo Fisher Scientific). Once correction for the variables mention 

above was achieved, the ratio value was converted to [Ca2+]i, in cells (figure 3.8 

B) and compared with the one obtained in vitro (Fig. 3.8 A). Figure 3.8 A shows 

that BAPTA based solutions are routinely producing consistent [Ca2+]i 

measurements in vitro compared to the [Ca2+]i  expected. Whereas, Figure 3.8 B 

shows that the same measurements in cells produced similar results to the one 

in vitro, but much more variable data were observed. This was probably due to 

the inability to precisely measure the background fluorescence (at 340 and at 

380). Small errors in these type of  measurements will result in larger errors in 

ratio measurements in cells. Also, the biological variation and 

compartmentalization of Fura-2 indicator (289) in cells has to be considered. 

However, a significant step increasing [Ca2+]i was observed between 100 nM 

[Ca2+]i solution (95 µM ± 18 µM, mean ± s.e.m., unpaired data, Fig. 3.8 B) and 

300 nM [Ca2+]i solution (357 µM ± 77 µM, mean ± s.e.m., unpaired data, p<0.05 

Fig. 3.8 B). Also, a significant increase was observed between 300 nM [Ca2+]i 

solution (357 µM ± 77 µM, mean ± s.e.m., unpaired data, Fig. 3.8 B) and 500 nM 

[Ca2+]i solution (479  µM ± 98 µM, mean ±   s.e.m., unpaired data, p<0.05 Fig. 3.8 

B). 
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The results of these measurements confirms that the 3 different [Ca2+]i solutions 

used successfully allowed the achievement of 3 significantly increasing [Ca2+]i in 

cells. Interestingly, at the highest expected concentration (500nM) it was 

possible to appreciate the variability among the estimated [Ca2+]i values 

measured inside cells, which reached values up to 1.23 µM [Ca2+]i (figure 3.8 B). 

These values were also achieved during experiments, due to the high BAPTA 

Figure 3.8 Comparison between [Ca2+]i recorded in vitro and in cells, using a 

patch clamp apparatus optimized for calcium imaging.  

Dot-plot showing 3 different increasing [Ca2+]i solution measurements A) in vitro 

and B) in cells. Each point represent single recording A) in vitro and in B) single 

rabbit atrial cells. B) sample size 100nM: n=6 cells, n=2 rabbits; 300nM: n=8 cells, 

n=3 rabbits; 500nM: n=10 cells, n=3 rabbits. All values are mean ± s.e.m. A value 

of p<0.05 was considered statistically significant. 
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concentration (5mM), which immediately clamped the calcium inside the cell, 

minimizing the possible errors due to biological variability. The range of values 

estimated represents the technical problems of distinguishing Fura-2 

fluorescence from background fluorescence measurements particularly at the 

higher calcium concentrations. 

 Additional verification of increased [Ca2+]i in cells 

Excitation-contraction coupling in heart muscle is triggered by an increase 

in the concentration of intracellular calcium (294). A discrete increase of [Ca2+]i 

fuses into a peripheral ‘ring’ of elevated [Ca2+]i, followed by propagation (via 

calcium-induced Ca2+ release, CICR) to the cell centre, resulting in contraction 

(295). Therefore, the effect of raising the [Ca2+]i  from physiological range to 

500nM, was tested by monitoring the cell length time course (Fig. 3.9 B).We 

expected a partial contraction of the cell as a consequence of globalising calcium 

through dialysis of 500nM [Ca2+]i, present inside the pipette, into the cytosol 

after rupture (291). The cell length was monitored before the seal (resting cell) 

and every 20s after the rupture by the patch-clamp pipette tip, for >3 minutes. 

As a result, 500nM global [Ca2+]i  resulted in a contraction of the cell, which 

reduced the cell length by ~8% compared to the resting state. In addition, the 

variations in cell length were compared between cells dialyzed with 100nM and 

500nM [Ca2+]i (Fig. 3.9 A), which showed a shortening of 7.3% at the highest 

calcium concentration. The cells were simultaneously stimulated using a voltage-

ramp protocol at 0.1Hz (increasing from -120mV to +50mV, Holding potential of 

-50mV). These measurements provide an additional confirmation of the 

significant increase in [Ca2+]i. In fact, a shorten cell length indicates chronic 

contraction of the microfilaments due to activation by calcium. Under the 

conditions of the voltage clamp experiments the [Ca2+]i was buffered at 3 precise 

values based on BAPTA solutions described previously. The step-wise increase in 

calcium inside the cells was confirmed by the chronic cell shortening, which was 

monitored. The increase in cell shortening confirmed that calcium inside the cell 

was increased from diastolic (i.e. 100nM). 
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Figure 3.9 Cell length measurements at increasing [Ca2+]i .  

A) Average cell length at 2 different [Ca2+]i before and after rupture. B) Cell 

length time course before seal and after rupture at 500nM [Ca2+]i. Measurements 

were performed simultaneously to cell stimulation. Cell length was only analysed 

for atrial myocytes that displayed a prominent linear contraction. Sample size 

for 100nM [Ca2+]i: n=7 cells, n=5 rabbits; 500nM: n=9 cells, n=5 rabbits. 

 

A 

B 

* 

Cell length 

(in µm) 

Cell length 

(in µm) 

100 nM [Ca2+]i  
(Before seal) 

100 nM [Ca2+]i  
(Whole cell) 

500 nM [Ca2+]i  
(Whole cell) 

500 nM [Ca2+]i  
(Before seal) 



103 

 

 

In this chapter are described the calibration procedures carried out in self-

prepared buffers, which guarantee a total control on the main variables (ionic 

strength, Kd, and buffering power) that characterise every [Ca2+]i measurement 

(274). The precision reached during these calibrations permitted to ensure the 

right [Ca2+]i in cells and the substitution of EGTA with an alternative and faster 

calcium chelator: BAPTA. The injection of calcium buffers into the cells is an 

important method for controlling cytosolic calcium (296) and BAPTA permits fast 

calcium buffering (~100 times faster than EGTA), essential to control any 

immediate calcium variation inside the cell (263, 265). Therefore, BAPTA has 

frequently been used for patch-clamp experiments due to its speed of clamping 

calcium during physiological exchange in the cells. Based on the fast diffusion 

constant of Ca2+ and BAPTA (297), it was assumed that after rupture the pipette 

solution would diffuse inside the cell and rapidly clamp Ca2+ to the desired 

concentration. However, differently from other studies (203, 298), I decided to 

measure the calcium concentration inside the cells, since this may not fully 

equilibrate with the pipette solution. In fact, it was discovered that the [Ca2+]i 

was not exactly the one expected (especially at 500nM). Nevertheless, a 

statistically significant difference among each concentration in cells was achieved 

as reported by mean values for expected 300 nM (357 µM ± 77 µM) and for expected 

500nM (479 µM ± 98 µM) [Ca2+]i solution. The [Ca2+]i achieved in cell was, therefore, 

considered to be sufficient to generate an increment in the ISK current, if present 

in rabbit left atrial or human right atrial myocytes.  

 

The implication of this part of the work are that, for the investigation of 

ISK and its [Ca2+]i-sensitivity in the next chapters, I have developed a reliable way 

of setting and keeping constant the [Ca2+]i at values between 100 and 500 nM, 

verified firstly in glass tubes, then in the cells to be patched themselves. In 

conclusion, the solutions generated by the designated method represent a 

fundamental step toward the investigation of the [Ca2+]i-sensitivity of atrial ISK 

within [Ca2+]i typical of global diastolic-to-systolic values.  
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Chapter 4 Investigation of the relationship between SK3 current 

amplitude and intracellular [Ca2+] using inside-out patch 

technique 

 

Ionized calcium (Ca2+), the most common signal transduction element in 

cells, regulates many cellular processes. Especially, upon cardiac myocyte 

membrane depolarization, Ca2+ enters the cytosol mainly via voltage dependent 

L-type Ca2+ current (ICaL), which triggers Ca2+ release from the sarcoplasmic 

reticulum (SR) via Ca2+ channels or ryanodine-receptors (RyR), a process termed 

Ca2+-induced Ca2+ release (CICR) (299, 300). This is one of the main processes 

that through a complex system of transmembrane molecules, channels, pumps 

and exchangers, maintain global intracellular Ca2+ concentrations at very low 

levels (10–100 nM) (301). Different classes of ion channels, such as SK channels, 

are gated by intracellular Ca2+ ions. The superfamily of Ca2+-activated K+ 

channels (KCa) is composed of the group of small (KCa2.1–2.3), intermediate 

(KCa3.1) and large-conductance (KCa1.1) channels. These channels play a crucial 

role in hyperpolarizing the membrane potential and modulate calcium signalling 

cascades in both excitable and non-excitable cells (302). In the last few years SK 

channels have been much better characterised and studied for their possible 

involvement in AF (196, 206, 303), due to their crucial role in the cardiac 

repolarization in both rabbit and human models (304-306). It is generally 

accepted that CaM has a role in the gating of all SK2 and SK3 channels (161, 307-

309). KCa2 and KCa3.1 channel opening begins via Ca2+-binding to the N-loops of 

calmodulin (CaM) constitutively attached to a calmodulin binding domain 

(CaMBD) located in the proximal intracellular C terminus (165, 307). The energy 

of the ensuing conformational change is transferred to the transmembrane (TM) 

regions to open the gate. The small and intermediate-conductance channels are 

closely related for structure and function, in fact, KCa2 and KCa3.1 channels are 

both inward-rectifying, voltage-independent, and activated solely by 

submicromolar concentrations of intracellular Ca2+ (161). KCa2 and KCa3.1 

channels share 25-35% sequence homology and they have similar activation 

mechanisms, but they can be found in different tissues. (310, 311). In fact, 
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KCa3.1 subunits are components of IK channels, which are mainly expressed in 

blood and epithelial cells, and in some peripheral neurons, whereas KCa2 

channels are predominantly expressed in the nervous system (161). Importantly, 

few years ago SK1 and SK2 transcripts were found to be more abundant in atria 

compared with ventricle, while similar SK3 expression levels were found in both 

atria and ventricle (27, 28). In addition, KCNN3 gene, encoding SK3, in mice, is 

one of the few genes directly linked to clinical AF, indicating that Ca2+-activated 

SK channels are important in human atria (206, 303). It has already been 

demonstrated, using calcium activation curves of SK channels, that all three SK 

subtypes share similar gating mechanisms and calcium sensitivities, with calcium 

concentration between 0.3 and 0.7 µM being sufficient to achieve half-maximal 

activation of the SK channels at 22-23°C (165, 186, 262, 298, 308, 312-315). 

However, since the majority of the published studies on the relationship between 

[Ca2+]i and ISK amplitude used sub-physiological temperatures and a variety of 

experimental conditions, and a single study (316) suggested that using 

physiological temperature, which is more clinically relevant, may change this 

relationship, it is important to clarify this issue by systematically comparing the 

[Ca2+]i-sensitivity of ISK between physiological and sub-physiological 

temperatures. Hence, the following aims. 

 

With this study I aimed to test a range of Ca2+ concentrations, which would 

reproducibly augment IKCa2.3, at both 22-23°C and 37°C. Accordingly, it was 

decided to compare the EC50, obtained from calcium-dose relationship curves for 

IKCa2.3 at 22°C and 37°C. The data obtained from recordings at physiological 

temperature will improve the knowledge about the sensitivity of the hSK3 

channel to calcium. 

 

That the data acquired from the calcium-dose relationship curves in inside-out 

patches of HEK293 cells, will support that the [Ca2+]i achieved in the solutions 

previously created using BAPTA (tetrapotassium salt, cell impermeant) will be 

sufficient to activate SK channels at physiological temperature. 
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 Inside-out patch clamp technique  

The study of the nature of ion channels can be also performed on a section 

of membrane attached to the pipette. This can be achieved using cell-attached 

(single channel) or inside-out macropatch recording technique, which examine 

channels that are localized in a small area (<10μm2) of the membrane rather 

than from the entire cell: whole-cell patch clamp. For this study, I exploited the 

inside-out macropatch configuration which allowed me to measure the current 

arising from the channels which are located within the diameter of the tip of the 

recording pipette (Fig. 4.1). This technique as well as HEK293 cell culture 

protocols were taught to me during my secondment at Acesion Pharma (ApS) in 

Copenaghen (where the experiments outlined in this chapter were performed) 

by Rafel Simó Vicens and Bo Hjorth Bentzen to complement the studies on ISK at 

University of Glasgow.  

Figure 4.1 Illustration showing the procedure to achieve single channel 

inside-out patch clamp configuration. 

Based on Ackerman et al., 1997 (3) 
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The inside-out recording configuration was achieved by gently 

withdrawing the electrode from the cell (which is firmly attached to the cover 

slip) after obtaining GΩ seal, excising the patch inside the pipette tip. With the 

internal aspect  of the cell membrane now  exposed to the bath solution, changes 

in the solutions on the inner facing channel can be readily achieved. This 

configuration is especially effective for studying the outcome of the application 

of different intracellular environments on ion channel function.  

 Cell culture and preparation 

All experiments were performed on one stable HEK293 cell line expressing 

hKCa2.3 channels obtained from NeuroSearch A/S (Ballerup, Denmark). The cell 

line was established as described in Strøbæk et al., 2004 (317). The cells were 

cultured in DMEM (DMEM1965, Thermo Fisher Scientific) supplemented with 26.2 

mM NaHCO3, 25 mM HEPES, 10 mL/L Glutamax (Gibco, Gaithersburg, Maryland, 

USA), 10% fetal bovine serum (Biowest, Nuaillé, France) and 100 U/mL of 

penicillin/streptomycin (Sigma-Aldrich, Munich, Germany). In the case of the 

stable cell lines, 100 μg/mL geneticin (Gibco, USA) was added to the medium. 

On the day of the experiment, when cells were 80-90% confluent, they were 

detached from the flask using 1mL of Detachin™ (Amsbio, Abingdon, UK). After 

being washed with free calcium and magnesium phosphate-buffered saline (PBS), 

the cells were plated on 5 mm diameter coverslips. In the case of inside-out 

patch clamps, the cover slips were treated overnight at 37°C with 50 mg/mL1 

poly-L-lysine (Sigma-Aldrich) to get firmer cell attachment. 

 Solutions  

Patch-clamp experiments with hKCa2.3 channels were conducted using 

symmetrical K+ solutions. In addition, to study the activation of the channels, a 

range of intracellular solutions containing different free Ca2+ concentrations 

(0.01–10 μM) was used. The extracellular solution contained (in mM): 0.1 

CaCl2,3·MgCl2,154·KCl, 10 HEPES and 10 glucose (pH 7.4and 285–295 mOsm). The 

intracellular solution contained (in mM): 8.106 CaCl2 (final Ca2+ concentration of 

400nM) 1.167 MgCl2, 10 EGTA, 154 KCl, 10 HEPES, 31.25/10 KOH/EGTA and 15 

KOH (pH7.2). Excised patches were exposed to free [Ca2+]i in the range from 0.01 

to 10 µM to cover the dynamic range of SK channel activation (as described in 
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Strøbæk et al., 2006). The osmolarity of the intracellular solutions was adjusted 

using sucrose (Sigma-Aldrich) to match the extracellular solutions. A gravity 

flow-based perfusion system was employed to introduce onto a patched cell with 

free calcium concentrations solutions; the application was manually controlled. 

The temperature of the solutions was regulated (for experiments at 37°C) by a 

heater placed along the last portion of the tubing and by a 4 sides heated bath. 

Patched cells were challenged with at least 60s exposure to each different 

[Ca2+]i. A liquid-liquid junction potential (LLJP) correction was not applied 

during recordings. However, the problem was minimized by using equimolar (and 

concentrated) KCl solutions. KCl is chosen because K+ and CI- have almost equal 

ionic mobilities, and, as a consequence, liquid junction potentials are in the 

range of 1mV or smaller. 

 Statistics and data analysis 

4.4.4.1 Calculation of the half maximal effective concentration (EC50) 

Data were extracted from PATCHMASTER (HEKA Elektronik, Harvard 

Bioscience, inc.) version 2x90.5 and analysed using GraphPad Prism 7. Current 

amplitudes were measured at−80 mV, and the mean of the last three recordings 

during each application was used for further analysis. To calculate the EC50 of 

calcium, the values were normalized using the current recorded at the lowest 

calcium concentration (0.01 μM) for total inactivation and used as baseline, 

while the current recorded at the highest calcium concentration (10 μM) was 

used as the maximum activation of the channel. Individual EC50 values for each 

experiment were calculated using the equation (Eq.1): 

Where X is the logarithm of the dose of calcium and Y is the normalized 

measured current with variable Hill slope. Individual EC50 values were calculated 

for each experiment and then used to determine the final EC50. The final results 

are summarized as means ± s.e.m of the individual values . Values of P<0.05 

were considered significant. 

Eq.1 
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 Electrophysiology and analysis 

Patch-clamp recordings were made using a HEKA EPC9 amplifier and the 

Patchmaster software (HEKA Elektronik, Ludwigshafen, Germany) at both 22-

23°C and 37°C. Patch pipettes (Drummond Scientific; diameter: ⌀ 3.5”) were 

pulled using a horizontal DMZ Universal Puller (Zeitz, Germany) with resistances 

of 2.2±0.6 MΩ for inside-out patch clamp. KCa2.3 currents were elicited every 2s 

using a 200ms voltage ramp ranging from −80 (held for 10ms) to +80mV from a 

holding potential of 0 mV (Fig. 4.2). Current at -80 mV was analysed for the 

creation of the activation-curves at both 22-23°C and 35-37°C. Data were 

sampled at 10 kHz. Series resistance values were 5.4 ± 0.6 MΩ with 80% of 

compensation. Two Bessel filters of 10 and 2.9kHz were used to avoid background 

noise. Statistical analyses were performed using GraphPad Prism 8. Single 

comparison of means was conducted using standard 2-tailed t-test (paired where 

appropriate). For parametric data, one-way ANOVA followed by multiple 

comparison tests were used to compare three or more groups of data. 

 

 

 

 

 

Figure 4.2 The voltage protocol used to elicit IKCa2.3. 
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  0.5 µM [Ca2+]i is sufficient to activate hKCa2.3 channel current in HEK 

cells 

I used the inside-out manual macropatch voltage clamp technique, on HEK 

cells stably expressing the hKCa2.3 channel, to test up to 8 different increasing 

[Ca2+]i solutions to generate a [Ca2+]i-ISK curve. The patch was excised and the 

inner side of the HEK cell membranes were exposed to the intracellular solution, 

which contained a range (from 0.01 to 10 µM) of free Ca2+ concentrations that 

were applied individually in increasing order. I waited for the hKCa2.3 current to 

stabilize before applying each different solution. Up to eight increasing 

concentrations of [Ca2+]i between 0.01 and 10 μM (Fig. 4.3B) were applied and 

perfused by gravity flow on the patch. In symmetrical intracellular and 

extracellular K+ solutions, hKCa2.3 currents displayed a characteristic inwardly 

rectifying current–voltage relationship (Fig. 4.3A and 4.4A). Current values 

recorded at -80 mV were plotted against time in Figure 4.3 B and 4.4 B. Calcium 

was able to elicit hKCa2.3 channel current in a concentration-dependent fashion 

at both room (22-23°C) and physiological (35-37°C) temperature (Fig. 4.3B and 

4.4B). Current was recorded every 4s at -80 mV and plotted against time for both 

room (Fig. 4.3B) and body (4.4B) temperature. The activation started at 0.5 μM 

[Ca2+]i and total activation was reached at 3 μM [Ca2+]i (Figure 4.3B and 4.4B). 

This was true at both 22-23°C and 35-37°C. Superfusion with 0.5 µM [Ca2+]i 

solution provoked an increase in hKCa2.3 current of 75 ± 7% at 22-23°C (n=10) 

and of 83 ± 8% at 35-37°C (n=8).    
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Figure 4.3 Absolute current at increasing [Ca2+]i measured at 

22-23°C and obtained by inside-out patch clamp on a single HEK 

cell macropatch stably expressing the hKCa2.3 channel. 

A) Representative current–voltage plots and (B) their corresponding 

current–time plots of activation by calcium (current amplitude was 

measured at -80mV). 

B 

A 
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Figure 4.4 Absolute current at increasing [Ca2+]i measured at 35-37°C and 

obtained by inside-out patch clamp on a single HEK cell macropatch stably 

expressing the hKCa2.3 channel.  

A) Representative current-voltage plots and B) the corresponding current–time 

plot (current amplitude was measured at -80mV).  
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Subsequently, the values of the current were normalized to create a 

calcium dose-response curve, using the analysis program GraphPad Prims. The 

values for EC50 were extrapolated from the curves and resulted as 0.39 ± 0.02 µM 

and 0.29 ± 0.03 µM for 22-23°C and 35-37°C, respectively (Fig 4.5). The reduction 

in EC50 that occurred during the shifting from perfusing with solution at 22-23°C 

to solutions at 35-37°C, describes an increase in hKCa2.3 channel sensitivity to 

Ca2+ with a significant leftward shift of SK calcium activation curves at 35-37°C, 

as shown in figure 4.6.  

 

 

Moreover, at 35-37°C the Ca2+ dose–response curves showed that the Hill 

slope for Ca2+ gating was increased from 3.2 (at 22-23°C) to 4.3. The half 

maximal effective concentration (EC50) was significantly lower at 22-23°C 

Figure 4.5 Comparison of calcium-activation curves of SK channels obtained 

at 22-23°C and 35-37°C. 

Sigmoidal curves were fitted according to the logistic function: 

Y= Ymin+(Ymax-Ymin)/(1+10^((LogEC50-X)*HillSlope) utilising an analysis program 

(GraphPad prism7) for nonlinear fitting of transformed data (normalized). Data 

were obtained from inside-out patch clamp experiments performed on a stable 

HEK293 cell line expressing the human SK3 channel. The Hill slope was 3.2 at 22-

23°C and 4.3 at 35-37°C. Data is represented as means ± s.e.m. Sample size: 

n=10 patches, n= 10 cells (for 22-23°C); n=8 patches, n=8 cells (for 35-37°C). 
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compared with that at 35-37°C (Fig.4.6), while the Hill slope of the curve at 

35-37°C was increased. Thus, lower calcium concentrations were required to 

activate the channels at physiological temperature.  

 

 

 

 

 

 

 

 

  

 

Figure 4.6 Comparison between EC50 at both room and 35-37°C in 

HEK293 cells.  

The calcium's EC50 was 0.39±0.02µM at 22-23°C (n=10 patches, n=10 cells) 

and 0.29±0.03µM at 37°C (n=8 patches, n=8 cells). All values are mean ± 

s.e.m, P<0.05 (unpaired student’s t-test)  

✱
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These experiments aimed to improve the understanding of the calcium 

sensitivity of SK channels and contributed to expanding knowledge about SK 

channel activation at physiological temperature. The use of HEK cells stably 

expressing just the hKCa2.3 channel can just provide an estimation of the 

current behaviour when compared with my previous data obtained from rabbit 

left atrial and human right atrial cardiomyocytes. However, it was demonstrated 

that calcium activation of one of the major SK isoforms is taken to diastolic 

calcium range at 37°C. This is particularly important, considering that SK3 is one 

of the isoforms that is expected to be associated with lone AF (206). 

Furthermore, SK calcium-activation curves present steep slopes with Hill 

coefficients ranging from 3 to 4, suggesting positive cooperativity during calcium 

binding (165, 262, 298, 308, 312-314, 318). These results show that ISK half 

maximal effective calcium concentration is in the range of diastolic values, also 

confirmed by the literature. Ilse et al. performed inside-out macropatch voltage 

clamp ramps at 23°C and 37°C and observed a pronounced leftward EC50 shift at 

37°C (from 0.53 ± 0.07 µM to 0.23 ± 0.02 mM) for hKCa2.3 channels. The recording 

solutions and condition used for this experiment are not provided in the abstract 

(316). However, these values show a more marked leftward EC50 shift to the one 

observed in my experiment. [Ca2+]i response-curves from inside-out macropatch 

recordings in HEK293 cell line stably expressing WT hKCa2.3 channels made by 

Jenkins et al., showed EC50 values of 0.48 µM ± 0.05 µM and Hill coefficients of 

4.8 ± 1.0 at room temperature (22-23°C) using symmetrical K+ solutions (310), 

which are consistent with the conditions used in my experiments, although the 

hill coefficient is higher compared to mine at room temperature. On the other 

side, these data, taken together with mine obtained from HEK cells support the 

hypothesis that this current should be detectable in rabbit and human myocytes, 

even at low [Ca2+]i. Nevertheless, this study was limited due to the 

unphysiological [K+] used, which was equivalent for the extracellular and 

intracellular solutions. These arrangement were necessary to reach high current 

amplitudes in HEK cells and shift the reversal potential to 0mV. However, in 

human cardiomyocytes the current is expected to be small and difficult to detect 

(29), even at high [K+] and Ca2+ concentration in the range of EC50 calculated 

during this study. In conclusion, the results obtained provided a better insight of 
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SK channel calcium-sensitivity and will aid the investigation of ISK under 

physiological conditions. 
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Chapter 5 Investigation of SK (ICA-sensitive or apamin-sensitive) 

current in rabbit and human atrial cardiomyocytes using 3 

different [Ca2+]i 

 

 The disputed role of cardiac SK channels  

Circumstantial evidence for the presence of Ca2+-activated K+ channels in 

cardiac muscle was initially reported more than 40 years ago (319) but was later 

disputed following contradictory views in 1983 by Eisner et al (198). However, 

later in 1999, Wang et al renewed the interest in these channels, describing the 

presence of SK3 mRNA in H9c2 cells derived from embryonic rat ventricle, as 

well as the Ca2+-dependency, K+-selectivity and susceptibility to blockade by 

apamin of ISK (320). This work was followed by a series of elegant studies that 

confirmed the presence of functional SK2 channels in human and mouse cardiac 

myocytes, from which this channel subtype was then cloned (27). Moreover, the 

same group, 2 years later, first described the presence of the three different 

isoforms of SK channels in the heart and the differential expression of these 

channels between mouse atria and ventricle (28). 5 years later, these studies in 

combination with the first evidence for an association of variants in the KCNN3 

gene (encoding SK3) and risk of AF in man (206), boosted the interest for these 

channels in the field. 

