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“It ain’t what you don’t know that gets you into trouble. It’s what you know for

sure that just ain’t so.”

Mark Twain



Abstract

The rapid development of 3D imaging technology allows data to be collected di-

rectly in three-dimensional space. The high accuracy of the images requires further

investigations on digitised objects, especially of local features. In the last decade,

3D Local features have played an important role in recognising and modelling real-

world 3D objects. This thesis introduces a series of methods for 3D local features,

including automatic keypoints detection, 3D model construction with curves, local

region detection and statistical analysis of local features. Those methods are not

only to build 3D local feature descriptors, but also have a wide range of appli-

cations, such as shape comparison in medical facial treatments and evolutionary

researches in biology.

Conventional shape analysis, limited by the data-collection technology, project 3D

objects into 2D space to analyse, or focus on 3D discrete points which are not

close to each other. Those points of anatomical meanings are called landmarks.

Researchers used to manually place the landmarks on 2D or 3D images by eyes, but

it generates the operator error which is not of interest but has a large influence on

shape analysis. This thesis introduces a novel method to automatically estimate

the landmarks on 3D models using Bayesian statistics. The Procrustes matching

of the landmark sets shows that the variation of Bayesian placements is much

smaller than the manual placements. Local shapes like “ridges” and “valleys”,

which are considered to contain rich geometric information, can be estimated

based on landmarks. Existing methods rely heavily on landmarks, but in most

cases, the number of landmarks is not enough and adding extra ones are time-and-

labour consuming. A flexible and user-customisable method is introduced in this

thesis to deal with complex surfaces marked with as few landmarks as possible.

A simulation study is conducted, and the result shows that the method is stable

and efficient in terms of local feature description.

After the 3D curve is estimated, methods to analyse the local features using the

curves are discussed. An algorithm to flexibly dissect the surface along the es-

timated curve is developed for extracting local pieces or divide the surface into



pieces. The novelty of this method is that it applies directly on 3D shapes and

dissects the shape along any 3D curves, such as the lip edge on a human facial

model. Besides the novel method for 3D shapes, curvatures, which reflect the

bending amount along the curves, are calculated. The curvatures of the same

local feature on different individuals are aligned to analyse the average shape dif-

ference of groups, such as gender and age. A reconstruction procedure from the

curvatures is discussed and the effect of noise on choosing the degree of freedom

in smoothing is investigated. Another application of the estimated curves is in

benchmarking the performance of different 3D camera systems. A new camera

system developed by NCTech®, Edinburgh, is assessed using the evaluation out-

come of facial deformity surgeries in Brazil. It is designed to be child-friendly,

portable and low-cost. Validation studies are carried out at three stages of the de-

velopment, and both landmarks and curves are used to evaluate the performance

of the new camera system on estimating local features in comparison with mature

products from DI4D® and Artec®.
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Chapter 1

Introduction

The rapid development of 3D imaging technology and processing methodology

greets the modern civilisation on a broad new stage. This evolution brings ap-

plications including built-in facial recognition system (e.g., Face ID) in mobile

phones, digitally-scanned virtual actors in films, inside-body detector and moni-

tor in medical studies, 3D digital preservation of cultural heritage etc. A more

colourful world for human beings has been constructed.

1.1 A brief history of 3D imaging technology

Most of the objects in the earth exist in 3D form, but do not directly appear in

the digital world, unless it is captured or constructed as 3D models. Analysis of

3D models requires accurate reconstruction of the object in the form of meshes,

which is widely used in the industry.

Six decades ago, the invention of the MOSFET (MOS field-effect transistor) [9] by

Mohamed M. Atalla and Dawon Kahng at Bell Labs triggered the development of

the digital camera image sensor. The first fully digital camera, FUJIX DS-1P was

produced by Fujifilm in 1988 [10]. The output, a 2D digital image, is composed

of pixels each with its intensity recorded over two-dimensional spatial coordinates

[11]. Since then, digital photography has come to life. After 1999 [12], digital

1
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images which were captured by phones with built-in image sensors have been sent

and shared by people all around the world in seconds.

However, even after digital photography was invented, it could not fulfil the de-

sire of capturing real-world objects with more than two-dimensional imagery. As

mentioned in Wade [13], the first 3D display appeared in the 1830s, achieved by

the earliest stereoscopes invented by Sir Shares Wheatstone. But at that time,

stereoscopy only showed a perception of 3D depth which was processed inside a

human brain when the two eyes were watching two different 2D images. An actual

3D image was first captured in the 1960s when the first 3D scanning technology

was invented [14].

Similar to a 2D image, a 3D image contains a 3D point cloud which is the scanner’s

estimate of the surface [14] of a real-world object. The 3D object reconstructed in

an image and displayed on a computer is called a 3D shape or a 3D mesh, while a

3D model or a 3D configuration is a mathematical representation of the 3D shape.

Modern 3D photography produces 3D images with texture, but it is not of interest

in this thesis.

Figure 1.1: Contact CMM [1] (left) and non-contact 3D scanner [2] (right)

3D imaging technology has developed rapidly with different types of scanner, re-

ferred to Leo and Manimegalai [15]. A 3D scanner can be categorised by surface-

contact and non-surface-contact. As shown in Figure 1.1, reliable contact mea-

surement of a complex 3D surface in manufacturing is created by a coordinate

measuring machine (CMM) [16]. It produces extremely precise 3D point clouds,

but there is also a risk of changing or even damaging the surface of the measured
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object, such as a human face or a fragile cultural relics. Thus, as summarised

by Leo and Manimegalai [15], the common 3D reconstruction methods are the

non-contact scanners, with three common technologies namely: passive and active

3D stereo camera systems, time-of-flight sensors and structured-light sensors. The

principle of those four methods is visualised in Figure 1.2. They can be grouped

into passive and active technologies.

Figure 1.2: Examples of different non-contact 3D scanners from DAQRI [3],

where “Projector” is the light emitter.

The non-contact passive stereo on the first left is a passive type whose development

is inspired by the principle of human stereoscopic vision. Normally there are digital

cameras (left and right) fixed slightly apart, each capturing a photo of the object

and the 2D images (image 1 and 2) are registered and analysed by software to

reconstruct a 3D image. The name “passive” comes from the nature of human eyes

seeing an object, which receives the natural visible light reflected by the surface of

the object and directed towards the eyes. However, if there is not enough natural

light, the active stereo scanner on the second left which has a projector actively

emitting light to the object may outperform the passive stereo scanner.

The last three technologies in Figure 1.2 all actively project the light to the object

by itself and measures the distance by receivers (sensors, normally digital cameras).

As Leo and Manimegalai [15] mentioned, the two most popular active technologies

are structured light scanning (the third left) and 3D laser scanning (the fourth left).
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Time-of-flight, or laser scanning, uses a beam emitter to project from the laser

source to the surface. A detector inside the camera system receives the reflected

light and records the corresponding time. With the known speed of light, the mea-

sured distance should be twice the distance between the scanner and the object,

at the point of the surface which reflects this beam of light. All the distances at

the points are measured by repeating this procedure so that the point cloud of

a 3D image can be created based on those distances. It performs better in large

objects measuring, such as buildings 3D reconstruction. But it also suffers from

inaccuracy because of the difficulty to catch the light. Thus, it is more useful when

scanning smaller objects.

The latest invention for scanning small objects is to project structured-light. It

performs well for both static and dynamic object. Instead of dots and stripes,

this type of scanner projects a pattern to the surface. As it captures the shape

from the deformation of the projected pattern on the surface by sensors near the

emitter, it also can record dynamic high-speed movements.

The data involved in this thesis are 3D shapes, including human faces and fish

mandible bones. Facial data are normally scanned with high-accuracy by high-

speed 3D scanners [17]. For example, Vittert et al. [7] used non-contact pas-

sive stereo camera designed by DI4D®. However, most state-of-art 3D scan-

ners are very expensive. In a project introduced in Chapter 5, we cooperated

with NCTech® (based in Edinburgh) to develop a low-cost non-contact active

structured-light scanner. We designed several validation studies to benchmark the

performance of each stage of the development and compared the outputs with the

products from DI4D® and Artec®, with details in Chapter 5. Compared with

facial data, fish mandibles are much smaller (1 centimetre each). The data were

scanned by Dr Kirsty McWhinnie using non-contact active laser scanners.

Instead of pixels in a 2D image, a 3D photo composed of a set of points, each

with its depth perception, is recorded by three-dimensional spatial coordinates.
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The photos that we are familiar with are converted from camera vector graph-

ics. However, the data in this research are point clouds connected by Delaunay

triangulation, the details of which are given in Section 2.2.

1.2 Motivation for curve identification

Nature has provided the common features that can be seen among every group of

creatures. The commonalities are defining elements of each species, whereas the

subtle differentiation makes the individuals. Curves, which represents the bending

size and direction of the surface, enable the first grasp of impression, then the

identification.

This thesis examines the curves of everyone’s fundamental feature, the face, and

establish its entity in the digital realm, in which the curve can be identified and

analysed. Besides the human face, the fish mandible contains the secret of evo-

lution. 3D shape analysis helps biologists to reveal the truth by showing the

statistical results between species.

The computational toolbox used in this thesis is the R language R Core Team

[18]. The algorithm of the methods was developed upon an unpublished R package

Adrian and Katina [19] in our lab which is called “face3d”. The new methods in

Chapter 3 and 4 are conducted by the algorithms written by myself.

1.2.1 Motivation for local feature extraction

Morphological modularity is a popular topic in Biology, where shape analysis is

applied based on its definition that the integration in a structure is compart-

mentalized with strong within-module and weak between-module integration, as

introduced in Klingenberg [20]. Previous studies, such as the genomics study, aim-

ing to find the gene which conducts adaptive divergence on shapes, analyse key

shape features through two-dimensional landmarks. For example, Parsons et al.
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[4] captures the shape to investigate morphological modularity by placing 15 land-

marks and 56 semi-landmarks which are in-between points of the landmarks on

the lateral left-side two-dimensional images shown in Figure 1.3.

Figure 1.3: The left 2D lateral view of a cichlid mandible with landmarks

(black larger dots) and semi-landmarks (black smaller dots). The figures are

taken from Parsons et al. [4].

In the anatomical area of interest, landmark-only shape analysis with the reduction

of one dimension loses much information to identify the key local feature of the

shape. Thus, this thesis introduces a novel approach to identify three-dimensional

curves on the shape which has a wide application in different disciplines. Here we

mainly focus on two: morphometrics analysis of Lake Malawi cichlid mandible and

shape analysis on the surgery of treatable facial deformity (cleft lip and palate).

Leng et al. [21] gave a comprehensive summary of methods to describe local fea-

tures and register images according to the local feature descriptors. In the early

stage of this topic, Moravec [22] introduced the Harris corner detector to match

images by a set of local points identified by a corner detector. The method was

evolved from the Moravec detector to the Harris corner detector, and extended

from matching images with small variations to a large range of images.

However, as pointed by Lowe [23], the Harris corner detector is not stable across

scale changes in the images. Although this problem has been solved, a fully affine-

invariant, including scale, rotation and translation, local feature descriptor is in

high demand. For example, Lowe [23] introduced a widely-used method of image
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matching and recognition, called Scale Invariant Feature Transform (SIFT), which

detect key points to match the images. Others include detecting regions, edges,

image contours and so on.

Chapter 3 introduces a novel approach to the estimation of 3D ridge and valley

curves as local feature descriptors, as ridge and valley curves contain rich infor-

mation of the surface which can be used in a variety of studies, such as shape

comparison, modelling and recognition. With those local feature descriptors, a

local region can be dissected with the contour and even the whole shape feature

can be analysed, as discussed in Chapter 4.

1.2.2 3D facial curve identification

Faces, the front of the head that hosts the eyes, nose and mouth, are crucial for

individuals’ identities. The modelling of a single face can be achieved by describing

the face as a manifold represented by discrete points. Identifying a curve on a

manifold can be a great challenge due to complex facial shapes and sophisticated

solid geometry relationships.

Applications of curve identification on facial shapes are widely used by indus-

tries, but more specifically, in medical practice. The curve is especially useful to

characterise specific diseases or illness, or evaluate the effect of facial surgery.

Curves on the face may not be as obvious as colour, but they are very informative

for shape analysis. This thesis explores the quantitative measurement of facial

surgery using a statistical method, by comparing pre-surgical and post-surgical

changes. Besides, a control group is introduced to compare with post-surgical

facial shapes to assess the success of the surgery. Both steps are required to fully

assess the success of the surgical operation.

The idea of analysing cleft-lip or cleft-palate patients is investigated, with par-

ticular focus on new-born infants in less developed countries. Quantitative mea-

surement based on curves can be used to establish a comprehensive database and

enable the analysis of the shapes and lead to better treatment.
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1.3 Thesis organisation

This thesis mainly introduces local feature extraction methods of 3D shapes. Be-

fore explaining the methods, Chapter 1 explains how the data used in this thesis

computationally created from real-world 3D objects and why 3D local feature

extraction is important for modern shape analysis; Chapter 2 describes all the

fundamental concepts used through the thesis including data structure, statistics,

differential geometry, shape analysis and algebra.

As the first part of the key findings, Chapter 3 introduces two local feature extrac-

tion methods with 3D curves as the descriptor. The first is a further development

of an existing method Vittert et al. [24], where the geodesic distance is measured

instead of the Euclidean distance approximation. It works well on less complex

surfaces, while the second method is a novel approach which can deal with fluctu-

ate shapes, even with holes.

Chapter 4 and 5 includes different aspects of curves applications. The novel meth-

ods include the dissection of 3D shapes along the estimated curves and the as-

sessment of imaging performance based on curves in developing a new camera

system. Others are applications of the curves on traditional shape analysis, such

as principal component analysis to compare shape difference between groups, curve

alignment and reconstruction. They are typical applications of the extracted local

features.

Chapter 6 introduces a novel approach to automatically localise landmarks on

3D shapes by a Bayesian model. It meets the requirement from the difficulty to

manually place landmarks in all the chapters above.

Chapter 7 contains a summary of the thesis and the limitations that the study

should consider. It also suggests future work to further investigate the methods

in this thesis and their possible applications.
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Background concepts

2.1 Data collection

In general, the data involved in this thesis are three-dimensional images of real-

world objects, with an example shown in Figure 2.1 (left). The image consists of

discrete points with three-dimensional (3D) coordinates captured by stereo cam-

eras, as the small dots shown in Figure 2.1 (middle).

In this thesis, a “point” refers to the mathematical representation of a three-

dimensional coordinates, and a “dots” represents the visualisation of a “point”.

The coordinates of the points correspond to an arbitrary coordinate system, de-

noted by x, y, z, created by the camera system. These can be stored as a matrix,

where each row contains the coordinates of each 3D point and each column refers

to a dimension. The row number of each point is used as its index. For example,

if the data consist of 10 points, the matrix will have 3 columns and 10 rows, and

the indices of the points are from 1 to 10.

The imaging system also processes the 3D points to become vertices of triangles

based on Delaunay triangulation [25]. As can be seen in Figure 2.1 (right), the

surface of the object is displayed by a set of triangles. The number of triangles

will increase with a higher resolution of the image. The triangles are stored with

the indices of their vertices as groups of three.

9
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Figure 2.1: Left: A 3D image of a human lip which is captured and processed

by a 3D Artec® imaging system; Middle: The point cloud in the image; Right:

The image is displayed by triangles whose vertices form the point cloud.

Landmarks are also 3D points. Referring to Katina et al. [26], they represent well-

defined correspondence across objects. Another data structure involved in this

research is a curve on a 3D image. Curves are characterised by a set of successive

3D points on the image. Landmarks and the points on the curve can either be the

observations (triangle vertices) captured by the camera system, or the estimates

in-between the observations, but they are all considered to be on the surface.

Figure 2.2 shows an example of a mid-line lip curve (black and red dots) on a 3D

image. To highlight the curve on the image, the points which lie on the curve

are plotted with a much larger size than the point cloud in Figure 2.1 (middle).

The curve is identified with the guidance of two anatomical landmarks (black

larger dots) by the method in Chapter 3. The landmarks lying on the corners of

the lip are manually placed in the ©IDAV system Landmark. The definitions of

landmarks and curves will be illustrated further in Section 2.2.1.

Figure 2.2: A mid-line lip curve (red large dots) with landmarks (black larger

dots) which is identified on a 3D lip image.
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2.2 Fundamental materials in use

Figure 2.3 shows an example of a 3D triangulated local surface.

Figure 2.3: A 3D triangulated surface. The vertices, including p, are the

points observed by the 3D camera system. Adjacent points processed in the

same triangle are connected by triangle edges.

Shape index and principal curvature are two key concepts in this research.

Principal curvatures measure the maximum and minimum bending of a 3D surface

at any point, along the directions of two principal vectors on its tangent plane.

To evaluate the principal curvatures of a point (e.g., p in Figure 2.3), its adjacent

points are first found by which share the same edges. The shared edges are denoted

by −→e i = (ei1, ei2, ei3), as shown in Figure 2.3.

A normal vector of a point is the vector which is orthogonal to the tangent plane

at the point. In this thesis, define the normal vector pointing out of the surface,

e.g., pointing to the front on a facial image The normal vector −→n p of the surface

at point p is obtained by averaging the cross products of paired adjacent −→e i. In

detail, if there are N edges which share point p (N = 6 in Figure 2.3), the normal
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vector at p to the surface will be

−→n p =
1

N

N∑
i=1

−→e i ×−→e i+1

=

(
1

N

N∑
i=1

(ei2ei+1,3 − ei3ei+1,2),
1

N

N∑
i=1

(ei3ei+1,1 − ei1ei+1,3)

,
1

N

N∑
i=1

(ei1ei+1,2 − ei2ei+1,1)

)
,

(2.1)

where −→e N+1 = −→e 1. The unit normal vector of p is
−→
N p =

−→n p

|−→n p| .

A local coordinate system at point p can be constructed by: its unit normal vector
−→
N p, one of the edge vectors (−→e i in Figure 2.3) denoted by −→x u(p) = (pu1, pu2, pu3)

and the cross product of
−→
N p and−→x u(p) denoted by−→x v(p) = (pv1, pv2, pv3). Used as

three axes of the local coordinate system, those three vectors are all standardised

by their modulus. For convenience, denote the three local axes by Xu(p), Xv(p)

and Np, where Np is the normal to the surface and Xu(p), Xv(p) denote orthogonal

axes in the tangent plane of p.

Any point qi = (xqi, yqi, zqi) in the neighbourhood of p can be projected to this

local coordinate system. Note that the axes x, y and z in this local coordinate

system are Xu(p), Xv(p) and Np. The projected coordinates are as follows.

qi,projected = (aXu(p), bXv(p), cNp)

= (〈−→pqi, Xu(p)〉Xu(p), 〈−→pqi, Xv(p)〉Xv(p), 〈−→pqi, Np〉Np) (2.2)

A local shape of p which consists of qi,projecteds can be fitted the model

z = f(x, y) =
A

2
x2 +Bxy +

C

2
y2 +Dx3 + Ex2y + Fxy2 +Gy3. (2.3)

The Weingarten matrix [27] at the point p = (xp, yp, zp) is

W =

A B

B C

 . (2.4)



Chapter 2. Background concepts 13

The principal curvatures of p are the eigenvalues of its Weingarten matrix W .

The two principal curvatures describe bending along and across a ridge or a val-

ley curve. Referring to Ohtake et al. [28]1, a ridge curve or a valley curve can

be defined by principle curvatures. Denote the maximal and minimal principal

curvatures of the surface by κmax and κmin (κmax > κmin); the corresponding prin-

cipal directions by
−−→
dmax and

−−→
dmin; the first derivatives of the principal curvatures

in their corresponding principal directions by κ′max = ∂κmax

∂
−−−→
dmax

and κ′min = ∂κmin

∂
−−−→
dmin

. A

ridge curve satisfies

κ′min = 0,
∂κ′min

∂
−−→
dmin

> 0, κmin < −|κmax| (2.5)

and a valley curve satisfies

κ′max = 0,
∂κ′max

∂
−−→
dmax

< 0, κmax > |κmin| (2.6)

The bending across a ridge is described by κmin which is negative and the bending

across a valley is described by κmax which is positive. Thus, a more convex ridge

shape has smaller κmin, while a more concave valley shape has larger κmax. For

convenience, a more convex or concave shape is regarded as having a stronger

principle curvature.

These two principal curvatures can also be denoted by the first principal curvature

κ1 = κmax and the second principal curvature κ2 = κmin, where κ1 > κ2. For

example, to highlight the ridges by yellow, the 3D image of a human lip in Figure

2.5 (left) is coloured by 1− κmin with its colour indicator on its right. The range

of κmin is [-0.18,0.09], so the range of 1− κmin is [0.91,1.18].

While curvatures give the bending strength, shape index (SI)[5] represents the

shape category at any point p. In other words, the shape at any point can be

1Ohtake et al. [28] uses an opposite definition of ridge and valley curves, because the normal
vector is defined pointing into the surface, while here it is pointing out of the surface.
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categorised by SI based on the value of principal curvatures.

SI =
2

π
arctan

(
κmin + κmax
κmin − κmax

)
. (2.7)

It can be regarded as a mapping of the shape type to the range [-1,1]. Figure 2.4

adapted from Vittert et al. [24] gives some examples of the value of SI. It can be

used to recognise local shape with a similar type of the surface, such as the middle

horizontal valley of human lips. The difference between principle curvatures and

SI is shown in Figure 2.5, where the figure on the right shows the same image but

coloured by SI with its colour indicator on its right (−0.99 < SI < 0.98). The

vertical middle of the lip shows a convex shape so that it has SI close to 1 with

red colour, and the strong curvature κmin with brown colour.