 

The characteristics of the superfamily of KCa channels have been 

described earlier in this thesis, focusing on the critical role that SK may have in 

cardiac repolarization. This may be crucial during atrial fibrillation (AF), which 

is characterized by adaptation and remodelling of the atrial myocardial electrical 

and mechanical activity in response to a variety of cardiac disease conditions 

and Ca2+ handling abnormalities (321, 322). In particular, in the general 

introduction, the role played by single- and multiple-circuit reentry in AF has 

been widely discussed, as well as the importance of the atrial effective 

refractory period (aERP) in the determination of reentry during irregular and 

rapid atrial electrical activity (14). The atria remodelling, led by episodes of AF, 
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shortens the aERP and the atrial action potential duration (APD), promoting and 

maintaining AF (77). Thus, the identification of new drugs that could lengthen 

specifically the aERP and the APD in the atria become essential in the treatment 

of AF.  

 

SK1 and SK2 channels have been found predominantly distributed in human and 

mouse atrial compared to ventricular myocytes (27, 28). In fact, under normal 

physiological conditions, there seems to be a general consensus that SK channels 

play a negligible - if any - role on ventricular tissue compared to atria (27, 196, 

203). Therefore, in recent years an increased focus has been given to SK channels 

because they might constitute a new atrial-selective target in the treatment of 

AF (27, 28, 30, 200, 211). However, at present, the function of SK channels in 

the human myocardium remains unclear and is not well known whether the 

activation of these channels produces antiarrhythmic or proarrhythmic effects 

(27, 306, 323-325). Diness et al. described a reversion of atrial fibrillation by 

inhibition of SK channel, which prolonged atrial effective refractory period 

(aERP), in rat and rabbit model of paroxysmal AF (196). Whereas, Hsueh et al., 

described a possible proarrhythmic effect of SK channels blockade by promoting 

APD heterogeneity in the canine left atrium. 

 

Additionally, as previously described, the Ca2+-sensitivity of SK channels is 

conferred by the calcium-binding protein calmodulin (CaM) that cooperatively 

opens these channels with high Ca2+ -sensitivity (EC50 ~100-400nM) (165, 168, 

318, 326, 327). Recently, Fan et al. reported an increase in calcium-sensitivity 

and current density of human ISK during chronic AF, with the downregulation of 

expression of mRNA and protein levels of all the SK subtypes compared to sinus 

rhythm patients. They concluded that this current rise, associated with increased 

atrial SK channel sensitivity to [Ca2+]i in AF patients, is due mainly to the 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation and [Ca2+]i  

elevation (30). Given the relevance of this publication to the present study, it 

could have been used to inform the rationale of the present experiments, but 

due to its recent date of publication (May 2018), this was not possible. 

Nevertheless, discrepancies among the results and methods used were 

discovered when compared to the present work and are discussed later in this 

chapter. Besides, part of the findings made by Fan et al. is in contrast with 
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previous studies by Yu et al. who demonstrated that chronic AF decreases ISK 

density compared to sinus rhythm, along with downregulation of protein and 

mRNA expression levels of SK1 and SK2 (211). Skibsbye et al., hypothesize an 

initial up-regulation of SK channels expression followed by down-regulation 

during long-lasting AF (29). Thus, it seems that the different expression levels of 

these channels, along with the current elicited, depend on the duration of AF, 

which is associated with extensive structural and electrical remodelling of the 

atria (79, 211, 328). In fact, increased SK current density has also been described 

in atrial myocytes from patients in persistent AF (213). However, how the 

expression level of SK channels changes and how this impact on ISK in sinus rhythm 

versus AF is not clear. On the other hand, it can be supposed that, based on their 

high calcium-sensitivity and relatively weak voltage-dependence, SK channels 

have a significant functional role in the direct connection between calcium 

handling and cardiac repolarization also under physiological conditions. 

Therefore, in theory, ISK could activate upon the abrupt atrial rate increase 

(which should also increase [Ca2+]i) of new-onset or paroxysmal AF, i.e. in un-

remodelled atrium. In this chapter the aim was to stimulate, in un-remodelled 

atrial cells, the intracellular calcium overload that distinguishes this particular 

arrhythmia (84, 329), which could potentially trigger SK channels during systole 

and make them participate in the cardiac repolarization. Thus, utilizing solutions 

with precise [Ca2+]i typical of global diastolic-to-systolic values, the aim was to 

simulate the calcium overload present at rapid stimulation frequency in AF which 

could cause the activation of ISK. Many previous studies have addressed the 

investigation of SK current using a voltage-clamp protocol in whole-cell 

configuration availing of solutions with increased [Ca2+]i. For example, Xu et al. 

found an apamin-sensitive current using [Ca2+]i of 500 nM and just 50 pM of the 

toxin, which based on the data reported blocked almost 15% of the current in 

atria (27). On the other hand, in a study from 2009 by Nagy et al., 100 nM apamin, 

which is 2000 times higher compared to the one used by Xu et.al, failed to alter 

the I-V curve in ventricle with [Ca2+]i of 900nM (203). Despite this single study, 

apamin was found effective in different investigations of SK current. In a recent 

study by Fan et al, an apamin (100 nM)-sensitive current recorded at [Ca2+]i of 

500 nM was found greater in patients with AF compared to sinus rhythm. In 

contrast, a few years earlier, Skibsbye et al., showed significant current 

reduction caused by the selective blocker ICAGEN at the concentration of 1 µM 
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with 300 nM [Ca2+]i in atrial myocytes from patients in sinus rhythm but not in AF 

(29). However, the latter study used un-physiological [K+]o (20 mM) to shift the 

reversal potential of the current, which, considering the small effect of ICAGEN, 

limits extrapolation of their data to more physiological conditions. Therefore, it 

is clear that some discrepancies have emerged about the presence or not of SK 

current and its relevance under pathological or physiological condition. In this 

chapter, therefore, the investigation regarding the presence of ISK was performed 

only under physiological conditions, availing of 3 “tools”: 

 The same voltage protocol used to test the positive control in chapter 2; 

 High [Ca2+]i solutions, used to potentially trigger ISK at physiological 

temperature; 

 Two specific SK blockers: apamin and ICAGEN. 

 Two SK channel blockers in comparison: a conventional peptide 

(apamin) and a new neutral small molecule (ICAGEN) 

Among the variety of compounds claimed to inhibit SK channels (183, 330-

332), numerous studies identified apamin as a state-of-the-art blocker of SK, and 

it has been used extensively as a key tool to investigate SK function in different 

tissues including skeletal muscles (333-337). This peptide, proposed as SK blocker 

firstly by Habermann (338), is a small 

peptide containing 18 amino acids 

present in honey bee venom (Fig. 5.1) 

which targets all SK subtypes (179). The 

homogeneous substance was called 

apamin, from apis, the bee (338). Apamin 

acts as a negative allosteric modulator, 

binding to both the outer pore region 

residues and the S3-S4 extracellular loop 

to inhibit channel activity (188). The bond 

at the loop is supposedly the basis of SK 

subtypes disparity in apamin sensitivity 

(table 6), which is useful for determining the expression pattern of SK channel 

subtypes in native tissue (179).  

HQQCRRACLATEPAKCNC 
 
 
Apamin 

Figure 5.1 Aminoacidic 

sequences of the insect peptide 

toxin apamin. Brackets are used 

to show disulphide bridges.  

Modified from Hamid S. Kachel 

et. al. (4) 
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On the other hand, recently, a new 

chemical class of SK blockers has 

been reported by Gentles et al. 

exploiting the apamin binding site 

(183). This class is represented by the 

ICAGEN compound (Fig. 5.2), 2-

aminothiazole N-(pyridin-2-yl)-4-

(pyridin-2-yl) thiazol-2 amine, also 

known as ICA (IC50 = 0.3/0.5 µM) 

which inhibits all SK subtypes with equal potency (29, 183). This new molecule 

displays excellent potency as a KCa2 blocker and has been previously tested both 

ex-vivo and in vitro (29, 196, 197). Given its apamin-displacing nature, it is 

believed to share a similar mechanism of action with apamin, therefore, ICA was 

chosen over other compounds which present similar or lower potencies (183, 

196).  

 

To my knowledge, only a single recent study (published after completion 

of my experiments) cited above, from Fan et al, reported the effect of a 

conventional ISK blocker, apamin, on the apamin-sensitive potassium current 

(IKAS) under physiological conditions and measured [Ca2+]i in single human atrial 

myocytes (30). On the other hand, many studies that show a significant effect of 

different ISK blockers report [Ca2+]i calculated using a software (27) or the use of 

unphysiological conditions (e.g. high external K+ concentration) (29, 213, 298). 

In addition, few publications have documented the role of cardiac ISK in rabbit 

and only one have studied it also in single rabbit left atrial cells (304). Therefore, 

given the wide range of results and contradictions in the literature, the aim was 

to investigate ISK in atrial myocytes from human and rabbit, under physiological 

Apamin 
SK1 IC50 (nM) SK2 IC50 (nM) SK3 IC50 (nM) 

0.7-8 
(169, 179, 339, 340) 

0.06-0.14 
(318, 340) 

0.63-1 
(340, 341) 

Table 6 Inhibitory concentration of apamin for each SK subtype. 

Figure 5.2 Chemical structure of 
ICAGEN 
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conditions. By this means, 3 different and precisely measured [Ca2+]i solutions 

(100 nM to 500 nM) as previously described (chapter 3), and two SK channels 

blockers (Apamin and ICAGEN) were used (183, 342) to determine [Ca2+]i 

sensitivity of atrial ISK. Additionally, given its weak voltage sensitivity, SK current 

should be activated in a wide range of membrane potential (27, 320). Therefore, 

SK current was directly measured in voltage-clamped single cells from rabbit and 

human myocytes. 

 Subsidiary aim 

To measure ISK in a small number of cells from rabbit with myocardial infarction 

(MI), considering that MI has been associated with a significantly increased ISK 

density and altered ISK sensitivity to intracellular Ca2+ (343).  

 

 Measurement of intracellular free Ca2+ concentration: 3 different 

increasing [Ca2+]i solutions 

Rabbit atrial cells were firstly loaded with 5 µM of fluorescent Ca2+ 

indicator Fura-2-PP (Thermo Fisher Scientific). Then, Intracellular solutions free 

Ca2+ concentration was measured previous to electrical recordings. The resulting 

ratio values were converted to [Ca2+]i as previously described in this thesis, 

aiming for intracellular free calcium concentrations of 100, 300 and 500nM. 

 Drugs and solutions 

In general, the perfusate, or external solution (EPSS2: extracellular 

physiological salt solution), was composed of: 140 mM NaCl, 4 mM KCl, 1.8 mM 

CaCl2(·2H20), 1.0 mM MgCl2(·6H2O), 11 mM glucose, 10 mM HEPES, with the pH 

adjusted to 7.4 with 1 M NaOH. The internal (PIP35: pipette solution) solution, 

contained: 130 mM K-aspartate, 15 mM KCl, 10mM NaCl, 1mM MgCl2 (·6H2O), 10 

mM HEPES, 5mM BAPTA, pH adjusted to 7.25 with 1M KOH. Based on the internal 

solution (PIP35) composition, the 3 different [Ca2+] solutions were created as 

described in chapter 3. The external perfusate could be collected to measure 

drug concentrations, as well as the intra-pipette solution to verify [Ca2+]i. All 
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experiments were performed at 37oC. Unless otherwise mentioned, all the 

chemicals used were of analytic grade and were obtained from Sigma-Aldrich. 

Apamin was dissolved in distilled water (344). 2-aminothiazole N-(pyridin-2-yl)-

4-(pyridin-2-yl) thiazol-2 amine (ICA) was synthesized at NeuroSearch A/S, 

Ballerup, Denmark, and was dissolved in DMSO (183, 186). All substances were 

added directly to the organ bath. Apamin was applied for ~180s and ICA for 180-

200s based on previous data regarding drug peak effect on ISK (27, 29) 

 Electrical recordings and analysis 

Electrophysiological signals were recorded from single cardiac myocytes in the 

whole-cell ruptured patch clamp configuration using AxoClamp 2B patch-clamp 

amplifier and WinWCP 5.3.4 software (University of Strathclyde, UK). For current 

recordings, patch pipettes (2.5-5MΩ filed with intracellular solution) were pulled 

from borosilicate glass capillaries 1.2ODx0.69x100L mm (Harvard Apparatus, 

USA) with a gravity puller (model PP-83, NARISHIGE, USA). A liquid-liquid 

junction potential of +9 mV (bath relative to pipette) was compensated for a 

priori (79, 238). Voltage-dependent activation of ISK was measured by stimulating 

cells at 0.1 Hz from a holding potential (HP) of −50 mV, with voltage ramps of 7s 

duration increasing from −120 to +50 mV (Fig. 5.3). The voltage protocol is 

identical to that used in the positive control experiments (Chapter 2). This 

protocol shares similarities to voltage ramps used in previous studies (27, 29, 

203). The access resistance changed substantially in 3 cells, so these were 

excluded from the analysis. The peak current at -115mV and at -65mV were 

considered for the analysis of the inward and outward current, respectively. The 

external and pipette solutions reproduced the physiological milieu as described 

above and previously used by our laboratory (58). ISK amplitude was calculated 

as the IKAS (apamin-sensitive potassium current) at -115mV or -65mV to avoid 

current artefacts immediately after the start of the ramp. Data were analysed 

using WinWCP 5.3.4 software and the graphs were created using GraphPad 7.05 

software. Currents were normalized for each cell capacitance as described in 

Chapter 2 (section 2.5). Statistical analyses were performed using GraphPad 

Prism 8. Single comparison of means was conducted using standard 2-tailed t-test 

(paired where appropriate). For parametric data, one-way ANOVA followed by 

multiple comparison tests were used to compare three or more groups of data. 
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 Atrial cell Isolation and experimental condition 

Myocytes from stock and MI rabbits left atrium or from sinus rhythm 

patients’ right atrial tissues were isolated and superfused with solutions as 

previously described (See Methods 2.3.1-2.4.1). Experiments were performed 

using ruptured whole-cell patch clamp (See Methods section 2.6-2.8) in voltage-

clamp mode whereby pre-specified voltage pulses are applied to the myocyte 

and the resultant current is recorded. In this study, for the rabbit model of MI, 

the ligation of the left descending coronary artery (LAD) of the rabbit was used. 

The vessel is permanently ligated, and the heart is harvested 8 weeks after 

ligation. This model provides consistent apical LV infarct formation and early 

stages of cardiac remodelling, comparable to what is often encountered in 

humans post MI, such as cellular hypertrophy, decreased ejection fraction and 

APD prolongation. Importantly, the cells obtained from the model of MI and used 

in this experiment were available from an isolation performed for another study 

(kindly donated from Sara Dobi, PhD student at University of Glasgow) and just 

a small number of cells were tested from that single rabbit model of MI. 

Figure 5.3 Voltage pulse (ramp) protocol used during recordings of ISK 

-50 mV 

+50 mV 

-120 mV 

0 mV 
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For human experiments, only myocytes isolated from the right atrial 

appendage were used. The atrial appendage was available for investigation as it 

constitutes the most accessible location for sampling human myocardial tissue 

(345). Also, the human right atrial (RA) appendage is more accessible for 

sampling than the left atrial (LA) appendage (345). Therefore, only the RA 

appendage was suitable to obtain a sufficient number of human samples. 

However, rabbit LA was also used, since it may be more relevant as source of 

ectopic activity (346, 347), possibly due to the location of the pulmonary veins 

in the left atrium, which appear to have a highly significant role (38) or 

consequent to the shorter atrial refractory period (ARP) compared to the RA, 

which could favour re-entry (348). 

 Statistics  

Data are expressed as mean values ± s.e.m. Student t-test for paired data 

was used to compare results, if not otherwise stated. Results were considered 

significant when P was less than 0.05. 
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 Changes in [Ca2+]i showed no effect on control quasi-steady-state 

current-voltage relationship  

Chapter 2 describes in detail the protocol used as a positive control to test 

temporal stability, timing, and reversibility of the IK1 block obtained by the 

application of BaCl2. Once its validity was confirmed, an identical protocol was 

employed for the investigation of ISK. The validation step was essential, since the 

current blocked by apamin was expected to be difficult to detect due to its low 

density, even at high extracellular [K+] (20mM) (29). Also, as previously stated, 

the goal was to study ISK under physiological conditions, including intracellular 

and extracellular [K+]. Thus, ISK density was assumed to be even smaller. Besides, 

the aforementioned study by Nagy et al., also showed that apamin (100nM) failed 

to alter either atrial or ventricular action potential duration (APD) from rat, dog 

and human multicellular preparations as well as in single cells under 

physiological conditions (203). So, with these premises, firstly the mean control 

“steady-state” current-voltage relationships among the different calcium 

concentrations (100,300 and 500nM) in rabbit and human were compared to each 

relative positive control, which are shown in Fig. 5.4. This will allow a better 

investigation of any possible change in the current due to drug application, 

especially at negative potential (-115mV). 
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5.4.1.1 Rabbit control 

In rabbit left atrial myocytes, the ramp current I-V relationship obtained 

in the presence of [Ca2+]i of 100 nM (i.e. typical of global diastolic level, Fig. 

5.5), was observed to be similar as for the positive control (Fig. 5.4). Thus, 

showing inward rectification at voltages negative to the resting potential (~-80 

mV), and a relatively small outward current at positive potentials (Fig 5.5). In 

different atrial cells, with the [Ca2+]i increased to 300 nM, and also to 500 nM 

(anticipated to substantially activate ISK) there was no difference in the current 

profile compared to that recorded with 100 nM [Ca2+]i (Fig. 5.5).  

Figure 5.4 Comparison of mean current-voltage relationships of rabbit left 

atrial and human right atrial myocytes, under control conditions.  

Comparison between [    ] rabbit LA and [     ] human RA control currents. Rabbit 

left atrial current has a greater current density than human right atrial for both 

inward and outward portion. Curves are plotted as control current (pA/pF) 

against voltage (mV). Values are mean ± s.e.m. Human right atria n=9 cells, n= 

5 patients; rabbit left atria n=10 cells, n=6rabbits. 
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5.4.1.2 Human control 

Similar conclusions can be drawn from the comparison between the 

positive control (Fig. 5.4) and the ramp current I-V relationship obtained at 

[Ca2+]i of 100 nM (Fig. 5.6), in human right atrial myocytes. This is true also for 

the ramp current recorded at each other [Ca2+]i (i.e. 300 and 500 nM, Fig. 5.6) 

which shows no significant difference when compared to the positive control. 

Also, no significant difference was observed among currents recorded at 

different [Ca2+]i in the same chamber and species. The only difference is 

represented by the general amplitude of the current between rabbit LA and 

human RA, which has been addressed earlier in this thesis, and reported to be 

smaller in human RA compared to rabbit LA due to a reduction in IK1 density 

(222).  
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Figure 5.5 Control current-voltage relationships of rabbit left atrial

myocytes at 3 different [Ca2+]i.  

Steady-state current–voltage relations were obtained by plotting the end-

pulse membrane current as a function of the respective membrane potential 

(Vm). Values are mean ± s.e.m and P<0.05 was considered significant. 100nM

[Ca2+]i: n= 12 cells, n=9 rabbits; 300nM [Ca2+]i: n= 23 cells, n=11 rabbits; 500nM

[Ca2+]i: n= 13 cells, n= 8 rabbits. 

Rabbit left atrium 
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Figure 5.6 Control current-voltage relationships of human right atrial 

myocytes at 3 different [Ca2+]i.  

Steady-state current–voltage relations were obtained by plotting the end-pulse 

membrane current as a function of the respective membrane potential (Vm). 

Values are mean ± s.e.m and P<0.05 was considered significant. 100nM [Ca2+]i:

n= 5 cells, n= 3 patients; 300nM [Ca2+]i:  n= 12 cells, n= 6 patients; 500nM [Ca2+]i:

n= 8 cells, n= 5 patients. 

Human right atrium 
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 Investigation of the effect of apamin on ion currents recorded in single 

human right atrial and rabbit left atrial cells 

The identical protocol described in the previous section (5.4.1 and 5.3.3) 

was employed with the whole-cell configuration of the patch clamp technique 

to detect the effect of 100 nM apamin on SK current in single cells and to measure 

the apamin-sensitive current in isolated human right atrial and rabbit left atrial 

myocytes. Although this peptide does not always provide a complete inhibition 

of SK channels (171), it remains the most widely used peptidic blocker of SK 

channels and its specificity is especially important for characterising these 

channels (156, 340). Therefore, in the following experiments the neurotoxin was 

used to investigate ISK current in myocytes isolated from rabbit left atrium and 

human right atrium using the whole-cell patch clamp technique. The 

concentration of 100nM for apamin was chosen in order to block most of the SK 

current, based on previous literature (30, 169, 211, 213, 340).  

Under whole-cell conditions, the free Ca2+ concentration in the pipette solution 

was set to 100, 300 or 500 nM in these experiments with the intention of induce 

maximal activation of SK channels. These pipette Ca2+ concentrations 

approximate the global diastolic to systolic Ca2+ level which normally occurs in 

cells, during systole (not to peak [Ca2+]i levels) or diastole (349, 350). Under this 

condition the [Ca2+]i was highly elevated as compared to the diastolic Ca2+ level. 

In addition, I aimed to apply a range of increasing [Ca2+]i to possibly test the 

Ca2+-sensitivity of IKAS. After achieving whole-cell configuration, I waited 

approximately 50-60s to allow the dialysis of the pipette solution with the 

intracellular space; a duration found to be sufficient to reach the desired [Ca2+]i. 

Also, it has been demonstrated that a substantial difference in [Ca2+]i could 

produce a significant change in the cell length (Chapter 3).  

5.4.2.1 Absence of effect of 100 nM apamin in rabbit left atrial myocytes 

Firstly, the conventional blocker apamin (100nM) was tested on the inward 

peak current at -115mV (Fig. 5.8 A) and the outward current at -65mV (Fig. 5.8 

B) in rabbit left atrial myocytes. However, at 100nM [Ca2+]i the current was not 

significantly changed before and after the application of the drug, neither 

at -115mV (control current -4.8 ± 0.6 pA/pF vs -4.7 ± 0.6 pA/ pF following 100 
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nM apamin, mean ± s.e.m.,  paired data, Fig. 5.8 A) nor at -65mV (0.4 ± 0.4 vs 

0.7 ± 0.3 pA/pF, mean ± s.e.m., paired data, Fig. 5.8 B). With 300 nM [Ca2+]i, 

apamin also had no effect on inward (-6.3±0.5 vs -6.2±0.4 pA/pF, mean ±  s.e.m., 

paired data, Fig. 5.8 A) or outward current (-1.15 ± 0.2 vs -0.95 ± 0.3 pA/pF, 

mean ± s.e.m., paired data, Fig. 5.8 B). When [Ca2+]i was set to 500 nM, apamin 

again showed no effect either on inward (-13.4 ± 5.2 vs -13.3 ± 5 pA/pF, mean ±  

s.e.m., paired data, Fig. 5.8 A) or on outward (1 ± 0.7 vs 1.2 ± 0.7 pA/pF, mean 

± s.e.m., paired data, Fig. 5.8 B) currents. Finally, during the analysis of the 

effect of 100nM apamin on the inward current in rabbit (Fig. 5.8 A) the control 

current at 500nM [Ca2+]i was found to be significantly higher than the one at 

300nM [Ca2+]i. However, the hypothesis that this was a true result was rejected, 

which was confirmed by one-way ANOVA test, that increased the statistical 

power (351). In addition, two very high current values (hid by the mean) recorded 

in two different cells were noticed. In the event of exclusion of those values 

from the analysis the mean control current was 9.3±4.3 pA/pF, which re-enters 

into the expected range. Those values were not dismissed from the final analysis, 

because they are part of the biological variability and were considered valid 

recordings. Interestingly, Nagy et al. report a [Ca2+]i-dependent augmentation of 

the Ba2+-sensitive current (IK1) in canine and human ventricular myocytes (352), 

which may be the cause of these outstanding current values recorded from two 

different rabbit left atrial myocytes, but this eventuality was not further 

investigated.  

 

Below, typical original traces obtained with WinWCP software are shown, 

demonstrating absence of effect of apamin at all voltages tested and stability of 

the recordings in rabbit  left atrial myocytes (Fig. 5.7). Raw traces for 100, 300 

and 500 nM [Ca2+]i are shown. 
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Figure 5.7 Representative superimposed traces obtained at 3 different 

[Ca2+]i, before and after acute administration of 100 nM apamin, in rabbit 

atrial myocytes.  

Raw traces recorded in rabbit left atrial myocytes with A) 100 nM [Ca2+]i, B) 

300 nM [Ca2+]i and C) 500 nM [Ca2+]i, showing stability of the recordings and 

absence of effect of apamin. D) Represent the protocol already described in 

section 5.4.1 and 5.3.3. C= control, W= wash; the figure shows 15 (5 for each 

condition) superimposed recordings. Figures were created with WinWCP V 5.1.6 

software. 
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Figure 5.8 The effect of apamin (100nM) on both inward (A) and outward (B) 

membrane currents from voltage clamped rabbit left atrial myocytes. 

A) Current densities at -115mV and B) at -65mV were measured before and after 

(120 seconds) the application of 100 nM apamin. The currents were recorded at 

3 different increasing [Ca2+]i as a consequence of pipette solution buffered to 

100, 300 and 500 nM by BAPTA. The free-Ca2+ was previously measured in cells. 

During the experiments a different degree of cell shortening could be observed.

Values represent mean ± s.e.m. Also, one-way ANOVA was employed in the 

analysis. Sample size is noted below X axis. 
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5.4.2.2 Absence of effect of 100 nM apamin in human right atrial myocytes 

The protocol was repeated also in myocytes from human right atrial tissue, 

using only 300nM [Ca2+]i buffered solution, but the currents recorded at -115mV 

(control current -4.4 ± 0.9 vs -4.6 ± 0.9 following 100 nM apamin, mean ±  s.e.m., 

paired data, Fig. 5.10 A) and -65mV (0.49 ± 0.1 vs 0.54 ± 0.1, mean ±  s.e.m., 

paired data, Fig. 5.10 B) before and after the exposure to 100nM apamin were 

similar, indicating that the peptide failed again to block any current at those 

voltages and at the frequency used (0.1Hz).  

Below, typical original traces obtained with WinWCP software are shown, 

demonstrating absence of effect of apamin at all voltages tested and stability of 

the recordings in human right atrial myocytes (Fig. 5.9). Human right atrial cells 

were tested only for 300 and 500 nM [Ca2+]i.  
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Figure 5.9 Representative superimposed traces obtained at 2 different 

[Ca2+]i, before and after acute administration of 100 nM apamin, in human 

atrial myocytes.  

Raw traces recorded in human right atrial myocytes with A) 300 nM [Ca2+]i and 

B) 500 nM [Ca2+]i, showing stability of the recordings and absence of effect of 

apamin. C) Represent the protocol already described in section 5.4.2 and 5.3.3. 

C= control, W= wash; the figure shows 15 (5 for each condition) superimposed 

recordings. Figures were created with WinWCP V 5.1.6 software. 
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 Investigation of effect of ICAGEN on ion currents recorded in single 

human right atrial and rabbit left atrial cells 

Apamin has shown lack of effect, especially in cardiac tissues (171, 353) 

due to uncertain reasons. Dale et al., report that SK channels can be partially 

apamin-sensitive and leave almost half of the SK currents unblocked despite a 

supramaximal concentration (1µM) of the peptide being used in Chinese hamster 

ovary cells. The explanation remains unclear, but may rely on some post 

translational modification of SK channels (340). Also, the existence of an apamin- 

and scyllatoxin-insensitive isoform of the human SK3 channel has been reported 
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Figure 5.10 The effect of apamin (100nM) on both inward (A) and outward 

(B) membrane currents from voltage clamped human right atrial myocytes. 

(A) Current density at -115mV was measured before and after (120 seconds) 

the application of 100 nM apamin. The currents were recorded at elevated 

[Ca2+]i as a consequence of pipette solution buffered to 300 nM by BAPTA. The 

free-Ca2+ was previously measured in cells. During the experiments a different 

degree of cell shortening could be observed. Values represent mean ± s.e.m 

and P<0.05 was considered significant. Sample size is noted below X axis. 

B 
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(354). In light of these findings, and after the presented negative results, it was 

decided to replicate the protocol using a different drug: the putative selective 

blocker ICAGEN (ICA). This small molecule is a SK channel pore blocker acting at 

the apamin binding site (187), but with lower potency (183). However, ICA has 

already been tested both ex-vivo and in vitro. Diness et al. report that AF was 

reversed in 100% of hearts perfused with 1 μM ICA and could not be reinduced, 

while 1 μM apamin had no effect (196). In addition, Skibsbye et al., showed 

prolongation of APD in myocytes from sinus rhythm patients, but not in AF 

myocytes, after inhibition of putative ISK by 1µM ICA (29). Nevertheless, the 

latter one is the only publication that shows positive results in human single cells 

using ICA at different concentrations (1-10 µM). Moreover, unphysiological 

experimental conditions have been used (e.g. 20mM [K+]o), the [Ca2+]i has been 

calculated with a computer program rather than measured and they were not 

able to wash out the drug effect.  

 

Therefore, using the whole-cell configuration of the patch clamp 

technique, the effect of a relatively high concentration of ICA (1 µM) on ion 

current in single cells was investigated and the ICAGEN-sensitive current in 

isolated human right atrial and rabbit left atrial myocytes was measured. 

Following the protocol used for apamin, the free Ca2+ concentration in the 

pipette solution was set to 100, 300 or 500 nM in these experiments with the 

intention of inducing maximal activation of SK channels.  

5.4.3.1 Absence of effect of 1 µM ICA in rabbit left atrial myocytes 

In rabbit left atrial myocytes the results showed no effect of 1 µM ICA at 

any [Ca2+]i used. Specifically, at 100 nM [Ca2+]i acute administration of the 

putative selective SK blocker ICA did not affect either inward (control 

current -7.4 ± 1.3 pA/pF vs -7.3 ±1.3 following 1 µM ICA, mean ±  s.e.m., paired 

data, Fig. 5.12 A) or outward (0.4 ± 0.3 pA/pF vs 0.3 ± 0.4, mean ±  s.e.m., 

paired data, Fig. 5.12 B) currents. The inward peak current at -115mV (-7.7 ± 

2.1 pA/pF vs -8.8 ± 2.2, mean ±  s.e.m., paired data, Fig. 5.12 A) and the outward 

current at -65mV (0.8 ± 0.5 pA/pF vs 0.2 ± 0.7, mean ±  s.e.m., paired data, Fig. 

5.12 B) were also not affected by ICA at [Ca2+]i of 300 nM. The absence of effect 

of ICA was observed also at [Ca2+]i of 500 nM on both inward (-5.5 ± 0.8 pA/pF vs 
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-6.0 ± 0.7, mean ±  s.e.m., paired data, Fig. 5.12 A) and outward (0.3 ± 0.2 vs 

0.4 ± 0.3, mean ±  s.e.m., paired data, Fig. 5.12 B) currents. Finally, figure 5.12 

A shows a significant increase of the inward current at -115mV with 300nM 

[Ca2+]i, after the application of 1µM ICA, which was considered a false positive 

due to rundown of the current (on average) which drifts in the opposite direction 

compared to a potential effect of the drug. The rundown during analysis never 

compromised the detection of any possible drug effect. 

 

In figure 5.11 typical original traces obtained with WinWCP software are 

shown, demonstrating absence of effect of ICA 1 µM at all voltages tested and 

the stability of the recordings in rabbit left atrial myocytes. Raw traces for 100, 

300 and 500 nM [Ca2+]i are shown. 
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Figure 5.11 Representative superimposed traces obtained at 3 different  

[Ca2+]i, before and after acute administration of 1 µM ICA, in rabbit atrial 

myocytes.  

Raw traces recorded in rabbit left atrial myocytes with A) 100 nM [Ca2+]i, B) 300 

nM [Ca2+]i and C) 500 nM [Ca2+]i, showing stability of the recordings and absence 

of effect of ICA. D) Represent the protocol already described in section 5.4.2 

and 5.3.3. C= control, W= wash; the figure shows 15 (5 for each condition) 

superimposed recordings. Figures were created with WinWCP V 5.1.6 software. 
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Figure 5.12 The effect of ICA (1µM) on both inward (A) and outward (B) 

membrane currents from voltage clamped rabbit left atrial myocytes.  

A) Current densities at -115mV and B) at -65mV were measured before and after 

(120 seconds) the application of 1 µM ICA. The currents were recorded at 3 

different increasing [Ca2+]i as a consequence of pipette solution buffered to 100, 

300 and 500 nM by BAPTA. The free-Ca2+ was previously measured in cells. During 

the experiments a different degree of cell shortening could be observed. Value 

represent mean ± s.e.m and P<0.05 was considered significant. Also, one-way 

ANOVA was employed in the analysis. Sample size is plotted below X axis. 
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5.4.3.2 Absence of effect of 1 µM ICA in human right atrial myocytes 

The protocol was replicated in human right atrial myocytes with similar 

results. At [Ca2+]i of 100 nM the currents recorded at -115 (control current -2.8 

± 0.5 pA/pF vs -2.6 ± 0.4 following 1 µM ICA, mean ±  s.e.m., paired data, Fig. 

5.14 A) and -65mV (0.08 ± 0.1 pA/pF vs 0.1 ± 0.05, mean ±  s.e.m., paired data, 

Fig. 5.14 B) remained unchanged before and after the exposure to 1 µM ICA. Also, 

at [Ca2+]i of 300 nM ICA had no effect either on inward (-3.4 ± 0.3 pA/pF vs -3.6 

± 0.3, mean ±  s.e.m., paired data, Fig. 5.14 A) or outward (0.5 ± 0.2 pA/pF vs 

0.6 ± 0.2, mean ±  s.e.m., paired data, Fig. 5.14 B) currents. Finally, at [Ca2+]i 

of 500 nM the acute administration of ICA failed to alter both inward (-2.9 ± 0.4 

pA/pF vs -2.8 ± 0.4, mean ±  s.e.m., paired data, Fig. 5.14 A) and outward (0.2 

± 0.2 pA/pF vs 0.2 ± 0.2, mean ±  s.e.m., paired data, Fig. 5.14 B) currents. 

Thus, even the putative selective SK channel blocker failed to block any current 

at those voltages and at the frequency used (0.1Hz).  

In figure 5.13 typical original traces obtained with WinWCP software are shown, 

demonstrating absence of effect of ICA at all voltages tested and the stability of 

the recordings in human right atrial myocytes. Raw traces at 100, 300 and 500 

nM [Ca2+]i are shown. 
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Figure 5.13 Representative superimposed traces obtained at 2 different 

[Ca2+]i, before and after acute administration of 1 µM ICA, human atrial 

myocytes.  

Raw traces recorded in human right atrial myocytes with A) 300 nM [Ca2+]i 

and B) 500 nM [Ca2+]i, showing stability of the recordings and absence of 

effect of ICA. C) Represent the protocol already described in section 5.4.2 

and 5.3.3. C= control, W= wash; the figure shows 15 (5 for each condition) 

superimposed recordings. Figures were created with WinWCP V 5.1.6 

software. 
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Figure 5.14 The effect of ICA (1µM) on both inward (A) and outward (B) 

membrane currents from voltage clamped human right atrial myocytes.  

A) Current densities at -115mV and B) at -65mV were measured before and after 

(120 seconds) the application of 1 µM CA. The currents were recorded at 3 

different increasing [Ca2+]i as a consequence of pipette solution buffered to 100, 

300 and 500 nM by BAPTA. The free-Ca2+ was previously measured in cells. During 

the experiments a different degree of cell shortening could be observed. Value 

represent mean ± s.e.m and P<0.05 was considered significant. Sample size is 

plotted below X axis. 
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 Some “hidden” results 

Although neither apamin nor ICA significantly affected mean inward or 

outward current at any [Ca2+]i in either species, I noticed a slight reduction of 

the current at -115mV in a few cells (as specified below) after the application of 

100nM apamin at 300nM [Ca2+]i. The requirement for a positive control was 

previously expressed in this thesis since ISK was expected to be difficult to detect 

due to its low density. Temporal stability, timing, and reversibility of K+ current 

(IK1) block by Ba2+ were tested. Thus, considering that ISK might occur in only a 

small proportion of myocytes, potentially masked by cell averaging, data were 

checked for any individual cell ISK-blocker effects. This event, named from now 

on as candidate drug effect (CDE), is defined as any current reduction at -115mV 

or -65mV compatible with the positive control onset profile, including reversal 

upon washout of intervention. Below, are shown representative superimposed 

raw traces captured by the WinWCP (version 5.3.4) software, which display the 

possible effect of 100nM apamin on the inward portion of the current at 300nM 

[Ca2+]i (Fig. 5.15 B) and the total absence of effect after application of apamin 

at 100nM [Ca2+]i (Fig. 5.15 A). In figure 5.15 A each condition (control, drug or 

wash) is represented by 29 (290s) overlapped traces which show total absence of 

effect at 100nM [Ca2+]i, whereas figure 5.15 B shows 5 superimposed traces (50s 

of recording), for each condition, which are compatible with the temporal 

stability and onset profile of the positive control. The reduction observable in 

figure 5.15 B was obtained ~90s after the application of 100nM apamin and was 

stable in time. Besides, the reduction had a characteristic slope, as already 

observed in the previous experiments with Ba2+ on IK1, which was stable but not 

reversible (washable). Therefore, considering the stability over time of an 

absence of effect, and the compatibility with the positive control profile of those 

current reductions, those events, albeit rare, were classified as true drug 

effects, and this required a systematic scrutiny of each cell. Out of 84 cells from 

either species or drug, 5 CDEs occurred which required further investigation. The 

CDEs were observed only in rabbit left atrial cells, at [Ca2+]i of 300 or 500nM and 

not 100nM, but only with 100nM apamin. It must be mentioned that, therefore, 

no CDEs were observed in human right atrial cells with either drug, nor with 

apamin in either species. 
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Figure 5.16 shows current density of single rabbit left atrial cells at each 

[Ca2+]i. The cells were classified individually by any intervention occurring. The 

voltage ramp protocol shown in figure 5.15 was used and ISK was estimated from 

the difference in current as a result of the addition of apamin (100 nM). This 

difference was measured at -115 mV. Specifically, the current values were 

investigated in single left atrial cells from rabbits undergoing sham ischemia 

procedure or stock animals. In addition, a sub-classification was made for usage 

of either bovine serum albumin (BSA at 0.01%) to avoid apamin adherence during 

single cell perfusion or 2,3 butanedione monoxime (BDM) during cardiomyocytes 

isolation procedure (30mM), which is an effective, quick-acting, and reversible 

100 nM [Ca
2+

]
i
 300 nM [Ca

2+
]

i
 A B 

Wash (5 traces) 

Wash (5 traces) 

500pA 

500pA 

100ms 

500 pA 

50mV 
1000ms 

Figure 5.15 Raw current traces from single rabbit left atrial cells:  

A) shows an absence of effect of the drug, represented by the maintenance of 

the “steady-state” through every condition (control, 100nM apamin and wash) 

at 100nM (diastolic) [Ca2+]i B) shows  traces from 2 different cells extrapolated 

from a subset (6/15) of cells where it can be appreciated the effect of apamin 

on the current at -115mV during 300nM (systolic) [Ca2+]i. Traces were generated 

by WinWCP 5.3.4 software. 
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inhibitor of cardiac contractility (355-357) and it can protect myocardium from 

hypoxia and from the calcium paradox (358). Initially the scrutiny was driven by 

the identification of 2 cells (18.01.10 a, b) from the same tissue (with BMD used 

during isolation), which were characterized by high current. However, the use 

of BDM was not considered the reason behind the CDEs observed from the same 

tissue. Also, in regard to the subsidiary aim, few left atrial cells obtained from 

MI rabbits (n=4 cells n=1 rabbit) were examined after administration of 100 nM 

apamin (MI rabbits were not used for ICA experiments) (Fig.5.17), but no clear 

effect was observed in this preliminary study and, therefore, no further 

investigations were performed. Among the various conditions tested no 

significant pattern attributable to the occurrence of these CDEs was observed. 

In summary, only 6% of cells were classified as CDEs with an average current 

density values of 1.2 ± 0.3 pA/pF.  
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Figure 5.16 Comparison of apamin-sensitive current among different [Ca2+]i: 

scrutiny of single rabbit left atrial cells.  

The scatter plot with bars displaying ISK density for each single cell. The legend 

above the graph describes all the condition under which the cells were 

classified. Bovine serum albumin (BSA), 2,3 butanedione monoxime (BDM), 

candidate apamin effect (CAE). For the identification, each single cell is 

reported as year.month.day.alphabet letter. Values are mean ± s.e.m. 
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BDM+MI (3 cells:18.11.22b,c,d)
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at -115 mV
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(n=4 cells, n=1 rabbits)

Figure 5.17 Apamin-sensitive current recorded at 300 nM [Ca2+]i: scrutiny of 

single left atrial cells from rabbit underwent myocardial infarction (MI). 
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Two potent and highly selective ISK blockers, acting with similar 

mechanism on the SK channels, have been demonstrated to be ineffective even 

at typically-reported mean global systolic [Ca2+]i levels (i.e. 500 nM), in contrast 

with many published studies (27-30), but not all (203, 340). Therefore, the 

apparent discrepancies between the findings herein reported and those previous 

publications (27-30) require scrutiny and discussion, as follows. 

 Inter-study differences of ISK with respect to heart chamber, cell type, 

recording solutions, and other experimental conditions. 

Apamin was firstly chosen due to its proven selectivity for SK channels and 

the substantial number of studies showing its potency on these channels. 

However, given the aforementioned limitation of the toxin in cardiac tissue, in 

addition to its possible adhesiveness to the perfusion tubes, which could have 

resulted in a lower concentration present in the cell bath, it was decided to use 

it in addition to a second SK blocker, ICAGEN. This blocker, being a small neutral 

molecule that acts at the channel’s outer pore, with equal potency on all 

subtypes, could represent a more reliable tool for addressing whole-cell studies, 

although it blocks SK channels less potently than apamin. Moreover, a recent 

study showed apamin had high-affinity for voltage dependent Kv1.3 (IC50 =13 nM) 

channels which are frequently coexpressed with SK channels (359), thus 

questioning the specificity of this peptide. Therefore, the comparison between 

the effect of a well-known neurotoxin and a new SK blocker in voltage-clamp 

experiments was considered the optimal condition to obtain solid results and 

avoid possible misleading interpretation.  

 

Nevertheless, part of the explanation for the unexpected results could 

rely on variations in K+ currents and calcium handling, attributable to 

interspecies differences in mammalian cardiomyocytes. In fact, previous studies 

show effect of either apamin or ICA in different tissues or cell type (e.g. HEK293 

cells, Xenopus oocytes) (29, 197, 210), but to my knowledge only another 

preliminary study (abstract) from our laboratory, described APD prolongation by 

1µM ICA in both rabbit whole heart and single left atrial cells (360). This limits 

the possibility to compare with the literature the effect of ICA. On the other 
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hand, the measurements were also performed in human atrial myocytes, where 

SK channels have been widely demonstrated to be functionally present and 

successfully blocked by either apamin or ICA (27, 29, 30). In addition, there are 

discrepancies regarding the apamin-sensitive current amplitude recorded among 

these studies. Xu et al., reported an IKAS density of ~2 pA/pF (at -115mV) in mice 

atrial myocytes with just 50pM apamin and a calculated [Ca2+]i of 500nM (27). 

Conversely, Nagy et al. showed absence of effect with 100nM apamin and 900nM 

[Ca2+]i (calculated) in rat atrial myocytes (203), which share very similar action 

potential morphology and calcium handling with mice (361). Moreover, Fan et 

al., found IKAS to be ~3 pA/pF in atrial myocytes from patients with sinus rhythm 

with 500nM [Ca2+]i. While they report measurements by epifluorescence of [Ca2+]i 

for diastolic levels in both sinus rhythm and AF patients, the 500nM [Ca2+]i used 

during current recordings appears to be obtained with addition of a calculated  

amount of CaCl2 in the pipette solution; which contrasts with the conditions used 

in the present study. By this means, they used a calculation program to estimate 

the final [Ca2+]i inside the patch pipette. This would result in approximation of 

the real [Ca2+]i present inside the cells. Besides, they report the use of EGTA (5 

mM) which, as discussed in chapter 3, represents a much slower buffer compared 

to BAPTA (used in my experiments) and this will not ensure a precise intracellular 

calcium concentration in cells. Therefore, given the lack of precision of [Ca2+]i 

levels used and the discrepancies observed among the previous studies, it is 

difficult to explain with any certainty the lack of significant effect, by either 

apamin or ICA, in the presented voltage-clamp experiments. Although it should 

be acknowledged that I found a small effect of apamin in a very small sub-set of 

rabbit atrial cells, the overall finding is a general absence of detectable ISK in 

rabbit or human atrial myocytes.  

 Role of [Ca2+]i on SK blockers effect 

Given the wide range of [Ca2+]i used in previous studies (300-900nM) (27, 

29, 203), not measured but rather calculated by programs, the present 

experiments were designed to better study the role of Ca2+ on the effect of 

apamin or ICA. The fluorometric measurements (chapter 4) confirmed that the 

highest [Ca2+]i levels reached values up to 1 µM globally. Therefore, since 

submicromolar (0.3-0.5 µM) concentrations of this divalent cation have been 

demonstrated to be enough to activate SK channels (165, 168, 175, 318, 326, 
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327), the results achieved during the experiments described here were not 

expected. In fact, no difference in the effect of either apamin or ICA was seen 

as a function of [Ca2+]i levels. However, in contrast to previous findings (203), it 

can be ruled out that [Ca2+]i levels were not sufficiently high to activate SK 

channels, due to the previous measurements in cells.  

 Perforated versus ruptured patch clamp configuration 

The possible big impact, on the activation of ISK, of different patch-clamp 

configurations was also taken into consideration. In fact, Xu et al, used 

perforated patch clamp in isolated murine myocytes, while the present study 

used ruptured patch-clamp, which is probably not the best option to investigate 

minor current changes on account of some drawbacks. In fact, processes that 

depend on soluble intracellular biochemicals rapidly run down after the rupture 

and this can lead to disruption of endogenous cellular Ca2+ buffering mechanisms 

(362). However, Xu et al., showed an effect of a very low concentration of 

apamin (50pM) even with whole-cell (ruptured) patch clamp configuration, with 

a calculated [Ca2+]i of 500nM. In contrast, Nagy et al. performed the experiments 

with both techniques but no effect of 100nM apamin was seen, even where [Ca2+]i 

was highly elevated (supposed 900nM). Thus, it seems that the use of different 

patch clamp configurations does not compromise the investigation of ISK. 

 

The use of the buffer BAPTA allowed to reach [Ca2+]i that mimic the 

normal systolic levels. This [Ca2+]i was expected to elicit SK channels and allow 

the detection of ISK. However, the use of BAPTA could be limited by its capacity 

of disrupting the coupling between SK channels and L-type calcium channels, 

which has been reported to cause the loss of SK channel activity in pyramidal 

neurons (172). This, was confirmed by a more recent study in the same cell type, 

where the use of 10 mM BAPTA occluded the effect of 100nM apamin (363). 

Nevertheless, this mechanism has never been showed in cardiomyocytes. In 

addition, the scope of the present study was not to fully clamp the intracellular 

calcium but to use this mobile buffer to maintain a global systolic [Ca2+]i which, 

therefore, allowed 300 to 500 nM intracellular free-calcium concentration. 
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The “chunk” method used for cell isolation in human could, in theory, 

disrupt ion currents. In support, in dog atrial cells, the “chunk" method reduced 

significantly the size of the delayed rectifier K+ current (IK) and the percentage 

of cells in which this current was detected in canine atria compared to the 

perfusion method (364). However, no differences of either apamin (100nM) or 

ICA (1µM) effect on current morphology were observed between human and 

rabbit (cell isolated by perfusion method), thus excluding a possible implication 

of different isolation method on the absence of effect of the drug. 

 

To summarize, the data herein reported challenge previous findings about 

the pharmacology and physiological [Ca2+]i-sensitivity of ISK, and potential 

reasons behind the apparent discrepancies have been discussed. However, the 

possibility that these channels might activate under special pathophysiological 

circumstances (such as conditions of ischemia or atrial fibrillation), which were 

not addressed in this study, cannot be excluded. Furthermore, the low 

stimulation frequency used in this study, which had been adopted following the 

protocol described in Chapter 2 and the highly buffered [Ca2+]i with BAPTA, 

although it reaches very high values (close to systolic), might not allow some 

activation kinetics of SK channels. Some of these questions will be addressed in 

the next chapter. 

 

Also, more recently, evidence supporting the existence of two distinct 

populations of SK channels in both human and mouse atria have been presented. 