Figure 2.4: Local surfaces associated with the shape index on the scale from

-1 to 1, with colour coding to identify each shape category [5].

Figure 2.5: Left: a 3D image which is coloured by 1 − κmin of each point;

Right: coloured by the shape index of each point. Both have their colour

indicator (bar) by their right-hand side.
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2.2.1 Local features identification

Local features on a face can be represented by landmarks and curves. The captured

image can be loaded into the ©IDAV system Landmark, which allows landmarks

to be manually placed. The surface can be displayed in a 3D space and the

landmarks can be placed anywhere on the surface in the system with the normal

vector shown to assist the placements. Figure 2.6 shows an example of a facial

surface displayed in the system with 23 anatomical landmarks defined by Katina

et al. [26].

In addition to landmarks, curves which consist of successive 3D points are another

form of data with geometrical information. Arc length is an important measure-

ment of curves. The discrete points on a 3D curve are ordered and denoted by

p0, p1, p2, . . . . The arc length of the nth point pn = (xn, yn, zn) on the curve in the

space expanded by three dimensions x, y and z is defined by

sn =
n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2. (2.8)

Figure 2.6: An example of manually placing the landmarks on a human face.
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2.2.2 OPA, GPA, PCA and LDA in shape analysis

Dryden and Mardia [29] illustrated methods to analyse two or more configura-

tions. Generalised Procrustes Analysis (GPA) is a popular method to match a set

of configurations. It is derived from Ordinary Procrustes analysis (OPA) which

matches two configurations by minimising their distances. The principle of OPA is

to remove location (γ), rotation (Γ) and scale (β) differences between two shapes.

Denote two sample configurations by X1 and X2. OPA seeks to minimise the

squared Euclidean norm ‖X2 − βX1Γ − 1kγ
T‖2 which is called the Procrustes

distance between X1 and X2; while GPA seeks to minimise the total squared

Euclidean norm of n samples as follows (n > 2).

GSS =
1

n

n∑
i=1

n∑
j=i+1

‖(βiXiΓi + 1kγi
T)− (βjXjΓj + 1kγj

T)‖2 (2.9)

where GSS denotes the Generalised Sum of Squares in GPA. However, in some

studies, subjects of different ages are sampled and the size difference is also of inter-

est. So Ordinary partial Procrustes and Generalized partial Procrustes are applied

instead of full OPA and GPA. Without removing scale (β) differences, Ordinary

partial Procrustes minimises the squared Euclidean norm ‖X2 − X1Γ − 1kγ
T‖2,

while partial GPA minimises the total squared Euclidean norm of n configurations

as follows (n > 2).

1

n

n∑
i=1

n∑
j=i+1

‖(XiΓi + 1kγi
T)− (XjΓj + 1kγj

T)‖2 (2.10)

The population mean shape, or average configuration, after full GPA can be esti-

mated by the sample average configuration X̄ = 1
n

n∑
i=1

(βiXiΓi + 1kγi
T), while the

partial GPA version is X̄ = 1
n

n∑
i=1

(XiΓi + 1kγi
T).

Dryden and Mardia [30] described a principal component model for shape which

is developed by Cootes et al. [31]. A configuration X whose coordinates are stored
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in a matrix can be vectorised as

x = vec(X), (2.11)

where X is a matrix with m columns and n rows, and x is a vector with length

mn constructed by stacking the columns of X. Following the notation in Dryden

and Mardia [29], the inverse operator of vec(·) is vecm
−1(·)

X = vecm
−1(x). (2.12)

In a principal component model, the shape difference is decomposed by principal

components which are obtained from the sample covariance matrix of a set of vec-

torised configurations. However, for configurations of more than two dimensions,

the distribution is too complex to calculate the variation of the shapes. Thus,

the shape variations are approximated using tangent coordinates in the tangent

space, instead of the original coordinates of a configuration Xi. In Procrustes

tangent space, the pole is first chosen, for example, to be the average configura-

tion. The configuration Xi is transformed by translating, rotating and rescaling

by Procrustes analysis so that the transformed Xi
P is as close as possible to the

pole. The Procrustes tangent coordinates are the Procrustes residuals

ri = vec(Xi
P )− vec(X̄) = xi

P − x̄. (2.13)

The sample covariance matrix of Procrustes residuals is

sr =
1

n

n∑
i=1

(ri − r̄)(ri − r̄)T. (2.14)

where r̄ = 1
n

n∑
i=1

ri. The principal components (PCs) are calculated by the eigen-

vectors of sr and denoted by vi. The corresponding eigenvalues λi is the shape

variation along the ith PC. The principal component score of the ith subject on
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the jth PC is calculated by

sij = vTj (ri − r̄). (2.15)

As the ith eigenvalue λi of sr represents the variance of Procrustes residuals along

the ith PC, the typical shape with two standard deviations from the pole along

the ith PC is characterised by

Xt = vecm
−1(xt) (2.16)

= vecm
−1
(
x̄+ r̄ + 2λi

1
2vi

)
. (2.17)

If the Procrustes residuals r come from different groups, they can be used to build

classification rules to predict the group of a new set of residuals. This thesis will

only consider the two-class case of Linear Discriminant Analysis (LDA).

Following the notations in Lindo [32], LDA assumes that each group Cg is normally

distributed with a group-specific mean µg and a common covariance matrix Σ.

Denote the probability that randomly chosen object belongs to the gth class by

{πg}=P(Cg). Based on the Bayes’ Theorem, the posterior probability used to

indicate the “confidence” in a given classification is

P(Cg|r) =
P(r|Cg)P(Cg)
2∑
i=1

P(r|Ci)P(Ci)

, g = 1, 2 (2.18)

The discriminant rule is that an object should be allocated to the class which has

the largest posterior probability. Suppose the length of the Procrutes residual of

an individual is p, the likelihood will be

P(r|Cg) =
1

(2π)
p
2 |Σ| 12

exp

{
−1

2
dg(r)

}
, g = 1, 2 (2.19)
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where dg(r) = (r − µg)TΣ−1(r − µg). Then the posterior probabilities

P(Cg|r) =
πg exp

{
−1

2
dg(r)

}
2∑
i=1

πi exp
{
−1

2
di(r)

} , g = 1, 2 (2.20)

where πi = 1
2
. µg is estimated by the average Procrustes residuals of each group

and Σ is estimated by the pooled covariance matrix

S =
1

n− 2

2∑
g=1

(ng − 1)Sg, (2.21)

where n is the total sample size, ng is the sample size of each group and Sg is

the sample variance of each group. Then the object with observation r would be

classified into class 1 if and only if P(C1|r) > P(C2|r).

2.2.3 Nonparametric smoothing methods

The statistical models, such as curve estimation, of local features, are non-parametric,

so smoothing is essential. Chapter 3 and 4 discuss the estimation and application

of curve estimates, where piecewise smoothing methods are involved, including

local linear regression, natural (cubic) smoothing and penalty spline smoothing.

Those smoothing methods use the combination of piecewise polynomials to fit

discrete observations and evaluate using the fitted models.

Local linear regression

The ordinary least squares (OLS) regression uses the residual sum of squares (RSS)

to measure the overall model fit. Suppose we have a set of observations {xi, yi},

i = 1, . . . , n. The coefficients of the regression are chosen by minimising the

squared difference between each yi and its fitted on the regression line.

RSS =
n∑
i=1

(yi − xiᵀβ)2 = (y −Xβ)ᵀ(y −Xβ) (2.22)
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So the coefficient estimate which minimises Equation 2.22 can be derived as

β̂ = (XᵀX)−1Xᵀy. Define a hat (smoothing) matrix by S = X(XᵀX)−1Xᵀ and

the degree of freedom is defined by the trace of the hat matrix df = trace(S)

which equals to the sample size minus the number of predictors or columns of

X. However, the data in this thesis vary heavily and cannot be fitted well by

a straight line. As introduced by DeVeaux et al. [33], the local linear regression

takes the local average of the response variable and estimates the coefficients at x

by minimising

RSSl =
n∑
i=1

w(xi − x;h)(yi − xi − xᵀβ)2 = W (y −Xβ)ᵀ(y −Xβ) (2.23)

where w(·) is a weight function which gives more weights to the observations close

to x and h determines the range of the local average. Different from the OLS

regression, the locally estimated scatterplot smoothing (LOESS) uses the local

average of the observations to fit in the model and presents a smoother regression

curve. The smoothing matrix becomes Sl = W ᵀX(XᵀWX)−1XᵀW and the degree

of freedom is still defined by its trace. In Chapter 4, the smoothness of the fit will

be adjusted by changing the degree of freedom. The smoothness will increase when

dfl decreases and the optimal dfl for smoothness will be found by experiments.

Natural (cubic) spline smoothing with penalty

Another popular nonparametric smoothing method is to fit piecewise cubic poly-

nomials and add a penalty to RSS which controls the smoothness of the fit. The

penalised residual sum of squares is

RSSc =
n∑
i=1

(yi − f(xi))
2 + λ

∫
f ′′(x) dx = (y − m̂)ᵀ(y − m̂) + λm̂ᵀA (2.24)

In other words, following the notation in Hyndman [34], the piecewise cubic

polynomials h1(x) = 1, h2(x) = x, h3(x) = x2, h4(x) = x3, hj(x) = x − κ3j−4

for j = 5, . . . , k + 4 are the predictors and determined by a set of k knots

κ1 < κ2 < · · · < κk. Suppose Bij = hj(xi) is the basis matrix, then the RSS
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becomes

RSSc = (y −Bβ)ᵀ(y −Bβ) + λβᵀΩβ (2.25)

where Ωjk =
∫
hi
′′(x)hj

′′(x). The smoothing matrix is Sc = B(BᵀB + λΩ)−1Bᵀ.

In order to be comparable with other methods, the smoothness is still adjusted by

the degree of freedom, which is the trace of Sc.

Basis spline smoothing with penalty

Equation 3.5 in Section 3.2.2 uses a P-spline smoothing technique which is B-

spline smoothing with a penalty. A basis spline, or B-spline, was introduced by

de Boor [35] as a function which is a piecewise polynomial with order q + 1 or

degree q of a variable or variables (for a high-dimensional basis spline function).

For a one-dimensional basis spline function, the pieces are defined on the intervals

whose start and end values are called knots.

The left of Figure 2.7 (a) shows a basis spline consisting of two polynomials of

order 2 whose non-zero parts are defined on intervals [t1, t2] and [t2, t3], where

the tis are values of the variable T . The left of Figure 2.7 (b) shows a basis spline

consisting of three polynomials of order 3 whose non-zero parts are defined on

intervals [t1, t2], [t2, t3] and [t3, t4]. On the right of Figure 2.7 shows more basis

splines of order 2 in (a) and order 3 in (b).

Figure 2.7: Visualisation of basis splines of degree 1 (a) and degree 2 (b) from

Eilers et al. [6]

The use of basis splines is to fit a smoothing curve to a set of discrete observations

whose coordinates are denoted by (xi, yi), where the xis are observations of T .
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Following the notation in Eilers et al. [6], the fitted smooth function is a linear

combination of n basis splines.

ŷ(x) =
n∑
j=1

α̂jBj(x; q) (2.26)

where Bj(x; q) denotes the jth basis spline function of variable x with degree q;

α̂j is called a parameter in this fitting. The fitting is determined by the number

of knots (or n) and the degree q.

However, the variation of the fitted curve will increase with a larger number of

knots. O’Sullivan [36] and Eilers et al. [6] introduced some solutions that added in

another constraint to control the variation. The latter is an approximation of the

former, but has the advantage that it is more applicable. Thus, we use B-spline

smoothing with a penalty on (higher-order) finite differences of the coefficients of

adjacent B-splines, developed by Eilers et al. [6].

The RSS to minimise in regression is the deviance between the observation and

the fitted value

RSSb =
m∑
i=1

(yi − ŷi)2 =
m∑
i=1

(
yi −

n∑
j=1

α̂jBj(x; q)

)2

(2.27)

Adding the kth difference penalty, the RSS becomes

RSSbp =
m∑
i=1

(
yi −

n∑
j=1

α̂jBj(x; q)

)2

+ λ
n∑

j=k+1

(δkαj)
2 (2.28)

where λ is a parameter and δ is a difference operator (δ(1)αj = αj − αj−1 and

δ(k)αj = δ(δ(k−1)αj)).

Based on one-dimensional basis splines, Eilers et al. [37] extended their work to cre-

ate two-dimentional basis splines by the tensor products of n1+n2 one-dimensional
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basis splines. The fitted function becomes a surface as follows.

ŷ(x) =

n1∑
i=1

n2∑
j=1

α̂ijBi(x1; q)Bj(x2; q) (2.29)

Two-dimensional penalty spline smoothing will be described and implemented in

Section 3.2.2.



Chapter 3

Identifying 3D curves with

landmarks

In local feature extraction, 3D curves can provide much richer geometry infor-

mation than 3D landmarks. With the rapid development of high-resolution 3D

camera systems, 3D curves can be estimated with much higher accuracy. This

chapter discusses two approaches to estimate curves on 3D shapes. The first

method is a further development of Vittert et al. [7] where the geodesic distance

is approximated by the Euclidean distance. The second is a brand-new approach

to estimate curves on relatively complex surfaces without the guidance of large

number of landmarks. A simulation study is included to test the performance of

this new method under the pressure of random noise.

3.1 A brief history of 3D curve estimation

In the last few decades, 3D object recognition has become a popular research topic.

As Guo et al. [38] mentioned, there are three procedures of 3D object recognition:

detecting 3D keypoint (or landmarks), describing local features of the object and

comparing objects. Guo et al. [38] provided a comprehensive summary of efficient

24
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methods before 2015. However, the local feature of an object can be better de-

scribed by curves which are prominent with rich geometric information and can be

used to recognise or compare objects. Thus, many researchers including biologists

have started to analyse shapes with curves instead of conventional landmark-based

methods.

Curve estimation can be grouped into two categories: estimating from meshes and

point clouds, as summarised by Daniels et al. [39]. Much research is based solely on

3D point clouds, instead of on a 3D triangulated mesh. For example, Daniels et al.

[39] used and improved Robust Moving Least Squares (RMLS) to extract points

on the surface where it bends sharply. Curves are identified by connecting subsets

of those points and can also be used to build triangulations for the surface. This

method works well on objects whose surface bends more than 90 degrees within

a small range, such as creases, but might be challenging where the surface has a

mild bump to estimate.

Others were interested in estimating curves directly on 3D triangulated meshes.

Lin et al. [40] summarised a set of surface fitting-based methods. For instance,

Ohtake et al. [28] developed a method to detect ridges and valleys which have effi-

cient power to describe shapes. The detected ridges and valleys lack connectivity,

but their principle can be a good guide to future researches. In fact, our method

described in Section 3.4 is inspired by Ohtake et al. [28]. Hildebrandt et al. [41]

studied the triangles individually and examined on the principal curvatures of its

vertices to select candidate edges and smooth the result. This method does well in

extracting feature lines on a 3D object. However, it can be problematic when it is

used to estimate a contour of a closed area, as the ridges (or valleys) are estimated

together and it lacks connectivity with nearby curves.

There are also many effective methods in computer science with the help of ma-

chine learning. Zhang et al. [42] extracted lines as the contours of large objects,

based on Deep Neural Network (DNN). Similar to other methods based on Con-

volutional Neural Network (CNN), this requires a huge training data set. Davies

et al. [43] finds curve parameterisation by optimising an objective function which
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is used to build a measurement of shape qualities. They parameterised each point

on a 2D curve by its proportional distance to the left and right neighbours. The

parameterisation is extended to 3D by the proportional distance to the vertices of

the triangle where the point on the curve lies. Because the curve is identified by

the optimal objective function, this method is time-consuming and also infeasible

when the data set is large.

This chapter aims to introduce some methods which are user-friendly on automatic

3D curve estimation. The methods work with 3D triangulated meshes and do not

require training data sets. They are all implemented in R, but the algorithm can be

programmed in other software environments, such as Matlab. The estimation can

be adjusted easily by changing parameters, to satisfy the user’s need. There are

two contributions in this chapter. Section 3.2.2 describes a further development of

an existing method which is introduced in Section 3.2.1. This method is designed

to deal with normal surfaces without gaps or holes, while the second method

introduced in Section 3.4 is a brand-new approach which focuses on complex shapes

where there is not enough information or landmarks to guide the curve estimation.

3.2 Statistics principles

3D curves were introduced in Section 2.2, consisting of successive discrete points.

Because the image (observed manifold) from a 3D camera system is an estimate of

the true manifold of the photographed object, the identified curve on the image is

also an estimate of a curve on the observed manifold. Vittert et al. [24] discussed

a parameterised curve over a true manifold, defined by the functions x, y and z

of the arc length s, which can be denoted by p(s) = ((x(s), y(s), z(s)). They also

emphasised that if the image error reduced (e.g. after repeated sampling), the

identified curves would converge to the true curve.



Chapter 3. Identifying 3D curves with landmarks 27

3.3 Plane cuts and subsequent flexible adjust-

ments

This section will first introduce an existing method to estimate curves Vittert et al.

[7]. It estimates curves by adjusting the intersect of a 2D plane and the surface.

Within this adjustment, there is one step which approximates the distance along

the surface by the Euclidean distance. This method works very well on relatively

“smooth” surfaces, such as human faces. However, it may fail on complex surfaces

with gaps or holes where this approximation has large deviance. The contribution

of this thesis in Section 3.2.2 is to calculate the actual geodesic distance without

large computational pressure.

3.3.1 Identify a “plane cut” on the shape

To identify anatomical curves on human faces, a methodology has been developed

by Vittert et al. [7] which starts by creating a “plane cut” between two landmarks

on a 3D surface. As there is no indication where the curve lies, the initial step

is to identify the location where a plane in 3D intersects with the edges of the

triangulation. As shown in the red dashed curve in Figure 3.1, this “plane cut”

lying on the surface consists of 3D red crosses, starts at landmark l1 and ends at

landmark l2. So the aim is to identify the coordinates of the red crosses.

Figure 3.1: Interpolate a “plane cut” on the surface
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Firstly, if the cross product of the normal vector at l1 and vector
−→
l1l2 is denoted

by −→c , then −→c and
−→
l1l2 will define a plane going through l1 and l2, whose normal

vector is −→c , .

Secondly, the points on the surface which lie on either side of the plane can be

distinguished by comparing the lengths of their projections on −→c , the normal

vector of the plane. In detail, suppose that the coordinates of l1 are (l11, l12, l13).

The length of the projection of
−→
l1 on −→c can be calculated by the inner product

of
−→
l1 and −→c = (c1, c2, c3), which is l1,projected = 〈

−→
l1 ,
−→c 〉 =

3∑
i=1

cil1i. For any point

p = (p1, p2, p3), the length of its projection on −→c can be evaluated in this way, so

that pprojected =
3∑
i=1

cipi. Thus, the points on the surface will be divided into two

groups of larger lengths than l1,projected or smaller, corresponding to left or right

of the plane.

Thus, a dummy variable r which has only two values: 0 (left) and 1 (right), can

be used to characterise the position of a point with respect to the plane. Because

the image data consists of the indices of the triangles and the coordinates of their

vertices, the following procedure starts from the triangles instead of the edges. For

a triangle (indexed by the camera system) with three vertices all on one side of the

plane, it will be either
3∑
i=1

ri = 0 or
3∑
i=1

ri = 3. So the triangles whose intersections

with the plane are not empty will be selected by 0 <
3∑
i=1

ri < 3. For each selected

triangle, the edges whose two vertices (red dots in Figure 3.1) have different values

of r will then be marked. As an edge is shared by two triangles, these marked

edges can be sorted one-by-one in order.

Lastly, the coordinates of the red crosses (gi = (gi1, gi2, gi3) in Figure 3.1) can

be obtained based on the coordinates of the vertices (p = (p1, p2, p3) and q =

(q1, q2, q3) in Figure 3.1) which are on the same edge and −→c = (c1, c2, c3) as

following.

−→gi = −→p + λ−→pq, (3.1)
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where λ is the proportion of the length of −→pgi over the length of −→pq. Because −→c is

orthogonal to the plane which gi and l1 lie on, λ can be obtained by the projections

of p, q and gi on the vector −→c .

λ =
〈−→c ,
−→
l1 〉 − 〈−→c ,−→p 〉

〈−→c ,−→q 〉 − 〈−→c ,−→p 〉
(3.2)

=

∑3
i=1 cil1i −

∑3
i=1 cipi∑3

i=1 ciqi −
∑3

i=1 cipi
. (3.3)

Therefore, a series of ordered discrete points (l1, g1, g2, . . . , gN , l2) can be obtained,

by which a curve is constructed.

3.3.2 A flexible adjustment of the “plane cut”

A series of “plane cuts” can be obtained on the plane containing
−→
l1l2, by rotating

−→c with different angles θ around the unit vector of
−→
l1l2

(
denoted by

−→
L =

−−→
l1l2

|−−→l1l2|

)
.

The rotation matrix R is from Rodrigues’ rotation formula [44].

R = −→c cos θ + (
−→
L ×−→c ) sin θ +

−→
L 〈
−→
L ,−→c 〉(1− cos θ). (3.4)

The black plane path on a human lip shown in Figure 3.2 illustrates this. The

optimal path was selected by maximising the integral of curvatures along the path.

However, we can see that the initial “plane cuts” do not quite capture the valley

curve of the lip. So a more flexible estimate can be investigated by an adjustment

procedure, where initial “plane cuts” will be used as an initial curve estimate,

called the reference path.
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Figure 3.2: An example of the adjustment procedure [7]. Left: yellow are

two landmarks; the black curve is the reference path; red points are ones on the

related local area with negative SI; green points are red points’ the closest points

on the black curve; Middle: all points on the plot are ones on the related local

area, such as the red points on the left figure, and are coloured according to κ1.

Right: the points on the middle plot are fitted. The path with a maximum κ1

on this related local area is shown in red.

This procedure first projects three-dimensional data into two dimensions. At first,

an appropriate subset of the shape can be selected with appropriate values of

shape index (for a valley, all points with negative SI). For any 3D (red) point on

the shape, its Euclidean distance from the reference path is computed (vertical

axis in Figure 3.2). This distance is measured to the closest point (green) on the

reference path and denoted by dp. The other dimension (horizontal axis in Figure

3.2) contains the arc length of the closest (green) point along the reference path

and is denoted by sp. The middle plot in Figure 3.2 is the result of this projection.

Each point on this plot refers to a 3D point on the lip shape.

Besides, suppose that the maximum (negative for a ridge and positive for a valley)

principal curvature is κ1. All the points on the plot were coloured according to

their κ1 values the same with Figure 2.5 (left), which is used for visualisation of

the size of the bending degree for each point. The colour will be closer to yellow

when its curvature is larger and closer to blue when its curvature is smaller.

As shown in Figure 3.2 (middle and right), the horizontal middle lip curve has

maximal curvature in the lip valley. According to this characteristic, for each arc
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length sp on the middle plot in Figure 3.2, we seek to identify the perpendicular

distances at which κ1 is maximised. Then a curve consisting of a set of discrete

2D points would be found and smoothed by spline smoothing with a penalty on

the second-order difference as in the following procedure.

For convenience, the investigated principal curvature κ1 is simplified by κ. As

shown in the middle plot in Figure 3.2, each point is coloured by its curvature

κ. In order to estimate the location at any arc length s, κ is fitted by two inde-

pendent variables, sp and dp. Basis function constructed as the product of two

one-dimensional cubic splines were used, with a penalty the second-order difference

on the fitting coefficients βij. In other words, κ was fitted by the tensor product of

two set of basic cubic spline functions, φ(s) and φ(d). Then the objective function

to minimise for the fitting of curvatures κ is

S =
∑
p

∑
i

∑
j

{κ(sp, dp)− βijφi(sp)φj(dp)}2 + λ

(∑
i

(∆2βij)
2 +

∑
j

(∆2βij)
2

)
(3.5)

where λ is the penalty parameter and ∆2 denotes the second order difference.

For an adequate flexibility for the fitted surface, the coefficient estimates β̂ij were

obtained by fixing the penalty parameter λ to be equivalent to 12 degrees of

freedoms (df in Equation 3.6).

df(λ) = trace(Φ(ΦTΦ + λD)−1ΦT). (3.6)

In this way of constructing the curvatures κ and the estimation of coefficients β̂ij,

the red curve on the third plot in Figure 3.2 will be obtained by an iteration of

Newton’s method. The aim is to find a series of points with maximum total cur-

vature by maximising the following function, where the integration of curvatures

along the arc length is calculated by a discrete approximation.

M =
1

N

N∑
p=1

κ(sp, αp)− λαTPα, (3.7)
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where N is the total number of pairs of si and αp on a particular curve α. Here α

is a function of arc length s, and P = DTD where D is the second order difference

matrix [45]

D =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 .

The penalty parameter λ in Equation 3.7 is user-defined. For example, 0.5 is an

experimentally efficient value for the balance between deviance and smoothness

on human facial curves. The starting point of the iteration is to set α = 0. The

iteration equation is

α(m+1) = α(m) −H−1(α(m))f(α(m)), (3.8)

where f represents the first derivatives of αp and H denotes the second derivatives

matrix. The convergence consisting of a set of discrete 2D points will finally be

obtained where Equation 3.7 is maximised.

∂M

∂αp
=
∑
i

∑
j

β̂ijφi(sp)φ
′
j(αp)− 2λ(Pα)p (3.9)

∂2M

∂α2
p

=
∑
i

∑
j

β̂ijφi(sp)φ
′′
j(αp)− 2λ(P )p,p (3.10)

∂2M

∂αp∂αq
= −2λ(P )p,q. (3.11)

To transfer back to 3D, for each point pc = (sc, dc) on the final curve, the three sur-

rounding points in the Delaunay triangulation and three Barycentric coordinates

δi, i=1,2,3, were calculated, so that pc = (sc, dc) = (
∑3

i=1 δisi,
∑3

i=1 δidi). Then the

transferred 3D coordinates would be (xc, yc, zc) = (
∑3

i=1 δixi,
∑3

i=1 δiyi,
∑3

i=1 δizi),

where (xi, yi, zi) are the coordinates of the surrounding vertices in the correspond-

ing 3D triangulation. Figure 4.17 shows an example of identified human facial

curves using this procedure.

In some cases, the reference path consists of several “plane cuts” and the following
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smoothing procedure will be the same. This situation results from when there is a

sudden change of direction, and there exist semi-landmarks used to provide specific

positions on the curves between two anatomical landmarks.

Figure 3.3: An example of identified anatomical curves on a human face [8]

3.3.3 An example of estimating curves on fish mandibles

Research on the shape of fish mandibles was carried out in cooperation with Dr

Kirsty McWhinnie in the Institute of Biodiversity, Animal Health and Compara-

tive Medicine (IBAHCM). As traditional biological methods are based solely on

landmarks, this project investigated a novel approach which identified anatomical

curves on three-dimensional shapes.

The data consist of 177 fish jaws, as shown in Figure 3.4, which are the descendants

of two kinds of fish. The units of the data have not been given, but the size of the

jaws is about 1 or 2 centimetres. There are in total 34 landmarks on each fish jaw,

including anatomical ones and semi-landmarks. Because of the complexity of the

rugged shape, only five principal anatomical curves can be identified satisfactorily

using the method by Vittert et al. [7]. Finally, five curves and five pairs of single

landmarks (red in Figure 3.4) were used as a representation of the shape of the

fish mandible for further analysis.
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Figure 3.4: An example of a fish mandible with identified curves

3.4 Problems with the existing method

The smoothing procedure introduced in Section 3.2.2 has been very effective in

estimating curves on three-dimensional objects. However, there is a potential dan-

ger when the distance of any point to the reference path is not well approximated

by Euclidean distance. There may not be any marked deviation for objects such

as lips on human faces, as the surface of the shape is flat enough for the approxi-

mation to be good.

However, shapes may have a folded surface where there is a curve to estimate

nearby. Figure 3.5 shows an example of a shape with its top view on the left

and bottom view on the right. The black dots are the identified curve which is

estimated by the smoothing procedure in Section 3.2.2. After interpolating back

to three-dimensional space, some points on the created 3D curve will jump into

the hole, or jump far away from other curve points. The missing points of the

curve in the left picture are located under the surface indicated by red circles.

This results from the large hole near the curves of interest, which may provide the

same Euclidean distance from points outside and inside the hole to their closest

points on the reference path (not shown in Figure 3.5).
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In other words, using Euclidean distance to approximate the perpendicular dis-

tance in Figure 3.2 sometimes causes the estimation to fail. Thus, an improvement

on the smoothing procedure is required to estimate the curves, using the actual

distances across the surface instead of the Euclidean distance.

Figure 3.5: An example of a failure to identify a curve on a fish bone. The

left is the top view and the right is the upward view

3.4.1 Distance along the surface

In this section, fish mandibles will still be used as an application to illustrate the

improvement of the adjustment procedure. The aim is to estimate a quarter edge

of the socket area (blue in Figure 3.4) which is an important part of the mandible

to investigate shape differences.

Given the reference path (black dots in Figure 3.6) created between landmark 1

and 2, the adjustment in Section 3.2.2 is first to evaluate the distance along the

surface for each point nearby to the reference path. It would be ideal to produce

a “plane cut” from each point to the nearest point on the reference path and

calculate the total arc length on this “plane cut” as its surface distance, but this

is too computationally expensive. So a novel interpolation method has been used

to approximate it. The interpolation is based on a fixed small number of “plane

cuts” to approximate the distances at all locations. The algorithm is as follows.
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Step 1: Create a reference path (black dots in Figure 3.6) by the method in Section

3.2.1;

Step 2: Create a series of “plane cuts” containing each point on the reference

path which follows the perpendicular direction of the point to the path.

All “plane cuts” are shown as a series of red and green lines in Figure 3.6

(right). The colour difference represents different sides to the reference

path. We name this series of created path by “coordinate paths”;

Step 3: Calculate the surface distance from any point on the shape (red and green

dots in Figure 3.6 left) to the reference path by interpolation;

Step 4: Use those surface distances as the perpendicular distances in Section 3.2.2

(or the vertical values in Figure 3.2 right). Then the following procedures

to estimate the curve are the same as in Section 3.2.2.

Figure 3.6: Improved smoothing procedure. Left: red points have positive

distances to the reference path (black dotted curve) and green points have

negative distances; Right: series of coordinate paths created to calculate surface

distance of any point to the reference path (black dotted curve) on the shape.

Details in Step 3: Calculate surface distances by interpolation
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Figure 3.7: Illustration of Step 3

Figure 3.7 shows an illustration of Step 3 in the algorithm. Blue circlesR1, R2, . . . , R6

are estimated points on the reference path (black dots in Figure 3.6). Blue solid

dots CP1, CP2, . . . , CP6 are estimated points on the coordinate paths (red or green

lines in Figure 3.6 right) created from R1, R2, . . . , R6. Red cross p stands for any

point in the neighbourhood of the reference path (red or green points in Figure

3.6 left).

The aim is to calculate the distance from p to the reference path across the surface

(red dotted lines in Figure 3.7). It is equivalent to interpolating a coordinate path

or a point Rinterpolation on the reference path and obtaining the arc length from p to

Rinterpolation. However, interpolating a coordinate path for each point nearby is too

computationally expensive. So the following procedures can reduce the computing

pressure.

For any point p on the shape, its closest point on each coordinate path can be

found. In Figure 3.6, for the red cross p, the closest point on the 3rd coordinate

path is red solid dot q3, with respect to the Euclidean distance. The closest point

q3 should be on the same side to the reference path with point p (red side or green

side in Figure 3.6).
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Figure 3.8: Interpolation to calculate surface distances of any point on the

shape. (a) the distance of any point to each coordinate path, against the arc

length of the point along the reference path which created the corresponding

coordinate path; (b) the distance of any point to each coordinate path, against

the surface distance along the coordinate path. Red points are the estimated

from interpolation

Then the corresponding Euclidean distances from point p to its closest qis are
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recorded and used as the “perpendicular distance” in Figure 3.8. Note that the def-

inition of perpendicular distance in Figure 3.2 is different from the “perpendicular

distance” in Figure 3.8. In Figure 3.8, each black circle stands for each p.

The arc length from qi to the reference path along its coordinate path CPi can be

calculated and used as “surface distance” on the vertical axis in Figure 3.8 (b).

The arc length of the point Ri on the reference path is regarded as the arc length

of the coordinate path CPi, correspondingly, the arc length of each qi along its

CPi. Those arc lengths are used as “arc length” in Figure 3.8 (a). Note that R1

has arc length equal to zero.

Each circle in Figure 3.8 is plotted with the above data of each closest qi. As the

left and right side qi and Ri to p use positive and negative values, the aim is to

find the corresponding “surface distance” and “arc length” when “perpendicular

distance” is zero. This “surface distance” is used as “Perpendicular distance” on

vertical axis and “arc length” is used as “Arc length” on horizontal axis in Figure

3.2. In other words, it is to find the “interpolated” coordinate path passing exactly

through the point p on the shape, so that its arc length along the “interpolated”

coordinate path can be used as its surface distance to the reference path.

Possible inaccuracy of interpolation

This idea of interpolation comes from a grid on a planar shape, which is a simplified

version where all points in Figure 3.8 (b) should lie on a perfectly straight and

equally-spaced line. However, most of the shapes have a rugged surface, such as

the fish mandible. The points in the hole create some crossing coordinate paths,

like the red paths in the hole shown in Figure 3.6 (right). The surface distance

of a point on the shape to the reference path can lead to inaccurate estimation of

those paths.

For example, the crossing would make values on the vertical axis in Figure 3.9

non-monotonic. In other words, coordinate paths which are further away can be

regarded as the closer, which places the circles in Figure 3.9 at the wrong heights.
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Figure 3.9: Wrong estimate at zero perpendicular distance (zero on the ver-

tical axis)

Another issue is shown in Figure 3.10 as an example, where the first coordinate

path goes too deep inside the hole and the closest point qi on the path to the

red point p is the blue one. Because the blue point has a long inside-hole surface

distance and it is close to the target red point p, there would be a signal that

the red point is far away from the reference path. This can be the reason for the

points whose distances are far over 60 in Figure 3.9, while a reasonable range of

distances is up to 60.

As shown in Figure 3.9, as a result of the large value, the estimated surface distance

(coordinates of red solid points on the vertical axis) at zero perpendicular distance

(on the horizontal axis) is much larger (>100) than the expected value (<60).
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Figure 3.10: Too large estimated surface distance of a point (red) on the shape

to reference path (black dots), which misled by the coordinate path (black line)

inside the hole. Blue point is the closest point on the coordinate path to the

red point.

Some constraints have been applied to deal with this issue. In Figure 3.9 as

an example, points under 60 (vertical) would give a reasonable estimate at 0

(horizontal). So points whose vertical values are far from their neighbour’s would

be deleted by calculating the differences of adjacent points. Besides, points in the

hole would be deleted using the direction of their normal vectors (pointing out of

the surface).

3.4.2 Problem of penalty parameter after iteration

After recreating the axes in Figure 3.2, the iteration result in Equation 3.8 is very

sensitive to the penalty parameter λ in Equation 3.7. As shown in Figure 3.11,

the red curve is created with λ = 0.2 and the black is with λ = 0.1. Although

it seems λ = 0.1 is reasonable for the edge of this jaw, other jaws would have

different optimal λ. This issue can be overcome by repeating the estimation with

a fixed conservatively large value of λ. Each time uses the last estimated curve as

a new reference path so that it slowly approaches the target position.
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Figure 3.11: Two resulting curves from the improved smoothing procedure:

a red curve with λ = 0.2 and black curve with λ = 0.1

For example, repeating with the same λ = 0.5 to create a series of reference paths

has been tried, as shown in Figure 3.12. Shapes in this figure are coloured by the

second principal curvature whose maximums (brown in the figure) indicate ridges,

as defined in Equation 2.5.

It can be seen that there is a convergence of the repeats on the left shape, but

it failed on the right. The reason may be that the curvature signal is strong

enough for the convergence on the left shape, but too weak on the right to obtain

a convergence on such flatter surface with a large yellow area. Besides, it can be

noticed that there is a “ring” area with a strong ridge (yellow) signal. As the

repeats are looking for a ridge for the edge, it can be heavily influenced by this

and keeps tracking the “ring” which goes far away from the expected edge.

Figure 3.12: Shape coloured by the second principal curvature. Left: con-

vergence achieved by updating the reference path with λ = 0.5; Right: fail to

obtain a convergence due to strong ridge information in the neighbourhood
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3.5 Identify rings with only one landmark

Landmarks play an important role in identifying curves on three-dimensional ob-

jects. They may guide the composition of a curve (with several landmarks), or

be used only to define the start and end of the curve. However, in most cases,

the landmarks used to guide the curves are very few. Adding extra ones can be

labour-and-time consuming that sometimes it is difficult to accomplish.

The method illustrated in previous sections works well on relatively “simple” sur-

faces, but it has a limitation that it relies on the guidance of landmarks. Thus,

this section describes a novel computational-geometry method which estimates a

smooth curve provided only one landmark. It first identifies an initial curve and

smooths the curve by adjusting each point on the curve based on the positions of

its neighbours. An example of a ring-like ridge identification is used to visualise

the algorithm. The shape is shown in Figure 3.13 and is coloured according to the

principal curvature κ2, with yellow for larger bending of a ridge. It uses only one

landmark (black point in Figure 3.13) which is manually placed on (or near) the

ring (the brown circle area in Figure 3.13).

Figure 3.13: An example of a ring-like ridge surface
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3.5.1 Methodology

Identification of an initial curve

For any point on the three-dimensional surface, there are two principal directions

which determine the directions of the maximum and minimum bending (curvature)

of the surface at that point. As introduced in Section 2.2, in terms of a ridge, the

first principal curvature (κ1 = κmax) is in the tangent direction along the ridge

and the second (κ2 = κmin) is in the orthogonal direction.

Surface creases are defined by Ohtake et al. [28]: “ The loci of points where the

largest in absolute value principal curvature takes a positive maximum (negative

minimum) along its corresponding curvature line”. Inspired by this, this section

proposes a novel but instinctive method to find the loci of the points. One of

the principal curvatures, whose principal direction is across the curve direction,

is used to locate the points where it takes local positive maximum (or negative

minimum for a ridge). The other is used to identify the points one-by-one with

equal distance.

The rationale to identify the ridge curve in Figure 3.13 is that it should follow the

direction of the ridge and consist of points which have the strongest bending size in

the direction across the curve. As the second principal curvature (κ2) is negative

for a ridge, the bending depth is represented by its absolute value (κ = |κ2|) in

their neighbourhood. Those points will be an initial approximation of the curve

and then smoothed based on their local neighbours. In the beginning, an initial

landmark (previously identified) is used as a starting point.

Algorithm

The algorithm and the details are as follow.

Step 1: From a given landmark as a starting point, create a one-step length of a

path following the first principal direction of the surface at the landmark;

Step 2: Find the closest vertex on the surface to the end of the path and create a

two-sided path following the second principal direction of the vertex;
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Step 3: Find the point which has the maximum curvature κ = |κ2| on the two-

sided path as a new identification on the curve; use it as the next starting

point;

Step 4: Repeat Step 1, 2 and 3, until some conditions. For example, reaching a

position which is close enough to the original landmark, for a ring-like

curve, or reaching a user-defined total arc length of the curve.

Figure 3.14: The procedure to identify an initial estimation of the curve on

a ring-like object; Left: the surface is displayed with grey triangles; Right: the

triangulated surface is coloured according to the bending depth κ, as a larger

size is showed more brown and smaller size is showed more purple.

The algorithm is visualised in Figure 3.14. Denote the given landmark by L1.

A candidate point C1 can be selected by moving a certain distance along L1’s

first principal direction. This movement can be achieved by creating a “plane

cut” (consisting of blue dots) of arc length 10 units following the blue straight

line pointing out of L1. This procedure to generate the blue points is called a

“movement”.

Because the points to estimate along the ridge direction on the curve are required

to have the maximum bending depth κ in the direction across the ridge, another

two-sided “plane cut” is created following the second principal direction of C1

(consisting of red dots). This direction is shown by the red straight line pointing

out of C1. This usage of the red dots is called a “comparison”. The one with the
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maximum κ on this “plane cut” will be found and its nearest vertex L2 on the

surface is the new identification. L2 will be used as the starting point of the next

iteration for L3.

Further details of the algorithm

Because the algorithm aims to find a curve consisting of raw data points, the new

identification may not be one of the red dots. As introduced in Section 2.1, only

the vertices of the triangles are the observations captured by the camera system.

Likely, a point on the red “plane cut” is not an observation but an estimate. The

algorithm has already run by estimating the curvatures of the observed points. If

it is replaced by estimating the curvatures of the estimated points, the deviation

of the whole curve estimation will increase. To reduce the total deviation, instead

of using the one with the maximum κ on the red “plane cut”, its closest raw data

point is selected. There still might be deviations between the optimal red point

and the selected vertex, but the image is dense enough to tolerate this deviation

rather than the one between the actual observed and the estimated points. It can

be seen on the left of Figure 3.14, that the points (Li, i = 1, 2, 3) identified on the

curve are all the vertices of the original triangles.

Since this procedure is used on this tiny local surface, likely, there are not enough

points within a user-defined distance on the “plane cut”. So the “plane cuts” may

be re-sampled to reach a higher density. Each dimension of coordinates is fitted

by natural cubic spline with arc length. For a re-sampled high-density curve, it

can be assumed that all the re-estimated equally-spaced points are on the surface.

Besides, κs of the re-sampled points are approximated by linear interpolations on

these high-density “plane cuts” for the comparison procedure.

Furthermore, the identified initial curve may wiggle strongly if there is no direction-

control. So in each iteration, a pair of planes are created as “boundaries”, by

rotating the direction around the normal vector at the starting point. Those

“boundaries” aim to control the identification direction and are created by the

vector between the last and current identification. For example, in the second

iteration in Figure 3.14, after generating the “plane cut” (red dots) from C2, two
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vectors (black straight lines pointing out of L2) are created by rotating
−−−→
L1L2

around the normal vector of L2. As the curve is identified anticlockwise along the

ring, the two angles of the rotations are π
2

anticlockwise and π
4

clockwise in this

example. The “boundaries” are then the two planes expanded by the two rotated

vectors and the normal vector of L2. These “boundaries” will ensure the next

identification is on the ring direction by deleting points on red “plane cut” which

are too far away from the direction of
−−−→
L1L2.

Figure 3.15 (left) is an example of the identified curve consisting of discrete points

in the anticlockwise order. The distance of the “movement” at each iteration is

10 units and the distance of the comparison at each step is 5 units on either side

of the candidate (Ci, i = 1, 2) point. This can be called an “initial” curve for the

following smoothing procedure.

Figure 3.15: Left: an example of the identified ring-like curve; right: identi-

fication of the edge of a socket-like area on a fish jaw bone. Two halves of the

edge are identified separately and shown in different colours (red and pink), as

there are two landmarks given on this surface.