One of these populations consists of homomeric SK2 channels and present 

sensitivity to apamin, while a second heteromeric SK2-SK3 channel population is 

apamin-insensitive and it is considered the only one activated during the falling 

phase of the action potential (AP) (365, 366). Nevertheless, while on APs apamin 

showed little or no effect, during voltage-clamp experiments it has been shown 

to reduce outward current in myocytes from both human (365), in contrast with 

the present results, and mouse (366) atrial tissue,  

 

However, It is important to emphasise that, of the numerous published 

reports of cardiac ISK being detectable in normal tissue (27-30, 365, 366), none 

of them employed physiological conditions (considering solution composition and 
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temperature) in atrial cells. Therefore, the consensus, based on the present 

whole-cell-currents data along with the most relevant available data already 

published (30, 365), is that it is presently debatable whether, and to what 

degree, ISK may flow under physiological conditions in atrial myocytes, and 

further studies are warranted to clarify the debate. Nevertheless, according to 

the findings described in this chapter, it must be concluded that ISK is either non-

existent or rare, in rabbit and human atrial cardiomyocytes, at [Ca2+]i typical of 

global diastolic-to-systolic values.  
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Chapter 6 Does the small conductance Ca2+-activated K+ current 

(ISK) flow during atrial action potential repolarisation under 

physiological conditions? 

 

 SK channels involvement in atrial action potential late-phase 

repolarization and AF  

Action potential duration (APD) is determined by the fine equilibrium 

between inward and outward currents. The alteration of this balance, which may 

be compromised in several cardiac disorders, may cause shortening or 

prolongation of the action potential. In particular, the atrial cardiac electrical 

and mechanical remodelling that occurs in response to a variety of diseases can 

predispose to AF, which is characterised by a rapid and irregular atrial rate that 

causes an adaptation of the atrial electrical activity and promotes AF in turn. 

This process is known as “AF-induced atrial electrophysiological remodelling” 

(77, 80, 367) caused by shortened effective refractory period (ERP), slowed 

conduction velocity or both, which reduce the wavelength (λ) duration and can 

cause re-entry. Specifically, the tenfold (400-600 min-1) increase in atrial rate 

during AF provoke a considerable [Ca2+]i rise through ICa (84) which has been 

shown to be indirectly (e.g. through atrial contractile disfunction) involved with 

both short (92, 100) and long-term atrial tachycardia (89). On the other hand, 

this increase in [Ca2+]i could be crucial for the activation of the SK channels, 

which may represent a direct link between calcium and atrial late phase 

repolarization. The first evidence that SK channels may be directly linked to AF 

was presented by Ellinor, et al. in 2010 in a study of common generic variants of 

KCNN3 which was found to be associated with lone AF (206) and confirmed later 

by other studies (207, 208). Also, additional evidence of the involvement of SK 

channels in atrial myocyte repolarization, was provided by Xu, et al., showing 

the presence of an apamin-sensitive current involved in the late phase of the 

action potential repolarization (APD90), which directly correlates with ERP 

duration, functionally expressed at higher level in human and mouse atrial 

cardiac myocytes compared to ventricle and that was significantly increased at 
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1µM [Ca2+]i (27). These findings were confirmed by the same group, showing the 

presence of all three SK channel isoforms in mouse and rat hearts and the 

important role played by the SK2 isoform in human atria (28). Also, later Li et 

al. in 2009 published more direct evidence for a role of ISK in AF, showing that 

atrial myocytes isolated from mice lacking KCa2.2/SK2 upon genetic knockout had 

prolonged atrial APD (200). In addition, SK channels have been shown to be 

functionally coupled to central molecules dominating the intracellular Ca2+ 

signalling, like L-type Ca2+ channels (LTCCs) in neurons (172) and in rabbit 

myocytes (368) and a downregulation of LTCCs has been associated to a 

decreased expression of SK2 channel subtype (174). Therefore, since these 

channels have been shown to be voltage-insensitive and activated solely by 

internal calcium ions, in chapter 5 the interaction between SK current and 

[Ca2+]i, near to systolic values (0.3-0.5 µM), was investigated using a voltage 

pulse (ramp) protocol at low stimulation frequency, and I expected to obtain an 

effect with either apamin (100 nM) or ICA (1 µM), both highly selective SK 

blockers (27, 168, 183, 201, 369). However, these molecules equally failed to 

alter either the inward or the outward current. Among the various hypotheses 

for these negative results, it was considered the possibility that the calcium 

signalling necessary to activate these channels could be disrupted by the use of 

the calcium buffer BAPTA (172, 363). Therefore, in this chapter the objective 

was achieve by testing the putative selective SK blocker ICAGEN (ICA) on action 

potentials. This extends the experiments with ICA on ramp-evoked currents 

(chapter 5), since [Ca2+]i may be expected to be raised physiologically to higher 

levels during the AP, albeit transiently, compared to clamped free-Ca2+ used in 

voltage clamp experiments, and possibly activate ISK. 

 Rationale to use increasing concentration of ICAGEN 

ICA, as mentioned earlier in this thesis, is one of the new class N-(4-

methyl-pyridin-2-yl) derivates, which display excellent potency as KCa2 channels 

blockers (183). This compound presents no significant selectivity among SK 

subtypes, inhibiting all with equal effectiveness. Given the demonstrated 

absence of effect of ICA at 1 µM in the previous voltage-clamp experiments 

(Chapter 5), a higher concentration (10 µM) of this compound was also tested in 

the following studies. Albeit limitations exist with 10 µM ICA, due to possible 

unspecific block of other currents (29, 197), this concentration was chosen with 
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the purpose of looking for acute responses to the compound that could be 

detectable, under physiological conditions and using the identical setup used for 

previous patch-clamp experiments.  In fact, by using a 10-fold higher 

concentration, which is still lower than the lowest IC50 reported (ITO, IC50=21µM) 

(29) for other cardiac relevant ion currents, I aimed to confirm that the drug was 

active, and it was reaching the cell in the bath while remaining selective for the 

SK channel target. By this means, the aim was to support previous findings, which 

demonstrate absence of effect of the SK blocker ICA at a selective concentration 

of 1 µM.  

 

Therefore, considering the disputed role of SK channels in atrial 

repolarization and the unclear reason behind these different findings, the aims 

were as follows:  

 Firstly, create a positive control by testing temporal stability, timing, and 

reversibility of the already demonstrated effect of 2 mM 4-aminopyridine (4-AP) 

on transient outward K+ current (ITO1) (79) in rabbit atrial myocytes in order to 

validate my current clamp recordings  

 Investigate the effect of the putative selective SK blocker ICA at 1 or 10 

µM on APD30, APD70 and APD90 in current clamped single rabbit left atrial (LA) 

and human right atrial (RA) myocytes at 1 Hz, with short period of stimulation at 

3 Hz in order to possibly activate ISK 

 Study the possible contribution of SK current to the frequency-dependent 

adaptation of APD governed by changes in [Ca2+]i as a consequence of increased 

stimulation rate (2-3Hz) in single human right atrial myocytes 
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 Current Clamp: action potential recordings  

The traditional method for recording the cell interior potential is the 

current-clamp technique, known also as “Bridge” recording. This technique is 

more challenging than voltage clamping and allows to recreate the response of 

a myocyte to electrical stimulation or depolarisation in vivo, thus, the generation 

of action potentials. It works under bridge mode and allows to perform current-

clamp experiment, where a known constant or time-varying current is applied 

and the change in membrane potential caused by the applied current is 

measured. This type of experiment mimics the myocytes membrane voltage 

response to a current input, which causes a depolarization in vivo and eventually 

provokes the firing of an action potential. After the isolation, the myocytes 

experienced a period of rest after which they were found to be markedly 

depolarized, therefore, a small holding current was used to clamp cells to a 

diastolic potential of -80 mV. Only those cells which required a holding current 

(cells where Vm was markedly depolarized) of <0.15 nA immediately after 

establishing the whole cell configuration were used, which was a standard limit 

adopted and once set, the negative current was kept fixed during the full 

recording. The software programme utilised, WinWCP (J. Dempster, Strathclyde 

University) on a microcomputer (Gateway microcomputers with Pentium III 

microprocessor) permitted simultaneous stimulation and recording. Current and 

voltage data were low passed filtered at 5 kHz and digitised at a rate of 10 kHz 

(Digidata 1200 A-D converter, Axon instruments) prior to storage on compact 

discs and sampling interval was 0.02 ms. 

 Cell isolation methods and solutions 

Atrial myocytes from stock rabbits or sinus rhythm patients’ tissues were 

isolated and superfused with solutions as previously described (See Methods 

2.3.1-2.4.1). Experiments were performed using ruptured whole-cell patch 

clamp (See Methods section 2.6-2.8) in current-clamp mode whereby a constant 

or pre-specified time-varying current is applied to the myocyte and the resultant 

change in membrane potential, the action potential, is recorded. The same 
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external and internal solutions described in method section 2.4.1 were used. All 

experiments were performed at 35-37°C.  

 Protocols 

6.3.3.1 Current pulse used in the investigation of the effect of 4-AP  

A cycle length of 1s with a single current stimulus per cycle was used for 

the experiments to test the effect of 4-AP on APD. At the start of each cycle, 

with 50 ms delay, a 3 ms current pulse of 1.8 nA was adopted as standard 

threshold to stimulate the firing of an action potential. If this amperage was not 

sufficient, the stimulus threshold was increased repetitively by 100-500 pA 

increments (depending on the cell response to the stimulus) until a regenerative 

action potential was stimulated (Fig. 6.2). Once an action potential firing 

occurred, the amplitude of the current pulse was maintained constant 

throughout the experiment in that cell. The APD was calculated as the interval 

between the action potential upstroke and repolarisation to the level of 30% 

(APD30), 50% (APD50), 70% (APD70) and 90% (APD90) of the upstroke amplitude (see 

figure 6.1) using the software program WinWCP (J. Dempster, Strathclyde 

University). The effect of 2 mM 4-AP on the RMP or the maximum diastolic 

potential (MDP) as well as on the upstroke velocity (dV/dtmax) was also examined. 

Examples of measurements made on action potentials to calculate plateau phase 

characteristics and repolarisation are shown in figure 6.1 
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Figure 6.2 Raw traces representing the firing of 3 action potentials (below) 

succeeding the current pulse stimulus (above) under control conditions in 

rabbit left atrial myocytes.  

A slightly less negative current was applied on this occasion to bring the MDP 

from -90mV (1) to -79 mV (2). Once the threshold (3) was reached an action 

potential firing occurred. The arrow shows the direction of the time course of 

4 failed initiations and 3 consecutive action potentials. The dotted line indicates 

the end of the current pulse. The image was created using the WinWCP 

software. 
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Figure 6.1 Representation of measurements in raw human atrial isolated 

myocyte action potential trace.  

a= amplitude, b= RMP, c= overshoot (0% repolarization), d= APD30, e= APD50,  

f= APD70, g= APD90. 
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6.3.3.2 Current pulse used in the investigation of the effect of ICAGEN (ICA) 

Trains of action potentials were obtained by stimulation at 1 and 3 Hz 

during the same protocol in rabbit left atrial and human right atrial myocytes 

(Fig. 6.3). This protocol was characterized by two trains of APs at 1 Hz followed 

by 2 trains at 3 Hz, then 15 trains of APs at 1 Hz followed by 3 trains at 3 Hz, 

after which all the sequences of trains were repeated (Fig. 6.4). In addition, 

human right atrial myocytes were stimulated at 2 or 3 Hz with different current 

clamp protocols (Fig. 6.5). An identical current stimulus described above for the 

measurements with 4-AP and an identical increment method for the stimulus was 

adopted. However, at 2Hz and 3Hz trains of 18 (at 2Hz) and 27 (at 3Hz) stimuli 

were delivered at basic cycle length (S1-S1) of 500ms or 333ms, respectively. 

Figures 6.3 and 6.4 show 3 superimposed trains of action potentials (under 

control condition) recorded in the middle of the train at 1Hz (after the 3rd AP), 

at 2Hz (after the 6th AP) and at 3Hz (after the 9th AP) for both human and rabbit. 

Also, no mark change in action potential shape over the duration of the 

experiments was observed. The entire train of stimulated action potentials was 

monitored using the software program (WinWCP). The APD was calculated as the 

interval between the action potential upstroke and repolarisation to the level of 

70% (APD70) and 90% (APD90) of the upstroke amplitude. APD70 and APD90 were 

analysed to investigate the effect of ICA (1 or 10µM) on the AP plateau (relevant 

to non-reentry) and on the ERP (relevant to reentry), respectively. In addition, 

in order to further investigate the effect of ICAGEN on the phase 2 of the action 

potential, the repolarization to the level of 30% (APD30) was analysed. During this 

phase triggered ICa, with peak in few milliseconds, and consequent increase in 

[Ca2+]i, could activate ISK. 

The possible effect of ICA on RMP or MDP as well as on the upstroke velocity 

(dV/dtmax) was also examined. Action potential protocols were performed under 

control conditions and following acute administration of 4-AP (2 mM) or ICA (1µM 

or 10µM) as soon as a stable series (20 singles or 2 trains) of action potentials 

occurred. Succeeding exposure to 4-AP for 90s was based on the time required 

to reach peak effect on ITO1 (~30s, Fig. 6.8) and ICA for 180-200s was based on 

previous data regarding drug peak effect on ISK (29), assuming stable action 

potential recordings were observed. Then the control solution was re-



162 

 

administrated to the superfusate in order to observe possible wash (reversibility) 

effect (Fig. 6.6).  
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Figure 6.3 Three superimposed trains of action potentials from a rabbit left 

atrial (above) and a human right atrial (below) myocyte at stimulation 

frequency of (A) 1 Hz and (B) 3 Hz.  

A) 9 superimposed action potentials and B) 24 superimposed action potentials 

are shown as an example. 
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Figure 6.4 Schematic representation of the protocol used in human and rabbit 

atrial myocytes to stimulate action potential during acute superfusion with

ICA (1-10 µM). 
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Figure 6.5 Representative superimposed trains of action potentials from

human right atrial myocytes at stimulation frequency of (A) 2 Hz and  

(B) 3 Hz. 

 A) 12 superimposed action potentials and B) 18 superimposed action 

potentials are shown as an example. 
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 Statistics & data analysis  

Raw data pertaining to individual myocyte action potential traces were 

analysed by WinWCP waveform analysis tool. Raw data were then transferred to  

Excel Microsoft Word program and then used to generate graphs and statistics on 

GraphPad Prism. Data relating to APD, RMP, MDP and Vmax were expressed as 

mean ± standard error of the mean ( s.e.m.) with number of cells studied and 

number of patients or rabbits from whom these cells were obtained. When 

superfusing cells with drugs, multiple action potentials were analysed (average 

of 3 APs) during control (once stability of the recording was achieved), 90s after 

drug addition, and again at 90s intervals after drug removal until the reversal of 

any drug effect was confirmed. The action potential characteristics of the entire 

dataset followed a normal distribution and therefore parametric statistic 

(Student t-test, one-way ANOVA) was employed to determine the degree of 
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Figure 6.6 Schematic representation of the order and timing of 

recordings of human and rabbit atrial isolated myocyte action potentials 

during acute superfusion with A) ICA (1 µM or 10 µM) or B) 4-AP (2 mM). 

A 

B 



166 

 

difference between samples under control conditions and drugs. Statistical 

significance was predetermined at a level of P < 0.05. Figure 6.7 shows the 

results of a normality test performed on APD90 values obtained from human right 

atrial myocytes APs analysis. The two graphs confirms the normality of the APD90 

data. In addition, several normality tests were performed, and showed 

consistency with a Gaussian distribution (i.e. P-value > 0.05), however 

D’Agostino & Pearson test was conventionally used.  
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Figure 6.7 Results of normality test for APD90 values obtained under control 

conditions from human right atrial APs analysis.  

A) Gaussian non-linear fit of the frequency distribution of APD90 values. B) 

Quantile-quantile (QQ) plot of APD90 values. The linearity of the points suggest 

normal distribution. P-value results from normality testing (D’Agostino & 

Pearson normality test) on populations of APD90 measurements; S.D.= standard 

deviation, IQR = interquartile range; n=9 cells, n=4 patients; P-values >0.05 

were considered consistent with a Gaussian distribution. 

Median = 163 
Mean = 184 
S.D. = 96 
IQR= 160 
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 Action potentials morphology in human and rabbit atrial myocytes 

A triangular action potential morphology (low-or no-dome) with prominent 

phase 1 in control, was the most frequently observed in recordings from 

myocytes from human right atrial appendage (Fig. 6.8 A). Whereas, under control 

condition APs from rabbit left atrial myocytes presented, typically, a pronounced 

phase 1 repolarization and low amplitude plateau (Fig. 6.8 B). In addition, most 

human atrial cells required a small (0.27 ± 0.04 pA/pF, n= 9) constant 

hyperpolarising current to gain ∼−80 mV resting Vm, as previously (79) stated 

and contrary to the majority of rabbit atrial cells.  
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Figure 6.8 Representative (A) human right atrial and (B) rabbit 

left atrial isolated myocyte action potential recordings made 

under control conditions. 
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 Effect of 2 mM 4-AP alone on rabbit atrial isolated myocytes action 

potentials: the positive control 

The effect of acute administration of 2 mM 4-AP was tested on action 

potentials from rabbit left atrial myocytes at a cycle length of 1 second. 4-AP 

significantly suppressed phase 1 of the action potential and substantially 

prolonged subsequent repolarisation as illustrated in figures 6.9-6.11. All drug 

responses were rapid (≤30 s), stable in all cells and reversable in 5 of 6 cells 

studied. Specifically, the mean APD30 under control conditions was 3.6 ± 0.3 ms, 

whereas acute superfusion with 2 mM 4-AP increased the duration by 72% to 6.2 

± 0.6 ms (n= 6 cells, n=2 rabbits, mean ±  s.e.m., paired data, p< 0.05, Fig. 6.9). 

The typical time course of the effect of 4-AP on APD30 is represented in figure 

6.10. Also, 4-AP prolonged APD50 and APD70 by 73% (control APD50 6.6 ± 0.7 ms vs 

11.4 ± 1.3 ms following 2 mM 4-AP n= 6 cells, n=2 rabbits, mean ±  s.e.m., paired 

data, p< 0.05, Fig. 6.11) and by 31% (16 ± 3.0 ms vs 21± 3.6 ms , n= 6 cells, n=2 

rabbits, mean ±  s.e.m., paired data, p< 0.05, Fig. 6.11), respectively. APD90 was 

not significantly affected (44 ± 8.5 ms vs 54 ± 13 ms, n= 6 cells, n=2 rabbits, 

mean ±  s.e.m., paired data, Fig. 6.11). The mean natural MDP (before 

application of hyperpolarizing current) was -56 ± 6.5 mV (n= 6 cells, n=2 rabbits, 

mean ±  s.e.m., Fig. 6.12). Interestingly, the administration of 2 mM 4-AP 

provoked a significant increase in action potential amplitude (albeit moderate, 

5.4%) while the MDP (after hyperpolarizing current, control MDP -79 ± 0.4 mV vs 

-79 ± 0.5 mV following 2 mM 4-AP, n= 6 cells, n=2 rabbits, mean ±  s.e.m., paired 

data), and the maximal rate of depolarization (Vmax)(Control Vmax 0.41 ± 0.04 

V/s vs 0.39 ± 0.02 V/s following 2 mM 4-AP, n= 6 cells, n=2 rabbits, mean ±  

s.e.m., paired data) were not affected (Fig. 6.12). The mean action potential 

amplitude under control condition was 115.7 ± 3.8 mV compared to 122 ± 5.7 mV 

during superfusion with 2 mM 4-AP (n= 6 cells, n=2 rabbits, mean ±  s.e.m., paired 

data, p< 0.05, Fig. 6.12).  
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Figure 6.9 Representative raw traces showing the effect of acute superfusion 

with 2 mM 4-AP on a rabbit left atrial isolated myocyte action potential 

waveform. 

Figure 6.10 Representative time-course of the effect of 4-AP on APD30 

recorded in a rabbit left atrial myocyte: the positive control.  

Each single point represents APD30 data analysed every second of recording. 

Cell died around 250s which prevented the administration of control solution 

to test reversibility of effect. Note that the typical delay (~ 30s) between 

drug flow starting and drug effect onset is due to low flow (necessary to avoid 

cells washing away) and bath exchange time, consequent to the bath diamond 

shape (section 2.7.11, chapter 2) and the small “dead space” in the perfusion 

line. 

~30s 

  

  

Time (s) 

4-AP 
effect onset 4-AP 

starting to 
flow 



170 

 

 

0

20

40

60

80

ns

APD90
(ms) 

Figure 6.11 Effect of acute superfusion with 2 mM 4-AP on action 

potential repolarisation characteristics of rabbit left atrial isolated 

myocytes.  

   = control     = 2 mM 4 Aminopyridine  (n= 6 cells, n=2 rabbits, paired 

data). Values are mean±  s.e.m., values of p< 0.05 (*) were considered 

statistically significant. 
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Figure 6.12 Effect of acute superfusion with 2 mM 4-AP on resting 

membrane potential and phase 1 and 0 action potential characteristics 

of rabbit left atrial isolated myocytes.  

   = control     = 2 mM 4-AP (n= 6 cells, n= 2 rabbits, paired data). Values 

are mean ±  s.e.m., values of p< 0.05 (*)  were considered statistically 

significant. ** Mean natural RMP, i.e. before application of the 

hyperpolarizing current. 

**
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 Rabbit atrial APs: lack of effect of 1 µM ICA on action potential 

characteristics  

In rabbit left atrial myocytes APs the acute administration of ICA 1µM 

failed to alter the APD at any percentage of repolarization at stimulation 

frequency of 1 or 3 Hz. There were no significant differences in APD30 (Control 

APD30 3.7±0.6 ms vs 3.4±0.7 ms following 1µM ICA, n=10 cells, n=4 rabbits, mean 

±  s.e.m., paired data, Fig. 6.14), APD70 (32±8 ms vs 27±9 ms, mean ±  s.e.m., 

paired data, Fig. 6.14) or APD90 (87±11 ms vs 82±14 ms, mean ±  s.e.m., paired 

data, Fig. 6.14). Below, typical original action potentials obtained with WinWCP 

software are shown for control, 1 µM ICA and wash in rabbit  left atrial myocytes 

(Fig. 6.13).  
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Figure 6.13 Representative action potential traces 

recorded from rabbit left atrial myocytes showing the 

absence of effect of 1 µM ICA.  

Superimposed action potential waveforms recorded during 

control (C), 1µM ICA and Wash (W) 
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ICa run-down during action potential recordings can cause a shortening of 

the APD by reducing the plateau phase within 5 minutes (370). Therefore, since 

this mechanism could mask a possible ICA-sensitive component, APDs were 

tested against time matched control (TMC) run-down. Figure 6.15 shows two 

representative time-course of APD90 recorded in two different single myocytes 

Figure 6.14 Lack of effect of acute superfusion with 1 µM ICA on action 

potential repolarisation characteristics of rabbit left atrial isolated 

myocytes. 

      = control     = 1 µM ICA (n= 10 cells, n=4 rabbits, paired data). Values are 

mean±  s.e.m. 
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from rabbit left atrium. In figure 6.15A APD90 was measured every 2s seconds 

and every second for 1Hz and 3Hz, respectively, and plotted against time. The 

data plotted in the graph shown in figure 6.15A show the time-course of the 

APD90 during control conditions. This permits the visualization of the run-down, 

mentioned above, of ICa and the effect exerted on the action potential duration 

over the course of the experiment. Whereas, the data plotted in the graph shown 

in figure 6.15B result from the analysis of each action potential recorded over 

the course of that experiment. The representative time-course of APD90 (Fig. 

6.15B) shows the absence of effect 1µM ICA. 
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Figure 6.15 Representative APD90 time-courses of APs recorded in two 

different rabbit left atrial myocytes.  

A) Time-course of run-down of APD90 recorded under control conditions (i.e. 

TMC). B) Time-course of APD90 during control and 1 µM ICA present in the 

superfusate; APD90 was analysed again at 370s for wash detection, but it was 

not included in the figure for sake of quality. Ba) Represents run-down during 

wash (control solution); cell died around 430s. Dotted lines divides the different 

stimulation periods at 1 or 3 Hz. Red arrows indicate the moment at which the 

different solutions (drug or control) started to flow. Lines represent the trend 

of the APD90 during time.  
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For the following analysis, the ICA-sensitive component was estimated 

from the difference in APD as a result of the addition of ICA (1 µM). While the 

TMC was calculated as the difference in APD at the beginning of the recording 

and after 5 mins (300s) of recordings. 

ICA-sensitive APD30 was -0.25 ± 0.2 ms (n=10 cells, n=4 rabbits) compared to -

0.41 ± 0.1 ms (n=6 cells, n=3 rabbits) of TMC (mean ±  s.e.m., unpaired data) as 

shown in Fig. 6.16. This was true also for APD70 (-4.8 ± 2.9 ms, n=10 cells, n=4 

rabbits vs -1.8 ± 0.73 ms, n=6 cells, n=3 rabbits, mean ±  s.e.m., unpaired data, 

Fig. 6.16) and APD90 (4.74 ± 5.7 ms, n=10 cells, n=4 rabbits vs 1.7 ± 1.8 ms, n=6 

cells, n=3 rabbits, mean ±  s.e.m., unpaired data, Fig. 6.16).  