It should also be noticed that this method can be used to identify the ridges

of different shapes. Figure 3.15 shows an example of identifying the edge of a

socket-like area on the surface. Although the identified curve is still a circle, each

half of the edge was identified independently, as there are two fixed anatomical
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landmarks on both ends of the half-edge. Those two landmarks are required to be

on the identified curves.

Smoothing of the “initial” curve

The smoothing procedure aims to identify a new curve based on the initial curve,

which has less variability. For each old point on the initial curve, this procedure

creates a new point for its replacement on the curve.

Figure 3.16: Smoothing procedure

Here is a procedure to adjust the position of Li according to Li−1 and Li+1 in

Figure 3.16. A “plane cut” which has the shortest arc length between Li−1 and

Li+1 is first created (consisting of red dots). One of the red points which has half

arc length on this “plane cut” can be regarded as on the “average” position of

Li−1 and Li+1. In order to take the position information of Li into account, the

second “plane cut” (consisting of purple higher-density dots) which also has the

shortest arc length is created from this middle red point Mi to Li. The one which

has half arc length on the purple “plane cut” is used as the replacement of Li.

Figure 3.17 compares the curve before smoothing and after twice smoothing. It

can be noticed that the smoothed curve (red dots in the left and right figures) is

much smoother than the initial curve (black dots in the left and middle figures)

obtained in Section ??. It seems that the final red curve have captured the shape

of the ring-like ridge.
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Figure 3.17: Left: a comparison of curves before and after the smoothing pro-

cedure; Middle: initial curve from Section 3.4.1; right: the result of smoothing

the initial twice

Figure 3.18 shows an example of the estimated upper lip curve on a 3D image of

a child who has a severe cleft lip. The curve is estimated based on two lip-corner

landmarks which are manually placed and start from both two lip corners. The left

figure is before smoothing and the right is after smoothing. It can be concluded

that this curve estimation method has good performance on complex surfaces.

Figure 3.18: Before (left) and after (right) smoothing of the estimated upper

lip curve on a 3D image of a child who has a severe cleft lip.

3.5.2 Simulation study

A simulation study is designed to evaluate the method in Section 3.4.1, which

focuses on two example shapes, as shown in Figure 3.20: ring-like curve (left) and
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cosine curve (right). After creating the shapes, the analytical true curve can be

deduced so that the estimated curve can be compared. Different size of random

noise is also added on the shapes to investigate the influence on the algorithm

performance.

Create the surface

The surface are created on a 100× 100 grid with width 2 on 2D x− y plane. The

width unit is arbitrary. The third dimension of a ring-like ridge is created by

z =
(
2πσ2

)− 1
2 exp

{
−(dc − 1)2

2σ2

}
(3.12)

where dc denotes the Euclidean distance between any 2D point and the centre of

the 2D x− y grid. By this definition, the true ridge will revolve around the centre

of the grid with radius 1, and have the height z = (2πσ2)
− 1

2 . Figure 3.19 (left)

shows this ring-like shape with the true curve (black dots).

Figure 3.19: Left: A simulated ring-like ridge on a surface without noise;

Right: A simulated cosine ridge on a surface without noise.

To simulate the surface with noise, a weighted Gaussian random field is added

onto the surface. The weight function is w = 1− exp{−D}, where D = (dc − 1)2

for this ring-like ridge. This weight function ensures that the target ring-like ridge

exists, no matter how much noise can be in the neighbourhood. Figure 3.20 (left)

shows this ring-like shape with the true curve (black dots) and noise.
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Similarly, the third dimension of a cosine ridge is created by

z =
(
2πσ2

)− 1
2 exp

{
−
(
y − cos 3

2
x
)2

2σ2

}
(3.13)

By this definition, the true ridge will be in a cosine shape, and have the height

z = (2πσ2)
− 1

2 . Figure 3.19 (right) shows this cosine shape with the true curve

(black dots). The weight function for noise is the w = 1 − exp{−D}, where

D =
(
y − cos 3

2
x
)2

. This weight function ensures that the cosine ridge exists, no

matter how much noise can be in the neighbourhood. Figure 3.20 (right) shows

this cosine shape with the true curve (black dots) and noise.

Figure 3.20: Left: A simulated ring-like ridge on a noisy surface; Right: A

simulated cosine ridge on a noisy surface

Estimate the ridge curves

The true curve of the ring-like ridge has the coordinates

(
cos
(

arctan
y

x

)
, sin

(
arctan

y

x

)
,
(
2πσ2

)− 1
2

)
(3.14)

and the true curve of the cosine ridge has the coordinates

(
x, cos

3

2
x,
(
2πσ2

)− 1
2

)
(3.15)
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Starting from a landmark which is manully placed on the ridge, the curve can

be estimated by the algorithm in Section 3.4.1. It can be noticed from Step 3

in Section 3.4.1 that this estimation method depends heavily on the estimation

of curvatures. As the curvatures are estimated by the local vertices, the size

of the neighbourhood used can be an important parameter which may influence

the result. Denote the radius of the neighbourhood by dr. The optimal dr is

investigated using the simulated shapes without noise, as shown in Figure 3.19.

Red dots are the identified estimates of the ridge curves and black dots are obtained

by the Formula 3.14 in Figure 3.19 (left) and the Formula 3.15 in Figure 3.19

(right).

Figure 3.21 shows the relationship between the average Euclidean distance of es-

timated points on the curve against the different radius of the neighbourhood dr.

It seems that in terms of these two shapes, the parameter does not have a large

influence (0.3%) on the estimates of the curvatures when 0.1 < dr < 0.2. Thus,

a radius of 0.15 is chosen to estimate the curvatures on these two shapes in the

simulation.
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Figure 3.21: Influence of the neighbourhood on the estimation of curvatures

Figure 3.22 shows the influence of noise on the accuracy of the estimate of both

curves. In Figure 3.20, the scale of noise added on the surface is 40%, which is a

quite large scale on the surface. The noise has a larger or quicker influence on the

estimate of the circular curve. However, even a 50% scale of noise has only 3.5%

average deviance per point on the estimate on the curve.
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Figure 3.22: Influence of the noise scale on the estimation of curvatures

Figure 3.23 shows the decomposition of the deviance of the estimated curve (black

solid line) from the truth (red dotted line) in Figure 3.20. For the circular curve,

as the curve is a circle on x-y plane, the deviance is decomposed into the radius

and height, as shown in Figure 3.23(a) and 3.23(b). For the cosine curve, as the

estimated and target points have the same x-coordinates (in the first dimension),

the deviance is decomposed into the second and third dimension, as shown in

Figure 3.23(c) and 3.23(d). It seems that even with a large scale of noise, the

deviance on the third dimension is at most 0.5% and other dimensions are about

2.5%, which are quite small.

In conclusion, this method seems to do well in identifying curves with few land-

marks and the error is within an acceptable scale of. In fact, it can be seen in

Section 3.4.1, as long as there is no large noise close to the curve, the algorithm

can obtain an appropriate estimation.
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Figure 3.23: Decomposition of the deviance of the estimated curve (black
solid line) from the true curve (red dotted line) in Figure 3.20
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3.6 Conclusion of 3D curve estimation

This chapter introduced two approaches to estimate 3D shape curves. The first

contribution is the calculation of the geodesic distance which replaced the ap-

proximation with Euclidean distance. It enlarged the range of application of the

existing method and made it capable to be applied on complex surfaces. The al-

gorithm used the interpolation to reduce the computational cost and worked well

on the fish mandibles. The second novelty made use of computational geometry to

automatically estimate 3D shapes. The advantages include that it does not require

the guidance of large number of landmarks and can deal with surfaces with gaps

and holes. The simulation study indicated that the average deviance per point on

the curve is 3.5% when there is 50% scale of random noise added on the surface.

The performance of the algorithm is stable for 3D curve estimation.



Chapter 4

Analysis based on identified

curves

There is a variety of local-feature-extracting applications of the estimated 3D

curves in different disciplines. For example, existing technologies allow us to flex-

iblely cut a 2D photo along any curve we determine. This chapter will introduce

a state-of-art method in Section 4.1 which dissects shapes along any estimated

curves in 3D space. Another novelty in this chapter is the use of the estimated

curves in morphology. Traditional methods in biology for shape analysis mainly

focuses on 3D landmarks, while Section 4.2 introduces local feature extraction

based on curves with an example of fish mandibles.

The estimated curves can also be used in existing popular shape analysis, such

as principal component analysis for shape difference across individuals in Section

4.2.1, local feature alignment to remove phase variation Section 4.3 and local

feature reconstruction in Section 4.4. A brief history of each topic will be included

in each section.

56
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4.1 Dissection of shapes

Recently, there are increasing demands in 3D shape analysis, and a particular need

to study not only the whole surface but some specific parts has arisen. Meanwhile,

thanks to the recent advancement of novel 3D scanning technology, the precision

of a face model has become capable of showing details that were previously not

available. Thereby, it comes to our interest that dissecting 3D objects can make a

great contribution to surgery assessments by focusing on specific areas of interest.

The dissection of shapes is relevant to validation studies of 3D camera perfor-

mance. It involves the comparison of the detailed outputs from the new 3D cam-

era prototypes and established 3D capturing systems. The comparison is based

on both the whole shape and on designated parts of interest. One example of the

new prototype system is the assessment of cleft surgery. The comparison of pre-

and post-surgical cleft lip areas can have more significant impacts on the result

assessment than the comparison between whole faces.

In fact, mesh partitioning is not an extraordinary topic in shape analysis in the

last two or three decades. Shamir [46], Theologou et al. [47] and Maglo et al. [48]

provided comprehensive surveys on mesh segmentation techniques. As Shamir [46]

mentioned, 3D mesh partition, or mesh segmentation, is useful to recognise and

match shapes, map textures, edit meshes, make animations and so on. With the

help of the next level of details, surgical assessment is an emerging application of

the mesh partitioning.

There are many ways to partition the shape. For example, Theologou et al. [47]

introduced a good example to partition an object, which is a ball attached to

a cube. Part-type segmentation is to divide the object into a cube and a ball,

while surface-type segmentation divides the object into different faces of the cube

and a ball. Another way to categorise is the region-based segmentation, which

takes the object apart into regions with similar properties (such as curvatures).

While the boundary-based segmentation divides the shape into meaningful (such as

anatomical) segments. Most research partitions the mesh by grouping the triangles
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into parts, but does not pay attention to the smoothness of the boundaries, such

as the methods introduced in Rodrigues et al. [49], Theologou et al. [50] and Jiao

et al. [51]. Schoeler et al. [52] introduced a mesh partitioning method which only

applied on point clouds and did not deal with the triangulation at the boundaries

of the partitions.

Some research considers not only partitioning the mesh but also smoothing the

boundaries or contours after segmentation. Minetto et al. [53] introduced a fast

algorithm to slice a triangulated mesh by parallel planes which are perpendicular

to a z-axis. By comparing the coordinates of the vertices on the z axis, the algo-

rithm groups the triangles and calculates the intersects (line segments) between

the planes and the triangles. The contours of the sliced pieces are constructed by

assembling the segments into a set of closed polygons, not necessarily triangles.

FiberMesh is another tool to deal with existing 3D meshes. Nealen et al. [54]

described the mechanics which can deform a user-sketched 3D curve and erase

the mesh along the curve. However, after the curve is determined, the intersected

points are replaced by the middle of the adjacent vertices and the mesh is re-

meshed by the method in Surazhsky and Gotsman [55].

To deal with the need for a more definitive comparison study, we have developed

a method to dissect 3D shapes along a 3D curve, which will be later illustrated

in Section 4.1.1. It not only divides the mesh into segments, but also produces

two complete left and right pieces to the curve without throwing any information

away. The mesh can be cut by flexible 3D curves, which may be created by the

intersection of the surface and a series of non-parallel planes. The contours of the

cuts are constructed by triangles and can be very smooth. Only the points along

the 3D curve will be re-meshed and the original triangulation will remain as far

as possible. Furthermore, the cut is clockwise and anti-clockwise orientation free.

Note that the examples used in this section are 3D images captured by the Artec®

camera system.
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4.1.1 Identify a path and classify its surrounding points

Figure 4.1: An example of the dissected two pieces of a 3D lip image.

Figure 4.1 shows an example of an identified path on a 3D lip image (top) and the

resulting dissected shapes (middle, bottom). The path can be denoted as follows.

p = {p1, p2, . . . , } (4.1)

where pi = (xi, yi, zi) denotes the discrete three dimensional points where the path

crosses the edges of the triangulation, plus some additional landmark locations (red

dots). The dissection is along the path (black dots) which is identified based on

the manually placed landmarks. In other words, the whole surface will be cut

along the path and the triangulated point cloud of the surface will be grouped

into “inner” and “outer” areas, with respect to the path.
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4.1.2 Assumptions of dissection algorithm

• The points on the path follow the same anti-clockwise order with the vertices

of a triangle on the shape;

• Any adjacent pair of points on the path does not cross any other edges;

• There are no duplicated points in the path;

• The dissected shape is disconnected1 but the path is not necessarily closed.

In other words, the edge of the surface can be part of the path.

4.1.3 Principle of dissection

As the path crosses the edges of the triangles, most of pis lie on the edges of

triangles, apart from a small number of landmarks. The two vertices at the ends

of each crossed edge should belong to the left or right, with respect to the path. As

the shape is composed of vertices which are connected by triangles, the principle

of splitting the shape along the path begins by excluding the triangles whose edges

are crossed by the path.

After removing the triangles, the two resulting shapes each have a new triangu-

lation which includes the path points pis. In other words, both of them have the

path as a new edge, creating two complete shapes with new triangulations along

the path.

4.1.4 Algorithm of dissection

Step 1: Follow the order of the points on the path and find the edges of the

triangles which are crossed;

Step 2: Following the order of the points on the path, identify the left and right

groups of the vertices on the edges;

1A topological space is said to be disconnected if it is the union of two disjoint non-empty
open sets.
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Step 3: Find the triangles which have those crossed edges and exclude those tri-

angles from the original triangulation. Identify the left and right pieces of

the surface;

Step 4: Create a new triangulation for left and right pieces which have the dis-

section path as an edge. New triangles are built by adding new groups of

three 3D coordinates.

4.1.5 Details of the algorithm

Details of Step 2

Denote the vertices by vi1 and vi2 on the edge which is crossed by the path at pi.

The procedure for identifying the left and right groups of vi1 and vi2 is as follows.

1. Approximate the normal vector ~n at pi by the average of the normal vectors

of vi1 and vi2;

2. Calculate the direction vector ~d = pi+1 − pi at pi;

3. Create an axis ~c by the cross product of the normal vector ~n and the direction

vector ~d at pi;

4. Calculate the projections of vi1 and vi2 onto the axis ~c. If there is only one

crossing point on the edge, the vertex with smaller projection will be in the

right group and the other is in the left group, with respect to the path;

5. If the edge is crossed by more than one point on the path, compare the

projection of the vertices only with the points which are the closest;

6. If the previous and subsequent points cross the same edge and these three

points are within the same triangle, the current point is not used to identify

groups.

As shown in Figure 4.1, if the points’ order on the path is anticlockwise, the shape

is divided into the left (bottom) and right (middle) pieces to the path. We call one
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the “inner” surface when focusing on a piece and the “outer” surface for the other.

For instance, when we study and build a new triangulation for the left surface,

“inner” refers to the left piece with respect to the path and “outer” refers to the

right piece. In the figures, the “inner” surface is shown in blue shadow and the

“outer” surface is shown blank.

Figure 4.2: Identify the inner and outer groups of the vertices of the edges

which are crossed by the path (red dashed lines).

As shown in Figure 4.2 (a), the surface is represented by the blue solid vertices

and straight blue edges, and the red dashed lines are the identified path where

the points pi lie. The figure focuses on the left piece with respect to the path, so

above the path is the outer area and below is the inner area.

Figure 4.2 (a) describes Procedure 1 to 4 of this section, in the case that the edge

−−−→vi1vi2 is crossed by the path only once. The normal vector of pi, denoted by ~n,

is approximated by the average of the normal vectors of the vertices vi1 and vi2.

An axis, denoted by ~n, can be created by the cross product of ~n and the direction

vector ~d. The projections of vertices vi1, vi2 and the point pi on to this axis can

be used to specify the inner and outer groups. In this example, vertex vi1 will be

classified as an inner coordinate, as its projection onto the axis is larger than the

projection of pi. Similarly, vertex vi2 will be classified as an outer coordinate, as

its projection onto the axis is smaller than the projection of pi.

There are two special cases to consider.

Multi-crossings When edge −−−→vi1vi2 is crossed twice or more, as shown in Figure

4.2 (b,c,d), the projections of the vertices vi1 and vi2 will be compared only
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with the projections of their closest points on the path. In this example,

vertex vi1 will be identified as outer by comparing with the projection of pi,

and vertex vi2 will be identified as outer by comparing with the projection

of pi+2.

Repeated identification When there is a sharp change of the path on a point

pi+1, as shown in Figure 4.2 (c), if pi+1 lies on an edge of a triangle, the vertex

vi1 will be identified again but as in the inner group when the algorithm

comes to the crossing point pi+1. So there is a condition that, no matter

whether the point pj lies on an edge (j = i + 1 in Figure 4.2 b), inside a

triangle (Figure 4.2 c) or on a vertex (Figure 4.2 d), as long as pj+1 and pj−1

are on the same edge and in the same triangle with pj, none of the vertices

are identified based on pj.

Details of Step 3

Figure 4.3 shows the surface with exclusion of the triangles whose edges are crossed

by the path (red dots). The shape can be split by cutting along the path.

Figure 4.3: The triangles whose edges are crossed by the path (red dots) are

deleted to separate the surface.

Details of Step 4

After the exclusion of the triangles, the left and right area of the shape can be

separated by the groups identified in Step 2. In order to complete the dissection,
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the path (red dots in Figure 4.3) should be added into the triangulation of the

inner and outer surface as an edge.

The idea is to make use of the triangulation which was present before the shape

was split. Denote the left piece of shape by SL and the right piece of shape by SR;

the triangulation of the shape before split by T ; the triangulation of the left piece

after the split by TL and the triangulation of the right piece after the split by TR.

When the path is anti-clockwise to SL, it is clockwise to SR. Thus, if 4pipjpk
belongs to TL, 4pkpjpi will belong to TR.

In Section 4.1.5, for every point on an edge of T , the indices of the left and right

vertices on the same edge can be recorded. Define a function t : Ip−→Iv, where Ip

denotes the indices of points lying on the path, Iv denotes the indices of vertices

which are the closest on the surface to the path; t(i) is the index of the “inner”

vertex which lies on the same edge as the ith point on the path. The function t is

neither injective nor surjective.

The algorithm connects the edge pipi+1 to the “inner” surface. For the simplest

case, there are three situations when pi is on an edge of T alone or, in other words,

t(i) ∈ Iv.

• If t(i+1) /∈ Iv, or if t(i+1) ∈ Iv and t(i+1) = t(i), add triangle 4pi+1vt(i)pi

(Figure 4.4 a and b);

• If t(i+1) ∈ Iv but t(i+1) 6= t(i), add triangles4pivt(i+1)vt(i) and4pi+1vt(i+1)pi

(Figure 4.4 c).

Figure 4.4: Situations when the ith point pi on the path is on an edge of T
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when pi is not on the edge of T alone or, in other words, t(i) /∈ Iv,

• If t(i+ 1) /∈ Iv, use the last vertex in use vt(i−m) to connect and add triangle

4pi+1vt(i−m)pi (Figure 4.5 a);

• If t(i + 1) ∈ Iv but t(i − 1) /∈ Iv and pi lies on an edge which is crossed by

the path twice or more, or if t(i + 1), t(i − 1) ∈ Iv and t(i + 1) = t(i − 1),

add triangle 4pi+1vt(i+1)pi (Figure 4.5 b and c);

• If t(i + 1), t(i − 1) ∈ Iv and t(i + 1) 6= t(i − 1), add triangles 4pivt(i)vt(i−1)
and 4pi+1vt(i)pi (Figure 4.5 d).

Figure 4.5: Situations when the i-th point pi on the path is not on an edge

There is a special set of rules for a concave2 surface. If pi is on an edge of T and

pi−1 and pi+1 cross the same edge and are within the same triangle with pi,

• If the path is clockwise to the “inner” piece (build right piece of the shape),

add triangles 4vt(i−1)vt(i−1)+1pi and 4pivt(i+1)pi+1 (Figure 4.6 a);

• If the path is anti-clockwise to the “inner” piece (build left piece of the

shape), add triangles 4pivt(i+1)vt(i−1)+1 and 4pi+1vt(i+1)pi (Figure 4.6 c);

If pi is inside a triangle of T and pi−1 and pi+1 cross the same edge and are within

the same triangle with pi,

2A concave polygon will always have at least one reflex interior angle, that is, an angle with
a measure that is between 180°and 360°exclusive.
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• If the path is clockwise to the “inner” piece (build right piece of the shape),

add triangles 4vt(i−1)vt(i−1)+1pi, 4vt(i−1)+1vt(i+1)pi and 4pivt(i+1)pi+1 (Fig-

ure 4.6 b);

• If the path is anti-clockwise to the “inner” piece (build left piece of the

shape), add triangles4pivt(i−1)+1vt(i−1),4pivt(i+1)vt(i−1)+1 and4pi+1vt(i+1)pi

(Figure 4.6 d);

Figure 4.6: Situations when the i-th point pi on the path is at a concave

“inner” surface

4.2 Further analysis on fish mandibles

The mandible is a core anatomical structure in feeding and so its shape vari-

ation during species evolution are ecologically important in biology. There are

119 fish mandibles (52 females and 67 males) disarticulated from the upper jaw

and scanned using a Bruker Skyscanner machine (model 1172; Bruker, Billerica

MA) which is located at the University of Strathclyde in Glasgow, as introduced

by McWhinnie [56]. There are 34 landmarks on each shape which are manually

placed using ©IDAV system Landmark. The data are provided by Dr McWhinnie.
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Figure 4.7: An example of a fish mandible with 34 manually placed landmarks

(red dots).