 

Moreover, the action potential depolarization characteristics were unaltered 

regardless of the presence of 1µM ICA in the superfusate. Neither the maximum 

diastolic potential (MDP) (control MDP -69 ± 5 mV vs -71 ± 5 mV following 1 µM 

ICA, n=10 cells, n=4 rabbits, mean ±  s.e.m., paired data, Fig. 6.17) nor Vmax 

(control Vmax 365 ± 73 mV/s vs 363 ± 68 mV/s following 1 µM ICA, n=10 cells, 

n=4 rabbits, mean ±  s.e.m., paired data, Fig. 6.17) were affected by the drug 

at the concentration of 1 µM.  

 

 

 

 

 

 

 

 

 

 

 

 



177 

 

 

 

 

 

Figure 6.16 Comparison of the effect of 

1 µM ICA on APD to the corresponding 

time matched control (TMC) in rabbit 

left atrial myocytes.  

    =APD (ICA-sensitive component) (n= 10

cells, n=4 rabbits, paired data).  

    = TMC (n=6 cells, n=3 rabbits, paired 

data). Values are mean ±  s.e.m.  
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Figure 6.17 Lack of effect of acute superfusion with 1 µM ICA on maximum 

diastolic potential (MDP) and on maximum rate of depolarization (Vmax) of 

action potentials from rabbit left atrial isolated myocytes.  

     = control      = 1 µM ICA     = wash (n=10 cells, n=4 rabbits). Values are mean± 

s.e.m. 
 

0

100

200

300

400

500

Vmax
(mV/ms)

-100

-80

-60

-40

-20

0

MDP
(mV)



178 

 

 Rabbit atrial APs: effect of 10 µM ICA on action potential characteristics   

Figure 6.18 shows a representative time-course of APD90 recorded in a 

single myocytes from rabbit left atrium. The data plotted in the graph, shown in 

figure 6.18, are the result of the analysis of each action potential recorded over 

the course of that experiment. The representative time-course of APD90 (Fig. 

6.18) shows the typical time-course of the effect of 10µM ICA. 

 

Below, typical original action potentials obtained with WinWCP software are 

shown for control, 10 µM ICA and wash in rabbit left atrial myocytes (Fig. 6.19). 

  

The utilisation of a higher ICAGEN concentration, considered potentially non- 

selective for ISK (29), significantly prolonged the action potential duration in 

rabbit left atrial myocytes, when compared with relative TMC, while it did not 

affect either MDP or Vmax. 
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Time (s) 
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74 ms 

Figure 6.18 Representative APD90 time-courses of APs recorded in rabbit left 

atrial myocytes.  

Time-course of APD90 during control and 10 µM ICA present in the superfusate. 

Dotted lines divides the different stimulation periods at 1 or 3 Hz. Red arrows 

indicate the moment at which the different solutions (drug or control) started to 

flow. Lines represent the trend of the APD90 during time.  
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Under control condition APD70 and APD90 were 17.9 ± 5.6 ms and 89.4 ± 

14.9 ms (n=7 cells, n=3 rabbits, mean ±  s.e.m., paired data, Fig. 6.20) 

respectively, and following acute superfusion of rabbit left atrial myocytes with 

10 µM ICA APD70 was observed to be 20.8 ± 5.9 ms, while APD90 was 111.7 ± 23.8 

ms (n=7 cells, n=3 rabbits, mean ±  s.e.m., paired data, Fig. 6.20). The MDP 

(control MDP  80 ± 1.2 mV vs  79 ± 1.6 mV post ICA, n=7 cells, n=3 rabbits, mean 

±  s.e.m., paired data, Fig. 6.21) and Vmax (control Vmax 538.6 ± 54.8 mV/s vs 

452.4 ± 100 mV/s post ICA, n=7 cells, n=3 rabbits, mean ±  s.e.m., paired data, 

Fig. 6.21) were not significantly affected by exposure to 10 µM ICA.  

Although the values reported above describe APD prolongation occurring during 

superfusion with 10 µM ICA, the overall difference compared to control was not 

significant for either APD70 (n=7 cells, n=3 rabbits, paired data, p=0.06, Fig. 6.20) 

or APD90 (n=7 cells, n=3 rabbits, paired data, p=0.06, Fig. 6.20).  
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Figure 6.19 Representative action potential traces recorded from 

rabbit left atrial myocytes showing the effect of 10 µM ICA.  

Superimposed action potential waveforms in absence of a drug (   ), 

during superfusion with 10 µM ICA (   ) and after wash (   ). 
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Figure 6.20 Lack of effect of acute superfusion with 10 µM ICA, vs paired 

control, on action potential repolarisation characteristics of rabbit left atrial 

isolated myocytes.  

Lack of effect of 10 µM ICA on both APD70 (above) and APD90 (below).    

   = control       = 10 µM ICA     = wash (n=7 cells, n=3 rabbits). Values are mean± 

s.e.m. 
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Nevertheless, when the ICA-sensitive component was compared to the 

corresponding TMC a statistically significant prolongation at 70% and 90% of AP 

repolarization was observed. For the following analysis, the ICA-sensitive 

component was estimated from the difference in APD as a result of the addition 

of ICA (10 µM). While the TMC was calculated as the difference in APD at the 

beginning of the recording and after 5 mins (300s) of recordings. 

APD70 of the ICA-sensitive component was 2.9 ± 1.2 ms (n=7 cells, n=3 rabbits, 

mean ±  s.e.m., Fig. 6.22) compared to -1.8 ± 0.7 ms of TMC (n=6 cells, n=3 

rabbits, mean ±  s.e.m., unpaired data, p=0.01, Fig. 6.22). APD90 of the ICA-

sensitive component was 22.3 ± 9 (n=7 cells, n=3 rabbits, mean ±  s.e.m., Fig. 

6.22) compared to -3.9 ± 2.1 ms of TMC (n=6 cells, n=3 rabbits, mean ±  s.e.m., 

unpaired data, p=0.03, Fig. 6.22). MDP and Vmax were also analysed against the 

respective TMC, but no significant differences were observed (Fig. 6.23).  

 

 

 

 

Figure 6.21 Lack of effect of acute superfusion with 10 µM ICA on maximum 

diastolic potential (MDP) and on maximum rate of depolarization (Vmax) of 

action potentials from rabbit left atrial isolated myocytes. 

     = control      = 10 µM ICA       = wash (n=7 cells, n=3 cells). Values are mean± 

s.e.m. 
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Figure 6.22 Comparison of the effect of 10 µM ICA on APD compared to the 

corresponding TMC in rabbit left atrial myocytes.  

     = ICA-sensitive component,     = TMC (n=6 cells, n=3 rabbits). Values are mean

±  s.e.m. Values of p< 0.05 (*) were considered statistically significant. 

✱
✱

Figure 6.23 Comparison of the effect of 10 µM ICA on MDP and Vmax compared 

to the corresponding TMC in rabbit left atrial myocytes.  

     = ICA-sensitive component,     = TMC. Values are mean ±  s.e.m. 
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 Human atrial APs: lack of effect of 1µM ICA on action potential 

characteristics  

Furthermore, the same action potential characteristics were analysed in 

human right atrial myocytes, but no significant effect of 1µM ICA was detected. 

Below, typical original action potentials obtained with WinWCP software are 

shown for control, 1 µM ICA and wash in human right atrial myocytes (Fig. 6.24). 

 

  

Neither APD30 (6.9 ± 1.8 ms vs 7.2 ± 1.7 ms; n=9 cells, n=4 patients, mean ±  

s.e.m., paired data, p=0.74, Fig. 6.25) nor APD70 (66.7 ± 12.4 ms vs 62.7 ± 12.8 

ms; n=9 cells, n=4 patients, mean ±  s.e.m., paired data, p=0.45, Fig. 6.25) nor 

APD90 (183.6 ± 31.9 ms vs 170 ± 29 ms; n=9 cells, n=4 patients, mean ±  s.e.m., 

paired data, p=0.23, Fig. 6.25) were affected by the acute administration of 1µM 

ICA. Additionally, the MDP under control conditions was -77 ± 1.3 mV as 

compared to 79.7 ± 2.1 mV during exposure to ICA, showing no statistically 

Figure 6.24 Representative action potential traces recorded from 

rabbit left atrial myocytes showing the effect of 1 µM ICA.  

Superimposed action potential waveforms recorded during control 

(C), 1µM ICA and Wash (W). 
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significant difference (n=9 cells, n=4 patients, mean ±  s.e.m., paired data, Fig. 

6.26). Finally, also Vmax was unaltered following the superfusion with 1µM ICA 

(control Vmax 282 ± 35 mV/s vs 305 ± 36 mV/s following 1 µM ICA, n=9 cells, n=4 

patients, mean ±  s.e.m., paired data, Fig. 6.26). Wash traces were analysed for 

MDP and Vmax of both rabbit and human APs showing the stability and robustness 

of the experimental protocol over time for all sets of experiments. 
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Figure 6.25 Lack of effect of 

acute superfusion with 1 µM ICA, 

vs paired control, on action 

potential repolarisation 

characteristics of human right 

atrial isolated myocytes. 
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The ICA-sensitive component was compared to the corresponding TMC run-down, 

but no statistical prolongation at 30%, 70% and 90% of AP repolarization was 

observed (Fig. 6.27). APD30 of the ICA-sensitive component was 0.33 ± 0.1 ms 

(n=9 cells, n=4 patients, mean ±  s.e.m., Fig. 6.27) compared to -0.8 ± 0.2 ms of 

TMC (n=4 cells, n=2 patients, mean ±  s.e.m., unpaired data, p=0.48, Fig. 6.27). 

APD70 of the ICA-sensitive component was -3.8 ± 2.7 ms (n=9 cells, n=4 patients, 

mean ±  s.e.m., Fig. 6.27) compared to -6.0 ± 1.9 ms of TMC (n=4 cells, n=2 

patients, mean ±  s.e.m., unpaired data, p=0.78, Fig. 6.27). Finally, the APD90 of 

the ICA-sensitive component was -16.9 ± 5.7 ms (n=9 cells, n=4 patients, mean ±  

s.e.m., Fig. 6.27) compared to -16.0 ± 5.9 ms of TMC (n=4 cells, n=2 patients, 

mean ±  s.e.m., unpaired data, p=0.94, Fig. 6.27). 
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Figure 6.26 Lack of effect of acute superfusion with 1 µM ICA on maximum 

diastolic potential (MDP) and on maximum rate of depolarization (Vmax)  of 

action potentials from human right atrial isolated myocytes.      

      = control      = 1 µM ICA        = wash (n=10 cells, n=4 patients). Values are 

mean±  s.e.m.  
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Figure 6.27 Comparison of the 

effect of 1 µM ICA on APD to the 

corresponding TMC in human right 

atrial myocytes.  

     = ICA-sensitive component (n=9

cells, n=4 patients).  

     = TMC (n=4 cells, n=2 patients). 

Values are mean±  s.e.m. 
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 Fast rate stimulation of human atrial cells: lack of effect of 1 µM ICA on 

action potentials  

6.4.6.1 ICA (1 µM) on APs at 2Hz stimulation frequency 

The experiments outlined in the following paragraphs aimed to test 

ICAGEN on action potentials stimulated at 2 or 3 Hz (bursts of 80-110 s) in order 

to increase systolic [Ca2+]i and thus potentially enhance ISK, in human right atrial 

myocytes. However, acute administration of 1 µM ICA, even under this 

conditions, failed to alter the APD at any level of repolarization. Under control 

condition, at 2 Hz stimulation frequency, APD30 was 9.3 ± 1.8 ms and APD70 was 

70.4 ± 9.4 ms compared to 9 ± 1.7 and 64.7 ± 9.6 ms, respectively, following 

acute administration of ICA (n=10 cells, 3 patients, paired data, mean ±  s.e.m. 

Fig. 6.28). Also, the APD90 was not significantly different under control conditions 

compared to during superfusion with 1 µM ICA (165.8 ± 18 ms vs 147.7 ± 18.4 ms, 

n=10 cells, 3 patients, paired data, mean ±  s.e.m. Fig. 6.28). However, MDP was 

observed to be similar under control conditions (-78.9 ± 1.9 mV) compared to 

during superfusion with 1 µM ICA (-80.9 ±2, n=10 cells, 3 patients, paired data, 

mean ±  s.e.m. Fig. 6.29) and Vmax was not affected by the drug (control Vmax 

218.2 ± 37.7 mV/s vs 277.5 ± 63.7 following ICA, n=10 cells, 3 patients, paired 

data, mean ±  s.e.m. Fig. 6.29). The MDP (Control/ICA -2 ± 0.9 mV, n=10 cells, 

n=3 patients) and Vmax (Control/ICA 59.2 ± 30.6 mV/s, n=10 cells, n=3 patients) 

were compared to the respective TMC (TMCMDP 0.5 ± 1 mV and TMCVmax 10.8 ± 

27.4 mV/s, n=6 cells, 3 patients, unpaired data, mean ±  s.e.m.), but no 

significant differences were observed (Fig. 6.30). Furthermore, APD parameters 

were compared to the relative TMC, only for 2 Hz stimulation frequency. 

However, neither ICA-sensitive APD70 (–5.7 ±7.5 ms, n=10 cells, n=3 patients) nor 

ICA-sensitive APD90 (-18.1 ± 15.3 ms n=10 cells, n=3 patients) components were 

significantly different compared to the corresponding TMC (-9.2 ± 3.4 ms, n=6 

cells, 3 patients, unpaired data, mean ±  s.e.m. Fig. 6.30).  
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Figure 6.28 Lack of effect of acute superfusion with 1 µM ICA on action 

potential repolarisation characteristics of human right atrial isolated 

myocytes at stimulation frequency of 2 Hz. 

    = control      = 1 µM ICA      = wash (n=10 cells, n=3 patients). Values are 

mean ±  s.e.m.  
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Figure 6.29 Lack of effect of acute superfusion with 1 µM ICA on maximum 

diastolic potential (MDP) and on maximum rate of depolarization (Vmax)  of 

action potentials from human right atrial isolated myocytes at stimulation 

frequency of 2 Hz. 

     = control     = 1 µM ICA     = wash (n=10 cells, n=3 patients). Values are mean

±  s.e.m. 
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Figure 6.30 Comparison of the effect of 1 µM ICA on APD, MDP and Vmax to 

the corresponding TMC in human right atrial myocytes (2 Hz).  

     = ICA-sensitive component (n=10 cells, n=3 patients).  

     = TMC (n=6 cells, n=3 patients). Values are mean ±  s.e.m. 
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6.4.6.2 ICA (1 µM) on APs at 3Hz stimulation frequency 

Acute administration of 1 µM ICA failed to affect action potential 

morphology, at any percentage of repolarization studied, even at pacing 

frequency of 3 Hz in human right atrial myocytes. Under control conditions, 

neither APD30 (control APD30 22.5 ± 4.9 ms vs 21.6 ± 4.9 ms following 1µM ICA; 

n=7 cells, n=3 patients, paired data, mean ±  s.e.m.) nor APD70 (control 75.5 ± 

15 ms vs 70.4 ± 13.4 ms post 1 µM ICA; n=7 cells, n=3 patients, paired data, mean 

±  s.e.m.) nor APD90 (control 144.7 ± 21.9 vs 135.7 vs 19.8 post 1 µM ICA, n=7 

cells, n=3 patients, paired data, mean ±  s.e.m.) were significantly affected by 

ICA (Fig. 28). Also, 1 µM ICA failed to alter both the resting membrane potential 
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Figure 6.31 Lack of effect of acute superfusion with 1 µM ICA on action 

potential repolarisation characteristics of human right atrial isolated 

myocytes at stimulation frequency of 3 Hz. 

    = control      = 1 µM ICA      = wash (n=7 cells, n=3 patients). Values are mean 

±  s.e.m. 
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and the maximal rate of depolarization. Neither MDP (control -75.2 ± 3 mV vs -

68.5 ± 8.5 mV post ICA, n=7 cells, n=3 patients) nor Vmax (control 204.6 ± 30 

mV/s vs 226.5 ± 37 mV/s post ICA, n=7 cells, n=3 patients) was significantly 

different compared to during superfusion with 1 µM ICA at 3 Hz (Fig. 6.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.32 Lack of effect of acute superfusion with 1 µM ICA on maximum 

diastolic potential (MDP) and on maximum rate of depolarization (Vmax) of 

human right atrial isolated myocytes at stimulation frequency of 3 Hz. 

     = control      = 1 µM ICA       = wash (n=7 cells, n=3 patients). Values are mean 

±  s.e.m. 

 

-100

-80

-60

-40

-20

0

MDP
(mV)

ns

ns

0

100

200

300

Vmax
(mV/ms)

ns

ns



193 

 

 

 The validation of action potential recordings through a predictable 

pharmacological response 

As a positive control for the subsequent ICA experiments, 2mM 4-

aminopyridine was able to significantly prolong the APD at 30, 50 and 70% of 

repolarization and action potential amplitude (APA) in rabbit left atrial 

myocytes. The prolongation of the repolarization and the suppression of the 

phase 1 of the action potentials is attributed to the block of the transient (ITO) 

and sustained (IKSUS) outward potassium currents by 2 mM 4-AP (79). However, 

although 4-AP is considered the best currently available ITO blocker, it is not 

completely selective at this concentration. In fact, previous studies proved the 

existence of two functionally distinct outward K+ currents both sensitive to 4-AP 

(1-5 mM) (371).  

 

Considering these caveats, the results reported are in accordance with 

previous findings about 4-AP inhibition, however, some discrepancies must be 

acknowledged. Surprisingly, 4-AP significantly increased the APA (albeit only 

moderately) while the MDP was unaltered, which is in contrast with previous 

findings (79, 372), and the reason behind it is not clear. In addition, the acute 

superfusion with 2 mM 4-AP did not significantly affect the late phase of 

repolarization (APD90) in rabbit atria action potentials, which however can be 

explained as a consequence of the main influence of ITO during the plateau and 

after the end of phase 1 (i.e. at around APD50−60) (58). To be considered, ITO 

presents interspecies variations in the rate dependence, which entail a different 

reactivation time-course between human and rabbit, causing this current to be 

strongly reduced at high rates (1-4 Hz) in the latter species (373). To conclude, 

validation of correct and stable drug effect recordings on action potential was 

performed successfully, demonstrating capability to proceed with ISK studies. 
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 Does ICAGEN represent a more reliable tool compared to apamin in the 

study of SK channels role on action potential? 

The two SK blockers (ICA and apamin) utilised in this thesis, share a similar 

SK pore blocking mechanism (183), but apamin is considered a key tool and has 

been the most widely used in the investigation of SK channel function due to its 

high selectivity (179, 183). However, for unclear reasons this neurotoxin has 

been found to have low efficacy, especially in cardiac tissue (171, 353). Previous 

studies proposed the presence of apamin-insensitive heteromeric SK channels 

(366), confirmed by a more recent study showing negligible-if any- effect of the 

peptide on APs (365). Moreover, Nagy et. al in 2009 reported failure to alter APD 

under physiological conditions by apamin (100 nM), questioning the importance 

of SK channels in cardiac tissues and the efficacy of the toxin (203).  

 

In contrast, ICA has been demonstrated to terminate AF both in vivo and 

ex vivo (29, 196, 197, 374). The ICA measured IC50 for SK channels has been 

reported to be 300/500 nM, which supports the rationale for employing a 

concentration of 1 µM, as used by previous studies (29, 196), in order to obtain 

a substantial block of these channels without compromising specificity. However, 

although the compound significantly prolonged action potential duration at 1 µM 

on human single cells (from sinus rhythm patients) in a previous study (29) it also 

showed an inhibitory effect, albeit minor, on ITO (IC50 = 21 µM) and IK1 (IC50 >100 

µM). Moreover, ICA showed indirect sodium channel inhibition due to a 

depolarization of the RMP by direct block of SK channels (29, 197). Nevertheless, 

in the experiment outlined in this chapter, 1 µM ICA showed no effect at any 

level on AP morphology in both rabbit and human atrial myocytes even when 

compared to TMCs. In contrast with previous results obtained by Skibsbye et al., 

which showed an effect of both 1 µM (significant only against TMCs) or 10 µM ICA 

on current (in voltage clamp experiments) and on APD90 (only with 1 µM ICA) in 

single human atrial myocytes from patients in sinus rhythm, while recordings 

from AF patients showed no effect of ICA at any concentration used (1 or 10 µM) 

on either current or APs (29). The pacing frequency used (0.5 Hz) and the free 

Ca2+ in the pipette (35 nM) differ from those used in my experiments on action 

potential and are far from being physiological. In addition, a recent publication 

suggests that, compared with other cardiac repolarizing currents, SK current 
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block is more effective at higher frequencies (366), which suggest that at the 

frequency used (1 Hz) in my experiments ICA effect on APs should have been 

even more prominent. Also, the magnitude of APD prolongation (~15%, compared 

to TMC) showed by Skibsbye et al., with 1 µM ICA in single human atrial cells 

(from sinus rhythm) stimulated at 0.5 Hz are higher than the one obtained in 

multicellular human atrial preparations at the same frequency with 10 times that 

drug concentration (13%, compared to TMC) (29). These data, combined with the 

use of high EGTA concentration (5 mM) which has been reported to prevent the 

detection of any Cai dependent current by previous studies (201, 375), cast 

doubts on the physiological relevance of the results and the selectivity of ICA. 

On the other hand, in the present study low EGTA (0.1 mM) concentrations were 

used, allowing free intracellular Ca2+ to rise physiologically during the AP 

stimulation. Nevertheless, no effect of the ICA compound at 1 µM was seen at 

any percentage of repolarization, confirming that ISK plays no role in both rabbit 

and human cardiac repolarization, under physiological conditions. Therefore, it 

appears that the experimental conditions used in the present study are more 

physiologically relevant compared to those tested by Skibsbye et al., which to 

my knowledge is the only study showing an effect of ICA in single human atrial 

cells. 

 

Nevertheless, at a concentrations of 10 µM, ICA provoked significant 

APD70-90 prolongation when compared with respective TMCs in my experiments. 

However, based on previous IC50 data, an unselective action of the compound at 

this high concentration cannot be ruled out. In fact, minor inhibitory effects on 

both ITO and IK1 by ICA, as mentioned earlier, have been reported (29). Moreover, 

even though no effect of the compound at high concentrations was described on 

any other ion channels tested (29), it cannot be excluded that the results 

obtained with 10 µM ICA in the present study could depend on the block of other 

current rather than ISK. For example, given the low IC50 for ITO a possible block 

of this current by 10 µM ICA could lead to APD70 prolongation, as demonstrated 

by the positive control shown in section 6.4.2, or it could explain the late 

repolarization (APD90) prolongation (79), which however was not observed in the 

positive control.  
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Interestingly, Skibsbye et al. also report a significant depolarization of the 

RMP at 1 Hz following 10 µM ICA administration, as well as significant decreased 

APA and Vmax (29). The reduction in upstroke velocity and amplitude was 

explained later by indirect INa inhibition trough accumulation of 

state-dependently inactivated channels, due to depolarization of the RMP (197). 

However, in the present study no effect was observed on either RMP or Vmax, 

demonstrating for the first time that under physiological conditions, high 

concentrations of ICA prolong late AP repolarization with no undirect effect on 

sodium currents.  

 

 1 µM ICA showed no effect on APs even at increased pacing frequency  

The expression of SK channels has been hypothesised to strongly depend 

on the duration of AF and the consequent atrial remodelling (29, 211). On the 

other hand, previous studies reported increased apamin-sensitive current 

following enhanced trafficking of SK2 channels to the cardiomyocyte membrane 

leading to APD abbreviation as a response to intermittent burst pacing at the 

pulmonary vein region, possibly providing the basis for an arrhythmogenic 

substrate (201). The same group showed also that early stages of the remodelling 

process (within hours) depends on the site of ectopic activity, being effective in PV 

and coronary sinus (CS) but not in other regions. Furthermore, the burst pacing-

induced APD shortening was found to be calcium-dependent and prevented by 

apamin (376). Additional evidence was given by Li, et al. in 2009 using SK2 knock-

out mouse model, in which they reported prolongation of the atrial APD, which 

however, was hypothesised to be involved in the generation of atrial arrhythmias 

through different mechanisms, such as EAD (200). However, questions remain 

regarding the possibility of APD and ERP prolongation promoting inducibility of 

re-entry arrhythmias (377). All together, these studies suggest a crucial role 

played by SK channels in recent-onset AF and the importance of Ca2+ overload in 

early remodelling which could provoke the augmentation of ISK (84). To test these 

hypothesis, myocytes isolated from human right atria were stimulated at 2 or 3 

Hz in order to increase the [Ca2+]i. In fact, during action potentials [Ca2+]i 

increases for short periods of time and at spatially restricted “Ca2+signalling 

domains” known as nano/microdomains. The Ca2+ entry through Ca2+-permeable 

channels is confined in this small spaces by the combination of different Ca2+ 
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buffer systems that limit its diffusion (378). L-Type channels, which plays the 

major role in generating this Ca2+ gradient, have demonstrated to be functionally 

coupled with SK channels. However, the rapid, high-affinity Ca2+ buffer BAPTA 

has been shown to reduce the coupling between these two channels (172). Since 

BAPTA was used in my previous voltage clamp experiments with apamin and ICA, 

which showed no effect on current, a correlation with the buffer and the absence 

of effect could not be excluded. Nevertheless, with unbuffered Ca2+ ions flowing 

during rapid (2-3 Hz) pacing frequency in human right atrial myocytes APs, 

neither repolarization nor MDP or Vmax were observed to be affected by the 

acute administration of 1 µM ICA. Although wash steps were performed, the data 

were also compared against corresponding TMCs (for 2 Hz) which, however, did 

not show any difference, contrary to previous published results by Skibsbye et 

al., who showed significant APD90 prolongation by ICA (1 µM) in single cells from 

sinus rhythm right atrial tissue (29). However, this study was performed at 0.5 

Hz, which is a 4x slower pacing frequency compared to the one used in my 

experiments, and unphysiological  free Ca2+ (35 nM) in the pipette solution. 