The local feature of the fish mandibles will be modelled by five anatomical curves

(configurations), which are estimated by the methods described in Chapter 3. The

technical materials in this section are introduced in Section 2.2.2. The coordinate

matrix of the configuration, such as points or curves, is Procrustes matched and

vectorised. PCA is applied on the Procrustes residuals which are defined in Equa-

tion 2.13. Different principal components determine different directions of each

point of the configuration. For example, the left and right lip corner on a lip curve

will have the first principal component to the left and right correspondingly and

a horizontally longer lip will have a larger score on this principal component.

The principal component scores in Equation 2.15 are used in t-tests to investigate

whether there is a significant average jaw-shape difference between female and

male fish mandibles. As defined in Equation 2.15, the average of the whole sample

score on a PC should be zero. So if the group score difference is significant on any

PC, there will be positive and negative averages in two groups, which can also be

noticed by the score plots.

Furthermore, as introduced in Equation 2.17, “typical” configurations in each

group, also called extreme cases to lie two-standard-deviation from the mean shape
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of the group so that they show clearer features of the shape group. Besides, Linear

Discriminant Analysis (LDA) is applied to predict the gender from the shapes,

with prediction accuracy provided. The shape variation of an individual curve

and grouped curves will be analysed. The full analysis of those 3D models will be

illustrated in this section.

4.2.1 Local and general feature extraction

The mid-line mandible curve, Curve 1, is estimated as shown in Figure 4.8 (a) left.

After Procrustes matching of 119 estimated curves, the 3rd (p-value=0.005<0.05)

principal component is significant at the 5% level. It explains 16% of the variance

of the total variation of this curve. In Figure 4.8 (a) right, the scores of the

significant pc are plotted and the extreme cases of all mandibles for Curve 1 are

shown in (b). Note that the blue curve in an extreme-case plot always refers to the

point which has a positive score on this pc in the score plot. It seems that males

(the group that the blue curve in Figure 4.8 (b) belongs to) have a hill (pointing

out of the surface) in the middle of the curve, while females (red curve in Figure

4.8 bottom) have a corresponding valley shape in the middle and two small hills

close to two landmarks of the curve. The result of LDA shows that the correct

classification rate of gender based on Curve 1 is 66.2%.
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Figure 4.8: (a) left: an example of the estimated Curve 1 (red line) based

on landmark 1 and 2 from top to bottom; (a) right: a score plot of the third

principal component after Procrustes matching and PCA, specified in gender;

(b): a screen shot of two 3D extreme cases on the 3rd pc of Curve 1 (landmark

1 on the left and blue for males).

The upper-right mandible curve, Curve 2, is estimated as shown in Figure 4.9 (a)

left. After Procrustes matching of 119 estimated curves, the 4th (p-value=0.005<0.05)

and 8th (p-value=0.000<0.05) pcs are significant at the 5% level. They explain

12% of the variance of the total variation of this curve. In Figure 4.9 (a) right,

the scores of the significant pcs are plotted and the extreme cases for Curve 2 are

shown in Figure 4.9 (b) and (c). It seems that males have a sharper shape around

landmark 10 and male shapes fluctuate more between landmarks 10 and 11. For

linear discriminant analysis on curve 2, the correct classification rate is 72.0%.
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Figure 4.9: (a) left: an example of the estimated Curve 2 (red line) based

on landmark 2, 10 and 11 (blue dots); (a) right: a score plot of two significant

principal components after Procrustes matching and PCA, specified in gender;

(b): a screen shot of two 3D extreme cases on the fourth pc of Curve 2 (landmark

2 on the left and blue for males); (c): a screen shot of two 3D extreme cases on

the eighth pc of Curve 2 (landmark 2 on the left and blue for females).

The upper-left mandible curve, Curve 3, is estimated as shown in Figure 4.10.

After Procrustes matching 119 estimated curves, the 5th (p-value=0.006<0.05),

8th (p-value=0.005<0.05) and 9th (p-value=0.017<0.05) pcs is significant at the

5% level. They explain 13% of the variance of the total variation of this curve. In

Figure 4.11 (a), the scores of the significant pc are plotted and the extreme cases

for Curve 1 are shown in Figure 4.11 (b) and (c). Similar to curve 2, females tend

to have a sharper shape around landmark 19, and they fluctuate more on this

curve. For linear discriminant analysis on curve 3, the classification rate is 64.7%.
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Figure 4.10: An example of the estimated Curve 3 (red line) based on land-

mark 2, 19 and 20 (blue dots).

The backward-right curve, Curve 4, is estimated as shown in Figure 4.12 (a) left.

After Procrustes matching 119 estimated curves, the 7th (p-value=0.012<0.05)

and 8th (p-value=0.006<0.05) pcs are significant at the 5% level. They explain

6% of the variance of curve 4. In Figure 4.12, the scores of the significant pc

are plotted in (a) right and the extreme cases for the 7th and 8th pcs of Curve

4 are shown in (b) and (c) respectively. It seems that males (blue line in (b))

tend to have a sharper and higher shape at landmark 29, and a longer valley

between landmarks 6 and 29, while female (blue line in (c)) shapes tend to have

a narrow valley. Additionally, males (red line in (b)) have greater fluctuation in

shape between landmark 5 and 29 with a hill close to landmark 5. For linear

discriminant analysis on curve 4, and the classification rate is 60.1%.
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Figure 4.11: (a): score plots of the significant principal components after

Procrustes matching and PCA, specified in gender; (b), (c) and (d): screen shots

of 3D extreme cases on the fifth, eighth and ninth pc for Curve 3 (landmark 2

on the right and blue for males in (b) and (d); blue for females in (c)).
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Figure 4.12: (a) left: an example of the estimated Curve 4 (red line) based

on landmark 5, 29 and 6 (blue dots); (a) right: a score plot of two significant

principal components after Procrustes matching and PCA, specified in gender;

(b): a screen shot of two 3D extreme cases on the seventh pc of Curve 2 (land-

mark 2 on the left and blue for males); (c): a screen shot of two 3D extreme

cases on the eighth pc of Curve 2 (landmark 5 on the right and blue for males

in (b); blue for females in (c)).

The backward-left curve, Curve 5, is estimated as shown in Figure 4.13 (a) left.

After Procrustes matching 119 estimated curves, the 7th (p-value=0.006<0.05) pc

is significant at the 5% level. It explains 4% of the variance of curve 5. In Figure

4.13, the scores of the significant pcs are plotted in (a) right and the extreme cases

for Curve 5 are shown in (b). It seems that males (blue line in (b)) tend to have
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a sharper shape at landmark 32 and a deeper valley between landmark 32 and

15, while females tend to have a hill between landmarks 14 and 32. For linear

discriminant analysis on curve 5, the classification rate is 57.0%.
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Figure 4.13: (a) left: an example of the estimated Curve 5 (red line) based on

landmark 14, 32 and 15 (blue dots); (a) right: a score plot of the seventh prin-

cipal component after Procrustes matching and PCA, specified in gender; (b):

a screenshot of two 3D extreme cases on the seventh pc of Curve 5 (landmark

14 on the right and blue for males).

The upper mandible consists of Curve 1, Curve 2 and Curve 3. After Pro-

crustes matching 119 estimated curve sets, the 1st (p-value=0.017<0.05), 2nd

(p-value=0.002<0.05) and 4th (p-value=0.009<0.05) pcs are significant at the 5%

level. They explain 70% (57% on the 1st pc) of the variance of the upper mandible.

The scores of the significant pcs are plotted in Figure 4.14 (a). The extreme cases

for each principal component are shown in (b) left for the first; (b) right and (c) for
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the second (top and side view) and (d) for the fourth. It seems that females (red

line at the top left) tend to have sharper and narrower shapes, while males tend

to have shorter forward and backward, and wider left and right shapes, which are

more like semicircles (in (b) left). Besides, male shapes (red line in (b) right) tend

to have sharper changes at landmarks 10 and 19, and wider ends at landmarks 11

and 20. Moreover, females tend to have a sharper hill at landmark 2 but a flatter

shape elsewhere (blue lines in (c) and (d)). For linear discriminant analysis, the

classification rate is 69.2%.

The five curves together outline the whole mandible. After Procrustes matching

119 estimated curve sets, the 2nd (p-value=0.000<0.05), 3rd (p-value=0.000<0.05)

and 4th (p-value=0.007<0.05) and 10th (p-value=0.008<0.05) pcs are significant

at the 5% level. They explain 26% of the variance of this model. The scores of

the significant pcs are plotted in Figure 4.15 (a) and the extreme cases for all five

curves are shown in (b) and (c). In Figure 4.15, it seems that, compared with

males, females tend to have narrow shapes with tightened bottom ends on curve

4 and 5 (blue lines in (b)); males tend to have more skewed shapes to their right

and sharper hills at intermediate landmarks (blue lines in (c)). For LDA on all

three curves together, the classification rate is 76.8%.
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Figure 4.14: (a): score plots of the significant principal components after Pro-

crustes matching and PCA, specified in gender; (b) left: a screenshot of two 3D

extreme cases on the first pc of the upper mandible (landmark 2 at the bottom

and blue for males); (b) right: a screenshot of two 3D extreme cases on the

second pc (landmark 2 at the bottom and blue for females); (c): screenshots of

two 3D extreme cases on the second and fourth principal component (landmark

2 on the right and blue for females).
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Figure 4.15: (a): score plots of the significant principal components after

Procrustes matching and PCA, specified in gender; (b) screenshots of two 3D

extreme cases on the second and third pc of the whole mandible (landmark 2 at

the back and blue for females); (c) screenshots of two 3D extreme cases on the

fourth and tenth pc of the whole mandible (landmark 2 at the back and blue

for males).
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4.2.2 Asymmetry and allometry

After identifying the five pairs of anatomical curves, a common step in biology is to

remove the asymmetry of each mandible. As suggested by Klingenberg [57], cor-

recting for asymmetry by making symmetrical models is better than just ignoring

the concept of symmetry/asymmetry altogether as some studies do, unless asym-

metry is the sole purpose of the study. The programme MorphoJ, commonly used

by evolutionary biologists, will symmetrise data and perform Procrustes match-

ing. Instead of analysing landmarks, this thesis studies the estimated curves. To

test the viability of this asymmetry-free procedure for curves, the asymmetry level

has been calculated by the method introduced in Bock and Bowman [58]. It is to

reflect the shape in any plane, Procrustes match the shape with its reflection and

average their point-by-point Euclidean distances by the total number of points on

the shape. On average, the asymmetry level is less than 5% of the total size of the

jaw, which is small enough to be removed.

A standard approach for bilaterally symmetric forms in biology is to reflect one

side of the asymmetrical object across the mid-line and average the coordinates

[59]. The novel approach is to deal with 3D shapes which are shown in Figure

4.16. The blue line in (a) or the black line in (b) is a 3D model of the front

mandible shape, with the same set of landmarks in Section 4.2.1. The procedure

is as follows.

• Instead of a mid-line, a mid-plane is expanded by landmark 1 and the two

mid-points of the pair of landmark 10 and landmark 19 and the pair of

landmark 11 and landmark 20, which are shown by three green dots;

• This mid-plane is used to create the mirror reflection of the right bilaterally

symmetric shape. The reflection is connected with the original right part to

be a new model;

• The new model is Procrusts matched with the original model. The Pro-

crustes mean shape is used as the model with the asymmetry removed,
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which is shown by the red line in (b). In this example, the asymmetry

level is roughly 1% per point of the total size of the jaw.

(a)

(b)

Figure 4.16: (a) left: an example of upper mandible curves as introduced in

Figure 4.14; right: A mid-plane of the curves; (b): the comparison between the

mirror reflection of the right curves (red) and the true left curves (black).

Normally, it works with the full complement of landmarks or curves. However,

it is very common that samples have pieces broken off when collected [59]. For

the data in this project, there are 123 complete jaws and 54 broken ones. So

before removing the asymmetry, according to Zelditch et al. [60] and Klingenberg
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et al. [61], the broken parts have been filled in by the mirror reflection of the

corresponding unbroken parts.

Another aspect which should be removed is allometry. It can be considered as

a part of the shape information which is related to growth. In other words, the

shape difference between young and old fish is not of interest in this study. It can

be removed by the regression of Procrustes matched data on the centroid sizes of

the unmatched data [62]. Then the residuals which are asymmetry and allometry

free would be used for further analysis with genetic information in biology.

4.3 Alignment of the curves

The shape of human faces has been studied for hundreds of years. Nowadays,

taking advantage of the development of modern imaging equipment, statistical

data analysis has been widely available based on three-dimensional data of the

surface constructed by a stereo camera system. Vittert et al. [7] developed a

methodology using the principle features (3D curves) to model facial data, with

details in Vittert [8]. Figure 4.17 left shows an example model of the anatomical

facial curves using 23 anatomical landmarks which are defined by Katina et al.

[26].

The model consisting of identified 3D facial curves can be used in a variety of

ways. For example, particular anatomical curves (such as a lip boundary) may

be compared and involved in the evaluation of pre- and post-surgical results. The

comparison of the curves can be achieved by Procrustes matching and alignment.

This section mainly discusses the alignment methods, with the applications on

mid-line nasal curves starting from the midpoint between the eyebrows and ending

at the top of the upper lip on a human face, as shown in Figure 4.17 right. The

data to align consists of 3D images of 45 people from control subjects.
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Figure 4.17: Left: a 3D image with anatomical curves captured by DI4D®

camera system; right: a 3D image with a mid-line nasal curve.

4.3.1 Perpendicular plane method

Miller [63] evaluated several methods to analyse 3D curves. The most preferable

one is called the Perpendicular plane method, which decomposes the curve by pro-

jecting on to 2D planes which are expanded by two pairs of axes. However, instead

of using the arbitrary axes generated by the camera systems, three axes which are

created by principal component analysis (PCA) can form a more meaningful coor-

dinate system. Note that the use of PCA here is different from the one described

in Section 2.2.2 for shape analysis. The aim here is only to transform the axes so

that they are on the directions where the data (configuration) varies the most. In

other words, in this section, it is applied on three “dimensions” (columns of the

coordinate matrix) of one configuration, such as a 3D curve or a set of landmarks

on an individual face; while in Section 2.2.2 it is applied on the vectorised (by

Equation 2.11) sets of configurations, such as the sets of curves or landmarks on

a group of faces.

Thus, the transformed coordinates of the data points on the new axes are the

corresponding principal component scores, and form the “score curves” of interest

in the following sections. Figure 4.18 shows an example of the transformed data
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projected to two 2D planes which are expanded by transformed axes. The first and

second principal components, denoted by y and z, construct the y-z plane which

is shown in Figure 4.18 (left). The y-z plane reflects the bending of the curves

into and out of the face. The first and the third principal components, denoted

by y and x, expand the x-y plane which is shown in Figure 4.18 (right). The x-y

plane reflects the traversing over the face. The second and the third components

expand the x-z plane. The x-z plane reflects cuts through the face horizontally

which is not of interest, as the curvature information is held mostly in the y-z and

x-y plane. Although the plots in Figure 4.18 look like two continuous lines, they

are formed by discrete points, as shown in Figure 4.17 right, with a high density.

Figure 4.18: A example of the plots of the PCA-transfered coordinates (prin-

cipal component scores) on the y-z plane and x-y plane

4.3.2 Calculating curvatures

The transformed mid-line nasal curves, or score curves, introduced in Section

4.3.1 consist of 45 matrices. Each matrix has three columns for three principal
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components which are used as three axes and denoted by x, y and z. Miller [63]

mentioned a method to calculate the curvatures, denoted by κ, of a planar curve

which is shown in Equation 4.2. Because the curvatures form another curve of

interest, we refer to the “curvature curves” which need to be distinguished from

the score curves. The method is based on the first and second derivatives of the

planar curve along its two dimensions as follows.

κ =
x′y′′ − x′′y′

(x′2 + y′2)
3
2

(4.2)

To obtain the derivatives, a score curve which consists of discrete points need to

be smoothed by arc length t as mentioned in Section 3.1. Both cubic-spline and

local linear smoothing are used to fit the curve. The former has a faster speed and

the latter has a more precise (better) fitting. As introduced in Section 2.2.3, the

curvature curve will be flatter or smoother if the degree of freedom is smaller and

more fluctuate if the degree of freedom is larger.

Figure 4.19 plots the fitted curvatures of the planar curves on the y-z plane (blue)

and x-y plane (red). On the y-z plane, the curvature of bending into the face is

positive at the point underneath the nose and the curvature of bending out of the

face is negative at the tip of the nose. On the x-y plane, the curvature of bending

to the right-hand side of the face is positive and the curvature of bending to the

left-hand side of the face is negative. The curvature curve on x-y plane has sharp

changes at its minimum and maximum, which results from the sharp bending of

the nose curve on x-y plane, as shown in Figure 4.18.
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Figure 4.19: A plot of the curvature along the projections of a mid-line nasal

curve on y-z plane (black) and x-y plane (red) against its corresponding arc

length

4.3.3 Warping the curvature curves

In order to compare the curvatures at the same positions on each curve, the cur-

vature curves need to be aligned. In this section, all “curves” will refer to the

curvature curves.

A set of curvature curves on y-z plane is shown in the first figure in Figure 4.20.

Each curvature curve is a function of arc length, so is the variation of the curves.

The variation of the curve set is composed of phase and amplitude, which result

from different arc length of a point with the same index and the curvature at the

point correspondingly. In order to leave alone the amplitude variation of interest,

the phase variation needs to be removed from the total variation by alignment, or

warping, which are commonly called registration. One of the alignment methods

is to align the projected 2D curves.

There are two main methods used to align the curves: landmark and template

registration, followed by an application on 45 mid-line nasal curvature curves on

y-z plane. Another Bayesian method is also briefly introduced.
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Landmark registration

The first method pulls corresponding landmarks on each curve into fixed posi-

tions (measured by arc length t) along the curve where different amplitudes of the

landmarks can be compared. For example, Local maxima and minima can be char-

acteristic points, as suggested in Miller [63]. A monotonous and non-decreasing

warping function g can transform these points onto certain positions.

For the mid-line nasal curvature curves, suppose the landmarks are chosen to be

the starting point (t = 0), the 25th (pronasale), the 33rd (subnasale) and the

ending point (t = 1), which will be used to produce warping functions. For the ith

curve i, denote the arc lengths of its point 25 and 33 by t1 and t2 and denote the

positions where all the curves will be projected by τ1 and τ2. The relationships

between the unaligned and aligned positions can be expressed in Equation 4.3.

gi(0) = 0, gi(t1) = τ1, gi(t2) = τ2, gi(1) = 1 (4.3)

Template registration

Landmark registration is for specific points aligned. If the whole curve needs to

be aligned, another warping method, template registration is illustrated by Kneip

and Ramsay [64]. Template registration uses monotone functions to align the

curves by transforming their domain such that every registered curve is equal to

the same “template” multiplied by a constant. After the transform, the phase

variation, which results from the different locations of the same features, can be

removed from the total shape variation.

Each curvature curve, denoted by xi can be parameterised by the arc length t as

a curve function defined on a closed interval. Each curve function is aligned by a

warping function denoted by hi and the aligned curve function is denoted by yi.

Denote the mean of unaligned functions by µ and the mean of aligned functions

by ν. Template registration is to register each unaligned function to be a “simple

change” of a template, so that the registered function y = x(h(t)) = θ(t)ξ(t), where

ξ(t) is the template function. To avoid the complexity of the “simple change”, the
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procedure uses a group of template functions ξj, j = 1, . . . , p which are p basic

components of variation of the space. Then the registered space can be expressed

as

χξ1...ξp =

{
x|(x ◦ h) =

p∑
j

θjξj, θj ∈ R

}
(4.4)

After the phase variation removed by the registration procedure, functional prin-

cipal component analysis will be applied on the registered functions yi to study

the amplitude variation. Suppose the eigenvalues and corresponding eigenvec-

tors are λ1 > λ2 > · · · and ζ1, ζ2, . . .Then the principal component score is

cij =
∫

[yi(t) − ν(t)]ζj(t)dt. So the functional PCA approximation of the regis-

tered curves will be.

νpi (t) = ν(t) +

p∑
j

cijζj(t) (4.5)

where E[νpi (t)] = ν(t). So the space is also spanned by the first p principal

components ζ1, . . . , ζp. The registered curves can be expressed as

yi(t) = xi[hi(t)] = ν(t) +

p∑
j

cijζj(t)

= E[yi(t)] +

p∑
j

cijζj(t)

=

p∑
j

E(θij)ξj(t) +

p∑
j

cijζj(t) (4.6)

A measure of the independence of the warping function h and the registered curve

y is defined in Equation 4.7.

C =
E
∫
x2(t)dt

E
∫
y2(t)dt

=
E
∫
Dh(t)y2(t)dt

E
∫
y2(t)dt

(4.7)
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The total variance can be decomposed as in Equation 4.8.

MStotal = E

∫
[x(t)− µ(t)]2dt

= CE

∫
y2(t)dt−

∫
µ2(t)dt

= CE

∫
[y(t)− ν(t)]2dt+ C

∫
ν2(t)dt−

∫
µ2(t)dt (4.8)

Based on Equation 4.5, we have E
∫

[νpi (t) − ν(t)]2dt =
p∑
j

λj and E
∫

[yi(t) −

νpi (t)]2dt =
∑
j>p

λj. Then Equation 4.8 can be expressed as Equation 4.9.

MStotal = E

∫
[x(t)− µ(t)]2dt

= CE

∫
[νpi (t)− ν(t)]2dt+ CE

∫
[yi(t)− νpi (t)]2dt+ C

∫
ν2(t)dt−

∫
µ2(t)dt

(4.9)

So the total variance can be decomposed as in Equation 4.10 to 4.12:

MSamplitude = CE

∫
[νpi (t)− ν(t)]2dt (4.10)

MSphase = C

∫
ν2(t)dt−

∫
µ2(t)dt (4.11)

MSresidual = CE

∫
[yi(t)− νpi (t)]2dt (4.12)

Application of landmark and template registration

Figure 4.20 shows an example of applying landmark and template registration

on the 45 mid-line nasal curvature curves projected on y-z plane (shortened by

curvature curves). Those unaligned curvature curves are shown on the top left.

The landmark warping of the i-th curve uses a function gi(t) of arc length t shown

on the top right, and the landmarks are chosen at the maxima and minima of

the curvatures (the peak and bottom of the curvature curve). The landmark-

registered curves are shown on the bottom left, with landmarks at roughly t = 0.7

and t = 0.9. The template-registrated curves are shown on the bottom right in

Figure 4.20.
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Figure 4.20: A curve registration’s application on mid-line nasal curvature

curves projected on y-z plane. Top left: unaligned curvature curves; top right:

landmark-registered warping functions gi(t) against arc length t, which register

the curvature curves at the minima and maxima of curvatures; bottom left:

landmark-registered curvature curves; bottom right: template-registered curva-

ture curves.

It can be seen that the landmark-registered plot has a better warping at two

landmarks, while the template-registered plot shows a more concise warping on

the whole curves. Furthermore, the phase variation of the unaligned functions can

be calculated by the command AmpPhaseDecomp in the package “fda” in R or
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by the formula below (Kneip and Ramsay [64])

Phase variation = C

∫
ν(t)2dt−

∫
µ(t)2dt (4.13)

where ν(t) is the average of the registered curves and µ(t) is the average of the un-

registered curves. C is the coefficient of the relationship between the first derivative

of the warping function and the square of the registered functions, which equals

to 1 when their relationship is independent (Kneip and Ramsay [64]). However, it

seems that this relationship should not be independent, which may be investigated

in future works.

For the mid-line nasal example, the phase variation calculated after template reg-

istration is 20%. However, the phase variation after landmark registration is neg-

ative, which indicates that this registration has increased the total variation. It is

not difficult to understand that the reason is aligning several points sacrificed the

positions of the rest.

Bayesian Registration

Another popular method in functional data analysis to register the curves is build-

ing Bayesian models. For example, Telesca and Inoue [65] built a flexible Bayesian

hierarchical model to register the curves. It has an advantage that it does not need

to smooth the data preliminarily. With the nature of a statistical model, it can

provide the assessment of the uncertainty of the shape variation after registration.

Cheng et al. [66] introduced a method to register 1D and 2D curves, but can also

be extended to 3D. This section provides a brief introduction to this method. The

investigation of this method may be in future works.

Denote the unregistered curve by f and its warping function by γ, which are

functions of the arc length t. Instead of registering fs, this method transfers them

by a function and builds Bayesian models to register the transfered curves. This

function is called the Square Root Velocity Function (SRVF) which remains the
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variations unchanged. It is defined as a function q of f

q(t) =
ḟ(t)√
‖ḟ(t)‖

The SRVF of the registered function f ◦γ is q∗(t) =
√
γ̇(t)q(γ(t)). For the sample

of two unregistered curves f1 and f2, their SRVF q1 and q2 are used for Bayesian

registration. It can be used to calculate the elastic metric d(q1, q2) = dElastic(f1, f2),

which obeys the property dElastic(f1 ◦ γ, f2 ◦ γ) = dElastic(f1, f2). This property

ensures that the distance between the two target functions is unchanged if both

transformed by a common warping function. Further details can be found in

Section 4.3 in Cheng et al. [66].

4.4 Curve reconstruction

Shape reconstruction is another interesting topic of the identified 3D curves, which

is to translate the curvature analysis back to the 3D space. Following the widely-

used off-line 3D scanning technology, online 3D reconstruction is still under de-

velopment, as mentioned in Keller et al. [67]. Online 3D reconstruction is capable

of producing real-time 3D imaging by scanning using 3D cameras, such as the

immediate visual rendering from the scanner. The most well-known application

is augmented reality (AR) which fuses the real-world shapes from 3D images and

displays to the user. The reconstruction procedure consists of: data association,

which is to find the corresponding point of the real-world object on the recon-

structed shape; minimization of alignment error, which is to reduce the deviance

between the paired points. The challenge is that the camera may imprecisely

estimate sufficiently salient local features during the reconstruction. Some re-

searches attempted to tackle this problem. For example, Lefloch et al. [68] used

the maximum and minimum principal curvature (introduced in Section 2.2) to fit

a quadratic model of the shape to enhance the reconstruction performance.
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Using curvature information is not an uncommon way to reconstruct the shape.

Wook et al. [69] used the second derivatives which are derived from Zernike poly-

nomials. Here we adopt the method introduced in Miller [63] to implement curve

reconstruction based on the principal curvatures. The combination of both curves

and their curvature information would benefit the reconstruction procedure of data

association and error minimisation.

This section discusses the procedure which is mentioned in Miller [63] to recon-

struct shapes based on their curvature, including both planar curves and 3D space

curves. A real dataset of mid-line nasal curves in Section 4.3 will also be used here

as an application. In the end, a simulation study is performed to investigate the

effect of noise in the data on the reconstruction procedure.

4.4.1 Reconstruction of 2D curves

As mentioned in Miller [63], the curvature can be regarded as the changing rate of

turning angles at any point of the curve. Thus, the integration of the curvatures

gives the angles of all the points on the curve. Furthermore, in terms of data asso-

ciation, the coordinates can be gained from the cosine and sine transformation of

the angles. This reconstruction procedure of planar score curves can be expressed

by Equation 4.14 and 4.15, as illustrated in Miller [63].

r(t) =

(∫ t

0

cos(φ(u))du+ a,

∫ t

0

sin(φ(u))du+ b

)
(4.14)

φ(t) =

∫ t

0

κ(u)du+ φ(0) (4.15)

Here r(t) is the coordinates of any point on the curve, as a function of the arc length

t; φ is the angle of the point; κ is the curvatures as a function of the arc length; (a, b)

and φ(0) are the initial coordinates and angle of the reconstruction. In fact, when

the reconstructed curve and the original curve are matched by Procrustes methods,
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of which moving, scaling and rotating are used for transformation (Dryden and

Mardia [29]), the coordinate of the starting point, (a, b) will be of little use.

However, the roughness or alternatively, smoothness of the curvatures will influ-

ence the reconstruction with the change of the degree of freedom when fitting the

score curve. A smoother curvature curve will lack detailed information to recon-

struct the scores. Figure 4.21 left shows an example of the influence of degree of

freedom on the reconstruction deviance on the y-z plane (black; example in Figure

4.18 left) and x-y plane (red; example in Figure 4.18 right). During the procedure

of selecting the best degree of freedom, the cubic-spline smoothing is chosen be-

cause of its fast speed and little fitting deviance from local linear smoothing. The

best degree of freedom can be 10 for the score curve on the y-z plane, but it is

more complicated for the score curve on the x-y plane.

With a total of 37 observations, the degree of freedom about 17 gives the smallest

reconstruction deviation with the danger of over-fitting. The reason can be found

if we plot the reconstruction of the score curve on x-y plane, as shown in Figure

4.21 right. The original score curve on the x-y plane is plotted by a black line,

where there is a small but sharp change of x within the range of −0.25 < y < −0.1.

This sharp change results in a sharp change of the curvature curve within that

range, with an example of the red line in Figure 4.19. On the right of Figure 4.21, a

smaller degree of freedom (green and blue lines) tends to produce a reconstruction

with little influence of the details (−0.25 < y < −0.1), while a larger degree

of freedom (red line) tends to produce a reconstruction from every detail of the

curvature curve so that increases the deviance of the total reconstruction in the

range of −0.25 < y < −0.1. This large degree of freedom issue will be investigated

further in a simulation study in Section 4.4.2.
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Figure 4.21: Left: the degree of freedom of penalty-spline smoothing when fit-

ting the score curves on two planes and calculating the curvature curve, against

Procruste matched deviance of the reconstruction; Right: the effect of degree

of freedom when reconstructing the score curve on the x-y plane.

In this case, without too large deviance, we can choose 5 degrees of freedom for

the score curve reconstruction on the x-y plane. As shown in Figure 4.22, the

reconstructed score curves (red) and the original curve (black) are matched using

Ordinary Procrustes Analysis (OPA). The deviances of the reconstruction per

point are 0.86% and 3% on y-z plane and x-y plane correspondingly.



Chapter 4. Analysis based on identified curves 94

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

2
0.

0
0.

2
0.

4

z

y
Original
Reconstructed

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

2
0.

0
0.

2
0.

4

x

y

Original
Reconstructed

Figure 4.22: Procruste matched the original score curves (black lines) and the

reconstructed score curves (red dots) with degree of freedom chosen to be 10 on

the y-z plane and 5 on the x-y plane.

4.4.2 Reconstruction of 3D curves and a simulation study

After reconstructing the curves on the y-z and x-y planes, the space curve can

be reconstructed back to the 3D space, as illustrated by Miller [63]. However, to

find the optimal initial angles φ0 (in Equation 4.15) of the two planes, instead of

minimizing the differences between y coordinates produced by both planes, the

general approach is to minimise the Euclidean distance between the reconstructed

and original 3-dimensional curves when the latter is known. Using the same degree

of freedoms in Figure 4.22 and the optimal initial angles 18◦ (y-z) and 90◦ (x-y),

the reconstruction of the 3D score curve is shown in Figure 4.23.
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Figure 4.23: Screen shots of Procrustes matched original 3D score curve and

the reconstructed 3D score curve in the right-side (left), left-side (right) and

front (middle) views.

When calculating derivatives in Section 4.3.2 and 4.4.1, we assume the two di-

mensions of a planar curve share the same degree of freedom. However, it can

be reasonable that the three axes have different degrees of freedom in smoothing.

When the original 3D score curve is known, the optimal degree of freedoms of

three dimensions can be found directly by minimising the distance between the

reconstructed and the original curves. In this way, we found most of the optimal

degrees of freedom are quite large. For example, the optimal degrees of freedom

of a mid-line nose data are 23, 19, 13 for y, z, x axes correspondingly.

This requirement of high degrees of freedom may result from the noise in real data

so that the fitting paid too much attention to the noise. For example, the noise

may come from the camera system when collecting the data, or the identification

procedure of the curves. We investigate in a simulation study in the following

steps to test the effect of noise on this space-curve reconstruction procedure.

Step 1: Create a 3D score curve;

Step 2: Add three sets of random noise to three dimensions on the score curve to

simulate a noisy score curve;

Step 3: Calculate the curvatures of the simulated noisy curve and reconstruct

based on those curvatures;
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Step 4: Calculate the deviance between the reconstructed score curve and the

score curve without noise;

Step 5: Repeat from Step 2 for required times;

Step 6: Take the average of the deviances per point between the reconstructed

score curve and the score curve without noise. Calculate the percentage

of the deviance mean with respect to the total arc length.

The data created for this simulation study were designed to be similar to the mid-

line nasal score curves. Each dimension is a second-order differentiable function

of the arc length t as follows so that we can easily obtain their first and second

derivatives to calculate curvatures. This procedure is very time-consuming with

integration used in Equation 4.14 and 4.15. One possibility is to approximate the

integration by Riemann Integration. The speed has been improved from hours to

20 seconds for a single simulation.

x = 0.004 sin(10t) (4.16)

y = 0.8(1− t) (4.17)

z =
1

4
exp

{
−(t− 0.5)2

2×
(
1
7

)2
}

(4.18)

The noise added on each dimension is from a standard normal distribution with

zero means. Figure 4.24 shows an example of the added noise in three different

views. The black line is the original simulated 3D score curve, the red line added

noise with standard deviation sd = 0.01 on x, y and z and the blue line is the

reconstructed score curve from the red line.
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Figure 4.24: Screen shots of Procrustes matched original 3D score curve

(black) and the reconstructed 3D score curve (blue) in the right-side (left),

left-side (right) and front (middle) views. The red line shows the original 3D

score curve with simulated noise.

As discussed in Section 4.3.2 and 4.4.1, since the dataset consists of groups of

discrete points, the analysis should be based on models, where issues of choosing

smoothing methods and degrees of freedom are involved. Cubic-spline smoothing

with penalty is much quicker which will be used in this simulation study.

Figure 4.25 on the left shows the true score curve (black line) and the noisy score

curve (red line) with the simulated noise (a standard normal distribution with

sd = 0.01). In fact, the fluctuation of the noisy curve is rather small compared

to the total arc length 1 of the 3D true score curve. The right figure shows the

true curvature curve (black line) and the fitted curvature curves (other colours)

with different degrees of freedom. Because of the noise, a larger degree of freedom

makes the fit unrealistically fluctuate and a smaller one seems to fit much closer

to the true curvature curve (black line on the right). Figure 4.26

This can explain the issue raised in Section 4.4.1 or the one shown in Figure 4.21,

where higher degree of freedom is required for the best reconstruction. The noise

increased the curvatures which misled the reconstruction. In this circumstance,

the choice of degree of freedom should be based on the expectation of the shape.
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For example, Figure 4.26 on the left shows the curvatures on y-z plane. The best

fit is still under a large degree of freedom (9) even though there is no noise added

on this plane. This is because the shape of this curvature curve has a large “valley”

in the middle and it requires a large degree of freedom to fit to the small values.

Thus, we can conclude as follows.

• If there are few sharp small changes of the curvatures but no large one,

choose a small degree of freedom (less than 5);

• If there exsits a large change of the curvatures, choose a slightly larger degree

of freedom (about 10).

Figure 4.26 on the right shows the true 3D score curve (black lines) and the

reconstructed curve (red dots) which are based on the noisy score curve (red line)

with the simulated noise (standard normal distribution with sd = 0.01). The

reconstruction deviation per point is about 1.5% of the total arc length, which

seems to be consistent with the standard deviation of added noise.

Figure 4.25: Left: noisy score curve on x (red) which is the true score curve

(black) on x with added noise (sd = 0.01); Right: the effect of degree of freedom

on the fitted curvature curves on x.
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Figure 4.26: Left: true curvature curve (black) on the y-z plane and fitted

curvature curves (other colours) with different degrees of freedom; Right: true

3D score curve (black lines) and the reconstructed (red dots) from curvatures

which are fitted with degrees of freedom 1,6,5 on y, z, x correspondingly

4.4.3 Summary of curve reconstruction

This section focuses on the reconstruction of both 2D and 3D curves based on

their curvatures. The method is following Equation 4.14 and 4.15, where the in-

tegrals are Riemann-approximated. Because the curves consist of discrete points,

the calculation involves natural spline smoothing with a penalty. The smoothness

of the fitting is key to the reconstruction, which is investigated in a simulation

study. Data with different size of noise are used to test the power of the recon-

struction method under the pressure of noise which may be created during the

data collection.

The study indicates that the choice of fitting smoothness depends on the shape of

the curve to reconstruct. A curve with smaller fluctuation requires larger smooth-

ness, even if there are sharp changes. One with strong bendings in the middle

requires larger roughness, but the smoothness with the degree of freedom 9 for a

total of 37 points is adequate for curves like the mid-line nasal profile.
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Smile Train Project

An estimated 170,000 children are born in the developing world each year with

cleft lip and palate, a surgically treatable facial deformity that impairs children’s

health, well-being and survival. Some initiatives invite experienced doctors to go

to the developing world to undertake surgery. In contrast, Smile Train seeks to

train local doctors in professional facial disease surgeries, such as cleft lip and

palate. This training project needs to be assessed and feedback given on the

practice of surgeons. The intention is to improve the quality of data available by

employing 3D rather than 2D imaging, and hence to contribute to a step-change

in the support for surgical staff and Smile Train, a charity which supports children

suffering from facial defects, with a consequent significant benefit for patients.

To collect the data for this project, various 3D scanners have been considered.

However, due to some disadvantages of certain types, such as high cost, poor mo-

bility and strong flashing light that is uncomfortable for some patients, a new

camera system is under development in cooperation with NCTech® Ltd, Edin-

burgh. Validation studies have been conducted to compare the accuracy of esti-

mating shape position with other scanner systems. So far, the new camera has

been taken to Brazil data collection stations, though the camera system is still

under development.

100
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This camera system under development composed of two Intel™RealSense D415

sensors attached to a Windows tablet with the calibration algorithm written by

NCTech® Ltd. Those sensors are non-contact active structured-light 3D scanners.

As shown in Figure 5.1, they are stored in a black frame and connected to the

tablet by a cable. Another two non-contact scanners involved are quite expensive

but with high accuracy: a passive stereo camera systems produced by DI4D®

and hand-held active structured-light scanners, named “Eva” and produced by

Artec®. In Figure 5.2, the DI4D® camera system is shown on the left with two

studio lights by its sides and “Eva” is shown on the right. Both of them are

mature products and have been already used in industries and researches. Thus,

we regard them as the “ground truth” to test the performance of the new camera

system at each developing stages.

Figure 5.1: The new camera system is composed of two Intel™RealSense D415

sensors attached to a Windows tablet.

Figure 5.2: Left: DI4D® camera system with two studio lights; Right: The

scanner, “Eva” produced by Artec®.
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They also have some disadvantages as the former is not convenient to transport

and the latter has flashing lights which may be uncomfortable for young children.

Katina et al. [26] described a validation study for a new definition of a set of facial

landmarks. It tested the variation of landmark coordinates considering the effects

of the observer, subjects, days and image capture repeats.

In this chapter, the validation studies, which are quantitative assessments of each

stage of the development of the new camera system, will not only investigate the

landmarks, but also curves on the performance of machines. Note that some long

tables in this chapter are in Appendix A. The project is still at its early stage of

data collection. Further work will focus on statistical modelling for the assessment

of the surgeries.

5.1 Validation study 1: an early stage

5.1.1 Introduction

This validation study benchmarks the performance of NCTech® and Eva (pro-

duced by Artec®), based on both landmarks (manually placed) and curves (es-

timated by methods in Chapter 3). There are 23 3D images in total which are

captured from four participants in this study. Figure 5.3 shows an example of two

images from Eva (1st and 3rd) and NCTech® (2nd and 4th) in the front and side

view. At this early stage, the new camera system cannot build a triangulation for

the captured point cloud, so the triangulation is created using MATLAB™. It can

be noticed that, at this stage, compared with left figures captured by Eva, the

surface is not smooth enough and has some “orange peel” effects.
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Figure 5.3: Screen shots of the whole surface; the first two are in the front

view and the last two are in the side view.

The configurations (a set of landmarks or curves) on the images from the same

participant which are captured by the same machine are Procrustes matched1 so

that there are eight average configurations from four participants.

5.1.2 Comparison on landmarks

There are 13 landmarks manually placed on the 3D images by using the Land-

mark software and the CloudCompare software for Eva and NCTech® images

correspondingly. Figure 5.4 shows an example image from Eva with landmarks

(red points) on the left and landmarks labelled by their orders on the right.

1Procrustes registration is applied to matching the set of landmarks of each individual. For
example, the difference between the two sets of landmarks consists of position and rotation
when they are in the same units. In order to compare the estimates of the same landmark from
different cameras, Procrustes superimposition can be a popular tool to remove the location and
rotational effects, which are not of interest, of the coordinate estimates. Further details can be
found in Section 2.2.2
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Figure 5.4: An example of the landmarks (red dots) manually placed on the

image. The landmarks are ordered from 1 to 13.

Table 5.1.2 summarises the comparison of Procrustes-matched landmark positions

from two machines for each participant. For each participant, OSS =
n∑
i=1

d2i is

the ordinary Procrustes sum of squares of two average configurations (two sets

of n landmarks) from two machines, where di is the Euclidean distance between

any pair of the same landmark captured by two machines; “rmsd” is the square

root of the mean OSS with averaging on landmarks. Both OSS and rmsd are

statistics to measure the deviation, where the former measures the total squared

and latter measures the average deviation per landmark of the images produced

by two camera systems.

rmsd =

√
OSS

n
=

√∑n
i=1 d

2
i

n
(5.1)

The table shows that in most cases the average deviations per landmark are quite

small (rmsd<3mm); Some of them are larger than 5 millimetres. The performance

of the new camera system seems good at this early stage, because large deviations

may come from the operator error to place the landmarks, especially at some am-

biguous facial area. For example, it may be difficult to manually place a consistent

position across the faces at the inner corner of the eyes (the 6th and 7th landmark)
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or the corner of the lip (the 13th landmark). In addition, there may also exist a

participant error, as the OSS of the second and fourth participant are quite small

compared with the other two.

participant 1 2 3 4 sd

OSS 191.33 86.23 284.48 49.35

rmsd 3.84 2.58 4.68 1.95 1.23

lmk 1 2.05 2.09 2.89 0.72 0.90

lmk 2 4.21 2.33 3.22 1.78 1.06

lmk 3 3.48 2.20 4.36 2.25 1.04

lmk 4 1.65 2.79 1.42 0.39 0.98

lmk 5 1.57 2.52 2.14 4.21 1.14

lmk 6 7.66 3.99 9.18 1.35 3.55

lmk 7 6.38 3.49 5.75 1.73 2.14

lmk 8 3.05 1.91 1.12 1.15 0.91

lmk 9 3.90 2.30 1.32 2.45 1.06

lmk 10 2.94 3.12 5.08 2.11 1.26

lmk 11 2.21 0.86 3.27 1.74 1.00

lmk 12 0.67 2.60 6.88 0.53 2.96

lmk 13 3.77 1.79 6.00 1.68 2.03

Table 5.1: Differences of the landmarks from two machines (unit: millimetre)

5.1.3 Comparison on middle lip curves

A valley curve was created in the middle of the lip on each 3D image. The

curve consists of two “plane cuts” (in Section 3.2.1) between the 11th and 12th

landmark; the 11th and 13th landmark. Figure 5.5 and 5.6 show the lip curves

(red) on the surfaces, as well as the 11th, 12th and 13th landmark (black points),

in the front and side views. Each of the identified curve pair was resampled to have

100 points in order to be comparable to each other. The resampling method is

spline smoothing of the coordinates. Although it cannot ensure every resampled
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point is actually on the surface, the high density of the curve provides a good

approximation.