Moreover, clearly in contrast with the data herein presented, another study 

reported a greater percentage of APD90 prolongation following inhibition of ISK at 

2Hz when compared with 0.2 Hz, demonstrating a relatively larger contribution 

of ISK at higher pacing frequencies (366). Nevertheless, a putative more potent 

blocker (UCL1684) compared to ICA and unphysiological temperature were used.  

 

The present findings, therefore, obviously challenge previous publications 

and strongly suggest that ISK, at physiological temperature and ion concentration, 

plays no role in the frequency-dependent modulation of APD, in single human 

atrial cells, even at supraphysiological rates of stimulation (up to 180 

beats/min), which would have been expected to augment the current by 

elevation of [Ca2+]i (31).  

 Potential limitations  

The “chunk” method used for cell isolation in human atrial appendage 

could, in theory, disrupt ion currents. In support, in dog atrial cells, the “chunk" 

method reduced significantly the size of the delayed rectifier K+ current (IK) and 

the percentage of cells in which this current was detected in canine atria 

compared to the perfusion method (364). However, no differences of 1 µM ICA 
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effect on AP morphology were observed between human and rabbit (cell isolated 

by perfusion method), thus excluding a possible implication of different isolation 

method on the absence of effect of the drug. The effect of 10 µM ICA was not 

reversed by re-application of the control solution (wash), instead the TMCs were 

used to demonstrate the efficacy of the drug to fight run-down and the stability 

of the recordings. Importantly, throughout the present study action potentials 

were measured with standard whole-cell current clamp. This technique, also 

known as ruptured patch clamp configuration, presents some limitations (as 

previously mentioned, see section 5.5.3). These include potentially removing 

important intracellular substances, such as nucleotides or Ca2+ which regulate 

ion channels, particularly potassium channels (362) and this could have 

compromised the ISK signalling.  However, no published data are present in the 

literature regarding this possibility. Moreover, although perforated patch clamp 

configuration can prevent channel “run down” by avoiding the dialysis and 

maintain the integrity of many cytoplasmic components, it is more difficult than 

the standard method and potentially is not necessary. In fact, previous studies 

have reported the presence of ISK in single cells from human and rabbit atrial 

tissue using standard (ruptured) whole-cell patch clamp configuration (29, 201, 

211) or showed an absence of this current using both techniques (203). 

 

During AF, the rapid and irregular activation of the muscular atrium wall 

in humans typically reaches 400–600 beats per minute (bpm) (14, 379). However, 

the highest frequency achieved during short bursts (1-2 minutes) used within the 

present study in human single atrial cells was 3 Hz (~180 bpm), which apparently 

is not sufficient to cause the pathological [Ca2+]i-elevation reputed to be 

necessary for ISK activation. This is partially in contrast with previous findings in 

single mouse atrial cell APs measurements, which showed improved sensitivity 

to SK block at higher frequency (2 Hz) (366). Higher frequency (4 Hz) was tested 

only in one single human atrial myocyte, but the results were inconclusive given 

the difficulties in obtaining stable recordings and finally a decent sample size. 

Although a previous study in single human atrial myocytes showed that 

stimulations up to 600 bpm are achievable with current clamp technique (79), 

the focus of the present work was directed to obtain conclusive results (i.e. with 

proper sample sizes) at 2 and 3 Hz, which demonstrated that even with 

manipulation expected to increase [Ca2+]i, ISK is still not detectable. 
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6.5.4.1 Limitation for the use of a holding current 

The enzymatic isolation of human myocytes from atrial appendage tissue 

is recognized to depolarize the cell resting potential (Vm) (380, 381). Therefore, 

I current-clamped Vm to overcome this and prevent INa inactivation. The 

application of a holding current (also known as hyper-current) may be expected 

to exert a shortening influence on the APD. Instead of the characteristic spike 

and dome morphology, a more triangular shape with shorter APD was observed 

(fig. 6.12). The duration of the APs has been compared with the literature. The 

average APD90 reported in this chapter and recorded during my experiments in 

human cells (from SR patients) at 1Hz was 183.6 ± 31.9 ms, which, compared to 

the literature values of APD90 for cells from patients in SR, results 80-100ms 

shorter (29, 146).  

However, the application of a holding current is an established and validated 

method, with accepted limitations (380, 381). The effect of the holding current, 

would be to shorten the action potential duration, because, while it helps retain 

the hyperpolarized membrane potential at rest, a continuous outward current 

applied by the patch-clamp amplifier during the action potential recordings, will 

tend to cause the membrane potential to repolarize quicker. On the other hand, 

this intervention was a constant effect throughout the experiment. By this 

means,  I performed paired experiments (control and intervention in same cell) 

keeping the holding current unchanged throughout and I was controlling for the 

influence of the holding current on APD. In fact, the holding current used exerted 

the same influence for control and intervention. Moreover, APD90 with similar 

duration have been previously published by Workman et al. (APD90: 193 ± 8 ms) 

(380). 

 

Finally, the effect on the calcium signalling is thought to be minimal, 

assuming that the normal Vm of the cells is about -80 mV and the action potential 

has close to normal characteristics. The short APD90 observed in these 

experiments are,  probably,  mainly caused by the hyper-current, but the "low-

dome" AP configuration (small or absent plateau) may result from a small ICaL in 

these cells. If ICaL is small, then that could be expected to produce a relatively 

shorter calcium transient. Cells showed transient shortening on each action 

potential, confirming that EC coupling was functional during this protocol. 
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Calcium transient shortens slightly because of the shortening of the APD. 

However, cells regularly showed transient shortening synchronous with the APD 

and calcium transient, the magnitude of which variate in a cell to cell basis. 

 

ICAGEN effectiveness was observed only at high concentration (10 µM) 

which can be attributable to non-specific effects of the drug. In ruptured-

patched current clamped rabbit or human isolated atrial myocytes, ISK, assessed 

as any AP response to acute administration of 1 µM ICA, may not flow during AP 

stimulation at physiological pacing frequency (1Hz) with physiological 

temperature and ion concentrations. Furthermore, ISK activation (and thus its 

potential pharmacological inhibition during AF) may require changes to cellular 

electrophysiology or cell signalling systems to develop a sensitivity to ISK block, 

including pathological [Ca2+]i-elevation beyond that attainable by short bursts (1-

2 mins) of supra-physiological (≤180 beats/min) AP stimulation. 
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Chapter 7 Replication and modification of a protocol used to study 

NCX allosteric regulation: Is an extreme rise in [Ca2+]i under 

controlled conditions, with physiological [K+], sufficient to 

trigger ISK? 

 

 Identification of a new protocol to raise global [Ca2+]i  

In chapter 5 precisely measured [Ca2+]i solutions were adopted to attempt 

to elicit ISK and investigate the possible effect of two different SK blockers, but 

no effect was detected at any voltage studied. Note that this method of raising 

[Ca2+]i requires constant, prolonged [Ca2+]i elevation, which precludes the use of 

concentrations much above 500 nM because such conditions would lead to 

progressive cell contracture (see section 3.8.1) and death. Therefore, effects of 

ICA on APs were studied, where [Ca2+]i also rises substantially, but only 

transiently. Then the use of APs at different stimulation frequencies, to raise 

[Ca2+]i physiologically, did not produce any ICAGEN rate-dependent effect on 

repolarization, unless the ICA concentration utilised was increased to values 

considered non-selective for ISK inhibition. Therefore, based on the assumption 

that SK channels are activated solely by Ca2+ ions (165), a different protocol 

which could transiently elevate [Ca2+]i to values otherwise not achievable with 

the calcium solution method was utilised. This protocol, originally used by Weber 

et al., to study the allosteric regulation of the Na+-Ca2+ exchanger (NCX) (382), 

was then modified by Quinn et al., for studies on NCX activity in rabbit ventricle 

myocytes (12). In my experiments the protocol from Quinn et al. has been 

repeated for validation in left ventricle myocytes and then modified by 

incorporation of physiological [K+]i and [K+]o solutions for the study of ISK.  

The rationale behind this protocol was that during the depolarizing phase of the 

protocol, calcium was brought into the cell via NCX, and causing a slow rise of 

intracellular calcium. Any subsequent activation of the calcium sensitive 

current, could be detected from the current traces in voltage clamp. Similarly, 

during the hyperpolarising phase this caused calcium extrusion from the cells via 

the NCX, and the corresponding decrease in any calcium sensitive currents. This 
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protocol is a convenient way to generate slow increases and decreases of 

intracellular calcium, which can be correlated with the corresponding current 

trace. The contribution of the SK current to the total current trace can be 

assessed by measuring the difference in current, resulting from the addition of 

ICA. 

 Exploitation of NCX to raise [Ca2+]i  

The cardiac sarcolemmal Na+/Ca2+ exchanger (NCX) is a bidirectional 

transporter that exchanges three Na+ for one Ca2+ (383, 384) representing one of 

the main mechanisms of calcium extrusion during diastole (385, 386). The 

exchange direction of sodium and calcium ions depends on the membrane 

potential. Specifically, with membrane potential more negative than the 

equilibrium potential for NCX (ENa/Ca) and in the presence of low [Na+]i and high 

[Ca2+]i, inward NCX current (INa/Ca) and extrusion of Ca2+ will be electrochemically 

favoured (“forward mode”) (2). Whereas, in the opposite conditions an outward 

INa/Ca will be observed along with Ca2+ influx (“reverse mode”) (382, 387). 

Importantly, NCX is allosterically regulated by Ca2+ in a counteractive manner to 

Na+ and H+ ions. A rise in [Na+] and a decrease in pH will deactivate INa/Ca, whilst 

an increase of [Ca2+]i will increase INa/Ca in opposition to the effect of [Na+]i (388, 

389). In fact, in patch-clamp recordings, a rise in NCX peak current represents 

[Ca2+]i-dependent activation of NCX (390). This mechanism was exploited by 

previous studies in order to measure the Ca2+ sensitivity of allosteric regulation 

of INa/Ca in intact cardiac myocytes (12, 382). The voltage pulse protocol used in 

these studies refer to measurements of INa/Ca under tightly controlled ions 

concentrations and composition, where the cell membrane was stimulated 

repetitively to provoke a progressive rise of [Ca2+]i through reverse-mode INa/Ca. 

In this chapter the protocol modified by Quinn et al. was first replicated, i.e. 

utilising solutions K+-free (replaced with equimolar [Cs+]), designed to isolate 

INCX, and then validated using the setup described in section 2.3.8. (Chapter 2, 

methods), in rabbit left ventricle myocytes. Subsequently, the same protocol 

was replicated in the same cell type with solutions containing physiological [K+] 

(because ISK is a K+ current and so requires K+ ions in the solutions to flow) to 

verify the capability and reproducibility of the protocol even under this 

condition. This represents a crucial transition step for the study of ISK with ICA 

in any cell type. The hope was then, time-permitting, to test this modified 
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method in atrial cells; where SK channels have been shown predominantly 

expressed (27, 28). However, these would be challenging experiments, and if 

time would not permit for the study of atrial cells, novel and important data 

could nevertheless be obtained from this ventricular cell study alone.  

 Implication of rise in [Ca2+]i on SK channel activity 

The small conductance Ca2+-activated K+ channel family may play a role 

in integrating variations in intracellular Ca2+ with membrane potential, in 

excitable cells, thus contributing to cardiac repolarization. Recently, Torrente 

et al., described a rise in diastolic [Ca2+]i of 41% in sinoatrial node (SAN) cells 

and intact SAN preparation from NCX knockout (KO) mouse model. This condition 

of Ca2+ overload could have enhanced SK current (recorded as apamin-sensitive 

current) which has been shown to cause long-lasting hyperpolarization in 

response to increased [Ca2+]i and, therefore, gradually slowing the beating rate 

and reducing spontaneous activity in SAN (391). On the other hand, during AF, 

the acute rate - dependent atrial-cell Ca2+ load (1, 392) would be expected to 

increase SK current and might cause substantial hyperpolarization, which would 

shorten the APD and refractoriness. This mechanism could be contrasted by 

targeting SK channels and blocking them, resulting in prolongation of the atrial 

effective refractory period (aERP) and producing clear antiarrhythmic effects as 

others have previously described (196, 202, 209). Therefore, the rise of [Ca2+]i is 

crucial for the activation of SK channels, albeit how they participate in APs 

repolarization remain disputed. However, the [Ca2+]i has been poorly controlled 

in previous studies where the efficacy of SK channel blockade has been 

documented, as already described in chapter 3. Therefore, in this chapter, 

availing of the protocol cited above, the aim was to control, elevate and record 

the [Ca2+]i and the resulting current simultaneously, trying to transiently elevate 

[Ca2+]i (not buffered) higher than any other studies have documented in either 

rabbit left ventricle and atrium myocytes.  

 INa/Ca “reverse-mode” on action potential 

Measuring INa/Ca without affecting other ion currents is challenging, since 

existing NCX blockers (e.g. Ni2+ or KBR7943) have limited selectivity and can 

block other channels (e.g. Na+ and Ca2+ channels) which could change AP 
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morphology (393). Therefore, unphysiological conditions, such as those used in 

the experiments outlined in this chapter, are required to isolate and study INa/Ca. 

In a study by Armoundas et al., who used a different NCX blocker know as 

exchange-inhibitory peptide (XIP) and K+-free solutions (which caused a very long 

APD), they successfully showed that in APs from ventricle myocytes of failing 

hearts in guinea pigs, the contribution of reverse-mode (Irev) of NCX was higher 

compared to forward mode (Ifor) at 10 and 15 mM [Na+]i, suggesting a net 

repolarizing influence of NCX at these levels of [Na+]i (394). This could suggest a 

protective role of INa/Ca in preventing excessive AP prolongation in heart failure 

where [Na+]i has been shown to be elevated, as a result of higher diastolic 

Na+ influx (395). However, it is well-known that INa/Ca is in forward-mode for 

almost the entire AP and contributes with an inward current (Na+ ions influx) to 

mid and late repolarization (396, 397). Therefore, inhibition of this depolarizing 

current should produce a shortening of the APD90.  

 

Based on this background, the APD90 prolongation caused by 

administration of 10 µM ICA in rabbit left atria APs, described in the previous 

chapter (Chapter 6), was retrospectively considered. In fact, although there are 

no published data about a possible, not negligible, direct effect of ICA at that 

concentration on non-SK currents, the lack of specificity of the compound at 10 

µM has been hypothesised. In addition, Skibsbye et al. in 2014 reported data 

regarding the selectivity profile of ICAGEN, as previously cited in this thesis, 

albeit the SK pore blocker IC50 values were tested on different cardiac relevant 

ion currents (e.g. ITO, IK1, IKur, ICa,L), INa/Ca was not among those. However, a non-

selective block by 10 µM ICA on INa/Ca cannot account for the APD70-90 prolongation 

observed in chapter 6, based on what has been explained above. On the other 

hand, ICA showed minor inhibitory effect only on IK1 (IC50 >100 µM) and ITO, which 

presents an IC50 of 21 µM (29). Therefore, speculation was made, after the 

analysis of APs and before this set of experiments started, concerning a possible 

non-specific effect of 10 µM ICA and a consequent APD90 prolongation under 

physiological conditions.  
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To summarise, the aims were as follows:  

 Validate the protocol from Quinn et al. (12) by replicating the step-wise 

elevation of [Ca2+]i and the Ca2+-dependent activation of INa/Ca by repetitively 

stimulating the isolated myocytes from non-failing rabbit left ventricle in K+-free 

superfusate (substituted with Cs+). During the validation step, also to investigate 

the effect of the putative selective SK blocker ICA at 10 µM and to compare with 

the effect of the NCX blocker Ni2+ (10 mM) on INa/Ca in rabbit left ventricle 

myocytes. 

 Replicate the protocol and Investigate the effect of ICA at 1 µM, the 

vehicle dimethyl sulfoxide (DMSO, 1 µM) and 10 mM Ni2+ in rabbit left ventricle 

myocytes, except this time with physiological [K+] solutions. 

 

 Voltage-clamp and [Ca2+]i measurements  

Isolated cardiomyocytes were superfused with Hepes-based solution at 35-37°C 

in a chamber mounted on the stage of an inverted microscope (see methods 

section 3.4.7). Voltage clamp was achieved a using an AxoClamp 2B patch-clamp 

amplifier (Axon Instruments) and WinWCP 5.3.4 electrophysiology software (J. 

Dempster, University of Strathclyde, UK). Pipette resistance was 2–4 MΩ for NCX, 

ISK current density studies and for Fura-2 studies. Patch pipettes were pulled 

from borosilicate glass capillaries 1.2 OD x 0.69 x 100L mm (Harvard Apparatus, 

USA) with a gravity puller (model PP-83, NARISHIGE, USA). A liquid junction 

potential of −8.9 mV was compensated for prior to recordings. [Ca2+]i was 

estimated from Fura-2 fluorescence using the dual-wavelength 

spectrophotometric method described in chapter 3. Cytosolic loading of Fura-2 

was achieved by incubating cells with 5mM Fura-2-AM at 22-23°C for 10 min 

followed by 15 min in the absence of Fura-2-AM. The procedures used to convert 

Fura-2 fluorescence to [Ca2+]i are detailed in chapter 3 (Methods section 3.3.6). 
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 Isolation methods and experimental conditions 

Ventricular and atrial myocytes from non-failing rabbit hearts were isolated as 

previously described (See Methods 2.3.1-2.4.1). Experiments were performed 

using ruptured whole-cell patch clamp (See Methods section 2.6-2.8) in voltage-

clamp mode. All experiments were performed at 37°C.  

 External and internal solutions  

The superfusion solution contained (mM): NaCl (140), CsCl (4), Hepes (5), MgCl2 

(1), CaCl2 (1.8) and glucose (11.1); pH 7.4 with 1M NaOH. This solution was 

modified as appropriate for each experimental protocol. For NCX activity 

studies, the superfusate contained added (mM): 4-aminopyridine (5) (4-AP, to 

block K+ currents), niflumic acid (0.1) (to block Ca2+-activated Cl-currents), 

strophanthidin (0.01) (to block Na+/K+ pump) and nifedipine (0.01) (to block 

ICa,L). Also, cells were pre-treated with 1 mM thapsigargin for 5 min to inhibit SR 

Ca2+ uptake. Then Caffeine (10 mM) was applied to provoke sarcoplasmic 

reticulum (SR) Ca2+ release, ensuring that it was empty, and its function disabled. 

The pipette solution contained (mM): Cs-Aspartate (100), CsCl (20), MgCl2 (4.5, 

calculated free Mg2+≈0.9 mM), Hepes (10), EGTA (0.01), tetraethylammonium 

chloride (TEACl, 20), disodium ATP (Na2ATP, 4) and disodium creatine phosphate 

(Na2CrP 1); pH 7.25 with CsOH. For ISK studies, the perfusion and pipette solution 

were as for NCX activity studies, but Cs+ was replaced with equimolar K+ and no 

4-AP was used in the external solution.  

 Electrophysiology protocol and [Ca2+]i recordings 

The protocol used to exploit NCX Ca2+-dependent activation was based and 

modified from Quinn et al. (12). In the following experiments the voltage-

protocol as well as the solutions were modified (after replication of the protocol 

to manipulate the reverse-mode INa/Ca with the purpose of causing a rise of [Ca2+]i 

and, if the allosteric regulation of NCX by [Ca2+]i was present, this would initially 

increase also outward INa/Ca. Cardiomyocytes were held at -80 mV to lower [Ca2+]i 

and then stepped 17 times to +100 mV and -100mV alternatively, with 250 ms 

intervals between each step (see Fig. 7.1). The duration of the voltage pulse, of 

250ms, was chosen for each cell to produce a rise in [Ca2+]i from global diastolic 
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to systolic values. The protocol was repeated in the presence of Ni2+ (NiCl2, 10 

mM) or ICAGEN (10 or 1 µM). For each cell was calculated the background 

fluorescence by confining the cell into a “box” created by regulation of a square 

diaphragm (Fig. 7.2). The area generated was then positioned on an empty (no 

cells or debris) space on the glass slide and the light was turned off during the 

recordings of background fluorescence. The background fluorescence recorded 

from the area of each cell was considered as Rmin for each individual cell. While 

Rmax was obtained by piercing the cell with the electrode all the way down (at 

the end of the recordings), which caused a massive release of Ca2+ and maximal 

rise in fluorescence. Individual Rmax and Rmin were used in the equation 2 (see 

Methods section 3.4.5). 

 

 

 

-80 mV 

+100 
  mV 

-100 
  mV 

1000 ms 

0 mV 

Figure 7.1 Representation of voltage pulse protocol. Image created using 

WinWCP 5.3.4 electrophysiology software. 
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 Statistics & data analysis  

Ion current and [Ca2+]i data were compared using paired or unpaired 

Students’ t-tests, as appropriate. Statistical significance was predetermined at 

a level of P < 0.05.  

 

 Replication and validation of the protocol for Ca2+-dependent 

activation of NCX studies 

As described in the methods section of this chapter, all currents were 

blocked (including ICa,L, Ca2+ dependent ICl, and Na+/K+ pump) except INa/Ca which 

was the only one able to intrude and extrude Ca2+ in and from the cell during the 

replication of the protocol in myocytes from rabbit ventricle. Also, the SR was 

depleted of all the Ca2+ and blocked by thapsigargin. Therefore, under these 

controlled conditions the cell was able to exchange Ca ions only through NCX, 

which was repetitively stimulated with the voltage protocol described above. In 

figure 7.3 is shown a representative record from a single cell during control 

conditions (A) and after acute administration of 10 mM Ni2+ (B). Ni2+ almost 

completely blocked both outward and inward INa/Ca (Fig. 7.3 Ac and Bc). 

Figure 7.2 Photograph of a rabbit ventricle myocyte, delineated by the box, 

and modified to exemplify the “box”. The red arrows show the possible 

direction of the 2 moving parts of the diaphragm. The whole “box” could 

be rotated to align with the cell. 
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Additionally, the acute administration of Ni2+ prevented Ca2+ transient firing (Bb) 

and consequent cell contraction. 
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Figure 7.3 Representative current and [Ca2+]i traces from a single rabbit 

ventricle myocyte.  

Aa and Ba, Voltage-clamp protocol used to investigate the Ca2+-dependent 

activation of NCX and to raise [Ca2+]i. The cardiomyocyte was alternately 

clamped at -100 and +100 mV, as described in methods. Ab and Ac, [Ca2+]i and 

current traces recorded under control condition, whereas, Bb and Bc in the 

presence of 10 mM Ni2+. 

Vo
lt

ag
e 

(m
V)

 

Vo
lt

ag
e 

(m
V)

 

[C
a2+

] i 
µM

 

[C
a2+

] i 
µM

 

Cu
rr

en
t 

(p
A/

pF
) 

 

Cu
rr

en
t 

(p
A/

pF
) 

 

Aa Ba 

Bb 

Bc 

Ab 

Ac 



211 

 

The protocol successfully allowed the control and measurements of [Ca2+]i 

simultaneously to INa/Ca current measurements. The outward INa/Ca increase was 

attributed to allosteric regulation by Ca2+, as explained, and was used to verify 

the presence of this mechanism in each cell. The raw Ca2+ traces illustrated in 

figure 7.3 (Ab) show a rise of [Ca2+]i up to ~1.3 µM from ~0.4 µM in one ventricle 

cell. The diastolic [Ca2+]i recorded in this experiment appears high if compared 

to the expected normal physiological values. However, the raw traces showed in 

figure 7.3 were obtained from the third train of voltage pulse, thus the increased 

[Ca2+]i obtained during previous trains did not return to the initial diastolic 

values. This mechanism of “charging up” the basal cell calcium content was 

intentionally sought and essential for the study of ISK further on. Interestingly, in 

one cell from rabbit left ventricle the maximal [Ca2+]i achieved was of 2.8 µM 

(highest value recorded among all cells). Additionally, after subtraction, the 

resulting Ni2+-sensitive current, which was considered pure INa/Ca, was plotted 

against [Ca2+]i (Fig. 7.4). This showed that the responses in that single 

experiment shown in figure 7.3 are similar to the examples shown in Weber et al 

and Quinn et al. and confirm that the protocol used was working as expected in 

the ventricle cell showing a similar activation pattern to the one published by 

Quinn et al. (12). However, in that study they used mean values, and data were 

fitted using the equation from the model of Weber et al. They have chosen to 

model Ca activation as an instantaneous process and the simple model included 

all other non-blocked sources of Ca flux (sarcolemmal Ca pump, Ca background 

leak current) but no sarcoplasmic reticulum (SR) (382). On the other hand, in my 

experiments, a single representative myocyte from rabbit left ventricle was used 

and the data were fitted to a sigmoidal curve. The current values in the positive 

regions were fitted with a sigmoidal curve, which however resulted in a relatively 

low R2, while the best fitting relationship for the current values in the negative 

sector was a straight line fit. Although, the fit was considered good enough to 

predict an increase in currents relative to [Ca2+]i, which confirmed the validity 

of the protocol. On the other hand, the use of the model from Weber et al. 

represents a further step to deeply study allosteric regulation of NCX, therefore, 

it was not employed in this chapter since the correct replication of the protocol 

and the obtainment of a substantial rise of [Ca2+]i for ISK studies was achieved 

and sufficient to the present purposes.  
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 Effect of 10 µM ICA and 10 mM Ni2+ on both inward and outward INa/Ca 

and [Ca2+]i in rabbit left ventricular myocytes with Cs+ based solutions 

Throughout the whole analysis the last 2 pulses of the trains were used to 

collect data for currents and [Ca2+]i at both -100 and +100 mV for each condition, 

given the maximal rise in [Ca2+]i obtained during that 500 ms period. Below, 

representative current traces are show for control, ICA and Ni2+, showing the 

effect of 10 µM ICA and 10 mM NiCl2 on both current and [Ca2+]i (Fig. 7.5).  