Figure 5.5: Lip curves (red points) on the images produced by Eva on the

left and the new system on the right with landmarks (black points) in the front

view.

Figure 5.6: Lip curves (red points) on the images produced by Eva on the

left and the new system on the right with landmarks (black points) in the side

view.

Figure 5.7 displays two lip curves without the surface of the participant’s images

from two machines (Eva: black; NCTech®: red). The OSS and rmsd of each

participant are summarised in Table 5.1.3 where rmsd is on average of points

on the curves. Besides, the time (in seconds) to create a lip curve on the same

participant’s lip is shown in Table 5.1.3. Attention should be focused on “User”
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2. The slow speed to identify the curve for the new system may result from

the algorithm to build a triangulation for its output. Eva’s quicker performance

seems to benefit from its built-in triangulation which uses the smallest number of

triangles to connect the captured data points.

At this early stage, the performance of the new camera system performs reasonally

good in identifying curves. Comparing Table 5.1.2 and 5.1.3, the OSS does not

change dramatically when the number of points increase from 13 to almost a

hundred, and the average deviation per point on the curve seems small.

Figure 5.7: Comparison of two lip curves for the same surface. Artec® (black)

and NCTech® (red)

participant 1 2 3 4

OSS 148.64 261.72 1776.95 66.68

rmsd 1.22 1.62 4.22 0.82

Table 5.2: Differences of the lip curves from two machines (unit: millimetre)

User System Elapsed

Artec® 7.36 0.00 7.39

NCTech® 85.51 0.00 85.58

Table 5.3: Time to create the lip curves from two machines (in seconds)

2The first two entries (“User” and “System”) are the total user and system CPU times of the
current R process and any child processes on which it has waited, and the third entry (“Elapsed”)
is the “real” elapsed time since the process was started. The “user time” is the CPU time charged
for the execution of user instructions of the calling process. The “system time” is the CPU time
charged for execution by the system on behalf of the calling process.
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5.2 Validation study 2: an intermediate stage

5.2.1 Introduction

This validation study benchmarks the performance of NCTech®, Artec® and

DI4D® machines together, based on a set of landmarks only. In this study, the

landmark set on images is also manually placed in the software. The variation

of the landmark set on the images produced by different machines can be heavily

influenced by the manual placement which is not of interest in comparing the

performance of the machines. The advantage of this study is that the landmarks

are not only manually placed on the 3D images, but also manually drawn as black

dots on participants’ faces (with their permission). There are two advantages of

this study compared with the one in Section 5.1 as follow.

• The digital position of each landmark is placed according to the colour (black

dots) on the image so that the digital landmarks of different images have the

same “reference” position. Thus, the variation resulting from placing the

digital landmarks can be reduced and the difference of the digital landmarks

can represent more efficiently the variation of the performance of different

machines;

• Because the digital landmarks are placed with the “same”3 reference, the

digital distances between any pair of digital landmarks can be also compared

to reflect the variation of the performance of different machines.

As five of the participants were scanned twice by the three machines and the

sixth participant missed Artec® scans for one time, there are 35 outputs (images)

in total. At this stage, the system can produce a triangulation by itself for the

captured points.

3The reason of this quote is that the black dots are still what the machine estimated, but the
placement rule is the same: refer to the colour.
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5.2.2 Comparison on landmarks

There are 19 landmarks manually drawn on each face and 12 of them are clear on

all of the images to compare. Because Landmark cannot display the texture of the

imported images, only CloudCompare is used to manually place digital landmarks,

according to the positions of the black points which are manually drawn on the

faces. Figure 5.8 shows an image from DI4D® displayed in CloudCompare, with

19 manually-drawn landmarks (black points, mostly covered by pink points) and

12 digital landmarks (pink points), all labelled by their orders.

Figure 5.8: 19 manually-drawn landmarks and 12 digital landmarks used to

compare the three machines

For each participant, each landmark has been estimated several times by three

machines. Table A.1 summarises the standard deviation (sd) of each landmark

(row) of each participant (a subject on the column) among all three machines, so

that the variation of the performance of all machines together can be quantified.

Because each landmark has three coordinates (three dimensions), the standard

deviation of each landmark is represented by the average standard deviation of

the three coordinates. Table A.2 summarises the performance between DI4D®
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and NCTech® machines; while Table A.3 summarises the performance between

DI4D® and Artec® machines.

By comparing the three tables below, it can be noticed that when the new system

is involved in the performance comparison (Table A.1 and A.2), the standard

deviation tends to be larger, but not dramatically so. As there are errors from

operator to place different landmarks and the participants’ different characteristics,

the performance of the new system seems stable at this stage.

5.2.3 Comparison on Euclidean distances between land-

marks

All 12 landmarks have been grouped to 6 pairs (green and grey lines in Figure

5.9) and the Euclidean distance of each pair has been calculated. The groups are

points 1 and 3; points 2 and 12; points 4 and 5; points 6 and 7; points 8 and 9;

points 10 and 11 whose orders are shown in Figure 5.8.

Figure 5.9: 6 pair of lines used to compare the three machines
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Table A.4 summarises standard deviation of the distance of each pair (line on the

row) and each participant (subject on the column) among all three machines. Table

A.5 summarises the performance between DI4D® and NCTech® machines; while

Table A.6 summarises the performance between DI4D® and Artec® machines.

Consistent with the results in Section 5.2.2, the performance of the new camera

system increases the standard deviation of most distances bewteen landmarks.

However, the increase is not large and there even some decreases, such as line 3 of

subject 4 from Table A.5 to Table A.6.

5.2.4 Deviations of each camera system

Previous studies focused on the standard deviation of the landmarks or distances

of paired landmarks across machines. In this section, the standard deviation, or

the variation of the estimate will be calculated by the same machine.

In this validation study, for each of 12 digital landmarks, NCTech® machine and

DI4D® machine each estimated 6 participants× 2 repeats which is 12 times, while

the Artec® machine estimated this 11 times. The deviation of each landmark

estimation by each camera system can be calculated by subtracting the mean

position from the estimates. In Figure 5.10, the deviations of each landmark of

each participant from the same machine are in the same colour. The advantage of

this comparison is that behaviours from different camera systems can be compared

regardless of landmarks and subjects. Note that in this section, the deviation of

each landmark is no longer the average on the three dimensions, but displayed

directly in three-dimensional space. The dimensions are also shown in Figure 5.11

in three different colours.

In Figure 5.10, although some of the blue points are large, most of them are

clustered in the centre. As the red points from DI4D® machine have a degree of

dispersion, ignoring the far blue points (regarded as outliers), most of the blue have

a reasonable dispersion. In Figure 5.11, the box sizes of NCTech® seem similar

to the other two machines, although Artec® has a better behaviour. Thus, we
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can conclude the performance of the new camera system is comparable with those

mature products.

Figure 5.10: Deviations (represented by dots) of landmark estimates from

Artec® (black), DI4D® (red) and NCTech® (blue) camera systems.
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Figure 5.11: Boxplots of deviations of landmark estimates from all three

cameras.

The Euclidean distances can be analysed in the same way. The deviations of

the Euclidean distances between pairs of landmarks are shown in Figure 5.12

and Figure 5.13. Different from the landmark estimates, the Euclidean distance

between a pair of landmarks only has one dimension, so is the deviation. The new

camera system still has slightly larger spread of the deviations. Another feature

in Figure 5.13 is that the Artec® machine behaves very stable, as the distribution

of the deviation is symmetric and has the smallest variation.
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Figure 5.12: Deviations of distance estimates from all three cameras.

Figure 5.13: Boxplots of deviations of distance estimates from all three cam-

eras.
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5.3 Validation study 3: a later stage of develop-

ment

5.3.1 Introduction

This validation study, at a later stage of the development, benchmarks the perfor-

mance of NCTech® and DI4D® machines, based also on landmarks and curves.

There are five participants. Each of them has been scanned twice by NCTech®

and DI4D® machines. As the deviance within one machine has been investigated

in previous validation studies, this one compares one image from the NCTech®

machine with the same participant’s image from the DI4D® machine. Figure

5.14(a) and 5.14(b) show an example of a pair of images from these two machines

without texture. This allows detailed comparison between the performance of the

two machines. The parameter of resolution has been reduced to 0.001, in order

to compare with the outputs from DI4D® (in millimetre scale). With the im-

provement of the camera system, the quality of the image has been very much

improved.

(a) DI4D® (b) NCTech®

Figure 5.14: Images coloured by grey from DI4D® and NCTech® camera

systems
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5.3.2 Comparison of landmarks

There are 21 landmarks manually placed on each image using CloudCompare.

Figure 5.15 shows an example of a Procrustes-matched pair set of landmarks from

DI4D® (black dots) and NCTech® (red dots) images of one participant. The

landmarks are named based on the definitions in Katina et al. [26]. The method

in this section is similar with the study in Section 5.1 where for each participant,

we focus only on one image from one machine and compare the images.

Figure 5.15: Procrustes matched landmarks from DI4D® (black) and

NCTech® (red) images of one participant

For each participant on the column, the comparison between two images from two

machines is summarised in Table A.7. The statistic “rmsd” for each participant
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in this validation study is defined as follows.

rmsd =

√√√√√ 21∑
i=1

di
2

21
(5.2)

where 21 is the number of landmarks. Denote the Euclidean distance of the ith pair

of Procrustes-matched landmarks by di, which is on the row for each landmark.

Comparing with Table 5.1.2, the deviance of the same landmark position from two

machines is much smaller, so is the standard deviation for each landmark across

the participants.

The effect on rmsd here consists of many more aspects other than the camera

system variation of interest. The random effects include the variation of landmark

placement by the observer, the variation of image capture by the same machine,

the variation of different days to capture images, etc., which cannot be investigated

in this study due to the small sample size. However, previous studies showed that

it is likely that only observer variation has a large impact. In other words, it

seems reasonable to conclude that the variation due to the observer dominates

the variation between the pair set of landmarks, and the variation due to different

machines can be small.

5.3.3 Comparison on curves

Figure 5.16(a) and 5.16(b) show a pair of images captured from the same partici-

pant by two machines, where the curves are identified by the methods in Section

3.2.1 and 3.2.2. Due to the difficulty of creating the curves, “upper lip right”,

“upper lip left”, “lower lip right”, “lower lip left”, “nasal bridge right” and “nasal

bridge left” were identified by optimising on the shortest arc length. Figure 5.17(a)

and 5.17(b) show an example of Procrustes-matched pair set of curves from DI4D®

(black dots) and NCTech® (red dots) images of the same participant. Note that

the identified curve consists of a series of discrete 3D points.
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The comparison with curves also indicates that the variation between pair set

of curves may be dominated by the variation of the landmark placement. For

example, the surface in the pronasale area is a cap-like shape and bending the

most on a human face. it can be difficult to identify the pronasale point which has

the largest curvature by eyes. The same situation happens at the corners of the

lip. Some people have thicker cheek whose corner of the lip can be more difficult

to identify than the one whose bottom cheek area is flat. Furthermore, it can be

problematic at the corners of the eyes, not only to identify the largest curvature

point, but also the effect of lashes.

Large deviations of the curves mostly appear at the landmarks. It can be reason-

able that they result from the manual placement of the landmarks. Apart from

the error of landmark placemant, the curves seem consistent with each other. Al-

though the overall quality of the image fro the new camera system is not as good

as the mature prototype, the landmarks and curves within each anatomical area

seem adequate for this facial-surgery project at this latter stage.

(a) DI4D® (b) NCTech®

Figure 5.16: Images from DI4D® and NCTech® camera systems with curves
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(a) Front view (b) Lateral view

Figure 5.17: Procrustes matched curves from DI4D® (black) and NCTech®

(red) images of one participant. The red curves are shown blue in Figure 5.16(a)

and 5.16(b)



Chapter 6

Bayesian localisation of 3D facial

landmarks

The variability of manually localising the landmarks is a difficulty in curve identi-

fication and shape analysis. For example, in Section 5.3.3, the manual localisation

of the landmarks increases the variability of two sets of curves, which can mislead

the comparison of the shapes. Another issue that may occur in the middle proce-

dure of the analysis when some key anatomical landmarks are needed, but adding

extra landmarks is very time-and-labour consuming. Thus, there is a demand to

develop an automatic process which can remove the need for manual operations.

Since 1990, human facial landmarks have always played an important role in fa-

cial analysis applications, such as face recognition and expression analysis. In

recent years, researchers (e.g. Cootes et al. [31], Sun et al. [70] and Deng et al.

[71]) have focused more on automatic facial landmark localisation, known as face

alignment or facial landmarks detection as, generally speaking, traditional manual

landmarking is not accurate enough and is very time-and-labour consuming.

The methods of facial feature point detection (FFPD) have been categorised by

Wang et al. [72], into the parametric and the non-parametric shape model-based.

For parametric methods, Cootes et al. [31] introduced the point distribution model

120
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(PDM) which Procrustes matches the training shapes and performs principal com-

ponent analysis (PCA) to build a shape model. Wang et al. [72] noted that the

most popular one is called Active appearance model (AAM), which combines PDM

and texture models by PCA, as proposed by Cootes et al. [73].

Non-parametric methods have made considerable progress in the last few years, es-

pecially in computer science, such as the deep convolution neural network (DCNN)

method demonstrated by Sun et al. [70]. Although Hu et al. [74] improved by

only using 1000 data, computing methods including DCNN still involve big data

sets to train the model. Zhang et al. [75] have also introduced a novel data

and model-driven (parametric and non-parametric) approach, called Estimation-

Correction-Tuning (ECT), which combines the advantages of the global robustness

of data-driven methods (fully convolutional networks), outlier correction capabil-

ity of the model-driven method (PDM) and non-parametric optimisation of Reg-

ularised Landmark Mean-Shift.

In this chapter, a novel and robust approach using Bayesian model will be intro-

duced, which aims to use few data for training, but of high accuracy in a statistical

sense. This method is a further development of Vittert [8]. It has been only de-

veloped to deal with four key landmarks, but more will be investigated in future

research. Further work of its comparison with existing methods is also required in

future investigation.

6.1 Automatically estimate landmarks by Bayesian

models

As mentioned in Vittert [8], Bayesian approach is motivated by our common sense

of prior knowledge of human facial landmarks which have similar positions on

different human faces. For example, a set of landmarks, as defined by Katina

et al. [26], has the strongest curvatures on anatomical areas, such as the tip of the

nose and inner corners of the eyes. Aided by the indication of landmark positions
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estimated manually on a prior set, the landmarks on a new face can be localised

according to local curvatures or the expected positions of different landmarks.

Although this procedure expects to estimate a full set of three-dimensional land-

marks simultaneously, it can be difficult to deal with a high-dimensional multi-

variate distribution, especially when maximising the posterior distribution. Thus,

this thesis will only include the estimation of four anatomical landmarks which

are defined by Katina et al. [26] as follow.

• pronasale: the crossing of mid-line nasal profile1 and alar curves2

• sellion: the point of maximum curvature of the mid-line nasal curve at its

nasal root

• alare crest : the left and right points of maximum curvatures on the alar

curve where this meets the paranasal area.

6.2 Prior distribution of landmarks

The automatic Bayesian method can be developed with an existing data set of

facial images. Landmarks are manually placed on the faces to provide prior knowl-

edge on how the landmark positions are distributed on a human face. Methods

for modelling a three-dimensional data set are illustrated in Section 2.2. The prior

landmark sets on facial images are first matched through Generalised Procrustes

Analysis (GPA) and their Procrustes tangent coordinates (Procrustes residuals)

are calculated through Equation 2.13. The Procrustes residuals are vectorised

as Equation 2.11 and each vector has length 3k = 12 where k is the number of

landmarks in the set to estimate and k = 4 in this chapter.

The most common distribution of such high-dimensional (12-dimensional) model-

ing, the multivariate normal distribution, is used for the prior distribution of the

1Mid-line nasal profile contains ridge points from the nasal root along the dorsum of the nose
and the columella

2Alar curve contains ridge points on the lateral extension of the nasal cartilage



Chapter 6. Bayesian localisation of 3D facial landmarks 123

positions of the landmark set. The set of landmarks to choose is expected to max-

imise the posterior distribution. Procrustes registration of the set of landmarks

provides the prior distribution, denoted by N12(r̄, sr) where r̄ (vector of length 12)

and sr (square matrix with 12 rows/columns) are the mean and the covariance

matrix of the Procrustes residuals as defined in Equation 2.13 and 2.14. The prior

distribution can be expressed proportionally as

ρ(θ) ∝ exp

{
−1

2
Rᵀsr

−1R

}
(6.1)

whereR denotes the matrix of Procrustes residuals. Note that the inverse matrix of

sr may not exist, so the generalised inverse matrix is used. This satisties srsr
−1sr =

sr.

6.3 Likelihood distribution of landmarks

6.3.1 Initial estimates of landmarks

In Bayesian statistics, the likelihood is constructed from the conditional probability

of observations given the landmark positions. Thus, the set of landmarks to choose

is that which maximises the likelihood. A 3D facial image contains more than one

hundred thousand points which are estimated by the camera system. An efficient

way to find the optimal landmark set can be to narrow the optimisation area to a

small neighbourhood of each landmark.

Firstly, the gross local features can be examined by selecting a subset of the point

cloud with the Euclidean distance in the neighbourhood to be about 50 millimetres.

Because a meaningful landmark is either at the peak of a cap or the bottom of

a cup area, shape index can be used to search for the spherical cap or cup, as

indicated by the colours in Figure 2.4. With the characteristic of a human face,

the optimal local area of the tip of the nose can be found around the point in the

subset which has a positive shape index and the strongest Gaussian curvature.
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This point has a negative κmin on a ridge, as described in Section 2.2, and is used

as an initial estimate of pronasale.

The nose-tip area has a positive shape index, while the inner corners of the eyes

have negative shape indices. A curve between the two points which have the

largest Gaussian curvatures in the corners will lie across the nose. The point on

this curve with the strongest (smallest negative κmin) will be the initial estimate

of sellion.

The initial positions of the left and right alare crest can be estimated by matching

the initial positions of pronasale and sellion to the prior landmark sets. After

Procrustes matching, the average left and right alare crest in the prior landmark

sets will intersect the face by rotating the line which goes through the initial

positions of pronasale and sellion. The two intersecting points can be the initial

estimates of the left and right alare crest.

6.3.2 Likelihood distribution

After finding the initial locations of the four landmarks, the optimisation area can

be narrowed from the whole face to their small neighbourhood. Denote the coordi-

nates of the ith landmark by θi, i = 1, . . . , k, the coordinates of its ni neighbouring

points of by {m̃i1, m̃i2, . . . , m̃ini
} and their curvatures by yi={yi1, yi2, . . . , yini

}. On

the small patch of each landmark, fit a quadratic model to their curvatures as fol-

lows.

E(yij) = βi1 + βi2‖θi − m̃ij‖2, j = 1, . . . , ni (6.2)

or alternatively,

Yi = Xiβi, whereYi =


yi1

yi2
...

yini

 , Xi =


1 ‖θi − m̃i1‖2

1 ‖θi − m̃i2‖2
...

...

1 ‖θi − m̃ini
‖2

 , βi =

βi1
βi2

 (6.3)
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The likelihood distribution of the curvatures around the ith landmark θi is then

ρ(Yi|Xi, βi, σi
2) ∝ (σi

2)−
ni
2 exp

{
− 1

2σi2
(Yi −Xiβi)

ᵀ(Yi −Xiβi)

}
(6.4)

In this ni-dimensional multivariate normal distribution, we use hyper-parameters

for the distributrions of βi, σi
2

βi ∼ N2(µ0i , σi
2Λ0i

−1) or ρ(βi|σi2) ∝ (σi
2)−1 exp

{
− 1

2σi2
(βi − µ0i)

ᵀΛ0i(βi − µ0i)

}
σi

2 ∼ Inverse Gamma(a0i , b0i) or ρ(σi
2) = (σi

2)−a0i−1 exp

{
− b0i
σi2

}

Following the notation of Molinari [76], the joint conjugate prior distribution of βi

and σi
2 is a Normal-Inverse Gamma and denoted by NIG2(µ0i ,Λ0i , a0i , b0i).

ρ(βi, σi
2) = ρ(βi|σi2)ρ(σi

2)

∝ (σi
2)−1 exp

{
− 1

2σi2
(βi − µ0i)

ᵀΛ0i(βi − µ0i)

}
(σi

2)−a0i−1 exp

{
− b0i
σi2

}
(6.5)
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6.4 Posterior distribution

According to Bayes theorem, the posterior distribution of the ith landmark θi can

be expressed as follows.

ρ(βi, σi
2|Yi, Xi) ∝ ρ(Yi|Xi, βi, σi

2)ρ(βi, σi
2)

∝ (σi
2)−

ni
2 exp

{
− 1

2σi2
(Yi −Xiβi)

ᵀ(Yi −Xiβi)

}
(σi

2)−1 exp

{
− 1

2σi2
(βi − µ0i)

ᵀΛ0i(βi − µ0i)

}
(σi

2)−a0i−1 exp

{
− b0i
σi2

}
= (σi

2)−1 exp

{
− 1

2σi2
(βi − µni

)ᵀΛni
(βi − µni

)

}
(σi

2)−ani−1 exp

{
− bni

σi2

}
(6.6)

where µni
= (Xi

ᵀXi + Λ0i)
−1(Λ0iµ0i +Xi

ᵀYi)

Λni
= Xi

ᵀXi + Λ0i

ani
= a0i +

ni
2

bni
= b0i +

1

2
(Yi

ᵀYi + µ0i
ᵀΛ0iµ0i − µni

ᵀΛ0iµni
)

Compare the formula of Equation 6.6 with 6.5, the likelihood distribution is a

Normal-Inverse Gamma NIG2(µni
,Λni

, ani
, bni

). With the property of any proba-

bility distribution that

∫∫
b
ani
ni

(2π)|Λni
| 12 Γ(ani

)
ρ(βi, σi

2|Yi, Xi) dβi dσi
2 = 1 (6.7)
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the marginal likelihood distribution of θi is

ρ(Yi|θi) =

∫∫
ρ(Yi|Xi, βi, σi

2)ρ(βi, σi
2|θi) dβi dσi2

=

∫∫
ρ(βi, σi

2|Yi, Xi) dβi dσi
2

=
(2π)|Λni

| 12 Γ(ani
)

b
ani
ni

∫∫
b
ani
ni

(2π)|Λni
| 12 Γ(ani

)
ρ(βi, σi

2|Yi, Xi) dβi dσi
2

∝ |Λni
| 12 Γ(ani

)

b
ani
ni

(6.8)

For simplification, suppose the mean Procruste residual µ0i = 0:

Λni
= Xi

ᵀXi + Λ0i

µni
= (Λni

)−1(Xi
ᵀYi)

ani
= a0i +

ni
2

bni
= b0i +

1

2
(Yi

ᵀYi − µni

ᵀΛ0iµni
)

Thus, the chioce of the set of four landmarks is which maximises

ρ? ∝ ρ(θ)
4∏
i=1

ρ(Yi|θi) (6.9)

For convenience, take logarithm of ρ? and substitiute Equation 6.1 and 6.8, we

have

ρ?l = log {ρ?}

= log {ρ(θ)}+
4∑
i=1

log {Yi|θi}

= −1

2
Rᵀsr

−1R +
4∑
i=1

(
1

2
|Λni
|+ log {Γ(ani

)} − ani
log(bni

)

)
(6.10)
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6.5 Algorithm

As mentioned in the beginning of this section, it can be computationally expensive

to find the optimal set of four landmarks which maximising the posterior simuta-

neously. An efficient solution is to find them one-by-one while holding the others

fixed. With the input of an individual face where landmarks are to be estimated

and a prior set of faces with their landmarks manually placed, the algorithm is as

follows.

Step 1: Find the initial positions of the four landmarks and their neighbour-

hood with curvatures; denote this initial set of landmarks by Lold ={
θ1

0, θ2
0, θ3

0, θ4
0
}

;

Step 2: Replace the ith landmark with one in its neighbourhood; Procrustes match

this replaced landmark set with the prior sets of landmarks for the prior

probability ρ(θ); calculate ρ?l by Equation 6.10 of this replaced landmark

set;

Step 3: Run Step 2 for all the neighbouring points of θi
0, find the one which

maximises ρ?l and denote it by θi
1. Repeat for i = 1, 2, 3, 4 so that to

obtain Lnew =
{
θ1

1, θ2
1, θ3

1, θ4
1
}

;

Step 4: Calculate the point-by-point Euclidean distance between Lold and Lnew.

If the distance is within certain small amount, finish the algorithm. Oth-

erwise, replace Lold with Lnew and repeat from Step 2 until convergence.

6.6 Application of the algorithm

Figure 6.1 shows the comparison of different methods and indicates the efficiency

of this algorithm. Green dots are manually placed on the face as an reference; black

dots are the initial estimate before applying the Bayesion algorithm (Section 6.3.1)

and red dots are the estimate of the Bayesian algorithm (Section 6.5). Both the
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pronasale and sellion show that the algorithm adjusted (corrected) the (black)

initial estimate by moving them closer to the (green) manual placements.

Figure 6.1: Comparison of landmarks estimated by different methods: manual

placements (green dots), initial positions (black dots) and Bayesion approach

(red dots)

One advantage of this method is that it reduces the variation from manual place-

ments. This can be tested by comparing the Procrustes-matched variation of

manually-placed landmark set and their Bayesian estimate set. There are 31

three-dimensional facial images captured from 31 female adults in the University

of Glasgow by a DI3D machine. Both manual placement and Bayesian estimate

of the four landmarks are obtained and matched by the Generalised Procrustes

Analysis (without scaling). The Procrustes-matched variation of each set is sum-

marised in Table 6.6.

rmsd1 GSS

Manual 0.135 1584

Bayesian 0.069 485

Table 6.1: Comparison of the Procrustes-matched variation of manual place-

ments and Bayesian estimate of the same group of participants.
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where rmsd1 (unit: millimetre) is the square root of the average Procrustes dis-

tance3 squared to their mean shape; GSS is the sum of squared norms of pairwise

differences as defined in Dryden and Mardia [29] and shown in Equation 2.9. The

table shows that the variation of the manual placements is more than twice of the

Bayesian estimates. In other words, this Bayesian model efficiently reduced the

error of manual placements which is not of interest.

pronasale sellion alare crest (L) alare crest (R)

mean 2.9 3.1 3.4 3.0

sd 1.5 8.4 2.1 2.2

Table 6.2: Average distances between the estimate and manual placement for

each landmark and the standard deviations. (unit: millimetre)

Table 6.6 shows the performance of the algorithm specifically for each landmark.

The Euclidean distance between the estimate and manual placement of each land-

mark on an individual face is calculated. The distance for each landmark indicates

the performance of the algorithm is stable, with an average around 3mm. Among

the four landmarks, sellion lies on a relatively flat surface, while others have a

strong curvature in the neighbourhood. This may result in the large value of

standard deviation so is a large variety of its position approximation. The overall

performance of the algorithm is good that there is no large deviation from the

manual reference but small adjustments. Those adjustments are more reasonable

based on a Bayesian model than the placements only judged by eyes.

3The definitions of Procrustes distance and GSS are in Section 2.2.2



Chapter 7

Conclusion and Discussion

This thesis focuses on novel 3D shape modelling of local features and statistical

analysis of the models. It is worth mentioning that conventional approaches are

limited to 2D shape analysis, where the latest 3D models are still projected into

a 2D plane. Therefore, this thesis conveys a revolutionary method for shape local

features based on 3D raw data.

This chapter will provide conclusions and evaluations of the materials in this thesis,

followed by some suggestions in future works in Section 7.2.

7.1 Conclusions and limitations

Traditional shape analysis focuses on anatomical points on the images which are far

from each other known as “landmarks”. Particularly, the analysis for local features

requires more information and adds additional points between the landmarks,

which are called “semi-landmarks”. This thesis also investigates local features

based on discrete points, but with richer geometric information but less complexity.

Note that only the vertices of triangles are observations from the camera system

and other points on the curve are estimated. Thus, the method to shape local

features in this thesis is called “3D curve estimation”.

131
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Chapter 3 summarised two novel approaches for curve estimation. The first de-

scribed in Section 3.3 is a development of an existing method introduced in Vit-

tert et al. [7]. The existing method uses Euclidean distance for a fast speed and

it works well on a relatively flat surface, such as the upper lip edge on a face.

However, it could fail on a complex surface which bends heavily, such as a cichlid

mandible bone. The improvement presented in this thesis has replaced the Eu-

clidean distance by the distance along the surface, which the existing method was

approximated by.

This improvement to calculate the distance along the surface also has fast perfor-

mance and can deal with the surface which bends even in the opposite direction.

However, because it estimates a curve with discrete points, a smoothing procedure

is involved and this can be influenced by the smoothing parameter. The solution

can be fixing a smoothing parameter at a conventional value with iteration and

repeating estimation until convergence. This works well on surfaces where there is

enough curvature information. However, it requires the guidance of curvatures for

the whole curve reaching the local feature. If the local feature has weak curvatures

in the middle, the iteration may be misled. For example, it may continue beyond

the target feature to find stronger curvatures so that the convergence does not

exist. Thus, the second novelty introduced in Section 3.4 in Chapter 3 aims to

deal with surfaces which do not have an entire clear shape to identify, or where it

is difficult to add landmarks to guide the estimating direction.

In such an ambiguous situation, curve estimation method needs to be very flexible.

For example, when there is a ridge to identify and there is a small valley area in

the way, the method may “jump” across the valley and continue the ridge path by

determining a parameter (“step distance”) at the beginning. Another example can

be where there are several side paths in the middle, and the method can find the

correct one by determining another pair of parameters (“direction boundaries”).

It can be difficult to identify ridges and valleys on a child’s face, as it is much

flatter than an adult’s face. This method has a good performance in estimating

upper cleft lip edge of children where a break is in the middle.



Chapter 7. Conclusion and Discussion 133

Chapter 4 discussed four topics of shape analysis based on the estimated curves

from Chapter 3. The first one in Section 4.1 is a novel method to dissect a local

piece from a 3D shape. Popular software to edit images such as Photoshop by

Adobe Inc. only provides functions for 2D images. Tools to edit 3D images are

still under development. It acts like the scissor tool on 2D photos, but cuts along

the 3D curves estimated in Chapter 3. The curve can be either closed or a path

across the surface, which isolates some parts of the image or divides the image into

parts. The algorithm works well on the dissection of single local shape, such as

the lip or nose on a human facial image, but may fail if there are several connected

local shapes isolated by a curve. In this case, each part of the local shapes should

be computed separately.

The second topic discussed in Section 4.2 in Chapter 4 is to use principal com-

ponent analysis (PCA) to compare the mean shapes of different groups, such as

gender. In contrast to the conventional way to use PCA in statistics, shape analysis

applied PCA on each coordinate of each point. This thesis used cichlid mandibles

to explain how to extract local features from 3D curves using significant principal

components’ scores and specified the average shape difference of different gender

groups. Although the percentage of variance that the significant principal com-

ponents explain is normally not large, linear discriminant analysis (LDA) of the

curves produced a classification rate up to 77%.

The last two topics included in Section 4.3 and 4.4 in Chapter 4 adapted the

method introduced in Miller [63] to calculate curvatures of the curves and recon-

struct the curve based on the curvatures. Other methods to align the curvature

curves were discussed and an improved warping result was shown. During the

reconstruction procedure, this thesis mainly investigated the effect of noise from

the data on the optimal degree of freedom when fitting the discrete points. The

reconstruction at the curve end tended to have larger deviance, which may result

from the loss of curvature information. A higher density of points on the curve

can address this issue, as it can provide more curvature information and make the

curvature curve smoother.
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After having Chapter 3 and 4 introduced, Chapter 5 went back to the data col-

lection. using the technology introduced in Chapter 1, we have found that the

existing camera systems are not portable and may disturb children. Hence, a new

camera system is needed for our intended research topics, while its development

for the project assessing the surgery of facial deformity in Brazil had commenced.

At each stage of development, a validation study was designed to benchmark the

performance of the new system and mature products. Both the landmarks and

estimated curves were used to evaluate the differences in the images.

One issue is that the image difference of the same object may be enlarged by

manual placements error of landmarks. The error which is not of interest may

increase the total difference of images. One solution is to compare the manually-

placed digital landmarks with the physical landmarks which were drawn on the

participants’ face. The colour of the physical landmark provides a reference to

place the digital landmark rather than judging by eyes. Thus, the variation from

placing the landmarks in the total difference can be reduced. It is also interesting

to study how much variation has been reduced and how the total variation in a

model can be decomposed.

Another solution to reduce the placement error was illustrated in Chapter 6, which

aimed to automatically place the landmarks on three-dimensional images instead

of manual placing. This novel Bayesian approach used a set of landmarks which

were manually placed on the prior set of faces and the curvatures on the face to

estimate its landmarks. The algorithm first used shape index and curvatures to

estimate initial positions of the landmarks, and then found the optimal positions

which maximised the object distribution one-by-one through iterations. By com-

paring the initial position, manual placement and the Bayesian estimation of the

same landmark, the method corrected the landmark from its initial position. The

more similar the prior set of faces to the observed face, the better result of the

algorithm. The likelihood was calculated by a quadratic model of the points in its

neighbourhood and it requires a high density of the point cloud, with the distance

between adjacent points around one millimetre.
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The work illustrated in this thesis has been planned to publish. Chapter 3 and

4 includes the methods in statistics and computational geometry, targeting jour-

nals such as Studies in Applied Mathematics and Applied Mathematics Letters.

Chapter 6 introduced a novel Bayesian model for automatic facial landmark de-

tection, targeting journals such as Journal of the Royal Statistical Society Series

B-Statistical Methodology, Annals of Statistics and Statistical Science.

7.2 Further research interests

The Bayesian model to automatically detect landmarks in Chapter 6 is still at

the early stage. A full set of 23 landmarks needs to be investigated, as well as a

general Bayesian method to detect landmarks on any shapes. According to the

principle of Bayesian models, as long as there is a prior set of similar shapes and

a proper likelihood distribution, the position of the landmarks can be estimated.

But there are plenty of details to investigate, including the influence of prior size

and similarity between the prior set and the shape to estimate. A validation study

to evaluate the Bayesian approach is also required.

A strong connection between the methods in this thesis is curve estimation and

automatic landmark detection. Curve estimation introduced in Chapter 3 was

based on the manual landmark placements, while the Bayesian automatic detec-

tion was studied afterwards. Thus, a procedure to automatically estimate curves

without manual landmark placements can be investigated. This is not only use-

ful in shape analysis, but also in the validation study assessing the behaviour of

camera systems, as described in Chapter 5.

The methods of building statistical models and extracting local shape features

have a wide range of applications. In the world of big data, machine learning is

the most popular tool across disciplines, particularly in image processing. With

an image as the input, convolutional neural networks (CNN) use filters in layers to

analyse and recognise the objects. However, on one hand, as the method is mainly

used to predict, one of the disadvantages of this method is that the parameters of
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its model are difficult to interpret. A high prediction accuracy may be obtained by

adjusting the parameters or functions which do not have the explainable meaning

of the data. RichardWebster et al. [77] mentioned that the reason for a failed

prediction can be hard to understand. On the other hand, because there is too

much information which is sensible, a little improvement of the model may require

a huge increase in the training data size. 3D curve estimation and landmark

detection can help build shape models as inputs instead of the raw image. This

procedure may reduce the required training data set and achieve higher accuracy.
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Long Tables in Chapter 5

participant 1 2 3 4 5 6

lmk 1 0.50 0.19 0.35 0.31 0.51 0.19

lmk 2 0.56 0.49 0.43 0.24 0.81 0.29

lmk 3 0.24 0.30 0.36 0.16 0.26 0.15

lmk 4 0.21 0.59 0.27 0.39 0.29 0.15

lmk 5 0.30 0.30 0.29 0.28 0.34 0.14

lmk 6 0.32 0.29 0.41 0.34 0.38 0.21

lmk 7 0.31 0.46 0.24 0.49 0.60 0.28

lmk 8 0.29 0.15 0.43 0.21 0.30 0.18

lmk 9 0.30 0.36 0.26 0.49 0.40 0.22

lmk 10 0.27 0.32 0.46 0.33 0.56 0.17

lmk 11 0.28 0.38 0.31 0.33 0.68 0.14

lmk 12 0.61 0.31 0.32 0.41 0.28 0.14

Table A.1: Average standard deviations of landmark coordinates of all three

machines (unit: millimetre)
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participant 1 2 3 4 5 6

lmk 1 0.51 0.19 0.43 0.37 0.62 0.17

lmk 2 0.67 0.43 0.51 0.29 0.91 0.31

lmk 3 0.16 0.19 0.44 0.17 0.24 0.16

lmk 4 0.22 0.62 0.32 0.38 0.33 0.14

lmk 5 0.29 0.25 0.33 0.30 0.41 0.15

lmk 6 0.35 0.35 0.51 0.34 0.45 0.20

lmk 7 0.35 0.38 0.29 0.59 0.64 0.29

lmk 8 0.26 0.13 0.39 0.17 0.30 0.12

lmk 9 0.26 0.23 0.29 0.55 0.45 0.18

lmk 10 0.25 0.31 0.59 0.38 0.66 0.19

lmk 11 0.26 0.26 0.39 0.35 0.59 0.14

lmk 12 0.48 0.35 0.31 0.38 0.29 0.12

Table A.2: Standard deviation of landmark coordinates of DI4D® and

NCTech® machines (unit: millimetre)
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participant 1 2 3 4 5 6

lmk 1 0.22 0.18 0.27 0.28 0.34 0.17

lmk 2 0.21 0.30 0.23 0.13 0.16 0.31

lmk 3 0.24 0.27 0.28 0.15 0.19 0.16

lmk 4 0.17 0.73 0.16 0.27 0.17 0.14

lmk 5 0.15 0.35 0.22 0.24 0.19 0.15

lmk 6 0.19 0.19 0.36 0.25 0.20 0.20

lmk 7 0.14 0.39 0.14 0.11 0.42 0.29

lmk 8 0.21 0.19 0.37 0.18 0.16 0.12

lmk 9 0.27 0.35 0.18 0.40 0.16 0.18

lmk 10 0.21 0.27 0.39 0.20 0.38 0.19

lmk 11 0.25 0.39 0.25 0.31 0.62 0.14

lmk 12 0.36 0.19 0.28 0.33 0.18 0.12

Table A.3: Standard deviation of landmark coordinates of DI4D® and Artec®

machines (unit: millimetre)

participant 1 2 3 4 5 6

line 1 0.95 0.13 0.67 0.39 0.85 0.22

line 2 0.55 0.57 0.90 0.38 0.94 0.43

line 3 0.27 0.69 0.29 0.17 0.39 0.22

line 4 0.28 0.61 0.27 0.29 0.55 0.46

line 5 0.30 0.31 0.70 0.35 0.27 0.32

line 6 0.49 0.73 0.58 0.92 1.18 0.34

Table A.4: Standard deviation of Euclidean distances of each pair of land-

marks from all three machines (unit: millimetre)
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participant 1 2 3 4 5 6

line 1 1.19 0.15 0.85 0.49 0.92 0.23

line 2 0.71 0.72 1.09 0.46 1.21 0.40

line 3 0.32 0.86 0.30 0.11 0.44 0.17

line 4 0.35 0.53 0.18 0.35 0.59 0.53

line 5 0.37 0.34 0.74 0.45 0.25 0.18

line 6 0.30 0.85 0.63 1.01 1.14 0.39

Table A.5: Standard deviation of Euclidean distances of each pair of land-

marks from DI4D® and NCTech® machines (unit: millimetre)

participant 1 2 3 4 5 6

line 1 0.99 0.02 0.57 0.34 0.54 0.15

line 2 0.17 0.46 0.80 0.44 0.33 0.55

line 3 0.34 0.16 0.33 0.21 0.33 0.28

line 4 0.29 0.43 0.23 0.36 0.51 0.12

line 5 0.11 0.38 0.66 0.28 0.27 0.34

line 6 0.61 0.46 0.37 1.06 1.00 0.22

Table A.6: Standard deviation of Euclidean distances of each pair of land-

marks from DI4D® and Artec® machines (unit: millimetre)
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participant 1 2 3 4 5 sd

rmsd 2.172 1.680 1.727 1.645 2.218 0.28

pn 1.93 1.94 1.13 0.97 1.89 0.47

acL 1.80 2.67 1.48 2.55 4.61 1.21

acR 2.45 1.80 1.68 2.70 1.18 0.59

sn 1.26 0.95 1.80 0.59 1.32 0.44

n 1.77 0.09 2.22 0.82 1.78 0.86

se 1.67 1.14 3.32 0.55 4.90 1.79

enL 2.26 1.06 1.45 2.64 1.71 0.62

enR 2.20 2.15 1.85 0.98 1.80 0.49

exL 6.19 0.66 1.07 3.21 3.12 2.18

exR 6.92 1.26 2.22 3.12 2.23 2.20

cheekL 2.03 6.23 5.85 4.52 5.01 1.65

cheekR 6.06 7.85 5.33 2.57 6.67 1.99

cphL 1.41 2.09 1.55 1.27 1.09 0.38

cphR 0.70 2.18 0.90 1.48 2.50 0.79

ls 1.11 1.05 0.93 1.61 1.31 0.26

chL 1.65 1.41 1.28 2.55 1.20 0.57

chR 2.85 1.85 0.76 1.95 2.68 0.83

st 2.68 4.37 1.33 0.84 1.51 1.44

li 3.33 2.91 0.80 3.51 2.33 1.09

sl 3.94 1.23 3.69 1.15 1.59 1.38

gn 6.35 4.23 8.10 2.96 7.34 2.13

Table A.7: Deviance of each landmark of each participant (unit: millimetre)
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