 

 

 

 

 

Figure 7.4 Representative Ni2+-sensitive current values plotted against 

[Ca2+]i.  

Data were obtained by subtraction of current values in the presence of 10 mM 

Ni2+ from control current values. Data points represent outward and inward Ni2+

- sensitive current and derive from the same voltage protocol shown in figure 

7.3. The points in the positive voltage sector were fitted to a sigmoidal curve 

(R2= 0.46), while in the negative sector only a straight line fit was possible 

(R2=0.43). The fit was based on the theoretical relationship described in Quinn 

et al. (12).  
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Interestingly, 10 µM ICA significantly reduced both inward and outward 

INa/Ca recorded at -100 and +100 mV respectively. Acute administration of 10 µM 

ICA provoked a reduction of 35% (control outward INa/Ca 8.24 ± 1.53 pA/pF vs 5.38 

 
1 nA 

 
100 
mV 

1000 ms 

C 

NiCl2 

ICA 
 

Figure 7.5 Representative current and [Ca2+]i traces from a single rabbit 

ventricle myocyte.  

A) Current traces showing the effect of 10 µM ICA and 10 mM NiCl2 on both 

outward and inward current. C=control. B) Voltage-clamp protocol used to 

investigate the Ca2+-dependent activation of NCX and to raise [Ca2+]i.  

C) Raw ratio traces showing the effect of 10 µM ICA and 10 mM NiCl2. 

Subsequently, ratio values were converted in [Ca2+]i as explained in paragraph 

3.4.5. Cardiomyocyte was alternately clamped at -100 and +100 mV, as 

described in methods. 

A 

B 

C 
C 

NiCl2 ICA 
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± 1.64 pA/pF following 10 µM ICA n= 4 cells, n=1 rabbit, mean ±  s.e.m., paired 

data, p< 0.05, Fig. 7.6 A) and 49% (control inward INa/Ca -2.86 ± 0.33 pA/pF 

vs -1.45 ± 0.55 pA/pF, n= 4 cells, n=1 rabbit, mean ±  s.e.m., paired data, p< 

0.05, Fig. 7.7 A) of mean outward and inward INa/Ca compared to control, 

respectively. Whereas, subsequently applied 10 mM Ni2+ failed to further reduce 

outward or inward INa/Ca compared to 10 µM ICA (Fig. 7.6 A and 7.7 A), consistent 

with ICA having already substantially blocked INa/Ca. NiCl2 was applied only to 3 

out of 4 cells, since one single cell did not survive the full protocol. Additionally, 

peak [Ca2+]i was reduced in the presence of 10 µM ICA at both +100 mV 

and -100mV compare to control (Fig. 7.6-7.7 C), although only significantly 

at -100mV. Acute administration of 10 µM ICA provoked a 77% reduction of [Ca2+]i 

at -100 mV (1.24 ± 0.23 µM vs 0.28 ± 0.03 µM n= 4 cells, n=1 rabbit, mean ±  

s.e.m., paired data, p< 0.05, Fig. 7.7 C) compared to control. Whereas, in the 

presence of 10 mM Ni2+ peak [Ca2+]i was not significantly reduced compared to 

ICA at both voltages (Fig. 7.6 C-7.7C), also consistent with INa/Ca inhibition by 

ICA. Subsequently, the Ni2+-sensitive and ICA-sensitive component were 

measured by subtraction of the current in the presence of the drug to the current 

during control superfusion. In addition, the ICA-sensitive current was subtracted 

to the Ni2+-sensitive current (INa/Ca), which resulted in a so called “ICA-sensitive 

non-INa/Ca” component, in order to show the magnitude of the difference 

between the latter and INa/Ca (Fig. 7.8). By this means, the resultant current 

values, after the last subtraction, should represent a non-INa/Ca ICA sensitive 

current, which was significantly smaller compared to Ni2+-sensitive (INa/Ca) for 

both the outward (INa/Ca 5.2 ± 1.1 pA/pF vs 2 ± 0.6 pA/pF non-INa/Ca ICA-sensitive, 

n= 3 cells, n=1 rabbit, mean ±  s.e.m., paired data, p< 0.05, Fig. 7.9 A) and 

inward (-2.2 ± 0.5 pA/pF vs -0.4 ± 0.3 pA/pF, mean ±  s.e.m., paired data, p< 

0.05, Fig. 7.9 B) portion.  
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A 

C 

B 

Figure 7.6 Effect of acute superfusion with 10 µM ICA and lack of effect of 

subsequent 10 mM Ni2+ on outward current and absence of effect of both 

drugs on [Ca2+]i at +100 mV in rabbit left ventricle myocytes. 

A) Effect of 10 µM ICA on outward current at +100 mV. Aa) Absence of additional 

current block by 10 mM Ni2+ when compared to 10 µM ICA. Ni2+ was applied only 

on 3 out of 4 cells. B) Dot-plot showing the current (at +100 mV) of each single 

cell for control, ICA and NiCl2. C, Ca) Absence of effect of both drugs on [Ca2+]i.

Values are mean±  s.e.m., values of p< 0.05 (*) were considered statistically 

significant. 
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Figure 7.7 Effect of acute superfusion with 10 µM ICA on outward current and 

[Ca2+]i and lack of effect of subsequent 10 mM Ni2+ on outward current and 

[Ca2+]i at -100 mV in rabbit left ventricle myocytes. 

A) Effect of 10 µM ICA on outward current at +100 mV. Aa) Absence of additional 

current block by 10 mM Ni2+ when compared to 10 µM ICA. Ni2+ was applied only 

on 3 out of 4 cells. B) Dot-plot showing the current (at -100 mV) of each single 

cell for control, ICA and NiCl2. C) Effect of 10 µM ICA on [Ca2+]i. Ca) Lack of 

additional reduction of [Ca2+]i by 10 mM Ni2+ when compared to 10 µM ICA. Values 

are mean±  s.e.m., values of p< 0.05 (*) were considered statistically significant.
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Figure 7.8 Comparison between Ni2+-sensitive current (INa/Ca) and the 

subtracted ICA-sensitive current.  

The resulting current is an ICA-sensitive non-INa/Ca. Each dot represent a single 

current value; n=3 cells n=1 rabbit. 

+100mV 
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Figure 7.9 Comparison between A) outward and B) inward Ni2+-sensitive 

current (INa/Ca) and the subtracted ICA-sensitive current in rabbit ventricular 

myocytes (n=3 cells, n=1 rabbit).  

Values are mean ±  s.e.m., paired data, values of p< 0.05 (*) were considered 

statistically significant. 
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 Comparison among ICA, the vehicle DMSO and NiCl2 on both outward 

and inward current in isolated rabbit left ventricle myocytes with 

physiological [K+] solutions 

ICAGEN was also tested at the concentration of 1 µM (selective for ISK) and 

compared to the vehicle DMSO (1 µM) and to 10 mM Ni2+ in rabbit left ventricle 

myocytes. However, 1µM DMSO did not affect either outward (Control outward 

current 5.28 ± 0.55 pA/pF vs 5.14 ± 0.49 pA/pF following 1 µM DMSO; n=7 cells, 

n=2 rabbits, mean ±  s.e.m., paired data, Fig. 7.10 A) or inward current (-1.73 ± 

0.19 pA/pF vs -1.77 ± 0.16 pA/pF; n=7 cells, n=2 rabbits, mean ±  s.e.m., paired 

data, Fig. 7.11 A) compared to control. Also, acute superfusion with 1µM ICA 

failed to significantly alter both outward (Vehicle outward current 4.95 ± 0.53 

pA/pF vs 4.86 ± 0.49 pA/pF following 1 µM ICA; n=6 cells, n=2 rabbits, mean ±  

s.e.m., paired data, Fig. 7.10 A) and inward current (-1.72 ± 0.18 pA/pF vs -1.73 

± 0.18 pA/pF; n=6 cells, n=2 rabbits, mean ±  s.e.m., paired data, Fig. 7.11 A) 

compared to the vehicle (DMSO). Nevertheless, acute administration of 10 mM 

Ni2+ significantly reduced both outward (ICA outward current 4.92 ± 0.76 pA/pF 

vs 2.44 ± 1.16 pA/pF following 10 mM Ni2+; n=4 cells, n=2 rabbits, mean ±  s.e.m., 

paired data, p< 0.05, Fig. 7.10 A) and inward current (-1.73 ± 0.28 pA/pF vs -

0.69 ± 0.27 pA/pF; n=4 cells, n=2 rabbits, mean ±  s.e.m., paired data, p< 0.05, 

Fig. 7.11 A). Increases in [Ca2+]i were obtained also using the protocol with 

physiological [K+] solutions, but no effect was detected on peak [Ca2+]i during 

acute superfusion with either 1 µM DMSO or 1 µM ICA compared to control (Fig. 

7.12 A and B). On the other hand, even in this case 10 mM Ni2+ provoked a 

significant 70% and 67% reduction of peak [Ca2+]i at +100 mV (ICA peak [Ca2+]i 

0.82 ± 0.10 µM vs 0.25 ± 0.02 µM following 10 mM Ni2+, n= 4 cells, n=2 rabbits, 

mean ±  s.e.m., paired data, p< 0.05, Fig. 7.12 A) and at -100 mV (0.58 ± 0.06 

µM vs 0.19 ± 0.01 µM, n=4 cells, n=2 rabbits, mean ±  s.e.m., paired data, p< 

0.05, Fig. 7.12 B), respectively, compared to ICA.  
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Figure 7.10 Comparison among the effect of different interventions on 

outward current (at +100 mV) in rabbit left ventricle myocytes. A) 

Histograms, B) dotted-lines shows the trend for each cell. 

     = control     =1 µM DMSO      =1 µM ICA      =10 mM Ni2+.  A) Absence of effect 

of 1 µM DMSO and 1 µM ICA on outward current. Aa) Effect of subsequent 10 mM 

NiCl2 on outward current compared to the absence of effect of 1µM ICA. B) Single 

cell current values under each condition. Values are mean±  s.e.m., values of  

p< 0.05 (*) were considered statistically significant. 
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Figure 7.11 Comparison among the effect of different interventions on inward 

current (at -100 mV) in rabbit left ventricle myocytes. A) Histograms, B) 

dotted-lines show the trend for each cell. 

     = control     =1 µM DMSO      =1 µM ICA      =10 mM Ni2+.  A) Absence of effect 

of 1 µM DMSO and 1 µM ICA on inward current. Aa) Effect of subsequent 10 mM 

NiCl2 on inward current compared to the absence of effect of 1µM ICA. B) Single 

cell current values under each condition. Values are mean±  s.e.m., values of  

p< 0.05 (*) were considered statistically significant. 
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Figure 7.12 Lack of effect of acute superfusion with either 1 µM ICA or 1 µM

DMSO and effect of 10 mM Ni2+ on [Ca2+]i in rabbit left ventricle myocytes at 

both A) +100mV and B) -100 mV. 

    = control      =1 µM DMSO      =1 µM ICA     =10 mM Ni2+ . A) Absence of effect 

of 1 µM DMSO and 1 µM ICA on [Ca2+]i at +100 mV. Aa) Effect of subsequent 10 

mM NiCl2 on [Ca2+]i (at +100 mV) compared to the absence of effect of 1µM ICA. 

B) Absence of effect of 1 µM DMSO and 1 µM ICA on [Ca2+]i at -100 mV. Ba) Effect 

of subsequent 10 mM NiCl2 on [Ca2+]i (at -100 mV) compared to the absence of 

effect of 1µM ICA. Values are mean±  s.e.m., values of p< 0.05 (*) were 

considered statistically significant. 
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The aims of the set of experiments outlined in this chapter were to 

investigate the possible effect of the putative selective SK channel blocker 

ICAGEN at two different concentrations (1 and 10 µM) under supra-physiological 

elevation of [Ca2+]i, and testing the possible unselective block of NCX by 10 µM 

ICA and the effect of 1 µM ICA on ISK at elevated [Ca2+]i. 

 The replication of the protocol produced current and [Ca2+]i values in 

accordance with the literature 

As stated earlier in this chapter, the protocol used throughout these 

experiments, has been modified from Quinn et al. (12) who used it to measure 

the Ca2+ sensitivity of allosteric regulation of NCX. Since the objective of the 

experiments outlined in this chapter was mainly to achieve a rise in [Ca2+]i to 

higher values than those obtained with buffered solutions (Chapter 5) and for 

longer period of time than during APs firing (Chapter 6), the protocol from Quinn 

et al. was exploited primarily for this purpose. However, given that ICAGEN has 

never been tested on NCX and given the contribution of INa/Ca on action potential 

repolarization (394), the SK channel pore blocker has been tested also during the 

verification step of the protocol. Figure 7.3 A shows the protocol used to measure 

INa/Ca at different values of [Ca2+]i and illustrates the principle explained in the 

introduction regarding the Ca2+-dependent activation of NCX. In fact, if allosteric 

regulation is absent the rise of [Ca2+]i would electrochemically favour inward 

(forward mode) INa/Ca over outward (reverse mode) INa/Ca. On the other hand, 

increases in outward INa/Ca can only be attributed to allosteric regulation, since  

calcium activation would increase INa/Ca in both directions (382). The period of 

stimulation at +100 and -100 mV was kept constant at 250 ms to maintain the 

rise in [Ca2+]i for a longer interval, differently from Quinn et al (100-200ms). The 

focus of my experiment was to obtain a stable and strong rate of growth in [Ca2+]i 

independently from each individual cell’s Ca2+ content. By this means, cells that 

did not show a progressive transient rise in [Ca2+]i, dictated by the stimulation 

protocol, were excluded from the analysis. The values obtained for current 

density (pA/pF) and [Ca2+]i were compared with previous studies. The [Ca2+]i 

recorded during the first set of experiment reached higher values (up to 2.8 µM) 

compared to physiological systolic [Ca2+]i (398, 399), and average NCX current 
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density in myocytes from rabbit left ventricle was found similar during control, 

when compared to Quinn et al., in sham animals (12). However, the slight 

difference could be explained by the application of a longer stimulation period, 

which maintained the cells at prolonged high [Ca2+]i. During the second set of 

experiments, where 1 µM ICA was tested, mean NCX current density values, in 

myocytes from rabbit left ventricle, were observed to be similar to those 

reported by earlier studies for both outward (~5 pA/pF) and inward (-2 pA/pF) 

currents (12, 382). In conclusion, I was able to control and measure the rate of 

rise in [Ca2+]i while simultaneously measuring both inward and outward INa/Ca. 

Therefore, the protocol has been replicated successfully, ensuring the setup and 

measurement validation for the next steps. 

 Hypothesis for APD90 prolongation due to a non-specific block provided 

by 10 µM 

The concentration of 10 µM ICA was tested due to the results obtained in 

the previous chapter (Chapter 6) where a prolongation of both APD90 and APD70 

was demonstrated. Therefore, considering the lack of effect of 1 µM ICA on APs 

morphology, it has been supposed the inhibition of different currents besides ISK. 

10 µM ICA was tested on outward and inward currents in rabbit ventricle 

myocytes during the validation of the protocol. Unexpectedly, ICA provided an 

equivalent reduction to the one produced by 10 mM Ni2+ on both currents and 

[Ca2+]i. However, the current reduction obtained by acute administration of Ni2+ 

was not significant compared to control, which can be due to different sample 

sizes and the diverse analysis method that have been shown to affect statistical 

power and error rates (400). In fact, the reduction obtained by Ni2+ on [Ca2+]i 

confirms a block of NCX provided by the drug.  

 

Interestingly, 10 mM Ni2+ did not produce a significant additional reduction 

of INa/Ca compared to 10 µM ICA (see Fig. 7.5 A and 7.6 A). This is true also 

regarding [Ca2+]i, which was reduced to diastolic values during the superfusion 

with both drugs. These effects could result from a persistent block of ICA, which 

requires more time to wash out. However, single cell data (Fig. 7.5 B and 7.6 B) 

showed a possible reduction at least in two cells in the presence of 10 mM Ni2+. 

Therefore, an additional block of Ni2+
, and thus an incomplete block by ICA 

cannot be ruled out. In fact, to verify this hypothesis, the outward and inward 
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Ni2+-sensitive (INa/Ca) currents were then compared to the ICA-sensitive non-INa/Ca 

currents, which were significantly smaller (Fig.7.9 A and B). Nevertheless, 

although 10 µM ICA did not block completely INa/Ca, which is virtually the only 

current flowing during the controlled conditions used, it provided a significant 

block which was of similar magnitude to the one of 10 mM Ni2+ compared to 

control. These data suggest a potential, albeit partial, block of both forward- 

and reverse-mode INa/Ca by 10 µM ICA.  

 

A non-selective block by 10 µM ICA on INa/Ca, as observed in this chapter, 

cannot possibly account for the APD70-90 prolongation produced by 10 µM ICA in 

chapter 6, for reasons mentioned in the introduction. On the other hand, given 

the selective profile of ICA (29), an alternative hypothesis was considered. 

Specifically, a possible block on ITO, which is downregulated in AF (79), by 10 µM 

ICA under physiological conditions was considered, which could explain the 

APD70-90 prolongation observed in atrial cells from human and rabbit (58, 401) in 

the present study, and the absence of effect of this compound in cells from AF 

patients showed in a previous publication (29). However, this hypotheses was 

not further investigated.   

 Absence of effect of 1 µM ICA on ISK in ventricle under high [Ca2+]i and 

physiological [K+] 

The rationale behind experiments with 1 µM ICA in isolated myocytes from 

rabbit left ventricle was two-fold. First, determine whether ISK was present 

during high [Ca2+]i conditions in ventricle using ICA at putative selective 

concentration of 1µM and test the protocol with physiological [K+] before utilizing 

it in atria. Given that SK channels may be important during action potential 

repolarization in pathological conditions (e.g. cardiomyopathy and heart failure) 

associated with action potential (AP) prolongation combined with elevated 

[Ca2+]i (203, 402, 403) the focus was to replicate a high [Ca2+]i environment that 

could elicit ISK. In fact, considering the coexisting conditions of intracellular 

calcium overload and upregulation of ISK, Chua et al. showed that in failing hearts 

ISK [Ca2+]i – sensitivity was increased and apamin administration effectively 

prevented post-shock APD shortening, late phase 3 early after-depolarizations 

(EAD), and triggered activity and, therefore, prevented repetitive firing and 

recurrent spontaneous ventricular fibrillation (SVF). On the other hand ISK played 
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little or no effect in APD regulation in normal ventricle (306). Numerous studies, 

as reported earlier in this thesis, have demonstrated that the presence of the 

apamin-sensitive K+ current (IKAS) is more abundant in cardiac atrial cells rather 

than in normal ventricular cells (28, 200, 201, 203). Although, a study by Xu et 

al. showed that the block of the apamin-sensitive current at high [Ca2+]i (500 nM) 

provoked a moderate APD90 lengthening in normal ventricle with apamin 

concentration as low as 50 pM (27). It is true that this block was much greater in 

atria, but it has to be considered that the stated [Ca2+]i was only of 500 nM. Also, 

they showed a significantly higher apamin-sensitive current at 1000 nM, which 

could explain the presence of apamin effect in ventricle. Therefore, the question 

about the activation of ventricular SK current in this chamber at high [Ca2+]i 

remained open. In this chapter, this suspect has been addressed by monitoring 

the [Ca2+]i and the current simultaneously in single myocytes from rabbit left 

ventricle, which has never done before to study ISK, using a selective and neutral 

compound: ICAGEN. Nevertheless, no effect was seen by either this SK blocker 

or the vehicle (DMSO) at the specific concentration of 1 µM with high measured 

[Ca2+]i (0.7-1.2 µM). Unfortunately, due to time constraints it was not possible 

to perform these challenging experiments in atria.  

 

Elevation in [Ca2+]i was obtained, within physiological range, to values up 

to ~6 folds higher than in buffered [Ca2+]i solutions previously used (chapter 5). 

ICA, at a concentration putatively selective for ISK, failed to block either outward 

or inward current in rabbit left ventricular myocytes at high [Ca2+]i. Surprisingly, 

10 µM ICA significantly, albeit partially, blocked INa/Ca, providing some insights 

into a possible non-selective effect of this compound, but leaving unexplained 

the APD70-90 prolongation observed in the previous chapter. However, these last 

results must be taken with caution given the low sample size. To conclude, (1) 

ISK probably did not flow in non-failing ventricular myocytes in the presence of 

supra-physiological [Ca2+]i, and (2) ICA at high (x20 IC50 for ISK) concentration may 

partially inhibit INa/Ca.  
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Chapter 8 General Discussion 

 

The data presented in this thesis aimed to test the possibility that SK 

channels may be involved in mediating the link between intracellular calcium 

handling and cardiac repolarization under physiological conditions, in human 

and/or rabbit atrial myocytes. This was accomplished by focussing, for the first 

time to my knowledge in atrial cells, on precisely controlled [Ca2+]i changes and 

their possible link with ISK activation, using two ISK blockers having different 

modes of action. 

 

Initially, having validated my technique and established relevant positive 

controls, intracellular solutions with [Ca2+]i precisely buffered and measured in 

cells, in the range of global diastolic-to-systolic values, were used during 

voltage-clamp experiments. I found that there was no effect of either SK blocker, 

apamin or ICA, on the ISK-sensitive I-V curve, at any [Ca2+]i with low pacing 

frequency.  

 

Therefore, a second group of experiments involved recording action 

potentials, using higher pacing frequencies ranging from 1Hz to 3 Hz, intended 

to elevate [Ca2+]i physiologically to systolic values sufficient to trigger ISK. 

However, even under these conditions, the selective SK blocker ICA failed to 

alter the APD (measured at multiple levels of repolarisation) at any frequency 

tested, in either rabbit or human atrial myocytes. Nevertheless, ICA, at a 

concentration putatively non-selective for ISK (10 µM), produced a significant, 

albeit moderate, APD increase at 1 Hz in rabbit atrial myocytes.  

 

The last set of experiments utilised a specific protocol where [Ca2+]i was 

progressively, transiently increased further, to supra physiological levels in 

ventricular cells, by repetitive stimulation of reverse-mode INa/Ca. Even at this 

high [Ca2+]i ICA (1 µM) alone failed to reduce either outward or inward current, 

although the higher concentration of this blocker showed a significant reduction 
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of both outward and inward currents, as well as of peak [Ca2+]i at -100 mV, likely 

by inhibiting INa/Ca. 

 

The work outlined in the second chapter describes the development of a 

positive control and its verification which, as predicted, would be crucial in the 

study of ISK. That chapter gives a detailed account of the whole-cell patch clamp 

technique, which the majority of the experiments are based on. The primary aim 

of chapter 2 was to validate the voltage protocol which was then used in ISK 

studies and to provide a positive control, which was tested for temporal stability, 

timing and reversibility of a well-known pharmacological intervention. The 

results obtained served as a foundation for the subsequent studies on ISK.  

 

The magnitude of the current, IK1, studied during this set of experiments 

to test the voltage protocol and the pharmacological response to barium, was 

expected to be greater than that of ISK. By this means, the confirmation of the 

correct voltage/current measurements and the timing of response to the 

administration of a drug in my setup, was fundamental to validate any future 

result, especially when studying a current expected to be characterized by small 

amplitude, such ISK (29).  

 

The timing of the delay between the opening of the perfusion valve, which 

let the solution flow, and the effect of barium (i.e. when it reached the bath) 

on current, which was ~45 s, allowed me to create a timing profile for any 

intervention applied with that apparatus. This helped define the inclusion 

criteria for any deviation on the current trace in the next experiments, thus, 

avoiding misleading results.  

 

In addition, the biological variability observed among current values in 

cardiomyocytes, isolated from the same chamber, indicates that even an 

expected large pharmacological effect can fail to occur in a small percentage of 

cells (7%). This can be extremely important during electrophysiological 

experiments with the patch-clamp technique, where the quality and fragility of 

the cells can further reduce the already low throughput. Therefore, considering 
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these aspects, the results obtained from the investigation of ISK were deeply 

scrutinized to ensure high quality data. 

 

Given that SK channels are gated solely by intracellular Ca2+ ions and 

possess weak voltage sensitivity (27, 168, 320) the optimized voltage-pulse 

protocol, at high [Ca2+]i, allowed the investigation of ISK among a wide range of 

membrane potentials at which ISK should, in theory, be active.  

 

However, the results obtained showed that both SK blockers, apamin or 

ICAGEN, failed to alter the I-V curve at any voltage studied, despite the presence 

of elevated [Ca2+]i (0.3-0.5 µM), indicating that ISK might not be active in human 

and rabbit atrial myocytes at [Ca2+]i typical of global systolic values. Importantly, 

this was verified in statistically sound group sizes, at different drug 

concentrations, in both rabbit and human atrial cells. The results obtained in 

HEK293 cells (chapter 4) demonstrated that transfected SK channel 

[Ca2+]i - sensitivity -at least for SK3 subtype- is increased at 35-37°C when 

compared to room temperature (22-23°C), and the [Ca2+]i EC50 at physiological 

temperature (0.39 ± 0.02 µM) confirmed that the atrial cell studies were 

conducted within an optimal [Ca2+]i range for ISK activation. Although comparison 

of these transfected ISK data to freshly isolated mammalian atrial cardiomyocytes 

should be made with caution, the data certainly helped in the design of the atrial 

[Ca2+]i - sensitivity experiments. Nonetheless, the present rabbit and human 

atrial findings are clearly in contrast with the majority of the literature, which 

shows significant effect of both blockers. For example, Xu et al., in early 2003 

described a greater apamin-sensitive current in atria compared to ventricle in 

myocytes from both human and mouse tissues, which was blocked by 

concentration as low as 50pM of the peptide. This effect was seen at 500 nM 

[Ca2+]i and the fraction of apamin-sensitive current increased along with [Ca2+]i 

(up to 1µM) (27). Nevertheless, the results from my experiments at 500 nM [Ca2+]i 

show no effect of the toxin on the I-V curve. The reason behind this difference 

is still not clear but could depend on the technique adopted. In my experiments 

the ruptured-patch clamp technique was used, while Xu et al. used perforated-

patch clamp technique, during APs recordings, which prevents excessive dialysis 
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of the intracellular milieu and could better preserve calcium signalling (404, 

405). Also, they used 2,3-butanedione monoxime (BDM) to inhibit cardiac 

contractility during the isolation (406-408). On the other hand, they did not 

measure [Ca2+]i in cells, rather calculating this with titration software, and the 

recordings were performed at room temperature. Nevertheless, as mentioned 

before, apamin has been shown to have low efficacy in cardiac tissue (171, 209, 

353), and a recent paper by Hancock, et al. suggests a population of heteromeric 

SK2-SK3 channels which are apamin-insensitive (366). However, they also show 

that a second population of apamin-sensitive homomeric SK2 channels are 

active, together with the heteromeric population, during whole-cell voltage 

clamp recordings (366), which contrasts with the findings described in this thesis. 

However, importantly, most of the publications, as described earlier, did not 

precisely measure [Ca2+]i but rather inferred from calculation programs, which 

could lead to misleading results. By contrast, the present experiments had the 

strength of precisely measuring [Ca2+]i in cells and verifying the concentration 

multiple times on the same apparatus and at the equivalent conditions used 

during current and APs recordings (chapter 3). 

 

On the other hand, Nagy et al., in a study from 2009 that has already been 

cited within this work, decided to investigate ISK under normal (non-AF-

remodelled) conditions, based on the hypothesis that ISK might contribute, along 

with the main repolarizing currents, to the APD adaptation governed by changes 

in [Ca2+]i and/or calcium handling proteins (203, 409). However, under the 

experimental conditions used in this paper (described in Chapter 5) 

administration of high – dose apamin (100 nM) showed no effect at high [Ca2+]i 

(supposed 900 nM) (203). However, these experiments were executed on canine 

and rat left ventricle, which leaves unsolved the possible outcomes in atria. 

Therefore, the work outlined in this thesis tried to answer this, confirming the 

absence of effect of apamin on the current in sinus rhythm cells (human) and 

rabbit left atrial myocytes under physiological conditions, which contrasts with 

most of the literature (27-30, 200, 201, 410). 

 

More recently, Fan et al. showed reduced expression of SK channel 

proteins in patients with chronic AF compared to sinus rhythm, but upregulation 

of SK current. This last result, contrary to the previous data reported by Skibsbye 
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et al., has been justified through the increased SK channels [Ca2+]i -sensitivity 

mainly due to CAMKII phosphorylation and [Ca2+]i rise in AF (29, 30). Although 

this could explain in part my findings, implying the presence of a small -and 

possibly not detectable- ISK current under normal conditions, Fan et al. as well 

as Skibsbye et al., showed also an apamin-sensitive current in sinus rhythm at 

[Ca2+]i of 500 nM and 300 nM, respectively, which contrasts with the data showed 

in this thesis. If, on one hand, Fan et al. measured [Ca2+]i in cells with fluorescent 

dyes, the use of a slow calcium buffer as EGTA does not ensure precise clamping 

of [Ca2+]i compared to the much faster BAPTA, used in my solutions. On the other 

hand, Skibsbye et al. under unphysiological experimental conditions with high 

extracellular [K+] (20 mM, instead of ~5 mM), which might have increased ISK 

amplitude, and [Ca2+]i of 300 nM (calculated), showed a small yet significant 

effect of the SK blocker ICA (1 µM) compared to TMCs in atrial myocytes from 

sinus rhythm tissue (29). On the contrary, at any of the [Ca2+]i used in the study 

presented in this thesis (Chapter 5) ICA showed no effect on the current at -115 

mV (Fig. 5.8 and 5.9) in myocytes from both sinus rhythm patients and rabbit 

left atria. 

 

It is worth to mention that an apamin-sensitive current might have been 

activated at 300 nM [Ca2+]i at -115 mV in 6% of the cells studied. However, the 

effect was not reversable and of little amplitude, which led to the appropriately 

cautious conclusion that ISK might be either non-existent or rare under 

physiological conditions in rabbit or human atrial cardiomyocytes, at [Ca2+]i 

typical of global diastolic-to-systolic values. 

 

Apamin is considered the prototypical SK channel blocker, however, it has 

been shown to have negligible-if any- effect on action potential duration in both 

human and mouse atria (203, 365, 366). Furthermore, nanomolar concentrations 

of apamin have been shown to be effective in blocking Kv1.3 channels, which 

demonstrated lack of specificity of this peptide for SK channels, implying a 

possible overestimation of previously reported ISK roles (359). On the other hand, 

a different SK channel inhibitor, ICAGEN, has been previously studied both in 

vivo and ex vivo, showing an antiarrhythmic effect by terminating and preventing 
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AF, induced either by acetylcholine (ACh) combined with burst pacing (196, 374) 

or electrical stimulation alone (197), and provoked APD prolongation in single 

cells from sinus rhythm patients (29). For this reason, the small molecule 

compound ICA was chosen for the studies presented in chapter 6. This molecule 

has been previously introduced, which acts equally on all SK channels subtypes 

and provides a selective inhibition although less powerfully compared to apamin.  

 

In accordance with previous studies, SK channel inhibition by the direct 

block, can exert an anti-arrhythmic effect resulting from increased APD90 and a 

prolonged effective refractory period (ERP), which leads to increased 

wavelength and consequently protection against reentry (29, 197). Conversely, 

studies in rabbit failing ventricles have shown that inhibition of the apamin-

sensitive current (IKAS) induces EADs from areas of secondary [Ca2+]i rise, implying 

that ISK is important in maintaining the repolarization reserve (324). Therefore, 

in the present study APD90 was analysed as relevant to ERP and thus reentry (see 

page 212), in addition to APD70, relevant to the AP plateau and thus EADs. Given 

the importance of EADs in the generation of ectopic foci and promotion of 

arrhythmias, monitoring APD70 was considered most appropriate to better 

investigate the role of ISK in atrial APs. Nevertheless, ICA at an assumed selective 

concentration (1 µM) failed to alter action potential morphology in the atrial 

myocytes from humans and rabbits at pacing frequency of 1 Hz. Furthermore, 

ICA was tested at higher pacing frequency (2-3 Hz) intended to raise [Ca2+]i, but 

even under these conditions no effect was observed at any percentage level of 

repolarization in either human or rabbit. These results were rather unexpected 

and interesting, and potentially very important, thus warranting critique. The 

enzymatic dissociation process could have possibly caused an impairment of 

potassium channels, which might have generated action potential instability or 

attenuation of effect of the SK channel blocker. Nevertheless, the ex vivo 

experiments presented by Skibsbye et al. described similar isolation procedures, 

which involved the use of the “chunk method” and the same type of enzymes 

were used (collagenase and protease). It is worth to mention that they 

supplemented the storage solutions with 2,3 - butanedione monoxime (BDM) (29, 

411), contrary to the solutions used here. However, BDM (used during rabbit cell 

isolation process) was tested in a small number of cells (n=5 cells, n=2 rabbits 

Fig. 5.16) in voltage clamp experiments (chapter 5) as a possible condition for 
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apamin effect, but no significant difference was observed. Another possible 

reason for the difference between the studies could reside in the presence of an 

unphysiological [K+] in the solution, used by Skibsbye et al., which could have 

augmented ISK and made it detectable in atrial myocytes from sinus rhythm tissue 

(29). Skibsbye et al. also showed an indirect inhibition of Na+ channels due to 

the depolarization of resting membrane potential (RMP) exerted by ICA (29). This 

was not observed in the present experiments as well as absence of effect on Vmax 

(surrogate of INa), and so is unlikely to be having its anti-arrhythmic effect by 

inhibiting spiral wave reentry (see page 16, chapter 1), contrary to what was 

described by Skibsbye et al., in a later study (197). 

 

In the present experiments, ICA at a higher concentration (10 µM) 

provoked a significant prolongation of both APD70 and APD90. These results are in 

accordance with previous findings (29) which also report the inability to reverse 

the drug effect by wash. Nevertheless, since a minor inhibitory effect has been 

reported on ITO (IC50 = 21 µM) a possible non-selective effect of ICA cannot be 

ruled out. In addition, the selectivity profile of ICA did not include a study of 

INa/Ca. In the last set of experiments (described in chapter 7) I used INa/Ca as a 

means to increase [Ca2+]i to high levels, and this also provided an opportunity to 

study effects of ICA on INa/Ca. 

 

During the replication of the protocol (chapter 7) that was originally 

utilised by Weber et al. to study the allosteric regulation of the Na+/Ca2+ - 

exchanger (NCX) (382), the current was monitored simultaneously to the [Ca2+]i, 

which reached values up to 2.8 µM in the present study, through the repetitive 

stimulation of reverse-mode INa/Ca. The supra-physiological global levels of peak 

[Ca2+]i obtained with very low buffering power (0.01 mM EGTA) were aimed to 

elicit ISK, since previous clamped or rate-dependently increased [Ca2+]i have been 

demonstrated unsuccessful. The replication of the protocol was done firstly in 

ventricular cells, the cell type used in the original study, for optimization. 

Throughout this set of experiments, due to the controlled conditions, many 

currents were either blocked or not present consequent to the absence of 

potassium in the solutions. During these studies 10 µM ICA was tested on INa/Ca 

(virtually the only flowing current) and compared to the selective INa/Ca blocker, 
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NiCl2 (10mM). I found that ICA significantly reduced both outward and inward 

current at +100 and -100 mV, respectively, in these ventricular cells. The 

reduction of peak [Ca2+]i (significant only at -100 mV) along with the current, 

leave space for speculation of a possible effect of ICA, administrated at this high 

concentration, on INa/Ca. The block provided by ICA was similar to that of NiCl2 

(10mM, selective for NCX), supporting the hypothesis that ICA may affect INa/Ca, 

thus potentially relevant to APD modulation. It was verified that a portion of 

current, insensitive to ICA but NiCl2-sensitive, was present and the difference 

was significant. Thus, albeit partial, it has been speculated that there is a 

possible inhibitory activity on INa/Ca by ICA (10 µM) which however cannot account 

for the APD prolongation at physiological [Na+]i as observed in rabbit atrial 

myocytes. In fact, INa/Ca is considered to generate an inward, depolarising, 

current for most of the AP, accompanied by calcium efflux (forward-mode), thus, 

the block of this current is expected to produce an APD shortening rather than 

prolongation (396, 412), indicating that the APD90-prolongation by 10 µM ICA in 

the atrial cells must have been by affecting another current. The IC50 values of 

ICA for different currents presented by Skibsbye et al., demonstrated the 

specificity of this compound for ISK, albeit it could provoke the inhibition of some 

currents at higher concentrations (i.e. 10 µM). In the paper, it has been described 

a minor inhibitory effect on ITO (IC50= 21 µM) and IK1 (IC50> 100 µM), but no effect 

on other tested currents (29). Thus, given the results presented in this thesis, 

ICA 10 µM could exert an inhibitory effect on other currents other than ISK, as 

previously described (see page 215), which opens the possibility that its effect 

on action potential morphology could have been misinterpreted in some previous 

studies.  

 

In addition, and in part mentioned earlier, ISK could, in theory, exert a 

protective action against AF by negating the generation of afterdepolarizations 

resulting from spontaneous calcium release, since this repolarizing current is 

triggered by calcium and can oppose the focal activity. In a recent study by 

Peñaranda et al., performed through several mathematical models, the results 

were not clear whether ISK counteracts these abnormal depolarizations by 

opposing the activity of INa/Ca or reducing the membrane potential elevation 

(413). The first hypothesis implies a negative-feedback mechanism played by ISK 

to oppose the forward-mode INa/Ca, which intruding Ca2+ could augment ISK that 
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might abolish extra depolarization. This mechanism is in accordance with 

previous findings, which show a pro-arrhythmic effect of ISK inhibition by apamin 

in rabbit ventricles (324). Interestingly, Armoundas et al. demonstrated that 

INa/Ca possesses a significant repolarizing force starting from [Na+]i of 10 mM, 

through reverse-mode INa/Ca. This contribution to repolarization could increase in 

failing ventricles characterized by high [Na+]i (395). On the other hand, ISK has 

been shown to be increased in failing human ventricles, contrary to all other 

known K+ currents, along with its Ca2+-sensitivity and protein expression (305, 

343). Therefore, it seems plausible that blocking either INa/Ca or ISK, under certain 

conditions in ventricles, could produce APD prolongation. However, considering 

the reduction of INa/Ca obtained by acute superfusion with 10 µM ICA (i.e. 20x IC50 

for ISK), it become difficult to understand the reason behind APD prolongation in 

APs experiments previously presented. In order to answer this question, firstly 

ICA was tested at selective concentration (i.e. 1 µM; 2x IC50 for ISK) in rabbit 

ventricles, where physiological [K+] were used and compared to NiCl2. If on one 

hand NiCl2 still blocked significantly both outward and inward currents along with 

peak [Ca2+]i, under these new conditions (i.e. K+ currents restored) along with 

the presence of supra-physiological peak [Ca2+]i ICA (1 µM; should be selective 

for ISK) failed to alter either currents or [Ca2+]i in ventricle. Thus, confirming the 

absence of effect of this SK blocker on INa/Ca (at 1 µM) and the already established 

minor role played by ISK in ventricle under physiological conditions (27-29, 203). 

In fact, the presence of this current has been shown only in failing ventricle due 

to remodelling, channel overexpression and increased [Ca2+]i-sensitivity. The 

fact that ISK was confirmed to be absent in ventricle under physiological 

conditions, also during extremely elevated [Ca2+]i, indicates that in order to 

obtain a possible contribution of this current to repolarization, with all the 

consequent protective effects hypothesized by some studies in failing rabbit 

ventricles (i.e. prevent the occurrence of EADs, premature ventricle beats and 

torsade de pointes) (306, 324, 414), the elevation of [Ca2+]i is not sufficient. More 

likely, for ISK to play a role in failing ventricle it requires upregulation of ISK along 

with increased ISK sensitivity to [Ca2+]i caused by remodelling during heart failure 

(HF).  

 

In conclusion, it seems plausible that the slight, yet significant, APD 

prolongation observed with 10 µM ICA, in the experiments outlined in chapter 6, 
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could be due to partial block of a different K+ current rather than ISK inhibition. 

Finally, ICA at higher, putatively non-selective concentration appears to provide 

a significant block of INa/Ca which, albeit limited by low sample size, can be 

considered a novel finding and will require further investigation.  

 

The results reported in this thesis concerning the absence of ISK at any [Ca2+]i and 

condition tested could be considered as rather discouraging from an atrial and 

AF targeting therapy perspective, but is, nevertheless, extremely important to 

know. All the experiments were conducted under physiological conditions, as 

well as with elevated [Ca2+]i, which suggests that the activation of this current 

may require phenotype remodelling due to pathological conditions, such as 

chronic AF. On the other hand, calcium handling during early-onset AF could be 

especially relevant to this work, since only acute remodelling with AP 

abbreviation has occurred and the increase in atrial rate along with the 

substantial influx of Ca2+ through ICa at each action potential (84), could increase 

SK current flow during APs. However, given the findings herein reported (with 

stimulation rates of up to 180 bpm for up to 2 mins), it appears that a 

pharmacological treatment involving the targeting of these channels under 

elevated [Ca2+]i is not feasible to obtain an APD prolongation and, therefore, 

possible termination of acute, low rate, AF. Moreover, as already mentioned, 

the pro-or antiarrhythmic role of SK channels is not clear. For example, a study 

reported APD prolongation in atrial myocytes in vitro and inducible atrial 

fibrillation in vivo using a SK knock-out mouse model (200). Similar results, 

including APD heterogeneity, were observed in canine left atrium (325). These 

studies suggest a protective role against AF played by ISK, showing an increased 

occurrence of EADs, electrical alternans and wave breaks, as well as increased 

APD heterogeneity, following ISK blockade. In agreement with these hypotheses, 

it has been reported a reduction in SK current and channel expression in human 

atrial tissue from patients with chronic AF (29, 211). On the contrary, some 

studies have described increased SK current in patients with persistent AF, 

although reduced SK channel expression (30, 213). Moreover, many publications 

demonstrate reduced AF-inducibility in either remodelled atria (after 7-day 

atrial tachypacing) (202) or in an acute pacing-induced model of AF by aERP 

prolongation and termination of AF with common selective SK blockers (including 
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ICA) or negative modulators (196, 209, 210). Apparently, SK channels seem to 

participate differently to short-or long term AF, but the mechanisms remain 

obscure. In fact, as previously hypothesised, an initial up-regulation of these 

channels could represent the trigger for an arrhythmic event and participate in 

maintenance of reentries (201). While during long term AF these channels could 

undergo extensive structural and electrical remodelling losing their possible 

protective effect and promoting the perpetuation of the arrhythmias. Moreover, 

the documented reduced SK channel expression could prevent the possibility to 

use these channels as a therapeutic target. On the other hand, if SK channels 

were to participate in atrial repolarisation during recent onset AF (i.e. non-

remodelled atria), their inhibition could provoke APD prolongation, but at the 

same time promote afterdepolarizations, which make a therapy targeting these 

channels also not suitable under these pathological condition.  

 

Finally, it is well-known that forms of persistent AF become increasingly difficult 

to treat using currently available pharmacological alternatives. Most of the 

approved antiarrhythmic drugs, as already mentioned, showed low success rate 

in converting AF (415, 416), besides known side effects, especially in patients 

suffering from heart failure, which limits their use as a therapeutic option. 

Therefore, the demand for antiarrhythmic drugs with a higher efficacy and safer 

profile is high. Although ISK could appear as a promising new atrial-selective 

target for treatment of AF, avoiding fatal ventricular proarrhythmic effects, 

again the controversy in the literature about its role and the results herein 

presented, leave doubts concerning its potential utility.  

 

It can be concluded that, given the extensive discrepancies between the existing 

publications, in addition to the present results, which show absence of ISK under 

elevated [Ca2+]i typical of short term AF condition, in contrast with most of the 

literature, ISK block as a pharmacological treatment might not be as promising as 

expected.  

 

The experiments described within this work represents a further step into the 

investigation of ISK in single cells from rabbit and human tissue. However, there 

are inherent and theoretical limitations in performing studies using such cells. 
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The availability and quality of human atrial tissue is a fundamental variable that 

cannot easily be controlled. The cardiac tissue can be obtained only at the time 

of cardiac surgery, where a small tip of the right atrial appendage is suitable to 

be excised and the consent from the patient has been previously acquired. 

Furthermore, the sample of tissue is of small dimensions (weight: 0.25±0.02 g), 

which usually allows the isolation of relatively few (compared to rabbit) atrial 

cells, per tissue. Also, the patients are frequently affected by confounding 

comorbidities and pharmacological therapies, in addition to the effects of age 

and gender which can potentially complicate the applicability of some 

experimental results.  

 

As aforementioned, the chunk method of enzymatic dissociation process could 

possibly result in action potential instability or drug effect attenuation, in 

addition to recognised delivery of cells which are depolarised. However, the 

rabbit atrial cells were not isolated by the chunk method, showing similar 

results, thus suggesting that the different cell dissociation methods might not be 

implicated in the absence of ISK. Furthermore, during ruptured patch clamp 

technique, which is more straightforward technically than perforated patch, the 

lifetime of cells is limited, and prolonged recording protocols are difficult to be 

maintained, and intracellular signalling more likely to be disrupted. This is true 

especially under the experimental conditions used during the majority of these 

experiments, characterized by constant or transient presence of high [Ca2+]i. 

Moreover, myocytes from AF patients were not studied, given the difficulty of 

reaching an acceptable sample size due to the rarity of operation involving 

patients with such condition. Tissues from AF patients would have been 

extremely useful to investigate the possible effect of remodelling on ISK in atria, 

which however was not the purpose of this work. In addition, controversy exists 

between electrophysiological studies on myocytes from cAF tissue, which 

suggests that patch clamp technique may not be the best tool to address this 

matter. Furthermore, hypothesis were made regarding the necessity to apply 

supra-physiological stimulation rates higher than 180 bpm achieved in the 

present experiments (AF can have rates of 300-600 bpm). Also, the duration of 

these bursts was no longer than 2 mins which may not be sufficient to activate 

ISK (201) and cannot be increased much during whole-cell patch clamp, due to 

the limited lifetime of cells after rupture. Finally, cells might require more time 
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of perfusion with ICA for the ISK block to be detectable. However, the effect 

observed following application of a higher concentration of ICA (10 µM) was in 

the order of seconds (from ~30 to 60s), which strengthen the results obtained 

throughout this work. Notably, as deeply described in section 8.2, possibilities 

remain regarding the detection of ISK exclusively under controlled conditions, i.e. 

artificially adjusted solutions or questionable [Ca2+]i, which do not accurately 

resemble physiological conditions and were, therefore, not considered for the 

present project. 

 

Importantly, in this study the wash out of the drugs could not be attained. 

However, specifically, for ICAGEN TMCs were used to prove the stability and 

strength of the recordings. In addition, inconsistency in SK channel expression 

among different tissues have been reported. For example, it has been shown that 

intermittent burst pacing in rabbit pulmonary vein region, results in locally APD 

shortening due to the trafficking of SK2 channel to the membrane (201). 

Moreover, in a relatively recent publication, SK2 subunit expression and SK 

current have been shown to be greater in canine PV versus LA. Therefore, since 

the present study involved experimentation on myocytes from human right atrial 

and rabbit left atrial tissue regional differences cannot be ruled out.  

 

Despite more than a decade of research, the role of SK channels in cardiac 

electrophysiology remains incompletely understood. As discussed, many studies 

performed in normal atrium in both animal and human tissue, have been 

conflicting regarding the effective functional contribution of SK channels to 

atrial repolarization under physiological conditions, which continue to be central 

to the debate.  

 

The present experiments were primarily focused on ensuring elevation of 

[Ca2+]i, considered necessary and sufficient for ISK activation. However, in view 

of the results from [Ca2+]i measurements, this statement appears to be not true 

during physiological conditions. By this means, the data obtained strongly 

supports the possibility that particular pathological conditions may be required, 

such as electrical remodelling, changes in SK channel expression or increased SK 
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channel Ca2+-sensitivity resulted in different and contrasting outcomes (29, 30, 

211, 212, 305). 

 

The uncertainties regarding SK channels are numerous, including whether 

their expression is up- or down-regulated in patients diagnosed with cAF and 

whether these channels are more relevant to early stage (onset) or chronic AF is 

still unknown. Therefore, the question about the possibility of targeting these 

channels as a novel treatment for AF, with little or no effect on ventricle, 

remains open.  

 

It is true that the last described protocol (in which [Ca2+]i was increased 

by stimulating reverse mode INa/Ca; though limited to ventricular cells by time 

constraints) could represent a promising future method to further investigate ISK 

activation at extremely high [Ca2+]i in atrial myocytes with the whole-cell patch 

clamp technique. Nevertheless, with the substantial data obtained here, from 

the large number of well validated experiments described, using physiological 

recording conditions, different drug types and concentrations, and atrial cells 

from two different species including, importantly, human, it can be concluded 

that ISK is either rare or non-existent at [Ca2+]i of global systolic or supra-

physiological values in myocytes from either human or rabbit atrial tissue.  
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